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Abstract

The main topic of thisthesisis the use of bearing estimation techniques combined with multiple antenna elements
for spread spectrum receivers. The motivation behind this work is twofold: firstly, this type of receiver structure
may offer the ability to locate the position of a mobile radio in an urban environment. Secondly, these algorithms
permit the application of space division multiple access (SDMA) to cellular mobile radio, which can offer large
system capacity increases. The structure of thesereceivers may naturally be divided into two parts: signal detection
and spatial filtering blocks.

The signal detection problem involves locating the bearings of the multipath components which arise from the
transmission of the desired user'ssignal. There are a number of approachesto this problem, but here the MUSIC
algorithm will be adopted. This algorithm requires an initial estimate of the number of signals impinging on
the receiver, a task which can be performed by model order determination techniques. A major deficiency of
MUSIC isits inability to resolve the highly—correlated and coherent multipath signals which frequently occur in
a spread spectrum system. One of the simplest ways to overcome this problem is to employ spatial smoothing
techniques, which trade the size of the antenna array for the ability to resolve coherent signals. The minimum
description length (MDL) is one method for determining the signal model order and it can easily be extended to
calculating the required degree of spatial smoothing. In this thesis, an approach to analysing the probability of
correct model order determination for the MDL with spatial smoothing is presented. The performance of MUSIC,
combined with spatial smoothing, is also of great significance. Two smoothing algorithms, spatial smoothing and
forward—backward spatial smoothing, are analysed to comparetheir performance.

If SDMA techniques are to be deployed in cellular systems, it is important to first estimate the performance
improvements available from applying antenna array spatial filters. Initially, an additive white Gaussian noise
channel is used for estimating the capacity of aperfect power—controlled code division multiple accesssystem with
SDMA techniques. Results suggest that the mean interference levels are almost halved as the antenna array size
doubles, permitting large capacity increases. More realistic multipath models for urban cellular radio channels
are also considered. If the transmitter gives rise to a number of point source multipath components, the bearing
estimation receiver is able to capture the signal energy of each multipath. However, when a multipath component
has significant angular spread, bearing estimation receivers need to combine separate directional components, at an
increased cost in complexity, to obtain similar resultsto a matched filter.

Finally, a sourcelocation algorithm for urban environmentsis presented, based on bearing estimation of multipath
components. This algorithm requires accurate knowledge of the positions of the major multipath reflectors present
in the environment. With this knowledge it is possible to determine the position of a transmitting mobile unit.
Simulation results suggest that the algorithm is very sensitive to angular separation of the multipath components
used for the source location technique.
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Chapter 1
Introduction

Inrecent years, there has been an explosion of interest in wireless communi cation services. The potential
of wireless is to alow anyone to communicate by voice or digital data, without being limited by the
fixed telephone network. In practice, there is a diverse range of communications products for a wide
variety of applications, from cellular telephones to high speed wireless data networks. There are many
issues involved in the design of these systems, but generally the prime motivations are to provide an
acceptable product to minimise costs and maximise profit. In the case of cellular communications, the
availability of VLSI technology which isfast, powerful and inexpensive has driven designersto produce
mobile tel ephones which employ complex signal processing techniques. Thisisareply to the perceived
demand for flexible, high—capacity cellular networks.

This thesis will consider the application of two military—derived techniques to mobile cellular radio
systems, namely spread spectrum modulation and antenna arrays. The necessary algorithmsto apply
antenna arrays to spread spectrum signalswill be described in thisthesis. Some studies of the improve-
ment in the capacity of cellular networks using these techniques are also described. Urban conurbations
provideavery hostile environment for cellular radio systems, so the performance of antennaarrays under
these conditionsis analysed. The urban radio channel can provide a means for locating the position of
a given mobile radio, and an algorithm is presented for this purpose. This chapter will commence by
summarising the current state of wireless technology. It will focus on cellular radio systems, looking at
the techniques that are currently employed, to see why spread spectrum and adaptive array techniques
may be of use. Following this, a brief summary of the main areas of research documented in thisthesis
will be presented. To conclude, the structure of the thesisitself will be described.

1.1 Wireless Personal Communications

The recent devel opment of wireless communications for personal and business use across the world has
led to a mgjor proliferation of systems and standards. For a full description and discussion of these
systems, thereader isreferred to the IEEE Communications Magazine special issues of December 1992
and January 1995 as well as the Proceedings of the IEEE special issue September 1994. The recent
paper of Cox [1] isa so recommended. Here the main categorieswill be briefly mentioned, before going
onto look at cellular systemsin more detail.

Currently, wireless communications systems may be broadly subdivided into 6 or 7 categories. These
include:



(). Wireless Local Area Networks (WLANS): These systems are designed for low mobility data
communications in indoor environments such as offices and factories [2]. Spread spectrum
techniques are widely used in these systems, because some of the early frequency alocations
released in the United States (US) for unlicensed WLAN operation (amongst other applications)
were the industrial, scientific and medical (ISM) bands. These permit transmissions of up to 1
watt, provided that spread spectrum modulation is used. However, the trend towards high speed
datalinks means that WLAN products are likely to move away from spread spectrum techniques.

(if). Wide Area Wireless Data SystemsThese productsprovidelow dataratedigital communications
tomobileusers. Thetwo best known networks[1] are Motorola SARDI S network, which operates
at 4.8 kb/s and Ericsson’s RAM network which provides a data rate of 8 kb/s.

(iii). Paging/Messaging SystemsThese are one way systems permitting short messages to be trans-
mitted to agiven user. High power base stations are used to reach mobile units, which can provide
long usage time from low power batteries.

(iv). Cordless TelephonesCordlesstechnology wasfirst developed inthe 1970sto permit atelephone
user to move around a room or building whilst making a call. A number of standards have
since been devel oped, such as the European digital CT2 and DECT protocols[3], to aleviate the
problem of illegal handsets; applications have also extended to data transmission and telepoint
networks. In Singapore and Hong Kong, cordless telepoint networks have been a commercial
success, providing alow power aternative to cellular systems.

(v). Satellite Systems: A few satellite communications networks currently exist, including Qual-
comm’s OMNItracs messaging system, which employs spread spectrum techniques. A number of
proposalsfor satellite personal communication systemsare currently being pursued. Most of these
technologiesal so employ spread spectrum techniques, with the exception of Motorola’ sIRIDIUM
network [4]. These systems are intended to provide cellular coverage in areas of low population
density: however problems of low system capacity along with severe propagation losses due to
shadowing from buildings, mountains, etc. may challenge the economic viability of these systems.

(vi). Cellular Radio Systems: Historically, cellular radio was the first means by which mobile tele-
phony could be provided. These systemsmay be characterised by high power and high complexity
base stationsand mobileradios: these pointsare anecessity when providing adequate high mobil-
ity coverage in a variety of environments. The signal processing requirements of modern digital
cellular systems are such that most of the handset hardware is devoted to these tasks.

The next section will ook in more detail at cellular systems and standards, in particular at the methods
used to permit a large number of users to communicate simultaneously.

1.2 Cellular Telephony

In order for a number of radio handsets to communicate simultaneously with a base station, their signals
must be separated in some way. There are four well known methods to do this:



(). Frequency Division Multiple Access (FDMA): Thismethod permitsanumber of usersto operate
simultaneously by allocating each transmitter a separate radio frequency (RF) carrier or channel.
The carriers are spaced sufficiently apart to prevent mutual interference occurring.

(ii). Time Division Multiple Access (TDMA): In this case all users transmit using the same RF
carrier(s), but are allocated a unique time slot during which they alone may transmit.

(iii). Code Division Multiple Access (CDMA): All users transmit over the same RF carrier(s) and
may transmit at the same time. Each user isidentified by a unique code which is used to increase
the bandwidth of the data transmission.

(iv). Space Division Multiple Access (SDMA)AII usersmay transmit using one or more of the above
protocols. Users operating simultaneously at the same RF frequency may be separated at the
receiver according to their spatial location. Antennaarray receivers are the most common method
to exploit SDMA in practical analogue and digital networks.

The first cellular networks, such as the American advanced mobile phone service (AMPS) and the
European total access communications system (TACS) employed analogue FDMA. Each user was
alocated a different radio frequency (RF) channel for transmission, so that the number of channels
specified system capacity. However, the efficiency of these systems, in terms of the traffic carried per
unit of area and bandwidth, was low. In order to improve the situation, a second generation of cellular
systems employing digital voice coding were developed, such as the European GSM system and the
US 1S54 standard. These systems employ a combination of FDMA and TDMA access protocols to
accommodate more users than analogue systems.

Thereareanumber of cellular networkscurrently inuse around theworld, based on conflicting standards.
Togiveanimpression of thecurrent situation, thenetworksin usein Europeand Americawill bediscussed
below:

(). Europe: Two typesof analogue network are currently used in Europe: TACS (inthe UK, ETACS)
operates in the 800-900 MHz RF band and the nordic mobile telephone (NMT) networks which
operate at the 450 and 900 MHz bands. Digital networks have been introduced recently and the
GSM system is successfully operated in the 900 MHz band across Europe. Each user generates a
coded voice data sequence of 22.8kbps; training sequences and guard bands are then added. Eight
users are time-multiplexed to give atotal data rate of 270.833kbps, which can be susceptible to
severe multipath propagation and inter—symbol interference: the training sequences are therefore
needed for equalisation purposes. A modified version of GSM has been specified for the 1800
MHz band under the name DCS-1800. Two DCS-1800 networks have been successfully launched
inthe UK and itis also deployed in Germany.

(ii). America: The analogue AMPS network, operating in the 800-900 MHz band, is pre—eminent
across America. In the United States, 1S-54 compatible digital networks have recently been
introduced in the AMPS bands. This system is upwardly compatible with AMPS and employs



the same channel data rate of 30 kHz. In 1993, the Telecommunications Industry Association
(TIA) released the |S-95 standard, which specifies a CDMA scheme based on spread spectrum
technologies: however, thissystem hasyet to be deployed inthe US. Licencesto operate 1800 MHz
band networksin areas across the US have recently been auctioned by the federal communications
commission (FCC). The accompanying equipment standards are currently being processed by a
joint technical committee of the TIA — there are seven systems being assessed, which are based
on 1S54, 1S-95 and cordless technologies [5].

Faced with this somewhat chaotic situation, the International Telecommunications Union (ITU) is
attempting to define the nature of communications services in years to come, through the future public
land mobile telecommunications systems (FPLMTS) programme. In Europe, research into thisfield is
being co—ordinated under the title universal mobile telecommunications systems (UMTS) [6,7]. The
UMTS programme envisages an unified standard for cellular, cordless, paging, private mobile radio and
low rate WLANS. The data rate may vary from 1 kb/s up to 2 Mb/s; the link quality will inevitably
vary according to the prevailing propagation conditions, but must meet the requirements of the particular
application.

In Europe, research into spread spectrum and CDMA techniques for the UMTS air interface is focussed
around the code division testbed (CODIT) [8]. A number of data rates up to 128 kb/s are being
implemented: initial results comparing CODIT with a rival TDMA testbed (ATDMA) suggest that
CDMA may have adight advantage for cellular applications[9]. Spread spectrum techniquesin general
arethe subject of considerabl e research — see, for example, the proceedings of the | EEE 3rd international
symposium on spread spectrum techniques and applications (ISSSTA) ' 94, held in Oulu, Finland. Two
recent issues of the IEEE Journal on Special Areas in Communications, May—June 1994, were also
devoted to the subject. Further discussion of thistopic will be deferred to Chapter 2.

SDMA techniques as such are not new: dual antenna space diversity techniques are commonly used in
cellular systems. However, the use of larger antenna arrays to properly exploit SDMA have only been
considered more recently [10,11]. A paper proposing passive source location techniques for cellular
systems [12] appears to have been the pre—cursor to renewed interest in SDMA for cellular systems.
Researchers have considered SDMA techniques for TDMA systems such as 1S54 [13] and for CDMA
systems [14, 15]. A US company, called Arraycomm, has been formed specifically to design SDMA
networks for cellular systems. Qualcomm, the company which developed the |S-95 standard, is also
funding research into SDMA techniques for their CDMA system [16]. In Europe, as part of the UMTS
programme, research is being conducted into SDMA techniques under the name TSUNAMI [17].

1.3 Summary of Main Research Areas

The main topic of thisthesis is the operation of an antenna array receiver for spread spectrum signals.
There are anumber of waysto operate such a system, but for thiswork a bearing estimation architecture
has been adopted. The signal processing task breaks down into two main areas. firstly, determining
the bearings of the incoming signals and secondly, picking out the desired signal components whilst



suppressing interference. The purpose of this exposition is to look at the algorithms involved and to
determine the performance improvements that might be obtained from this approach. A specific applic-
ation of this receiver to locating the position of a spread spectrum transmitter in an urban environment
isalso considered.

There are a very large number of algorithms documented in the literature which perform the task
of passive bearing estimation. From the available techniques, the MUSIC agorithm was selected as
it provides good resolution without excessive computational complexity. However, this algorithm is
known to perform poorly in the presence of coherent multipath signals. A simple solution exists to
overcome this problem, spatial smoothing, but at the expense of reducing the effective size of the
antennaarray. The performance of such techniquesis of considerable interest and will be studied in this
thesis. Algorithmsto estimate the number of signals present, in conjunction with the necessary degree
of spatial smoothing, are also considered. This is because the performance of MUSIC is often poor,
unless the correct underlying model order is known.

The bearing estimation techniques described in this thesis may be used to provide SDMA capability in
a cellular radio system. The improvement in capacity offered by such an approach is of interest and
has been the subject of considerable research recently. The capacity improvement available for simple
channel models will be considered, because closed form solutions are obtainable. The results obtained
by such methods provide only a simple approximation and more realistic channel models must also be
considered. The performance of antenna arrays under such conditionswill provide a more useful guide
to how they can be successfully operated in cellular systems.

High frequency (HF) multipath channel s have been exploited for many yearsto provide a sourcelocation
ability. If the angles of arrival of multipath components from a desired microwave source in an urban
area can be determined, analogous techniques may be devel oped for finding the transmitter’s position.
The feasibility of such an approach will be considered in thisthesis.

1.4 Thesis Structure

After this brief introduction, Chapter 2 will describe spread spectrum and antenna array techniquesin
more detail. The operation and behaviour of spread spectrum systems are described — more details of
CDMA schemes, such as1S-95, are also presented. The second half of this chapter isdevoted to antenna
array systems. An introduction to the wide variety of agorithms available for operating such receivers
isprovided. Techniques devised specifically for spread spectrum systems will also be considered.

Chapters 3 and 4 will move on to look at the operation of the MUSIC algorithm for performing bearing
estimation. Chapter 3 concentrates on the subject of model order techniques for estimating the number of
signalsimpinging on an antenna array. These algorithms are required in order to ensure that the proper
operation of the MUSIC algorithm. Spatial smoothing techniques are needed for situations where
coherent multipath components are present. It is possible to adapt model order algorithmsto estimate
the model order and the best degree of smoothing simultaneously: asymptotic results are presented for



the analysis of such an approach.

Thetopic of chapter 4isbearing estimation a gorithms. A number of techniquesareintroduced, including
the MUSIC algorithm. The performance of MUSIC is discussed in more detail and the subject of spatial
smoothing techniques is considered. The operation of MUSIC with spatial smoothing in multipath
environmentsis an important practical concern. Complex equations are available for the performance of
MUSICwith spatial smoothing: these are discussed with reference to the structure of the data covariance
matrix. Simulation results are also presented to back up the analysis.

Chapter 5 will focus on the performance of bearing estimation receivers placed in the base stations of
cellular systems. A simple line—of—sight channel is considered, along with the assumption of perfect
power control. Results for the performance of CDMA systems are presented and modified for the case
of antenna array receivers. Theoretical and simulation results are presented for the case of single cell
antenna array receivers. Thereis also some discussion of antenna array systems operating in multi—cell
CDMA systems.

Chapter 6 will look at the performance of cellular radio systemsin more complex multipath environments.
Redlistic channel models for antenna array systems are described, extending previous research in this
area.  Two different types of channel model are then discussed in more detail. Initialy, a point
source multipath channel is considered, with results obtained for the bit error ratio performance. Initial
simulation work for the case of multiple CDMA transmitters is also described. Secondly, the effect
of multipath components with a finite angular spread is considered, with a view to the effectiveness of
bearing estimation receivers in such situations.

In chapter 7, an algorithm to perform source location in a multipath environment is described. The
performance of this technique is of great importance and has been analysed through a first order
Taylor series expansion. Theoretical and simulation results are then presented to show the strengthsand
weaknesses of theal gorithm. A modification of the M USI C algorithmfor locating multi path components
in bearing and in time delay is described, in order to improve the accuracy of time delay estimates. A
method for locating a source without information about the local environment is also presented.

Finally, Chapter 8 will draw conclusions from the work that has been described in thisthesis. Thereis
discussion of the achievements and limitations of the results obtained. Suggestions for relevant further
work are also presented.



Chapter 2

Spread Spectrum and Adaptive Array
Techniques

Spread spectrum communi cations and adaptive array techniques are two disparate examples of techno-
logies that were originally developed with military applicationsin mind. Spread spectrum techniques
provide a low power method of communication that is difficult to intercept or to jam. Adaptive arrays
provide a means of nulling out undesired interference while still receiving a desired radar or communic-
ationssignal. However, the end of the cold war and the resulting peace dividend has driven researchers
in both fields to look for applicationsin the civilian sector. The increasing demand for universal mobile
communicationsand the availability of fast, powerful VLS| technology means that spread spectrum and
adaptive array techniques are now at the forefront of current research. This chapter will divide into
two main parts, dealing separately with spread spectrum and adaptive array techniques respectively.
The section on adaptive arrays will focus on mobile communications where possible, particularly where
spread spectrum techniques are also applied.

2.1 Spread Spectrum Communications

The first spread spectrum systems to be devised appear to have been driven by a desire for improved
accuracy inranging systems. Radar techniques became the subject of serious research in the late 1930s
leading to a forward—-ooking patent obtained in 1938 by Gustav Guanella of Brown, Boveri and Co,

Switzerland [18]. This specified the idea of performing ranging by a wide—bandwidth signal, with the
receiver using advanced synchronisation techniques to pick out signal returns. During the war, a patent
was also taken out for a frequency—hopping system to guide torpedoes[19].

The foundation of modern statistical communication theory was laid down in the work of Claude
Shannon [19], exemplified in the Hartley—Shannon theorem. This specified the channel capacity C-, in
terms of system bandwidth B~ Hz and signal to noise ratio SNR as follows:

Cc = Be 10g2(1 + SNR) (21)

The channel capacity may be thought of as the maximum possible data rate of any theoretical system.
Shannon’s work employed random signalling and he noted that maximum capacity would be obtained
by a noise-like waveform with uniform power spectral density across the bandwidth B¢ . Within afew



years, many of the familiar spread spectrum techniques had been developed, mostly in secret for the
US Department of Defence. In 1949, John Pierce suggested the idea of asynchronous code division
multiple access (CDMA) [19]. In the early 1950s, direct—sequence spread spectrum techniques were
first developed under the the title of noise modulation and correlation (NOMAC). A hardware prototype
of this technique was called the FOC and in 1956, Price and Green devel oped the concept of the now
ubiquitous RAKE filter [20] to improve communication over multipath high frequency (HF) channels.
For a more detailed survey of the early history of spread spectrum technology, which was mainly of a
military nature, the reader isreferred to [18,21, 22] and the recent update [19].

In more recent times, spread spectrum has been used in the tracking and data relay satellites system
(TDRSS), which was utilised for communications between the space shuttle and ground control, via
two geostationary satellites[23,24]. CDMA techniques are used in the US military’sglobal positioning

system (GPS) [23, Chapter 13] [25, Chapter 8], which is now accessible to civilian users. There are 18
GPS satellites in orbit, placed such that anyone on earth may always access at least 4 satellites. The
satellites transmit Gold codes which may be used to calculate the relative delays to each satellite and
hence determine the position of the GPS radio[23]. The US military has also devel oped the joint tactical

information distribution system (JTIDS) [23] and the single channel ground and airborne radio system

(SINCGARS) [26], both of which employ spread spectrum techniques.

Before proceeding to discussions on spread spectrum systems, the term itself must be defined. The
method of [27] will be followed here, because of its simplicity. Define the Shannon bandwidth of a
signal, B;, as the bandwidth of the minimum signal—space representation of the baseband data stream.
The Fourier bandwidth B; may defined as the bandwidth of the transmitted signal representing the data
stream. Any modulation scheme for which B; is much greater than B, may be considered to be “ spread
spectrum”. Strictly speaking, thisdefinitionincludestime division multipleaccess systems, but they will
not be considered here: for moreinformation see [28]. Other systems which comply with thisdefinition
will now be discussed.

2.2 Spread Spectrum Techniques

There are a number of methods by which the baseband data stream d(¢), of bandwidth B;, may be
converted to a transmission signal with amuch larger bandwidth B . Four such techniques will now be

considered:

(). Direct Sequence Spread Spectrum(DS—-SSThis technique operates by modulating the data
sequence d(t) by a pseudo-random code ¢(¢), whose period is equal to that of the data sequence
ts. Initssimplest form, the code ¢(¢) is along string of 4+1 and —1 chips, with chip period ¢..
The resulting baseband signal, ¢, (¢) istransmitted at the appropriate radio frequency (RF). At the
receiver, the RF signal is downconverted to baseband to producethesignal »(¢). Thisismultiplied
by the code ¢(¢) to produce the post—correlation signal (), from which the original data sequence
may be estimated. This processisillustrated in figure 2.1. The processing gain W of a DS-SS
system may be defined as the length of the PN code, i.e. theratio of the symbol period to the chip
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Figure 2.1: A typical direct—sequence spread spectrum system.

period, i.e. ¢ /t..

(ii). Frequency Hopping Spread Spectrum(FH-SS)This technique employs a humber of separate
RF carriersfor transmitting the data sequence d(¢) [29, Part 2,Chapter 2]. The signal istransmitted
on different carriers at different times, under the control of aPN code which must be knownto both
transmitter and receiver. A simple example of a frequency hopping signal is shown in figure 2.2.
The dataitself is superimposed on to thissignal by frequency or phase shift keying modulation.

Frequency

. —

Time

Figure 2.2 A pattern of frequency hops for a DS-FH system.

(iii). Multi Carrier Spread Spectrum (MC-SS): In contrast to frequency hopping, here the data is
simultaneously transmitted on anumber of narrowband carriers[30]. Usingthisconcept totransmit
over multipath channels is an old one, but there has recently been interest in using orthogonal
carrier waveforms to permit multiple—access communication. In order to allow a number of users
to transmit on the carrier frequencies, each user employsa different PN code which istransmitted
in parallel acrossthe carriers [31].

(iv). Time Hopping Spread Spectrum (TH-SS)The approach is similar to FH-SS systems, except
that the transmission time is divided into blocks of time slots. In each block, the transmitter is
active in only one time slot, chosen according to a pseudo—random code. This type of system is
much less common than the other three.



For a more thorough review of spread spectrum techniques, see [25, 29, 32, 33]. In thisthesis, DS-SS
systems will be considered, so the rest of this section will focus on the advantages and operational

characteristics of such systems.

2.2.1 Advantages of Direct Sequence Spread Spectrum

If acommuni cations system employsDS-SS modul ation, there will inevitably be anincreasein hardware
and general complexity. However, such systemshave anumber of benefitsto compensate for this[25,29]:

(). Lower Transmit Power: The Hartley—Shannon theorem indicates the same capacity is achieved
by DS-SSsystemswithalower transmit power density (measured in Watts per Hertz) compared to
narrowband systems. The processing gain quantifies the reduction of power that can be tolerated.
If a system employs a PN code of length 100, it has a processing gain of 20 dB. This means that
if the receiver requires 10 dB SNR for acceptable performance, the PN code may be received at a
level of —10 dB.

(ii). Military Applications: Spread spectrum systems were originaly developed with military ap-
plications in mind. Transmitting long PN codes ensures that communications links are harder
to eavesdrop. In addition, DS-SS has some immunity, specified by the processing gain, to
narrowband jammers present in the same RF bandwidth. For more detailed discussions of the

performance of jammed DS-SS systems, see [29].

(iii). Accurate Time Resolution: Most spread spectrum receivers employ correlation detection of
the desired code c(t). The auto—correlation function (ACF) of most PN codes is similar to that
of white noise, and a typical code auto—correlation function is shown in figure 2.3. The ACF
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Figure 2.3 A typical PN code auto—correlation function.

shown in figure 2.3 takes non—negligible values only within one chip of the arrival of the code.
This property means that spread spectrum techniques have been widely adopted for navigation
purposes, including GPS.
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(iv). Multipath Capability: The ability of DS-SSreceivers to locate the arrival of the desired codein
time makes them ideal for operation in severe multipath environments. A simple example of an
urban channel and the associated channel impulseresponseisshown infigure 2.4. Theform of the
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Figure 2.4: (g) A typical urban multipath environment (b) The channel impul se response to atransmitted
DS-SS code, measured at the output of the PN code correlator receiver.

code ACF means that multipath components with time delays of greater than one chip period .
may be separately resolved. Channel sounding devices employing PN codes with very small chip
periods have been frequently used for measuring the multipath characteristics of communication
channels [34-36].

(v). Code Division Multiple Access (CDMA): The current generation of European digital mobile
telephones, based on the GSM and DCS-1800 standards, employ time and frequency division
multiple access techniques. However, future mobile networks may achieve increased capacity by
employing DS-SS techniques [37, 38]. In the United States |S-95 standard, a number of users
may transmit on the same RF bandwidth by employing different PN codes to separate out their
transmissions [39]. In this system interference from other users appears as benign background
noise; as the number of active transmitters increases, the quality of each communication link
degrades gracefully. The precise nature of such a multiple—access system is currently the focus of
considerable research.

The format of DS-SS CDMA schemes will now be considered.

2.2.2 Code Division Multiple Access

In this multiple access scheme for mobile communications, all active mobiles in the system transmit at
the same frequency. Each user can beidentified by aunique PN code whichisused only to modul atetheir
data, prior to transmission. Similarly, al users receive information from the communications network

at the same frequency, again with unique codes assigned to each user. There are anumber of families of
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codes which can be used to identify each transmission. The properties of such codes are discussed fully
in[29,40], however three of the most well known code sets are:

(i). m—sequencesThese codesare generated using linear feedback shift register generators (LFSRG)
[41]. If alength [ generator is used to determine the code, the code itself will be of length
W = 2! — 1. One example of such agenerator is shown infigure 2.5. The periodic ACF —defined
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Figure 2.5 A linear feedback shift register generator for binary m—sequences.

as the correlation of the code with a periodically repeating copy of itself —of any m—sequence is
two valued for integer chip shifts of the code. If the code shift is zero, the ACF takes the value
W, otherwiseitis —1. Unfortunately, if the code is modulated by data, the odd ACF occurs when
the code undergoes a change in phase (e.g. from +1 to —1) during the correlation operation. In
this case, the odd ACF can take larger magnitude values, causing self-noise interference to the
receiver. The major difficulty with using m—segquences for CDMA isthat there are relatively small
numbers of them for a given length 117: for example there are only 60 m—sequences of length
1023.

(if). Gold codes: Gold code sets [42] are commonly used because so many more codes are available
than for m—sequences. A total set of W + 2 codes is generated by the modulo—2 addition of a
preferred pair of m—sequences of length 177, using different integer shifts between the codes [42].
For example, if the two m—sequences are denoted as length IV vectors »; and v-, the complete
Gold code set (v, v2), containing W + 2 codes, is formed as follows:

G(v1,02) = {01, v9, 01 B va, v, G Ta, 01 B T?09, ..., 00 & T 1oy} (22

where ¢ denotes modulo-2 addition and 7% v, denotes the cyclic left-shift of v, by & places.
The periodic auto— and cross—correl ation functions of the codes take on only three levels, with the
maximum cross—correlation levels lower than the maximum possible for a pair of m—sequences
of the same size. However, odd auto— and cross—correlations involve a larger number of possible
values and may take on amplitudes much greater than for periodic correlations.

(iii). Walsh codes:Walsh or Hamadard codes of length 2™ represent the 2" orthogonal basis functions
over the finite alphabet +1 [43]. These codes may be used to provide orthogonal synchronous
multiple channels. However, the asynchronous auto— and cross—correlation functions can take
very high amplitudes.
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The general operation of a CDMA cellular system will now be considered in more detail. System
considerations break down into two main parts: (1) the reverse link from the mobile to the network base
station and (2) the forward link from the base station to the mobile. This section will begin with the

reverse link.

2.2.3 The Reverse Link

A simple block diagram of the reverse link, from the mobile to the base station, is shown in figure 2.6.
Each mobile transmits to the base station over the same RF bandwidth, but using a different PN code

MOBILES CODE DETECTORS

CODE1}—+DATA 1]
CODE 2 |—{DATA 2]

&

‘ NOISE + INTERFERENCE‘

FROM OTHER CELLS

Figure 2.6; A block diagram of the reverse link of a DS-SS CDMA System.

(numbers 1,2,. . .,P) to distinguish its transmissions. One of the main difficulties with the reverse link
isthat it usually operates in an asynchronous fashion, which means that the levels of periodic and odd
cross-correlation interference are unpredictable. A related problem is the near—far effect: if a mobile
close to the base station transmits with the same power as one far awvay from the base, the signal from
the former will swamp that of the latter.

In order to minimise the near—far problem, CDMA systems must employ power—control of the received
signal. Such a system operates to ensure that the total received power from each mobile is the same.
The system overhead involved in power control schemes is very large, so there has been considerable
research into devising receivers which are more robust to power control errors. One method isto employ
multi—user receivers which simultaneously decode all userstransmissions. atutoria on these techniques
isgivenin [44]. Alternatively, the receiver may attempt directly to cancel CDMA interference, based on
the received signal for each user [45, 46]. However, the performance improvement of such receiversin
cellular CDMA systems may be limited when compl ete frequency re-use in all cellsis applied. In this
case, thereare highlevels of un—cancellableinterference from other cells[39] —for auniform distribution
of users throughout an urban cellular system, interference from other cells has been calculated at 33%
of the total CDMA cross—correlation interference.

One mechanism to reduce interference from other users is for each mobile to transmit only when the
user is speaking, which has been shown to be about 40% of atotal telephone conversation time. The
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distribution of each user’s transmissions means that this permits an increase in system capacity of only
afactor of two [47]. An additional capacity increase may be obtained by reducing the size of each cell
in the system, albeit at the cost of increased base station hardware. A common technique is to divide
acircular or hexagonal cell into 3 sectors [48], each providing 120° coverage of the origina cell. This
provides an increase in total capacity of about 3 times.

2.2.4 The Forward Link

The genera layout of the forward link, from the base station to the mobiles, is shown in figure 2.7.
Frequency division duplex (FDD) is often specified for CDMA systems, so that the forward link is

BASE STATION MOBILES

[DATA 1} -{cODE1 —{copE1 | UsER 1|
[DATA 2}-{coDE 2 ]—\ = cobE2 | USER 2|

ekl

[DATA PL{coDEP | -cobep | userP]

CODE DETECTORS

Figure 2.7: A block diagram of the forward link of a DS-SS CDMA System.

transmitted over a different RF band to the reverse link. The transmission of data to the mobiles is
similar to system operation on thereverse link, except that each user’s code is transmitted synchronously
with the same power. This means that interference effects may be controlled more easily and there is
no near—far problem in thiscase. The main difficultiesoccur at the border of cells, where there is strong
interference from nearby cells. This may be overcome by increasing the transmit power to any mobile
affected in thisway, at the expense of mobiles closer to the base station.

2.2.5 The IS-95 Standard

In 1993, the US company Qualcomm, in association with a number of national service providers
and international equipment suppliers, presented the draft 1S-95 standard for mobile cellular CDMA
systems. For a more detailed analysis of 1S-95, see [37-39, 49, 50]. The essentia points of the system
described therein follow closely the discussion of the forward and reverse link system operation above.
However, there are additional points which will not be strictly followed in this thesis, but which are
worth mentioning.

(). Reverse Link Modulation: A voice coder generates binary data at a rate of 9600 bits/s, which
is encoded using a rate 1/3 convolutional code to protect against random errors. The output
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data stream of 28.8 kbitg/sis interleaved to protect against burst errors due to multipath effects.
The output signa is grouped into blocks of 6 bits, which are encoded using 64—ary modulation.
The output signal of 307 kbits/s is multiplied by a user—specific long PN code to give a signa
bandwidth of 1.2288 Mbits/s. This signal is transmitted using filtered—offset QPSK, with the |
and Q channels modulated by system specific codes of length 2'°. A dual—diversity receiver is
used at the mobile for receiving on the reverse link.

(if). Forward Link Modulation: The operation of the forward link is similar to the reverse link,
except that arate 1/2 convolutional code is used to give a coded data stream of 19.2 kbits/s. This
signal is interleaved and modulated by the user—specific PN code without increasing the signa
datarate. The output data rate is upconverted to 1.2288 Mbits/s by using a user—specific Walsh
code. The resulting signal is transmitted using filtered QPSK, with the same | and Q codes used
asforthereverselink. Theusers' transmissionsare accompanied by apilot signal which typically
uses 10-20% of the total transmission power, in order to permit coherent demodulation at the

mobile.

(iii). Power Control: In order to achieve strict power control on the reverse link, the mobile estimates
thereceived power from the base station as afirst estimate of the path- ossover the communications
channel. The base station al so transmits power up/down instructionsto the mobile at arate of 800
Hz. Thisarrangement is therefore a major control overhead for such a CDMA system.

(iv). Soft Handover: Where a mobile is on the border of two cells, both base stations may transmit
to it with the same code as the receiver employs a RAKE filter to combine multipath energy
coherently. This permits performance improvements for such maobiles. On the reverse link, the
network selects the base station which receives the largest signal power level from the mobile.

(v). System Capacity:In theory, any multiple access scheme which employs a total bandwidth of W/
Hz should be as good as any other. However, the advantages of spread spectrum systems, such as
lower power consumption, multipath capability, etc. make up for the disadvantages such as the
necessity for power control. Complete frequency re-use and the asynchronous nature of CDMA
techniques provide some capacity advantage over existing TDMA systems.

2.3 Antenna Array Architectures

Having introduced the subject of spread spectrum and CDMA techniques, the second half of this chapter
will move on to discuss antenna arrays. There are a number of reasons for employing multiple antenna
receivers, three of which are as follows:

(i). Directional Capability: If radio wave signals are received by an array of two or more suitably
spaced antennas', it is usually possible to infer the bearings of the transmitters. Thistechniqueis
frequently exploited in passive listening and sonar applications.

IStrictly speaking, the plural of antennais antennae. However, the word antennas will be used in line with its frequent
occurrencein the work of American researchers.
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(ii). Interference Suppression:|f adesired signal iscorrupted by aninterferer arrivingfrom adifferent
direction, antenna arrays may be used to filter out the interference. This principle has been used
widely in military radar and communications applications. Recently, there has been considerable
interest in antenna array techniques for mobile radio, as they can increase the capacity of such
systems. The idea of suppressing interference from interfering transmitters in this way is often
called space division multiple access (SDMA).

(iii). Space Diversity Techniques:A standard technique for combatting severe multipath effects on
communications channels is to employ multiple receivers. Provided the antennas are sufficiently
spaced, the probability of error is considerably reduced.

The techniques by which these points may be exploited using antenna arrays will now be discussed in
much more detail. To begin with, mathematical models for describing the behaviour of antenna arrays
will be introduced.

2.3.1 The Narrowband Channel Model

In this thesis, the narrowband antenna array model [51] will be used. The following assumptions are
commonly made in its devel opment:

(i). There are one or more transmitters operating at or near a specified radio frequency, denoted as f.

(if). The received signal at each antenna element is corrupted by spatialy and temporally white
Gaussian noise of zero mean and variance 2.

(iii). All the transmissions are narrowband, in the sense that the Fourier bandwidth B of the signa is
much smaller than the carrier frequency f.

The narrowband assumption is justifiable even in the case of 1S-95 type spread spectrum systems,
because the Fourier bandwidth is roughly 1.25 MHz while the carrier frequency is roughly 900MHz.

In order to progress further, the geometry of the antenna array must be specified. There are many ways
of arranging the antenna elements, but probably the most widely known configuration is the uniform
linear array (ULA). In order to avoid grating lobes, which are analogous to spatial aliasing effects, the
antennas are spaced aong a line at distances of A~ /2 - half the carrier wavelength. A diagram of a
typical ULA is shown in figure 2.8. The steering vector of an M—element ULA, a(6) € CM*! isthe
impulse response of the array to a source at bearing ¢ and is given by:

a(0) = [1,exp{jmcos(0)}, ..., exp{j(M — 1)z cos(0)}]" (2.3)

where a” denotes the vector transpose operation. The advantage of this configuration is its simplicity.
However, linear arrays cannot separately resolve signals coming from opposite sides of the array:
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moreover, they suffer from endfire effects because of the cosine terms present in equation (2.3). The
Brandwood derivative vector d(¢) [52] of the steering vector is calculated by taking the derivative of
each entry with respect to 8. For 6 = 07, 180°, the derivative vector takes large values, indicating that
measurements of source transmissions at or near these bearings are very sensitive to noise. The array
designer will usually ensure that signals arrive only from one side of the array, and that the endfire
regions are blocked. The array configuration shown in figure 2.8 will be used throughout this thesis.

Bearing = 90
Broadside
Ac/2
Endfire Endfire
— O O O O
. o . o]
Bearing = 180 i i i i Bearing=0
y® y® sy ()
1 2 M
Array Sensors

Figure 2.8 The uniform linear array (ULA) configuration.

Assuming that the received RF signal at each antenna is downconverted to baseband, it is possible to
write the received signal vector y(t) € C**! asthefollowing linear form:

y(t) = [ (1), y2(0), ..y (1)]T = As(t) + (1) (24)

Thereare K signalsimpinging on the array, whose amplitudes{s;(¢)} are specified by the K’ x 1 vector
5(t). Thematrix A € CY*¥ contains the column steering vectorsfor the K signalsand = (t) € C¥**
contains the additive white Gaussian noise present at each antenna. A large number of array processing
techniques are based on the covariance matrix R of (), which is defined as follows:

R=FElyt)y? ()] = ASAT 4 o1 (2.5)

The matrix S isthe covariance matrix of the signal vector s(¢) and I denotes the identity matrix. The
notation A denotesthe Hermitian transpose of thematrix A. Thematrix X = ASAY isoftentermed
positive semi-definite, because it has K positive eigenvalues and M — K zero eigenvalues. Performing
the eigenvalue decomposition of R, the followingis obtained:

R=U,\ 4+ 1U? 4+ *E, EF (2.6)

The matrix U, € CM*% denotesthe K eigenvectors corresponding to the non-zero eigenvalues of X .
The matrix A, € CE*¥ isdiagonal and contains the positive eigenvalues of X, ordered according to
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the eigenvector matrix U,. Collectively, the eigenvectors U, are often called the signal subspace. The

matrix E, ¢ CMxM-K

containsthe M — K eigenvectors corresponding to the zero eigenvalues of X .
These eigenvectors are collectively called the noise subspace; as the eigenvalues are al equal to o2, the

eigenvectors are not uniquely defined.

An extremely important property of the covariance matrix is that the columns of the noise subspace
matrix E,, are al orthogonal to the columns of the steering vector matrix A. Thisfact is often exploited
by array processing algorithms, such as the MUSI C bearing estimation algorithm [53]. In practice, only
afinite number of datasamples{y(¢)} are available, so that the covariance matrix can only be estimated
approximately. If the receiver still wishesto exploit the orthogonality property of 4 and E,,, correctly
estimating the rank of X becomes of paramount importance. If K isunderestimated, the orthogonality
property no longer holds, so that the performance of subsequent algorithms will be poor. Fortunately,
techniques such as Akaike information theoretic criterion and the minimum description length [51] exist
to perform the rank estimation task — further discussion of these techniquesis presented in chapter 3.

There arealarge number of techniquesfor processing the signal vector y(¢). Some of themoreimportant
techniques are reviewed in this chapter, grouped under three main categories: (1) bearing estimation
and adaptive beamforming techniques, (2) Wiener filtering and (3) blind channel estimation approaches.
Thefirst category of algorithmsis explicitly based on the structure of the steering vector a.(9).

2.3.2 Bearing Estimation and Adaptive Beamforming

This approach makes the assumption that the number of impinging signals K isless than the array size
M. Inthis case, it is often possible to identify the signal bearings {6} using a bearing estimation
technique; further discussion of these algorithms will be deferred until chapter 4. The most common
scenario isthat the receiver has correctly identified a desired signal s, (¢) arriving from bearing ¢, , and
is subject to interference by multipath or other transmissionswhich arrive from other directions.

To estimate the form of the desired transmission, it is possibleto apply a data—independent beamformer
to the received signal [54]. The estimate of the desired signal s, (¢) isgiven by the vector inner—product
a™(6,)y(t), where a’! denotes the Hermitian transpose. This technique is simple to compute and
providesthe optimal solution in the presence of additive spatially white noise. However, this technique
may degrade in the presence of strong directional interference, as shown in part () of figure 2.9.

If the bearings of interfering signals are known, it is possible to design afilter w to place nullsin these
directions, as shown in part (b) of figure 2.9 . There are a number of methods to perform this task, but
one of the simplest is to minimise the quantity |C# w — f|? where |f| denotes the magnitude of the
vector f. The matrix C contains the column steering vectors for which the designer wishes to specify
the beamformer response and the entries of f specify that response. The solution to this problem is
simply given by:

w=(cct)ylcf (2.7)
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Figure 2.9: Comparison of (a) the steering vector beamformer and (b) the adaptive beamformer.

where C~! denotes the matrix inverse of C. The design of the beamformer must be performed
carefully: placing nulls close to the desired signal leads to an ill-conditioned problem. This may result
inabeamformer which isvery sensitive to noise or interference from other directions. Itisalso possible
towiden the main lobe of the beamformer by setting the derivative constraint (6, ) = 0. Thisisauseful
condition for situationswhere the bearing of the desired signal is known only imprecisely.

This technique does not take account of the structure of the interference present in the data. In order to
take advantage of the form of the received signal, it is possible to employ data—dependent, statistically
optimum beamforming techniques. There are alarge number of these[54-56], but one of the best known
is the linearly constrained minimum variance (LCMV) technique due to Frost [57]. This technique
minimises the output power of the beamformer, subject to the constraints C ¥ w = f. Thisproblem can
be solved by the method of Lagrange multipliersto obtain:

w=R'C[CHR'C]™'f (2.8)
where R is the mean covariance matrix of y(¢), as defined in equation (2.5).

Statistically optimum techniques require accurate estimation of the desired signal parameters. otherwise,
cancellation of the desired signal may occur. A second difficulty occurs when the interference is
highly correlated with the desired signal, which can be due to so—called “smart jamming” or multipath
propagation. Again, this may lead to cancellation of the desired signal: cures for this problem include
moving arrays [58] or the spatial smoothing technique [59].

In order to apply statistically optimum techniques to actual data, where the underlying signal may be
changing over time, itiscommon to employ adaptive algorithms. There are three well known techniques
which may be employed:

(). Least Squares (LS) Estimation: This algorithm operates by solving the weight equation, such
as equation (2.8), directly. If N snapshots of the data vector y(t) are available, the covariance
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matrix R isestimated using:
N
A 1
R= > yt)y" (1) (2.9)
i=1
wheret; denotes the time at which the i*" snapshot was sampled. The matrix R may also be used
in a bearing estimation algorithm to determine the form of the constraint equation C 7w = f.
In the context of radar applications, least squares is sometimes called sample matrix inversion
(SMI). The convergence performance of thisalgorithm, in terms of the number of snapshots V, is

independent of the eigenvalues of the covariance matrix R.

(ii). Recursive Least Squares (RLS) Algorithm:Itis possibleto derive an adaptive form of the least
squares approach, which employs an exponential forgetting factor to de-emphasise past data.

(iii). Least Mean Squares (LMS) Algorithm: This agorithm has amuch simpler form than the RLS
algorithm, providing considerably reduced complexity. This algorithm estimates the maximum
gradient towardstheleast squares sol ution at each step, and employsaweighting factor y to control
the change in the weight vector w. Unfortunately, the value of p is bounded by the eigenvalues
of R, so that convergence to the true weights can be much slower than for the RLS approach.

For amuch more comprehensive discussion of adaptive algorithmsand their performance, see[55,56,60].

