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Abstract 
 
The eye is embryologically, physiologically and anatomically linked to the brain. 

Emerging evidence suggests that neurodegenerative diseases, such as Alzheimer’s 

disease (AD), manifest in the retina. Retinal imaging is a quick, non-invasive method 

to view the retina and its microvasculature. Features such as blood vessel calibre, 

tortuosity and complexity of the vascular structure (measured through fractal 

analysis) are thought to reflect microvascular health and have been found to 

associate with clinical signs of hypertension, diabetes, cardiovascular disease and 

cognitive decline. Small deposits of acellular debris called drusen in the peripheral 

retina have also been linked with AD where histological studies show they can contain 

amyloid beta, a hallmark of AD. Age-related macular degeneration (AMD) is a 

neurodegenerative disorder of the retina and a leading cause of irreversible vision 

loss in the ageing population. Increasing number and size of drusen is a characteristic 

of AMD disease progression. Ultra-widefield (UWF) retinal imaging with a scanning 

laser ophthalmoscope captures up to 80% of the retina in a single acquisition allowing 

a larger area of the retina to be assessed for signs of neurodegeneration than is 

possible with a conventional fundus camera, particularly the periphery. 

Quantification of changes to the microvasculature and drusen load could be used to 

derive early biomarkers of diseases that have vascular and neurodegenerative 

components such as AD and other forms of dementia. 
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Manually grading drusen in UWF images is a difficult, subjective and a time-

consuming process because the area imaged is large (around 700mm2) and drusen 

appear as small spots (< 125µm). An automatic approach to detecting drusen would 

overcome these challenges and facilitate investigations into drusen as a biomarker of 

neurodegeneration. In this thesis, an automatic system inspired by the recent 

successes of deep learning in medical image analysis was developed. As drusen are 

abundant in the retinas of people with AMD, a neural network was trained to classify 

patches in such a dataset of UWF images. This was compared to the manual gradings 

of two human observers. There was only a moderate agreement between observers 

(Kappa = 0.53, Average Dice Similarity Coefficient (DSC) = 0.38), reflecting the 

challenging and difficult nature of manually grading drusen in UWF images. 

Performances achieved for the automatic system (assessed using the area under 

curve (AUC) performance statistic) were 0.55-0.59, 0.62- 0.65 and 0.65-0.66 in the 

central, perimacular and peripheral regions of the retina, respectively. Highest 

performance was observed in a subset 8 images where observer agreement was at 

its highest (DSC > 0.8 and < 0.9), achieving AUC 0.55-0.59, 0.78-0.82 and 0.82-0.85 in 

the central, perimacular and peripheral zones, respectively.   

 

Measurements of the retinal vasculature appearing in UWF images of cognitively 

healthy (CH) individuals and patients diagnosed with mild cognitive impairment (MCI) 

and AD were obtained using a previously established pipeline. Following data 

cleaning, vascular measures were compared using multivariate generalised 

estimation equations (GEE), which accounts for the correlation between eyes of 
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individuals with correction for confounders (e.g. age). The vascular measures were 

repeated for a subset of images and analysed using GEE to assess the repeatability of 

the results. When comparing AD with CH, the analysis showed a statistically 

significant difference between measurements of arterioles in the inferonasal 

quadrant, but fractal analysis produced inconsistent results due to differences in the 

area sampled in which the fractal dimension was calculated. 

 

When looking at drusen load, there was a higher abundance of drusen in the 

inferonasal region of the peripheral retina in the CH and AD compared to the MCI 

group. Using GEE analysis, there was evidence of a significant difference in drusen 

count when comparing MCI to CH (p = 0.02) and MCI to AD (p = 0.03), but no evidence 

of a difference when comparing AD to CH. However, given the low sensitivity of the 

system (partly the result of only moderate agreement between human observers), 

there will be a large proportion of drusen that are not detected giving an under 

estimation of the true amount of drusen present in an image. Overcoming this 

limitation will involve training the system using larger datasets and annotations from 

additional observers to create a more consistent reference standard. Further 

validation could then be performed in the future to determine if these promising pilot 

results persist, leading to candidate retinal biomarkers of AD. 
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Lay Summary 
 

During a routine optometrist appointment to check our eye health, we commonly 

have a picture taken of the back of our eye, called the retina. The retina can be 

imaged quickly and easily using a machine called a scanning laser ophthalmoscope. 

As the retina is connected to the brain, it has been discovered that changes that occur 

in the brain in relation to small blood vessels and nerves can be seen in the retina, 

which is more accessible to image. Alzheimer’s disease is the most common form of 

dementia and is a progressive disease, which means it gets worse over time. It causes 

deterioration of brain function such as memory loss (e.g. forgetting names of family 

members), problems with speech (e.g. mixing up words), disorientation (e.g. getting 

lost) and hallucinations (e.g. seeing and hearing things that are not there). The early 

sign of Alzheimer’s, called mild cognitive impairment, has symptoms of memory 

problems (e.g. forgetting to go to appointments) that is worse than you might expect 

with normal ageing. It is estimated that 850,000 people are living with dementia in 

the UK and this is predicted to increase to 2 million people by 2050. This places a 

heavy burden on healthcare providers as well as the families of patients. My research 

has looked at how the retina changes with Alzheimer’s to investigate what some of 

these changes are and whether they occur in an earlier stage of the disease. If we 

know how the retina changes in Alzheimer’s, in the future, an early warning could 

potentially be flagged at a routine optometrist appointment. 
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In an image of the retina, we can see the small blood vessels that carry blood in and 

out of the tissue. Sometimes there are small lesions, called drusen, that accumulate 

in the retina with age. These are more common in Alzheimer’s and other sight 

threatening conditions, such as age-related macular degeneration. Properties of 

blood vessels that are thought to reflect a person’s health can be measured using 

computerised techniques such as how their widths taper or how they spread out to 

deliver blood and nutrients to the retina. Drusen are difficult to count by hand 

because they are small and there are sometimes lots of them. This means that if we 

were to assess the retina for drusen changes in Alzheimer’s, a computerised 

technique is needed. Deep learning is a type of computerised detection or 

categorisation and is similar to how humans learn new things through examples. By 

teaching a deep learning system what drusen looks like and what normal retina looks 

like we can ask it to detect and count them. In my thesis, I developed such a system 

and compared its ability to identify drusen against two human observers performing 

the same task manually. There were limitations to my system. It failed to detect 

drusen that were very small which would result in an underestimation of drusen 

counts in my analysis, but it did provide for the first time a tool to automatically 

detect drusen in scanning laser ophthalmoscope images.  

 

Measurements of the retinal vessels from individuals that were cognitively healthy 

as well as those diagnosed with mild cognitive impairment and Alzheimer’s disease 

were compared. The analysis pointed to subtle differences in the retinal vessels in 

Alzheimer’s. Furthermore, drusen presence in mild cognitive impairment and 
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Alzheimer’s disease was different. My research contributed to the growing evidence 

that points to retinal changes in Alzheimer’s disease. Further work is now needed 

with larger studies and more images from individuals that have been captured at 

various time points in their lives to discover when retinal changes occur in the course 

of the disease and whether these markers can be used to make an early prediction 

of disease. 
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Chapter 1 Introduction 
 

1.1 Background and motivation 
 

Over 100 years ago Alois Alzheimer presented a lecture on a patient with “a peculiar 

disorder of the cerebral cortex” [1]. She had suffered from dementia and her brain 

was discovered to have protein plaques, neurofibrillary tangles and atherosclerotic 

changes that have now become defining features of Alzheimer’s disease (AD) [2]. The 

study of the molecular composition and mechanism of protein plaques and 

neurofibrillary tangles have since been identified as protein aggregate amyloid β (Aβ) 

and microtubule-associated protein tau [3][4][5]. These are now considered the 

hallmarks of AD. Atherosclerotic changes have also been defined as risk factors for 

AD, the most common form of dementia [6]. 

The aforementioned processes are not exclusive to dementia and there are parallels 

to other neurodegenerative diseases. Age-related macular degeneration (AMD) is a 

late-onset neurodegenerative disorder of the retina where progression to later 

stages results in irreversible vision loss. AMD and AD share many clinical and 

pathological features such as Aβ deposition in drusen and risk factors such as age and 

smoking. As the retina is anatomically, physiologically and embryologically linked to 

the brain there has been an increasing interest in utilising the retina to investigate 

diseases of the brain and central nervous system (CNS) [7]. The retina is in fact the 

only area of the body where microvasculature can be imaged non-invasively and has 
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been utilised to derive biomarkers of systemic conditions such as diabetes, cardio 

vasculature disease and renal diseases [7][8]. 

Imaging the retina is simple, non-invasive and inexpensive compared to magnetic 

resonance imaging (MRI) and positron emission tomography (PET), often used to help 

diagnose and research AD. With the advent of ultra-widefield (UWF) imaging more 

of the retina can be captured in a single image, including views of the periphery. This 

has created the opportunity to conduct a more extensive assessment of the retina 

for potential biomarkers of neurodegeneration. 

Currently there are few treatments and no cure for AMD or AD. Early diagnosis would 

improve patient care and aide in the development of preventative therapies that 

could prevent or slow down devastating vision and memory loss in the elderly. In an 

ageing population, AMD and AD become increasingly prevalent, placing pressure on 

healthcare providers by depleting resources and increasing financial strain. The 

burden is also increased for families of the patients who are affected. Non-invasive 

retinal imaging could help alleviate such pressures by providing an early diagnostic 

strategy and progression monitoring that can be achieved readily and easily.  

 

1.2 Thesis aims 
 

My study contributes to the need to investigate, characterise and assess changes in 

the retina in neurodegeneration. Automatic segmentation and analysis of the retinal 
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vasculature has previously been developed in UWF, however, automatic drusen 

detection has yet to be established. In this thesis I: 

1) Investigate methods for automatically detecting and analysing drusen in UWF 

retinal images. 

2) Implement and validate a computerised drusen detection system in UWF 

utilising images from people with AMD. 

3) Apply existing retinal vasculature analysis methods to a new cohort featuring 

patients with AD and Mild Cognitive Impairment (MCI) as well as cognitively 

healthy subjects. 

4) Apply novel drusen analysis to the above cohort to quantify drusen and 

characterise any differences in drusen load and location between the groups. 

 

1.3 Thesis outline 
 

In Chapter 2, I will consider the anatomy of the retina and its link to the brain. I 

will describe how the brain and retina are affected by neurodegeneration. Next, 

I will describe UWF imaging, how drusen may be a potential biomarker of AD in 

the retina with particular attention to the similarities between AMD and AD and 

highlight the need for drusen detection. In Chapter 3, I review the literature in 

the field of computerised drusen detection in order to inspire the direction of 

development for my system that I present in Chapter 4. Analysis of the patient 

cohort is reported in Chapter 5, including cohort characteristics and the 
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methodology for measuring the retinal vasculature in UWF images. In Chapter 6, 

I apply my drusen detection system to the patient cohort and present an 

exploratory analysis of drusen load and location. In Chapter 7, I discuss the 

conclusions of the thesis and future work. 
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Chapter 2 The retina as the window to the brain 
 

2.1 The retina and brain 
 

The human eye is a unique and complex structure. Thought to have evolved around 

550 million years ago, it is the fastest muscle in the human body with 2 million 

working parts that allows us to see 500 shades of grey and 2.7 million colours. The 

eye is broadly comprised of three distinguishable layers (Figure 2.1). The inner most 

layer is composed of a complex structure of neurons, called the retina and is 

responsible for our ability to see. The outer layers consist of the sclera and cornea. 

The sclera protects and maintains shape of the eye. The cornea refracts and focuses 

light to the lens and retina, also protecting the eye from infection. The middle layer 

comprises the iris that controls the amount of light entering the eye and the ciliary 

body that provides aqueous production. Also, part of the middle layer, the choroid is 

the vascular network that provides nutrients to outer layers of the retina [9]. 
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Figure 2.1 Anatomy of the retina [10]. Here we can see the three main layers 

including the retina.  

Light enters the eye through the cornea and is directed to the lens by the iris. The 

lens then focuses the light to the retina. The retina is composed of highly specialised 

cells called cones and rods that are responsible for allowing us to see colour (Figure 

2.2). The light excites these cells converting the light signal to a neural impulse. This 

signal is passed through bipolar cells to the retinal ganglion cells (RGC) and eventually 

to the retinal nerve fibre layer (RNFL). The RNFL increases in thickness towards the 

optic disc (OD) that is connected to the optic nerve. The electrical signal then travels 

to the brain though the OD and along the optic nerve (Figure 2.3).  
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Figure 2.2 The cellular layers of the retina. The RNFL is closest to the surface of the 

retina [7]. 
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Figure 2.3 Diagram of the eye-brain connection. The lens in our eye is much smaller 

than most of the objects we see. Light always travels in a straight line, so that when 

light is focused through the lens the image is upside down. The optic nerve goes 

through the optic chiasma to the primary visual cortex, or occipital cortex, at the back 

of the brain. This crossing of nerves allows us to register the image as right side up 

rather than upside down. 
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During embryological development the retina is formed from an outpocketing of the 

primordium of the brain and spinal cord, called the optic vesicle. The optic vesicle 

then invaginates to form the optic cup, where its inner wall becomes the neural retina 

and the outer wall, the retinal pigment epithelium (RPE). The retina connects to the 

brain through the optic nerve to the visual cortex in the brain. The retina is therefore 

a direct extension of the CNS. 

 

2.1.1 The progression of Alzheimer’s disease 
 

Neurodegeneration refers to any pathological process that affects neurons that 

degenerate by losing structure or function and can occur anywhere in the body. AD 

is neurodegenerative disease of the brain and the leading cause of dementia [11].  In 

2014, it was estimated that there were 850,000 people in the UK were living with 

dementia. This is projected to rise to 2 million people by 2050 [12]. Converging 

evidence from genetic at-risk cohorts and healthy ageing subjects have indicated that 

the pathogenesis of AD begins decades before diagnosis of clinical dementia [13]. 

Progression of AD is often thought to have three main stages: (1) presymptomatic, 

(2) prodromal and (3) symptomatic [14][15]. 

 

Presymptomatic stages of AD involve abnormal accumulation of Aβ due to abnormal 

metabolism of a large transmembrane protein called the amyloid precursor protein 

(APP) [16]. The exact physiological function of APP is not known but it has been 

shown to aide in neuronal growth and repair and is highly expressed and metabolised 
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in the brain [17]. Figure 2.4 shows the APP protein spanning a cell membrane. The 

left-hand side (blue) of Figure 2.4 is the normal pathway of APP processing while the 

right is the abnormal. Normal APP metabolism starts by α-secretase enzyme cleaving 

APP into a soluble protein that does not generate Aβ peptide [18]. There are genetic 

mutations that have been associated with the alteration of the APP cleavage site such 

as a mutation in the apolipoprotein E (APOE4) gene that has been shown to inhibit 

α-secretase and increase preferential cleavage by β-secretase (Figure 2.4A) [19]. 

Variation of the APOE gene (i.e. homozygous or heterozygous) determines the risk of 

developing sporadic (late onset) AD that accounts for 90-95% of AD cases [20]. PSEN-

1 (chromosome 14) or PSEN-2 (chromosome 1) that encode presenlin 1 and presenlin 

2 and are subunits of γ-secretase have been shown to increase APP cleavage by γ-

secretase (Figure 2.4B) [21]. PSEN-1 and PSEN-2 mutations are linked to familial (early 

onset) AD that accounts for 5-10% of AD cases [22]. Both APOE and PSEN mutations 

change the cleavage site of APP producing different length Aβ peptides. The 

incorrectly cleaved APP form Aβ oligomers that aggregate extracellularly and form 

diffuse or dense Aβ plaques (so-called amyloid plaques) between neuronal cells 

which can disrupt synaptic signalling and impair brain function (amyloidosis) [23][24]. 

Amyloid plaques and synaptic dysfunction can be identified in cerebrospinal fluid 

(CSF), PET imaging and functional MRI (fMRI) in presymtomatic stages of AD [25]. 
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Figure 2.4 APP is a transmembrane protein and when cleaved at the Aβ domain by 

α-secretase results in a soluble protein that has been shown to have neuroprotective 

properties [17]. A) Mutations in the APP (APOE4) have shown to inhibit α-secretase 

cleavage and preferential cleavage by β-secretase (Sporadic AD) )[19]. B) 

PRESEN1/PRESEN2 mutations (Familial AD) increase γ-secretase enzyme [21]. Both 

(A) and (B) lead to excess Aβ peptide that accumulates in the extracellular space to 

form insoluble Aβ oligomers which can aggregate. Overtime the oxidative stress and 

consequential biochemical changes leads to neuronal cell death and the hallmark of 

AD, amyloid plaques [24]. Figure created at biorender.com.  
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A neuronal cell contains a cytoskeleton comprised of microtubules stabilised by the 

protein tau [26]. It is thought that the accumulation of extracellular Aβ oligomers 

activates pathways responsible for phosphorylation of tau, which then loses its ability 

to stabilise microtubules and promotes self-aggregation within the cell, called 

neurofibrillary tangles (NFT) [27]. Neurons with non-functioning microtubules cannot 

signal optimally which leads to apoptosis and atrophy of the brain, narrowing gyri 

(the folds of the brain), widening sulci (spaces between the folds) and enlarging of 

ventricles (cavities filled with CSF) [28]. Figure 2.5 shows a comparison of a healthy 

brain and neurons (left) and a brain with AD and neurodegeneration (right). AD starts 

from the hippocampus, the region of the brain responsible for making new 

memories, and progresses centrifugally [29]. Tau can be identified in CSF, MRI and 

blood in presymptomatic and prodromal stages of AD [30].  Prodromal AD is typically 

observed as cerebral amyloidosis with or without evidence of neurodegeneration 

and subtle cognitive decline mainly with episodic memory disturbances [14]. 

Cognitive testing in the tail end of prodromal stage of AD, such as mini mental state 

exam (MMSE) [31] or Montreal cognitive assessment (MOCA) [32], are often 

conducted to determine cognitive decline.  
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Figure 2.5 Summary of brain biomarkers of neurodegeneration in AD. On the left is a 

healthy brain and a healthy neuronal cell. On the right is a brain with atrophy, cortical 

and hippocampal shrinkage. Left shows a healthy neuronal cell which is responsible 

for communication and integration in the nervous system. The axon is the output of 

the neuron which branch to connect to other neurons. The dendrites are the input of 

the neuron and are covered in synapses that connect to other neurons. The axon is 

covered in a myelin sheath with periodic gaps (node of Ranvier) that serves as a rapid 

conductor of nerve impulses. On the right is a degenerating neuronal cell in an AD 

brain. Amyloid plaques and tau proteins impair neuronal cell input and output that 

block the dendrites and synapses. It is thought that an inflammation response causes 

apoptosis resulting in global atrophy in the brain [28]. Figure created at 

biorender.com.  
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Prodromal to symptomatic AD diagnosis usually occurs when a relative notices a 

cognitive problem, typically a memory problem, in a family member leading to that 

person seeking primary care such as from their GP and subsequent referral to 

secondary care which is often a memory clinic [33]. Early symptomatic stages of AD 

manifest as loss in short term memory (e.g. a person may not remember what they 

had for breakfast) and progresses to loss of motor skills (e.g. eating) and language 

(e.g. word recall) [34]. Later stages of symptomatic AD manifest as loss of long term 

memory (e.g. name of spouse), increasing disorientation (e.g. getting lost) and 

eventually individuals becoming bedridden [34]. The final symptomatic stage of AD 

can be difficult to diagnose from other dementias where cognitive testing is often 

used in the clinic [35]. MCI in some cases can be considered as the transitional stage 

of age-associated cognitive decline to AD [36]. Individuals are considered to have MCI 

if there is evidence that their cognitive function has declined but can still function 

independently in their daily lives. Such evidence is usually reported by a family 

member (e.g. a person used to be good at remembering their shopping list in the past 

but presently requires assistance to remember what to buy) [37].  

 

Figure 2.6 shows the hypothetical model of the succession of AD biomarkers in the 

brain [25].  Pre-clinical AD is hypothesised to occur as a succession of asymptomatic 

Aβ accumulation which can be identified in CSF and PET [38]. Amyloid plaques 

accumulate throughout the parenchyma as diffuse fibrils or more dense plaques later 

leading to synaptic dysfunction observed in prodromal AD and is identified using fMRI 
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[28].  Tau-mediated neuronal death is closely followed by atrophy of the brain, 

imaged using MRI [39]. This leads to symptoms of MCI and eventually dementia that 

is identified using cognitive testing. The risk of developing each disease stage 

increases with age. The preclinical period of succession of biomarkers therefore 

provides a window for preventative therapies or risk factor reduction [40].  

 

 

 

Figure 2.6 A hypothetical model and of the succession of AD biomarkers proposed in 

[25]. The dashed line indicates carriers of APOE4 allele may have detectable tau 

deposition before Aβ deposition [40]. Figure from [25].  

 

This raises the key question as to whether retinal changes occur prior to some of the 

aforementioned disease processes and would therefore translate to potential early 
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biomarkers or whether they are secondary manifestations of disease that might 

translate to biomarkers of AD progression. Advances in treatment’s for AD is largely 

symptom driven such as anti-Aβ antibodies for treating mild to moderate AD [41][42] 

which showed no improvement of clinical outcomes but a  sub analysis of mild AD 

found a slowed cognitive deficit [43]. This highlights the importance of early 

treatment and how early diagnosis would identify patients in the initial AD stages 

that could benefit from such interventions. Assessment and characterisation of the 

retinal changes in AD and MCI compared to cognitively healthy (CH) individuals may 

therefore help to identify when neuro-retinal degeneration occurs and what some of 

the measurable signs might be. 

2.1.2 Neuro-retinal degeneration 
 

As the retina is anatomically, physiologically and embryologically linked to the CNS it 

has been suggested that neurodegenerative diseases, such as AD, Parkinson’s disease 

and Huntington disease [44][45], may have pathology in RGCs (where APP is also 

synthesised) and the optic nerve in the retina [46]. Changes in the retina have also 

been observed in stroke [47][48], Parkinson’s disease [49][50] and Multiple sclerosis 

[51]. At a molecular level, Aβ and tau have been found within the retina and optic 

nerve [52][53]. There have been increasing reports of Aβ deposition in the retina 

[54][55][56] and this has been shown to trigger the breakdown of the RPE [57] and 

vascular integrity of the retina [58]. Tau deposition reduces axonal transport in retinal 

neurons that causes a toxic affect to RGC’s [59], ultimately leading to RGC apoptosis 

and thinning of the RNFL [60][61][62][63] and optic nerve abnormalities [64]. 
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Furthermore, previous studies using animal models have reported a correlation 

between the deposition of senile plaques in the retina (composed of Aβ and Tau) and 

senile plaque load in the brain [65]. Retinal senile plaques in mouse models have also 

been detected prior to plaque deposition in the brain, suggesting Aβ deposition in 

the retina may be an early sign of AD [52]. In histological studies in humans, Aβ 

deposition have been found in extracellular deposits in the retina, called drusen [55].  

