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Abstract

The main topic of this thesis is the use of bearing estimation techniques combined with multiple antenna elements

for spread spectrum receivers. The motivation behind this work is twofold: firstly, this type of receiver structure

may offer the ability to locate the position of a mobile radio in an urban environment. Secondly, these algorithms

permit the application of space division multiple access (SDMA) to cellular mobile radio, which can offer large

system capacity increases. The structure of these receivers may naturally be divided into two parts: signal detection

and spatial filtering blocks.

The signal detection problem involves locating the bearings of the multipath components which arise from the

transmission of the desired user’s signal. There are a number of approaches to this problem, but here the MUSIC

algorithm will be adopted. This algorithm requires an initial estimate of the number of signals impinging on

the receiver, a task which can be performed by model order determination techniques. A major deficiency of

MUSIC is its inability to resolve the highly–correlated and coherent multipath signals which frequently occur in

a spread spectrum system. One of the simplest ways to overcome this problem is to employ spatial smoothing

techniques, which trade the size of the antenna array for the ability to resolve coherent signals. The minimum

description length (MDL) is one method for determining the signal model order and it can easily be extended to

calculating the required degree of spatial smoothing. In this thesis, an approach to analysing the probability of

correct model order determination for the MDL with spatial smoothing is presented. The performance of MUSIC,

combined with spatial smoothing, is also of great significance. Two smoothing algorithms, spatial smoothing and

forward–backward spatial smoothing, are analysed to compare their performance.

If SDMA techniques are to be deployed in cellular systems, it is important to first estimate the performance

improvements available from applying antenna array spatial filters. Initially, an additive white Gaussian noise

channel is used for estimating the capacity of a perfect power–controlled code division multiple access system with

SDMA techniques. Results suggest that the mean interference levels are almost halved as the antenna array size

doubles, permitting large capacity increases. More realistic multipath models for urban cellular radio channels

are also considered. If the transmitter gives rise to a number of point source multipath components, the bearing

estimation receiver is able to capture the signal energy of each multipath. However, when a multipath component

has significant angular spread, bearing estimation receivers need to combine separate directional components, at an

increased cost in complexity, to obtain similar results to a matched filter.

Finally, a source location algorithm for urban environments is presented, based on bearing estimation of multipath

components. This algorithm requires accurate knowledge of the positions of the major multipath reflectors present

in the environment. With this knowledge it is possible to determine the position of a transmitting mobile unit.

Simulation results suggest that the algorithm is very sensitive to angular separation of the multipath components

used for the source location technique.
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Chapter 1

Introduction

In recent years, there has been an explosion of interest in wireless communication services. The potential

of wireless is to allow anyone to communicate by voice or digital data, without being limited by the

fixed telephone network. In practice, there is a diverse range of communications products for a wide

variety of applications, from cellular telephones to high speed wireless data networks. There are many

issues involved in the design of these systems, but generally the prime motivations are to provide an

acceptable product to minimise costs and maximise profit. In the case of cellular communications, the

availability of VLSI technology which is fast, powerful and inexpensive has driven designers to produce

mobile telephones which employ complex signal processing techniques. This is a reply to the perceived

demand for flexible, high–capacity cellular networks.

This thesis will consider the application of two military–derived techniques to mobile cellular radio

systems, namely spread spectrum modulation and antenna arrays. The necessary algorithms to apply

antenna arrays to spread spectrum signals will be described in this thesis. Some studies of the improve-

ment in the capacity of cellular networks using these techniques are also described. Urban conurbations

provide a very hostile environment for cellular radio systems, so the performance of antenna arrays under

these conditions is analysed. The urban radio channel can provide a means for locating the position of

a given mobile radio, and an algorithm is presented for this purpose. This chapter will commence by

summarising the current state of wireless technology. It will focus on cellular radio systems, looking at

the techniques that are currently employed, to see why spread spectrum and adaptive array techniques

may be of use. Following this, a brief summary of the main areas of research documented in this thesis

will be presented. To conclude, the structure of the thesis itself will be described.

1.1 Wireless Personal Communications

The recent development of wireless communications for personal and business use across the world has

led to a major proliferation of systems and standards. For a full description and discussion of these

systems, the reader is referred to the IEEE Communications Magazine special issues of December 1992

and January 1995 as well as the Proceedings of the IEEE special issue September 1994. The recent

paper of Cox [1] is also recommended. Here the main categories will be briefly mentioned, before going

on to look at cellular systems in more detail.

Currently, wireless communications systems may be broadly subdivided into 6 or 7 categories. These

include:
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(i). Wireless Local Area Networks (WLANs): These systems are designed for low mobility data

communications in indoor environments such as offices and factories [2]. Spread spectrum

techniques are widely used in these systems, because some of the early frequency allocations

released in the United States (US) for unlicensed WLAN operation (amongst other applications)

were the industrial, scientific and medical (ISM) bands. These permit transmissions of up to 1

watt, provided that spread spectrum modulation is used. However, the trend towards high speed

data links means that WLAN products are likely to move away from spread spectrum techniques.

(ii). Wide Area Wireless Data Systems:These products provide low data rate digital communications

to mobile users. The two best known networks [1] are Motorola’s ARDIS network, which operates

at 4.8 kb/s and Ericsson’s RAM network which provides a data rate of 8 kb/s.

(iii). Paging/Messaging Systems:These are one way systems permitting short messages to be trans-

mitted to a given user. High power base stations are used to reach mobile units, which can provide

long usage time from low power batteries.

(iv). Cordless Telephones:Cordless technology was first developed in the 1970s to permit a telephone

user to move around a room or building whilst making a call. A number of standards have

since been developed, such as the European digital CT2 and DECT protocols [3], to alleviate the

problem of illegal handsets; applications have also extended to data transmission and telepoint

networks. In Singapore and Hong Kong, cordless telepoint networks have been a commercial

success, providing a low power alternative to cellular systems.

(v). Satellite Systems: A few satellite communications networks currently exist, including Qual-

comm’s OMNItracs messaging system, which employs spread spectrum techniques. A number of

proposals for satellite personal communication systems are currently being pursued. Most of these

technologies also employ spread spectrum techniques, with the exception of Motorola’s IRIDIUM

network [4]. These systems are intended to provide cellular coverage in areas of low population

density: however problems of low system capacity along with severe propagation losses due to

shadowing from buildings, mountains, etc. may challenge the economic viabilityof these systems.

(vi). Cellular Radio Systems: Historically, cellular radio was the first means by which mobile tele-

phony could be provided. These systems may be characterised by high power and high complexity

base stations and mobile radios: these points are a necessity when providing adequate high mobil-

ity coverage in a variety of environments. The signal processing requirements of modern digital

cellular systems are such that most of the handset hardware is devoted to these tasks.

The next section will look in more detail at cellular systems and standards, in particular at the methods

used to permit a large number of users to communicate simultaneously.

1.2 Cellular Telephony

In order for a number of radio handsets to communicate simultaneously with a base station, their signals

must be separated in some way. There are four well known methods to do this:
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(i). Frequency Division Multiple Access (FDMA):This method permits a number of users to operate

simultaneously by allocating each transmitter a separate radio frequency (RF) carrier or channel.

The carriers are spaced sufficiently apart to prevent mutual interference occurring.

(ii). Time Division Multiple Access (TDMA): In this case all users transmit using the same RF

carrier(s), but are allocated a unique time slot during which they alone may transmit.

(iii). Code Division Multiple Access (CDMA): All users transmit over the same RF carrier(s) and

may transmit at the same time. Each user is identified by a unique code which is used to increase

the bandwidth of the data transmission.

(iv). Space Division Multiple Access (SDMA):All users may transmit using one or more of the above

protocols. Users operating simultaneously at the same RF frequency may be separated at the

receiver according to their spatial location. Antenna array receivers are the most common method

to exploit SDMA in practical analogue and digital networks.

The first cellular networks, such as the American advanced mobile phone service (AMPS) and the

European total access communications system (TACS) employed analogue FDMA. Each user was

allocated a different radio frequency (RF) channel for transmission, so that the number of channels

specified system capacity. However, the efficiency of these systems, in terms of the traffic carried per

unit of area and bandwidth, was low. In order to improve the situation, a second generation of cellular

systems employing digital voice coding were developed, such as the European GSM system and the

US IS–54 standard. These systems employ a combination of FDMA and TDMA access protocols to

accommodate more users than analogue systems.

There are a number of cellular networks currently in use around the world, based on conflicting standards.

To give an impression of the current situation, the networks in use in Europe and America will be discussed

below:

(i). Europe: Two types of analogue network are currently used in Europe: TACS (in the UK, ETACS)

operates in the 800–900 MHz RF band and the nordic mobile telephone (NMT) networks which

operate at the 450 and 900 MHz bands. Digital networks have been introduced recently and the

GSM system is successfully operated in the 900 MHz band across Europe. Each user generates a

coded voice data sequence of 22.8kbps; training sequences and guard bands are then added. Eight

users are time–multiplexed to give a total data rate of 270.833kbps, which can be susceptible to

severe multipath propagation and inter–symbol interference: the training sequences are therefore

needed for equalisation purposes. A modified version of GSM has been specified for the 1800

MHz band under the name DCS–1800. Two DCS-1800 networks have been successfully launched

in the UK and it is also deployed in Germany.

(ii). America: The analogue AMPS network, operating in the 800–900 MHz band, is pre–eminent

across America. In the United States, IS–54 compatible digital networks have recently been

introduced in the AMPS bands. This system is upwardly compatible with AMPS and employs
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the same channel data rate of 30 kHz. In 1993, the Telecommunications Industry Association

(TIA) released the IS–95 standard, which specifies a CDMA scheme based on spread spectrum

technologies: however, this system has yet to be deployed in the US. Licences to operate 1800 MHz

band networks in areas across the US have recently been auctioned by the federal communications

commission (FCC). The accompanying equipment standards are currently being processed by a

joint technical committee of the TIA – there are seven systems being assessed, which are based

on IS–54, IS–95 and cordless technologies [5].

Faced with this somewhat chaotic situation, the International Telecommunications Union (ITU) is

attempting to define the nature of communications services in years to come, through the future public

land mobile telecommunications systems (FPLMTS) programme. In Europe, research into this field is

being co–ordinated under the title universal mobile telecommunications systems (UMTS) [6, 7]. The

UMTS programme envisages an unified standard for cellular, cordless, paging, private mobile radio and

low rate WLANs. The data rate may vary from 1 kb/s up to 2 Mb/s; the link quality will inevitably

vary according to the prevailing propagation conditions, but must meet the requirements of the particular

application.

In Europe, research into spread spectrum and CDMA techniques for the UMTS air interface is focussed

around the code division testbed (CODIT) [8]. A number of data rates up to 128 kb/s are being

implemented: initial results comparing CODIT with a rival TDMA testbed (ATDMA) suggest that

CDMA may have a slight advantage for cellular applications [9]. Spread spectrum techniques in general

are the subject of considerable research – see, for example, the proceedings of the IEEE 3rd international

symposium on spread spectrum techniques and applications (ISSSTA) ’94, held in Oulu, Finland. Two

recent issues of the IEEE Journal on Special Areas in Communications, May–June 1994, were also

devoted to the subject. Further discussion of this topic will be deferred to Chapter 2.

SDMA techniques as such are not new: dual antenna space diversity techniques are commonly used in

cellular systems. However, the use of larger antenna arrays to properly exploit SDMA have only been

considered more recently [10, 11]. A paper proposing passive source location techniques for cellular

systems [12] appears to have been the pre–cursor to renewed interest in SDMA for cellular systems.

Researchers have considered SDMA techniques for TDMA systems such as IS–54 [13] and for CDMA

systems [14, 15]. A US company, called Arraycomm, has been formed specifically to design SDMA

networks for cellular systems. Qualcomm, the company which developed the IS–95 standard, is also

funding research into SDMA techniques for their CDMA system [16]. In Europe, as part of the UMTS

programme, research is being conducted into SDMA techniques under the name TSUNAMI [17].

1.3 Summary of Main Research Areas

The main topic of this thesis is the operation of an antenna array receiver for spread spectrum signals.

There are a number of ways to operate such a system, but for this work a bearing estimation architecture

has been adopted. The signal processing task breaks down into two main areas: firstly, determining

the bearings of the incoming signals and secondly, picking out the desired signal components whilst
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suppressing interference. The purpose of this exposition is to look at the algorithms involved and to

determine the performance improvements that might be obtained from this approach. A specific applic-

ation of this receiver to locating the position of a spread spectrum transmitter in an urban environment

is also considered.

There are a very large number of algorithms documented in the literature which perform the task

of passive bearing estimation. From the available techniques, the MUSIC algorithm was selected as

it provides good resolution without excessive computational complexity. However, this algorithm is

known to perform poorly in the presence of coherent multipath signals. A simple solution exists to

overcome this problem, spatial smoothing, but at the expense of reducing the effective size of the

antenna array. The performance of such techniques is of considerable interest and will be studied in this

thesis. Algorithms to estimate the number of signals present, in conjunction with the necessary degree

of spatial smoothing, are also considered. This is because the performance of MUSIC is often poor,

unless the correct underlying model order is known.

The bearing estimation techniques described in this thesis may be used to provide SDMA capability in

a cellular radio system. The improvement in capacity offered by such an approach is of interest and

has been the subject of considerable research recently. The capacity improvement available for simple

channel models will be considered, because closed form solutions are obtainable. The results obtained

by such methods provide only a simple approximation and more realistic channel models must also be

considered. The performance of antenna arrays under such conditions will provide a more useful guide

to how they can be successfully operated in cellular systems.

High frequency (HF) multipath channels have been exploited for many years to provide a source location

ability. If the angles of arrival of multipath components from a desired microwave source in an urban

area can be determined, analogous techniques may be developed for finding the transmitter’s position.

The feasibility of such an approach will be considered in this thesis.

1.4 Thesis Structure

After this brief introduction, Chapter 2 will describe spread spectrum and antenna array techniques in

more detail. The operation and behaviour of spread spectrum systems are described – more details of

CDMA schemes, such as IS–95, are also presented. The second half of this chapter is devoted to antenna

array systems. An introduction to the wide variety of algorithms available for operating such receivers

is provided. Techniques devised specifically for spread spectrum systems will also be considered.

Chapters 3 and 4 will move on to look at the operation of the MUSIC algorithm for performing bearing

estimation. Chapter 3 concentrates on the subject of model order techniques for estimating the number of

signals impinging on an antenna array. These algorithms are required in order to ensure that the proper

operation of the MUSIC algorithm. Spatial smoothing techniques are needed for situations where

coherent multipath components are present. It is possible to adapt model order algorithms to estimate

the model order and the best degree of smoothing simultaneously: asymptotic results are presented for
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the analysis of such an approach.

The topic of chapter 4 is bearing estimation algorithms. A number of techniques are introduced, including

the MUSIC algorithm. The performance of MUSIC is discussed in more detail and the subject of spatial

smoothing techniques is considered. The operation of MUSIC with spatial smoothing in multipath

environments is an important practical concern. Complex equations are available for the performance of

MUSIC with spatial smoothing: these are discussed with reference to the structure of the data covariance

matrix. Simulation results are also presented to back up the analysis.

Chapter 5 will focus on the performance of bearing estimation receivers placed in the base stations of

cellular systems. A simple line–of–sight channel is considered, along with the assumption of perfect

power control. Results for the performance of CDMA systems are presented and modified for the case

of antenna array receivers. Theoretical and simulation results are presented for the case of single cell

antenna array receivers. There is also some discussion of antenna array systems operating in multi–cell

CDMA systems.

Chapter 6 will look at the performance of cellular radio systems in more complex multipath environments.

Realistic channel models for antenna array systems are described, extending previous research in this

area. Two different types of channel model are then discussed in more detail. Initially, a point

source multipath channel is considered, with results obtained for the bit error ratio performance. Initial

simulation work for the case of multiple CDMA transmitters is also described. Secondly, the effect

of multipath components with a finite angular spread is considered, with a view to the effectiveness of

bearing estimation receivers in such situations.

In chapter 7, an algorithm to perform source location in a multipath environment is described. The

performance of this technique is of great importance and has been analysed through a first order

Taylor series expansion. Theoretical and simulation results are then presented to show the strengths and

weaknesses of the algorithm. A modification of the MUSIC algorithm for locating multipath components

in bearing and in time delay is described, in order to improve the accuracy of time delay estimates. A

method for locating a source without information about the local environment is also presented.

Finally, Chapter 8 will draw conclusions from the work that has been described in this thesis. There is

discussion of the achievements and limitations of the results obtained. Suggestions for relevant further

work are also presented.
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Chapter 2

Spread Spectrum and Adaptive Array
Techniques

Spread spectrum communications and adaptive array techniques are two disparate examples of techno-

logies that were originally developed with military applications in mind. Spread spectrum techniques

provide a low power method of communication that is difficult to intercept or to jam. Adaptive arrays

provide a means of nulling out undesired interference while still receiving a desired radar or communic-

ations signal. However, the end of the cold war and the resulting peace dividend has driven researchers

in both fields to look for applications in the civilian sector. The increasing demand for universal mobile

communications and the availability of fast, powerful VLSI technology means that spread spectrum and

adaptive array techniques are now at the forefront of current research. This chapter will divide into

two main parts, dealing separately with spread spectrum and adaptive array techniques respectively.

The section on adaptive arrays will focus on mobile communications where possible, particularly where

spread spectrum techniques are also applied.

2.1 Spread Spectrum Communications

The first spread spectrum systems to be devised appear to have been driven by a desire for improved

accuracy in ranging systems. Radar techniques became the subject of serious research in the late 1930s

leading to a forward–looking patent obtained in 1938 by Gustav Guanella of Brown, Boveri and Co,

Switzerland [18]. This specified the idea of performing ranging by a wide–bandwidth signal, with the

receiver using advanced synchronisation techniques to pick out signal returns. During the war, a patent

was also taken out for a frequency–hopping system to guide torpedoes [19].

The foundation of modern statistical communication theory was laid down in the work of Claude

Shannon [19], exemplified in the Hartley–Shannon theorem. This specified the channel capacity CC, in

terms of system bandwidthBC Hz and signal to noise ratio SNR as follows:

CC � BC log��
 � SNR� (2.1)

The channel capacity may be thought of as the maximum possible data rate of any theoretical system.

Shannon’s work employed random signalling and he noted that maximum capacity would be obtained

by a noise–like waveform with uniform power spectral density across the bandwidth BC . Within a few
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years, many of the familiar spread spectrum techniques had been developed, mostly in secret for the

US Department of Defence. In 1949, John Pierce suggested the idea of asynchronous code division

multiple access (CDMA) [19]. In the early 1950s, direct–sequence spread spectrum techniques were

first developed under the the title of noise modulation and correlation (NOMAC). A hardware prototype

of this technique was called the F9C and in 1956, Price and Green developed the concept of the now

ubiquitous RAKE filter [20] to improve communication over multipath high frequency (HF) channels.

For a more detailed survey of the early history of spread spectrum technology, which was mainly of a

military nature, the reader is referred to [18,21,22] and the recent update [19].

In more recent times, spread spectrum has been used in the tracking and data relay satellites system

(TDRSS), which was utilised for communications between the space shuttle and ground control, via

two geostationary satellites [23,24]. CDMA techniques are used in the US military’s global positioning

system (GPS) [23, Chapter 13] [25, Chapter 8], which is now accessible to civilian users. There are 18

GPS satellites in orbit, placed such that anyone on earth may always access at least 4 satellites. The

satellites transmit Gold codes which may be used to calculate the relative delays to each satellite and

hence determine the position of the GPS radio [23]. The US military has also developed the joint tactical

information distribution system (JTIDS) [23] and the single channel ground and airborne radio system

(SINCGARS) [26], both of which employ spread spectrum techniques.

Before proceeding to discussions on spread spectrum systems, the term itself must be defined. The

method of [27] will be followed here, because of its simplicity. Define the Shannon bandwidth of a

signal, Bs, as the bandwidth of the minimum signal–space representation of the baseband data stream.

The Fourier bandwidthBf may defined as the bandwidth of the transmitted signal representing the data

stream. Any modulation scheme for which Bf is much greater than Bs may be considered to be “spread

spectrum”. Strictly speaking, this definition includes time division multiple access systems, but they will

not be considered here: for more information see [28]. Other systems which comply with this definition

will now be discussed.

2.2 Spread Spectrum Techniques

There are a number of methods by which the baseband data stream d�t�, of bandwidth Bs, may be

converted to a transmission signal with a much larger bandwidth Bf . Four such techniques will now be

considered:

(i). Direct Sequence Spread Spectrum(DS–SS):This technique operates by modulating the data

sequence d�t� by a pseudo-random code c�t�, whose period is equal to that of the data sequence

ts. In its simplest form, the code c�t� is a long string of �
 and �
 chips, with chip period tc.

The resulting baseband signal, tx�t� is transmitted at the appropriate radio frequency (RF). At the

receiver, the RF signal is downconverted to baseband to produce the signal r�t�. This is multiplied

by the code c�t� to produce the post–correlation signal y�t�, from which the original data sequence

may be estimated. This process is illustrated in figure 2.1. The processing gain W of a DS–SS

system may be defined as the length of the PN code, i.e. the ratio of the symbol period to the chip
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Figure 2.1: A typical direct–sequence spread spectrum system.

period, i.e. ts�tc.

(ii). Frequency Hopping Spread Spectrum(FH–SS):This technique employs a number of separate

RF carriers for transmitting the data sequence d�t� [29, Part 2,Chapter 2]. The signal is transmitted

on different carriers at different times, under the control of a PN code which must be known to both

transmitter and receiver. A simple example of a frequency hopping signal is shown in figure 2.2.

The data itself is superimposed on to this signal by frequency or phase shift keying modulation.
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Figure 2.2: A pattern of frequency hops for a DS-FH system.

(iii). Multi Carrier Spread Spectrum (MC–SS): In contrast to frequency hopping, here the data is

simultaneously transmitted on a number of narrowband carriers [30]. Using this concept to transmit

over multipath channels is an old one, but there has recently been interest in using orthogonal

carrier waveforms to permit multiple–access communication. In order to allow a number of users

to transmit on the carrier frequencies, each user employs a different PN code which is transmitted

in parallel across the carriers [31].

(iv). Time Hopping Spread Spectrum (TH–SS):The approach is similar to FH–SS systems, except

that the transmission time is divided into blocks of time slots. In each block, the transmitter is

active in only one time slot, chosen according to a pseudo–random code. This type of system is

much less common than the other three.
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For a more thorough review of spread spectrum techniques, see [25, 29, 32, 33]. In this thesis, DS–SS

systems will be considered, so the rest of this section will focus on the advantages and operational

characteristics of such systems.

2.2.1 Advantages of Direct Sequence Spread Spectrum

If a communications system employs DS–SS modulation, there will inevitablybe an increase in hardware

and general complexity. However, such systems have a number of benefits to compensate for this [25,29]:

(i). Lower Transmit Power: The Hartley–Shannon theorem indicates the same capacity is achieved

by DS–SS systems with a lower transmit power density (measured in Watts per Hertz) compared to

narrowband systems. The processing gain quantifies the reduction of power that can be tolerated.

If a system employs a PN code of length 100, it has a processing gain of 20 dB. This means that

if the receiver requires 10 dB SNR for acceptable performance, the PN code may be received at a

level of �10 dB.

(ii). Military Applications: Spread spectrum systems were originally developed with military ap-

plications in mind. Transmitting long PN codes ensures that communications links are harder

to eavesdrop. In addition, DS–SS has some immunity, specified by the processing gain, to

narrowband jammers present in the same RF bandwidth. For more detailed discussions of the

performance of jammed DS–SS systems, see [29].

(iii). Accurate Time Resolution: Most spread spectrum receivers employ correlation detection of

the desired code c�t�. The auto–correlation function (ACF) of most PN codes is similar to that

of white noise, and a typical code auto–correlation function is shown in figure 2.3. The ACF

W

Output

0

Time Shift

Figure 2.3: A typical PN code auto–correlation function.

shown in figure 2.3 takes non–negligible values only within one chip of the arrival of the code.

This property means that spread spectrum techniques have been widely adopted for navigation

purposes, including GPS.
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(iv). Multipath Capability: The ability of DS–SS receivers to locate the arrival of the desired code in

time makes them ideal for operation in severe multipath environments. A simple example of an

urban channel and the associated channel impulse response is shown in figure 2.4. The form of the

(a)

Base 
Station

Buildings

Propagation
Multipath

Mountains

Mobile

User

(b)

Time

Output

0

Figure 2.4: (a) A typical urban multipath environment (b) The channel impulse response to a transmitted
DS-SS code, measured at the output of the PN code correlator receiver.

code ACF means that multipath components with time delays of greater than one chip period tc

may be separately resolved. Channel sounding devices employing PN codes with very small chip

periods have been frequently used for measuring the multipath characteristics of communication

channels [34–36].

(v). Code Division Multiple Access (CDMA): The current generation of European digital mobile

telephones, based on the GSM and DCS–1800 standards, employ time and frequency division

multiple access techniques. However, future mobile networks may achieve increased capacity by

employing DS–SS techniques [37, 38]. In the United States IS–95 standard, a number of users

may transmit on the same RF bandwidth by employing different PN codes to separate out their

transmissions [39]. In this system interference from other users appears as benign background

noise; as the number of active transmitters increases, the quality of each communication link

degrades gracefully. The precise nature of such a multiple–access system is currently the focus of

considerable research.

The format of DS–SS CDMA schemes will now be considered.

2.2.2 Code Division Multiple Access

In this multiple access scheme for mobile communications, all active mobiles in the system transmit at

the same frequency. Each user can be identified by a unique PN code which is used only to modulate their

data, prior to transmission. Similarly, all users receive information from the communications network

at the same frequency, again with unique codes assigned to each user. There are a number of families of
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codes which can be used to identify each transmission. The properties of such codes are discussed fully

in [29,40], however three of the most well known code sets are:

(i). m–sequences:These codes are generated using linear feedback shift register generators (LFSRG)

[41]. If a length l generator is used to determine the code, the code itself will be of length

W � �l�
. One example of such a generator is shown in figure 2.5. The periodic ACF – defined

Binary Code
Produced

Modulo 2
Adder

Delay
Elements

Linear Feedback Shift
Register Generator

Output

-1
Z Z Z

-1 -1

Figure 2.5: A linear feedback shift register generator for binary m–sequences.

as the correlation of the code with a periodically repeating copy of itself – of any m–sequence is

two valued for integer chip shifts of the code. If the code shift is zero, the ACF takes the value

W , otherwise it is�1. Unfortunately, if the code is modulated by data, the odd ACF occurs when

the code undergoes a change in phase (e.g. from �1 to �1) during the correlation operation. In

this case, the odd ACF can take larger magnitude values, causing self–noise interference to the

receiver. The major difficulty with usingm–sequences for CDMA is that there are relatively small

numbers of them for a given length W : for example there are only 60 m–sequences of length

1023.

(ii). Gold codes: Gold code sets [42] are commonly used because so many more codes are available

than for m–sequences. A total set of W � � codes is generated by the modulo–2 addition of a

preferred pair of m–sequences of length W , using different integer shifts between the codes [42].

For example, if the two m–sequences are denoted as length W vectors v� and v�, the complete

Gold code set G�v�� v��, containingW � � codes, is formed as follows:

G�v�� v�� � fv�� v�� v� � v�� v� � Tv�� v� � T �v�� � � � � v� � TL��v�g (2.2)

where � denotes modulo–2 addition and T kv� denotes the cyclic left–shift of v� by k places.

The periodic auto– and cross–correlation functions of the codes take on only three levels, with the

maximum cross–correlation levels lower than the maximum possible for a pair of m–sequences

of the same size. However, odd auto– and cross–correlations involve a larger number of possible

values and may take on amplitudes much greater than for periodic correlations.

(iii). Walsh codes:Walsh or Hamadard codes of length �n represent the �n orthogonal basis functions

over the finite alphabet �1 [43]. These codes may be used to provide orthogonal synchronous

multiple channels. However, the asynchronous auto– and cross–correlation functions can take

very high amplitudes.
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The general operation of a CDMA cellular system will now be considered in more detail. System

considerations break down into two main parts: (1) the reverse link from the mobile to the network base

station and (2) the forward link from the base station to the mobile. This section will begin with the

reverse link.

2.2.3 The Reverse Link

A simple block diagram of the reverse link, from the mobile to the base station, is shown in figure 2.6.

Each mobile transmits to the base station over the same RF bandwidth, but using a different PN code
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Figure 2.6: A block diagram of the reverse link of a DS–SS CDMA System.

(numbers 1,2,� � �,P ) to distinguish its transmissions. One of the main difficulties with the reverse link

is that it usually operates in an asynchronous fashion, which means that the levels of periodic and odd

cross-correlation interference are unpredictable. A related problem is the near–far effect: if a mobile

close to the base station transmits with the same power as one far away from the base, the signal from

the former will swamp that of the latter.

In order to minimise the near–far problem, CDMA systems must employ power–control of the received

signal. Such a system operates to ensure that the total received power from each mobile is the same.

The system overhead involved in power control schemes is very large, so there has been considerable

research into devising receivers which are more robust to power control errors. One method is to employ

multi–user receivers which simultaneously decode all users transmissions: a tutorial on these techniques

is given in [44]. Alternatively, the receiver may attempt directly to cancel CDMA interference, based on

the received signal for each user [45, 46]. However, the performance improvement of such receivers in

cellular CDMA systems may be limited when complete frequency re–use in all cells is applied. In this

case, there are high levels of un–cancellable interference from other cells [39] – for a uniform distribution

of users throughout an urban cellular system, interference from other cells has been calculated at 33%

of the total CDMA cross–correlation interference.

One mechanism to reduce interference from other users is for each mobile to transmit only when the

user is speaking, which has been shown to be about 40% of a total telephone conversation time. The
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distribution of each user’s transmissions means that this permits an increase in system capacity of only

a factor of two [47]. An additional capacity increase may be obtained by reducing the size of each cell

in the system, albeit at the cost of increased base station hardware. A common technique is to divide

a circular or hexagonal cell into 3 sectors [48], each providing 120o coverage of the original cell. This

provides an increase in total capacity of about 3 times.

2.2.4 The Forward Link

The general layout of the forward link, from the base station to the mobiles, is shown in figure 2.7.

Frequency division duplex (FDD) is often specified for CDMA systems, so that the forward link is
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Figure 2.7: A block diagram of the forward link of a DS–SS CDMA System.

transmitted over a different RF band to the reverse link. The transmission of data to the mobiles is

similar to system operation on the reverse link, except that each user’s code is transmitted synchronously

with the same power. This means that interference effects may be controlled more easily and there is

no near–far problem in this case. The main difficulties occur at the border of cells, where there is strong

interference from nearby cells. This may be overcome by increasing the transmit power to any mobile

affected in this way, at the expense of mobiles closer to the base station.

2.2.5 The IS–95 Standard

In 1993, the US company Qualcomm, in association with a number of national service providers

and international equipment suppliers, presented the draft IS–95 standard for mobile cellular CDMA

systems. For a more detailed analysis of IS–95, see [37–39, 49, 50]. The essential points of the system

described therein follow closely the discussion of the forward and reverse link system operation above.

However, there are additional points which will not be strictly followed in this thesis, but which are

worth mentioning.

(i). Reverse Link Modulation: A voice coder generates binary data at a rate of 9600 bits/s, which

is encoded using a rate 1/3 convolutional code to protect against random errors. The output
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data stream of 28.8 kbits/s is interleaved to protect against burst errors due to multipath effects.

The output signal is grouped into blocks of 6 bits, which are encoded using 64–ary modulation.

The output signal of 307 kbits/s is multiplied by a user–specific long PN code to give a signal

bandwidth of 1.2288 Mbits/s. This signal is transmitted using filtered–offset QPSK, with the I

and Q channels modulated by system specific codes of length ���. A dual–diversity receiver is

used at the mobile for receiving on the reverse link.

(ii). Forward Link Modulation: The operation of the forward link is similar to the reverse link,

except that a rate 1/2 convolutional code is used to give a coded data stream of 19.2 kbits/s. This

signal is interleaved and modulated by the user–specific PN code without increasing the signal

data rate. The output data rate is upconverted to 1.2288 Mbits/s by using a user–specific Walsh

code. The resulting signal is transmitted using filtered QPSK, with the same I and Q codes used

as for the reverse link. The users’ transmissions are accompanied by a pilot signal which typically

uses 10–20% of the total transmission power, in order to permit coherent demodulation at the

mobile.

(iii). Power Control: In order to achieve strict power control on the reverse link, the mobile estimates

the received power from the base station as a first estimate of the path–loss over the communications

channel. The base station also transmits power up/down instructions to the mobile at a rate of 800

Hz. This arrangement is therefore a major control overhead for such a CDMA system.

(iv). Soft Handover: Where a mobile is on the border of two cells, both base stations may transmit

to it with the same code as the receiver employs a RAKE filter to combine multipath energy

coherently. This permits performance improvements for such mobiles. On the reverse link, the

network selects the base station which receives the largest signal power level from the mobile.

(v). System Capacity:In theory, any multiple access scheme which employs a total bandwidth of W

Hz should be as good as any other. However, the advantages of spread spectrum systems, such as

lower power consumption, multipath capability, etc. make up for the disadvantages such as the

necessity for power control. Complete frequency re–use and the asynchronous nature of CDMA

techniques provide some capacity advantage over existing TDMA systems.

2.3 Antenna Array Architectures

Having introduced the subject of spread spectrum and CDMA techniques, the second half of this chapter

will move on to discuss antenna arrays. There are a number of reasons for employing multiple antenna

receivers, three of which are as follows:

(i). Directional Capability: If radio wave signals are received by an array of two or more suitably

spaced antennas�, it is usually possible to infer the bearings of the transmitters. This technique is

frequently exploited in passive listening and sonar applications.

�Strictly speaking, the plural of antenna is antennae. However, the word antennas will be used in line with its frequent
occurrence in the work of American researchers.
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(ii). Interference Suppression:If a desired signal is corrupted by an interferer arriving from a different

direction, antenna arrays may be used to filter out the interference. This principle has been used

widely in military radar and communications applications. Recently, there has been considerable

interest in antenna array techniques for mobile radio, as they can increase the capacity of such

systems. The idea of suppressing interference from interfering transmitters in this way is often

called space division multiple access (SDMA).

(iii). Space Diversity Techniques:A standard technique for combatting severe multipath effects on

communications channels is to employ multiple receivers. Provided the antennas are sufficiently

spaced, the probability of error is considerably reduced.

The techniques by which these points may be exploited using antenna arrays will now be discussed in

much more detail. To begin with, mathematical models for describing the behaviour of antenna arrays

will be introduced.

2.3.1 The Narrowband Channel Model

In this thesis, the narrowband antenna array model [51] will be used. The following assumptions are

commonly made in its development:

(i). There are one or more transmitters operating at or near a specified radio frequency, denoted as f .

(ii). The received signal at each antenna element is corrupted by spatially and temporally white

Gaussian noise of zero mean and variance ��.

(iii). All the transmissions are narrowband, in the sense that the Fourier bandwidth Bf of the signal is

much smaller than the carrier frequency f .

The narrowband assumption is justifiable even in the case of IS–95 type spread spectrum systems,

because the Fourier bandwidth is roughly 1.25 MHz while the carrier frequency is roughly 900MHz.

In order to progress further, the geometry of the antenna array must be specified. There are many ways

of arranging the antenna elements, but probably the most widely known configuration is the uniform

linear array (ULA). In order to avoid grating lobes, which are analogous to spatial aliasing effects, the

antennas are spaced along a line at distances of �C�� - half the carrier wavelength. A diagram of a

typical ULA is shown in figure 2.8. The steering vector of an M–element ULA, a��� � CM��, is the

impulse response of the array to a source at bearing � and is given by:

a��� � �
� expfj� cos���g� � � � � expfj�M � 
�� cos���g�T (2.3)

where aT denotes the vector transpose operation. The advantage of this configuration is its simplicity.

However, linear arrays cannot separately resolve signals coming from opposite sides of the array:
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moreover, they suffer from endfire effects because of the cosine terms present in equation (2.3). The

Brandwood derivative vector d ��� [52] of the steering vector is calculated by taking the derivative of

each entry with respect to �. For � � �o� 
��o, the derivative vector takes large values, indicating that

measurements of source transmissions at or near these bearings are very sensitive to noise. The array

designer will usually ensure that signals arrive only from one side of the array, and that the endfire

regions are blocked. The array configuration shown in figure 2.8 will be used throughout this thesis.

Broadside

Bearing = 90

Array Sensors

Bearing = 180 Bearing= 0

Endfire Endfire

o

o

o

y (t) y (t) . . . . y (t)
M1 2

cλ / 2

Figure 2.8: The uniform linear array (ULA) configuration.

Assuming that the received RF signal at each antenna is downconverted to baseband, it is possible to

write the received signal vector y�t� � CM�� as the following linear form:

y�t� � �y��t�� y��t�� � � � � yM �t��T � As�t� � n�t� (2.4)

There are K signals impinging on the array, whose amplitudes fsk�t�g are specified by theK�
 vector

s�t�. The matrixA � CM�K contains the column steering vectors for the K signals and n�t� � CM��
contains the additive white Gaussian noise present at each antenna. A large number of array processing

techniques are based on the covariance matrix R of y�t�, which is defined as follows:

R � E�y�t�yH �t�� � ASAH � ��I (2.5)

The matrix S is the covariance matrix of the signal vector s�t� and I denotes the identity matrix. The

notationAH denotes the Hermitian transpose of the matrixA. The matrixX � ASAH is often termed

positive semi-definite, because it has K positive eigenvalues and M �K zero eigenvalues. Performing

the eigenvalue decomposition of R, the following is obtained:

R � Us��s � ��I�UH
s � ��EnE

H
n (2.6)

The matrix Us � CM�K denotes the K eigenvectors corresponding to the non–zero eigenvalues ofX .

The matrix �s � C K�K is diagonal and contains the positive eigenvalues of X , ordered according to
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the eigenvector matrix Us. Collectively, the eigenvectors Us are often called the signal subspace. The

matrixEn � CM�M�K contains the M �K eigenvectors corresponding to the zero eigenvalues ofX .

These eigenvectors are collectively called the noise subspace; as the eigenvalues are all equal to ��, the

eigenvectors are not uniquely defined.

An extremely important property of the covariance matrix is that the columns of the noise subspace

matrixEn are all orthogonal to the columns of the steering vector matrixA. This fact is often exploited

by array processing algorithms, such as the MUSIC bearing estimation algorithm [53]. In practice, only

a finite number of data samples fy�t�g are available, so that the covariance matrix can only be estimated

approximately. If the receiver still wishes to exploit the orthogonality property of A and En, correctly

estimating the rank of X becomes of paramount importance. If K is underestimated, the orthogonality

property no longer holds, so that the performance of subsequent algorithms will be poor. Fortunately,

techniques such as Akaike information theoretic criterion and the minimum description length [51] exist

to perform the rank estimation task – further discussion of these techniques is presented in chapter 3.

There are a large number of techniques for processing the signal vector y�t�. Some of the more important

techniques are reviewed in this chapter, grouped under three main categories: (1) bearing estimation

and adaptive beamforming techniques, (2) Wiener filtering and (3) blind channel estimation approaches.

The first category of algorithms is explicitly based on the structure of the steering vector a���.

2.3.2 Bearing Estimation and Adaptive Beamforming

This approach makes the assumption that the number of impinging signals K is less than the array size

M . In this case, it is often possible to identify the signal bearings f�kg using a bearing estimation

technique; further discussion of these algorithms will be deferred until chapter 4. The most common

scenario is that the receiver has correctly identified a desired signal s��t� arriving from bearing ��, and

is subject to interference by multipath or other transmissions which arrive from other directions.

To estimate the form of the desired transmission, it is possible to apply a data–independent beamformer

to the received signal [54]. The estimate of the desired signal s��t� is given by the vector inner–product

aH����y�t�, where aH denotes the Hermitian transpose. This technique is simple to compute and

provides the optimal solution in the presence of additive spatially white noise. However, this technique

may degrade in the presence of strong directional interference, as shown in part (a) of figure 2.9.

If the bearings of interfering signals are known, it is possible to design a filter w to place nulls in these

directions, as shown in part (b) of figure 2.9 . There are a number of methods to perform this task, but

one of the simplest is to minimise the quantity jC Hw � f j� where jf j denotes the magnitude of the

vector f . The matrix C contains the column steering vectors for which the designer wishes to specify

the beamformer response and the entries of f specify that response. The solution to this problem is

simply given by:

w � �CCH ���Cf (2.7)
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Figure 2.9: Comparison of (a) the steering vector beamformer and (b) the adaptive beamformer.

where C�� denotes the matrix inverse of C . The design of the beamformer must be performed

carefully: placing nulls close to the desired signal leads to an ill-conditioned problem. This may result

in a beamformer which is very sensitive to noise or interference from other directions. It is also possible

to widen the main lobe of the beamformer by setting the derivative constraintd ���� � �. This is a useful

condition for situations where the bearing of the desired signal is known only imprecisely.

This technique does not take account of the structure of the interference present in the data. In order to

take advantage of the form of the received signal, it is possible to employ data–dependent, statistically

optimum beamforming techniques. There are a large number of these [54–56], but one of the best known

is the linearly constrained minimum variance (LCMV) technique due to Frost [57]. This technique

minimises the output power of the beamformer, subject to the constraintsCHw � f . This problem can

be solved by the method of Lagrange multipliers to obtain:

w � R��C �CHR��C ���f (2.8)

where R is the mean covariance matrix of y�t�, as defined in equation (2.5).

Statisticallyoptimum techniques require accurate estimation of the desired signal parameters: otherwise,

cancellation of the desired signal may occur. A second difficulty occurs when the interference is

highly correlated with the desired signal, which can be due to so–called “smart jamming” or multipath

propagation. Again, this may lead to cancellation of the desired signal: cures for this problem include

moving arrays [58] or the spatial smoothing technique [59].

In order to apply statistically optimum techniques to actual data, where the underlying signal may be

changing over time, it is common to employ adaptive algorithms. There are three well known techniques

which may be employed:

(i). Least Squares (LS) Estimation:This algorithm operates by solving the weight equation, such

as equation (2.8), directly. If N snapshots of the data vector y�t� are available, the covariance
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matrix R is estimated using:

�R �



N

NX
i��

y�ti�y
H �ti� (2.9)

where ti denotes the time at which the ith snapshot was sampled. The matrix �R may also be used

in a bearing estimation algorithm to determine the form of the constraint equation C Hw � f .

In the context of radar applications, least squares is sometimes called sample matrix inversion

(SMI). The convergence performance of this algorithm, in terms of the number of snapshots N , is

independent of the eigenvalues of the covariance matrix R.

(ii). Recursive Least Squares (RLS) Algorithm:It is possible to derive an adaptive form of the least

squares approach, which employs an exponential forgetting factor to de-emphasise past data.

(iii). Least Mean Squares (LMS) Algorithm: This algorithm has a much simpler form than the RLS

algorithm, providing considerably reduced complexity. This algorithm estimates the maximum

gradient towards the least squares solution at each step, and employs a weighting factor� to control

the change in the weight vector w . Unfortunately, the value of � is bounded by the eigenvalues

of R, so that convergence to the true weights can be much slower than for the RLS approach.