The application of beamforming techniques to mobile communications appears to be quite recent. One
of the first papers to consider antenna arrays for mobile communications was [12]. Bearing estimation
techniqueswere proposed in order to determine the spatial locations of userswithinagiven cell. Optimal
beam patterns could then be defined to provide coverage across the cell, for both reverse and forward
links. A later conference paper presented some results from a hardware trial [61], which demonstrated
that bearing estimation techniques could locate a mobiles position with reasonable accuracy, even in
urban areas.

A simple scheme, using data independent spatial filters for both reverse and forward links, is discussed
in [62]. The reverse link of an adaptive beamforming scheme was described in more detail in [63]
and [64], where a bearing estimation algorithm was used to | ocate the bearings of each user. An adaptive
beamformer was applied to the received signal to cancel interference from other users. Reference [63]
also combined coherent multipath components from each mobile to improve performance. However,
simulation resultsfrom [63] demonstrate that spatial filter techniques degrade compared to Wiener filter
techniques under conditions of severe multipath propagation, where signal components arrive from a
wide spread in direction. One approach to applying spatia filters in multipath channels may be to
apply a derivative constraint in the look direction, to widen the main lobe of the beamformer [65].
Adaptive beamforming algorithms have also been discussed for the forward link of narrowband cellular
systems [66, 67], with nulls placed in the directions of other mobiles operating at the same carrier
frequency. However, the potential capacity of this approach appears to degrade for severe multipath
channels [67] — the only way to improve capacity appears to be to move to larger transmit array sizes.
Further discussion of antenna arrays in multipath scenarios will be presented in Chapter 6.
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2.3.3 Wiener Filtering

The adaptive beamforming approach provides an intuitive approach to the problem of operating an
antenna array, based on geometric reasoning. However, beamforming techniques perform poorly inthe
presence of the coherent signal swhich often occur in multipath—rich environments. Moreover, modelling
each signal as arriving from a single direction may be inadequate for urban mobile communications. In
order to improve the situation, it is possible to formulate the problem in a more abstract fashion using
Wiener filtering techniques.

The Wiener filter solution for thefilter coefficients w are given by:
w=R1lr (2.10)

wherethe M x 1 vector » representsthe mean cross-correl ation between the received signal vector y(t)
and the desired scalar signal s;(¢). The advantage of thistechniqueis that the bearing(s) of the desired
signal do not need to be known. However, in order to use equation (2.10), areference signal isrequired
to estimate the vector .

The general operation of a Wiener filter structure for an antenna array communications system is shown
in figure 2.10. The receiver operates by estimating the covariance matrix R from the data. In order to
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Figure 2.1Q The structure of a Wiener filter for an antenna array receiver.

calculate the cross—correlation vector », the receiver may use a training sequence or simply feedback
the output data sequence. As with adaptive beamforming techniques, it is possible to employ LS, RLS
or LMS algorithmsto update the weight vector w .

One of the first papers to consider an adaptive array for a communications system was by Compton
[68]. This system employed spread spectrum modulation and used the LMS algorithm to update the
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weights of the spatia filter. The motivation for using antenna arrays in this case was the increased
ability of the receiver to suppress interference from other sources, presumably in a military context.
No training sequences were used, so the system used the post—correlation signal vector y(¢) for the
reference signal. A similar system employing four phase modulation is described in [69] for military
communications. In this case, a spread spectrum code of length =2 1000 chips is transmitted in the 1—-
channel for synchronisation purposes: a much longer code of length ~ 10° is transmitted in quadrature
for communicating the necessary data.

Spatial diversity is a standard approach for improving the quality of a communications link which
suffers from fading effects due to multipath propagation. Two proposalsfor improving the performance
of analogue cellular systems using space diversity are presented in [10, 70]. Wiener filter techniques are
of interest in the design of antenna array receivers because they offer the ability to suppress interference
from other transmitters as well as reducing fading effects. This point has been the subject of thorough
research in severa papers, beginning in [11]. This paper pointed out the diversity improvement that
an antenna array may provide, particularly if the array spacing is large enough to obtain low signal
correlation between antennas. There appears to be a trade-off between cancelling interference and
diversity improvement: if the array cancels alarge number of interferers, its ability to combat multipath
fading is reduced [71]. The adaptive beamforming techniques described above are unable to cancel
interference close to the desired signal, but with multipath fading, non—cancell able interference becomes
astatistical phenomena.

A number of papers [11, 72—74] have employed a receiver structure similar to that of Compton, using
decision feedback to providethe signal reference: the acquisitiontime of thisarray structure can be very
long unlessthe desired signal SNRislarge. A technigque which employsknowledge of the desired signal

bearing to reduce the convergence time [75] has been described. However, a more recent approach has
been to take advantage of the new digital mobile communications specifications, such as the European
GSM and American |S-54 systems. Both of these standards specify that data is transmitted in blocks,

each with an accompanying training sequence. This sequence may be used to train the antenna array
Wiener filter [13,71], assuming that interference from other cellsisasynchronousand uncorrelated with
the training data. Once trained, the weights may be fixed or updated by decision feedback, according
to the rate of change in the channel. Simulation results for an 1S-54 system demonstrate that the LS
techniqueis able to track fast channel variations much more effectively than the LM S algorithm [13].
In the case of the GSM system, results have shown the effectiveness of adaptive arrays in cancelling
interference from a small number of users in other cells [76]. For slowly changing channels, the
performance of the LM S agorithm appears to be better, although it may still be slightly inferior to the
RLS or LS algorithms [77]. As a result, low complexity antenna array receivers, employing the LMS
algorithm, have been proposed for indoor systems [78,79].

In the UK, an 8-element antenna array system, using the European DECT cordless protocol, was
constructed for atest program called SCARP. Some resultsfrom thiswork have been reported in [80] for
a multipath environment, which demonstrates the ability of an adaptive array to improve the quality of
a communications link. Following on from this, ERA Technology is co—ordinating a research program
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called TSUNAMI which looks into adaptive array techniques for the European UMTS programme. The
systemtobetested isan 8—element array, again usingthe DECT standard, althoughthishasbeen modified
to include a training sequence for adaptive algorithms[17]. Three array configurations, linear, planar
and circular, have been chosen for system testingin anumber of indoor and outdoor environments. Early
results suggest that adaptive arrays may permit considerable reductions in the time spread of multipath
components in indoor environments, permitting increased data rates [81].

Adaptive array techniques based on Wiener filtering have been proposed recently for spread spectrum
communications systems. However, as there are often a large number of co—channel users, usually
exceeding the the number of elements in realisable adaptive arrays, interference cancellation techniques
may not be so effective in this case [71]. An antenna array system for FH modulation has been
proposed [82]: it looksahead to the next carrier frequency, cancelling interference before the appearance
of the desired signal. However, DS-SS systems have been discussed more frequently in connection with
antennaarrays. One paper employsthereceiver structure of Compton with aspread spectruminterference
cancellation scheme to cope with signals arriving from the same direction [72]. A modification of the
cancellation scheme to permit parallel cancellation of spread spectrum interference has been proposed
[74]. The ability of spread spectrum techniques to resolve multipath components with different time
delays means that spread spectrum antennaarrays may combine multipath energy in both time and space.
A modified version of Compton’s array, operating in such a manner has been proposed in [83]. More
recently, adaptive antenna techniques have been proposed for umbrella cellsin third generation CDMA
cellular systems, to provide adequate coverage for areas in—between cells[84]. A colloquium paper by
the same authors presents some results on the convergence time and beam patternsfor anormalised form
of the LM S algorithm [85]. A modified adaptive array receiver has also been proposed, which splitsthe
baseband signal into two sub—bands, each of which is controlled by a separate adaptive algorithm [86].

2.3.4 Blind Techniques

The basic deficiency of Wiener filtering techniques is the requirement for a training signal to permit
the receiver to obtain the correct spatial filter coefficients. Training sequences can become a significant
overhead in any communications system, reducing its overall efficiency. Therefore, there has been
considerable interest in using blind techniques which can identify the channel transmissions for a
desired user without a training sequence. There are a number of approaches to this problem in the
context of antenna arrays operating on the reverse link of a cellular system. Several of these techniques
will now be discussed.

(). The Constant Modulus Algorithm (CMA): Thistechniqueis ablind version of Wiener filtering
techniques, which attempts to maintain a constant amplitude output for the received signal. This
isaspecia case of the blind equaliser structures proposed by Godard [87]: it has been the subject
of some debate, concerning whether it always achieves convergence — see [60, Chapter 21]. In
any case, it appears to be one of the most widely used blind equalisers. A hardware CMA array
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(ii).

(iii).

(iv).

(V).

for use in a mobile has been implemented using the LM S algorithm [88]. Subseguent testsin an
urban area demonstrated the ability of the array to pick out the strongest multipath and improve
system performance in afading multipath environment [89]. A system for successively cancelling
amulti—user signal withaCMA array has been described in[90] —the form of the cancelled signal
allowed its bearing to be determined.

Oversampling Techniques: The problem of correctly identifying and equalising minimum and
nor—minimum phase channels corrupted by inter—symbol interference is very difficult. In order
to avoid problemswith blind equalisers, recent approaches have focussed on correctly identifying
the channel. Higher—order statistics have been used for channel identification because of their
ability to recognise non-minimum phase channels. However, these techniques require long data
sets to achieve satisfactory performance. Recently, 2nd order channel identification techniques
based on oversampling the received signal have been discovered [91]. The oversampling may
be achieved temporally or by using an antenna array. The original method relied on two cyclic
covariance matrices, however a recent paper has shown how the technique may be implemented
using one covariance matrix [92].

Blind Source Separation: A number of algorithms have been devel oped to distinguish statistically
independent signals observed at antennaarrays[93-95]. These methods are based on the structure
of 4'* order cumulants, which are normalised using the 2" order covariance matrix. An eigen—
matrix decomposition may then be performed in order to determine the separate components
present. As these algorithms normally employ higher—order statistics, large data lengths are
required in order to obtain reliable results.

Cyclostationary Approaches: A cyclostationary signal exhibitsthe property of being correlated
with a frequency shifted version of itself. Communications transmissions form an important set
of cyclostationary signals and have been the subject of a number of techniques, most notably
the SCORE algorithm [96,97]. The cyclostationary property may be used to filter out undesired
interference from other transmittersat different frequencies. Thisled to aproposal for an overlap-
ping narrowband FDMA scheme, using the principal eigenvectors of cyclic covariance matrices
to identify users operating at each frequency. A similar scheme has recently been proposed for
1S-54 [98], which relies on phase differences between sources to obtain the /& received signa

waveforms for X sources.

Eigenfilters: The use of eigenfilters to identify the received signal is particularly appropriate to
the case of CDMA systems. This is because there is a desired signa with a reasonable SNR,
which is corrupted by background interference from other users. The largest eigenvector of the
post—correlation matrix R has been used to identify the form of a desired CDMA signal at a base
stationantennaarray [99]. Inorder to suppressinterferencefrom other users, the covariance matrix
of the pre—correlation signal is subtracted from R: however, the effectiveness of this approach
will depend on the cross—correlation values of the other codes present. This method has also
been extended to the case of a multipath channel, where several multipath signals are resolved
intime. In thiscase, the receiver operates in by applying J spatial filters — calculated from the
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principal eigenvector method — to pick out ./ multipath components. These are then combined
using a conventional RAKE filter, asshowninfigure 2.11. A similar structure has been described
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Figure 2.11 The 2-D RAKE filter combiner (after [100]).

for applying antenna array techniques to an 1S-95 system [16]. However, the receiver requires
additional hardware to employ the 64—ary decoders which are used on the reverse link.

The drawback of any blind identification technique is that the receiver has no direct means of ensuring
that it has picked out the desired signal rather than undesired interference. This will be a particular
problem where these techniques are operated in multi—user environments. The best solution to this
problem, in the case of spread spectrum systems, is to ensure that all mobiles are subject to accurate
power control so that multiple—access interference is minimised.

2.4 Conclusion

In this chapter, the topics of spread spectrum communications and adaptive arrays have both been
introduced. These techniques were first devel oped for military radar and communications applications.
However, there has recently been a trend to apply both techniques to mobile communications systems
in order to provide increased capacity. In this thesis, direct—-sequence spread spectrum techniques
in combination with antenna array techniques will be analysed in more detail. In particular, bearing
estimation techni quescombined with fixed spatial filterswill be of interest. To providesome comparison,
eigenfilter techniques will also be studied for multipath channels.
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Chapter 3
Signal Detection Techniques

This chapter describes how signal detection techniques may be used in an antenna array receiver. If
it isintended to apply bearing estimation techniques such as MUSIC to measured data, the number of
signals present must be known. Two information theoretic criteria for estimating the model order are
introduced, along with a method for analysing their performance. These techniques fail in the presence
of coherent signals, so a modified approach employing spatial smoothing is described. The results
required to estimate the performance of such a scheme are then derived. Finally, thereisadiscussion on
how these techniques may be extended to spread spectrum receivers.

3.1 Model Order Determination Techniques

High resolution bearing estimation techniques, such as the MUSIC agorithm [53] and maximum
likelihood approaches [101] require an estimate of the number of signals impinging upon the antenna
array. Thefirst methodsfor estimating the number of received signalswere based on subjective threshold
testing, see for example the references in[102]. However, the performance of thisapproach is critically
dependent on the selection of the threshold level used for determining the model order. This defect
led researchers to the Akaike information theoretic criterion (AlC) and the minimum description length
(MDL) approach of Schwartz and Rissanen [102]. These techniques produce a single objective result,
so that no judgements on behalf of the system operator are needed.

Other techniques have been devel oped more recently, toimprove upon the performance of the AIC/MDL.
The original derivation contained a large number of superfluous parameters, so alternative criteria have
been developed using only the covariance matrix eigenvalues [103], or by assuming the signals to be
deterministic [104]. Methods have also been developed to improve performance for signals corrupted
by coloured noise using two arrays [105] and for coherent signals [106] by performing a maximum-—
likelihood search over all possible signal bearings. However, in this chapter, attention will be restricted
tothe AIC and MDL criteria.

3.1.1 Signal Model

The signal model used here is simply that for a conventional narrowband system: discussion of the
signal detection problem in the case of CDMA receivers will be deferred to the end of this chapter. The
received signal is assumed to conform to the linear model of equation (2.4):
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y(t) = As(t) + n(t) (3.1)

wherey(t) € CY*! correspondstothereceived signal at an M/ —element array. Thevector s(t) € CX*!
denotes the K underlying signals received by the array, which are assumed to be zero—-mean Gaussian
white processes which are mutually independent and uncorrelated between samples. The vector n(t) €
CMx1 represents the complex white Gaussian noise of zero mean and variance > corrupting the data.
The matrix A € CM*% contains the K steering vectors a(6;) € CM*! that represent the impulse

response of the array to the signal directions {6y, }. Note that it will be assumed that X' < M.

The covariance matrix R of the vector y(¢) isgiven by equation (2.5):
R=FElyHyt)?] = ASA” 1 o1 (3.2)

where I € CM**M denotes the identity matrix and § € CX*% denotes the covariance matrix of the
vector s(t). The notation y(¢)” denotes the Hermitian transpose of y(¢). The matrix X = ASAH
represents the signal covariance matrix and is of rank K: the term o1 is the covariance matrix of
the spatialy white noise. As the signal covariance matrix is semipositive, performing the eigenvalue
decomposition of R produces two classes of eigenvalue/eigenvector pairs. The K largest eigenvalues
and their eigenvectors are called the signal subspace, because the eigenvectors span the column space of
the matrix A. The other M — K eigenvalues are of magnitude o2 and the eigenvectors are collectively
termed the noise subspace. The ! largest eigenvalue of R will be denoted ;.

In a practical situation, the array receiver has access to only a finite number of snapshots, N, of the
received signal. It can therefore only estimate the covariance matrix R, using the maximum-ikelihood
unstructured estimator R:

T 3wty () 33

n=1

R=

The notation {t,,} denotes the time at which the n** snapshot of the received signal vector y(t) was
taken.

3.1.2 Information Theoretic Criteria

The AIC and MDL were first proposed as viable detection algorithms for the purpose of estimating A’
for the case of array processing in [102]. These techniques were developed in the general setting of
determining the best fit from a number of possible parameterised probability distributionsto a given
finite length data sequence. In this case, the proposed distributions are simply semipositive matrices
of rank % (representing the signal covariance matrix) added to scaled identity matrices (i.e. the noise
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covariance matrix). An introduction to the resulting criteriais given in [102], but both criteria have the
same genera form:

flk) =1Uk) +w(k) (3.4)

where f(k) isthe criterion, w(k) isapenalty functionand {(k) is the following log-likelihood function:

M M
l(k):Nln{(Ml_k e F I et (3.5)
i=k+1

i=k+1

where V denotes the number of snapshots used to form the estimated covariance matrix R, whose 7"
largest eigenvalueis denoted as ¢;. The penalty function has the form:

w(k) = a(N)[K2M — k)] (3.6)

where a(N) = 1 for the AIC and «(N) = 1 In(XV) for the MDL criterion. The model order K is

determined as the value of £ for which f(k) isminimised.

Asan example of how the AIC and MDL criteria operate, acovariance matrix was generated for the case
of asingle source arriving from a bearing of 90° with a signa—to—noiseratio at one antenna of 10 dB.
There were 100 snapshots taken of the signal to form the covariance matrix, whose eigenvalues were:
80.211, 1.352, 1.212, 1.139, 0.974, 0.807, 0.668 and 0.569. The calculated valuesfor the AIC and MDL
are shown in table 3.1. It may be seen from the table that the minimum value for both the AIC and the

k 0 1 2 3 4 5 6 7
AIC | 3057.103 | 89.896 | 99.838 | 109.025 | 112.333 | 116.167 | 121.290 | 126.000
MDL | 1528.552 | 64.487 | 86.392 | 105.313 | 118.690 | 129.726 | 138.800 | 145.063

Table 3.1 The values of the AIC and MDL criteria

MDL correctly occurs at a model order of 1.

3.2 The Performance of the AIC and MDL

The properties of these techniques have been thoroughly analysed for Wishart—distributed [107] covari-
ance matrices, using two probability measures [108] :
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(i). p(A1), the probability of underestimating the model order by 1: ' This probability measure
holds asymptotically for a Wishart—distributed covariance matrix composed from N independent
snapshots. Asa consequenceitisassumed that the K" eigenvalue e isasymptotically Gaussian
distributed with mean Ax and variance A% /N. The average noise subspace eigenvalue o2 is
independent of A g, with mean value ¢2 = ¢? and asymptotic variance o*/N(M — K). The
probability p(A;) issimply given by:

.
p(Ar) = / exp{—w?/2}dw (3.7
Details of the evaluation of v are given in appendix B.

(ii). p(A2), the probability of overestimating the model order by 1: This parameter is significant
mainly for the AIC criteria, which isknownto have afinite probability of overestimating the model
order, even for large values of N. The reader is directed to [108] for details of the calculation of
this probability function.

As an example of the distributions obtained from calculating the probability p( A1), results have been
obtained for two uncorrelated Gaussian distributed signals arriving at an 8—element uniform linear
array (ULA) with bearings 90° and 80°. Both signals have the same SNR, which is defined to be
that measured at one antenna. The distributions are shown in figure 3.1, along with a horizontal line
representing p(A;) = 0.5. Part () is calculated with N =100 and the SNR of both signals varied
according to the horizontal axis. In part (b), the signals both have an SNR of -7 dB, and the value of
N isvaried from 10 to 500. Clearly, the performance of the MDL criterion in both cases is dependent
on the threshold where p(A;) = 0.5: where the signals’ SNR or the value of N is below the threshold
performance is very poor; above the threshold performance is good.
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Figure 3.1 The probability p( A, ) plotted against (a) SNR of the two received signals (b) the number of
snapshots N .

In this chapter, consideration will be given to the MDL technique because it is a strongly consistent
estimator [108]. However, it is also known to be over—penalised, so that the threshold p(A;) = 0.5

L Strictly speaking, the probability measurep( A1 ) also includesthe case where the value of the AIC or theMDL at K — 1 and
K areidentical. This occurrenceis also included in the definition of p(A ) for model orders K and K + 1.
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occurs a a higher SNR than for the AIC. Both the AIC and MDL perform satisfactorily when the
incident signals seen at the array are approximately uncorrelated over the sample time used to form the
covariance matrix R. However, if the signals are highly correlated, an alternative approach is required.

3.3 Coherent Signal Scenarios

3.3.1 Spatial Smoothing Techniques

If thereis complete correlation between the K signals during the sampling period, the rank of the signal
subspace reduces to 1. Under these conditions, the MDL or AIC criteriawill underestimate the model
order, which can seriously affect the performance of subsequent algorithms. In particular, the MUSIC
algorithm requires correct model order estimates so that it can exploit the orthogonality of the noise
subspace to the columns of the matrix A. In order to solve this problem a procedure called spatial
smoothing (SS) [59] was devised, by which asmaller covariance matrix & of size L. x L isformed from
partitions of the covariance matrix R. Thereare H = M — L + 1 partitionsand & is given by:

H
1
wzﬁgﬁuwg (3.8)

where F;' denotesthe transpose of F,. The matrix Fj, isof size L x M and itsi*" row and ;' column
entry is defined by:

o 1 ifj=i+h—landl<i<L
Fi(i, j) = { (3.9)

0 otherwise

More recently, a modified smoothing technique called forward-backward spatial smoothing (FBSS)
has been described and analysed [109, 110]. Given the covariance matrix R, the forward backward

covariance matrix R, p isformed asfollows:

1

where R* denotes the complex conjugate of R. The matrix .J is defined so that its p'* row and ¢'”
columnentry iszero unlessp = M + 1 — ¢, whereupon it equals 1. The matrix Ry, p isthen substituted
into the spatial smoothing algorithm, in place of the matrix R. This procedure can reduce the number of
sub—arrays P, compared to spatial smoothing alone, so the performance of the MUSIC agorithm may
improve.

The purpose of thisalgorithmisto incorporate spatial correlationsinto the covariance matrix and restore
the full rank of the signal matrix X . It is necessary to decide how many subarrays are to be used and
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what the resulting model order will be. This may be achieved simply by applying the MDL criterion to
every possible smoothed covariance matrix in turn[111]. The matrix or matrices with the highest model
order may then be used in the MUSIC agorithm.

The MDL criterionis preferable to the AIC at high SNR values, because it is unlikely to over—estimate
the model order of a given covariance matrix, so that the receiver is more likely to correctly find
the covariance matrix or matrices with the largest model order. Thus, the algorithm presented in [111]
extends the useful ness of the M DL techniqueto provide a general approach to estimating the model order
of agiven set of received data. Itisflexible enoughto cope with coherent signalsand itsonly drawback is
the additional computational burden. Thisagorithm requiresall possible spatially smoothed covariance
matrices to be calculated; in order to apply the MDL to each matrix, the eigenvalue decomposition of
that matrix must be performed.

Itisuseful tobe ableto measure the performance of thisapproach with finite data, which can be estimated
from the analysis of [108]. However, the statistics of the covariance matrix eigenvalues must be altered
in line with the effect of spatial smoothing. The derivation of the appropriate equations will now be
presented.

3.3.2 Asymptotic Eigenvalue Variances

The purpose of thissubsectionisto determinethefirst and second order statistics of the smoothed matrix
eigenvalues. With thisinformation, the results given in appendix B may be extended to determine the
asymptotic behaviour of the MDL criterion under spatial smoothing. The effect of spatial smoothing on
the eigenval ues of the covariance matrix R issubstantial. Denotethe eigenvaluesof % asz;, 1 < i < L

and the eigenvalues of & = FE[¥] as ;. As before, the mean of an estimated eigenvalue is given by
E[z;] =~ ¢;. The variance of the eigenvalues is considerably more involved, however.

Provided that the rank of signal subspace for a smoothed covariance matrix is at least ¢, the asymptotic
variance of the i*" eigenvalue may be calculated. It has been obtained by Pillai and Kwon in equations
(A.18) and (A.33) of [109]:

H
1
E[(z — )Y = E[ACY] ~ T > ul'F.RF] wu/'FyRF u; (3.12)
zy=1

where A¢? denotes the squared error in the estimate z; and «; denotes the i'* eigenvector of &. This
expression is accurate to order O(1/N), as are the other asymptotic mean and variance expressions
givenin this chapter.

The other requirement is to calculate the variance of the noise subspace eigenvalue estimate 62 . Unfor-
tunately, the effect of spatial smoothing makes this much harder to calculate. The eigenvectors spanning
the noise subspace of & are not uniquely defined (unless K = . — 1) because the eigenvalues are all
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equal to o2. However, the noise subspace projection matrix Z is always uniquely defined and is given
by the equation:

Z wjul =T — ZUZ (3.12)

i=K+1

The expectation of 52 may be therefore be obtained from the projection of & onto Z:

H
El6?] ~ _1 KE[tr{Z!fl}] = ﬁtr{z ZF,RFT} (3.13)
a=1

where tr{} denotes the trace operation. This equation may be used to determine the variance of o2.
Following [112], one may writethat the error in o2, As?, isgiven by:

2
Aol =6l —olm Y AT, (3.14)

where the notation ¥,,, denotes the p'* row and ¢ column entry of the matrix # and A%, the
estimation error in that entry. By expanding equation (3.13) into a summation of products and taking
the derivative with respect to &,,,, itisfound that:

dafl Zyp

av,,  L-K

(3.15)

Itiswell known that for an estimated covariance matrix R, theerror terms AR,,,,, = R, — R, May
be related by the according to the equation:

EAR,,,AR,;] = (1/N)R,R,n (3.16)

The corresponding error term present in the estimated spatially smoothed covariance matrix entry !i?pq,
AW,,, may be expanded into terms involving A R:

H-1
1
Ay = Y ARpiogrs (3.17)

=0

Applying these results to equation (3.14), the asymptotic variance of &2 is given by:

L
1
El(Ac?)?] = Z Zom AW, ﬁ Z Z,A®,,)]
m,n:l p,q=1
H-1 L L
= ( L A 3 Z Z EanARm+a,n+aquARp+b,q+b]

a,b=0m,n=1p,¢=1

)
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H-1 L L
1
m Z Z Z anRm+ayq+qupRp+b,n+a

a,b=0mmn=1p,¢=1
H

1
= — _tr ZF,RF! ZF,RF” 318
NHz(L _ [{)2 {a;l b b a } ( )

X

This result applies for any spatially smoothed matrix &. Where spatial smoothing has restored the full

rank of X, the noise subspace eigenvectors are always orthogonal to the steering vectors a.(6;) and itis
possibleto replace R by the matrix o2 1. These results providethe necessary statisticsfor the eigenvalue
zi and the value 62 for the spatial smoothing case.

3.3.3 Modifications for Forward—backward Spatial Smoothing

The forward—backward matrix Rr,p, defined in equation (3.10) has the property that Rp/p =
JR}/BJ. This means that the eigenvalues of Ry, p, c;, may be expressed in terms of Rp,p and

its eigenvectors v; (ordered by decreasing eigenvalue):

ci = Ry ptpi = (W Rpyptpi)" = ¢ IRY g Tt (3.19)

Equating terms in the above equation gives v} = ¥H.J and v} = Jp;. This means that equation
(3.19) may be expanded using equation (3.10) to give:

i = BT (R4 TR T = (B R+ T R 7) = /7 Ry (3:20)

Equation (3.20) can al'so be applied to any spatially smoothed matrix derived fromthematrix R ;5. This
expansion of ¢; interms of R means that equation (3.11) may be used directly to calculate eigenvalue
variance for the FBSS case. The only modification required is to insert the correct eigenvector +; in
place of u;. The same procedure applies for correctly evaluating equation (3.18).

Theresults provided in the last two subsections allow one estimate the performance of theMDL criterion
with SS or FBSS applied. The modified equations from [108] may be evaluated for al values of H to
determine which value of H will give the best ensemble mean performance for a given model order K.
In practice, the most interesting cases are where the degree of spatial smoothing /' has led to the full
rank of the signal matrix X being restored. The evaluation of the probability p(A;) may therefore be
limited to such cases.
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3.3.4 The Conditional Signal Model

The equations so far have been derived for the case of signals which are uncorrelated between samples
intime. This approximation is not realistic for communications channels, where time variations in the
channel must be much slower than the symbol rate to permit satisfactory bit error ratio performance. In
order to estimate the performance of the array receiver in this case, it is possible to use the conditional
signal model.

The conditional signal model makes the assumption that the underlying signal does not change between
realisations of the sample covariance matrix R. In this case, the variance of the signal eigenvaluesis
reduced considerably becausethe underlying signal isidentical inall itsrealisations; the only perturbation
tothe estimated covariance matricesisdueto background noise. Denoteasnx the K" largest eigenvalue
of the signal covariance matrix X = ASAY (or its spatially smoothed equivalent). The variance of the
K" eigenvalue becomes:

N wis -3
VAT cond = (Uar Nh) il s (321)

where vary,;s;, denotestheresult of equation (3.11) inthe case of a spatially smoothed covariance matrix.
Alternatively, for an unsmoothed covariance matrix, theterm N (vary;s5) Simply reducesto A% . These
results may be substituted in the equations given in appendix B to estimate the detection probabilities
for the conditional model. This model is useful as it permits the variance equations to be used for an
arbritrary set of v signal vectors {s(¢)}.

3.4 Results

In this section, numerical results are shown to illustrate the effect of the theoretical equations. In the
particular scenario chosen, an 8-element ULA is receiving two perfectly correlated narrowband signals,
whose bearings are 23° and 45°. Note that a bearing of 90° indicates a signal arriving perpendicular to
the array and that all the simulations have been performed using the conditional model. Both signals
are complex exponentials which have the same signal-to-noiseratio (SNR), which is defined to be that
measured at one sensor only. The reference sensor was chosen to be the end sensor at one side of the
array and there was 0° phase shift between the signals at that sensor. 100 snapshots of the received data
were used to form the unsmoothed covariance matrix. Four partitions of the matrix were then used to
form a spatially smoothed covariance matrix of size I =5.

The smoothed signal subspace is of size 2, so the smaller signal eigenval ue determines the performance
of the model-order selection algorithm [108]. The mean of this eigenvalue and the estimated noise
eigenvalue 62 are shown in figure 3.2. The theoretical values calculated from the matrix R are shown
as lines and simulation results are shown as points. For each simulation point, 1000 Monte Carlo runs
were undertaken.
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Figure 3.2 Themean of (a) the second largest signal eigenvalue and (b) the parameter 6° plotted against
SNR.

At reasonable SNR values, there is a good match between theory and simulation. However, at very
low SNR the signal eigenvalue is larger than expected and the value of 52 reduces. Thisis because the
standard deviation of al the eigenvalues is comparable to the difference between the signal and noise
eigenvalues. As a consequence, the signal and noise eigenvalues are subject to considerable correlation
leading to the biasin the simulation results.

Figure 3.3 show the variance of the signal eigenvalue and of 2. Again, there is good comparison
between the results at reasonable SNR, but the results diverge at low signal power levels.
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Figure 3.3 Plots for the variance of (a) the second largest signal eigenvalue and (b) the parameter 62
plotted against SNR.

These results have been used to predict one measure of the performance of the MDL criterion, as shown
in figure 3.4. The signal and noise eigenvalue variances have been used to calculate the probability of
underestimating the model order, p(A4;), using the equations from [108].

Figure 3.4 demonstrates that the variance equations have been successfully modified to predict the
probability measure p(A;) for a spatially smoothed covariance matrix. In this case, the theoretical
estimate of p(A4;) is seen to be slightly pessimistic compared to the simulated results. This deviation
occursdueto adlight biasin the eigenvalues at low SNR and low numbers of snapshots V. Correlations
between the eigenvalues under these conditions can seem to improve the performance of the MDL
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Figure 3.4: The probability p( A1) of underestimating the model order for the MDL, vs SNR.

criterion, but these effects are artificial. The theoretical results provide a more realistic measure of the

SNR required to obtain adequate performance.

Next, some results are presented to confirm that the modifications derived for the forward-backward
smoothing case are correct. The linear array used in this case had 10 elements, and forward-backward
spatial smoothing was applied so that the smoothed matrix sizewas L. =6. The number of snapshotswas
till 100 and the two correlated sources remained exactly the same as for figures 3.2 — 3.4. Figure 3.5
shows the mean and variance plots of the smaller signal eigenvalue for this scenario against SNR. From
the results, there is a good match between the theoretical values and the simulation pointsat reasonable
SNR values.
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Figure 3.5. Plotsfor (a) mean and (b) variance of the smaller signal eigenvalue vs SNR, using forward-
backward smoothing.

Finally, it ispossibleto evaluate the probability p( A4 ; ) for all possible smoothed covariance matrix sizes,
L. Thishas been done for the case of two sources at bearings of 95° and 120°, with a phase shift of 120°
at the edge of the array. The antenna array sizeis 8, N =100 and the FBSS algorithm was used. The
signals were assumed to be of the same SNR, coherent and to be generated by the conditional model.
Theresultsare showninfigure 3.6, plottingthe signals' SNR against the smoothed matrix size H and the
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probability p(A;). Comparing the results, it is possible to determine which value of Z will produce the
best performance at a given SNR: in this case, the curves suggest similar performance for all covariance
matrix sizes L. > 4.

5
4 Smoothed Matrix Size

Figure 3.6: The probability p(A;) for two coherent signals plotted against the signals'’ SNR and the
smoothed matrix size L.

All of these results have been calculated for signalswith afixed SNR. If the signals are known to follow
agiven probability distribution, it is possible to average the results over all signal phases and the relevant
SNR valuesto obtain a measure of the overall system performance.

3.5 The Spread Spectrum Signal Acquisition Problem

The techniques described above may be applied to conventiona narrowband communications systems,
where the received signa is sampled in the | and Q channels once per symbol. However, in CDMA
systems, the received signal has to be sampled 1 times over one symbol period for alength W spread
spectrum code. The general form of a spread spectrum bearing estimation receiver is shown in figure
3.7. Thereceived signa at each antennaisdemodulated to baseband and passed through a matched filter
for the desired PN—code. Beforethe receiver can begin to process the received data, it must apply signal
detection techniques to the output of the matched filter for each of the I/ time dlots of the PN—code.

The scheme by which the time slots are searched through depends on the bandwidth of the spread
spectrum signal as compared to the detection processing rate of the receiver [113-115]. In early
receivers, each slot was checked in turn (serial acquisition) in order to minimise the detection processing
requirement. The penalty paid is the potentially large time delay to find a spread spectrum signal. In
order to overcome this, one may employ parallel searches through a number of time slotssimultaneously.
For wide bandwidth spread spectrum signals, the computational complexity may be prohibitive, so that
ahybrid scheme of searching serially through blocks of time slotsis more attractive.

In order to check whether a signal is present in a given time slot, the received power may compared
to a threshold power level. The level is set to maximise the probability of detecting a signal, whilst
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Figure 3.7: The general form of a spread spectrum bearing estimation receiver.

minimising false alarm probabilities [25][Chapter 6] [116]. In order to apply this technique to the

received signal from an antenna array, one may average the power levels measured at each antenna
element. If the receiver detects the presence of one or more signalsin a given time slot, it is possible
to proceed with signal acquisition procedures. In the case of the bearing estimation receiver array, this
is the MDL algorithm applied to all possible smoothed matrices using SS or FBSS, so that coherent

multipath signals may be separately resolved.

Once the model order algorithms have been applied to all the chosen time dots, the MUSIC algorithm
may be applied to the data in time slots where multipath signals have been detected. This provides the
receiver with the bearings of all the separately resolved multipathswhich have been received. In order to
determine which multipathsare to be used by the receiver for making a data decision, the bearings may
be used to determine spatial filters for each multipath. The filter output measures the signal and noise
power present at the given delay and bearing. This may be used directly as a rough SNR measurement,
or it is possible to apply a threshold detector similar to those used in single antenna spread spectrum
receivers [115, 116]. The receiver may therefore select only the multipath components with the largest
SNR for decision making. One consequence isthat over—estimating the number of significant multipath
components, because of the occurrence of spurious peaks in the MUSIC algorithm’'s power density
spectrum, is not a major problem. Discussion of how the multipath components are combined using a
RAKE filter will be deferred to chapter 6.

The signal detection scheme may therefore be summarised as follows:

(i). Search throughthe 11" time dlots.
(ii). Apply a power threshold to each dlot to detect the presence of multipath signal energy.
(iii). Where asignal is detected, the following method is applied:

(a8 Apply the MDL techniquetoall possible spatially smoothed covariance matrices. Select the
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matrix with the largest number of signals.

(b) Apply the MUSIC agorithm to the chosen matrix, using the model order estimate, to find
the multipath bearings.

(c) Estimatethe signal power actually present at each multipath bearing.
(d) Selectthesignalswiththelargest SNRtobeused inaRAKE filter for datasymbol estimation.

An aternative method for CDMA signal synchronisation has been described in the literature. 1t makes
no assumption concerning the form of the received signal, but instead it assumes that a CDMA signal is
present in one of the time slots. The correct slot is chosen by looking for the minimum mean—-squared—
error Wiener filter acrossthetimeslots[117], or by using amaximum likelihood detector [118]. However,
thistype of approach isnot particularly suited to the bearing estimation receivers described in thisthesis.

3.6 Conclusion

This chapter has obtained theoretical results for the effect of spatial smoothing techniques upon the
eigenvalues of the covariance matrix. These results are useful in analysing the performance of model-
order selection criteriasuch asthe AIC or MDL under spatial smoothing. Simulation results have shown
a good match to the derived equations, except under conditions of low SNR and small humbers of
snapshots. In these situations, the asymptotic estimates of the eigenvalues provide a better measure of
the likely performance of the system. The application of these techniques to a CDMA receiver have
also been discussed and a method described to detect the significant multipath components present in
the received signal.
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Chapter 4

Bearing Estimation Algorithms and
Coherent Sources

This chapter will introduce the subject of narrowband bearing estimation algorithms and will discuss
severa of the most popular techniques. The MUSIC algorithm [53] has been chosen for further analysis,
because 1) it provides a good compromise between complexity and resolution, 2) its operation is well
understood. However, one of the main deficiencies of the MUSIC agorithm isitsinability to correctly
locate highly correlated or coherent sources.

One simple method for overcoming this problem is to employ spatial smoothing techniques [59, 110],
which trade the size of the array for the ability to resolve coherent sources. In this chapter, two spatial
smoothing techniques — spatial smoothing (SS) and forward-backward spatial smoothing (FBSS) —
are evaluated to assess their relative performance. This is achieved by analysing the structure of the
covariance matrix and by using equations for the asymptotic statistics of the bearing estimates. The
results show that the performance of SS depends on the source bearings and angular separations' The
FBSStechnique can offer improved performance, depending on the rel ative phases of the source signals.
Finally, other spatial smoothing techniques are briefly discussed.

4.1 Principles of Direction of Arrival Estimation

The purpose of direction of arrival (DOA) algorithms is to locate the bearings of a number of signals
impinging on a multi—element antenna array. In this chapter, attention will again be focussed on the
narrowband model described in section 3.1.1. All symbols are assumed to have the same meaning asin
chapter 3, unless otherwise stated. The measured baseband signal vector at the receiver, y (1), is given
by equation (2.4):

y(t) = As(t) + n(t) 4.0

All the terms in this equation have the same meanings as in section 2.3.1. For the purposes of this
chapter, the receiver is interested only in estimating the columns of the matrix A, or equivalently the

1Both of these characteristics are important — endfire effects mean that sources arriving in that region require alarger angular
spacing to be resolved than for sourcesin the broadsideregion (cf figure 2.8).
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source bearings {0 }. Asthe receiver containsan M/ —element uniform linear array (ULA), as shownin
figure 2.8, the steering vector a () isgiven by:

a(f) =1L exp{jmcos()},...,exp{j(M — )= cos(H)}]T 4.2

There is a large humber of bearing estimation algorithms documented in the literature, including:
conventional beamforming [119], the minimum variance algorithm [120], the minimum norm technique
[121], ESPRIT [122], MUSIC [53], weighted subspace fitting [123], as well as techniques based
on higher—order statistics [124, 125] and on maximum-ikelihood approaches [51, 101]. Most of the
techniques based on second—order statistics employ the data covariance matrix R, defined in equation
(2.5):

R=FElyHyt)?] = ASA” 1 o1 (4.3)

Bearing estimation algorithms directly exploit the structure of R to estimate the matrix 4, following
similar procedures to those for spectral analysis. A subset of these techniques will now be discussed,
highlighting issues of resolution and complexity.

(i). Conventional Beamforming (CBF)
This technique [119] operates in a similar manner to the discrete Fourier transform (DFT) with
the output power density spectrum for bearing ¢, Pcpr(6), produced by the equation:

Pepr(0) = a™(0)Ra(0) (44

This technique provides an unbiased estimate of the observed power density at a given bearing:
however, leakage effects due tofinitearray sizes mean that closely spaced sources cannot be separ-
ately resolved. To improve this, the same techniques can be applied to conventional beamforming
asto the DFT, such as windowing the data, zero padding, etc. However, as with the DFT, the CBF
algorithm provides a poor trade-off between the number of sensors and resolution [126], so that a
number of better techniques have been devised.

(ii). Minimum Variance Technique (MV)
The problem with CBF techniques arises from beam pattern constraints: there is a trade-off
between the sidelobe level and the width of the main beam. In this technique [120], the best
possible beam pattern is chosen mathematically. It turns out that the minimum variance beam
pattern involves calculation of the inverse of the covariance matrix. The resulting power density
spectrum, Pary (6), is given by the equation:

1

PO = R Ta )

(4.5
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(iii).

(iv).

where R~! denotesthe matrix inverse of R.

Calculating the inverse of the covariance data matrix makes this technique more computationally
intensive than the CBF technique. However, by reducing the sidelobes of the spatia filters, the
MV estimate of the spatial power spectrum can provide better resolution.

Maximum Likelihood Techniques

Maximum likelihood statistical methods [51, 101] can be used to estimate the source bearings.
Thisisachieved by maximising a K dimensional log-ikelihood functionfor A source bearings.
However, the function to be maximised is often highly non-inear with local minima, which
presents aformidableproblemin practical computation. Bruteforce searches of thelog-ikelihood
function are computationally expensive, whilst simpler searching procedures, such as genetic
algorithms and alternating projection [127], cannot be guaranteed to find the global maximum.
This technique will not be considered further in thisthesis.

The MUSIC Algorithm

The MUSIC agorithm operates by calculating the eigenvalue decomposition of the covariance
matrix R. The result of this operation is that the eigenval ue/eigenvector pairs may be separated
intotwo classes: 1) K signal eigenvectors which span the space of thesignal matrix X = ASAY
2) noise eigenvectors which are orthogonal to the matrix X . Provided the column matrix of noise
eigenvectors E, € CM**M~K can be correctly determined, the source bearings can be identified
as those which are orthogonal to each column of E,,. This procedure is possible, because the
columns of E,, are orthogonal to the columns of X and hence to those of A. Thisrequires only
a one—dimensional search for source bearings and the power density spectrum for the MUSIC
algorithmis given by:

1
Pyus(0) = afl(0)E, EH a(0)

(4.6)

The effect of using finite data is that the signal bearings are identified as those with the smallest
projection on the estimated noise subspace. One difficulty with this algorithm is that the model
order of X must be correctly identified, for the orthogonality property to hold. If the model order
is underestimated, E,, will contain components of the signal subspace, so that the algorithm is
likely to fail. Overestimating the model order is not such a serious problem, except that spurious
peaks may occur in the density spectrum due to absence of some of the noise eigenvectors from
FE,,. Model order estimates may be obtained in from the algorithms discussed in chapter 3.

In practical situations, the receiver only has access to a finite number of snapshots, N, of the signa

vector y(t). The maximum likelihood unstructured estimate of R from the data, R, is then given

by equation (3.3). In order to compare qualitatively the performance of the CBF, MV and MUSIC

techniques, al three have been employed to resolve two uncorrelated sinusoidal signals. Both signals
have a signal-to—noiseratio (SNR) of 20dB, with one at abearing of 35° and the other at 45°. All three
are using N = 50 data snapshots from a linear array with A/ = 8 sensors. The results are shown in

figure 4.1, with the signal bearings shown as vertical lines. As can be seen, only the MUSIC algorithm
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successfully resolves two sources, which are separated by only 10°: the other two techniques interpret
the two sources as a single source.

30 T T T T T T T T

MV —
25 MUSIC — 1

20

15 [ 1

Power Density (dB)

0 20 40 60 80 100 120 140 160 180
Bearing (degrees)

Figure 4.1 A comparison of bearing estimation algorithms with two signal sources present.