The development of the retinal microvasculature is a highly coordinated process that 

involves internal cell-cell signalling and external stimuli such as oxygen and nutrients 

to optimise blood flow in the retina [66][67]. Therefore, deviations from this 

optimum state can lead to damage within the retina. There have been reports of 

associations between vascular changes and the neurodegenerative process of AD 

[68] such as Aβ deposition in the retinal vasculature that has been shown to increase 

stress on the blood vessel walls leading to morphological and functional changes [69].  

 

Neurodegenerative disorders also have overlaps with diseases unique to the eye, 

such as axonal atrophy observed in glaucoma and Parkinson’s disease [70][71] and 

drusen in AMD and AD [55]. Given that there are shared features between 

neurodegenerative disorders and other ocular pathologies, precise characterisation 

of retinal changes in each condition would be required to distinguish early AD 

biomarkers from sight threatening conditions. The retina can be assessed through 

ophthalmic examination using retinal imaging, which is a quick, non-invasive 

procedure and causes hardly any discomfort to the patient. Retinal changes may be 

extremely subtle and so precise measurements are needed in order to investigate 
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associations with AD. In this thesis, drusen deposition (that may indicate Aβ 

deposition) and changes in the microvasculature are assessed using UWF retinal 

imaging in order to investigate retinal changes that might occur in AD.  

 

2.2 Ultra-widefield retinal imaging to study AD 
 

2.2.1 UWF retinal imaging 
 

Retinal imaging has evolved over the past 40 years as a technology. In parallel, our 

understanding of many diseases has increased. The oldest and most widely used 

retinal imaging modality is fundus photography, which has been used to view the 

macular, optic disc, retinal abnormalities occurring close to the surface of the retina 

(e.g. geographic atrophy (GA), haemorrhages), the retinal vasculature, RPE and 

lesions (such as drusen and diabetic retinopathy lesions). Fundus photography 

typically provides a 35-50° field of view (FOV) of the retina using white light to 

illuminate the scene and capture a colour image (with a typical resolution of about 

7μm). Optimum results are achieved through induced dilation of the pupil where 

more light can enter the eye to illuminate the retina. Multiple fundus images can be 

captured by various gaze positions and then stitched together to achieve a larger 

FOV. However, montaged images often have small misalignments that could lead to 

erroneous measurements plus a patient can become fatigued from multiple flashes 

from the camera system. Figure 2.7 shows fundus photographs and the optical 

system used to acquire the image.   
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Figure 2.7 Example fundus photographs that can be captured using a fundus camera. 

A) A fundus photograph has a 35-50° FOV. This photograph is macula centered with 

the OD to the left. B) Example of a fundus camera. This camera is a Canon CR-DGi and 

has a 45° FOV. C) Example of a montage of fundus photographs where 5 fundus 

photographs have been acquired at different gazes and stitched together. Montage 

image from [72].  

 

Scanning laser ophthalmoscopy (SLO) is a method where a laser scans across the 

fundus illuminating the retina point-by-point. Combining SLO technology with a 
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series of lenses and mirrors, a UWF image can be acquired. The retinal imaging 

modality used in this thesis is the Optos UWF-SLO and can capture 200° of the retina 

(approximately 80%). Figure 2.8 shows an Optos UWF-SLO instrument and an 

example UWF image. Optos SLO is recognised for delivering fast, high resolution 

imaging in terms of sharpness and contrast without the need for pupil dilation and is 

less susceptible than fundus cameras to any media opacities such as cataracts, 

amounting to real advantages when imaging an elderly population [73]. The UWF-

SLO camera uses red (633nm) and green (532nm) lasers to scan across the retina 

where the reflected light is collected by lenses and mirrors onto a photodiode and 

returned to its original red and green components creating a digital image 

(approximately 20μm resolution).  
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Figure 2.8 Example of an Optos UWF image and an Optos UWF-SLO instrument. A) 

An Optos UWF image (called an optomap) that is used in this thesis. The image 

consists of a red channel that is obtained by the red laser (633nm) and a green 

channel that is obtained by the green laser (532nm). In this thesis the images 

acquired do not have a blue channel but the camera system contains a blue laser 

(488nm) that is used for fluorescein angiography procedures and an infrared laser 

(802nm) used for indocyanine green angiography procedures. B) An Optos UWF-SLO 

California model that has a 200° FOV. Earlier models include the P200Tx and Daytona.   

 

Given the large FOV of a UWF instrument, the curvature of the retina must also be 

taken into account when analysing the image to measure features. Compensating for 

distortions, due to the retinal curvature, is achieved through stereographic projection 

[74]. The image is mapped computationally to a standard model of a human eye using 
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the position of the OD and the fovea as reference points. This image is then flattened, 

much like projecting a map from a globe, to enable more accurate measurements of 

distance. This process also allows measurements on the image to be converted from 

pixels to millimetre equivalents [74]. Figure 2.9 shows an example of a 

stereographically projected UWF image and the anatomical landmarks. 

 

 

Figure 2.9 Projected UWF image of a healthy individual. The OD is the bright centre 

of the image and the fovea can be seen as a dark spot. Images are acquired centred 

on the fovea. In the image we can see lashes in the inferior nasal quadrant (Q3). 

Lashes also appear in superior temporal quadrant (Q1), as they create bright 

refection’s. In this thesis, I consider any area outside a typical fundus camera FOV 

(marked here as the dotted black circle) to be the peripheral retina. 
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UWF imaging allows the periphery of the retina to be investigated for changes 

occurring with disease. There are anatomical differences between the central and 

peripheral retina, such as more cone photoreceptors in the former and more rods in 

the latter[75]. Manifestations of disease in the retina may vary between central and 

peripheral zones. Imaging a large area of the retina could prove to be beneficial for 

increasing our understanding of disease mechanisms or deriving biomarkers of eye 

and brain conditions. Indeed, UWF has utility for monitoring peripheral post-

operative tears from cataract surgery that may result in retinal detachment [76]. 

UWF has also been used to derive additional retinal abnormalities in diabetic 

retinopathy. The outcome was that diabetic retinopathy severity was graded more 

severe in UWF images than in the corresponding fundus photograph and therefore 

the larger FOV provided more information about the extent of the disease and 

resulted in a more accurate diabetic retinopathy grading [77]. This suggests that 

there is additional information in the periphery that could have clinical utility that is 

not accessible with a conventional fundus camera. UWF imaging therefore provides 

an opportunity to assess a larger area for potential biomarkers of AD. 

 

2.2.2 Drusen as a potential biomarker of AD 
 

Drusen are small deposits of acellular polymorphous debris that gathers between 

Bruch’s membrane and the RPE, which is shown in Figure 2.10, and are considered 

the hallmark of AMD. AMD is a neurodegenerative disorder of the retina and is one 
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of the leading causes of vision loss in the elderly, costing the UK economy £155million 

in 2011 [78]. Reporting to have affected 6 million people worldwide in 2014 [79], 

AMD is projected to increase to 288 million globally by 2040 [79]. Early AMD is 

observed as presence of (asymptomatic) macular drusen, often found incidentally 

through ophthalmic examination, such as from routine optometric examination. 

Although presence of drusen alone is not diagnostic of AMD, as drusen occur in 

normal ageing, increasing number and size increases the risk of progression to 

symptomatic AMD [80]. Late AMD presents as pigmentary changes of the RPE prior 

to the development of GA (Dry AMD). As neurodegeneration of the RPE progresses, 

abnormal blood vessels grow (neovascularisation) that are fragile and can leak fluid 

and blood. This results in scarring of the macula and exudative abnormalities (Wet 

AMD) and ultimately leads to irreversible vision loss. However, the exact 

pathogenesis of drusen progression in AMD is incompletely understood and 

unpredictable [81][82][83].  
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Figure 2.10 AMD pathogenesis in respect to the layers of the retina. Drusen 

accumulates between the RPE and Bruch’s membrane. Fluid leaks within the layers 

as a result of neovascularisation and can result in irreversible vision loss. Image from 

[84]. 

 

Drusen are broadly categorised into two main types, hard and soft, where AMD 

severity is usually graded according to the size, number, type of drusen and or the 

presence of GA and exudative abnormalities [85][86]. Drusen are also characterised 

on a variety of attributes, where in the context of retinal imaging they are subtyped 

based on their borders. Red and green wavelengths pass through the retinal layers at 

unique depths so that each channel within the returned image contains different 

information (Figure 2.11A). Red light wavelengths travel further to the choroid layers 

whereas shorter green light wavelengths, where drusen is situated, travels to 

photoreceptor and RPE layers. This makes drusen more clearly observed in the green 

channel (Figure 2.11B). Hard drusen are round discrete lesions (< 125µm) with 

defined borders and tend to be brighter in appearance (Figure 2.11C). The largest 
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component of hard drusen is cholesterol (40% of drusen composition) where at the 

core there is a high abundance of non-esterified cholesterol that gives drusen its 

round and bright appearance in a retinal image [87][88]. Soft drusen have less 

defined borders (>125µm) and are often confluent with the RPE or decrease in 

density from centre outwards with fuzzy edges (Figure 2.11D). Soft drusen are often 

larger than hard drusen (diameter greater than 1000µm) and are composed of loose 

granulated membranous debris that gives its diffuse and punctate appearance in a 

retinal image and is often described as a ‘starry-sky’ pattern  [89].  
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Figure 2.11 Types of drusen. A) Schematic of light from the lasers in the UWF 

instrument reaching different layers to capture different information. The red light 

reaches lower depths of the retina such as the choroid, where the green light 

captures more shallow information at the RPE where drusen is situated. B) Drusen is 

most clearly observed in the green channel of a UWF image. This patch from a UWF 

image contains many hard drusen that are brighter than the surrounding RPE. C) Hard 

drusen are assessed on the basis of their distinct borders. Hard drusen are small 

discrete lesions that are often round and bright due to their high cholesterol content. 

D) Soft drusen have more diffuse edges with decreasing brightness from the centre 

outwards. Drusen are much harder to distinguish from the texture of the RPE because 

they contain loose membranous debris that makes them more confluent with the  
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RPE.  

 

Figure 2.12 shows what drusen looks like in a UWF image. They are observed as bright 

yellow or white spots on the retina where hard and soft drusen can appear 

simultaneously and often cluster. Drusen can be found near blood vessels, the 

macular and the OD and in various other locations. Drusen can also be similar 

appearance to dust artefacts from the mirror of the imaging instrument. 

 

 

Figure 2.12 Drusen in a UWF image. Drusen are heterogeneous in composition and 

exists as many types. Soft drusen and hard drusen can appear simultaneously. Soft 

drusen often form clusters and can be described as a ‘starry-sky’ pattern. 

 

In this thesis, drusen is an interesting potential biomarker of AD because there have 

been reports of a higher abundance of hard drusen in the peripheral retina of AD in 

post mortem tissues [90] and observed in UWF images [91]. AMD and AD have similar 

risk factors (such as obesity, smoking, hypertension and ageing), share pathways of 
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inflammation and share a decreased capacity of ageing cells to remove damaged 

proteins that are also regulated by specific protein pathways [92][93]. There have 

also been reports that Aβ deposition is specific to drusen from eyes of patients with 

AMD compared to drusen in normal ageing eyes where increased Aβ assemblies may 

be associated with advanced AMD [94][55][56][95].  As there are many similarities in 

the pathogenesis of AMD and AD this suggests that Aβ-targeting therapies being 

tested for AMD could be applied to AD (and vice versa) [93]. However, it is important 

to note that the presence of drusen in AMD and AD in a retinal image does not 

immediately indicate Aβ deposition which could only be confirmed using post 

mortem biochemical analysis. 

 

There has been recent efforts using curcumin, that binds to Aβ fibrils, to image Aβ 

load in vivo [96]. This study used an automated method to quantify curcumin 

fluorescence spots in the retina (using an autofluorescent camera system) that was 

suggested to indicate Aβ deposition where they found more fluorescent spots in AD 

participants [96]. The limitations of this study were that the participants were 

required to drink shakes that contained high doses of curcumin where the fluorescent 

spots were automatically quantified using a method that was not validated against a 

reference standard (i.e. a human observer) which is needed to evaluate algorithm 

accuracy [97].  

 

Optical coherence tomography (OCT) is a non-invasive, high resolution retinal 

imaging technique which uses light waves to form cross-sectional images of the retina 
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(typically 30° (height) 21° (volume) FOV; up to 5µm axial resolution; 2mm A-scan 

depth; up to 6 x 6mm scan area). Measurements of the retinal architecture can be 

obtained and has been used extensively to study changes in mild cognitive 

impairment and AD. Two meta-analysis [98][99] have shown decreased retinal RNFL 

thickness is correlated with MMSE scores and cognitive decline. Thinning of the 

ganglion cell-inner plexiform layer and RGC complex has been observed in AD 

[100][101]. In an OCT image, soft drusen appear as white mound like elevations of 

deposit under the RPE whereas hard drusen have a prolate or blunted triangular 

shape (sometimes described as a ‘saw tooth’ pattern).  Recently, OCT has been used 

to shed light on the clinical entity of reticular pseudodrusen that accumulate above 

the RPE that was not previously observed in fundus photographs [102]. OCT is 

currently proving to be a valuable method for drusen grading and allows drusen types 

to be assessed within the layers of the retina [103]. OCT angiography (OCTA) is a non-

invasive high-resolution retinal imaging technique used to visualise the 

microvasculature (typically 3x3mm scan area) and has also been used to assess 

retinal changes in AD. A loss of retinal vessel density, that may indicate accumulation 

of Aβ,  in AD and MCI compared to controls has been reported [104][105]. 

 

To the best of my knowledge there has only been one study that has used UWF 

imaging to fully characterise, drusen load and location in AD where there was 

significantly more hard drusen in the peripheral retina in AD [91]. In this study, the 

UWF image was assessed for drusen by overlaying a grid onto the image (see Chapter 

4) and manually annotating each grid cell for drusen types. Although the use of UWF 
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imaging provided a larger area of the retina to be assessed than could be achieved 

by a fundus, OCT or OCT-A device, manual grading for drusen in the large FOV is a 

time-consuming process and would be challenging to apply this method of drusen 

grading to a larger dataset. 

 

2.2.3 The need for automatic drusen detection 
 

In the clinic, ophthalmologists use their expertise to identify types of drusen in a 

retinal image based on their appearance, with the aim to identify any pathology that 

may be sight-threatening or causing disturbances in vision. Hard drusen would not 

need to be treated as they are common in normal ageing but would require regular 

follow up to make sure they do not develop into soft drusen that may indicate early 

signs of AMD [106][107]. Such manual grading and or quantification of drusen is a 

time-consuming task where automatic computerised drusen detection to analyse 

retinal images would alleviate this challenge and aide the ophthalmologist in 

stratifying patients for regular follow up. In a research context, finding new 

associations between drusen and disease would require studies involving the 

quantification of drusen. However, manual quantification and grading of drusen is 

difficult and subjective due to their varying nature and similar texture to the ageing 

retina. In a UWF image there is a large FOV where manually quantifying drusen would 

be especially difficult and time-consuming. An automatic approach could therefore 

provide a solution to these challenges and a method to investigate drusen and 

disease in large datasets as well as monitoring progression in longitudinal studies. In 
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this thesis, a computerised automatic drusen detection was developed to allow for 

the quantification of drusen to discover new associations between AD, MCI and CH 

individuals. It is envisaged that through quantifying drusen in AD and MCI and 

comparing to CH individuals, there may be unique characteristics between the groups 

that could indicate early biomarkers of AD in the retina. 

 

2.2.4 Analysing the retinal vasculature to study AD 
 

There have been numerous studies employing vessel width calibres, vessel tortuosity 

and global branching complexity (fractal dimension) to investigate retinal changes in 

the context of microvascular health and disease [7]. In a large metanalysis (10,229 

participants) vessel width calibres measured from fundus imaging and expressed in 

the form of common summative parameters central retinal vein equivalent (CRVE) 

and central retinal artery equivalent (CRAE) have clinical relevance for predicting 

hypertension [108]. The ratio of CRAE and CRVE, AVR has also been shown to have 

associations with a decrease in AVR in diabetes mellitus [109] and stroke [110]. 

Higher fractal dimensions (FD) have been observed in proliferative diabetic 

retinopathy [111] whilst lower FD has been observed in AD [112][113] in fundus 

imaging and UWF [91]. Associations between increased retinal tortuosity’s and 

cardiovascular disease as well as with high-density lipoprotein cholesterol have 

previously been observed in fundus images [114]. To exploit the large FOV of the 

UWF image and investigate vessel width changes in the peripheral regions a novel 

parameter, vessel width gradient (WG), was extracted from the largest vessel path in 
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each quadrant. Venular WG (WGv) has previously been observed to decrease in AD 

[91].  

 

Such quantitative measures have been extracted from fundus images using semi-

automatic specialist software such as SIVA (Singapore ‘I’ vessel assessment) and 

VAMPIRE (Vessel assessment and measurement platform for images of the retina) 

[115][116]. In this thesis the retinal vasculature was analysed using an extension of 

VAMPIRE for semiautomatic analysis of the retinal vasculature in UWF images [117] 

(Chapter 5).  

 

2.3 Summary 
 

Associations between retinal changes and neurodegeneration is a longitudinal 

question to be addressed. In AD for example, it is unclear as to whether retinal 

changes occur prior to clinical symptoms such as marked cognitive decline and could 

therefore be used to identify preclinical AD, or whether these changes appear later 

in the disease process. In order to accurately and reliably quantify and monitor 

changes in the retina (both in the posterior pole and periphery), novel methods need 

to be developed. Automatic drusen detection could be used to provide quantitative 

measures to investigate associations with drusen and disease as well as monitoring 

progression in longitudinal studies. While the retinal vasculature can be measured in 

UWF images using existing software, we have no system for automatic drusen 

detection in UWF images. In part, this is because drusen are ambiguous, difficult and 
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time-consuming to label in UWF images due to their varying nature. The imaging 

characteristics of drusen (i.e. bright, yellow and round) are similar in fundus 

photographs and UWF images of AMD and AD. Therefore, a system that detects 

drusen would have the potential to detect drusen in any disease where the 

quantification of drusen load and location may provide insight into associations 

between drusen and the disease of interest (i.e. AD). This compels an investigation 

into previously developed automatic methods for detecting in fundus images in order 

to inspire the development of drusen detection in UWF images. 
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Chapter 3 Investigating automatic detection of 
drusen 

 

3.1 Introduction  
 

The focus of this chapter is the investigation into developing automated drusen 

analysis in UWF-SLO. Automatic drusen detection is an under-developed area for this 

imaging modality but is comparable to drusen detection in conventional fundus 

photography. This compels an investigation into which strategies have been utilised 

in previous fundus imaging work and to identify recent state-of-the-art techniques 

that are of relevance to my thesis, with the aim of assessing techniques that are 

applicable to UWF-SLO. The investigation was conducted as a systematic review 

[118]. The objective was to identify and critique the methods adopted in various 

algorithms and report their performance against a reference standard. Methods 

identified from the literature were then tested on UWF images and are also described 

in this chapter. This information was used to guide the development of drusen 

detection in UWF in Chapter 4.  
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3.2 The literature search 
 

3.2.1 Search strategy 
 

To filter articles featuring automatic drusen detection a computerised search of 

EMBASE, PubMed, Web of Knowledge, ScienceDirect, ACM Digital Library and IEEE 

Xplore was conducted using search terms “drusen” and in combination with 

“detection” or “classification” or “identification” or “segmentation” or 

“quantification” or “measurement” or “algorithm”. Titles and abstracts were filtered 

on whether they contain “age-related macular degeneration” or “AMD” or 

“Alzheimer’s disease” or “AD” to identify articles featuring only AMD and AD. 

 

3.2.2 Inclusion and exclusion criteria 
 

Articles were included only if they were an original study, written in English and 

evaluated performance of the algorithm against at least one human grader. Articles 

were excluded if they were a review, non-human research, non-English language, did 

not use fundus photography (e.g. OCT) and if the performance of the algorithm was 

not validated against a human grader. 
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The process of algorithm validation consists of showing that the algorithm performs 

correctly through comparison of output to a reference standard [97]. The reference 

standard is defined here as the manual grading of an image by a human. Performance 

is usually reported as a statistic such as sensitivity, specificity, accuracy and ROC (see 

Chapter 4 for definitions of these terms). Another aspect is the size of the dataset 

used to validate the algorithm. If a small number of images had been used to test the 

algorithm this might not be representative of a larger target population. Fundus 

photographs vary between individuals in the extent of disease manifestation or 

image quality. This means that an algorithm tried out on a small dataset may perform 

well in the testing phase but fail to generalise to the larger population where more 

complex data is likely. Articles that validated their proposed system on less than 50 

images were thus excluded. 

 

3.2.3 Results 
 

Figure 3.1 shows the results of the literature search as a flow diagram. The initial 

search returned 2,236 articles in 2017. A further 1,318 articles were excluded after 

filtering for AMD and AD, such as articles featuring glaucoma (42 articles) and diabetic 

retinopathy (45 articles). 834 from the remaining 918 articles were excluded as they 

did not use fundus photography (18 articles), were not an imaging study (770 articles) 

or were reviews (34 articles). 73 articles did not meet the inclusion criteria where 9 

articles did not report a performance to a reference standard, 14 articles validated 

on fewer than 50 fundus photographs, 3 articles featured software optimisation and 
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2 articles reported hardware. Following bibliography search of the remaining articles, 

1 additional article was identified that met the inclusion criteria. 5 other articles were 

included following a hand search for the year 2018 and 2 articles were included for 

the current year (2019). This totalled 16 articles where 11 articles used machine 

learning techniques and are discussed in this chapter. 5 articles reported deep 

learning techniques and are discussed in section 4.2.3. 

 

During the search, an earlier review of drusen detection in fundus imaging was also 

identified [119]. At the time this article was published the techniques considered 

conventional image processing operations as opposed to machine learning 

techniques. None of the articles discussed met my exclusion and inclusion criteria 

and were not included in the systematic review [118] but were considered in this 

thesis for the investigation into drusen detection in UWF. Notably, these articles did 

not report performance to a reference standard. In order for such systems to be 

deployed in studies involving drusen quantification, knowledge of their accuracy 

would be required to determine if the automatic measurements can be interpreted 

with a degree of confidence. To the best of my knowledge, there are no publicly 

available datasets that contain manual annotations of individual drusen to validate a 

computerised segmentation approach in either fundus or UWF images. 
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3.3 Conventional image processing 
 

Conventional image processing is a term used in this thesis to refer to methods of 

extracting information from images using digital processing that requires no learning 

stage. Such methods involve performing operations on an image to either enhance 

the image or to extract information from it. Drusen is a characteristic sign of early 

AMD and grading protocols use size, number and type [120][121][85] to determine 

AMD severity and monitor progression where earlier efforts to quantify drusen 

involved conventional image processing techniques to segment drusen [119]. 

Application of such techniques often need a pre-processing step to address noise that 

might be present in a fundus image and non-uniform illumination.  In a fundus 

photograph the shape of the retina, vignetting at the edge of the pupil and media 

opacity contributes to non-uniform illumination across the FOV when illuminating 

light from the imaging system enters the eye at particular angles. Fundus 

photographs also contain a black border that needs to be removed as this does not 

contain any relevant information. Objects that appear bright in a fundus photograph, 

such as the OD, need to be considered during image processing. These challenges are 

also present in UWF imaging. 

