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Abstract 

Analyses of the PrP gene of several mammalian species have found that it exhibits a 

high degree of DNA sequence homology. However, exon III of the sheep gene is 

much larger than that found in other species due to insertions of ruminant-specific 

elements within the PrP 3 'UTR. The ovine 3 'UTR is also differentially processed to 

produce at least two mRNA transcripts (4.6 and 2.1kb) by alternative 

polyadenylation. Differential expression of the two transcripts is observed with 

respect to tissue specificity and level of transcription. 

The primary objective of this study has been to examine the hypothesis that regions 

specific to the sheep 3 'UTR act as an inhibitor. In a previous thesis, in vitro 

expression in mouse N2a cells using reporter gene constructs with the 

chloramphenicol acetyl transferase (CAT) gene linked to PrP sequences had 

suggested that there might be an inhibitor of translation in the PrP gene 3'UTR. 

Transient transfection methods were developed to generate optimal levels for in vitro 

expression of the CATIPrP-3'UTR constructs in immortalised Cheviot fetal brain-

derived cell lines from both scrapie resistant and susceptible genotypes and primary 

cell lines derived from cerebellum and liver tissues of the Icelandic sheep breed, Ovis 

brachyura borealis pall. Expression of a series of CATIPrP-3 'UTR vectors in cell 

lines derived from different PrP genotypes found that sequence between nucleotides 

2000-2700 on the PrP 3 'UTR may show a tendency to reduce protein expression in 

the cells derived from brain tissue of scrap ie-resistant genotype and in a tissue 

specific manner. 

Additional vectors were produced to express ovine PrP mRNAs, similar to the 

endogenous 4.6kb and 2.1 mRNAs transcripts, but altered to display a monoclonal 

epitope site (3F4) enable transiently expressed PrP protein within ovine cell cultures 

to be detected. Expression of the PrP constructs in mouse neuroblastoma (N2a) cells 

has shown that both constructs were viable. However, the immunodetection methods 

employed in this thesis could not distinguish between transiently expressed 3F4-

labelled ovine PrP and endogenous PrP within sheep cell lines. 



Results presented here confirm that the 3' UTR found in the 2.1kb mRNA is capable 

of supporting gene expression. A role for a specific sequence in the ovine PrP gene 

3 'UTR in controlling protein expression in brain-derived cell lines has been 

proposed. Also, the function of the regulatory sequence may be dependent on tissue 

origin. PrPC  is vital for the replication of the TSE agent. Controlling the amount of 

available PrPC in vivo may influence susceptibility and development of TSE diseases. 
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Chapter 1 :Transmissible Spongiform Encephalopathies. 

1.1 General Introduction. 

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, 

are fatal degenerative disorders of the central nervous system (CNS) affecting both 

humans and animals. TSEs are characterised by disturbances in behaviour and 

movement, spongiform changes in the brain and the deposition of an abnormal 

isoform of a host-encoded protein (PrP) in the CNS and to a lesser degree in 

lymphoid tissue. There appears to be no immune response to infection and potential 

therapeutics investigated to date have only delayed the onset of disease in animal 

studies. 

Transmission of TSEs to laboratory animals has highlighted the unusual properties of 

the pathological agent such as long incubation period and resistance to chemical and 

physical inactivation. The identity of the TSE agent has remained an enigma for 

more than 60 years due to the failure to isolate a particle which conforms to the 

criteria of TSE: transmissibility, replication, propagation of strain characteristics, 

neuronal loss, and accumulation of an abnormal host encoded protein. Suggested 

aetiologies for the TSE agent include that of a proteinaceous infectious particle 

(prion), a DNA/protein hybrid (virino) or an unconventional virus. The prion 

hypothesis suggests that a partially protease-resistant abnormal isoform (designated 

PrP) of a normal host encoded glycoprotein (PrPC)  (Bolton et al, 1982; McKinley 

et al, 1983; Oesch eta!, 1985) is the major, or sole, component of the TSE infectious 

agent (Prusiner, 1982; Prusiner eta!, 1982). It is proposed that the agent can 

replicate, without a nucleic acid (Griffith, 1967; Prusiner, 1982), by converting the 

normal host-encoded isoform to the disease isoform (Prusiner, 1991 ;Jarrett and 

Lansbury, 1993). According to the prion hypothesis, strain characteristics of TSEs 

are encoded for in the conformation of PrPSC  (Caughey etal., 1998; Safar etal., 

1998). Whether PrPSC  is the infectious agent still has to be proven. The virino and 

virus theories both predict that the TSE agent has an independent informational 



molecule encoding strain specific characteristics. The virino model suggests that the 

TSE agent-specific molecule, probably a nucleic acid (Dickinson and Outram, 1988), is 

protected by PrP. Formation 0fppSC  may be due to the association of the virino 

nucleic acid with the host PrPC  protein. The virus model suggests that the agent-

specific nucleic acid encodes strain-specific characteristics and the viral coat contains 

PrPSC (Rohwer and Gajdusek, 1980) 

The normal PrP isoform, PrPC,  is detectable in many uninfected and TSE-infected 

tissues (Bendheim etal., 1992). In contrast, PrPSis  only associated with TSE infection 

(Rubenstein et al., 1987, Ikegami etal., 1991). The PrP gene structure and organisation 

is known to be highly conserved between species suggesting that it may play a 

fundamental physiological role. However, the precise function of PrP is still unclear. 

To investigate the role of PrP, both in the cell and as a factor of TSE development, 

panels of transgenic mice have been created by several laboratories. Analysis of 

transgenic models has revealed the importance of host genetics (Race, 1990) for 

susceptibility to TSEs. Mice lacking the PrP gene (PrP null) develop normally and 

show no severe phenotype (Bueler etal., 1992;Manson etal., 1996). Furthermore, 

when inoculated with scrapie these PrP null mice appear to be resistant to disease 

(Bueler etal., 1993; Sailer etal., 1994). Conversely, animals over-expressing PrP 

are more susceptible to TSEs (Scott etal., 1989; Prusiner, 1990; Bueler etal., 1992). 

Expression of the PrP gene therefore seems to be vital to the development of TSEs. 

This thesis deals primarily with the expression of the PrP gene within sheep, the 

natural host of scrapie, and attempts to correlate the importance of control 

mechanisms of PrP gene expression to disease susceptibility, transmission and 

development. The aim of this first chapter is to introduce the complexities of the TSE 

agent and the host PrP gene products. 



Table 1.1 : TSE diseases of humans and animals 

Natural Host Disease Occurrence 

Sheep,Goats Scrapie Unknown' 

Cattle Bovine Spongiform Encephalopathy (BSE) I atrogen i cb 

Mule deer Chronic Wasting Disease (CWD) U n knownc 

Mink Transmissible Mink Encephalopathy (TME) U nknown   

Cats Feline Spongiform Encephalopathy (FSE) l atrogen ice 

(domestic, captive) 

Human Creutzfeldt-Jakob disease (CJD) Sporadic 

Inherited9  

I atrogen ic"  

New variant CJD (vCJD) latrogenic' 

Gerstmann-Straussler-Scheinker Inherited 

Syndrome (GSS) 

Kuru Iatrogenic' 

Fatal Familial Insomnia (FF1). Inherited' 

a(Cuille J. and Chelle, P.L., 1936; Parry, 1983;Chelle, 1942; Dickinson, 1976), 
b(Wells et al, 1987; Fraser et al, 1988), c(Williams  and Young, 1980), d(Hasough  and 
Burgher, 1965), e(WyaU  etal. 1990), (Creutzfe1dt, 1920; Jakob, 1921), g  "'(review 
Prusiner, 1993), '(Will et al, 1996; Chazot et al, 1996), i(  Gerstmann, 1928), k(Gajdudesk  and 
Zigas, 1957), '(Lugaresi eta!, 1986) 



1.2 TSEs of Humans and Animals. 

TSE diseases have been described in both animals and humans (Table 1.1). 

Characteristic pathology of TSEs is generally confined to the CNS, particularly the 

brain. Examination of TSE-infected brain reveals a neuropathology which can vary 

in localisation and severity depending on the infecting strain of TSE. Pathological 

markers for TSE infection commonly include accumulation and deposition of an 

amyloid protein (PrPSc)  in specific brain areas, vacuolation (spongiform appearance) 

and astocytic gliosis(Beck etal., 1969; Gibbs etal., 1968; Bruce and Fraser, 1975; 

Chou et al., 1980; Wisniewski et al., 1981; Tateishi et al., 1984). Spongiform 

lesions are thought to be the result of formation of intracellular vacuoles (Prusiner, 

1993). 

Scrapie, which occurs naturally in sheep and goats, has been recognised in Europe 

for more than 250 years and is the best studied of animal TSEs. Clinical signs of 

scrapie include trembling, loss of motor control, intense itching, and paralysis, death 

due to scrapie in sheep most frequently occurs between the ages of 2-5 years. 

Generally, neuropathological examination of a scrapie infected brain reveals 

widespread deposition of PrP, vascular degradation and gliosis (Wood etal., 1997). 

Since early demonstrations of its transmissibility (Cuille and Chelle, 1936), scrapie 

has become the experimental model for TSEs in general and is usually studied in 

both sheep and laboratory rodents. 

TSEs have been identified in other animal species based on transmission, clinical and 

neuropathological symptoms familiar to scrapie (Table 1.1). The appearance of 

Bovine spongiform encephalopathy (BSE), first identified in 1986, coincided with 

changes in rendering procedures and the feeding of cattle of meat and bone-meal in 

Britain (Bradley and Matthews, 1992). Although not proven, the BSE outbreak is 

considered to be the result of cattle being fed meat and bone-meal derived from 

ruminant sources contaminated with scrapie (Wilesmith, 1991). Since 1988, feeding 

ruminants with ruminant derived bone meal has been banned and as a result reported 

cases of BSE have fallen in number (Wilesmith, 1993). Neuropathologically, BSE in 

cattle shares similar features to scrapie in sheep: astrocytosis, vacuolation, neuronal 
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loss and PrP amyloid plaque formation (Wells and Wilesmith, 1995). However, 

significant differences in the pattern of neuronal loss within specific brain regions are 

observed following inoculation of inbred lines of mice with scrapie and BSE (Bruce, 

1998). Although BSE is clearly a distinct strain of TSE, changes in the rendering 

process which occurred just prior to the appearance of BSE may have allowed the 

selection of a rare strain of TSE. TSEs have also been reported in domestic cats 

(FSE) and captive zoo animals (Wyatt etal., 1990; Jeffrey and Wells, 1988; 

Kirkwood etal., 1990). These cases are thought to have arisen through the animals 

being fed BSE-contaminated-meat derived from bovine sources. Transmissible 

Mink Encephalopathy (TME), first observed in farmed mink in 1965 (Hartsough and 

Burger, 1965) was caused by an agent with similar physiochemical properties to that 

of the scrapie agent (Marsh et al., 1969; Marsh et al., 1979). 

Human TSEs can be described as inherited (GSS, CJD, FF1), sporadic (CJD), 

infection (Kuru) or iatrogenic (CJD) (Table 1,1). Most forms, like scrapie, are 

experimentally transmissible to various animal species(Gibbs etal., 1969). The 

clinical and pathological features of the different human TSEs can vary greatly but 

most show degrees of dementia, ataxia, spongiform degeneration and amyloid 

deposits composed of PrP protein fragments (Prusiner, 1993). However, the age 

groups in which these TSEs occur can vary. Generally, the age of onset for CJD is 

50-60 years, although cases in young patients have been identified (Brown, 1985). 

For GSS the age of onset can be 24-63 years (Prusiner, 1993) and FF1 has presented 

in 40-60 year olds (Lugaresi et al., 1986: Reder etal., 1995). 

Although sporadic CJD (sCJD) occurs more frequently than other forms, it is still 

very rare (approximately 1 case per 106  per year world wide), and factors involved in 

the cause of sCJD are unknown. Approximately 15% of CJD cases and almost all 

GSS (occurrence rate of 1-2 per 10-100 million (Master et al., 1979, Prusiner 1993)) 

cases occur in a familial context, both showing an autosomal dominant pattern of 

disease segregation (Masters et al., 1979). latrogenic forms of human TSEs are 

thought to result from accidental inoculation, transplantation of TSE infected 

material. Kuru for example, a unique neurodegenerative disorder among the Fore 



Tribe of Papua New Guinea, is thought to have been transmitted through ritual 

cannibalism (Gajdusek, 1977). However, since the practice of cannibalism ended in 

1955, the numbers of recorded Kuru cases have fallen significantly, although cases 

are still occurring almost 40 years after the last known ritual. A new variant of Cii) 

(nvCJD, now known as vCJD) was identified in the UK in young patients who had a 

unique, clinical and pathological phenotype (Will et al., 1996; Chazot etal., 1996). 

vCJD cases all shared early onset of disease, initial psychiatric disturbances, 

prolonged duration of illness and unusual pathology: all characteristics which had 

never been described in UK CJD cases before. Recently it was shown that a similar 

TSE agent is responsible for both BSE and vCJD (Collinge eta!, 1996; Bruce et al., 

1997; Hill etal., 1997) (section 1.5.2.1). 

1.3 The TSE Infectious Agent. 

Originally, the scrapie agent was believed to be an unconventional slow virus that 

had so far eluded detection but this is now thought unlikely. A similar difficulty in 

agent identification was seen with the hepatitis C virus (Choo etal., 1989). Intensive 

immunological methods failed to identify specific viral antibodies and antigens in 

hepatitis cases arising from blood transfusion. It was not until 1989 that Choo eta!, 

cloned an antigen associated specifically with a blood-borne non-A, non-B, hepatitis 

(NANBH) and so identified the hepatitis C virus. 

A curious feature of the TSE agent is the persistence of infectivity after treatment 

with methods effective of viral inactivation. Infectivity is resistant to nuclease 

treatment and high doses of ultraviolet and ionising radiations (Alper etal., 1967; 

Latarjet, 1970; Milison et a!, 1976) but is susceptible to procedures that denature, 

modify, hydrolyse or degrade proteins such as protease K or trypsin (Bolten et al., 

1982; Mckinley etal., 1983). Inactivation of TSEs and the repercussions of 

accidental transmission first became apparent during a large scale vaccination 

programme of sheep against louping-ill virus, when at least 10% of the sheep 

developed scrapie. The louping-ill vaccine, assumed to be contaminated with scrapie 



had been treated with 0.35% formalin (Greig, 1950). In humans, transmission of 

CJD was recorded after instruments used on a suspect CJD patient for brain surgery 

were "sterilised" by ethanol and formaldehyde before being used on other patient 

who later developed C ((Bernoulli eta!, 1977). 

No single method has been found which completely inactivates TSEs e.g. 

autoclaving, detergents, acids, oxidising agents (review Taylor, 1999). For example 

after autoclaving, scrapie strain, 22A, and BSE strain, 301V, both show enhanced 

survival at 138 °C compared with 134°C. The failure to decontaminate tissue or 

surfaces by these methods has led to the suggestion that the TSE agent is 

thermostable under conditions which appear to fix the protein component PrP, and 

hence protect the agent from inactivation. Only one method to date has been shown 

to successfully inactivate TSEs. A combination of autoclaving and exposure to 

sodium hydroxide can apparently inactivate CJD and scrapie infectivity (Taguchi et 

al., 1991 ;Taylor etal., 1997; Ernst and Race, 1993). However, this method does 

pose its own hazards, especially to the operator with regards to autoclaving, and 

contact, with sodium hydroxide. Future studies on this inactivation method may 

provide a solution to decontamination. 

1.3.1 Association of PrPSC  with TSEs. 

Post-mortem investigation of scrapie and CTh infected brain tissue revealed the 

deposition of an amyloid protein in rods and scrapie associated fibrils (SAF), fibre-

like structures 100-1000nm in length (Merz etal., 198 1) which are not found in 

healthy controls. These filaments, when purified, enriched scrapie infectivity from 

several hundred fold to several thousand fold (Bolton etal., 1982; Prusiner, 1982a) 

and were found to consist largely of a single protein 27-30 kDa (PrP 27-30) which 

appeared to be derived from a larger protein by proteinase K digestion (Prusiner, 

1982a). PrP 27-30 was uniquely associated with TSE infected hosts and designated 

PrPS (PrP Scrapie). The discovery of PrPSC  allowed for the isolation of cDNAs from 

libraries constructed from scrapie infected hamsters and mice (Oesch et al., 1985; 

Chesebro et al., 1985; Basler et al., 1986; Locht etal., 1986) revealing that PrPSC  was 



the product of a conversion from host gene, designated PrPC  (PrP Cellular), and not 

virally encoded (Oesch et al., 1985; Basler et al., 1986). Furthermore, when 

proteolysis was avoided, a PrP protein with the larger relative mass of 33-35kDa was 

identified in both infected and normal brains. Therefore PrPC  was expressed in both 

TSE infected and uninfected animals whereas PrP sc was uniquely associated with 

TSE infection. Similarities between PrPC and PrPSC  included SDS-PAGE mobility 

and antigenicity (Oesch etal., 1985; Barry and Prusiner, 1986), N-terminal signal 

peptide cleavage (Basler etal., 1986; Hope etal., 1986), glycosylation (Caughey et 

al., 1988) an addition of a glycosyiphophatidylinositol (GPI) anchor at the C-

terminus (Stahl et al., 1990). However, distinct biochemical and physical properties 

were found to differentiate between PrPC  and  PrPSC  (section 1.6. 1) which lead to the 

suggestion that PrPSC  was post-translationally derived from PrPC  (Borchelt et al., 

1990). 

PrPse appeared to accumulate in TSE-infected hosts in the absence of a detectable 

nucleic acid and opinion grew that perhaps the scrapie agent was fundamentally 

different from other infectious agents. One view was that the major or sole component 

of the TSE agent was PrP itself which was capable of self-replication (prion). 

Alternatively, an agent-specific nucleic acid may still exist and so the term virino was 

introduced to distinguish the agent from conventional viruses and viroids. 

1.3.2 The Prion hypothesis. 

A prion is defined as an infectious, disease-specific isoform of a cellular protein 

which is capable of replication and accumulates during the disease process (Prusiner, 

1982). The prion hypothesis predicts that replication occurs through the post-

translational conversion of PrPC  to PrPSC  via direct interaction of the two proteins to 

generate more PrPS.  Passage of PrPS  from one host to another then constitutes 

"infection" by initiating PrPSC  formation in a new host and the presence of PrPC  is 

fundamental to this theory. Two ideas for prion replication have been proposed: the 

nucleated (or seeded) polymerisation model (Jarrett and Lansbury, 1993) and the 

conformational model (Prusiner, 199 1) (Figure 1.1). 



The nucleated polymerisation models states that PrPC  is in equilibrium with a PrPS(like  

monomer, which, under physiological conditions, is low in concentration. PrPSC  only 

accumulates when the equilibrium shifts because of an incoming high concentration of 

PrPSC oligomers that form and stabilise new PrPS  (Jarrett and Lansbury, 1993). In 

contrast, the conformational model requires the direct interaction of stable PrPC  and 

PrPsc  monomers (Prusiner, 1991) to form a heterodimer and catalyse the conversion of 

PrPC to  PrPS.  The resulting PrPsc:PrPsc  homodimer then dissociates to capture further 

PrPC monomers. The high-energy requirement for this reaction may be overcome by 

the assistance of chaperones and pre-existing PrPSC  monomers. Consistent with the 

nucleation model, cell free studies have shown that the conversion of PrPC  to  PrPSc 

requires the presence of particles containing oligomers of PrPSC  much larger than 

monomers or dimers. 

Supporters of the prion hypothesis argue that the apparently spontaneous conversion of 

PrPC to  PrPSC,  as would have to occur with genetic human TSE disease, is the result 

of destabilisation of the PrPC  protein by associated specific point mutations. Indeed 

analogous disease associated PrPC  variants produced in cell culture displayed a 

number of biochemical characteristics of PrPSC,  suggesting aberrant folding of the 

molecules in vivo (Huang etal., 1994; Cohen etal., 1994; Cappai eta!, 1999). 

However, thermodynamic stability studies on recombinant murine PrP variants have 

shown that not all pathologically linked amino acid replacements destabilise the 

protein structure (Liemann, et al., 1999). 

Conversion of recombinant PrPC  to  PrPSc  has been demonstrated in vitro (Kocisko et 

al., 1994; Caughey etal., 1995) and characteristic biochemical properties (proteinase 

K resistance) of PrPSC  from different strains of TME were also transmitted to PrPC  in 

the cell free system (Bessen etal., 1995). These examples proved that information 

could be transmitted by non-nucleic acid molecules and would seem to be strong 

evidence in favour of the prion theory. However PrPSC  synthesised in vitro has not 

yet been shown to be infectious and transmissible (Caughey etal., 1995). 



Nucleated polymerisation model 

PrPC 	P rPScl,ke  

PrPS 	 PrP 

seeds 	
nucleus 

Conformational model 

PrPC 	PrPsc 	Heterodjmer 	Homodimer 

0O 
Figure 1.1: Proposed model for prion replication. 

Self-replication of PrPSC  has been proposed by two models. a) Nucleated 

polymerisation model (Jarrett and Lansbury, 1993) asserts that PrPC  (orange 

cylinder) conversion occurs when PrPSC  (green cube) is at a critical concentration 

which favours incorporation of a PrP-like monomer into the PrPSC  oligomer. 

b) Conformational model states that stable monomers of PrPC  and PrPSC  interact 

directly to form PrPSC  homodimer which can dissociate into active PrPSC  monomers. 

(Prusiner, 1991). 

i 



1.3.3 The Virino hypothesis. 

The virino theory suggests that PrP is a component of the infectious agent recruited 

into the infectious particle by an as yet unidentified host- independent informational 

molecule (Dickinson and Outram, 1988) which is expected to be an untranslated 

nucleic acid as nucleic acids are the only known biological molecules proven to be 

capable of carrying genetic information and propagating strain characteristics. TSEs 

have been exposed to nuclease treatment (Milison et al., 1976), more extreme than 

would be required to inactivate most conventional micro-organisms. However rather 

than proving the absence of a nucleic acid, the property of resisting the effects of 

nucleic acid denaturants may simply indicate that the nucleic acid is either very small 

or is enveloped and thus protected by the PrP protein. It is hypothesised that the 

informational molecule of the TSE agent interacts with the host PrPC  protein 

(Farquhar etal., 1998) and as a result of the conversion of PrPC  to  PrPSC  the nucleic 

acid is protected from degradation. 

The virino hypothesis states that PrPC  exists in an equilibrium of ordered complexes 

that may act as a receptor or precursor for the infectious agent (Figure 1.2). The 

binding of the infectious agent to the PrPC  complex, and perhaps other molecules, 

would alter the three-dimensional structure of PrPC  such that it becomes PrP sc  causing it 

to accumulate in and around cells as scrapie associated fibrils (SAF) (Hope, 1986). The 

calculated target size of the agent, determined by ionising radiation, is in line with 

the size of nucleic acid genomes in small viruses: estimated at 1.5x10 6  Da (d5DNA) 

or 0.9xl06 Da (ssDNA) (Rohwer, 1991). For example the porcine circovirus virus 

has a ssDNA nucleic acid genome ofO.58x10 6 Da (Tischer et al., 1982). 

Attempts to identify TSE-specific nucleic acids have been largely unsuccessful, 

perhaps because they are too small, low in concentration or of an unusual structure. 

However, viral-like structures have been observed in TSE-affected brains (Diringer 

et al., 1997). In another study, nucleic acids extracted from CJD brain tissue showed 

high infectivity levels and did not correlate to nucleic acids found in the mouse 

genome or uninfected brains (Dron and Manuelidis, 1996). The virino theory has yet 

to be disproved and is supported experimentally firstly by the existence of many strains 
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to be disproved and is supported experimentally firstly by the existence of many strains 

(difficult to reconcile with protein etiology, refer to section 1.4) and secondly by data 

which show that PrP and infectivity can be partially separated (refer to section 1.6.5). 

Virino 
precursor 

PrPC 

SAF 

(1 	
> 	 > formation 

Virino 
Infectious 
agent 

Figure 1.2: Proposed model for virino replication 

The virino hypothesis states that PrP' (orange cylinder) is in equilibrium 

as monomers and higher complexes (Hope, 1986). The TSE strain encoding 

molecule (blue ribbon) interacts with the complex and alters it properties, causing it 

to accumulate in the form of amyloid fibres which contain PrPSC  (green cube). 
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1.3.4 Protein  

Protein X is an as yet unknown macromolecule which, according to supporters of the 

prion hypothesis may be involved in the conversion process of PrPC  to  PrP&.  The 

concept of protein X was first described by Telling et al. (1995) when they observed 

that mice transgenic for a chimeric human-mouse PrP gene, Tg(MHu2M) mice, were 

highly susceptible to human TSEs (Telling etal., 1995). Furthermore, expression of 

human PrP (HuPrP) on a null background (Tg(HuPrP)PrnpOl'O  mice) also resulted in 

mice susceptible to inoculation with human TSEs (Telling etal., 1995). Previously it 

had been observed that Tg(HuPrP) mice were relatively resistant to inoculation with 

human TSEs (Telling et al., 1994). The overall conclusions from these studies were 

that: 1) mouse PrPC  (MoPrP) inhibited conversion of HuPrPC  to HuPrP; 2) a second 

mouse protein, designated protein X, was necessary for the conversion process, and; 

3) mouse protein X binds to mouse PrPC  with higher affinity than it binds to H uPrPC,  

thus inhibiting HuPrPS  formation. Although several ligand binding studies have 

identified proteins capable of binding to PrPC  (Oesch et al., 1990; Kurschner and 

Morgan, 1995; Yehiely et al., 1997) their role, if any, in PrPC  conversion has not 

been examined. 

Alternatively, subtle differences in the amino acid sequence between the host P rPC 

and the infecting PrPSC  protein may prevent prion replication by the host PrPC  protein 

"end blocking" the growing PrPSC  polymer (Masel et al., 2000). According to the 

nucleated polymerisation model oligomers of PrPSC  are the result of PrP-like 

monomers incorporated into the growing chain. Using mathematical modelling, 

Masel et al. (2000) proposed that the host PrPC  protein could bind to growing PrPS 

oligomer and block the addition of further PrPSC  molecules. Both protein X and the 

end-blocking theory were based on observations where there was only one amino 

acid difference between the host PrPC  and the infecting PrPS  protein (Priola et al., 

1994; Kaneko et al., 1997; Zulianello et al., 2000). However, studies have shown 

that more than one point mutation difference existing between the host PrPC  and the 

infecting PrP sc  protein does not protect the host from infection with TSEs from 

different species (Zulianello et al., 2000). To date both theories should be considered 

until further studies reveal the full pathway for PrP sc  synthesis. 
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1.4 TSE Strains. 

The major argument against the prion theory is the existence of multiple scrapie 

strains and this is often used as evidence for the other proposed etiologies. Many 

strains from naturally occurring scrapie cases in sheep and goats have been passaged 

through inbred mice. Each rodent-adapted scrapie strain has its own distinctive 

incubation period, clinical presentation, neuropathology, PrPSC  deposition, and 

glycoform profile on Western blots (Fraser, 1976; Bruce etal., 1991; Somerville, 

1999). The incubation period and pathology is routinely used to identify the strain, 

or type, of TSE when passaged in inbred mouse lines. Furthermore, strain-specific 

neuropathology has lead to the development of a quantitative assay, lesion profiling 

(Fraser and Dickinson, 1968; Bruce etal., 1991), which in contrast to the incubation 

period is not dose-dependent. 

Another characteristic used to identify strains is the molecular heterogeneity of P rPS 

which appears to retain a strain-characteristic glycosylation pattern when resolved 

on SDS-PAGE (Collinge etal., 1996; Parchi etal., 1996). This property of P rPS 

led supporters of the prion hypothesis to argue that strain-specific properties of the 

TSE agent were enciphered within the attached carbohydrate moieties. However, the 

glycosylation pattern of PrPSc  purified from different tissues, and cell types within a 

tissue, within a single host has been shown to differ (Hill et al., 1999a; Rubenstein et 

al., 1991; Somerville, 1999). This suggests that glycosylation is not dictated solely 

by the TSE strain but by co- and post- translational event and may be a result of the 

cell type of the species in which it occurs (Somerville, 1999). 

1.4.1 Scrapie strain and the prion hypothesis. 

In context of the prion theory, strain characteristics would have to be enciphered in 

the stable conformation of PrP sc  and strain differences could therefore be explained 

by variations in the conformational state of the PrPSC  protein (Bessen, 1994; Bessen 

1995; Telling etal., 1996; Caughey etal., 1998; Safar etal., 1998). PrPSC 

interacting directly with PrPC  would function as a template for replication of nascent 

PrPSC molecules and variations in incubation periods would be related to the 
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characteristic rate of conversion of PrPC  to  PrPSC  with the correct conformation for 

each strain. No high-resolution structures have yet been determined for PrPSC  due to 

its tendency to form aggregates, which is incompatible with current NMIR and X-ray 

diffraction techniques. Conformational studies using Fourier transform infrared 

(FTIR) spectroscopy have shown that PrPSC  preparations from various hamster-

adapted scrapie isolates have differences in the amount of 13-sheet secondary 

structure (Caughey et al., 1998). Additionally, a novel conformation-dependent 

immunoassay has claimed to characterise several hamster-adapted scrapie strains 

(Prusiner et al., 1999). Neither system has yet been tested on strains of naturally 

occurring sheep scrapie where PrP sc  levels can vary greatly between individual cases 

and different brain regions. It remains unclear what mechanisms enable the PrP 

protein alone to specify and retain biological TSE characteristics. 

1.4.2 Scrapie strains and the virino theory 

Supporters of the virino theory argue that the diversity of strains seems more 

plausibly explained by the existence of a nucleic acid which determines TSE strain 

characteristics rather than a single rogue protein. Western blot studies on PrP 

glycosylation patterns of TSE-infected laboratory rodents revealed that whereas the 

degree of glycosylation of PrP varied according to the TSE strain there was little 

effect on the glycosylation pattern of PrPC  (Somerville, 1999). These findings 

suggest that PrPSC  is not the result of a conformational change in PrPC.  Instead  PrPSC 

may be metabolised separately from PrPC  with the TSE agent directing P rPSC 

metabolism independently of the host PrPC  synthetic pathway. 

1.4.3 Strain characteristics. 

TSE strain characteristics after passage in hosts of different species have been used 

to examine possible links between TSEs. Transmission studies using eight unrelated 

BSE sources from cattle resulted in similar incubation periods and lesion profiles in 

mice suggesting that a single major strain of BSE was present in each source (Bruce, 

1996). Other TSE sources i.e. cats, Nyala and Kudu also showed similar results 

supporting the suggestion that they too had been infected with the BSE strain (Bruce 
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etal., 1994; Fraser et al., 1994) . Western blot analysis of PrPSC  isolated from 

Cheviot sheep infected with BSE and experimental scrapie (CH 1641) revealed 

striking glycoform similarity (Hope et al, 1999). However transmissions of natural 

scrapie from sheep to mice have given variable lesion profiles, with no individual 

source resembling BSE. This does not prove that BSE was not derived from scrapie 

or that BSE has not spread to sheep as TSE strain characteristics can change when 

passaged through a new species (Dickinson and Meikle, 1971). 

The number of strains responsible for natural sheep scrapie is unknown and it may 

be that more than one strain is present in an affected flock at the same time. Limited 

strain typing studies on UK sheep scrapie isolates have so far revealed predominantly 

three scrapie strain types (Bruce, 1993) and a similar investigation of Icelandic 

scrapie showed a further three scrapie strains (Fraser, 1983). Knowledge gained 

from sheep PrP genotyping studies (section 1.7.2) has linked host genetics with 

susceptibility to different experimental scrapie isolates. This suggests that, in 

addition to scrapie strain and route of infection, host genetics plays a vital role in 

disease development. However, identification of high or low-risk PrP gene alleles 

can not totally explain the observed occurrence of natural scrapie in particular sheep 

breeds or PrP genotypes. 

1.5 ScraDie Transmission. 

1.5.1 Ovine transmission. 

The natural route for scrapie infection is still unclear although there is evidence for 

acquired infection (lateral transmission) shown by healthy sheep and goats 

developing scrapie when housed in contact with scrapie sheep (Brotherston et al., 

1968; Haralambiev et a!, 1973). In Iceland, scrapie management involved culling of 

scrapie affected flocks and establishing areas that remained scrapie free for 1-3 years 

after which farms were restocked with sheep from areas where scrapie had never 

been recorded. However, over the next 10 years, scrapie reoccurred on several of the 

farms suggesting either long term survival of the agent or an intermediate host 

(vector) (Paisson and Sigurdsson, 1959). 
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There is a clear possibility of maternal transmission of TSEs. Maternal transmission 

of BSE in cattle was thought to be one way of maintaining infection in BSE-affected 

herds at a low level with transmission occurring at a rate of 10% (Wilesmith et al., 

1997). Furthermore, BSE was observed not to be transmitted to embryos derived 

from BSE-infected goat donors (Foster et al., 1999). The strongest evidence 

supporting maternal transmission of scrapie was recorded by Dickinson et al (1965) 

who observed that lambs born from infected ewes were seven times more likely to 

develop disease than lambs born to non-infected ewes. However, the precise route of 

maternal transmission is unknown. Several studies considering maternal 

transmission appear contradictory. Foote et al. (1993) showed that scrapie could not 

be transmitted via the embryo whereas studies at the NPU were not conclusive in that 

embryos donated from infected and non-infected ewes went on to develop scrapie 

(Foster et al., 1992, 1996). The subsequent failure to detect infectivity in the uterus, 

ovary or mammary glands of clinically affected ewes supported the theory that 

maternal transmission did not occur. However recent studies have found evidence of 

infection in placenta. Therefore, one source of infection to newborn lambs may be 

at, or around, the time of birth. Such studies are being repeated in scrapie-free 

conditions in order to establish whether maternal transmission of scrapie really 

occurs (Hunter, personal communication). 

1.5.2 Inter-species transmission of TSE5 

Under normal conditions when scrapie is passaged between species, disease occurs 

only after a very long incubation period if at all and on subsequent serial sub-

passages in the new species the incubation period shortens to a constant duration 

(Pattison and Jones, 1968; Dickinson, 1976; Kimberlin, 1979) and is known as the 

species barrier. The effect of the species barrier varies from apparent absolute 

resistance to increased incubation period dependant on: the species being infected, 

the host PrP gene, the species in which the TSE inoculum originated, route of 

infection and the strain of TSE. There are also situations where there appears to be 

no species barrier i.e. transmission of scrapie from sheep to goats (Greig, 1950; 

Brotherston et al., 1968). 
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1.5.2.1 Transcienic analysis of the species barrier. 

Experimental transmission of TSE from one host to a new host species is 

characterised by a prolonged incubation period (Table 1.2). This is known as the 

species barrier. For instance Chandler mouse scrapie can be transmitted to mice with 

incubation periods of approximately 120 days, while Syrian hamsters have an 

incubation period of up to 380 days with the same inoculum (Kimberlin and Walker, 

1878; Kimberlin et al., 1987). In contrast, hamster scrapie (263K) does not appear to 

transmit to mice despite a short incubation period of about 65 days when passaged in 

hamsters. To determine the controlling factors of the species barrier several lines of 

transgenic mice have been created (Scott etal., 1989; Prusiner etal., 1990). 

Transgenic (Tg) mice carrying the hamster PrP gene (Tg(SHa) mice), are susceptible 

to hamster scrapie but propagate neuropathology and PrPSC  deposition characteristic 

of Syrian hamsters infected with hamster scrapie. (Scott 1989, Prusiner, 1990). 