For the rest of this chapter, the MUSIC agorithm will be discussed in more detail. This technique
is one of the most popular algorithms in the literature and has been subject to extensive analysis -
see[101,128-132]. For the purposes of thisthesis, the main deficiency of MUSI Cisitspoor performance
inthe presence of highly correlated or coherent signals: one solution to thisproblemisto employ spatial
smoothing.

4.1.1 Spatial Smoothing Algorithms

One assumption made in the derivation of MUSI C isthat theincoming signalsare mutually uncorrelated
over the time of observation. If al the signals present originate from different transmitters or are
modulated with different data streams, they will be only partially correlated. However, if they result
from multipath responses from the same transmitter, the signals are “coherent” and the assumption is
invalid.

The signal subspace is always spanned by the vectors present in the matrix A. However, if the signals
are coherent, the matrix S becomes singular, so that some of its eigenvalues are zero. This means that
part of the signal subspace isindistinguishablefrom the noise subspace. As aresult, the observed noise
subspace is no longer orthogonal to the steering vectors in the matrix 4 and the MUSIC algorithm fails.
One solution isto resort to the maximum likelihood techni ques mentioned above, athough thisloses al
the computational advantages of the MUSIC algorithm.

A simple approach to permit the MUSIC algorithm to be used even in the case of coherent sourcesisto
employ the spatial smoothing techniques described in section 3.3.1. Originally, these algorithms were
intended only for linear array configurations. However, an interpolation technique has been described
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recently, which permits the application of spatial smoothing to arrays of arbitrary geometry [112]. Two
recent papers have a so shown how to apply spatial smoothing algorithmsto the special case of circular
arrays[133,134].

The original spatial smoothing (SS) technique modifies the data covariance matrix, R, according to
equation (3.8) to produce a smoothed matrix &:

H
1 T
v = h§_1: F,RF] 4.7)

The covariance matrix ¥ may be used to generate a MUSIC power density spectrum in the normal
manner. A geometrical interpretation of the technique is shown in figure 4.2: subarrays are formed by
working in the forward direction only. It is easy to show [135] that to separately resolve K coherent
sources, itisrequired to average over at least K different subarrays. This means that the antenna array
must contain at least 2K elements.

-— Backward

ULA Sensors
O O O O O O O

Sub-matrices
Forward

Figure 4.2 Forward and backward spatial smoothing.

Forward-backward spatial smoothing (FBSS) works by forming covariance matricesin both the forward
and backward directions, as shown in figure 4.2. Thisis equivalent to averaging the original covariance
matrix R according to equation (3.10):

1

This operation on its own is called forward-backward smoothing (FBS). The matrix R,z may also
be substituted in equation (4.7) in place of R to obtain the FBSS covariance matrix. It has been
shown [110, 136] that to resolve K coherent sources, as littleas 3K /2 array elements may be required.
Aswill be seen bel ow, there are some situationswhere FBSS behaves in the exactly the same manner as



the SStechnique: in these cases 2 K array elements are still required.

As an example of the operation of spatial smoothing techniques, two coherent sinusoids impinge on an
8-element ULA from bearings 130° and 150°. Both signals had an SNR of 20 dB and N = 50 data
snapshots were available. The SS technique with I = 7 was applied to the data covariance matrix,
as well as the FBS technique with . = 8. The power density spectrum of the unsmoothed MUSIC
algorithm along with the spectra for the two smoothing techniques are shown in figure 4.3. Thisfigure
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Figure 4.3 The power density spectra of unsmoothed MUSIC, MUSIC with SS (L = 7) and MUSIC
with FBS (L = 8) for two coherent sources.

demonstrates that the conventional MUSIC algorithm has failed completely. However, applying either
spatial smoothing algorithm restores the full rank of the signal subspace, permitting MUSIC to be
successfully used.

4.1.2 Statistical Analysis of the MUSIC Algorithm

Determining the performance of the MUSIC algorithm withfinitedata, with or without spatial smoothing
techniques applied, is of mgjor importance. There are two main approaches to this subject in the
literature. The first method is to determine the statistics of the power density spectrum itself: this
permits the derivation of a resolvability criterion for the MUSIC algorithm [128] — that is to find the
conditions under which two closely spaced sources will be resolved as two separate peaks, rather than
combining to form one peak. Similar work has also been performed for MUSIC combined with spatial
smoothing algorithms[109, 137]. However, thistype of analysisisusualy restricted to the case of two
sources and will not be considered in thisthesis.

A more general technique for analysing the MUSIC algorithm is to derive an equation for the variance
of the signal peaks of the MUSIC spectrum [131, 132]. As before, these results have been extended to
MUSIC with spatial smoothing techniques[112, 138]. One useful form of the variance equation for the
unsmoothed MUSIC algorithmis given in[132]. Denoting the error in the estimate of the bearing of the
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k'" signal as A6;., the asymptotic variance of that error is given by the equation:

0.2

E[A6]] = m{[s—l]kk +[STH AT AT S ) (4.9)

The scalar value dy (4}, is given by the matrix product 2{d (6, )E, E¥ d(6,)}, where d(6;) is the
Brandwood vector derivative of a(6},) [52]. Finaly, the notation S;; denotesthe ' row and j** column
entry of S. The approximation in equation (4.9) is accurate to order O(1/N) [138], which aso holds
true for al other variance expressions considered in this chapter. For large values of the SNR with
mutually uncorrelated sources, the variance of each bearing estimate is inversely proportional to the
SNR of the desired source. Remarkably, under these conditions, MUSIC is a large sample realisation
of maximum likelihood methods [101]. However, as the correlation between the sources increases the
matrix S ' becomes ill-conditioned and the variance can become very large compared to maximum
likelihood approaches.

The equivalent equation for the MUSIC algorithm combined with spatial smoothing techniquesis more
complex. The results have been obtained by Rao and Hari [138] and for spatial smoothing the equation

is:

H H
© 13 BR(p. BN (g p)atR{ Y BN (g} N(g pal]

FAf ] g ———
[ k] dg(gk)zNHz[
p,q=1 p,q9=1,pZq

(4.10)

where ¢ denotes the real part of a complex value. The matrix R(p, ¢) is given by FpRFqT; «a and 3
are defined as:

a=E,Efds(0;) and B = UsA3' U as(0y) (4.11)

The matrix Us € CE*E contains the K signal eigenvectors of the smoothed covariance matrix,
Ag € RE*E isadiagonal matrix containing the & smoothed signal eigenvalues. The matrix N (p, q)
is defined in a similar way to R(p, ¢) with N (p, q) = 0 F, FqT The vector ag is the steering vector
for the smoothed array and d isits brandwood derivative. It has been noted [138], that the second part
of equation (4.10) becomes very small compared to thefirst part at high SNR values. The vector 3 may
be expressed as.

B=(A5HTS; (4.12)

where Sg is the smoothed signal matrix and A s is the matrix of smoothed steering vectors. The
vector 1, € C1*¥ jsthe k" column of the K x K identity matrix I and the notation A+ denotes the
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pseudo-inverse of A. Expanding the matrix R(p, q) as F, ASA" F] + N (p, ), equation (4.10) may

be written as:
2
o _ _ e
E[AG]] ~ m{[ss ek + 0?85 (AT As)™" S5 e}
9 H
—1 H -1 H
+ G0 NE? Z {[S5 " B(p,©)" SB(q,0)S5 |pr}ta” N(q,p)ex
p,q=1,p#q
9 H
H H H H
+ (6N > (BN, 9B " N(g,p)a+R{BYN(p, o p* N(g,p)a})
p,q=1,p#q
(4.13)
where B(q, ©) e C**¥ isadiagonal matrix, given by:
by 0 ... 0
0 by ... O
B(q,0)=A"F[ (A5 = = _ (4.14)
0 0 bx

The k" diagonal entry of B, by, depends on the phase shift between the steering vectors a* (6; ) F
and af! (6;). For the FBSS case, the matrix Ss would be replaced by the equivalent FBSS signal matrix
S, inthe equations above. The first term of equation (4.13) is equivalent to equation (4.9) and the
other terms are cross terms to compensate for the formation of & from partitionsof R.

4.1.3 Analysis of the Covariance Matrix

Equations(4.9) and (4.13) explicitly show that the performance of the MUSIC al gorithm with or without
smoothing techniques is proportional to entries of the inverse matricesof S, S5 or S, 5. Therefore, if
onelooksat what the smoothing techniques do to the eigenval ues of these matrices, it should be possible
to explain the major effects observed in the behaviour of the MUSIC algorithm. In the analysis of the
matrix eigenvalues, a useful criterion isthe condition or eigenvalue ratio (EVR), which is defined to be:

Amax
EVR = (4.15)

Amin
where A, and A4 represent the smallest and the largest eigenvalues, respectively, of the given
matrix. To make legitimate comparisons, the received signal power levels should be kept constant:
other parameters such as signal bearings and phase may then be varied to see the effect on the EVR. If
the EVR is small, the columns of S and hence the underlying signals are approximately uncorrelated,
which suggests MUSIC will perform well. If the EVR islarge, the matrix is close to being singular and
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MUSIC will perform poorly. Interms of the variance equations, the scalar value (1/ A, ) isthelargest
eigenvalue of S—1: the more ill-conditioned the S matrix is, the larger the variance of the MUSIC
bearing estimates.

Similarly, the variance equationsinvolve the inverse of the matrix A A (or A A), whichis altered
as the source bearings change. When the sources are sufficiently spaced, the off-diagonal terms of this
matrix are small, so that the eigenvalues are all approximately unity. However, when the sources are
closely spaced, the off-diagonal terms become large and the EVR of A7 A becomes very large.

Inthe general case of K coherent sources, the matrix S is of the form:

52 s1s2exp{jé(1,2)} ... sisgexp{jo(l, K)}
6_ 5189 exp{.—jq/)(l,Q)} s.g S9SK exp{.jqb(Q,K)} (4.16)
sisgexp{—jo(1l, K)}  sasgexp{—j¢(2, K)} ... 5%

The amplitude of the k' source is denoted as s;, and scalar #(i, j) indicates the phase at the reference
sensor between sources ¢ and j. For the rest of this chapter, the reference for the phases ¢ (4, j) will be
placed at the centre of the ULA.

4.1.3.1 Spatial Smoothing

For spatial smoothing, H sub-matrices are formed from L element subarrays and are averaged to form
asmoothed covariance matrix & . The reference for the smoothed steering vector as(#) will be defined
to be at the centre of the array, so that:

)L cos(@)}]T
(4.17)
This definition may be used in combination with results from [139] to show that the :** row and ;"

as(0) = [exp{—i( Y cos(8)}, eXp{—j(L — 3)71' cos(B)}, ... exp{j(

column entry of the smoothed signal matrix Ss is given by:

H-1
[Sslij = sis; eXP{jfﬁ(i,j)}% > exp{—j(((H — 1)/2) + p)w(cos(0;) — cos(0;))} ~ (4.18)

p=0
The summation term isreal for both even and odd 7: it will be denoted as ¢ below. The behaviour of
this cross-correlation value has been analysed extensively in [139]. The magnitude of (Ss );; generally
decreases as H increases, so that the EVR of Ss will also improve. The rate of the decrease in ¢ with
H depends on the source bearings and their separation. For the simple case of two sources, the matrix

48



Ss isgiven by:

. 5% s1s9cc expljo(l,2)} (4.29)

s1sacc exp{—jo(l,2)} 55

The eigenvalues of the smoothed signal matrix S are given by:

det(Ss — AL) = 0 (4.20)

where det denotes the matrix determinant. This equation leads to a quadratic equation in A: applying
the formulafor the roots of a quadratic equation gives:

57 + 57 1
\ % & o f(s 4 s+ 2883262 — 1) (4.21)

The eigenvalues of S5 depend on the value cc. If ¢¢ iscloseto one, A has rootsnear 0 and (s + s3)
. if ¢ issmall, the eigenvalues are close to s? and s2. It is useful to note that the eigenvalues do not
depend on the phase term ¢(1, 2), which suggests that varying the signal phases has no significant effect
on the variance of the SS algorithm.

4.1.3.2 Forward-backward Spatial Smoothing

To simplify the analysis of forward-backward spatial smoothing, spatial smoothing is applied as before.
The forward-backward smoothing may be applied to the resulting forward and backward matrices to
form the final covariance matrix, ¥, 5. Thus:

1
Tpp = §(u7+Ju7*J)
1
- §(A555A§I + JALSSALT) + 020
1
= §(A5[55—|—5§]A§I)+02I

= AsSppAfl +0°1 (4.22)

The third line of the above formula follows because JAG = A, etc. Therefore, the value of [Sr, 5l;;
isgiven by:

[SF/B]Z']' = [SS]Z']' + [5;]” = §;8;CC CO8 (f)(l,j) (423)

The magnitude of the cross-correlation term can lie between s; s; ¢ and zero, depending on the rel ative
signal phase ¢(i, j). In the case of two sources, Sy, g isgiven by:
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52 s1s2¢c cos (1,2)

S = (4.24)
e s1s2¢c cos (1,2) 52
Solving for the eigenvalues, as in equation (4.20), gives the values of A:
2 .2
A= w =+ %\/(5411 + 59 4 2s753[2¢Z cos?(¢(1,2)) — 1]) (4.25)

For two coherent signals, the variance of the FBSS method clearly depends on the relative signal phase
#(1,2). 1f ¢(1,2) = 0,7 radians, the matrix S = S§*, so the off-diagonal terms of Sr,p are not
cancelled, leaving the EVR identical to the spatial smoothing case. This means the error variance will
be the same as for spatial smoothing. Alternatively, if ¢(1,2) = Z, 27 radians, the off-diagonal terms
of Sr,p cancel completely, so that the EVR reaches aminimum. The improvement that may be offered
by FBSS depends on how well SS alone has reduced the magnitude of the correlation c¢. Similarly, for
the FBS algorithm al one, the performance of the MUSIC algorithm can be improved, except in the case
where ¢(1,2) = 0, 7 [137].

In the general case of K sources, the EVR of aforward—backward smoothed covariance matrix is less
than or equal to that of the original smoothed or unsmoothed covariance matrix [138]. Depending on
the signal phases, the FBSS algorithm can offer significant improvements in scenarios where spatial
smoothing has failed to reduce signal correlation, particularly when signals are closely spaced.

The phase dependence of the FBSS a gorithm means that in some cases, using (K/2) subarrays with
FBSSis insufficient to restore the full rank of the signal matrix S, [110]. Indeed, if al the relative
phase terms ¢(1, j) are 0 or =, thealgorithm performsin the same manner as SS with the same subarray
size L. However, thisis an extreme case: applying FBS to a spatially smoothed covariance matrix
usually improves the performance of the MUSIC agorithm and in some cases, FBSS may be able to
resolve the same number of sources using alarger subarray size than SS. Where the number of sources
islarger than half the number of antenna elements, it provides the only opportunity to resolve all the

sources.
4.2 Other Spatial Smoothing Techniques

Two other spatial smoothing techniques described in the literature are based on sguaring the data
covariance matrix. Thefirst method isdue to Kirlinand Du [140], and the spatially smoothed covariance
matrix is defined as follows:

H H
1 1 oy
UKD = 75 > F:RF/F;RF] = VE > R(i, )R, 1) (4.26)
ij=1 ij=1

Itissuggested that H > K toresolve K sources as for spatial smoothing. The matrix ¥x,p, may also
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be subject to forward—backward smoothing to obtain a variant of the FBSS algorithm. The rationale for
using thistechnique [140] isthat the matrix ¥ -, p includes some parts of the original covariance matrix
which are not explicitly present in the definition of the spatially smoothed covariance matrix. Howeve,
the matrices R(:, j) and R(j, i) specified in (4.26) do appear in equation (4.10): as a result, they do
affect the asymptotic variance of MUSIC with spatial smoothing.

The second technique is described in [141] and is termed quadratic spatial smoothing (QSS). In this
case, the covariance matrix is subject to a squaring operation as follows:

Rg = RR" (4.27)

The matrix R may then be subject to SS or FBSS in place of the original covariance matrix R. This
techniqueis very similar, but not absolutely identical, to the Kirlin and Du approach.

An algorithm to completely de—correlate the multipath sources has been described in [142]. However,
it requires an initia estimate of the number of sources and their bearings: these are used in an iterative
procedure to obtain the correct signal locations. Another spatial smoothing technique called the steered
pattern averaging technique (SPAT) [143] employs sub—arrays which are steered in different directions
to produce a number of independent covariance matrices for averaging. Both these techniques require
as many sub-arrays as the original spatial smoothing algorithm and neither has been considered further
inthisthesis.

It is also possible to employ the Toeplitz approximation method (TAM) to reduce signal correlation.
In this case, the receiver averages the top-eft to bottom—right diagonals of the covariance matrix in
order to giveit a Toeplitz structure. Unfortunately, this approach makes incorrect assumptions about the
underlying signals, so that the bearing estimates obtained from this technique are not consistent [141].
This observation was backed up by numerical experience during the work of this PhD and thisapproach
has also not been pursued in this work.

Finally, a modification of the FBS technique was proposed in [144] as a general technique to overcome
coherent sources:. instead of adding the forward and backward covariance matrices, they were subtracted
fromoneanother. 1t wasclaimed that thismethod was sufficient to resol vean arbitrary number of coherent
sources. However, the author was able to provide a simple counterexample [135] to demonstrate that
this claim was untrue and that the technique was flawed.

4.3 Results and Discussion

In this section, the egquations quoted for the MUSIC algorithm and for the spatial smoothing techniques
will be applied to particular scenarios to illustrate the points made in the analysis of spatially smoothed
covariance matrices. It should be pointed out, however, that equation (4.10) is very complex and the
above analysisis only intended to explain the major effects observed in the behaviour of SS/FBSS. In
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al the smulations the number of elements A in the uniform linear array was eight and each signal’s
SNR was set to be 17dB. All signals were generated using complex exponentials of constant amplitude
and one hundred snapshots were used to form covariance matrices in each case.

Figures 4.4 and 4.5 show the effect of signal correlation on the variance and the S matrix EVR for
various algorithms. There are two sources, thefirst at a bearing of 90° (which is defined to be the array
broadside) and the second at 60°. The correlation between the two sources is varied from zero to one
and the variance plots are al for the first source, though the variance of the other source behavesin a
similar manner. It is noticeable that behaviour of the EVR curves in figure 4.5 is similar to that of the
variance curves in figure 4.4. However, it should be pointed out that it is only meaningful to compare
EVR graphs whose subarray size, L, isthe same.

The Bearing Variance vs Signal Correlation
0 T T T
THEORY:

FBS, 30 deg
05 FBS, 90 deg
SS, L=7

FBS,90deg ®©
SS, L=7 x
-15 - R

Log (Variance) (deg"2)

0 0.2 0.4 0.6 0.8 1
Correlation

Figure 4.4: Comparison of variance of MUSIC, SS and FBS techniques vs signal correlation.

The Signal Matrix EVR vs Signal Correlation
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Figure 4.5. Comparison of the signal matrix EVR of MUSIC, SS and FBS techniques vs signal correl-
ation.

The spatial smoothing algorithm, formed from two sub-matrices (H =2) so that the subarray size . =7, is
reasonably robust to signal correlation, althoughin this case the FBS algorithmwith 7. =8 out-performs
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it at low signal correlation. The performance of the FBS algorithmisless clear-cut for high correlations.
The best possible outcome occurs when the relative signal phase is 7 (90°) as shown on the graph. The
variance for a relative signal phase of % (30°) is also shown: it isinferior to the previous curve, but
better than that for a phase shift of 0, where FBS cannot reduce the signal correlation so it gives the
same performance as for MUSIC without FBS. The fact that the variance depends considerably on the
relative signal phases means that the variance for a given phase can lie anywhere in the region spanned
by the three curves.

The next two figures, 4.6 and 4.7, shows the effect of angular separation on SS, FBS, FBSS with two
coherent sources and MUSIC with two uncorrelated sources. The first source is at a bearing of 90° and
the bearing of the second sourceis chosen to give the correct angular separation. The variance of the 90°
sourceis plotted only for angular separations up to 80°: as the bearing of the second source approaches
0° or 180¢, “endfire” effects mean that the variance of the bearing estimate increases without bound.

The Bearing Variance vs Angular Separation
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Figure 4.6. Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs angular separation.

The EVR of the matrix A¥ A has been plotted for L=8 in figure 4.7 (denoted AhA) to show its effect
on the MUSIC agorithm. The EVR of A¥ A and thus the variance of the MUSIC algorithm is large
for closely spaced sources, as one would expect, but reduces to an approximately constant level for an
angular separation of greater than 10° or so. The reference sensor was set at one end of the ULA, so
that the relative phase of the two signals at the middle of the array changes. This emphasisestherelative
phase dependence of the FBS algorithm. As expected from the analysis, the performance of FBS is
oscillating between that of MUSIC with no signal correlation and MUSIC with a correlation factor of 1
- i.e. infinite EVR and variance.

The SS agorithm with L =7 improves more slowly than the MUSIC algorithm with no correlation,
as the signal separation isincreased. Thisis because the EVR of both the matrix S and the matrix A
depend on signal separation. The FBSS technique with 7. =7 generally performs better than SS and for
closely spaced sources the variance can be improved considerably according to the relative signal phase.
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The Matrix EVR vs Angular Separation
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Figure 4.7: Comparison of the signal matrix EVR of MUSIC, SS, FBS and FBSS techniques and the
EVR of the matrix A™ A with I = 8 vsangular separation.

Figures 4.8 and 4.9 show the effect of signa phase on the performance of SS, FBS, FBSS agorithms
and MUSIC (with zero correlation). The two sources are at 96° and 78° and their relative phase at the
centre of the ULA variesfrom 0-360°. The varianceis plotted for the source at 96° and the performance
of the SS algorithm with I =7 is approximately constant with the signal phase. The FBS techniqueis
again shown to provide improved performance for some signal phases — the sinusoidal variation in the
eigenvalues show up in the EVR of the § matrix and in the variance curve. This type of behaviour is
also shown in the results of Chang and Yeh [137]. In asimilar manner, the FBSS algorithm with 1. =7

is seen to perform as well as or better than SS, with the variance also sinusoidally changing with signal

phase.

The Bearing Variance vs Signal Phase
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Figure 4.8 Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs signal phase.

The analysis of FBSS in the previous section showed that its performance will normally be as good as
or better than SS with the same amount of spatial smoothing and thisis demonstrated in these results.



The Signal Matrix EVR vs Signal Phase
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Figure 4.9 Comparison of the signal matrix EVR of MUSIC, SS, FBS and FBSS techniques vs signal
phase.

Similarly, FBSS with less than K subarrays for K coherent sources (in the case of figures 4.8 and 4.9,
simply the FBS technique with /. =8) still has some chance of resolving the sources, unlike the SS
algorithm.

It seems likely that the variationsin phase will affect the performance of the FBSS technique for larger
numbers of signals, and this effect is shown in figures 4.10 and 4.11. In the figure 4.10, the FBSS
algorithmwith L =7 is attempting to resolve three sources at 607, 120° and 90°. The phases of thefirst
two sources at the centre of the ULA are varied with respect to that of the third source, which is fixed
at 0°.The theoretical variance is shown for the source at 120°. When the relative phases of the three
signalsare 0° or 180°, the algorithm cannot restore the full rank of the signal matrix and the variance is
seen to rise towardsinfinity.

The Bearing Variance vs Signal Phase for 3 signals

FBSS=7 —

Log (Variance) (deg"2) i \ 7
t

Figure 4.1Q The Variance of FBSSwith I. =7 for asource at bearing 120 vs signal phase for 3 sources.

A similar effect is shown in the figure 4.11. In this case, four signals are impinging on the array from
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bearings 607, 120°, 80° and 100°. The phases of the first two sources are varied with respect to those
of the second two sources, which are both fixed at 0. The theoretical variance shown isfor the source at
80°. Here the situation is more complex: if the relative phases of three of more sources coincide at 0
or 7 (180°), the variance of those sources will again rise to infinity. In both cases, there is a reasonable
statistical chance of resolving all sources, but where FBSS with 7. =7 fails, the amount of smoothing
required for FBSS must be increased towards that required by SS.

The Bearing Variance vs Signal Phase for 4 signals
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Figure 4.11 The Variance of FBSSwith I. = 7 for asource at bearing 80° vs signal phase for 4 sources.

The number of subarrays required in SS/FBSS algorithms to minimise the variance of the MUSIC
algorithm is an interesting problem. Figure 4.12 shows the variance of spatial smoothing for different
numbers of subarrays vssignal separation. Asin figure 4.6, the first source is at 90° and the bearing of
the other source is varied to obtain the correct angular separation. In this case, thereis little difference
in performance for the different subarray sizes in general. For closely spaced sources, it seems that the
improvement in the condition of .S obtained by increasing K is cancelled out by the smaller effective
array size. No single array size performs significantly better than all the others under all conditions, so
it seems simplest to pick one subarray size that performs reasonably well, suchas . = 7.

Finally, the performance of the quadratic spatial smoothing algorithms described in section 4.2 has
been checked by Monte Carlo simulation. The signal scenario was identical to that for figures 4.6 and
4.7. The SS adgorithm using /.=7 was compared to the Kirlin and Du technique using =7 (without
forward—backward smoothing) and the Quadratic technique, with the squared covariance matrix again
used with SS with matrix size .=7. The bearing estimate variance for the source at 90’ has been plotted
against source separation and the results are shown in figure 4.13. In the graph, the Kirlin and Du
technique is denoted as “K/D” and the quadratic technique as “QUAD”. The theoretical variance curve
for SSwith . =7 isshown as aline, labelled “ Theory”.

The results show in this case that there islittle difference in performance between the three techniques.
This appears to be atypical result, which was confirmed in several other smulations. In some cases, the
guadratic and Kirlin/Dumethods performed dightly better than SS (or FBSS). However, the performance
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The Bearing Variance vs Angular Separation
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Figure 4.12 Comparison of variance of Spatial Smoothing vs angular separation.

The Bearing Variance vs Signal Separation

0 T T T
SS,L=7
QUAD,L=7 ~+
-05 \ K/D,L=7 & |
\& Theory
a
=) 1k N |
o)
z
g + 0N
+
s %
< + SN
> 2+ B J
)
— e
Ly
——y
25t 5o
3 I L L
5 10 20 25

15
Signal Separation (deg)

Figure 4.13 Comparison of the performance of SS, Quadratic and Kirlin/Du methods, plotting signal
Separation against bearing variance.
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improvement was generally small and could be attributed to the statistical nature of Monte Carlo
simulation. It would appear from these results that employing a squaring operation as part of the
spatial smoothing process does not provide a significant and consistent improvement in the statistical
performance of the MUSIC algorithm.

To summarise, it is clear that to resolve K sources with A subarrays, the FBSS algorithm is usually
preferable to the SS technique. In addition, FBSS may resolve K sources using less than K subarrays,
unlikethe SStechnique. The quadratic and Kirlin/Dumethods do not seem to provide much improvement
over the basic SS and FBSS techniques.

4.4 Conclusion

The MUSIC agorithm performs robustly in the presence of uncorrelated signals and signals with small
correlation factors. When the correlation factor tends towards one, the signal scenario resembles that
of coherent multipath returns, or smart signal jamming. In the case of coherent signals, the MUSIC
algorithmisunableto resolve the different bearings, even at high SNR values. In thiscase, an aternative
approach, such as spatial smoothing, must be used.

In this chapter, the performance of spatial smoothing techniques has been qualitatively linked to the
eigenvalue ratio of the signal matrix S. The performance of spatial smoothing depends on the bearings
and separation of the sources. The FBSS a gorithm with the same smoothing as SS has the potential
to provide better estimates of the source bearings, depending on the relative signal phases. In some
cases, the FBSS approach can resolve K sources with less than K subarrays, unlike the SS technique.
Theoretical and simulation results have been presented to confirm these points. Simulation results have
also been obtained for quadratic smoothing techniques: however, these techniques do not appear to offer
consistent improvements in performance over the SS and FBSS algorithms.
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Chapter 5
Spatial Filtering for CDMA Signals

Previous chapters in this thesis have addressed the topic of determining the angles of arrival of spread
spectrum signalsat an array of receivers. The hardware and computational requirementsare much greater
than for a single antenna receiver, so it is useful to be able to quantify the performance improvement
that such an arrangement would offer to a cellular system. Two important performance measures of a
communications system are the signal-to-interference (S/I) ratio of the desired signal and the mean bit
error ratio (BER).

Inthischapter, thereverselink (from the mobileto thebase station) will beassumedto bean additivewhite
Gaussian noise (AWGN) channel. Making the additional assumption that accurate bearing estimates are
available, it is possible to estimate theoretically the performance of a single-cell code division multiple
access (CDMA) system employing power control. Monte Carlo simulations have a so been performed
to confirm the results obtained. Similar results seem to be applicable to the forward link. Finaly, the
theory is extended to estimate the S/ 1 ratios obtained for cellular operation over both the forward and

reverse links.
5.1 Background and Channel Model

Thischapter will apply analysis similar to that performedin [12, 14, 15]. A bearing estimation technique
isassumed to correctly locate the bearing of adesired user. A spatial filter, whose ook directionis set to
the measured bearing, is used to pick out the energy of the desired signal whilst suppressing interference
from other users. No interference cancellation or adaptive beamforming techniques will be used, in
order to simplify the analysis.

The question of whether bearing estimation algorithms are appropriate for COMA signalsin particular
has been the subject of debate. One 1993 conference paper [99] suggested that bearing estimation could
not be applied to pre-matched filter data, because of the number of users and the number of multipaths.
Inaddition, thelow SIR of each signal wouldrequire prohibitively large amounts of datato obtainreliable
estimates. However, post matched filter data suppresses the power of background noise and interference
from other users and separates the multipath componentsin time. In [99], both the pre-matched filter
and post matched filter array covariance matrices were used to estimate the response of the array to
the desired signal. Assuming the incoming signalsto be modelled as point sources, bearing estimation
would also appear to be a legitimate estimation technique for the received signal. Further discussion of
the problem of estimating the received signal will be deferred until Chapter 6.
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The purpose of this chapter isto analyse the S/ and BER improvement of a base station adaptive array
over a conventional omni—directional receiver. To this end, some simplistic assumptions will be made
about the radio channel and the CDMA system:

e For each CDMA user, an additive white Gaussian noise channel [145] will be assumed for both
the reverse and forward links. This means that there is a single line—of—sight propagation path
between the mobile and the base station.

e Where multiple users are in operation, the reverse link channels of all users will be subject to
perfect power control so that each CDMA code arrives at the base station with the same power.

e The angle of arrival each user on the reverse link is known exactly, which impliesthe deployment
of an effective bearing estimation technique at the base station antenna array.

e The time of arrival of each CDMA user’'s code is known, so that the base station is correctly
synchronised.

¢ Thereceiver demodulatesthe RF signal to baseband using | and Q channel receivers and employs
DPSK data modulation and de-modulation.

Both the forward and reverse links are crucial to the performance of a CDMA cellular system. In order
to assess the benefits of deploying an antenna array in the base station, the analysis will begin with the

reverse link.
5.2 The Reverse Link

To begin with, consider a base station containing asingle receiver el ement, which observes signalsfrom
P active CDMA users. The complex baseband signal obtained from the receiver, r(¢), may be defined
asfollows:

P
r(t) = adi(t —ti)er(t —t)exp{joi} +a Z dp(t = tp)ep(t —tp) exp{jop} + n(t) (5.1)

p=2

where thefirst term represents the desired CDMA signal, the second isthetotal co-channel interference
and finally 7(¢) is additive white Gaussian noise. The amplitude of each signal « is a constant, because
perfect power control is employed. The notation d,(¢) and ¢, (¢) indicates the random data sequence
and the infinitely repeating CDMA code sequence of the p*”* user, respectively. The scalar ¢, isthetime
at which the p** user began transmission and ¢,, is the demodulated carrier phase term. The variables
¢, and t,, are random variables with the former distributed uniformly over [0, 2x]. Thevariablet, hasa
uniform distribution over [0, ¢,], where ¢, denotes the symbol period.

The base station receiver structure will contain one set of matched filters for each active CDMA code
present on thereverse link. The desired user’sfilter attemptsto maximise the signal-to-noiseratio (SNR)
of the post—correlation signal y+ (¢), which is given by:
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yi(t) = / w)er(w — [t —t;])dw

= / ady(w —t1)er1(w —t1) exp{jgr fer(w — [t — t5])dw
P

+/H a dy(w —tp)ep(w —tp) exp{jigp fer(w — [t — t,])dw + n(t)  (5.2)

p=2

where n(t) denotesthe post—correlation noise. Atthetimeinstantt,,, when the desired signal is sampled
for making a data decision, the signal d;(¢) is subject to cross—correlation interference from other users
and noise effects — the second and third terms respectively of the bottom line of equation (5.1). The
current data symbol is reconstructed from the DPSK decision variable 2R {y: (t)y; (t — ¢,)}, where y*

denotes the complex—conjugate operation and 3 denotesthe real part of a complex number. If too many
users attempt to transmit at the same time, the estimated data sequence for each user will contain a
large number of errors, causing a catastrophic collapse of the system. This chapter will show how this
problem can be alleviated by employing adaptive arrays at the base station.

5.2.1 Spatial Filtering for Antenna Arrays

Consider the received signal on the reverse link for a CDMA base station containing an M —element
uniform linear array. The p'* signal arrives with bearing 0,,, so that the pre—orrelation signal vector
r(t) € CM*!isgiven by:

P

r(t) = adl(t—tl)cl(t—tl)exp{j(bl}a(@l)—i—ade(t—tp)cp(t—tp)exp{jqbp}a(ﬁp)—l—n(t) (5.3

p=2

where a(6) isthe array steering vector defined in equation (2.3) and #p(t) € C¥*! represents additive
white Gaussian noise. This equation holds provided that the spread spectrum signal bandwidth B is
much smaller than the carrier frequency f, as explained in section 2.3.1. The post—correlation vector
for the desired user y;(t) € CY*! is obtained by correlating the elements of = (¢) with the code ¢, (t)
according to equation (5.2).

There are a number of methods to recover the desired signa d; (¢) whilst filtering out undesired inter-
ference, as explained in chapter 2. It is possible to design filtersto place nullsin the directions of other
CDMA users, with dataindependent or statistically optimum beamformers. However, as P may be much
larger than M, only a few interferers may be completely cancelled. For simplicity, the vector product
a(6,)y(t) will be used to pick out the desired signal, where a ' denotes the Hermitian transpose. If
there are a large number of users with a uniform spread in angle, this beamformer will in any case be
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close to the optimum filter for suppressing noise and interference [14].

5.2.2 Antenna Array Receiver Simulation

In order to analyse the effect of using an antenna array receiver in a CDMA system, simulation work
was undertaken, with the following additional assumptions and conditions:

¢ One set of length W = 31 Gold codes were used to model multiple-access interference.

e The receiver was a uniform linear array (ULA), which can only detect signals unambiguously
from one side of the array. Asaresult, each transmitter’'s bearing was uniformly distributed over
[30°,150°] in order to mitigate the endfire effects associated with ULA geometries. Resultsfor a
broadside beamformer (i.e. bearing 90°) in the presence of interference from al directions have
previously been presented in [146].

¢ Rectangular pulse shaping was assumed, so that the receiver PN—code correlation operation is a
linear process.

The main intention of this section is to derive an equation for the average S/ ratio generated when a
set number of users, P, are present. Gilhousen et. al. [38] state that the average interference generated
for the reverse link, as measured at a single antenna base station, is given by the equation:

w
P -1+ (0%/5)

S/ = (5.9)
where s is the signal power of each CDMA user and 17 is the processing gain of each CDMA code.
Note that this equation defines S/ to include the in-phase and quadrature noise components (of total
power o2), with respect to the desired signal, so that the correlator receiver suppresses the power of all
other users by afactor of (1/W). Thisvalueis based on an equivalent noise bandwidth cal culation, but
in the examples given below for both synchronous and asynchronous correlations it was found that the

average power suppression was better than this'.

5.2.3 Analysis of Gold Code Cross-correlation Interference

5.2.3.1 Calculation of Synchronous Gold Code Cross-correlation Levels

The term synchronous in the context of CDMA system operation implies that the time of arrival for all
active CDMA codes is the same ?. This assumption is true for the forward link [38], but will not hold

1The values and graphs in the next sections have been calculated using a slightly different calculation method compared
to [146], so that the results will not be exactly the same.
2This assumesthat the multipath channe! dispersion is negligible.
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for the reverse link because of the different locations of the mobiles. However, the synchronous case
providesthe basis for analysing asynchronous CDMA interference which occurs on the reverse link.

Gold codes may be defined as follows: denote two length 17 m—sequences as length 1/ binary vectors
v and v, following the notation of [40]. Provided the two codes are a preferred pair, the set of W + 2
Gold codes G(v1, v2) may be obtained from eguation (2.2):

G(v1,v2) = {1, v9, 01 D v, v1 D Tz, 01 & T?va, ..., 00 DTV "o} (5.5)

where the operator 7" denotes the cyclic left—shift of the adjacent vector by & places and & denotes
modulo-two addition. Binary codes are often specified using the levels 0 and 1: here, the usua
transformation [0, 1] — [1, —1] isapplied. Gold codes are block codes [145], because (W + 2) codes
in total are produced by the modulo—2 addition of two preferentialy selected PN-codes of length 1.
Therefore, in the context of CDMA communications the periodic cross—correlation may be defined as
the correlation of an infinitely—repeating interfering code with a desired code. This may be written as:

wt(gy & T*g.) = wi(T"ga) = wt(ga) (5.6)

where wt() denotesthe weight or sum operator and g, denotesthe b’ Gold code from the set G(v1, v2).
Equation (5.6) represents the interference seen at a matched filter for code ¢, because of the presence of
code g.. The presumption of synchronousinterference requiresthat the code shift k¥ = 0. Thisequation
will reduce to one or two equations involving the shift—and—add properties of the m-sequences v, and
vo. For example, the shift—-and-add property of »; may be expressed as:

v Doy =0 v ®TF0 =T"v where k£ 1Lk #£0,1#0 (5.7)

This property has the same form for code »2, which means that code g; may be obtained as a sum of
v1 and v, without explicit knowledge of g, or g.. However, the prerequisite is that the shift—-and-add
properties of »; and v, must be known.

For the simulation work reported in this chapter, the m—sequences octal 51 and 73 were used to generate
33 length 31 Gold codes. The desired user was alocated code g; = v;. Evaluating equation (5.6) for
all other codes led to a mean power level of 2.5, which when normalised to the auto-correlation peak
level of W2 = 31 = 961 gives a mean interference level P, = 0.002601 = —25.8 dB. The scalar
WPy, will be denoted as k; .
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5.2.3.2 Asynchronous Gold Code Interference

One method to obtain the power suppression factor for asynchronous Gold codes is to obtain the
relevant probability density function (PDF). Specifically, the required PDF here isthat for the ensemble
average cross-correlation interference seen at the output of the matched filter for a desired code, due
to the presence of a single interferer. The term asynchronous will be taken here to describe CDMA
interference observed on thereverse link, consistent with the definition of thetimedelays {¢,, } in section
5.2 asreal numbersintherange [0, #].

In order to determine the nature of the asynchronous CDMA interference, equation (5.6) will now

be evaluated for all integer values of k¥ and d, for a desired code ¢;, to generate a cross—correlation

interference (CCl) table of the resulting values d and [. If the weights of each code are known, it is

possible to determine the a priori probability of a given interference level w occurring, p(w), for a

random integer time delay. The length 31 Gold codes have six different weights +1, +7 and +9. For
16 10

the desired code g;, the probability of these pairs of weights occurring are 15, 2 and = respectively.

In an asynchronous system, the time shift £ will not generally be an integer value, but isinstead chosen
from auniform distribution. If the time of arrival ¢, isnot an integer, the interference level «w will lieon
alinear transition between two values w; and w» which occur for the first integer time delay below ¢,
and thefirstinteger delay abovet,, respectively ®. Itisthus possibleto define the a posteriori probability
of w lying on the transition between the two values w and w2, p(w2|w; ), which is conditional on the
probability p(w;). Asan example, both sets of probabilities have been calculated for the first code g
from the Gold code set (i.e. simply the preferred m-sequence ;). The probabilities p(w2|w,) can be
calculated in practice from the “CCI” table mentioned above. The process of generating periodic Gold
code CCl may be modelled as afinite state machine as shown in figure 5.1.

The boxes show the a priori probabilities of the interference being at a given amplitude for a single
interferer. The lines then show the conditional probabilitiesfor the amplitude changing from one state
to another. For example, the total probability of the interference being in the transition from +9 to +7
is.

6 10

P(£9 — £7) = p(Ep(£T| £9) = 55 x g7 = 0.06048 (5.8)

with the numerical result expressed to four significant figures. This table may be used to determine the
PDF for the Gold code interference dueto a single user, which isshown in figure 5.2. A similar method
for the construction of CCl PDFsfor general code setsis described in [147].

To calculate the average interference power P; due to one interfering source, the following integration
is performed:

9
P, :/ w?PDF(w)dw = 20.33 (5.9)

-9

3Thisisaroundaboutway of expressing thefact that the cross—correl ation function of two codeswith rectangular pulse shaping
isalinear function of the time shift.
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Figure 5.1 The Finite State Machine Interpretation of Gold Code Interference, for Gold code g .
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Figure 5.2 The PDF of periodic Gold Code Cross-correlation Interference.
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where PDF(w) denotes the periodic CClI PDF. Clearly this does not cover the situation where a data
transitionoccurson an interferer’ ssignal during the correlation process—thisiscalled theodd correlation
function. Toincludethiseventuality, anew function.S* will be defined, which multipliesthe last & chips
of the interfering code by —1. The general form of the odd cross—correlation function may therefore be
expressed as:

wt(gs + Sk [Tkgc]) = wt(Sk [Tlgd]) (5.20)

There are many more integer interference levels possible, because the three-level cross-correlation
property no longer holds and the resulting PDF has non-zero values in the range [-17,17]. However,
equation (5.10) may be evaluated in the same way as equation (5.6) for all values of d and k to produce
the finite state machine construction of odd cross—correlation interference. The PDF for odd CCl has
been calculated from the finite state machine for code g, and is shown in figure 5.3.
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Figure 5.3 The PDF of odd Gold Code Cross-corrélation Interference.

The mean power P in this case becomes 19.80. Assuming that data transitions occur with probability
0.5, the PDFsfor periodic and odd cross—correl ations may be averaged to obtain an overall PDF for Gold
CodeCCl. Theform of thisPDF islikely to resemble atriangular distribution: atriangular approximation
to the true PDF has therefore been suggested [147, 148]. The two mean power values for periodic and
odd CCI may be averaged and normalised with respect to the auto-correlation peak, whichis W? = 961,
to give the mean asynchronous CCI power value P, = 0.02088 = -16.80 dB. This can beincorporated
into the equation for the simulated S/ I, giving:

w

S/ = ka(P — 1) + (02/3)

(5.11)

where ks = W Pgysy.

The next issue to be discussed is the power suppression of other CDMA users by alinear array. It has
already been pointed out that an M antennadiversity system suppresses white Gaussian noise by afactor
M . Isthe same true of other CDMA users?
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5.2.4 The Effect of Spatial Filtering
5.2.4.1 The Suppression of Power From Other Directions

Theeffect of oneunwanted CDMA user onthedesired signal may be specified by thevector ca (6), where
¢ isthe user’sbearing (inradians) and ¢ isthe complex cross-correl ation output from the reference sensor.
In order to check the mean power suppression, P, (M, 6), the following integral must be performed * :

57/6
Py(M,0) = 3M2/{27r//6 la® (0)a(w)|?dw} (5.12)

Thisintegral isrelated to Bessel functions of the first kind. As it stands there appears to be no simple
analytic method to determine the result in closed form. Therefore, numerical methods are necessary
to solve the problem. The well known limitation of endfire effects with ULAs are symptomatic of
an additional problem, which isthat P, varies with the bearing ¢ [15]. This means that for a certain
distribution of users throughout the cell, the S/ observed for some users will be better than that for
other users, even if perfect power control is operating.

The assumption of 120° sectorisation means that the antenna spacing may be increased to ¢ //3 [67],
where A¢ denotes the carrier wavelength, without obtaining grating lobes (which are analogous to
aliasing effects in signal sampling). Equation (5.12) has been evaluated for two antenna spacings A¢ /2
and A /+/3, for anumber of bearings and antenna sizes, in figures 5.4 and 5.5.
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Figure 5.4 The mean power suppression of a ULA with a spacing of Ac /2.