 

3.3.1 Drusen segmentation in fundus photographs 
 

Histogram based approaches have previously been applied to fundus photographs to 

segment drusen [122][123]. Pixel values in an image range from 0 (black) to 255 
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(white) in each of the red, green and blue (RGB) colour channels. An image histogram 

is the frequency of occurrence of intensity across all the pixels. This allows the 

number of pixels that have a particular intensity value to be visually inspected and 

where the shape of the histogram provides information pertaining to the overall 

quality of the image, characteristics of objects and the potential for enhancement. 

Rapantzikos et al [123] proposed a histogram based algorithm for segmenting local 

regions of drusen in fundus photographs called histogram adaptive thresholding 

(HALT). The authors observed that histograms of windows containing drusen had a 

positively skewed distribution with a peak of bright pixels. To obtain a segmentation 

from a histogram, Otsu’s thresholding approach, a well-established thresholding 

method that finds the threshold that maximises the variance between peaks in a 

histogram [124],  was used to segment drusen regions from the background. The 

result was that there was no need to correct for non-uniform illumination or remove 

border pixels. The algorithm worked well on clearly defined drusen but failed on 

drusen that were vague, small or located inside bright regions, within noise and near 

vessels. Checco et al [122] used a variety of noise removal (random variation of 

brightness or colour in an image) and histogram normalisation that equalises pixel 

intensities across the intensity range to correct for non-uniform illumination and to 

enhance drusen in a manually defined local region in a fundus photograph. A 

threshold was applied to the enhanced image and drusen were segmented.  
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Figure 3.2A shows the pixel intensity profiles of selected regions in a UWF image 

extracted over a set distance of 110µm, which is approximately the same size as the 

smallest window in [123]. The regions and corresponding signal of intensity profiles 

contain abrupt changes related to objects in the image. The profile plot shows three 

large peaks of bright pixel intensities that were sampled from hard (Figure 3.2D) and 

soft drusen (Figure 3.2E) as well as objects that are thought to be dust inside the 

imaging system (Figure 3.2G). The lower intensities of these profiles are similar in 

behaviour to the profiles pertaining to RPE of early AMD (Figure 3.1B) and RPE of an 

older eye (Figure 3.2C) and a blood vessel (Figure 3.2G). This figure shows that 

although drusen in a UWF image have a characteristic pixel intensity distribution, 

certain features within the drusen profile can be similar to those found in other 

objects such as the intensity of the RPE and can occur simultaneously with intensity 

of other objects such as blood vessels. This highlights how using a histogram method 

in a UWF image to segment drusen would be challenging. 
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Figure 3.2 A) Intensity profiles of different regions in a UWF image sampled over a 

distance of 110µm. B) sample of early AMD RPE, (C) sample of older healthy RPE, (D) 

sample of hard drusen, (E) sample of soft drusen, (F) sample of ambiguous object that 

could be either drusen or dust, and (G) sample across a blood vessel. 

Segmentation of drusen in fundus images using texture has previously been proposed 

[125]. Texture is a nebulous concept where its interpretation sometimes depends on 

human perception but mathematical definitions for quantifying it are also available. 

Drusen are different in texture and colour than the normal appearing retinal surface. 

For a computer to understand this and use texture content to segment drusen, we 

need to describe it in a numerical form. There are many methods to extract texture 

information from an image such as using histogram properties, morphological 
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operations and filter based techniques, and it is a rich and long standing field of 

computer vision [126][127]. In the previous figure, the intensity profiles reflected, in 

part, the texture of different objects in the UWF image. These signals can therefore 

be utilised to describe texture.  

A standard method uses a Fourier transform that convolves a signal into its sine and 

cosine wave equivalents and into the frequency domain [128]. In an image, each pixel 

in the Fourier transform will correspond to the intensity of the wave and the position 

of the pixel corresponds to the frequency and orientation of the wave. The aim of the 

Fourier transform in image processing is to select certain waves that have a specific 

frequency and orientation that represents the object of interest. A wavelet is a rapid 

decaying oscillation that has 0 mean and exists for a finite duration in different sizes 

and shapes. A wavelet can be scaled to a larger factor that stretches the wavelet and 

corresponds to a lower frequency or can be scaled by a smaller factor that shrinks 

the wavelet and corresponds to a higher frequency. A low frequency wavelet when 

passed over a Fourier transform signal will capture slowly varying changes in a signal 

and a high frequency wavelet will capture abrupt changes. The wavelet can be shifted 

along the signal so that it is in line with the feature or object of interest. This type of 

processing in the frequency domain is called filtering and is used to smooth, sharpen 

and enhance images. Filters can be applied to the Fourier transform in order to 

manipulate a specific frequency, such as by amplifying and attenuating the signal, so 

that by inverting the transformation the desired effect will be applied to the signal 

[126][127]. 
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Figure 3.3A shows pixel intensity values sampled across a UWF image where the 

arrows indicate the peaks and troughs corresponding to whether this signal is from a 

blood vessel, drusen or the retinal surface (Figure 3.3B). A Fourier transform was 

applied to the signal transforming it into the frequency domain where high frequency 

spikes correspond to high intensity values (Figure 3.3C). This operation was applied 

to a whole image and Figure 3.3D illustrates its effect on a small image patch that 

contains drusen. A Fourier transform of the image is represented in the frequency 

domain which consists of a signal with magnitude (the intensity of the wave) and the 

phase (the position of the wave). The image is reconstructed using the phase and 

magnitude to re-transform the image back into the spatial domain. This results in an 

enhanced image where drusen appear better defined as do the vessels but there is 

still some high frequency noise. A Gaussian filter is a filter that has a Gaussian shape 

that can be used to remove high frequency components whilst preserving high 

frequency edges (i.e. it is a low pass filter) [129]. In Figure 3.3D, a Gaussian filter is 

applied to the Fourier transform that results in a reduction of noise and an 

enhancement of the edges of drusen and blood vessels. Parvathi et al [125] proposed 

using a Gabor filter (a Gaussian wavelet modulated by a sinusoidal plane) to filter a 

manually defined region of interest (ROI) in a fundus photograph for high frequency 

components that correspond to edges of drusen to obtain a segmentation. This 

method required OD and blood vessel suppression by masking the OD and replacing 

the dark pixels from blood vessels in the green channel with the local mean of the 

pixels in the image. Since a Gabor filter can have multiple shapes and scales, this 
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method required parameter tuning (i.e. selecting the optimum shapes, size of the 

filter) and could only be applied in local regions of a fundus photograph.  

 

 

Figure 3.3 Applying a Fourier Transform to a UWF image to enhance drusen.  A) 

Shows a blue profile line indicating where pixel intensity values were sampled. B)  

Displays the distance along the sample line plotted against pixel intensity. C) The 

Fourier transform of the signal into the frequency domain. Hypothetical Gaussian 

filter is overlaid where it can be passed along the signal to filter high frequency noise.  

In this example the Gaussian filter is placed over a region of high frequency that 

would be removed to reduce noise. D) Each processing step applied to an image 

patch containing drusen. 



47 
 

Morphological operations have previously been applied to fundus photographs to 

segment drusen [130]. Morphological processing involves defining a structuring 

element such as a binary circle or a square and placing it at every location over the 

input image and comparing it to the surrounding pixels. This can switch on the pixels 

that are black (i.e. replace with 1) within the neighbourhood defined by the 

structuring element (dilation) or remove pixels at the boundary (erosion). The result 

from a dilation is that objects in the binary image become larger in shape and in an 

erosion, they become smaller with some detail removed. Sbeh et al [130] proposed 

a structuring element derived from the region maxima of the pixel intensity profile 

of drusen. This method applied the structuring element to a manually defined ROI 

that was smoothed using a median filter. The challenge with this method was that 

the structuring element could only be applied to local regions of drusen at the fovea 

and gives coarse results when extending to the image as a whole. Figure 3.4 shows a 

structuring element applied to the processed image patch from the previous figure. 

Firstly, the background is defined as the Gaussian filtered image and is subtracted 

from the green channel resulting in an enhancement of drusen pixels (Figure 3.4A). 

As drusen are circular in appearance, a circle or disk structuring element was defined 

with a diameter of 10 pixels (Figure 3.4B). The structuring element is applied over the 

image as a dilation to extend bright objects into the shape of a circle (Figure 3.4C) 

and the border pixels are removed (Figure 3.4D). The result is a grey image that can 

be thresholded by selecting all grey values above 0 and the boundary of the resulting 

mask is traced onto the original grey image (Figure 3.4.E). Bright drusen are 
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segmented in the centre of the image and the use of a morphological operation 

creates a smooth outline of drusen. 

 

 

Figure 3.4 Application of morphological processing using a disk structuring element 

to the patch of drusen in a UWF image from Figure 3.3D after gaussian filtering. The 

purpose is to obtain segmentation of drusen in the image. A) Gaussian filtered image 

that is subtracted from the green channel and results in an enhancement of drusen 

pixels. B) Binary disk structuring element with a diameter of 10 pixels. C) The 

structuring element is applied over the greyscale image as a dilation to extend bright 

objects into the shape of a circle. D) The border pixels are removed using connected 

components. E) The image is thresholded by selecting all pixels that are above the 

value of 1 and the outline of the mask is overlaid onto the original image.   



49 
 

 

3.3.2 Drusen segmentation in UWF-SLO 
 

The methods described in Section 3.2.1 for fundus camera imaging were applied to 

UWF imaging in order to assess whether they might be suitable for segmenting 

drusen in these types of images. Conventional image processing methods posed four 

main challenges. The first was the presence of non-uniform illumination, which would 

make drusen appearing in the centre of the image brighter but darker in the 

periphery, and so a segmentation method would need to be robust to such 

variations. Second, the presence of other bright appearing objects such as the OD 

might need to be suppressed to reduce the number of false positives. Thirdly, 

traditional methods seem to perform well on image patches but often failed when 

applied to the full image in one go. Finally, segmentation methods work well on hard 

drusen that have clearly defined edges as opposed to soft drusen that are blurrier in 

appearance. What these methods had in common is the use of the green channel on 

which segmentation of drusen was performed as they are most visible against the 

retinal tissue in this colour channel (see chapter 2). With these challenges in mind, a 

combination of histogram, texture-based and morphological based methods were 

tested on a fundus photograph and then applied to a UWF image.  

 

Figure 3.5 shows a fundus photograph (green channel only; 2336x3504 pixels) 

containing drusen and the corresponding image histograms as the input image is put 
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through the initial processing steps. Figure 3.5A shows the input image and Figure 

3.5B shows the same photograph but the OD region suppressed, which was achieved 

by manually outlining the OD boundary and setting pixels within this region to black. 

In the corresponding image histogram there is a non-uniform, left-skewed 

distribution of pixel intensities where removal of the OD decreases a small peak in 

bright pixels (denoted by the magenta arrows). Non-uniform illumination correction 

was applied to both images using a Top-hat filter that is a form of morphological 

filtering using a structuring element (in this method a disk of radius 20 pixels) to 

perform morphological opening that is subtracted from the original image [131]. The 

result is an image where the larger bright objects are removed whilst keeping the 

smaller ones (i.e. possible drusen) (Figure 3.5 C and D). This results in a narrower and 

more uniform grey level intensity distribution. 
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Figure 3.5 Correcting non-uniform illumination in a fundus photograph using a Top-hat filter. A) The green channel of the fundus 

photograph as a grey scale image with an area where there is a mixture of soft and hard drusen marked (white box). It can be seen that 
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the centre of the image is lighter than peripheral areas of the image.  B)   The region corresponding to the OD has been suppressed 

manually which has reduced a small peak of bright pixels (magenta arrow). C) Top-hat filtering of the green channel leads to an 

enhancement of drusen as well as an image histogram that has a normal distribution between a narrower range of pixel intensities. D)   

The same Top-hat filter applied to the OD suppressed fundus photograph.
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To extract texture content from the image, a Fourier transform with a Gaussian filter 

was applied and subtracted from the filtered green channel, as in Section 3.3.1.   

Figure 3.6A shows the output with (left column) and without OD suppression (right 

column).  The result is that smaller brighter pixels that are different in texture to the 

rest of the image have been enhanced, but there is still some noise within the image 

from small bright regions. To extract the larger objects that could be drusen and 

reduce the noise, a second disk structuring element (10 pixels) is applied to the image 

(see Figure 3.6B) that reduces noise while the larger brighter objects that may be 

drusen are enhanced. However, this operation has also enhanced the bright regions 

around the OD even with suppression.  To remove this, the image was binarized by 

selecting all pixels above the value of 0 (black) and the largest object, identified using 

connected components whereby an object in an image is identified as being part of 

the same object by scanning neighbouring pixel values, was removed. Figure 3.6 C 

shows the removal of this region (magenta) in the images without and with OD 

suppression. This results in the binary images shown in Figure 3.6 D. 
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Figure 3.6 Texture based segmentation with morphological filtering of a fundus 

photograph without OD suppression (left) and with OD suppression (right). A) image 

segmented by texture. B) Morphological filtering using a disk structuring element of 

10 pixels in diameter. (C) Removal of the object with the largest area (green) from 

the smaller objects (magenta). (D) Final binarized image. 

Figure 3.7 shows the final binary segmentations overlaid onto the original fundus 

photograph where it can be seen that there is a high number of false positives in 
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segmentation when the OD was not suppressed. Also shown is a close up of the green 

channel with outlines of candidate drusen overlaid. By visual inspection, the black 

arrows indicate drusen that has been correctly segmented while the red arrows 

indicate false positives that occur around blood vessels. The green arrows indicate 

where drusen was not successfully segmented. 

 

 

 

 

 

 

 

 

 



56 
 

 

 

Figure 3.7 Result of texture-based segmentation overlaid onto a fundus photograph 

without OD suppression (A) and with (B). C) A close up showing a section of the green 

channel overlaid with outlines of the segmentation output. Black arrows indicate 

drusen that have been correctly segmented while red arrows indicate false positives 

near blood vessels and green arrows indicate false negatives where soft drusen with 

less defined edges were unsuccessfully detected 

Figure 3.8A illustrates the result of the method applied to a UWF image (with the OD 

suppressed). The image contains clusters of hard and soft drusen as well as eye lashes 
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that have covered some of the FOV. The face plate is also apparent in the image and 

contained dust particulates over its surface, and there is a dark spot near the OD. This 

is a representative example of a challenging UWF image because it contains large 

amounts of drusen, non-uniform illumination and artefacts (some of which have a 

similar appearance to drusen, i.e. dust). Visually, the segmentation method has 

worked well to identify drusen clusters but has produced a false positive 

segmentation of the face plate. Given that previous work performed well on image 

patches, a cropped section of the image was segmented separately and is shown in 

Figure 3.8B where it can be seen that some hard drusen have been identified but also 

a region that containing both hard and soft drusen as well as normal retinal tissue 

has been incorrectly selected. 
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Figure 3.8 Application of traditional image processing technique to segment drusen 

in a UWF. A) UWF image containing large clusters of hard and soft drusen. Eyelashes 

are present in the bottom of the image as well as a portion of the face plate that 

appears due to sub-optimal patient positioning at image acquisition. There is a dark 

artefact near the OD that could be vitreous material. B) Segmentation of a local 

region in the central area of the UWF image. Black arrows indicate drusen that have 

been correctly segmented while the green arrows indicate false negatives and the 
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yellow arrow indicates how the segmentation has been unduly influenced by 

artefact. 

As previous grading protocols have used drusen size, type and number to monitor 

drusen progression and severity [120][121][85], the segmentation result would not 

be able to return this type of information accurately. In addition, one of the major 

challenges with some of the previously discussed work discussed is that there was no 

reporting of segmentation performance against a reference standard. This is because 

manually segmenting drusen by hand is labour intensive and subjective. Although 

conventional image processing may produce promising results in a visual sense, 

without validation to a reference standard their performance cannot be assessed 

quantitatively.  

 

3.4 Machine learning 
 

The results from the aforementioned literature search showed a trend moving away 

from traditional image processing techniques (reviewed in [119]) towards novel 

machine learning approaches where the overall aim is to classify an image into a 

particular class. Machine learning is a subfield of artificial intelligence (AI) and is 

based on how humans learn from past experiences. For example, an individual can 

decide whether they like an item of clothing or not based on the colour and 

brightness or intensity. In Figure 3.9 this shown as a plot where the points indicate 

whether an individual likes an item of clothing (green dot) or not (red dot). From this 
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data we can deduce that this individual does not like dark red clothing but likes bright 

blue clothing as it is linearly separable. Based on this previous knowledge, when we 

are presented with a new item of clothing that is bright blue, we would be able to 

predict that this individual will like this item of clothing. However, if we have another 

item of clothing that has a medium intensity and is green in colour, it is unclear as to 

whether they will like or dislike the item. This is where machine learning can be used 

to model scenarios where the features that define the data are more complex than 

colour and intensity but can be used to predict the group that new data belongs to. 

In this example, one could decide that item 2 is closer to more ‘likes’ than ‘dislikes’ 

and therefore it is a predicted to be a ‘like’. Such an algorithm or technique is called 

k-nearest neighbours (KNN) and is an early form of machine learning. Just as an 

individual can learn what they “like” and “dislike” about an object and use this to 

decide what they might think about new object, so too can a machine learning 

algorithm use previously learned features from the data to predict a classification for 

new, unseen data. 
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Figure 3.9 Illustrating the concept of classification. The example shows two features 

that an individual might use to decide whether they like an item of clothing or not. 

The known information is plotted and could be separated using linear regression, 

where this individual seems to like bright blue clothing but dislikes dark red clothing. 

If we have a new item of clothing that is bright blue, it is plotted (magenta data point), 

and we can see that the individual will most probably like the item. When presented 

with a more difficult decision that is an item of medium intensity and green in colour 

(yellow data point), the data is no longer linearly separable and would require a 

different method to predict which group it belongs to. In this example we could use 

the neighbouring data points to decide the label for the new item of clothing. This is 

called KNN classifier, where k is the number of neighbouring points used. 
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When the data is an image, features from the data need to be extracted. This is often 

referred to as handcrafted features and is manually designed by identifying 

distinguishing features in an image relating to the object of interest. An 

ophthalmologist can distinguish features of a disease such as GA or drusen, but an AI 

algorithm will need to extract features from pixels that pertain to an object such as 

drusen. In Section 3.3 a technique that exploited the brightness, colour and texture 

of drusen was used to segment drusen from the retinal background. This can be 

extended to more complex features derived from properties within the image to 

build a classification algorithm that separates the data into the desired classes. These 

features can either be learned from previous examples (supervised learning) or 

determined by the algorithm (unsupervised learning). Figure 3.10 [118] shows an 

example of a supervised learning pipeline. First, the image is pre-processed to 

enhance image features or to reduce noise. Next, features such as measures of 

entropy (properties from the pixel intensity levels in an image), energy (properties 

from histogram distribution), texture and geometric properties are extracted from 

the image. This is transformed into a numerical vector that typically undergoes a 

feature selection stage, whereby the best features that describe the data are 

selected. At the so-called training stage, a classification algorithm is applied to use 

patterns learned in the data to distinguish subgroups. In order to validate the 

algorithm, a testing set is then input into the trained classifier and used to classify 

new images into subgroups. The results from the literature search (see Section 3.2.3) 

will be discussed in terms of these machine learning steps and are subsequently 



63 
 

applied to a set of UWF images to classify them into classes - early AMD, older eye 

and younger eye. 

 

 

Figure 3.10 Example of a supervised machine learning pipeline from [118]. 1) The 

image is preprocessed either to reduce noise or enhance features of interest in the 

image. 2) Features such as pixel intensities, geometric properties and textures are 

extracted. 3) Features are converted into a numerical vector and undergoes a feature 

selection stage where the best features that distinguish classes are selected. 4) A 

classifier is trained that separates the data into the subgroups. 5) Training generates 

a mathematical function that separates the classes. 6) Testing images are input into 

the trained classifier to identify which group the image belongs to and this is validated 

against a reference standard. 
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3.4.1 Study designs and populations 
 

The 14 studies that met the inclusion and exclusion criteria used 4 publicly available 

datasets (ARIA [132], STARE [133], AREDS [134], RetinaGallery [135]), 3 used private 

datasets, 1 article sourced fundus images from a telemedicine platform and 1 article 

used images from an independent study [136]. Although each article used different 

methods some articles used the same datasets. Four articles aimed to classify fundus 

photographs as disease or no disease, 6 articles aimed to classify AMD into severities 

using the AREDS grading protocol [86] or an in-house grading protocol (Cologne 

Image Reading Centre and Laboratory (CIRCLE)). 2 articles aimed to classify Dry AMD 

vs. Normal images and 1 Wet AMD vs. Dry AMD or Normal. Table 3.2 summaries the 

dataset and cameras used for each of the 11 articles [118]. 

3.4.2 Preprocessing and feature extraction 
 

Similar to conventional image processing, properties from the image histogram (e.g. 

energy, entropy and intensity) have commonly been used for classifying regions that 

contain drusen or not. To improve contrast in an image Contrast Limited Adaptive 

Histogram Equalisation [137] has been used frequently [138][139][139][140][141]. 

This technique flattens the image histogram to make the image equal in colour 

intensity that results in an enhanced image in the sense that the image appears to 

have more definition between objects in the image (i.e. more contrast) Following 

removal of the black border, median filters have been used to smooth high frequency 
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noise [142][143]. Grivinsen et al [144] employed intensity and contrast features from 

manually defined boundaries of drusen that to train a classifier. Burlina et al [145] 

used conventional image processing techniques such as median filtering, 

morphological dilation and thresholding to obtain regions of no drusen (background) 

and drusen. Garcia-Floriano et al [146] exploited  mathematical morphology to 

segment regions of drusen and the macular that was subsequently used to extract a 

quantitative measure of pixel intensity shape called a Hu moment. The type of 

preprocessing applied depended on the particular features to be extracted. These 

studies all exploited drusen colour and intensity from an enhanced green channel to 

derive a mathematical definition of drusen that could be used to distinguish them 

from other objects present in the image (i.e. background, optic disc, macular). Hijazi 

et al [138] replaced blood vessels with null values in their proposed system where 

removal of black border was not required. Table 3.1 summarises the preprocessing 

and features used in each study [118].
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3.4.3 Feature selection 
 

As it is possible to extract many features from an image, it is necessary to select the 

best descriptors of the object(s) of interest that achieve the best classification 

performance. The feature selection stage involves removing potentially noisy or 

irrelevant features and identifies salient features that can be used to best distinguish 

between classes. Six of the articles from the literature search employed a feature 

selection stage. Zheng et al [140] used a L2 loss function to reduce noisy pixel 

intensity features. The output is a list of top features that were best for distinguishing 

images of disease and no disease. Garcia-Floriano [146] used a software package 

[147] to identify highly correlated features to disease and no disease. Mookiah et al 

[139][148] used parametric (e.g. t-test) and non-parametric tests (e.g. Wilcoxon 

ranking) to determine the top features for distinguishing disease from no disease. 

They reported a texture feature from a Gabor filter as the best performing feature. 