For a much more comprehensive discussion of adaptive algorithms and their performance, see [55,56,60].

The application of beamforming techniques to mobile communications appears to be quite recent. One

of the first papers to consider antenna arrays for mobile communications was [12]. Bearing estimation

techniques were proposed in order to determine the spatial locations of users within a given cell. Optimal

beam patterns could then be defined to provide coverage across the cell, for both reverse and forward

links. A later conference paper presented some results from a hardware trial [61], which demonstrated

that bearing estimation techniques could locate a mobiles’ position with reasonable accuracy, even in

urban areas.

A simple scheme, using data independent spatial filters for both reverse and forward links, is discussed

in [62]. The reverse link of an adaptive beamforming scheme was described in more detail in [63]

and [64], where a bearing estimation algorithm was used to locate the bearings of each user. An adaptive

beamformer was applied to the received signal to cancel interference from other users. Reference [63]

also combined coherent multipath components from each mobile to improve performance. However,

simulation results from [63] demonstrate that spatial filter techniques degrade compared to Wiener filter

techniques under conditions of severe multipath propagation, where signal components arrive from a

wide spread in direction. One approach to applying spatial filters in multipath channels may be to

apply a derivative constraint in the look direction, to widen the main lobe of the beamformer [65].

Adaptive beamforming algorithms have also been discussed for the forward link of narrowband cellular

systems [66, 67], with nulls placed in the directions of other mobiles operating at the same carrier

frequency. However, the potential capacity of this approach appears to degrade for severe multipath

channels [67] – the only way to improve capacity appears to be to move to larger transmit array sizes.

Further discussion of antenna arrays in multipath scenarios will be presented in Chapter 6.
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2.3.3 Wiener Filtering

The adaptive beamforming approach provides an intuitive approach to the problem of operating an

antenna array, based on geometric reasoning. However, beamforming techniques perform poorly in the

presence of the coherent signals which often occur in multipath–richenvironments. Moreover, modelling

each signal as arriving from a single direction may be inadequate for urban mobile communications. In

order to improve the situation, it is possible to formulate the problem in a more abstract fashion using

Wiener filtering techniques.

The Wiener filter solution for the filter coefficients w are given by:

w � R��r (2.10)

where the M �
 vector r represents the mean cross-correlation between the received signal vector y�t�

and the desired scalar signal s��t�. The advantage of this technique is that the bearing(s) of the desired

signal do not need to be known. However, in order to use equation (2.10), a reference signal is required

to estimate the vector r .

The general operation of a Wiener filter structure for an antenna array communications system is shown

in figure 2.10. The receiver operates by estimating the covariance matrix �R from the data. In order to
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Figure 2.10: The structure of a Wiener filter for an antenna array receiver.

calculate the cross–correlation vector r , the receiver may use a training sequence or simply feedback

the output data sequence. As with adaptive beamforming techniques, it is possible to employ LS, RLS

or LMS algorithms to update the weight vector w .

One of the first papers to consider an adaptive array for a communications system was by Compton

[68]. This system employed spread spectrum modulation and used the LMS algorithm to update the
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weights of the spatial filter. The motivation for using antenna arrays in this case was the increased

ability of the receiver to suppress interference from other sources, presumably in a military context.

No training sequences were used, so the system used the post–correlation signal vector y�t� for the

reference signal. A similar system employing four phase modulation is described in [69] for military

communications. In this case, a spread spectrum code of length � 1000 chips is transmitted in the I–

channel for synchronisation purposes: a much longer code of length� 
�� is transmitted in quadrature

for communicating the necessary data.

Spatial diversity is a standard approach for improving the quality of a communications link which

suffers from fading effects due to multipath propagation. Two proposals for improving the performance

of analogue cellular systems using space diversity are presented in [10,70]. Wiener filter techniques are

of interest in the design of antenna array receivers because they offer the ability to suppress interference

from other transmitters as well as reducing fading effects. This point has been the subject of thorough

research in several papers, beginning in [11]. This paper pointed out the diversity improvement that

an antenna array may provide, particularly if the array spacing is large enough to obtain low signal

correlation between antennas. There appears to be a trade-off between cancelling interference and

diversity improvement: if the array cancels a large number of interferers, its ability to combat multipath

fading is reduced [71]. The adaptive beamforming techniques described above are unable to cancel

interference close to the desired signal, but with multipath fading, non–cancellable interference becomes

a statistical phenomena.

A number of papers [11, 72–74] have employed a receiver structure similar to that of Compton, using

decision feedback to provide the signal reference: the acquisition time of this array structure can be very

long unless the desired signal SNR is large. A technique which employs knowledge of the desired signal

bearing to reduce the convergence time [75] has been described. However, a more recent approach has

been to take advantage of the new digital mobile communications specifications, such as the European

GSM and American IS–54 systems. Both of these standards specify that data is transmitted in blocks,

each with an accompanying training sequence. This sequence may be used to train the antenna array

Wiener filter [13,71], assuming that interference from other cells is asynchronous and uncorrelated with

the training data. Once trained, the weights may be fixed or updated by decision feedback, according

to the rate of change in the channel. Simulation results for an IS–54 system demonstrate that the LS

technique is able to track fast channel variations much more effectively than the LMS algorithm [13].

In the case of the GSM system, results have shown the effectiveness of adaptive arrays in cancelling

interference from a small number of users in other cells [76]. For slowly changing channels, the

performance of the LMS algorithm appears to be better, although it may still be slightly inferior to the

RLS or LS algorithms [77]. As a result, low complexity antenna array receivers, employing the LMS

algorithm, have been proposed for indoor systems [78,79].

In the UK, an 8–element antenna array system, using the European DECT cordless protocol, was

constructed for a test program called SCARP. Some results from this work have been reported in [80] for

a multipath environment, which demonstrates the ability of an adaptive array to improve the quality of

a communications link. Following on from this, ERA Technology is co–ordinating a research program
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called TSUNAMI which looks into adaptive array techniques for the European UMTS programme. The

system to be tested is an 8–element array, again using the DECT standard, although this has been modified

to include a training sequence for adaptive algorithms [17]. Three array configurations, linear, planar

and circular, have been chosen for system testing in a number of indoor and outdoor environments. Early

results suggest that adaptive arrays may permit considerable reductions in the time spread of multipath

components in indoor environments, permitting increased data rates [81].

Adaptive array techniques based on Wiener filtering have been proposed recently for spread spectrum

communications systems. However, as there are often a large number of co–channel users, usually

exceeding the the number of elements in realisable adaptive arrays, interference cancellation techniques

may not be so effective in this case [71]. An antenna array system for FH modulation has been

proposed [82]: it looks ahead to the next carrier frequency, cancelling interference before the appearance

of the desired signal. However, DS–SS systems have been discussed more frequently in connection with

antenna arrays. One paper employs the receiver structure of Compton with a spread spectrum interference

cancellation scheme to cope with signals arriving from the same direction [72]. A modification of the

cancellation scheme to permit parallel cancellation of spread spectrum interference has been proposed

[74]. The ability of spread spectrum techniques to resolve multipath components with different time

delays means that spread spectrum antenna arrays may combine multipath energy in both time and space.

A modified version of Compton’s array, operating in such a manner has been proposed in [83]. More

recently, adaptive antenna techniques have been proposed for umbrella cells in third generation CDMA

cellular systems, to provide adequate coverage for areas in–between cells [84]. A colloquium paper by

the same authors presents some results on the convergence time and beam patterns for a normalised form

of the LMS algorithm [85]. A modified adaptive array receiver has also been proposed, which splits the

baseband signal into two sub–bands, each of which is controlled by a separate adaptive algorithm [86].

2.3.4 Blind Techniques

The basic deficiency of Wiener filtering techniques is the requirement for a training signal to permit

the receiver to obtain the correct spatial filter coefficients. Training sequences can become a significant

overhead in any communications system, reducing its overall efficiency. Therefore, there has been

considerable interest in using blind techniques which can identify the channel transmissions for a

desired user without a training sequence. There are a number of approaches to this problem in the

context of antenna arrays operating on the reverse link of a cellular system. Several of these techniques

will now be discussed.

(i). The Constant Modulus Algorithm (CMA): This technique is a blind version of Wiener filtering

techniques, which attempts to maintain a constant amplitude output for the received signal. This

is a special case of the blind equaliser structures proposed by Godard [87]: it has been the subject

of some debate, concerning whether it always achieves convergence – see [60, Chapter 21]. In

any case, it appears to be one of the most widely used blind equalisers. A hardware CMA array
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for use in a mobile has been implemented using the LMS algorithm [88]. Subsequent tests in an

urban area demonstrated the ability of the array to pick out the strongest multipath and improve

system performance in a fading multipath environment [89]. A system for successively cancelling

a multi–user signal with a CMA array has been described in [90] – the form of the cancelled signal

allowed its bearing to be determined.

(ii). Oversampling Techniques:The problem of correctly identifying and equalising minimum and

non–minimum phase channels corrupted by inter–symbol interference is very difficult. In order

to avoid problems with blind equalisers, recent approaches have focussed on correctly identifying

the channel. Higher–order statistics have been used for channel identification because of their

ability to recognise non-minimum phase channels. However, these techniques require long data

sets to achieve satisfactory performance. Recently, 2nd order channel identification techniques

based on oversampling the received signal have been discovered [91]. The oversampling may

be achieved temporally or by using an antenna array. The original method relied on two cyclic

covariance matrices, however a recent paper has shown how the technique may be implemented

using one covariance matrix [92].

(iii). Blind Source Separation:A number of algorithms have been developed to distinguish statistically

independent signals observed at antenna arrays [93–95]. These methods are based on the structure

of 4th order cumulants, which are normalised using the 2nd order covariance matrix. An eigen–

matrix decomposition may then be performed in order to determine the separate components

present. As these algorithms normally employ higher–order statistics, large data lengths are

required in order to obtain reliable results.

(iv). Cyclostationary Approaches: A cyclostationary signal exhibits the property of being correlated

with a frequency shifted version of itself. Communications transmissions form an important set

of cyclostationary signals and have been the subject of a number of techniques, most notably

the SCORE algorithm [96, 97]. The cyclostationary property may be used to filter out undesired

interference from other transmitters at different frequencies. This led to a proposal for an overlap-

ping narrowband FDMA scheme, using the principal eigenvectors of cyclic covariance matrices

to identify users operating at each frequency. A similar scheme has recently been proposed for

IS–54 [98], which relies on phase differences between sources to obtain the K received signal

waveforms for K sources.

(v). Eigenfilters: The use of eigenfilters to identify the received signal is particularly appropriate to

the case of CDMA systems. This is because there is a desired signal with a reasonable SNR,

which is corrupted by background interference from other users. The largest eigenvector of the

post–correlation matrix R has been used to identify the form of a desired CDMA signal at a base

station antenna array [99]. In order to suppress interference from other users, the covariance matrix

of the pre–correlation signal is subtracted from R: however, the effectiveness of this approach

will depend on the cross–correlation values of the other codes present. This method has also

been extended to the case of a multipath channel, where several multipath signals are resolved

in time. In this case, the receiver operates in by applying J spatial filters – calculated from the
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principal eigenvector method – to pick out J multipath components. These are then combined

using a conventional RAKE filter, as shown in figure 2.11. A similar structure has been described
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Figure 2.11: The 2-D RAKE filter combiner (after [100]).

for applying antenna array techniques to an IS–95 system [16]. However, the receiver requires

additional hardware to employ the 64–ary decoders which are used on the reverse link.

The drawback of any blind identification technique is that the receiver has no direct means of ensuring

that it has picked out the desired signal rather than undesired interference. This will be a particular

problem where these techniques are operated in multi–user environments. The best solution to this

problem, in the case of spread spectrum systems, is to ensure that all mobiles are subject to accurate

power control so that multiple–access interference is minimised.

2.4 Conclusion

In this chapter, the topics of spread spectrum communications and adaptive arrays have both been

introduced. These techniques were first developed for military radar and communications applications.

However, there has recently been a trend to apply both techniques to mobile communications systems

in order to provide increased capacity. In this thesis, direct–sequence spread spectrum techniques

in combination with antenna array techniques will be analysed in more detail. In particular, bearing

estimation techniques combined with fixed spatial filters will be of interest. To provide some comparison,

eigenfilter techniques will also be studied for multipath channels.
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Chapter 3

Signal Detection Techniques

This chapter describes how signal detection techniques may be used in an antenna array receiver. If

it is intended to apply bearing estimation techniques such as MUSIC to measured data, the number of

signals present must be known. Two information theoretic criteria for estimating the model order are

introduced, along with a method for analysing their performance. These techniques fail in the presence

of coherent signals, so a modified approach employing spatial smoothing is described. The results

required to estimate the performance of such a scheme are then derived. Finally, there is a discussion on

how these techniques may be extended to spread spectrum receivers.

3.1 Model Order Determination Techniques

High resolution bearing estimation techniques, such as the MUSIC algorithm [53] and maximum

likelihood approaches [101] require an estimate of the number of signals impinging upon the antenna

array. The first methods for estimating the number of received signals were based on subjective threshold

testing, see for example the references in [102]. However, the performance of this approach is critically

dependent on the selection of the threshold level used for determining the model order. This defect

led researchers to the Akaike information theoretic criterion (AIC) and the minimum description length

(MDL) approach of Schwartz and Rissanen [102]. These techniques produce a single objective result,

so that no judgements on behalf of the system operator are needed.

Other techniques have been developed more recently, to improve upon the performance of the AIC/MDL.

The original derivation contained a large number of superfluous parameters, so alternative criteria have

been developed using only the covariance matrix eigenvalues [103], or by assuming the signals to be

deterministic [104]. Methods have also been developed to improve performance for signals corrupted

by coloured noise using two arrays [105] and for coherent signals [106] by performing a maximum–

likelihood search over all possible signal bearings. However, in this chapter, attention will be restricted

to the AIC and MDL criteria.

3.1.1 Signal Model

The signal model used here is simply that for a conventional narrowband system: discussion of the

signal detection problem in the case of CDMA receivers will be deferred to the end of this chapter. The

received signal is assumed to conform to the linear model of equation (2.4):
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y�t� � As�t� � n�t� (3.1)

where y�t� � CM�� corresponds to the received signal at anM–element array. The vector s�t� � CK��
denotes the K underlying signals received by the array, which are assumed to be zero–mean Gaussian

white processes which are mutually independent and uncorrelated between samples. The vector n�t� �
C
M�� represents the complex white Gaussian noise of zero mean and variance �� corrupting the data.

The matrix A � CM�K contains the K steering vectors a��k� � CM�� that represent the impulse

response of the array to the signal directions f�kg. Note that it will be assumed that K �M .

The covariance matrix R of the vector y�t� is given by equation (2.5):

R � E�y�t�y�t�H � � ASAH � ��I (3.2)

where I � CM�M denotes the identity matrix and S � C K�K denotes the covariance matrix of the

vector s�t�. The notation y�t�H denotes the Hermitian transpose of y�t�. The matrix X � ASAH

represents the signal covariance matrix and is of rank K: the term ��I is the covariance matrix of

the spatially white noise. As the signal covariance matrix is semipositive, performing the eigenvalue

decomposition of R produces two classes of eigenvalue/eigenvector pairs. The K largest eigenvalues

and their eigenvectors are called the signal subspace, because the eigenvectors span the column space of

the matrix A. The other M �K eigenvalues are of magnitude �� and the eigenvectors are collectively

termed the noise subspace. The ith largest eigenvalue of R will be denoted �i.

In a practical situation, the array receiver has access to only a finite number of snapshots, N , of the

received signal. It can therefore only estimate the covariance matrix R, using the maximum–likelihood

unstructured estimator �R:

�R �



N

NX
n��

y�tn�y
H �tn� (3.3)

The notation ftng denotes the time at which the nth snapshot of the received signal vector y�t� was

taken.

3.1.2 Information Theoretic Criteria

The AIC and MDL were first proposed as viable detection algorithms for the purpose of estimating K

for the case of array processing in [102]. These techniques were developed in the general setting of

determining the best fit from a number of possible parameterised probability distributions to a given

finite length data sequence. In this case, the proposed distributions are simply semipositive matrices

of rank k (representing the signal covariance matrix) added to scaled identity matrices (i.e. the noise

27



covariance matrix). An introduction to the resulting criteria is given in [102], but both criteria have the

same general form:

f�k� � l�k� �w�k� (3.4)

where f�k� is the criterion, w�k� is a penalty function and l�k� is the following log-likelihood function:

l�k� � N lnf� 


M � k

MX
i�k��

ei�
M�k�

MY
i�k��

eig (3.5)

where N denotes the number of snapshots used to form the estimated covariance matrix �R, whose ith

largest eigenvalue is denoted as ei. The penalty function has the form:

w�k� � ��N ��k��M � k�� (3.6)

where ��N � � 
 for the AIC and ��N � � �
� ln�N � for the MDL criterion. The model order K is

determined as the value of k for which f�k� is minimised.

As an example of how the AIC and MDL criteria operate, a covariance matrix was generated for the case

of a single source arriving from a bearing of 90o with a signal–to–noise ratio at one antenna of 10 dB.

There were 100 snapshots taken of the signal to form the covariance matrix, whose eigenvalues were:

80.211, 1.352, 1.212, 1.139, 0.974, 0.807, 0.668 and 0.569. The calculated values for the AIC and MDL

are shown in table 3.1. It may be seen from the table that the minimum value for both the AIC and the

k 0 1 2 3 4 5 6 7
AIC 3057.103 89.896 99.838 109.025 112.333 116.167 121.290 126.000
MDL 1528.552 64.487 86.392 105.313 118.690 129.726 138.800 145.063

Table 3.1: The values of the AIC and MDL criteria.

MDL correctly occurs at a model order of 1.

3.2 The Performance of the AIC and MDL

The properties of these techniques have been thoroughly analysed for Wishart–distributed [107] covari-

ance matrices, using two probability measures [108] :
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(i). p�A��, the probability of underestimating the model order by 1: � This probability measure

holds asymptotically for a Wishart–distributed covariance matrix composed from N independent

snapshots. As a consequence it is assumed that theKth eigenvalue eK is asymptotically Gaussian

distributed with mean �K and variance ��K�N . The average noise subspace eigenvalue ���n is

independent of �K , with mean value ��n � �� and asymptotic variance �	�N �M � K�. The

probability p�A�� is simply given by:

p�A�� �

Z �

��

expf�����gd� (3.7)

Details of the evaluation of � are given in appendix B.

(ii). p�A��, the probability of overestimating the model order by 1: This parameter is significant

mainly for the AIC criteria, which is known to have a finite probabilityof overestimating the model

order, even for large values of N . The reader is directed to [108] for details of the calculation of

this probability function.

As an example of the distributions obtained from calculating the probability p�A��, results have been

obtained for two uncorrelated Gaussian distributed signals arriving at an 8–element uniform linear

array (ULA) with bearings 90o and 80o. Both signals have the same SNR, which is defined to be

that measured at one antenna. The distributions are shown in figure 3.1, along with a horizontal line

representing p�A�� � 0.5. Part (a) is calculated with N �100 and the SNR of both signals varied

according to the horizontal axis. In part (b), the signals both have an SNR of -7 dB, and the value of

N is varied from 10 to 500. Clearly, the performance of the MDL criterion in both cases is dependent

on the threshold where p�A�� � 0.5: where the signals’ SNR or the value of N is below the threshold

performance is very poor; above the threshold performance is good.
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Figure 3.1: The probabilityp�A�) plotted against (a) SNR of the two received signals (b) the number of
snapshots N .

In this chapter, consideration will be given to the MDL technique because it is a strongly consistent

estimator [108]. However, it is also known to be over–penalised, so that the threshold p�A�� � 0.5

�Strictly speaking, the probability measure p�A�� also includes the case where the value of the AIC or the MDL atK� � and
K are identical. This occurrence is also included in the definition of p�A�� for model ordersK andK � �.
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occurs at a higher SNR than for the AIC. Both the AIC and MDL perform satisfactorily when the

incident signals seen at the array are approximately uncorrelated over the sample time used to form the

covariance matrix �R. However, if the signals are highly correlated, an alternative approach is required.

3.3 Coherent Signal Scenarios

3.3.1 Spatial Smoothing Techniques

If there is complete correlation between the K signals during the sampling period, the rank of the signal

subspace reduces to 1. Under these conditions, the MDL or AIC criteria will underestimate the model

order, which can seriously affect the performance of subsequent algorithms. In particular, the MUSIC

algorithm requires correct model order estimates so that it can exploit the orthogonality of the noise

subspace to the columns of the matrix A. In order to solve this problem a procedure called spatial

smoothing (SS) [59] was devised, by which a smaller covariance matrix� of size L�L is formed from

partitions of the covariance matrix R. There are H � M � L � 
 partitions and � is given by:

� �



H

HX
h��

FhRF
T
h (3.8)

where FT
h denotes the transpose ofFh. The matrix Fh is of size L�M and its ith row and jth column

entry is defined by:

Fh�i� j� �

��
�


 if j � i� h� 
 and 
 	 i 	 L

� otherwise
(3.9)

More recently, a modified smoothing technique called forward-backward spatial smoothing (FBSS)

has been described and analysed [109, 110]. Given the covariance matrix R, the forward backward

covariance matrix RF�B is formed as follows:

RF�B �



�
�R � JR�J � (3.10)

where R� denotes the complex conjugate of R. The matrix J is defined so that its pth row and qth

column entry is zero unless p � M �
� q, whereupon it equals 1. The matrixRF�B is then substituted

into the spatial smoothing algorithm, in place of the matrixR. This procedure can reduce the number of

sub–arrays P , compared to spatial smoothing alone, so the performance of the MUSIC algorithm may

improve.

The purpose of this algorithm is to incorporate spatial correlations into the covariance matrix and restore

the full rank of the signal matrix X . It is necessary to decide how many subarrays are to be used and
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what the resulting model order will be. This may be achieved simply by applying the MDL criterion to

every possible smoothed covariance matrix in turn [111]. The matrix or matrices with the highest model

order may then be used in the MUSIC algorithm.

The MDL criterion is preferable to the AIC at high SNR values, because it is unlikely to over–estimate

the model order of a given covariance matrix, so that the receiver is more likely to correctly find

the covariance matrix or matrices with the largest model order. Thus, the algorithm presented in [111]

extends the usefulness of the MDL technique to provide a general approach to estimating the model order

of a given set of received data. It is flexible enough to cope with coherent signals and its only drawback is

the additional computational burden. This algorithm requires all possible spatially smoothed covariance

matrices to be calculated; in order to apply the MDL to each matrix, the eigenvalue decomposition of

that matrix must be performed.

It is useful to be able to measure the performance of this approach with finite data, which can be estimated

from the analysis of [108]. However, the statistics of the covariance matrix eigenvalues must be altered

in line with the effect of spatial smoothing. The derivation of the appropriate equations will now be

presented.

3.3.2 Asymptotic Eigenvalue Variances

The purpose of this subsection is to determine the first and second order statistics of the smoothed matrix

eigenvalues. With this information, the results given in appendix B may be extended to determine the

asymptotic behaviour of the MDL criterion under spatial smoothing. The effect of spatial smoothing on

the eigenvalues of the covariance matrix �R is substantial. Denote the eigenvalues of �� as zi, 
 	 i 	 L

and the eigenvalues of � � E� �� � as �i. As before, the mean of an estimated eigenvalue is given by

E�zi� � �i. The variance of the eigenvalues is considerably more involved, however.

Provided that the rank of signal subspace for a smoothed covariance matrix is at least i, the asymptotic

variance of the ith eigenvalue may be calculated. It has been obtained by Pillai and Kwon in equations

(A.18) and (A.33) of [109]:

E��zi � �i�
�� � E����� � 


H�N

HX
x�y��

uHi FxRF
T
y uiu

H
i FyRF

T
x ui (3.11)

where ��� denotes the squared error in the estimate zi and ui denotes the ith eigenvector of � . This

expression is accurate to order O�
�N �, as are the other asymptotic mean and variance expressions

given in this chapter.

The other requirement is to calculate the variance of the noise subspace eigenvalue estimate ���n. Unfor-

tunately, the effect of spatial smoothing makes this much harder to calculate. The eigenvectors spanning

the noise subspace of � are not uniquely defined (unless K � L � 
) because the eigenvalues are all
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equal to ��. However, the noise subspace projection matrix Z is always uniquely defined and is given

by the equation:

Z �
LX

i�K��

uiu
H
i � I �

KX
i��

uiu
H
i (3.12)

The expectation of ���n may be therefore be obtained from the projection of � onto Z :

E����n� �



L�K
E�trfZ ��g� � 


H�L �K�
trf

HX
a��

ZFaRF
T
a g (3.13)

where trfg denotes the trace operation. This equation may be used to determine the variance of ��n.

Following [112], one may write that the error in ��n, ���n, is given by:

���n � ���n � ��n �
LX

p�q��

d��n
d�pq

��pq (3.14)

where the notation �pq denotes the pth row and qth column entry of the matrix � and ��pq the

estimation error in that entry. By expanding equation (3.13) into a summation of products and taking

the derivative with respect to �pq, it is found that:

d��n
d�pq

�
Zqp

L �K
(3.15)

It is well known that for an estimated covariance matrix �R, the error terms �Rmn � �Rmn�Rmn may

be related by the according to the equation:

E��Rmn�Rpq� � �
�N �RmqRpn (3.16)

The corresponding error term present in the estimated spatially smoothed covariance matrix entry ��pq,

��pq, may be expanded into terms involving�R:

��pq �



H

H��X
x��

�Rp�x�q�x (3.17)

Applying these results to equation (3.14), the asymptotic variance of ���n is given by:

E�����n�
�� � E�




�L�K�
�

LX
m�n��

Znm��mn�



�L�K�
�

LX
p�q��

Zqp��pq��

�



�H�L �K���

H��X
a�b��

LX
m�n��

LX
p�q��

E�Znm�Rm�a�n�aZqp�Rp�b�q�b�
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N �H�L �K���

H��X
a�b��

LX
m�n��

LX
p�q��

ZnmRm�a�q�bZqpRp�b�n�a

�



NH��L �K��
trf

HX
a�b��

ZFaRF
T
b ZFbRF

T
a g (3.18)

This result applies for any spatially smoothed matrix � . Where spatial smoothing has restored the full

rank ofX , the noise subspace eigenvectors are always orthogonal to the steering vectors a��k� and it is

possible to replaceR by the matrix ��I . These results provide the necessary statistics for the eigenvalue

zK and the value ���n for the spatial smoothing case.

3.3.3 Modifications for Forward–backward Spatial Smoothing

The forward–backward matrix RF�B, defined in equation (3.10) has the property that RF�B �

JR�F�BJ . This means that the eigenvalues of RF�B, ci, may be expressed in terms of RF�B and

its eigenvectors �i (ordered by decreasing eigenvalue):

ci � �T
i R

�
F�B�

�
i � ��H

i RF�B�i�
T � �H

i JR
�
F�BJ�i (3.19)

Equating terms in the above equation gives �T
i � �H

i J and ��i � J�i. This means that equation

(3.19) may be expanded using equation (3.10) to give:

ci �



�
�H
i �R � JR�J ��i �




�
��H

i R�i � �
T
i R

���i � � �H
i R�i (3.20)

Equation (3.20) can also be applied to any spatially smoothed matrix derived from the matrixRF�B. This

expansion of ci in terms of R means that equation (3.11) may be used directly to calculate eigenvalue

variance for the FBSS case. The only modification required is to insert the correct eigenvector �i in

place of ui. The same procedure applies for correctly evaluating equation (3.18).

The results provided in the last two subsections allow one estimate the performance of the MDL criterion

with SS or FBSS applied. The modified equations from [108] may be evaluated for all values of H to

determine which value of H will give the best ensemble mean performance for a given model order K.

In practice, the most interesting cases are where the degree of spatial smoothing H has led to the full

rank of the signal matrix X being restored. The evaluation of the probability p�A�� may therefore be

limited to such cases.
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3.3.4 The Conditional Signal Model

The equations so far have been derived for the case of signals which are uncorrelated between samples

in time. This approximation is not realistic for communications channels, where time variations in the

channel must be much slower than the symbol rate to permit satisfactory bit error ratio performance. In

order to estimate the performance of the array receiver in this case, it is possible to use the conditional

signal model.

The conditional signal model makes the assumption that the underlying signal does not change between

realisations of the sample covariance matrix �R. In this case, the variance of the signal eigenvalues is

reduced considerably because the underlying signal is identical in all its realisations; the only perturbation

to the estimated covariance matrices is due to background noise. Denote as �K theKth largest eigenvalue

of the signal covariance matrixX � ASAH (or its spatially smoothed equivalent). The variance of the

Kth eigenvalue becomes:

varcond �
N �varwish� � ��K

N
(3.21)

where varwish denotes the result of equation (3.11) in the case of a spatially smoothed covariance matrix.

Alternatively, for an unsmoothed covariance matrix, the term N �varwish� simply reduces to ��K . These

results may be substituted in the equations given in appendix B to estimate the detection probabilities

for the conditional model. This model is useful as it permits the variance equations to be used for an

arbritrary set of N signal vectors fs�t�g.

3.4 Results

In this section, numerical results are shown to illustrate the effect of the theoretical equations. In the

particular scenario chosen, an 8-element ULA is receiving two perfectly correlated narrowband signals,

whose bearings are 23o and 45o. Note that a bearing of 90o indicates a signal arriving perpendicular to

the array and that all the simulations have been performed using the conditional model. Both signals

are complex exponentials which have the same signal-to-noise ratio (SNR), which is defined to be that

measured at one sensor only. The reference sensor was chosen to be the end sensor at one side of the

array and there was 0o phase shift between the signals at that sensor. 100 snapshots of the received data

were used to form the unsmoothed covariance matrix. Four partitions of the matrix were then used to

form a spatially smoothed covariance matrix of size L �5.

The smoothed signal subspace is of size 2, so the smaller signal eigenvalue determines the performance

of the model-order selection algorithm [108]. The mean of this eigenvalue and the estimated noise

eigenvalue ��� are shown in figure 3.2. The theoretical values calculated from the matrix R are shown

as lines and simulation results are shown as points. For each simulation point, 1000 Monte Carlo runs

were undertaken.
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Figure 3.2: The mean of (a) the second largest signal eigenvalue and (b) the parameter ��� plotted against
SNR.

At reasonable SNR values, there is a good match between theory and simulation. However, at very

low SNR the signal eigenvalue is larger than expected and the value of ��� reduces. This is because the

standard deviation of all the eigenvalues is comparable to the difference between the signal and noise

eigenvalues. As a consequence, the signal and noise eigenvalues are subject to considerable correlation

leading to the bias in the simulation results.

Figure 3.3 show the variance of the signal eigenvalue and of ���n. Again, there is good comparison

between the results at reasonable SNR, but the results diverge at low signal power levels.
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Figure 3.3: Plots for the variance of (a) the second largest signal eigenvalue and (b) the parameter ���

plotted against SNR.

These results have been used to predict one measure of the performance of the MDL criterion, as shown

in figure 3.4. The signal and noise eigenvalue variances have been used to calculate the probability of

underestimating the model order, p�A��, using the equations from [108].

Figure 3.4 demonstrates that the variance equations have been successfully modified to predict the

probability measure p�A�� for a spatially smoothed covariance matrix. In this case, the theoretical

estimate of p�A�� is seen to be slightly pessimistic compared to the simulated results. This deviation

occurs due to a slight bias in the eigenvalues at low SNR and low numbers of snapshots N . Correlations

between the eigenvalues under these conditions can seem to improve the performance of the MDL

35



0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10

P
ro

ba
bi

lit
y

SNR (dB)

Probability of Underestimating The Model Order

Theory
Simul

Figure 3.4: The probability p�A�� of underestimating the model order for the MDL, vs SNR.

criterion, but these effects are artificial. The theoretical results provide a more realistic measure of the

SNR required to obtain adequate performance.

Next, some results are presented to confirm that the modifications derived for the forward-backward

smoothing case are correct. The linear array used in this case had 10 elements, and forward–backward

spatial smoothing was applied so that the smoothed matrix size was L �6. The number of snapshots was

still 100 and the two correlated sources remained exactly the same as for figures 3.2 – 3.4. Figure 3.5

shows the mean and variance plots of the smaller signal eigenvalue for this scenario against SNR. From

the results, there is a good match between the theoretical values and the simulation points at reasonable

SNR values.
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Figure 3.5: Plots for (a) mean and (b) variance of the smaller signal eigenvalue vs SNR, using forward-
backward smoothing.

Finally, it is possible to evaluate the probabilityp�A�� for all possible smoothed covariance matrix sizes,

L. This has been done for the case of two sources at bearings of 95o and 120o, with a phase shift of 120o

at the edge of the array. The antenna array size is 8, N �100 and the FBSS algorithm was used. The

signals were assumed to be of the same SNR, coherent and to be generated by the conditional model.

The results are shown in figure 3.6, plotting the signals’ SNR against the smoothed matrix size H and the
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probability p�A��. Comparing the results, it is possible to determine which value of L will produce the

best performance at a given SNR: in this case, the curves suggest similar performance for all covariance

matrix sizes L � �.
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Figure 3.6: The probability p�A�� for two coherent signals plotted against the signals’ SNR and the
smoothed matrix size L.

All of these results have been calculated for signals with a fixed SNR. If the signals are known to follow

a given probability distribution, it is possible to average the results over all signal phases and the relevant

SNR values to obtain a measure of the overall system performance.

3.5 The Spread Spectrum Signal Acquisition Problem

The techniques described above may be applied to conventional narrowband communications systems,

where the received signal is sampled in the I and Q channels once per symbol. However, in CDMA

systems, the received signal has to be sampled W times over one symbol period for a length W spread

spectrum code. The general form of a spread spectrum bearing estimation receiver is shown in figure

3.7. The received signal at each antenna is demodulated to baseband and passed through a matched filter

for the desired PN–code. Before the receiver can begin to process the received data, it must apply signal

detection techniques to the output of the matched filter for each of the W time slots of the PN–code.

The scheme by which the time slots are searched through depends on the bandwidth of the spread

spectrum signal as compared to the detection processing rate of the receiver [113–115]. In early

receivers, each slot was checked in turn (serial acquisition) in order to minimise the detection processing

requirement. The penalty paid is the potentially large time delay to find a spread spectrum signal. In

order to overcome this, one may employ parallel searches through a number of time slots simultaneously.

For wide bandwidth spread spectrum signals, the computational complexity may be prohibitive, so that

a hybrid scheme of searching serially through blocks of time slots is more attractive.

In order to check whether a signal is present in a given time slot, the received power may compared

to a threshold power level. The level is set to maximise the probability of detecting a signal, whilst
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Figure 3.7: The general form of a spread spectrum bearing estimation receiver.

minimising false alarm probabilities [25][Chapter 6] [116]. In order to apply this technique to the

received signal from an antenna array, one may average the power levels measured at each antenna

element. If the receiver detects the presence of one or more signals in a given time slot, it is possible

to proceed with signal acquisition procedures. In the case of the bearing estimation receiver array, this

is the MDL algorithm applied to all possible smoothed matrices using SS or FBSS, so that coherent

multipath signals may be separately resolved.

Once the model order algorithms have been applied to all the chosen time slots, the MUSIC algorithm

may be applied to the data in time slots where multipath signals have been detected. This provides the

receiver with the bearings of all the separately resolved multipaths which have been received. In order to

determine which multipaths are to be used by the receiver for making a data decision, the bearings may

be used to determine spatial filters for each multipath. The filter output measures the signal and noise

power present at the given delay and bearing. This may be used directly as a rough SNR measurement,

or it is possible to apply a threshold detector similar to those used in single antenna spread spectrum

receivers [115, 116]. The receiver may therefore select only the multipath components with the largest

SNR for decision making. One consequence is that over–estimating the number of significant multipath

components, because of the occurrence of spurious peaks in the MUSIC algorithm’s power density

spectrum, is not a major problem. Discussion of how the multipath components are combined using a

RAKE filter will be deferred to chapter 6.

The signal detection scheme may therefore be summarised as follows:

(i). Search through the W time slots.

(ii). Apply a power threshold to each slot to detect the presence of multipath signal energy.

(iii). Where a signal is detected, the following method is applied:

(a) Apply the MDL technique to all possible spatially smoothed covariance matrices. Select the
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matrix with the largest number of signals.

(b) Apply the MUSIC algorithm to the chosen matrix, using the model order estimate, to find

the multipath bearings.

(c) Estimate the signal power actually present at each multipath bearing.

(d) Select the signals with the largest SNR to be used in a RAKE filter for data symbol estimation.

An alternative method for CDMA signal synchronisation has been described in the literature. It makes

no assumption concerning the form of the received signal, but instead it assumes that a CDMA signal is

present in one of the time slots. The correct slot is chosen by looking for the minimum mean–squared–

error Wiener filter across the time slots [117],or by using a maximum likelihood detector [118]. However,

this type of approach is not particularly suited to the bearing estimation receivers described in this thesis.

3.6 Conclusion

This chapter has obtained theoretical results for the effect of spatial smoothing techniques upon the

eigenvalues of the covariance matrix. These results are useful in analysing the performance of model-

order selection criteria such as the AIC or MDL under spatial smoothing. Simulation results have shown

a good match to the derived equations, except under conditions of low SNR and small numbers of

snapshots. In these situations, the asymptotic estimates of the eigenvalues provide a better measure of

the likely performance of the system. The application of these techniques to a CDMA receiver have

also been discussed and a method described to detect the significant multipath components present in

the received signal.
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Chapter 4

Bearing Estimation Algorithms and
Coherent Sources

This chapter will introduce the subject of narrowband bearing estimation algorithms and will discuss

several of the most popular techniques. The MUSIC algorithm [53] has been chosen for further analysis,

because 1) it provides a good compromise between complexity and resolution, 2) its operation is well

understood. However, one of the main deficiencies of the MUSIC algorithm is its inability to correctly

locate highly correlated or coherent sources.

One simple method for overcoming this problem is to employ spatial smoothing techniques [59, 110],

which trade the size of the array for the ability to resolve coherent sources. In this chapter, two spatial

smoothing techniques – spatial smoothing (SS) and forward–backward spatial smoothing (FBSS) –

are evaluated to assess their relative performance. This is achieved by analysing the structure of the

covariance matrix and by using equations for the asymptotic statistics of the bearing estimates. The

results show that the performance of SS depends on the source bearings and angular separations� The

FBSS technique can offer improved performance, depending on the relative phases of the source signals.

Finally, other spatial smoothing techniques are briefly discussed.

4.1 Principles of Direction of Arrival Estimation

The purpose of direction of arrival (DOA) algorithms is to locate the bearings of a number of signals

impinging on a multi–element antenna array. In this chapter, attention will again be focussed on the

narrowband model described in section 3.1.1. All symbols are assumed to have the same meaning as in

chapter 3, unless otherwise stated. The measured baseband signal vector at the receiver, y�t�, is given

by equation (2.4):

y�t� � As�t� � n�t� (4.1)

All the terms in this equation have the same meanings as in section 2.3.1. For the purposes of this

chapter, the receiver is interested only in estimating the columns of the matrix A, or equivalently the

�Both of these characteristics are important – endfire effects mean that sources arriving in that region require a larger angular
spacing to be resolved than for sources in the broadside region (cf figure 2.8).
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source bearings f�kg. As the receiver contains an M–element uniform linear array (ULA), as shown in

figure 2.8, the steering vector a��� is given by:

a��� � �
� expfj� cos���g� � � � � expfj�M � 
�� cos���g�T (4.2)

There is a large number of bearing estimation algorithms documented in the literature, including:

conventional beamforming [119], the minimum variance algorithm [120], the minimum norm technique

[121], ESPRIT [122], MUSIC [53], weighted subspace fitting [123], as well as techniques based

on higher–order statistics [124, 125] and on maximum–likelihood approaches [51, 101]. Most of the

techniques based on second–order statistics employ the data covariance matrix R, defined in equation

(2.5):

R � E�y�t�y�t�H � � ASAH � ��I (4.3)

Bearing estimation algorithms directly exploit the structure of R to estimate the matrix A, following

similar procedures to those for spectral analysis. A subset of these techniques will now be discussed,

highlighting issues of resolution and complexity.

(i). Conventional Beamforming (CBF)

This technique [119] operates in a similar manner to the discrete Fourier transform (DFT) with

the output power density spectrum for bearing �, PCBF ���, produced by the equation:

PCBF ��� � aH���Ra��� (4.4)

This technique provides an unbiased estimate of the observed power density at a given bearing:

however, leakage effects due to finite array sizes mean that closely spaced sources cannot be separ-

ately resolved. To improve this, the same techniques can be applied to conventional beamforming

as to the DFT, such as windowing the data, zero padding, etc. However, as with the DFT, the CBF

algorithm provides a poor trade-off between the number of sensors and resolution [126], so that a

number of better techniques have been devised.

(ii). Minimum Variance Technique (MV)

The problem with CBF techniques arises from beam pattern constraints: there is a trade-off

between the sidelobe level and the width of the main beam. In this technique [120], the best

possible beam pattern is chosen mathematically. It turns out that the minimum variance beam

pattern involves calculation of the inverse of the covariance matrix. The resulting power density

spectrum, PMV ���, is given by the equation:

PMV ��� �



aH���R��a���
(4.5)
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where R�� denotes the matrix inverse of R.

Calculating the inverse of the covariance data matrix makes this technique more computationally

intensive than the CBF technique. However, by reducing the sidelobes of the spatial filters, the

MV estimate of the spatial power spectrum can provide better resolution.

(iii). Maximum Likelihood Techniques

Maximum likelihood statistical methods [51, 101] can be used to estimate the source bearings.

This is achieved by maximising a K dimensional log–likelihood function for K source bearings.

However, the function to be maximised is often highly non–linear with local minima, which

presents a formidable problem in practical computation. Brute force searches of the log–likelihood

function are computationally expensive, whilst simpler searching procedures, such as genetic

algorithms and alternating projection [127], cannot be guaranteed to find the global maximum.

This technique will not be considered further in this thesis.

(iv). The MUSIC Algorithm

The MUSIC algorithm operates by calculating the eigenvalue decomposition of the covariance

matrix R. The result of this operation is that the eigenvalue/eigenvector pairs may be separated

into two classes: 1)K signal eigenvectors which span the space of the signal matrixX � ASAH

2) noise eigenvectors which are orthogonal to the matrixX . Provided the column matrix of noise

eigenvectors En � CM�M�K can be correctly determined, the source bearings can be identified

as those which are orthogonal to each column of En. This procedure is possible, because the

columns of En are orthogonal to the columns of X and hence to those of A. This requires only

a one–dimensional search for source bearings and the power density spectrum for the MUSIC

algorithm is given by:

PMUS��� �



aH���EnEH
n a���

(4.6)

The effect of using finite data is that the signal bearings are identified as those with the smallest

projection on the estimated noise subspace. One difficulty with this algorithm is that the model

order ofX must be correctly identified, for the orthogonality property to hold. If the model order

is underestimated, En will contain components of the signal subspace, so that the algorithm is

likely to fail. Overestimating the model order is not such a serious problem, except that spurious

peaks may occur in the density spectrum due to absence of some of the noise eigenvectors from

En. Model order estimates may be obtained in from the algorithms discussed in chapter 3.