Conversely Tg(SHa) mice inoculated with mouse scrapie show a prolonged 

incubation period compared to normal mice but similar neuropathology and P rPS 

deposition (Scott et al., 1989). 

There is growing evidence that BSE has passed from cattle to humans causing an 

atypical new variant of CJD (vCJD). Recent emergence of vCJD was first 

recognised in young adults and showed a novel pathological phenotype (Will et al, 

1996; Chazot eta!, 1996). Lesion profile studies and glycoform analysis have reveal 

similarities between the BSE agent and vCJD (Collinge eta!, 1996; Hill etal., 1997; 

Bruce etal., 1997). Transmission studies of BSE and vCJD have been completed in 

lines of Tg mice and would appear to support this theory (Telling etal., 1994; Hill et 

al., 1997;Scott eta!, 1997). A recent study showed Tg mice expressing bovine PrP 

gene were highly susceptible to infection from primary passage BSE and vCJD and 

propagated incubation periods, neuropathology and PrPSC  proteins which were 

indistinguishable by Western blotting analysis (Scott et a!, 1999). It was generally 

assumed that humans would benefit from some degree of protection from the species 

barrier between cattle and humans however accumulating data suggests that the TSE 

agent responsible for BSE, and consequently vCJD, is highly adaptable at infecting 

new hosts. 
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Table 1.2: Demonstration  of the species barrier to TSE transmission using transgenic 
models. 

Scrapie 

source 

Recipient Mean incubation Period 

(days) 

P rPSC type 

Mouse' hamster 378 Mouse 

Tg mouse (hamster PrP 175 Mouse 
gene )c 

Wild type mouse 120 Mouse 

Hamsterb Hamster 65 Hamster 

Tg mouse (hamster PrP 75 Hamster 
gene )c 

Wild type mouse >720 ? 

Note: '(Kimberlin and Walker, 1978; Kimberlin etal., 1987) , 
b(Scott etal., 1989; 

Kimberlin etal., 1989; Prusiner etal., 1990), C  Transgenic mice encoding at least one copy 

of the Syrian hamster PrP gene. 

The transgenic studies have shown that neuropathology and synthesis of PrPSc  is 

species specific and reflects the genetic origin of the inoculum. According to the 

prion hypothesis, TSE agent replication requires the interaction of the host PrPC  and 

the donor derived PrP, the species barrier effect is caused by differences in the 

primary sequence of the host PrPC  which reduced efficient PrP sc  formation (Scott et 

al., 1989; Prusiner et al., 1990). In contrast, the virino hypothesis suggests that the 

species barrier is the result of agent adaptation to the new host. If PrPC  is the site for 

replication of the TSE agent differences between the host PrPC  primary sequence and 

the donor PrPC  primary sequence may prevent efficient interaction of the agent 

informational molecule (which encodes strain specific characteristics) and hence 

prolong incubation period (Dickinson and Meikie, 1971; Dickinson and Outram, 

1979). 

The species specificity observed in cell free conversion of radiolabelled recombinant 

PrPC to PrP sc  reflects the known species barriers in TSE transmission in animals 

(Kocisko et al., 1994; Caughey et a! 1995). In the cell free system PrPSC  isolated 
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from scrapie-infected hamster brain tissue induced the conversion of hamster PrPC  to 

PrPsc  but was unable to convert mouse PrPC  to  PrPS  (Kocisko, 1995). This 

correlates with the fact that hamster scrapie strain 263K can infect hamsters but not 

mice. 

1.6 Characterisation of the PrP Isoforms. 

1.6.1 Biochemical and physical properties. 

Comparative studies of PrPC  and  PrPSC  have highlighted many distinct features of the 

normal and disease-associated protein isoforms (summarised in Table 1.3). These 

properties are generally used to determine the type of PrP protein within tissues and 

the presence of PrPSC  is assumed to be a marker for infectivity (section 1.6.4). P rPSC 

deposition has to date been detected mainly in the CNS, peripheral nervous system 

and (to a lesser extent) lymphoid tissue of scrapie affected sheep, mice and humans 

(Prusiner, 1993; Ikegami et al., 1991;Prusiner, 1998) 

1.6.2 Function of PrPC. 

Although widely expressed in a variety of different cell types, the function of PrPC  is 

still unclear, although the apparent high conservation observed across all species 

analysed to date suggests a key role for PrP in the metabolic process of the cell. This 

proposal is supported by housekeeping features of the PrP gene; wide spread 

expression, developmental regulation (section 1.9) and promoter structure (section 

1.8). Its position on the cell surface of neurones has also suggested an involvement 

in synaptic function, cell-cell communication and/or adhesion (Manson et al., 

1992a). It was expected that mice deficient for the PrP gene (PrP null, Prnp 0/0) 

would show a phenotype distinct for the loss of PrPC  function, however the first null 

lines generated appeared to be normal (null line designated Zrchl, Bueler et al., 1992; 

null line designated Npul, Manson et al., 1994). Subsequently, it was found that 

these mice showed altered circadian activity (Tobler et al., 1997) and 

electrophysiological (synaptic function) abnormalities (Collinge et al., 1994). The 
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defects in synaptic function however, have never been reproduced and remain 

uncertain. The lack of phenotype due to PrP knockout may be the result of P rPC 

being replaced by proteins with similar functions (Tremblay et al., 1998, section 

1.6.2.1). 

Recently PrPC  was shown to bind copper ions (Cu 2 ) through histidine residues 

within octarepeats near the N-terminus (figure 1.3, section 1.6.2.1). In PrP null mice, 

the activity of CuJZn superoxide dismutate (SOD, a major antioxidant enzyme) has 

been found to be substantially lower compared to wild type mice. These 

observations suggest that PrP may have a physiological function in controlling stress 

as a result of the generation of oxygen free radicals (Brown etal., 1997; Stockel et 

al., 1998; Viles etal., 1999). 
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Table 1. 3: Summary of the biochemical and physical properties of PrPC  and PrPSC .  

PrPC PrPS 

Mr 33-35kDa Mr 3335kDaa 

Mature protein —210 amino acids Mature protein —210 amino acids 

Predominantly a helix structure Predominantly 13-sheet structure   

Completely sensitive to proteolysis Protease resistant core, Mr 2730kDaa 

Soluble in detergent Forms insoluble aggregates in 

detergenta 

2 glycosylation sites 2 glycosylation sitesc 

Attached to cell surface by GPI anchor   Primarily located within cells as fibrils or 

deposits 

GPI anchor sensitive to cleavage by 

PIPLC 

GPI anchor only sensitive to cleavage 

after denaturation e 

Synthesis and degradation rapid (-6 

hours) 

Synthesis slow, degradation unknown 

'(Meyer etal., 1986), "(Pan etal., 1993), c(Oesch  et al., 1985), d(Stahl;  etal., 

1990a), '(Stahl; et al., 1990b), (Caughey, 1993) 

1.6.2.1 Prnd (DoDDle) - the novel PrP-like gene 

The lack of a severe phenotype for two Prnp null mice (Prnp 010) lines first gave rise 

to the suggestion that proteins might exist with functions that overlap with P rPC .  

The development of two further mouse lines, Ngsk (Sakaguchi et al., 19996) and 

RcmO (Moore, 1997), showed normal development but displayed late-onset ataxia. 

Furthermore, Ngsk Prnp 0'0  mice also showed loss of Purkinji cells (Sakaguchi etal., 

1996). Studies of the regions flanking the Prnp gene in mouse soon discovered a 

novel PrP-like gene, designated Prnd (Moore etal., 1999). The Prnd gene contains 

an ORF encoding a protein named dopple (Dpl) which has 25% sequence identity to 

the C-terminal 2/3"' of PrPC  and is predicted to contain 3 a-helices and 2 disulphide 

bonds but lacks an octapeptide repeat domain found in PrP (section 1.6.4). Prnd 

homologues have been identified in rats, humans, sheep and cattle (Mead et al., 

2000). 
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Inappropriate expression of Pend may be linked to neurodegeneration. In normal 

mice, like PrP, Dpi mRNA is expressed during development but, unlike PrP does not 

seem to be abundant in the CNS. It was proposed by Moore etal. (1999) that loss of 

Purkinje cells in the Zrch 1 and Rmo 1 lines was due to long-range perturbations in 

gene expression as a result of cloning methods to create the PrP ° '°  mice. The 

expression pattern of Dpi mRNA in normal mice was also observed in the PrP null 

line Zrch 1. In contrast, Dpi was up-regulated in the CNS of Ngsk and RcmO P rnpOl'O 

mice both of which displayed signs of neurological illness and Purkinje cell loss 

(Moore et al., 1999). Crossing Ngsk Pmp°"°  mice with Tg mice over-expressing 

mouse PrP prevented neurodegeneration (Nishida et al., 1999). These findings 

suggest that over expression of Prnd in the CNS is toxic to Purkinje cells, the Dpi 

and PrP may have similar biological functions but also that expression of Prnp and 

Prnd may be linked to neurodegeneration. 

1.6.3 Synthesis of PrP'. 

Synthesis of PrPC (figure 1.3) appears to follow the secretory pathway (Caughey etal., 

1989). During biosynthesis the N-terminal signal sequence is cleaved (Basler et al., 

1986) and the C-terminal sequence replaced by a gylcosyl phosphatidylinositol (GPI) 

anchor (Stahl etal., 1990). In most species, the mature PrPC  protein contains five 

glycine-rich octa/nona-peptide repeats and two hexapeptide repeats near the N-

terminal region. The number of the octalnona-repeats can vary between species with 

most having five but some, like bovine, can have five or six repeats (Goldmann et 

al., 1991b) although an extra octarepeat in cattle does not seem to be associated with 

differences in BSE susceptibility. In goats, a short PrP allelic variant with only 3 

octarepeats has been reported as causing no spontaneous pathological effect 

(Goldmann et al., 1998). Within the PrP translation product, the N-terminal signal 

sequence targets the product to the endoplasmic reticulum where the C-terminal signal 

sequence promotes the addition of a GPI anchor (Oesch et al., 1985). The modified 

protein is then transported to the golgi where glycosylation may occur at two sites, 

Asni 81 and Asn 197. The C-terminal signal sequence is also thought to be involved in 

the targeting of PrPC  to caveolae-like domains on the cell membrane (Kaneko etal., 

1997). Deletion of the C-terminal signal sequence prevents attachment of PrPC  to the 
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cell surface and results in its secretion into the cell medium. Transport of PrPC  between 

the plasma membrane and endocytic vesicles has been observed in cell cultures and 

soluble forms of PrPC  have also been found in the medium of cultured cells and human 

cerebrospinal fluid (Tagliavini etal., 1992; Shyng et al., 1995). The metabolism of 

PrPC is considered to be associated with non-acidic compartments bound by 

cholesterol-rich membranes (Taraboulos et al., 1995) and has a half-life estimated at 

3-6 hours in cultured cells (Caughey et al., 1993). There is no evidence for PrPS 

turn over in cells which may account for PrPSC  accumulation in vivo (Caughey et al., 

1993). Once formed PrPSC  accumulates in secondary lysosomes, on the cell surface 

or in the extracellular space. 
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a) Molecular events of PrPC synthesis 

PrP Gene transcription 

PrP mRNA translation 

1 25 55 94 	 233 256 

jWC 
ss 	r 	 ss 

Post-translational modifications 

25 	 181 	1.i/3197 233 

NH = 
179 1 	1214

GPI  
-s-s- 	anchor 

b) Suggested Cellular Pathway in PrP synthesis 

N 

os 

agent 

9 

agent 

kAP 

SAF 

Figure 1.3: Proposed model for PrP °  and PrPSC  synthesis 

a) Maturation of the primary PrP translation product involves cleavage of signal 

sequences (ss) from the N and C terminal, addition of the GPI anchor, the 

formation of a disulphide bond (-s-s-) and glycosylation at one or two sites 

(residues 181 and 197). The octarepeat region is showed by r b) Synthesis of PrPC 

()is considered to follow the secretory pathway: mature mRNA is transported from 

the nucleus (N) to be translated in the endoplasmic reticulm (ER) where it then 

moves to the golgi apparatus (G) in vesicles where it undergoes further 

modification. It is then transported to the cell membrane by secretory vesicles. 

Conversion of P rPCto  PrPSC (#) may occur at the cell surface or in endocytotic 

vesicles (EV) according to the prion hypothesis. Alternatively the agent may 

intercept the PrPC  synthetic pathway to create PrPSC  independently. SAF; scrapie 

associated fibrils. AP: amyloid plaque. 
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1.6.3.1 	Topology of PrPC .  

Biosynthetic studies of the PrP protein have suggested that two distinct forms are 

synthesised in the endoplasmic reticulum (ER): one that is fully translocated 

(secretory) and one which is transmembrane (Hay etal., 1987;Yost etal., 1990;). 

Digestion of the transmembrane form with proteases, in the absence of detergent, 

yields two fragments suggesting two topologies for the transmembrane PrP protein 

(Hay etal., 1987; Lopez etal., 1990). One topology with the COOH-terminal in the 

lumen (ctmPrP)  the other with the NH2-terminal in the lumen (Ntmprp)  Both 

transmembrane forms appeared to span the membrane over the same hydrophobic 

stretch of PrP (residues Ala 11 3-Ser 135) which has been designated the TM  domain. 

Mutations, deletions and insertions into the TM 1 and a second region, the stop 

transfer effector domain (STE, Lysj04-Meti 12)  can alter the amounts of each 

topological form of PrP (Yost et al., 1990). The role of these topological forms in 

vivo was investigated in PrP °'°  mice expressing transgenes with various mutation in 

the STE-TM 1 domain. Those expressing the ctmprp  form showed neurological signs 

of illness and neurological pathology similar to those in scrapie, but PrPSC  was found 

to be absent (Hedge et al., 1998). Mice expressing Ntmprp  transgene did not show 

any signs of illness. ctmprp  was also found to accumulate in brain tissue from GSS 

affected patients who had a mutation of alanine to valine at codon 117 which is in the 

STE domain. The hypothesis proposed was that distinct topological forms of P rPC 

may be involved in TSE disease pathogenesis. 

1.6.4 Structural characteristics of PrPC  and  PrPSC .  

The PrP protein amino acid sequence is highly conserved between species with 

generally more than 90% amino acid identity (Schatzl et al., 1997), and containing 

around 250 amino acids, the exact number depending on the species e.g. 256 in 

sheep, 254 in human and 253 in rodents. Both PrPC  and  PrPSC  are the product of the 

same host gene with no apparent TSE-associated differences in either the amounts of 

PrP mRNA or primary structure. Although the pattern of glyscosylation observed in 

PrPC and PrP within a host has been shown to be distinct (Somerville, 1999), pulse-

chase metabolic labelling studies have shown that PrPS  may be derived from PrPC 
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(Borchelt et al., 1990; Caughey and Raymond, 1991), Therefore, the primary 

difference between the two isoforms may simply be conformational. 

Nuclear Magnetic Resonance (NMR) studies on recombinant forms of mouse and 

hamster PrPC  have determined the N-terminal region (residues 23-120) of PrPC  to be 

flexible in solution while the C-terminal segment (residues 121-231) has a defined 

tertiary structure of three a-helices and a short two-stranded antiparallel n-sheet 

(Riek etal., 1996; Rick eta!, 1997; Donne etal., 1997;James etal., 1997). The C-

terminal structure is independent of the flexible N-terminal tail as the structure is 

preserved in N-terminally truncated recombinant PrP forms. 

The tertiary structure of PrP sc  has not yet been determined because of the insolubility 

of this protein isoform. Limited X-ray diffraction studies have indicated that PrPSC  is 

primarily in n-sheet conformation (Inouye and Kirschner, 1997). This finding has 

been confirmed using a synthetic polypeptide spanning amino acids 90 to 145 

(Nguyen et al., 1995) that was also found to form n-sheet complexes with PrP C  in 

vitro. Further studies using recombinant antibody Fab fragments against epitopes of 

PrPC and  PrPSC  indicated that major conformational differences exist between the two 

isoforms in the region between amino acid residues 90 and 120 whereas the C-

terminal structure may be the same in both (Peretz et al., 1997). The protease 

resistance of PrP sc  therefore may be conferred within the 90-120 segment of PrPSC  as 

enzyme cleavage sites in this region are protected or hidden within the P rPSC 

structure. 

1.6.5 PrPSC  and the association with infectivity. 

While protease resistance of PrPSC  seems to be the marker for prion infectivity, a 

number of experiments appear to dissociate PrPSC  from infectivity. Lasmezas et a! 

(1997) reported that mice injected with BSE infected cattle brain homogenate 

showed symptoms of a neurological disease after an incubation period of one to two 

years, but biochemical analysis of the mouse brains did not detect PrPSC  in more than 

55% of cases (PrP). Histological examination of the brain samples revealed neural 
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cell death in all mice, however, other classic changes associated with TSEs, such as 

neuronal vacuolation and astrocytosis, were limited to those mice with detectable 

PrPSC,  (PrPS). On sub-passage, mice inoculated with PrPSC+  mouse brain 

homogenate showed a shortened incubation period and PrPSC  was detectable in all 

mice. During serial passage with homogenate from PrP 5  brains, inoculated mice 

showed classic TSE changes, had shorter incubation periods and PrPSC  was readily 

detectable in brain extracts. The similarity of clinical disease seen in the sub-

passages from PrP Sc-  and PrP Sc+  mice supports the idea that neuronal death is a 

major factor in TSE disease, and that the presence of lesions and gliosis is directly 

linked to the accumulation of PrP. Lasmezas eta! (1997) raised the possibility that 

TSEs can be transmitted without detectable PrPS,  supporting the theory that an 

infectious entity in addition to PrPSC  may transmit TSE. However the failure to 

detect PrPSC  in the initial B SE-inoculated mice may have been reduced sensitivity of 

the anti-PrP antibodies to a low level of PrPSC  present in the brain tissue. 

More recently, two separate studies have shown that the protease resistance acquired 

by PrP in its conversion from PrPC  to  PrPSC  is not a sufficient marker for infectivity. 

It is known that, in contrast to normal mice, Tg mice expressing chimeric hamster-

mouse PrPC  are susceptible to infection with hamster scrapie (section 1.5.2.1). Hill 

et al. (1999) expressed [35 S]-radiolabelled chimeric hamster-mouse PrPC  that 

acquired protease resistance following incubation with purified hamster scrapie in 

mouse erythroleukaemia cells. Transmission studies with the protease resistant 

chimeric PrPC  did not produce a scrapie-like disease in Swiss CD-i mice. 

Additionally, Shaked etal. (1999) in the presence of dimethyl sulfoxide (DMSO) 

purified a fraction of protease resistant PrP sc  that was resistant to high speed 

purification and aggregation. These soluble PrP27-30 molecules were able to 

aggregate on removal of DMSO but not into the characteristic rod structures of SAF. 

Furthermore when inoculated into hamster brains the purified PrP27-30 fraction 

proved to be 99% less infective compared to equivalent untreated PrP27-30 rods. 

These data argue that the conversion of PrPC  to protease resistant PrP 5' alone is not 

responsible for the production of infectivity, and that protease resistance may not be 

a suitable test for the presence of the TSE agent. 
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1.7 Host Genetics: PrP Gene PolvmorDhisms and Mutations 

1.7.1 Human PrP gene polymorphisms and mutations. 

To date, approximately 20 different PRNP point mutations or insertions of 

octapeptide repeats regions are known to segregate with inherited human TSE 

diseases (Prusiner, 1998). Some of these mutations are illustrated in Figure 1.4. The 

linkage between GSS and PRNP polymorphisms was realised with the discovery of a 

mutation, substituting proline to leucine at codon position 102 (Hsiao etal., 1989), 

which has since been found in several GSS-affected families (Goldgaber et al., 

1989; Kretzschmar etal., 1991). Three mutations have also been identified in 

patients with familial CJD (Goidgaber etal., 1989; Owen etal., 1989;Collinge etal., 

1989) and one for FF1. FF1 and CJD are pathologically distinct from GSS. A silent 

mutation at codon 129 was found to modulate susceptibility to CJD(Palmer et al., 

199 1) but also determine whether carriers of a pathological mutation at codon 178 

will develop CJD or FF1 (Medori et al., 1992). 

The mechanism by which these mutations cause TSE disease (if they do) is unclear. 

One explanation is that the mutations may cause the spontaneous conversion of P rPC 

to PrPSC  by destabilising the protein structure enabling a conformational change to 

PrPS. Structural studies have shown that some of the PRNP mutations have the 

same stability as PrPC  suggesting that destabilisation of PrPC  does not lead to PrPSC 

formation (Huang etal., 1994; Cohen et al., 1994). Several lines of transgenic mice 

(Tg) have been created which appear to show spontaneous development of 

neurodegeneration (Westaway et al., 1994a; Muramoto et al., 1997; Hedge et al., 

1998; Shmerling etal., 1998; Chiesa etal., 1998). One line which over-expressed 

the mouse homologue (proline to leucine at position 10 1) of the human GSS-related 

proline to leucine mutation at 102 (Hsiao etal., 1990; Telling etal., 1996) showed 

signs of TSE pathology, PrP deposition and transmission of disease to similar Tg 

mice but not wild type mice (Hsiao etal., 1994). However, PrP deposited in these 

mice was not proteinase K resistant (Telling etal., 1996). A second mouse Tg line, 

developed to express the GSS mutation of 9 octapeptide repeat insertion into the PrP 

protein coding region, showed similar pathology to GSS and produced a PrP protein 
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which shared limited properties with PrPS  (Chiesa etal., 1998). The possibility 

exists that over-expression of these transgenes may explain the observed phenotypes 

rather than expression of the mutation itself. For instance, following a gene targeting 

study to replace the wildtype mouse gene with a single copy of an allele with the 

proline to leucine mutation at position 102 no spontaneous degeneration was 

recorded (Moore et al., 1995). 



Codon 
Number 
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PrP primary 
structure V 	S-S 

Human TSE 	insertions! Deletions 

GSS 	 120bp-129M 
144bp-1 29M 
1 68bp-1 29V 
1 92bp-1 29? 
216bp-129M 

PolymorDhisms/ mutations 

Prol O2Leu 
Prol O5Leu-1 29Met 
Aial 1 7VaI-1 29VaL 
Tyrl 45STOP- 1 29Met 
Vail 8011e-1 29Met 
Phel 98Ser-1 29Vai 
G1n21 7Arg-1 29VaI 

CJD 	 48bp-129? 	 Asp178Asn-129Val 
144bp=129M 	 Glu2OOLys I 29Met 

Va121 0 lIe-i 29Met 
Met232Arg-1 29Met 

FF1 	 Asii78Asn-l29Met 

Fiqure 1 .4:Mutations and DolvmorDhisms of the human PrP orotein associated with I 
human TSEs. 

Several polymorphisms and mutations within the coding region or insertions in to 

region r (the octapeptide repeat region of the human PrP gene have been linked to 

TSE occurrence. Silent mutation at codon 129 (valine/ methionine) linked to 

susceptibility to CJD (129V/129M). Pathogenic mutations, shown in red, are known 

to be connected to TSE development in humans. ss denotes signal sequence., -S 

S -, identifies the disulphide bond and the glycosylation sites shown as t) 

.Adapted from Liemann and Glockshuber (1998). 
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1.7.2 Ovine PrP gene polymorphisms. 

Originally it was assumed that scrapie was a genetically inherited disease as disease 

appeared to segregate in the pattern of an autosomal recessive gene (Parry, 1962). 

However, controlled breeding experiments have shown that natural (Foster and 

Dickinson, 1988a) and experimental (Dickinson, 1974; Foster and Dickinson, 1988b) 

scrapie infections are dependant on a gene controlling scrapie susceptibility. To 

study scrapie susceptibility, a flock of South County Cheviots was founded in 1960 

and selected into two lines depending on response to challenge with a source of 

experimental scrapie known as SSBP/1; positive line sheep succumbed to 

subcutaneous challenge whereas negative line sheep survived (Dickinson et al., 1968 

a+b). Since 1962 the flock has been closed to any outside breeding and is known as 

the Neuropathogenesis Unit (NPU) Cheviot flock. Offspring the result of crossing 

positive and negative line sheep were found to be susceptible to SSPB/1 but had a 

prolonged incubation period compared to positive line sheep (Dickinson and Outram, 

1988). This finding suggested that a single autosomal gene, designated Sip, with 

two alleles was dominant for short incubation periods, was responsible for 

controlling scrapie incubation periods but the gene is now known to be much more 

complex than this. Restriction fragment length polymorphisms (RFLP) for the sheep 

PrP gene were found to be in accordance with the Sip genotype (Hunter et al., 1989). 

This discovery raised the possibility that, as in the mouse (Dickinson et al., 1968b; 

Carlson et al., 1986; Hunter etal., 1987), the PrP genotype has a major influence on 

scrapie susceptibility. From TSE transmission studies in mice the gene controlling 

scrapie incubation period, initially designated Sinc, was identified as the PrP gene 

(Moore etal., 1998). Therefore the equivalent gene in sheep, know as Sip, is also 

likely to be the PrP gene. 

In the PrP gene of sheep several polymorphisms have been detected (Goldmann et 

al., 1990; Goldmann etal., 1991a; La Planche etal., 1993), three of which (PrP 

codons 136, 154, 171) are strongly linked to scrapie susceptibility differences 

(Figure 1.5). 
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Figure 1.5: Polymorphisims of the ovine PrP protein. 

Several polymorphisms within the ovine PrP gene have been linked to scrapie 

incidence. Variation at codons 136, 154 and 171 (red codons) have been linked to 

scrapie susceptibility. ss denotes signal sequence, r represents the repeat region, 

-S - S - identifies the disulphide bond and the glycosylation sites shown as 

To date, with respect to scrapie susceptibility and the three codons discussed above, 

there are five known allelic variations of the PrP gene. These are; 

A13(,R 154Q 171  

A 13 H 154Q 171  

A 1 36R154R 17 1, 

V 136R 154Q 171  

A136R 154H 171 . 

The PrP alleles and their frequencies within a particular breed of sheep are very 

specific with some alleles being more common in one breed compared to another 

(Table 1.4) (Dawson et al., 1998, review). The combination of PrP alleles 

(genotypes) is also important. For example, heterozygote genotypes carrying 

V 1 36R154Q 171  are at significant risk of scrapie incidence but not when paired with 

A 1 36R 1 54R171 . In some breeds V 1 36R154Q 171  is rare, e.g. Suffoiks where, although 

scrapie incidence is low, the allele A 1 36R 1 54Q 171  appears to confer highest risk of 

scrapie. (Hunter et al., 1994; Westaway et al., 1994). In most sheep breeds, 

homozygosity for alanine at codon 136, A 136, seems to offer resistance to scrapie 

development from both natural and experimental infection whereas valine at PrP 

codon 136, V 136 , leads to disease with a short incubation period after challenge with 

SSBPI1 (Hunter et al., 1996). To date only one PrP AA 136RR 1 RR171  sheep world 
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wide has been documented to be scrapie positive (Ikeda et al., 1995). Following 

subcutaneous (Sc) challenge with SSBP/1, NPU Cheviots homozygous for valine 

(positive line sheep) at codon 136 develop scrapie after an incubation period of 167 

days +1- 5, VA136 heterozygotes have an incubation period of 322 days +1- 10. AA 136 

homozygotes (negative line sheep) resist similar inoculation with SSBP/1. However, 

this is not the case when BSE or an alternative scrapie strain, i.e. CHI 641, is the 

source of TSE agent (Goldmann et al., 1994a; Goldmann etal., 1994b). When 

challenged with BSE or CHI 641 PrP codon 171 appears to be predominantly 

associated with scrapie incidence: glutamine homozygotes, QQI7I,  succumb to 

intracerebral (ic) challenge, QR171  heterozygotes have a longer incubation period and 

RR17 1  homozygotes are relatively resistant within their lifespan. In addition to 

highlighting the role of PrP polymorphisms, these data may suggest that particular 

polymorphisms or genotypes are associated with susceptibility to different strains of 

scrapie. 

Studies have shown that scrapie is not a spontaneous genetic disease in sheep. In a 

recent report scrapie-associated PrP genotypes were recorded in sheep from countries 

free of scrapie (Hunter et al., 1997) where rigorous methods are taken to protect 

sheep from scrapie. This would suggest that although the PrP genotype is important 

to the progression of the disease, scrapie infection relies on the additional factor of 

an infectious agent. There is, however, a genetic component in the control of disease 

incidence as described above which adds more controversy to the debate over the 

identity of the scrapie agent. If the prion theory is correct, the polymorphisms seen 

in sheep PrP protein may favour spontaneous conversion of PrPC  to  PrPSC.  However 

this does not explain the obvious lateral transmission of scrapie between sheep nor 

why scrapie is not observed in countries where susceptible genotypes have been 

identified? If however the virus/ virino theories are correct, how does this explain 

the incidence of TSEs in humans without apparent infection, why are some sheep 

seemingly resistant to scrapie development? Although the PrP gene has been proven 

to influence scrapie susceptibility, little is understood about the control of gene 

expression or the interaction of the PrP protein with other gene products or indeed 

the infectious agent. 
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Table 1.4: PrP alleles and their distribution in various sheep breeds. Scrapie 
susceptibility shown as high risk (red, bold) or low risk (blue bold). (Dawson et a!, 
1998) 

Breed Predominant allele Scrapie susceptibility 

Cotswold, Hampshire Down A1 R 1 Q 171  A136 R 1 Q 171 /A136 R 1 Q 171  

Soay Vendeen A1 R154R171  A 1 R 1 R 171 / A 136R 154 R 171  

Suffolk A1 R 1 4171  A 1 R 154 Q 1 	/A 13 R 14Q 1 7 1  

A1 R 1 H 171  

A136 R 1 R171 , 

Blue de Maine, Wensleydale A136R 1 Q 171  A136R1 Q 171 / V 136 R 154Q 171  

Border Leicester, Poll Dorset, A136R,54IR171 V1  36 R 1 54Q 1 71/  V1361R 1 Q 171  

V 136 R1 Q 171  A136 R 1 R 171 / A136 R 154R 171  

Charollais A136 R 1 4171  A 136 R 1 Q 171 / VI36RIQI7I 

A l R lMR lll  V 136 R 1 0 171 / V 136 R154Q 171  

V 1 R1 Q171  A1361R154R171/ A136 R 1 R171  

A136 R1 H 171  

Bluefaced Leicester A136 R 1 4171  A1361R154Q171 /A136 R 154171  

A136 R 1 R 171  A136 R 1 R 171 / A136R 154 R 171  

A136 H 1 Q 171  

Cheviot, Dalesbred, Herdwick A136 R 1 Q 171  V 136 R 1 Q171 / V136R I 54Q 

A1 R 1 R171  A136RI54Q171/ V 136 R 1 0171  

Scottish Blackface, Shetland A1 H 1 Q 171  A136 R 154 R 171 / A136 R 154R 171  

Swaledale, Welsh Mountain Vj36Rj54Q171 

Texel, Lleyn A136 R 1 Q 171  A136 R 1 4171 / V136R154QI7I 

AI36R154HI71/ VlRl54Q171 

A136 H 1 Q 171  V136R 1 Q171 / V136R 1 4171  

V136 R1 4171  A 136 R 154 R 171 / A136 R 154R 171  

A1 R 1 H 171  
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1.7.2.1 PrP 3'untranslated region polymorDhisms. 

Three restriction fragment length polymorphisms (RFLP) for restriction digestion 

with the enzyme EcoRI, have been described in the PrP 3'UTR. The RFLP are 6.8kb 

(el), 5.2kb (e2) and 4.kb (e3), with el and e3 acting as differential markers for 

susceptibility (Goldmann etal., 1990; Hunter etal., 1991). The e  RFLP (relatively 

rare in healthy controls) has been associated with increased susceptibility to 

experimental and natural scrapie cases whereas the e3 RFLP is associated with 

relative scrapie resistance in studies across different sheep breeds throughout the 

world (Hunter et al., 1991; Hunter etal., 1992; Maciulis etal., 1992;Muramatsu et 

al., 1992). Hunter etal. (1992) described the distribution of the alleles in 167 sheep 

of different breeds and cross breeds affected with natural scrapie as el :73-75%, e2: 

3-1% and e3: 24%. The e3 allele was associated mainly with resistant genotypes, 

whereas the e2 allele did not appear to segregate preferentially with either 

susceptible or resistant genotypes. A comparative study of the Suffolk ci and e3 

3 'UTR highlighted several further differences between the two alleles (Cheung, 

1996). Amongst six polymorphic sites (including the EcoRI site) there was one extra 

instability motif present on the e 1 allele compared with the e3 allele. Although the 

ci allele does not have 100% association with scrapie occurrence, it may confer 

increased scrapie susceptibility in the presence of other known polymorphisms or to 

infection with specific scrapie stains (Hunter etal., 1991; Hunter etal., 1992). 

Disease-associated mutations of a 3 'UTR are not unique. A polymorphism in the 

3 'UTR sequence of the stromal cell-derived factor (SDF)- 1 gene of G to A (SDF 1-

3 'A) has been associated with increasing susceptibility to human immunodeficiency 

virus (HIV) type 1 (van Rij etal., 1998; John etal., 2000). Patients homozygous for 

the G-A polymorphism (SDF 1-3'A/3'A) display accelerated progression to AIDS but 

a prolonged disease process (Van Rij etal., 1998). The SDF-1 gene encodes the 

chemokine receptor ligand which binds the T-tropic HIV-corecpetor CXCR4 and 

may be one route of infection for the virus. In support of this theory, the presence of 

the SDF1-3'A allele in infected mothers increases the likelihood of transmission of 

the HIV virus to an infant, regardless of the infants SDF1 genotype (John et al., 

2000). 
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1.8 PrP Gene Structure. 

1.8.1 PrP gene structure. 

The genomic structure of the PrP gene is well conserved amongst different species 

and is described as containing three exons and two introns (Figure 1.6). The 

isolation and comparison of eDNA and genomic DNA clones has shown that mouse, 

sheep and cattle PrP genes contain three exons (Westaway et al., 1987; Puckett et 

al., 1991;Westaway etal., 1994; Horiuchi et al., 1998; Lee etal., 1998). Both exons 

I and II encode for 5' untranslated region (UTR, 1 4Obp) whereas exon III encodes 

5 'UTR (1 Obp), the full open reading frame (ORF, approximately 760bp depending 

on species) and a 3'UTR which can vary from 1.2 to 3.3kb in length (section 1.8.4) 

(Goldmann et al., 1990; Goldmann etal., 1993; Westaway etal., 1994; Inoue etal., 

1997; Horiuchi etal., 1998). Sequence adjacent to, and 5' from, exons I and II has 

been associated with promoter and regulatory elements (Baybutt and Manson, 1997). 

Exon II is transcriptionally expressed in most species, yet human PrP mRNA appears 

to contain only exons I and III (Westaway et al., 1994) despite strong homology for 

exon II in human genomic sequence when compared with other species (Lee et al., 

1997). The Syrian hamster (SHa) was once thought to express PrP mRNA containing 

only exons I and III until mRNAs containing exon II were observed in astrocytes 

from scrapie-infected hamster brain (Li and Bolton, 1997). The function of PrP 

exon II remains unclear and it may be that human exon II is expressed in mRNAs of 

certain cell types or tissues. 