Acharya et al [141] used an algorithm inspired by ant behaviour and crossover 

operators in genetics to identify top features for classifying dry AMD and wet AMD 

from no AMD. They reported energy and entropy features as the top-ranking 

features. 
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3.4.4 Classification 
 

The classification stage is the process of using the best features that represent the 

data to identify a model that separates the data into the desired classes. A dataset of 

images is typically separated into a training set used to develop the model and a 

testing set used to validate the performance against a reference standard. The 

evaluation of an algorithm’s performance is commonly reported in terms of statistics 

such as receiver operating characteristic (ROC), accuracy, sensitivity and specificity 

(see section 4.3.4 for a definition of these terms).  

3.4.4.1 Disease/no disease 

 

Classification is the process of taking the input features and mapping to a discrete 

label such as disease or no disease. There are many classifiers available and the choice 

of which one to use depends on the nature of the data and its application. Table 3.2 

summarises previous work used for classifying disease or no disease in fundus 

photographs [118]. Hijazi et al [138] used a case-based reasoning (CBR) technique to 

classify images containing disease (AMD) or no disease from histogram-based 

features. CBR is an automated reasoning and decision-making process whereby new 

problems are solved using experience accumulated from solving previous problems. 

Hijazi et al [138] used a 2-step CBR system whereby histogram features from the 

green channel with the blood vessels removed was the first case and the second case 

consisted of the same image but with the removal of the OD. The model was built by 
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storing the training image features for classes of AMD and no AMD so that when an 

image was passed into the CBR system it would compute the similarity between the 

learned AMD and no AMD features. The output was whether the input image was 

similar to AMD or no AMD where the highest similarity would be the prediction for 

the image. They reported a 75% accuracy for correctly classifying AMD images. 

Burlina et al [145] proposed a constant false alarm rate (CFAR) algorithm that is used 

in radar systems to distinguish true signals from noise to determine the origin of the 

signal. The CFAR system used colour features to train a support vector machine (SVM) 

classifier. An SVM classifier is a form of regression whereby features are projected 

into a higher dimensional space so that classes are linearly separable. They reported 

a positive predictive value of 97% and a negative predictive value of 92% at classifying 

images that contain disease (i.e. pathology that may indicate an unhealthy retina) or 

no disease. Zheng et al [140] proposed an algorithm that represented training images 

as a hierarchical tree where the child and parent nodes were derived from colour and 

intensity features of the image. They reported best classification using an SVM 

classifier that achieved a 99.4% sensitivity. An SVM classifier was also used by Garcia-

Floriano et al [146] to classify images as disease or no disease from pixel intensity 

features and reported a 92% accuracy.  
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3.4.4.2 AMD severity  

 

The AREDS grading protocol used drusen size, count and type to define AMD severity 

into four classes [134]. Table 3.3 summarises classification of AMD severity in fundus 

photographs [118]. Phan et al [143] proposed a machine learning system to classify a 

dataset of fundus photographs into AREDS classes consisting of class 1 {1} for healthy 

images, class 2 {2} mild AMD (containing small drusen <63µm), class 3 {3} moderate 

AMD (containing drusen between 63µm and 125µm) and class 4 {4} advanced AMD 

(containing many drusen with geographic atrophy). They employed a “bag of words” 

algorithm that used the most salient features in the image and counts the frequencies 

and bins them into a histogram. The so-called visual vocabulary consisted of colour 

features where they used an SVM to classify the images into the AREDS classes. They 

reported a best performance for classifying {1} vs {2} vs {3} vs {4} at an accuracy of 

62.7%. Similarly, Kankanaballi et al [142] exploited colour features to generate a 

visual vocabulary from images of high quality and low quality (i.e. images containing 

artefacts or poor lighting) and different numbers of images in the training set of each 

AMD class.  They reported a highest accuracy of 98.9% for classifying images into 

AMD classes from a classifier that was trained from images of high quality with a 

balanced number of images per class. This accuracy decreased to 96.1% as low-

quality images were included. Grivensen et al [144] proposed a system to quantify 

drusen area, size and location to classify images as low risk or high risk AMD. This 

involved segmenting drusen using Gaussian filters of the green channel and K-nearest 
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neighbours to determine whether a pixel belonged to drusen or not. From the 

segmentation they derived drusen area and diameter and compared this to the 

manual measurements from two human observers. From the segmentation, colour 

and texture features were extracted to train a random forest classifier that classifies 

a high or low risk images. They evaluated the algorithm according to its agreeability 

between the observers using intraclass correlation coefficients (ICC) and reported an 

ICC of 0.69 for drusen area and diameter and an ICC of 0.95 for AMD image 

classification.  
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Table 3.3 Summary of applied machine learning techniques to classify fundus photographs into AMD severity categories [118]. ACC, 

accuracy; SEN, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; AREDS, Age Related Eye 

Disease Study; EIPC, equal number of images; MIPC, maximum number of images per class MS, manually selected images.
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3.4.4.3 Wet/dry/no disease 

 

Table 3.4 summarises previous work used for classifying wet or dry AMD from normal 

in fundus photographs [118]. Mookiah et al [139][148] used multiple features derived 

from the CLACHE enhanced images pixel intensities to train an SVM classifier to 

classify between fundus photographs of dry AMD and no AMD. They reported best 

performance of 95%. Similarly,  a SVM was used by Acharya et al [141] to detect wet 

AMD from dry AMD using gradient features. There was an imbalance in the number 

of wet AMD image (21 dry to 1 wet) and used oversampling of the minority class to 

balance the data. They reported an 85.1% accuracy for detecting wet AMD from dry 

and normal images. Both of these proposed systems did not require any retinal 

landmark suppression.  
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3.4.5 Machine learning for UWF-SLO classification 
 

3.4.5.1 Materials and methods 

 

22 early AMD (17 right, 5 left), 62 older eyes (30 right, 32 left) and 40 younger eyes 

(19 right, 21 left) UWF images were used in this thesis to train a classifier to 

distinguish the images into their categories. Images were captured using an Optos 

UWF-SLO (Daytona, Optos plc, Dunfermline, UK) and shared by Optos. This 

represents a challenging dataset to classify for three reasons. The first is that the 

appearance or texture of the retina looks similar for older eyes and early AMD. In the 

ageing retina there is a decrease in the abundance of RGC’s and photoreceptors 

[149]. In a UWF image and fundus photograph this is perceived as varying levels of 

colour and texture. As AMD risk increases with age this texture would also be present 

therefore it would be challenging to distinguish between early AMD and a retina that 

is ageing healthily. Second, in a younger eye there is an abundance of RGC’s in the 

posterior retina that are bright in appearance and could resemble drusen. Finally, the 

variation in image quality is often taxing as an older individual may not be able to 

open their eye sufficiently wide enough at image acquisition leading to eyelash and 

eyelid artefacts in the image. Additionally, older participants may not be able to sit in 

an optimal position at the device which causes bright reflection artefacts that occur 

in the centre of the image. In this dataset there is a variation of image qualities in 

each group (Figure 3.11).  
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Figure 3.11 Representative examples of UWF images in each group. The top row of images is considered to be good quality as there is a 

large FOV with minimal eyelash and eyelid obstruction. The bottom row of images is considered to be poor quality because of the eyelash 

and eyelid obstruction.  A)  Right eye of individual with early AMD, clusters of hard and soft drusen are present near the macular. B) Left 
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eye of an older individual without AMD that contains temporal tessellations (thin choroid). C)  Right eye of a younger individual that 

does not contain drusen but bright healthy RGC ‘s surrounding the macula.  D) Right eye of an individual with early AMD and of poor 

quality. There are numerous clusters of hard and soft drusen from the central retina towards the periphery. E) Left eye of an older eye 

of poor quality, much of the image is obscured by artefact. F) Right eye of a young individual that is poor quality due to the obstruction 

of the eyelashes and lid that covers a large portion of the inferior retina. 
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The dataset in Phan et al [143] consisted of four severities of AMD (see section 3.4.4.2 

for definitions of the AREDS class) - where class 1 and class 2 is a similar problem to 

older eye vs early AMD eyes, and trained the classifier using high quality and low 

quality images. This gave good results using a bag of words feature extraction method 

with a Gaussian kernel SVM classifier.   

In section 3.3.2 an image histogram was defined using the frequency of pixel 

intensities in the image, likewise a histogram can be defined using the features 

contained within an image, called a visual vocabulary. First, the training image was 

divided into a grid (with overlap) and Speeded Up Robust Features (SURF) was 

extracted from the image within each grid cell [150]. Next, the extracted features 

were clustered using K-means (a method used to group data points into a specified 

number of clusters) whereby the centre of each cluster is a visual word. The 

frequency of occurrence of each visual word was obtained for each training image 

and defined each image histogram (i.e. the visual vocabulary). A KNN (see section 3.4) 

and SVM classifier was trained using the visual vocabulary as features. An SVM 

classifier is a well-established technique that projects features into a higher 

dimensional space so that classes are separable (i.e. finds a decision boundary that 

maximises the space between data points closest to the boundary). The function that 

transforms the features into the new space and constructs the SVM is called a kernel 

where there exist many types, such as linear, radial basis function kernel (or gaussian 

kernel), polynomial and sigmoid, where choice of kernel depends on the nature of 

the data.  
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Given that Phan et al [143] had good results with a similar dataset, a bag of features 

algorithm was applied to extract features from the UWF images. Next, a SVM and 

KNN classifier was trained and evaluated on UWF images of 8 early AMD (4 right, 4 

left), 15 older eyes (7 right, 8 left) and 10 younger eyes (5 right, 5 left). The value of 

the hyperparameters grid size, overlap, number of K-means clusters and kernel 

method can be determined by iteratively tuning the hyperparameters and evaluating 

the classifiers performance. In this thesis, a high performance was obtained in the 

first iteration using a grid size 32 x 32-pixel, 8 x 8-pixel overlap, 500 clusters for K-

means and a Gaussian kernel. 

3.4.5.2 Results 

 

The evaluation metrics of accuracy, sensitivity and specificity (see section 4.3.4 for a 

definition of these terms) were used to assess the performance of the classifiers. 

Table 3.5 displays the results for the testing set. SVM achieved the highest sensitivity 

(88.9 %) and specificity (100%) compared to the KNN classifier. The KNN classifier had 

1 false positive that predicted an older eye to be early AMD and 1 false negative that 

predicted 1 image as an older eye when the true label was early AMD. Figure 3.11 

shows the false positive and false negative UWF images for the KNN classifier. The 

false negative could have arisen due to the low abundance of drusen present in the 

image. The false positive could have occurred due to the bright eyelashes in the 

image that could be interpreted as bright drusen. Although the image was not 

labelled as early AMD the image contained many hard drusen in the central retina. 
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3.5 Discussion 
 

The machine learning methods presented in this chapter showed a tendency to use 

the green channel of a fundus photograph to extract features for training a classifier 

to discriminate images into the applicable categories. The most consistent features 

were texture-based  and colour-based where multiple classifiers were often tested 

to determine the best model [143] [42] [42] [29] [140] . In some articles, retinal 

landmark suppression such as removal of the blood vessels or OD was required to 

improve performance [138] [143] [146]. In the articles that aimed to classify AMD 

severity the most difficult classes to distinguish were mild to moderate AMD. In the 

clinic, distinguishing between these two classes requires drusen size or load, 

measurements that could not be obtained without segmentation of drusen. There 

was a common trend of image-level classification. Only one article quantified 

individual drusen [144]. Image-level classification of fundus photographs could be 

used for large scale screening to identify individuals who may be at risk of developing 

severe AMD. Whereas segmentation of individual drusen could be used to monitor 

subtle longitudinal changes. However, without a sufficiently large dataset containing 

hand drawn annotations of drusen boundaries, it would be difficult to train and 

validate a system with an acceptable performance. 

In this thesis, KNN and SVM classifiers achieved good performance for classifying 

images into early AMD, older eye and younger eye categories. False positives 

occurred due to the objects appearing in images which looked similar to drusen as 
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well as the resemblance between older eyes and eyes with early AMD. A false 

negative with the KNN classifier identified an image that contained drusen. Machine 

learning techniques are trained on examples that are assumed to be representative 

of the population. However, new images may not be similar to the training images 

and may result in misclassification. Machine learning algorithms require hand crafted 

features which may not generalise to the whole population (so-called overfitting).  

The results of the literature search identified a recent trend towards deep learning 

techniques that have been developed to address the challenges that conventional 

image processing and machine learning (e.g. overfitting) present and is described in 

Chapter 4. 

3.6 Conclusions 
 

Conventional image processing can be used to segment drusen but there is a 

shortage of a reference standard to validate the algorithm against. Without a 

quantitative measure of an algorithms accuracy, interpretation of any subsequent 

measures may not be reliable. Machine learning is a valuable method for image-level 

classification and yields good results on the UWF image testing set. However, these 

methods often fail to generalise to datasets that are different and or more complex. 

A trend towards deep learning methods after 2015 was observed in my evaluation of 

the literature, which is reflected in the current state-of-the-art for many areas of 

medical image processing. Deep learning and its application to drusen detection is 

the subject of the next chapter.
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Chapter 4 Automatic drusen detection in UWF 
images  

 

4.1 Introduction 
 

In this chapter, the development and testing of automatic drusen detection in UWF 

retinal images is described. First, I introduce the concepts of deep learning and 

transfer learning before a drusen detector is trained using transfer learning. This 

detector is then tested on its ability to classify image patches as containing drusen or 

no drusen and the results compared to the annotations of two human observers. The 

aim of this chapter is to develop a novel method to detect drusen in UWF images.  

 

4.2 Deep learning and transfer learning 
 

Deep learning has become state-of-the-art for computer aided detection in medical 

imaging [151][152]. There is a demand for quick, reliable and accurate interpretations 
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of medical data from a medical expert. In a healthcare setting, these interpretations 

can be limited by the subjective nature of the process, image complexity, high 

interpatient variability and human error. Deep learning is an advancement that has 

potential to provide solutions to these limitations by aiding the clinician with 

particular tasks with high accuracy, reliability and repeatability [153]. Unlike machine 

learning (as discussed in chapter 3), deep learning does not require any feature 

engineering but rather extracts features directly from data. First, I will discuss the 

building blocks of a convolutional neural network (CNN) and then I will describe how 

a CNN “learns”. Next, I will discuss the concept of transfer learning and the previous 

work that has been reported on fundus imaging (identified from the literature search 

presented in Chapter 3). 

4.2.1 Deep learning 
 

Deep learning was inspired by how humans process vision. Hubel and Weissel 

conducted pioneering studies that revealed how cells in the visual cortex of the brain 

are organised in layers where neuronal cells filter and respond (or fire) in the 

presence of different sensory information [154]. This process of accepting an input 

and applying an operation to output a response is the basis of a neuron that is the 

building block of an artificial neural network. The neurons are connected together 

(forming a network) and apply different operations to return an output that is a 

probability of the input belonging to a certain class. Figure 4.1 shows a mathematical 

neuron, labelled to illustrate the conceptual derivation from biology [155]. The value 

of a neuron is determined by the sum of the input weights with the addition of a bias 
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followed by a non-linear activation function which returns an output weight. An 

activation function is applied because the input could be any value. A sigmoid 

function is often used that scales this value between 0 and 1 [156]. Another popular 

method is an activation function called rectified linear units (Relu) that removes all 

negative values and changes them to zero [157]. The bias is a constant value that 

ensures the value of the neuron is never 0. All the weights, bias and outputs are 

learned during training of the neural network. 

 

Figure 4.1 A mathematical neuron that accepts multiple inputs (𝑤𝑤, weights) that are 

summed with the addition of a bias (𝑏𝑏). An activation function is applied to scale the 

output. The weights, bias and outputs are learned during training. 

The first layer in a neural network is convolution that gives a neuron its initial input 

weight. Convolution works by comparing images piece by piece (called a filter). 
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Convolution can be thought of as shining a spotlight of a certain size (i.e. a kernel) 

over an image (i.e. a sliding window) where the area that is illuminated (called the 

receptive field) is used to obtain information of that area. Figure 4.2 shows, as an 

example, classification of noughts and crosses [158] where a filter (i.e. features) 

already learned from the data (Figure 4.2B) are applied over the image that multiples 

the pixel in the filter with the corresponding pixel in the image (Figure 4.2B and C). 

The value is divided by the number of pixels in the filter returning a weighted sum 

that is stored in an activation map (Figure 4.2D). In this example, a diagonal kernel 

detects features with similar shape, and we can see this feature in the activation map. 

Figure 4.2E shows this process in terms of a neuron where the value of the filter 

response for each pixel is the weighted sum of inputs into a neuron. For every 

position of the filter over the image a value is returned. The value of the weights is 

learned during training. 
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Figure 4.2 Example of convolution on noughts and crosses. A)  Image of either a 

naught or cross is input into the network that B) has learned features for classifying 

between the two. C) For example, the diagonal feature is compared to a section of 

the input image. The value in the same position in the feature (purple) is compared 

to the value in the same position on the input image (green). These corresponding 

feature pixels are multiplied over the whole feature and divided by the size of the 

feature. D) In this case, the value of the diagonal feature equals 1.00 and is recorded 

(filtering). This is then applied over the whole input image (convolution) producing a 

feature map. The activation of the diagonal feature can be seen in the activation map. 

E) This process is visualised in terms of a neuron. The value of the weights is from the 

weighted sum of the input with an activation applied and are stored as a neuron. In 

this case, we can see that white pixels have a large weight and results in the high 

activation value of the neuron. Effectively, there is a single neuron for every position 

of the filter on the input image. Concept and illustrations adapted from [158]. 

Usually the aim of a neural network is to classify inputs into predetermined classes. 

This may be assigned from a probability of an input belonging to a certain class. To 

progressively (i.e. through several convolutional layers) reduce the size of the output 

of a layer to a probability, pooling can be applied [159]. This involves walking a 

window of a specified size over the output of a layer and applying an operation. There 

are many operations that can be used, such as averaging the value of the window 

(average pooling) or taking the maximum value of that window (max pooling) [160]. 
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This results in a stack of smaller activation maps that still summarises the features of 

the data. By using repeating combinations of convolution, activation and pooling 

layers the output of each layer gets smaller and smaller [161].  

The final layers are usually fully connected (FC). The output of the final layer is an N-

dimensional feature vector, where N is the number of classes the network is 

classifying [161]. In the example of noughts and crosses N would be 2 since there are 

2 classes we are trying to classify. In Chapter 3, hand crafted features from the image 

(e.g. histogram-based features) were input into a classifier (such as an SVM) to 

categorise images into classes. Convolutional layers, in combination with activations 

and pooling layers, serve the same purpose as a feature extractor where the purpose 

of the FC layer is to interpret all these features into an output probability of an input 

belonging to a certain class. The FC layer introduces non-linearity by combining every 

output of the previous layer (i.e. “fully connected”) and applies an activation function 

to return an output probability. Many types of functions exist, but most common are 

sigmoid (binary classification) or softmax (multi-class classification), each aim to 

redistribute the output of the FC layer into a probability distribution (i.e. values 

between 0 and 1).  

Figure 4.3 summarises all of the layers and components of a basic neural network 

that have been discussed so far. In this example, the input is a cross that is passed 

through the convolution layer where filters are applied resulting in a stack of 

activation maps. In this simple network the activations are input into a pooling layer 

that results in stacks of smaller activation maps and this is repeated for another 
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convolutional and pooling layer. In the first convolutional layer, low level features are 

learned such as contrast or colour and edges. In the next convolutional layer high 

level features such as shape and contextual information is learned. This is because 

the activation maps of the input are progressively convolved to smaller images where 

more detail is preserved in earlier layers and become coarser in later layers. Finally, 

the activations of the previous pooling layer are all connected to the neurons in the 

FC layer that flattens the 3D volume into a 1D feature vector. In this example, the 

desired output is two classes, the value of which will be the weighted sum of the 

previous layer and is input into a softmax activation function to output a probability. 

When a cross is fed into the network, in the final FC layer there will be certain values 

that will be high and would contribute to a higher output probability for the input 

belonging to the cross class.   
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Figure 4.3 Components of a CNN for classifying noughts and crosses. A cross is input into the network and convolution is applied. The 

activations of a filter are output as an activation map and input into the next layer. This first layer learns low level features such as 



98 
 

colours and edges. The activations from this layer are input into a pooling layer followed by another convolutional layer. This is repeated 

where the output of the last pooling layer is flattened to a vector of neurons. The final FC layer consists of two neurons (corresponding 

to the tow classes). Finally, a softmax function is applied to redistribute the values to probabilities. This represents the likelihood 

(between 0 or 1) that the input image belongs to each of the classes. 
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How a neural network learns the values of the filters, weights and biases is called 

backpropagation and can be subdivided into 4 processes, the forward pass, the loss 

function, the backwards pass and weight update  [162]. 

When a network has been constructed, all values of the weights, biases and filters 

are set to random values (or initialised using a pretrained network, see Section 4.2.2). 

During the forward pass a training image is passed through all of the network layers 

and will output a probability. For example, if we placed a cross as the input image, 

the output of the FC layer could be 0.01 when we know that the output should be 1 

(i.e. a high probability that it is a cross). This gives an error and how it is computed is 

called the loss function. This function computes how well the model makes 

predictions given the current input compared to the correct output [163]. There are 

many loss functions and the choice of method largely depends on the data, presence 

of outliers and choice of learning algorithm [164]. Cross entropy is a popular loss 

function where the cross-entropy loss of prediction scores Y and training target T for 

number of observations (N) and number of classes (K) is given by, 

𝐿𝐿 =  − 1
𝑁𝑁
∑  𝑁𝑁
𝑛𝑛=1 ∑  𝐾𝐾

𝑖𝑖=1 𝑇𝑇𝑛𝑛𝑛𝑛 log(𝑌𝑌𝑛𝑛𝑛𝑛).  (4.1) 

This calculates the performance of the network and returns a probability between 0 

and 1 for each of the classes. Also called the log-loss, the value of the error increases 

as the predicted probability (Y) diverges from the true label (T). For example, a 

predicted probability of 0.01 when the true label is 1 would output a high loss value 

(L). A model with a perfect score would output a loss of 0. During training the loss is 

monitored, the higher the loss (i.e. the error) the further we are from the correct 



100 
 

answer. A decrease in loss during training is an assurance that the model is fitting and 

the network is learning. 

Once the error is computed a backwards pass is performed where the weights that 

contributed to the error are adjusted so that the error is minimised. This is achieved 

using gradient decent [165], an optimisation strategy that finds the best value of each 

weight that minimises the error and subsequently updates the value.  Figure 4.4 

explains the concept of gradient descent. As images are fed through the network, 

features and weights are constantly adjusted until patterns that occur in the data are 

learned. The size of this adjustment is called the learning rate. If you have many 

images this pattern is stabilised and works across a variety of images. 

 

 

 

 

 

 

 

 

 





102 
 

exist in a variety of forms. Over the years, more complex operations have been 

developed to model larger and more complicated datasets as they become available. 

Arguably, the driver of new network architectures is the benchmark ImageNet Large 

Scale Visual Recognition Challenge (ISLRVC) [166]. The challenge was to build a 

network that correctly classifies millions of natural images into 1000 categories. Early 

ImageNet winners produced networks such as AlexNet [161] and VGG [167] that 

were comprised of repeating convolution, normalisation and activation architecture. 