In practical situations, the receiver only has access to a finite number of snapshots, N , of the signal

vector y�t�. The maximum likelihood unstructured estimate of R from the data, �R, is then given

by equation (3.3). In order to compare qualitatively the performance of the CBF, MV and MUSIC

techniques, all three have been employed to resolve two uncorrelated sinusoidal signals. Both signals

have a signal–to–noise ratio (SNR) of 20dB, with one at a bearing of 35o and the other at 45o. All three

are using N � 50 data snapshots from a linear array with M � 8 sensors. The results are shown in

figure 4.1, with the signal bearings shown as vertical lines. As can be seen, only the MUSIC algorithm
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successfully resolves two sources, which are separated by only 10o: the other two techniques interpret

the two sources as a single source.
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Figure 4.1: A comparison of bearing estimation algorithms with two signal sources present.

For the rest of this chapter, the MUSIC algorithm will be discussed in more detail. This technique

is one of the most popular algorithms in the literature and has been subject to extensive analysis -

see [101,128–132]. For the purposes of this thesis, the main deficiency of MUSIC is its poor performance

in the presence of highly correlated or coherent signals: one solution to this problem is to employ spatial

smoothing.

4.1.1 Spatial Smoothing Algorithms

One assumption made in the derivation of MUSIC is that the incoming signals are mutually uncorrelated

over the time of observation. If all the signals present originate from different transmitters or are

modulated with different data streams, they will be only partially correlated. However, if they result

from multipath responses from the same transmitter, the signals are “coherent” and the assumption is

invalid.

The signal subspace is always spanned by the vectors present in the matrix A. However, if the signals

are coherent, the matrix S becomes singular, so that some of its eigenvalues are zero. This means that

part of the signal subspace is indistinguishable from the noise subspace. As a result, the observed noise

subspace is no longer orthogonal to the steering vectors in the matrixA and the MUSIC algorithm fails.

One solution is to resort to the maximum likelihood techniques mentioned above, although this loses all

the computational advantages of the MUSIC algorithm.

A simple approach to permit the MUSIC algorithm to be used even in the case of coherent sources is to

employ the spatial smoothing techniques described in section 3.3.1. Originally, these algorithms were

intended only for linear array configurations. However, an interpolation technique has been described
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recently, which permits the application of spatial smoothing to arrays of arbitrary geometry [112]. Two

recent papers have also shown how to apply spatial smoothing algorithms to the special case of circular

arrays [133,134].

The original spatial smoothing (SS) technique modifies the data covariance matrix, R, according to

equation (3.8) to produce a smoothed matrix � :

� �



H

HX
h��

FhRF
T
h (4.7)

The covariance matrix � may be used to generate a MUSIC power density spectrum in the normal

manner. A geometrical interpretation of the technique is shown in figure 4.2: subarrays are formed by

working in the forward direction only. It is easy to show [135] that to separately resolve K coherent

sources, it is required to average over at least K different subarrays. This means that the antenna array

must contain at least �K elements.

Forward

Backward

ULA Sensors

Sub-matrices

Figure 4.2: Forward and backward spatial smoothing.

Forward–backward spatial smoothing (FBSS) works by forming covariance matrices in both the forward

and backward directions, as shown in figure 4.2. This is equivalent to averaging the original covariance

matrixR according to equation (3.10):

RF�B �



�
�R � JR�J � (4.8)

This operation on its own is called forward–backward smoothing (FBS). The matrix RF�B may also

be substituted in equation (4.7) in place of R to obtain the FBSS covariance matrix. It has been

shown [110, 136] that to resolve K coherent sources, as little as 	K�� array elements may be required.

As will be seen below, there are some situations where FBSS behaves in the exactly the same manner as
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the SS technique: in these cases �K array elements are still required.

As an example of the operation of spatial smoothing techniques, two coherent sinusoids impinge on an

8–element ULA from bearings 130o and 150o. Both signals had an SNR of 20 dB and N � 50 data

snapshots were available. The SS technique with L � 7 was applied to the data covariance matrix,

as well as the FBS technique with L � 8. The power density spectrum of the unsmoothed MUSIC

algorithm along with the spectra for the two smoothing techniques are shown in figure 4.3. This figure
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Figure 4.3: The power density spectra of unsmoothed MUSIC, MUSIC with SS (L � 7) and MUSIC
with FBS (L � 8) for two coherent sources.

demonstrates that the conventional MUSIC algorithm has failed completely. However, applying either

spatial smoothing algorithm restores the full rank of the signal subspace, permitting MUSIC to be

successfully used.

4.1.2 Statistical Analysis of the MUSIC Algorithm

Determining the performance of the MUSIC algorithm with finite data, with or without spatial smoothing

techniques applied, is of major importance. There are two main approaches to this subject in the

literature. The first method is to determine the statistics of the power density spectrum itself: this

permits the derivation of a resolvability criterion for the MUSIC algorithm [128] – that is to find the

conditions under which two closely spaced sources will be resolved as two separate peaks, rather than

combining to form one peak. Similar work has also been performed for MUSIC combined with spatial

smoothing algorithms [109, 137]. However, this type of analysis is usually restricted to the case of two

sources and will not be considered in this thesis.

A more general technique for analysing the MUSIC algorithm is to derive an equation for the variance

of the signal peaks of the MUSIC spectrum [131, 132]. As before, these results have been extended to

MUSIC with spatial smoothing techniques [112,138]. One useful form of the variance equation for the

unsmoothed MUSIC algorithm is given in [132]. Denoting the error in the estimate of the bearing of the
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kth signal as ��k, the asymptotic variance of that error is given by the equation:

E����k� �
��

Nd���k�
f�S���kk � ���S���AHA���S���kkg (4.9)

The scalar value d���k� is given by the matrix product �fdH��k�EnE
H
n d ��k�g, where d ��k� is the

Brandwood vector derivative of a��k� [52]. Finally, the notationSij denotes the ith row and jth column

entry of S . The approximation in equation (4.9) is accurate to order O�
�N � [138], which also holds

true for all other variance expressions considered in this chapter. For large values of the SNR with

mutually uncorrelated sources, the variance of each bearing estimate is inversely proportional to the

SNR of the desired source. Remarkably, under these conditions, MUSIC is a large sample realisation

of maximum likelihood methods [101]. However, as the correlation between the sources increases the

matrix S�� becomes ill-conditioned and the variance can become very large compared to maximum

likelihood approaches.

The equivalent equation for the MUSIC algorithm combined with spatial smoothing techniques is more

complex. The results have been obtained by Rao and Hari [138] and for spatial smoothing the equation

is:

E����k� �
�

d���k��NH�
�
HX

p�q��

�HR�p� q���HN �q� p����f
HX

p�q���p ��q

�HN �p� q���HN �q� p��g�

(4.10)

where � denotes the real part of a complex value. The matrix R�p� q� is given by FpRFT
q ; � and �

are defined as:

� � EnE
H
n dS��k� and � � US�

��
S UH

S aS��k� (4.11)

The matrix US � C
L�K contains the K signal eigenvectors of the smoothed covariance matrix,

�S � RK�K is a diagonal matrix containing the K smoothed signal eigenvalues. The matrix N �p� q�

is defined in a similar way to R�p� q� with N �p� q� � ��FpF
T
q . The vector aS is the steering vector

for the smoothed array and dS is its brandwood derivative. It has been noted [138], that the second part

of equation (4.10) becomes very small compared to the first part at high SNR values. The vector � may

be expressed as:

� � �A�
S �

HS��S �k (4.12)

where SS is the smoothed signal matrix and AS is the matrix of smoothed steering vectors. The

vector �k � C ��K is the kth column of the K �K identity matrix I and the notation A� denotes the
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pseudo-inverse of A. Expanding the matrix R�p� q� as FpASAHFT
q �N �p� q�, equation (4.10) may

be written as:

E����k� � ��

NHd���k�
f�S��S �kk � ���S��S �AH

S AS�
��S��S �kkg

�
�

d���k��NH�

HX
p�q���p��q

f�S��S B�p���HSB�q���S��S �kkg�HN �q� p��

�
�

d���k��NH�

HX
p�q���p��q

��HN �p� q�� �HN �q� p��� �f�HN �p� q�� �HN �q� p��g�

(4.13)

where B�q��� � CK�K is a diagonal matrix, given by:

B�q��� � AHFT
q �A

�
S �

H �

�
������

b� � � � � �

� b� � � � �
...

...
. . .

...

� � � � � bK

�
�����	

(4.14)

The kth diagonal entry of B , bk, depends on the phase shift between the steering vectors aH��k�FT
q

and aHS ��k�. For the FBSS case, the matrixSS would be replaced by the equivalent FBSS signal matrix

SF�B in the equations above. The first term of equation (4.13) is equivalent to equation (4.9) and the

other terms are cross terms to compensate for the formation of � from partitions of R.

4.1.3 Analysis of the Covariance Matrix

Equations (4.9) and (4.13) explicitly show that the performance of the MUSIC algorithm with or without

smoothing techniques is proportional to entries of the inverse matrices of S , SS or SF�B . Therefore, if

one looks at what the smoothing techniques do to the eigenvalues of these matrices, it should be possible

to explain the major effects observed in the behaviour of the MUSIC algorithm. In the analysis of the

matrix eigenvalues, a useful criterion is the condition or eigenvalue ratio (EVR), which is defined to be:

EVR �
�max
�min

(4.15)

where �min and �max represent the smallest and the largest eigenvalues, respectively, of the given

matrix. To make legitimate comparisons, the received signal power levels should be kept constant:

other parameters such as signal bearings and phase may then be varied to see the effect on the EVR. If

the EVR is small, the columns of S and hence the underlying signals are approximately uncorrelated,

which suggests MUSIC will perform well. If the EVR is large, the matrix is close to being singular and
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MUSIC will perform poorly. In terms of the variance equations, the scalar value �
��min� is the largest

eigenvalue of S��: the more ill-conditioned the S matrix is, the larger the variance of the MUSIC

bearing estimates.

Similarly, the variance equations involve the inverse of the matrix AHA (or AH
S AS), which is altered

as the source bearings change. When the sources are sufficiently spaced, the off-diagonal terms of this

matrix are small, so that the eigenvalues are all approximately unity. However, when the sources are

closely spaced, the off-diagonal terms become large and the EVR of AHA becomes very large.

In the general case of K coherent sources, the matrix S is of the form:

S �

�
������

s�� s�s� expfj��
� ��g � � � s�sK expfj��
�K�g
s�s� expf�j��
� ��g s�� � � � s�sK expfj����K�g

...
...

. . .
...

s�sK expf�j��
�K�g s�sK expf�j����K�g � � � s�K

�
�����	

(4.16)

The amplitude of the kth source is denoted as sk and scalar ��i� j� indicates the phase at the reference

sensor between sources i and j. For the rest of this chapter, the reference for the phases ��i� j� will be

placed at the centre of the ULA.

4.1.3.1 Spatial Smoothing

For spatial smoothing, H sub-matrices are formed from L element subarrays and are averaged to form

a smoothed covariance matrix� . The reference for the smoothed steering vector aS��� will be defined

to be at the centre of the array, so that:

aS��� � �expf�j�L � 


�
�� cos���g� expf�j�L � 	

�
�� cos���g� � � � � expfj�L � 


�
�� cos���g�T

(4.17)

This definition may be used in combination with results from [139] to show that the i th row and jth

column entry of the smoothed signal matrix SS is given by:

�SS �ij � sisj expfj��i� j�g 

H

H��X
p��

expf�j���H � 
���� � p���cos��i�� cos��j��g (4.18)

The summation term is real for both even and odd L: it will be denoted as cC below. The behaviour of

this cross-correlation value has been analysed extensively in [139]. The magnitude of �SS �ij generally

decreases as H increases, so that the EVR of SS will also improve. The rate of the decrease in cC with

H depends on the source bearings and their separation. For the simple case of two sources, the matrix
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SS is given by:

SS �

�
� s�� s�s�cC expfj��
� ��g

s�s�cC expf�j��
� ��g s��

�
	 (4.19)

The eigenvalues of the smoothed signal matrix SS are given by:

det�SS � �I�� � � (4.20)

where det denotes the matrix determinant. This equation leads to a quadratic equation in �: applying

the formula for the roots of a quadratic equation gives:

� �
�s�� � s���

�
� 


�

q
�s	� � s	� � �s��s

�
���c

�
C � 
� (4.21)

The eigenvalues of SS depend on the value cC . If cC is close to one, � has roots near 0 and �s�� � s���

: if cC is small, the eigenvalues are close to s�� and s��. It is useful to note that the eigenvalues do not

depend on the phase term ��
� ��, which suggests that varying the signal phases has no significant effect

on the variance of the SS algorithm.

4.1.3.2 Forward-backward Spatial Smoothing

To simplify the analysis of forward-backward spatial smoothing, spatial smoothing is applied as before.

The forward-backward smoothing may be applied to the resulting forward and backward matrices to

form the final covariance matrix, �F�B. Thus:

�F�B �



�
�� � J��J �

�



�
�ASSSA

H
S � JA�SS

�
SA

T
SJ � � ��I

�



�
�AS �SS � S�S �A

H
S � � ��I

� ASSF�BA
H
S � ��I (4.22)

The third line of the above formula follows because JA�S � AS , etc. Therefore, the value of �SF�B�ij

is given by:

�SF�B�ij � �SS �ij � �S�S �ij � sisjcC cos��i� j� (4.23)

The magnitude of the cross-correlation term can lie between sisjcC and zero, depending on the relative

signal phase ��i� j�. In the case of two sources, SF�B is given by:
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SF�B �

�
� s�� s�s�cC cos ��
� ��

s�s�cC cos ��
� �� s��

�
	 (4.24)

Solving for the eigenvalues, as in equation (4.20), gives the values of �:

� �
�s�� � s���

�
� 


�

q
�s	� � s	� � �s��s

�
���c

�
C cos����
� ���� 
�� (4.25)

For two coherent signals, the variance of the FBSS method clearly depends on the relative signal phase

��
� ��. If ��
� �� � �� � radians, the matrix S � S�, so the off-diagonal terms of SF�B are not

cancelled, leaving the EVR identical to the spatial smoothing case. This means the error variance will

be the same as for spatial smoothing. Alternatively, if ��
� �� � �
� �

��
� radians, the off-diagonal terms

of SF�B cancel completely, so that the EVR reaches a minimum. The improvement that may be offered

by FBSS depends on how well SS alone has reduced the magnitude of the correlation cC . Similarly, for

the FBS algorithm alone, the performance of the MUSIC algorithm can be improved, except in the case

where ��
� �� � �� � [137].

In the general case of K sources, the EVR of a forward–backward smoothed covariance matrix is less

than or equal to that of the original smoothed or unsmoothed covariance matrix [138]. Depending on

the signal phases, the FBSS algorithm can offer significant improvements in scenarios where spatial

smoothing has failed to reduce signal correlation, particularly when signals are closely spaced.

The phase dependence of the FBSS algorithm means that in some cases, using �K��� subarrays with

FBSS is insufficient to restore the full rank of the signal matrix SF�B [110]. Indeed, if all the relative

phase terms ��i� j� are � or �, the algorithm performs in the same manner as SS with the same subarray

size L. However, this is an extreme case: applying FBS to a spatially smoothed covariance matrix

usually improves the performance of the MUSIC algorithm and in some cases, FBSS may be able to

resolve the same number of sources using a larger subarray size than SS. Where the number of sources

is larger than half the number of antenna elements, it provides the only opportunity to resolve all the

sources.

4.2 Other Spatial Smoothing Techniques

Two other spatial smoothing techniques described in the literature are based on squaring the data

covariance matrix. The first method is due to Kirlin and Du [140], and the spatially smoothed covariance

matrix is defined as follows:

�K�D �



H�

HX
i�j��

FiRF
T
j FjRF

T
i �




H�

HX
i�j��

R�i� j�R�j� i� (4.26)

It is suggested that H 
 K to resolve K sources as for spatial smoothing. The matrix �K�D may also
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be subject to forward–backward smoothing to obtain a variant of the FBSS algorithm. The rationale for

using this technique [140] is that the matrix�K�D includes some parts of the original covariance matrix

which are not explicitly present in the definition of the spatially smoothed covariance matrix. However,

the matrices R�i� j� and R�j� i� specified in (4.26) do appear in equation (4.10): as a result, they do

affect the asymptotic variance of MUSIC with spatial smoothing.

The second technique is described in [141] and is termed quadratic spatial smoothing (QSS). In this

case, the covariance matrix is subject to a squaring operation as follows:

RQ � RRH (4.27)

The matrix RQ may then be subject to SS or FBSS in place of the original covariance matrix R. This

technique is very similar, but not absolutely identical, to the Kirlin and Du approach.

An algorithm to completely de–correlate the multipath sources has been described in [142]. However,

it requires an initial estimate of the number of sources and their bearings: these are used in an iterative

procedure to obtain the correct signal locations. Another spatial smoothing technique called the steered

pattern averaging technique (SPAT) [143] employs sub–arrays which are steered in different directions

to produce a number of independent covariance matrices for averaging. Both these techniques require

as many sub–arrays as the original spatial smoothing algorithm and neither has been considered further

in this thesis.

It is also possible to employ the Toeplitz approximation method (TAM) to reduce signal correlation.

In this case, the receiver averages the top–left to bottom–right diagonals of the covariance matrix in

order to give it a Toeplitz structure. Unfortunately, this approach makes incorrect assumptions about the

underlying signals, so that the bearing estimates obtained from this technique are not consistent [141].

This observation was backed up by numerical experience during the work of this PhD and this approach

has also not been pursued in this work.

Finally, a modification of the FBS technique was proposed in [144] as a general technique to overcome

coherent sources: instead of adding the forward and backward covariance matrices, they were subtracted

from one another. It was claimed that this method was sufficient to resolve an arbitrary number of coherent

sources. However, the author was able to provide a simple counterexample [135] to demonstrate that

this claim was untrue and that the technique was flawed.

4.3 Results and Discussion

In this section, the equations quoted for the MUSIC algorithm and for the spatial smoothing techniques

will be applied to particular scenarios to illustrate the points made in the analysis of spatially smoothed

covariance matrices. It should be pointed out, however, that equation (4.10) is very complex and the

above analysis is only intended to explain the major effects observed in the behaviour of SS/FBSS. In
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all the simulations the number of elements M in the uniform linear array was eight and each signal’s

SNR was set to be 17dB. All signals were generated using complex exponentials of constant amplitude

and one hundred snapshots were used to form covariance matrices in each case.

Figures 4.4 and 4.5 show the effect of signal correlation on the variance and the S matrix EVR for

various algorithms. There are two sources, the first at a bearing of 90o (which is defined to be the array

broadside) and the second at 60o. The correlation between the two sources is varied from zero to one

and the variance plots are all for the first source, though the variance of the other source behaves in a

similar manner. It is noticeable that behaviour of the EVR curves in figure 4.5 is similar to that of the

variance curves in figure 4.4. However, it should be pointed out that it is only meaningful to compare

EVR graphs whose subarray size, L, is the same.
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The spatial smoothing algorithm, formed from two sub-matrices (H=2) so that the subarray size L �7, is

reasonably robust to signal correlation, although in this case the FBS algorithm withL �8 out-performs
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it at low signal correlation. The performance of the FBS algorithm is less clear-cut for high correlations.

The best possible outcome occurs when the relative signal phase is �
�

(90o) as shown on the graph. The

variance for a relative signal phase of �

 (30o) is also shown: it is inferior to the previous curve, but

better than that for a phase shift of �, where FBS cannot reduce the signal correlation so it gives the

same performance as for MUSIC without FBS. The fact that the variance depends considerably on the

relative signal phases means that the variance for a given phase can lie anywhere in the region spanned

by the three curves.

The next two figures, 4.6 and 4.7, shows the effect of angular separation on SS, FBS, FBSS with two

coherent sources and MUSIC with two uncorrelated sources. The first source is at a bearing of 90o and

the bearing of the second source is chosen to give the correct angular separation. The variance of the 90o

source is plotted only for angular separations up to 80o: as the bearing of the second source approaches

0o or 180o, “endfire” effects mean that the variance of the bearing estimate increases without bound.
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Figure 4.6: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs angular separation.

The EVR of the matrix AHA has been plotted for L=8 in figure 4.7 (denoted AhA) to show its effect

on the MUSIC algorithm. The EVR of AHA and thus the variance of the MUSIC algorithm is large

for closely spaced sources, as one would expect, but reduces to an approximately constant level for an

angular separation of greater than 10o or so. The reference sensor was set at one end of the ULA, so

that the relative phase of the two signals at the middle of the array changes. This emphasises the relative

phase dependence of the FBS algorithm. As expected from the analysis, the performance of FBS is

oscillating between that of MUSIC with no signal correlation and MUSIC with a correlation factor of 1

- i.e. infinite EVR and variance.

The SS algorithm with L �7 improves more slowly than the MUSIC algorithm with no correlation,

as the signal separation is increased. This is because the EVR of both the matrix S and the matrix A

depend on signal separation. The FBSS technique with L �7 generally performs better than SS and for

closely spaced sources the variance can be improved considerably according to the relative signal phase.
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Figure 4.7: Comparison of the signal matrix EVR of MUSIC, SS, FBS and FBSS techniques and the
EVR of the matrix AHA with L � � vs angular separation.

Figures 4.8 and 4.9 show the effect of signal phase on the performance of SS, FBS, FBSS algorithms

and MUSIC (with zero correlation). The two sources are at 96o and 78o and their relative phase at the

centre of the ULA varies from 0–360o. The variance is plotted for the source at 96o and the performance

of the SS algorithm with L �7 is approximately constant with the signal phase. The FBS technique is

again shown to provide improved performance for some signal phases – the sinusoidal variation in the

eigenvalues show up in the EVR of the S matrix and in the variance curve. This type of behaviour is

also shown in the results of Chang and Yeh [137]. In a similar manner, the FBSS algorithm with L �7

is seen to perform as well as or better than SS, with the variance also sinusoidally changing with signal

phase.
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Figure 4.8: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs signal phase.

The analysis of FBSS in the previous section showed that its performance will normally be as good as

or better than SS with the same amount of spatial smoothing and this is demonstrated in these results.
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Similarly, FBSS with less than K subarrays for K coherent sources (in the case of figures 4.8 and 4.9,

simply the FBS technique with L �8) still has some chance of resolving the sources, unlike the SS

algorithm.

It seems likely that the variations in phase will affect the performance of the FBSS technique for larger

numbers of signals, and this effect is shown in figures 4.10 and 4.11. In the figure 4.10, the FBSS

algorithm with L �7 is attempting to resolve three sources at 60o, 120o and 90o. The phases of the first

two sources at the centre of the ULA are varied with respect to that of the third source, which is fixed

at 0o.The theoretical variance is shown for the source at 120o. When the relative phases of the three

signals are 0o or 180o, the algorithm cannot restore the full rank of the signal matrix and the variance is

seen to rise towards infinity.

The Bearing Variance vs Signal Phase for 3 signals
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Figure 4.10: The Variance of FBSS withL �7 for a source at bearing 120o vs signal phase for 3 sources.

A similar effect is shown in the figure 4.11. In this case, four signals are impinging on the array from
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bearings 60o, 120o, 80o and 100o. The phases of the first two sources are varied with respect to those

of the second two sources, which are both fixed at 0. The theoretical variance shown is for the source at

80o. Here the situation is more complex: if the relative phases of three of more sources coincide at �

or � (180o), the variance of those sources will again rise to infinity. In both cases, there is a reasonable

statistical chance of resolving all sources, but where FBSS with L �7 fails, the amount of smoothing

required for FBSS must be increased towards that required by SS.

The Bearing Variance vs Signal Phase for 4 signals
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Figure 4.11: The Variance of FBSS withL � � for a source at bearing ��o vs signal phase for 4 sources.

The number of subarrays required in SS/FBSS algorithms to minimise the variance of the MUSIC

algorithm is an interesting problem. Figure 4.12 shows the variance of spatial smoothing for different

numbers of subarrays vs signal separation. As in figure 4.6, the first source is at 90o and the bearing of

the other source is varied to obtain the correct angular separation. In this case, there is little difference

in performance for the different subarray sizes in general. For closely spaced sources, it seems that the

improvement in the condition of S obtained by increasing K is cancelled out by the smaller effective

array size. No single array size performs significantly better than all the others under all conditions, so

it seems simplest to pick one subarray size that performs reasonably well, such as L � �.

Finally, the performance of the quadratic spatial smoothing algorithms described in section 4.2 has

been checked by Monte Carlo simulation. The signal scenario was identical to that for figures 4.6 and

4.7. The SS algorithm using L=7 was compared to the Kirlin and Du technique using L=7 (without

forward–backward smoothing) and the Quadratic technique, with the squared covariance matrix again

used with SS with matrix size L=7. The bearing estimate variance for the source at 90o has been plotted

against source separation and the results are shown in figure 4.13. In the graph, the Kirlin and Du

technique is denoted as “K/D” and the quadratic technique as “QUAD”. The theoretical variance curve

for SS with L �7 is shown as a line, labelled “Theory”.

The results show in this case that there is little difference in performance between the three techniques.

This appears to be a typical result, which was confirmed in several other simulations. In some cases, the

quadratic and Kirlin/Dumethods performed slightlybetter than SS (or FBSS). However, the performance
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improvement was generally small and could be attributed to the statistical nature of Monte Carlo

simulation. It would appear from these results that employing a squaring operation as part of the

spatial smoothing process does not provide a significant and consistent improvement in the statistical

performance of the MUSIC algorithm.

To summarise, it is clear that to resolve K sources with K subarrays, the FBSS algorithm is usually

preferable to the SS technique. In addition, FBSS may resolve K sources using less than K subarrays,

unlike the SS technique. The quadratic and Kirlin/Du methods do not seem to provide much improvement

over the basic SS and FBSS techniques.

4.4 Conclusion

The MUSIC algorithm performs robustly in the presence of uncorrelated signals and signals with small

correlation factors. When the correlation factor tends towards one, the signal scenario resembles that

of coherent multipath returns, or smart signal jamming. In the case of coherent signals, the MUSIC

algorithm is unable to resolve the different bearings, even at high SNR values. In this case, an alternative

approach, such as spatial smoothing, must be used.

In this chapter, the performance of spatial smoothing techniques has been qualitatively linked to the

eigenvalue ratio of the signal matrix S . The performance of spatial smoothing depends on the bearings

and separation of the sources. The FBSS algorithm with the same smoothing as SS has the potential

to provide better estimates of the source bearings, depending on the relative signal phases. In some

cases, the FBSS approach can resolve K sources with less than K subarrays, unlike the SS technique.

Theoretical and simulation results have been presented to confirm these points. Simulation results have

also been obtained for quadratic smoothing techniques: however, these techniques do not appear to offer

consistent improvements in performance over the SS and FBSS algorithms.
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Chapter 5

Spatial Filtering for CDMA Signals

Previous chapters in this thesis have addressed the topic of determining the angles of arrival of spread

spectrum signals at an array of receivers. The hardware and computational requirements are much greater

than for a single antenna receiver, so it is useful to be able to quantify the performance improvement

that such an arrangement would offer to a cellular system. Two important performance measures of a

communications system are the signal-to-interference (S�I) ratio of the desired signal and the mean bit

error ratio (BER).

In this chapter, the reverse link (from the mobile to the base station) will be assumed to be an additive white

Gaussian noise (AWGN) channel. Making the additional assumption that accurate bearing estimates are

available, it is possible to estimate theoretically the performance of a single-cell code division multiple

access (CDMA) system employing power control. Monte Carlo simulations have also been performed

to confirm the results obtained. Similar results seem to be applicable to the forward link. Finally, the

theory is extended to estimate the S�I ratios obtained for cellular operation over both the forward and

reverse links.

5.1 Background and Channel Model

This chapter will apply analysis similar to that performed in [12,14,15]. A bearing estimation technique

is assumed to correctly locate the bearing of a desired user. A spatial filter, whose look direction is set to

the measured bearing, is used to pick out the energy of the desired signal whilst suppressing interference

from other users. No interference cancellation or adaptive beamforming techniques will be used, in

order to simplify the analysis.

The question of whether bearing estimation algorithms are appropriate for CDMA signals in particular

has been the subject of debate. One 1993 conference paper [99] suggested that bearing estimation could

not be applied to pre–matched filter data, because of the number of users and the number of multipaths.

In addition, the low SIR of each signal would require prohibitivelylarge amounts of data to obtain reliable

estimates. However, post matched filter data suppresses the power of background noise and interference

from other users and separates the multipath components in time. In [99], both the pre–matched filter

and post matched filter array covariance matrices were used to estimate the response of the array to

the desired signal. Assuming the incoming signals to be modelled as point sources, bearing estimation

would also appear to be a legitimate estimation technique for the received signal. Further discussion of

the problem of estimating the received signal will be deferred until Chapter 6.
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The purpose of this chapter is to analyse the S�I and BER improvement of a base station adaptive array

over a conventional omni–directional receiver. To this end, some simplistic assumptions will be made

about the radio channel and the CDMA system:

� For each CDMA user, an additive white Gaussian noise channel [145] will be assumed for both

the reverse and forward links. This means that there is a single line–of–sight propagation path

between the mobile and the base station.

� Where multiple users are in operation, the reverse link channels of all users will be subject to

perfect power control so that each CDMA code arrives at the base station with the same power.

� The angle of arrival each user on the reverse link is known exactly, which implies the deployment

of an effective bearing estimation technique at the base station antenna array.

� The time of arrival of each CDMA user’s code is known, so that the base station is correctly

synchronised.

� The receiver demodulates the RF signal to baseband using I and Q channel receivers and employs

DPSK data modulation and de-modulation.

Both the forward and reverse links are crucial to the performance of a CDMA cellular system. In order

to assess the benefits of deploying an antenna array in the base station, the analysis will begin with the

reverse link.

5.2 The Reverse Link

To begin with, consider a base station containing a single receiver element, which observes signals from

P active CDMA users. The complex baseband signal obtained from the receiver, r�t�, may be defined

as follows:

r�t� � ad��t� t��c��t � t�� expfj��g� a

PX
p��

dp�t� tp�cp�t � tp� expfj�pg� ��t� (5.1)

where the first term represents the desired CDMA signal, the second is the total co-channel interference

and finally ��t� is additive white Gaussian noise. The amplitude of each signal a is a constant, because

perfect power control is employed. The notation dp�t� and cp�t� indicates the random data sequence

and the infinitely repeating CDMA code sequence of the pth user, respectively. The scalar tp is the time

at which the pth user began transmission and �p is the demodulated carrier phase term. The variables

�p and tp are random variables with the former distributed uniformly over ��� ���. The variable tp has a

uniform distribution over ��� ts�, where ts denotes the symbol period.

The base station receiver structure will contain one set of matched filters for each active CDMA code

present on the reverse link. The desired user’s filter attempts to maximise the signal-to-noise ratio (SNR)

of the post–correlation signal y��t�, which is given by:
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y��t� �

Z t

t�ts

r���c��� � �t� ts��d�

�

Z t

t�ts

ad��� � t��c��� � t�� expfj��gc��� � �t� ts��d�

�

Z t

t�ts

a

PX
p��

dp�� � tp�cp�� � tp� expfj�pgc��� � �t� ts��d� � n�t� (5.2)

where n�t� denotes the post–correlation noise. At the time instant t�, when the desired signal is sampled

for making a data decision, the signal d��t� is subject to cross–correlation interference from other users

and noise effects – the second and third terms respectively of the bottom line of equation (5.1). The

current data symbol is reconstructed from the DPSK decision variable ��fy��t�y���t � ts�g, where y�

denotes the complex–conjugate operation and � denotes the real part of a complex number. If too many

users attempt to transmit at the same time, the estimated data sequence for each user will contain a

large number of errors, causing a catastrophic collapse of the system. This chapter will show how this

problem can be alleviated by employing adaptive arrays at the base station.

5.2.1 Spatial Filtering for Antenna Arrays

Consider the received signal on the reverse link for a CDMA base station containing an M–element

uniform linear array. The pth signal arrives with bearing �p, so that the pre–correlation signal vector

r �t� � CM�� is given by:

r �t� � ad��t�t��c��t�t�� expfj��ga�����a

PX
p��

dp�t�tp�cp�t�tp� expfj�pga��p����t� (5.3)

where a��� is the array steering vector defined in equation (2.3) and ��t� � CM�� represents additive

white Gaussian noise. This equation holds provided that the spread spectrum signal bandwidth Bf is

much smaller than the carrier frequency f , as explained in section 2.3.1. The post–correlation vector

for the desired user y��t� � CM�� is obtained by correlating the elements of r �t� with the code c��t�

according to equation (5.2).

There are a number of methods to recover the desired signal d��t� whilst filtering out undesired inter-

ference, as explained in chapter 2. It is possible to design filters to place nulls in the directions of other

CDMA users, with data independent or statistically optimum beamformers. However, as P may be much

larger than M , only a few interferers may be completely cancelled. For simplicity, the vector product

aH����y��t� will be used to pick out the desired signal, where aH denotes the Hermitian transpose. If

there are a large number of users with a uniform spread in angle, this beamformer will in any case be
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close to the optimum filter for suppressing noise and interference [14].

5.2.2 Antenna Array Receiver Simulation

In order to analyse the effect of using an antenna array receiver in a CDMA system, simulation work

was undertaken, with the following additional assumptions and conditions:

� One set of length W � 	
 Gold codes were used to model multiple-access interference.

� The receiver was a uniform linear array (ULA), which can only detect signals unambiguously

from one side of the array. As a result, each transmitter’s bearing was uniformly distributed over

[30o,150o] in order to mitigate the endfire effects associated with ULA geometries. Results for a

broadside beamformer (i.e. bearing ��o) in the presence of interference from all directions have

previously been presented in [146].

� Rectangular pulse shaping was assumed, so that the receiver PN–code correlation operation is a

linear process.

The main intention of this section is to derive an equation for the average S�I ratio generated when a

set number of users, P , are present. Gilhousen et. al. [38] state that the average interference generated

for the reverse link, as measured at a single antenna base station, is given by the equation:

S�I �
W

�P � 
� � ����s�
(5.4)

where s is the signal power of each CDMA user and W is the processing gain of each CDMA code.

Note that this equation defines S�I to include the in-phase and quadrature noise components (of total

power ��), with respect to the desired signal, so that the correlator receiver suppresses the power of all

other users by a factor of �
�W �. This value is based on an equivalent noise bandwidth calculation, but

in the examples given below for both synchronous and asynchronous correlations it was found that the

average power suppression was better than this�.

5.2.3 Analysis of Gold Code Cross-correlation Interference

5.2.3.1 Calculation of Synchronous Gold Code Cross-correlation Levels

The term synchronous in the context of CDMA system operation implies that the time of arrival for all

active CDMA codes is the same �. This assumption is true for the forward link [38], but will not hold

�The values and graphs in the next sections have been calculated using a slightly different calculation method compared
to [146], so that the results will not be exactly the same.

�This assumes that the multipath channel dispersion is negligible.
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for the reverse link because of the different locations of the mobiles. However, the synchronous case

provides the basis for analysing asynchronous CDMA interference which occurs on the reverse link.

Gold codes may be defined as follows: denote two length W m–sequences as length W binary vectors

v� and v�, following the notation of [40]. Provided the two codes are a preferred pair, the set of W � �

Gold codes G�v�� v�� may be obtained from equation (2.2):

G�v�� v�� � fv�� v�� v� � v�� v� � Tv�� v� � T �v�� � � � � v� � TW��v�g (5.5)

where the operator T k denotes the cyclic left–shift of the adjacent vector by k places and � denotes

modulo-two addition. Binary codes are often specified using the levels 0 and 1: here, the usual

transformation ��� 
�� �
��
� is applied. Gold codes are block codes [145], because �W � �� codes

in total are produced by the modulo–2 addition of two preferentially selected PN-codes of length W .

Therefore, in the context of CDMA communications the periodic cross–correlation may be defined as

the correlation of an infinitely–repeating interfering code with a desired code. This may be written as:

wt�gb � T kgc� � wt�T lgd� � wt�gd� (5.6)

where wt�� denotes the weight or sum operator and gb denotes the bth Gold code from the set G�v�� v��.

Equation (5.6) represents the interference seen at a matched filter for code gb because of the presence of

code gc. The presumption of synchronous interference requires that the code shift k � �. This equation

will reduce to one or two equations involving the shift–and–add properties of the m-sequences v� and

v�. For example, the shift–and-add property of v� may be expressed as:

v� � v� � � v� � T kv� � T lv� where k �� l� k �� �� l �� � (5.7)

This property has the same form for code v�, which means that code gd may be obtained as a sum of

v� and v�, without explicit knowledge of gb or gc. However, the prerequisite is that the shift–and-add

properties of v� and v� must be known.

For the simulation work reported in this chapter, the m–sequences octal 51 and 73 were used to generate

33 length 31 Gold codes. The desired user was allocated code g� 
 v�. Evaluating equation (5.6) for

all other codes led to a mean power level of 2.5, which when normalised to the auto-correlation peak

level of W � � 	
� � ��
 gives a mean interference level Psyn � �������
 
 ����� dB. The scalar

WP syn will be denoted as k�.
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5.2.3.2 Asynchronous Gold Code Interference

One method to obtain the power suppression factor for asynchronous Gold codes is to obtain the

relevant probability density function (PDF). Specifically, the required PDF here is that for the ensemble

average cross-correlation interference seen at the output of the matched filter for a desired code, due

to the presence of a single interferer. The term asynchronous will be taken here to describe CDMA

interference observed on the reverse link, consistent with the definition of the time delays ftpg in section

5.2 as real numbers in the range ��� ts�.

In order to determine the nature of the asynchronous CDMA interference, equation (5.6) will now

be evaluated for all integer values of k and d, for a desired code gb, to generate a cross–correlation

interference (CCI) table of the resulting values d and l. If the weights of each code are known, it is

possible to determine the a priori probability of a given interference level w occurring, p�w�, for a

random integer time delay. The length 31 Gold codes have six different weights �
, �� and ��. For

the desired code g�, the probability of these pairs of weights occurring are �

�� , ���� and 


�� respectively.

In an asynchronous system, the time shift k will not generally be an integer value, but is instead chosen

from a uniform distribution. If the time of arrival tp is not an integer, the interference level w will lie on

a linear transition between two values w� and w� which occur for the first integer time delay below tp

and the first integer delay above tp respectively �. It is thus possible to define the a posteriori probability

of w lying on the transition between the two values w� and w�, p�w�jw��, which is conditional on the

probability p�w��. As an example, both sets of probabilities have been calculated for the first code g�

from the Gold code set (i.e. simply the preferred m-sequence v�). The probabilities p�w�jw�� can be

calculated in practice from the “CCI” table mentioned above. The process of generating periodic Gold

code CCI may be modelled as a finite state machine as shown in figure 5.1.

The boxes show the a priori probabilities of the interference being at a given amplitude for a single

interferer. The lines then show the conditional probabilities for the amplitude changing from one state

to another. For example, the total probability of the interference being in the transition from �9 to �7

is:

p������� � p����p���j � �� �
�

	�
� 
�

	

� ������� (5.8)

with the numerical result expressed to four significant figures. This table may be used to determine the

PDF for the Gold code interference due to a single user, which is shown in figure 5.2. A similar method

for the construction of CCI PDFs for general code sets is described in [147].

To calculate the average interference power P� due to one interfering source, the following integration

is performed:

P � �

Z �

��
��PDF���d� � ���		 (5.9)

�This is a roundaboutway of expressing the fact that the cross–correlation function of two codes with rectangular pulse shaping
is a linear function of the time shift.
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Figure 5.1: The Finite State Machine Interpretation of Gold Code Interference, for Gold code g�.
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Figure 5.2: The PDF of periodic Gold Code Cross-correlation Interference.
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where PDF��� denotes the periodic CCI PDF. Clearly this does not cover the situation where a data

transitionoccurs on an interferer’s signal during the correlation process – this is called the odd correlation

function. To include this eventuality, a new functionSk will be defined, which multiplies the last k chips

of the interfering code by�
. The general form of the odd cross–correlation function may therefore be

expressed as:

wt�gb � Sk�T kgc�� � wt�Sk�T lgd�� (5.10)

There are many more integer interference levels possible, because the three-level cross-correlation

property no longer holds and the resulting PDF has non-zero values in the range [-17,17]. However,

equation (5.10) may be evaluated in the same way as equation (5.6) for all values of d and k to produce

the finite state machine construction of odd cross–correlation interference. The PDF for odd CCI has

been calculated from the finite state machine for code g� and is shown in figure 5.3.
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Figure 5.3: The PDF of odd Gold Code Cross-correlation Interference.

The mean power P� in this case becomes 19.80. Assuming that data transitions occur with probability

0.5, the PDFs for periodic and odd cross–correlations may be averaged to obtain an overall PDF for Gold

Code CCI. The form of this PDF is likely to resemble a triangulardistribution: a triangular approximation

to the true PDF has therefore been suggested [147, 148]. The two mean power values for periodic and

odd CCI may be averaged and normalised with respect to the auto-correlation peak, which is W� = 961,

to give the mean asynchronous CCI power value Pasy = 0.02088
 -16.80 dB. This can be incorporated

into the equation for the simulated S�I, giving:

S�I �
W

k��P � 
� � ����s�
(5.11)

where k� � WPasy.

The next issue to be discussed is the power suppression of other CDMA users by a linear array. It has

already been pointed out that anM antenna diversity system suppresses white Gaussian noise by a factor

M . Is the same true of other CDMA users?
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5.2.4 The Effect of Spatial Filtering

5.2.4.1 The Suppression of Power From Other Directions

The effect of one unwanted CDMA user on the desired signal may be specified by the vector ca���, where

� is the user’s bearing (in radians) and c is the complex cross-correlation output from the reference sensor.

In order to check the mean power suppression, Ps�M� ��, the following integral must be performed 	 :

P s�M� �� � 	M��f��
Z ���


��


jaH���a���j�d�g (5.12)

This integral is related to Bessel functions of the first kind. As it stands there appears to be no simple

analytic method to determine the result in closed form. Therefore, numerical methods are necessary

to solve the problem. The well known limitation of endfire effects with ULAs are symptomatic of

an additional problem, which is that P s varies with the bearing � [15]. This means that for a certain

distribution of users throughout the cell, the S�I observed for some users will be better than that for

other users, even if perfect power control is operating.

The assumption of 120o sectorisation means that the antenna spacing may be increased to �C�
p
	 [67],

where �C denotes the carrier wavelength, without obtaining grating lobes (which are analogous to

aliasing effects in signal sampling). Equation (5.12) has been evaluated for two antenna spacings �C��

and �C�
p
	, for a number of bearings and antenna sizes, in figures 5.4 and 5.5.
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Figure 5.4: The mean power suppression of a ULA with a spacing of �C��.

Comparison of the two figures shows broadly similar results for the two antenna spacings, when the

antenna size is the same. The curves in figure 5.5 are smoother and subject to less variation than those

in figure 5.4. However, antenna spacing of �C�� may be preferable, according to how the boundary

�The M� factor arises because that is the value of jaH���a���j�, using equation (2.3).
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Figure 5.5: The mean power suppression of a ULA with a spacing of �C�
p
	.

between two 120o sectorised antenna arrays is handled. The �C�
p
	 spaced array suffers from the

problem that a beamformer with an intended direction near to 30o has significant gain in the region of

bearings near 150o and vice versa, unlike the �C�� spaced array.