The length of the mRNA 5'untranslated (UTR) region is known to vary in different 

species and may be due to variable transcription start sites or alternative splicing 

generating different transcripts but which code an identical protein. For example, in 

mice the transcription start site has been shown to vary between 30 and 60bp 

upstream of the exon Ilintron I boundary (Westaway etal., 1987). Similarly in 

bovine tissue, two mRNAs with 5'UTRs that vary by 100 nucleotides are thought not 

to be the result of transcription originating from one start site but alternative splicing 

at the exon I! intron I boundary (Horiuchi etal., 1997). No alternative 5'UTR has 

been identified in sheep. 
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Figure 1.6: PrP gene structure in different species 

The PrP gene shows essentially conserved structure across different species. 

Compiled from Goldmann etal., (1990); Li and Bolton (1997); Lee etal., (1998) 
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1.8.2 PrP promoter region. 

The promoter region of the PrP gene lacks typical regulatory elements known to 

control the precise initiation of transcription, for example TATA boxes. Instead, 

multiple copies of G-C rich repeats, similar to those present in house-keeping genes, 

have been found near the transcription start site in humans, ruminants and mouse PrP 

genes (Puckett etal., 199 1;Dynan etal., 1986; Westaway etal., 1994; Baybutt and 

Manson, 1997). These G-C rich motifs may function as recognition binding sites for 

the transcription factor SP  (Mcknight and Tjian, 1986). Binding sites for other 

transcription factors have been identified in the PrP promoter region but the number 

and location of these factors appeared to be species dependant (Lee etal., 1998). 

Recent analysis of the Cheviot and Suffolk sheep PrP promoter region at NPU 

discovered polymorphisms for an SP- 1 consensus site. However, it is unknown 

whether this polymorphism is linked to scrapie susceptibility (i.e. other PrP 

polymorphisms) or sheep breed (O'Neill et a!, in preparation). 

1.8.3 PrP introns. 

There is evidence that control of PrP gene expression may also extend to sequences 

within the intronic regions. Recent reporter analysis studies have shown that 

deletions within the mouse intron I can influence the level of gene expression due to 

the presence of two independent sequences capable of promoter activity and 

promoter suppressor activity (Baybutt and Manson, 1997). Deleting intron II from 

the PrP gene lead to undetectable levels of PrP expression in Purkinje cells of the 

cerebellum without affecting the level of PrP expressed in other brain areas (Fischer 

et al., 1996), implying that intron II may contain sequences necessary for cell-

specific PrP expression. The size of PrP intron I is typically 2 to 2.4kb. In humans, 

however this may be as great as 12.7kb, assuming the absence of a homologous exon 

II in the genomic sequence. Furthermore, the size of intron II is known to vary 

between, and within, species. In mice two variants of intron II have been observed 

as approximately 18kb (Prn-p") and 11kb (Prn-p") in length (Westaway et al., 

1994a). Originally the variation in length was interpreted as a 6kb deletion in the 

Prn-ji intron 2, however it has now been reported that it results from an insertion of 
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a retroviral genome into the Pm-p0  allele, which has been identified as a typical 

LTR-gag-pol-env-LTR retroviral structure (Lee et al., 1998). 

1.8.4 The ovine PrP exon III. 

As described in section 1.8.1 the structure of the PrP gene in well conserved, 

however the size of exon III varies considerably between ruminants and other 

species. Exon III of the sheep gene (like that of cattle and goats) is much larger than 

that found in other species (Figure 1.6): ruminants 4000 nucleotides (Goldmann et 

al., 1990), rodents 2000 nucleotides (Chesebro etal., 1985), and humans 2350 

nucleotides (Puckett etal., 1991). The difference lies within the 3'UTR region of 

the sheep PrP gene which has apparent insertions of ruminant-specific elements 

(Goldmann et al., 1993; Lee etal., 1998) including long and short interspersed 

repetitive sequences reminiscent of transposable elements (Figure 1.7). Sequence 

analysis of the PrP 3'UTR from several Suffolk and Cheviot sheep PrP alleles has 

shown that the 3'UTR is polymorphic, contains several potential polyadenylation 

sites and a variable number of ATTTA instability motifs (Goldmann et al., 1990; 

Cheung, 1996; Goldmann, 1999). Whether these regions play any role in PrP 

expression is unknown and is the subject of this thesis. 

Despite the considerable differences in length of PrP 3 'UTRs between species there 

is a high degree of conservation in specific regions of the 3'UTR (Goldmann et al., 

1990) (Figure 1.7). On the basis of cross-species sequnce compariosns, sheep, 

human and mouse PrP gene 3"TRs have been divided into sections A to G. Only the 

sheep 4.6kb mRNA 3 'UTR encodes all seven regions, the human having A, B, C, E 

and G and the mouse having A, C, E and G. The sheep has two additional regions D 

and F which include SINE and LINE elements (Figure 1.7). SINE and LINEs, or 

Short and Long Interspersed Nuclear Elements, are repetitive DNA sequences found 

dispersed throughout the genome at high frequency. SINEs and LiNEs are 

considered to have originated from transposable or retroviral elements which can 

replicate by reverse transcription (Fanning et al., 1987). The mechanism of insertion 

of transposable elements is unclear but is though to involve a processes such as 

sequence-specific insertion, S-phase insertion, ectopic excision and recombinational 
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editing (Wichman et al., 1992). Unlike conventional single copy nuclear genes, the 

copy number of transposable elements can vary without apparent phenotypic effects. 

Transposable elements can also achieve horizontal transfer between species 

(Maruyama and Hard, 1991: review Hard et al., 1997). SINEs and LINES can exist 

as active or inactive transposable elements, where inactive forms are likely to have 

arisen from the loss of sequence necessary for transposition (Engels, 1989; Garza et 

al., 1991). Interestingly, inactive elements can become active in the presence of 

active elements which complement the defect in the inactive copies. However, often 

inactive forms do not appear to have obvious deletions to distinguish them from 

active copies (Moerman and Waterston, 1989; Harti,, 1989). 

Regarding the ovine PrP gene, the LINE element shows homology to a mariner DNA 

transposon relic from the Mellfera (honeybee) subfamily of mariner elements (Lee 

et al., 1998). Both the inactive and active form of the mariner element have been 

identified in certain Dresophila species (Jacobson etal., 1986; Hartl, 1989). The 

active mariner element is 1289 nt long and contains a single open reading frame 

encoding a putative protein of 345 amino acids (Jacobson et al., 1986). The effect of 

the SINE or LINE elements on ovine PrP gene expression will be considered in this 

thesis. 
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Figure 1. 7: Companson of PrP 3'UTR mRNA sequences of human and rodents I 
with sheep. A) Structure of the sheep PrP exon Ill displaying sheep specific inserts 

of LINE, SINE and Mariner sequences (Goldmann eta!, 1990; Lee etal., 1998) B) 
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1.9 PrP Gene Expression. 

The genetic organisation of the PrP gene has been determined but the mechanisms 

controlling gene expression are still unclear, although it is known that the PrP gene is 

regulated both developmentally and in a cell-specific manner. As mentioned in 

section 1.5.2.1, expression of the PrP gene is vital for TSE development in that no 

PrP expression offers apparent resistance to infection but over-expression increases 

TSE susceptibility. Understanding the mechanisms controlling PrP expression may 

led to further understanding of susceptibility and scrapie development 

1.9.1 PrPmRNA. 

In sheep, PrP mRNA isolated from brain has an apparent length of 4.6kb, cattle and 

goats have a similar transcript, whereas rodents and humans express mRNAs of 

approximately 2.5kb (Goldmann etal., 1990; Inoue et a!, 1997; Horiuchi et al., 1998, 

Goldmann et al., 1999). Furthermore, the ovine PrP gene produces more than one 

mRNA transcript (Hunter et al., 1994). In addition to a full length 4.6kb mRNA 

transcript, a second smaller mRNA species of 2.1kb can be detected and was first 

seen only in peripheral tissues. The 4.6 kb mRNA is found in all tissues, with the 

highest expression level in brain. The 2.1kb mRNA is found in all peripheral tissues 

at levels of up to 30% of total PrP mRNA, but only at very low levels in the brain 

(Goldmann et al 1 999).The smaller additional mRNA is also found in goats and at 

very low levels in cattle, although no equivalent mRNA has been found in mice and 

human tissues (Hunter et al., 1994; Goldmann et al., 1999). The smaller sheep 

mRNA transcript is the result of usage of an alternative polyadenylation signal at an 

upstream site in the 3'UTR, at nucleotide position 1523 in the mRNA transcript 

(Goldmann et al., 1999). The 2.1kb PrP mRNA lacks several features present in the 

4.6kb mRNA, such as repetitive sequences, long and short interspersed elements 

(LINES! SINES), a transposable element, instability motifs, and a highly conserved 

3' region (Cheung, 1996; Lee etal., 1997). 
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1.9.2 Tissue and cell type PrP expression. 

Expression of PrP mRNA in many species, detected by Northern analysis, is typically 

highest in the brain with intermediate levels found in heart and lung, whereas liver and 

spleen have low or barely detectable levels (Oesch etal., 1985; Caughey etal., 1988; 

Goldmann et al., 1999). In sheep peripheral tissues the 2.1kb mRNA contributes to a 

third of the total PrP transcripts but is barely detectable in the brain. In contrast, the 

4.6kb mRNA is found in all tissues with the highest expression level in brain. 

Furthermore, the apparent levels of PrP protein vary between brain and other 

peripheral tissues (Horiuchi eta!, 1995). Horiuchi eta!, (1995), reported that PrPC 

protein was abundant in neural and non-neural tissues such as spleen and lungs but 

the levels of detectable PrPC  protein in different tissues and individual sheep were 

not consistent. On comparison, the proportion of PrP mRNA to PrPC  varied between 

brain and other tissues. For example the amount of detectable PrP mRNA was 

expressed five times higher in the brain than in the kidney, however the amount of 

PrPC detected in brain was forty fold more than the kidney. Horiuchi eta! (1995), 

concluded that translation efficiency or the course of protein synthesis, including 

degradation, might differ between the brain and other tissues. An alternative 

explanation may be that in peripheral tissues the 2.1kb PrP mRNA could be favoured 

for translation over the 4.6kb mRNA (Goldmann et al.,1999) 

The level of PrPC  expression varies among the different cell types found within rodent 

brain, the highest expression estimated to be in the cortex and striatum (Sales et al., 

1998), Purkinje cells of the cerebellum (DeArmond etal., 1987), neurones of the 

septum, thalamus and caudate putaman (Manson etal., 1992). In contrast, the caudate 

nucleus, neocortex and granular layer of the hippocampus show little or no PrP 

expression in hamster brain (Kretzschmar et al., 1986; DeArmond et al., 1992). 

Furthermore, brain cells which express detectable PrP mRNA may not show significant 

levels of PrPC  protein (Manson et al., 1992). The differential expression pattern of PrP 

gene observed between tissues and within the brain displays tissue and cell-type 

transcriptional and translational control of the PrP gene. 

44 



1.9.3 Developmental regulation of PrP expression. 

Developmental regulation of the PrP gene has been demonstrated in several species 

(McKinley et al., 1987; Lazarini etal., 1991; Manson etal., 1992; Harris etal., 1993; 

Hunter etal., 1994;Moser etal., 1995). In the developing mouse embryo, prenatal 

expression of PrP can be detected using in situ hybridisation by day 13.5 in brain, spinal 

cord and peripheral tissue (Manson etal., 1992). Postnatally in the mouse brain, PrP 

expression was found to increase 4-fold from birth to day 20 to a level that was 

maintained throughout adult life (Lazarini, etal., 1991). 

In sheep, the 4.6kb and 2.1kb PrP mRNA transcripts can be detected throughout all 

developmental stages: foetus, lamb and adult (Goldmann etal., 1999). Northern 

hybridisation signals for PrP mRNA are detectable at day 98, increasing 100-fold by 

day 134 and a further 2-fold in the lamb to a level maintained throughout adult life. 

The ratio of the 2.1kb transcript to the 4.6kb mRNA varies between tissue types during 

development with the highest level of the 2.1kb mRNA in the spleen and kidney, 

intermediate in heart and lowest in the brain. 

1.9.4 Factors known to control PrP expression. 

From in vitro and in vivo studies there is evidence that PrP mRNA expression may 

increase in the presence of specific cytokines (Satoh et al., 1998) and 

growth/differentiation factors (Table 1.5) such as interluekan-6 (IL-6), nerve growth 

factor (NGF) (Mobley et al., 1988; Lazanni etal., 1994) and migratory inhibitory 

factor-related protein(MRP8) (Kniazeva etal., 1997). In contrast, PrP expression is 

inhibited in human fibroblasts by the presence of periodontal ligament growth factor 

(PDGF). Cytokines and growth factors are known to stimulate cell growth and 

differentiation, however they may also function as a chemoattractant. The growth 

factor PDGF is a known chemoattractant it also functions to signal for proliferation, 

therefore a signal for mitogenesis may suppress PrP mRNA synthesis (Kniazeva et al., 

1997). 
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Table 1.5: Factors known to be involved in regulating PrP expression 

Cell Type Factor Influence 

Cholinergic neurons Nerve Growth Factor Increases choline 

'NGF' acetyltransferase activity 
' 	

/ coincidentally with PrP 	mRNA 
(Mobley et al., 98) 

Human Cytokines All increase PrP mRNA expression 
neuroblastoma e.g. IL-1b, TNF-a up to fourfold (Satoh etal., 1998) 
(SK-N-SH) 

IFN-y Decrease in PrP mRNA 
expression (Satoh et al., 1998) 

HL-60 cells Retinoic acid Down regulation of cell surface 
(human premyloid) PrPc concentration (Dodelet et al., 

1998) 

PC-12 cells lnterleukin-6 (IL-6) Increases the level of PrP mRNA 
expression (Lazarini, at al. 1994; 
Wion etai'., 1988) 

Nerve growth factor 

(NGF) 

Pancreatic endrocrine Recombinant hGH Both factors induces beta cell 
(beta cells) maturation and increasing PrP 

Dexamethasone mRNA levels (Atouf etal., 1994) 

Periodental ligament Migration inhibitory Stimulates PrP mRNA expression 
factor-related protein 
(MRP8) 

Platelet-derived Represses PrP mRNA expression 
growth factor (PDGF) (Kniazeva etal., 1997) 

Hepatic stellate cells Cardon tetrachloride Stimulation of PrP mRNA 

(liver)'  'CCI '11 
expression in response to 
oxidative stress (Ikeda etal., 1998) 

* Toxic chemical to liver cells, induces oxidative stress 
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1.9.5 PrP expression and TSE development. 

Northern analysis has not revealed any consistent differences in the level of PrP 

gene expression between normal and scrapie-infected tissue (Caughey etal., 1988). 

However, Northern analysis may not have detected subtle differences of less than 2-

fold which may have a major effect on disease development. Overexpression of the 

PrP gene is known to decrease the incubation period (time of inoculation to 

development of disease) of transgenic mice when inoculated with experimental 

scrapie. Therefore, any increase in PrP expression may increase susceptibility to 

scrapie infection and speed-up the disease process. Interestingly, in uninfected 

hamster the level of PrP mRNA containing all three exons (section 18.1) was 

estimated to be 30-50% of the total PrP mRNA, this level increased 2.5 fold during 

scrapie infection (Li and Bolton, 1997). This may suggest that although the level of 

PrP expression may not alter during scrapie infection, control over gene expression 

might. 

1.10 Role of the PrP 3'UTR in of Gene Expression. 

1.10.1 General 3'UTR formation. 

Correct formation of the mRNA 3'UTR is a key regulatory step in the expression of 

many eukaryotic genes. Defects in mRNA 3'UTR formation can significantly alter 

the growth, viability, development and health status of a cell. For example in 

humans, a loss of function of the EAAT2 glutamate transporter protein due to 

abnormal RNA polyadenylation leads to motor neurone degeneration (Lin et al., 

1998). In yeast cells, a failure to correctly modify the enzyme polyApolymerase 

(PAP) during the cell cycle is thought to slow down cell growth rate causing an 

accumulation of cells in the G0-G1 phase (Zhao and Manley, 1996). 

The molecular mechanisms of 3 'UTR formation and its interaction with other aspects 

of mRNA processing are slowly being understood. For instance, a functional 

polyadenylation signal is crucial for transcription termination by RNA polymerase II 

(Connelly and Manley, 1988; Proudfoot, 1989) and transport of the message from the 
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nucleus to the cytoplasm (Huang and Carmichael, 1996) which is also thought to 

involve an interaction with RNA polymerase (Long et al., 1995). In the cytoplasm 

the polyA tail mediates stability and translation efficiency of the message (Sachs et 

al., 1986; Ford et al., 1997; Preiss and Hentze, 1998; Wickens et al., 1997). Evidence 

exists therefore that the 3 'UTR formation and regulation plays a vital role in normal 

cell growth and development. Furthermore, controlling the amount of available 

mRNA, or translation efficiency, directly affects the amount of protein synthesised. 

Three sequence elements are required for efficient 3'UTR formation in mammalian 

pre-mRNA (Figure 1.8). Firstly, a highly conserved polyadenylation signal, 

AAUAAA. This hexanucleotide, required for both cleavage and poly(A) addition 

(Manley, 1988;Wahle and Keller, 1992; Wickens, 1990), is found attached to 80% 

of all pre-mRNAs. Mutations within this sequence greatly reduces the efficiency of 

3'UTR processing (Wickens and Stephenson 1984; Sheets et al., 1990). Secondly, 

cleavage occurs at the poly(A) addition site, 1 1-23nt downstream of the 

hexanucleotide. In most genes the poly(A) site is defined by a CA dinucleotide. 

Finally, the presence of a GU- or U-rich element downstream (approximately 30 

nucleotides, known as the downstream element, DSE) of the poly(A) site may affect 

the cleavage site position and the efficiency of cleavage (MacDonald et al., 1994; Gil 

and Proudfoot, 1987). Other sequence elements have been found to influence 3'UTR 

formation in both a positive and negative way. For example in viral pre-mRNAs, the 

presence of a U-rich upstream sequence element (USE) can greatly enhance poly(A) 

site recognition (Key et al.,, 1998; Carswell and Aiwine, 1989). USEs have only 

been identified in a few eukaryotic genes e.g. complement factor C2 and lamin B2 

(Brackenridge et al., 1997; Moreira et al., 1998). Many protein factors have also 

been identified as necessary for accurate cleavage and polyadenylation (refer to 

figure 1.8). 
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Mammalian mRNA sequence elements 

______ 	I AAUAAA 	I poly(A) site 	______ 

U-rich Highly conserved 	 CA 	 U/GU-rich 

Model for cleavage and Dolyadenylation in mammalian cells 
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Figure 1.8: Schematic model for mammalian Tend formation 

Figure legend on page 48. 



Figre 1.8 Schematic model for mammalian Tend formation. The mammalian 

cleavage complex assembles through cooperative binding of 

Cleavage/Polyadenylation Specificity Factor (CPSF) at the AAUAAA site and 

Cleavage Stimulation Factor (CstF) at the Downstreamn Element (DSE, U- I GU-

rich). Interactions between CPSF and CstF define the region for cleavage, a 

process assited by Cleavage Factor I (CFI). The arrangement of the cleavage 

complex requires CF II and Poly(A)Polymerase (PAP), but the arrangement of CFI 

and CF II are unclear. After cleavage, CPSF and PAP remain bound to the RNA. 

CSPF recruits PAP to the AAUAAA containing sequence and slow polymerisation of 

a poly(A) tail begins. Cooperative interactions between CPSF, PAP and Poly(A)-

Binding protein II (PABII) promotes rapid poly(A) tail formation. When the tail 

reaches approximately 250 adenosine residues, elongation slows and poly(A) 

addition is terminated by a mechanism not yet understood (Figure adapted from 

Zhao et a!, 1999; Lodish et a!, 1995). 
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1. 10.2 Control of cleavage and polyadenylation - tandem poly(A) sites. 

Cleavage and polyadenylation can be regulated to vary the amount and type of 

mRNA a cell produces (Edwalds-Gilbert et al., 1997). The majority of eukaryotic 

genes have only a single polyadenylation signal, however the existence of numerous 

poly(A) sites at the 3' end of an exon can give rise to several possible outcomes for 

3'UTR formation (figure 1.9). Control over the efficiency and activity of the 

enzymes within the cleavage/ polyadenylation complexes (Figure 1.8) govern what 

3'end will be produced. Within the scope of this thesis only the tandem terminal 

poly(A) sites will be discussed further, for reviews on other mRNA 3 'end formation 

please refer to Edwalds-Gilbert et al. (1997) and Zhao et al. (1999). 

The alternative usage of poly(A) sites has been shown to be both tissue and 

developmentally regulated. When presented with several polyadenylation signals 

within the 3' -terminal exon, the choice of poly(A) site can be based on the strength 

of the signal sequences (conservation of the AAUAAA site, presence of DSE, USE) 

and the addition of poly(A) stabilising factors (Zhao et at., 1999). It is possible that 

differential regulation of the cis-acting acting proteins of the cleavage/ 

polyadenylation complex at different poly(A) sites may give rise to alternative 

transcripts. Hence, producing transcripts of different translation efficiency and 

stability directly affects the amount of protein produced. 

A recent observation of alternative usage of tandem poly(A) sites involved the 

eukaryotic initiation factor 2ct (eIF-2a, involved in protein synthesis) where two 

mRNAs, 1.6 and 4.2kb, were transcribed at varying ratios in different tissues (Ernst 

et al., 1987; Cohen et al., 1990). In vitro translation studies showed that the 1.6kb 

mRNA was less stable, but more efficiently translated than the 4.2kb transcript. 

Activation of T cells increased the abundance of the 1.6kb mRNA 11.5-fold and the 

4.2kb mRNA only 4-fold (Miyamoto et al., 1996). The activation of T cells initiates 

the cell cycle to proceed from G0 to S phase which is associated with an increase in 

PAP activity and rate of polyadenylation (Miyamoto et al., 1996) indicating that 

potyadenylation may respond to a change in cellular environment. These results 

indicate that for eIF-2a, alternative usage of the poly(A)site for the 1.6kb mRNA 

f 
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allows for increased efficiency of mRNA synthesis, translation and therefore 

increased protein levels. Additionally, in the testes a third poly(A) site is employed 

to produce a transcript of 1.7kb, suggesting that testes-specific polyadenylation 

factors may be recognising different elements within the eIF-2(x pre-mRNA 

transcript (Miyamoto et al., 1996). 

Tandem poly(A) site 

ss 	
pA 	pA 

-I 

Composite exons 

	

stop pA 	 pA 

m4ic~ I 

- 

Skipped exons 

pA 	 pA 

	

I 	 I  

- - 	 -- 

Figure 1.9 :Alternative polyadenylation choices. Types of alternative 

polyadenylation for 3'UTRs in mammalian cells. A) Tandem poly (A) site; choice 

of more than one p(A) signal in the last exon. B) Composite exons; choice of 

defining the end of an exon by alternative 5' splicing. C) skipped exons; more than 

one terminal exon (Zhao et at., 1999). 
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1 .10.3 Differential expression of the ovine PrP gene. 

Expression of the ovine PrP gene may regulate the production of two or more mRNA 

transcripts through the process of polyadenylation. Conserved polyadenylation 

signals at nucleotide positions 1253, 1523, 4038 and 4063 have been confirmed in 

both the Cheviot and Suffolk sheep PrP gene, potentially signalling for PrP mRNAs 

of 1.5 -4.5kb in length (Goldmann unpublished data; Goldmann etal., 1999). In 

peripheral tissues of Cheviot sheep, PrP mRNAs of 2.1 kb and 4.6kb have been 

described, often at varying levels depending on the tissue (Horiuchi etal., 1995; 

Goldmann et al., 1999). For example, in spleen and uterus tissues the 2.1kb and 4.6b 

PrP mRNAs may both be expressed at high levels whereas in heart tissue the 2.1kb 

mRNA is expressed at a lower than the 4.6kb, as detected by Northern blot 

hybridisation (Goldmann et al., 1999). However the highest level of PrP mRNA 

expression can be found in brain tissue predominantly from the 4.6kb mRNA, where 

the 2.1kb mRNA is present at very low levels (0.5-2% total PrP mRNA, Goldmann, 

1999). The observed differential expression of the ovine PrP gene has been detected 

in both scrapie-resistant and scrapie-susceptible genotypes. Analysis by 3'RACE 

and SI nuclease protection assays of poly(A)- enriched mRNA from brain, kidney 

and spleen tissues confirmed that ovine PrP mRNA was likely to be processed at 

polyadenylation signals AATAAA I523 and ATTAAA4063. Importantly, long range 

RT-PCR and 5'-RACE analysis has shown that the 5'UTR sequence of the 2.1kb 

and 4.6kb mRNAs are identical (Westaway etal., 1994) confirming that during 

transcription of the ovine PrP gene, two mRNAs are the product of alternative 

polyadenylation and not alternative splicing. 

Post-transcriptional control of PrP mRNA may be directed through the 3'UTR. In 

the first instance, Denman et a! (199 1) showed that 30% of PrP mRNA was 

prevented from undergoing translation by the association of the 3 'UTR with 

ribnucleoprotein particles in the cytoplasm. The sequestered mRNA shows the 

potential for increasing cellular PrP protein concentration in a short period. Also, in 

vitro expression of constructs with the chloramphenicol acetyl transferase (CAT) 

gene linked to various regions in the PrP 3 'UTR was analysed by RT-PCR and CAT 

protein activity and showed that sequences within the 3 'UTR were capable of 
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altering the levels of protein synthesis but not the level of mRNA (discussed in depth 

in chapter four). Taken together, these results suggest that the 3 'UTR may be acting 

to control gene expression. 

The ovine PrP gene structure is similar to that in other species i.e. mouse, bovine and 

hamster, for introns I and II, and exons II and I (section 1.8.1). However, the sheep 

3 'UTR region within exon III contains two ruminant specific regions, disease 

associated polymorphisms and two known polyadenylation sites which are both used 

in peripheral tissues (section 1.8.4). Considering these features of the sheep PrP 

gene 3'UTR, questions relating to the contribution of the untranslated region in 

controlling the level of normal PrP protein and scrapie susceptibility. As 

susceptibility to scrapie is associated to the level of PrP protein expression, a link 

between translational control of PrP expression and incidence of scrapie in sheep 

may also exist. 
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1.11 Aims and Objectives. 

The aim of this thesis was to further investigate the role of the ovine PrP gene 3'UTR 

in its capacity to regulate gene expression in an ovine in vitro system. Previous work 

at the NPU (Cheung, 1996) had shown that a construct with the in vivo 4.6kb PrP 

gene 3 'UTR was capable of repressing in vitro protein levels equivalent to a 

construct with the in vivo 2.6kb PrP 3'UTR. Deleting sequence within the 3'UTR 

led to an increase in protein levels but crucially, RT-PCR analysis showed no 

alteration in mRNA levels expressed from the constructs. This result would suggest 

that a mechanism exists for controlling the amount of protein synthesised from the 

PrP mRNA through sequence present in the mRNA. The ability to selectively 

control PrP expression in this way may also account for apparently low levels of PrP 

protein detectable in peripheral tissue compared to brain. 

The hypothesis to test was whether the repressor element, associated with the PrP 

gene 3 'UTR, functioned in ovine cells and, if so, could it differentially mediate 

levels of PrP protein in brain and peripheral tissue in vitro. Additionally, any 

association between the repressor element of the UTR with scrapie susceptibility (i.e. 

PrP genotype) was to be examined. To study the role of the PrP gene 3'UTR in 

controlling in vitro expression of the PrP protein, PrP constructs resembling the in 

vivo observed 2.1kb and 4.6kb PrP mRNAs were designed and mutated to express 

ovine PrP protein with the hamster 3F4 epitope. The altered ovine PrP protein 

should allow for analyse by immunological detection of expression from the 

constructs in sheep cell lines derived from different PrP genotypes and tissue origin. 

To achieve these aims it was essential to establish and optimise a reliable method for 

transfection of various ovine primary and immortal cell lines available at the NPU. 

During the time necessary for cloning the ovine PrP constructs and developing the 

transfection methods, confirmation of the CAT expression studies by Cheung (1996) 

in ovine cell lines were completed to further identify expression control regions 

within the ovine PrP gene 3 'UTR. 
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Chapter 2: Materials and Methods. 

2.1 General Chemicals, Solutions and Centrifugation. 

The chemicals and enzymes used with in this study were purchased from Sigma 

(Dorest, UK), Gibco-BRL (Paisley, UK), DBH (DORSET, UK), Roche Diagnostics 

(East Sussex, UK), Qiagen Ltd. (West Sussex, UK) or Promega (Southampton, UK). 

All solutions were prepared with high quality chemicals, "e.g. Electran grade" (BDH, 

DORSET, UK) and when necessary were sterilised by autoclaving or filtering. Water 

used in the making of the solutions was obtained from a Millipore milli-QUF system 

and further autoclaved when required. Recipes for all solutions used in this thesis are 

listed in Appendix A. Unless otherwise stated, procedures for general methodology 

were adapted from Sambrook et a!, 1989. 

Centrifugation of solutions up to 30ml was performed in a Beckman J2-21 using 

rotor JA-14 at relative centrifugal fields (RCF) of 30,000 xg. For maximum 

centrifugal fields of 44,000 xg, 1 5m1 solutions were centrifuged using the Beckman 

J2-21, JA-20 rotor. For RCFs up to 3,750 xg, 30ml volumes were centrifuged in a 

refrigerated GS-6R, rotor GHS 3.8 (Beckman Ltd, Buckinghamshire, UK). For ultra-

centrifugation, maximum a RCF of 541,000 xg was achieved using an Optima TL 

Ultra-centrifugation 100,000 6R (Beckman Ltd, Buckinghamshire, UK) with rotor 

TLA 100.4. Micro-centrifugation for spins up to 13,400 xg in 0.5-1.5ml Eppendorf 

tubes was carried out in a bench top centrifuge (MSE Micro Centaur, Sanyo). 

2.2 General Methods for DNA Cloning 

2.2.1 Restriction enzymes. 

Restriction enzymes recognise and cut at defined sites in DNA sequences depending 

on base composition and length. The number and size of fragments generated by a 

restriction enzyme depend on the frequency of occurrence of the restriction site in the 

DNA to be cut. DNA substrates generated by restriction digestion are either 
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analysed for cleavage patterns or used in subsequent experiments such as cloning, 

sequencing, labelling or hybridisation. 

Single digestion or multiple digestion 

Single restriction digests or multiple digestions were performed to a standard 

method; 1 6.tl sterile water, 2tl restriction enzyme lOx buffer, 1 j.tl DNA sample 

(0.2-1.tg in water), and 1.tl enzyme (2-10 units) or 0.5il restriction enzyme 1 

(1 Ounits/ml), plus 0.5 .tl restriction enzyme 2 (1 Ounits/mi) for multiple digestion. 

Components were mixed gently then centrifuged briefly at 1 3,400xg in a micro-

centrifuge. The digestion reaction was then incubated at the appropriate temperature 

(usually 37'Q for one hour. The reaction was stopped by adding 4il of 

bromophenol blue loading dye, and the results were visualised by agarose gel 

electrophoresis. 

2.2.2 Modifying enzymes. 

Modifying enzymes can be used to synthesis, degrade or modify portions of nucleic 

acids in a defined manner. Modifying enzymes are most commonly used in cloning 

experiments. 

2.2.2.1 14 DNA ligase. 

T4 DNA ligase was used to catalyse the formation of a phosphodiester bond between 

adjacent 5'-phosphate and 3'-hydroxyl in cloning double stranded DNA molecules 

with cohesive or blunt ends. Using an appropriate vector:insert ratio the typical 

ligation reaction was as follows; 1 pl T4 DNA ligase (Roche Diagnostics, East 

Sussex, UK), 1.tl ligase lOx buffer and nuclease-free water to a final volume of lOj.tl. 

Components were mixed gently then centrifuged briefly at 13 ,400xg in a 

microcentrifuge. For the ligation of cohesive ends the ligation reaction was 

incubated at 14°C for 16 hours; for blunt ends the ligation reaction was incubated at 

25°C for 16 hours. 
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2.2.2.2 T4 Polynucleotide Kinase (T4 PNK) 

T4 PNK catalyses the transfer of the y—phosphate from ATP to the 5'-terminus of 

polynucleotides or mononucleotides and was used in the radiolabelling of probes 

used in differential hybridisation experiments. To label an oligonucleotide probe the 

following method was used: 5tl [

32P]-ATP (10 mCi/mI) was added to I tl 

oligonucleotide (25pmol), 2pJ lOx kinase buffer, 1tl T4 PNK (Roche Diagnostics, 

East Sussex, UK) and nuclease free water to a final volume of 20tl. The reaction 

was mixed and incubated at 37 °C for 1 hour in a lead-shielded vessel. 

2.2.2.3 Shrimp Alkaline Phosphotase (SAP). 

SAP catalyses the dephosphorylation of 5'phosphates from DNA and is used to 

dephosphorylate restricted cloning vectors to prevent religation.. For cohesive-end 

cloning, SAP (Roche Diagnostics, East Sussex, UK) was added directly to the 

restriction digestion after one hour incubation at 37°C (bromophenol blue loading 

dye was not added at this stage): 1 tl 1 Ox dephosphorylation buffer and 1 il SAP. 

The reaction was incubated at 37°C for a further 10 minutes. To dephosphorylate 

blunt-ended DNA fragments, SAP was added to the completed digestion and 

incubated for 60 minutes at 37°C. SAP was inactivated by 15 minutes at 65°C. 

2.2.2.4 DNA polymerase I large fragment (Kienow). 

Kienow enzyme is the large fragment of DNA polymerase I. The enzyme catalyses 

the addition of mononucleotides from deoxynucleosides-5'phosphates to the 3'-

hydroxyl terminus of a template DNA and was used for 5'-overhang fill-in for 

cloning. Kienow also catalyses the removal of 3'- overhangs. To fill in 5'-overhang 

ends: 40mM of each dNTP and lunit of Kienow per Vg of DNA was added directly 

to the restriction buffer after one hour digestion incubated at 37'C. The reaction was 

incubated at 25°C for 10 minutes. For the removal of 3' -overhangs lunit of Klenow 

(Roche Diagnostics, East Sussex, UK) per ug of DNA was added to the digest and 

incubated at 25°C for a further 20 minutes. Klenow is inactivated by heating at 75°C 

for 10 minutes. 
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2.2.3 Agarose gel electrophoresis. 

The results of restriction digestion or PCR can be analysed using agarose gel 

electrophoresis following staining of the DNA with ethidium bromide and 

visualisation by UV light. For agarose gel electrophoresis the following method was 

used (Helling et a!, 1974, Fischer eta!, 1971). To prepare the gel, I  Agarose was 

dissolved in 1xTBE buffer, and heated in a microwave for 4 minutes on medium high 

heat. The volume of the agarose mixture was made up to lOOmI with dH 20 and 

ethidium bromide added to final concentration of 0.5ig/ml and the gel (14cm x 10cm 

x 1cm) poured and allowed to set for 2 hours. The DNA samples were prepared in 

1110th volume of bromophenol blue loading dye, mixed, then loaded on to the gel. 

The gel was run at lOOvolts, 25mA until satisfactory separation of the DNA samples 

was achieved. The DNA was visualised under UV light. 

2.2.3.1 Isolating DNA fragments from agarose gels. 

To isolate bands from a gel, the gel was run as normal and DNA visualised under UV 

light and the band isolated using Qiagen Gel extraction kit (Qiagen Ltd., West 

Sussex, UK) according to the manufacture's protocol. 