However, efforts to make these styles of networks deeper resulted in a new style of 

networks; Inception V2 and Inception V3 [168]. So-called due to their inception layers 

that deploy multiple convolutions, filters and pooling layers simultaneously and in 

parallel to the same layer. Recently, architectures containing residual layers have 

been developed whereby outputs from blocks of convolutions and normalisations are 

re-routed to the previous layer. This allows deeper networks to be trained such as 

ResNet [169] and can be combined with inception modules such as in Inception-

ResNet [168]. Xception is a newer architecture that is similar to an Inception model 

but maps multiple convolutional layers using residual connections [170]. More 

recently, networks have been used for semantic segmentation (assignment of every 

pixel in an image to a class) that follow an encoder (the pre-trained network) and 

decoder structure. A decoder semantically projects the features learned by the 

encoder back into the pixel space to obtain a per pixel classification. SegNet is a 

popular network [171] for semantic segmentation and is a VGG network (the 

encoder) followed with a decoder layer. The caveat is that these networks require 

large amounts of detailed pixel level annotations, which is difficult to obtain 
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especially in a healthcare setting due to time-constraints and data governance issues 

such as patient anonymity. 

4.2.2 Transfer learning 
 

Transfer learning has become a popular method, particularity in medical image 

analysis, whereby a pre-trained model is reused for a new task, requiring only small 

amounts of data [151]. In early layers of a neural network basic features such as 

colour and shapes are learned (see Figure 4.3). In transfer learning the early layers 

and their weights can be used as a feature extractor and new FC layers are trained 

for a new purpose (so-called fine tuning). This is on the basis that early learned 

features will be similar across imaging domains. For example, the colour green is still 

the colour green in the training set and the transfer learning set.  The number of 

layers that are used as feature extractors (i.e. the number of trainable layers) can also 

be experimented with to optimise the network.  

As neural networks apply operations with a specific size parameter, input images 

must also be the same size. Typically, pre-trained networks have input sizes of 

224×224 pixels, 299×299 pixels and 512×512 pixels. Such predefined sizes have arisen 

due to the memory and computing power that is required to perform multiple and 

complex operations on an image. The larger the image, the more computational 

power is needed to learn features, as well as a deeper network. The first step in 

training a network involves resizing all images. Image normalisation is performed to 

make all images have the same data distribution. There are three common 
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techniques that involve either normalising values of the image (1 to 255) from 0 to 1, 

or values from -1 to 1 or to centre values around mean. The normalisation technique 

and the input size adopted depends on the data used to originally train the network. 

In Figure 4.4, the gradient decent algorithm is searching to minimise a loss function 

to find the optimum value of the weight that minimises the error and was shown in 

2-dimensions because this can be easily visualised. In practice, the value of all weights 

must be made in the many dimensional space of weights and biases. This can be 

visualised in 3-dimensons where the x-axis is the value of weight 1 in layer 2 and the 

y-axis is the value of weight 2 in layer 3. The z-axis is the value of the loss for a value 

of the two weights. The aim is to find the values of the weights at the minimum of 

the loss function and uses gradient descent to search for the minima, as before. 

However, if there are large amounts of variation within the data this can lead to 

differently varying shape of the loss surface between dimensions. For example, 

weight 1 on the x-axis could vary on a scale of 0 to 1, while weight 2 on the y-axis 

could vary on a scale from 0 to 0.001. Figure 4.5 shows the loss surface shape as a 

contour plot next to the visual representation of the gradient descent search along a 

loss function to visualise the reasoning for image normalisation upon input into a 

neural network. It shows an uneven loss topology due to the different scales on the 

x -axis and y-axis and the arrows indicate the search direction to reach the optimal 

weight value (asterisk). In Figure 4.5B we can see how this looks in relation to 

updating the weight to minimise the error. The drastic updates in the weight value 

due to the large differences between the weights has caused an overshooting of the 

optimal weight value. When the x-axis and y-axis are normalised to a range from 0 to 
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1, the weight parameter is updated in even proportions (Figure 4.5C) and the search 

along the loss function is less drastic and leading to a better convergence of the 

weight to optimum value (Figure 4.5D).  
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Figure 4.5 Visual representation of the concept of image normalisation upon input 

into a neural network in relation to the loss function, gradient descent and 

converging weight values to minimise the error in the loss function. The asterisk 

denotes the optimum weight value. A) Loss surface as a contour plot with the search 

path of gradient descent (i.e. learning rate). The topology is elongated due to the 

different scales on the x-axis (0-1) and y-axis (0- 0.001). B) Visualisation of the 

gradient descent search path along the loss function. The drastic weight updates due 

to the uneven loss topology cause the optimum weight value to be overshot. C) Loss 

surface following image normalisation creates an even loss surface. D) Weights are 

updated in even proportions leading to convergence to the optimum weight value. 
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To utilise the already learned features from a pre-trained network the learned 

weights must be fixed, termed frozen. Any number of layers can be frozen but 

traditionally all weights in the convolutional layers are frozen and the weights of the 

FC layers are initialised from their trained weights. The ImageNet dataset is a popular 

dataset used to train many networks where the final FC layer contains a classifier for 

1,000 categories [166]. This can be replaced with an FC layer of a specific size. Drop 

out layers are commonly placed between FC layers which randomly sets inputs to 0 

with a given probability and prevents the network from overfitting [172].  

 In transfer learning the whole dataset is passed through the network and only the 

weights of the final FC layers are adjusted. Each pass of the dataset through the 

network is called an epoch and the dataset can be passed in batches to minimise 

computing time. The processing of a single batch is called an iteration. A portion of 

the dataset is usually held out as a validation set to test over a certain number of 

iterations or epochs. During training, the loss and other performance metrics such as 

accuracy can be monitored to assess neural network performance. Neural network 

design, training and optimisation is a cyclic process. This involves training the 

network, adjusting architectures, loss functions, learning rates and classification 

functions along with their hyperparameters and retraining the network. This process 

is used to achieve a network design that optimises learning on the dataset. 
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4.2.3 Previous work 

Deep learning and transfer learning have proved successful in many medical images 

including fundus imaging [173][174][48][175] and OCT [176][177] and have rapidly 

become key methods for medical image analysis [152][151]. The following articles 

discussed in the following section were identified in the literature search described 

in section 3.2.3. 

Tan et al [173] implemented a 14-layer CNN to classify 1,110 fundus photographs as 

disease or no disease and achieved an accuracy of 95.25%. Burlina et al [178] used 

transfer learning of the Overfeat CNN [179] to classify 5,600 fundus photographs into 

their AREDS categories [134]. They achieved a 92% to 95% accuracy where best 

performance was between class 1 and class 4 AMD severities. The same experiment 

was performed in their later work where the Overfeat CNN features were used to 

fine-tune an SVM classifier to classify 5,664 images [174]. They reported best 

performances of 79.4%, 81.5% and 83.4% to classify images into AREDS classes 4, 3 

and 2 respectively. Grassman et al [175] used transfer learning of multiple ImageNet 

CNN’s [180][181][161][168][170] to classify 120,656 fundus photographs into AREDS 

categories [134]. They built a so-called ensemble of CNN’s where the predictions 

from each network were combined into a mean prediction. They achieved an 

accuracy of 92.1% for predicting each AMD class. They tested their ensemble on an 

independent dataset of 5,555 fundus photographs [136] and achieved an accuracy of 

34%. The low accuracy was attributed to the presence of younger eyes in this dataset 

that had dominant macular reflexes (brightly appearing artefact from the flash of the 



109 
 

fundus camera) that was misclassified as stage 4 AMD (i.e. misclassified as containing 

GA). Peng et al [182] used an ensemble of 3 neural networks (called DeepSeeNet) 

designed to first classify 3 categories of drusen (small/none, medium and large) then 

a sub network to classify pigment abnormalities (hypopigmentation or 

hypopigmentation) and a final network to detect the GA (neovascular AMD or central 

GA). Their training and testing sets contained 58,402 and 900 fundus photographs 

respectively, with annotations for each of the classes from two retinal specialists. The 

overall aim was to address the challenge of classifying fundus images into the AREDS 

categories by detecting each pathology that defines the AMD classes.  They achieved 

a 72% accuracy (71% sensitivity, 71% specificity) for classifying drusen subtypes, 89% 

accuracy (73% sensitivity, 95% specificity) for classifying pigmentary changes and 96% 

accuracy (62% sensitivity, 98% specificity) for classifying GA subtypes. The source of 

misclassifications came from image quality such as bright artefacts that were 

classified as GA. 

Inspired by the direction of the field described here along with recent advances in 

deep learning and transfer learning and its success for solving medical image analysis 

tasks, a neural network approach for detecting drusen in UWF images was adopted 

for this thesis. 
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4.3 Materials and methods 
 

4.3.1 Training dataset 
 

For a human grader, manually identifying drusen is a subjective and challenging 

process, particularly in UWF images, as drusen are difficult to distinguish from the 

background texture of the retina. Training a neural network using ambiguous 

examples or single drusen (which could be one pixel in size) would be difficult 

because there would not be enough examples of distinguishing features making the 

problem too complex and near impossible for the network to solve. To simplify the 

problem, the network was trained using clearly recognisable examples of patches 

positive for drusen and negative for drusen that I selected. Such patches were 

obtained from images of people with early AMD where drusen are often clearer and 

higher in abundance than elderly people with AMD or those without disease.  

The training set consisted of 25 patients with early AMD (14 left eyes, 15 right eyes) 

and 20 patients with age related drusen all acquired with a UWF SLO (Daytona, Optos 

plc, Dunfermline, UK) and diagnosed by ophthalmologists. Patient information such 

as gender, age and ethnicity were not available. All images were converted to a 

stereographically projected format to allow the curved retina to be displayed as a flat 

image using a tool provided by Optos [74]. From the training set, I selected positive 

image patches (513 total). A patch was considered positive if it contained 

unmistakable drusen. In order to obtain a balanced training set of positive and 

negative examples, 407 negative image patches were randomly sampled from 16 
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patients with age-related drusen and a further 106 manually selected from the 25 

UWF images with early AMD (513 total). Figure 4.6 shows examples of positive and 

negative patches. 

Figure 4.6 Examples of positive and negative patches. Patches were 122×122 pixels, 

224×224 pixels or 299×299 pixels in size depending on the object being sampled (i.e. 

smaller single drusen in smaller patch or drusen clusters in larger patches) Positive 

patches included drusen clusters (top left) and larger forms of drusen (top left). Single 

druse (middle left) and single druse near vessels (middle right). Drusen also appear 

near the optic disc (OD) (bottom left) or are sometimes obscured by eyelashes 

(bottom right). Negative patches included healthy retina (top left) and healthy retina 

near the image border (top right). Regions near the OD where bright nerve fibre layer 



112 
 

(NFL) could also look like drusen (middle). Potential false positives such as specs of 

dust (bottom left) and eyelashes that have inadvertently been captured in the image 

(bottom right) were also sampled. 

4.3.2 Training 
 

VGG16 architecture, a well-established architecture for image classification [167], 

was fine-tuned using transfer learning (ImageNet weights [166]) by retraining the 

final FC layer. The VGG16 architecture consists of 13 convolutional layers (3×3 pixels), 

5 max pooling layers (2×2 pixels) and 3 FC layers and was originally trained to classify 

non-medical images into 1,000 classes (such as cats, dogs, flowers etc) [167]. To avoid 

overfitting, a drop out layer (p = 0.5) [172] was inserted following the 4,096 neuron 

fully connected layers. I replaced the final 1,000 neuron fully connected layer with a 

2-class softmax classifier (2 neurons) and trained using stochastic gradient descent 

with a cross entropy loss and a learning rate of 0.01. Figure 4.7 shows the VGG16 

architecture that was modified for this thesis. 
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Figure 4.7 VGG16 Network Architecture. VGG16 accepts 224×224 pixels size images 

into the network. Convolutional layers (grey layers) transform the image into stacks 

of features. Max pooling shrinks the convolution by taking the maximum value in a 

2×2 pixel sliding window on the convolution output. Fully connected layers (pink 

layers) outputs a two-dimensional vector that is the probability that the input was 

either negative or positive for drusen. To avoid overfitting, a drop out layer (blue 

layers) was inserted following the 4096 neuron fully connected layers.  

Each image was resized to 224×224 pixels to conform with VGG16 required input size 

and normalised by subtracting the mean intensity of the training set from each pixel 

[161]. The network was trained for 100 epochs and was stopped when the loss no 

longer decreased. To increase training set size and variability, data augmentation was 

performed during training by applying rotation to the training patches at random 

intervals of 0 to 45° and shearing by 45°, separately (see Figure 4.8). Rotation 

augmentations are important especially in the case of patches containing vessels. If 
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there are a high number of patches containing horizontal vessels the network may 

learn vessels as a distinguishing feature. To minimise such scenarios, rotations 

provide different orientation of objects and shearing provide different distortions of 

the image and creates more examples for the network to learn from. This increased 

the training data to a total of 5000 patches. During training, the dataset set was 

randomly shuffled leaving 25% of the dataset (including augmented images) out for 

validation every 179 iterations. 

 

Figure 4.8 Example of different augmentations applied to an image patch containing 

drusen. Shear (B) and random rotations (C).  

4.3.3 Testing dataset 
 

The validation dataset consisted of 244 images (199 left eyes, 120 right eyes) of 

individuals graded for AD, Posterior Cortical Atrophy (an AD subtype) and healthy 

controls. Images were acquired on an Optos P200Tx (Optos plc, Dunfermline, UK), 

provided by Dementia Research Centre, University College London with drusen 

annotations from the Queen’s University Belfast, Belfast. Individual image disease 
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status as well as patient information was not available. All images were 

stereographically projected [74]. 

4.3.4 Testing 
 

Two trained observers with expertise in UWF retinal image annotation and 

histological imaging (referred to as Observer 1 and Observer 2) had manually graded 

the testing set independently, subdividing each image using the Manchester grid 

overlaid onto the UWF images [183] (see Figure 3.9). This approach divides the image 

into cells with each cell containing an area equivalent to that occupied by the OD (i.e. 

1.77mm2). This results in 764 cells of equal area on the retina but with different 

proportions when viewed on the flattened image. The cells were indexed with x- and 

y- coordinates and an origin at the fovea (0,0). In order for each cell to be compatible 

with the neural network input layer, patches were geometrically transformed by 

linear interpolation to 244×244 pixels using a tool provided by Optos. Some 

peripheral cells were too elongated for this transform and had to be discarded (416 

cells outside the periphery zone (blue) in Figure 4.9). This left 348 cells per image but 

which adequately covered the posterior pole and peripheral retina. These were the 

cells annotated as either drusen positive or drusen negative by the two observers. To 

assess the performance of the drusen detector in different regions of the image, cells 

were grouped into three zones; periphery, perimacular and central - according to a 

simplified grid previously used for grading AMD [184], as highlighted by the different 

colours in Figure 4.9. The first zone defines the central region of the retina and 

consists of 16 cells (magenta; 28.32mm2). This zone typically has a high proportion of 
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pathology in AMD and covers the early treatment diabetic retinopathy study (ETDRS) 

grid commonly used to report retinal thickness in neurodegeneration [185]. The 

second zone defines the perimacular region of the retina and consists of 76 cells 

(green; 134.52mm2). The final zone defines the peripheral region of the retina and 

consists of 256 cells (purple; 453.12mm2). Areas outside the peripheral zone were 

often labelled as ungradable by the observers due to the appearance of eye lashes 

and eye lids in the images. Lashes and lids are difficult to avoid at image acquisition, 

especially in elderly participants who may not be able to open their eyes as wide as 

younger patients. 
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Figure 4.9 The Manchester grid (white lines) overlaid onto a UWF image showing cells 

grouped into zones. Zones are defined as 3 circles centred on the fovea.  

The output of the classification by the network was then compared to the manual 

annotations by two human observers. As manually grading drusen in UWF images is 

a challenging process, the union of the 2 observers (UObs) was also considered as a 

means of assessing performance in the context of low inter-observer agreement. 

Cells were binarized for drusen labels and used to compare the agreement between 

the two observers by calculating a Dice Similarity Coefficient (DSC). The DSC is 

calculated using the binarized image of annotations and is calculated as 2 times the 
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area (in pixels) overlap (or intersection) of the two observers divided by the total 

number of white pixels in both of the binary images and is a quantitative measure of 

performance. Figure 4.10 shows the binarized images, the union and intersection of 

manual annotations by the human observers. 

 

 

Figure 4.10 Examples of binarised annotations on the MG by Observer 1, Observer 2, 

union of the Observers (UObs) and intersection of Observers, used to assess 

performance. The union is defined as all cells labelled positive for drusen, whereas 

the intersection is defined as only the cells the observers agreed to contain drusen. 

A true positive (TP) was an instance or cell predicted as positive for drusen by the 

system and annotated as drusen by the human observer. A true negative (TN) was an 

instance predicted as negative for drusen and annotated as not drusen by the human 
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observer. A false positive (FP) was an instance predicted positive for drusen but 

annotated manually as not drusen. A false negative (FN) was an instance predicted 

as negative for drusen but is annotated manually as drusen. According to these 

definitions, the following formulae can be applied to obtain metrics that quantify 

system performance - sensitivity, specificity and accuracy. 

• Sensitivity = (TP/(TP+FN)) x 100    (4.2) 

• Specificity = (TN/(TN+FP)) x 100    (4.3) 

• Accuracy = ((TP+TN)/(TP+TN+FP+FN)) x 100  (4.4) 

 

Additionally, the area under curve (AUC) receiver operator characteristic (ROC) can 

be used to measure the relationship between sensitivity and specificity and is 

calculated by thresholding using the probability returned by the system. The 

probability indicates the degree at which the instance or cell belongs to a certain 

class. A curve plotting 1-specifity against sensitivity is created by varying this 

threshold and summing the area under the curve. Sensitivity and specificity were 

calculated for each image using both Observer 2 as the reference and Observer 1 as 

reference and compared using non-parametric Mann-Whitney U test. 

Observer agreement was assessed using Cohens Kappa coefficient (κ) a well-

established technique for comparing binary gradings [186]. Figure 4.11 shows how κ 

is calculated and the standard terms used to describe the level of agreement of the 

calculated score. 
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Figure 4.11 Interrater agreeability assessment using Cohens kappa coefficient (κ). The 

counts of agreed annotations (a and d) and the counts of disagreed annotations (b 

and c) are totalled for each image over the set to obtain kappa score, standard error 

and 95% confidence intervals. A perfect Kappa score is 1 whilst an agreement by 

chance is 0 [186]. 

4.4 Results 
 

4.4.1 Inter-observer agreement 
 

The calculated Kappa score indicated a moderate agreement between the observers 

(κ = 0.53). Figure 4.12 shows the number of cells annotated for drusen in each zone 

by each observer, where a lower abundance of drusen was observed in the central 

zone compared to the periphery and perimacular zones. Observer 1 annotated a total 
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of 262 cells as continuing drusen in the central zone compared to Observer 2 who 

annotated a total of 213 cells with drusen. In the perimacular zone, Observer 1 

annotated 1,234 drusen cells while Observer 2 annotated 1,216 drusen cells. 

Observer 1 annotated a total of 3,216 drusen cells in the periphery zone compared 

to Observer 2 who annotated 3,406 cells as drusen. Thus, it appears as if there was a 

good inter-observer agreement. However, the DSC calculation points to a low level 

of agreement (average DSC 0.38, SD± 0.27) suggesting that the observers do not 

agree particularly well on exact cell locations for drusen. 

 

Figure 4.12 Histogram of the total number of cells annotated for drusen by Observer 

1 (Obs1) and Observer 2 (Obs2). 
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Cells where observers disagreed on the presence of drusen were visually assessed 

and were placed by me into 2 categories: ambiguous and low quality. Figure 4.13 

shows examples of cells from both categories. Ambiguous cells contained subjective 

drusen, dust or non-obvious lesions in the retina. The low quality contained cells that 

were difficult to discern where the drusen were located due to poor image quality 

and low contrast. 

 

Figure 4.13 Examples cells where observers disagreed. In each category the white 

arrows indicate possible drusen A) Ambiguous patch that contains areas that could 

be subtle drusen or the texture of the retina (white arrow). This would be a subjective 

decision as to whether to manually label as drusen or not. B) Low quality cell that 

contains potential drusen or artefact (white arrow). 

Figure 4.14 shows an example of the gradings from the 2 observers overlaid onto an 

UFW image. This revealed that where drusen were prevalent there was a higher level 

of agreement between observers on location.  Disagreement seems to occur when 

drusen overlap into neighbouring cells with one observer annotating the neighbours 

as containing drusen while the other observer may not. In images where drusen are 
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sparsely located there was less of an agreement between observers on location. This 

corresponded to ambiguous cells. 

 

Figure 4.14 Examples of gradings by Obs1 (blue) and Obs2 (pink) and where they 

intersect (white) in an image with sparse drusen and low agreement (left) and an 

image with an abundance of drusen and high location agreement (right). It can be 

seen that much of the disagreement occurs around the main body of drusen clusters 

where overlaps of drusen into neighbouring cells occurred. 

 

4.4.2 Neural network performance 
 

The neural network, called the drusen detector (DD), trained to a 95% validation 

accuracy. The drusen detector returned a slight agreement (κ = 0.17) to Observer 1, 

a fair agreement to Observer 2 (κ =0.21) and a slight agreement (κ = 0.17) to the 

union of observers (see Table 4.1).  
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Using Observer 1 as the reference, the area under a ROC curve (AUC) for detecting 

grid cells with drusen was 0.59, 0.62 and 0.65 in the central, perimacular and 

peripheral zones respectively. Using Observer 2 as the reference, AUC was 0.58, 0.65 

and 0.66 in the central, perimacular and peripheral zones respectively. Figures 4.15 

and 4.16 give a graphical representation of this data. 

Figure 4.15 ROC curves within each zone for the drusen detector using Obs1 as 

reference. 
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Figure 4.16 ROC curves within each zone for the drusen detector using Obs2 as 

reference. 

I visually inspected false negatives and false positives for the DD system to assess the 

source of these types of errors and some examples are shown in Figure 4.17. False 

positives seemed to occur in bright areas near blood vessels and the OD, as the 

contrast or brightness seems to resemble that of drusen. This was also a source of 

false negatives, as subtle drusen can look like these types of bright areas near blood 

vessels and the OD. Areas of low quality, subtle drusen and ambiguous patches were 

a source of false negatives as drusen were difficult to discern from the background 

retina. Artefacts at the image border such as the reflection from the faceplate and 

dust were a source of false positives (specs of dust are bright in appearance and look 
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like drusen). However, some cells identified as false positives contained drusen and 

indicated some human error in the manual grading process. 

 

 

Figure 4.17 Examples of cells that were false positives and false negative returned by 

the drusen detection system. 