Comparison of the two figures shows broadly similar results for the two antenna spacings, when the
antenna size isthe same. The curves in figure 5.5 are smoother and subject to less variation than those
in figure 5.4. However, antenna spacing of A /2 may be preferable, according to how the boundary

4The M? factor arises becausethat is thevalue of |a ¥ (8) a(8)|?, using equation (2.3).
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Figure 5.5. The mean power suppression of a ULA with a spacing of ¢ /\/3.

between two 120° sectorised antenna arrays is handled. The Ac/+/3 spaced array suffers from the
problem that a beamformer with an intended direction near to 30° has significant gain in the region of
bearings near 150° and vice versa, unlikethe A /2 spaced array.

In the case of these array configurations, it is more useful to estimate the worst case performance of the
array as shown in figures 5.4 and 5.5, rather than the mean performance. Therefore, in the simulation
work the desired source has been placed at the bearing with the worst power suppression factor for each
array size. The A\ /2 array configuration has been used as the worst case suppression factorsare slightly
better than those for the A /v/3, athough the mean power suppression factor is better for the latter
array. A table of the mean and worst case power suppression factors, along with the bearings at which
the latter occur is shown intable 5.1.

A /2 spacing A¢/V/3 spacing
No of Py(M,0) Py(M,0)
Antennas | Mean | Worst Bearing Mean | Worst | Bearing
2 1.998 | 1.933 90° 1986 | 1.782 | 307/ 150°
4 3903 | 3455 | 54.9°/125.1° | 3.973 | 3.188 | 307/ 150°
8 7.432 | 6.175 | 43.7°/136.3° | 7.963 | 5.813 | 307/ 150°
16 1443 | 11.08 | 38.2°/141.8° | 15.95 | 10.86 | 30°/150°

Table 5.1 The mean and worst power suppression factors, with bearings for the latter, for A /2 and
e /\/3 spacing ULAS.

5.2.4.2 The Statistics of the Filter Output

The effect of a spatia filter on interference that arrives with a uniform distribution in angle is very
non-linear. This means that simple statistical assumptions about the interference at the output may
not be good enough to provide accurate estimates of the system performance. To illustrate this point,

68



consider the equation for the magnitude response of a 2-element array with look direction 90°( 5 ) to an
interferer at bearing ¢:

Y(6)= ¢% + % cos(m cos(6)) (5.13)

If the values of ¢ are restricted to [0,7 ], Y'(6) isstrictly increasing and is one-to-one and onto the range
[0, 1]. Under these conditionsthe function Y isinvertible, withinverse Y —*.

The cumulative distribution function (CDF) of the variable r, definedas {r : » = Y'(0),0< 0 < T}, is
given by:

CDF(rg) = p(r < rg) = %Y‘l(ro) = %cos_l[% cos_l(QTg —1)] (5.14)

Differentiating the CDF function gives the probability density function PDF(r ), which is defined as
limay—o p(ro < r < rg+ Ar). For thefunctionY’, itisgiven by:

PDF(ry) = 8%)[1 — (272 = 1)?77 x
(1 (- cos™ (2rf - D))
(0<re<1) (5.15)

PDF for the Interference from a 2-Antenna Array.
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Figure 5.6 The PDF of interference from a 2—element antenna array.

The PDF functionis shown in figure 5.6. When M >2, the magnitude function Y contains more than
one sinusoidal function of ¢ and becomes difficult to invert analytically. Each time the gradient of Y'(9)
is zero, then there is an infinite spike in the PDF. As the value of M increases, the PDF will contain
more infinite spikes. In the case of M =2, the spikesin the curve indicate a high probability that the
interference will be closeto 1 or to 0.
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In order to estimate the effect of interference of this type, a Bernoulli distribution has been proposed
as a good model [12,14]. The spatial filter is replaced by a step function which has a gain of 1 with
probability 1/P,(M, #) and again of zero otherwise. This effectively models the filter as a brick-wall,
whose spatial widthisthe equivalent interference width. A pictorial representation of the approximation
for an 8 element ULA with look direction 90° is shown in figure 5.7. This figure also shows what has
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Figure 5.7: The Bernoulli and Gaussian filter approximations.

been termed a Gaussian approximation to the filter. This assumes that filter suppresses interference
from all directions by a uniform amount, so that the output interference has a Gaussian distribution. It
seems likely that the Bernoulli approximation will produce better estimates of system performance, as
it provides a better approximation to the filter's behaviour.

5.2.5 Estimation of the System Performance

For both the Gaussian and Bernoulli approximations, the power suppression for an A/—element array
with look direction ¢ is simply P (M, 6). Therefore, equation (5.11) may now be modified for an
M —antennareceiver with a desired user at bearing 4, as follows:

S/T = (5.16)

This equation may be used directly to predict the BER performance, assuming the interference to be
Gaussian. Specifically, the BER of asigna received from an AWGN channel with DPSK demodulation
isgiven by [145]:

BER = % exp(—=S/1) (5.17)
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Note: Gold code interference does not strictly follow a Gaussian distribution unless the number of
interferers tends to infinity, according the central limit theorem. A closed form expression for the
approximate BER using the Bernoulli distribution, which was discussed in section 5.2.4.2, is given by:

BER= Y ( P: )p<B>m<1 — p(B)P (G expl-/ 1(m)]) (5.18)

where p(B) denotes the probability of one user being in the main beam (i.e. having unity gain). The
notation S/ I(m) denotes the signal-to-interferenceratio for m users.

The Bernoulli approximation also provides the ability to estimate the probability p(BER > BER ) of
a scenario occurring where the desired user’'s mean BER is worse than a set threshold BER,. This may
be done by calculating the number of users m, for which the BER threshold was first exceeded. The
probability is then simply given by the equation:

m=mg

p(BER > BERg) = Z_: ( Pl ) p(B)" (1 —p(B))F~t—m (5.19)

5.3 Simulation Results

For the simulation, the noise power o was set to be - times that of the desired signal. The bearing
of the desired signal was set to be 90°. Theoretical and simulation results are shown in figure 5.8: the
former are plotted as lines, whereas the latter are shown as points. The horizontal axis measures the
number of active CDMA interferersin terms of the number of Gold codes available: 100% indicates the
presence of 32 interferersas all 33 codes are being used. This does not prevent other sets of codes being
used to accommodate more users in the same sectored cell.

Figure 5.8 shows that equation (5.16) provides a good fit to the simulated data. Each time the number
of antennas is doubled, the worst-case .S/ values shown in the graph increase by 2—-3 dB, according to
the valuesin table 5.1. This type of improvement should offer considerable improvements in BER or
capacity, depending on system requirements.

Thecurvesinfigures5.9 and 5.10 show compari sons between simulated BER resultsand those cal cul ated
from the Gaussian and Bernoulli assumptions respectively. Again, the predicted results are plotted as
lines, while the simulation results are shown as points.  As expected, for a given number of users
the worst-case BER performance improves considerably as the number of antenna elements increases.
However, the improvement shown in the simulation results is not as good as that predicted by the
Gaussian model. The more pessimistic results obtained from the Bernoulli approximation provide a
much better fit to the resultsthat are observed inthiscase. Itisclear that asthe number of usersincreases,
the BER results converge towards the curves for the Gaussian model. This result follows because the
Bernoulli distribution tends towards a Gaussian distribution as the number of components (in this case
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Figure 5.8 Theoretical and simulated results for Interferer Power Suppression in an M —sensor element
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Figure 5.9 Comparison of theoretical BER values using the Gaussian approximation and simulation
results for an M —sensor element receiver.
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Figure 5.10 Comparison of theoretical BER values using the Bernoulli approximation and simulation
results for an M —sensor element receiver.

interfering CDMA users) becomes large.

A common threshold for acceptable speech quality using a vocoder for human speech is that the mean
BER should be 10~3 or less [38]. Thisis shown as a horizontal linein figures 5.9 and 5.10: this may
be used as a crude measure of system capacity. For a single cell system containing 3 sectors, the mean
capacity of 1 sector is likely to be 33% for full loading. On average this criterion is obtained even
with only 2 antennas. However, increasing the number of antennas allows a sector to cope with heavy
loading: 8 antennas permits 100% capacity whilst maintaining an average BER of 10~3. Extending
these results to longer code lengths, the BER curves will be closer to the Gaussian approximation for a
given percentage of interferers, because more users can be accommodated on the same bandwidth.

These BER results have been averaged over a large number of different scenarios, each with different
locationsfor the interfering mobiles. It is of interest to estimate the probability of a scenario occurring
where the distribution of the mobiles is such that a given BER threshold is not attained for the desired
mobile. One obvious scenario occurs when the mobiles are closely spaced, so that the spatial filter for
the desired user cannot suppress the CDMA interference. The probability of the BER exceeding 103
has been calculated using equation (5.19) and theresultsare shown infigure 5.11. For agiven number of
users and antennaarray elements, thereis clearly afinite probability of unacceptable BER performance.
This can be reduced by increasing the number of antenna elements, as might be expected.

5.4 Extension to The Forward Link

The forward path, from the main transmitter to each mobile receiver, may be subjected to a similar
analysis. The same set of weights may be applied to the transmitter as to the receiver, so as to transmit
most of the power in the line-of-sight path to the desired receiver.

Itisalso assumed that each CDMA signal istransmitted with equal power, so that forward path conditions
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Figure 5.11 The probability of a mobile distribution giving a mean BER> 103 for an M —sensor
element recejver.

are similar to those of the reverse path. The equation for the S/ ratioistherefore identical to equation
(5.17), except that the signal power, s, will vary with the distance, R, from the main transmitter.
Assuming synchronous transmission of codes, the mean cross-correlation levels will tend to be much
lower than that for asynchronous correlations. For the example of Gold code g; the mean synchronous
interference level from one interfering user is 9 dB below that for asynchronous interference which is
observed on the reverse link. Alternatively, orthogona Walsh codes may be employed for synchronous
transmission on the forward link [49], which would mean that the performance of each user istotally
unaffected by multiple-access interference. In both cases, the reverse link is the limiting factor for
CDMA capacity.

5.5 Cellular System Considerations

The analysis so far has only considered system performance for a single cell. In any practical mobile
telephone system, the coverage area must be subdivided into cells in order to provide reasonable radio
coverage and user capacity. In this section, a uniform layout of identically sized hexagonal cells will
be assumed [38]. As before, each cell is sectorised into three sub-cells, each with 120° coverage. It
is assumed that complete frequency re-use is in operation, so that for the reverse link all mobilesin all
cells transmit with the same frequency. This assumption implies that base station and mobile receivers
will both be subject to interference from outside the cell as well as within the cell.

The effect of interference from neighbouring cells will now be analysed for both communicationslinks,
beginning with the reverse link.

5.5.1 Reverse Link Analysis

The hexagonal cell layoutisshowninfigure5.12. Each cell issectorised by afactor of three as shown, so
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Desired Cell

Figure 5.12 The ideal hexagonal cell layoti.

that each base station receiver provides 120° coverage. If one considers the sectorised cell labelled "1",
it observes interference from two cellsin thefirst layer of surrounding cells, namely B and C. Similarly,
for the second layer, cells G-K are additional sources of CDMA interference. In order to provide an
initial estimate of the interference caused, the following assumptionswill be made:

o A uniform distribution of users is assumed throughout the cellular system. If one sectorised cell
contains P users, each cell will contain atotal of 3 P active mobiles.

o Each mobilein an interfering cell is subject to perfect power control by its home base station.

e The propagation between an interfering mobile and the desired base station will be assumed to
follow a path loss law with exponent 4 [38]. No fading effects will be considered here, asin[15].

o Theinterference will be assumed to be omni—directional, with uniform power observed at the base
station from al directions.

These assumptions simplify the analysis considerably, compared to the likely conditions that will be
observed in practice. However, they do provide a basis for estimating the likely effect of introducing
adaptive arrays into existing cellular systems.

Compared to the analysis performed earlier in this chapter, the mgjor ateration is that the background
noise level isnow dueto inter-cell interference, which will change with the number of users present. In
order to determinethe effect of this, the average interference power s; observed at the desired base station
due to one user in an interfering cell must be estimated. The mobile under consideration transmits so
that the received power s at itshome base stationisequal tothat from every other user in the same sector.
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Assumingthat s is set to be the same for all base stationsin the cellular system, s; may be normalised by
s. The interference power seen at the desired base station then depends only on the distances between
the mobile and its home and the desired base stations. Denoting the former as i, and the latter as R,,
theratio of s; to s isgiven by [15]:

5 I’y

2

- R—2)4 (5.20)

In order to estimate the effect of inter-cell interference, equation (5.20) must be evaluated for all possible
positions of the mobile in the adjacent cell. Thisis equivalent to evaluating the following integral:

1 S;
I = —ZdAZ' 5.21
il 621

where A; denotes one interfering hexagonal cell and o(4;) denotes the area of that cell. Equation
(5.21) has been evaluated by Monte Carlo integration for the first two layers of interfering cells with the
followingresults. For thefirst layer the result of theintegral, denoted as /7, was 0.0636. For the second
layer the value obtained, 3=, was 0.00294. Given that there are on average 6 P interfering usersin the
first layer and 12 P usersinthe second layer, thismeans that level of inter-cell interference is0.428 times
the in-cell interference. Alternatively, approximately 30% of the total interference is due to inter-cell
interference.

Equation (5.16) may thus be modified for a cellular system to give:

WP,(M,0)

S/ = ko[(P — 1) 4 B1(6P) 4 B2(12P)]

(5.22)

The first term in the denominator is the interference from users in the same cell as the desired user, the
second arises from the 6 P usersin thetwo interfering cellsin thefirst layer (B and Cinfigure 5.12) and
the third comes from the 12 P users present in the five interfering cells in the second layer (cells G-K).
Background noise due to thermal effects etc. has been neglected for this equation. Equation (5.22) may
be evaluated for the worst case signal bearings as before to obtain a compari son between sectorised base
station receivers with different numbers of antenna elements. The results are shown in figure 5.13. For
large numbers of interferers, the normalised interference levels are roughly 1.5 dB greater than for the
singlecell case, shownin figure5.8. However, the S/ value for a given capacity again shows a 2—-3 dB
improvement each time the antenna array size is doubled.
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Figure 5.13 The normalised interference for the reverse link.

5.5.2 Forward Link Analysis

Inthissubsection, aworst-case situationwill be considered to provide some measure of theimprovement
offered by antenna array transmission on the forward link. The case for a mobile placed near to the
boundary of three cellsisgenerally accepted as thelimiting case for the performance of acellular CDMA
system [37], as shown in figure 5.14. The mobile is assumed to be at distance R, from base stations

Desired

Mobile @

Figure 5.14 The worst-case location for a mobile on the forward link.

A, B and C: it will be assumed to be in communication with base station A. As before, each cell sector
contains P users and each base station transmits synchronously to all the mobilesin its sector with the

same power. The parameters of al the cells relevant to the interference observed at the mobile are given
intable5.2.
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Base Stn| Number of | Mobile Mobile
Group Sectors | Radius Bearing | Ps(2,0) | Ps(4,0) | Ps(8,0) | Ps(16,6)
1 1 Ry 90° 1.933 4.025 8.291 16.655
2 2 Ry 90° 1.933 4.025 8.291 16.655
3 6 2Ry 30°/150° 2.065 4.765 9.513 18.352
4 6 2.646 Ry | 70.9°/109.1° 1.965 3.947 7.870 15.790

Table 5.2 Table of desired and interfering base station sector parameters for forward link, including the
power suppression levels for antenna sizes M = 2,4,8 and 16.

To summarise, the mobile sees synchronous interference from P—1 other mobiles present in the same
sector of cell A (group 1). It also sees asynchronous interference from 2P users present in the nearest
sectors of cells B and C (group 2). In addition[37], there are 6 base stations sectors at a distance of 22,
from the mobile (group 3) and 6 at a distance 2.646 R, (group 4). The S/I level seen by the mabile for
base stations employing omni—directional antennas is given by:

w

/1= k(P — 1) + ka[(2P) + (2-%)(6P) + (2.646-)(6D)]

(5.23)

If the base stations now contain A/—element transmit antennas, and each base station transmits each
user’sinformation in the direction of that mobile, the mean interference power will be reduced. The S/7
obtained for the antenna array case is:

w
[k1(P —1)/P1] + k2[(2P/P3) + (6 P)(2=4/P3) + (6 P)(2.646~%/P4)]

S/I = (5.24)

where the notation P;, is shorthand for P (M, 6},), the power suppression factor for the k%" group of
base stations as specified in table 5.2. Otherwise, system parameters are unchanged from those used in
section 5.3. Equations (5.23) and (5.24) have been evaluated for varying numbers of users and antenna
elements and the results are shown in figure 5.15.

Aswith previousresultsin this chapter, employing adaptive antenna transmission considerably improves
system performance. The interference levels shown here are generally worse for the same capacity and
antenna size than those shown in figure 5.13. However, the analysis described here is somewhat
pessimistic: soft handoff techniques combined with a forward link power control scheme, such as those
described in [37], would considerably improve the S/ for amobile placed at a cell boundary.

5.6 Discussion and Comparison of Results

Resultsfor both single cell and cellular system operation show that base station antenna arrays operating
over simple AWGN channels providesignificant S/ and BER improvementsfor COMA systems. This
means that for the same capacity as a single receiver configuration, the quality of the communications
link may be considerably improved. Alternatively, the capacity of the cell may be increased with an
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Figure 5.15 The normalised interference for the forward link.

adaptive array, whilst maintaining the same link quality asfor singlereceiver base stations. These results
are not surprising, as an antenna array has the capability to exploit the spatial diversity of a sectorised
cell to reduce unwanted interference while a single antenna receiver has no spatial discrimination at all.

It isinteresting to compare the results presented here, with those already documented in the literature.
Swaleset. a. [12] present analysis of a (narrowband) non—sectorised cellular system, which is capable
of forming M Bernoulli—type beams of angular width % This means that for a uniform distribution
of mobiles, the base station can offer A/ timesas many channels for agiven mobile to communicate over
in the same frequency. Hence, for any modulation scheme, the antenna array will considerably reduce
the outage probability for a given S/ 1 threshold at a given capacity. Thiswould suggest a considerable
capacity increase, as the S/ 1 level increases in proportionto M: in the analysis reported here, thisis
not quite true because of the variable width of ULA beams with angle of arrival.

Two more recent journal papersfocus specifically on the capacity improvements offered by sectorisation
and adaptive antenna schemes. The first paper [15] considers a number of sectorisation and adaptive
antennaschemes which could beimplemented at the base station of acellular system. The channel model
used is similar to that presented in section 5.5 and theoretical results were derived for coherent PSK
modulation. Not surprisingly, the best BER performance by far was obtained for a system employing
120° sectorisation and 3-element adaptive arrays in each sector. This paper also discusses adaptive
antennas at the mobile for directional transmission to the base station, which would reduce interference
to neighbouring cells. However, such a concept may be difficult to implement in practice, unless the
forward link is very directional. In many cases, particularly in urban environments, the mobile may
observe incoming signals from a wide spread of angles [149], making directional transmission difficult
on the reverse link.

The second paper [14] provides an extension of the theoretical analysis of [38] to a base station
configuration containing a circular receive and transmit array, with no sectorisation. Perfect power
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control is assumed for in—cell interference and the modulation scheme is again PSK. A much more
rigourous analysis of inter-cell interference is included, considering the effects of fast Rayleigh and
dower log-normal fading. As mentioned earlier, the Bernoulli approximation is used to model the effect
of a spatial filter on directional interference. Results are presented for the outage probability of both
the forward and reverse links, with an SNR of 7 dB chosen as the acceptable quality threshold. Again,
results show a considerable performance improvement, even for small antenna sizes (57 elements).

Several points should be made concerning the limitations of the analysis presented in this chapter.

¢ Theanalysispresented did notincludevoiceactivity detection schemes, which allow transmissions
to occur only when a caler is speaking (35-40% of the total call duration is often quoted).
Modelling this effect by a Bernoulli random variable [38] shows that an additional two-fold
capacity increase may be obtained through employing such a system.

o Perfect power control has been assumed. Recent results suggest that a more realistic model for
the power of each user is alog-normal random variable, with a standard deviation of 1.5 dB for
stationary or slowly moving mobiles. A standard deviation of 2.5 dB has been measured for
faster vehicles[49]. Clearly, such effectswill be detrimental to system capacity, whatever antenna
configuration is present in the base station [150].

¢ It hasbeen assumed that each transmitter had asingleline-of-sight path to thereceiver. Inpractice,
there may be several multipaths received from each source. Thisincreases the complexity of the
signal processing required and may reduce the system gain.

5.7 Conclusion

Thischapter has addressed the capacity of aCDMA system employing adaptive antennas. Usingasimple
channel model, significant capacity increases have been demonstrated for small antenna arraysoperating
in both single cell sectors and general cellular systems. Adaptive arrays are thus an important receiver
architecturefor taking advantage of thedifferent locationsof cellular usersto reduce CDMA interference
levels. However, two points of note are that the antenna array’s ability to suppress interference depends
on the source bearing and that steering vector filtersare best modelled using the Bernoulli distribution. A

method has al so been presented for determining the probability density function of CDMA interference,

which can be useful in determining the performance of CDMA networks. It isimportant to determine
the performance of CDMA systems when operating in more realistic channels, which include multipath
fading effects. This subject will be discussed in much more detail in the next chapter.
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Chapter 6

Array Processing and Fading
Channels

This chapter will discuss the performance of array processing techniques for more realistic channel
models. In many environments, most notably urban areas, modelling the radio channel by a singleline
of sight path is inadequate. There are usually many obstacles between the transmitter and receiver,
which means the base station will observe a number of copies of the signal — this is called multipath
propagation. Often the transmitter and/or the receiver are in motion, giving rise to areceived signal that

varies with time.

This chapter will look briefly at the basic models for narrow-band channels, before moving on to look
at frequency selective channel modelling. Thistype of analysisis more appropriate for spread spectrum
systems, asthetransmission bandwidth is often much wider than the coherence bandwidth of the channel.
Thiswork will be applied to antenna arrays in order to determine how the behaviour of communications
systems are modified under such conditions. Two channel types will be considered, beginning with
point source models for the separately resolvable multipath components. The effect of finite fading
frequencies and self-—noise interference are considered and some results are also presented for multiple
CDMA users. Secondly, channels which involve afinite spread in angle of arrival for areceived signal
will be analysed to see how system performance on the reverse and forward links changes.

6.1 The Urban Mobile Radio Channel

This section will seek to define the characteristics of a typical mobile radio channel observed in areas
of large population concentrations. Specifically, environments containing a number of obstacles, such
as buildings, walls and traffic, will be considered. In this situation, a number of possible mechanisms
exist to facilitate the propagation of radio waves from thetransmitter to the receiver. Inorder to expedite
the introduction, parameters for the radio system to be used throughout this chapter are defined in table
6.1. The typical characteristics of a narrowband signal' received in the 900 MHz band will beinitially
considered. This may be extended to include the effect of transmitting a wide bandwidth signal .

11n this chapter, the term narrowband will be taken to mean that the coherence bandwidth of the channel is much wider than
that of the received signal, so that the channel is flat—fading.
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Parameter Value
Data Rate 10 kb/s
CDMA Code Length 127 Chips
CDMA ChipRate | 1.27 MChips/s

Carrier Frequency 900 MHz
Modulation DPSK
Vehicle Speed 30 mph
Fading Frequency 50 Hz

Table 6.1 The spread spectrum system parameters for chapter 6.

6.2 Narrowband Channel Modelling

Effective communication in urban areas is an extremely complex subject; indeed, it has been described

as involving “problems so difficult they challenge the imagination” [30, p11]. Consider a base station,

placed on top of ahigh building, attempting to communicate with amobilereceiver placed at street level.

In an urban area, there are alarge number of buildings present, which can block or assist the transmitted

electromagnetic (EM) signal. Indeed, there are several mechanisms by which the signal may propagate

through an environment [151]. These are described below and illustrated pictorialy in figure 6.1:

().

(ii).

(iii).

(iv).

Line—of—sight (LOS) propagation: Not surprisingly, thismode of EM wave motion occurs when
the mobileis clearly in view of the base station, so that the first Fresnel zone of the signal is not
being blocked [152]. For many locations of the mobilein an urban cellular environment thisisnot
true, so other methods of propagation must account for the transmitted signal reaching the mobile.

Reflection: This occurs when the EM energy from the mobileis deflected off a building in order
to reach the base station. In an urban area, reflection is a significant factor in allowing acceptable

radio communications.

Diffraction: Where an obstacle such as a building blocks the LOS path, EM signals may diffract
over roofs or round the sides of buildingsto reach the base station. Thisinvolves only low power
outer Fresnel zones reaching the base station unobstructed, so that the received signal power tends
to be much lower than that for LOS communication.

Scattering: When an EM wave reaches an obstacle or group of obstacles, energy can sometimes
be reflected randomly in a large number of directions. This occurrence is the most difficult to
predict analyticaly.

Typically, two or three of these mechanisms account for the propagation of an EM wave in an urban

environment. As a result, there are a large number of paths by which energy from the base station

may reach the mobile. In order to explain the characteristics of the signal received by the mobile, it is

common to appeal to three separate effects.

Themost significant mechanism, intermsof receiver performanceisfast fading[30, Chapter 1] [152,153]

[154, Chapter 1]. Inanurban area, thereceived signal at the mobileisthe summation of alarge number of
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Figure 6.1 Modes of electromagnetic propagation.

independent multi path components. The received signal may be subject to constructive or deconstructive
interference, according to the phases of the multipaths. It is commonly assumed that the received signal
iswide—sense stationary for the mobile moving short distances up to afew tens of carrier wavelengths or
so [35]. Inthe context of mobile radio, this means that variations in the received signal envelope occur
mainly due to phase-changes of the same multipath components. These fluctuations can be significant,
because at 900 MHz muiltipath electrical length changes of only a few centimetres can alter the given
component’s phase by 90-180°. This means that constructive interference patterns may rapidly change
into deconstructive interference or deep fades with a small alteration in position. Quantitatively, this
corresponds to frequent changes of signal power in the range 20—30 dB [152, Chapter 5].

Movement of the mobile over longer distances changes the paths by which the signa is received
by the mobile. This leads to a slower variation in the average received signal power, often called
shadowing[155] . The accepted model for thevariationin the average power isalog—normal distribution,
whose standard deviation is in the range 4-12 dB [12] [152, Chapter 3] [154, Chapter 2]. The average
signal power also depends on the mobile's distance from the base station, according to a path loss
law [152-154]. Normally the power will be proportional to R ~™ where R isthe distance and n isusually
termed the path—oss exponent. The value of »n has been measured in a large number of environments
and numbers in the range of 2-5.5 have been quoted [38]. However, the most common choice of » for
modelling cellular radio systems is 4, which corresponds to plane—earth propagation [152, Chapter 2].

It is possible to employ a power control system to mitigate the effects of fading on its transmitted
signal, so that shadowing and path—oss mechanisms can be compensated for. However, if the mobile
is moving quickly, fast fading effects may be too rapid and unpredictable to cope with. Therefore,
the distribution of the fast fading signal is vital in predicting the performance of any mobile radio
system. Many measurements of microwave narrowband mobile radio channels have been carried out
for both indoor and outdoor environments. Where a LOS path exists between the transmitter (Tx) and
receiver (Rx), the probability density function (PDF) of the received signa usually follows a Rician
distribution [156]. However, in this chapter, the worst case situation will be considered, where there
is no LOS path propagation. When this occurs, the most common statistical characterisation for the
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fast—fading received signal envelope isthe Rayleigh distribution.

6.2.1 The Rayleigh Distribution

The Rayleigh distribution arises as the distribution of the root-sum-square of two independent Gaussian

distributed variables. This model is important because it describes the envelope of the received signal

where it is made up of a large number of independent, equal amplitude multipath components. In
practice, these occur because there are many independent scatterers present between the transmitter
and receiver. All the components may be assumed to be drawn from the same distribution, so that the
central limit theorem may be applied. Hence, as the number of scatterers tends to infinity, the | and Q
components of the signal become uncorrelated and each will tend towards Gaussian distribution.

The probability density function of the Rayleigh distributionis given by:

2

-
PDF(r) = = eXp(F

) (6.1

The variable r denotes the root-sum-square of the | and Q channel components and 27 denotes the
mean power of the received signal. It has been noted that the sum of 6 or more independent sine
waves [30, p68] [152, Chapter 5] can give rise to a distribution that is very close to the Rayleigh
distribution, except at the extreme peaks. As thereceived signal comprises two identical, independently
distributed (iid) Gaussian random variables, the phase will be uniformly distributed over the range
[0, 27].

The Rayleigh distribution providesadescription of the ensemble of all possiblereceived signal envel opes.
However, it does not indicate how the received signal alters with time. The time variation is mainly
dependent on the velocity of the mobile, which givesrise to a Doppler shift in carrier frequency of the
received signal.

6.2.2 The Doppler effect

The Doppler effect [152, Chapter 5] occurs due to relative motion between the transmitter and receiver.
The most common instance in everyday life occurs when the frequency of a siren on an ambulance
or police car is observed to change as it approaches and passes a stationary observer. The observed
frequency of the signal increases when the relative motion brings the transmitter closer to the receiver.
Alternatively, when the transmitter moves away from the receiver, the observed frequency is reduced.
The precise frequency variation is given by the following equation:

Av=v/A¢c (6.2)



where Av denotes the observed change in frequency, v denotes the velocity of the transmitter and
receiver towards each other and A~ denotes the carrier wavelength of the propagating signal.

If there is non-zero relative motion between the transmitter and receiver, the effect on the received
multipathsignal isthat it changes withtime. However, it should be emphasised that the time dependency
of the signal is caused by the receiver moving through an EM field with varying multipath channel
characteristics. The faster the relative motion, the more quickly the received signal changes. This will
lead to difficultiesin tracking the received signal effectively.

6.3 Frequency Selective Channel Modelling

Having considered how narrowband channels may be modelled, itis now possibleto extend these results
to frequency selective channels, which are often observed in spread spectrum systems. In this case,
the bandwidth of the transmitted signal is often wider than the coherence bandwidth of the channel, so
that different frequency components of the signal are subject to independent fading effects — frequency
selective fading [43, Chapter 7]. In the time domain, the result of this effect isthat the impul se response
of the channel consists of a number of impulses of varying amplitude, each with an associated time
delay. Inaddition, the multipath components change in time because of the Doppler effect, which means
that the multipaths are subject to time selective fading [ 154, Chapter 2].

In order to assess these effects simultaneously, consider sounding the channel with an infinite bandwidth
signal, eg. an impulse. The received signal represents the impulse response of the channel and it
may be characterised by two-dimensional Bello functions [157]. There are alarge number of these, all
related by Fourier transform rel ationships. However, the most useful function for visualising the channel

impulse response is probably S, (7, v), the function of the complex received signal against time delay 7
and Doppler frequency v. It is defined as the summation of all components with the correct time delay
and Doppler frequency [154, Chapter 2]:

Sp(rv) =Y ailt)exp{—jés(t)} where ni(1) = 7, vi(t) = v (6.3)
where a; (t) denotesthe amplitudeof thei*” pathwithdelay 7;(¢) = = and Doppler frequency v;(t) = v;
the notation ¢;(¢) denotesits phase. This equation indicates the fact that a finite number of propagation
paths exist between the base station and mobile. However, as this number isindeterminate and possibly
quitelarge, S, (7, ) isusualy taken to be a continuousfunction of  and v [154, Chapter 2].

This function alows the received signal to be characterised in terms of both time dispersion and
associated frequency fading effects. In practice, however, one only has access to finite bandwidth signal
transmissions. Consider the transmission of a data-modulated spread spectrum code ¢(t), which has
achip period of ¢., code period ¢, and processing gain W = t./t;. The baseband received signal is
passed through | and Q filters matched to the code ¢(t) to give the post—correlation signal «(t):
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z(t) = /t; dw /000 dr /_00 S(r,v)d(w — T)e(w — T)e(w —t — t5) exp(j27vT)dy (6.4)

where d(¢) denotes the transmitted symbol stream, which has minimum period ;. For large values
of W, the periodic and odd code auto—correlation functions, denoted as 6.(t), take on non—negligible
values within one chip of the time of arrival of the code. Thisis usually taken to mean that multipath
components separated in time delay by at least . may be separately resolved. An approximation to
S(r, v) may thereforebe calculated using ¢(#) with timeresolution¢.. Twotypical timedelay vsDoppler
frequency power spectra calculated in this manner are shown in figure 6.2 (taken from [35] and [30]

respectively).

0dB=-73.8dBm

relative power density,d8

Figure 6.2 Two typical time delay vs Doppler frequency profiles taken from [35] and [30] respectively.

The time resolution of y(¢) means that if the channel impulse response contains significant multipath
components over atime¢,,, the spread spectrum receiver will observe int{1 + tt—’:} components — the
time bandwidth product of the channel and the transmitted signal [43]. This leads to a discrete-time
channel approximation of y(¢), which is due to Turin [158]. This model is much simpler to use in
practical simulation work than equation (6.4). Assuming the CDMA receiver can separately resolve )
components, the model consists of () fading components as follows:

() = Y h(a,1)8:(t = (to + (¢ = DL.)) (6.5)
g=1
where ¢, denotesthe initial time of arrival of the start of the first PN code chip for the first channel tap.

Thevalue of é.(¢) isgiven by:

8.(1) = /t_t dw)e(w)e(w —t + 5)dw (6.6)

Each channel tap can in theory be obtained by integrating equation (6.4) only over the range of excess
time delays represented by one channel tap. In practice, the overall results will not be seriously
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altered if each tap coefficient h(q,?) is modelled as a narrowband fading signal. The receiver only
has access to the noise corrupted estimate of z(¢), denoted as y(¢). Sampling y(¢) at time instants
to + ntsto + nts +to,t, + nts + 2t., .., t, + nt, + (Q — 1)t. provides the () taps of the received
multipath signal for the n** symbol.

6.3.1 Frequency Fading Distributions

It is commonly assumed that the coefficients {A(q¢,?)} are independent random variables, which are
wide-sense-stationary. Thismeans that a different group of scatterersisresponsiblefor each coefficient
h(g,t)andthat over thetimeof interest, that group of scatterersremainsthe same. Closestudy of profiles
likethose in figure 6.2 shows two independent modes of scattering: near—in and far—out scattering [37].
These two mechanisms may be used to generate the channel taps {A(q,?)} in simulation work.

Near—in scattering [37] refersto thefirst set of multipathsthat arrive at the mobile from the base station.
These are usually due to scatterers close to the mobile, such as buildings on nearby streets. A transition
then occurs as the time-delay increases, so that most of the multipaths are due to isolated reflections
from distant buildings or hilly terrain. The Doppler frequency characteristics of these two modes of
multipath propagation will now be discussed in turn.

6.3.1.1 Near—in Scattering

Themost commonly used model for closein scattering effects consists of acircle of point scatterers placed
around the location of the mobile[153]. In physical terms, these scatters would be buildingsclose by the
mobile’slocation. Thistypeof scattering hasbeen extensively analysed by several authors[152,159,160].
In this section the simplest model, due to Clarke [159], will be quickly sketched. It is assumed that the
mobile receives from or transmits to a large number of scatterers, with a uniform distribution of angle
round a circle of a specified radius. This leads to the Doppler frequency of the received signal having a
cosine relationship with angle. A two-dimensional slice of the power spectrum S(v) for a small value
of 7 = 1y has thefollowing form:

SW) = ISp(ro. )" = 753 v| < vm (6.7)

where a denotes a scaling factor and v,,, denotes the maximum Doppler frequency, which corresponds
to the vehicle velocity. The value of S(v) is zero when |v| > v,,. This equation gives rise to
singularitiesat v = +v,,: however, the general form of the spectrum fits closely to observed power
spectra [152, Chapter 5]. The Wiener—Khinchine theorem [156] may now be applied to equation (6.7)
to obtain the auto-correlation function (ACF) of the channel impulse response at delay 7. It turns out
to be simply a scaled Bessel function of thefirst kind (denoted as J,,):
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R(rg,t) = % /_00 S(v)exp{jvt}dv = a,(2mvmt) (6.8)

Thistype of scattering model iswidely used throughout theliterature of channel modelling and simulation
and is often termed the classical Doppler model. The probability density function of the received signal
will clearly be approximated by a Rayleigh distribution; the parameter ~(g¢, ¢t) may then be calculated in
one of two ways. The first method involves modelling the received signal as filtered white noise. It is
possible to design infinite-impulseresponse filters [161, 162] to approximate the frequency distribution
of equation (6.7).

The method used in this chapter isto combine G' exponentials [30, p70] [163], according to equation
(6.9):

h(g, 1) = agexp(i{2mvyt + ¢4 }) (6.9)

g=1

where a, is the amplitude of the ¢*" path and ¢, is a random phase uniformly distributed over [0, 27].
The Doppler frequencies v, are chosen from a probability distribution in order for 2(¢,) to have a
correct power spectrum. To simulate near—in scattering, the amplitudes a, were chosen to be equal,
so that the ACF of the variables v, is approximately equal to equation (6.8), with the scalar « chosen
appropriately. The auto-correlation function of the variable (¢, t) must be monitored carefully?. If the
model isrun over along enough time, periodicitiesoccur and the auto-correl ation function diverges from
equation (6.8). Thus it is normal to re-initialise the sine wave phases and frequencies after a suitable
time delay.

The COST-207 models utilise the classical Doppler model to simulate multipaths arriving for excess
time delays of less than 500 ns. A diagram of the scattering model and the power spectrum is shown
infigure 6.3. Infigure 6.2, the crescent shape of the Doppler profileis clearly visible at low time-delay
values.

6.3.1.2 Far—out Scattering

As the excess time—delay increases, the classical Doppler model provides a poorer approximation to
measured time delay/Doppler power spectra. In physical terms, thisis because longer time delays mean
that the multipaths observed must be due to reflections from distant objects such as large buildings or
hills [37]. The range of Doppler frequencies associated with this form of scattering becomes much
narrower and so sharp peaks tend to be observed in time delay/Doppler power spectra [35]: see
particularly the contrast in figure 8 of [34]. Narrow sharp peaks in the Bello function may be observed

2The author acknowledges Dr PHulbert of Roke Manor for pointing this out.
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Figure 6.3 The classical Doppler fading model

inthe profiles of figure 6.2 at longer time—delays.

A more appropriate model for thistype of scattering is again described in the COST-207 models [163],
which approximates each peak as a Gaussian distribution with mean Doppler frequency v, and standard
deviation v» which specifies the sharpness of the peak. So for larger values of 7, the 2-D dice of the
delay—Doppler power spectrum becomes:

S(w) = [Sp(r0,v))* = aexp(———5—) (6.10)

The corresponding auto-correlation functioniis:

1
R(15,t) = aexp(jrit — 51/22152) (6.11)

Geometrically speaking, thelocation of the reflector can be assumed to lie on an ellipse, with the mobile
and base station located at itsfoci. The major axis of the ellipse is then equal to the path length of the
multipath component.

Thistype of scattering is much more difficult to simulate using filtered white noi se, as the Doppler power
spectrumisnot symmetrical about they—axis. Here, thismodel has again been implemented for thework
in this chapter using equation 6.9. This time, however, the Doppler frequencies have been chosen from
an appropriate Gaussian distribution. The COST-207 models describe two types of Gaussian model,
each of which isthe summation of two Gaussian profiles. However, the second profileis always at |east
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10 dB below thefirst so only the more important multipath component will be described here. The type

Model Type | Mean Fading Frequency| Standard Deviation
1 -0.8v,, 0.05v,,
2 0.7v,, 0.1v,,

Table 6.2 The mean and standard deviation Doppler frequencies for the main peak of the two Gaussian
COST-207 models.

1 model is deemed appropriate for excess time delays of 500ns-2,:s, whiletype 2 isto be used for excess
time delays greater than 2us. A diagram of the scattering model and the power spectrum that arises in
thiscase isshown in figure 6.4.

Velocity
v

Mobil Q

Scattered Rays
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Delay Spread >0.518
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Figure 6.4: The Gaussian fading model

6.4 Channel Modelling and Array Processing

Given that models exist to adequately describe the urban mobile radio channd, it is useful to be able
to extend these models to the array processing case. In particular, it isimportant to be able to model
thereverse link signal seen by the base station array. So as to achieve this, some assumptions about the
mobile to base station link are required. As in previous chapters, it will be assumed that the antenna
array isauniform linear array (ULA).

Firstly, it will be assumed that the distance between the mobile and base-station is sufficient to place
the mobile in the far—field, with respect to the receiver. Secondly, there are no local scatterers close to
the base station, so that all antenna elements have an unobstructed view of the multipath components
coming from the mobile. Finaly, the reverse and forward links are carried out over separate carrier
frequencies, but with the same bandwidth so that the shadowing characteristics of the channel are
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reciprocal [30, Chapter 6] [164]. This means that the time delay/Doppler power spectra are the same for
both links. It is also assumed that the forward link frequencies are outside of the coherence bandwidth
of the reverse link channel. Hence, if the mobile were to transmit at both frequencies simultaneously,
the fast fading seen for each resolvable tap on both linkswould be iid random variables.

Equation (6.9) may easily be extended to the problem of simulating the received signal from a mobile
at a base station antenna array containing M elements. In general, it shall be assumed that a frequency—
selective channel with @) resolvable pathsat each antennamay be modelled by ) discrete vectors. Define
the vector h(q,t) which represents the ¢** resolvable path at timet. It may be expressed as:

e}
h(q,t) = Z agexp(j{2mv t + é4})a(by) (6.12)

g=1

The parameters have exactly the same meaning as for equation (6.9), except that a(6,) denotes the
steering vector of the ¢** multipath as it impinges on the base station ULA. This formulationis similar
to[165], except that in that paper the variable a, was modified to include alog—normal term to simulate
shadowing effects.

For the rest of this chapter, the amplitudes a, will again be made equal for all g. This means that for
large (&, the statistics of each entry of h(q,t) will be approximated by a Rayleigh distribution. In this
chapter, G will be set to 100. The temporal auto—correlation function of each entry will still follow the
close-in or far—out scattering models according to the distribution of »,. The spatial covariance matrix
of h(q,t), R(g), may be defined as follows:

R(q) = E[h(q. )R (q.1)] = _ agaja(b,)a™ (0,) (6.13)
g=1
This matrix will specify the correlation between the entries of h(q,?): the larger the spread in angles
{0,}, thelower the cross—correlation valuesin general.

The rest of this chapter will consider two different types of channel model, using equation (6.12):

(). A point source frequency selective channelThis is a very crude model for the reverse link
channel occurring in a typical urban (TU) macro-cell. The mobile is far enough away for each
component h (g, t) to consist of a single multipath arriving from a single direction.

(ii). A wide angle non—frequency selective channelThis model takes into account that fact that in
a multipath environment, the received signal will arrive from a spread of angles. It is studied for
comparison with the point source model to see what changes occur. For simplicity, the channel is
non—frequency selective, so that ()=1. Thissituation might actually occur in urban micro—cells or
small suburban cells.
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6.5 The Point Source Frequency—selective Channel

6.5.1 The Channel Model

This subsection describes the point channel model that has been used. The COST-207 report [163]
describes a number of different channel models appropriate to different scenarios. In this case, the
model for a typical urban (TU) environment has been adapted for spread spectrum simulation. The
equation describing the impul se response power profile H (r) of the TU channdl is:

H(r) = exp(—kT) 0<t<Tus k=10° (6.14)
For a chip rate of 1.27 MHz, the value of ¢, is approximately 800ns. Using this value, one may obtain

the followingfive tap channel:

Tap | Delay (us) | Power (dB) | Fading Power Spectrum| Bearing
1 0 0 Classical Doppler 90°
2 0.8 -3 Gaussian Type 1 87.5°
3 16 -6 Gaussian Type 1 94.0°
4 24 -9 Gaussian Type 2 78.6°
5 32 -12 Gaussian Type 2 100.0°

Table 6.3 The 5 tap typical urban channel.

Each tap contains one significant multipath which is modelled as coming from a single direction. It
should be noted that the exponentially decaying profile described in table 6.3 represents the average of
alarge number of measured channels. At a given time, the actual channel observed in an urban areais

likely to vary significantly from the one described here.

The noise—corrupted, post—correlation signal vector received at the antennaarray y(¢) istherefore:

y() = Y h(ag,)5:(t = [t + (g = Dte]) + n(t) (6.15)

g=1
where n(t) denotes additive spatially and temporally white noise of power 2. The function é.(¢) is

defined in equation (6.6). The vector k (g, t) isof course proportional to the steering vector a (6, ), where
0, is specified in table 6.3.