Following visualisation under UV light, the DNA band of interest was cut out from 

the agarose gel with a clean scalpel and placed in a centrifuge tube. The gel 

fragment (1 volume) was incubated in Buffer QG (3 volumes, where 100tg 100il) 

at 50°C for 10 minutes until the gel slice had completely dissolved, after which 1 

volume iso-propanol was added to the sample and mixed. To bind DNA to the 

Qiaquick spin column, the agarose-DNA solution was spun through the column for 1 

minute at 10,000 xg in bench centrifuge. The column was then washed with 0.75ml 

of Buffer PE and spun as before. The flow-through was discarded and the column 

spun dry for an additional Iminute at 10,000 xg. To elute the DNA 30tl of sterile 

water was added to the column and centrifuged for 1 minute at 12,000 xg in 

microcentrifuge. The DNA was then used directly or stored at —20 °C for further use. 
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2.2.4 Modified Inoue method for transformation competent E.coli cells. 

The following method was used to produce competent bacterial strains for efficient 

transformation. A starter culture, 5m1 2xYT, was inoculated with a XL-! Blue 

colony and grown over night at 37 °C in a shaking incubator, the same day 20-40 

1.5ml Eppendorf tubes were prepared by pre-freezing at -70 °C. Next day, a large 

scale inoculation (100-200m1) was prepared by diluting the starter culture 1:500 into 

2XYT —10mM MgSO4  which was incubated at 23°C, shaking (250rpm) to 

OD600=0.6. The cells were collected by centrifugation using the Beckman J2-21, 

rotor JA-14, at 1380 xg in 50m1 Corex tubes for 10 mm, 4°C and the supernatant 

discarded. The cells were gently resuspended in ice-cold Buffer TB in 1/3 rd  the 

original culture volume and incubated on ice for 10 minutes. After repeating the 

centrifugation step, the cells were resuspended in ice-cold Buffer TB in 1110th  the 

original culture volume and transferred to a 1 Sml Corex centrifugation tube. DMSO 

was added to a final concentration of 7% and the cells incubated on ice for a further 

10 minutes. Aliquots, 0.5mIs were then dispensed in to the pre-frozen Eppendorf 

tubes and flash-frozen in liquid N 2  before storing at —70 °C 

2.2.5 Transformation of E.coli cells. 

In order to transform E.coli cells the following protocol was used. To 25pJ E.coli 

JM109 cells, 0.5.tg of DNA was added and the mixture incubated on ice for 30 

minutes, heat shocked at 42°C for 90 seconds and incubated on ice for 10 minutes as 

before. To the transformation mixture, 500.tl LB broth (no ampicillin) was added 

and allowed to shake for 1 hour at 37°C. The transformed culture, 200.il, was 

streaked on to an ampicillin agarose plate (1 ltl/ml). Plates were incubated at 37°C 

over night, upside down. Single colonies were then selected and grown in 3ml of 

ampicillin agar broth overnight at 37 °C, in a shaker. The following day plasmid 

DNA can be isolated. For storage of bacterial colonies on agarose plates, single 

colonies were picked to inoculate 3m1 ampicillin LB broth which was incubated at 

37°C with shaking for 16 hours. Fresh ampicillin agarose plates were then streaked 

with the culture and incubated at 37°C over night, upside down. 



Colonies obtained from cloning experiments were screened by isolating small-scale 

DNA preparations (mini-preps) for restriction digestion and gel analysis or DNA 

sequencing reactions. 

2.2.6 Small scale plasmid DNA preparation by alkaline lysis. 

In order to prepare small scale amounts of plasmid DNA the following protocol was 

used (Bimboim and Doly, 1979, Ish-Horowicz,D. eta!, 1981). An overnight culture 

(1.5m1) of transformed E.coli was spun for 15 seconds at 13,400 xg in a 

microcentrifuge. The supernatant was discarded and the pellet re-suspended in lOOil 

of TGE (25mM Tris-HC1, pH8.0, 10mM EDTA, 50mM glucose), then 2001.tl of 

0.2M NaOH, 10% SDS solution was added to lyse the cells. The samples were 

mixed briefly and incubated on ice for 5 minutes. To remove the SDS and allow for 

renaturation of the plasmid DNA 1501.l 3M potassium acetate solution was added, 

the sample was mixed and incubated on ice for 5 minutes then spun for 5 minutes, 

as before, to remove the precipitated protein and chromosomal DNA. The 

supernatant was transferred to a fresh Eppendorf tube and the plasmid DNA purified 

by ethanol precipitation. 

2..2.7 Ethanol precipitation of plasmid DNA 

To ethanol precipitate plasmid DNA, 2x volume 100% ethanol was added, mixed, 

and the sample incubated -20°C for 30 minutes then spun for 10 minutes at 13,400 

xg. The pellet was resuspended in 30-50iil dH20 or alternatively in RNaseA/ dH 20 

mixture (10tg/ml) to digest residual RNA. For solutions up to 15m1, ethanol 

precipitation was preformed in Cortex tubes and centrifuged (Beckman J2-2 1, rotor 

JA-20) at 29,000 xg. 

2.2.8 Large scale DNA preparation by alkaline lysis. 

To obtain large scale amounts of plasmid DNA the following protocol was used 

(Birnboim and Doly, 1979, Ish-Horowicz,D. et al, 1981). A starter culture of lOml 

ampicillin agar broth with transformed E.coli was prepared and incubated at 37 °C for 
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8 hours with shaking, then added to 300m1 ampicillin agar broth and incubated as 

before. Next day, the culture was split into 2x 250ml GSA bottles and centrifuged 

(Beckman, JA-14) for 10 minutes, 5520 xg at 4°C. The supernatant was discarded. 

The cells were resuspended in 25m1 of TGE (25mM Tris-HC1, pH8.0, 10mM EDTA, 

50mM glucose) and 5j.tl (1 0tg!ml) of lysozyme added and the cells left at room 

temperature for 10 minutes. To lyse the cells 60ml of a 0.2M NaOH, 10% SDS 

solution was added, mixed well and the bottles left on ice for 5 minutes. The lysate 

was neutralised by adding 30m1 3M potassium acetate, mixed, and the bottles left on 

ice for 15 minutes then spun as before to pellet the chromosomal DNA and cell 

debris. 

The supernatants were pooled, filtered through gauze into a 500ml cylinder and 0.6 

volume iso-propanol added then spun for 10 minutes in a fresh 250ml GSA bottle, 

9820 xg at 4°C, as before. The supernatant was discarded and the pellet air dried for 

approximately one hour. The DNA pellet was resuspended in 4m1 of TE buffer, pH 

7.4,transferrd to an autoclaved Cortex tube and the volume made up to 12m1 with 

sterile distilled water. The plasmid DNA was recovered by ethanol precipitation as 

previously described. The pellet was air dried then resuspended in 2ml TE buffer, 

pH 7.4. 

To prepare a caesium chloride gradient in Beckman Quickseal tubes, 4g CsC1 was 

added to a Corex tube and the DNA! TE buffer mixture added, TE buffer was 

added to a final volume of 5m1. Once the caesium chloride had dissolved, 1 00.tl 

ethidium bromide (5tg!ml) was added before preparing the DNA solution in a 

Beckman 5m1 Quickseal tube. Ultra-centrifugation was carried out in the Optima IL 

Ultra-centrifugation 100,000 6R, rotor TLA-lOO.3 (Beckman, Ltd) for 16 hours, at 

160,000 xg, 20°C. The plasmid band (lower) of the CsC1 preparation was removed 

using a wide bore needle syringe and the volume made up to 5m1 with autoclaved 

distilled water. The ethidium bromide was removed using 5m1 of water saturated 

butan- 1 -ol and the DNA layer (top) extracted three times. Ethanol precipitation was 

used to recover the DNA followed by centrifugation at 8K for 10 minutes then the 

62 



pellet air dry and resuspended in distilled water or TE, pH 7.4. Alternatively the 

pellet was dissolved in RNaseA/ dH20 mixture (1 0ig/ml) to digest residual RNA. 

2.3 General Methods for DNA Mutagenesis and Sequencing. 

Purified plasmid single stranded DNA (ssDNA) can be used in sequencing reactions 

and as a template upon which mutagenesis can be performed. Two methods were 

used to isolated ssDNA. 

2.3.1 Preparation of single strand plasmid DNA (ssDNA) using M13K07 

Helper Phage. 

To prepare ssDNA for DNA sequencing reactions the following procedure was used. 

Ampicillin LB broth (3m1) was inoculated with transfected bacteria and 100tl of 

Ml 3K07 helper phage added, and incubated for 90 minutes in a shaking incubator at 

37'C, and kanamycin added to a final concentration of 70.tg/ml. The bacteria were 

incubated overnight at 37°C, with shaking. Approximately lml of an overnight 

culture was spun in microcentrifuge, 13,400xg for 60 seconds then 800tl of the 

supernatant transferred to fresh tube. A solution of PEG6000 and NaCl was added 

to a final concentration of 4% PEG, 500mM NaCl and left at room temperature for 

30 minutes, then spun for 10 minutes as before. The pellet was dissolved in 200tl 

TE pH 7.4, mixed with 200 p.1 phenol, incubated at 60 °C for 5 minutes, then 

incubated on ice for 10 minutes. The tubes were spun for 10 minutes, 13000 xg, the 

DNA/buffer phase (top) removed to a fresh tube and mixed with 150p.l 

phenol/chloroform( 1:1). The extraction procedure was repeated and 10th volume 3M 

sodium acetate and 2x volume 100% ethanol was added to the top layer. This was 

stored at -20 0C overnight, and the precipitate was pelleted by centrifugation for 10 

minutes, 13000 xg. The pellet was air dried and dissolved in 15 PI dH 20 for a DNA 

concentration of 0.5-1 [tg/pl. 
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2.3.2 Preparation of single stranded plasmid DNA by denaturation. 

An alternative method to using helper phage in the production of single stranded 

DNA is to denature the double stranded DNA chemically. To one volume of dsDNA 

sample 1110th  volume 2M sodium hydroxide and 1110th  volume 2mM EDTA was 

added. The DNA solution was incubated at 37 °C for thirty minutes then ethanol 

precipitated at —20°C for a further thirty minutes. The DNA pellet was washed with 

70% ethanol then left to dry at room temperature for 15 minutes. Thereafter the 

pellet was dissolved in 20-30tl dH20 for a DNA concentration of 0.5-1.tg4.Ll. 

2.3.3 Mutagenesis by single oligonucleotide hybridisation. 

To create the hamster-specific anti-PrP epitope (designated 3F4, Kasack et al., 1987) 

in the sheep PrP protein coding region (Chapter Five, section 5.3) the following 

method was used (Gillam, etal., 1997). To denature 10.tg pPSHPrP, the following 

components were added: 10th volume 0.2M NaOH and 10th volume 0.25M EDTA. 

To phosphorylate 10tI (lOpmol/ml) oligonucleotide primer the following mix was 

prepared: 1 .il bacteriophage T4 polynucleotide kinase (1 OU/ml) in the presence of 

1tl lOOM DTT, 2.il 10mM ATP and 4il distilled water, the mixture was incubated 

for 30 minutes at 37°C, placed at -70°C for 10 minutes then stored at -20°C. To 2j.tl 

of phosphorylated primer 1 .tl single stranded DNA template with I tl 1 Ox TM 

buffer, and 6tl water was added. The annealing reaction was incubated at 80 °C and 

then cooled to room temperature for approximately 30 minutes. To the lO&l 

template-primer complex, 0.5pJ Kienow fragment of DNA polymerase (5U/ml), 1il 

T4 DNA ligase (1OU/ml), ltl 5mM ATP, 1tl 5mM dNTPs, ipi 100mM DTT and 

4il water were added and mixed. The reaction was incubated for 12-20 hours at 

12°C. After extension/ligation, E.coli cells were transfected and colonies screened 

for positive clones by restriction enzyme digest or hybridisation. For summary of 

oligonucleotides used see Table 2.1 and Appendix A. 

2.3.3.1 Screening for successful mutagenesis- restriction enzyme digestion. 

To screen for positive colonies restriction enzyme digestion was used. Individual 

colonies were grown in 3m1 ampicillin agar broth for 16 hours and plasmid DNA 
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obtained by alkaline lysis. Ethanol precipitated DNA was digested with HindIll and 

XbaI as described in Appendix A. The DNA fragments were separated and visualised 

by agarose gel electrophoresis. 

2.3.3.2 Differential colony hybridisation. 

An alternative method to screen for positive colonies is differential colony hybridisation 

(Grunstein et al., 1975). Colonies were lifted onto duplicate nitrocellulose membranes 

and the membranes washed in denaturing buffer for two minutes, then soaked in 

neutralising buffer for five minutes and debris removed in washing buffer. The DNA 

was fixed to the membranes by UV irradiation. The membranes were incubated with 

oligonucleotides, 20pmollml, homologous to the mutated and wild-type sequence, with 

2tl lOx kinase buffer, l.tl T4 polynucleotide kinase, 5 P 32P ATP (370MBq/ml) and 

sterile water to final volume of 20il for 1-1.5 hours at 37°C. The radiolabelled probes 

were precipitated with 5 tl E. coli tRNA(Smg), 20pl 4M ammonium acetate and 1 20il 

100% ethanol, placed at -20°C for one hour, then spun for 15 minutes at 13,400 xg, and 

the pellet dissolved in 1 00jl sterile water. The radiolabelled probe was added to the 

pre-hybridisation mix and washed over the membranes for four hours at 37'C. The 

filters were washed twice with 2xSSPE /0.05% SDS at room temperature for ten 

minutes, followed by one or two more stringent washes at higher temperature. After 

exposure to Kodak XAR-5 film at -70°C for six hours or over night with a Lightning 

Plus intensifier screen, positive colonies were identified if only present on the filters 

hybridised with the mutated oligomer probe and not the on those hybridised with the 

wild type oligomer. 

2.3.4 DNA Sequencing: Chain-termination sequencing of DNA. 

Using ssDNA as a template, the chain termination sequencing reaction involves the 

synthesis of a DNA strand (initiated by an oligonucleotide primer) by DNA 

polymerase. In four separate reactions, one for each deoxynucleotide (dNTP), a 

nucleotide analogue is added which can not support chain elongation (a 

dideoxynucylotide,ddNTP). This results in a population of chains of various lengths. 

A radioactive nucleotide is also included in the synthesis so that the chains may be 



visualised by autoradiography after separation by electrophoresis. Sequencing of 

ssDNA was completed using the Sequenase Version 2.0 DNA Sequencing Kit 

(Amersham Life Sciences, Buckinghamsire, UK) according to the manufacturer's 

protocol. Oligonucleotides used as primers for DNA polymerase are described in 

Table 2.1. 

2.3.4.1 Sequencing reaction 

To anneal the oligonucleotide primer to the ssDNA the following method was used. 

In a 0.5ml centrifuge tube ipi primer (lpmol/reaction) was added to 7.xl DNA (5-

7tg) and 2pl Reaction Buffer. The annealing reaction was incubated at 65°C for 2 

minutes in a hot water bath which was then allowed to cool to below 35°C over 30 

minutes to complete the annealing process. To label the template-primer complex 

the following was added to the completed annealing reaction on ice: ltl 0.1MDTF, 

2tI diluter labelling mix (1:5 dGTP labelling mix), 0.5.tl [35 S] —dATP, l.tl Mn 

buffer and 2.tl diluted Sequenase Version 2.0. The labelling reaction was mixed and 

incubated at room temperature for 2-5 minutes. 

For the chain termination reaction 2.5.d of each ddNTP (A, C, G and T) was 

aliquoted into a capped centrifuge tube and warmed to 37 °C for at least 1 minute. 

Labelling reaction, 3.5tl was added to each of the four prepared ddNTPs, and 

incubation at 37°C continued for 3-5 minutes. After which 4m1 Stop solution was 

added to the Termination reaction, mixed and the samples stored on ice until 

required. Prior to loading onto the prepare polyacrylamide gel, the samples were 

heated to 75-80°C for 2 minutes, then 2-3tl loaded on the gel immediately. 

2.3.4.2 Denaturing gel electrophoresis for sequencing. 

The result of sequencing reactions can be resolved by polyacrylamide gel 

electrophoresis. The gel is prepared as follows. For a 7% polyacrylamide gel, 5.7m1 

40% acrylamide/bis-acrylamide solution was mixed gently at 35°C with 17.5g urea, 

4m1 lOx TBE buffer, lOml distilled water and 80tl 10% APS. Once the urea had 

completely dissolved the volume of the polyacrylamide gel solution was adjusted to 

40m1 with distilled water and 30.tl undiluted TEMED added. The gel was then 
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poured (34cm x 17cm x 0.4mm) and allowed to polymerise for 2 hours at room 

temperature. 

Before loading the samples, the gel was pre-run for 15 minutes at 1 800V, 45 W to 

warm the gel. Conditions used to run the sequencing reaction were I 800V, 35W for 

a required time. After which the gel was soaked in a solution of 5% acetic acid, 

15% methanol for 15 minutes to remove the urea, covered with plastic-wrap and 

dried in a gel drier for ihour at 80 °C. The gel was then exposed to Kodak BioMax 

MR-i film (emulsion side in direct contact with gel) in a Lightning Plus Intensifier 

screen. In general, overnight to 36 hour exposures were sufficient to develop 

autoradiography. 

2.3.5 Polymerase Chain Reaction (PCR). 

Polymerase Chain Reaction (PCR) was used to amplify DNA sequences of interest. 

For PCR the concentration of the primers should be approximately 20pmol/1, and the 

final concentration 200mM of dNTPs. The following standard reaction was used; 

1 jtl Taq Poymerase (Roche Diagnostics, East Sussex, UK), 0.4p1 25mM dNTP, 5 P 

1 Ox buffer (Roche Diagnostics, East Sussex, UK), 1 tl oligo 1 (20pmol), I .tl oligo 

2 (20pmoI), 3tl DNA (10.tg) and sterile water to 50.tl. Controls were setup to 

check primers i.e positive control PCR reactions with both primers and a template 

known to work, and a negative control with no DNA template. Standard PCRs were 

run on a Biometra Personal Cycler (Biorad Laboratories Ltd, Hertfordshire, UK), 35 

cycles of: step 1; 95°C for 1 minute, 15 seconds: step 2; 62°C for 1 minute, 15 

seconds: step 3; 72°C 1 minute, 15 seconds. 

2.3.6 Reverse Transcription —PCR. 

Reverse transcription —PCR (RT-PCR) was used to synthesis cDNA from total RNA 

extracts prepared from mouse and ovine cell lines using The RNAzol Tm  B method 

(AMS Biotechnology, Oxon,UK). Media was removed, and the cells washed twice 

in PBS before lml RNAz01TM  B was added to each 6-well plate at 4 °C. To disrupt 

the cells the plate was rocked gently and the RNA solublised by pipetting. The RNA 
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solution was transferred to a fresh Eppendorf and 0.1 ml chloroform added, the 

solution mixed then incubated on ice for 15 minutes. After centrifugation at 13,400 

xg for 15 minutes the upper aqueous layer was removed to a fresh tube and the 

RNA precipitated by adding an equal volume iso-propanol and incubating on ice for 

a further 15 minutes. The RNA pellet was washed with 75% ethanol and stored in 

75% ethanol at -20 0C until required. 

RT-PCR using Superscript II was carried out according to manufacturer's protocol 

Gibco-BRL (Paisley, UK). Total RNA, 1-5tg, and lpJ oligo dT (500ig/ml) were 

added to 12m1 sterile water and heated to 70°C for 10 minutes then chilled on ice 

briefly. The following components were added to the total RNA and mixed gently: 

41.il 5x First Strand buffer, 2tl 0.1 M DTT and 1 jiJ 10mM dNTP. This was incubated 

at 42°C for two minutes then 1 JAl of Superscript II added and mixed gently by 

pipetting, the reaction was incubated for a further 50 minutes at 42°C. The reverse 

transcriptase reaction was stopped by heating to 70 °C for 15 minutes. cDNA can 

now be used for PCR as described in section 2.3.5. 



Table 2.1 :Summary of oligonucleotides used during PCR and mutagenesis. 

Name Oligonucleotide sequence Target 

A023  CTGACAGCCGCAGAGCTGAGAG PrP promoter, 5' 

sequence 

A025  CTCATTCCCTAATCTTCA PrP promoter, 5' 

sequence 

A045" CCGTGCAGAGGAGGAGCTG PrP promoter, 3' 

sequence 
13741N GAGGCCTGAGGTGGATAGCGGTTGC PrP ORE, nt 2173' 

sequence 

Sa IPMC GCAGGTGTCGACTAATATCC 5' end of ovine PrP 
promoter region with 
Sail site added 
(underlined). 

SStPMC GGTCTGCAGTTTAAAGAGCTCCGCGGCTATT 3' end of ovine PrP 
promoter region with 
Ssti site added 
(underlined) 

Swildc CCTGCCACATGCfl'C Ovine PrP ORF, nt 337- 
351, anti-sense strand 

E439m  GCTCCAGCTGCAGCAGCTCCTGCCAIATGC 3F4 epitope sequence! 
Ndei site in ovine PrP 
ORF, nt 337-351, anti- 
sense strand (mutation 
underlined) 

H3F4c CCTGCCATATGCTTC 3E4 epitope sequence! 
Ndel site in ovine PrP 
ORE, anti-sense strand 
(mutation underlined) 

E337c GAAGCATATGGCAGG Introduces 3174 epitope 
sequence/ Ndel site in 
ovine PrP ORF, nt 337- 
351, sense strand 
(mutation underlined). 

p1N* CCGATACCCGGGACAGGGCAG Ovine PrP ORE, nt 188- 
208, sense strand 

Note: 
Oligonucleotides synthesised by cCmhem  Ltd.(Glasgow, UK) or MWG-Biotech Ltd (Milton Keynes, 
UK) or N  available at NPU. * Designed by Dr Gerard O'Neill. 
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2.4 General Methods for Tissue Culture. 

2.4.1 Preparation of new plates/flasks. 

All plastic wear was purchase from Costar (Buckinghamshire, UK). The cells were 

grown in 75cm2  flasks which were treated as follows. The flasks (Costar Ltd, 

Buckinghamshire, UK) were incubated with 0.1% gelatin at room temperature for 2 

hours in the hood and rinsed with sterile phosphate buffered saline (PBS,Gibco-

BRL, Paisley, UK) prior to use. 

2.4.2 Handling cells to be passaged. 

To passage the cells the following protocol was observed. The culture medium was 

removed and the cells rinsed with PBS then 3m1 trypsin/ versene solution was added to 

the 75cm2  flask (refer to Appendix A for all solutions). The flask was rocked gently 

and placed in the incubator for a few minutes and when all the cells were off the flask 

they were collected in a 1 5ml centrifuge tube. The flask was rinsed with 2m1 sterile 

PBS which was added to the collected cells. The cells were spun at 2000 xg for 5 

minutes, and the pelleted cells resuspended in 2ml of complete culture medium. The 

resuspended cells (0.2m1) were added to a new flask and placed in the incubator at 33°C 

with 5% CO2. The remaining cells were stored at -20°C. 

2.4.3 Cells for frozen storage. 

Cells for storage were prepared by the following protocol. After collection and 

pelleting the cells, the supernatant was decanted to remove all excess trypsin/ versene 

solution The pellet was resuspended in 3ml freezing down medium, and imi of 

resuspended cells pipetted into cryovials. The vials were wrapped in paper towel and 

placed directly into -70°C overnight in an upright position, then the cells were placed in 

liquid N2 until required. 
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2.4.4 Removing cells from frozen storage. 

To remove cells from storage for re-growth the following method was used. The 

vials were removed from liquid N 2  and thawed rapidly in a warm water bath, the 

outside of the vial was sprayed with 70% Methanol to clean it. The cells were added 

to flasks prepared with 0.1% gelatin, 1 Oml of culture medium added slowly, and 

the cells incubated at 33'C. Next day the medium was replaced with fresh medium 

thus removing the dimethyl sulphoxide (DMSO; Sigma, Dorset, UK). 

2.4.5 Culturing ovine cell lines. 

The NPU sheep-derived cell lines were grown at 33 °C in 5% CO2 . A change in 

morphology was observed when the cells were grown at 37°C which may be due to 

the presence of vectors chosen to produce stable cell lines (Hew John, Moredun 

Institute, Edinburgh, personal communication). The primary cells were grown at 

37°C in 5% CO2. The cells were fed every three to four days with complete media 

(Appendix A) as required. The tops of the flasks were unscrewed loose while in the 

incubator. 

2.4.6 Culturing Neuroblastoma cells Ma) 

Neuroblastoma cells (N2a) were available at the NPU. The cell requirements for 

N2a cells are different from the sheep cells in that the N2a cells are kept at 37°C 

instead of 33 °C as for the ovine cells. Plates and media were prepared as for ovine 

cells, N2a cells are grown in the presence of complete culture medium. The cells 

were fed every three to four days with complete media (Appendix A) as required. 

The tops of the flasks were unscrewed loose while in the incubator. 

2.4.7 Immunostaining for ovine brain-derived cell type identification. 

For classification of brain cell lines specific neuronal antibodies (Table 3.1) were 

used to test for several neuronal markers and were detected by fluorescein 

isothiocyanate (FITC) labelled secondary antibodies. 
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2.4.7.1 Fixing brain-derived cell lines for immunostaining. 

The cells were passaged (Section 2.4.2) as usual and a 500.11 aliquot added to a 

60mm culture dish containing a 10-well glass slide which had been treated with 

gelatin as described for the preparation of plates and flasks (Section 24.1). Complete 

media, 5m1, was added to the dish and the cells were incubated at 33 °C for 16 hours. 

Before fixing, the cells were washed twice in warm PBS for 5 minutes, shaking. The 

cultures were fixed with methanol/acetone solution (1:1) for 5-10 minutes at 4°C. 

The cells were then washed with PBS as before and then stored at 4 °C for up to 1 

week prior to immunostaining. 

2.4.7.2 FITC-immunostaining of in vitro ovine brain-derived cultured cells. 

Using a wax pen (PAP pen supplied by Agar Scientific Ltd, UK, product number 

L4197), circles were drawn around the inner rim of each well on the glass slide. The 

cells were washed three times with warm PBS (37'C) for 5 minutes then incubated 

with 30j.tl FITC Blocking solution (refer to Appendix A) for 15 minutes at room 

temperature. The primary antibody, pre-diluted in 5% Blocking solution (if 

necessary), was added as 25jtl aliquots to the wells (Table 3.1). This was incubated 

at room temperature for 1 hour, taking care to ensure the solution remained within 

the PAP circle. Control wells were incubated with 5% Blocking solution only. The 

cells were then washed as before with warm PBS. The secondary antibody, 25.tl 

(Table 3.1; FITC-conjugated Affinipure goat anti-mouse, Jacksons JmmunoResearch 

Lab. Inc. Luton, UK) was prepared in 5% Blocking solution according to the 

supplier's protocol and incubated on the cells in the dark for 1 hour while gently 

shaking at room temperature. The cells were then washed as before with warm PBS 

in the dark and the slide mounted with a water-based mounting solution. The stained 

slides were then observed using fluorescent microscopy (Nikon eclipse E800) and 

results recorded on film. 
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2.5 Methods for Transient Transfection. 

2.5.1 Preparation of DNA for transfection. 

Quality of DNA for transfection is crucial as contaminating protein, RNA and 

chemicals can adversely affect transfection efficiency. DNA for transfection was 

purified using CsCl gradients (2.2.8) or endotoxin-free kits (Qiagen Ltd., West 

Sussex, UK). For transfection a 0D 260:0D280  ratio at or about 1.8 was obtained with 

the final DNA concentration approximately lmg/ml. 

2.5.2 Control vectors. 

The control vector pCAT3-Promoter (Promega, Southampton, UK) was used to 

optimise transfection methods by analysing reporter activity in cell lysates. To 

control for transfection efficiency or cell lysate recovery from transfection 

experiments the vector pSV--Galactosidase (Promega, Southampton, UK) was 

used. 3-galactosidase (n-gal) is a commonly used reporter molecule for co-

transfection. It is assumed that both reporter vectors are transfected with the same 

efficiency in a single transfection reaction but that different cell populations may be 

transfected at varying efficiencies. Measuring the activity of n-gal allows cell 

extracts to be measured for transfection efficiency and lysates adjusted accordingly 

for further CAT assays. 

2.5.3 Calcium phosphate precipitation. 

To transfect ovine and N2a cells by calcium phosphate precipitation the following 

protocol was observed (Gorman,1982). Cells were passaged (Section 2.4.2) at 50-

100% confluent and resuspended in 2ml complete culture medium, of which 0.2ml 

was seeded into a 6-well plate pre-treated with 0.1% gelatin (Section 2.4. 1) and 

incubated overnight at 33'C. For transfection, 5tg of plasmid DNA was mixed with 

2501.tl 2xRBS (Appendix A) and 220 p1 sterile water. To precipitate the DNA, 31 p1 

of 2M calcium chloride was added slowly and the mixture incubated at room 

temperature for 30 minutes. To each well, 160p1 of the calcium phosphate! DNA 
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precipitate was added and the cells incubated at 37 °C overnight. Next day the cell 

medium was replaced and cells harvested 24 hours later. 

2.5.4 Electroporation of brain-derived cell lines. 

For electroporation of stable ovine brain cells lines the method described by Li, 

1997, was used (Li et al., 1997). On the day before electroporation the cells were 

passaged and seeded into 75cm 2  culture flasks and the medium replaced 

approximately 1 hour before harvesting. The cells were trypsinized and resuspended 

in 5ml of complete culture medium, an aliqout could be removed at this stage for cell 

counting. The cells were collected by centrifugation and resuspended in 0.8ml 

1 xHBS and transferred to an electroporation cuvette in preparation for 

electroporation. A DNA solution was prepared for electroporation by dissolving a 

pellet containing 5.ig of plasmid DNA in 80tl 1xHBS, this was added to the cell 

suspension. The cells were electroporated (Biorad Gene Pulser, Biorad Laboratories 

Ltd, Hertfordshire, UK) (Table 3.3) then allowed to rest at room temperature for 10 

minutes before being plated onto a 75cm 2  flask pre-treated with gelatin (Section 

2.4. 1) and returned to 33 °C incubator. The cells were harvested 48 hours after 

electroporation. 

2.5.5 Liposome-mediated transfection. 

2.5.5.1 Liposome Reagent Dosper. 

Transfection using Dosper was carried out according to manufacturer's protocol 

(Roche Diagnostics, East Sussex, UK). The day before transfection the cells were 

passaged (as for calcium phosphate) into 6-well plates at 33°C. On the day of 

transfection the cells were 60-80% confluent for transfection. Different liposome/ 

DNA mixtures were prepared to determine the optimal proportions for transfection. 

For example; 6tl Dosper/ 1.5tg DNA. For this 1.5tg DNA was diluted in HBS to a 

final volume of 50tl (solution A) and 6j.tl Dosper was diluted with HBS to a final 

volume of 50tl (solution B). Solutions A and B were mixed together gently by 

pipetting and incubated at room temperature for 15 minutes to allow the 

DosperfDNA complex to form. Without removing culture medium, the DosperfDNA 
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solution was added drop wise to the cells, mixing gently by rocking the culture dish. 

After 6 hours incubation the transfection medium was replaced with 2m1 fresh 

complete medium and the cells incubated at 37 0C. The cells were harvested to 

determine the level of reporter gene activity 48 hours after starting transfection. 

2.5.5.2 Liposome Reagents TfXTM20  and TfXTM5O. 

Transfection using TfXTm2O  and Tfl'M50  was carried out following the 

manufacturer's protocol (Promega, Southhampton, UK). The cells were prepared in 

a 6-well plate at 33 °C as in calcium phosphate transfection method. The cells were 

60-80% confluent for transfection. Before use, the liposome reagents were dissolved 

in 400 jl nuclease-free water and stored at —20°C. On the day of transfection the 

reagent was thawed on ice and different ratios of liposome/ DNA mixtures were 

prepared to determine the optimal proportions for transfection. For example: 2:1, 3 M 1  

reagent per ig DNA; 3:1, 4.5tl per j.tg DNA; 4:1, 6.0pl per ig DNA. 

The TfrTm  reagent/ DNA solution was incubated at room temperature for 10-15 

minutes to allow the Tfx/DNA complex to form, after which lml of serum-free 

Iscoves Dulbeccos Modified Medium (Gibco-BRL, Paisley, UK) was added to the 

TfXTm reagent/ DNA mixture. The cells were washed twice with PBS before imi 

TflTm50/ DNA mixture was added to each well. After 1-2 hours incubation at 37 0C, 

the transfection medium was replaced with 2m1 of fresh complete culture medium 

and the cells incubated at 37°C. The cells were harvested to determine the level of 

reporter gene activity 48hours after starting the transfection. 

2.5.6 Dendrimer Technology: Superfect Transfection Reagent. 

Transfection using Superfect was carried out according to he manufacturer's protocol 

(Qiagen Ltd., West Sussex, UK). The cells were passaged 24 hours prior to 

transfection into 6-well plates, seeding 2-8x 10 5  cells per well and incubated at 33 °C. 

The cells were 60-80% confluent on the day of transfection. Plasmid DNA was 

prepared by diluting 2p.g of DNA in TE, pH7.4, to a concentration of 0.1 tg/jtl and 
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added to lOOp! cell growth medium containing no serum or antibiotics. To the 

plasmid DNA solution, 9.tl of Superfect transfection reagent was added. To allow 

the DNA-dendrimer complex to form, the sample was mixed by vortexing for 10 

seconds then left at room temperature for 10-15 minutes. 

While the complex was forming the growth medium on the cells was removed and 

the cells washed twice with imi PBS. To the reaction tube containing the 

transfection complexes 2m1 complete culture media was added, mixed by pipetting 

then added immediately to the cells. The cells were then incubated at 37°C in 5% 

CO2 for 2-3 hours, after which the medium containing any remaining complexes was 

removed from the cells. The cells were washed twice with lml PBS and 2ml 

complete culture media added to the cells and incubated at 33 °C, 5% CO2. After 48 

hours, the cells were harvested and evaluated in the appropriate way. 

2.5.7 Effectene Transfection Reagent. 

Effectene reagent was used according to the manufacturer's protocol (Qiagen Ltd., 

West Sussex, UK). The cells were 60-80% confluent for transfection. Different 

ratios of Effectene/ DNA-Enhancer mixtures were prepared to determine the optimal 

proportions for transfection (Table 2.2). A solution was prepared containing 0.5pg 

DNA, with Enhancer and Enhancer buffer to a final volume of 1 50i.tl. Effectene 

reagent was added to the DNA-Enhancer mixture as required, mixed and incubated at 

room temperature for 5 to 10 minutes. While the Effectene complexes formed, the 

growth medium was removed from the cells to be transfected, the cells washed with 

PBS and lml fresh culture medium overlaid on to the cells. For transfection, 0.5m1 

complete culture media was added to the transfection reaction, mixed by pipetting 

and immediately applied drop wise to the cells. The plate was gently rocked to 

ensure uniform distribution. After 16 hours incubation with the complexes at 

370Cand 5% CO2,  the transfection medium was replaced with 2ml fresh complete 

culture medium and the cells incubated as before. The cells were harvested to 

determine the level of reporter gene 48 hours after transfection. 
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Table 2.2: Pippetting scheme for optimising transfection with Effectene reagent 
(Qiagen Ltd, West Sussex, UK) 0.5tg pCAT3-Promoter to primary cell lines in 6-
well plates. 