To assess how performance of the drusen detector varied with increasing agreement 

between the two observers, each image was binned according to the DSC of Observer 

1 (using Observer 2 as reference) and Observer 2 (using Observer 1 as reference) at 

0.1 intervals and plotted against AUC (see Figure 4.18). The best performance for the 

drusen detector was observed in 8 images (DSC > 0.8 and < 0.9) achieving AUC 0.84 

for all zones 45.5% and 46.3% sensitivity (in relation to Observer 1 and Observer 2 

respectively) and 99.9% and 97.2% specificity (in relation to Observer 1 and Observer 

2, respectively). An AUC of 0.85 and 0.82 was achieved in the peripheral zone (in 
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relation to Observer 1 and Observer 2 respectively), an AUC of 0.82 and 0.78 in the 

perimacular zone (in relation to Observer 1 and Observer 2, respectively) and an AUC 

of 0.55 and 0.59 in the central zone (in relation to Observer 1 and Observer 2, 

respectively). 

 

Figure 4.18 Dice Similarity Coefficient (DSC) from Observer 1 (using Observer 2 as 

reference (blue; Obs1)) and Observer 2 (using Observer 1 as reference (purple; Obs2)) 

of each image binned into intervals of 0.1, against the drusen detector performance 

(AUC) of each bin. The number of images within each DSC interval is displayed on the 

top x-axis. Best performance of 0.84 AUC was achieved between DSC >0.8 and DSC < 

0.9.  
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Figure 4.19 shows the output of the drusen detection in the 8 UWF images with the 

highest AUC. The predictions are colour coded as a ‘heatmap’ and overlaid onto the 

UWF image. Observer 1 annotations (pink) and Observer 2 (blue) and their 

agreement (white) are also displayed. Cells with a high probability for containing 

drusen and good observer agreement were visually inspected and observed to 

contain hard and soft drusen clusters. These cells had a similar appearance to the 

positive image patches used to train the network. Visual inspection of cells with 

observer disagreement (either blue or pink), which appear around the edges of high 

agreement, were observed to contain drusen close to the border of the cell.   
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Figure 4.19 Comparison of Observer annotations. White denotes agreement 

between observer, blue denotes the annotations of Observer 1 and pink the 

annotations of Observer 2 Dice Similarity Score (DSC) for the observers is also given 

where a higher number denotes better agreement. The output of the automatic 

drusen detector is a probability map (white high probability drusen (1) to black low 

probability drusen (0)) which has been colour coded and overlaid onto the images. 
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Two images had a DSC of 0.98 and 1.0 where the drusen detector performed at 0.41 

AUC. These images were visually inspected and contained exceptionally sparse and 

subtle lesions surrounding the OD and in areas of low quality due to shadows from 

lashes. This suggests that the reason for the low AUC was due to the drusen detector 

failing to identify small and subtle lesions, whereas both human observers were able 

to classify these instances. One false positive was observed on the OD in one of the 

images (DSC = 1.0) which contained round and bright drusen like shapes and is shown 

in Figure 4.20. In order to assess the nature of the potential pathology the 

accompanying autofluorescent image was inspected to identify any possible OD 

drusen. No evidence of OD drusen was found. 
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Figure 4.20 Visual inspection of the source of low performance in an Image with DSC 

of 1.0 and AUC 0.41. A) Output of the drusen detector shows high probability cells 

for drusen near the OD but were false positives (yellow and white) and also contains 

false negatives near the vessels (pink). B) Visual inspection of the false positives and 

false negatives in the green channel. The false negative (green box) shows regions of 

very subtle drusen around the vessels. The false positive (magenta box) contains 

bright drusen like shapes in the OD that looks like it could contain OD drusen. C)  

Accompanying autofluorescent image shows no evidence of OD drusen and is a false 

positive. 

4.5 Discussion 
 

I have presented a transfer learning-based system for the automatic detection of 

drusen in UWF images. Key aspects of the system included: the training of a neural 

network using a small number of images; performance assessed against two human 

observers; network specificity similar to that of the observers. 
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Specificity remained high in all zones indicating the network’s ability to classify 

negative instances. This would be beneficial in a clinical environment, particularly for 

screening for signs of neurodegeneration, as the number of false positives would be 

low which would reduce the number of patients being incorrectly referred for further 

examination. Sensitivity was higher when inter- observer agreement was high and 

suggests that when the reference standard is reliable the system performs similar to 

a human observer. However, this was with the exception of two images which had a 

low AUC for the automatic detection when agreement was highest and was due to 

the difficult appearance of drusen that were only several pixels in size. This would be 

a challenge for a neural network to learn/detect but annotated readily by the two 

graders who had expertise in histological analysis of drusen and would have the 

ability to assess for drusen in a UWF image in the context of molecular composition 

and how drusen may be contorted within the layers of the retina.  

One image had perfect agreement between observers (DSC = 1.0) and second image 

near perfect agreement (DSC = 0.98). The DD performed at 0.41 AUC for these 

images. After visual inspection it was seen that the images contained a low 

abundance of subtle and small drusen, which represents a difficult classification task 

for the proposed system. However, the average DSC was low for the whole dataset, 

suggesting that the observers disagreed frequently on exact locations of drusen. A 

common source of disagreement occurs when drusen overlap into cells, where one 

observer might annotate the neighbouring cell as containing drusen but the other 

does not. The cell annotated within the overlap might only contain drusen a few 

pixels in size, which would also be a difficult instance for the drusen detector to 
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classify. Another source of disagreement was from regions of soft drusen that are 

inherently ambiguous due to their similarity in appearance to the texture of the 

surrounding retinal tissue. Standardisation of the conditions in which grading is 

conducted (i.e. training, background room lighting and computer screen size) may 

help to improve observer agreement. Additionally, dust and vitreous material were 

also present in some images and can resemble drusen, further contributing to 

observer disagreement and drusen detector misclassification. To minimise dust 

artefacts at least, the UWF optics can be cleaned in line with the manufacturer’s 

guidelines for device care in order to remove particulates prior to image acquisition. 

The use of heatmaps to visually inspect the predictions were insightful for visualising 

the output of the neural network and could have application for monitoring drusen 

progression and changes in longitudinal images. Drusen progression could then be 

quantified by change in drusen distribution and area from the probability map and 

used to investigate new biomarkers or associations between drusen and 

neurodegeneration. 

The drusen detection system is likely to be improved by training the network with 

more image data and also additional observers to create a more consistent reference 

standard. In previous work using deep learning (discussed in section 4.2.3) for 

classifying AMD severities involved training neural networks with approximately 

5000 - 120,000 images achieving accuracies above 70% where performances varied 

depending on the dataset (i.e. presence of artefact or low-quality images). 

Comparable to the work in this thesis, Peng et al [182] used 58,402 fundus 
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photographs for training and 900 for testing, achieving 72% accuracy (71% sensitivity, 

71% specificity) for classifying drusen subtypes, 89% accuracy (73% sensitivity, 95% 

specificity) for classifying pigmentary changes and 96% accuracy (62% sensitivity, 98% 

specificity) for classifying GA subtypes from whole fundus photographs. The 

performance was compared to the image gradings obtained from 88 readers in  the 

AREDS study for classifying AMD severity [134]. Observer agreement in the AREDS 

dataset for drusen presence, type and area gradings in 1,230 eyes gave kappa scores 

of 0.50, 0.61 and 0.56, respectively [187]. This is comparable to the observer 

agreement in this chapter (kappa = 0.53) further highlighting the challenging nature 

of manually grading for drusen. It also suggests that while more training data would 

improve the system a more reliable reference standard is still required. Drusen are 

subjective to grade and is the main reason for the low observer agreement. This 

highlights the need for precise drusen grading protocols that minimise the 

subjectivity to provide a reliable reference standard to validate (or train) an 

automatic system against. Such grading protocols would need to be designed so that 

annotations can be input into a neural network (e.g. coordinates or patches) and 

follow grids outlined in this chapter. Such grading methods would be manually 

intensive, time consuming and expensive. Given the presence of these challenges, 

the recommended number of additional training data that would most likely see an 

improvement in performance is more than 500 images annotated by 20 observers.   

4.6 Conclusions 
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The aim of this chapter was to develop a method to automatically detect drusen in 

UWF images, validated to a reference standard and assess its utility for application 

for future assessment of neurodegeneration in UWF images. Bearing in mind the low 

sensitivity, this system will be used in an exploratory analysis of the dataset described 

in the next Chapter to investigate associations between drusen presence and AD. 
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Chapter 5 Retinal changes in Alzheimer’s disease  
 

5.1 Introduction 
 

In this chapter the analysis of a cohort featuring patients with MCI and AD as well as 

CH individuals is reported. Vessel analysis was performed using a previously 

established pipeline and is described. Objective features of the retinal vasculature 

including vessel widths, vessel tortuosity and branching complexity (measured via 

fractal analysis) are analysed using statistical modelling that accounts for the 

correlation between two eyes of an individual in order to assess evidence of 

differences between the cohort sub-groups. The aim is to investigate potential 

biomarkers of pre-clinical AD derived from the retinal vasculature in a UWF image.  

5.2 Materials and methods 
 

5.2.1 Dataset 
 

This cross-sectional study featuring patients with MCI and AD as well as CH individuals 

was accessed via Duke University School of Medicine (Durham, North Carolina, USA). 

Participants were aged 50 or older and were enrolled in a study from the Duke 

Memory Disorders Clinic. All participants were appropriately consented following 

local rules and procedures pertaining to ethical approval and clinical research 
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governance, which included permission to share anonymised data for analysis in this 

thesis. AD and MCI participants were evaluated and diagnosed by an experienced 

neurologist with a specialisation in memory disorders. Assessment was based on the 

diagnostic guidelines of the National Institutes on Aging-Alzheimer’s Association 

[188] [189]. In these guidelines, MCI is the term used to describe presymptomatic AD. 

MCI was identified by: assessment of change in cognition in comparison to a person’s 

previous cognitive ability; impairment in one or more of memory, executive function, 

attention, language and episodic memory; problems with performing everyday tasks 

such as paying bills and not demented (i.e. cognitive changes significantly mild that 

they have no impaired social or occupational functioning) [189]. AD was identified in 

individuals in a similar fashion and were differentiated from MCI by an expert 

clinician on whether symptoms have significant interference with their ability to 

function at work and in everyday activities [188]. Participants did not undergo PET or 

CSF assessment to determine pathology or biomarker status. CH individuals were 

recruited from either the spouses of the patient volunteers or from the Joseph and 

Kathleen Bryan Alzheimer’s Disease Research Centre that includes a database of 

cognitively normal individuals based on extensive testing including MoCA [32]. 

Exclusion criteria included non-AD dementia, diabetes, uncontrolled hypertension, 

demyelinating disorders, glaucoma, AMD and other vitreoretinal pathology that 

could interfere with the retinal image analysis. MMSE [190] was used to evaluate 

cognitive function on the same day of image acquisition. An Optos California UWF-

SLO was used to image the retinal vasculature of 169 participants. Both left and right 

eyes were imaged where possible (212 CH, 62 AD, 64 MCI images). An additional 9 
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CH (3 left, 6 right), 4 MCI (3 left, 1 right) and 8 AD (2 left, 6 right) single eyes were 

obtained where images from both eyes was not feasible (e.g. challenges during image 

acquisition).  

120 of these images were rejected (102 CH, 16 MCI, 2 AD) due to malfunctioning of 

the device thought to be an error in the detector. The detector is an avalanche 

photodiode (APD) which is responsible for converting light to electricity. There are 

two APD’s in the device, one for the green laser to convert to the green channel in 

the image and one for the red laser to convert to the red channel in the image. Error 

in APD functioning would cause noise in the conversion of either channels. In this 

study, the green APD was the most likely cause of the malfunction as the noise was 

in the green channel. Figure 5.1 shows images with varying levels of detector error 

that occurred in the dataset. The result was a noisy green channel that obscured 

retinal landmarks including the vasculature and so measurements were not possible 

to obtain in these images. 

 

Figure 5.1 Example images displaying varying severity of detector error from low to 

high (left to right).  
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16 images were rejected due to obstruction of the OD or fovea (6 CH, 10 AD) which 

occurs when eyelashes, eye lids, retinopathy or media opacity are present in the 

image obscuring these landmarks (Figure 5.2), which are needed for the vessel 

segmentation process. In addition, media opacity reduces the definition of the 

vasculature and vessel segmentation would be unsuccessful for these images. 

 

Figure 5.2 Examples of images with obstruction of the OD and fovea by eyelashes and 

eyelids (left), retinopathy (middle) and media opacity (right). Images such as these 

were rejected because vessel segmentation and the subsequent measurements 

would be unsuccessful in the analysis pipeline. 

Images were exported from the device in non-compressed TIFF format to preserve 

detail. Images were sent for stereographic projection (see Chapter 2) and returned 

with the projected image along with a .txt file with the projection error recorded. This 

automatic process was made available by Optos. If the projection error was >1 the 

image was rejected as the projection process that allows pixel measurements of the 

vasculature to be converted to mm equivalents but would not be precise from such 

inaccurate projections. Projected images with a large error usually occur due to 
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incorrect automatic fovea detection in the Optos process arising either from 

retinopathy or from poor image quality. Manual identification of the fovea can be 

used to reduce the projection error. This was not performed in this dataset because 

the incorrectly projected images had no green channel, possibly arising from the 

error in the detector. 16 images were rejected due to unacceptable projection errors 

(6 Control, 8 MCI). Figure 5.3 shows an example of a successful (left) and unsuccessful 

projection (right). Following data cleaning 107 CH, 42, MCI and 60 AD images were 

sent for segmentation of the vasculature. 

 

Figure 5.3 Shows a successful stereographically projected image (left) and an 

unsuccessful one (right), likely due to the absence of the green channel caused by a 

device malfunction. 
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5.2.2 Vessel segmentation and correction 
 

The vessel analysis procedure involved: (1) definition of a ROI, (2) automatic 

segmentation of the retinal vasculature [191], (3) manual correction of the 

segmentation, (4) labelling of arteriolar and venular vessels [192] and (5) extraction 

of vasculature measurements pertaining to the vasculature [191][117]. 

To obtain an optimal segmentation of the vasculature, a ROI was manually defined 

first in order to select an area free from eyelashes, eyelids and artefacts (Figure 5.4 

A-B). This produced a mask that maximises the usable FOV (typically larger than is 

available from a conventional fundus camera) whilst minimising any features that 

could lead to incorrect segmentation. In some occasions, due to suboptimal 

participant positioning during image acquisition, bright reflections occur in the 

perimacular zone (see Chapter 4 for the definition of this zone) (Figure 5.4 A). Such 

artefacts may be incorrectly segmented as vessel but can be removed in a manual 

correction stage. Within the ROI, a binary map of the vascular network was obtained 

from pixel-wise classification (assigns probabilities to pixels) by a previously 

developed fully connected neural network with a reported AUC 0.97 [117] (Figure 5.4 

C). Some smaller vessels fail to segment, a common limitation of retinal vessel 

segmentation techniques, or parts of the vasculature were obscured by eyelashes 

that could not be avoided in the ROI selection stage and so were not segmented 

correctly. The segmentation may also contain inaccuracies due to complicated vessel 

junctions and crossings as well as intertwining arteriolar and venular paths. To 

simplify the vascular network, a skeletonised version of the binary vessel map was 
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created. This was used to represent the network as a graph structure where the 

edges are vessel paths and the nodes represent either the start/end of a vessel or a 

vessel bifurcation (Figure 5.4 D)[117]. 

 

Figure 5.4 Output of the preparation and segmentation stages to vessel analysis in 

UWF [117]. (A) The OD and fovea are manually located as landmarks (red cross). A 

ROI is defined by either placing a resizable ellipse onto the image or by selecting 5 

points around the ROI to create a tilted ROI. It can be seen in this image that a dark 

artefact exists in the right portion of the image and could not be avoided. (B) The 

resulting ROI binary mask. (C) The automatic segmentation within the ROI performed 

by the neural network. (D) The skeleton of the segmentation is displayed over the 

image for a manual correction stage that aims to obtain the most accurate 
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representation of the vascular network as possible by allowing a user to make a 

limited set of corrections. 

 

To ensure that the vascular network is as accurate as possible, I completed a manual 

correction step. A vessel tree is represented as one vessel path that extends from the 

OD to the periphery. The aim was to create complete and fluent vessel trees to allow 

a comprehensive set of valid measurements to be extracted. The type of corrections 

that were enacted are (A) completing trees, (B) identifying vessel crossings, (C) 

removing false positives such as those that arise from retinopathy or artefact, and 

(D) untangling complicated network patterns.  

The following descriptions refer to Figure 5.5. 

Correction of type A were needed when either a reduction in image quality (i.e. a 

reduction in contrast) occurs along a vessel that leads to suboptimal segmentation, 

or from artefact that prevents accurate segmentation and breaks the vessel path 

(Figure 5.5 (left) 4, 6 and 9). These can be time-consuming corrections to make as 

UWF imaging captures a large amount of the vasculature in the retina. If these 

corrections were not performed, it would lead to disconnected vessel trees that are 

not representative of the true vascular network. The vessel segmentation is 

piecewise linear, whereby each segment of the skeleton is a straight line joined to 

another along the vessel path. This means that any small gaps between segments can 

be approximated by joining with a straight line. Corrections of type A were performed 
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by selecting the two edges that are to be joined and fitting a straight line. However, 

this was only performed when the distance between the two edges was small enough 

that a straight line represents the true path of the vessels. This means that larger 

gaps between segments that may have bends in the vessels were not corrected in 

this way because a straight line would not be representative of the vessel path. The 

judgement of performing such corrections (or not) was by a subjective decision made 

by me. Figure 5.5 (left) examples 4, 6 and 9 shows these corrections at various 

distances. In each of these cases, a straight line was deemed representative of the 

network and the manual correction results in a fully connected tree as shown in 

Figure 5.5 (right). 

Correction of type B were to ensure that when different vessels cross one another 

they are connected to the correct vessel tree. Figure 5.5 (left) examples 2, 5 and 9 

shows overlapping vessels that have been connected and then coloured according to 

the tree they belong to. This again was an important but time-consuming correction 

to make because if a branch from, for example, the pink tree at example 2 was 

connected to the blue tree, the vessel path would join at an invalid (i.e. anatomically 

incorrect) right angle and the path would incorrectly follow back on itself. Vessel 

width measurements made on an incorrect path such as this would result in an 

erroneous increase in vessel thickness and could be misinterpreted as vessels 

thickening when this was not the real case. 

Corrections of type C involved the removal of false positives that occurred as a result 

of artefacts being present in the image (Figure 5.5 (left) 1), or from retinopathy such 
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as drusen and exudates or from deep lying choroidal vessels (Figure 5.6). Corrections 

of type D were performed by removing vessels that were too short to obtain a width 

measurement from (Figure 5.5 (left) 10 and 8) or could not be correctly joined to a 

tree (Figure 5.5 (left) 3 and 7). This occurred in images with complex networks and 

the correction avoided any errors in the vessel tree. For example, Figure 5.5(left) 

example 7 was removed because this segment was a branch from the blue tree, but 

the segment end is from the main path of the pink tree. Such instances were deleted 

in order to create a vessel network as representative of the true vasculature as 

possible. 
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Figure 5.5 Overview of the manual corrections made in a portion of a segmented UWF image (left). The corrected network (right) where 

vessel trees are represented as different colours. We can see that by correcting the skeleton we have fluent trees extending from the 

OD to the periphery. 
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Figure 5.6 Example of false positives (left arrows) due to peripheral drusen appearing near vessels, similar to drusen highlighted in the 

red box. Left shows the correction of type C that involves deletion of false positives.
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Following manual corrections, I labelled the vessel trees as arteriolar (A) or venular 

(V). AV labels were defined by visual inspection. Venules appear darker than arteries 

due to deoxygenated blood [192]. In addition, venular and arteriolar paths almost 

always cross one another (with arterioles on top) and not over themselves, and 

vessels usually alternate between venular and arteriolar paths around the OD. 

Following these rules, an accurate classification (previously reported to have an 

accuracy of 0.883 [192]) can be made in order to label each vessel tree as arteriolar 

or venular (Figure 5.7). 

 

Figure 5.7 A UWF image after complete manual correction process with all vessel 

trees separated and highlighted as A (red) or V (blue).  

5.2.3 Retinal vessel parameters 
 

Table 5.1 shows a summary description of the retinal vessel parameters that were 

extracted from the corrected vessel trees
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An image is divided into the 4 quadrants (SN, IN, ST, IT) with the quadrants mirrored 

in the left and right eyes. Figure 5.8 (pink axes lines) illustrate the image quadrants 

which were centred and aligned according to the OD centre, the OD radius and the 

fovea centre (as observed by an axial tilt of the quadrants). The image is then divided 

into concentric zones - Zone A (0.5 to 1.0 OD diameters from the OD centre), Zone B 

(1.0 to 1.5 OD diameters from the OD centre), Zone C (1.0 and 2.5 OD diameters from 

the OD centre) and the periphery, which is any area outside of Zone C.  

 

Figure 5.8 The image zones. Peripheral zones are any area outside of Zone C. 

Within each quadrant, the longest arteriolar and venular path is selected to measure 

the WG (See Figure 5.9). The intuition behind this choice was to investigate the 

longest vessels that are carrying blood in and out of the retina in each quadrant. Once 

the arteriole and venule pairs are selected, the vessel widths are measured along 
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their paths where the WG is the gradient of the robust fit regression line that fits 

these data points [91]. WGa and WGv was calculated within each quadrant.  

 

Figure 5.9 Example of the longest arteriolar and venular vessel paths (green) in each 

quadrant (Q) from which the vessel width is then measured (in mm). The labels show 

SN (Q1), SN (Q4), IN (Q3) and IT (Q2) along with the computed width gradient. The 

raw segmentation of the vessels is overlaid in pink. 
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Tortuosity is a unitless measure [197] and describes how an object curves and twists. 

Curvature is estimated by measuring the ratio of the length of a curve between two 

points on the vessel path to the distance between the two points. A larger curvature 

would indicate that the vessel bends more within the two points. The global 

tortuosity values were then calculated using the sum of the squared curvatures 

divided by the length of the path.  Tortuosity was measured for arteriole and venule 

pairs for each vessel path using [196]. Fractal dimension (FD) is a unitless number 

used to quantify the complexity of a pattern and was first introduce in ophthalmology 

by Family et al [198]. FD is a method to measure an object that is made of repetitive 

patterns across different scales (i.e. self-similar). The retinal vasculature can be 

considered a self-similar pattern as it follows a tree structure where branches repeat 

and get smaller towards the periphery. FD is calculated by measuring the change in 

detail of the vessel tree (i.e. the white pixels) in the space it is contained (i.e. the black 

pixels) at different scales, which is achieved by overlaying boxes of decreasing size 

onto the vessel skeleton and counting the presence of white pixels [198].The FD was 

calculated for the arteriolar (FDa) and venular (FDv) binary maps using the methods 

from [194][195].  

As FD measures were calculated from the user-defined ROI, the total area covered 

by the ROI was also determined (in millimetres, Areamm2) for subsequent analysis. 

Figure 5.10 shows a visualisation of the complete set of ROI’s sampled for every 

image in the dataset. Overall, the FOV in a UWF image is larger than that of a fundus 

camera. The largest areas sampled were in the ST and IT zones. This is due to less 
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artefact from lashes and the device face plate being present in these regions 

compared to the IN and SN zones. 