In the case of these array configurations, it is more useful to estimate the worst case performance of the

array as shown in figures 5.4 and 5.5, rather than the mean performance. Therefore, in the simulation

work the desired source has been placed at the bearing with the worst power suppression factor for each

array size. The �C�� array configuration has been used as the worst case suppression factors are slightly

better than those for the �C�
p
	, although the mean power suppression factor is better for the latter

array. A table of the mean and worst case power suppression factors, along with the bearings at which

the latter occur is shown in table 5.1.

�C�� spacing �C�
p
	 spacing

No of P s�M� �� P s�M� ��
Antennas Mean Worst Bearing Mean Worst Bearing

2 1.998 1.933 90o 1.986 1.782 30o / 150o

4 3.903 3.455 54.9o / 125.1o 3.973 3.188 30o / 150o

8 7.432 6.175 43.7o / 136.3o 7.963 5.813 30o / 150o

16 14.43 11.08 38.2o / 141.8o 15.95 10.86 30o / 150o

Table 5.1: The mean and worst power suppression factors, with bearings for the latter, for �C�� and
�C�

p
	 spacing ULAs.

5.2.4.2 The Statistics of the Filter Output

The effect of a spatial filter on interference that arrives with a uniform distribution in angle is very

non-linear. This means that simple statistical assumptions about the interference at the output may

not be good enough to provide accurate estimates of the system performance. To illustrate this point,
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consider the equation for the magnitude response of a 2-element array with look direction ��o��� � to an

interferer at bearing �:

Y ��� �

r



�
�




�
cos�� cos���� (5.13)

If the values of � are restricted to �0,�� �, Y ��� is strictly increasing and is one-to-one and onto the range

��� 
�. Under these conditions the function Y is invertible, with inverse Y ��.

The cumulative distribution function (CDF) of the variable r , defined as fr � r � Y ���� 0 	 � 	 �
�g, is

given by:

CDF�r�� � p�r 	 r�� �
�

�
Y ���r�� �

�

�
cos���




�
cos����r�� � 
�� (5.14)

Differentiating the CDF function gives the probability density function PDF�r ��, which is defined as

lim�r�� p�r� 	 r 	 r� ��r�. For the function Y , it is given by:

PDF�r�� �
�r�
��

�
� ��r�� � 
����
�

� �

�
� �



�
cos����r�� � 
�����

�

�

�� 	 r� 	 
� (5.15)
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Figure 5.6: The PDF of interference from a 2–element antenna array.

The PDF function is shown in figure 5.6. When M �2, the magnitude function Y contains more than

one sinusoidal function of � and becomes difficult to invert analytically. Each time the gradient of Y ���

is zero, then there is an infinite spike in the PDF. As the value of M increases, the PDF will contain

more infinite spikes. In the case of M=2, the spikes in the curve indicate a high probability that the

interference will be close to 1 or to 0.
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In order to estimate the effect of interference of this type, a Bernoulli distribution has been proposed

as a good model [12, 14]. The spatial filter is replaced by a step function which has a gain of 1 with

probability 
�Ps�M� �� and a gain of zero otherwise. This effectively models the filter as a brick-wall,

whose spatial width is the equivalent interference width. A pictorial representation of the approximation

for an 8 element ULA with look direction 90o is shown in figure 5.7. This figure also shows what has
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Figure 5.7: The Bernoulli and Gaussian filter approximations.

been termed a Gaussian approximation to the filter. This assumes that filter suppresses interference

from all directions by a uniform amount, so that the output interference has a Gaussian distribution. It

seems likely that the Bernoulli approximation will produce better estimates of system performance, as

it provides a better approximation to the filter’s behaviour.

5.2.5 Estimation of the System Performance

For both the Gaussian and Bernoulli approximations, the power suppression for an M–element array

with look direction � is simply P s�M� ��. Therefore, equation (5.11) may now be modified for an

M–antenna receiver with a desired user at bearing �, as follows:

S�I �
WP s�M� ��

k��P � 
� � �P s�M� ������Ms��
(5.16)

This equation may be used directly to predict the BER performance, assuming the interference to be

Gaussian. Specifically, the BER of a signal received from an AWGN channel with DPSK demodulation

is given by [145]:

BER �



�
exp��S�I� (5.17)
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Note: Gold code interference does not strictly follow a Gaussian distribution unless the number of

interferers tends to infinity, according the central limit theorem. A closed form expression for the

approximate BER using the Bernoulli distribution, which was discussed in section 5.2.4.2, is given by:

BER �
P��X
m��



� P � 


m

�
A p�B�m�
� p�B��P���m�




�
exp��S�I�m��� (5.18)

where p�B� denotes the probability of one user being in the main beam (i.e. having unity gain). The

notation S�I�m� denotes the signal-to-interference ratio for m users.

The Bernoulli approximation also provides the ability to estimate the probability p�BER � BER �� of

a scenario occurring where the desired user’s mean BER is worse than a set threshold BER�. This may

be done by calculating the number of users m� for which the BER threshold was first exceeded. The

probability is then simply given by the equation:

p�BER � BER�� �
P��X
m�m�



� P � 


m

�
A p�B�m�
� p�B��P���m (5.19)

5.3 Simulation Results

For the simulation, the noise power �� was set to be �
�� times that of the desired signal. The bearing

of the desired signal was set to be 90o. Theoretical and simulation results are shown in figure 5.8: the

former are plotted as lines, whereas the latter are shown as points. The horizontal axis measures the

number of active CDMA interferers in terms of the number of Gold codes available: 100% indicates the

presence of 32 interferers as all 33 codes are being used. This does not prevent other sets of codes being

used to accommodate more users in the same sectored cell.

Figure 5.8 shows that equation (5.16) provides a good fit to the simulated data. Each time the number

of antennas is doubled, the worst-case S�I values shown in the graph increase by 2–3 dB, according to

the values in table 5.1. This type of improvement should offer considerable improvements in BER or

capacity, depending on system requirements.

The curves in figures 5.9 and 5.10 show comparisons between simulated BER results and those calculated

from the Gaussian and Bernoulli assumptions respectively. Again, the predicted results are plotted as

lines, while the simulation results are shown as points. As expected, for a given number of users

the worst-case BER performance improves considerably as the number of antenna elements increases.

However, the improvement shown in the simulation results is not as good as that predicted by the

Gaussian model. The more pessimistic results obtained from the Bernoulli approximation provide a

much better fit to the results that are observed in this case. It is clear that as the number of users increases,

the BER results converge towards the curves for the Gaussian model. This result follows because the

Bernoulli distribution tends towards a Gaussian distribution as the number of components (in this case
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Figure 5.8: Theoretical and simulated results for Interferer Power Suppression in an M–sensor element
receiver.
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Figure 5.10: Comparison of theoretical BER values using the Bernoulli approximation and simulation
results for an M–sensor element receiver.

interfering CDMA users) becomes large.

A common threshold for acceptable speech quality using a vocoder for human speech is that the mean

BER should be 10�� or less [38]. This is shown as a horizontal line in figures 5.9 and 5.10: this may

be used as a crude measure of system capacity. For a single cell system containing 3 sectors, the mean

capacity of 1 sector is likely to be 33% for full loading. On average this criterion is obtained even

with only 2 antennas. However, increasing the number of antennas allows a sector to cope with heavy

loading: 8 antennas permits 100% capacity whilst maintaining an average BER of 
���. Extending

these results to longer code lengths, the BER curves will be closer to the Gaussian approximation for a

given percentage of interferers, because more users can be accommodated on the same bandwidth.

These BER results have been averaged over a large number of different scenarios, each with different

locations for the interfering mobiles. It is of interest to estimate the probability of a scenario occurring

where the distribution of the mobiles is such that a given BER threshold is not attained for the desired

mobile. One obvious scenario occurs when the mobiles are closely spaced, so that the spatial filter for

the desired user cannot suppress the CDMA interference. The probability of the BER exceeding 
���

has been calculated using equation (5.19) and the results are shown in figure 5.11. For a given number of

users and antenna array elements, there is clearly a finite probability of unacceptable BER performance.

This can be reduced by increasing the number of antenna elements, as might be expected.

5.4 Extension to The Forward Link

The forward path, from the main transmitter to each mobile receiver, may be subjected to a similar

analysis. The same set of weights may be applied to the transmitter as to the receiver, so as to transmit

most of the power in the line-of-sight path to the desired receiver.

It is also assumed that each CDMA signal is transmitted with equal power, so that forward path conditions
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Figure 5.11: The probability of a mobile distribution giving a mean BER� 
��� for an M–sensor
element receiver.

are similar to those of the reverse path. The equation for the S�I ratio is therefore identical to equation

(5.17), except that the signal power, s, will vary with the distance, R, from the main transmitter.

Assuming synchronous transmission of codes, the mean cross-correlation levels will tend to be much

lower than that for asynchronous correlations. For the example of Gold code g� the mean synchronous

interference level from one interfering user is 9 dB below that for asynchronous interference which is

observed on the reverse link. Alternatively, orthogonal Walsh codes may be employed for synchronous

transmission on the forward link [49], which would mean that the performance of each user is totally

unaffected by multiple–access interference. In both cases, the reverse link is the limiting factor for

CDMA capacity.

5.5 Cellular System Considerations

The analysis so far has only considered system performance for a single cell. In any practical mobile

telephone system, the coverage area must be subdivided into cells in order to provide reasonable radio

coverage and user capacity. In this section, a uniform layout of identically sized hexagonal cells will

be assumed [38]. As before, each cell is sectorised into three sub-cells, each with 120o coverage. It

is assumed that complete frequency re-use is in operation, so that for the reverse link all mobiles in all

cells transmit with the same frequency. This assumption implies that base station and mobile receivers

will both be subject to interference from outside the cell as well as within the cell.

The effect of interference from neighbouring cells will now be analysed for both communications links,

beginning with the reverse link.

5.5.1 Reverse Link Analysis

The hexagonal cell layout is shown in figure 5.12. Each cell is sectorised by a factor of three as shown, so
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that each base station receiver provides 120o coverage. If one considers the sectorised cell labelled "1",

it observes interference from two cells in the first layer of surrounding cells, namely B and C. Similarly,

for the second layer, cells G-K are additional sources of CDMA interference. In order to provide an

initial estimate of the interference caused, the following assumptions will be made:

� A uniform distribution of users is assumed throughout the cellular system. If one sectorised cell

contains P users, each cell will contain a total of 	P active mobiles.

� Each mobile in an interfering cell is subject to perfect power control by its home base station.

� The propagation between an interfering mobile and the desired base station will be assumed to

follow a path loss law with exponent 4 [38]. No fading effects will be considered here, as in [15].

� The interference will be assumed to be omni–directional, with uniform power observed at the base

station from all directions.

These assumptions simplify the analysis considerably, compared to the likely conditions that will be

observed in practice. However, they do provide a basis for estimating the likely effect of introducing

adaptive arrays into existing cellular systems.

Compared to the analysis performed earlier in this chapter, the major alteration is that the background

noise level is now due to inter-cell interference, which will change with the number of users present. In

order to determine the effect of this, the average interference power si observed at the desired base station

due to one user in an interfering cell must be estimated. The mobile under consideration transmits so

that the received power s at its home base station is equal to that from every other user in the same sector.
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Assuming that s is set to be the same for all base stations in the cellular system, si may be normalised by

s. The interference power seen at the desired base station then depends only on the distances between

the mobile and its home and the desired base stations. Denoting the former as R� and the latter as R�,

the ratio of si to s is given by [15]:

si
s
� �

R�

R�
�	 (5.20)

In order to estimate the effect of inter-cell interference, equation (5.20) must be evaluated for all possible

positions of the mobile in the adjacent cell. This is equivalent to evaluating the following integral:

I �



��Ai�

Z
Ai

si
s
dAi (5.21)

where Ai denotes one interfering hexagonal cell and ��Ai� denotes the area of that cell. Equation

(5.21) has been evaluated by Monte Carlo integration for the first two layers of interfering cells with the

following results. For the first layer the result of the integral, denoted as ��, was 0.0636. For the second

layer the value obtained, ��, was 0.00294. Given that there are on average �P interfering users in the

first layer and 
�P users in the second layer, this means that level of inter-cell interference is 0.428 times

the in-cell interference. Alternatively, approximately 30% of the total interference is due to inter-cell

interference.

Equation (5.16) may thus be modified for a cellular system to give:

S�I �
WPs�M� ��

k���P � 
� � ����P � � ���
�P ��
(5.22)

The first term in the denominator is the interference from users in the same cell as the desired user, the

second arises from the �P users in the two interfering cells in the first layer (B and C in figure 5.12) and

the third comes from the 
�P users present in the five interfering cells in the second layer (cells G-K).

Background noise due to thermal effects etc. has been neglected for this equation. Equation (5.22) may

be evaluated for the worst case signal bearings as before to obtain a comparison between sectorised base

station receivers with different numbers of antenna elements. The results are shown in figure 5.13. For

large numbers of interferers, the normalised interference levels are roughly 1.5 dB greater than for the

single cell case, shown in figure 5.8. However, the S�I value for a given capacity again shows a 2–3 dB

improvement each time the antenna array size is doubled.
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Figure 5.13: The normalised interference for the reverse link.

5.5.2 Forward Link Analysis

In this subsection, a worst-case situation will be considered to provide some measure of the improvement

offered by antenna array transmission on the forward link. The case for a mobile placed near to the

boundary of three cells is generally accepted as the limiting case for the performance of a cellular CDMA

system [37], as shown in figure 5.14. The mobile is assumed to be at distance R� from base stations

A B

C

Desired
Mobile

Figure 5.14: The worst-case location for a mobile on the forward link.

A, B and C: it will be assumed to be in communication with base station A. As before, each cell sector

contains P users and each base station transmits synchronously to all the mobiles in its sector with the

same power. The parameters of all the cells relevant to the interference observed at the mobile are given

in table 5.2.
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Base Stn Number of Mobile Mobile
Group Sectors Radius Bearing Ps��� �� P s��� �� P s��� �� P s�
�� ��

1 1 R� ��o 1.933 4.025 8.291 16.655
2 2 R� ��o 1.933 4.025 8.291 16.655
3 6 �R� 	�o�
��o 2.065 4.765 9.513 18.352
4 6 �����R� ����o�
���
o 1.965 3.947 7.870 15.790

Table 5.2: Table of desired and interfering base station sector parameters for forward link, including the
power suppression levels for antenna sizes M = 2,4,8 and 16.

To summarise, the mobile sees synchronous interference from P�1 other mobiles present in the same

sector of cell A (group 1). It also sees asynchronous interference from 2P users present in the nearest

sectors of cells B and C (group 2). In addition [37], there are 6 base stations sectors at a distance of 2R�

from the mobile (group 3) and 6 at a distance 2.646R� (group 4). The S�I level seen by the mobile for

base stations employing omni–directional antennas is given by:

S�I �
W

k��P � 
� � k����P � � ���	���P � � �������	���P ��
(5.23)

If the base stations now contain M–element transmit antennas, and each base station transmits each

user’s information in the direction of that mobile, the mean interference power will be reduced. The S�I

obtained for the antenna array case is:

S�I �
W

�k��P � 
��P�� � k����P�P�� � ��P ����	�P�� � ��P ��������	�P 	��
(5.24)

where the notation P k is shorthand for P s�M� �k�, the power suppression factor for the kth group of

base stations as specified in table 5.2. Otherwise, system parameters are unchanged from those used in

section 5.3. Equations (5.23) and (5.24) have been evaluated for varying numbers of users and antenna

elements and the results are shown in figure 5.15.

As with previous results in this chapter, employing adaptive antenna transmission considerably improves

system performance. The interference levels shown here are generally worse for the same capacity and

antenna size than those shown in figure 5.13. However, the analysis described here is somewhat

pessimistic: soft handoff techniques combined with a forward link power control scheme, such as those

described in [37], would considerably improve the S�I for a mobile placed at a cell boundary.

5.6 Discussion and Comparison of Results

Results for both single cell and cellular system operation show that base station antenna arrays operating

over simple AWGN channels provide significant S�I and BER improvements for CDMA systems. This

means that for the same capacity as a single receiver configuration, the quality of the communications

link may be considerably improved. Alternatively, the capacity of the cell may be increased with an
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Figure 5.15: The normalised interference for the forward link.

adaptive array, whilst maintaining the same link quality as for single receiver base stations. These results

are not surprising, as an antenna array has the capability to exploit the spatial diversity of a sectorised

cell to reduce unwanted interference while a single antenna receiver has no spatial discrimination at all.

It is interesting to compare the results presented here, with those already documented in the literature.

Swales et. al. [12] present analysis of a (narrowband) non–sectorised cellular system, which is capable

of forming M Bernoulli–type beams of angular width �
�o

M
. This means that for a uniform distribution

of mobiles, the base station can offerM times as many channels for a given mobile to communicate over

in the same frequency. Hence, for any modulation scheme, the antenna array will considerably reduce

the outage probability for a given S�I threshold at a given capacity. This would suggest a considerable

capacity increase, as the S�I level increases in proportion to M : in the analysis reported here, this is

not quite true because of the variable width of ULA beams with angle of arrival.

Two more recent journal papers focus specifically on the capacity improvements offered by sectorisation

and adaptive antenna schemes. The first paper [15] considers a number of sectorisation and adaptive

antenna schemes which could be implemented at the base station of a cellular system. The channel model

used is similar to that presented in section 5.5 and theoretical results were derived for coherent PSK

modulation. Not surprisingly, the best BER performance by far was obtained for a system employing


��o sectorisation and 3-element adaptive arrays in each sector. This paper also discusses adaptive

antennas at the mobile for directional transmission to the base station, which would reduce interference

to neighbouring cells. However, such a concept may be difficult to implement in practice, unless the

forward link is very directional. In many cases, particularly in urban environments, the mobile may

observe incoming signals from a wide spread of angles [149], making directional transmission difficult

on the reverse link.

The second paper [14] provides an extension of the theoretical analysis of [38] to a base station

configuration containing a circular receive and transmit array, with no sectorisation. Perfect power
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control is assumed for in–cell interference and the modulation scheme is again PSK. A much more

rigourous analysis of inter-cell interference is included, considering the effects of fast Rayleigh and

slower log-normal fading. As mentioned earlier, the Bernoulli approximation is used to model the effect

of a spatial filter on directional interference. Results are presented for the outage probability of both

the forward and reverse links, with an SNR of 7 dB chosen as the acceptable quality threshold. Again,

results show a considerable performance improvement, even for small antenna sizes (5–7 elements).

Several points should be made concerning the limitations of the analysis presented in this chapter.

� The analysis presented did not include voice activity detection schemes, which allow transmissions

to occur only when a caller is speaking (35–40% of the total call duration is often quoted).

Modelling this effect by a Bernoulli random variable [38] shows that an additional two-fold

capacity increase may be obtained through employing such a system.

� Perfect power control has been assumed. Recent results suggest that a more realistic model for

the power of each user is a log-normal random variable, with a standard deviation of 1.5 dB for

stationary or slowly moving mobiles. A standard deviation of 2.5 dB has been measured for

faster vehicles [49]. Clearly, such effects will be detrimental to system capacity, whatever antenna

configuration is present in the base station [150].

� It has been assumed that each transmitter had a single line-of-sightpath to the receiver. In practice,

there may be several multipaths received from each source. This increases the complexity of the

signal processing required and may reduce the system gain.

5.7 Conclusion

This chapter has addressed the capacity of a CDMA system employingadaptive antennas. Using a simple

channel model, significant capacity increases have been demonstrated for small antenna arrays operating

in both single cell sectors and general cellular systems. Adaptive arrays are thus an important receiver

architecture for taking advantage of the different locations of cellular users to reduce CDMA interference

levels. However, two points of note are that the antenna array’s ability to suppress interference depends

on the source bearing and that steering vector filters are best modelled using the Bernoulli distribution. A

method has also been presented for determining the probability density function of CDMA interference,

which can be useful in determining the performance of CDMA networks. It is important to determine

the performance of CDMA systems when operating in more realistic channels, which include multipath

fading effects. This subject will be discussed in much more detail in the next chapter.
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Chapter 6

Array Processing and Fading
Channels

This chapter will discuss the performance of array processing techniques for more realistic channel

models. In many environments, most notably urban areas, modelling the radio channel by a single line

of sight path is inadequate. There are usually many obstacles between the transmitter and receiver,

which means the base station will observe a number of copies of the signal – this is called multipath

propagation. Often the transmitter and/or the receiver are in motion, giving rise to a received signal that

varies with time.

This chapter will look briefly at the basic models for narrow-band channels, before moving on to look

at frequency selective channel modelling. This type of analysis is more appropriate for spread spectrum

systems, as the transmission bandwidth is often much wider than the coherence bandwidth of the channel.

This work will be applied to antenna arrays in order to determine how the behaviour of communications

systems are modified under such conditions. Two channel types will be considered, beginning with

point source models for the separately resolvable multipath components. The effect of finite fading

frequencies and self–noise interference are considered and some results are also presented for multiple

CDMA users. Secondly, channels which involve a finite spread in angle of arrival for a received signal

will be analysed to see how system performance on the reverse and forward links changes.

6.1 The Urban Mobile Radio Channel

This section will seek to define the characteristics of a typical mobile radio channel observed in areas

of large population concentrations. Specifically, environments containing a number of obstacles, such

as buildings, walls and traffic, will be considered. In this situation, a number of possible mechanisms

exist to facilitate the propagation of radio waves from the transmitter to the receiver. In order to expedite

the introduction, parameters for the radio system to be used throughout this chapter are defined in table

6.1. The typical characteristics of a narrowband signal� received in the 900 MHz band will be initially

considered. This may be extended to include the effect of transmitting a wide bandwidth signal.

�In this chapter, the term narrowband will be taken to mean that the coherence bandwidth of the channel is much wider than
that of the received signal, so that the channel is flat–fading.
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Parameter Value
Data Rate 10 kb/s

CDMA Code Length 127 Chips
CDMA Chip Rate 1.27 MChips/s
Carrier Frequency 900 MHz

Modulation DPSK
Vehicle Speed 30 mph

Fading Frequency 50 Hz

Table 6.1: The spread spectrum system parameters for chapter 6.

6.2 Narrowband Channel Modelling

Effective communication in urban areas is an extremely complex subject; indeed, it has been described

as involving “problems so difficult they challenge the imagination” [30, p11]. Consider a base station,

placed on top of a high building, attempting to communicate with a mobile receiver placed at street level.

In an urban area, there are a large number of buildings present, which can block or assist the transmitted

electromagnetic (EM) signal. Indeed, there are several mechanisms by which the signal may propagate

through an environment [151]. These are described below and illustrated pictorially in figure 6.1:

(i). Line–of–sight (LOS) propagation: Not surprisingly, this mode of EM wave motion occurs when

the mobile is clearly in view of the base station, so that the first Fresnel zone of the signal is not

being blocked [152]. For many locations of the mobile in an urban cellular environment this is not

true, so other methods of propagation must account for the transmitted signal reaching the mobile.

(ii). Reflection: This occurs when the EM energy from the mobile is deflected off a building in order

to reach the base station. In an urban area, reflection is a significant factor in allowing acceptable

radio communications.

(iii). Diffraction: Where an obstacle such as a building blocks the LOS path, EM signals may diffract

over roofs or round the sides of buildings to reach the base station. This involves only low power

outer Fresnel zones reaching the base station unobstructed, so that the received signal power tends

to be much lower than that for LOS communication.

(iv). Scattering: When an EM wave reaches an obstacle or group of obstacles, energy can sometimes

be reflected randomly in a large number of directions. This occurrence is the most difficult to

predict analytically.

Typically, two or three of these mechanisms account for the propagation of an EM wave in an urban

environment. As a result, there are a large number of paths by which energy from the base station

may reach the mobile. In order to explain the characteristics of the signal received by the mobile, it is

common to appeal to three separate effects.

The most significant mechanism, in terms of receiver performance is fast fading [30, Chapter 1] [152,153]

[154, Chapter 1]. In an urban area, the received signal at the mobile is the summation of a large number of
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Figure 6.1: Modes of electromagnetic propagation.

independent multipath components. The received signal may be subject to constructive or deconstructive

interference, according to the phases of the multipaths. It is commonly assumed that the received signal

is wide–sense stationary for the mobile moving short distances up to a few tens of carrier wavelengths or

so [35]. In the context of mobile radio, this means that variations in the received signal envelope occur

mainly due to phase-changes of the same multipath components. These fluctuations can be significant,

because at 900 MHz multipath electrical length changes of only a few centimetres can alter the given

component’s phase by 90–180o. This means that constructive interference patterns may rapidly change

into deconstructive interference or deep fades with a small alteration in position. Quantitatively, this

corresponds to frequent changes of signal power in the range 20–30 dB [152, Chapter 5].

Movement of the mobile over longer distances changes the paths by which the signal is received

by the mobile. This leads to a slower variation in the average received signal power, often called

shadowing [155] . The accepted model for the variation in the average power is a log–normaldistribution,

whose standard deviation is in the range 4–12 dB [12] [152, Chapter 3] [154, Chapter 2]. The average

signal power also depends on the mobile’s distance from the base station, according to a path loss

law [152–154]. Normally the power will be proportional toR�n where R is the distance and n is usually

termed the path–loss exponent. The value of n has been measured in a large number of environments

and numbers in the range of 2–5.5 have been quoted [38]. However, the most common choice of n for

modelling cellular radio systems is 4, which corresponds to plane–earth propagation [152, Chapter 2].

It is possible to employ a power control system to mitigate the effects of fading on its transmitted

signal, so that shadowing and path–loss mechanisms can be compensated for. However, if the mobile

is moving quickly, fast fading effects may be too rapid and unpredictable to cope with. Therefore,

the distribution of the fast fading signal is vital in predicting the performance of any mobile radio

system. Many measurements of microwave narrowband mobile radio channels have been carried out

for both indoor and outdoor environments. Where a LOS path exists between the transmitter (Tx) and

receiver (Rx), the probability density function (PDF) of the received signal usually follows a Rician

distribution [156]. However, in this chapter, the worst case situation will be considered, where there

is no LOS path propagation. When this occurs, the most common statistical characterisation for the
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fast–fading received signal envelope is the Rayleigh distribution.

6.2.1 The Rayleigh Distribution

The Rayleigh distribution arises as the distribution of the root-sum-square of two independent Gaussian

distributed variables. This model is important because it describes the envelope of the received signal

where it is made up of a large number of independent, equal amplitude multipath components. In

practice, these occur because there are many independent scatterers present between the transmitter

and receiver. All the components may be assumed to be drawn from the same distribution, so that the

central limit theorem may be applied. Hence, as the number of scatterers tends to infinity, the I and Q

components of the signal become uncorrelated and each will tend towards Gaussian distribution.

The probability density function of the Rayleigh distribution is given by:

PDF�r� �
r

r�
exp�

�r�
�r�

� (6.1)

The variable r denotes the root-sum-square of the I and Q channel components and �r� denotes the

mean power of the received signal. It has been noted that the sum of 6 or more independent sine

waves [30, p68] [152, Chapter 5] can give rise to a distribution that is very close to the Rayleigh

distribution , except at the extreme peaks. As the received signal comprises two identical, independently

distributed (iid) Gaussian random variables, the phase will be uniformly distributed over the range

��� ���.

The Rayleigh distribution provides a description of the ensemble of all possible received signal envelopes.

However, it does not indicate how the received signal alters with time. The time variation is mainly

dependent on the velocity of the mobile, which gives rise to a Doppler shift in carrier frequency of the

received signal.

6.2.2 The Doppler effect

The Doppler effect [152, Chapter 5] occurs due to relative motion between the transmitter and receiver.

The most common instance in everyday life occurs when the frequency of a siren on an ambulance

or police car is observed to change as it approaches and passes a stationary observer. The observed

frequency of the signal increases when the relative motion brings the transmitter closer to the receiver.

Alternatively, when the transmitter moves away from the receiver, the observed frequency is reduced.

The precise frequency variation is given by the following equation:

�
 � v��C (6.2)
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where �
 denotes the observed change in frequency, v denotes the velocity of the transmitter and

receiver towards each other and �C denotes the carrier wavelength of the propagating signal.

If there is non-zero relative motion between the transmitter and receiver, the effect on the received

multipath signal is that it changes with time. However, it should be emphasised that the time dependency

of the signal is caused by the receiver moving through an EM field with varying multipath channel

characteristics. The faster the relative motion, the more quickly the received signal changes. This will

lead to difficulties in tracking the received signal effectively.

6.3 Frequency Selective Channel Modelling

Having considered how narrowband channels may be modelled, it is now possible to extend these results

to frequency selective channels, which are often observed in spread spectrum systems. In this case,

the bandwidth of the transmitted signal is often wider than the coherence bandwidth of the channel, so

that different frequency components of the signal are subject to independent fading effects – frequency

selective fading [43, Chapter 7]. In the time domain, the result of this effect is that the impulse response

of the channel consists of a number of impulses of varying amplitude, each with an associated time

delay. In addition, the multipath components change in time because of the Doppler effect, which means

that the multipaths are subject to time selective fading [154, Chapter 2].

In order to assess these effects simultaneously, consider sounding the channel with an infinite bandwidth

signal, e.g. an impulse. The received signal represents the impulse response of the channel and it

may be characterised by two-dimensional Bello functions [157]. There are a large number of these, all

related by Fourier transform relationships. However, the most useful function for visualising the channel

impulse response is probably Sp�	� 
�, the function of the complex received signal against time delay 	

and Doppler frequency 
. It is defined as the summation of all components with the correct time delay

and Doppler frequency [154, Chapter 2]:

Sp�	� 
� �
X
i

ai�t� expf�j�i�t�g where 	i�t� � 	� 
i�t� � 
 (6.3)

where ai�t� denotes the amplitude of the ith path with delay 	i�t� � 	 and Doppler frequency 
i�t� � 
;

the notation �i�t� denotes its phase. This equation indicates the fact that a finite number of propagation

paths exist between the base station and mobile. However, as this number is indeterminate and possibly

quite large, Sp�	� 
� is usually taken to be a continuous function of 	 and 
 [154, Chapter 2].

This function allows the received signal to be characterised in terms of both time dispersion and

associated frequency fading effects. In practice, however, one only has access to finite bandwidth signal

transmissions. Consider the transmission of a data–modulated spread spectrum code c�t�, which has

a chip period of tc, code period ts and processing gain W � tc�ts. The baseband received signal is

passed through I and Q filters matched to the code c�t� to give the post–correlation signal x�t�:
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x�t� �

Z t

t�ts

d�

Z �

�

d	

Z �

��

S�	� 
�d�� � 	 �c�� � 	 �c�� � t� ts� exp�j��
	 �d
 (6.4)

where d�t� denotes the transmitted symbol stream, which has minimum period ts. For large values

of W , the periodic and odd code auto–correlation functions, denoted as 
c�t�, take on non–negligible

values within one chip of the time of arrival of the code. This is usually taken to mean that multipath

components separated in time delay by at least tc may be separately resolved. An approximation to

S�	� 
�may therefore be calculated using c�t�with time resolution tc. Two typical time delay vs Doppler

frequency power spectra calculated in this manner are shown in figure 6.2 (taken from [35] and [30]

respectively).

Figure 6.2: Two typical time delay vs Doppler frequency profiles taken from [35] and [30] respectively.

The time resolution of y�t� means that if the channel impulse response contains significant multipath

components over a time tm, the spread spectrum receiver will observe intf
 � tm
tc
g components – the

time bandwidth product of the channel and the transmitted signal [43]. This leads to a discrete-time

channel approximation of y�t�, which is due to Turin [158]. This model is much simpler to use in

practical simulation work than equation (6.4). Assuming the CDMA receiver can separately resolve Q

components, the model consists of Q fading components as follows:

x�t� �

QX
q��

h�q� t�
c�t� �to � �q � 
�tc�� (6.5)

where to denotes the initial time of arrival of the start of the first PN code chip for the first channel tap.

The value of 
c�t� is given by:


c�t� �

Z t

t�ts

d���c���c�� � t� ts�d� (6.6)

Each channel tap can in theory be obtained by integrating equation (6.4) only over the range of excess

time delays represented by one channel tap. In practice, the overall results will not be seriously
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altered if each tap coefficient h�q� t� is modelled as a narrowband fading signal. The receiver only

has access to the noise corrupted estimate of x�t�, denoted as y�t�. Sampling y�t� at time instants

to � nts,to � nts � tc,to � nts � �tc, � � �, to � nts � �Q � 
�tc provides the Q taps of the received

multipath signal for the nth symbol.

6.3.1 Frequency Fading Distributions

It is commonly assumed that the coefficients fh�q� t�g are independent random variables, which are

wide–sense–stationary. This means that a different group of scatterers is responsible for each coefficient

h�q� t� and that over the time of interest, that group of scatterers remains the same. Close study of profiles

like those in figure 6.2 shows two independent modes of scattering: near–in and far–out scattering [37].

These two mechanisms may be used to generate the channel taps fh�q� t�g in simulation work.

Near–in scattering [37] refers to the first set of multipaths that arrive at the mobile from the base station.

These are usually due to scatterers close to the mobile, such as buildings on nearby streets. A transition

then occurs as the time–delay increases, so that most of the multipaths are due to isolated reflections

from distant buildings or hilly terrain. The Doppler frequency characteristics of these two modes of

multipath propagation will now be discussed in turn.

6.3.1.1 Near–in Scattering

The most commonly used model for close in scattering effects consists of a circle of point scatterers placed

around the location of the mobile [153]. In physical terms, these scatters would be buildings close by the

mobile’s location. This type of scattering has been extensively analysed by several authors [152,159,160].

In this section the simplest model, due to Clarke [159], will be quickly sketched. It is assumed that the

mobile receives from or transmits to a large number of scatterers, with a uniform distribution of angle

round a circle of a specified radius. This leads to the Doppler frequency of the received signal having a

cosine relationship with angle. A two-dimensional slice of the power spectrum S�
� for a small value

of 	 � 	� has the following form:

S�
� � jSp�	�� 
�j� � a


� � �
�m

��
j
j 	 
m (6.7)

where a denotes a scaling factor and 
m denotes the maximum Doppler frequency, which corresponds

to the vehicle velocity. The value of S�
� is zero when j
j � 
m. This equation gives rise to

singularities at 
 � �
m: however, the general form of the spectrum fits closely to observed power

spectra [152, Chapter 5]. The Wiener–Khinchine theorem [156] may now be applied to equation (6.7)

to obtain the auto-correlation function (ACF) of the channel impulse response at delay 	�. It turns out

to be simply a scaled Bessel function of the first kind (denoted as Jo):
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R�	�� t� �



��

Z �

��

S�
� expfj
tgd
 � aJo���
mt� (6.8)

This type of scattering model is widely used throughout the literature of channel modelling and simulation

and is often termed the classical Doppler model. The probability density function of the received signal

will clearly be approximated by a Rayleigh distribution; the parameter h�q� t� may then be calculated in

one of two ways. The first method involves modelling the received signal as filtered white noise. It is

possible to design infinite-impulse response filters [161, 162] to approximate the frequency distribution

of equation (6.7).

The method used in this chapter is to combine G exponentials [30, p70] [163], according to equation

(6.9):

h�q� t� �
GX
g��

ag exp�jf��
gt � �gg� (6.9)

where ag is the amplitude of the gth path and �g is a random phase uniformly distributed over ��� ���.

The Doppler frequencies 
g are chosen from a probability distribution in order for h�q� t� to have a

correct power spectrum. To simulate near–in scattering, the amplitudes ag were chosen to be equal,

so that the ACF of the variables 
g is approximately equal to equation (6.8), with the scalar a chosen

appropriately. The auto-correlation function of the variable h�q� t� must be monitored carefully�. If the

model is run over a long enough time, periodicities occur and the auto-correlation function diverges from

equation (6.8). Thus it is normal to re-initialise the sine wave phases and frequencies after a suitable

time delay.

The COST-207 models utilise the classical Doppler model to simulate multipaths arriving for excess

time delays of less than 500 ns. A diagram of the scattering model and the power spectrum is shown

in figure 6.3. In figure 6.2, the crescent shape of the Doppler profile is clearly visible at low time-delay

values.

6.3.1.2 Far–out Scattering

As the excess time–delay increases, the classical Doppler model provides a poorer approximation to

measured time delay/Doppler power spectra. In physical terms, this is because longer time delays mean

that the multipaths observed must be due to reflections from distant objects such as large buildings or

hills [37]. The range of Doppler frequencies associated with this form of scattering becomes much

narrower and so sharp peaks tend to be observed in time delay/Doppler power spectra [35]: see

particularly the contrast in figure 8 of [34]. Narrow sharp peaks in the Bello function may be observed

�The author acknowledges Dr P.Hulbert of Roke Manor for pointing this out.
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Figure 6.3: The classical Doppler fading model

in the profiles of figure 6.2 at longer time–delays.

A more appropriate model for this type of scattering is again described in the COST-207 models [163],

which approximates each peak as a Gaussian distribution with mean Doppler frequency 
� and standard

deviation 
� which specifies the sharpness of the peak. So for larger values of 	�, the 2–D slice of the

delay–Doppler power spectrum becomes:

S�
� � �Sp�	�� 
��
� � a exp�� �
 � 
���


��
� (6.10)

The corresponding auto-correlation function is:

R�	o� t� � a exp�j
�t� 


�

��t

�� (6.11)

Geometrically speaking, the location of the reflector can be assumed to lie on an ellipse, with the mobile

and base station located at its foci. The major axis of the ellipse is then equal to the path length of the

multipath component.

This type of scattering is much more difficult to simulate using filtered white noise, as the Doppler power

spectrum is not symmetrical about the y–axis. Here, this model has again been implemented for the work

in this chapter using equation 6.9. This time, however, the Doppler frequencies have been chosen from

an appropriate Gaussian distribution. The COST-207 models describe two types of Gaussian model,

each of which is the summation of two Gaussian profiles. However, the second profile is always at least
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10 dB below the first so only the more important multipath component will be described here. The type

Model Type Mean Fading Frequency Standard Deviation
1 -0.8
m 0.05
m
2 0.7
m 0.1
m

Table 6.2: The mean and standard deviation Doppler frequencies for the main peak of the two Gaussian
COST–207 models.

1 model is deemed appropriate for excess time delays of 500ns-2�s, while type 2 is to be used for excess

time delays greater than 2�s. A diagram of the scattering model and the power spectrum that arises in

this case is shown in figure 6.4.
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Figure 6.4: The Gaussian fading model

6.4 Channel Modelling and Array Processing

Given that models exist to adequately describe the urban mobile radio channel, it is useful to be able

to extend these models to the array processing case. In particular, it is important to be able to model

the reverse link signal seen by the base station array. So as to achieve this, some assumptions about the

mobile to base station link are required. As in previous chapters, it will be assumed that the antenna

array is a uniform linear array (ULA).

Firstly, it will be assumed that the distance between the mobile and base–station is sufficient to place

the mobile in the far–field, with respect to the receiver. Secondly, there are no local scatterers close to

the base station, so that all antenna elements have an unobstructed view of the multipath components

coming from the mobile. Finally, the reverse and forward links are carried out over separate carrier

frequencies, but with the same bandwidth so that the shadowing characteristics of the channel are
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reciprocal [30, Chapter 6] [164]. This means that the time delay/Doppler power spectra are the same for

both links. It is also assumed that the forward link frequencies are outside of the coherence bandwidth

of the reverse link channel. Hence, if the mobile were to transmit at both frequencies simultaneously,

the fast fading seen for each resolvable tap on both links would be iid random variables.

Equation (6.9) may easily be extended to the problem of simulating the received signal from a mobile

at a base station antenna array containingM elements. In general, it shall be assumed that a frequency–

selective channel withQ resolvable paths at each antenna may be modelled byQ discrete vectors. Define

the vector h�q� t� which represents the qth resolvable path at time t. It may be expressed as:

h�q� t� �
GX
g��

ag exp�jf��
gt� �gg�a��g� (6.12)

The parameters have exactly the same meaning as for equation (6.9), except that a��g� denotes the

steering vector of the gth multipath as it impinges on the base station ULA. This formulation is similar

to [165], except that in that paper the variable ag was modified to include a log–normal term to simulate

shadowing effects.

For the rest of this chapter, the amplitudes ag will again be made equal for all g. This means that for

large G, the statistics of each entry of h�q� t� will be approximated by a Rayleigh distribution. In this

chapter, G will be set to 100. The temporal auto–correlation function of each entry will still follow the

close–in or far–out scattering models according to the distribution of 
g. The spatial covariance matrix

of h�q� t�, R�q�, may be defined as follows:

R�q� � E�h�q� t�hH�q� t�� �
GX
g��

aga
�
ga��g�a

H��g� (6.13)

This matrix will specify the correlation between the entries of h�q� t�: the larger the spread in angles

f�gg, the lower the cross–correlation values in general.

The rest of this chapter will consider two different types of channel model, using equation (6.12):

(i). A point source frequency selective channel:This is a very crude model for the reverse link

channel occurring in a typical urban (TU) macro-cell. The mobile is far enough away for each

component h�q� t� to consist of a single multipath arriving from a single direction.

(ii). A wide angle non–frequency selective channel:This model takes into account that fact that in

a multipath environment, the received signal will arrive from a spread of angles. It is studied for

comparison with the point source model to see what changes occur. For simplicity, the channel is

non–frequency selective, so that Q=1. This situation might actually occur in urban micro–cells or

small suburban cells.
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6.5 The Point Source Frequency–selective Channel

6.5.1 The Channel Model

This subsection describes the point channel model that has been used. The COST–207 report [163]

describes a number of different channel models appropriate to different scenarios. In this case, the

model for a typical urban (TU) environment has been adapted for spread spectrum simulation. The

equation describing the impulse response power profile H�	 � of the TU channel is:

H�	 � � exp��k	 � � � t � ��s� k � 
�
 (6.14)

For a chip rate of 1.27 MHz, the value of tc is approximately 800ns. Using this value, one may obtain

the following five tap channel:

Tap Delay (�s) Power (dB) Fading Power Spectrum Bearing
1 0 0 Classical Doppler 90o

2 0.8 -3 Gaussian Type 1 87.5o

3 1.6 -6 Gaussian Type 1 94.0o

4 2.4 -9 Gaussian Type 2 78.6o

5 3.2 -12 Gaussian Type 2 100.0o

Table 6.3: The 5 tap typical urban channel.

Each tap contains one significant multipath which is modelled as coming from a single direction. It

should be noted that the exponentially decaying profile described in table 6.3 represents the average of

a large number of measured channels. At a given time, the actual channel observed in an urban area is

likely to vary significantly from the one described here.

The noise–corrupted, post–correlation signal vector received at the antenna array y�t� is therefore:

y�t� �
�X

q��

h�q� t�
c�t � �to � �q � 
�tc�� � n�t� (6.15)

where n�t� denotes additive spatially and temporally white noise of power ��. The function 
c�t� is

defined in equation (6.6). The vector h�q� t� is of course proportional to the steering vector a��q�, where

�q is specified in table 6.3.

6.5.2 The Bearing Estimation Receiver Structure

The bearing estimation receiver structure operates as described in section 3.5 and is shown in figure 6.5.