Component Ratio of DNA to Effectene Reagent 

1:10 	 1:25 	 1:50 

DNA (.tg) 0.5 0.5 0.5 

Enhancer buffer 100.0 100.0 100.0 

(Buffer EC, p1) 

Enhancer (al) 3.2 3.2 3.2 

Effectene (i.tl) 4.0 10.0 20.0 

2.5.8 Cell extract preparation. 

2.5.8.1 Freeze/thaw method 

The transfected cells were harvested by freeze/thawing for CAT assay in the 

following way. The medium was removed and the cells washed in lx PBS before 

1 ml TENS buffer (Appendix A) was added directly to the cells and left at room 

temperature for ten minutes. Using a cell scraper, the cells were collected and 

transferred to a micro-centrifuge tube and centrifuged at 13,400 xg for 1 minute. The 

pellet was dissolved in 100t1 0.25M Tris-HC1, pH 8.0 and subjected to three freeze-

thaw cycles, vortexing after each cycle. Cell debris was removed by centrifugation 

as before and the supernatant transferred into a fresh tube to be assayed directly or 

stored at —70°C. 

2.5.8.2 Reporter Cell Lysis buffer. 

The transfected cells were harvested lysis by Reporter Cell Lysis Buffer (RCLB; 

Promega, Southampton, UK) in the following way. The medium was removed and 

the cells washed twice in 1xPBS. Sufficient volume of 1X RCLB was added to 

cover the cells (400p1 for 60mm dish) and the dish rocked gently at room 

temperature for 15 minutes. All areas of the plate were scraped to ensure all visible 

cell debris was collected, and using a pipette the cell lysate was transferred to an 

1.5ml Eppendorf tube and incubated on ice briefly. The cell debris was removed by 
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centrifugation at full speed in a microcentrifuge for two minutes. The cell lysate 

(supernatant) was transferred to a fresh tube and used directly or stored at —70 °C. 

2.5.9 Chloramphenicol Acetyltransferase (CAT) enzyme assay. 

To assay for CAT activity the standard method used is as follows (Seed, etal., 1988). 

To 100.tl cell extract, 3.tl [ 14C]chloramphenicol (0.05mCi/ml), 5.tl n-butyryl 

Coenzyme A (5mg/mI) (Promega, Southampton, UK) and sterile water to 125 PI was 

added. The reaction was incubated at 37 °C for one hour. To carry out both liquid 

scintillation (LSC) and thin layer chromatography (TLC) assays the sample was 

divided in two 75.tl aliquots. To terminate the reaction: for LSC 300tl mixed 

xylenes was added; for TLC 500tl ethyl acetate was added. From LSC the amount 

of acetylated products were measured on a scintillation counter. From TLC the 

acetylated products were either isolated for LSC or the measured directly by 

densometric reading using a Kodak Imagine Station 440 and 1D image analysis 

software (section 2.5.12). 

2.5.10 Liquid Scintillation Count (LSC) assay. 

The sample in xylene was vortexed for 30 seconds, spun in a microcentrifuge for 

three minutes at 13,400 xg and the upper layer removed to a fresh tube. Fresh 

0.25mM Tris-HC1, pH 8.0, 1001.il, was added and the spin repeated, extracting the 

upper layer again. A known volume, or 200tl, was added to a scintillation vial with 

2ml scintillation fluid and the counts per minute (cpm) measured. 

2.5.11 Thin Layer Chromatography (TLC) assay. 

The sample in ethyl acetate was vortexed for 1 minute, spun in microcentrifitge at 

13,400 xg for three minutes, the top layer was transferred to a fresh tube and dried 

under vacuum. The residue was dissolved in 1 0I.tl  ethyl acetate and spotted on to a 

silica gel plate. The plate was run in a pre-equilibrated tank with 

chloroform:methanol (97:3) for 30 minutes then allowed to dry at room temperature. 
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The plate was covered with plastic wrap and exposed to Kodak XAR-5 film 

overnight with a Lightning Plus Intensifier screen. 

2.5.12 Densometric reading of autoradioqraphs. 

Following TLC and development of autoradiographs, it was possible to measure 

directly the density of the acetylated products using a Kodak Image Station and 

processing the results using the Kodak 1D Image Analysis software. The 

measurement recorded is the "net" figure that is calculated by the sum intensity of 

the pixels within a selected area minus the background. 

2.5.13 13-Galactosidase enzyme assay. 

To assay for the level of transient 3-gal activity the method used was the - 

Galactosidase enzyme assay System (Promega, Southampton, UK). Cell extract was 

prepared by the freeze thaw method (Section 2.5.8.1) and 50tI cell extract added to 

100.tl of Assay 2x Buffer and mixed vigorously. The 3-gal assay was incubated at 

37°C for 30 minutes or until faint yellow colour had developed. The reaction was 

stopped by adding 500 j.tl of 1M NaCO 3  and the colour reaction measured by reading 

the absorbance at 420nm. 

2.6 General Methods for Protein Analysis. 

2.6.1 PrP extraction from adherent cells using Triton X-1 14 

For transient expression assays, cell extracts were prepared 48 hours after 

transfection. Cells extracts from non-transfected cells were also prepared to measure 

endogenous levels of cellular protein levels. Approximately 2x1 07  cells were 

collected from 100mm petri dishes for PrP protein extraction by harvesting the cells 

in TENS buffer (Section 2.5.8.2, Appendix A). Using a cell scraper the cells were 

collected and transferred to a microcentrifuge tube and spun at top speed for 1 

minute. The supernatant was removed and the cells stored dry at —20 °C. Prior to 

extraction all rotors and tubes used were pre-cooled to 4 °C. Also, the TL100 and the 
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GS-6R centrifuges were cooled to 2°C and 0 °C respectively at least 30 minutes 

before use. Both centrifuges have temperature controls allowing the rotors (TLA-

100.3) to be cooled to at least 0 °C. 

The cells were resuspended in 2m1 Extraction buffer (Appendix A), 2tl of 10mM 

PMSF protease inhibitor was added and the cells sonicated for 30 seconds at power 

level 8, tune 3 (Micro-ultrasonic cell disrupter, Konics). The extract was transferred 

to a pre-cooled 1 5m1 screw top tube and incubated on ice for 30 minutes. After 

centrifugation for 10 minutes at 900 xg, 0 °C in the GS-6R the supernatant was 

removed using a pasteur pipette and transferred to a thick walled TLA-100.3 tube. 

The supernatant (SP I ) was left to cool on ice for approximately 10 minutes then spun 

in the ultracentrifuge for 1 hour at 164,000 xg, 2°C. The pellet was discarded and the 

supernatant (SP2) overlaid onto 3m1 Sucrose buffer (Appendix A) then incubated at 

30°C for 15 minutes. 

The GS-6R rotor was pre-warmed to 30°C for the next stage of extraction. SP2 was 

spun in the GS-6R for 10 minutes at 380 xg at 30T. With a pasteur pipette, 2.5ml 

was removed from the aqueous layer (SD I ) and cooled on ice. The remaining 

sucrose bed was removed and discarded, the detergent layer(D i ) was transferred to a 

screw-top Eppendorf tube and stored at 4 °C. To SD I , 220tl Triton X-114 was 

added and vortexed then incubated on ice for 1 hour. SDI was overlaid onto 3ml 

Sucrose buffer, incubated at 30°C for 15 minutes then spun as before in the GS-6R 

for 10 minutes at 380 xg, 30°C. With a pasteur pipette, 2ml was removed from the 

aqueous layer (SD 2), the remaining sucrose bed discarded and the detergent layer 

(132) was transferred to a screw top Eppendorf tube and stored at 4°C. D1 and D 2  

were pooled then split into two aliquots. The protein was then precipitated by 

chloroform/methanol extraction and stored at —20°C in methanol. 

2.6.2 Chloroform/methanol extraction 

This method was used to precipitate protein from cell extracts following Triton X-

114 treatment. For a 20011l extract: 800 .tl methanol, 400 .tl chloroform and 600 tl 



H20 was added, vortexed and spun in a micro-centrifuge for 10 minutes at 2000rpm. 

The aqueous layer was removed and 800tl methanol added, the sample was mixed 

and centrifuged as before. The pellet was stored in methanol at —20°C until required 

for SDS-PAGE and Western blotting (Section 2.6.4). 

2.6.3 Immunoprecipitation 

For immunoprecipitation the following method was adapted from Firestone and 

Winguth (1990) and used to detect transient and endogenous PrPC  expression 

(Chapter 5, Section 5.5). Cell extracts were prepared from approximately 2x10 7  cells, 

48 hours after transfection using Reporter Cell Lysis Buffer (RCLB, Section 2.5.6.2). 

Cell extract from non-transfected cells was also prepared to measure endogenous 

levels of PrPC  protein levels. Cell lysate was spun briefly at 2,000 xg and the 

supernatant transferred to a fresh tube. The primary antibody (Table 2.3) was diluted 

in TBST (2x volume of the supernatant, Appendix A) and added to the lysate 

supernatant and incubated for 16 hours at 4 °C while gently mixed. To precipitate the 

PrP immunocomplex, 100.tl protein-A Sepharose solution (10% in TBST) was added 

to the lysate solution and incubated for a further hour at room temperature, gently 

mixing. The sepharose beads were collected by centrifugation at 3,000rpm, 10 

minutes, and washed in 100.tl 5x TBST. This procedure was repeated three times. 

After the third wash the beads were resuspended in SOjtl lx sample buffer to elute 

the bound PrP complex which was then denatured at 90 °C for 10 minutes and 

processed by SDS-PAGE and Western blotting (section 2.6.4) 

2.6.4 Chemiluminescence blotting. 

To detect in vitro PrPC  protein, Western blots were carried out as follows (Towbin, et 

al., 1979). All equipment and solutions described in Appendix A. After 

methanol/chloroform precipitation the protein pellet collected by micro-centrifugation 

for 10 minutes at 13,400 xg. The pellet was dissolved in 30tl lx sample buffer and 

incubated at 90°C for 10 minutes before being loaded onto a 12% acrylamide gradient 

gel. The gel was run at 200V, 75mA for 1 hour. 
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In preparation for protein transfer onto a PVDF membrane, 2x 6 pre-cut pieces of IF 

filter paper (6cm x 8.5cm) were soaked in Transfer buffer for 10 minutes. A sheet of 

pre-cut PVDF membrane (6cm x 8.5cm) was soaked in methanol for 5-10 seconds, 

washed in water for 1 minute then soaked in Transfer buffer for five minutes. For 

blotting the following was assembled on the semi-dry blotter: 6 pieces of filter paper, 

PVDF membrane, gel and 6 pieces of filter paper. A current of 2mA/sq cm was applied 

for 1 hour. 

After blotting, the PVDF membrane was washed with methanol for five seconds and 

left to dry at room temperature for 15 minutes. The membrane was re-wet with 

methanol, rinsed with sterile water then washed twice with TBS before incubating 

with 1% Western Blocking Reagent Solution (Roche Diagnostics, East Sussex, UK: 

Appendix A) at room temperature for one hour while rocking gently. The primary 

antibody was prepared in 0.5% Western Blocking Reagent Solution (Table 2.3) and 

incubated with the membrane for 2 hours at room temperature while being gently 

rocked. The membrane was washed twice for 10 minutes with 20ml TBST, then 

washed twice for 10 minutes with 0.5% blocking solution. The secondary antibody 

was prepared in 0.5% blocking buffer (Table 2.4) and added to the membrane and 

incubated at room temperature for 30 minutes while being gently rocked. The 

membrane was then washed for 15 minutes with 20ml TBST, this was repeated a 

further thtee times before rinsing the membrane with water for 90 seconds. Pre-mixed 

detection reagent (Appendix A) was added to cover the membrane and left to incubate 

for 60 seconds, the blot was wrapped in transparent film and exposed to Kodak XAR-5 

film for 30 seconds, 3 minutes and 10 minutes. 
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2.6.5 Primary antibodies 

To date, no antibody can reliably distinguish between PrPC  and PrP&.  Furthermore 

most antibodies will cross-react with PrP protein purified from two or more species 

as a result of the highly conserved PrP gene. For the purposes of this investigation 

the antibodies chosen for PrP protein analysis are shown in Table 2.2. As discussed 

in Chapter One the polyclonal antibody 1B3 recognises PrP purified from many 

species and was used as a control for PrP expression between the mouse and sheep 

cell lines. However 1133 also cross-reacts with several other cellular protein s and 

can give high background during Western blotting. Recently the monoclonal 

antibody 6H4 became commercially available (Prionics, Zurich). 6H4 shows 

specificity to PrP from several species and was used as a control between the mouse 

and sheep cell lines. The monoclonal antibody FH1 1 had been shown to be ruminant 

specific and was chosen to detect ovine PrP expression from the transiently 

expressed constructs in the mouse N2a cell line. To detect transiently expressed 

ovine PrP from the plasmids pNPU3F4.2 and pNPU3F4.4 in the sheep cell lines the 

monoclonal antibody 3F4 was used. 
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Table 2.3: Primary antibodies used for immunodetection of ovine and mouse PrP. 

Antibody 	PrP motif 

(amino acids) 

Specificity Conditions for use (dilution) Supplier 

1133 	 14-36; 83-102; Mouse, Sheep, 101.11 in 12m1 0.5% blocking solution, incubate C. Farquarson, 

Rabbit polyclonal 	119-139; Goat room temperature for 	hours, shaking (1:1200) NPU, Edinburgh 

188-212 

FHI I 	 PQGGG Goat, Sheep 51.d in 25ml 0.5% blocking solution, incubate at C. Birkett, IAH 

Mouse monoclonal 	(51-55 hu) room temperature for 2 hours, shaking (1:5000) Compton 

3F4 KHMA 	Hamster 1 1 11  in 12ml 0.5% blocking solution, incubate at R.Kascsak, MRDD, 

Mouse monoclonal (109-112 hu) room temperature for 16 hours, shaking New York 

(1:12000) (Kascsak etal., 1987) 

6H4 DYEDRYYRE 	Mouse, Sheep, 5 1.11  in 15m1 0.5% blocking solution, incubate at Prionics AG, Zurich 

Mouse monoclonal (aa 144-152 hu) 	Goat room temperature for 16 hours shaking (1:3000), (Korth etal., 1997) 
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2.6.6 Secondary antibodies 

Table 2.4: Peroxidase-conjugated secondary antibodies used for detection PrP after 
Chemilurninescence blotting. Supplied by Jacksons lmmunoResearch Laboratories 
Inc., Luton, UK. 

Antibody 	 Primary 	Conditions for use 

antibodies 

Goat-anti-rabbit-POD 	1133 	 ltI in 25m1 0.5% blocking solution, 

incubate at room temperature for 30 

minutes, shaking 

Rabbit-anti-mouse-POD 	FH1 1 	 5j.tI in 12m1 0.5% blocking solution, 

3F4 	 incubate at room temperature for 30 

61-14 	 minutes, shaking 
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Chapter 3: Development of transient transfection 

systems for in vitro expression studies in Ovine derived 

cell lines. 

3.1 Introduction 

The use of cell culture in molecular biology is an important tool for elucidating the 

functions of genes and their products. The advantage of using insect or mammalian 

cell lines, as opposed to bacterial cultures or cell free systems, is the presence of 

cellular machinery for correct post-translational modification. It can be expected 

then, that proteins expressed in vitro using mammalian cell culture will be modified 

in a similar manner to native proteins in vivo. 

The process of introducing nucleic acids into cells by non-viral methods is known as 

transfection. Two approaches exist for expression of transfected genes: stable, long-

term transfection and transient expression (Southern and Berg, 1982; Gorman et al., 

1982). Stable transfection involves the integration of the reporter gene into the host 

chromosome to produce cell lines that constitutively express the gene of interest and 

uses a selection process to screen against non-transfected cells. The alternative 

method of transient transfection was used for the work described in this thesis. This 

method involves cloning a reporter gene into an expression vector (plasmid) which is 

introduced into cultured cells in high copy number where it exists independently in 

the cell and appears to degrade slowly. The efficiency of transient transfection is 

dependent on the number of cells which take up the transfected DNA. The products 

from reporter genes following transient transfection can be analysed 48-72 hours post 

transfection. 

Several methods exist for the development of stable or transient transfection, based 

on the utilisation of different physical and chemical principles; calcium phosphate 

precipitatiow(Graham and van der Eb, 1973), electroporation (Wong and Neumann, 

1982), liposome-mediated transfection (Fraley et al., 1980; Felgner et al., 1987), and 

dendrimer-mediated transfection (Tang et al., 1996). The parameters for transfecting 



cells by these methods vary considerably for each cell type and therefore need to be 

optimised for efficient transfection. 

Previous in vitro studies involving the sheep PrP 3 'UTR (discussed in Chapter Four) 

were undertaken in mouse neuroblastoma cells (N2a) (Cheung, 1996; Goldmann et 

al., 1999). It is feasible that the mouse-derived cell line does not have the same 

transcription/ translation factors necessary for control of an ovine gene as would be 

found in sheep cells. The aim of this Chapter is to outline the methods tested for 

efficient transient transfection of various ovine cell lines. As sheep cells lines are not 

commonly used, with only limited lines available commercially, it was necessary to 

obtain suitable ovine cells lines. With this in mind, stable sheep cell lines were 

obtained from Dr Huw John, Moredun, derived from NPU Cheviot sheep (Section 

3.2) and primary cell lines (Section 3.3) were created by Dr Gerard O'Neill, NPU, 

from an Icelandic sheep breed. It was also important to identify the cell types 

present in the brain cell lines, as it is known that the level of PrP expression in 

different brain areas can vary. This may have implications for the reporter gene 

activity as discussed in Section 3.4. 
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3.2 Generation of Stable Ovine Cell Lines for Transient 

Transfection Studies. 

Immortilised cell lines were derived from brain and skin from VV 1 36RR141 QQ 171  

(scrapie susceptible) and AA136RR141QR171 (scrapie resistant) NPU Cheviot sheep by Dr 

Huw John, Moredun Institute, Edinburgh. The cell lines were kindly given to the NPU 

for the studies in this thesis. The method used to create stable cell lines from NPU 

cheviot sheep (Figure 3.A) by Dr Huw John, Moredun Institute, Edinburgh was 

modified from published methods (John eta!, 1994; John, 1994). Foetuses from these 

sheep were removed by caesarean Section at 80 days into gestation and tissue cells 

extracted from neural (brain, spinal cord) and peripheral tissues (spleen, lungs, skin). 

Briefly, the extracted tissue was washed and treated with a 0.25% trypsin solution and 

the tissue digested for 10 minutes at 37 °C. The supernatant was discarded and 

trypsin digestion repeated three times. The separated cells were recovered by 

sedimentation and resuspended in Iscove's modified Dulbecco's Medium (JMDM, 

Gibco), 10% foetal calf serum, (FCS, Gibco). The Moloney murine leukaemia virus 

(MoMLV) based vector, pZIPNeo, containing the marker neomycin was transfected to 

generate continuous proliferation in cultured cells. Monolayer cells (lxi 06)  for 

retroviral transfection were cultured at 37 °C overnight then exposed to retroviral-

containing medium for 24 hours. Successfully transfected cells were selected by 

treating the cultures with medium containing the antibiotic neomycin, G418, 2mg/mi. 

The established cell lines were sustained at 33 °C instead of 37 °C as it was observed 

that at the higher temperature they underwent morphological changes (John, personal 

communication). It was unclear whether this was a result of the vector used for 

stable transformation of the cells. The brain cell lines (Figures 3.2-3.3) derived from 

each genotype (sA80BR from  VV 136RR141 QQ 171  ; pA80BR from AA 136RR141 QR171 ) 

grew successfully at the NPU and were used in transient expression studies. The skin 

cells (Figure 3.4) derived from AA 136RR 141 QR 171  NPU Cheviot sheep also grew well. 

Unfortunately the skin cell line derived from sheep of susceptible genotype suffered 

several fungal infections, failed to grow at a satisfactory rate, and was discounted 

within this study. 
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Fiaure 3.1: SheeD breeds used in DreDaration of cell lines. 

(A) Example of Cheviot sheep breed as used by Dr Huw John to create the 

stable cell lines sA80BR and pA80BR as described in Section 3.2. (b) 

Example of the Icelandic breed, Ovis branchura borealis pall, used by Dr 

Gerard O'Neill to establish primary cell lines from various tissues as 

described in Section 3.3. 
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Figure 3.2: NPU Cheviot sheep brain-derived cell line sA80BR 

Brain cell line, sA80BR, derived from a scrapie susceptible Cheviot sheep 

(VV136RR1QQ 171 ), passage number 13. (A) x25 magnification (B) x50 

magnification. 
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Figure 3.3: NPU Cheviot sheep brain-derived cell line pA80BR 

Brain cell line, pA80BR, derived from a scrapie resistant Cheviot sheep 

(AA136RRiQR171), passage number 10. (A) x25 magnification (B) x50 

magnification. 
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Figure 3.4: NPU Cheviot sheeD skin-derived cell line DA80SK 

Skin cell line, pA80SK, derived from a scrapie resistant Cheviot sheep 

(AiRRiQR17 1 ),passage number 3. (a) x25 magnification (b) x50 

magnification. 
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3.3 Generation of Primary Ovine Cell lines for Transient 

Transfection Studies 

Primary cell lines were derived from a male sheep of the Icelandic breed (Figure 

3.1B), Ovis brachyura borealis pall, by Dr Gerard O'Neill by standard cell culture 

methods (Freshney, 1987). The animal was 1.5 years of age and had a PrP genotype 

Of AA 136RR154QQ 171  which is scrapie susceptible in the Icelandic sheep breed. 

Tissue was recovered, in 2cm2  segments, from brain and other tissues and macerated 

into smaller fragments with scalpel blades. The tissue fragments were treated with a 

0.25% trypsin solution and the tissue digested for 30 minutes at 37 °C. The digested 

tissue was allowed to settle, the lysate was removed and the cell debris pelleted. 

Fresh trypsin solution was added to the cell debris and the process repeated three 

times. The cell lysate and debris fractions were re-suspended in lOml Dulbecco's 

Modified Eagle Medium (DMEM, Gibco) containing 10% foetal calf serum (FCS, 

Gibco). 

Aliquots, 2mls, of the cell lysates were added to pre-gelatinised (0.1%) 25cm 2  flasks 

and incubated at 37 °C, 5% CO2 . Fresh medium was applied to the cells after 16 

hours. When explants were observed to be growing from the cell colonies, the flasks 

were agitated to dislodge the growths and the cells washed in fresh DMEM 

containing 10% FCS. The primary cell cultures were passaged when they reached 

confluency or frozen for storage. 

Cells lines created by Dr O'Neill from cerebellum tissue (1S120.Cer), liver tissue 

(IS 1 20.Cer) and kidney tissue (IS 1 20.Kid) were intended for use within this present 

study (Figures 3.5-3.7). Both 1S120.Cer and 1S120.Liv grew well atNPU as 

adherent cultures with distinct cellular morphology. Unfortunately, the cell line 

IS 1 20.Kid grew at a slow rate, unsuitable for transfection analysis and so were not 

used in the transient expression studies, but were used for PrP analysis in Chapter 

Five. General cell requirements and recipes for the solutions used in tissue culture 

are found in Chapter Two and Appendix A. 

93 



A 	T'. 
 

--S •.• 
	

fiS. 	.1 	
r '" 	- 

- 	• 

r 
 

AID 

4 	

_r 	 •1 	 •• 	\''. ..' 	\' ,\ 

- I 	 I 	 I 	 I 	. 	i  • 

/f 	
'. ,j 	. 	

.,: 	f 	• : 	 "\• 	
Ir - 	-S.  

,f 	,, 	- ••. 	1 	'S  

	

:.. 	 / 

Ficiure 3.5: Icelandic sheeD brain-derived cell line 1S120.Cer 

Cell line, 1S120.Cer, was derived from the cerebellum of an Icelandic sheep 

breed, Ovis brachyura borealis pall, scrapie susceptible genotype 

(AA136RR1QQ1 71 ), passage number 6. (A) x25 magnification (B) x50 

magnification. 
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Figure 3.6: Icelandic sheep liver-derived cell line 1S120.Liv. 

Liver cell line, 1S120.Liv, derived from liver tissue of an Icelandic sheep 

breed, Ovis brachyura borealis pall, PrP genotype AA1RR1QQ171, 

passage number 10. (A) x25 magnification (B) x50 magnification. 
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Figure 3.7: Icelandic sheep kidney-derived cell line Liv: lS12O.Kid 

Kidney cell line, 1S120.Kid, derived from kidney tissue of the Icelandic breed, Ovis 

brachyura borealis pall (scrapie susceptible genotype), passage number 6. (a) x25 

magnification. 



3.4 Classification of Ovine Brain-derived Cell Lines. 

The PrP gene has been shown to be expressed in vivo in brain fractions (Rubenstein 

etal., 1986; Kascsaket al., 1986; Manson etal., 1992a; Harris et al., 1993), a wide 

variety of non-neuronal tissues (Rubenstein et al., 1986 Bendheim etal., 1992;; 

Horiuchi etal., 1995; Fournier etal., 1998; Goldmann etal., 1999) and in vitro by 

numerous cell lines of different origin (Wion etal., 1988; Satoh etal., 1998; Dodelet 

etal., 1998; Lazarini, etal. 1994; Atoufet al., 1994; Kniazeva etal., 1997; Ikeda et 

al., 1998). In sheep it is known that the level of PrP mRNA expression varies 

between tissues with the highest level detectable in the brain (Goldmann et al., 

1999). 

Within the brain, although neuronal PrP mRNA expression has been documented by 

in situ hybridisation, PrP mRNA is also readily detectable in astrocytes and 

oligodendrocytes (Raeber et al., 1997; Moser etal., 1995). In the developing 

hamster brain the level of PrP mRNA expression in astrocytes is initially comparable 

to that of the neurones, increasing two-fold during postnatal development (Moser et 

al., 1995). A significant proportion of brain PrPC  is the result of glial cell expression. 

It has been shown that the level of PrP mRNA expressed within individual brain 

regions and cell types can vary. Regional differences in the expression level of PrP 

mRNA seen through the developing hamster brain persists within the adult (Mobley 

et al., 1988). Furthermore, the constitutive expression of PrP mRNA observed in 

numerous human neuronal cell lines alters in specific cell lines in response to 

cytokine treatments (Satoh et a!, 1998), which suggests cell type specific regulatory 

mechanisms. 

It was necessary to establish the cell types present in the brain cell cultures used in 

this study as this may have implications for the level of transient expression from the 

PrP constructs (discussed in Chapter Five).. 
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3.4.1 Experimental approach: FITC-immunostaining of in vitro ovine brain-

derived cultured cells. 

Several specific neuronal antibodies were used for classification of cell types present 

in the sheep brain cell lines. The brain cell lines were prepared for immunostaining 

by fixing with methanol: acetone (1:1) and bound antigens were detected by 

fluorescein isothiocyanate (FITC) labelled secondary antibodies in the method 

described briefly below and in detail in Section 2.4.7.2. Classification of the brain 

cell line sA80BR was repeated twice, results shown in Figure 3.8. FITC-staining of 

the cell lines pA80BR (results not shown) and 1S120.Cer (Figure 3.9) was completed 

once. 

Pre-fixed and blocked cells were incubated with the primary antibody (Table 3. 1), 

pre-diluted in 5% Blocking solution at room temperature for 1 hour. Control cells 

were incubated with 5% Blocking solution only. The secondary antibody, labelled 

with fluorescein isothiocyanate (FITC), was diluted according to the suppliers' 

protocol (Jacksons, UK) in 5% Blocking solution (Table 3.1) and incubated on the 

cells in the dark for 1 hour, gently shaking at room temperature. The cells were then 

washed with warm PBS (37'C) in the dark and the slide mounted with Aquamount 

solution (BDH,TJK). The stained slides were observed using fluorescent microscopy 

and photographed using a Nikon Eclipse E800 (Figures 3.8 and 3.9). 



Table 3-1 : Antibodies used to classify cells present in ovine brain derived cell 

cultures. Secondary antibodies are FITC-conjugated Affinipure goat anti-mouse! 

rabbit, (Jacksons lmmunoResearch Lab. Inc, Luton, UK). 

Name and Specificity Detect Source Dilution 

10 	Anti-glial fibrillary acidic protein Astrocytes Mouse 1/600 

(GFAP, Sigma G-3893) Glial cells 

Monoclonal 

Neurofilament 200 Neuronal cells Mouse 1/500 

(N200, Sigma N-0142) 

Monoclonal 

Anti-fibronectin Fibroblasts Rabbit 1/100 

(Sigma F-3648) 

Polyclonal 

20 	Goat anti-mouse FITC Mouse lgG Goat 1/50 

Goat anti-rabbit FITC Rabbit lgG Goat 1/30 



3.4.2 Results: Immunohistochemical staining of ovine brain-derived cell 

lines using fluorescein isothiocyanate (FITC) labelled antibodies. 

Figure 3.8 : Classification of cell types present in Cheviot brain sA80BR cell line. 

Immunohistochemical staining of cell line sA80BR using fluorescein isothiocyanate 

(FITC) labelled secondary antibodies. (A) Positive staining of anti- N200 captured 

at x20 magnification, (B) Positive labelling of anti-GFAP captured at x40 

magnification, (C) Negative labelling for anti-fibronectin, (D) Negative control using 

goat anti-mouse FITC. 
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Figure 3.9: Classification of cell types present in Icelandic breed cell line, IS!20.Cer 

Immunohistochemical staining of primary Cerebral cell line using fluorescein 

isothiocyanate (FITC) labelled secondary antibodies. (A) Positive staining of anti-

N200 captured at x40 magnification, (B) Negative staining of anti-GFAP, (C) 

Negative control using goat anti-mouse FITC. 
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3.4.2 (results continued). 

The Cheviot ovine brain cell line sA80BR stained positive for anti-N200 and anti-

GFAP (Figure 3.8, Table 3. 1), suggesting the presence of neuronal and glial derived 

cells. Staining for anti-N200 was strong, abundant and easily observed at low 

magnification (x20 magnification). In contrast, staining for anti- GFAP was weaker, 

less abundant and only visible at a higher magnification (x40). The ovine brain cell 

line sA80BR did not stain with anti-fibronectin suggesting the absence of fibroblasts 

within the cell culture. The Cheviot brain cell lines pA80BR also stained positive for 

anti-N200 and anti-GFAP and negative with anti-fibronectin. The same pattern of 

staining was observed in pA80BR as the sA80BR cell line, again suggesting a 

heterogeneous culture of neuronal and glial derived cells (results not shown). 

The primary brain cell line IS 1 20.Cer prepared from Ovis brachyura borealis pall 

stained positive for anti-N200 (Figure 3.9), indicating the presence of cells derived 

from neuronal tissue within the cell culture. Staining for anti-N200 was strong and 

abundant, defining the nucleus of the cells well. The cells did not stain with anti- 

GFAP or anti-fibronectin suggesting the absence of astrocytes and fibroblasts within 

the culture. 

All the brain-derived cell lines tested by FITC were positive for the presence of 

neuronal cells. 
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3.5 Transient Transfection of Ovine Cell Lines. 

An ideal method for transfection should have the following properties: efficient in 

reporter gene transfer; low toxicity for the cells; and reproducibility. Many different 

methods exist, each has its advantages and limitations, and a method that works for 

one cell type may not work for another. Furthermore, different lines of culture cells 

can vary greatly in their ability to assimilate and express exogenously added DNA. 

Therefore choosing the method for transfection for a new cell line can be trial and error 

to begin with. 

In particular, it is believed that because of their highly differentiated state, neuronal 

cell lines are relatively resistant to conventional transfection methods. For this 

reason it was decided to concentrate to begin with on finding an efficient method for 

transfection for sheep brain cells. 

3.5.1 Experimental approach. 

The procedures used for handling cell lines are described fully in Chapter Two. 

Briefly, all DNA was prepared to ensure it was endotoxin free and cell culture work 

was carried out in an area which could be UV treated to eradicate microbial 

contaminants. The methods tested to establish transient expression in sheep brain 

cells (Section 2.5) included calcium phosphate precipitation, electroporation, 

lipofection and dendrimer technology. The control vector pCAT3-Promoter 

(Promega, UK, Appendix A) which expresses chloramphenicol acetyl transferase 

(CAT), was used to optimise transfection methods by analysing CAT activity in cell 

lysates. The vector pSV-3-Galactosidase, which expresses 13-Galactosidase, was 

used to control for transfection efficiency or cell lysate recovery from transfection 

experiments. 
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3.5.2 Results. 

3.5.2.1 Calcium phosphate precipitation. 

The method of calcium phosphate precipitation for transfection was one of the first to 

be described (Graham and van der Eb, 1973). Transfection mediated by calcium 

phosphate involves mixing DNA directly with a calcium chloride solution and 

phosphate buffer to form a fine precipitate that covers the cultured cells. The 

mechanism is not fully understood but it is thought that precipitated DNA enters the 

cytoplasm of the cell by endocytosis and is transferred to the nucleus. The factors that 

influence efficiency of calcium phosphate transfection are primarily the amount of 

DNA in the precipitate and the length of time the precipitate is left on the cells. A 

calcium phosphate optimisation scheme is shown in Table 3.2, full details of the 

protocol followed are described in Chapter Two (Section 2.5.3) and full data in 

Appendix B 1.0, Table B 1.1. 

Calcium phosphate is widely used for transient transfection and has been used in this 

laboratory for recent reporter gene studies on other cell lines (Baybutt and Manson 

1997; Cheung, 1996). The cells, sA80BR, were harvested 48 hours post-transfection 

with the vector pCAT3 -Promoter and a CAT assay was performed, the results of 

which were analysed by thin layer chromatography (TLC). A typical autoradiograph 

developed from TLC following calcium phosphate transfection is shown in Figure 

3.10. Using the developed autoradiogragh, it was possible to isolate the acetylated 

products from the silica plate and the level of CAT activity determined by measuring 

[' 4C] by liquid scintillation counting (LSC, Section 2.5.10). Relative CAT activity 

was determined (Table 3.2.) by comparing the CAT activity of the reporter construct 

to a positive CAT control reaction (100%). The positive CAT control was 1 unit of 

purified CAT enzyme (Promega, UK). The calcium phosphate transfection method 

was repeated three times (twice in duplicate) and found ineffective for transient 

transfection of the pCAT3-Promoter plasmid to ovine brain cell cultures. Little cell 

death was observed irrespective of amount of DNA or time of exposure to 

precipitate. 
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Table 3.2: Optimisation and results of transfection of sA80BR with pCAT3-Promoter 

(Promega) following calcium phosphate precipitation (refer also to Figure 3.10). 

DNA 

(.tg) 

Exposure to 

precipitate (hr) 

Positive CAT 

(cpm) 

Cell CAT 

(cpm) 

Relative CAT 

activity (%) 

10 6 nld 0.0 n/d 
ba 16 36130.82 0.0 0.00 
5a 16 36130.82 10.93 0.03 
5b  16 22744.3 345.72 1.5 

16 22744.3 294.61 1.2 

Note. Positive CAT was the measured acetlyated product (100%) when 1 unit of purified 
chloramphenicol transferase was incubated with acetyl Coenzyme A (5mg/mi) and 
[' 4C]chloramphenicol (0.05mCi/ml). Cell CAT activity was the measured acetylated product 
isolated by TLC from a CAT assay on the sA80BR cell lysate after calcium phosphate 
precipitation of pCAT3-Promoter (Promega, UK). a  signifies that the experiments were 
completed at the same time and b  denotes a duplicated transfection. 
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Figure 3.10 :Transfection of ovine brain cell line sA80BR using the calcium 

phosphate method. (A) Positive control, 1 unit of purified CAT enzyme; (B,C) 

repeat assays from non-transfected cells; (D,E) cell lysate assays from cells 

transfected with 5jig pCAT3-Promoter (Promega). ACm: acetylated 

chloramphenicol, Cm: chloramphenicol. 
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3.5.2.2 Electroporation of brain-derived cell lines. 