 

 

 

Figure 5.10 Visualising all the ROI’s sampled over every image and in the whole 

dataset overlaid on a representative image. The whiter the area the more times this 

region was sampled. There is a skew to temporal quadrants as less artefact from 

eyelashes and eyelids was present in these regions.  
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5.2.4 Data cleaning and validation 
 

Prior to statistical modelling it was essential to identify any outliers in the measured 

parameters and assess whether they were valid or erroneous measurements. The 

intra-observer agreement was also considered in order to determine the 

repeatability of the vessel measurement process performed by myself (which 

contained points at which decisions are made about enacting manual corrections). 

WG parameters that could sometimes not be calculated due to obstruction of a 

vessel by an eyelash or eyelid. In the dataset, 58 CH, 26 MCI and 29 AD images had 

to be removed due to missing WG values. All vessel measures were assessed using 

boxplots to observe their distributions and identify potential outliers (see Figure 

5.11). Any measure that was beyond the 95% confidence interval of the set of 

measures was visually inspected by looking at the originating image and the 

corresponding vessel segmentation. The distribution of the TortA parameter is shown 

where it can be seen that the y-axis ranges by several orders of magnitude. TortA and 

TortV were log transformed to normalise the values (Figure 5.11B). Figure 5.11C 

shows an example of a TortA outlier from the AD group with the arteriolar paths 

overlaid onto the image. There were some extremely tortuous arteriolar vessel paths 

but there was also an erroneous segmentation (highlighted by the white arrow) that 

led to an invalid measurement. This data point was removed from subsequent 

analysis where all other outliers were visually inspected and deemed not to contain 

segmentation errors and were included in the subsequent analysis.
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Figure 5.11. Example of a boxplots used to assess the data for outliers. A) A boxplot of the TortA vessel parameter. The y-axis is small 

and could be rescaled using a log transformation. B) Boxplot of the log transformed TortA. C) Example of a TortA outlier from the AD 

group with the arteriolar paths used to calculate TortA overlaid in white. This individual has extremely tortuous arteriolar paths giving a 

large tortuosity value, but there was an error in the segmentation as the path flows into the neighbouring venule (white arrow)
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To investigate the repeatability of the vessel measures, 12 participants with left and 

right eye images (i.e. 22 UWF images) were randomly selected from the dataset (4 

CH, 4 MCI and 4 AD) for repeat ROI selection, manual correction and vessel 

measurements stages. Effect size (𝜉𝜉) was calculated using a heteroskedastic one-way 

ANOVA for trimmed means[199] . This was chosen because it is a robust method to 

explore data without making any assumptions for equal variance or normal 

distribution and removes any possible outliers introduced in repeats [200]. The 

analysis was conducted in R (version 3.4.4) using the R package ggstatsplot [201]. An 

effect size value was scored as small if 0.10< 𝜉𝜉 < 0.30, medium if 0.30 > 𝜉𝜉 < 0.50, and 

large if 𝜉𝜉 ≥ 0.50 [202]. Table 5.2 shows the results of comparing of the initial and 

repeated measure separated by left and right eye. It was observed that there was 

large effect size for area, FDa and FDv. In this thesis, a p-value is considered 

statistically significant if p<0.05 while small p-values are reported as ‘<0.0001’. There 

was a 40-70mm2 (6- 10% of the total area that can be captured in a UWF image) mean 

difference in area sampled, which was less in the initial analysis than the repeats and 

had a non-significant 𝜉𝜉 in the left eyes (p = 0.12) but a significant 𝜉𝜉 in left eye (p = 

0.01). This suggests that there was a significant variation in area as defined by me as 

the operator in left eyes. FDa was consistently larger in the left eyes of repeat 

measures than in the initial analysis and smaller in the right eyes of repeat measures, 

which was non-significant (p > 0.05). There was a mean difference of 0.20 in FDv of 

left and right eyes, which was significant (p < 0.001). This indicates that there was a 

significant increase in FDv in the repeat measures compared to the initial measures. 



160 
 

Given that significant large effect sizes were observed in both FDv and area measures 

of the ROI and the FD parameters are calculated from the entire ROI, two versions of 

the dataset will be analysed. The first is the initial data (referred to as the I-data) and 

a dataset with the original measures replaced with their repeats (referred to as the 

R-data). This was to investigate whether the differences between the initial and 

repeat measures effects the output of subsequent statistical analysis. 
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5.2.5 Cleaned dataset 
 

Table 5.3 gives details of the participant demographics for the dataset following 

outlier removal. The final dataset contains 24 CH (41 eyes), 8 MCI (14 eyes) and 14 

AD (25 eyes) individuals. Comparison of the means was obtained using 1-way ANOVA 

(when normally distributed) and Kruskalwallis (when non-normally distributed). The 

MCI group contained more individuals with hypertension than CH and AD. Whether 

an individual involved in the study was taking antihypertensives was not known. 

There was a statistically significant difference in age (p= 0.01) and in MMSE score 

(p<0.05) between groups. Post hoc Tukey Kramer test (for ANOVA) and Dunn & Sidak 

(for Kruskalwallis) was used to identify where this difference lies. For age there was 

a significant difference between CH and AD (p<0.05) and not CH vs MCI or MCI vs AD. 

There was a significant difference in MMSE between all groups (p<0.05). 
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cleaned dataset the number of MCI participants was smaller than for the CH and AD 

groups and would not be enough to compare across 3 groups (i.e. using a test such 

as ANOVA) (see 5.2.5). For this reason, the analysis was conducted to investigate CH 

vs MCI and CH vs AD. 

The dataset consisted of repeated measures, where two eyes of an individual were 

included (as well as single eye images for some participants). Repeated measures 

tend to be correlated with one another, especially when measured over short time 

intervals. For example, if we are interested in how height and weight changes over a 

5-year period in 100 individuals, with measurements repeated twice a year, we know 

that there would be an underlying correlation between the repeated measures - i.e. 

two observations of an individual are more likely to be similar in value than two 

observations from two separate individuals. Similarly, we would not expect the two 

eyes in an individual to be independent as the underlying anatomy that connects the 

brain to the two eyes would be similar within an individual. For this reason, 

correlation between the measurements of two eyes of an individual should be 

considered during the analysis if possible. 

Standard statistical techniques such as Wilcoxon rank sum and logistic regression 

(considered in this chapter, as they do not assume a normal distribution) assume an 

independence between measures. Wilcoxon rank sum is a nonparametric analysis 

that does not require normal distribution. Logistic regression is a method to model 

the group as the dependent variable (e.g. CH, MCI or AD) to the independent variable 
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(e.g. CRAE, CRVE) with use of multivariate analysis to control for potential 

confounders (e.g. age, ROI area). However, logistic regression does not permit a 

within-subject correlation structure. Table 5.4 summarises the models that were 

considered, the assumptions and the output.
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Generalised estimation equations (GEE) is a method by which repeated 

measurements (covariates such as, for example, CRAE) from a group of subjects (e.g. 

CH vs MCI) are used to model an expected response for an individual based on the 

covariate [206]. GEE is an extension of linear regression. In linear regression a line is 

fit by iteratively rotating a line through the data and measuring the squared distance 

(residual) of the data point to the fitted line and fitting the sum of the squared 

residuals (so called ordinary least squares [207]). The linear regression equation 𝑚𝑚 

for the jth vessel parameter in the ith individual is given by, 

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑎𝑎 + β𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                               (5.1) 

OR 

𝐸𝐸�𝑚𝑚𝑖𝑖𝑖𝑖� = 𝑎𝑎 +  β𝑠𝑠𝑖𝑖𝑖𝑖; error = Normal.                    (5.2) 

Where 𝑎𝑎 is the intercept at 𝑠𝑠 in the independent variable (e.g. CRAE), β  is the 

gradient and 𝑒𝑒 the error term uncorrelated with 𝑠𝑠. The error term assumes a normal 

distribution and equal variance and is the standard error of the estimates. 𝐸𝐸�𝑚𝑚𝑖𝑖𝑖𝑖� 

denotes the jth vessel parameter in the ith individual and is said to contain an identity 
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link because it is a direct linear prediction of the dependent variable [206]. Figure 

5.13 shows what these parameters are in the model in a visual form. 

 

Figure 5.13 Illustrating the parameters in a linear regression equation. The 

hypothetical research question here is whether weight predicts the size. The 

equation for the regression coefficient (orange) is given by the intercept of the 

regression line 𝑎𝑎 (purple) at the independent variable weight (green; 𝑠𝑠) with a 

gradient (∇f) given by β (green). The error (𝑒𝑒) is the distance of the predicted value 

to the regression line. 

A GEE model extends the linear model in two ways. First, the correlation outcomes 

within an individual are taken into account in the regression formulae that generates 

the regression coefficients and their standard errors. Secondly, the GEE model does 

not assume a normal distribution of the standard errors and therefore permits robust 
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estimates for the standard errors and their coefficients [205]. GEEs thus provide a 

method by which standard errors and their coefficients give consistent inferences 

even if the strength of the correlation within observations of an individual varies 

[205]. A GEE model is given by Equation 5.4 and the within-subject correlation is 

modelled separately. GEE modelling can be thought of in five steps: 

1) Fit a standard regression model (Equation 5.1) where 𝑎𝑎 and β  are the 

regression coefficients.  

 

2) Take the residual of the jth observation in the ith individual in the regression 

model, which is given by, 

 

    𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑎𝑎 + β𝑠𝑠𝑖𝑖𝑖𝑖)   .                        (5.3) 

 

3) Use the residual  𝑟𝑟 to form a matrix which is used to characterise the 

correlations between observations of an individual. This correlation structure 

is defined a priori. Equation 5.5 shows an exchangeable correlation structure 

and discussed more below). 

 

4) Refit the regression model as a weighted regression model by modifying the 

formulae that incorporates the correlation matrix (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) given by, 
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    𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑎𝑎 + β𝑠𝑠𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑒𝑒𝑖𝑖𝑖𝑖     .                      (5.4) 

5) Generate new values for the regression coefficients (𝑎𝑎 and β)  and calculate 

new residuals (𝑟𝑟𝑖𝑖𝑖𝑖).  

 

6) Iterate through steps 2, 3, 4 and 5 until the estimates have stabilised and the 

model converges (i.e. the error is minimised between the residual and the 

regression line and the optimum model has been fitted). 

 

GEEs permit a within subject correlation structure to be defined a priori that makes 

some assumptions. Although multiple correlation structures exist such as 

independence (no correlation), autoregressive (within-subject correlation decreases) 

or unstructured (no specification), in this thesis an exchangeable correlation 

structure was chosen (Equation 5.5). Also known as, compound symmetry, an 

exchangeable matrix assumes that every individual has an equal correlation between 
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his or her two eyes. This is characterised by the intraclass correlation coefficient (ICC)  

[208], 

          (5.5) 

An exchangeable matrix was used to estimate the correlation parameter to quantify 

the within-subject correlation. In this matrix we have the residual (𝑟𝑟) for the ith 

individual in for both eyes (j, j+1). The correlation between repeated measures was 

calculated orthogonally using the ICC and is denoted as p and a dash (-) denotes which 

comparisons have not had applied – i.e. the p of the same eye of an individual. 

Comparison of the outputs informs me whether the significant p-value appearing to 

show evidence of a significant difference is an over estimation due to the fact that 

both the Wilcoxon rank sum test and ordinary least squares regression model ignore 

the inherent correlation between measurements - i.e. a Type I error (false negative) 

has occurred [209]. The use of a multivariate GEE model also permits the comparison 

of the p-value signal when controlling for confounding variables. Linear regression 
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cannot not be performed because the data in this study does not meet the model 

assumptions of normal distribution.  

It is against this backdrop that the group analysis was evaluated by comparing CH vs 

MCI, CH vs AD using Wilcoxon rank sum and univariate/multivariate GEE models to 

evaluate across all models how the signal from the p-value changed and evaluate 

possible Type I or Type II errors [210]. Table 5.5 in section 5.3.1 shows how the p-

value changed between each test. Given the variety of the outputs across models it 

appears that the correlation between eyes while controlling for other parameters 

would be the most reliable and robust result. For this reasoning, the multivariate GEE 

model is presented.  

Multivariate GEE analysis was performed whereby all independent variables were 

entered into the GEE formula and only included in the final multivariate model if 

statistically significant to the model. An independent variable is statistically 

significant if there is an association between the dependent variable and the 

independent variable of interest. If statistically significant, the variable is held 

constant so that the effects of the independent variable of interest to the dependent 

variable can be observed in the absence of this other association. Wilcoxon rank sum 

and GEE modelling was performed in R (version 3.4.3 [211]) using geepack  R package 

[212].  
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Each GEE model was implemented using the following code: 

geemodel = geeglm (Vessel parameter ~ Group, family = “gaussian”, 

corstr = “Exchangeable”) 

where the ‘corstr’ parameter is the assumed covariance matrix and the ‘family’ 

parameter assumes that the data follows Gaussian distributed (rather than a Poisson 

distribution which is typically applied in count data). The output of the model is the 

β-coefficient that is interpreted in a population averaged manner because it is 

calculated directly from the residuals after adjusting for all other covariates in a 

model. To illustrate, in this dataset I have calculated the regression coefficients from 

between the two eyes of an individual that can therefore be thought of as an 

‘average’ from that individual. When comparing between the groups, the 

comparison being made was essentially the comparison between the estimated 

average of all individuals. In this case, a positive or negative β-coefficient indicated 

the average increase or decrease of the population and the p-value and 95% 

confidence interval helped me to evaluate the statistical significance between of the 

association. 
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5.3 Results 
 

5.3.1 Model comparison 
 

Table 5.5 summarises where significant differences were observed for the Wilcoxon 

rank sum (WRS), univariate GEE (UGEE) and multivariate GEE (MGEE) models when 

comparing CH with MCI and CH with AD (using the I-data). There was a significant 

difference in TortV (p = 0.01) when comparing CH and AD using WRS but this was 

non-significant in the UGEE and MGEE models (corrected for area and age). This 

suggested that there is a correlation of TortV measures between eyes that was 

accounted for in the GEE models and therefore was a false positive in the WRS model. 

There was no evidence of a significant difference in the WRS model for FDv but a 

significant difference was observed in the UGEE model (p = 0.01) and the MGEE 

model (p = 0.01) following correction for area. There was a significant difference of 

WGaST (p = 0.04), WGaIN (p = 0.02) and WGvIT (p=0.04) when comparing CH with AD 

using WRS.  Given that the signal for TortV, WGaST, WGaIN and WGvIT was not 

present when accounting for within subject variation, it suggested that the results 

would be more reliable when analysed using GEE’s. WGaIN and WGvIT signal was not 

present following correction for age which suggested that a multivariate GEE would 

be a more robust and consistent method to analyse the dataset. 
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The purpose of this analysis was to determine if accounting for within subject 

correlations was required to further analyse the data. If the signal did not change 

between models, it would suggest that within-subject variation is not essential for 

the analysis of the I-data and the R-data. The use of univariate and multivariate 

models indicated that correcting for age or area is required to give consistent results 

– as shown by the change in signal when comparing CH with MCI for the WGaIN and 

WGaIT following correction for age. 

5.3.2 Vessel width calibres 
 

Figure 5.14 shows boxplots of the CRAE and CRVE parameters measured for the three 

participant groups. Table 5.6 and Table 5.7 display the β-coefficients for the GEE 

univariate models with the I-data and R-data respectively. When comparing CH to 

MCI there was a decrease in CRAE and CRVE observed in the I-data and R-data but 

with no evidence of a statistically significant difference. When comparing CH to AD 

there was an increase in CRAE in the I-data and a decrease in CRAE in the R-data, but 

again no evidence of a significant difference. There was a decrease in CRVE in the I-

data and an increase in CRVE in the R-data that was non-significant. Outliers were 

observed in I-data and R-data for CRAE and CRVE and these were visually inspected 

to determine whether they might be invalid measurements. Figure 5.14 shows an 

example of this visual inspection in Zone B where the CRVE calibres are derived and 

displays the outlier (Figure 5.14A; CRVE = 0.16mm2) next to an image with an average 
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CRVE (Figure 5.14B; 0.20mm2). In the outlier skeleton there is a smaller superonasal 

vessel branch that has been incorrectly segmented leading to a small CRVE.
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Figure 5.14 Boxplots of CRAE and CRVE measures in each group. A-B) boxplots of CRAE and CRVE measures from the I-data. C-D) boxplots 

of CRAE and CRVE measures from the R-data. 
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WGaIN of the I-data and the R-data in boxplot form. Figure 5.16A shows an individual 

with AD and a mean WGaIN (-0.006) and an individual who is CH and who has a mean 

WGaIN (-0.005). From the boxplot it can be seen that the difference in WGaIN was 

from the CH group given by the larger mean WGaIN (-0.006) compared to the AD 

group (-0.005). The representative examples in Figure 5.16 show the vessel path from 

which the width gradient was calculated (cyan) displayed over the image and the 

widths measured along the vessel path. The AD individual appears to have a thinner 

path in the inferior nasal quadrant compared to the individual who is CH.  
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Figure 5.15 Boxplot of WGaIN for the I-data (A) and the R-data (B). The mean WGaIN for CH was the same in the I-data and R-data (-

0.005±0.003). There was an increase of 0.001 in the mean WGaIN of MCI and AD in the R-data compared to the I-data. This was 
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reflected as a 0.001 increase in the β-coefficient and was statistically significant in the R-data and I-data suggesting that the result was 

repeatable. 

 



 

188 
 

 

 

Figure 5.16 A and B shows representative examples of an AD participant and CH participant, respectively. The main vessel arteriolar 

path from which the WGaIN is calculated is overlaid in cyan on to the image. The individual widths measured along the path are displayed 

underneath where a straight line is fitted to the data points.  The AD individual appears to have thinner widths measured along the path 

compared to the CH individual resulting in a higher negative width gradient. 
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5.3.4 Vessel tortuosity and fractal dimensions 
 

Table 5.10 and Table 5.11 display the GEE analysis with the I-data and R-data, 

respectively. When comparing CH with MCI there appeared to be a decrease in TortA 

and TortV in the univariate GEE models using both the I-data and the R-data, though 

there was no evidence of a significant difference. Figure 5.16 shows the FDa and FDv 

distribution derived from the I-data and the FDa and FDv from the R-data. 

Comparison of CH with MCI showed an increase in FDa but no evidence of this being 

a significant difference (following correction for area). Comparing CH with AD showed 

an increase in FDa (p = 0.20) in the I-data, following and prior to, correcting for area 

and age where there was no evidence of a significant difference.  In the R-data when 

comparing CH to AD showed an increase in FDa where a significant difference prior 

to and following correction for area was observed (p = 0.01). Comparing CH with MCI 

there was a significant increase in FDv (p = 0.01) prior to and following a correction 

for area in the I-data and an increase in FDv in the R-data, though not with a level 

considered significant (p = 0.71). In the R-data, comparing CH with AD seemed to 

indicate a decrease in FDv, but this was without achieving a level of significance. From 

distribution of FDa it appears as if the R-data contains more outliers as shown in the 

boxplot.  
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Figure 5.17 Boxplots of FDa and FDv for the O-data (A & B) and the R-data (C & D) 
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5.4 Discussion 
 

Multivariate GEE modelling was concluded to be a reliable and consistent method for 

analysing datasets that contain within subject correlations. This was shown by the 

variation in signal when comparing to other non-parametric modelling techniques, 

which suggested that these methods may be prone to Type I errors when analysing 

retinal datasets. In [210], the authors showed that ignoring the correlation between 

eyes of an individual can lead to an inflated p-value when using paired tests. This was 

observed in this Chapter and showed that the result for my venular tortuosity 

parameter (TortV) was a false positive when using Wilcoxon rank sum and univariate 

logistic regression to compare between groups. Changes in tortuosity have previously 

been reported in the literature when analysing fundus images of individuals with AD, 

though results have been inconsistent. In [48], the authors reported an increase in 

arteriolar and venular tortuosity and used multivariate logistic regression in their 

dataset that contained both eyes of an individual. In [112], the authors reported a 

significant decrease in venular tortuosity but no change in arteriolar tortuosity and 

used a χ2 test to compare a dataset containing both eyes of individuals with AD and 

healthy controls. In [213], authors used logistic regression to analyse fundus images 

of CH and AD individuals using right eyes only. The authors reported a significant 

decrease in arteriolar tortuosity of AD individuals following adjustment for 
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confounders (e.g. age, hypertension). Although the authors used only the right eyes 

it would be interesting to see whether this significance persists in the left eyes. If the 

significance did not persist when analysing eyes separately it would suggest that 

there is variation between eyes that needs to be included in the model to give a more 

accurate representation of the data and to determine any differences between AD 

and CH groups. Given the inconsistencies in the literature, more data is needed to 

understand the role of tortuosity as a potential biomarker for pathological cognitive 

decline but statistical techniques such as multivariate GEE would allow for a reliable 

and consistent analysis. 

In my dataset, there was a significant increase in the complexity of the arteriolar 

network (FDa) observed when comparing CH with AD in the repeat data, but this was 

not recurrent in the initial data. Similarly, a significant increase in the complexity of 

the venular network (FDv) was observed when comparing CH with MCI in the initial 

data, but the finding was not observed in the repeat data. The likely source of this 

disparity is from the variation in the area which FD was calculated, which has three 

possible effects on the measure. In general, more area was included in the repeat 

data than the initial data (see section 5.3.4). An increase in area increases the amount 

of the vasculature that is used for the fractal dimension calculation and could result 

in a larger value. Figure 5.18 shows an example of a CH individual who showed an 

increase in FDa on repeat analysis. The initial ROI (white) and the repeat ROI (green) 

are overlaid onto the UWF image. The initial segmentation of the arteriolar and 
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venular paths are shown in red and blue, respectively. The extension of this 

segmentation in the repeat analysis is also displayed with arteriolar and venular paths 

are shown in cyan and magenta respectively. Either the additional paths can occur 

from the ROI positioning capturing more of the vasculature or from differences when 

performing the manual correction of stages (e.g. a path was removed in the initial 

analysis but not in the repeat). In this example, the ROI area has increased from 

396mm2 to 643mm2, which has led to an increase in FDa from 1.38 to 1.46 and an 

increase in FDv from 1.25 to 1.45.  
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Figure 5.18 Image illustrating the increase in FDa and FDv that can occur due to a 

larger ROI in the repeat analysis (green circle) compared to the initial ROI (white 

circle). The initial arteriolar and venular paths are shown in red and blue respectively. 

The extension of the arteriolar and venular paths in the repeat analysis are shown in 

cyan and magenta, respectively.  

It is also possible for an increase in ROI area to lead to a decreased fractal dimension. 

This is because the fractal dimension calculation takes into account the empty black 

space (i.e. non-vessel pixels) as well as the object (i.e. vessel pixels) to quantify the 

complexity of the structure (i.e. the vessel pattern). In individuals with a sparser 

vascular pattern, an increased ROI would result in a smaller fractal dimension. Figure 
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5.19 shows an example of an individual who had a low FDa and FDv measures in both 

the repeat and the initial analysis. The initial ROI (white) and the repeat ROI (green) 

has increased by 68.2mm2, leading to a decrease in FDa and FDv by 0.12 even though 

the arteriolar and venular paths are the same in both analysis.  