6.5.2 The Bearing Estimation Receiver Structure

The bearing estimation receiver structure operates as described in section 3.5 and is shown infigure 6.5.
The received spread spectrum signal is demodulated to baseband and correl ated with the desired CDMA
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code. For afrequency—selective channel, (Q multipath vectors are obtained. Model order and bearing
estimation algorithms are used to locate the number of signals and their bearings for each of the @
vectors. The J multipath components with the largest power outputs are passed to a set of spatia filters
to pick out those components. The outputs of the spatial filters are then combined using a conventional
RAKE filter [20].

Detection and
Matched Bearing
Sensors Filters  Estimation 7Spa1ialiFi |t§

e e T T e T

]

Demod-||coma ( RAKE filter —
ulation || code Output

Figure 6.5 The spatial filter CDMA receiver structure.

There are anumber of methodsto operate a RAKE filter. For this section, avery simple method, DPSK
RAKE filter combining, has been used because its propertiesare well known [43]: itsstructureis shown
infigure 6.6. Denoting the n** symbol sample for the j* multipath component as z(j, n), the decision

Z(1,n) z2(2n) -+ ZJ,n)
o o o
T T, T,
e O O
z(1,n-1) z(2,n-1) z(J,n-1)
Re Re Re

Decision
Variable

Figure 6.6. The DPSK RAKE filter recejver.

variable, D(n), for aDPSK RAKE filter is given by the equation [43, Chapter 7]:
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J
Dn) = 3 R{=(i.m)=" (Gon = 1)} (6.16)

where z*(j, n — 1) denotes the complex conjugate of z(j, n — 1), which has been delayed by one symbol
period ¢, for DPSK detection. If the first channel tap for the n'” symbol arrives at time ¢, the j!*
multipath has excess time delay 7; and bearing 6;. For an antenna array receiver, the value z(j, n) is
given by:

2(4.n) = a"(0;)y(to + 1) (6.17)

When J taps with unequal SNR values p; are combined by this method, the bit error ratio (BER) for a
slowly—fading channel 3 is given by [43, Chapter 4]:

1 J-1J-1-m 2J—1 . p;
BER= ——— (L _ymtl 6.18

n =1

where p; denotes the SNR of the ;' tap (notin dB) and IT; is given by:

J
I = | II _Pi (6.19)

In the special case of a frequency non-selective channel, the BER reduces to the term 1/2(1 + p).
Comparing this result with that for an additive white Gaussian noise (AWGN) channel, the BER
performance is much poorer asitisnow only inversely related to the SNR. In order to achieve a BER of
10-3, aSNR of 27 dB isrequired as opposed to 8 dB for a AWGN channel.

6.5.3 Practical CDMA System Performance

For al theresultsgiven in thischapter, the parameters of table 6.1 are assumed to apply, unless otherwise
stated. Also, two different measures of SNR have been used for the resultsin this chapter. Input SNR
denotesthe SNR measured at the output of the code correlatorsfor thefirst tap of the multipath channel

at one antennareceiver. Output SNR is measured at the output of the spatid filter for thefirst tap of the
multipath channel.

In order to demonstrate that coherently combining multipath energy is worthwhile, consider a receiver

3The term "slowly—fading" implies in the case of DPSK signalling that the underlying signal (without data modulation) does
not changein amplitude or phase over two consecutive symbols.
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with a single antenna. The BER performance has been simulated for the channel described in section
6.5.1, for a Doppler frequency of 50 Hz. Theoretical results have also been calculated using the
approximation derived in appendix C. Theresultsare showninfigure 6.7, with theoretical results shown
aslines and simulation results as points.

BER Performance for Number of RAKE taps J
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Figure 6.7: The BER performance for number of RAKE taps J

Clearly, the addition of one or two RAKE taps makes a considerable difference in the BER performance,
allowing acceptable communication at much lower SNR values. However, there is a diminishing return
in performance by increasing the number of taps to four or five, because of the reduced signal power
present on these taps.

The performance of a single antenna receiver has been contrasted with that of antenna array receiver,
both using 1 or 3—tap RAKE filters. The bearing estimation algorithm MUSIC, using N = 50 snapshots,
was used by the antenna array to locate the bearings of each multipath signal. The multipathswere then
constructively combined using the correct steering vectors and then a RAKE filter as described above
was incorporated. Simulation results are plotted for BER vsinput SNR in figure 6.8 for array sizes M
=1land8.
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Figure 6.8 Comparison of BER performance for M = 1 and 8 element arrays
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Because each multipath arrives from a single bearing, the received signals across the array for that
multipath have a correlation factor of 1. Under these conditions, the base station array will increase the
SNR of each multipath according to the number of array elements. However, no extra diversity will be
introduced into the RAKE filter. This means that in this case array processing does not provide an extra
means of overcoming the limitations due to Rayleigh fading and tracking errors. Comparing the curves
for M = 1 and M = 8 antenna elements with 1 or 3 RAKE filter taps, this observation is seen to be
true.

So far, the effects of self-noise, due to non-ideal spread spectrum code auto-correlation functions have
been ignored. In practice there will be small contributionsin each tap of the RAKE filter, which are due
to correlations from the other multipath components. These will again limit the high SNR performance
of the system. In the case of array processing receivers, these effects can be reduced, provided that the
multipaths arrive from different directions. This effect has been measured by determining the auto—
correlation function of a randomly chosen length 127 Gold code, which was then be used to simulate
self—noise effects.

Figure 6.9 shows the effect on base station receivers with different array sizes M and RAKE filter taps
J. Note that the horizontal axis this time represents the mean output SNR of the beamformer for the
first multipath component. For J = 1, increasing the antenna array size reduces self—noise effects
considerably, because the array is able to exploit the spatial diversity of multipath energy. However, as
the number of RAKE taps J increases, the irreducible BER associated with self—noise reduces and for
asingle receiver with J = 3, the effect is negligible for at a BER of 1075.

BER Performance for Number of Array Elements M
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Figure 6.9 The BER performance of an M — element array with J RAKE taps and self—noise effects

6.5.4 Array Processing: Multiple Users

In this subsection®, simulation work to determine the performance of the reverse link of a single—cell,
fading channel, multiple user CDMA system is discussed. To begin with, some assumptions were made

4The work reported in this subsection only was carried out jointly with Dr lain Scott of the Electrical Engineering Dept at
Edinburgh University.
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concerning the system under consideration:

e Each user was randomly allocated a length—127 Gold Code and employed DPSK modul ation.

o Each users transmission was subject to a different realisation of the 5-tap typical urban channel
described in section 6.5.1. Each multipath component was allocated arandom bearing inthe range
[307,150°].

o The bearings of the desired user’s multipath components were assumed to be correctly estimated.

o Relative to the desired user, each interfering transmission was allocated a random time delay,
which was fixed for the duration of all simulations.

o Power control was employed, so that shadowing effects could be neglected and the mean power
of each incoming user’s signal was the same.

¢ The maximum fading frequency for all users was 50 Hz.

For the purposes of the simulation, 15 users were assumed to be in operation. The spread of directions
of arrival of the multipath components received from the 14 interfering users are shown in 6.10. The
first multipath of the desired user arrived from broadside (90°) — the appropriate beamformer for an
8-element array is also shown. The number of antenna elements in the base station was varied and the
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Figure 6.1Q The directions of arrival of the multipath components from 14 interfering users.

corresponding BER for the desired user measured at different SNR levels. The results are plotted for
output SNR against BER in figure 6.11.

Clearly, the wide angular spread of multipath components in this case meant that the antenna array
receiver was able to exploit the spatial diversity of interference. Once the antenna array contains 4
elements, theirreducible BER fallsto approximately 10~3. Thisgivesriseto atolerablelevel of system
performance. As in chapter 5, the performance improvement offered by an antenna array depends
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Figure 6.11 The BER performance for a desired user, using a base station antenna array with a 5 tap
RAKE receiver.

critically on the distribution of CDMA users in the cell. These results show what might happen in a
typical case. However, as discussed in section 5.2.4, the BER of a given user isusually dictated by how
many interfering multipaths arrive within one array beamwidth of the desired multipath components.

6.5.5 Array Processing:Re—Transmission on the Forward Link

In order to permit an antenna array transmitter to operate on the forward link, directional information
obtained on the reverse link may be used. Energy may be radiated in the directions of the major
multipath components received on the reverse link to communicate with the desired mobile, whilst
limiting co-channel CDMA interference. Two major cases to consider are shown in figure 6.12.

€Y (b)
Power Power
beam- beam-
former 7 former
bearing bearing

Figure 6.12 @) Multipath engergy arrives from a narrow spread in angle b) Multipath energy is widely
distributed in angle.

If the major multipath bearings {6,, } are very close, so that correlation between all the steering vectors
isclose to 1 (case @), re-transmission is simple to perform. The transmission array need only transmit
the desired mobile’s CDMA signal once using the steering vector for the largest power multipath on the
reverse link. Energy from this transmission will propagate in the directions of all the major multipath
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components, as shown in figure 6.12 (a), so that the mobile receives a similar multipath channel to that
measured by the base station. The mobile may employ a RAKE filter to combine the multipath energy
coherently and exploit the multipath diversity.

Alternatively, the mgjor multipath bearings {¢,, } may be spread in azimuth so that the cross-correlation
between al the steering vectors is close to 0 (case b). If the antenna transmits in only one direction,
the mobile may receive only one significant Rayleigh—fading multipath component giving it poor BER
performance. In order to improve the situation, a modified version of a technique called transmission
diversity may be used. This has been suggested for both TDMA [166] and CDMA protocols [167]; it
has also been used in atrial CDMA system [168]. The mobile's signa is transmitted by two or more
widely spaced antennas, with atime delay between the them to all ow the multipath energy to be received
in different code time slots at the mobile. Assuming the signals are independent, the mobile can obtain
diversity by combining the signalsin a RAKE filter. The ideaisillustratedin figure 6.13. This concept
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T
Post-correlation CDMA signa a Mobile

Figure 6.13 The diversity transmission technique

may be modified to the adaptive array case by transmitting the complete CDMA code in the directions
of the 2 or 3 largest power multipaths. These multipaths have unknown amplitude coefficients on the
forward link, so that for a fixed power transmission budget a loss in received power may result at the
mobile. Asaconseguence, the receiver must try to ensure that the diversity obtained outweighs any loss
in the received SNR. Depending on the times of arrival of the multipath components, energy may have
to be transmitted in the chosen directions at different times in order that each multipath should arrive in
adifferent time dlot at the mobile receiver. An alternative approach is to transmit different parts of the
CDMA code in different directions[169]: however, this scheme increases the receiver complexity and
appears most suited to indoor flat—fading channels. Finally, it should be noted that diversity transmission
and multiple direction transmission techniques are most effective when the receiver has a RAKE filter
which is able to track and combine a sufficient number of channel taps.
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6.6 The Finite Angular Spread Multipath Channel

Until now, each significant multipath component on the reverse link has been modelled as arriving from
a single direction. This assumption alows BER performance to be estimated easily and provides an
obvious scheme for transmitting energy back towards the mobile user. This means that adaptive arrays
may be used to obtain significant capacity gainsin both directions. However, this assumption may not
be true for practical channels, particularly where the mobile is close to the base station. In this case,
scatterers round the mobile may give rise to multipath signals at the base station which have a wide
spread in angle.

6.6.1 Modelling Finite Angular Width on The Reverse Link

The multipath channel will now be modelled as flat—fading, so that it consists of asingle vector h(1,1).
This has been done in order to observe the effect of a multipath having a finite angular width, so that the
point source model may be atered accordingly. The bearings of the constituent multipath components
will be alowed to vary according to a specified distribution: initially the form of this distribution, as
described in the literature, will be discussed.

Most of the existing model s are intended for describing near—in scattering round the mobil e, as described
insection 6.3.1.1. Thisisdue to the fact that thistype of propagation accounts for alarge proportion of
thereceived power on boththe forward and reverse links, particularly in the case of narrowband systems
operating over a flat—fading channel. The first model to be used in the literature is probably due to
Lee[170]. It was used to analyse the correlation between the fading signals seen at two base station
antennas, separated by a known distance. The transmitted signal was narrowband in nature, and the
received signal was assumed to be generated predominately by near—in scattering close to the mobile.
Lee proposed a probability density function (PDF) for the angle of arrival of a scattered component,
whichisgiven by:

PDF(6) = %cos”(@ — 0) (6.20)

where d, isthe angle of arrival the mobile itself, ¢ isanormalising constant to make the function a PDF
and the power n controls the beamwidth of the scattering.

Other methods have been used since for modelling the angular spread of near-in scattering. 1n[63], the
authors place a number of scatterers on acircle, each givingrise to asignal with a Rayleigh distribution.
Alternatively, a Gaussian distribution for the angle of arrival has been used in [67,171], with the mean
value indicating the mobile angle of arrival and the standard deviation modelling the multipath spread
in angle. However, perhaps the most convenient model has been suggested by Salz and Winters[172],
which is a simplification of Lee’'s model. It is shown in figure 6.14. The mobileis placed at radius R
fromthe mobile, and is surrounded by acircle of scattererswithradiusd. They assume that the multipath
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scattering seen at the base station is uniformly distributed over the range of bearings [#, — A, 6y + A],
where 2A is the scattering angle. This model allows simple analytical results to be obtained for the
correl ation between antennas for anear-field scattering signal and will be the model used for proceeding

work.

Locus of Scatterers

O Base
O station

,
! '
>
\ 1
‘
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‘/\/—\'
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Figure 6.14 The multipath channel model due to Salz and Winters (after [172]).

Far—out scattering mechanisms have received considerably |ess attention, because they are of secondary
significance to narrow—band systems. However, the Salz/Winters model may be adapted to far—out
scattering in the case where EM energy is reflected from an obstacle of cross—section 24 at a distance R
from the receiver. The angular width 2A for this type of scattering will again depend on the width of
the major reflector and its distance from the base station.

6.6.1.1 Experimental Channel Measurements

Assuming that the channel vector k (1, ¢) isgenerated by near—in scattering, what values of the scattering
angle 2A are redlistic in practice?

The value of A may be calculated if i and d are known. The value of the d has been estimated from
the spatial correlation function of the received signal at a base station antenna array. 1t would appear
that the value of 2d should be at least the distance between buildingson the opposite sides of the street
where the mobile is located [30, p65]. A typical value of 100 feet (30 metres) has been suggested for
2d, [30, p65]; Lee has suggested 200-400 A (for 900 MHz, thiswould be 60-120 metres) [37].

The scattering width of multipath signals using narrowband channel sounding techniques has been
documented in several papers. However, as urban and suburban channels vary widely, they provide only
a guide to the range of values of A that might occur in practice. In addition, the correlation values
for near—in scattering using narrowband measurements may tend to be lower than the actual value,
as they will also include far—out scattering effects. One of the first measurements was performed by
Lee [170] for a narrowband 836 MHz transmitter located 3 miles away from the base station. From the
cross-correl ation val ues between two antennas, a scattering width of 0.4° was estimated. More recently,
measurements were made in the Liverpool area with a carrier frequency of 900 MHz and a Tx—Rx
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spacing of 1.3 km [171]. The Gaussian scattering model was used and results were measured for radial
and circumferential routes. Theformer givingriseto angular standard deviationsof 1-3° (approximately
equivalent to scattering widths 2A of 3.5-10.4° ®), while the latter gave deviations of 3-6° (approx.
10.4-20.8° scattering width). A standard deviation of approximately 3? (approx 10.4° scattering width)
was estimated for an 8—element antennaarray operating at acarrier frequency of 870 MHz, witha Tx—Rx
distance of 1 km in three separate locationsin Sweden [173]. Using Lee's suggestion of d = 200X, a
somewhat lower scattering width of 2A = 7° isobtained for ® = 1 km.

6.6.1.2 Reverse Channel Description

The multipath channel, as seen at the array, consists of the superposition of anumber of equal amplitude
multipath components, whose bearings are selected from a uniform distribution. The mobile's bearing
is6; and the maximum deviationin bearing is+A. Assuming that the number of constituent multipaths
G tends to infinity, the mean covariance matrix of the channel coefficient vector h(1,¢) isgiven by:

R(1)= E[R(1,HR(1, )" = UAUT = % :j a(w)a (w)dw (6.21)

wheretheterm U AU ¥ represents the eigenval ue decomposition of the signal space and « represents a
scaling factor. Analytical formulae for calculating the entries of R(1) aregivenin[172]. Assuming the
fading signal at each array antennafollowsa Rayleigh distribution, the received signal from the channel
may be characterised as amultinormal random variable with mean vector 0 and covariance matrix R(1).
If the multipath originates from one direction only, the matrix will be singular with rank one. However,
as the multipath spread becomes wider, the correlation between antenna elements will reduce. In this
case the eigenvalues and vectors of R(1) specify the Rayleigh—distributed random processes that make
up the channel vector 2 (1,¢). This means that correctly tracking the received signal will exploit spatial
diversity present at the receiver.

The flat—fading model used here is assumed to be generated by near—in scattering, as with the models
used in the previous subsection. Hence, the temporal auto—correlation function of the channel seen at
the m!” antenna, h,,,(1,1), is simply given by equation (6.8) with the amplitude « scaled appropriately
and thedelay =, = 0. The sguare root envelopes of the entries of the estimated covariance matrix R(l),
calculated from N snapshots of A(1,¢), have a Nakagami distribution[174]. The important parameter
of the Nakagami distributionis the m—parameter, which isinversely related to the normalised variance
of the entriesof R(1). In thiscase, the m—parameter of the entries of R(1) isgiven by:

m = [(1/N)+ (1/N?) > R0, (i — j)t)R(0, (j — i)ts)] ™" (6.22)

4,3,i#]

5This comparison is based on equivalent standard deviations. The Salz/Winters model with angular width 2A has a standard
deviation of A/~/3.
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where R(0,¢) is defined in equation (6.8) with «=1 and ¢ isthe symbol period. The derivation of this
equation is given in appendix C. In order to successfully track the multipath fading vector h(1,1), the
value of N should be small to minimise the m—parameter. However, in practice one has access only to
the post—correlation data vector y(t), which is defined in this case as follows:

y(1) = h(1,0)8.(1) + n(t) (6.23)

where §.() is defined in equation (6.6) and = (t) represents spatially and temporally white Gaussian
noiseof power 0. Calculating the reverse channel covariance matrix R, from y(t) involvesnoiseterms
whose variances are proportional to (1/V). Thismeans that the choice of V to minimise equation (6.22)
must be large enough for the entries of R, not to be excessively noise—corrupted. For the conditionsin
this chapter (i.e. adatarate of 10 kHz and fading frequency 50 Hz), the m—parameter values for some
example values of N are shown in table 6.4. For the rest of this chapter, covariance matrices have been

N 5 50 500 5000
m | 1.002 | 1.207 | 5.595 | 39.998

Table 6.4 Values of the m—parameter for different numbers of snapshots N .

formed from N =50 snapshots, which maintains a reasonably low m—parameter value.

6.6.1.3 Assessing the Effect of Angular Spread

For both near—in and far—out scattering, the exact form of the angular distribution of multipath energy
is probably of secondary significance. On the reverse link, what matters is the mean covariance matrix
of the received signal: this specifies the signal cross-correlations between antenna elements and hence
the inherent diversity of the received signal. Two useful theoretical measures of antenna array receiver

performance are:

(). Maximal Ratio Combining (MRC): In the presence of white noise, MRC is the optimal method
to combineanumber of signals[175]. Thismethod involvesscaling each antennaoutput according
to the signal power present. Here, the MRC output SNR has been calculated for the mean channel
covariance matrix R (1) by evaluating itstrace. The result is scaled suitably for comparison with
other results.

(ii). Source Bearing Beamformer:In this case, a spatial filter whose bearing is that of the mobile’s
location is consistently applied to the the received data. The method is of additional interest later
on, as the output signal will follow a Rayleigh distribution [107].

There are several techniquesfor tracking such a signal, including optimum combining algorithmswhich
empl oy periodic training sequences [13]. Here, techniques which do not require a training sequence will
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be considered, as the bearing estimation techniques described in this thesis employ covariance matrices

which are not sensitive to data modulation. In order to reliably pick out the desired signal, its mean SNR

should be much greater than 1, which necessitates accurate power control.

().

(ii).

(iii).

(iv).

Beamspace Transformation:A simple approach to processing the received signal isto pass the
signal vector through a bank of spatial filters, denoted as M x 1 vectors w;, which transform the
signal into beamspace [56]. The signal outputs may be treated in a number of ways, but in this
chapter selection diversity will be used to choose the largest output only. The manner in which
the selection is made will now be described briefly. If T' spatia filters are used, the filter bank
may be denoted astheT" x M matrix W = [w ... wr]. The measured covariance matrix R, is
transformed to the beamspace matrix B, according to:

B=WIiR W (6.24)

The spatia filter w;, corresponding to the largest diagonal entry of B, may then be applied to
the N snapshots of array data to recover the mobile's data sequence. The output SNR for this
technique is given by (w R(1)w;)/(w w;), assuming the noise power ¢ is normalised to 1.
For the simulationsin thisthesis, I' = M orthogonal steering vectors were used. The bearing of
the first filter 8, was chosen as required; the other A/ — 1 steering vector bearings are specified

by:
0 = cos™[(mcos(by) + (2nm/M)) /7] n=12,...,M—1 (6.25)

The circular phase term present in the argument of the cos~! term should be made to lie in the
region [—, 7] to obtain the filter bearings.

Spatial Filter Techniques: Itisof interest to determine how asingle spatia filter performs, when
attempting to track a multipath signal. The conventional beamformer power spectrum has been
calculated for the covariance matrix R, in each case to select the bearing ¢ with the largest power
output. As with the beamspace transformation, the appropriate steering vector spatia filter is
applied to the array data to recover the desired user’'ssignal: hence, the output SNR is cal culated
in the same manner. This method is quite similar to jitter diversity [176], where the receiver
estimates the source bearing from a large number of snapshots and tracks the movement of the
nearest signal peak snapshot by snapshot.

Eigenfilters: In this case, the receiver performs an eigenvalue decomposition of the covariance
matrix R,.. The eigenvector or “eigenfilter” corresponding to the largest eigenvalue, 1, ischosen
and applied to the array data to produce a scalar output. The output SNR is simply given by
the largest eigenvalue of R(1), so that in the presence of white noise, the eigenfilter method will
achieve the maximum output SNR among all single filter techniques[60].

Spatial Smoothing Approach: The spatia filter approach described above employs only one
filter for the received signal. It is also possible to apply spatial smoothing to the matrix R,
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to resolve multipath components at bearings {¢; }. The power of each may be calculated from
a(0;)R(1)a(0;)/a™(0;)a(6;). Thelargest components (here, thosewithin 10 dB of thelargest
multipath) may be combined in a RAKE filter. Assuming ./ components are combined by ideal
maximal ratio combining, the output SNR for this case only is explained in Appendix C and given

by:

[ a™ (0)R(1)a(6;))”

o[ (0;) R(1)a(6;)al (0;)a(6;) + 2551 R{a (0;)a(0r)al (05)R(1)a(0;)}]
(6.26)

SNR =

6.6.1.4 Simulation Results

In order to provide an initial comparison of the four methods, each technique was applied to the noisy
covariance matrix estimate of R,. The input SNR, which was defined in section 6.5.3, was set to 20
dB for all simulationswith the signal vector h(1,t) composed of G = 100 multipath components. The
output SNR was measured for the different techni questen thousand timesin each case as part of aMonte
Carlo smulation. The simulations have been performed for a source at a bearing of 90° to the array.
This bearing was chosen as previous results for the channel model show that cross—correlation between
antennas falls most rapidly in this case [172]. For signals arriving from other directions with the same
beamwidth, the cross—correlation between array antennas will be higher.

A comparison of the spatial filter and eigenfilter methods for the reverse link, in terms of the output
SNR, isshownin figure 6.15. Results are shown for uniform linear arrays with half-wavel ength spacing

Reverse Link SNR vs Angular Width of Scattering
T T T T T
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Figure 6.15 The Mean output SNR for the reverse link vs scattering width for array sizes M = 2,4,8
and 16.

and the specified number of antenna elements. The covariance matrices used were calculated from
50 snapshots of a signal with a maximum fading frequency of 50 Hz and a data rate of 10 kHz. The
multipath signal was always generated using the near—in scattering model. The output SNR values for
ideal maximal—ratio combining are shown as horizontal linesfor 2,4,8 and 16 antenna elementsin figure
6.15. The points marked “Beam” show the measured results for the spatial filter technique and “ Eigen”
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shows the SNR resulting from using the eigenfilter approach. Finaly, thelines labelled “Filter” denote
the SNR calculated for a beamformer placed at the source bearing. These curves tend towards a constant
output SNR for large scattering widths [166] as the array size increases. This effect occurs because
increasing the array size reduces the beamwidth and the receiver picks out less of the signal energy: this
cancels out the noise gain of the larger antenna.

The output SNR values from the eigenfilter approach are better than those obtained from the spatial
filter, for large scattering widths because the eigenfilter tracks the signal in all dimensions, while the
spatial filter is constrained to a high—dimensional surface specified by the vector a(¢). Figure 6.15
shows the eigenfilter suffers a small loss compared to the optimal SNR obtained by MRC, because the
m—parameter of the covariance matrix R(l) is greater than unity. It should also noted that the spatial
filter method performs better than the “ Filter” curves because the filter bearing can change to follow the
variations of the received signal and partially exploit the spatial diversity present.

Results have also been obtained for the spatial smoothing method described above, denoted as method
(C), and for the beamspace transformation method, denoted as (B). In order to avoid confusionin figure
6.15, the results are presented in table 6.5. The performance of the beamspace method depends on the
bearing 6, of thefirst spatial filter. For M = 8, 6, hasbeen variedintherange[0°, 42°] andfor M = 16,
in the range [0°,29°] °, to determine the best and worst performance for different values of scattering
angle. For comparison the spatial filter method is denoted as (A) and the eigenfilter method as (D).

M=8 Scattering Angle M =16 Scattering Angle
Elements 0° 10° 20° 30° Elements 0° 10° 20° 30°

A(dB) 29.07 | 28.81 | 28.17 | 27.67 A(dB) 32.11 | 31.03 | 30.07 | 29.37
BestB(dB) | 29.07 | 28.57 | 27.37 | 27.00 | BestB(dB) | 32.06 | 30.34 | 29.45 | 28.71

fo 0° 2° 28° 27° fo 0’ 24° 5° 20°
Worst B(dB) | 25.16 | 26.64 | 27.12 | 26.50 | Worst B(dB) | 28.41 | 30.12 | 29.17 | 28.47
o 29° 29° 7° 6° fo 20° 7° 18° 11°

C(dB) 29.07 | 28.62 | 28.70 | 28.43 C(dB) 3211 | 31.61 | 31.46 | 31.40
D(dB) 29.08 | 29.01 | 28.83 | 28.80 D(dB) 3211 | 31.78 | 31.73 | 31.75

Table 6.5 Comparison of (A) spatial filter method (B) beamspace transformation (C) spatial smoothing
method and (D) eigenfilter method.

These results demonstrate that resolving separate multipath components with spatial smoothing to com-
bine coherently the multipath energy improves the receiver performance. However, marginally superior
performance is obtained by the eigenfilter method with considerably less computation, even thoughideal
MRC combining was assumed for method (C). The behaviour of the beamspace transformation scheme
varies somewhat depending on the value of §,. However, the best SNR values are not significantly worse
than those for method (A); the variation in SNR is also considerably less for large values of multipath
scattering. Thiswould appear to be due the incoming signal appearing in two or three adjacent spatial
filters, providing diversity gain. The loss in performance compared to methods (C) and (D) may be
offset against the much simpler implementation and computation costs of the beamspace transformation

6 The upper bearing of these two ranges specifies roughly where one of the other beamformersreaches bearing 0 °.
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approach.

To provide some comparison of the effectiveness of spatia filtering, a table is shown below of the 3
dB beamwidths of an antenna array of a given size with alook direction of 90°. Comparing the values

Number of Antenna Elements| 3 dB Beamwidth
2 60°
4 26.3°
8 12.8°
16 6.4°

Table 6.6 The beamwidths of M —element antennas, with a 9¢° look direction.

of table 6.6 with the results of figure 6.15 and table 6.5, it is seen for each value of M that significant
degradation in SNR for both the spatial filter and beamspace approaches occurs only as the angular
spread of the signal increases above the beamwidth of the associated spatia filter. Finaly, it should be
noted that all the above methods will be subject to further degradations at low SNR, because the signal
vector estimates will be subject to larger perturbations due to noise.

6.6.1.5 Diversity Considerations

Whilst the measured SNR provides an initial measure to compare receiver structures, it is insufficient
to completely characterise system performance. In the simple case of a source transmission arriving
from a single direction, the received signal may be completely described by a steering vector which is
scaled by a single complex Gaussian random variable. However, as the angular width of the source's
signal increases, the cross—correlation between the received signals across the antenna array reduces,
so that the received signal vector follows a complex Gaussian multivariate distribution. The eigenvalue
decomposition of the mean covariance matrix R (1) of the received signal provides information on the
constituent random processes present in the signal and their amplitudes.

If perfect maximal ratio combining is applied to the received signal vector, the receiver is able to track
the independently fading components which are present. This means that the receiver can exploit the
spatial diversity of theantennaarray [71], whose extent depends on the number of significant eigenvalues
calculated from R(1). Asaguideto thediversity present on the channels considered above, the principal
eigenvalues from the covariance matrices calculated for different array sizesand signal scattering angles
are shown in figure 6.16. Comparing the results with table 6.6, the second largest eigenvalue of R(1) is
seen to become significant when the scattering width is comparable to the beamwidth of the array.

In order to estimate quantitatively the effect on the receiver, one may use the following procedure. Take
the K significant eigenvalues from R, A;, and scale them according to the background noise level and
denote the resulting values as p, ( c.f. section 6.5.2). The PDF of the signal at the output of an idea
maximal ratio combiner is given by Proakis [43]:
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Figure 6.16 The principa eigenvalues of the covariance matrices for different array sizes and signal
scattering angles: @) M =2b) M=4c) M=8d) M =16.

K
PDF(z) = Z % exp{—xz/pi} (6.27)

k=1

where the value of 11}, is given by equation (6.19). The CDF of the distribution is then given by:

> K
CDF(x) :/ PDF(w)dw = Y " TIx(1 — exp{—2/ps}) (6.28)
k=1

0

As an example, the theoretical CDFs for the MRC output from an incoming signal with bearing 90,
scattering width 20° and an input SNR of 20 dB have been calculated for M = 2,4,8 and 16. To check
the results by simulation, the eigenfilter method has applied to 50 snapshots of the same slowly—fading
channel(i.e. v,,,=0) to calculate the output SNR. This procedure was repeated 10000 times to determine
the CDF. Both sets of results shown in figure 6.17 fit well, as the eigenfilter approach is approximately
equivalent to the theoretical MRC curve in thiscase. As the number of antenna elements M increases,
the exploitable diversity increases. At a probability of 0.001, the SNR improvement is of the order of 6
dB each time M isscaled by 2, double what would be expected for noise rejection alone.

It is of interest to compare the CDFs for the spatia filter, beamspace transformation and eigenfilter
approaches, for M =16, under the same conditions as the previous figure. Results are shown in figure
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Figure 6.17 The CDFs of the theoretical and simulated MRC outputs for a signal impinging on an
M —element ULA with bearing 90° ,input SNR of 20 dB and scattering width of 20°.

6.18 for all three approaches, labelled “Beam”, “Beamspace” and “Eigen” respectively. Interestingly,

the spatia filter CDF follows that of the eigenfilter closely: the main difference appears to be due to

the loss in SNR specified in table 6.5. In addition, the CDF of the beamspace technique shows only a

dight lossin SNR and diversity compared to the spatial filter method. However, all three approaches

seem to exploit most of the diversity present in the received signal, and will provide significant BER

performance improvement at reasonable input SNR over the curve labelled “ Filter”. Thisrepresents the

Rayleigh distributed output from a spatial filter placed at the source bearing.
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Figure 6.18 The CDFs of the beamformer, eigenfilter, MRC, beamspace and source bearing steering
vector filters for a signal impinging on a 16—-element ULA with bearing 90°, input SNR of
20 dB and scattering width of 20°.

From these results, it seems clear that the eigenfilter approach provides performance close tothat offered

by ideal maximal ratio combining for any scattering width. If the scattering width is narrow, spatia

"The results for the beamspace technique are shown for the “worst” set of filters, with output SNR = 29.17 dB and § = 18°.
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filtering performs amost as well. However, as the scattering width increases above the beamwidth of
the array, spatial filtering approaches degrade in terms of the SNR. The lossin SNR can be overcome
by spatial smoothing techniques, but only at a cost of increased complexity. In any case, spatia filtering
and eigenfilters aready appear to exploit the diversity of the channel effectively. Bearing estimation
techniques require accurate knowledge of the array manifold, which will involve periodic re-calibration
of the signal phases. This can be avoided in receivers using eigenfilter methods, athoughit may prevent
the antenna array from being used to re-transmit on the forward link.

The point source channel provides a good model for a multipath component, provided its angular width
is somewhat smaller than the beamwidth of the array. However, as the angular width increases, spatial
diversity can be exploited to increase the effective number of independent Rayleigh fading components
which are coherently combined. The DPSK BER equation (6.18) may be simply adapted to handle
the case where a J-tap DPSK RAKE filter combines J signals containing Y independent components,
whereY > J. The BER becomes:

T A e Y S| Y m, p, "
BER= —— —(—)" (6.29)
22]1,,; HZ:% n ;Py L+ py
where p, isthe SNR of they'” component. The product term IT,,, defined in equation (6.19), is modified
toinclude a product of order Y — 1.

6.6.2 Array Processing on the Forward Link

Given that the multipath components received at an array antenna base station have some spread in
angle, it is important to quantify the effect of this. Intuitively, one would expect that as the multipath
angular width widens, a simple beamformer will tend to capture less of the available energy, reducing
the received SNR for that multipath. Similarly, re-transmitting energy on the forward link using the
same beamformer weightswill not reach al the scattering components so that the forward link SNR for
that multipath is al so reduced.

6.6.2.1 Modelling the Forward Link Channel

In order to model the forward link channel, it shall be assumed that the frequency separation between
the reverse and forward links is sufficient that one is outside the coherence bandwidth of the other. In
the |S-95 standard, the channel separation is of the order of 40 MHz, so that this assumption would be
appear to be justified in this case. To simplify the analysis, it will be assumed that the steering vector
of the array is the same for both carrier frequencies. Therefore, if the mobile were to transmit at the
forward link frequency, the channel vector k¢ (1,¢) would be identically distributed to the reverse link
vector k(1,¢), but independent of it.

If one were to apply an arbitrary filter w to N snapshots of h;(1,1), the average output power would
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be given by [w® R(1)w]/(w™ w), where R(1) is formed from the N snapshots of h;(1,t). By the
principle of reciprocity on the forward and reverse links[30, p60], this value a so represents the power
received at the mobile if the antenna array transmitted to it using the complex conjugate weight vector
w*. Thetotal power transmitted by the antenna array is equal to that transmitted by the mobile. This
method will be used to simulate the forward link from the base station to the mobile. The agorithmsfor
determining what weightsto use for transmission to the mobile will now be considered.

6.6.2.2 Forward Link Transmission Techniques

There are a number of techniques which permit the array to re-transmit to the mobile. These will now
be considered in turn:

(). Weight Re-transmission: If asingleweight vector w iscalculated for receiving the signal onthe
reverse link, it is possible to use the complex conjugate vector w* for transmitting on the forward
link. This principle has been suggested for the case of a single spatial filter a (¢) [12,62] and for
an approach based on adaptive beamforming [67]. It may also be performed using an eigenfilter
uy or the weight vector calculated from optimum combining [13]. Finaly, it should be noted that
this approach has even been suggested for beamspace transformation techniques [76].

(if). Transmission Feedback [177]: This method for narrowband systems proposes that the base
station periodically transmit training sequences to the mobile. Based on information transmitted
back from the mobile, the base station may alter its transmission weights. This method has the
advantage of being able to measure the forward link channel characteristics directly. However,
it seems to be most suitable for slowly changing channels and has the disadvantage of requiring
extra control overhead. It will not be considered further in thisthesis.

(iii). Time Division Duplex Transmission [178] [30, p498]: An alternative method to obtain the
transmission weights is to specify atime division duplex (TDD) air interface. This method will
work better than FDD methods over slowly—fading channels, as in this case the slow and fast
fading effects will be reciprocal. It is aso possible to transmit several delayed versions of the
CDMA signal in such a way as to permit the channel to perform a RAKE filtering operation on
the signal [178]. However, this method requires guard bands between the transmissions in each
direction to prevent cross-talk. In addition, the performance of the system degrades as the fading
rate of the channel increases. Asthe IS-95 standard specifies FDD signalling, this method will
also not be considered further.

The work which is presented next considers blind channel transmission techniques, which have no
knowledge of the forward link channel parameters, except through measurements of the reverse link.
The maximum SNR that can be obtained in this way is to use the eigenvector corresponding to the
largest eigenvalue of R, for the transmissionweights® . The output SNR at the mobileisthen thelargest

8 This assumesthat the receiver can obtain a perfect estimate R -, which isunlikely to be possiblein practice.
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eigenvalue of R(1). The comparative performance of weight transmission systems using eigenfilter,
spatial filter and beamspace transformation weights will now be discussed.

6.6.2.3 Simulation Results for The Forward Link

In the simulations described below, a covariance matrix was formed from reverse link data to determine
the best receive vector w, using the spatia filter, eigenfilter or beamspace transformation. The array
proceeded to transmit on the forward link to the mobile, using the complex conjugate vector w *. Each
realisation of the reverse and forward links was obtained using G = 100 multipath components, each
with the same bearing and Doppler frequency. However, the initial phases of the multipath on the
two links were iid random variables, uniformly distributed over [0, 2x]. This does not account for any
alteration in the channel, due to shadowing, in the time between measuring the reverse link channel
and re-transmitting on the forward link. Given that the simulation used alow fading rate, however, this

appears to be a reasonable assumption.

Figure 6.19 shows the output SNR against beamwidth for array sizes M = 2,4,8 and 16. Weight vectors
were obtained from N =50 snapshots of the reverse link, using the spatial filter and eigenfilter methods
described in section 6.6.1.3. The total transmission power budget for all antenna array sizes was the
same as that used by the mobile on the reverse link, such that a single antenna transmission would
achieve a mean output SNR of 20 dB at the mobile. The results were calculated for 50 snapshots of the
forward link: they are shown for the spatial filter (Iabel “Beam”) and the eigenfilter (label “Eigen”), as
well the maximum SNR, which isthe largest eigenvalue of R (1) (label “Theory”). Finaly, horizontal
lines are shown in figure 6.15 for the maximum output SNR achievable for each array size, assuming

perfect knowledge of the forward link channel.
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Figure 6.19 The mean output SNR for the forward link vs scattering width for array sizes M = 2,4,8
and 16.

The results show that the performance of the eigenfilter and beamformer techniques are quite similar in
this case. However, both techniques' performance is slightly worse than for the maximum achievable,
becauise the reverse link estimated matrix R, provides channel parameter estimateswith ahigh variance.
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Unfortunately, at large scattering angular widths, all three approaches perform considerably worse than
the correct transmit weightswhich could be used if the forward link channel characteristics were known
at al times.

A comparison is shown in table 6.7 between the spatial filter and beamspace transformation techniques
—methods A and B, respectively. Again, the performance of the former is comparable to the best results
for method B. Poor choice of ¢, leadsto some degradation in performance.

8 Scattering Angle 16 Scattering Angle
Elements 0° 10° 20° 30° Elements o° 10° 20° 30°
A(dB) 29.04 | 28.22 | 26.53 | 25.20 A(dB) 3212 | 29.45 | 27.14 | 25.86
Best B(dB) | 29.05 | 28.49 | 26.44 | 25.26 | BestB(dB) | 32.10 | 29.47 | 27.08 | 25.71

0 ¥ | & | 7 | 0 r [ & [ |18
Worst B(dB) | 25.10 | 25.46 | 25.67 | 24.44 | Worst B(dB) | 28.43 | 28.68 | 26.80 | 25.33
0 20° [ 28° | 28 | O 0 200 [21° [ 200 | &

Table 6.7 Comparison of (A) spatial filtering and (B) beamspace transformation techniques.

6.6.2.4 Obtaining Diversity Reception at the Mobile

In order to permit performance improvements at the mobile, it is possible to directly employ the CDMA
transmission technique [168], which was described in section 6.5.5. Each antenna of the array transmits
the CDMA signal subject to a delay (relative to the first antenna) of (m — 1)t., where m denotes the
antenna number. If A/ antennas transmit over the channel modelled by A (1,¢), the mobile receives M
signalsin different time slots. Assuming that the array transmit power isthe same as for the mobile, the
mean power received at the mobileis given by (¢r+{R(1)})/M. Hence, diversity transmission would
achieve an output SNR of 20 dB for all the antenna sizes described above.

Clearly, the problem with this approach isthat if 2(1,¢) consists of a single steering vector a(6), then
transmitting using the vector «*(¢) is much more efficient in terms of the output SNR. Indeed, the
diversity transmission approach simply leads to an SNR loss of M dB compared to transmitting the
steering vector and achieves no additional diversity gain. For a more general channel there will still be
some loss in output SNR, compared to the weight transmission approaches described above, but this
method can exploit any channel diversity present.

In scenarios where the channel matrix R(1) has a small number of significant eigenvalues, it is ad-
vantageous to keep the number of separate transmissions small. Two possible methods to achieve this
are:

(). Sub-array Transmission: One may divide the linear array into a number of contiguous trans-
mission sub—arrays. Each sub-array transmits the CDMA code with a suitable delay, as for the
diversity transmission agorithm, to allow multipathsto be combined coherently with a RAKE fil-
ter. The transmission weightsfor each sub—array may be decided using one of the re-transmission
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techniques above, e.g. spatia filter, eigenfilter, etc. As the transmitted power is split equally
between sub—arrays of size L, the total output SNR from a RAKE filter at the mobile cannot be
greater than that for a single transmission from an array size .. However, thistechnique provides
improved diversity at the mobile, assuming the channel has sufficient angular spread: thereisalso
reduced RAKE filter complexity at the mobile, compared to the transmission diversity technique.
In practice, the effectiveness of the techniquewill depend on thethe signal cross—correl ation terms
present in the matrix R(1).

(if). Transmission using MUSIC/Spatial Smoothing:A second approach isto apply spatial smooth-
ing and MUSIC to the reverse link covariance matrix, in order to separate the received signal into
a small number of directional components. The base station may transmit the CDMA code in
each chosen direction, with suitable delays to allow each transmission to arrive in a different time
slot.

In order to demonstrate the improvement that may be obtained from multiple transmission, the CDFs
have been calculated for the overall SNR of the signal at the mobile for a number of transmission
schemes. The reverse link beamformers and the forward link complex—conjugate re-transmission SNR
values have been calculated in the same manner as for figure 6.18. The only difference is that ideal
maximal ratio combining has been assumed at the mobile for the diversity transmission technique. The
results are shown in figure 6.20.
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Figure 6.2Q The CDFs for the overall SNR received at the mobile for a number of transmission al-
gorithms, with array size M =16, source bearing 90° and scattering width 20°.

Thereceived signal sfor transmission algorithmsempl oying beamformer transmission (Iabelled “ beam”),
eigenfilter transmission (labelled “eigen”) and for transmission with abeamformer at the source bearing
are al seen to follow a Rayleigh distribution. These techniques are unable to provide any additional
diversity at themobile. Resultsare a so shown for antenna transmission (with eigenfilters) using 2 (L=8)
and 4(L=4) sub—arrays. The loss in mean SNR is evident for sub—array transmission. Transmitting a
single eigenfilter achieved an average output SNR of 27.0 dB, two filters gave 26.2 dB and four gave
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25.0 dB. However, the latter two methods provide significant diversity gain at the mobile because the
separate components may be combined coherently with a RAKE filter. At low SNR values, there will
be littleto choose between any of the transmission techniques. However, asthe SNR increases, the BER
performance of each approach will depend on distribution of the tail of the CDF. In this case, sub—array
transmission and the spatial smoothing technique can provide improved performance. Finaly, it should
be emphasised that all techniques provide a considerable loss in SNR compared to the best possible
CDF (labelled “Theory™”), which could be obtained only by direct measurement of the forward link
channel parameters. On slowly fading channels, the performance can be improved considerably by
using transmission feedback or time—division—duplex approaches.