The received spread spectrum signal is demodulated to baseband and correlated with the desired CDMA
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code. For a frequency–selective channel, Q multipath vectors are obtained. Model order and bearing

estimation algorithms are used to locate the number of signals and their bearings for each of the Q

vectors. The J multipath components with the largest power outputs are passed to a set of spatial filters

to pick out those components. The outputs of the spatial filters are then combined using a conventional

RAKE filter [20].

RAKE filter

Spatial FiltersSensors

code

Demod-

ulation
CDMA

Bearing

Estimation

Matched

Filters

Detection and

Output

Figure 6.5: The spatial filter CDMA receiver structure.

There are a number of methods to operate a RAKE filter. For this section, a very simple method, DPSK

RAKE filter combining, has been used because its properties are well known [43]: its structure is shown

in figure 6.6. Denoting the nth symbol sample for the jth multipath component as z�j� n�, the decision

Re Re Re
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τ τ τ. . .s s s

* * *

z(1,n) z(2,n) z(J,n). . .

* * *z (1,n-1) z (2,n-1) z (J,n-1)

Figure 6.6: The DPSK RAKE filter receiver.

variable, D�n�, for a DPSK RAKE filter is given by the equation [43, Chapter 7]:
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D�n� �
JX
j��

�fz�j� n�z��j� n� 
�g (6.16)

where z��j� n�
� denotes the complex conjugate of z�j� n�
�, which has been delayed by one symbol

period ts for DPSK detection. If the first channel tap for the nth symbol arrives at time t�, the jth

multipath has excess time delay 	j and bearing �j . For an antenna array receiver, the value z�j� n� is

given by:

z�j� n� � aH��j�y�t� � 	j� (6.17)

When J taps with unequal SNR values �j are combined by this method, the bit error ratio (BER) for a

slowly–fading channel � is given by [43, Chapter 4]:

BER �



��J��

J��X
m��

J���mX
n��



� �J � 


n

�
A JX

j��

�j

�j
�

�j

 � �j

�m�� (6.18)

where �j denotes the SNR of the jth tap (not in dB) and �j is given by:

�j �
JY

i���i��j

�j
�j � �i

(6.19)

In the special case of a frequency non–selective channel, the BER reduces to the term 
���
 � ���.

Comparing this result with that for an additive white Gaussian noise (AWGN) channel, the BER

performance is much poorer as it is now only inversely related to the SNR. In order to achieve a BER of

10��, a SNR of 27 dB is required as opposed to 8 dB for a AWGN channel.

6.5.3 Practical CDMA System Performance

For all the results given in this chapter, the parameters of table 6.1 are assumed to apply, unless otherwise

stated. Also, two different measures of SNR have been used for the results in this chapter. Input SNR

denotes the SNR measured at the output of the code correlators for the first tap of the multipath channel

at one antenna receiver. Output SNR is measured at the output of the spatial filter for the first tap of the

multipath channel.

In order to demonstrate that coherently combining multipath energy is worthwhile, consider a receiver

�The term "slowly–fading" implies in the case of DPSK signalling that the underlying signal (without data modulation) does
not change in amplitude or phase over two consecutive symbols.
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with a single antenna. The BER performance has been simulated for the channel described in section

6.5.1, for a Doppler frequency of 50 Hz. Theoretical results have also been calculated using the

approximation derived in appendix C. The results are shown in figure 6.7, with theoretical results shown

as lines and simulation results as points.
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Figure 6.7: The BER performance for number of RAKE taps J

Clearly, the addition of one or two RAKE taps makes a considerable difference in the BER performance,

allowing acceptable communication at much lower SNR values. However, there is a diminishing return

in performance by increasing the number of taps to four or five, because of the reduced signal power

present on these taps.

The performance of a single antenna receiver has been contrasted with that of antenna array receiver,

both using 1 or 3–tap RAKE filters. The bearing estimation algorithm MUSIC, usingN = 50 snapshots,

was used by the antenna array to locate the bearings of each multipath signal. The multipaths were then

constructively combined using the correct steering vectors and then a RAKE filter as described above

was incorporated. Simulation results are plotted for BER vs input SNR in figure 6.8 for array sizes M

= 1 and 8.
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Figure 6.8: Comparison of BER performance for M = 1 and 8 element arrays
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Because each multipath arrives from a single bearing, the received signals across the array for that

multipath have a correlation factor of 1. Under these conditions, the base station array will increase the

SNR of each multipath according to the number of array elements. However, no extra diversity will be

introduced into the RAKE filter. This means that in this case array processing does not provide an extra

means of overcoming the limitations due to Rayleigh fading and tracking errors. Comparing the curves

for M � 
 and M � � antenna elements with 1 or 3 RAKE filter taps, this observation is seen to be

true.

So far, the effects of self-noise, due to non-ideal spread spectrum code auto-correlation functions have

been ignored. In practice there will be small contributions in each tap of the RAKE filter, which are due

to correlations from the other multipath components. These will again limit the high SNR performance

of the system. In the case of array processing receivers, these effects can be reduced, provided that the

multipaths arrive from different directions. This effect has been measured by determining the auto–

correlation function of a randomly chosen length 127 Gold code, which was then be used to simulate

self–noise effects.

Figure 6.9 shows the effect on base station receivers with different array sizes M and RAKE filter taps

J . Note that the horizontal axis this time represents the mean output SNR of the beamformer for the

first multipath component. For J � 
, increasing the antenna array size reduces self–noise effects

considerably, because the array is able to exploit the spatial diversity of multipath energy. However, as

the number of RAKE taps J increases, the irreducible BER associated with self–noise reduces and for

a single receiver with J � 	, the effect is negligible for at a BER of 
���.
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Figure 6.9: The BER performance of an M – element array with J RAKE taps and self–noise effects

6.5.4 Array Processing: Multiple Users

In this subsection	, simulation work to determine the performance of the reverse link of a single–cell,

fading channel, multiple user CDMA system is discussed. To begin with, some assumptions were made

�The work reported in this subsection only was carried out jointly with Dr Iain Scott of the Electrical Engineering Dept at
Edinburgh University.
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concerning the system under consideration:

� Each user was randomly allocated a length–127 Gold Code and employed DPSK modulation.

� Each users transmission was subject to a different realisation of the 5–tap typical urban channel

described in section 6.5.1. Each multipath component was allocated a random bearing in the range

[30o,150o].

� The bearings of the desired user’s multipath components were assumed to be correctly estimated.

� Relative to the desired user, each interfering transmission was allocated a random time delay,

which was fixed for the duration of all simulations.

� Power control was employed, so that shadowing effects could be neglected and the mean power

of each incoming user’s signal was the same.

� The maximum fading frequency for all users was 50 Hz.

For the purposes of the simulation, 15 users were assumed to be in operation. The spread of directions

of arrival of the multipath components received from the 14 interfering users are shown in 6.10. The

first multipath of the desired user arrived from broadside (90o) – the appropriate beamformer for an

8–element array is also shown. The number of antenna elements in the base station was varied and the
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Figure 6.10: The directions of arrival of the multipath components from 14 interfering users.

corresponding BER for the desired user measured at different SNR levels. The results are plotted for

output SNR against BER in figure 6.11.

Clearly, the wide angular spread of multipath components in this case meant that the antenna array

receiver was able to exploit the spatial diversity of interference. Once the antenna array contains 4

elements, the irreducible BER falls to approximately 10��. This gives rise to a tolerable level of system

performance. As in chapter 5, the performance improvement offered by an antenna array depends
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Figure 6.11: The BER performance for a desired user, using a base station antenna array with a 5 tap
RAKE receiver.

critically on the distribution of CDMA users in the cell. These results show what might happen in a

typical case. However, as discussed in section 5.2.4, the BER of a given user is usually dictated by how

many interfering multipaths arrive within one array beamwidth of the desired multipath components.

6.5.5 Array Processing:Re–Transmission on the Forward Link

In order to permit an antenna array transmitter to operate on the forward link, directional information

obtained on the reverse link may be used. Energy may be radiated in the directions of the major

multipath components received on the reverse link to communicate with the desired mobile, whilst

limiting co-channel CDMA interference. Two major cases to consider are shown in figure 6.12.

(a) (b)

Power

bearing bearing

Power

former
beam-
former

beam-

Figure 6.12: a) Multipath engergy arrives from a narrow spread in angle b) Multipath energy is widely
distributed in angle.

If the major multipath bearings f�pg are very close, so that correlation between all the steering vectors

is close to 1 (case a), re-transmission is simple to perform. The transmission array need only transmit

the desired mobile’s CDMA signal once using the steering vector for the largest power multipath on the

reverse link. Energy from this transmission will propagate in the directions of all the major multipath
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components, as shown in figure 6.12 (a), so that the mobile receives a similar multipath channel to that

measured by the base station. The mobile may employ a RAKE filter to combine the multipath energy

coherently and exploit the multipath diversity.

Alternatively, the major multipath bearings f�pg may be spread in azimuth so that the cross-correlation

between all the steering vectors is close to 0 (case b). If the antenna transmits in only one direction,

the mobile may receive only one significant Rayleigh–fading multipath component giving it poor BER

performance. In order to improve the situation, a modified version of a technique called transmission

diversity may be used. This has been suggested for both TDMA [166] and CDMA protocols [167]; it

has also been used in a trial CDMA system [168]. The mobile’s signal is transmitted by two or more

widely spaced antennas, with a time delay between the them to allow the multipath energy to be received

in different code time slots at the mobile. Assuming the signals are independent, the mobile can obtain

diversity by combining the signals in a RAKE filter. The idea is illustrated in figure 6.13. This concept

τ

Mobile
Tx 1

Tx 2

Rx

Base Station

Signal

τ
Time

Power

From
Tx 2

CDMA signal at MobilePost-correlation

From Tx 1

Figure 6.13: The diversity transmission technique

may be modified to the adaptive array case by transmitting the complete CDMA code in the directions

of the 2 or 3 largest power multipaths. These multipaths have unknown amplitude coefficients on the

forward link, so that for a fixed power transmission budget a loss in received power may result at the

mobile. As a consequence, the receiver must try to ensure that the diversity obtained outweighs any loss

in the received SNR. Depending on the times of arrival of the multipath components, energy may have

to be transmitted in the chosen directions at different times in order that each multipath should arrive in

a different time slot at the mobile receiver. An alternative approach is to transmit different parts of the

CDMA code in different directions [169]: however, this scheme increases the receiver complexity and

appears most suited to indoor flat–fading channels. Finally, it should be noted that diversity transmission

and multiple direction transmission techniques are most effective when the receiver has a RAKE filter

which is able to track and combine a sufficient number of channel taps.
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6.6 The Finite Angular Spread Multipath Channel

Until now, each significant multipath component on the reverse link has been modelled as arriving from

a single direction. This assumption allows BER performance to be estimated easily and provides an

obvious scheme for transmitting energy back towards the mobile user. This means that adaptive arrays

may be used to obtain significant capacity gains in both directions. However, this assumption may not

be true for practical channels, particularly where the mobile is close to the base station. In this case,

scatterers round the mobile may give rise to multipath signals at the base station which have a wide

spread in angle.

6.6.1 Modelling Finite Angular Width on The Reverse Link

The multipath channel will now be modelled as flat–fading, so that it consists of a single vector h�
� t�.

This has been done in order to observe the effect of a multipath having a finite angular width, so that the

point source model may be altered accordingly. The bearings of the constituent multipath components

will be allowed to vary according to a specified distribution: initially the form of this distribution, as

described in the literature, will be discussed.

Most of the existing models are intended for describing near–in scattering round the mobile, as described

in section 6.3.1.1. This is due to the fact that this type of propagation accounts for a large proportion of

the received power on both the forward and reverse links, particularly in the case of narrowband systems

operating over a flat–fading channel. The first model to be used in the literature is probably due to

Lee [170]. It was used to analyse the correlation between the fading signals seen at two base station

antennas, separated by a known distance. The transmitted signal was narrowband in nature, and the

received signal was assumed to be generated predominately by near–in scattering close to the mobile.

Lee proposed a probability density function (PDF) for the angle of arrival of a scattered component,

which is given by:

PDF��� �
q

�
cosn�� � ��� (6.20)

where �� is the angle of arrival the mobile itself, q is a normalising constant to make the function a PDF

and the power n controls the beamwidth of the scattering.

Other methods have been used since for modelling the angular spread of near-in scattering. In [63], the

authors place a number of scatterers on a circle, each giving rise to a signal with a Rayleigh distribution.

Alternatively, a Gaussian distribution for the angle of arrival has been used in [67, 171], with the mean

value indicating the mobile angle of arrival and the standard deviation modelling the multipath spread

in angle. However, perhaps the most convenient model has been suggested by Salz and Winters [172],

which is a simplification of Lee’s model. It is shown in figure 6.14. The mobile is placed at radius R

from the mobile, and is surrounded by a circle of scatterers with radius d. They assume that the multipath
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scattering seen at the base station is uniformly distributed over the range of bearings ��� ��� �� ���,

where �� is the scattering angle. This model allows simple analytical results to be obtained for the

correlation between antennas for a near-field scattering signal and will be the model used for proceeding

work.

Mobile
Base 

Station

Locus of Scatterers

∆
∆

R

d

Figure 6.14: The multipath channel model due to Salz and Winters (after [172]).

Far–out scattering mechanisms have received considerably less attention, because they are of secondary

significance to narrow–band systems. However, the Salz/Winters model may be adapted to far–out

scattering in the case where EM energy is reflected from an obstacle of cross–section �d at a distance R

from the receiver. The angular width �� for this type of scattering will again depend on the width of

the major reflector and its distance from the base station.

6.6.1.1 Experimental Channel Measurements

Assuming that the channel vector h�
� t� is generated by near–in scattering, what values of the scattering

angle �� are realistic in practice?

The value of � may be calculated if R and d are known. The value of the d has been estimated from

the spatial correlation function of the received signal at a base station antenna array. It would appear

that the value of 2d should be at least the distance between buildings on the opposite sides of the street

where the mobile is located [30, p65]. A typical value of 100 feet (30 metres) has been suggested for

2d, [30, p65]; Lee has suggested 200-400 �C (for 900 MHz, this would be 60-120 metres) [37].

The scattering width of multipath signals using narrowband channel sounding techniques has been

documented in several papers. However, as urban and suburban channels vary widely, they provide only

a guide to the range of values of � that might occur in practice. In addition, the correlation values

for near–in scattering using narrowband measurements may tend to be lower than the actual value,

as they will also include far–out scattering effects. One of the first measurements was performed by

Lee [170] for a narrowband 836 MHz transmitter located 3 miles away from the base station. From the

cross-correlation values between two antennas, a scattering width of 0.4o was estimated. More recently,

measurements were made in the Liverpool area with a carrier frequency of 900 MHz and a Tx–Rx
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spacing of 1.3 km [171]. The Gaussian scattering model was used and results were measured for radial

and circumferential routes. The former giving rise to angular standard deviations of 1–3o (approximately

equivalent to scattering widths 2� of 3.5–10.4o �), while the latter gave deviations of 3–6o (approx.

10.4–20.8o scattering width). A standard deviation of approximately 3o (approx 10.4o scattering width)

was estimated for an 8–element antenna array operating at a carrier frequency of 870 MHz, with a Tx–Rx

distance of 1 km in three separate locations in Sweden [173]. Using Lee’s suggestion of d = 200�C , a

somewhat lower scattering width of 2� = 7o is obtained for R = 1 km.

6.6.1.2 Reverse Channel Description

The multipath channel, as seen at the array, consists of the superposition of a number of equal amplitude

multipath components, whose bearings are selected from a uniform distribution. The mobile’s bearing

is �� and the maximum deviation in bearing is��. Assuming that the number of constituent multipaths

G tends to infinity, the mean covariance matrix of the channel coefficient vector h�
� t� is given by:

R�
� � E�h�
� t�h�
� t�H� � U�UH �
a

��

Z ����

����

a���aH���d� (6.21)

where the term U�UH represents the eigenvalue decomposition of the signal space and a represents a

scaling factor. Analytical formulae for calculating the entries ofR�
� are given in [172]. Assuming the

fading signal at each array antenna follows a Rayleigh distribution, the received signal from the channel

may be characterised as a multinormal random variable with mean vector 0 and covariance matrixR�
�.

If the multipath originates from one direction only, the matrix will be singular with rank one. However,

as the multipath spread becomes wider, the correlation between antenna elements will reduce. In this

case the eigenvalues and vectors of R�
� specify the Rayleigh–distributed random processes that make

up the channel vector h�
� t�. This means that correctly tracking the received signal will exploit spatial

diversity present at the receiver.

The flat–fading model used here is assumed to be generated by near–in scattering, as with the models

used in the previous subsection. Hence, the temporal auto–correlation function of the channel seen at

the mth antenna, hm�
� t�, is simply given by equation (6.8) with the amplitude a scaled appropriately

and the delay 	o � �. The square root envelopes of the entries of the estimated covariance matrix �R�
�,

calculated from N snapshots of h�
� t�, have a Nakagami distribution [174]. The important parameter

of the Nakagami distribution is the m–parameter, which is inversely related to the normalised variance

of the entries of �R�
�. In this case, the m–parameter of the entries of �R�
� is given by:

m � ��
�N � � �
�N��
NX

i�j�i ��j

R��� �i� j�ts�R��� �j � i�ts��
�� (6.22)

�This comparison is based on equivalent standard deviations. The Salz/Winters model with angular width 2� has a standard
deviation of ��

p
�.

102



where R��� t� is defined in equation (6.8) with a=1 and ts is the symbol period. The derivation of this

equation is given in appendix C. In order to successfully track the multipath fading vector h�
� t�, the

value of N should be small to minimise the m–parameter. However, in practice one has access only to

the post–correlation data vector y�t�, which is defined in this case as follows:

y�t� � h�
� t�
c�t� � n�t� (6.23)

where 
c�t� is defined in equation (6.6) and n�t� represents spatially and temporally white Gaussian

noise of power ��. Calculating the reverse channel covariance matrixRr from y�t� involves noise terms

whose variances are proportional to �
�N �. This means that the choice ofN to minimise equation (6.22)

must be large enough for the entries of Rr not to be excessively noise–corrupted. For the conditions in

this chapter (i.e. a data rate of 10 kHz and fading frequency 50 Hz), the m–parameter values for some

example values of N are shown in table 6.4. For the rest of this chapter, covariance matrices have been

N 5 50 500 5000
m 1.002 1.207 5.595 39.998

Table 6.4: Values of the m–parameter for different numbers of snapshots N .

formed from N=50 snapshots, which maintains a reasonably low m–parameter value.

6.6.1.3 Assessing the Effect of Angular Spread

For both near–in and far–out scattering, the exact form of the angular distribution of multipath energy

is probably of secondary significance. On the reverse link, what matters is the mean covariance matrix

of the received signal: this specifies the signal cross-correlations between antenna elements and hence

the inherent diversity of the received signal. Two useful theoretical measures of antenna array receiver

performance are:

(i). Maximal Ratio Combining (MRC): In the presence of white noise, MRC is the optimal method

to combine a number of signals [175]. This method involves scaling each antenna outputaccording

to the signal power present. Here, the MRC output SNR has been calculated for the mean channel

covariance matrix R�
� by evaluating its trace. The result is scaled suitably for comparison with

other results.

(ii). Source Bearing Beamformer: In this case, a spatial filter whose bearing is that of the mobile’s

location is consistently applied to the the received data. The method is of additional interest later

on, as the output signal will follow a Rayleigh distribution [107].

There are several techniques for tracking such a signal, including optimum combining algorithms which

employ periodic training sequences [13]. Here, techniques which do not require a training sequence will
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be considered, as the bearing estimation techniques described in this thesis employ covariance matrices

which are not sensitive to data modulation. In order to reliably pick out the desired signal, its mean SNR

should be much greater than 1, which necessitates accurate power control.

(i). Beamspace Transformation:A simple approach to processing the received signal is to pass the

signal vector through a bank of spatial filters, denoted as M � 
 vectors wi, which transform the

signal into beamspace [56]. The signal outputs may be treated in a number of ways, but in this

chapter selection diversity will be used to choose the largest output only. The manner in which

the selection is made will now be described briefly. If 
 spatial filters are used, the filter bank

may be denoted as the 
�M matrix W � �w� � � �w��. The measured covariance matrix �Rr is

transformed to the beamspace matrix �B , according to:

�B �WH �RrW (6.24)

The spatial filter wi, corresponding to the largest diagonal entry of �B , may then be applied to

the N snapshots of array data to recover the mobile’s data sequence. The output SNR for this

technique is given by �wH
i
�R�
�wi���wH

i wi�, assuming the noise power �� is normalised to 1.

For the simulations in this thesis, 
 � M orthogonal steering vectors were used. The bearing of

the first filter �� was chosen as required; the other M � 
 steering vector bearings are specified

by:

� � cos����� cos���� � ��n��M ����� n � 
� �� � � � �M � 
 (6.25)

The circular phase term present in the argument of the cos�� term should be made to lie in the

region ���� �� to obtain the filter bearings.

(ii). Spatial Filter Techniques: It is of interest to determine how a single spatial filter performs, when

attempting to track a multipath signal. The conventional beamformer power spectrum has been

calculated for the covariance matrix �Rr in each case to select the bearing � with the largest power

output. As with the beamspace transformation, the appropriate steering vector spatial filter is

applied to the array data to recover the desired user’s signal: hence, the output SNR is calculated

in the same manner. This method is quite similar to jitter diversity [176], where the receiver

estimates the source bearing from a large number of snapshots and tracks the movement of the

nearest signal peak snapshot by snapshot.

(iii). Eigenfilters: In this case, the receiver performs an eigenvalue decomposition of the covariance

matrix �Rr. The eigenvector or “eigenfilter” corresponding to the largest eigenvalue, u�, is chosen

and applied to the array data to produce a scalar output. The output SNR is simply given by

the largest eigenvalue of �R�
�, so that in the presence of white noise, the eigenfilter method will

achieve the maximum output SNR among all single filter techniques [60].

(iv). Spatial Smoothing Approach: The spatial filter approach described above employs only one

filter for the received signal. It is also possible to apply spatial smoothing to the matrix �Rr
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to resolve multipath components at bearings f�jg. The power of each may be calculated from

aH��j� �R�
�a��j��aH��j�a��j�. The largest components (here, those within10 dB of the largest

multipath) may be combined in a RAKE filter. Assuming J components are combined by ideal

maximal ratio combining, the output SNR for this case only is explained in Appendix C and given

by:

SNR �
�
PJ

j�� a
H��j� �R�
�a��j��

�

PJ
j���a

H��j� �R�
�a��j�aH��j�a��j� � �
Pj��

k���faH��j�a��k�aH��k� �R�
�a��j�g�
(6.26)

6.6.1.4 Simulation Results

In order to provide an initial comparison of the four methods, each technique was applied to the noisy

covariance matrix estimate of �Rr. The input SNR, which was defined in section 6.5.3, was set to 20

dB for all simulations with the signal vector h�
� t� composed of G � 100 multipath components. The

output SNR was measured for the different techniques ten thousand times in each case as part of a Monte

Carlo simulation. The simulations have been performed for a source at a bearing of 90o to the array.

This bearing was chosen as previous results for the channel model show that cross–correlation between

antennas falls most rapidly in this case [172]. For signals arriving from other directions with the same

beamwidth, the cross–correlation between array antennas will be higher.

A comparison of the spatial filter and eigenfilter methods for the reverse link, in terms of the output

SNR, is shown in figure 6.15. Results are shown for uniform linear arrays with half-wavelength spacing
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Figure 6.15: The Mean output SNR for the reverse link vs scattering width for array sizes M = 2,4,8
and 16.

and the specified number of antenna elements. The covariance matrices used were calculated from

50 snapshots of a signal with a maximum fading frequency of 50 Hz and a data rate of 10 kHz. The

multipath signal was always generated using the near–in scattering model. The output SNR values for

ideal maximal–ratio combining are shown as horizontal lines for 2,4,8 and 16 antenna elements in figure

6.15. The points marked “Beam” show the measured results for the spatial filter technique and “Eigen”
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shows the SNR resulting from using the eigenfilter approach. Finally, the lines labelled “Filter” denote

the SNR calculated for a beamformer placed at the source bearing. These curves tend towards a constant

output SNR for large scattering widths [166] as the array size increases. This effect occurs because

increasing the array size reduces the beamwidth and the receiver picks out less of the signal energy: this

cancels out the noise gain of the larger antenna.

The output SNR values from the eigenfilter approach are better than those obtained from the spatial

filter, for large scattering widths because the eigenfilter tracks the signal in all dimensions, while the

spatial filter is constrained to a high–dimensional surface specified by the vector a���. Figure 6.15

shows the eigenfilter suffers a small loss compared to the optimal SNR obtained by MRC, because the

m–parameter of the covariance matrix �R�
� is greater than unity. It should also noted that the spatial

filter method performs better than the “Filter” curves because the filter bearing can change to follow the

variations of the received signal and partially exploit the spatial diversity present.

Results have also been obtained for the spatial smoothing method described above, denoted as method

(C), and for the beamspace transformation method, denoted as (B). In order to avoid confusion in figure

6.15, the results are presented in table 6.5. The performance of the beamspace method depends on the

bearing �� of the first spatial filter. ForM � �, �� has been varied in the range ��o� ��o� and forM � 
�,

in the range ��o� ��o� 
, to determine the best and worst performance for different values of scattering

angle. For comparison the spatial filter method is denoted as (A) and the eigenfilter method as (D).

M = 8 Scattering Angle M = 16 Scattering Angle
Elements �o 
�o ��o 	�o Elements �o 
�o ��o 	�o

A(dB) 29.07 28.81 28.17 27.67 A(dB) 32.11 31.03 30.07 29.37
Best B(dB) 29.07 28.57 27.37 27.00 Best B(dB) 32.06 30.34 29.45 28.71

�� 0o 2o 28o 27o �� 0o 24o 5o 20o

Worst B(dB) 25.16 26.64 27.12 26.50 Worst B(dB) 28.41 30.12 29.17 28.47
�� 29o 29o 7o 6o �� 20o 7o 18o 11o

C(dB) 29.07 28.62 28.70 28.43 C(dB) 32.11 31.61 31.46 31.40
D(dB) 29.08 29.01 28.83 28.80 D(dB) 32.11 31.78 31.73 31.75

Table 6.5: Comparison of (A) spatial filter method (B) beamspace transformation (C) spatial smoothing
method and (D) eigenfilter method.

These results demonstrate that resolving separate multipath components with spatial smoothing to com-

bine coherently the multipath energy improves the receiver performance. However, marginally superior

performance is obtained by the eigenfilter method with considerably less computation, even though ideal

MRC combining was assumed for method (C). The behaviour of the beamspace transformation scheme

varies somewhat depending on the value of ��. However, the best SNR values are not significantly worse

than those for method (A); the variation in SNR is also considerably less for large values of multipath

scattering. This would appear to be due the incoming signal appearing in two or three adjacent spatial

filters, providing diversity gain. The loss in performance compared to methods (C) and (D) may be

offset against the much simpler implementation and computation costs of the beamspace transformation

�The upper bearing of these two ranges specifies roughly where one of the other beamformers reaches bearing � o.
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approach.

To provide some comparison of the effectiveness of spatial filtering, a table is shown below of the 3

dB beamwidths of an antenna array of a given size with a look direction of 90o. Comparing the values

Number of Antenna Elements 3 dB Beamwidth
2 60o

4 26.3o

8 12.8o

16 6.4o

Table 6.6: The beamwidths of M–element antennas, with a 90o look direction.

of table 6.6 with the results of figure 6.15 and table 6.5, it is seen for each value of M that significant

degradation in SNR for both the spatial filter and beamspace approaches occurs only as the angular

spread of the signal increases above the beamwidth of the associated spatial filter. Finally, it should be

noted that all the above methods will be subject to further degradations at low SNR, because the signal

vector estimates will be subject to larger perturbations due to noise.

6.6.1.5 Diversity Considerations

Whilst the measured SNR provides an initial measure to compare receiver structures, it is insufficient

to completely characterise system performance. In the simple case of a source transmission arriving

from a single direction, the received signal may be completely described by a steering vector which is

scaled by a single complex Gaussian random variable. However, as the angular width of the source’s

signal increases, the cross–correlation between the received signals across the antenna array reduces,

so that the received signal vector follows a complex Gaussian multivariate distribution. The eigenvalue

decomposition of the mean covariance matrix R�
� of the received signal provides information on the

constituent random processes present in the signal and their amplitudes.

If perfect maximal ratio combining is applied to the received signal vector, the receiver is able to track

the independently fading components which are present. This means that the receiver can exploit the

spatial diversity of the antenna array [71], whose extent depends on the number of significant eigenvalues

calculated fromR�
�. As a guide to the diversity present on the channels considered above, the principal

eigenvalues from the covariance matrices calculated for different array sizes and signal scattering angles

are shown in figure 6.16. Comparing the results with table 6.6, the second largest eigenvalue of R�
� is

seen to become significant when the scattering width is comparable to the beamwidth of the array.

In order to estimate quantitatively the effect on the receiver, one may use the following procedure. Take

the K significant eigenvalues from R, �k, and scale them according to the background noise level and

denote the resulting values as �k ( c.f. section 6.5.2). The PDF of the signal at the output of an ideal

maximal ratio combiner is given by Proakis [43]:
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Figure 6.16: The principal eigenvalues of the covariance matrices for different array sizes and signal
scattering angles: a) M=2 b) M=4 c) M=8 d) M=16.
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where the value of �k is given by equation (6.19). The CDF of the distribution is then given by:

CDF�x� �
Z x

�

PDF���d� �
KX
k��

�k�
� expf�x��kg� (6.28)

As an example, the theoretical CDFs for the MRC output from an incoming signal with bearing 90o,

scattering width 20o and an input SNR of 20 dB have been calculated for M = 2,4,8 and 16. To check

the results by simulation, the eigenfilter method has applied to 50 snapshots of the same slowly–fading

channel(i.e. 
m=0) to calculate the output SNR. This procedure was repeated 10000 times to determine

the CDF. Both sets of results shown in figure 6.17 fit well, as the eigenfilter approach is approximately

equivalent to the theoretical MRC curve in this case. As the number of antenna elements M increases,

the exploitable diversity increases. At a probability of 0.001, the SNR improvement is of the order of 6

dB each time M is scaled by 2, double what would be expected for noise rejection alone.

It is of interest to compare the CDFs for the spatial filter, beamspace transformation and eigenfilter

approaches, for M=16, under the same conditions as the previous figure. Results are shown in figure
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Figure 6.17: The CDFs of the theoretical and simulated MRC outputs for a signal impinging on an
M–element ULA with bearing 90o,input SNR of 20 dB and scattering width of 20o.

6.18 for all three approaches, labelled “Beam”, “Beamspace”
 and “Eigen” respectively. Interestingly,

the spatial filter CDF follows that of the eigenfilter closely: the main difference appears to be due to

the loss in SNR specified in table 6.5. In addition, the CDF of the beamspace technique shows only a

slight loss in SNR and diversity compared to the spatial filter method. However, all three approaches

seem to exploit most of the diversity present in the received signal, and will provide significant BER

performance improvement at reasonable input SNR over the curve labelled “Filter”. This represents the

Rayleigh distributed output from a spatial filter placed at the source bearing.
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Figure 6.18: The CDFs of the beamformer, eigenfilter, MRC, beamspace and source bearing steering
vector filters for a signal impinging on a 16–element ULA with bearing 90o, input SNR of
20 dB and scattering width of 20o.

From these results, it seems clear that the eigenfilter approach provides performance close to that offered

by ideal maximal ratio combining for any scattering width. If the scattering width is narrow, spatial

�The results for the beamspace technique are shown for the “worst” set of filters, with output SNR = 29.17 dB and � � � �	o.
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filtering performs almost as well. However, as the scattering width increases above the beamwidth of

the array, spatial filtering approaches degrade in terms of the SNR. The loss in SNR can be overcome

by spatial smoothing techniques, but only at a cost of increased complexity. In any case, spatial filtering

and eigenfilters already appear to exploit the diversity of the channel effectively. Bearing estimation

techniques require accurate knowledge of the array manifold, which will involve periodic re–calibration

of the signal phases. This can be avoided in receivers using eigenfilter methods, although it may prevent

the antenna array from being used to re–transmit on the forward link.

The point source channel provides a good model for a multipath component, provided its angular width

is somewhat smaller than the beamwidth of the array. However, as the angular width increases, spatial

diversity can be exploited to increase the effective number of independent Rayleigh fading components

which are coherently combined. The DPSK BER equation (6.18) may be simply adapted to handle

the case where a J–tap DPSK RAKE filter combines J signals containing Y independent components,

where Y � J . The BER becomes:

BER �



��J��

J��X
m��

J���mX
n��



� �J � 


n

�
A YX

y��

�y

�y
�

�y

 � �y

�m�� (6.29)

where �y is the SNR of the yth component. The product term �y, defined in equation (6.19), is modified

to include a product of order Y � 
.

6.6.2 Array Processing on the Forward Link

Given that the multipath components received at an array antenna base station have some spread in

angle, it is important to quantify the effect of this. Intuitively, one would expect that as the multipath

angular width widens, a simple beamformer will tend to capture less of the available energy, reducing

the received SNR for that multipath. Similarly, re-transmitting energy on the forward link using the

same beamformer weights will not reach all the scattering components so that the forward link SNR for

that multipath is also reduced.

6.6.2.1 Modelling the Forward Link Channel

In order to model the forward link channel, it shall be assumed that the frequency separation between

the reverse and forward links is sufficient that one is outside the coherence bandwidth of the other. In

the IS–95 standard, the channel separation is of the order of 40 MHz, so that this assumption would be

appear to be justified in this case. To simplify the analysis, it will be assumed that the steering vector

of the array is the same for both carrier frequencies. Therefore, if the mobile were to transmit at the

forward link frequency, the channel vector hf �
� t� would be identically distributed to the reverse link

vector h�
� t�, but independent of it.

If one were to apply an arbitrary filter w to N snapshots of hf �
� t�, the average output power would
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be given by �wH �R�
�w ���wHw �, where �R�
� is formed from the N snapshots of hf �
� t�. By the

principle of reciprocity on the forward and reverse links [30, p60], this value also represents the power

received at the mobile if the antenna array transmitted to it using the complex conjugate weight vector

w�. The total power transmitted by the antenna array is equal to that transmitted by the mobile. This

method will be used to simulate the forward link from the base station to the mobile. The algorithms for

determining what weights to use for transmission to the mobile will now be considered.

6.6.2.2 Forward Link Transmission Techniques

There are a number of techniques which permit the array to re-transmit to the mobile. These will now

be considered in turn:

(i). Weight Re-transmission:If a single weight vectorw is calculated for receiving the signal on the

reverse link, it is possible to use the complex conjugate vector w � for transmitting on the forward

link. This principle has been suggested for the case of a single spatial filter a��� [12, 62] and for

an approach based on adaptive beamforming [67]. It may also be performed using an eigenfilter

u� or the weight vector calculated from optimum combining [13]. Finally, it should be noted that

this approach has even been suggested for beamspace transformation techniques [76].

(ii). Transmission Feedback [177]: This method for narrowband systems proposes that the base

station periodically transmit training sequences to the mobile. Based on information transmitted

back from the mobile, the base station may alter its transmission weights. This method has the

advantage of being able to measure the forward link channel characteristics directly. However,

it seems to be most suitable for slowly changing channels and has the disadvantage of requiring

extra control overhead. It will not be considered further in this thesis.

(iii). Time Division Duplex Transmission [178] [30, p498]: An alternative method to obtain the

transmission weights is to specify a time division duplex (TDD) air interface. This method will

work better than FDD methods over slowly–fading channels, as in this case the slow and fast

fading effects will be reciprocal. It is also possible to transmit several delayed versions of the

CDMA signal in such a way as to permit the channel to perform a RAKE filtering operation on

the signal [178]. However, this method requires guard bands between the transmissions in each

direction to prevent cross-talk. In addition, the performance of the system degrades as the fading

rate of the channel increases. As the IS–95 standard specifies FDD signalling, this method will

also not be considered further.

The work which is presented next considers blind channel transmission techniques, which have no

knowledge of the forward link channel parameters, except through measurements of the reverse link.

The maximum SNR that can be obtained in this way is to use the eigenvector corresponding to the

largest eigenvalue ofRr for the transmission weights� . The output SNR at the mobile is then the largest

	This assumes that the receiver can obtain a perfect estimateRr , which is unlikely to be possible in practice.
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eigenvalue of R�
�. The comparative performance of weight transmission systems using eigenfilter,

spatial filter and beamspace transformation weights will now be discussed.

6.6.2.3 Simulation Results for The Forward Link

In the simulations described below, a covariance matrix was formed from reverse link data to determine

the best receive vector w , using the spatial filter, eigenfilter or beamspace transformation. The array

proceeded to transmit on the forward link to the mobile, using the complex conjugate vector w �. Each

realisation of the reverse and forward links was obtained using G � 100 multipath components, each

with the same bearing and Doppler frequency. However, the initial phases of the multipath on the

two links were iid random variables, uniformly distributed over ��� ���. This does not account for any

alteration in the channel, due to shadowing, in the time between measuring the reverse link channel

and re-transmitting on the forward link. Given that the simulation used a low fading rate, however, this

appears to be a reasonable assumption.

Figure 6.19 shows the output SNR against beamwidth for array sizes M = 2,4,8 and 16. Weight vectors

were obtained from N=50 snapshots of the reverse link, using the spatial filter and eigenfilter methods

described in section 6.6.1.3. The total transmission power budget for all antenna array sizes was the

same as that used by the mobile on the reverse link, such that a single antenna transmission would

achieve a mean output SNR of 20 dB at the mobile. The results were calculated for 50 snapshots of the

forward link: they are shown for the spatial filter (label “Beam”) and the eigenfilter (label “Eigen”), as

well the maximum SNR, which is the largest eigenvalue of R�
� (label “Theory”). Finally, horizontal

lines are shown in figure 6.15 for the maximum output SNR achievable for each array size, assuming

perfect knowledge of the forward link channel.
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Figure 6.19: The mean output SNR for the forward link vs scattering width for array sizes M = 2,4,8
and 16.

The results show that the performance of the eigenfilter and beamformer techniques are quite similar in

this case. However, both techniques’ performance is slightly worse than for the maximum achievable,

because the reverse link estimated matrix �Rr provides channel parameter estimates with a high variance.
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Unfortunately, at large scattering angular widths, all three approaches perform considerably worse than

the correct transmit weights which could be used if the forward link channel characteristics were known

at all times.

A comparison is shown in table 6.7 between the spatial filter and beamspace transformation techniques

– methods A and B, respectively. Again, the performance of the former is comparable to the best results

for method B. Poor choice of �� leads to some degradation in performance.

8 Scattering Angle 16 Scattering Angle
Elements 0o 10o 20o 30o Elements 0o 10o 20o 30o

A(dB) 29.04 28.22 26.53 25.20 A(dB) 32.12 29.45 27.14 25.86
Best B(dB) 29.05 28.49 26.44 25.26 Best B(dB) 32.10 29.47 27.08 25.71

�� 4o 4o 7o 27o �� 1o 4o 1o 18o

Worst B(dB) 25.10 25.46 25.67 24.44 Worst B(dB) 28.43 28.68 26.80 25.33
�� 29o 28o 28o 0o �� 20o 21o 20o 5o

Table 6.7: Comparison of (A) spatial filtering and (B) beamspace transformation techniques.

6.6.2.4 Obtaining Diversity Reception at the Mobile

In order to permit performance improvements at the mobile, it is possible to directly employ the CDMA

transmission technique [168], which was described in section 6.5.5. Each antenna of the array transmits

the CDMA signal subject to a delay (relative to the first antenna) of �m � 
�tc, where m denotes the

antenna number. If M antennas transmit over the channel modelled by h�
� t�, the mobile receives M

signals in different time slots. Assuming that the array transmit power is the same as for the mobile, the

mean power received at the mobile is given by �trfR�
�g��M . Hence, diversity transmission would

achieve an output SNR of 20 dB for all the antenna sizes described above.

Clearly, the problem with this approach is that if h�
� t� consists of a single steering vector a���, then

transmitting using the vector a ���� is much more efficient in terms of the output SNR. Indeed, the

diversity transmission approach simply leads to an SNR loss of M dB compared to transmitting the

steering vector and achieves no additional diversity gain. For a more general channel there will still be

some loss in output SNR, compared to the weight transmission approaches described above, but this

method can exploit any channel diversity present.

In scenarios where the channel matrix R�
� has a small number of significant eigenvalues, it is ad-

vantageous to keep the number of separate transmissions small. Two possible methods to achieve this

are:

(i). Sub–array Transmission: One may divide the linear array into a number of contiguous trans-

mission sub–arrays. Each sub-array transmits the CDMA code with a suitable delay, as for the

diversity transmission algorithm, to allow multipaths to be combined coherently with a RAKE fil-

ter. The transmission weights for each sub–array may be decided using one of the re-transmission
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techniques above, e.g. spatial filter, eigenfilter, etc. As the transmitted power is split equally

between sub–arrays of size L, the total output SNR from a RAKE filter at the mobile cannot be

greater than that for a single transmission from an array size L. However, this technique provides

improved diversity at the mobile, assuming the channel has sufficient angular spread: there is also

reduced RAKE filter complexity at the mobile, compared to the transmission diversity technique.

In practice, the effectiveness of the technique will depend on the the signal cross–correlation terms

present in the matrix R�
�.

(ii). Transmission using MUSIC/Spatial Smoothing:A second approach is to apply spatial smooth-

ing and MUSIC to the reverse link covariance matrix, in order to separate the received signal into

a small number of directional components. The base station may transmit the CDMA code in

each chosen direction, with suitable delays to allow each transmission to arrive in a different time

slot.

In order to demonstrate the improvement that may be obtained from multiple transmission, the CDFs

have been calculated for the overall SNR of the signal at the mobile for a number of transmission

schemes. The reverse link beamformers and the forward link complex–conjugate re–transmission SNR

values have been calculated in the same manner as for figure 6.18. The only difference is that ideal

maximal ratio combining has been assumed at the mobile for the diversity transmission technique. The

results are shown in figure 6.20.
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Figure 6.20: The CDFs for the overall SNR received at the mobile for a number of transmission al-
gorithms, with array size M=16, source bearing ��o and scattering width ��o.

The received signals for transmission algorithmsemploying beamformer transmission (labelled “beam”),

eigenfilter transmission (labelled “eigen”) and for transmission with a beamformer at the source bearing

are all seen to follow a Rayleigh distribution. These techniques are unable to provide any additional

diversity at the mobile. Results are also shown for antenna transmission (with eigenfilters) using 2 (L=8)

and 4(L=4) sub–arrays. The loss in mean SNR is evident for sub–array transmission. Transmitting a

single eigenfilter achieved an average output SNR of 27.0 dB, two filters gave 26.2 dB and four gave
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25.0 dB. However, the latter two methods provide significant diversity gain at the mobile because the

separate components may be combined coherently with a RAKE filter. At low SNR values, there will

be little to choose between any of the transmission techniques. However, as the SNR increases, the BER

performance of each approach will depend on distribution of the tail of the CDF. In this case, sub–array

transmission and the spatial smoothing technique can provide improved performance. Finally, it should

be emphasised that all techniques provide a considerable loss in SNR compared to the best possible

CDF (labelled “Theory”), which could be obtained only by direct measurement of the forward link

channel parameters. On slowly fading channels, the performance can be improved considerably by

using transmission feedback or time–division–duplex approaches.