The physical method of electroporation is based upon perturbation of the cell 

membrane by an electrical pulse, forming pores that allow the uptake of nucleic acids 

into the cell (Shigekawa, etal., 1989). Consequently, the concentration of DNA is 

less likely to be a factor determining transfection than are the duration and strength 

of pulse for each cell type. A balance must be found between conditions that kill 

cells and conditions that allow efficient transfer of DNA. 

The vector pCAT5 (Appendix A) was used for testing this method of transfection as 

it was shown to have higher expression in vitro than pCAT3 -Promoter and may have 

enhanced the likelihood of detectable CAT expression (Baybutt, personal 

communication and Table 3.8). The method used for electroporation is fully 

described in Chapter Two, Section 2.5.4, and full data presented in Appendix B. 

Cells were harvested 48 hours post-transfection and a CAT assay performed, the 

results of which were analysed by TLC. Relative CAT activity was determined by 

TLC and autoradiography (Figure 3.11, Table 3.3.). The amount of acetylated 

substrate produced from the transfected cell lysates was compared to a positive CAT 

control reaction (100%). Full data can be found in Appendix B 1.0, Table B 1.2-1.3. 

Significant cell death was suffered under most conditions, particularly when the 

parameters 5tg DNA, 800V and 300F were used. Cell death under other 

conditions was approximately 40-60%. Electroporation was not effective in 

transient transfection of the pCAT5 plasmid (Table 3.3). Altering the conditions for 

electroporation did not affect the efficiency of transfection. 
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Table 3.3: Result of transfection of pCAT5 into sA80BR cells following 

electroporation under different conditions. Determined by TLC and autoradiography 

(Figure 3.11) 

Cell 

passage 

Number 

DNA 

(1g) 

Voltage 

(V) 

Capacitance 

(j.F) 

Cell 

Death 

(%) 

Positive 

CAT 

(cpm) 

Cell CAT 

(cpm) 

Relative 

CAT 

activity (%) 

5 5 800 300 100 100 0 0.0 

25 800 300 80-50 0 0.0 

50 800 300 50-40 0 0.0 

6 20 200 960 70 100 0 0.0 

20 250 960 60 0 0.0 

20 300 960 60 0 0.0 

Note. Positive CAT was the measured acetlyated product (100%) when 1 unit of purified 
chioramphenicol transferase was incubated with acetyl Coenzyme A (5mg/mi) and 
[ 14C]chloramphenicol (0.05mCi/ml). Cell CAT activity was the measured acetylated product 
anylised by TLC and LSC following CAT assay on the sA80BR cell lysate after 
electroporation of pCAT5. 
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Figure 3.11:Electroporation was ineffective in transfection of ovine brain cell 

line sA80BR with the reporter vector pCAT5. (A) Positive CAT reaction, I unit 

of purified CAT enzyme (Promega) (B) Negative CAT reaction (C) 

Electroporation of 20ig pCAT5, 200V, 960p.F (D) Electroporation of 20ig 

pCAT5, 250V, 960iF (E) Electroporation of 20.tg pCAT5, 300V, 960F. 

ACm: acetylated chloramphenicol, Cm: chloramphenicol. 
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3.5.2.3 Liposome-mediated transfection. 

The use of synthetic cationic lipids for transfection offers advantages of high efficiency 

gene transfer usually to cells which are resistant to calcium phosphate transfection 

(Fraley etal., 1980; Felgner etal., 1987). Lipofection involves encapsulating DNA or 

RNA with liposomes. The cationic head of the lipid associates with the negatively 

charge phosphates on the nucleic acid. The nucleic acid/lipid complex then fuses, or 

associates, with the overall negatively charged cell membrane and results in the 

internalisation of the nucleic acid into the cell. Following endocytosis the complex 

appears in endosomes then later in the nucleus. 

Commercial cationic lipids tested on the stable ovine brain cell lines were Tfx-50 and 

TflM20 reagent (Promega, UK), Dosper (Roche Diagnostics, UK) and Effectene 

(Qiagen Ltd, UK). These reagents are preparations of polycationic lipids, each unique 

in the cationic lipid supplied. Tfl-20 and TflM50  contain the same cationic lipid 

but different molar concentration of a fusogenic lipid. It is vital to develop optimal 

transfection conditions as factors such as cell line, clonal variety within the cell line, 

culture conditions and the DNA being transfected can influence transfection efficiency. 

The following parameters are also known to alter transfection efficiency: the charge 

ratio of lipid reagent to DNA, transfection time, and the absence or presence of serum. 

The charge ratio of lipid to DNA is vital for transfection as a net neutral or positive 

charge is required to ensure successful micelle formation. In general increasing the 

amount of available lipids improves transfection efficiency but at high levels lipids can 

be toxic to cells, also the length of time cells are exposed to a liposome reagent may be 

toxic. The high concentration of proteins present in serum may prevent formation of 

micelles essential for DNA transfection. However, the absence of serum from cells for 

a considerable time is stressful to the cells and may result in poor DNA uptake or cell 

death. A full description of each of the methods followed for liposome-mediated 

transfection can be found in Chapter Two (Section 2.5.5) and data listed in Appendix B. 
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A) Liposome transfection: Dosper (Roche Diagnostics) 

Liposome transfection using the Dosper reagent (1 j.tgI.tl, Roche Diagnostics) was 

carried out as recommended by the manufacturer's protocol (Section 2.5.5.1). For 

optimisation of transfection (Table 3.4) of the pCAT3-Promoter plasmid (Promega, 

Appendix A) various ratios of Dosper (p.g/ml) and DNA (Vg/ml) were tested to give 

different charge ratios of Dosper reagent to DNA. Full data can be found in 

Appendix B. 1.0, Tables B 1.4-1.5. The Dosper reagent did not appear to be toxic to 

the cells however transfection of the ovine cell line, sA80BR, was attempted for a 

total of three times, each being negative (Table 3.4, Figure 3.12). As this was a new 

method to the laboratory, it was decided to test the procedure in mouse N2a cells, a 

cell line which has been transfected before with pCAT3-Promoter by calcium 

phosphate. This was carried out with the assistance of Dr Gerard O'Neill, but the 

results were also negative (Table 3.5). 

The cells were harvested 48 hours post-transfection and a CAT assay performed, the 

results being analysed by LSC and confirmed as before by TLC (Figure 3.12). The 

relative CAT activity from the transfected cells was calculated as a percentage of 

CAT activity (100%) determined from the positive CAT control. 

Transfection reagent, Dosper was not effective in transfecting the ovine brain derived 

cell line sA80BR. 
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Table 3.4: Results from two separate transfections of sA80BR with 3tg 
pCAT3-Promoter (Promega) following lipofection using Dosper reagent 
(Figure 3.12). 

Passage 

number 

Dosper 

Reagent (l) 

Charge ratio 

(Dosper:DNA) 

Positive 

CAT(cpm) 

Cell CAT 

(cpm) 

Relative CAT 

activity 	(%) 

11 0 0 3763.11 69.55 1.85 

2 1:1 0.0 0.0 

4 2.5:1 0.0 0.0 

6 4:1 72.54 1.93 

13 0 0 92427.94 249.37 0.27 

2 1:1 94.74 0.1 

4 2.5:1 17.89 0.02 

6 4:1 10728 1.17 

Table 3.5: Result of transfection of murine N2a cell line (passage number 189) with 

pCAT3-Promoter (Promega) following lipofection using Dosper reagent. 

DNA 

(lug) 
Dosper 

Reagent (1.d) 

Charge ratio 

(Dopser:DNA) 

Positive 

CAT (cpm) 

Cell CAT 

(cpm) 

Relative CAT 

activity (%) 

1 2 4:1 108213.89 2444.38 2.24 

1.5 2 2.5:1 6.07 0.01 

2 2 2:1 0.0 0.0 

3 2 1.3:1 365.64 0.33 

3 0 0 0.0 0.0 

0 2 0 16.99 0.01 

Note. Positive CAT was the measured acetlyated product (100%) when 1 unit of purified 
chioramphenicol transferase was incubated with acetyl Coenzyme A (5mg/mi) and 
[ 14C]chloramphenicol (0.05mCi/ml). Cell CAT activity shown in table 3.4 refers to 
measured acetylated product anayised by TLC and LSC on the sA80BR cell lysate after 
lipofection of pCAT3-Promtoer with Dosper reagent (Roche Diagnostics, UK). Table 3.5 
shows Cell CAT activity measured from N2a cell lysates after Dosper transfection of 
pCAT3-Protmoer (Promega, UK). 
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Fiaure 3.12: Transfection of the ovine brain cell line sA80BR with DCAT3-

promoter plasmid by the liposome reagent Dosper. Altering the ratio of DNA 

to lipsome reagent did not increase transfection efficiency. (A) Positive 

CAT reaction, 1 unit for purified CAT enzyme (Promega) (B) Negative CAT 

reaction (C) Liposome transfection with Otl of Dosper reagent (D) Liposome 

transfection with 2il of Dosper reagent (E) Liposome transfection with 4jtl of 

Dosper reagent (F) Liposome transfection with 6il of Dosper reagent. ACm: 

acetylated chloramphenicol, Cm: chloramphenicol. 
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B) Liposome transfection: TfX5OTm  (Promeqa) 

Liposome transfection of sA80BR with the plasmid pCAT3-Promoter (Promega) 

using the Tfr5OTm  reagent (Promega) was examined according to the manufacturer's 

protocol. The TfX50Tm  reagent was resuspended in 400 j.il nuclease-free water to 

give a final concentration of 1.75jtg4il. Various concentrations of DNA and 

transfection reagent were tested to alter the charge ratio between the DNA and lipid 

components of the transfection reaction (Table 3.6 and 3.7). Several parameters 

known to effect the efficiency of Tfx 50Tm  reagent transfection were tested: y the 

ratio of DNA to Tfl5.OTm  reagent and presence or absence of serum (Table 3.7). As 

described in Chapter Two (Section 2.5) cells were harvested 48 hours post-

transfection and a CAT assay performed, and results analysed by TLC (Figure 3.13) 

and LSC. The relative CAT activity (Table 3.7) from Tfl5OTm  transfected cells was 

calculated as a percentage of CAT activity determined from the positive CAT control 

(100%). 

The conditions for transfection with TfláOTm  were favoured in the absence of serum 

(Figure 3.13b, lanes 3-5), with a charge ratio of 2:1. CAT activity was low in these 

studies probably because of the amount of DNA used (see Figures 3.13 and 3.14) 

Optimum transfection of pCAT3-Promoter (Promega) into sA80BR gave 33% 

conversion of chloramphenicol to acetyl chloramphenicol when compared to the 

positive control with a charge ratio of 2:1 and increasing concentration of DNA 

(Figure 3.14, lanes D-F, Table 3.7, rows 10-12). Cell death was observed under 

conditions where the liposome reagent Tfx50 Tm  was in contact with the cells from 

more than two hours, when high concentrations of DNA were used and when high 

DNA: TBC50Tm  ratios were tested. Liposome transfection using TfXSOTM  was tested 

on sA80BR under different experimental conditions, full data can be found in 

Appendix B. 1.0, Tables B 1.6-1.8. 

Liposome transfection using TfX50Tm  was further tested on mouse N2a cells as a 

control for transfection efficiency (Table 3.8). TfXSOTm  was a powerful transfection 

reagent on N2a cells when used at the same conditions as those optimal for the sheep 

cell line sA80BR (Figure 3.15). 
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Table 3.6: Charge ratio of TfXTm  :DNA with reference to the volume of TfXTm  in each 

reaction. 

Charge ratio (TfxTM : DNA) TfXTM (ml) reagent per .tg DNA 

2:1 3.0 

3:1 4.5 

4:1 6.0 

Table 3.7: Result of three separate transfections of sA80BR with pCAT3-Promoter 

(Promega) following lipofection using TfX5OTm  according to various conditions. 

Cell passage 

Number 

DNA 

(j.g) 

Charge ratio 

(TfX5OTM : DNA) 

Positive 

CAT (cpm) 

Cell CAT 

(cpm) 

Relative CAT 

activity (%) 

16 3 2:1 108638.48 900.67 0.83 

3 3:1 1779.91 1.64 

3 4:1 110.81 0.1 

17 3 2:1 107282.88 283.1 0.26 

3 3:1 113.35 0.11 

3 4:1 531.85 0.5 

3 2 : 1* 107282.88 7553.87 7.04 

3 3 : 1* 4851.03 4.52 

3 4:1k 1556.45 1.45 

18 3 2 : 1* 94205.49 2108.88 1.71 

6 2 : 1* 5584.09 5.4 

10 2 : 1* 15947.73 33.33 

3 3 : 1* 1586.23 1.15 

6 3 : 1* 2232.76 1.84 

10 3 : 1* 1122.0 1.85 

* absence of serum 
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Fiaure 3.13:Transfection of sA80BR with DCAT3-Promoter usina Tf X50Tm 

reagent. (A) in the presence of serum (B) in the absence of serum. On both 

plates lanes; 1, 1 unit purified CAT: 2, negative control. To optimise for the 

ratio of DNA to TfX5OTm  reagent various conditions were used: lanes 3-5, 

Tfx5OTm: DNA ratio of 2:1: lanes 6-8, Tfx5O Im :DNA ratio of 3:1; lanes 9-11, 

Tfx50Tm :  DNA ratio of 4:1. To optimise for the amount of DNA available for 

the transfection reaction various concentrations were tested: 3,6,9, 0.5tg 

pCAT3-Promoter: 4, 7,10, ljig pCAT3-Promoter: 5,8,11 3tg pCAT3-

Promoter. ACm: acetylated chloramphenicol, Cm: chioramphenicol. 
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Figure 3.14: Transfection of sA80BR cells with pCAT3-Promoter and 

increasing amounts of DNA at ratios of 2:1 (D-F) and 3:1 (G-I) with TfX50Tm 

reagent. Lane A, positive CAT control,1 unit purified CAT ( Promega): B, 

negative CAT control: C; non transfected cells: D and G; 3tg pCAT3-

Promoter: E and H; 6ig pCAT3-Promoter: F and I; 10ig pCAT3-Promoter. 

ACm: acetylated chloramphenicol, Cm: chloramphenicol. 
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Table 3.8: Result of transfection of mouse N2a cell line following lipofection using 

TfX50Tm according to the various conditions used. 

Vector DNA Charge ratio Positive Cell CAT Relative CAT 

(jig) (Tfx5OIm : DNA) CAT (cpm) (cpm) activity (%) 

pCAT3- 1.0 2:1 108017.1 36242.53 33.55 
Promoter 

3.0 2:1 67536.27 62.52 

pCAT5 1.0 2:1 78157.07 72.36 

3.0 2:1 92845.96 85.50 

ACmL 
db 
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Ficiure 3.15:Transfection of N2a cells with DCAT3-Promoter reoorter aene I 
using 	 50' reagent. Ratio of DNA to -50Tm  used was 3:1 Lane A, 

positive CAT control, lunit purified CAT (Promega): B and C; non 

transfected cells: D and E; 3j.tg pCATBasic: F and G; 3tg pCAT3-Promoter: 

H and I; 3g pCAT5. ACm: acetylated chloramphenicol, Cm: chioramphenicol. 
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C) Liposome transfection: TfX2OTm  (Promeqa) 

Liposome transfection was examined according to the manufacturer's protocol. The 

reagent TfX20Tm  was dissolved in 400tl nuclease-free water to a final concentration 

of 4pgIp.l. As with TfláOTm  several parameters known to effect the efficiency of Tfx 

20Tm reagent transfection were tested: primarily the ratio of DNA to Tfl5OTm  reagent 

and presence or absence of serum. Various DNA and liposome reagent 

concentrations (Table 3.6) were tested to alter the net charge ratio. Cells were grown 

in 24-well plates for transfection analysis and harvested 48 hours post-transfection. 

A CAT assay was performed, the result of which was analysed by TLC and the 

amount of acetylated chioramphenicol determined using densitrometry (Kodak 

Image Station, Section 2.5.12) as opposed to LSC. The advantage to using this 

method of analysis is that it allows the CAT assays to be read directly and avoids 

handling of radioactive products. The relative CAT activity (Table 3.9) from 

Tfl(2OTm transfected cells was calculated as a percentage of CAT activity determined 

from the positive CAT control in the normal manner. 

Cell death was observed using TfX20Tm  when the reagent was exposed to the cells for 

more than 4 hours. Optimum transfection (Table 3.9) of 1tg pCAT3-Promoter 

(Promega) into sheep sA80BR cell line gave 49% conversion of chloramphenicol 

to acetyl chioramphenicol when compared to the positive control using Tfr20Tm 

(Promega) reagent at a ratio of 3:1 to the pCAT3 -Promoter DNA in the absence of 

serum (Figure 3.16). Transfection of pCAT3-Promoter was attempted several 

times, full data can be found in Appendix B. 1.0, Tables B 1.9. However, this method 

proved to be unreliable as it was not possible to repeat the transfection to the same 

degree of success as shown in Table 3.9. 
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Table 3.9: Result of one transfection, carried out in triplicate, of sA80BR with 

pCAT3-Promoter (Promega) following lipofection using TfX2OTm  according to various 

conditions, in the absence of serum. 

Passage 

Number 

DNA 

(pg) 

Charge ratio 

(Tfx2OTM:DNA)  

Positive CAT 

(net intensity, 10) 

Cell CAT 

(net intensity, 10) 

Relative CAT 

activity (%) 

5 0.25 2:1 5.22 0.47 9.02 

0.5 2:1 0.36 6.91 

0.75 2:1 1.07 20.6 

1.0 2:1 1.76 33.81 

5 0.25 3:1 1.31 25.08 

0.5 3:1 1.41 27.02 

0.75 3:1 1.46 28.06 

1.0 3:1 2.56 49.01 

5 0.25 4:1 0.67 12.82 

0.5 4:1 1.25 23.91 

0.75 4:1 0.02 0.39 

1.0 4:1 1.21 23.18 

Note. Acetylated products from CAT assays were isolated by TLC and measured by 
densitometry (refer to Section 2.5). The density of staining was measured with regards to the 
background and the net intensity eg 5222458.16 which was abbreviated to 5.22x10 5 . 

Positive CAT was the measured acetylated product (100%) when 1 unit of purified 
chioramphenicol transferase was incubated with acetyl Coenzyme A (5mg/ml) and [ 14C] 
chioramphenicol (0.05mCi/ml). Cell CAT activity was the measured acetylated product 
isolated following a CAT assay and TLC on the sA80BR cell lysate after lipofection of 
pCAT3-Promoter with TfX20Tm  (Promega). 
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Fiaure 3.16:Transfection of sA80BR cell line with DCAT3-Dromoter usin 

TfX20Tm reagent. Lane A; positive control, 1 unit purified CAT; lane B; 

negative control; lanes C-F; TfX2OTm  :DNA ratio of 2:1; lanes G-J: TfX2OTm 

:DNA ratio of 3:1; lanes K-N: Tfx2OTm:DNA  ratio of 4:1. The amount of DNA 

in each transfection reaction was also controlled as; lanes C, G, K: 0.25p.g; 

lanes D, H, L: 0.5tg; lanes E, I, M; 0.75tg; lanes F, J, N; 1.0tg. ACm: 

acetylated chloramphenicol, Cm: chloramphenicol. 
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D) Liposome transfection: Effectene reagent. 

The Effectene reagent is a lipid based reagent which has been proven to efficiently 

transfect a wide variety of cell types, including primary cell lines. In contrast to 

other liposome reagents, the first step in Effectene transfection condenses the DNA 

into a compact structure that allows the Effectene reagent to form regular, uniform 

micelle structures around the condensed DNA. These micelles interact with the cell 

membrane and the DNA is transported into the cells as previously described. 

Effectene has also been designed for use in the presence of serum, which reduces the 

stress on the cells. Due to time constraints Effectene was the only transfection 

reagent to be tested on the primary cell lines derived from the Icelandic sheep breed. 

Transfection using the Effectene reagent was carried out according to the 

manufacturer's protocol for primary cells (Chapter Two, Section 2.5.7). As with 

other liposome based reagents it was necessary to optimise the charge ratio between 

the lipid component and DNA for each cell line (Table 2.2, Section 2.5.7). Cells were 

harvested 48 hours post-transfection and a CAT assay performed, the result of which 

was analysed by TLC and the amount of acetylated chloramphenicol determined 

using densitometry (Kodak Image Station, 2.5.12). In contrast to previously tested 

liposome-based reagents, no significant cell death was observed as the cells were 

exposed to Effectene during the transfection reaction. Furthermore, Effectene 

transfection gave consistent levels of detectable CAT activity and considerably less 

DNA was used for each transfection. For full details on Effectene transfection 

levels refer to Appendix B 1.0, Tables 1.1 1-1.14. 

Transfection of 1tg pCAT3-promoter into primary liver cell line, 1S120.Liv, was 

optimal when an Effectene:DNA ratio of 25:1 was used (Figure 3.17, Table 3.10). 

Under these conditions the relative CAT activity was 103 and 123% when compared 

to the positive control (Table 3.10). Effectene reagent was extremely effective at 

transiently transfecting ovine primary liver cells. 
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Table 3.10: Result of one transfection, carried out in triplicate, of lS120.Liv, grown in 

6-well plates, with pCAT3-Promoter (Promega) following lipofection using Effectene 

according to various conditions. 

Passage 

Number 

DNA 

(JLg) 

Charge ratio 

(Effectene:DNA) 

Positive CAT (net 

intensity, 10) 

Cell CAT (net 

intensity, 10) 

Relative CAT 

activity (%) 

6 0.2 10:1 4.01 0.0 0.0 

0.4 10:1 2.25 56.17 

1.0 10:1 1.09 27.29 

6 0.2 25:1 4.01 1.27 31.64 

0.4 25:1 4.3 107.33 

1.0 25:1 4.16 103.89 

6 0.2 50:1 4.01 0.39 9.75 

0.4 50:1 2.04 51.12 

1.0 50:1 1.36 34.13 

Note. Acetylated products from CAT assays were isolated by TLC and measured by 
densitometry (refer to Section 2.5). The density of staining was measured with regards to the 
background and the net intensity eg 4007509 abbreviated to 4.01x10 5 . Positive CAT was 
the measured acetylated product (100%) when 1 unit of purified chloramphenicol transferase 
was incubated with acetyl Coenzyme A (5mg/mI) and [ 14C] chloramphenicol (0.05mCi/ml). 
Cell CAT activity was the measured acetylated product isolated following a CAT assay and 
TLC on the sA80BR cell lysate after lipofection of pCAT3-Promoter with Effectene 
(Qiagen). 
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Fiaure 3.17: Transfection of 1S120.Liv cell cultures with DCAT3-Dromtoer b 

Effectene reagent. Varying ratios of Effectene to DNA were tested. Lane A; 

positive control, 1 unit purified CAT; lane B; negative control; lanes C-F: 

Effectene: DNA ratio of 10:1; lanes G-L: Effectene: DNA ratio of 25:1; lanes 

M-R: Effectene:DNA ratio of 50:1. Amount of DNA tested was; 0.2j.tg (C, G, 

H, M, N); 0.4p.g (D, I, J, O,P); 1 .Ojig (E, F, K, L, Q, R) ACm: acetylated 

chloramphenicol, Cm: chloramphenicol. 
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The efficiency of Effectene in the transient transfection of primary ovine cerebral 

cells, IS 1 20.Cer, was also observed (Figure 3.18). Conditions for optimal 

transfection of 0.5ig pCAT3-Promoter into the cerebral cell line grown in 24-well 

plate were found to be an Effectene:DNA ratio of 10:1 (Table 3.11). Due to time 

limitations it was only possible to perform this experiment once, in duplicate. 

Table 3-11: Result of three separate transfections, carried out in duplicate, of 
lS12O.Cer cell line, grown in 24-well plates, with pCAT3-Promoter (Promega) 
following lipofection using Effectene according to various conditions. 

Cell passage 

Number 

DNA 

(.tg) 

Charge ratio 

(Effectene: DNA) 

CAT activity 

(net intensity, 10) 

5 0.1 10:1 0.0 	0.0 

0.2 10:1 10.23 	0.38 

0.5 10:1 13.41 	1.72 

5 0.1 25:1 0.0 	0.0 

0.2 25:1 0.0 	7.42 

0.5 25:1 2.73 	0.0 

5 0.1 50:1 0.0 	0.0 

0.2 50:1 0.0 	0.0 

0.5 50:1 0.0 	0.0 

Note. Acetylated products from CAT assays were isolated by TLC and measured by 
densitometry (refer to Section 2.5). The density of staining was measured with regards to the 
background and the net intensity eg 1023404 which was abbreviated to 10.23x i0 5 . Cell 
CAT activity was the measured acetylated product isolated following a CAT assay and TLC 
on the 1S120.Cer cell lysate after lipofection of pCAT3-Promoter with Effectene (Qiagen). 
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Fiaure 3.18:Transfection of DCAT3-Promoter into 1S120.Cer cell line usin 

Effectene. Varying ratios of Effectene to DNA were tested in duplicate. A 

positive and negative control was not included on this plate. Lanes A-F: 

Effectene: DNA ratio of 10:1; lanes G-K: Effectene:DNA ratio of 25:1; lanes 

L-Q: Effectene: DNA ratio of 50:1. Concentrations of DNA used were: A-B, 

G-H,L-M with 0.1 jug; C-D, I-J N-O with 0.2tg; E-F, K, P-Q with 0.5tg. ACm: 

acetylated chloramphenicol, Cm: chloramphenicol. 
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3.5.2.4 Dendrimer technology: Superfect Transfection Reagent. 

Superfect Transfection Reagent is a specifically designed polycation, which at the 

molecular level is spherical in shape with branches radiating from a central core and 

terminating with charged amino groups (Tang et al., 1996; Tang and Szoka, 1997). 

It is believed that the Superfect Reagent assembles the DNA into compact structures 

similar to histones, and having a net positive charge the DNA-Superfect complex 

associates with negatively charged receptors on the cell membrane facilitating the 

entry of DNA into the cell. Once inside the cell, Superfect is thought to protect the 

DNA during transport to the nucleus. Superfect Reagent has been shown to 

efficiently transfect a variety of different cells lines and primary cells lines. 

As with liposome based transfection reagents, the amount of available dendrimer 

reagent will effect the formation of transfection complexes. For efficient transfection, 

the overall net charge of Superfect-DNA complex should be slightly positive to 

promote the interaction with negatively charged groups (e.g. sialylated 

glycoproteins) on the cell surface. Various schemes were used to optimise the 

charge ratio of Superfect reagent to DNA (Table 3.13). 

Table 3.12: Charge ratio of Superfect: DNA with reference to the volume of 

Superfect in each reaction for cell growing in 6-well plates. 

DNA (jtg) Charge ratio (Superfect:DNA) 

3:1 	 6:1 	 15:1 

1 3 6 15 

2 6 12 30 

3 9 18 45 
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Transfection of sA80BR cell line with pCAT5 and pCAT3 -Promoter using Superfect 

reagent was as described in Section 2.5.6. Cells were harvested 48 hours post-

transfection and a CAT assay performed, the results of which were analysed by TLC 

and the amount of acetylated chioramphenicol determined by LSC. The relative 

CAT activity (Figure 3.19, Table 3.13) from Superfect transfected cells was 

calculated as a percentage of CAT activity determined from the positive CAT control 

in the normal manner. Full data is presented in Appendix B 1.0, Table 1.10. 

Transfection of the vectors pCAT5 and pCAT3-Promoter into sA80BR cell line was 

optimal when a charge ratio of 3:1 (Superfect: DNA) was used to transfect 5g of 

reporter vector (Table 3.13). 

Table 3.13: Result of transfection of sA80BR with pCAT3-Promoter (Promega) 

and pCAT5 (Appendix A) using Superfect reagent according to various conditions. 

Passage 

Number 

DNA 

(pg) 

Charge ratio 

(Superfect: DNA) 

Positive CAT (net 

intensity, 10) 

Cell CAT (net 

intensity,10 5 ) 

Relative CAT 

activity (%) 

9 2 a 15:1 30.93 0.0 0.00 
5a 6:1 11.11 35.90 

ba 3:1 36.01 116.43 

10 5 5  3:1 19.62 22.75 115.91 

3:1 24.85 126.60 

3:1 127.79 17.07 13.36 
2b 3:1 50.03 39.15 

Note. a  denotes transfection with the vector pCAT5 
b denotes transfection with the vector pCAT3-Promtoer 

Acetylated products from CAT assays were isolated by TLC and measured by densitometry 
(Section 2.5). The density of staining was estimated with regards to the background and 
gives the value as net intensity eg 3093140 which was abbreviated to 30.9x10 5 . Positive 
CAT was the measured acetylated product (100%) when I unit of purified chioramphenicol 
transferase was incubated with acetyl Coenzyme A (5mg/ml) and [ 14C] chloramphenicol 
(0.05mCi/ml). Cell CAT activity was the measured acetylated product isolated following a 
CAT assay and TLC on the sA80BR cell lysate after transfection of pCAT3-Promoter with 
Superfect (Qiagen Ltd, UK). 
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Figure 3.19: Transfection of sA80BR cell line with pCAT5 and pCAT3-Promoter (Promega) with Superfect reagent (Qiagen). 

Optimisation of transfection of sheep sA80BR brain cell line with pCAT5 (Appendix C) and pCAT3-Promoter (Promega) using 

Superfect reagent (Qiagen). (A): lane 1: positive control, 1 unit CAT; lane 2; 2.tg pCAT5, charge ratio of Superfect: DNA of 

15:1: lane 3; 5.tg pCAT5, charge ratio of 6:1: lane 4; 1O.tg of pCAT5, charge ratio of 3:1. (B) lane 1: positive control CAT: lane 

2; 5.tg pCAT3-Promoter, charge ratio of 3:1: lane 3: 5tg pCAT5, charge ratio of 3:1. (C) lane 1: positive control CAT; lane 2: 

1 tg pCAT3-Promoter, charge ratio of 3:1; lane 3: 2tg pCAT3-Promoter, charge ratio 3:1. ACm: acetylated chioramphenicol, 

Cm: chioramphenicol. 



3.6 Discussion. 

3.6.1 Classification of cell types present in brain-derived cell cultures. 

The ovine cell lines intended for transfection experiments were stable (sA80BR, 

pA80BR and pS8OSK) and primary cell lines (1S120.Cer and 1S120.Liv) as described in 

Sections 3.2 and 3.3. The morphology of the cells present in the stable brain cultures 

was not typically neuronal or astrocyte like (Figures 3.2 and 3.3). This is probably an 

artefact of the retroviral transformation method used to create the stable cell lines. 

Although one advantage of stable cell lines is their immortality, however it is known that 

the introduction of an oncogenic gene can alter the phenotype and/or the growth pattern 

of the transformed cell (Rous, 1970; Bishop, 1985). For example, the mouse mammary 

tumour virus (a RNA tumour virus/ retrovirus) carries an oncogenic gene within its 

genome which causes uncharacteristic growth patterns and appearance (neoplastic 

transformation) of infected mammary gland cells (Butel et al., 1977). The morphology 

of cells present in the primary brain culture 1S120.Cer (Figure 3.5) was more typical of 

neurones with long, thin processes extending from the main cell body. These cells also 

appeared to grow as a network of colonies connected by the cellular extensions. 

Prior to screening transfection methods, the use of fluorescent immuno-cytochemistry 

(F-ITC) was used to identify the cell types present in the brain cell cultures. The stable 

brain cells, sA80BR and pA80BR, were a heterogeneous culture of neuronal and glial 

cells (Figure 3.8). The primary brain cell line derived from the cerebellum of the 

Icelandic breed, Ovis brachyura borealis pall, IS 1 20.Cer appeared to be a homogenous 

culture of cells derived from neuronal tissue (Figure 3 9). All brain cell lines were 

grown in the presence of NGF. When NGF was removed from the stable cell lines, 

sA80BR and pA80BR, the growth rate slowed down but did not arrest, nor was there 

any change in morphology. The lack of requirement for NGF may be an effect of stable 

transformation and heterogeneous culture. In contrast, when NGF was removed from 

the primary cerebellum cell line, 1S120.Cer, cell growth was severely inhibited, the cells 
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appeared to shrivel and the network of cell processes was withdrawn towards colonies 

which had formed. To maintain uniformity between the brain cell cultures for future 

comparison, the presence of NGF was maintained throughout this study. 

3.6.2 Optimisation of transient transfection of ovine cell lines. 

The methods investigated are discussed below and compared in figure 3.20. Various 

methods were tested in the attempt to find a reliable transfection method for the stable 

Cheviot brain cell lines. As both sA80BR and pA80BR appeared to be similar 

morphologically and showed the same staining patterns to anti-N200 and anti-GFAP, it 

was assumed that they would also react in the same manner the various transfection 

reagents. 

3.6.2.1 Calcium DhosDhate. 

Transfection using the method of calcium phosphate precipitation has been proven by 

others to be effective for producing stable and transient expressing cells. Crucial to 

transfection using this method is the formation of a DNA precipitate which is dependent 

on the pH of the phosphate buffer (2xHEBS). The optimal pH range for transfection is 

extremely narrow: typically between 7.05 and 7.12 (Graham, et al., 1973) and during 

storage the pH of the solution may change. Furthermore the pH of the medium may 

alter to become too acidic reducing transfection efficiency by causing protein 

precipitation, noted by a colour change in the cell medium from red to orange. On 

occasion, even when conditions would appear to be optimal (i.e. DNA concentration, 

solution pH, and cell density) transfection by calcium phosphate simply does not work. 

Calcium phosphate precipitation was ineffective at transfecting sheep brain cell line 

sA80BR with pCAT3-Promoter. Both the phosphate buffer and calcium solution were 

freshly made and the pH checked to be pH 7.05. On every transfection attempt, a DNA 
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precipitate was observed to have formed confirming that the pH of the phosphate buffer 

was within the optimal range. Furthermore no cell death or colour change in the 

medium was apparent suggesting the cell medium pH was suitable for transfection by 

calcium phosphate. Calcium phosphate was therefore not used in further studies. 

3.6.2.2 Electroporation. 

The use of high voltage electric shocks for transfection of fibroblasts was first described 

by Wong and Neuman (Wong and Neumann, 1982; Neumann et al., 1982) and later 

proven to be effective for other cell types known to be resistant to calcium phosphate 

precipitation (e.g. lymphocytes, Potter et al., 1984). Disadvantages of electroporation 

include the need for specialised equipment, almost five-fold more cells and DNA than 

the calcium phosphate method and the high rate of cell death. The critical parameters 

for electroporation are maximum voltage of the shock and the duration of the current 

pulse (capacitance) which must be optimised for each cell type. The electroporation 

buffer may also affect transfection efficiency. Low-resistance buffers (high salt, e.g. 

HeBS) may require high voltages and sensitive cells may prefer electroporation in tissue 

culture medium though it has been shown that magnesium and calcium ions in the 

medium lower electroporation efficiency (Neumann et al., 1982). It is known, however, 

that some cell lines will transfect poorly under standard conditions. 