6.6.2.5 Discussion

Transmission diversity schemes provide an effective means of providing extra multipath diversity at
the mobile, for two antennas. However, increasing the number of transmitting antennas in this scheme
may not improve the performance of the mobile's receiver. This is because the number of multipath
componentsfor the mobileto track become large; self—noise effectswill also become aproblem. Finaly,
for channels with small scattering widths, the antenna array size may have to be very large in order for
each transmission to fade independently.

If the channel covariance matrix contains only a few principa eigenvectors, “blind” transmission tech-
niques, such as sub—array transmission, provide diversity at the mobile whilst maintaining some spatial
directivity in the direction of the mobile. As a result, sub—array transmission may reduce the level of
CDMA interference from other users, compared to transmission diversity. The output SNR performance
of sub—array transmission is also generaly better than for transmission diversity, but may be consider-
ably worse than the optimum output SNR which could be achieved with knowledge of the forward link
channel.

The main difficulty in performing forward link transmission is to estimate the diversity order of the
channel under consideration. Thiscan only be achieved by averaging thereverselink channel covariance
matrices over a reasonable amount of independent data. This provides an estimate of the number of
principal components present. In any case, provided the overall SNR at the mobile is sufficiently large,
two or three independently fading signals may provide sufficient diversity: increasing the order of
diversity generally provides diminishing returns.

A more serious problem for implementation of antenna array transmission within the existing 1S-95
standard, compared to transmission diversity, is the use of a coherent pilot tone on the forward link.
Thistoneistransmitted on a separate CDMA code from other users, at a higher power to permit mobile
receiversto perform coherent PSK detection of their coded signals. The simplest solution to the problem
would be to transmit the pilot tone in all directions, using either an omni—directional transmitter or an
antenna array transmitter. In either case, there exists the possibility that the received signa for the
pilot will vary significantly from that received for a given mobile user. As a result, future CDMA
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specifications may need to be altered to permit the use of antenna array transmission techniques.
6.7 Conclusion

In this chapter, the extension of channel modelling techniques to the case of antenna arrays has been
discussed so that the effects of fading multipath channels can be measured. Two separate channel
models have been considered: firstly a point source frequency selective channel, whose reverse-ink
performance for antenna—arrays does not differ significantly from single antennareceivers. Inthiscase,
a RAKE filter is required to coherently combine multipaths to overcome Rayleigh fading. The second
model consists of a flat—fading channel, made up of a number of directional components. In this case,
eigenfilters combine the received signal effectively to exploit the available spatial diversity. Spatial
filter and beamspace methods can still partially exploit the available diversity, although the output SNR
tends to reduce as the width of the multipath scattering widens. The bearing estimation receiver is less
attractive than the eigenfilter structurein terms of obtainingthe best performance over acommunications
channel. However, it is still useful in situations where mobile bearings are required, such as for the
source location technique described in Chapter 7. On the forward link, the antenna array can provide
directional transmissions to reduce interference to other users. However, the receiver must ensure that
the mobile receives a frequency—selective channel to compensate for the effect of Rayleigh fading.
Where amultipath component has awide scattering angle, multiple sub—arrays may be used to maintain
directional transmissions whilst exploiting spatial diversity.
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Chapter 7
Source Location

One application for bearing estimation techniques in a multipath environment is to locate the position
of atransmitting mobile. In this chapter an algorithmis presented to perform such atask. It isbased on
the adaptation of a 2—ray channel model frequently encountered in high frequency (HF) and underwater
source location problems. The performance of the algorithm is estimated from afirst order Taylor series
expansion and confirmed by Monte—-Carlo simulation.

Estimating the time delay between multipathsis conventionally limited by the chip rate of the received
spread spectrum code. To improve the situation, a variant of the MUSIC agorithm is presented for
simultaneously estimating a multipath’s bearing and time delay. The transmitter location algorithm
requires the position of a multipath reflector as one of the parameters, which would normally be
estimated from terrain databases. An alternative approach for locating the reflector is also discussed,
which uses a mobile antenna array receiver.

7.1 Direction Finding and Source Location

In order to locate the position of an active transmitter, one common approach is to employ a given
set of parameter measurements made at a number of different receiver locations [179, 180]. Suitable
measurement parameters for such a calculation are (relative) time delays involved in receiving the
transmitted signal [181] or received power [182]. This principle may be used in reverse for navigation
purposes, most notably the Global Positioning System (GPS) [25].

In order to avoid the need for multiplereceiver sites, in certain situationsit is possibleto exploit multipath
informationto locate the source at asinglereceiver site. Thismethod is often termed single sitelocation
(SSL) and is suitable for locating high-frequency (HF) transmissions or for underwater passive sonar
applications. The simplest model for this technique has one direct (line of sight) path and one reflected
ray. The reflected ray is presumed to occur due to the ionosphere reflection in HF propagation or due
to the ocean surface/sea bed in underwater acoustic propagation. In both cases, the reflecting surface
may be modelled as flat so that the geometry of the wave propagation is very simple. If the bearings of
the two multipath components are known, the problem reduces to accurately estimating the time delay
between the LOS and reflected paths. For more information on such approaches, see [183-185] and the
references therein.

The approach taken in thischapter isbased on SSL techniques, but the problemis made more difficult by
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the nature of urban microwave propagation. This means that the propagation geometry and the resulting
algorithm become correspondingly more complex.

7.2 Basic Model for Source Location

This section will present the background to the source location problem and will define the parameters
necessary for the algorithm. Consider the frequency selective channel shownin figure 7.1.

(x.y)

O
Mobhile
User

/ -_—
Locus of reflector Path Length of (1) =R
positions Path Length of (2) =R+£&

Figure 7.1 The two-ray frequency selective model for source location.

Both propagation paths shown in the figure are assumed to lie on a horizontal plane. The main path,
denoted as (1), is assumed to follow a direct path between the mobile user and the base station. The
second path (2) occurs due to a reflection from an obstacle in the environment. |f the time of arrival
of the second multipath is known, the location of the reflecting object may be located on an ellipse,
whose foci are the locations of the transmitter and receiver [186]. The parameters shown in figure 7.1
are defined as follows:

Bearing of multipath (1) = 6,

Bearing of multipath (2) = ¢,

o Base station—reflector distance= v

Reflector position = (z,y) = (vcos(fz — 1), vsin(f2 — 01))

e Base station to mobile distance= R

Time delay between the arrival of multipath (1) and (2) = ¢4

Excess path length of (2) = ¢ = t4¢

where ¢ denotes the speed of light. The co-ordinates of the mobile are measured relative to an arbitrary
x—axis, with the origin at the antenna array (shown as a line in figure 7.1). The one exception is the
position of the reflector (x, y), which is measured with the direct path as the x—axis.
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7.3 Derivation of the Algorithm

In order to estimate the position of the mobile (i.e., the value of R), thefollowinginformationis needed:

i) the multipath bearings ¢, and ¢ ii) the value of v (or equivalently the location of the reflector (z, y))

andiii) the associated excess path length ¢ of multipath (2) associated with the excesstimedelay ¢;. The

major and minor axes of thereflector ellipse showninfigure 7.1 will bedefined as a; and a- respectively.

From the geometry of ellipses, it is now possibleto write [187]:

al—cl%:R2
R+& = o
Az — (R/2))? 492
(2 (2/))+L2 _ 1
ay as

Equation (7.3) may be written as:

4a3(x — (R/2))* + daly’ = aiaj

Substituting equation (7.1) into (7.4) gives:

4(af — R*)(x — (R/2))* +4aiy” = ai(af — R?)

Secondly, equation (7.2) may be substituted into (7.5) to remove the variable a1, such that:

A(R+8)° = R*)(x = (R/2))* +4(R+ €)% = (R+&*(R+ )" - R?)

(7.)
(7.2)
(7.3)

(7.4)

(7.5)

(7.6)

Equation (7.6) may be simplified to give a quadratic equation in R, whose coefficients A,B and C' are:

A = 4y — 8zt — 4¢2

= 8¢x? 4 8¢y —4&%x — 483

C = 4€2$2 4 4€2y2 _ €4

The value of R may be obtained from the quadratic formula:
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R= i[—B + /B2 — 4AC] (7.8)

Thetwo solutionsfor R correspond to the two possible ellipses which meet at the reflector. One extends
in the negative direction, giving a negative value for R. The other one, which extends in the positive
direction, isthe one required here, so the correct value of R isthe positiveroot of the quadratic equation.
The position of the mobile user relative to the origin x—axis line through the base station array is given
by (R cos 1y, Rsin 6).

7.4 Perturbation Analysis

In order to estimate the performance of the technique, one may expand equation (7.8) according to a
Taylor series[187]. Inthiscase, it hasbeen assumed that thevariablesé, , 62, v and ¢ are theindependent
random variables. Hence, the Taylor series will be a function of the error terms of all these variables,
denoted as Ay, Af,, Av and Aé respectively. The mean error values of all four variables are assumed
to be zero. So, limiting the expansion to afirst—order approximation, the mean error valuesof X andY’,
AX and AY, are also zero.

The first—order variance expressions involve partial derivatives of all the independent variables. These
are given by:

0X 0X 0X 0X
2 — N2 2 N2 92 —2A62 —ZAZ
Yy Yy Yy ay
2 7 N\2 2 Rl VA 92 —2A92 —ZAZ 7.

providedthat 6., 85, v and & are mutually independent Gaussian random variables. The necessary partial
derivativesfor solving the equationsin (7.9) are presented in appendix D. Asthe equationsinvolve only
first—order derivative terms, the results asymptotically converge to the true values as the errorsin 4, 5,
v and ¢ become small. The expressions for the errorsin X and Y are quite complex, so the equations
have been evaluated for a number of different conditionsto determine the performance of the technique.
In the results, errors are presented in terms of the root mean squared error, which is simply the square
root of the sum of the variances of the estimates of X and Y.

7.5 Results and Discussion

In order to confirm the theoretical results, a number of Monte—Carlo simulations have been performed.
In all the simulations, the variables 6., 6, v and ¢ were drawn from independent Gaussian random
distributions whose mean was the true value in each case. The mean and standard deviation of these
variables could then be altered to assess their effect on the algorithm.
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For the first set of simulations, the parameters used are specified in table 7.1. Using these parameters,

Parameter | Mean | Std Dev
01 90° 0.05-1°
6 95-150° | 0.05-1°
¢ 200m 2m
v 496 m 496 m
R 400 m -

Table 7.1 The parameters for the first simulation.

the mean value of ¢, was set to four different values, and Monte—Carlo simulations performed in each
case. During each simulation, the standard deviations of both ¢, and ¢, were varied between 0.05° and
1°. This allowed the effect the angular spacings of the two multipaths (i.e. the variable (6, — 1)) on
the algorithmto be clearly seen. The simulation results are shown in figure 7.2 as points. Equation (7.9)
has been used to calculate first order estimates of the standard deviations and these results are shown as

lines.
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Figure 7.2 The position error as a function of the bearing difference (62 — 61).

It is seen that increasing the value of (62 — 61) has a drastic effect on the position error. Indeed if
(62 — 61) = 180°, the equations have no solution. Thisis because the only absol ute distance information
present in the algorithmisthe reflector location measurement v. Thisinformationisused to estimate the
valueof R - thecloser 6, isto 6, the smaller the error in the estimation of R. Alternatively, asthe value
of (2 — 61 increases, the equations become more ill-conditioned. The same trend has been observed
when the horizontal axis of figure 7.2 becomes the standard deviation of v or &.

It is aso worth noting that the first—order perturbation approximation breaks down for large values of

the bearings standard deviation (BSD). This is because the higher—order terms are no longer negligible
and begin to have an effect on the error in 2. As aresult, Monte—Carlo simulations should be used to
check the algorithm’s performance where large measurement errors are involved.
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The next simulation considered the effect of scaling the standard deviation of ¢, by afactor kg, relative
to that of 4,. The bearing ¢, was set to be 95°; otherwise, the simulation conditions were identical to
thosein table 7.1. Specifically, the standard deviation of 6, was multiplied by afactor ko = 1, v/2, 2, /8
and 4 timesthat for ¢,. Thisis equivalent to an increase in variance of 6, by 1-16 times the variance of
6, thiswould reflect the signal-to—noiseratio (SNR) of the second multipath being 0-12 dB below that
of the first, assuming alinear relationship between SNR and bearing variance. The results are shown in
figure 7.3, with the standard deviation scaling factor &, indicated for each case.
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Figure 7.3 The position error as a function of relative bearing standard deviations.

Not surprisingly, the position error increases asthe standard deviation of #- increases over 6, . However,
even when k, changes from 1 to 4, the effect on the position error appears negligible at low values of
the BSD. When the standard deviation of 8, is 1° and the value k, changes from 1 to 4, the position
error increases only by 30%. So, it appears that in this case, the equations are not over—sensitive to
large bearing errorsin 6, alone. Findly, it is noticeable that when the BSD values are large, particularly
with kg = /8 or 4, the Monte-Carlo simulation results are larger than the predicted values. Again, this
would appear to be attributable to the higher order terms of the Taylor expansion becoming significant

invalue.

The next parameter of interest was the excess path length £. The simulation parameters in this case are
shownintable7.2. Notethat the question mark indicatesthat the mean value of v will ater in accordance

Parameter Mean Std Dev
01 90° 0.05-1°
6 95° 0.05-1°
¢ 200-1600m | 1% of mean
v ? 1% of mean
R 400 m -

Table 7.2 The parameters for the third simulation.
with €. The results are shown in figure 7.4, with the value of ¢ indicated for each curve. In this case,
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Figure 7.4: The position error as a function of the excess path length¢.

the situation is not so clear cut. For small BSD values, the position error increases with increasing &.

However, as the bearing error increases, the situation changes so that increasing ¢ actually decreases the

position error. For the parameters chosen, a value of ¢ equal to 800 m provides the minimum position

error for BSD values of 1°.

Thefinal parameter of interest isthe mobileto base station distance R and its effect on the positionerror.
Setting the excess path delay ¢ to be 400 m (standard deviation 4 m), the range was varied between
500-4000 m. Otherwise, the scenario conditions are identical to to those in table 7.2. The results are

shownin figure 7.5, with the value of R specified for each curve.
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Figure 7.5. The position error as a function of the distance R.

Intuitively, one might expect that doubling the value of £ would simply double the position error. For

small values of the BSD, this appears to hold true. However, as the value of the BSD increases, this

linear relationship no longer applies. When the bearings standard deviation is 1°, increasing R from
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2000 m to 4000 m increases the position error by a factor of about 2.5.

To summarise the results of the simulations in this section, the position error is very sensitive to the
value of (6, — 01) which is a serious disadvantage. Increasing the standard deviation of 6, compared
to 6, does not affect the position error significantly. Altering the parameter ¢ has different effects on
the position error, according to the accuracy of the bearing estimates. Finally, increasing the value of R
increases the position error and for BSD values around 1° the rate of increase becomes dlightly larger.

7.6 Discussion

The previous section has looked at the effect of certain parameters on the source location algorithm. In
practice, the location of the mobile and the channel between it and the base station will determine the
performance of the algorithm. Perhaps the most serious deficiency of the algorithm is the fact that its
performance is altered substantially according to the difference in angles between the two components
used for source location. The performance of the technique may beimproved by averaging resultsusing
more delayed multipaths, if available. However, the direction of the mobile is completely specified by
the bearing #, , which will limit the accuracy achievable by thistechnique.

The sources of error affecting the practical measurement of the parameters ¢, -, v and & will now be
considered inturn.

(). Bearing Measurement: The multipath bearings may be measured using a technique like the
MUSIC agorithm. As discussed in chapter 4, the performance of the algorithmis a function of
the number of snapshots, number of antennas and the SNR. However, in more realistic multipath
channels, such as those discussed in chapter 6, the variance of the bearing estimates can also
depend vitally on the multipath angular spread. In this case, the technique requires to average
over anumber of independent realisations of the channel —how frequently these occur depends on
the fading rate of the channel and hence the mobile’s speed. Of course, using too many channel
realisations may lead to additional sources of error due to the mobile having moved a significant
distance over the time of observation.

(ii). Multipath Reflector Measurement: The location of the reflector for the delayed multipath
requires accurate mapping of the area under observation. Practical location of multipath reflectors
can only ever be a matter of guess work, with the algorithm using the location of the most
prominent building or landscape feature lying in the direction of the multipath’s arrival. Errors
in the measurement of v will thus depend on two factors: 1) Errors in the database of landscape
features 2) Errors due to choosing the wrong reflector for a given multipath. The former type of
errors are easier to quantify and less likely to be catastrophic than the latter.

(iii). Excess Path Length Measurement:If the transmitter emits a code of a given chip rate ¢,
the smallest excess time delay between multipaths that can be unambiguously resolved, using a
conventional digital matched filter for the desired CDMA code, issimply ¢.. Thisplaces a severe
limit on the accuracy of practical excess path delay measurements (which may be estimated from
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the time delay knowing the speed of light). However, the situation may beimproved by extending
high—resolution spectral estimators, such as MUSIC, into both the bearing and excess time delay
domains. One possible approach to this problem will now be described.

7.7 High Resolution Estimation of Multipath Parameters

The original formulation of the MUSIC agorithm was intended only for the estimation of the source
bearings of narrowband transmissions[53]. However, algorithmshave since been developed for determ-
ining simultaneously the bearings and carrier frequencies of a number of narrowband sources [188] and
for accurately estimating therelative time delays of anumber of multipath signalsreceived from asingle
spread spectrum transmitter [189, 190]. Combining theideas behind these two approaches, an algorithm
will now be described for estimating the relative time delays and bearings of a number of multipath
components, received by an antenna array from a spread spectrum source. This technique may not be
able to resolve multipaths closely spaced in time, but it does permit increased accuracy in time delay

measurements.

Consider a single spread spectrum transmission, which is not subject to data modulation. The electro-
magnetic signal is subject to multipath propagation and reaches the spread spectrum receiver array by
several paths. The baseband received signal vector at the A/— element array » (%) is given by:

r(t) =D 0(i,e(t — ) a(0:) +n() (7.10)

where K denotes the number of separately resolvable multipaths, J(i, ¢) the complex amplitude of the
it" component and ¢; itstime delay, relative to the arrival of the first multipath component. The vector
1(t) denotes additive white Gaussian noise which corrupts the received signa and c(t) denotes the
transmitted spread spectrum pseudo—noise (PN) code. The codeis periodic with periodt,, and chip rate
t., so that the processing gain W = ¢, /t.. It will be assumed that the maximum delay of any multipath
component {¢; } issmaller than the code period ¢ .

It is possible to directly estimate the multipath components using »(¢): however, the approach of
[189, 190] will be followed here. The vector »(t) will subject to | and Q matched filters containing the
desired code ¢(¢) to produce the post—correl ation data vector y (¢):

y(1) = h(i, 0)6.(t — t:)a(6;) + n(t) (7.12)
where n(t) is the additive noise at the output of the code matched filter, k(i,¢) the post—correlation
channel tap complex amplitude and é.(¢) denotes the periodic correlation function of the code ¢(t). The
functions (i, t) and §.(¢) may be defined as:

h(i,t):/t; (i, w)dw (7.12)
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6.(1) = /Ots c(w)e(t — 1, + w)dw (7.13)

The signal vector y(t) will now be sampled in the | and Q channels at the chip rate: assuming the
baseband receiver bandwidth is at least 211/, the additive noise will be spatially and temporally white.
A vector yr(t) € CMWXL of &l the datafrom all the antennas for one complete period of the code may
then be constructed as follows:

yr(t) = [yi(t), yi(t+t), .,y (E+ (W = Dt), ya(2), yo(t+22), - ym (E+ (W = D)t))T (7.14)

where y,,, (t) denotes the complex signal from the m** antennaat time¢. The signal component of y(¢)
may be assumed to be composed of K scaled “steering vectors’ ar(6,4) which reflect the bearing
and excess time delay of each multipath component. The vector ar(6,t4) € C"**! isdefined by the
equation:

ar(0,tq) = [6.(ta), - .., 6c(ta + (W — 1)t.), e? ™3O (ty), ... el M=1meosllls () 4 (W — 1)t.)]

(7.15)
It will now be assumed that the arrival time of the first multipath component ¢ isknown. A covariance
matrix for N snapshots of the signal data can be constructed according to the formula:

N-1
Rujn =5 2 wnlto+ (0 x L)l (ta+ G x 1) (7.6

=0
For the matrix Ry p € CVM*WM 0 be of full rank, N > W M. Taking the expectation of Ry, g,
the familiar covariance matrix structure is obtained:

Ry p = ArSAY + 0’1 (7.17)

Thematrix A7 € C**X containsthe K columnvectors ar (6., tx ) and § € C* ** isthecovariance
matrix of themultipathcomponent amplitudes/(k, ¢). Therank of thesignal subspace A SAZ depends
on the number of independent multipath components present - for now therank will assumed to be K. It
ispossibleto calculate the eigenval ue decomposition of Ry, g, determine the size of the noise subspace
and calculate the matrix E, € CVM>*WM=EK \yhich contains all the column noise eigenvectors. The
power density spectrum using the MUSIC a gorithm may then be calculated as:

1
0,0)E, EX a(0,1)

Pyus(0,t) = o (7.18)

Inorder for A~ multipath components to be resolvable, the following must hold:

(). The cross—correlation between the K multipaths must be less than unity, so that the rank of S is
K.

(if). Not morethan M — 1 multipath components can have the same delay.

(iii). Not more than 1/ — 1 multipath components can occur at different time delays but the same

126



bearing.

Concerning the first point, the cross—correl ation between any two spatially separated multipathswith the
sametime delay may be reduced through the use of spatial smoothingtechniques. Thisinvolvesforming
covariance matrices according to equation (7.16) and averaging them using SS or FBSS as described
in chapter 4. The effect of spatial smoothing on coherent multipaths with different time delays is more
difficult to quantify and isamatter for further research. Inthe case of asinglereceiver, spatial smoothing
intime can only be used where the PN code has a Vandermonde form [189]. The other cureisto employ
sufficient data samples to de—correlate the multipaths through fading effects. Following [188], the other
two points specify the conditionson the vectors { a (1, t1) } under which the columnsof Ar arelinearly
independent.

Finally, it should be noted that for atypical PN code such as an m—sequence thecorrelation function é..(¢)
only takes non—negligible values within one chip (+¢.) of the time of arrival of the code. Hence, if the
multipaths are known to arrive within a certain range of time delays [0, t,,4.-], ONly the time samples in
that range need to be used in Ry, p — datasamples at larger delays may be removed without significant
degradation in the algorithm’s performance. Thus, the decision to employ post—correlation data in the
algorithm permits a large decrease in the computation necessary to locate multipaths.

Asasimpleexampl e of thetechnique, a sample signal has been generated for achannel consisting of four
multipath components. The PN—code used was 15 chipslong! and N = 300 snapshots were taken of the
noise—corrupted data. The array contained A/ =8 elements and the SNR of the multipathsat the output of
one set of | and Q—channel code matched filterswas 10 dB. The parameters of the multipath components
are given in table 7.3. The quoted Doppler frequency is normalised to the sampling frequency of the

Multipath Time Delay Doppler
Number | Bearing (chips) Frequency (Hz)
1 35° 2.0 0.5
2 75° 4.3 0.25
3 150° 10.25 0.673
4 120° 13.75 0.125

Table 7.3 The multipath component parameters.

receiver. Theresulting power density spectrum generated using the modified MUSI C algorithmis shown
infigure 7.6. In thiscase, the four multipath components are correctly identified using this technique.

7.8 Locating the Multipath Reflector

Until now, it has been assumed that the location of the reflector which givesrise to the delayed multipath
signal is known. However, it istheoretically possible to locate the reflector using two or more bearing

! Rectangular pulse shaping was assumed and the function § .(¢) wasthat of an mm—sequence, i.e. the peak amplitude was 15
and for al other integer delays, the amplitude was -1.
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Figure 7.6. The power density spectrum of the received signal using the MUSIC algorithmin time delay
and bearing.

measurements made from a mobile antenna array. The scenario considered in this section is shown in

figure7.7.

Reflector
(xy)

v, Mobile

Motion of Array

Figure 7.7: The scenario for locating the multipath reflector.

In this case the moving array makes two bearing measurements at locations A and B, denoted asé#4 and
@ . For convenience, it has been assumed that the motion of the array isin the direction of the mobile
user. If the distance between locations A and B, w1, is known the reflector location relative to the origin

A may be estimated from two linear equations:

z(tanfy) —y =0 and z(tanfp) — y = vi(tanfp) (7.29)

Solving for = and y gives:
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vy tanfp _ wvitanf, tandp

d y (7.20)

r= - =
tanfp — tanfy tanfp — tanf 4

Asisnormal inthe case of twolinear equations, the solutionbecomes very ill-conditionedif the gradients
of the two lines, namely tan # 4 and tan fz, become close. Asa consequence, the change in measured
bearing from location A to B must be significant for good results. For example, consider a scenario
where vy = 100 m (with an unbiased standard deviation of 1 m, due to measurement error). The change
in bearing 65 — 04 is varied from 5-40° to observe the effect on the error in position location. The
standard deviation of bearing errorsis 1° and again all independent variables are modelled as Gaussian.
The standard deviation of the position error has been estimated from 10000 Monte Carlo simulationsin
each case. Theresultsare givenintable 7.4.

(0p —04) 5¢ 10° 20° 40°
Mean v (m) 879.0 | 472.7 | 265.0 | 155.0

Std dev of position error (m) | 754.4 69.7 16.7 51
Std dev Erroras %o of mean | 85.8% | 14.7% | 6.3% | 3.3%

Table 7.4 The standard deviation of position error against the source bearings difference.

The resultsdemonstrate a drastic reductionin the percentage positioning errorsas the value of (g — 0,4)
increases. However, this may mean that the values of (64 — 6,) and (¢ — #1) will also be large,
which implies that the performance of the source location algorithm will be poor. A more fundamental
problem is deciding whether the same reflector is responsible for both reflected multipath signals. If
the shadowing changes significantly while the array moves over the distance vy, the technique will not
work.

7.9 Conclusions

Inthischapter, an a gorithmhas been devel oped to estimate the | ocati on of atransmitting mobilebased on
a2—ray multipath model. A first order Taylor series expansion has been used to estimate the performance
of the technique, with Monte-Carlo simulations used to check the results. The main difficulty with the
algorithmisthe fact that its performance depends on the separation between the two multipath bearings.
If thisis made to increase, the performance of the algorithm degrades considerably.

A technique to provide accurate estimates of the relative time delay between multipaths has also been
presented. It is based on an extension of the MUSIC agorithm into two dimensions, one of space and
one of timedelay. Onerequirement of theoriginal algorithmisthat thelocation of the multipath reflector
must be known. In order to avoid the use of terrain databases, a technique to locate the position of the
second multipath reflector has also been described. However, this technique only workswell for large
bearing separations between the two bearing measurements, which may compromise the performance
of the source location technique.
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Chapter 8
Conclusions

This thesis has been concerned with the design and operation of antenna array bearing estimation
receivers for spread spectrum signals. Algorithmsfor performing the necessary signal processing tasks
have been analysed and a technique for locating a transmitter in an urban area presented. Results for
simplecellular radio model s demonstrate that antenna array receivers and transmitters have considerable
potential for improving system capacity. Analysis of the operation of bearing estimation receivers in
multipath fading channels has al so been presented. This chapter will draw together the main conclusions
of thework and briefly discussitslimitations. Some suggestionsfor further research inthisarea are also
presented.

8.1 Summary of the Work

Thisthesis has discussed in some detail the concept of a bearing estimation antenna array processor for
direct—sequence spread spectrum modulation. This type of communication signal permits the receiver
to separate multipath components whose relative delays are larger than the chip rate of the transmitted
pseudo—oise code. Thiswork made the assumption that the carrier frequency was much larger than the
Fourier bandwidth so that any multipath channel may be modelled at an array receiver as afinite series of
vectors, one for each multipath component received. Each vector is composed of A significant versions
of the transmitted signal, arriving from different directions. Assuming that X isless than the array size
M, itis possibleto resolve the individual bearings using the MUSIC agorithm. Asthe received signal

ismade up of potentially coherent multipath components, a spatial smoothing technique may be used to
ensure the successful application of MUSIC.

The MUSIC algorithm requires an initial estimate of the number of impinging signals, atask which may
be performed by a model order estimation technique such as the minimum description length (MDL)
algorithm. This approach employs the eigenstructure of the data covariance matrix, to estimate the
number of signals present. Unfortunately, this method provides erroneous model order estimates when
the signal subspace isrank deficient, as in the case of coherent multipaths. It is possible to use spatial
smoothing techniques to restore the full rank of the signal subspace, so it is important to be able to
estimate the algorithm performance in this case. In chapter 3, results have been presented to extend the
performance analysis of Zhang et al [108] for the MDL to spatially smoothed covariance matrices, so
that the operating conditions of the algorithm may be determined.

Thespatial smoothing (SS) and forward-backward spatial smoothing (FBSS) algorithmsaretwo possible
methodsto allow MUSI C to resolve coherent multipathsignals. Sometheoretical analysisand simulation
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results have been presented to demonstrate the differences between these two agorithms. The SS
technique has been shown to be sensitive to signal bearings and separations. Employing FBSS with
the same degree of smoothing has some chance of improving the performance of MUSIC, particularly
for closely spaced sources. However, the performance improvement that may be attained depends on
the relative phases of the signals. Simulation results were also presented for two quadratic smoothing
techniques: however, both techniques appear to make little difference to the performance of MUSIC.

Thethrust of thework of chapter 5wasto analyse the performance improvement attainable by employing
antenna arrays in a simple additive white Gaussian noise (AWGN) channel model. Results for both
singlecell and cellular systems demonstrate that antenna arrays can improve the error ratio performance
for a given number of active mobiles: alternatively, the system capacity can be increased for a given
quality threshold. However, space division multiple access can only be exploited if the mobiles are
spread throughout the cell. Antennaarrays cannot separate two signals arriving from the same direction,
so there isafinite probability that an antenna array could not improve the quality of the communication
links. For AWGN point source channels, this probability may be reduced by increasing the array size.

Beforeantennaarrays may bedeployedin practical cellular systems, realistic channel modelsarerequired
to provide a sterner test of their capabilities. Chapter 6 has extended the COST-207 models, which
are often used in mobile radio simulation work, to the case of antenna array receivers. If the received
signal on the reverse link consists of a number of point source multipath signals, the antenna array
cannot provide increased diversity at the receiver. However, it is a simple matter to provide effective
performance at the mobile on the forward link by re-transmitting energy in the directions of the 2 or
3 largest received multipath components. Alternatively, if one of the received multipaths has a wide
spread in angle, the receiver may exploit the spatial diversity present. Bearing estimation approaches
were shown to degrade when the angular width of the received signal is wider than the main lobe of
the array spatial filters. Spatial smoothing techniques may be used to estimate the bearings of the
multipaths present, so that they may be coherently combined. However, this approach is much more
computationally expensive than for eigenfilter methods, despite the fact that the performance of both
techniques is about the same. Transmission techniques perform poorly for multipath components with
awide angular spread, because it is difficult to estimate the channel parameters effectively from a small
number of reverse link data snapshots. It is possible to use a form of transmission diversity to improve
the signal distribution observed at the mobile; aternatively the forward link may be observed directly
using time division duplex or transmission feedback techniques.

Finally, chapter 7 considered an a gorithm for locating the position of a mobilein an urban environment.
The technique was based on a modification of the two—ray model commonly used in HF channels and
SONAR applications. Results suggest that the algorithm can work well, although it is very sensitive
to the relative bearings of the two multipath signals. One potential problem is the accurate estimation
of the time delays between the two multipath components; a modified version of the MUSIC agorithm
operating in time and space has been proposed for this task. A second deficiency of the algorithmis
that it requires estimates of the position of the major reflector which gave rise to the second multipath
component. A technique for estimating the position of the reflector using a mobile array has been
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presented, althoughit requires two widely spaced bearing estimates of the second multipath for locating
the reflector. This requirement may mean that the source location algorithm operates poorly; it is aso
difficult to ensure that the same multipath component is being measured at both positions.

8.2 Suggestions for Further Work

The work of this thesis has been concerned with the development and analysis of a bearing estimation
receiver for spread spectrum signal s, with applicationto thelocation of amobileinan urban environment.
This has permitted only limited research into the operation of such receivers in realistic urban cellular
environments. There are a number of pointswhich have not been addressed here and which merit much

more work:

Channel modelling to determine multipath scattering widths.

Characterisation of CDMA interference observed at antenna arrays operating in urban aress.

Comparing the relative performance of antenna array receiver structures operating on the reverse
link in the presence of multipath.

Solving the forward link problem: determining the best method for using antenna arrays to
re-transmit to mobiles over multipath channels.

Implementation and operation issues.

Each of these points will now be briefly discussed, presenting suggestions for possible further research

work.

8.2.1 Channel Modelling

One of the difficultieswith modelling multipath channels for antenna arraysisthat the scattering widths
of each multipath component can only be guessed at. |n practice, the multipath scattering width will vary
widely withthe mobileto base station distance and the type of surrounding environment. However, much
more data on multipath scattering widths, which can be estimated from the average cross—correlation
between the signals received at an antenna array, would be very useful. In particular, measurements
using spread spectrum signalswould help to determine the likely scattering widths of different multipath

components.

8.2.2 Characterising CDMA Interference

Theform of asynchronous CDMA interference observed onthereverse link isanimportant problem. The
exact distributionwill depend on the array configuration and on the location and number of transmitting
mobiles. Techniques such as bearing estimation and eigenfilter methods usually perform well when the
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background noiseisspatially and temporally white Gaussian noise. |f thedistribution differssignificantly
from thisideal, other approaches may provide considerable performance improvements.

8.2.3 Antenna Arrays: The Reverse Link

The relative performance of algorithms operating on the reverse link is of tremendous practical import-
ance. There are a number of techniques available, ranging from the very simple beamspace transform-
ation techniques, to complex interference cancellation and adaptive beamforming approaches. Interfer-
ence cancellation techniques for CDMA have been the subject of considerable research in the last few
years [44, 46]. However, one of the arguments against these systems is that they are computationally
complex and often provide only a marginal gain in system performance. However, incorporating such
techniquesin antenna array receivers may be of interest for a different purpose; to cope with scenarios
where a number of mobiles arrive from similar directions. The receiver may only have to cancel inter-
ference from asmall number of co—channel mobiles, which means that the system ismorelikely to work
successfully; additionally, the computational burden is unlikely to be excessive.

Inevitably, the requirement of cellular systems operatorsisto obtain the best possible capacity improve-
ments that antenna arrays have to offer, whilst minimising the cost and computational complexity of
such systems. If it turns out that complex receiver structures do not provide large capacity increases,
practical systems may deploy simple receivers such as the beamspace transformation technique.

8.2.4 Antenna Arrays: The Forward Link

In general, the forward link of a CDMA system provides better performance than the equivalent reverse
link, because the interference observed at each mobile can controlled much more easily. However, if
large capacity gains can be obtained on the reverse link, the forward link may need to be improved
accordingly. Choosing transmission weights for an antenna array operating on the forward link of a
frequency division duplex system is difficult without direct estimation of the channel, although diversity
transmission techniques may be used to suppress the effects of fading. However, it may be that time
division duplex techniques are more suited to antenna array systems.

8.2.5 Operational issues

There are a number of practical limitations to current antenna array technology. Two major hardware
problems for antenna array operators are 1) to implement linear amplifiers in the receiver and 2) to
compensate for phase drift across the array which occurs over time. In addition, analogue to digital
converters (ADCs) can sample the received signal only to afinite precision. As technology progresses,
sampling rates and the accompanying number of quantisation levels available from ADCs are ever
increasing [191]. There is also a growing interest in so—called software radios [192], as the position of

133



the ADC may shifted ever closer theradio frequency (RF) front end. However, apractical system designer
must find the best compromise in terms of dividing the receiver tasks between specialist hardware and
genera purpose software. Perhaps, the critical decision for antenna array design is the choice of the
ADC sampling rate and number of quantisation levels to obtain the desired bit error ratios without an
excessive computational burden.
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Comments on “Generalised algorithm for DOA estimation in a passive

sonar” [1]

Section 3.4 of the paper stated that the differential co-
variance matrix technique could be used to resolve P
coherent sources, provided that array contained at least
(P+1) sensor elements. Further investigation shows that
the method is only capable of resolving two coherent
sources.

We believe the original premise in your paper was inac-
curate and it invalidates your subsequent analysis. The
mathematical reason for our new conclusion is as follows:
A simple model for the N 1 signal vector x(t) received
at time t from an N sensor array, when there are P sig-
nals impinging on it, is given by:

x(t) = A *s(t) +n(t) (1)
The N # P matrix A=[a(f;).a(f2),. ..,a(fp)] contains the
steering vectors a(f) for the P incoming signals. The
P 1 signal vector s(t)=[X;el"1f, Xpelw2t Xpelwrt]T
contains the carriers generating the P signals and X is
the amplitude of the I*" carrier. The N 1 noise vec-
tor n(t) contains the white Gaussian noise samples of
variance o2 which are added to each sensor.

In order to perform the bearing estimation algorithm
MUSIC [2], the N * N covariance matrix R of the data
is required. This is formed by taking M “snapshots” of
the data vector x(t). The i*® column and j*' row entry
of R is formed as follows:

M

Z xj(m) * x](m)

m=1

1

Ry = M (2)

Where x;(m) is the m'® sample from the i'" array sensor.
Now the matrix R may be written as follows:

R = ASA* + 071 (3)
where the P x P matrix S = E[s(t).s*(t)] and 1" is the
N N identity matrix. Normally, the P signals are un-
correlated, such that B[kt .eW1¥] = 0 for k # 1. Tn this
case, the rank of the matrix ASA* is P and the eigenvalue
decomposition of R yields P “signal” eigenvectors whose
corresponding eigenvalues are greater than ¢?. These

1 The following proof holds for any noise covariance matrix that
is of Toeplitz form.
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vectors are implicitly required by the MUSIC algorithm
to locate the bearings of the P sources.

In the case where all P signals are coherent, then
throughout all the snapshots of the array, there is a con-
stant phase relationship between each of the signals and
E[e" " .e"*] £ 0 for k # 1. This normally means that
all P signals originate from the same transmitter and are
multipaths. Therefore, the vector s(t) reduces to a single
row” and s(t) = [¢/""]. The matrix A then reduces to a
N * 1 vector given by:

A= [Xl.'d,(gl) + /,Lng.'d,(@z) + ...+ HPXP.H,(HP)] (4)

Where p, is a complex constant indicating the phase
relationship between the first signal and the a' signal
at the reference sensor. Thus, the matrix ASA* reduces
to rank 1 in accordance with the following equation [4]:

rank(ASA™) < min[rank(A), rank(S)] (5)

For a linear array, all possible steering vectors a(f) are
of a Vandermonde form:

a(0) = [14(0) £2(0) ...tN"1(0)] (6)

Where t() is an complex function of . Now it is well
known that adding two (Vandermonde) steering vectors
a(f1) and a(f), with @; # 02, cannot give another legit-
imate Vandermonde steering vector, a(fs). Hence, MU-
SIC will fail to resolve any of the K signals correctly.
The differential technique forms a modified covariance
matrix Ry according to the equation:

Ry = R —ER"E = ASA" — E(ASA™)"E (7)

Where E is given by:

0 0 0 1
0 0 1 0

E=|. ®)
1 0 0 0

Now, the rank of both ASA* and —E(ASA*)*E is 1. So,
by the well known inequality [4]:
rank(C + D) < rank(C) 4 rank(D) (9)

2The idea of the reduction in rank of the matrix S is consistent

with the proof of the Spatial Smoothing technique presented by
Shan et al in 1985 [3]



It is impossible for the rank of R; to be greater than
2. Hence when MUSIC operates on the matrix Ry, it
will only operate successfully if two coherent signals are
present. The algorithm appears to operate in a similar
fashion to forward-backward spatial smoothing [5] for 2
coherent sources. However, the latter method adds the
two matrices, rather than subtracting one from another.

In a similar way, one can show that spatial smoothing
algorithms require to average over at least P different co-
herent signal covariance matrices (each containing only
one “signal eigenvector”) to separate P coherent sources.
For spatial smoothing this means losing the effect of
at least (P-1) sensors and for forward/backward spatial
smoothing , the integer part of (P-1)/2 sensors.

In figure 1, some typical simulation results are shown,
comparing the performance of MUSIC, differential MU-
SIC and forward/backward spatial smoothing. The
graphs in figure 1 a) are for two sources at 50° and 60°.
The graphs in part b) show what happens when a third
source at 70° is added and those in ¢) display the effect
of a fourth source at 83°. These clearly show the ne-
cessity of using forward/backward spatial smoothing for
resolving multiple coherent sources.

John S. Thompson, Peter M. Grant, Bernard Mulgrew.
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Figure 1:Resolving Coherent Sources with the MUSIC
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Reply by Dr R. Rajagopal:

I agree with your observation with the following correc-
tions:

1). The difference matrix is obtained as:
D=R—-FER'E=H-FEH'E (10)
Where H is the source cross-covariance matrix.
Rank(D) < Rank(H)+ Rank(—EH"E) =2p (11)

It can be verified that rank(H) = rank(EH*E) = p where
p is the number of sources ( subject to the condition that
A consists of p linearly independent columns).

In my paper, I had given a proof in section 3.4 to show
that Rank(D) = p by using the argument of contradic-
tion. Unfortunately, I did not test that case by computer
simulation. My simulations also confirm your above res-
ults and T regret the misleading claim in my original

paper.

150



RECEIVER DIVERSITY FOR SPREAD SPECTRUM

John S. Thompson, Peter M. Grant, Bernard Mulgrew. !

Abstract One method to improve the capacity of a code division multiple access (CDMA) system isto use an array of receivers
in the base station. In order for such a system to work, it must be able to locate the directions of arrival (DOA) of al the
active users present within the cell. One of the most popular agorithms to perform this task is the MUSIC agorithm, which
provides a compromise between good resolution and computational complexity. One problem present in the MUSIC algorithm
isitsinability to cope with correlated multipath signals: the spatial smoothing technique is shown to be a simple and effective
method of overcoming this difficulty. The receiver can utilise the DOA information to exploit spatia diversity present within
the cell and some simple BER results are given to illustrate the mean improvement in performance that is obtained.

Introduction In recent years, there has been great interest in the application of spread spectrum concepts to the field of mobile
communications. Code division multiple access (CDMA) techniques have been established as a serious aternative to the time
division multiple access systems that are being used in the current generation of mobile telephones [1]. However, one of the
main limitationsto the capacity of a conventional CDMA system is the cross-correlation interference that is generated by the
different codes present on the same channel.

This paper proposes the use of array processing techniques in order to ameliorate the effect of this type of interference and
increase the capacity of the system. If the number of receivers in the base station of a mobile telephone cell is increased, the
base station is able to employ electronic steering to receive signas from a desired direction and to reduce interference from
other users who transmit from different locations. A block diagram of the base station is shown infigure 1.

RECEIVERS

@ ESTIMATE
NO OF
FORM DOA DATA
COVARIANCE ALGORITHM OUTPUT
MATRIX EG.Music | (FILTER

o{  J—

Figure 1: A cellular antenna-array base station.

There are two main components to this system: 1) to determine the directions of arrival (DOA) of all the desired users, 2) to
employ aspatial filter to enhance the signal-to-noiseratio (SNR) of each user. This paper will look at each aspect of the system
inturn.

DOA Estimation There are a large number of agorithms documented in the literature that are capable of determining the
DOA of narrowband signals which are centred about a carrier frequency f [2]. It may seem counter-intuitive to consider a
spread-spectrum system as a narrow-band signal, but in many proposed CDMA systems the data rates are low, which means
that the ratio of the carrier frequency to the spread-spectrum baseband bandwidth is high.

The receivers sample the incoming signals simultaneously and pass them through the code-correlator for the desired code, so
that for a code of length L, L time-samples are produced for each symbol that is received. |f one considers a single CDMA
signa impinging on the antenna array, the narrowband assumption means the output of each code-correlator will have the same
amplitude, but a different phase according to the direction of arrival.