 

 

Figure 5.19 Image illustrating how an individual with a sparse vasculature network 

can show a decrease in FDv and FDa due to more empty space being introduced by a 

larger ROI in the repeat (green circle) compared to the initial ROI (white circle) even 

though the segmentation remained the same. Arteriolar network is labelled red and 

the venular network is labelled blue. 
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A different segmentation on the repeat analysis can lead to a different FDa or FDv 

value despite the size of the ROI. Figure 5.20 shows a CH individual with the initially 

segmented vasculature and the initial ROI (white) and the repeat ROI (green) overlaid 

onto the image. In this individual, the original ROI is 60mm2 larger than the repeat 

ROI. The arteriolar (red) and venular (blue) trees from the initial segmentation are 

overlaid with the extension of this segmentation in the repeat (arteriolar – cyan; 

venular - magenta) analysis is also shown. In this individual, the repeat segmentation 

was different due to variation in manual correction stage and a smaller ROI than the 

initial ROI capturing less empty space. This resulted in an increase FDa from 1.47 to 

1.48 and an increase FDv from 1.30 to 1.49.  
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Figure 5.20 An image of an individual that showed an increase in FDa and FDv in the 

repeat analysis despite the larger ROI in the initial analysis (white circle) compared to 

the repeat analysis (green). The initial arteriolar (red) and venular (blue) 

segmentation original is overlaid with the extra (cyan) and venular (magenta) paths 

found in the repeat. The segmentation in the repeat analysis included more smaller 

branching vessels contributing to the increase in FDa and FDv values. 

It can be concluded that in the repeat data more of the UWF image was sampled and 

this led to variations in the fractal dimension results. In previous work, a significant 

decrease in FDa was observed in AD individuals compared to controls, i.e. sparser 

arteriolar vascular network [91]. The sampling area affected the FD value even 

following correction for area in the model. The reliability of a fractal dimension 
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measure has previously been shown to be influenced by ROI placement [214]. The 

effects of the ROI placement on FD values could be overcome in future analysis by 

defining a consistent zone for extracting the FD measure throughout the dataset or 

to develop a new metric of branching complexity of the retinal vasculature in UWF 

images (i.e. standardisation of FD calculations) (see Chapter 7). My results show that 

researchers working in this field should take great care when interpreting FD 

measures and that reporting a repeat analysis would be important to demonstrate 

that the analysis is consistent and the results are reliable. 

There was a consistent significant difference in WGaIN when comparing CH with AD 

that was present in the both the initial and repeat data. Previously, an increase in 

WGvSN was observed in UWF images of individuals with AD [91] but this was not 

observed in this dataset.  In their study, the authors also described an increase in 

peripheral drusen that was located in the superonasal quadrant. They hypothesised 

that the increased WGvSN in AD resulted in venular thinning and suboptimal 

clearance of the peripheral retina leading to drusen deposition. This study involved 

59 AD (mean age 79 years, SD 8.4 years) and 48 healthy controls (mean age 71 years, 

SD 10.4 years) and therefore had more AD participants than in my study while all 

their participants were older and better age-matched than the participants in the 

dataset analysed in this chapter. These factors could explain why I was not able to 

replicate previous findings. More data would be required to understand whether the 
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WGaIN increase, observed in this dataset, has a correlation to drusen deposition (see 

Chapter 6).  

All participants in this study were over the age of 50 and changes to the retinal 

structure and function that occur in natural ageing of the eye would likely be present. 

Hence, subtle biomarkers specific to diseases such as AD might be difficult to discern 

from natural ageing.  

5.5 Conclusions 
 

GEE’s are a consistent and robust method to provide valid inference of retinal 

datasets that contain both eyes of an individual.  Given the inconsistent results of 

fractals that were observed, it is difficult to conclude whether fractal dimension 

might associate with AD. This chapter has highlighted the need for the 

standardisation of extracting fractal dimension measures, particularly when 

performed on a UWF image that has a larger FOV than a traditional fundus camera. 

The retinal vascular data presented here suggests that there may be subtle changes 

occurring in the retina in pathological cognitive decline pertaining to AD. It is believed 

that changes occurring in the brain connected to AD occur much earlier than the 

outward presentation of symptoms of significant cognitive decline. Thus, retinal 

vascular changed mirror brain vascular changed could also occur much earlier in life. 

Longitudinal images of mid-life individuals would therefore be necessary to reveal 

these. 
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 It is believed that changes occurring in the brain connected to AD occur much earlier 

than the presentation of significant cognitive decline. Thus, retinal vascular changes 

that mirror brain vascular changes could also occur much earlier in life. Longitudinal 

retinal images of mid-life individuals would shed light on the nature of these changes. 
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Chapter 6 Exploratory drusen analysis  
 

6.1 Introduction 
 

This chapter outlines the exploratory analysis of the dataset presented in Chapter 5 

using the automatic system described in Chapter 4. Quantitative measures 

performed on UWF images could be used to study cross-sectional differences 

between patients or longitudinal changes in individuals to facilitate investigations 

into drusen formation and progression as a biomarker of neurodegeneration. 

However, because the detector had a low sensitivity we should bear in mind that 

there will be a large proportion of drusen that are not detected giving an under 

estimation of the true amount present in an image. In this chapter I investigate 

differences between individuals deemed cognitively healthy and those with MCI and 

AD.   

6.2 Materials and methods 
 

93 CH, 41 MCI and 50 AD images were analysed for drusen. This dataset comprised 

images prior to data cleaning (Section 5.2.4) of invalid measurements of vessel 

parameters. One image from a CH individual was excluded due to the presence of 

artefact (see Figure 6.2). Drusen were detected using the automatic system described 

in Chapter 4 whereby a Manchester grid is overlaid over the input image and each 
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cell is classified as either positive for drusen or negative for drusen. Counts of grid 

cells deemed positive were obtained for each of the zones previously described in 

Section 4.3.4 as well as an overall total drusen load for every image. In Section 4.3.2 

the ROC curve showed the performance of the classifier at various thresholds. At a 

threshold of 0.5 the curve was closest to the top left corner of the ROC plot and 

represents the optimum threshold whereby the true positive rate is maximised and 

false positives are minimised. A cell was considered positive if the output probability 

value was more than 0.5.  

Figure 6.1 shows the distribution of the total counts per image visualised as a dot 

plot. Given the low sensitivity of the drusen detector the images with high counts 

were visually inspected to assess whether these featured cells that were false 

positives or true positives.  
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Figure 6.1 Dot plot of the total count of Manchester grid cells classified as positive for 

drusen. There were many images with high counts of cells detected as positive for 

drusen in the AD and CH group.  

Figure 6.2A shows the output of the drusen detector visualised as a heatmap in an 

individual who had a high drusen count. Closer inspection of the image in Figure 6.2B 

shows that there were large amounts of bright material that is most likely vitreous 

material, which confounds the automatic system. As this image contained an 

extremely large number of false positives, the image was excluded from further 

analysis. This individual’s fellow eye was visually inspected to assess whether the 

similar bright material was also present (see Figure 6.2C). Regions of high probability 
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were visually inspected (see Figure 6.2D) and found to contain clusters of hard and 

soft drusen rather than the previously observed bright vitreous material, and so the 

image was included in further analysis.  
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Figure 6.2 A CH individual with large amounts of vitreous material in their right eye 

but not the left. A) The output from the system was a high probability that these 

regions contained drusen (white). B) On closer inspection vitreous material was 

observed in the inferior region of the image and this has a similar appearance to 

drusen is present in the inferior region of the image. C) For the image of the fellow 

eye the output of the drusen detection was inspected for artefact (yellow boxes). D) 

The regions of high probability were visually assessed and deemed to contain clusters 

of hard and soft drusen (black arrows) and so were considered true positives. 
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On visual inspection of 16 images suspected of containing large numbers of false 

positives, they were actually from individuals who had large amounts of drusen. 

Figure 6.3 shows an example of this along with the image obtained from the fellow 

eye for comparison. There was a region of high probability near to the OD. Given that 

this was a source of false positives (see Section 4.3.2) the area was visually inspected 

and deemed to contain drusen (white arrows) but also false negatives (purple arrow). 

All 16 images appeared to contain low numbers of false positives and were all 

included in the subsequent analysis. 
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Figure 6.3 A) the right eye of the individual where a region near the OD was assessed 

by the automatic system to contain a high probability for drusen. (B) This region was 

visually inspected and shows true positives near the OD (white arrows) and false 

negatives (purple arrow). (C) This individual has a high abundance of drusen in the 

fellow eye.  

 Table 6.1 shows the participant demographics following removal of the one outlier 

(shown in Figure 6.2. There was no evidence of a significant difference between ages 

for the 3 groups but there was a significant difference in Mini Mental State Exam 

(MMSE) scores (as expected). 
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for GEE analysis because some images could have no drusen detected in any one of 

the zones. This would result in many 0 values which can be avoided, wherever 

possible, by using the total count detected in the image.  

6.3 Results 
 

6.3.1 Drusen detection 
 

Figure 6.4 shows as a percentage the total number of cells detected as positive for 

drusen per zone and split by group. There were a total of 635, 112 and 384 cells 

detected as drusen in the CH, MCI and AD groups, respectively. MCI had a higher 

number of cells detected as positive for drusen in the central zone (35 cells, 31%) 

than CH (19 cells, 3%) and AD (82 cells, 21%). CH had a higher number of drusen 

positive cells in the perimacular zone (289 cells, 46%) than MCI (35 cells, 31%) and 

AD (82 cells, 21%). AD had a higher number of cells detected as positive for drusen in 

the peripheral zone (220 cells, 58%) than CH (327 cells, 51%) and MCI (42 cells, 38%). 
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Figure 6.4 shows as a percentage the total number of cells detected as positive for 

drusen per zone and split by group.  

6.3.2 Drusen and age 
 

Figure 6.5 explores the relationship between age and the total number drusen 

positive cells in the whole dataset. I observed a statistically significant (weak) positive 

correlation (R = 0.30, p < 0.01). By group, there was a statistically significant 

(moderate) positive correlation between drusen count and age in CH (R = 0.40, p < 

0.01) and a non-significant (weak) positive correlation between drusen count and age 
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in MCI (R = 0.30, p = 0.06) and in AD (R = 0.30, p = 0.06). The drusen detector and our 

dataset replicated the previously reported association of increasing drusen 

abundance with age, even though the network sensitivity was low and the counts 

were most likely under estimated. 

 

Figure 6.5 A plot of age against total drusen count for each individual, which shows a 

linear relationship. The purple line indicates the correlation of the two parameters 

and the 95% confidence intervals. There was a weak positive correlation between age 

and drusen counts (R = 0.30, p < 0.01). It can be seen that individuals with higher 

numbers of counts (>30) were older in age (> 70 years old). 
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show this for the CH group where it can be seen that there was a large proportion of 

high probability in the inferior nasal region of the perimacular and peripheral zone. 

Figure 6.5 C (left eye) and D (right eye) show the average probability in the MCI group 

where there were smaller regions of high probability cells than observed in the CH 

group. These look to be distributed around the perimacular and peripheral zones. 

Figure 6.5 E (left eye) and F (right eye) show the average probability for the AD group 

where there was a large high probability region in the inferonasal region (peripheral 

zone) of the left and right eyes that is similar in pattern to the CH group. This analysis 

suggests that there were less drusen in the perimacular and peripheral zones in MCI 

compared to CH and AD. 
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Figure 6.5 Visualising the drusen cell probabilities, where higher average probabilities 

correspond to a whiter colour on the colour scale and lower probabilities correspond 

to the darker end. (A) and (B) correspond to the CH group, (C) and (D) to the MCI 

group, (E) and (F) to the AD group. It can be seen that there are different patterns in 

drusen distribution. The CH and AD groups both contained large regions of high 

drusen probability in the inferornasal regions whereas drusen probabilities look more 

dispersed in MCI eyes. The green marker indicates the OD. The blue lines delineate 

the zones as defined in Chapter 4. 

6.4 Discussion  
 

The aim of this chapter was to use the automatic drusen detection system to 

investigate associations between drusen deposition and neurodegeneration in the 

context of AD. Drusen deposition was associated with age in my dataset (R = 0.40, p 

< 0.05), which agrees with previous reports [215][216][217]. Though it should be 

remembered that my system has low sensitivity and so there could have been false 

negatives that would give an underestimation of the true drusen load in an image. It 

would be interesting to observe the heatmaps in longitudinal images to monitor 

drusen progression in people split by zones to see whether this differs between the 

groups. However, improvements to the system such as more training data would be 

required to increase the networks sensitivity (see Section 4.4). Following such 
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improvements, the analysis in this chapter could be conducted to highlight whether 

the trends observed in this thesis persists. 

There was a higher abundance of drusen positive cells in the inferonasal region of the 

peripheral retina in CH (51%) and AD (58%) individuals and less was observed in MCI 

(38%). Csincsik et al [91] proposed that the thinning of the vasculature towards the 

periphery would decrease blood flow and could lead to decreased oxygenation, 

nutrient availability and suboptimal clearing of the peripheral retina. Previous studies 

demonstrating retinal changes in MCI and AD have shown that blood flow 

abnormalities precede neurodegeneration [218]. In Chapter 5 when comparing CH 

with AD there was significant difference between the inferonasal arteriolar width 

gradient. This could suggest that the high abundance of drusen detected in this region 

may be related to a thinner inferonasal arterioles leading to suboptimal clearance 

and drusen deposition.  

In Chapter 5, there was no evidence of a significant difference between CH and MCI 

inferonasal arteriolar width gradient, but 60% of MCI individuals were hypertensive 

(Section 5.3.4). MCI had significantly different drusen counts when comparing to CH 

(p = 0.02) and AD (p = 0.003). It could be that drusen were not observed in this region 

for MCI because individuals were taking antihypertensives that may have improved 

blood flow and thus minimised drusen deposition. The data on hypertensive 

medication was not available for this thesis but would be important for future studies 

investigating vascular measures and drusen load. 
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There was a statistically significant difference between the number of drusen positive 

cells when comparing CH with AD (p = 0.02) and CH with MCI (p = 0.003). High 

probabilities were located in the perimacular and peripheral zones. A metanalysis of 

RNFL thickness measured using OCT in AD and MCI compared to healthy controls 

found that there was an association between RNFL thinning of the superior and 

inferior quadrants [219]. Additionally, there is a higher concentration of ganglion cells 

in the nasal quadrant than the temporal quadrant of the perimacular zone [75]. RGC 

degeneration has been associated with AD [101][220] as well as amyloid deposition 

in the retina [52][93]. This could explain the higher rates of drusen detection in this 

region as a higher concentration of degenerating cells may lead to increased drusen 

accumulation. More data and improvements to the drusen detector (as outlined 

above) would be required to determine whether this pattern persists. 

Csincsik et al [91] found that there was a higher abundance of peripheral hard drusen 

in AD. This raises the question as to whether drusen type helps to distinguish 

accumulation associated with age or with ganglion cell degeneration and amyloid 

deposition that may precede cognitive decline. Post mortem histology analysis of 

drusen deposits composition may shed light onto the differences between age-

related drusen and drusen associated with cognitive decline. It would be interesting 

to curate datasets featuring UWF images and corresponding post mortem histology 

to assess for correlations between the appearance of drusen in vivo and drusen 
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molecular composition. This may aide in the identification of imaging characteristics 

that define drusen containing amyloid and further identify AD retinal biomarkers.  

6.5 Conclusions 
 

This chapter explored drusen load in CH, MCI and AD individuals using an automatic 

deep learning-based system. Although the sensitivity of the system was low and the 

drusen counts were most likely underestimated, the output of the system was able 

to replicate a previously reported association of drusen and age.  There was 

significantly less drusen detected in MCI compared to AD and CH. AD had a higher 

proportion of drusen counts in the periphery compared to MCI and CH that replicates 

previous work using manual annotations of drusen in UWF images. Improvements to 

the system, such as more training data, would be required to assess whether these 

trends persist in larger datasets.  
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Chapter 7 Conclusions and Future Work 
 

7.1 Conclusions 
 

Inspired by previous work in fundus photography, a novel computerised technique to 

automatically detect drusen in UWF images was developed in this thesis. Retinal 

vascular measurements and drusen counts were obtained and assessed in a patient 

cohort that featured AD and MCI as well as CH individuals - to identify potential 

biomarkers and retinal manifestations of disease. 

The following were the major aims and advancements achieved by this thesis: 

1) Aim 1 was to investigate methods for automatically detecting and analysing 

drusen in UWF images. This was achieved by investigating previous work in 

detecting drusen in fundus camera images (primarily in the field of AMD). This 

highlighted the direction of research moving towards deep learning and 

transfer learning, which subsequently inspired my development of drusen 

detection for UWF images 

2) Aim 2 was to cultivate an automatic drusen detection algorithm. This was 

achieved through development of a supervised deep convolutional neural 

network to classify patches within a UWF image as positive or negative for 

drusen. Performances of 0.55-0.59, 0.62- 0.65 and 0.65-0.66 were achieved in 
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the central, perimacular and peripheral regions of the retina, respectively. 

This provided a novel method to identify regions that had a high probability 

of containing drusen. This has utility for quantifying drusen (by counting the 

number of positive patches) and for monitoring drusen progression 

(visualising the output via a heatmap). The system had a low sensitivity (17.7-

21.8%) which means there would be a high number of false negatives, 

therefore utilising the system for quantifying drusen in a new dataset would 

result in an underestimation of the true amount of drusen present in the 

images. The nature of many of these false negatives were instances of small 

discrete drusen that might only be 1 pixel in size or dust artefact on the mirror 

of the SLO. In both cases, a human grader might have more success where the 

system failed. However, there was only a moderate agreement between two 

observers grading images (κ = 0.53, DSC = 0.38), which highlights the difficult 

nature of manually annotating drusen in UWF images. This also created a 

challenge to validating the system in the presence of observer disagreement.  

These limitations could be overcome by training the system on more data and 

additional observers to create a more consistent reference standard. 

3) Aim 3 was to measure and analyse the retinal vasculature in AD to investigate 

retinal manifestations and discover potential biomarkers. Multivariate GEE 

analysis was used to compare between groups of CH, MCI (considered in this 

thesis as prodromal AD) and AD, whilst accounting for correlations between 
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eyes. I found a significant difference between arteriolar inferonasal width 

gradients of CH and AD. There were inconstancies between fractal dimension 

measurements in the repeat analysis, where this thesis identified limitations 

in marking non-standardised ROI in the UWF image set. My work did highlight 

a robust statistical analysis method for UWF retinal vasculature 

measurements as well as issues to overcome in future studies. 

4) Aim 4 was to apply the drusen detector to the dataset consisting of CH, MCI 

and AD in order to quantify drusen in these images and identify differences 

between the groups. This was conducted as an exploratory analysis due to the 

limitations of the proposed system, i.e. low sensitivity. The exploratory 

analysis produced promising results as the output of the system was 

successful in replicating a known association between drusen and age as well 

as uncovering novel differences between groups. Using GEE, there was a 

significant difference in drusen count when comparing MCI to CH (p = 0.02) 

and MCI to AD (p = 0.03), but no evidence of a significant difference when 

comparing AD to CH (p = 0.30). Visual inspection of the output of the 

automatic system via a heatmap showed that there were higher probabilities 

of drusen in the inferonasal region of CH and AD, which corresponded with 

the difference observed in width gradients.  
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7.2 Future work 
 

The human observers used a Manchester grid to grade cells for drusen, and the 

proposed system was validated in a way to correspond to this grading protocol. This 

limited the FOV due to the curvature of the grid towards the periphery that could not 

be resized for input into the neural network, and subsequently led to grid cells which 

could not be classified for drusen. Additionally, drusen grading is highly subjective as 

there was not a clear enough protocol for the human observers to follow, particularly 

when encountering a Manchester grid cell with drusen at the edge of the cell 

boundary. One observer may grade for drusen and the other may not. This created a 

level of disagreement between the observers and led to challenges when validating 

the neural networks performance. Future reference standards should therefore 

include a grid that extends to the periphery perhaps by using a system that does not 

account for the retinal curvature in this region (i.e. a square cell) and precise grading 

protocols as to how to grade drusen at the edge of a cell. This would improve the 

quality of the ground truth which is necessary for both training and validating an 

automatic system. 

Neural network performance could be improved with more training data. This data 

could consist of patches graded for different subtypes of drusen and dust (to train 

the network to identify false positives). As drusen size is used in many AMD studies 

and may be important for AD studies, this could be obtained by segmenting drusen 
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in the UWF image. Semantic segmentation, whereby each pixel is given a class, could 

be used provided that the training data contains large amounts of hand drawn 

segmentations by multiple observers. Individual hand drawn boundaries of drusen 

would be challenging in UWF images because of the resolution of the imaging 

technique as drusen might be only a few pixels in size. Obtaining large amounts of 

pixel level annotations would be challenging, expensive and time consuming where 

multiple observers would be needed to obtain a reliable reference standard. 

Subsequently, ensembles of neural networks, whereby stacks of networks that 

perform different tasks in order to create a combined output, could be developed. 

For example, one network could classify the image as containing drusen or not, where 

images high risk for drusen are passed to a second network. The second network 

could classify patches for drusen where patches with a high probability for drusen are 

passed to a third network. The third network could perform semantic segmentation 

to delineate drusen boundaries for drusen quantification.  This coupled with OCT 

images that could be used to segment drusen volumes, may provide further insight 

into the type of drusen present. Such multimodal imaging ensemble learning 

methods would require large amounts of data, meticulous hand drawn 

segmentations and gradings from many human observers and will be challenging to 

obtain. 
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There was inconsistency between repeat measures of fractal dimensions that 

resulted from the varying nature of the ROI used in performing the calculation. To 

overcome this, a predefined ROI could be used on each image, for example a ‘Zone 

D’ that is an annulus that extends further from Zone C. However, in a UWF image 

obtaining a circular area is challenging because of the eyelashes and eyelids that 

sometimes feature in the image. An ellipse shape is often more appropriate. This 

ellipse could be obtained by taking the average manually drawn ROI over the whole 

dataset (that is positioned according to the OD and fovea) so that the fractal 

dimension is calculated from the same region in each image. The challenge with such 

an approach is that not all of the vasculature might be measured in some images. 

Another way to address the challenge might be to develop a new metric of branching 

complexity. The data structure of the vascular segmentation is a graph, whereby the 

nodes are the branching points, the edges are the vessels to the node and there are 

multiple vessel graphs in one image that corresponds to the arteriolar or venular 

components. This data structure is synonymous to a computer program where the 

nodes can be a conditional statement, the edges are the routes from the statement 

and there can be a number of graphs that corresponds to the number of subroutines 

or classes. Software developers use this to measure the complexity of the graph (i.e. 

the complexity of the software), called cyclometric complexity [221]. This returns a 

value between 1 and 10, where 10 is most complex. Potentially the cyclometric 

complexity could be used to give a quantitative measure of the complexity of the 
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vasculature. The challenge here is that the performance of the segmentation would 

have an influence on the number of edges and nodes and therefore impact the value 

of the complexity – i.e. a low cyclometric complexity could be returned because not 

all of the vasculature could be segmented in a poor quality of the image. However, 

the question would be whether this method is more repeatable than a fractal 

dimension. Comparisons of fractal dimension and cyclometric complexity measures 

would be required to validate a new metric of vascular branching complexity.  
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