Under the conditions used (Table 3.3) electroporation was ineffective for transient 

transfection of the CAT reporter gene, pCAT5, into the sheep cell line sA80BR. There 

was no difference in the efficiency of transfection when either PBS or HeBS was used as 

the electroporation buffer. Electroporation of cells resuspended in culture medium was 

not tested. Significant cell death was recorded with all conditions tested. 

Electroporation of sA80BR cell line may have been possible using further combinations 

of high voltage/ low capacitance or low voltage/ high capacitance however the 

procedure was lengthy and expensive in term of resources used. A decision was 

therefore taken to discontinue testing this method of transfection. 
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3.6.2.3 Lipofection. 

The commercially available Dosper (Roche Diagnostics, UK), TfX20Tm  and TfX5OTm 

(Promega, UK) and Effectene (Qiagen, UK) liposome-based transfection reagents were 

tested for their ability to transfect pCAT3-Promoter into sheep brain cell line sA80BR 

(Section 3.5.2.3). Dopser reagent did not efficiently transfect sheep sA80BR or mouse 

N2a cell lines with pCAT3-promoter. The active lipid in Dosper is 1 ,3-Di-Oleoyloxy-

2-(6-Carboxy-spermyl)-propylamid which may have been unable to form functional 

micelles with the pCAT3-Promter or the micelles which were formed were not 

efficiently absorbed by the cells. Alternatively proteins present in the cell medium may 

have been competing with the DNA for the positively charged chain on the lipids and 

thus reducing transfection efficiency. Liposome reagents TfX50Tm  and Tfx20Tm 

(Promega, UK) showed limited efficiency for the transfection of pCAT3-Promoter to 

ovine brain cell line sA80BR in the absence of serum and were toxic to the cells, 3-30% 

and 10-50% respectively (Figure 3.20). However the Tfx reagents (a mixture of the 

synthetic lipid N,N,N' ,N' -tetramethly-N,N ' -bis(2-hydroxyethyl)-2,3 -di(oleoyloxy)- 1,4-

butanediammonium iodide and DOPE) had poor reproducibility between transfection 

experiments. This may be primarily due to the fact that the shape and size of the 

micelles which form in each reaction will vary slightly and so alter the rate and 

efficiency of DNA uptake into the cell. 

In contrast to other liposome based reagents, Effectene (Qiagene, UK) uses a DNA 

enhancer to improve transfection efficiency. The enhancer functions to condense the 

transfected DNA into a compact structure with which the lipids freely interact to form 

regular micelles. Thus eliminating the possibility of size, charge and shape irregularities 

between transfection reaction. Effectene reagent was efficient in transfecting primary 

liver (IS 120.Liv) and brain cell lines (Is 120.Cer) derived from the Icelandic sheep 

(Tables 3.10 and 3.11, Figure 3.20). Effectene reagent was also not toxic to the cells in 

the presence of serum or antibiotic, and significantly less DNA was required to transfect 

with cell lines to achieve high levels of CAT expression. 
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With all liposome based transfection reagents the health of the cells is vital to 

transfection. A reduced transfection efficiency was observed with cells of high passage 

number. Cell lines of low passage number were therefore used in later transient 

expression studies. 

3.6.2.4 Dendrimer technology. 

Superfect transfection reagent (Qiagen, UK) has only been commercially available 

since 1997 but is similar to Effectene in that it functions to condense the transfected 

DNA into regular sized vessels which are easily and efficiently adsorbed into the cell. 

As with liposmes the charge ration of the polycation dendrimer and DNA must be 

optimised for efficient transfection (Tang etal., 1996; Tang and Szoka, 1997). However 

the advantages of Superfect over liposome reagents include: the presence of serum 

actually increases transfection efficiency, antibiotics do not effect Superfect function, 

and reproducibility is good if cell density at time of transfection is consistent. Superfect 

reagent was efficient in transfecting pCAT3-Promoter into sheep brain cell line sA80BR 

with 40-80% efficiency (Section 3.5.2.4 and Figure 3.20). Optimal transfection was 

observed with increased DNA amount (5 pjg) and a charge ratio of 3:1 (Table 3.14). 

During use of Superfect reagent, no cell death was observed. Superfect reagent was 

proven to be the most efficient transfection reagent for ovine brain cell line sA80BR and 

as such was used for further transient expression studies of the CAT-PrP 3 'UTR vectors 

(Chapter Four) and PrP mini-gene vectors (Chapter Five). 

A comparison of all the method used to develop a transfection method for the immortal 

sheep cell lines is shown in Figure 3.20. 
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Figure 3.20: Summary of transfection efficiencies of CAT reDorter aene b 

various methods in cell line sA80BR. Ovine brain cell lines sA80BR was 

optimally transfected with pCAT3-promoter by Superfect transfection reagent 

(Qiagen Ltd, UK). See Appendix B for full data. SEM shown. High variability in 

Superfect CAT activity is due to low level of expression when low amounts of 

DNA were used as part of the optimisation screening. 
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Chapter 4: Transient Expression of CAT Reporter 

Genes in Various Ovine Cell Lines and the Function of 

the PrP 3'UTR. 

4.1 Introduction. 

The term gene expression commonly refers to the entire process of DNA 

transcription, RNA processing and mRNA translation into protein. Regulation at 

any stage in this process could lead to differential gene expression. Control over 

gene expression allows for a cellular response to external stimuli or the execution of 

developmental pathways, ensuring the correct genes are activated at the correct time 

(spatial and temporal control). Maturation of 5' capped mRNA requires two primary 

steps: 1) cleavage and polyadenylation at the 3' end and 2) ligation of exons 

(splicing). In eukaryotes, RNA processing can control gene expression by on- off 

regulation, exon splicing, or alternative cleavage and polyadenylation at polyA sites 

(Chapter one, Section 1.10; Zhao et al., 1999). Such alternative processing pathways 

are often regulated in a cell type-specific manner. 

Post-transcriptional control of gene expression is mostly mediated through the 

untranslated regions. Secondary structures and protein binding motifs present in the 

5' region have been shown to influence translation initiation and efficiency (Dever, 

1999). Initially the 3'UTR was considered to function only to control 

polyadenylation of the maturing mRNA for export into the cytoplasm for translation, 

with the length of the poly (A) tail determining the stability of the mRNA. In the 

absence of efficient polyadenylation, the pre-mRNA molecule will be degraded 

before translation. For example, autoregulation of the snRNP protein U1A prevents 

wasteful synthesis of the U1A protein when the U  snRNP splicing machinery is not 

required (Gunderson et al., 1994). However, investigations have shown that further 

sequences and structures within the 3 'UTR are also capable of effecting stability, 

location and translation efficiency of mRNA and hence controlling gene expression 

(Chapter 1, Section 1.10). 
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The stability of an mRNA is a function of its synthesis and the rate of degradation 

(review Ross, 1995). The stability of an mRNA also determines how tightly the rate 

of synthesis of the encoded protein can be controlled. Many short-lived mRNA 

transcripts contain multiple, often overlapping AUUUA sequences within their 

3'UTRs (Shaw and Kamen, 1986; Fan et al., 1997). The mechanism by which these 

sequences function is not yet understood. In several cases, the rate of degradation is 

also regulated by RNA-protein interactions in the 3'UTR. Expression of the 

transferrin receptor is regulated by the intracellular iron concentration through iron-

response element (IRE) located within the 3 'UTR: a drop in iron concentration 

stabilises Tfr mRNA and promotes synthesis of the Tfr protein (Roa et al., 1986). 

In mammalian cells translational control via the 5' UTR is well documented however 

little is known of the function of the 3'UTR during translation. From studies in 

yeast, an interaction between the poly(A) tail and a cytoplasmic poly(A) binding 

protein (PABP) may influence translation efficiency (Sachs et al., 1986). 
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4.1.1 Protein levels mediated by the ovine PrP 3'UTR. 

As discussed in Chapter 1 (Section 1.10), controlling the process of cleavage/ 

polyadenylation may regulate the amount of protein synthesised. One method 

frequently used to determine DNA sequences vital to gene expression involves 

constructing reporter vectors with deletions in the flanking region of interest i.e. 

promoter regions, 5' or 3' UTRs or introns. Assaying for in vitro expression of the 

reporter gene determines if inserted DNA sequences stimulate or inhibit expression 

of the reporter vector compared to a control expressing a bacterial gene. Using this 

method of analysis the ovine PrP 3'UTR was the subject for a previous Ph.D. project 

at the NPU (Cheung, 1996). The PrP 3 'UTR fragment used for the CAT analysis 

work was originally cloned from a Suffolk sheep with the PrP allele A 1 36R154Q 171  

(Goldmann et al., 1991a). Previous analysis of the cloned PrP 3'UTR by RFLP has 

shown it to it to be from an el allele. Deletions were made in the PrP 3'UTR (Figure 

4.1) inserted downstream of the reporter gene chloramphenicol transferase (CAT) 

and used in a series of transient transfection experiments in a mouse N2a cell line 

(Cheung, 1996). As the only differences between the constructs lay in the 3'UTR, 

the assumption was made that the level of measured CAT activity was a direct result 

of the influence of PrP 3 'UTR sequence inserted into the reporter vector. If the level 

of CAT activity decreases when a region of 3' UTR has been removed, it can be 

considered that the deleted sequence was essential for expression. Conversely, if the 

CAT activity rises the deleted sequence may have an inhibitory effect. 

In the previous work by Cheung (1996) the CAT constructs included two which 

resembled the in vivo PrP mRNA 3'UTR sequences (Hunter et al., 1994; Goldmann 

et al., 1999) with a UTR of 3.2 kb (as found on 4.6 PrP mRNA) and 0.7kb (the 

2.1kb PrP mRNA). In vitro expression in mouse N2a cells of CATPrP-3 'UTR 

vectors showed that sequences within the 3 'UTR had an inhibitory effect on levels of 

CAT protein produced (Cheung, 1996; Goldmann et al., 1999). Interestingly the 

constructs pEYR and pD 17 which resemble the in vivo PrP transcripts (mRNAs 

4.6kb and 2.1kb respectively) produced amongst the lowest CAT activities. 

Mutating the sequence ATTAAA 1523  to TATAAAI523  in both pEYR and pDl7 

caused a 60% decrease in detectable CAT activity suggesting very low in vitro 
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expression of CAT in the presence of the full length PrP 3 'UTR. Further studies by 

Cheung (1996) comparing the amount of RNA transcribed in vitro (cell free system 

and N2a cells) from the constructs pEYR, pD36(Figure 4. 1), and the CAT control 

(pCAT3-Promoter, Promega Ltd, UK) judged by semi-quantitative RT-PCR 

analysis, showed no significant difference in the level of mRNA produced from the 

vectors over the 48 hour transfection period. In contrast, the level of CAT activity 

detected for constructs pEYR, pD36 and the CAT control was 12.4%, 44.9% and 

100% respectively. Taken together, Cheung's results suggested that the 3'UTR may 

be acting to control PrP gene expression. 

The aim of this chapter was to investigate the role of the ovine PrP 3' UTR in 

controlling expression of the CAT gene with regards to sheep tissue specificity and 

PrP genotype. The chimeric CAT-PrP 3'UTR vectors were transiently expressed in 

transformed Cheviot foetal brain cell lines with PrP genotypes VV 136RR154QQ 171  

(susceptible) and AA 136RR154RQ 171  (resistant). The level of expression from the 

CAT-PrP 3'UTR vectors was also assayed in cerebellum and liver cell line from the 

Icelandic sheep breed, Ovis brachyura borealis pall, which had a susceptible 

genotype of AA 136RR154QQ 171 . 
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Vector. 	
3297bp 	

Deletions (kb) 

pEYR -----n> j 	1-I 	III 	 -' U--- 	0 
AB CD E 	F 	G 

p017 	-E 	 II 	 2.5 

I. - - - 

I  

p036 	
--- 2.7 

Figure 4.1: Chimeric CAT/PrP-3'UTR constructs. A series of CAT reporter vectors were created by Cheung 
(1996) containing the sheep PrP 3'UTR cloned downstream of the CAT ORF. Deletions were made within the 
3'UTR region and CAT expression studied in mouse N2a cells (Cheung, 1996, Goldmann, 1999). These vectors 
have now been transiently expressed in sheep cell lines from various tissue origins and PrP genotypes. 

SV40promoter region = CAT coding region fl Ovine PrP 3'UTR LI  Ovine PrP coding region 

Ovine specific PrP 3'UTR sequence - Conserved polyadenylation signal 	Deletion 



Table 4.1: Structural properties of the UTR in chimeric CAT/PrP-3'UTR vectors. 

Vector PrP 3'UTR 

length (kb) 

PrP 3'UTR 

region 

Instability 

motifs 

Conserved 

polyadenylation 

signals 

pEYR 3.2 A-G 5 5 

pD17 0.7 A-C 0 1 

pD20 2.1 E-G 4 4 

pD27 1.4 F-G 3 1 

pD34 1.1 f-G 3 1 

pD36 0.5 f-G 2 1 

PCAT3- 0.9 n/a * 1 

Promoter 

Note. Refer to Figure 4.1 and Cheung (1996) Goldmann et al.(1999) 
*No ATTTA consensus sequence 
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4.2 PrP 3'UTR: Translational Control of the CAT ReDorter Gene 

in Ovine Brain-derived Cell Lines of Susceptible and Resistant 

PrP Genotvoe. 

4.2.1 Experimental approach. 

The aim of this section was to investigate whether or not sequences within the PrP 

3'UTR displayed control over expression of the CAT gene in brain cell lines derived 

from NPU Cheviot sheep of scrapie susceptible (cell line sA80BR, 

VV136RR1 54QQ171)  and resistant 1pA80BR, AA136RR145QR17 1)  PrP genotype. 

Chimeric CAT! PrP -3'UTR plasmids (Cheung, 1996, Figure 4.1) were transiently 

transfected by Superfect reagent (Qiagen) into the brain cell lines using the method. 

discussed in Chapter 3. For each experiment approximately 2x 1 07  cell were 

recovered from a single well of a 6-well plate. Transfection efficiency was 

controlled for by co-transfecting with pSV--galactosidase and the relative CAT 

activity recorded from each expression vector was proportioned to the level of CAT 

activity from pCAT3-Promoter (Promega) which was assumed to be 100%. The 

results of the CAT assays were analysed by TLC and the amount of acetylated 

product was measured by LSC directly from the TLC plate or by densometric 

reading of the autoradiograph using a Kodak Image Station (Chapter 2, Section 

2.5.12). Throughout the study, the cells appeared to remain healthy and no change in 

growth pattern was observed. A full record of data obtained can be found in 

Appendix B, Sections B 2.1-2.2. Typical autoradiographic films developed for each 

of the cell lines are shown in Figure 4.2A and 4.213. 

4.2.2 Results and analysis. Comparative transient expression studies of 

chimeric CAT-PrP 3'UTR in brain cell lines sA80BR and pA80BR. 

4.2.2.1 Results. 

The collected results from the five assays performed in cell line sA80BR are shown 

in Figure 4.3A and the seven assays performed in cell line pA80BR in Figure 4.313. 

The data presented in Table 4.2 and 4.3 shows results of statistical analysis 

completed on the transformed CAT measurements recorded for both cell lines. 
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Figure 4.2 A:Transient expression of chimeric CAT-PrP 3'UTR plasmids in cell line sA80BR. 

Products from CAT transfection experiments were separated by TLC and the acetylated product was isolated and 

quantified by scintillation counting. The assay positive control containedi unit of purified CAT enzyme (Promega), negative 

control contained 0.25 M Tris and [ 14C]chloramphenicol only. ACm: acetylated chloramphenicol, Cm: chioramphenicol. 
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Figure 4.2 B:Transient expression of chimeric CAT-PrP 3'UTR plasmids in cell line pA80BR. 

Products from CAT transfection experiments were separated by TLC (section 2) and the acetylated product was 

isolated and quantified by scintillation counting. The assay positive control contained I unit of purified CAT enzyme 

(Promega), negative control contained 0.25 M Tris and [ 14C]chloramphenicol only ACm: acetylated chioramphenicol, 

Cm: chioramphenicol. 



Observed CAT activity in cell line sA80BR following five separate transient transfection of 
chimeric CAT/PrP-3'UTR plasmids 
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Figure 4.3 A: Relative CAT activity (%) measured in cell lines sA80BR. 

TransientCAT expression of chimeric CAT-PrP 3'UTR plasmids in ovine cell lines derived from Cheviot brain cell line 
sA80BR (PrP genotype W136RR 1 54QQ171). The amount of acetylated chloramphenicol product was measured for each 
CAT/PrP-3'UTR vector and calculated as a percentage of the vector pCAT3-Promoter (100%) for each transfection 
experiments. The results were plotted on the log e  scale as the level of detectable CAT activity from separate transfection 
experiments varied in magnitude. 
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Observed CAT activity in cell line pA80BR following seven separate transient transfection of 
chimeric CAT/PrP-3'UTR plasmids 
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Figure 4.3 B: Relative CAT activity (%) measured in cell lines pA80BR. 

Transient CAT expression of chimeric CAT-PrP 3'UTR plasmids in ovine cell lines derived from Cheviot brain cell line 
pA80BR (PrP genotype AA l RRl54QR171 ). The amount of acetylated chloramphenicol product was measured for each 
CAT/PrP- 3'UTR vector and calculated as a percentage of the vector pCAT3-Promoter (100%) for each transfection 
experiments. The results were plotted on the loge  scale as the level of detectable CAT activity from separate transfection 
experiments varied in magnitude. 
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Table 4.2 Statistical analysis of expression from CAT/PrP-3'UTR constructs 
in cell lines sA80BR and pA80BR. 

Constructs for 	 Cell line 
comparison 	sA80BR (p =:!~ ) 	pA80BR (p:!~ ) 

p17 with pEYR 0.42 0.97 

p 20 with pEYR 0.14 0.96 

p27 with pEYR 0.1 0.37 

p34 with pEYR 0.02 0.05 

p36 with pEYR 0.52 0.55 

pEYR with pDl7 0.99 0.97 

pD17 with pD20 0.1 0.95 

pD20 with pD27 0.63 0.41 

pD27 with pD34 0.03 0.21 

pD34 with pD36 0.15 0.08 

Note. In rows 1-5, the mean CAT activity recorded for each construct was compared against 
the CAT activity from pEYR (resembling in vivo 4.6kb PrP mRNA 3'UTR). In rows 6-10 
the significance of the change in CAT expression as sequential deletions were introduced 
into the 3'UTR is considered. Analysis was completed by a t-test on the transformed data, 
please refer to Appendix B, Section B 2.2.1 . For sA80BR and pA80BR the degrees of 
freedom were 8 and 11 respectively. 

147 



Table 4.3 Comparison of expression from CAT/PrP-3'UTR constructs in cell 
lines sA80BR and pA8013R. 

	

Constructs for 	Between cell lines sA80BR and pA80BR 
comparison 	 (o=<) 

PEYR 	 0.57 

pDl7 	 0.52 

pD2O 	 0.26 

pD27 	 0.54 

pD34 	 0.93 

p036 	 0.91 

	

PEYR with pDl7 	 0.54 

	

p017 with pD20 	 083 

	

pD20 with pD27 	 0.36 

	

pD27 with pD34 	 0.74 

	

pD34 with p036 	 0.98 

Note. In rows 1-5, the mean CAT activity recorded for each construct was compared against 
equivalent expression in each cell line. In rows 6-10 the significance of the change in CAT 
expression as sequential deletions were introduced into the 3 'UTR is considered. Analysis 
was completed by a t-test on the transformed data, please refer to Appendix B, Section B 
2.2.1. The degrees of freedom were 10. 
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4.2.2.2 Analysis. 

Independent transient transfections of ovine brain cell lines derived from scrapie 

resistant and scrapie susceptible PrP genotypes were completed with the chimeric 

CAT/PrP-3'UTR constructs (Figure 4.1). In both cell lines, the CAT activity 

recorded between experiments varied by an order of magnitude. To allow for 

statistical analysis, the value for CAT activity (% CAT) was transformed on to the 

loge  scale (Snedecor and Cochran, 1967). Before Students t-test was completed on 

the transformed data, the level of variance between experiments was examined for 

significance using Analysis of Variants (ANOVA) (full explanation and working in 

Appendix B, Section B 2.5). In summary, ANOVA confirmed that variance did 

occur between transfection experiments but, importantly, that this variance was not 

significant in terms of in vitro expression of the plasmids. This means that although 

there was a great deal of variation in the overall magnitudes of the standardised CAT 

results between experiments, the pattern of relative differences in expression from 

the series of plasmids was consistent across all experiments. Further analysis was 

carried out using a t-test on the probability that the 3 'UTR sequence present in the 

CATIPrP-3 UTR constructs influenced the level of detectable CAT activity (Table 

4.3). 

As observed in mouse N2a cell line (Cheung, 1996; Goldmann et al., 1999), in vitro 

expression of constructs pEYR and pDl7 (resembling 3'UTRs of in vivo PrP 

mRNA) was lower than the other plasmids. In both cell lines, an increase in the level 

of detectable CAT activity was observed as deletions were introduced into the PrP 

3 'UTR sequence in the 5' to 3' direction. For the sA80BR cell line this increase was 

observed to begin when sequence upstream of 3'UTR nucleotide (nt) position 2000 

had been deleted (construct pD20) and continued to increase, peaking at a deletion 

up to nt 3400 (pD34) (Figure 4.2A). Although the difference in mean CAT 

expression between pEYR and pD20 was not significant (Table 4.2, p=0. 14), the 

figures do support a tendency for increased expression from constructs pD20 to 

pD34 (Table 4.2, rows 1-6). For the pA80BR cell line, an increase in CAT activity 

was observed after deletion of sequence upstream of nt position 2700 (pD27, Figure 

4.2B). However, this increase in detectable CAT activity was not significantly 
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different to the wild type construct pEYR (Table 4.2). As observed in sA80BR, CAT 

activity peaked in pA80BR with construct pD34 (p= 0.05). A direct comparison of 

expression from the CATIPrP-3'UTR constructs in the two cell lines reveals no 

significant difference (Table 4.3). 

An alternative explanation for the observed difference in CAT gene expression 

between the sA80BR and pA80BR cell line is the efficiency of the transformation 

process. As described in Chapter Three, Section 3.2, the Cheviot cell lines were 

immortalised by transformation with the Moloney murine leukaemia virus. The 

nature of retroviruses allows integration of the viral genome into the host genome by 

illegitimate recombination where the viral genome has no sequence homology with 

the insert site. Consequently the two cell lines sA80BR and pA80BR will be 

transformed differently which may give rise to differences in efficient gene 

expression and control. However, similarities in CAT expression were observed 

between the stable and primary cell lines as described in Section 4.3 which argues 

against any effect on gene expression in the Cheviot cell lines which may be 

attributed to the transformation process. 

4.3 Translational Control of the CAT Reporter Gene Constructs 

in Ovine Neuronal and Peripheral Cell Lines. 

4.3.1 Experimental approach. 

The aim of this Section was to evaluate the role of sequences within the sheep PrP 

3'UTR in controlling transient expression of CAT in ovine cell lines derived from 

neuronal and peripheral tissues. At the start of this study, the intention was to 

compare CAT expression in the stable brain cell lines to similar transfections in skin 

derived cell lines. However, as discussed in Chapter Three, several problems were 

encountered in the growing and transfection of the skin cells and they were 

discounted from this particular study. As an alternative, the primary cell lines 

(Chapter Three) derived by Dr Gerard O'Neill from cerebellum (designated 

15120.Cer) and liver (designated 15120.Liv) tissues from the Icelandic sheep 
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(genotype AA 136RR154QQ 171  which is scrapie susceptible in this breed) were used. 

Chimeric CAT! PrP -3 'UTR plasmids (Cheung, 1996, Figure 4.1) were transiently 

transfected by Effectene reagent (Qiagen) into the primary cell lines using the 

method discussed in Chapter Three and Chapter Two, Section 2.5. For each 

experiment approximately 2x1 07  cell were recovered from a single well of a 6-well 

plate. As before, transfection efficiency was controlled for by co-transfecting with 

pSV-3-galactosidase and the relative CAT activity recorded from each expression 

vector standardised against the level of CAT activity from pCAT3-Promoter 

(Promega) which was assumed to be 100%. The results of the CAT assays were as 

previously described (Chapter Two, Section 2.5.12). Throughout the study, the cells 

appeared to remain healthy and no change in growth pattern was observed. A full 

record of data obtained can be found in Appendix B, Sections B2.3 and 2.4. Typical 

autoradiographic films developed for each of the cell lines are shown in Figures 4.4A 

and 4.413. 

4.3.2 Results and analysis. Comparative transient expression studies of 

chimeric CAT-PrP 3'UTR constructs in cell lines 1S120.Cer and 1S120.Liv.. 

4.3.2.1 Results. 

The collected results from the six assays in cell line 1S120.Cer are in Figure 4.5A and 

the five assays in cell line ISl2O.Liv in Figure 4.5B. The data presented in Tables 

4.4 and 4.5 shows results of statistical analysis completed on the transformed CAT 

measurements recorded for both cell lines. 
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Figure 4.4A: Transient expression of chimeric CAT-PrP 3'UTR plasmids in cell line 1S120.Cer. Products 

from CAT transfection experiments were separated by TLC and the acetylated product isolated and 

quantified by scintillation counting. Typical autorad from one separate transfection is shown. The assay 

positive control contained 1 unit of purified CAT enzyme (Promega), negative control contained 0.25 M Tris 

1-ICI and [ 14C]chloramphenicol only; ACm: acetylated chloramphenicol, Cm: chloramphenicol. 
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Figure 4.4 B: Transient expression of chimeric CAT-PrP 3'UTR plasm ids in cell line 1S120.Liv. Products from CAT transfection 

experiments were separated by TLC (section 2) and the acetylated product was isolated and quantified by scintillation counting. 

Typical autorad from one transfection is shown. The assay positive control contained 1 unit of purified CAT enzyme (Promega), 

negative control contained 0.25 M Tris HCI and [' 4C] chloramphenicol only. ACm: acetylated chloramphenicol, Cm: 

chloramphenicol. 



Observed CAT activity in cell line 1S120.Cer following five separate transient transfection 
experiments with chimeric CAT/PrP- 3'UTR constructs. 
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Figure 4.5 A: Relative CAT activity (%) measured in cell line 1S120.Cer Transient expression of chimeric CAT-PrP 3'UTR 

plasmids in ovine cell lines derived from cerebellum tissue (cell line lS12O.Cer) from the Icelandic sheep breed Ovis 

brachyura borealis pal! (genotype M1 RR 1 QQ171 .) Relative CAT activity was calculated by the amount of acetylated 

chioramphenicol produced in each CAT assay with regard to pCAT3-Promoter (100%) and plotted on the log e  scale. 



Observed CAT activity in cell line 1S120.Liv following six separate transient transfections 
experiments with chimeric CAT/PrP- 3'UTR constructs. 

CD 

CD 

0 

I 
0 

cD 

4 

3 

2 

pEYR 	p017 	p020 	p027 	pD34 	pD36 pCAT3-Promter 
CAT expression vectors 

Figure 4.5 B: Relative CAT activity (%) measured in cell line lS12O.Liv . -Transient expression of chimeric CAT-PrP 

3'UTR plasmids in ovine cell lines derived from liver tissue (cell line lS12O.Liv) from the Icelandic sheep breed Ovis 

brachyura borealis pall (genotype AA 1 RR 1 QQ171 .) Relative CAT activity was calculated by the amount of 

acetylated chloramphenicol produced in each CAT assay with regard to pCAT3-Promoter (100%) and plotted on the 
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Table 4.4: Statistical analysis of expression from CAT/PrP-3'UTR constructs 
in cell lines 1S120.Cer and 1S120.Liv. 

Constructs for 	 Cell line 
comparison 	lS120. Cer  (p=:!~) 	IS1 20. Liv(p=:!~-) 

p17 with pEYR 0.35. 0.73 

p 20 with pEYR 0.53 0.3 

p27 with pEYR 0.12 0.19 

p34 with pEYR 0.06 0.09 

p36 with pEYR 0.05 0.12 

PEYR with pD17 0.73 0.73 

pD17 with pD20 0.96 0.3 

pD20 with pD27 0.02 0.36 

pD27 with pD34 0.7 0.53 

pD34 with pD36 0.9 0.12 

Note. In rows 1-5, the mean CAT activity recorded for each construct was compared against 
the CAT activity from pEYR (resembling in vivo 4.6kb PrP mRNA 3'UTR). In rows 6-10 
the significance of the change in CAT expression as sequential deletions were introduced 
into the 3'UTR is considered. Analysis was completed by a t-test on the transformed data, 
please refer to Appendix B, Table B 2.4.14.6. For 1S120.Cer and 1S120.Liv the degrees of 
freedom were 5 and 4 respectively. 
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Table 4.5: Comparison of expression from CAT/PrP-3'UTR constructs in cell 
lines 1S120.Cer and 1S120.Liv. 

Constructs for 	Between cell lines 1S120.Cer and lS1201iv(p=:! ~ ) 
comparison 

pEYR 0.52 

pDl7 0.98 

pD 20 0.08 

pD27 0.83 

pD34 0.14 

pD36 0.23 

PEYR with pD17 0.75 

pD17 with pD20 0.55 

pD20 with pD27 0.55 

pD27 with pD34 0.56 

PD34 with pD36 0.18 

Note. In rows 1-5, the mean CAT activity recorded for each construct was compared against 
equivalent expression in each cell line. In rows 6-10 the significance of the change in CAT 
expression as sequential deletions were introduced into the 3'UTR is considered. Analysis 
was completed by a t-test on the transformed data, please refer to Appendix B, Table B 2.4.6 
The degree of freedom were 9. 
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4.3.2.2 Analysis. 

Independent transient transfections with the chimeric CAT/PrP- 3' UTR constructs 

were completed in primary cell lines derived from brain and liver tissue from the 

Icelandic sheep to investigate the role of the 3'UTR in gene expression and tissue 

specificity. As described in Section 4.2.2, the CAT data tended to vary in magnitude 

between experiments. For statistical analysis on the calculated relative CAT activty 

(%) was transformed onto the loge  scale and ANOVA completed (Appendix B, 

Section 2.5). ANOVA showed that again transfection efficiency did not effect the 

expression of the transfected plasmids and that the pattern of variation between the 

plasmids themselves was consistent and significant. Further analysis on the 

standardised data was completed using t-test (Tables 4.4 and 4.5). 

In both cell lines expression from the constructs resembling the in vivo PrP mRNA 

3' UTRs (pEYR and pD 17) was lower than the remaining constructs, with the 

exception of pD20 in the cerebellum cell line (Figure 4.5A). As before, the level of 

detectable CAT activity from the constructs the 3 'UTR deletions increased when 

compared to pEYR. For 1S120.Cer this increase began sharply when sequence 

upstream of 3 'UTR nucleotide (nt) position 2700 had been deleted (construct pD27), 

and remained high with deletions up to nt 3600 (constructs pD34 and pD36, p= 

:!~0.06 and 0.05 respectively, Table 4.4, Figure 4.5A). Furthermore in 1S120.Cer, the 

largest and most significant increase in CAT activity was detected between construct 

pD20 and pD27 (p=:!~0.02,  Table 4.4). For 1S120.Liv a steady increase in CAT 

activity was observed during sequential deletion of the 3'UTR, peaking with a 

deletion upto nt position 3400 (construct pD34, Figure 4.513). Expression of the 

CAT/PrP-3'UTR constructs in 1S120.Liv did not reveal significant CAT from any 

one construct on comparison with pEYR. A direct comparison of expression from 

the CAT/PrP-3 'UTR constructs in the two cell lines did show a tendency for the 

level of CAT expression from pD20 to be lower in IS 1 20.Cer compared with 

IS I 20.Liv, although this was not highly significant (p=:! ~0.08, Table 4.5). 
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4.4 Comparison of Transient Expression Chimeric CAT-PrP 

3'UTR Plasmids in Mouse and Sheer) Derived Cell Lines. 

4.4.1 Introduction 

To identify a sheep specific regulatory region within the PrP 3'UTR which may 

influence gene expression a comparison was made between the published CAT/PrP-

3'UTR data in the mouse N2a cell line (Goldmann etal., 1999) and the sheep tissue-

derived cell lines. In all experiments, expression of CAT from the experimental 

plasmids was standardised against the level of CAT from the control plasmid 

pCAT3-Promoter (Promega Ltd, UK), which was assumed to be 100% on each 

occasion, and the relative CAT activity calculated. For the purpose of this 

comparison, the previously published CAT data in mouse N2a cell was standardised 

on the loge  scale and the mean CAT activities from each cell line plotted. A 

comparison between the mean CAT activity in all cell lines was completed (Figure 

4.6, Table 4.6). Also considered was a comparison of CAT/PrP-3'UTR constructs 

expressed in the stable and primary brain cell lines (Table 4.7). 
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Comparison of the mean CAT activity following transient expression of chimeric CAT- 

PrP/3'UTR plasmids in mouse and ovine cell lines. 
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Figure 4.6. A comparative study of the mean transient CAT expression levels from chimeric CAT-PrP/3'UTR 

plasmids in ovine immortal (sA80BR and pA80BR) and primary (1S120.Cer and 1S120.Liv) cell lines with the 

published data from a mouse N2a cell line (Goldmann et a!, 1999) 
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Table 4.6 Statistical analysis of expression from CAT/PrP-3'UTR constructs in cell 
lines sheep cell lines compared with mouse N2a cell line (Goldmann et al., 1999). 

Constructs expressed in Comparative Expression in cell line (p:! ~) 

N2a cells sA80BR 	pA80BR lS12O.Cer lS12O.Liv 

pEYR 0.31 0.47 0.72 0.49 

pD17 0.25 0.47 0.57 0.65 

pD20 0.006 0.51 0.13 0.009 

pD27 0.67 0.97 0.54 0.41 

pD34 0.81 0.83 0.64 0.75 

pD36 0.33 0.29 0.62 0.93 

Note. The significance of the change in CAT expression in the sheep cell lines compared to 
the mouse N2a cell lines as sequential deletions were introduced into the 3 'UTR is 
considered. Analysis was completed by a t-test on the transformed data summarised in 
Appendix B, Tables 2.2.7 and 2.4.6. Mouse data presented in Goldmann et al., 1999 and 
provided by Dr Gerard O'Neill for analysis. 

Table 4.7 Statistical analysis of expression from CAT/PrP-3'UTR constructs in 
stable Cheviot brain cell lines 5A80BR and pA80BR compared with the primary 
cerebellum cell line, 1S120.Cer. 

Constructs expressed in 
1S120.Cer cells 	Comparative Expression in cell line (p:! ~) 

5A80BR 	 pA80BR 
pEYR 0.31 0.58 
pD17 0.36 0.84 
pD 20 0.01 0.79 
pD27 0.77 0.41 
pD34 0.008 0.27 
pD36 0.016 0.16 

Note. The significance of the change in CAT expression in the stable cheviot-brain cell lines 
compared to the primary sheep-cerebellum cell line as sequential deletions were introduced 
into the 3'UTR is considered. Analysis was completed by a t-test on the transformed data 
summarised in Appendix B, Tables 2.2.7 and 2.4.6. 
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4.4.2 Results. 