1 Signals and Systems Group, Department of Electrical Engineering, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL.
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In order to determine the direction of arrival successfully, the phase rotations across the whole array must be known for all
possible bearings #. Assume that the array contains N receivers spaced by half the carrier wavelength A inaline - auniform
linear array (ULA). If the phase at sensor oneis set to zero as areference, the phase rotation along the ULA may be represented
by a N row x 1 column vector ¢(¢). For aULA, ¢ isgiven by:

q(a) _ [17 Cjﬁcos(é')7 B .’Cj(JV—l)W cos(G)]T (1)

In arealistic multipath environment the base station can resolve up to  different multipath signalsin time, each of which are
considered separately by the DOA algorithm. One set of samples {y(n,{,t)} received from the code-correlators is termed a
snapshot of the array, where n denotes the n** receiver, I the I** time sample and ¢ the absolute time. It is assumed that the ("

time sample contains M multipaths. The snapshots of the array can be placed ina V' x 1 column vector y({, ), which can be
written as:

y(, 1) = Q)s(l, ) + n(t) 2

Where s(,t) isan N x 1 column vector containing the A/ signals measured at the reference sensor and Q({) isan N row x M
column matrix given by:

Q) = [a(61), 4(01), - .., a(0nr)] (©)

Whered,, isthebearing of the m!* signal. The N x 1 vector n(t) containsthe Gaussian white noise of variance o2 that corrupts
the snapshot data. In order to perform bearing estimation, the data covariance matrix R2({) must be formed from the snapshots.
The matrix equation for R(!) isgiven by:

1 K
R() = I—Z(zrk (1, 1) 4

where K denotes the number of snapshots used to form R, ¢, denotes the time at which the £** snapshot was taken and z#
denates the complex conjugate transpose operation. Once the covariance matrix has been formed, it can be passed to a DOA
agorithm. One of the most popular of theseis the multiplesignal classification (MUSIC) [3].

The MUSIC Algorithm If an eigenval ue decomposition (EV D) of thematrix R(!) isperformed, the eigenval uesand eigenvectors
fall into two classes. The largest M eigenvalues and vectors correspond to the A signals and are collectively called the signal
subspace. The eigenvectors span the columns of the matrix Q(I). The other N — M eigenvectors form the noise subspace
and their eigenvalues are approximately equal to . Their only property of interest is that they are orthogonal to the signal
eigenvectors and the steering vectors in Q(1). MUSIC exploits this property to determine which bearings have the smallest
projection on the noise subspace, indicating the presence of a desired signal. To generate the MUSIC power spectrum, the
following equation is used:

1
O W)W DH 4(0)

where W (d) isan N — M x N matrix containingthe N — M noise eigenvectors. Beforethe MUSIC a gorithm can be used, the
number of signals present must be estimated. Thisis usually done with a model order algorithm [2]. A typical power spectrum
generated by the MUSIC agorithm is shown in figure 2. There are two sources of power 20dB at bearings 85° and 110° - the
desired bearings are shown as vertical dotted lines, a convention used throughout this paper.

Pyus(l,0) = (5)

Coherent Multipath Sources The MUSIC agorithm performs well when resolving signals that are uncorrelated or partially-
correlated with each other. Thisusually impliesthat the signalsoriginatefrom different transmitters. However, in the case where
the signal's arise due to multipath propagation from one transmitter, the MUSIC algorithm fails. Thisis because the multipaths
are completely correlated and the EVD of the covariance matrix yields only one signal eigenvalue for all the multipaths.

The simplest method found to date to overcome this problem is spatial smoothing [4], but the original method only works in
the case of the ULA. This technique forms covariance matrices from subsets of the ULA and averages these matrices to form
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Figure 2: A typical power spectrum generated by the MUSIC agorithm.

a smaller matrix for the MUSIC agorithm. The agorithm forms submatrices by moving in one direction along the array to
form sub-matrices - forward only spatial smoothing (FOSS). Thistechnique clearly trades the size of the covariance matrix, and
therefore the resolution of the MUSIC algorithm, for the ability to resolve coherent sources. In order to locate the bearings of
M sources, aULA containing 2 M receivers is required.

The situation can be improved by forward-backward spatial smoothing (FBSS) [5], which forms matrices by working both
forward and backward along the array.This technique means that only (31 /2) sensors are required to resolve M coherent
signals. However, there is a tradeoff: thisimprovement is obtained at a cost of reduced robustness in the MUSIC algorithm.
The performance of the FBSS technique is known to be sensitive to the rel ative phases of the incoming signals - in some cases
it destroys signal correlation completely, in othersit can fail completely.

The performance of the two techniques is demonstrated in two graphs shown in figure 3. The ULA contains 8 receivers and
for the left hand-graph, it is trying to resolve two coherent sources at bearings of 100° and 115°, both at an SNR of 20dB. The
conventional MUSIC agorithm fails, but FOSS and FBSS both successfully resolve the two signals. For the right hand graph,
another two sources at 90° and 125° have been added. In this case, FBSS is the only algorithm to find the four sources, while
FOSSisonly able clearly show two signals.
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Figure 3: A comparison of smoothing techniques with coherent signals present

Spatial Filtering Itisawell known result of filter theory that the optimum detector of any signal corrupted by Gaussian white
noise is a matched-filter which correlates the input with the desired signal [6]. In the case of a single DS-SS signal which is
detected in the /** time sample and which has bearing 4, the optimum filter w(!) for the data y(1, t) is simply w(l) = ¢(8).
Once w(!) has been determined, it may be used to generate a complex-valued data sequence d(/, ) which is then utilised to
make decisions on the data. The value d(/, t) is generated by the equation:
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d(l, 1) = w'y(l, 1) O

Inamore general case, where several multipathsare present, the data {d(!, ¢)} is passed to a RAKE filter, which combines them
before making a decision.

In[7], thereisafull description of some simulationwork that was performed to determine the bit error rate (BER) of an antenna
array with different numbers of receivers. The purpose of the simulations was to determine for a simple case the increase in
capacity that was provided by an antenna array.

The simulation was performed for a CDMA system which employed a set of 33 length-31 Gold codes, so that the maximum
capacity was 33 users. The simulation assumed that the bearing of the desired user was known and that each mobile had one
line-of-sight path to the base station. Each other mobile was given a random bearing and the simulation was then performed
for the reverse-path (i.e. from the mobiles to the base station). The results should also hold for the forward-path, from the base
station to the mobiles, if the base station transmitter is an antenna array as well. The modulation scheme used was differential
phase-shift keying (DPSK).

The table below displays the mean simulated BER for different sizes of the base station array at full capacity, i.e. 33 users.

Number of Array BER
Receivers
1 0.124
2 1.16x102
4 6.55x107*
8 2.77x107°

Itis generally assumed that a BER of 10~ is acceptable for a vocoder speech encoding system and this s attained on average
by a base station with four receivers. It should be pointed out, however, that that spatial filters are only useful when the desired
signal has a different bearing to that of the interferers. In some circumstances this may not be true and the system performance
will degrade, but the probability of this occurring may be reduced by increasing the array size.

Conclusion This paper has discussed the advantages of antenna arrays for use in the base stations of direct-sequence spread-
spectrum CDMA systems. Bearing estimation techniquesdetermine the angle of arrival of asource, which allowsthereceiver to
reduce the effect of directional interference from other users. The BER results demonstrate the mean performance improvement
due to these algorithms, which should increase the capacity of CDMA systems.
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Analysis of Diversity Reception Improvementsin
Spread Spectrum Recelvers.

John S. Thompson, Bernard Mulgrew and
Peter M. Grant
Department of Electrical Engineering,
The University of Edinburgh,
Edinburgh,
Scotland. EH9 3JL

Abstract — This paper describes how bearing estimation techniques
may be appliedto adirect sequencespread spectrum (DS-SS) system
in order to provide an effective spatial diversity receiver. Thisstruc-
ture is proposed as a method of increasing the capacity of acellular
codedivision multiple access(CDMA) system.

Firstly, the subject of an optimum diversity system using bearing
estimation isaddressed. It isdemonstrated that a V-element antenna
diversity systemimprovesthe mean signd-to-noiseratioforaCDMA
systemin proportionto /V, which can considerably improve bit error
rate (BER) performance.

The operation of the receiver in a cellular telephone network is
discussed and the improvement in user capacity provided by such a
system with perfect power control is shown.

INTRODUCTION

The idea of a spread-spectrum sensor array was first proposed in
the 1970s by Compton[1]. Recently, as researchers have strived to
improve the performance of spread-spectrum CDMA systems, more
work has been carried out in this area [2, 3, 4]. This companion
paper to [2] uses the bearing estimation techniques discussed there
to realise a novel spread-spectrum diversity receiver. The basic
results of optimum diversity combination will be revised first.

Inthe 1950s, researcherssuch asK ahn and Brennan [5] addressedthe
problem of combining aset of N noise-corrupted signals{sx(t)}to
maximisethe signal-to-noiseratio (SNR). If the noise on each signal
is white, Gaussian and of constant variance ¢ 2, then the optimum
output signal So () is given by:

N
Salt) = 1 3 sa(0k: ®

where k,, is acomplex constant proportional to the complex signal

s, () and k* denotesthe complex conjugate operation. Thisequation
givesrisetothewell knownresultthat if N signalsof equal amplitude
arecombined, the SNR of theresultingsignal is101og N (dB) greater
than that of eachindividua signal.

If we now apply this to the case of a single source at bearing ¢
impinging onan N - element uniform linear array (ULA), then from
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[2], the N row x 1 column output vector z(¢) fromthearray isgiven
by:

(1) = ¢(0)s(t) + n(t) @
wheres(t) representsthesignal seenat ULA sensor 1, n(t) isaN x1
vector containing samplesof acomplex valued white Gaussiannoise
process of variance 0% and ¢(0) isthe steering vector [2], which is
given by:

q(ﬂ) _ [1, e]mosw)’ o 8‘7(N—1)7rcos(9)]’l' )

where 7' denotes the vector transpose operation. From the above,
the optimum output signal = (z) is given by:

zo(t) = ¢7 (0)z(?) @

Where H denotesthe complex conjugatevector transpose operation.
Equation (4) leadsto the receiver structure that is shownin figure 1.

Bearing Estimation

r Algorithm, eg MUSIC T

Sensors
O—
De-modul-
ation and Diversity Output
: PN-code Combiner
Correlation
O—

Figure 1. The Adaptive Receiver Structure.

This “data independent” combiner or beamformer [6] will be used
throughout this paper. The data from the ULA sensors is used
to perform bearing estimation on the incoming signals, so that the
weights of the combiner can be set to enhancethe desired signals at
the outpuit.

A spread spectrum receiver is capable of resolving I separate multi-
pathreturnsor time samplesfor each symbol, where L is the pseudo-
noise (PN) code length. Therefore, the adaptive structure proposed
above must be repeated for each significant multipath component, as
shown in figure 2. The outputs will be a set of signals of different
SNRsthat may be combined as shown using an adaptive RAKE filter
[7]. The receiver is therefore operating in two dimensions, onein
spaceand onein time.
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DIVERSITY RECEIVER SIMULATION

In order to analyse the effect of using a diversity receiver in a code
division multiple access (CDMA) system, simulation work was un-
dertaken, based on the following assumptions:

a) Length 31 Gold codes were used to model multiple-accessinter-
ference.

b) Each user had random bearing chosenfrom auniform deviate. The
receiver was a uniform linear array, which can only detect signals
unambiguously from one side of the array. The range of bearings
wastherefore restricted to [07,180°], with 90° representing asignal
arriving perpendicular to the linear array.

c) Perfect power control wasin operation.

d) Rectangular pulse shaping was assumed, so that the receiver PN-
code correlation operation isalinear process.

€) No assumptionwas made about thetiming of codes: each codehas
arandom time of arrival chosen from a uniform probability density
function (PDF) and a random phase drawn from a uniform deviate
intherange[0,27].

InaCDMA system, both the forward path (from the main transmitter
to each mobile) and the reverse path (from each mobile to the main
receiver) are of interest. To start with, the latter will be analysed.

The Reverse Path.

Theaim of this sectionisto derivean equation for the averagesignal -
to-interference ratio (S/1) generated when a set number of users, M,
are present. Gilhousen et a [8] state that the average interference
generated for the reverse path is given by the equation:

-~ L
NUEDEICID)

where s is the signal power of each CDMA user. Note that this
equation defines /1 to include the in-phase and quadrature noise

S/1 (5

components, with respect to the desired signal, so that the correlator
receiver suppressesthe power of all other usersby afactor of (1/L).
In the simulations, it was found that the average power suppression
was slightly better than this.

To see why this is true, the PDF of the amplitude of Gold code
cross-correlation interference must be considered. Gold codes are
block codes[9], because(L + 2) codesin total are produced by the
modulo-2 addition of two preferentially selected PN-codesof length
L. Therefore, one may determine the possible cross-correlation
levels by determining the weight or sum of each code.

The preferential polymonialsoctal 51 and 73 were used to generate
33length 31 Gold codes. Thedistribution of weightsfor thesecodes,
assuming random +1 or -1 data, is asfollows:

Amplitude | No of Occurrences
(out of 33)
+1 17
+7 10
+9 6

The auto-correlation peak of each codeis +31. The assumption of
random times of arrival meansthat thereis likely to be anon-integer
shift of chips between two Gold codes. As aresult, the interference
between each user will lie on alinear transition between two of the
statesin thetable above, anywhereintherange[-9,9]. TheGold code
interference may be viewed as the output of afinite state machine
and this representation is shownin figure 3.

16/32 9/32
10/32
17 10
+1)= = +£7)=
Pen=2 P72
17/32
17/32 6/32 6/32 10/32
6
9==2
P92

5/32

Figure 3: The Finite State Machine Interpretation of Gold
Code Interference.

Theboxes show the probabilities of the interference being at agiven
amplitudefor asingleinterferer. Thelinesthen show the conditional
probabilities for the amplitude changing from one state to another.
For example, the probability of theinterferencebeinginthetransition
from+9to +7is:

6 10 _—

P(£9 — 47) = 3 %3 = 0.05682(4 sigfig.) (6)
Thistable may be used to determinethe probability density function
for the Gold code interference due to a single user, which is shown
infigure4.

Tocal culatethe averageinterferencepower P, dueto oneinterfering
source, the following integration is performed:

P, = / m2p(1)(lm = 19.75(4s.f.) @)

—9
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PDF for the Cross-correlation Function of Length 31 Gold Codes

PDF —

Probability p(x)
°
2

-4 -2 0 2
Interference Level x

Figure 4: The PDF of Gold Code Cross-correlation Interfer-
ence.

This clearly does not cover the situation where a data transition
occurs on an interferer's signal during the correlation process. To
include this eventuality, one must analyse the aperiodic correlation
function of the Gold codesin a similar manner to the above. There
are many more interference levels possible, because the three-level
cross-correlation property no longer holds, and the resulting PDF
has non-zero valuesin the range[-15,15]. It isshownin figure5.

PDF of Go\d Code Apenodm cross correlalmn Imer(erence

POF —

Probability p(x)

5 0 5
Interference level x

Figure5: The PDF of Gold Code A periodic Cross-correlation
Interference.

The mean power P> in this case becomes 21.19 (4 sf.). Assuming
that datatransitions occur with probability 0.5, the two power values
may be averaged to give P = 20.47 (4 sf.), which represents the
mean interference power due to one user.

In the simulation, the desired user alwaysused acode of weight +1,
which meant that there were only 32 possible interfering codes, 16
of whom had weight 1. This changed the value of P dlightly to
20.67 (4 sf.).

Normalising P to the power output from the auto-correlation peak,
whichis L? = 961, gives the interference power P, = 0.02150 = -
16.67dB. Thiscanbeincorporatedinto theeguation for thesimulated
S/1, giving:

L

RN

®

Wherek, = LP,.

The next issue to be discussed is the power suppression of other
CDMA usershy alinear array. It has already been pointed out that

an N antennadiversity system suppresseswhite Gaussian noise by
afactor N. Isthe sametrue of other CDMA users?

The effect of one unwanted CDMA user on the desired signal may
be specified by the vector cq(¢), where ¢ is the user’s bearing (in
radians) and ¢ is the complex cross-correlation output from the refer-
encesensor. In order to check the mean power suppression, £(NV),
thefollowing integral must be performed:

2 (0)q(#)*de ©

Where# isthe desired signal bearing and ¢(#) is definedin equation
(3). If gissetto g(i.e.QOO) theng(Z) =[11... 1]7. This makes
the calculation simpler and (QH(g)g(q/))) may bewritten as:

N

(QH(g)Q(qj)) _ Z gl(n—1)mcos(¢) (10)

n=1

Combining equations (9) and (10) gives the following equation:

PN = /(

- / (N + Z(N T e PN

n=1

» N—1
/ Z N —n)e=mmeos(dgg  (11)

9)a(6))(g" (0)a(#))" do

Now, Bessel functions of the first kind J, (k) are defined as:

2w
Bk = o [ et g 12)

27

In addition 7% ©°3(#) = I%c03(27=9) ' gp thisintegral may be per-
formed over theinterval [0,x] rather than[0,27]. Thereforeequation
(11) becomes:

N-1
PN)=N+>_ 2N —n)Js(nr) 13)

n=1

Thisresult holds for any choice of 6 because the magnitude of each
componentin ¢(#) isaways1. Now setk; = P.(N). If equation
(8) is now applied to an N—-antennareceiver, the expression for S/1
becomes:

1 LN? 14
S/ =

/ klkg(ﬂ/[ — 1) =+ (17\[0'2/5) ( )
For the simulation, the noise power % was set to be 2 times that

of the desired signal. The bearing of the desired signal Wasset tobe
90°. Theoretical and simulation results are shown in figure 6. The
former are plotted as lines, whereas the latter are shown as points.
Clearly, equation (14) provides agood fit to the simulated data.
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Diversity Interference Suppression with Length 31 Gold Codes

Theory:  Simul
N=1 - N=L o
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Figure 6: Theoretical and simulated results for Interferer
Power Suppression in an N—sensor element receiver.

Onemay proceed from equation (14) in an attempt to predict bit error
rates (BER) for the system. This simulation used differential phase
shift keying (DPSK) modulation, a scheme which is often used to
alow DS-SS receivers to cope with Doppler-shifted fading signals.
Theequationfor the BER for aDPSK receiver, receiving astationary
signal corrupted by Gaussian white noiseis given by[9]:

BER = %exp(—S/N) (15)

Where the S/N is the signal-to-noise ratio of the incoming signal.
For the purposes of calculating the BER, it has been assumed that
the Gold codeinterference in each case has a Gaussian distribution,
so that equation (15) holds.

The graph in figure 7 shows a comparison between predicted and
simulated BERs. Again, the predicted results are plotted as lines,
while the simulation results are shown as points.

0

Theory: Simul

N=1 ----  N=l e

N=2 --- N=2

N=4 N=4 o "
-1 N=8 x oo
2 »

Log (BER)

10 15 20 25 30
Number of Interferers

Figure7: Theoretical and simulated resultsfor Bit Error Rates
in N—sensor element receivers.

ANALYSIS OF RESULTS

Thesimulated BER curves show aconsiderableimprovement in per-
formance asthe the number of receiversin the base station increases.
If the CDMA system usesavocoder for human speechthis normally
entails a BER of 10~ or better [8] - this is shown as a horizontal

dotted line in figure 7. From the above results, this criterion is ful-
filled on average, even at 100% loading, by the time the receiver has
four sensor elements.

For N = 1, the Gold codeinterference is very closeto being Gaus-
sian, as the simulated and theoretical results match well. However,
for N > 1, theassumptionisno longer true and the curvesno longer
match. Asthe number of users M increases, the simulation results
convergetowards the predicted BER curve, as predicted by the cen-
tral limit theorem progressively introducing Gaussian statistics. The
non-Gaussian nature of the interference statistics for diversity sys-
tems of order 2 or greater may be explained by calculating the PDF
of the Gold code interference produced by a 2 element array.

The equation for the magnitude response of a 2-element array to an
interferer at bearing ¢ is given by:

G(0) =4/ 15 + %COS(W cos(9)) (16)

If onerestricts the possiblevaluesof 6 to [0, 5] then G(6) isstrictly
increasing and is one-to-one and onto the range [0, 1]. Under these
conditionsthe function G isinvertible, with inverse G~1.

Thecumulativedistribution function (CDF) of thevariable , defined
as{z:z=G(9),0<6 < I}, isgivenby:

CDF(%0) = p(z < mo) = ;G_l(:ﬂo) 7

Differentiating the CDF function gives the probability density func-
tion PD F(xo), which is defined as im ax—o p(zo < & < zo +
Agz). For thefunction G, it is given by:

PDF(z0) = 8%[1 — (222 - 1)%]7% x
(0<wo < 1) (18)

The PDF function is shown in figure 8.

PDF for the Interference from a 2-Antenna Array.

PDF —

Probability p(x)
e

0
0 01 02 03 04 05 06 07 08 09 1
Interference Level x

Figure 8: The PDF of interference from a 2—element antenna
array.

This function evaluates to infinity at both =0 and z=1. The area
under the curve approaching =z =1isgreater than for thecorresponding
Gaussian distribution of identical variance. This part of the curveis
responsiblefor generating more errors than expected when N > 1.
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When N > 2, the magnitude function G contains more than one
sinusoidal function of # and becomesdifficult to invert analytically.
Each time the gradient of G(8) is zero, then there is an infinite
spikein the PDF. Asthevalueof N increases, the PDF will contain
more infinite spikes. Thiswill make the statistics of the Gold code
interference less Gaussian. The magnitude response G/(4) for the
array sizes N=2,4 and 8 are shown in figure 9. In each case the
desired signal isat 90°.

The Magnitude Response of a ULA.

Power (dB)
&
]

0 2 40 60 80 100 120 140 160 180
Bearing

Figure 9: The Magnitude Response of ULAs with 2,4 and 8
sensor elements.

The Forward Path.

Theforward path, from the main transmitter to each mobile receiver,
may be subjected to asimilar analysis. The same set of weightsmay
be applied to the transmitter asto the receiver, so asto transmit most
of the power in the line-of-sight path to the desired receiver.

It is also assumed that each CDMA signal is transmitted with equal
power, so that forward path conditions are identical to those of the
reverse path. The equation for the signal-to-interference ratio (S/1)
is therefore identical to equation (15), except that the signal power,
s, will vary with the distance, r, from the main transmitter.

Threeimportant points should be stated concerning these results.

1) Theseresults are mean results, which assume a uniform distribu-
tion of users. In practice, the system performance will depend on
the geography of the mobile cell. Thediversity antennareceiver can
only exploit spatial diversity if the transmitters are spaced apart. If
two transmittersimpinge on the receiver from the samebearing, then
increasing the number of sensor elements will not reduce the inter-
ference. However, if the number of receiversis increased, the width
of themain lobeisreduced, whichwill reduce the outage probability
of the system in turn.

2) It hasbeen assumedthat each transmitter had asingleline-of-sight
path to the receiver. In practice, there may be several multipaths
received from each source. This increases the complexity of the
signal processing and may reduce the system gain.

3) The combiner used in the above analysis is of a ssimple form,
which alows general results to be obtained. It is not, however, sta-
tistically optimal in the senseof maximising theoutput S/7. Several
beamformers exist to reducethe effect of directional (CDMA) inter-
ference and fulfil this criterion[6]. These techniques explicitly use
the covariancematrix R (definedin [2]) to calculate the beamformer
weights. The effectiveness of these techniquesis dependent on the
number of array sensorsand on the amplitude of the interference.

CONCLUSION

This paper proposed a novel diversity receiver structure for use in
direct-sequence spread-spectrum CDMA systems. Bearing estima-
tion techniques determine the angle of arrival of a source, which
alowsthe receiver to ameliorate interference.

It has shown that a diversity receiver can offer a considerable im-
provement in bit error rate performance on average. This permits a
large increasein the capacity of the CDMA system.
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Abstract — In this paper, the novel use of bearing estima-
tion techniques to determine the direction of arrival of direct
sequence spread spectrum signals is described. Firstly, the
basic ideas behind bearing estimation are discussed and it is
shown how these may be best applied to a spread spectrum
receiver array. Then, some simple agorithms are compared
anditisshownthat themultiplesignal classification algorithm
(MUSIC) provides good angular resolution for a fixed com-
putational overhead. One major shortcoming of the MUSIC
algorithm is that it fails in the presence of coherent spread
spectrum multipathreturns. Spatial smoothing algorithmsare
shown to be a solution to this problem and the behaviour of
such techniques is discussed.

INTRODUCTION

The problem that motivatesthe use of bearing estimation tech-
niquesissimply put. An array of omnidirectional sensors, set
up in aknown configuration, receives aset of V signalsfrom
unknown directions (61, 6, . . ., ) relative to a fixed refer-
enceaxis. How arethe unknown parametersto be determined?

A very large number of algorithmsto solve the problem have
been documented in theliterature[1]. Among the most popu-
lar aretheminimum variancetechnique, theMUSIC algorithm
[2] and maximum likelihood techniques [3]. The following
set of assumptions are usually included in such algorithms:

a) All incoming signals are in the far field with respect to the
receiver, so that they are al plane waves.

b) Thedatafrom each array element isassumed to becorrupted
by Gaussian white noise of zero mean and variance o2.

¢) The receiver for each sensor is non-coherent and demodu-
lates the signal in both the | and Q channels. One clock
providesthetimingfor all sensors, so that datafromthewhole
array is sampled synchronously.

d)The received signals al have a carrier frequency centred
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about frequency f Hz and are narrowband in nature, so that
thedatabandwidth B Hz << f Hz. The number of impinging
signals, M, is assumed to be less than the number of array
elements, N.

A simple type of receiver array is the uniform linear array
(ULA), showninfigure 1. Each sensor isspaced by adistance
% m where A m is the wavelength of the carrier. The diagram
also defines the broadside and endfire regions of aULA.

There aretwo main limitationsto the ULA - thistype of array
cannot distinguish signals coming from opposite sides of the
array. Secondly, theULA suffersfrom“endfire effects’ - large
errorsoccur in measuring the bearings of signalsarrivingfrom
these directions. Clearly, the ULA receiver must be designed
with these pointsin mind.

Bearing = 90
Broadside|
A2
Endfire Endfire
= o) o —_
Bearing = 180 l i l i Bearing= 9
x(1,t) x(2,t) oo XN
Array Sensors

Figure 1: A Typical Uniform Linear Array.

Consider a narrowband signal at baseband, s(¢). Itis modu-
lated up to a carrier of angular frequency w = 27 f, so that
the transmitted signal tz(t) is:

ta(t) = s(t)el 1)

This signal impinges on a ULA at bearing # as shown in
figure1. Consider thetwo signalsr(1,¢) and (2, t) received
at sensors 1 and 2. These are given by the expressions:



r(1,1) = s(1)e )

and:

7(2,1) = 5(t — tg)e " 3

Where t; = (Acosf)/2c and c is the speed of light. »(1,¢)
and r(2,t) are demodulated and sampled to produce the sig-
nals z(1,¢) and z(2,t), so that the ¢/** term disappears. As-
sumption d) means that one may write that s(t) =~ s(t — tq).
Now the only difference between signalsz(1,¢) and z(2,¢) is
aphase rotationterm, e/«

In order to perform bearing estimation successfully, the phase
rotationsacrossthewholearray must beknownfor all possible
bearings §. If the phase at sensor one is set to zero as a
reference, the phase rotation can be represented by a N row
x 1 column vector ¢(@). For aULA, ¢ isgiven by:

g(g) — [17 ej’rrCOS(ﬁ)‘ B '7ej(1V'—1)7rcos(€)}T (4)

One set of samples {z(n, t)} received fromthe array elements
istermed a snapshot of the array. An equation can be written
for the vector z(¢) which contains the snapshot sampled at
timet:

z(t) = [¢(1,1),2(2,t),...,z(N, L)}T 5)
where 7' denotes the vector transpose operation. If a ULA

receives signals from M sources {s,,(t)} at bearings {6, },
then the vector z(t) may be written as:

z(t) = Qs(t) + n(t) (6)

where () isan N row x M column matrix given by:

Q = [g(01), 9(02), - .., q(Onr)] @]

and s(t) isgiven by:

5(t) = [s1(), s2(t), - .. s ()] ®)
The N x 1 vector n(¢) contains the Gaussian white noise
of variance o2 that corrupts the snapshot data. In order to
perform bearing estimation, the first requirement is to form
the data covariance matrix R from the snapshots. The matrix
equation for R isgiven by:

1E "
R= 2 a(ty) 2 (1) ©)

where K denotes the number of snapshotsused toform R, ¢,
denotes the time at which the k** snapshot was taken and z#
denotes the complex conjugate transpose operation.

SPREAD SPECTRUM BEARING ESTIMATION

Direct-sequence spread spectrum systems modulate the nar-
rowband data with a pseudo-noise (PN) code of length L,
before upconversion to a carrier. If the data rate is f; Hz
then the spread-spectrum chip rate f. = f4 x L Hz. Bearing
estimation algorithms may be directly applied to the output of
a spread-spectrum receiver, provided that assumptions a)-d)
are complied with.

The most problematic assumption is d), as the spread-
spectrum signal should not be changing very much across
the array, when it is sampled. The correlation peaks at the
output of the DS-SS code detectors should be aligned in time,
with only the phase changing. Clearly, if the receiver signals
at opposite ends of the array are mis-aligned by one chip, the
agorithmswill fail.

The worst case occurs when the signal approaches in the
endfire region. In this case there is a time shift in the signal
between array sensors of 2= = 2= seconds. Clearly, the time
shift across the whole array ¢, should represent only a small
fraction of one chip period ¢, to keep the correlation pesks

aigned, so:

tsh N -1 1

tan y (N =Df.
t. ~ 2f /5.~ 2f

The point at which the bearing estimation algorithmis applied
must also be selected. It is possible to apply the algorithms
beforethe DS-SS code detector or after it. However, the latter
optionis much preferable for the following reasons.

<<1l (10

1) The transmitted DS-SS codes are normally received with a
low power, which may beequal to or less than the noise power.
If bearing estimation is applied directly to the received signal,
the results will be poor unless the array sizeislarge and alot
of datais used.

2) Consider a code division multiple access (CDMA) system
using power control. At the code detector input, there are a
lot of different codes present at roughly the same power and
there is no means of discriminating the desired user. Bearing
estimation a gorithmscan usually only resolveasmany signals
as there are array elements, so a very large array would be
needed.

3) Inmost realistic scenarios, multipath signal returnswill be
present. These increase the number of signals at the input of
the code correlator that have to be resolved.

Performing bearing estimation after the code correlator allows
the system to take advantage of the processing gain of the
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system in order to reduce the variance of the bearing estimate,
suppress undesired CDMA codes and to separate multipath
returnsintime.

Spread-spectrum diversity over a multipath channel provides
theability toresolve L separate returnsfor each symbol, where
L isthe PN code length. This means that narrowband bear-
ing estimation may be performed for each separate multipath
return or time sample. The receiver now uses a maximum
of . covariance matrices, which are denoted R(d) - where d
indicates the time sample of interest.

BEARING ESTIMATION ALGORITHMS

This section introduces the ideas behind some of the better
known bearing estimation algorithms. The search for signals
coming from different bearings is analogous to finding the
major frequency components in a given signa. Hence, it is
not surprising to find that bearing estimation algorithms have
alotin common with spectral estimation techniques.

a)Conventional Beamforming (CBF)

Thistechnique[4] operatesin asimilar manner to the discrete
Fourier transform (DFT) with the output power spectrum for
the d*» time sample at bearing 0, Pcpr(d, 0), produced by
the equation:

Pepr(d,0) = QH(G)R(d)g(ﬂ) (11)

The same techniques can be applied to conventional beam-
forming as to the DFT, such as windowing the data, zero
padding, etc. However, as with the DFT, the CBF agorithm
provides a poor trade-off between the number of sensors and
resolution, so that a number of better techniques have been
devised.

b)Minimum Variance Technique (MV)

The problem with CBF techniques arises from beam pattern
constraints: there is a trade-off between the sidelobe level
and the width of the main beam. In this technique [1], the
best possible beam pattern is chosen mathematically. It turns
out that the minimum variance beam pattern involves the in-
verse of the covariance matrix. Theresulting power spectrum,
Pyv (d, 0) isgiven by the equation:

1

Prv(0) = gy Ry 1q0)

(12)

where R(d)~! denotes the matrix inverse of R(d).

Calculating the inverse of the covariance data matrix makes
this technique more computationally intensive than the CBF
technique. However the MV estimate of the spatial power
spectrum has a smaller resolution than that of the CBF tech-
nique.

¢)Multiple Sgnal Classification (MUSIC)
If one substitutes equation (6) into equation (9) and applies
the expectation operator, the following expression isobtained:

E[R(d)] = Rau(d) = Q(d).5(d).Q(d) + .1 (13)

The matrix S(d) isan M x M diagonal matrix, whose m!"
diagonal entry relatesto the power inthem** impinging signal
inthe ¢'* time sample. The matrix I isthe N x N identity
matrix.

Therefore, if the eigenval ue decomposition of thematrix R2(d)
is performed, M signal eigenvectors will be obtained, which
span the M columns of the matrix Q(d). The corresponding
eigenvalueswill similarly be related to the non-zero entriesin
the matrix S(d).

Theother N — M eigenvectors are noise eigenvectors whose
eigenvalues are approximately equal to 2. Their only prop-
erty of interest is that they are orthogonal to the signal eigen-
vectors and the steering vectorsin Q(d). MUSIC [2] exploits
this property to determine which bearings have the smallest
projection on the noise eigenvectors, indicating the presence
of asignal.

To generate the MUSI C power spectrum, the following equa-
tionis used:

1
(0).W(d). W (d)* .q(0)

Puos(d )= — (14)

where W (d) isan N x N — M matrix containingthe N — M
noise eigenvectors. The eigenvalue decomposition of R(d)
is more computationally intensive than either the CBF or the
minimum variance techniques, but the quality of the power
spectrum isimproved.

One problem withthe MUSIC algorithmisthat the number of
signals present must be estimated before the power spectrum
is calculated. This may be done by an examination of the
eigenvalues, or by the use of amodel order algorithm [1].

For uncorrelated signals, large array sizes and a large num-
ber of data snapshots, the MUSIC agorithm is known to
approach theoretical lower bounds on parameter estimation

performance[5].

d)Maximum Likelihood Techniques

Maximum likelihood statistical methods|[1, 3] providethe op-
timum estimate of spatial power spectrum. This is achieved
for N incoming signals, by performing an N-dimensional
search over al the possible values of the bearing signals, to
find the best fit to the given covariance matrix.

Not surprisingly this technique is much more computation-
aly intensive than any of the previous algorithms and is not
considered further in this paper.
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€)Comparison of Algorithms

Infigure2, the CBF, minimum varianceand MUSI C al gorithm
techniques are compared. All three are attempting to resolve
two separate, statistically independent signals. Both signals
have a signal-to-noise ratio (SNR) of 20dB, with one at a
bearing of 35° and the other at 45° - the desired bearings are
shown as vertical lines. All three are using 50 data snapshots
from a8 sensor linear array. Ascan be seen, only the MUSIC
algorithm successfully resolves the signals under the given
conditions.

Power Density (dB)

60 80 100 120 140 160 180
Bearing (degrees)

Figure2: A comparison of bearing estimation algorithmswith
two signal sources present.

COHERENT DS-SS SOURCES

In order to obtain the best performance the MUSIC algorithm
requires the correlation factor between signals C' to fulfil the
following constraint [5]:

Efsi(1).5(0)]
(021 B L5 (D7)

—0if i#j (15

If the signals originate from different transmitters, this cri-
terion will normally be approximately true. As the value of
C' increases from the ideal value of zero towards the worst
case value of one, the variance of the bearing estimates will
increase. In the situation where the two signals are multipath
returns from the same transmitter, the value of C'isone. In
this case, the eigenvalue decomposition will fail to produce
two distinct signal eigenvectors, so that theMUSIC algorithm
will fail.

The simplest method found to date to overcome this problem
is spatial smoothing [6], but the original method only works
in the case of the ULA. This technique forms matrices from
subsets of the ULA and averages them to form a smaller
covariance matrix for the MUSIC algorithm. The original
algorithm only uses one direction along the array to form
matrices - forward only spatial smoothing (FOSS).

If thereare J subarrays, thematricesareinfact (N — J + 1) x
(N — J 4 1) partitions of the original covariance matrix: the
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41" matrix R(d, j) begins at the (j, j) entry of R(d). The
averaged matrix R,,(d) isgiven by the equation:

J

Reo(d) = % S R(d, )

j=1

(16)

In order to resolve M sources, at least M subarrays are re-
quired so that at least 20 ULA array sensors are needed.
Thus, the FOSS algorithm places serious restrictions on the
number of coherent signals that may be resolved by an array
of agiven size. The situation can be improved by forward-
backward spatial smoothing (FBSS) [ 7], whichformsmatrices
by working both forward and backward along the array as
shownin figure 3.

~—— Backward
\
\ \
ULA Sensors
(@] (0] (0] @) (@] (0] (0]
\ |
/ |
Sub-matrices
Forward ___ _

Figure 3: Forward-backward spatial smoothing.

This operation is equivalent to forward-backward smoothing
the original covariance matrix and spatially smoothing the
resulting matrix. The forward-backward covariance matrix
R;;(d) isgiven by the equation:

Ryp(d) = R(d) + UR(d)*U 17)

Where R(d)* denotes the complex conjugate of R(d) and U
isgiven by:

0 .01
0O ... 10

U= . . Lo (18)
1 .00

The partitions of the matrix R¢;(d) from equation (17) are
then substituted into equation (16) in place of those formed
from the original matrix R(d). This technique reduces the
number of submatrices so that only (3)//2) sensors are re-
quired to resolve M coherent signals. However, there is a
tradeoff: this improvement is obtained at a cost of reduced
robustness in the MUSIC agorithm. The FOSS agorithm
performs consistently but the performance of FBSS varies as
the phases of the incoming signals are changed [8].



Consider a practical situation, where the ULA contains 8
sensors. In a multipath environment, there may be several
time samples containing significant signal power, each of
which might be made up of two coherent multipaths. In
this case, FOSS normally requires two subarrays (J=2) [6],
each containing seven elements. FBSS needs only to apply
forward-backward smoothing, so that the smoothed matrix
is still of size eight(/=1) [7]. In figure 4, these algorithms
are applied to a scenario where the two multipaths have bear-
ings 130° and 150° and each SNR is 20dB. There were 50
data snapshots available and the resulting power spectrum of
the MUSIC algorithm without smoothing and with FOSS or
FBSS appliedis shown. The MUSIC agorithm failsto work,
but the smoothing techniques overcome the problem.

50

40

30

20

Power Density (dB)

0 2 40 60 80 100 120 140 160 180
Bearing

Figure 4: Typical power spectra for the coherent multipath
case.

The smoothing algorithmswork well in this case, but how do
they perform more generally? An indication of this can be
obtained by looking at the variance of the bearing estimates
under different conditions. Equations have been derived for
the variance of the MUSI C algorithm with smoothing [9] and
these can be applied to the signal scenario above: see figure
5.

The Bearing Variance vs Signal Phase

FBSSL=8 —
SS

05 FBSS.L=8 o
SS,L=7 +

0 50 100

Variance (deg’2)
o

150 200 2;0 3‘00 3;0

Phase (deg)
Figure 5: Variance of the MUSI C algorithm using smoothing
techniques.

The relative phase of the two signals at the reference sensor
(whichisat the middle of the ULA inthiscase) was varied in
the simulation work to observe the effect on the performance
of MUSIC. The variance of the bearing estimate of the first

source(bearing 130°) isplottedinfigure5, though theestimate
for the second source (bearing 150°) behaves similarly. To
back up thetheoretical equation, simulationresultsusing 1000
Monte Carlo runs are aso shown and are plotted as points.

The FOSS algorithm with J=2 is seen to behave consistently,

unlikethe FBSS agorithm with .J=1 which can perform very

well or very badly. The instability in the FBSS algorithm

may be avoided by increasing the number of subarrays .J to
the same number required by FOSS [8]. The fact that these
agorithmsreduce the size of the covariance matrix means that
the performance of the MUSIC a gorithm degrades compared

to the equivalent uncorrelated signal scenario. To obtain the
same performance, one can increase the number of snapshots
K, the number of array elements N or the SNR.

CONCLUSION

This paper has introduced the notion of applying narrowband
bearing estimation to the output from a spread-spectrum re-
celver array. The basic agorithms have been described and
the MUSIC technique has been shown to provide good per-
formance for a fixed computational overhead.

The problem of coherent multipath returns has also been dis-
cussed. Spatial smoothing techniques have been suggested as
amethod to overcome thisfor linear arrays. FOSSisarobust
technique, but requires a subarray for each coherent signal.
FBSS reduces the number of subarrays, but the performance
varies with the incoming signal phases.
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ANALYSIS OF SPATIAL SMOOTHING ALGORITHMS

John S. Thompson, Peter M. Grant, Bernard Mulgrew. *

Abstract One of the most popular algorithmsfor performing bearing estimation isthe MUSIC algorithm. However,
themain limitation on itsuse isthefact that it performs very poorly in the presence of highly—correlated or coherent
sources. A simple method to avoid this problem isto employ a spatial smoothing pre-processing technique. These
algorithmstrade the effective array size for the ability to correctly locate coherent sources.

In this paper, two techniques will be considered: 1) spatia smoothing (SS) and 2) forward—backward spatial
smoothing (FBSS). Thestructure of the smoothed covariance matrix providessomeinsight into thelikely performance
of the two techniques. The analysisis backed up numerically through the use of equations for the variance of the
bearing estimates produced by the MUSIC agorithm.

Introduction The problem that motivates the use of bearing estimation techniquesis quite smple. Thereare P plane
wavesimpinging on a M/ —element array of known configuration. Thereceiver hasaccesstoa M x 1 noise-corrupted
datavector y(t) seen at thearray. In order to determine the bearings of the P incoming signal's, the underlying model
that generates the available data s assumed to be of the form:

y(t) = A(©)s(t) + n(t) @
The vector n(t) containsthe M zero-mean Gaussian white noise processes of variance o2 that corrupt the data and

s(t) isthevector of the P signal amplitudes. The vector © containsthe P bearings of interest and the M x P matrix
A(O) is made up as shown:

A= [Q(01)7Q(02)7 . aQ(BP)] (2)

where the parameters {6, } are the bearings of the P signals, whilethe * steering” vector () isthe impulse response
of thearray to directiond. For an M—element uniformlinear array (ULA) with an antennaspacing of half the signals’
carrier wavelength, the steering vector isgiven by:

a(f) = Lm0 M Dmest)) )

The MUSIC Algorithm The MUSIC algorithm [1] makes some assumptions about the incoming data, so that it
conforms to the model in equation (1) and the problem istractable. There are P narrow—band plane wave signals
impingingon an M element linear array, where M > P. Thedatafrom each array element isassumed to be corrupted
by Gaussian white noise of zero mean and variance o2. The signals and noise are ergodic random processes with
zero mean and are assumed to be mutually uncorrelated. For the purposes of the algorithm, all theimpinging signals
are assumed to be uncorrelated.

In practice, one has accessto N snapshots of the noisy signal vector y(t), fromwhichan M x M covariance matrix
R iscalculated. It may be utilised to generate a power density spectrum for all bearings of interest, where the peaks
of the spectrum identify the bearings of the signals present. The mean of R isgiven by:

1 Signals and Systems Group, Department of Electrical Engineering, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL.

165



E[R] = Ely()y(t)"] = R = ASAT 4+ 0°Iy @

where A denotes the Hermitian transpose of A, I isthe M x M identity matrix and the signal matrix 5 =
E[s(t)s™ (1)]. Theexpansion of & inequation (4) showsthat the eigenvaluesof & ordered by decreasing size, \;(R),
are given by the expression \; (R) = A;(X) + o2, wherethe signal matrix X = AS A, Provided all the signalsare
mutually uncorrelated, the matrix 5 is of rank P, so the P largest eigenvalues are the sum of the signal and noise
power. These eigenvalues and their associated eigenvectors correspond to the incoming signals and they form the
“signal subspace’”.

If i > P, A\;(X) = Oand so the smallest M — P eigenvectorsof R are “noise” eigenvectors whose eigenvalues are
equal to o2. Their only property of interest is that they form a “noise subspace” which is orthogonal to the signal
subspace. Thismeans that each noise eigenvector isorthogonal to every steering vector inthematrix A. TheMUSIC
agorithm exploitsthis property to locate signals by determining which bearings have the smallest projection on the
noise subspace. The following equation is used to generate the power density spectrum:

1

MUSE) = )2, 27a(0)

©)

where F,, isthe M x (M — P) matrix of column noise eigenvectors.

One problem with the MUSI C algorithm isthat the number of signals present must be estimated in order to determine
the rank of the noise subspace. This may be done by an examination of the eigenvalues, or by the use of a model
order algorithm [2]. This paper will assume that the number of signals present has been determined correctly.