6.6.2.5 Discussion

Transmission diversity schemes provide an effective means of providing extra multipath diversity at

the mobile, for two antennas. However, increasing the number of transmitting antennas in this scheme

may not improve the performance of the mobile’s receiver. This is because the number of multipath

components for the mobile to track become large; self–noise effects will also become a problem. Finally,

for channels with small scattering widths, the antenna array size may have to be very large in order for

each transmission to fade independently.

If the channel covariance matrix contains only a few principal eigenvectors, “blind” transmission tech-

niques, such as sub–array transmission, provide diversity at the mobile whilst maintaining some spatial

directivity in the direction of the mobile. As a result, sub–array transmission may reduce the level of

CDMA interference from other users, compared to transmission diversity. The output SNR performance

of sub–array transmission is also generally better than for transmission diversity, but may be consider-

ably worse than the optimum output SNR which could be achieved with knowledge of the forward link

channel.

The main difficulty in performing forward link transmission is to estimate the diversity order of the

channel under consideration. This can only be achieved by averaging the reverse link channel covariance

matrices over a reasonable amount of independent data. This provides an estimate of the number of

principal components present. In any case, provided the overall SNR at the mobile is sufficiently large,

two or three independently fading signals may provide sufficient diversity: increasing the order of

diversity generally provides diminishing returns.

A more serious problem for implementation of antenna array transmission within the existing IS–95

standard, compared to transmission diversity, is the use of a coherent pilot tone on the forward link.

This tone is transmitted on a separate CDMA code from other users, at a higher power to permit mobile

receivers to perform coherent PSK detection of their coded signals. The simplest solution to the problem

would be to transmit the pilot tone in all directions, using either an omni–directional transmitter or an

antenna array transmitter. In either case, there exists the possibility that the received signal for the

pilot will vary significantly from that received for a given mobile user. As a result, future CDMA
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specifications may need to be altered to permit the use of antenna array transmission techniques.

6.7 Conclusion

In this chapter, the extension of channel modelling techniques to the case of antenna arrays has been

discussed so that the effects of fading multipath channels can be measured. Two separate channel

models have been considered: firstly a point source frequency selective channel, whose reverse–link

performance for antenna–arrays does not differ significantly from single antenna receivers. In this case,

a RAKE filter is required to coherently combine multipaths to overcome Rayleigh fading. The second

model consists of a flat–fading channel, made up of a number of directional components. In this case,

eigenfilters combine the received signal effectively to exploit the available spatial diversity. Spatial

filter and beamspace methods can still partially exploit the available diversity, although the output SNR

tends to reduce as the width of the multipath scattering widens. The bearing estimation receiver is less

attractive than the eigenfilter structure in terms of obtaining the best performance over a communications

channel. However, it is still useful in situations where mobile bearings are required, such as for the

source location technique described in Chapter 7. On the forward link, the antenna array can provide

directional transmissions to reduce interference to other users. However, the receiver must ensure that

the mobile receives a frequency–selective channel to compensate for the effect of Rayleigh fading.

Where a multipath component has a wide scattering angle, multiple sub–arrays may be used to maintain

directional transmissions whilst exploiting spatial diversity.
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Chapter 7

Source Location

One application for bearing estimation techniques in a multipath environment is to locate the position

of a transmitting mobile. In this chapter an algorithm is presented to perform such a task. It is based on

the adaptation of a 2–ray channel model frequently encountered in high frequency (HF) and underwater

source location problems. The performance of the algorithm is estimated from a first order Taylor series

expansion and confirmed by Monte–Carlo simulation.

Estimating the time delay between multipaths is conventionally limited by the chip rate of the received

spread spectrum code. To improve the situation, a variant of the MUSIC algorithm is presented for

simultaneously estimating a multipath’s bearing and time delay. The transmitter location algorithm

requires the position of a multipath reflector as one of the parameters, which would normally be

estimated from terrain databases. An alternative approach for locating the reflector is also discussed,

which uses a mobile antenna array receiver.

7.1 Direction Finding and Source Location

In order to locate the position of an active transmitter, one common approach is to employ a given

set of parameter measurements made at a number of different receiver locations [179, 180]. Suitable

measurement parameters for such a calculation are (relative) time delays involved in receiving the

transmitted signal [181] or received power [182]. This principle may be used in reverse for navigation

purposes, most notably the Global Positioning System (GPS) [25].

In order to avoid the need for multiple receiver sites, in certain situations it is possible to exploit multipath

information to locate the source at a single receiver site. This method is often termed single site location

(SSL) and is suitable for locating high-frequency (HF) transmissions or for underwater passive sonar

applications. The simplest model for this technique has one direct (line of sight) path and one reflected

ray. The reflected ray is presumed to occur due to the ionosphere reflection in HF propagation or due

to the ocean surface/sea bed in underwater acoustic propagation. In both cases, the reflecting surface

may be modelled as flat so that the geometry of the wave propagation is very simple. If the bearings of

the two multipath components are known, the problem reduces to accurately estimating the time delay

between the LOS and reflected paths. For more information on such approaches, see [183–185] and the

references therein.

The approach taken in this chapter is based on SSL techniques, but the problem is made more difficult by
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the nature of urban microwave propagation. This means that the propagation geometry and the resulting

algorithm become correspondingly more complex.

7.2 Basic Model for Source Location

This section will present the background to the source location problem and will define the parameters

necessary for the algorithm. Consider the frequency selective channel shown in figure 7.1.
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Figure 7.1: The two-ray frequency selective model for source location.

Both propagation paths shown in the figure are assumed to lie on a horizontal plane. The main path,

denoted as (1), is assumed to follow a direct path between the mobile user and the base station. The

second path (2) occurs due to a reflection from an obstacle in the environment. If the time of arrival

of the second multipath is known, the location of the reflecting object may be located on an ellipse,

whose foci are the locations of the transmitter and receiver [186]. The parameters shown in figure 7.1

are defined as follows:

� Bearing of multipath (1)
 ��

� Bearing of multipath (2)
 ��

� Base station–reflector distance 
 �

� Reflector position
 �x� y� � �� cos��� � ���� � sin��� � ����

� Base station to mobile distance 
 R

� Time delay between the arrival of multipath (1) and (2) 
 td

� Excess path length of (2) 
 � � tdc

where c denotes the speed of light. The co-ordinates of the mobile are measured relative to an arbitrary

x–axis, with the origin at the antenna array (shown as a line in figure 7.1). The one exception is the

position of the reflector �x� y�, which is measured with the direct path as the x–axis.
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7.3 Derivation of the Algorithm

In order to estimate the position of the mobile (i.e., the value of R), the following information is needed:

i) the multipath bearings �� and �� ii) the value of � (or equivalently the location of the reflector �x� y�)

and iii) the associated excess path length � of multipath (2) associated with the excess time delay td. The

major and minor axes of the reflector ellipse shown in figure 7.1 will be defined as a� and a� respectively.

From the geometry of ellipses, it is now possible to write [187]:

a�� � a�� � R� (7.1)

R� � � a� (7.2)
��x� �R�����

a��
�

�y�

a��
� 
 (7.3)

Equation (7.3) may be written as:

�a���x� �R����� � �a��y
� � a��a

�
� (7.4)

Substituting equation (7.1) into (7.4) gives:

��a�� � R���x � �R����� � �a��y
� � a���a

�
� �R�� (7.5)

Secondly, equation (7.2) may be substituted into (7.5) to remove the variable a�, such that:

���R� ��� � R���x � �R����� � ��R� ���y� � �R � �����R� ��� �R�� (7.6)

Equation (7.6) may be simplified to give a quadratic equation in R, whose coefficients A,B and C are:

A � �y� � �x� � ���

B � ��x� � ��y� � ���x� ���

C � ���x� � ���y� � �	 (7.7)

The value of R may be obtained from the quadratic formula:
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R �



�A
��B �

p
B� � �AC� (7.8)

The two solutions for R correspond to the two possible ellipses which meet at the reflector. One extends

in the negative direction, giving a negative value for R. The other one, which extends in the positive

direction, is the one required here, so the correct value of R is the positive root of the quadratic equation.

The position of the mobile user relative to the origin x–axis line through the base station array is given

by �R cos ��� R sin ���.

7.4 Perturbation Analysis

In order to estimate the performance of the technique, one may expand equation (7.8) according to a

Taylor series [187]. In this case, it has been assumed that the variables ��, ��, � and � are the independent

random variables. Hence, the Taylor series will be a function of the error terms of all these variables,

denoted as ���, ���, �� and �� respectively. The mean error values of all four variables are assumed

to be zero. So, limiting the expansion to a first–order approximation, the mean error values of X and Y ,

�X and �Y , are also zero.

The first–order variance expressions involve partial derivatives of all the independent variables. These

are given by:

�X� � �
�X

��
����� � �

�X

���
������ � �

�X

���
������ � �

�X

��
�����

�Y � � �
�Y

��
����� � �

�Y

���
������ � �

�Y

���
������ � �

�Y

��
����� (7.9)

provided that ��, ��, � and � are mutually independent Gaussian random variables. The necessary partial

derivatives for solving the equations in (7.9) are presented in appendix D. As the equations involve only

first–order derivative terms, the results asymptotically converge to the true values as the errors in ��, ��,

� and � become small. The expressions for the errors in X and Y are quite complex, so the equations

have been evaluated for a number of different conditions to determine the performance of the technique.

In the results, errors are presented in terms of the root mean squared error, which is simply the square

root of the sum of the variances of the estimates of X and Y .

7.5 Results and Discussion

In order to confirm the theoretical results, a number of Monte–Carlo simulations have been performed.

In all the simulations, the variables ��, ��, � and � were drawn from independent Gaussian random

distributions whose mean was the true value in each case. The mean and standard deviation of these

variables could then be altered to assess their effect on the algorithm.
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For the first set of simulations, the parameters used are specified in table 7.1. Using these parameters,

Parameter Mean Std Dev
�� 90o 0.05-1o

�� 95-150o 0.05-1o

� 200 m 2 m
� 496 m 4.96 m
R 400 m -

Table 7.1: The parameters for the first simulation.

the mean value of �� was set to four different values, and Monte–Carlo simulations performed in each

case. During each simulation, the standard deviations of both �� and �� were varied between 0.05o and

1o. This allowed the effect the angular spacings of the two multipaths (i.e. the variable ��� � ���) on

the algorithm to be clearly seen. The simulation results are shown in figure 7.2 as points. Equation (7.9)

has been used to calculate first order estimates of the standard deviations and these results are shown as

lines.
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Figure 7.2: The position error as a function of the bearing difference ��� � ���.

It is seen that increasing the value of ��� � ��� has a drastic effect on the position error. Indeed if

���� ��� = 180o, the equations have no solution. This is because the only absolute distance information

present in the algorithm is the reflector location measurement �. This information is used to estimate the

value of R - the closer �� is to ��, the smaller the error in the estimation of R. Alternatively, as the value

of ��� � ��� increases, the equations become more ill-conditioned. The same trend has been observed

when the horizontal axis of figure 7.2 becomes the standard deviation of � or �.

It is also worth noting that the first–order perturbation approximation breaks down for large values of

the bearings standard deviation (BSD). This is because the higher–order terms are no longer negligible

and begin to have an effect on the error in R. As a result, Monte–Carlo simulations should be used to

check the algorithm’s performance where large measurement errors are involved.
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The next simulation considered the effect of scaling the standard deviation of �� by a factor k�, relative

to that of ��. The bearing �� was set to be 95o; otherwise, the simulation conditions were identical to

those in table 7.1. Specifically, the standard deviation of �� was multiplied by a factor k� = 1,
p
�, 2,

p
�

and 4 times that for ��. This is equivalent to an increase in variance of �� by 1–16 times the variance of

��: this would reflect the signal–to–noise ratio (SNR) of the second multipath being 0-12 dB below that

of the first, assuming a linear relationship between SNR and bearing variance. The results are shown in

figure 7.3, with the standard deviation scaling factor k� indicated for each case.
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Figure 7.3: The position error as a function of relative bearing standard deviations.

Not surprisingly, the position error increases as the standard deviation of �� increases over ��. However,

even when k� changes from 1 to 4, the effect on the position error appears negligible at low values of

the BSD. When the standard deviation of �� is 
o and the value k� changes from 1 to 4, the position

error increases only by 30%. So, it appears that in this case, the equations are not over–sensitive to

large bearing errors in �� alone. Finally, it is noticeable that when the BSD values are large, particularly

with k� �
p
� or 4, the Monte–Carlo simulation results are larger than the predicted values. Again, this

would appear to be attributable to the higher order terms of the Taylor expansion becoming significant

in value.

The next parameter of interest was the excess path length �. The simulation parameters in this case are

shown in table 7.2. Note that the question mark indicates that the mean value of � will alter in accordance

Parameter Mean Std Dev
�� 90o 0.05-1o

�� 95o 0.05-1o

� 200-1600 m 1% of mean
� ? 1% of mean
R 400 m -

Table 7.2: The parameters for the third simulation.

with �. The results are shown in figure 7.4, with the value of � indicated for each curve. In this case,
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Figure 7.4: The position error as a function of the excess path length �.

the situation is not so clear cut. For small BSD values, the position error increases with increasing �.

However, as the bearing error increases, the situation changes so that increasing � actually decreases the

position error. For the parameters chosen, a value of � equal to 800 m provides the minimum position

error for BSD values of 1o.

The final parameter of interest is the mobile to base station distance R and its effect on the position error.

Setting the excess path delay � to be 400 m (standard deviation 4 m), the range was varied between

500-4000 m. Otherwise, the scenario conditions are identical to to those in table 7.2. The results are

shown in figure 7.5, with the value of R specified for each curve.
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Figure 7.5: The position error as a function of the distance R.

Intuitively, one might expect that doubling the value of R would simply double the position error. For

small values of the BSD, this appears to hold true. However, as the value of the BSD increases, this

linear relationship no longer applies. When the bearings standard deviation is 
o, increasing R from
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2000 m to 4000 m increases the position error by a factor of about 2.5.

To summarise the results of the simulations in this section, the position error is very sensitive to the

value of ��� � ��� which is a serious disadvantage. Increasing the standard deviation of �� compared

to �� does not affect the position error significantly. Altering the parameter � has different effects on

the position error, according to the accuracy of the bearing estimates. Finally, increasing the value of R

increases the position error and for BSD values around 
o the rate of increase becomes slightly larger.

7.6 Discussion

The previous section has looked at the effect of certain parameters on the source location algorithm. In

practice, the location of the mobile and the channel between it and the base station will determine the

performance of the algorithm. Perhaps the most serious deficiency of the algorithm is the fact that its

performance is altered substantially according to the difference in angles between the two components

used for source location. The performance of the technique may be improved by averaging results using

more delayed multipaths, if available. However, the direction of the mobile is completely specified by

the bearing ��, which will limit the accuracy achievable by this technique.

The sources of error affecting the practical measurement of the parameters ��, ��, � and � will now be

considered in turn.

(i). Bearing Measurement: The multipath bearings may be measured using a technique like the

MUSIC algorithm. As discussed in chapter 4, the performance of the algorithm is a function of

the number of snapshots, number of antennas and the SNR. However, in more realistic multipath

channels, such as those discussed in chapter 6, the variance of the bearing estimates can also

depend vitally on the multipath angular spread. In this case, the technique requires to average

over a number of independent realisations of the channel – how frequently these occur depends on

the fading rate of the channel and hence the mobile’s speed. Of course, using too many channel

realisations may lead to additional sources of error due to the mobile having moved a significant

distance over the time of observation.

(ii). Multipath Reflector Measurement: The location of the reflector for the delayed multipath

requires accurate mapping of the area under observation. Practical location of multipath reflectors

can only ever be a matter of guess work, with the algorithm using the location of the most

prominent building or landscape feature lying in the direction of the multipath’s arrival. Errors

in the measurement of � will thus depend on two factors: 1) Errors in the database of landscape

features 2) Errors due to choosing the wrong reflector for a given multipath. The former type of

errors are easier to quantify and less likely to be catastrophic than the latter.

(iii). Excess Path Length Measurement:If the transmitter emits a code of a given chip rate tc,

the smallest excess time delay between multipaths that can be unambiguously resolved, using a

conventional digital matched filter for the desired CDMA code, is simply tc. This places a severe

limit on the accuracy of practical excess path delay measurements (which may be estimated from
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the time delay knowing the speed of light). However, the situation may be improved by extending

high–resolution spectral estimators, such as MUSIC, into both the bearing and excess time delay

domains. One possible approach to this problem will now be described.

7.7 High Resolution Estimation of Multipath Parameters

The original formulation of the MUSIC algorithm was intended only for the estimation of the source

bearings of narrowband transmissions [53]. However, algorithms have since been developed for determ-

ining simultaneously the bearings and carrier frequencies of a number of narrowband sources [188] and

for accurately estimating the relative time delays of a number of multipath signals received from a single

spread spectrum transmitter [189,190]. Combining the ideas behind these two approaches, an algorithm

will now be described for estimating the relative time delays and bearings of a number of multipath

components, received by an antenna array from a spread spectrum source. This technique may not be

able to resolve multipaths closely spaced in time, but it does permit increased accuracy in time delay

measurements.

Consider a single spread spectrum transmission, which is not subject to data modulation. The electro-

magnetic signal is subject to multipath propagation and reaches the spread spectrum receiver array by

several paths. The baseband received signal vector at the M– element array r �t� is given by:

r �t� �
KX
i��

��i� t�c�t� ti�a��i� � ��t� (7.10)

where K denotes the number of separately resolvable multipaths, ��i� t� the complex amplitude of the

ith component and ti its time delay, relative to the arrival of the first multipath component. The vector

��t� denotes additive white Gaussian noise which corrupts the received signal and c�t� denotes the

transmitted spread spectrum pseudo–noise (PN) code. The code is periodic with period ts, and chip rate

tc, so that the processing gain W = ts�tc. It will be assumed that the maximum delay of any multipath

component ftig is smaller than the code period ts.

It is possible to directly estimate the multipath components using r �t�: however, the approach of

[189, 190] will be followed here. The vector r �t� will subject to I and Q matched filters containing the

desired code c�t� to produce the post–correlation data vector y�t�:

y�t� �
KX
i��

h�i� t�
c�t � ti�a��i� � n�t� (7.11)

where n�t� is the additive noise at the output of the code matched filter, h�i� t� the post–correlation

channel tap complex amplitude and 
c�t� denotes the periodic correlation function of the code c�t�. The

functions h�i� t� and 
c�t� may be defined as:

h�i� t� �

Z t

t�ts

��i� ��d� (7.12)
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c�t� �

Z ts

�

c���c�t � ts � ��d� (7.13)

The signal vector y�t� will now be sampled in the I and Q channels at the chip rate: assuming the

baseband receiver bandwidth is at least �W , the additive noise will be spatially and temporally white.

A vector yT �t� � CMW�� of all the data from all the antennas for one complete period of the code may

then be constructed as follows:

yT �t� � �y��t�� y��t� tc�� � � � � y��t��W �
�tc�� y��t�� y��t� tc�� � � � � yM �t��W �
�tc��
T (7.14)

where ym�t� denotes the complex signal from the mth antenna at time t. The signal component of y�t�

may be assumed to be composed of K scaled “steering vectors” aT ��� td� which reflect the bearing

and excess time delay of each multipath component. The vector aT ��� td� � CWM�� is defined by the

equation:

aT ��� td� � �
c�td�� � � � � 
c�td � �W � 
�tc�� e
j�cos���
c�td�� � � � � e

j�M����cos���
c�td � �W � 
�tc��

(7.15)

It will now be assumed that the arrival time of the first multipath component t� is known. A covariance

matrix for N snapshots of the signal data can be constructed according to the formula:

�RW�B �



N

N��X
i��

yT �t� � �i � ts��y
H
T �t� � �i� ts�� (7.16)

For the matrix �RW�B � CWM�WM to be of full rank, N � WM . Taking the expectation of �RW�B ,

the familiar covariance matrix structure is obtained:

RW�B � ATSA
H
T � ��I (7.17)

The matrixAT � CWM�K contains theK column vectors aT ��k� tK� andS � C K�K is the covariance

matrix of the multipathcomponent amplitudesh�k� t�. The rank of the signal subspaceATSA
H
T depends

on the number of independent multipath components present - for now the rank will assumed to be K. It

is possible to calculate the eigenvalue decomposition ofRW�B , determine the size of the noise subspace

and calculate the matrix En � CWM�WM�K which contains all the column noise eigenvectors. The

power density spectrum using the MUSIC algorithm may then be calculated as:

PMUS��� t� �



aH��� t�EnEH
n a��� t�

(7.18)

In order for K multipath components to be resolvable, the following must hold:

(i). The cross–correlation between the K multipaths must be less than unity, so that the rank of S is

K.

(ii). Not more than M � 
 multipath components can have the same delay.

(iii). Not more than W � 
 multipath components can occur at different time delays but the same
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bearing.

Concerning the first point, the cross–correlation between any two spatially separated multipaths with the

same time delay may be reduced through the use of spatial smoothing techniques. This involves forming

covariance matrices according to equation (7.16) and averaging them using SS or FBSS as described

in chapter 4. The effect of spatial smoothing on coherent multipaths with different time delays is more

difficult to quantify and is a matter for further research. In the case of a single receiver, spatial smoothing

in time can only be used where the PN code has a Vandermonde form [189]. The other cure is to employ

sufficient data samples to de–correlate the multipaths through fading effects. Following [188], the other

two points specify the conditions on the vectors fa��k� tk�g under which the columns ofAT are linearly

independent.

Finally, it should be noted that for a typical PN code such as anm–sequence the correlation function 
c�t�

only takes non–negligible values within one chip (�tc) of the time of arrival of the code. Hence, if the

multipaths are known to arrive within a certain range of time delays ��� tmax�, only the time samples in

that range need to be used inRW�B – data samples at larger delays may be removed without significant

degradation in the algorithm’s performance. Thus, the decision to employ post–correlation data in the

algorithm permits a large decrease in the computation necessary to locate multipaths.

As a simple example of the technique, a sample signal has been generated for a channel consisting of four

multipath components. The PN–code used was 15 chips long � andN = 300 snapshots were taken of the

noise–corrupted data. The array containedM=8 elements and the SNR of the multipaths at the output of

one set of I and Q–channel code matched filters was 10 dB. The parameters of the multipath components

are given in table 7.3. The quoted Doppler frequency is normalised to the sampling frequency of the

Multipath Time Delay Doppler
Number Bearing (chips) Frequency (Hz)

1 35o 2.0 0.5
2 75o 4.3 0.25
3 150o 10.25 0.673
4 120o 13.75 0.125

Table 7.3: The multipath component parameters.

receiver. The resulting power density spectrum generated using the modified MUSIC algorithm is shown

in figure 7.6. In this case, the four multipath components are correctly identified using this technique.

7.8 Locating the Multipath Reflector

Until now, it has been assumed that the location of the reflector which gives rise to the delayed multipath

signal is known. However, it is theoretically possible to locate the reflector using two or more bearing

�Rectangular pulse shaping was assumed and the function � c�t� was that of an m–sequence, i.e. the peak amplitude was 15
and for all other integer delays, the amplitude was -1.
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Figure 7.6: The power density spectrum of the received signal using the MUSIC algorithm in time delay
and bearing.

measurements made from a mobile antenna array. The scenario considered in this section is shown in

figure 7.7.

Motion of Array
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Figure 7.7: The scenario for locating the multipath reflector.

In this case the moving array makes two bearing measurements at locations A and B, denoted as �A and

�B . For convenience, it has been assumed that the motion of the array is in the direction of the mobile

user. If the distance between locations A and B, ��, is known the reflector location relative to the origin

A may be estimated from two linear equations:

x�tan �A�� y � � and x�tan �B�� y � ���tan �B� (7.19)

Solving for x and y gives:
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x �
�� tan �B

tan �B � tan �A
and y �

�� tan �A tan �B
tan �B � tan �A

(7.20)

As is normal in the case of two linear equations, the solutionbecomes very ill–conditionedif the gradients

of the two lines, namely tan �A and tan �B , become close. As a consequence, the change in measured

bearing from location A to B must be significant for good results. For example, consider a scenario

where �� = 100 m (with an unbiased standard deviation of 1 m, due to measurement error). The change

in bearing �B � �A is varied from 5-40o to observe the effect on the error in position location. The

standard deviation of bearing errors is 
o and again all independent variables are modelled as Gaussian.

The standard deviation of the position error has been estimated from 10000 Monte Carlo simulations in

each case. The results are given in table 7.4.

��B � �A� �o 
�o ��o ��o

Mean � (m) 879.0 472.7 265.0 155.0
Std dev of position error (m) 754.4 69.7 16.7 5.1
Std dev Error as % of mean 85.8 % 14.7 % 6.3 % 3.3 %

Table 7.4: The standard deviation of position error against the source bearings difference.

The results demonstrate a drastic reduction in the percentage positioning errors as the value of (�B��A)

increases. However, this may mean that the values of (�A � ��) and (�B � ��) will also be large,

which implies that the performance of the source location algorithm will be poor. A more fundamental

problem is deciding whether the same reflector is responsible for both reflected multipath signals. If

the shadowing changes significantly while the array moves over the distance ��, the technique will not

work.

7.9 Conclusions

In this chapter, an algorithmhas been developed to estimate the location of a transmittingmobile based on

a 2–ray multipath model. A first order Taylor series expansion has been used to estimate the performance

of the technique, with Monte–Carlo simulations used to check the results. The main difficulty with the

algorithm is the fact that its performance depends on the separation between the two multipath bearings.

If this is made to increase, the performance of the algorithm degrades considerably.

A technique to provide accurate estimates of the relative time delay between multipaths has also been

presented. It is based on an extension of the MUSIC algorithm into two dimensions, one of space and

one of time delay. One requirement of the original algorithm is that the location of the multipath reflector

must be known. In order to avoid the use of terrain databases, a technique to locate the position of the

second multipath reflector has also been described. However, this technique only works well for large

bearing separations between the two bearing measurements, which may compromise the performance

of the source location technique.
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Chapter 8

Conclusions

This thesis has been concerned with the design and operation of antenna array bearing estimation

receivers for spread spectrum signals. Algorithms for performing the necessary signal processing tasks

have been analysed and a technique for locating a transmitter in an urban area presented. Results for

simple cellular radio models demonstrate that antenna array receivers and transmitters have considerable

potential for improving system capacity. Analysis of the operation of bearing estimation receivers in

multipath fading channels has also been presented. This chapter will draw together the main conclusions

of the work and briefly discuss its limitations. Some suggestions for further research in this area are also

presented.

8.1 Summary of the Work

This thesis has discussed in some detail the concept of a bearing estimation antenna array processor for

direct–sequence spread spectrum modulation. This type of communication signal permits the receiver

to separate multipath components whose relative delays are larger than the chip rate of the transmitted

pseudo–noise code. This work made the assumption that the carrier frequency was much larger than the

Fourier bandwidth so that any multipath channel may be modelled at an array receiver as a finite series of

vectors, one for each multipath component received. Each vector is composed of K significant versions

of the transmitted signal, arriving from different directions. Assuming that K is less than the array size

M , it is possible to resolve the individual bearings using the MUSIC algorithm. As the received signal

is made up of potentially coherent multipath components, a spatial smoothing technique may be used to

ensure the successful application of MUSIC.

The MUSIC algorithm requires an initial estimate of the number of impinging signals, a task which may

be performed by a model order estimation technique such as the minimum description length (MDL)

algorithm. This approach employs the eigenstructure of the data covariance matrix, to estimate the

number of signals present. Unfortunately, this method provides erroneous model order estimates when

the signal subspace is rank deficient, as in the case of coherent multipaths. It is possible to use spatial

smoothing techniques to restore the full rank of the signal subspace, so it is important to be able to

estimate the algorithm performance in this case. In chapter 3, results have been presented to extend the

performance analysis of Zhang et al [108] for the MDL to spatially smoothed covariance matrices, so

that the operating conditions of the algorithm may be determined.

The spatial smoothing (SS) and forward–backward spatial smoothing (FBSS) algorithms are two possible

methods to allow MUSIC to resolve coherent multipathsignals. Some theoretical analysis and simulation
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results have been presented to demonstrate the differences between these two algorithms. The SS

technique has been shown to be sensitive to signal bearings and separations. Employing FBSS with

the same degree of smoothing has some chance of improving the performance of MUSIC, particularly

for closely spaced sources. However, the performance improvement that may be attained depends on

the relative phases of the signals. Simulation results were also presented for two quadratic smoothing

techniques: however, both techniques appear to make little difference to the performance of MUSIC.

The thrust of the work of chapter 5 was to analyse the performance improvement attainable by employing

antenna arrays in a simple additive white Gaussian noise (AWGN) channel model. Results for both

single cell and cellular systems demonstrate that antenna arrays can improve the error ratio performance

for a given number of active mobiles: alternatively, the system capacity can be increased for a given

quality threshold. However, space division multiple access can only be exploited if the mobiles are

spread throughout the cell. Antenna arrays cannot separate two signals arriving from the same direction,

so there is a finite probability that an antenna array could not improve the quality of the communication

links. For AWGN point source channels, this probability may be reduced by increasing the array size.

Before antenna arrays may be deployed in practical cellular systems, realistic channel models are required

to provide a sterner test of their capabilities. Chapter 6 has extended the COST–207 models, which

are often used in mobile radio simulation work, to the case of antenna array receivers. If the received

signal on the reverse link consists of a number of point source multipath signals, the antenna array

cannot provide increased diversity at the receiver. However, it is a simple matter to provide effective

performance at the mobile on the forward link by re–transmitting energy in the directions of the 2 or

3 largest received multipath components. Alternatively, if one of the received multipaths has a wide

spread in angle, the receiver may exploit the spatial diversity present. Bearing estimation approaches

were shown to degrade when the angular width of the received signal is wider than the main lobe of

the array spatial filters. Spatial smoothing techniques may be used to estimate the bearings of the

multipaths present, so that they may be coherently combined. However, this approach is much more

computationally expensive than for eigenfilter methods, despite the fact that the performance of both

techniques is about the same. Transmission techniques perform poorly for multipath components with

a wide angular spread, because it is difficult to estimate the channel parameters effectively from a small

number of reverse link data snapshots. It is possible to use a form of transmission diversity to improve

the signal distribution observed at the mobile; alternatively the forward link may be observed directly

using time division duplex or transmission feedback techniques.

Finally, chapter 7 considered an algorithm for locating the position of a mobile in an urban environment.

The technique was based on a modification of the two–ray model commonly used in HF channels and

SONAR applications. Results suggest that the algorithm can work well, although it is very sensitive

to the relative bearings of the two multipath signals. One potential problem is the accurate estimation

of the time delays between the two multipath components; a modified version of the MUSIC algorithm

operating in time and space has been proposed for this task. A second deficiency of the algorithm is

that it requires estimates of the position of the major reflector which gave rise to the second multipath

component. A technique for estimating the position of the reflector using a mobile array has been
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presented, although it requires two widely spaced bearing estimates of the second multipath for locating

the reflector. This requirement may mean that the source location algorithm operates poorly; it is also

difficult to ensure that the same multipath component is being measured at both positions.

8.2 Suggestions for Further Work

The work of this thesis has been concerned with the development and analysis of a bearing estimation

receiver for spread spectrum signals, with application to the location of a mobile in an urban environment.

This has permitted only limited research into the operation of such receivers in realistic urban cellular

environments. There are a number of points which have not been addressed here and which merit much

more work:

� Channel modelling to determine multipath scattering widths.

� Characterisation of CDMA interference observed at antenna arrays operating in urban areas.

� Comparing the relative performance of antenna array receiver structures operating on the reverse

link in the presence of multipath.

� Solving the forward link problem: determining the best method for using antenna arrays to

re–transmit to mobiles over multipath channels.

� Implementation and operation issues.

Each of these points will now be briefly discussed, presenting suggestions for possible further research

work.

8.2.1 Channel Modelling

One of the difficulties with modelling multipath channels for antenna arrays is that the scattering widths

of each multipath component can only be guessed at. In practice, the multipath scattering width will vary

widely with the mobile to base station distance and the type of surroundingenvironment. However, much

more data on multipath scattering widths, which can be estimated from the average cross–correlation

between the signals received at an antenna array, would be very useful. In particular, measurements

using spread spectrum signals would help to determine the likely scattering widths of different multipath

components.

8.2.2 Characterising CDMA Interference

The form of asynchronous CDMA interference observed on the reverse link is an important problem. The

exact distribution will depend on the array configuration and on the location and number of transmitting

mobiles. Techniques such as bearing estimation and eigenfilter methods usually perform well when the
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background noise is spatially and temporally white Gaussian noise. If the distribution differs significantly

from this ideal, other approaches may provide considerable performance improvements.

8.2.3 Antenna Arrays: The Reverse Link

The relative performance of algorithms operating on the reverse link is of tremendous practical import-

ance. There are a number of techniques available, ranging from the very simple beamspace transform-

ation techniques, to complex interference cancellation and adaptive beamforming approaches. Interfer-

ence cancellation techniques for CDMA have been the subject of considerable research in the last few

years [44, 46]. However, one of the arguments against these systems is that they are computationally

complex and often provide only a marginal gain in system performance. However, incorporating such

techniques in antenna array receivers may be of interest for a different purpose; to cope with scenarios

where a number of mobiles arrive from similar directions. The receiver may only have to cancel inter-

ference from a small number of co–channel mobiles, which means that the system is more likely to work

successfully; additionally, the computational burden is unlikely to be excessive.

Inevitably, the requirement of cellular systems operators is to obtain the best possible capacity improve-

ments that antenna arrays have to offer, whilst minimising the cost and computational complexity of

such systems. If it turns out that complex receiver structures do not provide large capacity increases,

practical systems may deploy simple receivers such as the beamspace transformation technique.

8.2.4 Antenna Arrays: The Forward Link

In general, the forward link of a CDMA system provides better performance than the equivalent reverse

link, because the interference observed at each mobile can controlled much more easily. However, if

large capacity gains can be obtained on the reverse link, the forward link may need to be improved

accordingly. Choosing transmission weights for an antenna array operating on the forward link of a

frequency division duplex system is difficult without direct estimation of the channel, although diversity

transmission techniques may be used to suppress the effects of fading. However, it may be that time

division duplex techniques are more suited to antenna array systems.

8.2.5 Operational issues

There are a number of practical limitations to current antenna array technology. Two major hardware

problems for antenna array operators are 1) to implement linear amplifiers in the receiver and 2) to

compensate for phase drift across the array which occurs over time. In addition, analogue to digital

converters (ADCs) can sample the received signal only to a finite precision. As technology progresses,

sampling rates and the accompanying number of quantisation levels available from ADCs are ever

increasing [191]. There is also a growing interest in so–called software radios [192], as the position of
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the ADC may shifted ever closer the radio frequency (RF) front end. However, a practical system designer

must find the best compromise in terms of dividing the receiver tasks between specialist hardware and

general purpose software. Perhaps, the critical decision for antenna array design is the choice of the

ADC sampling rate and number of quantisation levels to obtain the desired bit error ratios without an

excessive computational burden.
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Comments on �Generalised algorithm for DOA estimation in a passive

sonar� ���

Section ��� of the paper stated that the di�erential co�
variance matrix technique could be used to resolve P
coherent sources� provided that array contained at least
�P�	
 sensor elements� Further investigation shows that
the method is only capable of resolving two coherent
sources�

We believe the original premise in your paper was inac�
curate and it invalidates your subsequent analysis� The
mathematical reason for our new conclusion is as follows�
A simple model for the N � 	 signal vector x�t
 received
at time t from an N sensor array� when there are P sig�
nals impinging on it� is given by�

x�t
 � A � s�t
 � n�t
 �	


The N � P matrix A�
a���
�a���
�� � � �a��P
� contains the
steering vectors a��
 for the P incoming signals� The
P � 	 signal vector s�t
�
X�e

jw�t�X�e
jw�t� � � � �XPe

jwPt�T

contains the carriers generating the P signals and Xl is
the amplitude of the lth carrier� The N � 	 noise vec�
tor n�t
 contains the white Gaussian noise samples of
variance �� which are added to each sensor�

In order to perform the bearing estimation algorithm
MUSIC 
��� the N �N covariance matrix R of the data
is required� This is formed by taking M �snapshots� of
the data vector x�t
� The ith column and jth row entry
of R is formed as follows�

Rij �
	

M

MX
m��

xi�m
 � x�j �m
 ��


Where xi�m
 is the mth sample from the ith array sensor�
Now the matrix R may be written as follows�

R � ASA� � ��I ��


where the P � P matrix S � E
s�t
�s��t
� and I� is the
N �N identity matrix� Normally� the P signals are un�
correlated� such that E
ejwkt�ejwlt� � � for k �� l� In this
case� the rank of the matrixASA� is P and the eigenvalue
decomposition of R yields P �signal� eigenvectors whose
corresponding eigenvalues are greater than ��� These

�The following proof holds for any noise covariance matrix that
is of Toeplitz form�

vectors are implicitly required by the MUSIC algorithm
to locate the bearings of the P sources�

In the case where all P signals are coherent� then
throughout all the snapshots of the array� there is a con�
stant phase relationship between each of the signals and
E
ejwkt�ejwlt� �� � for k �� l� This normally means that
all P signals originate from the same transmitter and are
multipaths� Therefore� the vector s�t
 reduces to a single
row� and s�t
 � 
ejwt�� The matrix A then reduces to a
N � 	 vector given by�

A � 
X��a���
 � ��X��a���
 � � � �� �PXP�a��P
� ��


Where �a is a complex constant indicating the phase
relationship between the �rst signal and the ath signal
at the reference sensor� Thus� the matrix ASA� reduces
to rank 	 in accordance with the following equation 
���

rank�ASA�
 � min
rank�A
� rank�S
� ��


For a linear array� all possible steering vectors a��
 are
of a Vandermonde form�

a��
 � 
	 t��
 t���
 � � � tN����
� ��


Where t�
 is an complex function of �� Now it is well
known that adding two �Vandermonde
 steering vectors
a���
 and a���
� with �� �� ��� cannot give another legit�
imate Vandermonde steering vector� a���
� Hence� MU�
SIC will fail to resolve any of the K signals correctly�
The di�erential technique forms a modi�ed covariance
matrix R� according to the equation�

R� � R� ER�E � ASA� � E�ASA�
�E ��


Where E is given by�

E �

�
����

� � � � � � 	
� � � � � 	 �
���

���
� � �

���
	 � � � � � �

�
���� ��


Now� the rank of both ASA� and �E�ASA�
�E is 	� So�
by the well known inequality 
���

rank�C �D
 � rank�C
 � rank�D
 ��


�The idea of the reduction in rank of the matrix S is consistent
with the proof of the Spatial Smoothing technique presented by
Shan et al in ���� ���
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It is impossible for the rank of R� to be greater than
�� Hence when MUSIC operates on the matrix R�� it
will only operate successfully if two coherent signals are
present� The algorithm appears to operate in a similar
fashion to forward�backward spatial smoothing ��� for �
coherent sources� However� the latter method adds the
two matrices� rather than subtracting one from another�

In a similar way� one can show that spatial smoothing
algorithms require to average over at least P di�erent co�
herent signal covariance matrices 	each containing only
one 
signal eigenvector�� to separate P coherent sources�
For spatial smoothing this means losing the e�ect of
at least 	P�
� sensors and for forward�backward spatial
smoothing � the integer part of 	P�
��� sensors�

In �gure 
� some typical simulation results are shown�
comparing the performance of MUSIC� di�erential MU�
SIC and forward�backward spatial smoothing� The
graphs in �gure 
 a� are for two sources at ��o and ��o�
The graphs in part b� show what happens when a third
source at ��o is added and those in c� display the e�ect
of a fourth source at ��o� These clearly show the ne�
cessity of using forward�backward spatial smoothing for
resolving multiple coherent sources�

John S� Thompson� Peter M� Grant� Bernard Mulgrew�
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Reply by Dr R� Rajagopal�

I agree with your observation with the following correc�
tions�

��� The di�erence matrix is obtained as�

D � R� ER�E � H � EH�E ��	�

Where H is the source cross�covariance matrix�

Rank�D� � Rank�H� 
 Rank��EH�E� � �p ����

It can be veri�ed that rank�H� � rank�EH�E� � p where
p is the number of sources � subject to the condition that
A consists of p linearly independent columns��

In my paper
 I had given a proof in section ��� to show
that Rank�D� � p by using the argument of contradic�
tion� Unfortunately
 I did not test that case by computer
simulation� My simulations also con�rm your above res�
ults and I regret the misleading claim in my original
paper�
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RECEIVER DIVERSITY FOR SPREAD SPECTRUM

John S. Thompson, Peter M. Grant, Bernard Mulgrew. �

Abstract One method to improve the capacity of a code division multiple access (CDMA) system is to use an array of receivers
in the base station. In order for such a system to work, it must be able to locate the directions of arrival (DOA) of all the
active users present within the cell. One of the most popular algorithms to perform this task is the MUSIC algorithm, which
provides a compromise between good resolution and computational complexity. One problem present in the MUSIC algorithm
is its inability to cope with correlated multipath signals: the spatial smoothing technique is shown to be a simple and effective
method of overcoming this difficulty. The receiver can utilise the DOA information to exploit spatial diversity present within
the cell and some simple BER results are given to illustrate the mean improvement in performance that is obtained.

Introduction In recent years, there has been great interest in the application of spread spectrum concepts to the field of mobile
communications. Code division multiple access (CDMA) techniques have been established as a serious alternative to the time
division multiple access systems that are being used in the current generation of mobile telephones [1]. However, one of the
main limitations to the capacity of a conventional CDMA system is the cross-correlation interference that is generated by the
different codes present on the same channel.

This paper proposes the use of array processing techniques in order to ameliorate the effect of this type of interference and
increase the capacity of the system. If the number of receivers in the base station of a mobile telephone cell is increased, the
base station is able to employ electronic steering to receive signals from a desired direction and to reduce interference from
other users who transmit from different locations. A block diagram of the base station is shown in figure 1.

COVARIANCE
FORM

MATRIX
ALGORITHM
E.G. MUSIC

DOA DATA

FILTER
OUTPUT

ESTIMATE
NO OF

SOURCES

RECEIVERS

Figure 1: A cellular antenna-array base station.

There are two main components to this system: 1) to determine the directions of arrival (DOA) of all the desired users, 2) to
employ a spatial filter to enhance the signal-to-noise ratio (SNR) of each user. This paper will look at each aspect of the system
in turn.

DOA Estimation There are a large number of algorithms documented in the literature that are capable of determining the
DOA of narrowband signals which are centred about a carrier frequency f [2]. It may seem counter-intuitive to consider a
spread-spectrum system as a narrow-band signal, but in many proposed CDMA systems the data rates are low, which means
that the ratio of the carrier frequency to the spread-spectrum baseband bandwidth is high.

The receivers sample the incoming signals simultaneously and pass them through the code-correlator for the desired code, so
that for a code of length L, L time-samples are produced for each symbol that is received. If one considers a single CDMA
signal impinging on the antenna array, the narrowband assumption means the output of each code-correlator will have the same
amplitude, but a different phase according to the direction of arrival.