Coherent Sources and Spatial Smoothing One assumption made above statesthat the incoming signals are mutually
uncorrelated over the time of observation. If al the signals present originate from different transmitters or are
modulated with different data streams then this assumption is at least approximately true. However, if they result
from multipath responses from the same transmitter, the signalsare “coherent” and the assumption isinvalid.

The signal subspaceisawaysspanned by thethevectorspresent inthematrix A. However, if thesignal sare coherent,
the matrix .S becomes singular, so that some of its eigenvalues are zero. This means that part of the signal subspace
isindistinguishablefrom the noise subspace. Asaresult, the observed noise subspace is no longer orthogonal to the
steering vectorsin the matrix A and the MUSIC agorithm fails.

To overcome these problems, atechnique called spatial smoothing (SS) [3] has been developed to allow the MUSIC
algorithm to be applied to the coherent signal case. The algorithm was originally designed only for uniform linear
array (ULA) geometries. Thebasicideaisto form covariance matricesfrom subsetsof the array - which isequivalent
to partitioning the original covariance matrix. If there are K subarrays, each subarray isof szeL = M — K + 1
and the partition for the £ subarray isthe matrix F'(k) RF (k)”. The I x M matrix F(k) is defined by:

L [1 ifj=it+k-landl<i<l
F(A)”_{ 0 otherwise ©)

The notation F;; denotesthe i*" row and j** column element of the matrix F'. The partitioned matrices are used to
form a smoothed matrix Rss of size L x L, whichiscalculated as follows:

K

Rss = % > FP(k)RF (k)T @
k=1
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where F(k)T denotesthe transpose of F(k). Clearly, the size of the covariance matrix and thus the performance of
the MUSIC agorithm is traded for the ability to resolve coherent sources. In order to resolve P coherent sources,
an array containing at least 2P elementsisrequired. In asimilar way, it is very simple to show that to resolve P
coherent sources, it isrequired to average over at least P independent submatrices.

Soon afterwards, it was reported [4] that an additional technique called forward-backward spatial smoothing (FBSS)
can be used to improve performance. The FBSS technique applies forward—backward smoothing (FBS) to the
forward and backward covariance matrices Rr and Rp to form amatrix R,,. as shown:

0 .01 0 .01
1 1 1 0..10 0..10

Rype = E(RF‘I' RB) = E(R—i_ JR*J) = §(R+ ., Do R oo, Dol ) (8)
1 ...00 1 ...00

where R* denotes the complex conjugate of R. The matrix R, isthen spatially smoothed as required to form the
FBSS matrix Rrp.It has been shown [4, 5] that to resolve P coherent sources, aslittleas 3P/2 array elements may
berequired to restore therank of 5. However, there are some situationswhere FBSS behavesin the exactly the same
manner as the SS technique: in these cases 2P array elements are till required.

Statistical Analysisof the MUSIC Algorithm There are a number of approaches to determine the performance of
the MUSIC algorithm, but one useful technique is to determine the variance of bearing estimates produced by the
MUSIC agorithm for a given set of conditions. An excellent introduction to this approach is given in [6]. This
analysis has been extended to spatial smoothing algorithmsin [7] and the required result for this paper is given in
terms of the error in the estimate of the bearing of the =** signal, §6,.. The asymptotic variance of the error is given

by:

2 K K
E[662] = W[ ZlﬁHR(m B N(g,p)a+Re{ > BEIN(p,q)a BN (g, p)a}] (9
R Py= p.a=1p#q

vector derivative of the length I steering vector ag(6) [8]. The matrix EssEZL is the noise subspace of the
smoothed covariance matrix and the matrix R(p, ) isgiven by F(p) RF(q)T. The vectors o and 3 are defined as:

a= EssElsdgs(0,) and = Xigass(0,) (10)

The matrix X;S denotes the pseudo—inverse of the smoothed signal matrix X ss. The matrix NV (p, ¢) isdefinedina
similar way to R(p, ¢) with N (p, q) = o?F (p) F(q)T.

Analysisof the Covariance Matrix The performance of the MUSIC a gorithm depends critically on the condition of
the signal matrix 5 [6]. In the simple case of two sources, thismatrix is given by:

2 i sored®(1:2)
_ s1 s180c€
S = sy89ce—i6(12) 8% (1Y

Where s; and s, denote the amplitudes of the two sources, ¢ the magnitude of their cross-correlation and ¢(1, 2) the
relative phase between the sources at the reference sensor. If the value of ¢ is unity, the matrix S is singular and the
MUSIC agorithm fails. The underlying purpose of spatial smoothing algorithmsis to reduce the value of ¢ so that
the smoothed signal matrix s iswell—conditioned numerically.
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It is possible to show that for the SS technique with K subarrays, the correlation value ¢ s becomes[9]:

K-1
i Z 6—j(((K—1)/2)+k)7r(cos(€1)—005(92)) (12)
K o

€ss =
This means the numerical condition of the matrix Sss depends on both the source bearings and their angular
separation. The correlation value for FBSS with L subarrays is the same as for SS, but it is scaled by the term
cos(¢(1,2)). This means the FBSS algorithm can offer an improvement over SS for the same array size, which
depends on the relative signal phase.

Results In this section, the equations quoted for the MUSIC algorithm and for the spatial smoothing techniques
will be applied to particular scenarios to illustrate the points made above. It should be pointed out, however, that
equation (9) is very complex and the above analysisis only intended to explain the major effects observed in the
behaviour of SS/FBSS. In all the simulationsthe number of elements M in the uniform linear array was eight and
each signal’s SNR was set to be 17dB. All signalswere generated using complex exponentialsof constant amplitude
and one hundred snapshotswere used to form covariance matricesin each case.

Figure 1 showsthe effect of angular separation on SS, FBS, FBSS with two coherent sources and MUSIC with two
uncorrelated sources. Thefirst sourceis at a bearing of 90° and the bearing of the second source is chosen to give
the correct angular separation. The variance of the 90° source is shown in the diagram, but the variance of the other
source will follow asimilar trend. The reference sensor was set at one end of the ULA, so that the relative phase of
thetwo signalsat the middle of the array changes. The phase dependence of the FBS technique causesthe correlation
factor ¢gg to vary between 0 and 1 according to the value of cos(¢(1,2)): the variance curve is seen to oscillate
accordingly.

The Bearing Variance vs Angular Separation
T — T
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Figure 1. Comparison of variance of MUSIC, SS, FBS and FBSS techniquesvs angular separation.

The SS agorithm with L = 7 improves more slowly than the MUSIC a gorithm with no correlation, as the signal
separation is increased. This is because the condition of both the matrix .5 and the matrix A depend on signal
separation. The FBSS technique with I, = 7 generally performs better than SS and for closely spaced sources the
variance can be improved a lot according to the relative phase between the two sources ¢(1, 2).

Figure 2 showsthe effect of signal phase on the performance of SS, FBS, FBSS agorithms and MUSIC (with zero
correlation). Thetwo sourcesare at 96° and 78° and their relative phase at the centre of the UL A variesfrom 0— 360°.
The variance is plotted for the source at 96° and the performance of the SS algorithm with 7, = 7 is approximately
constant with the signal phase. The FBS technique is again shown to provide good performance for some signal
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phases, but no improvement at all when ¢(1,2) = 0° or 180° [10]. In a similar manner, the FBSS agorithm with
L = 7isseento perform aswell asor better than SS, with the variance also sinusoidally changing with signal phase.

The Bearing Variance vs Signal Phase
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Figure 2: Comparison of variance of MUSIC, SS, FBS and FBSS techniquesvs signal phase.

It seems likely that the variationsin phase will affect the performance of the FBSS technique for larger numbers of
signals. Infigure 3, the FBSS agorithmwith 1, = 7 isattempting to resolve three sources at 60°, 120° and 90°. The
phases of the first two sources at the centre of the ULA are varied with respect to that of the third source, which is
fixed at 0°.The theoretical variance is shown for the source at 120°. When the relative phases of the three signalsare
0° or 180°, the algorithm cannot restore the full rank of the signal matrix and the variance is seen to become very
large. Of course, the variance of the SS algorithm with 7, = 7 istheoretically infinite for all signal phases.

The Bearing Variance vs Signal Phase for 3 signals

FBSS=7 —

Figure 3: The Variance of FBSS with I, = 7 for a source at bearing 120° vs signal phase for 3 sources.

From the above discussion, it is clear that to resolve P sources with P subarrays, the FBSS algorithm is usualy
preferable to the SS technique. In addition, FBSS may resolve P sourcesusing lessthan P subarrays, unlikethe SS
technique.

Conclusion The MUSIC agorithm performs robustly in the presence of uncorrelated signals and signals with small
correlation factors. When the correlation factor tends towards one, the signal scenario resembles that of coherent
multipath returns, or smart signal jamming. In the case of coherent signals, the MUSIC algorithmisunableto resolve
the different bearings, even at high SNRs. In this case, an alternative approach, such as spatial smoothing, must be
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used. The performance of two techniques, SS and FBSS, have been compared - the former depends on the source
bearings and angular separations. The FBSS technique can considerably improve the performance of MUSIC for
closely spaced sources, according to the relative signal phases.
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Performance of Spatial Smoothing Algorithms for
Correlated Sources

John S. Thompson, Peter M.

Abstract— The problem of identifying the angles of arrival
of a set of plane waves impingeing on a narrow-band ar-
ray of sensors, and related spectral analysis problems, have
been addressed with a large number of algorithms. One of
the most popular techniques is the multiple signal classi-
fication (MUSIC). The major shortcoming of the MUSIC
algorithm is that it performs poorly when the sources are
highly correlated. Fortunately, two algorithms exist to over-
come this problem - spatial smoothing (SS) and forward-
backward spatial smoothing (FBSS). The performance of
the SS technique depends on signal bearings and spatial sep-
aration. For the same smoothing, FBSS can offer improved
performance, but this depends on the signal phases. Nu-
merical results for the variance of the algorithms are given
to illustrate the points made.

1. INTRODUCTION

One of the most popular algorithms for performing bearing
estimation is the MUSIC algorithm[1]. Its attractiveness is due
to the fact that it provides good resolution, whilst limiting the
search for incoming signals to a single dimension. This is in con-
trast to maximum likelihood (ML) algorithms which generally
involve an P dimensional search to resolve P sources[2].

The main limitation of the MUSIC algorithm is that it per-
forms poorly in the presence of highly correlated and coherent
sources. In order to overcome this problem, it is possible to use
techniques like ML, which still work in such situations. This
negates all the advantages of using the MUSIC algorithm in
the first place. Fortunately, two techniques exist to resolve cor-
related and coherent sources for uniform linear array geomet-
ries — the spatial smoothing (SS) algorithm[3] and the forward-
backward spatial smoothing algorithm (FBSS)[4]. These meth-
ods modify the covariance matrix of data, so that the MUSIC
algorithm can still be applied.

One method of analysing the effect of spatial smoothing tech-
niques is to look at the variance of the bearing estimates pro-
duced by the MUSIC algorithm. Equations for this purpose
have been derived in [5][6]. The variance equations are complex
and hard to interpret in a simple fashion, so in this corres-
pondence the condition number or eigenvalue ratio (EVR) of
the resulting signal matrices will be analysed to obtain some
insight into how smoothing techniques work. Numerical res-
ults are provided to compare the signal matrix EVR with the
variance of the MUSIC algorithm.

The structure of this correspondence is as follows. Section II
provides an introduction to the MUSIC algorithm and the equa-
tions that describe its performance. It will also look briefly at
the effect of spatial smoothing techniques on the covariance mat-
rix; section III will present some numerical results to illustrate
the points made. Finally, section IV presents the conclusions
for this correspondence.
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I1.
A. Background

PRINCIPLES OF DIRECTION OF ARRIVAL ESTIMATION

The problem that motivates the use of bearing estimation
techniques is quite simple. There are P plane waves impingeing
on a M—element array of known configuration. The receiver has
access to a mnoise-corrupted data vector y(t) € CM*! seen at
the array. In order to determine the bearings of the P incoming
signals, the underlying model that generates the available data
is assumed to be of the form:

= A(9)s(t) + n(t)

y(t) (1)

The vector n(t) € CM*! contains the M zero-mean Gaussian
white noise processes of variance o that corrupt the data and
s(t) € CF*1 s the vector of the P signal amplitudes. The vector
© € R”*! contains the P bearings of interest and the matrix
A(0) € CM*F is made up as shown:

A=[a(br),a(82), ... a(6p)] (2)

where the parameters {,} are the bearings of the P signals,
while the “steering” vector a(6) € C™*! is the impulse response
of the array to direction 6.

B. The MUSIC Algorithm

Algorithms that perform bearing estimation are required to
make some assumptions about the incoming data, so that it con-
forms to the model in equation (1) and the problem is tractable.
There are P narrow—band plane wave signals impingeing on an
M element linear array, where M > P. The data from each ar-
ray element is assumed to be corrupted by Gaussian white noise
of zero mean and variance ¢®. The signals and noise are ergodic
random processes with zero mean and are assumed to be mu-
tually uncorrelated. For the purposes of the MUSIC algorithm,
all the arriving signals are assumed to be uncorrelated. These
assumptions are the same as those made in [3], for example.

In practice, one has access to N snapshots of the noisy sig-
nal vector y(t), from which a covariance matrix & € C**M js
calculated. The mean of R is given by:

B[R] = Ely()y(t)"] = R= ASAT +6° Iy (3)
where A denotes the Hermitian transpose of A, Ias is the
M x M identity matrix and the signal matrix S = E[s(t)s" (¢)].
The covariance matrix R may be utilised to generate a power
density spectrum for all bearings of interest and the peaks of
the spectrum identify the bearings of the signals present. The
expansion of R in equation (3) shows that the eigenvalues of R
ordered by decreasing size, A;(R), are given by the expression
Ai(R) = Xi(X) + 02, where the matrix X = ASA". Provided
all the signals are mutually uncorrelated, the matrix S is of
rank P, so the P largest eigenvalues are the sum of the signal
and noise power. These eigenvalues and their associated eigen-
vectors correspond to the incoming signals and they form the
“signal subspace”.
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Ifi > P, Xi(X) =0 and so the smallest M — P eigenvectors
of R are “noise” eigenvectors whose eigenvalues are equal to
o®. Their only property of interest is that they form a “noise
subspace” which is orthogonal to the signal subspace. This
means that each noise eigenvector is orthogonal to every steering
vector in the matrix A. The MUSIC algorithm exploits this
property to locate signals by determining which bearings have
the smallest projection on the noise subspace. The following
equation is used to generate the power density spectrum:

. 1
MUS(#) = ————— 4
where E, € CM*M~P ig the matrix of column noise eigen-
vectors.

One problem with the MUSIC algorithm is that the number
of signals present must be estimated in order to determine the
rank of the noise subspace. This may be done by an examination
of the eigenvalues, or by the use of a model order algorithm[2][7].
This paper will assume that the number of signals present has
been determined correctly.

C. Spatial Smoothing Algorithms

One assumption made above states that the incoming sig-
nals are mutually uncorrelated over the time of observation. If
all the signals present originate from different transmitters or
are modulated with different data streams they will only be
partially correlated. However, if they result from multipath re-
sponses from the same transmitter, the signals are “coherent”
and the assumption is invalid.

The signal subspace is always spanned by the the vectors
present in the matrix A. However, if the signals are coherent,
the matrix S becomes singular, so that some of its eigenvalues
are zero. This means that part of the signal subspace is indis-
tinguishable from the noise subspace. As a result, the observed
noise subspace is no longer orthogonal to the steering vectors in
the matrix A and the MUSIC algorithm fails.

To overcome these problems, a technique called spatial
smoothing(SS)[3] has been developed to allow the MUSIC al-
gorithm to be applied to the coherent signal case. The algorithm
was originally designed only for uniform linear array (ULA) geo-
metries. The basic idea is to form covariance matrices from sub-
sets of the array - which is equivalent to partitioning the original
covariance matrix. If there are K subarrays, each subarray is of
size L = M — K +1 and the partition or submatrix for the k'
subarray is the matrix F(k)RF(k)T. The matrix F(k) € cbxM
is defined by:

1 ifj=itk—1land1<i<]

P ={ |

The notation F;; denotes the 1™ row and jth column element
of the matrix F'. The partitioned matrices are used to form a
smoothed matrix Rg € CLXL, which is calculated as follows:

(5)

otherwise

Rs= % ; F(k)RF(k)" (6)

where F(k)T denotes the transpose of F (k). Clearly, the size of
the covariance matrix and thus the performance of the MUSIC
algorithm is traded for the ability to resolve coherent sources.
In order to resolve P coherent sources, an array containing at
least 2P elements is required. In a similar way, it is very simple
to show[8] that to resolve P coherent sources, it is required to
average over at least P independent submatrices.

Soon afterwards, it was reported[4] that an additional tech-
nique called forward-backward spatial smoothing (FBSS) can
be used to improve performance. The FBSS technique applies
forward-backward smoothing (FBS) to the forward and back-
ward covariance matrices Rp and Rp to form a matrix Raoe as
shown:

1 1 *
Rave = §(RF +RB) = §(R+ JR J)

0 0 1 0 1

0 10 0 10
=-(R+| . . R : ) (M

1 ...0 0 1 ...0 0

where R* denotes the complex conjugate of R. The matrix
Rave is then spatially smoothed as required to form the FBSS
matrix Rp/p.It has been shown[4][9] that to resolve P coher-
ent sources, as little as 3P/2 array elements may be required
to restore the rank of S. However, there are some situations
where FBSS behaves in the exactly the same manner as the SS
technique: in these cases 2P array elements are still required.
A geometrical interpretation of the two techniques is shown in
figure 1. The SS algorithm forms sub—matrices by working in
the forward direction only, while FBSS uses sub-matrices from
both directions.

D. Statistical Analysis of the MUSIC Algorithm

Determining the performance of the MUSIC algorithm, with
or without spatial smoothing techniques applied, has been the
subject of several papers in the last few years. There are two
main approaches to this subject.

The first method is to determine a resolvability criterion for
the MUSIC algorithm[10-12] — that is to find the conditions un-
der which two closely spaced sources will be resolved as two sep-
arate peaks, rather than combining to form one peak. However,
this type of analysis is usually restricted to the case of two
sources and will not be considered in this paper.

A more general technique for analysing the MUSIC algorithm
is to derive an equation for the variance of the signal peaks of
the MUSIC spectrum[5][13][14]. One useful form of the variance
equation for the unsmoothed MUSIC algorithm is given in [5].
Denoting the error in the estimate of the bearing of the z'*
signal as 66,, the asymptotic variance of that error is given by
the equation:

2
a

Elb6:] Ndo(6:)

{15 Nea + °[S71(ATA) 1S e} (8)
The scalar value do(f) is given by the matrix product
2{d" () En EF d(8)}, where d(8) is the Brandwood vector de-
rivative of a(6)[15]. S™" denotes the matrix inverse of S. For
large values of the signal-to-noise-ratio (SNR) with mutually un-
correlated sources, the variance is inversely proportional to the
SNR of the desired source. However, as the correlation between
the sources increases the matrix S~™! becomes ill-conditioned
and the variance can become very large.

The equivalent equation for the MUSIC algorithm combined
with spatial smoothing techniques is more complex. The results
have been obtained by Rao and Hari[6] and for spatial smooth-
ing the equation is:

2

K
W[ Z EHR(P, Q)ﬁ QHN(‘LP)Q

p.q=1

B[s63] =
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K
+Re{ Y BYN(pq)a BTN (g p)a}] (9)
p.q=1,p#q
where Re denotes the real part of a complex value. The matrix

R(p, q) is given by F(p)RF(q)T7 a and f are defined as:

a=FE,Eld (8,) and B =UsA3'Ua (6) (10)
The matrix Us € C"*" contains the P signal eigenvectors
of the smoothed covariance matrix Rg, As € RFT*F is a di-
agonal matrix containing the P smoothed signal eigenvalues.
The matrix N(p, ¢) is defined in a similar way to R(p, ¢) with
N(p,q) = o*F(p)F(¢q)T. The vector ag is the steering vector
for the smoothed array and dg is its derivative. It has been
noted[6], that the second part of equation (9) becomes very
small compared to the first part at high SNRs. The vector g
may be expressed as: -

B =(A%)"s5, (11)

where Sg is the smoothed signal matrix and Ag is the matrix
of smoothed steering vectors. The vector 1, € C**P s the
z" column of the identity matrix /p, and the notation A%
denotes the pseudo-inverse of A. Expanding the matrix R(p,q)
as F(p)ASA®T FT(q) 4+ N(p, q), equation (9) may be written as:

2

B30 = Frygorpy (55 Jow + 07155 (48 45)7' 55 1ex)
+W( > S5 B(r.©)"SB(¢.0)55 }uu

p,q=1,p#q
xa"N(q, p)al + 87 N(p, )8 a” N(q,p)a
+ Re{8"N(p,q)a B N(4.p)a})

where B(q, ©) € CFXP s a diagonal matrix, given by:

(12)

br 0 ... 0
bo 0

B(q,0) = ATF(¢)" (A%)" = (13)
0 ... 0 bp

The p'* diagonal entry of B, b,, depends on the phase shift
between the steering vectors a™ (8p)F(¢)T and aZ (6p). For the
FBSS case, the matrix Ss would be replaced by the equivalent
signal matrix Sp;p in the equations above. The first term of
equation (12) is equivalent to equation (8) and the other terms
are cross terms to compensate for the formation of Rs from
partitions of R.

E. Analysis of the Covariance Matriz

Equations (8) and (12) explicitly show that the performance
of the MUSIC algorithm with or without smoothing techniques
is proportional to entries of the inverse matrices of S, Ss or
Sz Therefore, if one looks at what the smoothing techniques
do to the eigenvalues of these matrices, it should be possible
to explain the major effects observed in the behaviour of the
MUSIC algorithm. In the analysis of the matrix eigenvalues,
a useful criterion is the condition or eigenvalue ratio (EVR),
which is defined to be:

EVR = 2mes

min

(14)

where Anmin and A represent the smallest and the largest
eigenvalues, respectively, of the given matrix. To make legit-
imate comparisons, the received signal powers should be kept
constant: other parameters such as signal bearings and phase
may then be varied to see the effect on the EVR. If the EVR is
small, the columns of S and hence the underlying signals are ap-
proximately uncorrelated, which suggests MUSIC will perform
well. If the EVR is large, the matrix is close to being singular
and MUSIC will perform poorly. In terms of the variance equa-
tions, the scalar value (1/Amen) is the largest eigenvalue of S™*:
the more ill-conditioned the S matrix is, the larger the variance
of the MUSIC bearing estimates.

Similarly, the variance equations involve the inverse of the
matrix A¥A (or AZAg), which is altered as the source bear-
ings change. When the sources are sufficiently spaced, the off-
diagonal terms of this matrix are small, so that the eigenval-
ues are all approximately unity. However, when the sources
are closely spaced, the off-diagonal terms become large and the
EVR of A® A becomes very large.

In the general case of P coherent sources, the matrix S is of
the form:

2 518963 9(1:2) s1spel 9P
31326—#15(1,2) 53 stpem(?f’)
S =
s15pe IHLP) g5 ne=IH2P) s?;

(15)
The amplitude of the p*" source is denoted as sp and the
scalar ¢(1, 7) indicates the phase at the reference sensor between
sources ¢ and j. For the rest of this correspondence, the refer-
ence for the phases ¢(¢,j) will be placed at the centre of the
ULA.

E.1 Spatial Smoothing

For spatial smoothing, K sub-matrices Ry are formed from
I element subarrays and are averaged to form a smoothed co-
variance matrix Rg. The reference for the smoothed steering
vector ag(6#) will be defined to be at the centre of the array, so
that:

L L

;1 )7rcos(9)7 8_]( ;3)7rcos(9)Y B 3( L;1 )Wcos(e)]T

(16)
This definition may be used in combination with results
from[16]to show that the i*" row and j* column entry of the
smoothed signal matrix Ss is given by:

ag(#) =[e7

€

K—-1

(Ss)ij = Sisjem(if])% $ AU D R cos(0)—eox(03))

k=0

()
The summation term is real for both even and odd L: it will
be denoted as ¢ below. The behaviour of this cross-correlation
value has been analysed extensively in [16]. The magnitude of
(Ss)i; generally decreases as K increases, so that the EVR of
Ss will also improve. The rate of the decrease in ¢ with K
depends on the source bearings and their separation. For the
simple case of two sources, the matrix Sg is given by:

Sg = si sus2ce 412 (18)
$189ceI912) s3

The eigenvalues of the smoothed signal matrix Ss are given by:
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det(Ss — AI,) = 0 (19)

This equation leads to a quadratic equation in A: applying the
formula for the roots of a quadratic equation gives:

M (20)
2

The eigenvalues of Ss depend on the value c¢. If If ¢ is close
to one, A has roots near 0 and (s% + 53) : if ¢ is small, the
eigenvalues are close to si and s3. It is useful to note that
the eigenvalues do not depend on the phase term ¢(1,2), which
suggests that varying the signal phases will not significantly
affect the variance of the SS algorithm.

1 G
A= i5¢(53+sg+zs§s;(zc2_1)

E.2 Forward—backward Spatial Smoothing

To simplify the analysis of forward-backward spatial smooth-
ing, spatial smoothing is applied as before. The forward-
backward smoothing may be applied to the resulting forward
and backward matrices to form the final covariance matrix,

Rp/p. Thus:

1 *
RF/B E(Rs—I—JRSJ)

%(ASSSA? 4 IALSEALT) 4 071
1 *

S(As[Ss + SEADY + 671
AsSppAf +0°1 (21)

The third line of the above formula follows because JQ* = @,
etc. Therefore, the value of (Sp/p):; is given by:

(SpyB)iy = (Ss)iy + (58)i; = sisjccos ¢(i, 5)

The magnitude of the cross-correlation term can lie between

(22)

sis;jc and zero, depending on the relative signal phase ¢(3, 7).
In the case of two sources, Sg/p is given by:

51

s182ccos p(1,2)
s1s2¢c0s ¢(1,2) 2

52

Srip = (23)

Solving the eigenvalue equation as before gives the values of A:

(51 +3)

2

A= + %\/(s‘i—f—s% + 2s3s53[2¢? cos?(¢(1,2)) — 1])
(24)

For two coherent signals, the variance of the FBSS method
clearly depends on the relative signal phase ¢(1,2). If ¢(1,2) =
02,180°, the matrix S = S*, so the off-diagonal terms of Sg;p
are not cancelled, leaving the EVR identical to the spatial
smoothing case. This means the error variance will be the same
as for spatial smoothing. Alternatively, if ¢(1,2) = 90°,270°
radians, the off-diagonal terms of Sy, cancel completely, so
that the EVR reaches a minimum. The improvement that may
be offered by FBSS depends on how well SS alone has reduced
the magnitude of the correlation ¢. Similarly, for the FBS al-
gorithm alone, the performance of the MUSIC algorithm can be
improved, except in the case where ¢(1,2) = 0°,180°[12].

In general, the EVR of a forward—backward smoothed covari-
ance matrix is less than or equal to that of the original smoothed
or unsmoothed covariance matrix[6]. Depending on the signal
phases, the FBSS algorithm can offer significant improvements

in scenarios where spatial smoothing has failed to reduce signal
correlation, particularly when signals are closely spaced.

The phase dependence of the FBSS algorithm means that in
some cases, FBSS with (P/2) subarrays is insufficient to restore
the full rank of the signal matrix Sp;g[4]. Indeed, if all the
relative phase terms ¢(7,7) are 0° or 180°, the algorithm per-
forms in the same manner as SS with the same subarray size L.
However, this is an extreme case: applying FBS to a spatially
smoothed covariance matrix usually improves the performance
of the MUSIC algorithm and in some cases, FBSS may be able
to resolve the same number of sources using a larger subarray
size than SS. Where the number of sources is larger than half the
number of antenna elements, it provides the only opportunity
to resolve all the sources.

I11.

In this section, the equations quoted for the MUSIC al-
gorithm and for the spatial smoothing techniques will be ap-
plied to particular scenarios to illustrate the points made in the
analysis of spatially smoothed covariance matrices. It should
be pointed out, however, that equation (9) is very complex and
the above analysis is only intended to explain the major effects
observed in the behaviour of SS/FBSS. In all the simulations
the number of elements M in the uniform linear array was eight
and each signal’s SNR was set to be 17dB. All signals were gen-
erated using complex exponentials of constant amplitude and
one hundred snapshots were used to form covariance matrices
in each case.

RESULTS AND DISCUSSION

Figures 2 and 3 show the effect of signal correlation on the
variance and the S matrix EVR for various algorithms. There
are two sources, the first at a bearing of 90° (which is defined
to be perpendicular to the array) and the second at 60°. The
correlation between the two sources is varied from zero to one
and the variance plots are all for the first source, though the
variance of the other source behaves in a similar manner. It
is noticeable that behaviour of the EVR curves in figure 3 is
similar to that of the variance curves in figure 2. However, it
should be pointed out that it is only meaningful to compare
EVR graphs whose subarray size, L, is the same.

The spatial smoothing algorithm, formed from two sub-
matrices (K = 2) so that the subarray size I = 7, is reasonably
robust to signal correlation, although in this case the FBS al-
gorithm with . = 8 out-performs it at low signal correlation.
The performance of the FBS algorithm is less clear-cut for high
correlations. The best possible outcome occurs when the rel-
ative signal phase is 907 as shown on the graph. The variance
for a relative signal phase of 307 is also shown: it is inferior to
the previous curve, but better than that for a phase shift of 07,
where FBS cannot reduce the signal correlation so it gives the
same performance as for MUSIC without FBS. The fact that
the variance depends considerably on the relative signal phases
means that the variance curve for a given phase can lie anywhere
in the region spanned by the three curves.

The next two figures, 4 and 5, shows the effect of angular
separation on SS, FBS, FBSS with two coherent sources and
MUSIC with two uncorrelated sources. The first source is at a
bearing of 90° and the bearing of the second source is chosen
to give the correct angular separation. The variance of the 90°
source is plotted only for angular separations up to 807: as the
bearing of the second source approaches 0° or 180°, “endfire”
effects mean that the variance of the bearing estimate increases
without bound. The EVR of the matrix A¥ A has been plotted
for L=8 in figure 5 (denoted AhA) to show its effect on the
MUSIC algorithm. The EVR of A® A and thus the variance
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of the MUSIC algorithm is large for closely spaced sources, as
one would expect, but reduces to an approximately constant
level for an angular separation of greater than 10° or so. The
reference sensor was set at one end of the ULA, so that the
relative phase of the two signals at the middle of the array
changes. This emphasises the relative phase dependence of the
FBS algorithm. As expected from the analysis, the performance
of FBS is oscillating between that of MUSIC with no signal
correlation and MUSIC with a correlation factor of 1 - ie infinite
EVR and variance.

The SS algorithm with L = 7 improves more slowly than the
MUSIC algorithm with no correlation, as the signal separation
is increased. This is because the EVR of both the matrix S and
the matrix A depend on signal separation. The FBSS technique
with L = 7 generally performs better than SS and for closely
spaced sources the variance can be improved a lot according to
the relative signal phase.

Figures 6 and 7 show the effect of signal phase on the per-
formance of SS, FBS, FBSS algorithms and MUSIC (with zero
correlation). The two sources are at 96° and 78 and their rel-
ative phase at the centre of the ULA varies from 0 — 360°. The
variance is plotted for the source at 96° and the performance
of the SS algorithm with L = 7 is approximately constant with
the signal phase. The FBS technique is again shown to provide
improved performance for some signal phases — the sinusoidal
variation in the eigenvalues show up in the EVR of the S matrix
and in the variance curve. This type of behaviour is also shown
in the results of Chang and Yeh[12]. In a similar manner, the
FBSS algorithm with L = 7 is seen to perform as well as or bet-
ter than SS, with the variance also sinusoidally changing with
signal phase.

The analysis of FBSS in the previous section showed that its
performance will normally be as good as or better than SS with
the same amount of spatial smoothing and this is demonstrated
in these results. Similarly, FBSS with less than P subarrays for
P coherent sources (in the case of figures 6 and 7, simply the
FBS technique with L = 8) still has some chance of resolving
the sources, unlike the SS algorithm.

It seems likely that the variations in phase will affect the per-
formance of the FBSS technique for larger numbers of signals,
and this effect is shown in figures 8 and 9. In the figure 8,
the FBSS algorithm with L = 7 is attempting to resolve three
sources at 607, 120° and 90°. The phases of the first two sources
at the centre of the ULA are varied with respect to that of the
third source, which is fixed at 0°.The theoretical variance is
shown for the source at 120°. When the relative phases of the
three signals are 0° or 180°, the algorithm cannot restore the full
rank of the signal matrix and the variance is seen to rise towards
infinity. A similar effect is shown in the figure 9. In this case,
four signals are impinging on the array from bearings 607, 1207,
807 and 100°. The phases of the first two sources are varied
with respect to those of the second two sources, which are both
fixed at 0. The theoretical variance shown is for the source at
80°. Here the situation is more complex: if the relative phases
of three of more sources coincide at 0 or 1807, the variance of
those sources will again rise to infinity. In both cases, there is a
reasonable statistical chance of resolving all sources, but where
FBSS with L = 7 fails, the amount of smoothing required for
FBSS must be increased towards that required by SS.

The number of subarrays required in SS/FBSS algorithms to
minimise the variance of the MUSIC algorithm is an interesting
problem. Figure 10 shows the variance of spatial smoothing for
different numbers of subarrays vs signal separation. Asin figure
4, the first source is at 90° and the bearing of the other source

is varied to obtain the correct angular separation. In this case,
there is little difference in performance for the different subarray
sizes in general. For closely spaced sources, it seems that the
improvement in the condition of S obtained by increasing K is
cancelled out by the smaller effective array size. No single array
size performs significantly better than all the others under all
conditions, so it seems simplest to pick one subarray size that
performs reasonably well, such as L = 7.

From the above analysis, it is clear that to resolve P sources
with P subarrays, the FBSS algorithm is usually preferable to
the SS technique. In addition, FBSS may resolve P sources
using less than P subarrays, unlike the SS technique.

1V. CoNcLUSION

The MUSIC algorithm performs robustly in the presence of
uncorrelated signals and signals with small correlation factors.
When the correlation factor tends towards one, the signal scen-
ario resembles that of coherent multipath returns, or smart sig-
nal jamming. In the case of coherent signals, the MUSIC al-
gorithm is unable to resolve the different bearings, even at high
SNRs. In this case, an alternative approach, such as spatial
smoothing, must be used.

The performance of spatial smoothing techniques has been
qualitatively linked to the eigenvalue ratio of the signal matrix
S. The performance of spatial smoothing depends on the bear-
ings and separation of the sources. The FBSS algorithm with
the same smoothing as SS has the potential to provide better
estimates of the source bearings, depending on the relative sig-
nal phases. In some cases, the FBSS can resolve P sources with
less than P subarrays, unlike the SS technique. Theoretical and
simulation results have been presented to confirm these points.
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FiGUrRe TITLES

Figure 1: Forward-backward spatial smoothing.

Figure 2: Comparison of variance of MUSIC, SS and FBS techniques vs signal correlation.

Figure 3: Comparison of the signal matrix EVR of MUSIC, SS and FBS techniques vs signal correlation.
Figure 4: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs angular separation.

Figure 5: Comparison of the signal matrix EVR of MUSIC, SS, FBS and FBSS techniques and the EVR of the matrix A% A with
[ = 8 vs angular separation.

Figure 6: Comparison of variance of MUSIC, SS, FBS and FBSS techniques vs signal phase.

Figure 7: Comparison of the signal matrix EVR of MUSIC, SS, FBS and FBSS techniques vs signal phase.
Figure 8: The Variance of FBSS with I = 7 for a source at bearing 120° vs signal phase for 3 sources.
Figure 9: The Variance of FBSS with L = 7 for a source at bearing 80° vs signal phase for 4 sources.
Figure 10: Comparison of variance of Spatial Smoothing vs angular separation.
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The Bearing Variance vs Signal Phase for 4 signals
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Appendix B
Evaluating The Probability p(A;)

In order to evaluate the probability p(A;), the mean and variance of the K" eigenvalue [x and the
noise eigenvalue 62 are required. The probability value is then simply given by equation 3.7, where
is defined as:

. a(N)(2M — i[ill)/N — AAg (B.1)

The parameter «(V) is defined in equation (3.6) and the following text. The parameter N denotes the
number of snapshots used to form the estimated covariance matrix and AA gk isequal to:

O’2 1 /\K
AAg =In{ [l 4 ———— (=5 — MK+ B.2
k= In{5E+ g (o = DM (B2

The standard deviation term oa s, isthe sguare root of the following variance eguation:

e = (A paa2y + (ASA pan)? ®3

where the terms (Ac?2)? and (AAx)? denote the variance of ¢, and \x respectively. The derivative

terms are given as follows:

O(AAK) (M — K)(o? — \g) O(AAK) (M — K)(Ax —02)
7 T Dkt (M -K)e2)er Dr - Ow t (M- Ke2ng B9

If the estimated covariance matrix follows a Wishart distribution with N data snapshots, the variance
termo3 . reducesto (a/N)(1+4[1/(M — K)]) Theconstant a isgivenby (M — K)(Ax — o7 )/(Ax +
(M — K)o2).
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Appendix C
Derivation of Results for Chapter 6

C.1 Finite Fading Effects on The Bit Error Ratio

The equation for DPSK de—-modulation of a single tap fading signal is given by:

D(n) = R{z(1,n)z"(1,n—1)} (C1)

where D(n) denotes the decision variableand z( 1, n) denotes the noise-corrupted tap output for the n'?
symbol. As a result, the effective SNR of the signal measured at the decision variable D(rn) depends
on the real part only of the auto—correlation of the underlying signal, with the time delay set to one
symbol period¢,. Denote the required signal auto—correlationvalue as R(ry,;), where R() isgiven by
equation (6.8) or (6.11) with a set to 1. The time delay o denotes the excess time delay of the given
tap relative to the first incoming multipath. Theterm [1 — |R(7q, ¢,)|] denotes theirreducible equivalent
noise power due to thefinite fading effects. The signal SNR for the variable D(r) istherefore given by:

§R{R(TO’ ts)}

SR = T TR, )]+ (02/5)

(C.2)

where S denotes the mean signal power measured on one symbol interval only and ¢ denotes the white
noise power present. Clearly, the higher the value of v,,, the lower the real part of R(ry,?s) which
leads to a high irreducible BER because of tracking errors. Figure C.1 shows the performance of abase
station receiver with one antenna using a single tap RAKE filter for three different fading frequencies.
The signals were generated using the classical Doppler fading model. Simulation results are shown as
pointsand theoretical results using equation (C.2) aslines.

C.2 Derivation of the Nakagami Fading Equation

The Nakagami m—parameter for a fading signal is defined as the inverse normalised variance of that
signal. For the z'* row and y'* column entry of the covariance matrix R(l) formed from N snapshots
of the channel vector h(1,t), the m—parameter is given by:

[B(1)ay)?

(C.3)
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Figure C.1: The BER Performance of a Single Tap RAKE Filter

where R(1),, isthe z** row and y** column entry of R(1). Now the denominator of equation (C.3) is

given by:
~ N 1 N
B[Ry B(L)ey] = 5 D Elha(L )b (1 ti)ha (1,87 (1,1)]
1 z,]]\f:l
= mZZ:;E[hx(l,ti)h;j(l,ti)hx(l,ti)h;’;(l,ti)]

i=1j=1,j#i
= %g;E[hx(l,ti)h;;(l,ti)]E[hx(l,ti)h;‘(l,ti)]

1 N N
+m;]:%:#E[hxu,ti)h;u,ti)]E[hx(Ltj)h;(Ltj)]
+i§: i Elha(1,:)h3 (1,2 E[ho (1, ;)b (1,1)]

sz':u:l,j#i e e

N N
= BB Wes ey v S0 ST RO G- 0RO, - )]

i=lj=1j#i

(C.4)

where R(0, (i — j)t;) isdefined in section C.1. Substituting equation (C.4) into (C.3) and cancelling
the (R(1),y)* term gives equation (6.22).

m = [(L/N)+ (1/N?) Y R(0, (i = j)t)R(0, (j = )t.)] " (C5)

4,3,i#]
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C.3 Derivation of the Spatial Smoothing SNR Equation

Inthiscase the receiver hasidentified J multipath bearings {6; }. There are J signalsto be combined by
ideal maximal ratio combining (MRC), and their amplitudes are given by {a(6;)h(1,)}. The mean
noise power of the j** signal issimply a# (6;)a(6;), assuming that the noise power at each antennais
scaled to unity. Before combining, each signal amplitude is scaled by the complex conjugate of itself
(namely h¥ (1,t)a(6;) for the j** signal), so that the j** scaled amplitudeis a* (0;) R(1)a(6;). Sim-
ilarly, the noise power for the j* signal becomes a ™ (6;)R(1)a(6;)a" (6;)a(;). The scaled signals
are simply added, so that the signal amplitude at the output of the MRC is ijl a™(0;)R(1)a(b;).

The mean noise power at the output of the MRC must take account of the fact that the J inputsto the
MRC are generally correlated in some way, according to the bearings {6, }. The cross—correlation of the
noiseat the j** input with that at the k" inputissimply e (0, )a (6, ): after the signalsare scaled, this
term becomes o (6;)a (6 )a™ (6;) R(1)a(d;). Hence the SNR at the output of the MRC is:

[5V)

371 e (0;)R(1)a(6))]

SNR = —5—— -
2j=1 k=1 ¢1(0;)a(0r)a (0r) R(1)a(0;)

(C.6)

Equation (C.6) may be simplified easily to obtain equation (6.26).
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Appendix D

Derivatives for The Taylor Series

Expansion

In order to evaluate the expressions given in equation (7.9), the derivatives of X and Y in terms of the
independent variables v, 8, #; and ¢ arerequired. In order to calculate them, it is possible to use direct
expressions for X and Y'; aternatively, the calculations may be simplified through the use of the chain

rule[187].

To begin with, X and Y may be expressed in terms of i and 6, as.

This means that the derivatives become:

0X
v
0X
a6,
0X
965
0X
3

X =Rcosfy Y = Rsinty (D.1)
R, o _or
ov cos b dv ~ Ov !
Y
a—éjcosﬁl—Rsinﬁl g—gzzg—gsinﬁl—l—RcosHl
oOR os 6 oY oOR sin 6
—c D
004 ! 0t 0t !
Y
6@—? cos by %—€ = g—g sin ¢ (D2

In order to avoid un-necessary complication the next task will be to take derivatives of R, as expressed
in equation (7.8), in terms of the independent variables A, B and C'. If the + sign is substituted by a

positive sign, the derivatives become:

OR
9A
OR
9B
OR
aC

B B? —2AC
242 242/B? —4AC

1 B

ﬂ(x/BZ —4AC
—1

VvV B? —4AC

187

1)

(D.3)



Alternatively isthe + sign is changed to be negative, the derivatives are altered to:

OR B

OR -1

OR

ac VB? — 4AC

il 41
9B A\ —aac T
1

n B? —2AC
0A 2A% © 2A2/B? —4AC

)

(D.4)

Next, the derivatives of the expressions in equation (7.7) for A,B and C with respect to z, y and ¢ may

be calculated. Theresultsare:

9A
9
OB
En
aC
En

DA

= =& Ty 8y

= 16x& — 4¢? 9B _ 16€y
dy

= 8t & = sy
dy

oc _ 8¢x? 4 8¢y? — 463

dA
73
9B _ 8% + 8y — 8¢x — 1262

= -8z —8¢

23

5 (D.5)

In the derivation of the algorithm, the co-ordinates (z,y) are expressed relative to the LOS path as
x—axis. So, the derivatives of « and y in terms of the remaining variables v, 6; and 4, are:

oz oz . Ox .

o = cos(fla — 01) _891 = wvsin(f; — .= —wvsin(fy — f1)

0 ) 0 0

6_Z = sin(fy — 1) 3_;/1 = —wvcos(fy — th) 3_;/2 =wvcos(fla — 01) (D.6)

All the results necessary for determining the derivative values have been presented in equations (D.2),
(D.3), (D.5) and (D.6). To obtain the correct result, the chain rule must be applied to al possible
derivatives at each stage. Asan example, the derivative 9 X /9v may be calculated as follows:

0X
Ov

OR

—sin 6,

v
(3_R@_A+3_Ra_3+3_33_0) -
9A 00 9B ov T aC o’ o
(@_R[a_Aa_l’ 3_A@H3_R[3_33_x
O0A Ox Ov Oy Ov OB~ 0z Ov

188

OB dy,  OR 0C dx
Oy Ov

oC dy

1+ %6—1}])511191

9Cax o0
(D.7)