� Signals and Systems Group, Department of Electrical Engineering, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL.
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In order to determine the direction of arrival successfully, the phase rotations across the whole array must be known for all
possible bearings �. Assume that the array contains N receivers spaced by half the carrier wavelength � in a line - a uniform
linear array (ULA). If the phase at sensor one is set to zero as a reference, the phase rotation along the ULA may be represented
by a N row � 1 column vector q���. For a ULA, q is given by:

q��� � ��� ej� cos���� � � � � ej�N���� cos����T (1)

In a realistic multipath environment the base station can resolve up to L different multipath signals in time, each of which are
considered separately by the DOA algorithm. One set of samples fy�n� l� t�g received from the code-correlators is termed a
snapshot of the array, where n denotes the nth receiver, l the lth time sample and t the absolute time. It is assumed that the lth

time sample contains M multipaths. The snapshots of the array can be placed in a N � � column vector y�l� t�, which can be
written as:

y�l� t� � Q�l�s�l� t� � n�t� (2)

Where s�l� t� is an N � � column vector containing the M signals measured at the reference sensor and Q�l� is an N row�M

column matrix given by:

Q�l� � �q����� q����� � � � � q��M �� (3)

Where �m is the bearing of themth signal. The N �� vector n�t� contains the Gaussian white noise of variance �� that corrupts
the snapshot data. In order to perform bearing estimation, the data covariance matrix R�l� must be formed from the snapshots.
The matrix equation for R�l� is given by:

R�l� �
�

K

KX

k��

y�l� tk�y
H�l� tk� (4)

where K denotes the number of snapshots used to form R, tk denotes the time at which the kth snapshot was taken and xH

denotes the complex conjugate transpose operation. Once the covariance matrix has been formed, it can be passed to a DOA
algorithm. One of the most popular of these is the multiple signal classification (MUSIC) [3].

The MUSIC Algorithm If an eigenvalue decomposition (EVD) of the matrixR�l� is performed, the eigenvalues and eigenvectors
fall into two classes. The largest M eigenvalues and vectors correspond to the M signals and are collectively called the signal
subspace. The eigenvectors span the columns of the matrix Q�l�. The other N �M eigenvectors form the noise subspace
and their eigenvalues are approximately equal to ��. Their only property of interest is that they are orthogonal to the signal
eigenvectors and the steering vectors in Q�l�. MUSIC exploits this property to determine which bearings have the smallest
projection on the noise subspace, indicating the presence of a desired signal. To generate the MUSIC power spectrum, the
following equation is used:

PMUS�l� �� �
�

qH ����W �l��W �l�H �q���
(5)

where W �d� is an N �M �N matrix containing the N �M noise eigenvectors. Before the MUSIC algorithm can be used, the
number of signals present must be estimated. This is usually done with a model order algorithm [2]. A typical power spectrum
generated by the MUSIC algorithm is shown in figure 2. There are two sources of power 20dB at bearings 85o and 110o - the
desired bearings are shown as vertical dotted lines, a convention used throughout this paper.

Coherent Multipath Sources The MUSIC algorithm performs well when resolving signals that are uncorrelated or partially-
correlated with each other. This usually implies that the signals originate from different transmitters. However, in the case where
the signals arise due to multipath propagation from one transmitter, the MUSIC algorithm fails. This is because the multipaths
are completely correlated and the EVD of the covariance matrix yields only one signal eigenvalue for all the multipaths.

The simplest method found to date to overcome this problem is spatial smoothing [4], but the original method only works in
the case of the ULA. This technique forms covariance matrices from subsets of the ULA and averages these matrices to form
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Figure 2: A typical power spectrum generated by the MUSIC algorithm.

a smaller matrix for the MUSIC algorithm. The algorithm forms submatrices by moving in one direction along the array to
form sub-matrices - forward only spatial smoothing (FOSS). This technique clearly trades the size of the covariance matrix, and
therefore the resolution of the MUSIC algorithm, for the ability to resolve coherent sources. In order to locate the bearings of
M sources, a ULA containing �M receivers is required.

The situation can be improved by forward-backward spatial smoothing (FBSS) [5], which forms matrices by working both
forward and backward along the array.This technique means that only ��M��� sensors are required to resolve M coherent
signals. However, there is a tradeoff: this improvement is obtained at a cost of reduced robustness in the MUSIC algorithm.
The performance of the FBSS technique is known to be sensitive to the relative phases of the incoming signals - in some cases
it destroys signal correlation completely, in others it can fail completely.

The performance of the two techniques is demonstrated in two graphs shown in figure 3. The ULA contains 8 receivers and
for the left hand-graph, it is trying to resolve two coherent sources at bearings of 100o and 115o, both at an SNR of 20dB. The
conventional MUSIC algorithm fails, but FOSS and FBSS both successfully resolve the two signals. For the right hand graph,
another two sources at 90o and 125o have been added. In this case, FBSS is the only algorithm to find the four sources, while
FOSS is only able clearly show two signals.
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Figure 3: A comparison of smoothing techniques with coherent signals present

Spatial Filtering It is a well known result of filter theory that the optimum detector of any signal corrupted by Gaussian white
noise is a matched-filter which correlates the input with the desired signal [6]. In the case of a single DS-SS signal which is
detected in the lth time sample and which has bearing �, the optimum filter w�l� for the data y�l� t� is simply w�l� � q���.
Once w�l� has been determined, it may be used to generate a complex-valued data sequence d�l� t� which is then utilised to
make decisions on the data. The value d�l� t� is generated by the equation:
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d�l� t� � wHy�l� t� (6)

In a more general case, where several multipaths are present, the data fd�l� t�g is passed to a RAKE filter, which combines them
before making a decision.

In [7], there is a full description of some simulation work that was performed to determine the bit error rate (BER) of an antenna
array with different numbers of receivers. The purpose of the simulations was to determine for a simple case the increase in
capacity that was provided by an antenna array.

The simulation was performed for a CDMA system which employed a set of 33 length-31 Gold codes, so that the maximum
capacity was 33 users. The simulation assumed that the bearing of the desired user was known and that each mobile had one
line-of-sight path to the base station. Each other mobile was given a random bearing and the simulation was then performed
for the reverse-path (i.e. from the mobiles to the base station). The results should also hold for the forward-path, from the base
station to the mobiles, if the base station transmitter is an antenna array as well. The modulation scheme used was differential
phase-shift keying (DPSK).

The table below displays the mean simulated BER for different sizes of the base station array at full capacity, i.e. 33 users.

Number of Array BER
Receivers

1 0.124
2 1.16�10��

4 6.55�10��

8 2.77�10��

It is generally assumed that a BER of ���� is acceptable for a vocoder speech encoding system and this is attained on average
by a base station with four receivers. It should be pointed out, however, that that spatial filters are only useful when the desired
signal has a different bearing to that of the interferers. In some circumstances this may not be true and the system performance
will degrade, but the probability of this occurring may be reduced by increasing the array size.

Conclusion This paper has discussed the advantages of antenna arrays for use in the base stations of direct-sequence spread-
spectrum CDMA systems. Bearing estimation techniques determine the angle of arrival of a source, which allows the receiver to
reduce the effect of directional interference from other users. The BER results demonstrate the mean performance improvement
due to these algorithms, which should increase the capacity of CDMA systems.
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Abstract – This paper describes how bearing estimation techniques
may be applied to a direct sequencespread spectrum (DS-SS) system
in order to provide an effective spatial diversity receiver. This struc-
ture is proposed as a method of increasing the capacity of a cellular
code division multiple access (CDMA) system.

Firstly, the subject of an optimum diversity system using bearing
estimation is addressed. It is demonstrated that aN -element antenna
diversity system improves the mean signal-to-noise ratio for a CDMA
system in proportion to N , which can considerably improve bit error
rate (BER) performance.

The operation of the receiver in a cellular telephone network is
discussed and the improvement in user capacity provided by such a
system with perfect power control is shown.

INTRODUCTION

The idea of a spread-spectrum sensor array was first proposed in
the 1970s by Compton[1]. Recently, as researchers have strived to
improve the performance of spread-spectrum CDMA systems, more
work has been carried out in this area [2, 3, 4]. This companion
paper to [2] uses the bearing estimation techniques discussed there
to realise a novel spread-spectrum diversity receiver. The basic
results of optimum diversity combination will be revised first.

In the 1950s, researchers such as Kahn and Brennan [5] addressedthe
problem of combining a set of N noise-corrupted signals {sn�t�}to
maximise the signal-to-noise ratio (SNR). If the noise on each signal
is white, Gaussian and of constant variance ��, then the optimum
output signal S��t� is given by:

S��t� �
�

N

NX

n��

sn�t�k
�

n (1)

where kn is a complex constant proportional to the complex signal
sn�t� and k� denotes the complex conjugate operation. This equation
gives rise to the well known result that ifN signals of equal amplitude
are combined, the SNR of the resulting signal is 10 logN (dB) greater
than that of each individual signal.

If we now apply this to the case of a single source at bearing �

impinging on an N - element uniform linear array (ULA), then from

[2], the N row� 1 column output vector x�t� from the array is given
by:

x�t� � q���s�t� � n�t� (2)

wheres�t� represents the signal seen at ULA sensor 1, n�t� is aN�1
vector containing samples of a complex valued white Gaussian noise
process of variance �� and q��� is the steering vector [2], which is
given by:

q��� � ��� ej� cos���
� � � � � e

j�N���� cos����T (3)

where T denotes the vector transpose operation. From the above,
the optimum output signal x��t� is given by:

x��t� � q
H���x�t� (4)

WhereH denotes the complex conjugate vector transpose operation.
Equation (4) leads to the receiver structure that is shown in figure 1.

Sensors

De-modul-
ation  and
PN-code

Correlation
Combiner

Algorithm, eg MUSIC

Bearing Estimation

OutputDiversity

Figure 1: The Adaptive Receiver Structure.

This “data independent” combiner or beamformer [6] will be used
throughout this paper. The data from the ULA sensors is used
to perform bearing estimation on the incoming signals, so that the
weights of the combiner can be set to enhance the desired signals at
the output.

A spread spectrum receiver is capable of resolvingL separate multi-
path returns or time samples for each symbol, whereL is the pseudo-
noise (PN) code length. Therefore, the adaptive structure proposed
above must be repeated for each significant multipath component, as
shown in figure 2. The outputs will be a set of signals of different
SNRs that may be combined as shown using an adaptive RAKE filter
[7]. The receiver is therefore operating in two dimensions, one in
space and one in time.
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DIVERSITY RECEIVER SIMULATION

In order to analyse the effect of using a diversity receiver in a code
division multiple access (CDMA) system, simulation work was un-
dertaken, based on the following assumptions:

a) Length 31 Gold codes were used to model multiple-access inter-
ference.

b) Each user had random bearing chosenfrom a uniform deviate. The
receiver was a uniform linear array, which can only detect signals
unambiguously from one side of the array. The range of bearings
was therefore restricted to [0o ,180o], with 90o representing a signal
arriving perpendicular to the linear array.

c) Perfect power control was in operation.

d) Rectangular pulse shaping was assumed, so that the receiver PN-
code correlation operation is a linear process.

e) No assumption was made about the timing of codes: each code has
a random time of arrival chosen from a uniform probability density
function (PDF) and a random phase drawn from a uniform deviate
in the range [0,2�].

In a CDMA system, both the forward path (from the main transmitter
to each mobile) and the reverse path (from each mobile to the main
receiver) are of interest. To start with, the latter will be analysed.

The Reverse Path.
The aim of this section is to derive an equation for the average signal-
to-interference ratio (S/I) generated when a set number of users, M ,
are present. Gilhousen et al [8] state that the average interference
generated for the reverse path is given by the equation:

S�I �
L

�M � �� � ����s�
(5)

where s is the signal power of each CDMA user. Note that this
equation defines S�I to include the in-phase and quadrature noise

components, with respect to the desired signal, so that the correlator
receiver suppresses the power of all other users by a factor of ���L�.
In the simulations, it was found that the average power suppression
was slightly better than this.

To see why this is true, the PDF of the amplitude of Gold code
cross-correlation interference must be considered. Gold codes are
block codes [9], because �L� �� codes in total are produced by the
modulo-2 addition of two preferentially selected PN-codes of length
L. Therefore, one may determine the possible cross-correlation
levels by determining the weight or sum of each code.

The preferential polymonials octal 51 and 73 were used to generate
33 length 31 Gold codes. The distribution of weights for these codes,
assuming random +1 or -1 data, is as follows:

Amplitude No of Occurrences
(out of 33)

�1 17
�7 10
�9 6

The auto-correlation peak of each code is �31. The assumption of
random times of arrival means that there is likely to be a non-integer
shift of chips between two Gold codes. As a result, the interference
between each user will lie on a linear transition between two of the
states in the table above, anywhere in the range [-9,9]. The Gold code
interference may be viewed as the output of a finite state machine
and this representation is shown in figure 3.

P(

P(

P(

10/32

17/32

10/326/326/32

16/32 9/32

5/32

17/32

17
33

10
33

6
33

7)=

9)=

1)=

Figure 3: The Finite State Machine Interpretation of Gold
Code Interference.

The boxes show the probabilities of the interference being at a given
amplitude for a single interferer. The lines then show the conditional
probabilities for the amplitude changing from one state to another.
For example, the probability of the interference being in the transition
from �9 to �7 is:

P ���� ��� �
	




�

��


�
� ����	
�(4 sig.fig.) (6)

This table may be used to determine the probability density function
for the Gold code interference due to a single user, which is shown
in figure 4.

To calculate the average interference powerP � due to one interfering
source, the following integration is performed:

P� �

Z
�

��

x�p�x�dx � �������s�f�� (7)
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Figure 4: The PDF of Gold Code Cross-correlation Interfer-
ence.

This clearly does not cover the situation where a data transition
occurs on an interferer’s signal during the correlation process. To
include this eventuality, one must analyse the aperiodic correlation
function of the Gold codes in a similar manner to the above. There
are many more interference levels possible, because the three-level
cross-correlation property no longer holds, and the resulting PDF
has non-zero values in the range [-15,15]. It is shown in figure 5.
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Figure 5: The PDF of Gold Code Aperiodic Cross-correlation
Interference.

The mean power P � in this case becomes 21.19 (4 s.f.). Assuming
that data transitions occur with probability 0.5, the two power values
may be averaged to give P = 20.47 (4 s.f.), which represents the
mean interference power due to one user.

In the simulation, the desired user always used a code of weight �1,
which meant that there were only 32 possible interfering codes, 16
of whom had weight �1. This changed the value of P slightly to
20.67 (4 s.f.).

Normalising P to the power output from the auto-correlation peak,
which is L� = 961, gives the interference power P� = 0.02150 � -
16.67dB. This can be incorporated into the equation for the simulated
S�I , giving:

S�I �
L

k��M � �� � ����s�
(8)

Where k� � LP�.

The next issue to be discussed is the power suppression of other
CDMA users by a linear array. It has already been pointed out that

an N antenna diversity system suppresses white Gaussian noise by
a factor N . Is the same true of other CDMA users?

The effect of one unwanted CDMA user on the desired signal may
be specified by the vector cq���, where � is the user’s bearing (in
radians) and c is the complex cross-correlation output from the refer-
ence sensor. In order to check the mean power suppression,P s�N�,
the following integral must be performed:

Ps�N� �
�

�

Z �

�

jqH���q���j�d� (9)

Where � is the desired signal bearing and q��� is defined in equation

(3). If � is set to �
�

(i.e.90�) then q��
�
� � ��� � � � ��T . This makes

the calculation simpler and �qH��� �q���� may be written as:

�qH�
�

�
�q���� �

NX
n��

ej�n���� cos��� (10)

Combining equations (9) and (10) gives the following equation:

Ps�N� �
�

�

Z �

�

�qH���q�����qH���q����Hd�

�
�

�

Z �

�

�N �

N��X
n��

�N � n�ejn� cos����d�

�
�

�

Z �

�

N��X
n��

�N � n�e�jn� cos���d� (11)

Now, Bessel functions of the first kind J��k� are defined as:

J��k� �
�

��

Z ��

�

e�jk cos���d� (12)

In addition ejk cos��� � ejk cos������ , so this integral may be per-
formed over the interval [0,�] rather than [0,2�]. Therefore equation
(11) becomes:

Ps�N� � N �

N��X
n��

��N � n�J��n�� (13)

This result holds for any choice of � because the magnitude of each
component in q��� is always 1. Now set k� � Ps�N�. If equation
(8) is now applied to an N–antenna receiver, the expression for S�I
becomes:

S�I �
LN�

k�k��M � �� � �N���s�
(14)

For the simulation, the noise power �� was set to be �
��

times that
of the desired signal. The bearing of the desired signal was set to be
90o. Theoretical and simulation results are shown in figure 6. The
former are plotted as lines, whereas the latter are shown as points.
Clearly, equation (14) provides a good fit to the simulated data.
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Figure 6: Theoretical and simulated results for Interferer
Power Suppression in an N–sensor element receiver.

One may proceed from equation (14) in an attempt to predict bit error
rates (BER) for the system. This simulation used differential phase
shift keying (DPSK) modulation, a scheme which is often used to
allow DS-SS receivers to cope with Doppler-shifted fading signals.
The equation for the BER for a DPSK receiver, receiving a stationary
signal corrupted by Gaussian white noise is given by[9]:

BER �
�

�
exp��S�N� (15)

Where the S�N is the signal-to-noise ratio of the incoming signal.
For the purposes of calculating the BER, it has been assumed that
the Gold code interference in each case has a Gaussian distribution,
so that equation (15) holds.

The graph in figure 7 shows a comparison between predicted and
simulated BERs. Again, the predicted results are plotted as lines,
while the simulation results are shown as points.
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Figure 7: Theoretical and simulated results for Bit Error Rates
in N–sensor element receivers.

ANALYSIS OF RESULTS

The simulated BER curves show a considerable improvement in per-
formance as the the number of receivers in the base station increases.
If the CDMA system uses a vocoder for human speech this normally
entails a BER of 10�� or better [8] - this is shown as a horizontal

dotted line in figure 7. From the above results, this criterion is ful-
filled on average, even at 100% loading, by the time the receiver has
four sensor elements.

For N � �, the Gold code interference is very close to being Gaus-
sian, as the simulated and theoretical results match well. However,
forN � �, the assumption is no longer true and the curves no longer
match. As the number of users M increases, the simulation results
converge towards the predicted BER curve, as predicted by the cen-
tral limit theorem progressively introducing Gaussian statistics. The
non-Gaussian nature of the interference statistics for diversity sys-
tems of order 2 or greater may be explained by calculating the PDF
of the Gold code interference produced by a 2 element array.

The equation for the magnitude response of a 2-element array to an
interferer at bearing � is given by:

G��� �

r
�

�
�

�

�
cos�� cos���� (16)

If one restricts the possible values of � to ��� �
�
	 then G��� is strictly

increasing and is one-to-one and onto the range ��� �	. Under these
conditions the functionG is invertible, with inverseG��.

The cumulative distribution function (CDF) of the variablex ,defined
as fx 
 x � G���, � � � � �

�
g, is given by:

CDF �x�� � p�x � x�� �
�

�
G���x�� (17)

Differentiating the CDF function gives the probability density func-
tion PDF �x��, which is defined as lim�x�� p�x� � x � x� �
�x�. For the function G, it is given by:

PDF �x�� �
�x�
��

��� ��x�� � ���	�
�

� �

��� �
�

�
cos����x�� � ����	�

�

�

�� � x� � �� (18)

The PDF function is shown in figure 8.
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Figure 8: The PDF of interference from a 2–element antenna
array.

This function evaluates to infinity at both x=0 and x=1. The area
under the curve approachingx=1 is greater than for the corresponding
Gaussian distribution of identical variance. This part of the curve is
responsible for generating more errors than expected whenN � �.
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When N � �, the magnitude function G contains more than one
sinusoidal function of � and becomes difficult to invert analytically.
Each time the gradient of G��� is zero, then there is an infinite
spike in the PDF. As the value of N increases, the PDF will contain
more infinite spikes. This will make the statistics of the Gold code
interference less Gaussian. The magnitude response G��� for the
array sizes N=2,4 and 8 are shown in figure 9. In each case the
desired signal is at 90o.
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Figure 9: The Magnitude Response of ULAs with 2,4 and 8
sensor elements.

The Forward Path.
The forward path, from the main transmitter to each mobile receiver,
may be subjected to a similar analysis. The same set of weights may
be applied to the transmitter as to the receiver, so as to transmit most
of the power in the line-of-sight path to the desired receiver.

It is also assumed that each CDMA signal is transmitted with equal
power, so that forward path conditions are identical to those of the
reverse path. The equation for the signal-to-interference ratio (S�I)
is therefore identical to equation (15), except that the signal power,
s, will vary with the distance, r, from the main transmitter.

Three important points should be stated concerning these results.

1) These results are mean results, which assume a uniform distribu-
tion of users. In practice, the system performance will depend on
the geography of the mobile cell. The diversity antenna receiver can
only exploit spatial diversity if the transmitters are spaced apart. If
two transmitters impinge on the receiver from the same bearing, then
increasing the number of sensor elements will not reduce the inter-
ference. However, if the number of receivers is increased, the width
of the main lobe is reduced, which will reduce the outage probability
of the system in turn.

2) It has been assumed that each transmitter had a single line-of-sight
path to the receiver. In practice, there may be several multipaths
received from each source. This increases the complexity of the
signal processing and may reduce the system gain.

3) The combiner used in the above analysis is of a simple form,
which allows general results to be obtained. It is not, however, sta-
tistically optimal in the sense of maximising the output S�I . Several
beamformers exist to reduce the effect of directional (CDMA) inter-
ference and fulfil this criterion[6]. These techniques explicitly use
the covariance matrix R (defined in [2]) to calculate the beamformer
weights. The effectiveness of these techniques is dependent on the
number of array sensors and on the amplitude of the interference.

CONCLUSION

This paper proposed a novel diversity receiver structure for use in
direct-sequence spread-spectrum CDMA systems. Bearing estima-
tion techniques determine the angle of arrival of a source, which
allows the receiver to ameliorate interference.

It has shown that a diversity receiver can offer a considerable im-
provement in bit error rate performance on average. This permits a
large increase in the capacity of the CDMA system.
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Abstract – In this paper, the novel use of bearing estima-
tion techniques to determine the direction of arrival of direct
sequence spread spectrum signals is described. Firstly, the
basic ideas behind bearing estimation are discussed and it is
shown how these may be best applied to a spread spectrum
receiver array. Then, some simple algorithms are compared
and it is shown that the multiple signal classification algorithm
(MUSIC) provides good angular resolution for a fixed com-
putational overhead. One major shortcoming of the MUSIC
algorithm is that it fails in the presence of coherent spread
spectrum multipath returns. Spatial smoothing algorithms are
shown to be a solution to this problem and the behaviour of
such techniques is discussed.

INTRODUCTION

The problem that motivates the use of bearing estimation tech-
niques is simply put. An array of omnidirectional sensors, set
up in a known configuration, receives a set of N signals from
unknown directions ��1� �2� � � � � �N � relative to a fixed refer-
ence axis. How are the unknown parameters to be determined?

A very large number of algorithms to solve the problem have
been documented in the literature [1]. Among the most popu-
lar are the minimum variance technique, the MUSIC algorithm
[2] and maximum likelihood techniques [3]. The following
set of assumptions are usually included in such algorithms:

a) All incoming signals are in the far field with respect to the
receiver, so that they are all plane waves.

b) The data from each array element is assumed to be corrupted
by Gaussian white noise of zero mean and variance �2.

c) The receiver for each sensor is non-coherent and demodu-
lates the signal in both the I and Q channels. One clock
provides the timing for all sensors, so that data from the whole
array is sampled synchronously.

d)The received signals all have a carrier frequency centred

about frequency f Hz and are narrowband in nature, so that
the data bandwidthB Hz << f Hz. The number of impinging
signals, M , is assumed to be less than the number of array
elements, N .

A simple type of receiver array is the uniform linear array
(ULA), shown in figure 1. Each sensor is spaced by a distance
�

2 m where � m is the wavelength of the carrier. The diagram
also defines the broadside and endfire regions of a ULA.

There are two main limitations to the ULA - this type of array
cannot distinguish signals coming from opposite sides of the
array. Secondly, the ULA suffers from “endfire effects” - large
errors occur in measuring the bearings of signals arriving from
these directions. Clearly, the ULA receiver must be designed
with these points in mind.

λ / 2

x(2,t)x(1,t) .  .  .  .      x(N,t)

Broadside

Bearing = 90

tx(t)

Array Sensors

θ

Bearing = 180 Bearing= 0

Endfire Endfire

o

o

o

Figure 1: A Typical Uniform Linear Array.

Consider a narrowband signal at baseband, s�t�. It is modu-
lated up to a carrier of angular frequency � � 2�f , so that
the transmitted signal tx�t� is:

tx�t� � s�t�ej�t (1)

This signal impinges on a ULA at bearing � as shown in
figure 1. Consider the two signals r�1� t� and r�2� t� received
at sensors 1 and 2. These are given by the expressions:
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r�1� t� � s�t�ej�t (2)

and:

r�2� t� � s�t� td�e
j��t�td� (3)

Where td � �� cos ���2c and c is the speed of light. r�1� t�
and r�2� t� are demodulated and sampled to produce the sig-
nals x�1� t� and x�2� t�, so that the ej�t term disappears. As-
sumption d) means that one may write that s�t� � s�t � td�.
Now the only difference between signals x�1� t� and x�2� t� is
a phase rotation term, ej�td .

In order to perform bearing estimation successfully, the phase
rotations across the whole array must be known for all possible
bearings �. If the phase at sensor one is set to zero as a
reference, the phase rotation can be represented by a N row
� 1 column vector q���. For a ULA, q is given by:

q��� � �1� ej� cos���� � � � � ej�N�1�� cos����T (4)

One set of samples fx�n� t�g received from the array elements
is termed a snapshot of the array. An equation can be written
for the vector x�t� which contains the snapshot sampled at
time t:

x�t� � �x�1� t�� x�2� t�� � � � � x�N� t��T (5)

where T denotes the vector transpose operation. If a ULA
receives signals from M sources fsm�t�g at bearings f�mg,
then the vector x�t� may be written as:

x�t� � Qs�t� � n�t� (6)

where Q is an N row �M column matrix given by:

Q � �q��1�� q��2�� � � � � q��M �� (7)

and s�t� is given by:

s�t� � �s1�t�� s2�t�� � � � � sM�t��T (8)

The N � 1 vector n�t� contains the Gaussian white noise
of variance �2 that corrupts the snapshot data. In order to
perform bearing estimation, the first requirement is to form
the data covariance matrix R from the snapshots. The matrix
equation for R is given by:

R �
1
K

KX

k�1

x�tk� x
H�tk� (9)

where K denotes the number of snapshots used to form R, tk
denotes the time at which the kth snapshot was taken and xH

denotes the complex conjugate transpose operation.

SPREAD SPECTRUM BEARING ESTIMATION

Direct-sequence spread spectrum systems modulate the nar-
rowband data with a pseudo-noise (PN) code of length L,
before upconversion to a carrier. If the data rate is fd Hz
then the spread-spectrum chip rate fc � fd � L Hz. Bearing
estimation algorithms may be directly applied to the output of
a spread-spectrum receiver, provided that assumptions a)-d)
are complied with.

The most problematic assumption is d), as the spread-
spectrum signal should not be changing very much across
the array, when it is sampled. The correlation peaks at the
output of the DS-SS code detectors should be aligned in time,
with only the phase changing. Clearly, if the receiver signals
at opposite ends of the array are mis-aligned by one chip, the
algorithms will fail.

The worst case occurs when the signal approaches in the
endfire region. In this case there is a time shift in the signal
between array sensors of �

2c = 1
2f seconds. Clearly, the time

shift across the whole array tsh should represent only a small
fraction of one chip period tc to keep the correlation peaks
aligned, so:

tsh
tc

�
N � 1

2f
�

1
1�fc

�
�N � 1�fc

2f
�� 1 (10)

The point at which the bearing estimation algorithm is applied
must also be selected. It is possible to apply the algorithms
before the DS-SS code detector or after it. However, the latter
option is much preferable for the following reasons.

1) The transmitted DS-SS codes are normally received with a
low power, which may be equal to or less than the noise power.
If bearing estimation is applied directly to the received signal,
the results will be poor unless the array size is large and a lot
of data is used.

2) Consider a code division multiple access (CDMA) system
using power control. At the code detector input, there are a
lot of different codes present at roughly the same power and
there is no means of discriminating the desired user. Bearing
estimation algorithms can usually only resolve as many signals
as there are array elements, so a very large array would be
needed.

3) In most realistic scenarios, multipath signal returns will be
present. These increase the number of signals at the input of
the code correlator that have to be resolved.

Performing bearing estimation after the code correlator allows
the system to take advantage of the processing gain of the
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system in order to reduce the variance of the bearing estimate,
suppress undesired CDMA codes and to separate multipath
returns in time.

Spread-spectrum diversity over a multipath channel provides
the ability to resolveL separate returns for each symbol,where
L is the PN code length. This means that narrowband bear-
ing estimation may be performed for each separate multipath
return or time sample. The receiver now uses a maximum
of L covariance matrices, which are denoted R�d� - where d
indicates the time sample of interest.

BEARING ESTIMATION ALGORITHMS

This section introduces the ideas behind some of the better
known bearing estimation algorithms. The search for signals
coming from different bearings is analogous to finding the
major frequency components in a given signal. Hence, it is
not surprising to find that bearing estimation algorithms have
a lot in common with spectral estimation techniques.

a)Conventional Beamforming (CBF)
This technique [4] operates in a similar manner to the discrete
Fourier transform (DFT) with the output power spectrum for
the dth time sample at bearing �, PCBF �d� ��, produced by
the equation:

PCBF �d� �� � qH ���R�d�q��� (11)

The same techniques can be applied to conventional beam-
forming as to the DFT, such as windowing the data, zero
padding, etc. However, as with the DFT, the CBF algorithm
provides a poor trade-off between the number of sensors and
resolution, so that a number of better techniques have been
devised.

b)Minimum Variance Technique (MV)
The problem with CBF techniques arises from beam pattern
constraints: there is a trade-off between the sidelobe level
and the width of the main beam. In this technique [1], the
best possible beam pattern is chosen mathematically. It turns
out that the minimum variance beam pattern involves the in-
verse of the covariance matrix. The resulting power spectrum,
PMV �d� �� is given by the equation:

PMV �d� �� �
1

qH���R�d��1q���
(12)

where R�d��1 denotes the matrix inverse of R�d�.

Calculating the inverse of the covariance data matrix makes
this technique more computationally intensive than the CBF
technique. However the MV estimate of the spatial power
spectrum has a smaller resolution than that of the CBF tech-
nique.

c)Multiple Signal Classification (MUSIC)
If one substitutes equation (6) into equation (9) and applies
the expectation operator, the followingexpression is obtained:

E�R�d�� � Rav�d� � Q�d��S�d��Q�d�H � �2�I (13)

The matrix S�d� is an M �M diagonal matrix, whose mth

diagonal entry relates to the power in themth impinging signal
in the dth time sample. The matrix I is the N � N identity
matrix.

Therefore, if the eigenvalue decomposition of the matrixR�d�
is performed, M signal eigenvectors will be obtained, which
span the M columns of the matrix Q�d�. The corresponding
eigenvalues will similarly be related to the non-zero entries in
the matrix S�d�.

The other N �M eigenvectors are noise eigenvectors whose
eigenvalues are approximately equal to �2. Their only prop-
erty of interest is that they are orthogonal to the signal eigen-
vectors and the steering vectors inQ�d�. MUSIC [2] exploits
this property to determine which bearings have the smallest
projection on the noise eigenvectors, indicating the presence
of a signal.

To generate the MUSIC power spectrum, the following equa-
tion is used:

PMUS�d� �� �
1

qH����W �d��W �d�H �q���
(14)

whereW �d� is anN �N �M matrix containing theN �M
noise eigenvectors. The eigenvalue decomposition of R�d�
is more computationally intensive than either the CBF or the
minimum variance techniques, but the quality of the power
spectrum is improved.

One problem with the MUSIC algorithm is that the number of
signals present must be estimated before the power spectrum
is calculated. This may be done by an examination of the
eigenvalues, or by the use of a model order algorithm [1].

For uncorrelated signals, large array sizes and a large num-
ber of data snapshots, the MUSIC algorithm is known to
approach theoretical lower bounds on parameter estimation
performance[5].

d)Maximum Likelihood Techniques
Maximum likelihoodstatistical methods [1, 3] provide the op-
timum estimate of spatial power spectrum. This is achieved
for N incoming signals, by performing an N -dimensional
search over all the possible values of the bearing signals, to
find the best fit to the given covariance matrix.
Not surprisingly this technique is much more computation-
ally intensive than any of the previous algorithms and is not
considered further in this paper.
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e)Comparison of Algorithms
In figure 2, the CBF, minimum variance and MUSIC algorithm
techniques are compared. All three are attempting to resolve
two separate, statistically independent signals. Both signals
have a signal-to-noise ratio (SNR) of 20dB, with one at a
bearing of 35o and the other at 45o - the desired bearings are
shown as vertical lines. All three are using 50 data snapshots
from a 8 sensor linear array. As can be seen, only the MUSIC
algorithm successfully resolves the signals under the given
conditions.
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Figure 2: A comparison of bearing estimation algorithms with
two signal sources present.

COHERENT DS-SS SOURCES

In order to obtain the best performance the MUSIC algorithm
requires the correlation factor between signals C to fulfil the
following constraint [5]:

C �
E�si�t��sj�t��p
E�si�t�2�E�sj�t�2�

� 0 if i �� j (15)

If the signals originate from different transmitters, this cri-
terion will normally be approximately true. As the value of
C increases from the ideal value of zero towards the worst
case value of one, the variance of the bearing estimates will
increase. In the situation where the two signals are multipath
returns from the same transmitter, the value of C is one. In
this case, the eigenvalue decomposition will fail to produce
two distinct signal eigenvectors, so that the MUSIC algorithm
will fail.

The simplest method found to date to overcome this problem
is spatial smoothing [6], but the original method only works
in the case of the ULA. This technique forms matrices from
subsets of the ULA and averages them to form a smaller
covariance matrix for the MUSIC algorithm. The original
algorithm only uses one direction along the array to form
matrices - forward only spatial smoothing (FOSS).

If there are J subarrays, the matrices are in fact �N �J�1��
�N � J � 1� partitions of the original covariance matrix: the

jth matrix R�d� j� begins at the �j� j� entry of R�d�. The
averaged matrix Rss�d� is given by the equation:

Rss�d� �
1
J

JX
j�1

R�d� j� (16)

In order to resolve M sources, at least M subarrays are re-
quired so that at least 2M ULA array sensors are needed.
Thus, the FOSS algorithm places serious restrictions on the
number of coherent signals that may be resolved by an array
of a given size. The situation can be improved by forward-
backward spatial smoothing (FBSS) [7], which forms matrices
by working both forward and backward along the array as
shown in figure 3.

Forward

Backward

ULA Sensors

Sub-matrices

Figure 3: Forward-backward spatial smoothing.

This operation is equivalent to forward-backward smoothing
the original covariance matrix and spatially smoothing the
resulting matrix. The forward-backward covariance matrix
Rfb�d� is given by the equation:

Rfb�d� � R�d� � UR�d��U (17)

Where R�d�� denotes the complex conjugate of R�d� and U
is given by:

U �

�
����

0 � � � 0 1
0 � � � 1 0
...

. . .
...

...
1 � � � 0 0

�
���� (18)

The partitions of the matrix Rfb�d� from equation (17) are
then substituted into equation (16) in place of those formed
from the original matrix R�d�. This technique reduces the
number of submatrices so that only �3M�2� sensors are re-
quired to resolve M coherent signals. However, there is a
tradeoff: this improvement is obtained at a cost of reduced
robustness in the MUSIC algorithm. The FOSS algorithm
performs consistently but the performance of FBSS varies as
the phases of the incoming signals are changed [8].
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Consider a practical situation, where the ULA contains 8
sensors. In a multipath environment, there may be several
time samples containing significant signal power, each of
which might be made up of two coherent multipaths. In
this case, FOSS normally requires two subarrays (J=2) [6],
each containing seven elements. FBSS needs only to apply
forward-backward smoothing, so that the smoothed matrix
is still of size eight(J=1) [7]. In figure 4, these algorithms
are applied to a scenario where the two multipaths have bear-
ings 130o and 150o and each SNR is 20dB. There were 50
data snapshots available and the resulting power spectrum of
the MUSIC algorithm without smoothing and with FOSS or
FBSS applied is shown. The MUSIC algorithm fails to work,
but the smoothing techniques overcome the problem.
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Figure 4: Typical power spectra for the coherent multipath
case.

The smoothing algorithms work well in this case, but how do
they perform more generally? An indication of this can be
obtained by looking at the variance of the bearing estimates
under different conditions. Equations have been derived for
the variance of the MUSIC algorithm with smoothing [9] and
these can be applied to the signal scenario above: see figure
5.
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Figure 5: Variance of the MUSIC algorithm using smoothing
techniques.

The relative phase of the two signals at the reference sensor
(which is at the middle of the ULA in this case) was varied in
the simulation work to observe the effect on the performance
of MUSIC. The variance of the bearing estimate of the first

source (bearing 130o) is plotted in figure 5, though the estimate
for the second source (bearing 150o) behaves similarly. To
back up the theoretical equation, simulation results using 1000
Monte Carlo runs are also shown and are plotted as points.

The FOSS algorithm with J=2 is seen to behave consistently,
unlike the FBSS algorithm with J=1 which can perform very
well or very badly. The instability in the FBSS algorithm
may be avoided by increasing the number of subarrays J to
the same number required by FOSS [8]. The fact that these
algorithms reduce the size of the covariance matrix means that
the performance of the MUSIC algorithm degrades compared
to the equivalent uncorrelated signal scenario. To obtain the
same performance, one can increase the number of snapshots
K, the number of array elements N or the SNR.

CONCLUSION

This paper has introduced the notion of applying narrowband
bearing estimation to the output from a spread-spectrum re-
ceiver array. The basic algorithms have been described and
the MUSIC technique has been shown to provide good per-
formance for a fixed computational overhead.

The problem of coherent multipath returns has also been dis-
cussed. Spatial smoothing techniques have been suggested as
a method to overcome this for linear arrays. FOSS is a robust
technique, but requires a subarray for each coherent signal.
FBSS reduces the number of subarrays, but the performance
varies with the incoming signal phases.
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ANALYSIS OF SPATIAL SMOOTHING ALGORITHMS

John S. Thompson, Peter M. Grant, Bernard Mulgrew. 1

Abstract One of the most popular algorithms for performing bearing estimation is the MUSIC algorithm. However,
the main limitation on its use is the fact that it performs very poorly in the presence of highly–correlated or coherent
sources. A simple method to avoid this problem is to employ a spatial smoothing pre-processing technique. These
algorithms trade the effective array size for the ability to correctly locate coherent sources.

In this paper, two techniques will be considered: 1) spatial smoothing (SS) and 2) forward–backward spatial
smoothing (FBSS). The structure of the smoothed covariance matrix provides some insight into the likely performance
of the two techniques. The analysis is backed up numerically through the use of equations for the variance of the
bearing estimates produced by the MUSIC algorithm.

Introduction The problem that motivates the use of bearing estimation techniques is quite simple. There are P plane
waves impinging on a M–element array of known configuration. The receiver has access to aM �1 noise-corrupted
data vector y�t� seen at the array. In order to determine the bearings of the P incoming signals, the underlying model
that generates the available data is assumed to be of the form:

y�t� � A�Θ�s�t� � n�t� (1)

The vector n�t� contains the M zero-mean Gaussian white noise processes of variance �2 that corrupt the data and
s�t� is the vector of the P signal amplitudes. The vector Θ contains the P bearings of interest and theM �P matrix
A�Θ� is made up as shown:

A � �a��1�� a��2�� � � � � a��P �� (2)

where the parameters f�pg are the bearings of the P signals, while the “steering” vector a��� is the impulse response
of the array to direction �. For anM–element uniform linear array (ULA) with an antenna spacing of half the signals’
carrier wavelength, the steering vector is given by:

a��� � �1� ej� cos���� � � � � ej�M�1�� cos���� (3)

The MUSIC Algorithm The MUSIC algorithm [1] makes some assumptions about the incoming data, so that it
conforms to the model in equation (1) and the problem is tractable. There are P narrow–band plane wave signals
impinging on anM element linear array, whereM � P . The data from each array element is assumed to be corrupted
by Gaussian white noise of zero mean and variance �2. The signals and noise are ergodic random processes with
zero mean and are assumed to be mutually uncorrelated. For the purposes of the algorithm, all the impinging signals
are assumed to be uncorrelated.

In practice, one has access to N snapshots of the noisy signal vector y�t�, from which an M �M covariance matrix
R̂ is calculated. It may be utilised to generate a power density spectrum for all bearings of interest, where the peaks
of the spectrum identify the bearings of the signals present. The mean of R̂ is given by:

1 Signals and Systems Group, Department of Electrical Engineering, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL.

165



E�R̂� � E�y�t�y�t�H� � R � ASAH � �2IM (4)

where AH denotes the Hermitian transpose of A, IM is the M �M identity matrix and the signal matrix S �
E�s�t�sH�t��. The expansion ofR in equation (4) shows that the eigenvalues ofR ordered by decreasing size, � i�R�,
are given by the expression �i�R� � �i�X�� �2, where the signal matrix X � ASAH . Provided all the signals are
mutually uncorrelated, the matrix S is of rank P , so the P largest eigenvalues are the sum of the signal and noise
power. These eigenvalues and their associated eigenvectors correspond to the incoming signals and they form the
“signal subspace”.

If i � P , �i�X� � 0 and so the smallest M � P eigenvectors of R are “noise” eigenvectors whose eigenvalues are
equal to �2. Their only property of interest is that they form a “noise subspace” which is orthogonal to the signal
subspace. This means that each noise eigenvector is orthogonal to every steering vector in the matrixA. The MUSIC
algorithm exploits this property to locate signals by determining which bearings have the smallest projection on the
noise subspace. The following equation is used to generate the power density spectrum:

MUS��� �
1

aH���EnEH
n a���

(5)

where En is the M � �M � P � matrix of column noise eigenvectors.

One problem with the MUSIC algorithm is that the number of signals present must be estimated in order to determine
the rank of the noise subspace. This may be done by an examination of the eigenvalues, or by the use of a model
order algorithm [2]. This paper will assume that the number of signals present has been determined correctly.

Coherent Sources and Spatial Smoothing One assumption made above states that the incoming signals are mutually
uncorrelated over the time of observation. If all the signals present originate from different transmitters or are
modulated with different data streams then this assumption is at least approximately true. However, if they result
from multipath responses from the same transmitter, the signals are “coherent” and the assumption is invalid.

The signal subspace is always spanned by the the vectors present in the matrixA. However, if the signals are coherent,
the matrix S becomes singular, so that some of its eigenvalues are zero. This means that part of the signal subspace
is indistinguishable from the noise subspace. As a result, the observed noise subspace is no longer orthogonal to the
steering vectors in the matrix A and the MUSIC algorithm fails.

To overcome these problems, a technique called spatial smoothing (SS) [3] has been developed to allow the MUSIC
algorithm to be applied to the coherent signal case. The algorithm was originally designed only for uniform linear
array (ULA) geometries. The basic idea is to form covariance matrices from subsets of the array - which is equivalent
to partitioning the original covariance matrix. If there are K subarrays, each subarray is of size L � M � K � 1
and the partition for the k th subarray is the matrix F �k�RF �k�T . The L�M matrix F �k� is defined by:

F �k�ij �

�
1 if j � i� k � 1 and 1 � i � L

0 otherwise
(6)

The notation Fij denotes the ith row and jth column element of the matrix F . The partitioned matrices are used to
form a smoothed matrix RSS of size L� L, which is calculated as follows:

RSS �
1
K

KX
k�1

F �k�RF �k�T (7)
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where F �k�T denotes the transpose of F �k�. Clearly, the size of the covariance matrix and thus the performance of
the MUSIC algorithm is traded for the ability to resolve coherent sources. In order to resolve P coherent sources,
an array containing at least 2P elements is required. In a similar way, it is very simple to show that to resolve P
coherent sources, it is required to average over at least P independent submatrices.

Soon afterwards, it was reported [4] that an additional technique called forward-backward spatial smoothing (FBSS)
can be used to improve performance. The FBSS technique applies forward–backward smoothing (FBS) to the
forward and backward covariance matrices RF and RB to form a matrix Rave as shown:

Rave �
1
2
�RF � RB� �

1
2
�R� JR�J� �

1
2
�R�

�
�����

0 � � � 0 1
0 � � � 1 0
...

. . .
...

...
1 � � � 0 0

�
�����R�

�
�����

0 � � � 0 1
0 � � � 1 0
...

. . .
...

...
1 � � � 0 0

�
������ (8)

where R� denotes the complex conjugate of R. The matrix Rave is then spatially smoothed as required to form the
FBSS matrix RFB.It has been shown [4, 5] that to resolve P coherent sources, as little as 3P�2 array elements may
be required to restore the rank of S. However, there are some situations where FBSS behaves in the exactly the same
manner as the SS technique: in these cases 2P array elements are still required.

Statistical Analysis of the MUSIC Algorithm There are a number of approaches to determine the performance of
the MUSIC algorithm, but one useful technique is to determine the variance of bearing estimates produced by the
MUSIC algorithm for a given set of conditions. An excellent introduction to this approach is given in [6]. This
analysis has been extended to spatial smoothing algorithms in [7] and the required result for this paper is given in
terms of the error in the estimate of the bearing of the xth signal, ��x. The asymptotic variance of the error is given
by:

E���2
x� �

2
d���x�2NK2 �

KX
p�q�1

�HR�p� q�� �HN�q� p��� Ref
KX

p�q�1�p ��q

�HN�p� q�� �HN�q� p��g� (9)

The scalar value d���x� is given by the matrix product 2fdHSS���ESSE
H
SSdSS���g, where dSS��� is the Brandwood

vector derivative of the length L steering vector aSS ��� [8]. The matrix ESSE
H
SS is the noise subspace of the

smoothed covariance matrix and the matrix R�p� q� is given by F �p�RF �q�T . The vectors � and � are defined as:

� � ESSE
H
SSdSS��x� and � � X�

SSaSS��x� (10)

The matrix X�
SS denotes the pseudo–inverse of the smoothed signal matrix XSS . The matrix N�p� q� is defined in a

similar way to R�p� q� with N�p� q� � �2F �p�F �q�T .

Analysis of the Covariance Matrix The performance of the MUSIC algorithm depends critically on the condition of
the signal matrix S [6]. In the simple case of two sources, this matrix is given by:

S �

�
s2

1 s1s2ce
j��1�2�

s1s2ce
�j��1�2� s2

2

�
(11)

Where s1 and s2 denote the amplitudes of the two sources, c the magnitude of their cross-correlation and 	�1� 2� the
relative phase between the sources at the reference sensor. If the value of c is unity, the matrix S is singular and the
MUSIC algorithm fails. The underlying purpose of spatial smoothing algorithms is to reduce the value of c so that
the smoothed signal matrix SSS is well–conditioned numerically.
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It is possible to show that for the SS technique with K subarrays, the correlation value cSS becomes [9]:

cSS �
1
K

K�1X

k�0

e�j���K�1��2��k���cos��1��cos��2�� (12)

This means the numerical condition of the matrix SSS depends on both the source bearings and their angular
separation. The correlation value for FBSS with L subarrays is the same as for SS, but it is scaled by the term
cos���1� 2��. This means the FBSS algorithm can offer an improvement over SS for the same array size, which
depends on the relative signal phase.

Results In this section, the equations quoted for the MUSIC algorithm and for the spatial smoothing techniques
will be applied to particular scenarios to illustrate the points made above. It should be pointed out, however, that
equation (9) is very complex and the above analysis is only intended to explain the major effects observed in the
behaviour of SS/FBSS. In all the simulations the number of elements M in the uniform linear array was eight and
each signal’s SNR was set to be 17dB. All signals were generated using complex exponentials of constant amplitude
and one hundred snapshots were used to form covariance matrices in each case.

Figure 1 shows the effect of angular separation on SS, FBS, FBSS with two coherent sources and MUSIC with two
uncorrelated sources. The first source is at a bearing of 90o and the bearing of the second source is chosen to give
the correct angular separation. The variance of the 90o source is shown in the diagram, but the variance of the other
source will follow a similar trend. The reference sensor was set at one end of the ULA, so that the relative phase of
the two signals at the middle of the array changes. The phase dependence of the FBS technique causes the correlation
factor cSS to vary between 0 and 1 according to the value of cos���1� 2��: the variance curve is seen to oscillate
accordingly.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 10 20 30 40 50 60 70 80

Lo
g 

(V
ar

ia
nc

e)
 (

de
g^

2)

Angular Separation (deg)

The Bearing Variance vs Angular Separation

THEORY:

SIMUL:

MUSIC
FBS,L=8

SS,L=7
FBSS,L=7

FBS,L=8
SS,L=7

FBSS,L=7

Figure 1: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs angular separation.

The SS algorithm with L � 7 improves more slowly than the MUSIC algorithm with no correlation, as the signal
separation is increased. This is because the condition of both the matrix S and the matrix A depend on signal
separation. The FBSS technique with L � 7 generally performs better than SS and for closely spaced sources the
variance can be improved a lot according to the relative phase between the two sources ��1� 2�.

Figure 2 shows the effect of signal phase on the performance of SS, FBS, FBSS algorithms and MUSIC (with zero
correlation). The two sources are at 96o and 78o and their relative phase at the centre of the ULA varies from 0�360o.
The variance is plotted for the source at 96o and the performance of the SS algorithm with L � 7 is approximately
constant with the signal phase. The FBS technique is again shown to provide good performance for some signal
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phases, but no improvement at all when ��1� 2� � 0o or 180o [10]. In a similar manner, the FBSS algorithm with
L � 7 is seen to perform as well as or better than SS , with the variance also sinusoidally changing with signal phase.
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Figure 2: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs signal phase.

It seems likely that the variations in phase will affect the performance of the FBSS technique for larger numbers of
signals. In figure 3, the FBSS algorithm with L � 7 is attempting to resolve three sources at 60o, 120o and 90o. The
phases of the first two sources at the centre of the ULA are varied with respect to that of the third source, which is
fixed at 0o.The theoretical variance is shown for the source at 120o. When the relative phases of the three signals are
0o or 180o, the algorithm cannot restore the full rank of the signal matrix and the variance is seen to become very
large. Of course, the variance of the SS algorithm with L � 7 is theoretically infinite for all signal phases.

The Bearing Variance vs Signal Phase for 3 signals
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Figure 3: The Variance of FBSS with L � 7 for a source at bearing 120o vs signal phase for 3 sources.

From the above discussion, it is clear that to resolve P sources with P subarrays, the FBSS algorithm is usually
preferable to the SS technique. In addition, FBSS may resolve P sources using less than P subarrays, unlike the SS
technique.

Conclusion The MUSIC algorithm performs robustly in the presence of uncorrelated signals and signals with small
correlation factors. When the correlation factor tends towards one, the signal scenario resembles that of coherent
multipath returns, or smart signal jamming. In the case of coherent signals, the MUSIC algorithm is unable to resolve
the different bearings, even at high SNRs. In this case, an alternative approach, such as spatial smoothing, must be
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used. The performance of two techniques, SS and FBSS, have been compared - the former depends on the source
bearings and angular separations. The FBSS technique can considerably improve the performance of MUSIC for
closely spaced sources, according to the relative signal phases.
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Performance of Spatial Smoothing Algorithms for

Correlated Sources
John S� Thompson� Peter M� Grant and Bernard Mulgrew

Abstract�The problem of identifying the angles of arrival
of a set of plane waves impingeing on a narrow�band ar�
ray of sensors� and related spectral analysis problems� have
been addressed with a large number of algorithms� One of
the most popular techniques is the multiple signal classi�
�cation �MUSIC�� The major shortcoming of the MUSIC
algorithm is that it performs poorly when the sources are
highly correlated� Fortunately� two algorithms exist to over�
come this problem � spatial smoothing �SS� and forward�
backward spatial smoothing �FBSS�� The performance of
the SS technique depends on signal bearings and spatial sep�
aration� For the same smoothing� FBSS can o�er improved
performance� but this depends on the signal phases� Nu�
merical results for the variance of the algorithms are given
to illustrate the points made�

I� Introduction

One of the most popular algorithms for performing bearing
estimation is the MUSIC algorithm���� Its attractiveness is due
to the fact that it provides good resolution� whilst limiting the
search for incoming signals to a single dimension� This is in con�
trast to maximum likelihood �ML� algorithms which generally
involve an P	dimensional search to resolve P sources�
��

The main limitation of the MUSIC algorithm is that it per�
forms poorly in the presence of highly correlated and coherent
sources� In order to overcome this problem� it is possible to use
techniques like ML� which still work in such situations� This
negates all the advantages of using the MUSIC algorithm in
the �rst place� Fortunately� two techniques exist to resolve cor�
related and coherent sources for uniform linear array geomet�
ries 	 the spatial smoothing �SS� algorithm��� and the forward�
backward spatial smoothing algorithm �FBSS��
�� These meth�
ods modify the covariance matrix of data� so that the MUSIC
algorithm can still be applied�

One method of analysing the e�ect of spatial smoothing tech�
niques is to look at the variance of the bearing estimates pro�
duced by the MUSIC algorithm� Equations for this purpose
have been derived in ������� The variance equations are complex
and hard to interpret in a simple fashion� so in this corres�
pondence the condition number or eigenvalue ratio �EVR� of
the resulting signal matrices will be analysed to obtain some
insight into how smoothing techniques work� Numerical res�
ults are provided to compare the signal matrix EVR with the
variance of the MUSIC algorithm�

The structure of this correspondence is as follows� Section II
provides an introduction to the MUSIC algorithm and the equa�
tions that describe its performance� It will also look brie�y at
the e�ect of spatial smoothing techniques on the covariance mat�
rix� section III will present some numerical results to illustrate
the points made� Finally� section IV presents the conclusions
for this correspondence�

Manuscript received ��� revised ��� The associate editor coordinating
the review of this paper and approving it for publication was Prof Fu Li�
This research was supported by a UK SHFRC CASE award and an MOD
studentship�
The authors are with the Signals and Systems Group� Dept of Electrical

Engineering� University of Edinburgh� Edinburgh� UK� EH� �JL�
IEEE Log Number ���

II� Principles of Direction of Arrival Estimation

A� Background

The problem that motivates the use of bearing estimation
techniques is quite simple� There are P plane waves impingeing
on a M	element array of known con�guration� The receiver has
access to a noise�corrupted data vector y�t� � CM�� seen at
the array� In order to determine the bearings of the P incoming
signals� the underlying model that generates the available data
is assumed to be of the form�

y�t� � A���s�t� � n�t� ���

The vector n�t� � CM�� contains the M zero�mean Gaussian
white noise processes of variance �� that corrupt the data and
s�t� � CP�� is the vector of the P signal amplitudes� The vector
� � RP�� contains the P bearings of interest and the matrix
A��� � CM�P is made up as shown�

A � �a����� a����� � � � � a��P �� �
�

where the parameters f�pg are the bearings of the P signals�
while the �steering� vector a��� � CM�� is the impulse response
of the array to direction ��

B� The MUSIC Algorithm

Algorithms that perform bearing estimation are required to
make some assumptions about the incoming data� so that it con�
forms to the model in equation ��� and the problem is tractable�
There are P narrow	band plane wave signals impingeing on an
M element linear array� where M � P � The data from each ar�
ray element is assumed to be corrupted by Gaussian white noise
of zero mean and variance ��� The signals and noise are ergodic
random processes with zero mean and are assumed to be mu�
tually uncorrelated� For the purposes of the MUSIC algorithm�
all the arriving signals are assumed to be uncorrelated� These
assumptions are the same as those made in ���� for example�

In practice� one has access to N snapshots of the noisy sig�
nal vector y�t�� from which a covariance matrix �R � CM�M is

calculated� The mean of �R is given by�

E� �R� � E�y�t�y�t�H� � R � ASA
H � �

�
IM ���

where AH denotes the Hermitian transpose of A� IM is the
M�M identity matrix and the signal matrix S � E�s�t�sH�t���

The covariance matrix �R may be utilised to generate a power
density spectrum for all bearings of interest and the peaks of
the spectrum identify the bearings of the signals present� The
expansion of R in equation ��� shows that the eigenvalues of R
ordered by decreasing size� �i�R�� are given by the expression
�i�R� � �i�X� � ��� where the matrix X � ASAH � Provided
all the signals are mutually uncorrelated� the matrix S is of
rank P � so the P largest eigenvalues are the sum of the signal
and noise power� These eigenvalues and their associated eigen�
vectors correspond to the incoming signals and they form the
�signal subspace��
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�

If i � P � �i�X� � � and so the smallest M � P eigenvectors
of R are �noise� eigenvectors whose eigenvalues are equal to
��� Their only property of interest is that they form a �noise
subspace� which is orthogonal to the signal subspace� This
means that each noise eigenvector is orthogonal to every steering
vector in the matrix A� The MUSIC algorithm exploits this
property to locate signals by determining which bearings have
the smallest projection on the noise subspace� The following
equation is used to generate the power density spectrum	

MUS��� �



aH���EnEH
n a���

���

where En � CM�M�P is the matrix of column noise eigen�
vectors�

One problem with the MUSIC algorithm is that the number
of signals present must be estimated in order to determine the
rank of the noise subspace� This may be done by an examination
of the eigenvalues� or by the use of a model order algorithm
��
���
This paper will assume that the number of signals present has
been determined correctly�

C� Spatial Smoothing Algorithms

One assumption made above states that the incoming sig�
nals are mutually uncorrelated over the time of observation� If
all the signals present originate from di�erent transmitters or
are modulated with di�erent data streams they will only be
partially correlated� However� if they result from multipath re�
sponses from the same transmitter� the signals are �coherent�
and the assumption is invalid�

The signal subspace is always spanned by the the vectors
present in the matrix A� However� if the signals are coherent�
the matrix S becomes singular� so that some of its eigenvalues
are zero� This means that part of the signal subspace is indis�
tinguishable from the noise subspace� As a result� the observed
noise subspace is no longer orthogonal to the steering vectors in
the matrix A and the MUSIC algorithm fails�

To overcome these problems� a technique called spatial
smoothing�SS�
�� has been developed to allow the MUSIC al�
gorithm to be applied to the coherent signal case� The algorithm
was originally designed only for uniform linear array �ULA� geo�
metries� The basic idea is to form covariance matrices from sub�
sets of the array � which is equivalent to partitioning the original
covariance matrix� If there are K subarrays� each subarray is of
size L � M �K � 
 and the partition or submatrix for the kth

subarray is the matrix F �k�RF �k�T � The matrix F �k� � CL�M

is de�ned by	

F �k�ij �

�

 if j � i� k � 
 and 
 � i � L
� otherwise

���

The notation Fij denotes the ith row and jth column element
of the matrix F � The partitioned matrices are used to form a
smoothed matrix RS � CL�L� which is calculated as follows	

RS �



K

KX
k��

F �k�RF �k�T ���

where F �k�T denotes the transpose of F �k�� Clearly� the size of
the covariance matrix and thus the performance of the MUSIC
algorithm is traded for the ability to resolve coherent sources�
In order to resolve P coherent sources� an array containing at
least �P elements is required� In a similar way� it is very simple
to show
�� that to resolve P coherent sources� it is required to
average over at least P independent submatrices�

Soon afterwards� it was reported
�� that an additional tech�
nique called forward�backward spatial smoothing �FBSS� can
be used to improve performance� The FBSS technique applies
forward�backward smoothing �FBS� to the forward and back�
ward covariance matrices RF and RB to form a matrix Rave as
shown	

Rave �



�
�RF �RB� �




�
�R� JR�J�

�



�
�R�

�
���

� � � � � 

� � � � 
 �
���

� � �
���

���

 � � � � �

�
���R�

�
���

� � � � � 

� � � � 
 �
���

� � �
���

���

 � � � � �

�
���� ���

where R� denotes the complex conjugate of R� The matrix
Rave is then spatially smoothed as required to form the FBSS
matrix RF�B �It has been shown
��
�� that to resolve P coher�
ent sources� as little as �P�� array elements may be required
to restore the rank of S� However� there are some situations
where FBSS behaves in the exactly the same manner as the SS
technique	 in these cases �P array elements are still required�
A geometrical interpretation of the two techniques is shown in
�gure 
� The SS algorithm forms sub�matrices by working in
the forward direction only� while FBSS uses sub�matrices from
both directions�

D� Statistical Analysis of the MUSIC Algorithm

Determining the performance of the MUSIC algorithm� with
or without spatial smoothing techniques applied� has been the
subject of several papers in the last few years� There are two
main approaches to this subject�

The �rst method is to determine a resolvability criterion for
the MUSIC algorithm

��
�� � that is to �nd the conditions un�
der which two closely spaced sources will be resolved as two sep�
arate peaks� rather than combining to form one peak� However�
this type of analysis is usually restricted to the case of two
sources and will not be considered in this paper�

A more general technique for analysing the MUSIC algorithm
is to derive an equation for the variance of the signal peaks of
the MUSIC spectrum
��

��

��� One useful form of the variance
equation for the unsmoothed MUSIC algorithm is given in 
���
Denoting the error in the estimate of the bearing of the xth

signal as ��x� the asymptotic variance of that error is given by
the equation	

E
���x� �
��

Nd���x�
f
S���xx � ��
S���AHA���S���xxg ���

The scalar value d���� is given by the matrix product
�fdH���EnE

H
n d���g� where d��� is the Brandwood vector de�

rivative of a���

��� S�� denotes the matrix inverse of S� For
large values of the signal�to�noise�ratio �SNR� with mutually un�
correlated sources� the variance is inversely proportional to the
SNR of the desired source� However� as the correlation between
the sources increases the matrix S�� becomes ill�conditioned
and the variance can become very large�

The equivalent equation for the MUSIC algorithm combined
with spatial smoothing techniques is more complex� The results
have been obtained by Rao and Hari
�� and for spatial smooth�
ing the equation is	

E
���x� �
�

d���x��NK�



KX
p�q��

�HR�p	 q�� 
HN�q	 p�
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�

�Ref

KX

p�q���p��q

�HN�p� q�� �HN�q� p��g� ���

where Re denotes the real part of a complex value� The matrix
R�p� q� is given by F �p�RF �q�T � � and � are de�ned as	

� 
 EnE
H
n dS��x� and � 
 US�

��
S UH

S aS��x� ��
�

The matrix US � CL�P contains the P signal eigenvectors
of the smoothed covariance matrix RS� �S � RP�P is a di�
agonal matrix containing the P smoothed signal eigenvalues�
The matrix N�p� q� is de�ned in a similar way to R�p� q� with
N�p� q� 
 ��F �p�F �q�T � The vector aS is the steering vector
for the smoothed array and dS is its derivative� It has been
noted���� that the second part of equation ��� becomes very
small compared to the �rst part at high SNRs� The vector �
may be expressed as	

� 
 �A�
S �

HS��S ix ����

where SS is the smoothed signal matrix and AS is the matrix
of smoothed steering vectors� The vector ix � C��P is the
xth column of the identity matrix IP � and the notation A�

denotes the pseudo�inverse of A� Expanding the matrix R�p� q�
as F �p�ASAHFT �q� �N�p� q�� equation ��� may be written as	

E����x� 

��

NKd���x�
f�S��S �xx � ���S��S �AH

S AS�
��S��S �xxg

�
�

d���x��NK�
�

KX

p�q���p��q

�fS��S B�p���HSB�q���S��S gxx

��HN�q� p��� � �HN�p� q�� �HN�q� p��

� Ref�HN�p� q�� �HN�q� p��g� ����

where B�q��� � CP�P is a diagonal matrix� given by	

B�q��� 
 AHF �q�T �A�
S �

H 


�
���

b� 
 � � � 


 b� � � � 

���

���
� � �

���

 � � � 
 bP

�
��� ����

The pth diagonal entry of B� bp� depends on the phase shift
between the steering vectors aH��P �F �q�

T and aHS ��P �� For the
FBSS case� the matrix SS would be replaced by the equivalent
signal matrix SF�B in the equations above� The �rst term of
equation ���� is equivalent to equation ��� and the other terms
are cross terms to compensate for the formation of RS from
partitions of R�

E� Analysis of the Covariance Matrix

Equations ��� and ���� explicitly show that the performance
of the MUSIC algorithm with or without smoothing techniques
is proportional to entries of the inverse matrices of S� SS or
SF�B � Therefore� if one looks at what the smoothing techniques
do to the eigenvalues of these matrices� it should be possible
to explain the major e�ects observed in the behaviour of the
MUSIC algorithm� In the analysis of the matrix eigenvalues�
a useful criterion is the condition or eigenvalue ratio �EVR��
which is de�ned to be	

EVR 

�max

�min
����

where �min and �max represent the smallest and the largest
eigenvalues� respectively� of the given matrix� To make legit�
imate comparisons� the received signal powers should be kept
constant	 other parameters such as signal bearings and phase
may then be varied to see the e�ect on the EVR� If the EVR is
small� the columns of S and hence the underlying signals are ap�
proximately uncorrelated� which suggests MUSIC will perform
well� If the EVR is large� the matrix is close to being singular
and MUSIC will perform poorly� In terms of the variance equa�
tions� the scalar value ��	�min� is the largest eigenvalue of S

��	
the more ill�conditioned the S matrix is� the larger the variance
of the MUSIC bearing estimates�
Similarly� the variance equations involve the inverse of the

matrix AHA �or AH
S AS�� which is altered as the source bear�

ings change� When the sources are su�ciently spaced� the o��
diagonal terms of this matrix are small� so that the eigenval�
ues are all approximately unity� However� when the sources
are closely spaced� the o��diagonal terms become large and the
EVR of AHA becomes very large�
In the general case of P coherent sources� the matrix S is of

the form	

S 


�
���

s�� s�s�e
j������ � � � s�sP e

j����P �

s�s�e
�j������ s�� � � � s�sP e

j����P �

���
���

� � �
���

s�sP e
�j����P � s�sP e

�j����P � � � � s�P

�
���
����

The amplitude of the pth source is denoted as sp and the
scalar 
�i� j� indicates the phase at the reference sensor between
sources i and j� For the rest of this correspondence� the refer�
ence for the phases 
�i� j� will be placed at the centre of the
ULA�

E�� Spatial Smoothing

For spatial smoothing� K sub�matrices Rk are formed from
L element subarrays and are averaged to form a smoothed co�
variance matrix RS� The reference for the smoothed steering
vector aS��� will be de�ned to be at the centre of the array� so
that	

aS��� 
 �e�j�
L��
�

�� cos���� e�j�
L��
�

�� cos���� � � � � ej�
L��
�

�� cos����T

����
This de�nition may be used in combination with results
from����to show that the ith row and jth column entry of the
smoothed signal matrix SS is given by	

�SS�ij 
 sisje
j��i�j� �

K

K��X
k��

e�j���K�������k���cos��i��cos��j��

����
The summation term is real for both even and odd L	 it will
be denoted as c below� The behaviour of this cross�correlation
value has been analysed extensively in ����� The magnitude of
�SS�ij generally decreases as K increases� so that the EVR of
SS will also improve� The rate of the decrease in c with K
depends on the source bearings and their separation� For the
simple case of two sources� the matrix SS is given by	

SS 


�
s�� s�s�ce

j������

s�s�ce
�j������ s��

�
����

The eigenvalues of the smoothed signal matrix SS are given by	
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det�SS � �I�� � � ����

This equation leads to a quadratic equation in �� applying the
formula for the roots of a quadratic equation gives�

� �
�s�� � s���

	
�

�

	

p
�s�

�
� s�

�
� 	s�

�
s�
�
�	c� � �� �	��

The eigenvalues of SS depend on the value c
 If If c is close
to one� � has roots near � and �s�� � s��� � if c is small� the
eigenvalues are close to s�� and s��
 It is useful to note that
the eigenvalues do not depend on the phase term ���� 	�� which
suggests that varying the signal phases will not signi�cantly
a
ect the variance of the SS algorithm


E
	 Forward�backward Spatial Smoothing

To simplify the analysis of forward�backward spatial smooth�
ing� spatial smoothing is applied as before
 The forward�
backward smoothing may be applied to the resulting forward
and backward matrices to form the �nal covariance matrix�
RF�B 
 Thus�

RF�B �
�

	
�RS � JR�

SJ�

�
�

	
�ASSSA

H
S � JA�

SS
�

SA
T
SJ� � ��I

�
�

	
�AS�SS � S�S �A

H
S � � ��I

� ASSF�BA
H
S � ��I �	��

The third line of the above formula follows because JQ� � Q�
etc
 Therefore� the value of �SF�B�ij is given by�

�SF�B�ij � �SS�ij � �S�S�ij � sisjc cos ��i� j� �		�

The magnitude of the cross�correlation term can lie between
sisjc and zero� depending on the relative signal phase ��i� j�

In the case of two sources� SF�B is given by�

SF�B �

�
s�� s�s�c cos���� 	�

s�s�c cos ���� 	� s��

�
�	��

Solving the eigenvalue equation as before gives the values of ��

� �
�s�� � s���

	
�

�

	

p
�s�

�
� s�

�
� 	s�

�
s�
�
�	c� cos������ 	�� � ���

�	��
For two coherent signals� the variance of the FBSS method

clearly depends on the relative signal phase ���� 	�
 If ���� 	� �
�o� ���o� the matrix S � S�� so the o
�diagonal terms of SF�B
are not cancelled� leaving the EVR identical to the spatial
smoothing case
 This means the error variance will be the same
as for spatial smoothing
 Alternatively� if ���� 	� � ��o� 	��o

radians� the o
�diagonal terms of SF�B cancel completely� so
that the EVR reaches a minimum
 The improvement that may
be o
ered by FBSS depends on how well SS alone has reduced
the magnitude of the correlation c
 Similarly� for the FBS al�
gorithm alone� the performance of the MUSIC algorithm can be
improved� except in the case where ���� 	� � �o� ���o��	�


In general� the EVR of a forward�backward smoothed covari�
ance matrix is less than or equal to that of the original smoothed
or unsmoothed covariance matrix���
 Depending on the signal
phases� the FBSS algorithm can o
er signi�cant improvements

in scenarios where spatial smoothing has failed to reduce signal
correlation� particularly when signals are closely spaced


The phase dependence of the FBSS algorithm means that in
some cases� FBSS with �P�	� subarrays is insu�cient to restore
the full rank of the signal matrix SF�B ���
 Indeed� if all the
relative phase terms ��i� j� are �o or ���o� the algorithm per�
forms in the same manner as SS with the same subarray size L

However� this is an extreme case� applying FBS to a spatially
smoothed covariance matrix usually improves the performance
of the MUSIC algorithm and in some cases� FBSS may be able
to resolve the same number of sources using a larger subarray
size than SS
 Where the number of sources is larger than half the
number of antenna elements� it provides the only opportunity
to resolve all the sources


III� Results and Discussion

In this section� the equations quoted for the MUSIC al�
gorithm and for the spatial smoothing techniques will be ap�
plied to particular scenarios to illustrate the points made in the
analysis of spatially smoothed covariance matrices
 It should
be pointed out� however� that equation ��� is very complex and
the above analysis is only intended to explain the major e
ects
observed in the behaviour of SS�FBSS
 In all the simulations
the number of elements M in the uniform linear array was eight
and each signal�s SNR was set to be ��dB
 All signals were gen�
erated using complex exponentials of constant amplitude and
one hundred snapshots were used to form covariance matrices
in each case


Figures 	 and � show the e
ect of signal correlation on the
variance and the S matrix EVR for various algorithms
 There
are two sources� the �rst at a bearing of ��o �which is de�ned
to be perpendicular to the array� and the second at ��o
 The
correlation between the two sources is varied from zero to one
and the variance plots are all for the �rst source� though the
variance of the other source behaves in a similar manner
 It
is noticeable that behaviour of the EVR curves in �gure � is
similar to that of the variance curves in �gure 	
 However� it
should be pointed out that it is only meaningful to compare
EVR graphs whose subarray size� L� is the same


The spatial smoothing algorithm� formed from two sub�
matrices �K � 	� so that the subarray size L � �� is reasonably
robust to signal correlation� although in this case the FBS al�
gorithm with L � � out�performs it at low signal correlation

The performance of the FBS algorithm is less clear�cut for high
correlations
 The best possible outcome occurs when the rel�
ative signal phase is ��o as shown on the graph
 The variance
for a relative signal phase of ��o is also shown� it is inferior to
the previous curve� but better than that for a phase shift of �o�
where FBS cannot reduce the signal correlation so it gives the
same performance as for MUSIC without FBS
 The fact that
the variance depends considerably on the relative signal phases
means that the variance curve for a given phase can lie anywhere
in the region spanned by the three curves


The next two �gures� � and �� shows the e
ect of angular
separation on SS� FBS� FBSS with two coherent sources and
MUSIC with two uncorrelated sources
 The �rst source is at a
bearing of ��o and the bearing of the second source is chosen
to give the correct angular separation
 The variance of the ��o

source is plotted only for angular separations up to ��o� as the
bearing of the second source approaches �o or ���o� �end�re�
e
ects mean that the variance of the bearing estimate increases
without bound
 The EVR of the matrix AHA has been plotted
for L�� in �gure � �denoted AhA� to show its e
ect on the
MUSIC algorithm
 The EVR of AHA and thus the variance
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of the MUSIC algorithm is large for closely spaced sources� as
one would expect� but reduces to an approximately constant
level for an angular separation of greater than ��o or so� The
reference sensor was set at one end of the ULA� so that the
relative phase of the two signals at the middle of the array
changes� This emphasises the relative phase dependence of the
FBS algorithm� As expected from the analysis� the performance
of FBS is oscillating between that of MUSIC with no signal
correlation and MUSIC with a correlation factor of � � ie in�nite
EVR and variance�

The SS algorithm with L � � improves more slowly than the
MUSIC algorithm with no correlation� as the signal separation
is increased� This is because the EVR of both the matrix S and
the matrix A depend on signal separation� The FBSS technique
with L � � generally performs better than SS and for closely
spaced sources the variance can be improved a lot according to
the relative signal phase�

Figures 	 and � show the e
ect of signal phase on the per�
formance of SS� FBS� FBSS algorithms and MUSIC �with zero
correlation�� The two sources are at 
	o and ��o and their rel�
ative phase at the centre of the ULA varies from �� �	�o� The
variance is plotted for the source at 
	o and the performance
of the SS algorithm with L � � is approximately constant with
the signal phase� The FBS technique is again shown to provide
improved performance for some signal phases � the sinusoidal
variation in the eigenvalues show up in the EVR of the S matrix
and in the variance curve� This type of behaviour is also shown
in the results of Chang and Yeh����� In a similar manner� the
FBSS algorithm with L � � is seen to perform as well as or bet�
ter than SS� with the variance also sinusoidally changing with
signal phase�

The analysis of FBSS in the previous section showed that its
performance will normally be as good as or better than SS with
the same amount of spatial smoothing and this is demonstrated
in these results� Similarly� FBSS with less than P subarrays for
P coherent sources �in the case of �gures 	 and �� simply the
FBS technique with L � �� still has some chance of resolving
the sources� unlike the SS algorithm�

It seems likely that the variations in phase will a
ect the per�
formance of the FBSS technique for larger numbers of signals�
and this e
ect is shown in �gures � and 
� In the �gure ��
the FBSS algorithm with L � � is attempting to resolve three
sources at 	�o� ���o and 
�o� The phases of the �rst two sources
at the centre of the ULA are varied with respect to that of the
third source� which is �xed at �o�The theoretical variance is
shown for the source at ���o� When the relative phases of the
three signals are �o or ���o� the algorithm cannot restore the full
rank of the signal matrix and the variance is seen to rise towards
in�nity� A similar e
ect is shown in the �gure 
� In this case�
four signals are impinging on the array from bearings 	�o� ���o�
��o and ���o� The phases of the �rst two sources are varied
with respect to those of the second two sources� which are both
�xed at �� The theoretical variance shown is for the source at
��o� Here the situation is more complex� if the relative phases
of three of more sources coincide at � or ���o� the variance of
those sources will again rise to in�nity� In both cases� there is a
reasonable statistical chance of resolving all sources� but where
FBSS with L � � fails� the amount of smoothing required for
FBSS must be increased towards that required by SS�

The number of subarrays required in SS�FBSS algorithms to
minimise the variance of the MUSIC algorithm is an interesting
problem� Figure �� shows the variance of spatial smoothing for
di
erent numbers of subarrays vs signal separation� As in �gure
�� the �rst source is at 
�o and the bearing of the other source

is varied to obtain the correct angular separation� In this case�
there is little di
erence in performance for the di
erent subarray
sizes in general� For closely spaced sources� it seems that the
improvement in the condition of S obtained by increasing K is
cancelled out by the smaller e
ective array size� No single array
size performs signi�cantly better than all the others under all
conditions� so it seems simplest to pick one subarray size that
performs reasonably well� such as L � ��
From the above analysis� it is clear that to resolve P sources

with P subarrays� the FBSS algorithm is usually preferable to
the SS technique� In addition� FBSS may resolve P sources
using less than P subarrays� unlike the SS technique�

IV� Conclusion

The MUSIC algorithm performs robustly in the presence of
uncorrelated signals and signals with small correlation factors�
When the correlation factor tends towards one� the signal scen�
ario resembles that of coherent multipath returns� or smart sig�
nal jamming� In the case of coherent signals� the MUSIC al�
gorithm is unable to resolve the di
erent bearings� even at high
SNRs� In this case� an alternative approach� such as spatial
smoothing� must be used�
The performance of spatial smoothing techniques has been

qualitatively linked to the eigenvalue ratio of the signal matrix
S� The performance of spatial smoothing depends on the bear�
ings and separation of the sources� The FBSS algorithm with
the same smoothing as SS has the potential to provide better
estimates of the source bearings� depending on the relative sig�
nal phases� In some cases� the FBSS can resolve P sources with
less than P subarrays� unlike the SS technique� Theoretical and
simulation results have been presented to con�rm these points�
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The Bearing Variance vs Signal Phase for 4 signals
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Appendix B

Evaluating The Probability p�A��

In order to evaluate the probability p�A��, the mean and variance of the Kth eigenvalue lK and the

noise eigenvalue ���n are required. The probability value is then simply given by equation 3.7, where �

is defined as:

� �
��N ���M � �K � 
��N ���K

���K
(B.1)

The parameter ��N � is defined in equation (3.6) and the following text. The parameter N denotes the

number of snapshots used to form the estimated covariance matrix and ��K is equal to:

��K � lnf �
�
n

�K
�
 �




M �K � 

�
�K
��n

� 
��M�K��g (B.2)

The standard deviation term ���K is the square root of the following variance equation:

����K � �
����K�

���n
������n�

� � �
����K�

��K
�����K�

� (B.3)

where the terms ����n�
� and ���K�� denote the variance of ��n

� and �K respectively. The derivative

terms are given as follows:

����K�

���n
�

�M �K����n � �K�

��K � �M �K���n��
�
n

and
����K�

��K
�

�M �K���K � ��n�

��K � �M �K���n��K
(B.4)

If the estimated covariance matrix follows a Wishart distribution with N data snapshots, the variance

term ����K reduces to �a��N ��
��
��M�K��� The constant a is given by �M�K���K���n����K�

�M �K���n�.
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Appendix C

Derivation of Results for Chapter 6

C.1 Finite Fading Effects on The Bit Error Ratio

The equation for DPSK de–modulation of a single tap fading signal is given by:

D�n� � �fz�
� n�z��
� n� 
�g (C.1)

where D�n� denotes the decision variable and z�
� n� denotes the noise–corrupted tap output for the nth

symbol. As a result, the effective SNR of the signal measured at the decision variable D�n� depends

on the real part only of the auto–correlation of the underlying signal, with the time delay set to one

symbol period ts. Denote the required signal auto–correlation value as R�	�� ts�, where R�� is given by

equation (6.8) or (6.11) with a set to 1. The time delay 	� denotes the excess time delay of the given

tap relative to the first incoming multipath. The term �
� jR�	�� ts�j� denotes the irreducible equivalent

noise power due to the finite fading effects. The signal SNR for the variable D�n� is therefore given by:

SNR �
�fR�	�� ts�g

�
� jR�	�� ts�j� � ����S�
(C.2)

where S denotes the mean signal power measured on one symbol interval only and �� denotes the white

noise power present. Clearly, the higher the value of 
m, the lower the real part of R�	�� ts� which

leads to a high irreducible BER because of tracking errors. Figure C.1 shows the performance of a base

station receiver with one antenna using a single tap RAKE filter for three different fading frequencies.

The signals were generated using the classical Doppler fading model. Simulation results are shown as

points and theoretical results using equation (C.2) as lines.

C.2 Derivation of the Nakagami Fading Equation

The Nakagami m–parameter for a fading signal is defined as the inverse normalised variance of that

signal. For the xth row and yth column entry of the covariance matrix �R�
� formed from N snapshots

of the channel vector h�
� t�, the m–parameter is given by:

m �
E� �R�
�xy��

E� �R�
�xy �R�
�xy��E� �R�
�xy��
(C.3)
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Figure C.1: The BER Performance of a Single Tap RAKE Filter

where �R�
�xy is the xth row and yth column entry of �R�
�. Now the denominator of equation (C.3) is

given by:

E� �R�
�xy �R�
�xy� �
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N�
�N� �N �

NX
i��

NX
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R��� �i� j�ts�R��� �j � i�ts��

(C.4)

where R��� �i � j�ts� is defined in section C.1. Substituting equation (C.4) into (C.3) and cancelling

the �R�
�xy�� term gives equation (6.22).

m � ��
�N � � �
�N��
NX

i�j�i ��j

R��� �i� j�ts�R��� �j � i�ts��
�� (C.5)
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C.3 Derivation of the Spatial Smoothing SNR Equation

In this case the receiver has identified J multipath bearings f�jg. There are J signals to be combined by

ideal maximal ratio combining (MRC), and their amplitudes are given by faH��j�h�
� t�g. The mean

noise power of the jth signal is simply aH��j�a��j�, assuming that the noise power at each antenna is

scaled to unity. Before combining, each signal amplitude is scaled by the complex conjugate of itself

(namely hH�
� t�a��j� for the jth signal), so that the jth scaled amplitude is aH��j� �R�
�a��j�. Sim-

ilarly, the noise power for the jth signal becomes aH��j � �R�
�a��j�aH��j�a��j�. The scaled signals

are simply added, so that the signal amplitude at the output of the MRC is
PJ

j�� a
H��j� �R�
�a��j�.

The mean noise power at the output of the MRC must take account of the fact that the J inputs to the

MRC are generally correlated in some way, according to the bearings f�jg. The cross–correlation of the

noise at the jth input with that at the kth input is simply aH��j�a��k�: after the signals are scaled, this

term becomes aH��j�a��k�aH��k� �R�
�a��j�. Hence the SNR at the output of the MRC is:

SNR �
�
PJ

j�� a
H��j� �R�
�a��j���PJ

j��

PJ
k�� a

H��j�a��k�aH��k� �R�
�a��j�
(C.6)

Equation (C.6) may be simplified easily to obtain equation (6.26).
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Appendix D

Derivatives for The Taylor Series
Expansion

In order to evaluate the expressions given in equation (7.9), the derivatives of X and Y in terms of the

independent variables �, ��, �� and � are required. In order to calculate them, it is possible to use direct

expressions for X and Y ; alternatively, the calculations may be simplified through the use of the chain

rule [187].

To begin with, X and Y may be expressed in terms of R and �� as:

X � R cos �� Y � R sin �� (D.1)

This means that the derivatives become:

�X

��
�

�R

��
cos ��

�Y

��
�

�R

��
sin ��

�X

���
�

�R

���
cos �� �R sin ��

�Y

���
�

�R

���
sin �� � R cos ��

�X

���
�

�R

���
cos ��

�Y

���
�

�R

���
sin ��

�X

��
�

�R

��
cos ��

�Y

��
�

�R

��
sin �� (D.2)

In order to avoid un-necessary complication the next task will be to take derivatives of R, as expressed

in equation (7.8), in terms of the independent variables A, B and C. If the � sign is substituted by a

positive sign, the derivatives become:

�R

�A
�

B

�A�
� B� � �AC

�A�
p
B� � �AC

�R

�B
�




�A
�

Bp
B� � �AC

� 
�

�R

�C
�

�
p
B� � �AC

(D.3)
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Alternatively is the � sign is changed to be negative, the derivatives are altered to:

�R

�A
�

B

�A�
�

B� � �AC

�A�
p
B� � �AC

�R

�B
�

�

�A

�
Bp

B� � �AC
� 
�

�R

�C
�


p
B� � �AC

(D.4)

Next, the derivatives of the expressions in equation (7.7) for A,B and C with respect to x, y and � may

be calculated. The results are:

�A

�x
� ��� �A

�y
� �y

�A

��
� ��x� ��

�B

�x
� 
�x� � ���

�B

�y
� 
��y

�B

��
� �x� � �y� � ��x� 
���

�C

�x
� �x��

�C

�y
� �y��

�C

��
� ��x� � ��y� � ��� (D.5)

In the derivation of the algorithm, the co-ordinates �x� y� are expressed relative to the LOS path as

x–axis. So, the derivatives of x and y in terms of the remaining variables �, �� and �� are:

�x

��
� cos��� � ���

�x

���
� � sin��� � ���

�x

���
� �� sin��� � ���

�y

��
� sin��� � ���

�y

���
� �� cos��� � ���

�y

���
� � cos��� � ��� (D.6)

All the results necessary for determining the derivative values have been presented in equations (D.2),

(D.3), (D.5) and (D.6). To obtain the correct result, the chain rule must be applied to all possible

derivatives at each stage. As an example, the derivative �X��� may be calculated as follows:

�X

��
�

�R

��
sin ��

� �
�R

�A

�A

��
�
�R

�B

�B

��
�
�R

�C

�C

��
� sin ��

� �
�R
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�
�A

�x

�x

��
�
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�y

��
� �
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�B
�
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�x
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��
�
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�y
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��
� �

�R

�C
�
�C

�x

�x

��
�
�C

�y

�y

��
�� sin ��

(D.7)
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