4.4.2.1 Effect of tissue origin. 

The standardised mean CAT activity measured from transient expression of plasmids 

pEYR (in vivo 4.6kb PrP mRNA 3'UTR, Figure 4.1) and pDl7 (in vivo 2.1kb PrP 

mRNA 3'UTR) in mouse N2a cell was not statistically different on comparison with 

1S120.Liv, 1S120.Cer and pA80BR cell lines. There was a tendency for expression 

of pEYR and pDl7 to be lower in CAT activity in sA8OBR cell line compared to 

N2a (Figure 4.6). However, due to the large standard variation observed for pEYR 

and pD 17 expression in sA80BR this difference in not significant (Table 4.6). No 

significant difference in transient CAT expression was observed from plasmids with 

PrP- 3 'UTR sequence in either the pA80BR or the IS 1 20.Cer cell line compared with 

the N2a cell lines. In contrast, the mean value of CAT measured from construct 

pD20 was significant higher in both sA80BR and 1S120.Liv compared with 

equivalent expression in N2a cells (p=:! ~0.006 and 0.009 respectively, Table 4.6). 

4.4.2.2 Effect of stable or primary cell lines. 

There was no significant difference in expression from any of the constructs between 

cell line 1S120.Cer and cell line pA80BR (Table 4.7). However, deleting sequence 

upstream of nt positions 2000 (pD20) and 3400 (pD34) lead to significantly higher 

CAT expression in sA80BR cell lines compared with 1S120.Cer (p=:!W.Ol and 0.008 

respectively Figure 4.6 and Table 4.7). In contrast a deletion upto nt position 3600 

resulted in significantly lower CAT expression in sA80BR compared with 15120.Cer 

(p=:!~0.016, Figure 4.6 and Table 4.7). 
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4.6 Discussion. 

4.6.1 Effect of the Ovine PiP genotype on in vitro CAT-PiP 3'UTR 

Expression 

Transient transfection experiments show that the amount of detectable CAT protein 

can be controlled by presence of particular 3'UTR sequence of the ovine PrP gene. 

Interestingly there was no significant difference in CAT expression from CAT/PrP-

3'UTR constructs which resembled the in vivo PrP mRNAs (pEYR and pDl7, 

Figures 4. 1, Tables 4.3, 4.5, 4.6 and 4.7). In general, an increase in CAT activity 

was observed as deletions were introduced in the 5' to 3' direction (Figures 4.3 and 

4.5). This may be suggestive of increasing efficiency of transcription/ translation as 

the transcripts become shorter, allowing for quicker processing -and loss of instability 

motifs. However, a comparison of the CAT activity detected with regards to the 

length of UTR sequence shows this is not the case. CAT expression from pEYR 

(UTR length= 1.9kb) and pD 17 (UTR length = 0.7kb) are the same level in each of 

the cell lines, also pD36 (UTR length= 0.9kb) is not significantly higher than the 

longest length. 

An alternative explanation is the deletion of sequence that is capable of repressing/ 

inhibiting expression in the full-length transcript. Data presented here shows that the 

presence of sequence between nt positions 2000-27000 of the ovine PrP 3 'UTR can 

significantly repress transient CAT expression in sheep derived cell lines. Over and 

above general trend of increased expression, as deletions are introduced into the 

3 'UTR sequence in the 5' to 3' direction a significant increase in protein expression 

was observed when sequence 2000-27000 was deleted in cell lines sA80BR (scrapie 

susceptible Cheviot brain-derived) and IS 120. Liv  (scrapie susceptible Icelandic 

liver-derived). This response was not observed in either the pA80BR (scrapie 

resistant Cheviot brain-derived) or IS 1 20.Cer (scrapie susceptible Icelandic brain-

derived) cell lines. 
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The association between genotype and scrapie susceptibility is well documented with 

the VV 136RR154QQ171  genotype linked to highest susceptibility in all breeds and 

AA1 3 6RR154RR171  the lowest. (Section Lx). The presence of V at codon 136 shows 

increased susceptibility with A136 may offer resistance. When V 136  is rare in a 

breed, scrapie predominantly occurs in carriers of the A 136  allele. This is the case 

with the Icelandic sheep breed. If the function of the putative repressor element at 

PrP 3'UTR sequence 2000-2700 was to act on susceptible genotypes alone it might 

be expected that the same pattern of transient CAT expression would have been 

observed in the cell lines of the same scrapie status. However both sA80BR and 

IS 1 20.Cer are derived from brain tissue from scrapie-susceptible sheep but show 

significantly different CAT protein expression patterns from three of the CAT 

constructs (Table 4.7). Instead cell lines pA80BR and 1S120.Cer, which have similar 

PrP genotypes (AA 136RR154QR171  and AA 136RR154QQ 171  respectively), show similar 

CAT expression profiles. This observation argues for an alternative hypothesis that 

an additional factor may also be involved in influencing scrapie susceptibility. 

This thesis proposes that a repressor element functioning through the ovine PrP 

3'UTR at nt sequence 2000-27000 may be involved in controlling gene expression 

and that loss of this control may increase scrapie susceptibility. It is proposed that 

the sequence contained with in the nt 2000-2700 may reduce protein levels to 

greater effect in sheep with genotypes normally associated with resistance. The 

putative repressor region could function alone as a structural motif or recognition 

factor for nucleic acid binding proteins but does not appear to function efficiently in 

ovine brain tissue containing at least one A 136R154Q 171  allele. Alternatively, this 

region may interact with sequences at the 5' or 3' region of the PrP gene. It is 

interesting to note that this repressor region is 5' of the polymorphic EcoRI site 

(nucleotide position 3440), loosely associated with scrapie incidence (Hunter et al., 

1991). These issues will be the subjects of more discussion in Chapter Six. 
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4.6.2 Effect of peripheral or neuronal tissue origin on gene expression. 

In the previous section, a putative repressor was described within the 3 'UTR, 

nucleotide position 2030-2700, which may function to increase scrapie susceptibility 

with regards to gene expression in brain-derived cell lines. Although this result may 

lead to further study in scrapie susceptibility it fails to address whether the 3 'UTR 

shows any tissue specific control over gene expression besides alternative 

polyadenylation. Results presented here again confirm that sequences within the 

3'UTR are capable of influencing in vitro protein levels but are not responsible for 

tissue specific expression. The level of PrP expression within liver tissue has been 

difficult to determine. To date, in liver tissue PrP protein has not been reported 

(Horiuchi et al., 1995) and PrP mRNA has only been shown at very low levels in 

normal liver (Goldmann et al., 1999) but has been shown to increase in activated 

hepatic cells (Ikeda et al., 1998). If the 3'UTR was responsible for controlling 

selective tissue expression it may have beenexpected that CAT protein levels would 

have been drastically different, or negligible, in the liver cell line compared with the 

cerebellum cell line. However there was no significant difference in the overall 

mean level of CAT protein expression, and only marginal differences in expression 

of some of the plasmids. 

CAT protein levels detected in the cerebellum cell line from the plasmid containing 

sequence deleted upstream from nt position 2000 (pD20) were significantly lower 

when compared to expression from the construct with sequence upstream from nt 

2700 (pD27). Expression from pD20 also had the tendency to be lower in the brain 

cell line compared with the liver cell line. Deleting sequence inclusive of nts 2000-

2700 did not significantly alter expression in the liver cell line. These observations 

would suggest that the putative repressor region was not functional in ovine liver 

cells. In general, protein levels were higher in the liver cell line compared to the 

cerebellum cell line, in contrast to the in vivo pattern of expression of PrP. This may 

indicate that brain tissue is more efficient in controlling gene expression. 

In context with the results presented for PrP genotype and susceptibility, the increase 

in CAT expression as a result of deletions between nucleotides 2000 and 2700 may 
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be due to the presence of a repressor element which is not functional in peripheral 

tissue of sheep. Whether this statement can be applied generally to sheep peripheral 

tissues or to tissues from scrapie susceptible sheep is unknown, as only one 

peripheral tissue has been tested within this study. The issues raised in this Chapter 

will be discussed in full in Chapter Six. 
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Chapter 5: The Ovine PrP 3'UTR: Differential Control of PrP 

Gene Expression in Ovine Brain and Peripheral Tissue? 

5.1 Introduction. 

Although the genetic structure of the ovine PrP gene has been determined (Chapter 1, 

Section 1.8), factors controlling the expression of the gene are still unclear and may 

be vital to our understanding of scrapie development. Hunter et al. (1994) reported 

that PrP gene expression was not exclusive to the CNS when they demonstrated that 

PrP mRNA could be detected in neural and non-neural tissues of developing sheep 

and mice. It was also found that in sheep peripheral tissues in addition to the 

previously reported 4.6kb mRNA (Goidmaim et al., 1990), a second mRNA species 

of 2kb was present (Hunter et al., 1994; Horiuchi etal., 1995). The 4.6kb niRNA is 

found in all tissues, with the highest expression level in brain. The 2.1kb mRNA is 

found in peripheral tissues at levels of up to 30% of total PrP mRNA, but only at 

very low levels in the brain (Horiuchi et al., 1995; Goldmann et al., 1999). The 

smaller mRNA is also found in goats at comparative levels to sheep but only at very 

low levels in cattle (Goldmann etal., 1999). The sheep 2.1kb mRNA is the result of 

an alternative polyadenylation signal at an upstream site in the 3'UTR at position 

1522 (Goldmann etal., 1990). The 4.6kb transcript is polyadenylated oly(A)) at 

position 4046. The truncated PrP inRNA lacks several features present in the 4.6kb 

mRNA, such as repetitive sequences, instability motifs and a highly conserved 

3'region (for more detail refer to Chapter 1, Section 1.8.4). At present there is no 

data regarding the stability of either the 4.6kb or 2.1kb PrP mRNA. Further more, 

semi-quantitative RT-PCR on constructs encoding the CAT reporter gene and PrP 

3'UTR sequence resembling the in vivo 4.6kb and 2.1kb mRNAs showed no 

difference in stability or translatability associated with the 3 'UTR (Cheung, 1996). 

Horiuchi etal. (1995) confirmed the findings of Hunter et al. (1994) and also reported 

that PrPC was detectable in neural and non-neural tissues such as spleen and lungs. 

Comparing PrP mRNA and PrPC protein levels in sheep, the proportional relationship 

of PrP mRNA and PrPC  varied between the brain and other tissues (Horiuchi et al., 
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1995). For example: PrP mRNA was found at levels 5 x higher in brain than kidney but 

the amount of PrPC  detected in brain was 40 x more than kidney. The presence of the 

second PrP transcript in sheep suggests the possibility of a complex control mechanism 

in gene expression where two different PrP mRNAs could result in differential 

expression or cellular location of the PrP protein. As a result of differential expression 

processes such as translational efficiency and/or the course of PrP synthesis, including 

degradation, may differ between brain and other tissues. Although it is not known 

what contribution each sheep mRNA makes to the overall level of detectable P rPC,  

Goldmann et al, 1999, proposed that the 2.1kb PrP mRNA may be the predominantly 

expressed mRNA in peripheral tissues (Goldmann et al., 1999). 

The aim of this Chapter is to confirm whether both in vivo 3 'UTRs are capable of 

supporting PrP protein synthesis and estimate the contribution each sheep PrP 

mRNA makes to PrP protein levels (Chapter Four, this thesis; see also Cheung, 1996; 

Goldmann et al., 1999). As with the chimeric CAT studies, tissue specificity of PrP 

expression and any associations with PrP alleles linked to resistance or susceptibility to 

scrapie was to be studied in sheep cell lines of known PrP genotype and tissue origin. 

The cell liens described in Chapter Three were used in this study. Three ovine PrP 

constructs were created encoding the ovine PrP promoter region (500bp upstream of 

transcription start site), the ovine PrP ORF, and various lengths of the PrP gene 

3'UTR. The constructs were designed to produce transcripts representing the full 

length mRNA (4.6kb), the short mRNA species (2.1kb) or an intermediate mRNA 

species, formed by alternative processing at potential poly(A) sites (conserved sites 

at nucleotide(nt) positions 2221,2284,2668) downstream from the 1522 site 

(Goldmarm et al., 1990). To detect transient PrP protein expression from these 

constructs, the cloned sheep PrP open reading frame (ORF) was manipulated to 

encode the hamster PrP specific 3F4 epitope in the amino acid sequence. These 

vectors were transiently transfected into ovine brain cell lines and any difference in 

expression was observed by Western analysis with the 3F4 anti-PrP antibody. 



5.2 Designing Constructs for Transient PrP Expression. 

5.2.1 Introduction 
To allow study of differential expression of PrP in vitro due to alternative 

polyadenylation, constructs were designed to encode identical 5' and coding 

sequences but different lengths of ovine PrP 3 'UTRs. Work completed at the NPU 

has shown that a 550bp region upstream from the Cheviot PrP transcription start site 

is capable of driving expression of CAT reporter gene in vitro (O'Neill, in 

preparation). The mouse PrP promoter has also been shown to be a strong driver of in 

vitro CAT expression (Baybutt and Manson, 1997). The constructs created for 

transient expression of ovine PrP were cloned to contain the Cheviot sheep promoter! 

exon I region and a Suffolk sheep exon III, PrP allele A 136R154Q 171  and el. The 

cloned regions of the Cheviot PrP gene used in the new constructs were available at 

the NPU, full graphical representation found in Appendix A, Figures A. 1-A. 10. 

The plasmid pNPU7PM carries the full length PrP exon III, and is expected to 

generate transcripts equivalent to the two in vivo PrP mRNAs by processing at 

known active poly(A) signals (nt 1522 and 4046; Goldmann etal., 1990; Cheung, 

1996; Goldmann etal., 1999). Transcripts may also be produced from other 

conserved poly(A) signals between the two known functional sites (nt 2221, 2281, 

2668). Construct pNPU2PM differs in the 3' region to pNPU7PM as it contains a 

truncated exon III which will allow transcription of one niRNA species only using 

the poly(A) site at 1522. Construct pNPU3PM contains an exon III of intermediate 

length encoding consensus polyadenylation signals at sites 1522, 2221, 2281 and 

2668, of which the signal at 1522 is already known to be active. There is the 

possibility that any of the remaining signals could be used to form intermediate 

length mRNAs. At the start of the cloning project the levels of endogenous sheep 

PrPC expression in the sheep cell lines were unknown, as the cell lines were not 

available. The original expression constructs, which would also express sheep PrPC, 

later had to be redesigned to contain sequence encoding the hamster 3F4 epitope 

which allows for detection of protein produced by the reporter gene against a 

background of sheep PrPC  by means of using the anti-hamster PrP antibody 3174 

(Kascsak etal., 1987; Section 5.3). 
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5.2.2 Construct pNPU7PM. 
To study protein levels in relation to the full length PrP gene 3 'UTR construct 

pNPU7PM was designed (Figure 5.1). The full length Suffolk PrP exon III, PrP 

allele A 136R154Q 171  and el, has been previously cloned and published (Goldmann et 

a! 1990, accession number M31313.emom). The fragment was available at NPU 

(construct p71, Appendix A, Figure A.3). The Cheviot promoter/exon I region was 

also available at the NPU, plasmid pNPU1 10-1, cloned from an NPU Cheviot sheep, 

PrP genotype AA136RR 154QQ 171  (Goldmann, personal communication, Appendix A, 

Figure A.4). 

To facilitate cloning of the promoter/exon I fragment upstream of exon III, restriction 

sites were created by PCR into the 5' and 3' ends of the promoter/exon I fragment 

generated from clone pNPU110- 1  (Appendix A, Figure A.4) as no suitable cloning 

sites were present. Restriction digestion sites Sail and SstI were introduced by PCR 

to flanking regions of the promoter/exon I region using primers SstPM and Sa1PM 

(Table 2.1, Chapter 2 for full details). The 550 base pair fragment produced by PCR 

was sequenced in full before further cloning to ensure no mutations had been 

introduced (Section 5.2.5). Using restriction sites Sail and SstI, the promoter 

fragment was cloned upstream of PrP exon III in p71 to create vector pNPU7PM 

(Figure 5.1). The structure of the final construct was confirmed by restriction 

mapping and PCR with primers available at NPU (A025 and A045, Chapter Two, 

Table 2.1) which target sequence 3' of the promoter and 5' of the PrP open reading 

frame respectively. 
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HindIll HindU 	 Hindu I 
EcoRl 	

pNPUI 10-1 

	

I 	
I 	

(3.3kb) 4- 
PCR amplification 

Sall 1  

PrP promoter/exon I Sstl 	
fragment (0.5kb) 

Clone into plasmid p71 at sites Sall and 
Sstl upstream of PrP exon Ill 

HindIll Sail Sst EcoRl 	 EcoRl 

PrP promoter! exon I 	 PrP exon Ill 	 pNPU7PM 
0.5kb 	 7.1 kb 	 (10.1kb) 

Figure 5.1 :Construction of clone pNPU7PM 

Synthesis of 550bp promoter/exon I fragment by PCR from pNPU1 10-1. 

Restriction sites Sail and SstI were introduced by PCR into the flanking sequence 

of the promoter/exon I region and cloned upstream of PrP exon Ill in p71 to 

create vector pNPU7PM. For full details on all plasmids see Appendix A. 

PCR primers • PrP promoter D PrP exon UTR 

• PrP open reading frame 
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5.2.3 Construct pNPU3PM. 
It is not yet known whether polyadenylation signals other than those at 1552 and 

4046 present in the 3 'UTR are actively selected to produce alternative PrP mRNA 

transcripts in vivo at low levels. Construct pNPU3PM was therefore designed to 

display the conserved polyadenylation signals upstream from the signal at 4046bp, 

encoding niRNAs of intermediate lengths. The Cheviot sheep PrP promoter/exon I 

from pNPU1 10-1 was cloned into pBluescript (Stratagene, UK, Appendix A, Figure 

A.6) then into pGEM-7Zf(+) (Promega, UK) by Apal - XbaI digestion to form 

pGEM.promoter (Appendix A, Figure A.7). The two step cloning strategy of the 

promoter region was necessary due to the high number of repeated restriction sites 

within the 3 'UTR sequence. It was not possible to produce pNPU3PM by truncating 

pNPU7PM for the same reason. Instead, restriction digestion of p71 by EcoPJ and 

ClaI produced a PrP exon III fragment of 3.6kb which was cloned into pGEM-7Zf(+) 

to create pGem3kb (Appendix A, Figure A.8). The promoter/exon I fragment was 

cloned upstream of the truncated PrP exon III in pGem3kb by X7oI digestion to 

create pNPU3PM (Figure 5.2). The structure of the final construct was confirmed by 

restriction mapping as well as PCR targeted to the promoter region and the S'region 

of the PrP open reading frame. 
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A) 	
Apal XhoI 	Xhol Xbal Ns,1 

I 	I 	 ji 	I 	I 

promoter/exon I 
- 	- - - - (05kb) - - - - 	 pOem .promoter 

Apal Xh&EcoRl 	 C/al 	Ns,1 

PrP exon III 
(3.9kb) 	 pGem.3kb 

6.9kb 

(b) 
Xhol 	Xhol EcoRl 	 C/al 

Apal 	 Nsil 

	

I 	j 	 I 

	

PrP promoter! exon I 	 PrP exon l I I 	
pNPU3PM 0.5kb 	 (3.9kb) 	
7.4kb 

Figure 5.2: Construction of clone pNPU3PM. 

A) Restriction digestion and purification of Xhol PrP promotor/ exon I fragment 

from pGem-promoter. B) Cloning of the PiP promoter! exon I fragment upstream 

of the PrP modified exon III in pGem.3kb at site Xhol. For full details on all 

plasmids see Appendix A. 

• PrP promoter 	PrP exon UTR • PrP open reading frame 
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5.2.4 Construct pNPU2PM 
To study protein expression in vitro in association with the 2.1kb PrP mRNA 3 'UTR 

the vector pNPU2PM was designed to contain the ovine promoter, exon I and a 

truncated exon III with consensus polyadenylation signal nt 1522. A 1.5kb fragment 

was removed from pNPU3PM exon III (Section 5.2.3) by KpnI-NsiI digestion 

which, after gel purification, followed by PstI digestion. The resulting 0.4kb KpnI-

PstI fragment was again gel purified and inserted into the 5.9kb fragment produced 

by KpnI-NsiI digestion of pNPU3PM. The restriction digestion ends of PstI and 

NsiI are complimentary and were religated successfully to reform a circular plasmid 

and create pNPU2PM (Figure 5.3). The structure of the plasmid was confirmed by 

restriction mapping. 
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Xhol 	Xhol EcoRl 	Kpnl Pstl 	C/al 	Nsil 
Apal 	

I 	I 

pNPU3PM 
PrP promoter! exon I 	 PrP exon III 	 (7.4kb) 

(0.5kb) 	 (3.9kb) 

Kpnl-NsiI restriction digestion 

Nsil 	 Kpnl 	Kpnl Pstl 
Nsil 

(5.9kb) 	 (1 .5kb) 

Pstl digestion of the 1 .5kb fragment and 
ligation of the purified 0.4kb fragment 
with the 5.9kb fragment 

Kpnl 	PstlI Nsil 

HI 
PrP promoter! exon I 	PiP exon Ill 	 pNPU2PM 

(0.5kb) 	 (2.5kb) 	 6.3kb 

Figure 5.3: Construction of clone pNPU2PM. 

A) KpnhINsiI digestion produces a 5.9 kb and 1 .5kb fragment, which were 

isolated, the 1.5kb fragment was further manipulated by Pstl digestion and a 

0.4kb fragment purified. B) Ligation of 0.4kb KpnlIPstl fragment to Ns,1/ Kpnl 

5.9kb PrP fragment possible due to complementary ligation of sites Pstl and Nsil. 

For full details on all plasmids see Appendix A. 

jay. • PrP promoter 	PrP exon UTR M PrP open reading frame 

175 



5.2.5 In vitro expression of RNA from PrP constructs. 

5.2.5.1 Introduction 

Efficient gene expression requires recognised transcription promoter/ enhancer 

sequences, a transcription start site, correct splicing, and transcriptional termination 

signals (Lodish et al. 1995). Assuming that the full length PrP exon 3 contains the 

intact 3' acceptor site of splicing and 3' polyadenylation signals it was necessary to 

confirm that, following cloning, the ovine PrP constructs contained the consensus 

sequences for transcription initiation and splicing and so were capable in vitro 

expression. 

5.2.5.2 Experimental approach. 

Confirmation that transcription initiation and 5' donor splice sites were present was 

carried out by partial sequencing of the promoter region cloned into plasmids 

pNPU7PM and pNPU2PM (Section 5.5.5.3). Transcriptional activity from 

pNPU7PM and pNPU2PM was investigated by transiently expressing the constructs 

in mouse N2a cells as a protocol had not been developed for the ovine cell lines at 

this time. Expression from the constructs was determined by reverse transcription-

polymerase chain reaction (RT-PCR, Section 5.2.5.4). Full details of the sequencing 

and RT-PCR protocols can be found in Chapter 2, Sections 2.3. As construct 

pNPU2PM was cloned from manipulating exon III of pNPU3PM, constructs 

pNPU2PM and pPU3PM had the same 5' PrP sequence. Therefore, in vitro 

expression detected from pNPU2PM was assumed to also represent transcriptional 

activity possible from pNPU3PM. 
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5.2.5.3 Sequencing promoter region for 5' donor site 

Sequencing of cloned ovine promoter/ exon I region was completed as described in 

Section 2.3.4. Using different nucleotide primers targeted to the 5' and 3' regions of 

the promoter region, both strands of the promoter region were sequenced. The 

sequence data gathered was incomplete, perhaps due to difficulties encountered in 

attempting to sequence a region with a high GC content. However, a conserved 5' 

donor sequence was detected which suggests that splicing at the promoter! exon I 

region should occur (Figure 5.4). 

	

PrP plasmids; 	1 	. . . gccc ccgcagctcc tcctctgcac ggcgactcac 

	

1111 	1111111111 	1111111111 	1111111111 

	

pNPU110-1; 	391 ctccccgccc ccgcagctcc tcctctgcac ggcgactcac 

	

PrP plasrnids; 	35 cagccctagt tgccagtcgc nnacngnngc agagnngaga 

	

1111111111 	1111111111 	HI 	111111 	liii 

	

pNPU110-1; 	431 cagccctagt tgccagtcgc tgacagccgc agagctgaga 

	

PrP piasmids; 	75 gcgncttctc tcccagaggc aggtaaa... 
III 	111111 	1111111111 	1111111 

	

pNPU110-1; 	451 gcgtcttctc tcccagaggc aggtaaatag 

+ splice site 

Figure 5.4: Sequence of ovine PrP promoter! exon I region cloned into 

plasmids pNPU7PM and pNPU2PM. Consensus 5' splice site shown in bold text, 

splice site indicated by arrow. 
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5.2.5.4 In vitro detection of PrP mRNA expressed from PrP constructs. 

Following transient transfection of mouse N2a cell lines with plasmid pNPU7PM 

and pNPU2PM mRNA was isolated and reverse transcribed. The protocol used is 

described in full in Section 2.3.6. Briefly, total RNA was precipitated following lysis 

of the cells using RNAzo1. The same amount of total RNA was used for each RT-

PCR reaction. PCR amplification of the purified mRNA molecules was completed 

using primers which were available at the NPU: A023 (targeting exon I region) and 

13741 (targeting 5' region of exon III). The product of PCR on the reverse 

transcribed mRNA templates with primers A023 and 13741 (available at NPU, 

Appendix A) was predicted to be 250 bases in length if splicing occurred. If splicing 

did not occur a PCR product of approximately 750 bases would be detected as the 

cloned 3' sequence of intron II (approximately 500 bases) would not be spliced out. 

Furthermore, cross reaction of the primers with N2a cell endogenous PrP mRNA 

should lead to a PCR product of approximately 350 bases. 

The result of one RT-PCR reaction is shown (Figure 5.5). Control parameters 

included within the experiment were RT-PCR and PCR on non-transfected N2a cells 

(lanes 4 and 7) and as a positive control for primers A023 and 13741, PCR was 

carried out on an ovine cDNA (RL1 10) supplied by Wilfred Goldmann (lane 3). 

PCR of the ovine cDNA clone should give a product of 350 bases as exon II will be 

present in the transcript. PCR-only was completed on total RNA extract from the 

transfected N2a cells to determine the level of remaining PrP constructs after 

transfection (lanes 5 and 6). RT-PCR products of 750 bases and 250 bases were 

detected following transient expression of the PrP constructs in N2a cells (lanes 8 

and 9). The product at 250 bases is equivalent to successfully spliced mRNA 

transcribed from plasmids pNPU7PM and pNPU2PM. The product at 750 bases may 

reflect the presence of non-spliced mRNA or remaining plasmids template from the 

transfection reaction as determined in lanes 5 and 6. No PCR or RT-PCR products 

were detected in the negative controls, also PCR on the ovine cDNA produced a 

band of approximately 350 bases as expected. Therefore PrP constructs pNPU7PM 

and pNPU2PM have been shown by RT-PCR to be actively transcribed in a mouse 

N2a cell line. 
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1 
Mw (bases) 

1033 

65 

39c 

2 	3 	4 	5 	6 	7 	8 	9 

5Ont 

Ont 

Figure 5.5:cDNA analysis of PrP constructs pNPU2PM and pNPU7PM in N2a cell 

line. Cell were harvested 49 hours post-transfection and total RNA extracted. 

Equivalent amounts of RNA were used for each RT-PCR reaction. Lane 1; 1 OObp 

ladder: lane 2;PCR negative control: lane 3; PCR positive control, ovine cDNA: lane 

4; PCR of total RNA extracted from non transfected N2a cells: lane 5; PCR of total 

RNA extracted from N2a cells transfected with pNPU2PM: lane 6; PCR of total RNA 

extracted from N2a cells transfected with pNPU7PM: lane 7; RT-PCR on total RNA 

extracted from non-transfected N2a cells: lane 8; RT-PCR of total RNA extracted 

from N2a cells transfected with pNPU2PM: lane 9; RT-PCR of total RNA extracted 

from N2a cells transfected with pNPU7PM. 
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5.3 Creating the Hamster 3F4 Epitope by Site Directed 

Mutagenesis. 

5.3.1 Introduction and approach. 

To study expression of the PrP protein in ovine cell lines an assay system had to be 

developed to distinguish transiently expressed PrPC  from endogenous PrPC.  At the 

start of this study, the monoclonal antibody 3F4 was known to recognise specifically 

hamster PrP while not cross-reacting with sheep PrP at the sensitivity required for 

Western blot analysis (Kascsak et al., 1987). It follows then that introduction of the 

3F4 epitope into the sheep PrP amino acid sequence by mutation of the PrP 

nucleotide sequence should allow for the detection of transiently expressed PrP in 

sheep cell lines. 

Mutations can be introduced into known cloned gene sequences by various methods 

that involve cleavage, degradation or synthesis of DNA. One advantage of this 

method is the precision with which the mutation can be introduced. The DNA 

template for oligonucleotide-mediated mutagenesis is normally ssDNA. When 

designing primers for single nucleotide mutagenesis several features must be 

considered; 

1 Oligonucleotide primer must be generated complimentary to the correct strand of 

plasmid template for replication with DNA polymerase. 

2 Length of the oligonucleotides must be sufficient to allow promoter annealing to 

the target sequence (approximately 17-19 nucleotides) with the desired mutation 

in the middle of the sequence. 

3 Target DNA sequence should contain little sequence capable of forming complex 

secondary structure i.e. palindromic sequences. 

4 Oligonucleotide should be unlikely to bind to regions on the DNA template other 

than the target sequence. 



Alignment of the sheep and hamster PrP amino acid sequence (Figure 5.6) across the 

3F4-recognition site shows that the sequences differ at one codon only. The sheep 

gene encodes for valine at position 115 as opposed to methionine in the hamster 

equivalent codon 112. Mutating the sheep coding region at nucleotide position 424 

from G to A would convert codon 115 from valine to methionine, thus creating the 

potential 3F4 recognition site. This mutation also creates the restriction site NdeI 

within the PrP mutated ORE which can be used for screening during the cloning 

procedure. 
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Comparison of the hamster and ovine 31F4 epitope amino acid (aa) sequence: 

Hamster: ' °4K P K T N M K H M A G A A A117  

Ovine: 107KPKTNMKHVAGAAA 120 
 

Primer design for ovine PrP site directed mutagenesis. 

Ovine aa sequence: 	114H V 	A G 	A 	A A 	A 	G A'23  

Ovine nt sequence: 5' 411 CAT GTG GCA GGA GCT GCT GCA GCT GGA GCA440  3' 

Mutagenic primer: 3' 29GTA TAC CGT CCT CGA CGA CGT CGA CCT CG' 5' 
(designated E439) 

Mutated .aa sequence: 107K P K T N M K H M A G A A A'2°  

Figure 5.6: Mutating the sheen PrP nucleotide seauence to create the hamster 3F4 

epitope in the amino acid sequence. A) Comparison of the hamster 3F4 epitope with 

the equivalent ovine amino acid (aa) sequence. Ovine sequence deviates from the 

hamster sequence at one codon only: codon 115 (red). B) Method used to design a 

reverse primer (E439) for mutagenesis of the ovine PrP nucleotide (nt) sequence 

spanning 411-439 to convert the sheep PrP codon 115 from valine to methionine thus 

creating the 3F4 recognition site. 
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5.3.2 Experimental Approach 

Two variations on the oligonucleotide- mediated mutagenesis method were used in 

the attempt to introduce the single nucleotide substitution in the sheep ORF 

necessary to create the hamster 3F4 epitope. The first used a single mutagenic 

primer to induce synthesis of a DNA template, which would be amplified in a 

bacterial system. The second method was PCR based, introducing the mutation via a 

set of primers designed to amplify a precise region of the ORF, with one of the 

primers containing the mutation. 

For both methods, primers were designed using the published Suffolk PrP exon III 

sequence (accession number M313 13.em_om, Goldmann et al 1990). Full details of 

the primers sequences used can be found in Section 2.3, Table 2.1. Site directed 

mutagenesis was attempted using the clone pPSHPrP which was available at the 

NPU and contains only the PrP open reading frame and so increasing the likelihood 

of correct annealing of the primer to the target sequence (see Appendix A, Figures 

A.1 1-A.14). 

5.3.2.1 Single-primer Oligonucleotide- mediated mutagenesis. 

The method used for single primer oligonucleotide mutagenesis is full described in 

Section 2.3.3. Briefly, the oligonucleotide H3F4 was designed and used in 

mutagenic experiments with pPSHPrP. After annealing the phosphorylated 

mutagenic primer (lOpmoIJml) to single stranded DNA (1pg) of pPSHPrP, the 

primer extension was allowed to occur over 15 hours at the appropriate temperature. 

DNA synthesis was initiated at the 3' terminus of the mutagenic primer and extended 

by DNA polymerase along ssDNA template to form a heterodulex. Once DNA 

synthesis was complete, XL-Blue E.coli cells were transfected and plated onto 

ampicillin agar plates. Colonies were screened for positive clones by differential 

hybridisation (refer to Section 2.3.3.2). Briefly, for screening large numbers of 

colonies, duplicate colony filters were produced by pressing nitro-cellulose 

membranes onto the experimental ampicillin plates. The filters were then treated to 

lyse cells and the DNA fixed to the membranes by UV irradiation. After four hours 

hybridisation, at 37'C, with radio-labelled oligonucleotides 1131 74 (mutated PrP 
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sequence; Chapter Two, Table 2.1) or E377 (normal PrP sequence; Chapter Two, 

Table 2.1) the filters were washed twice at room temperature for 10 minutes, 

followed by a further 10 minutes at 47 °C to remove any unbound probe then 

exposed to autoradiography film. 

Colonies that appeared positive by differential hybridisation were further analysed by 

restriction digestion. Digestion of pPSHPrP with restriction enzymes HindIII, EcoPJ 

and NdeI gives a defined pattern (Appendix A). The plasmid, pPSHPrP has a pUC 

10/11 backbone with the PrP coding region inserted in the BamHI site, digestion with 

EcoRI and HindIII cuts out the 0.8Kb PrP ORF fragment. Successful site directed 

mutagenesis at nucleotide 414 within the ORF would create a novel NdeI site, and is 

detected by digestion with EcoRI, HindIII and NdeI. The 0.8Kb EcoRJJ HindIII 

fragment should be digested with NdeI producing additional fragments of 0.35kb and 

0.4kb. 

5.3.2.2 Results - single primer mutagenesis. 

Single primer mediated mutagenesis was repeated several times and any colonies that 

seemed potentially positive for the required mutant plasmid were assayed. 

Restriction fragment length polymorphism for the presence of NdeI was not detected 

in any colonies screened (results not shown). Most transformed cells appeared to 

contain only unmutated plasmids. Control digests were carried out to ensure that all 

enzymes used were active. It was therefore concluded that single-primer mediated 

mutagenesis had been unsuccessful at introducing the desired mutation into the sheep 

PrP ORF. 
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5.3.2.3 PCR —mediated mutagenesis. 

Oligonucleotides specific to the sheep PrP ORF which were used to amplify a region 

approximately 250 bases in length (Chapter 2, Table 2.1). The first primer, p1, was 

available at the NPU and was homologous to the sense strand of the ORF from 

position 118-225, which includes aXmal restriction site. The other primer, E439, 

was designed to be homologous to the anti-sense strand except at position 414 where 

it encoded a T instead of a C (Figures 5.6B, 5.7). Following PCR, the amplified 

fragment was digested with XmaI and PstI, gel purified and ligated into pBluescript 

(Stratagene, UK) to create the construct pBSK-ORF.3F4. Potentially positive 

colonies for the mutated sequence were screened by restriction digestion with NdeI. 

Digestion with XbaI will linearize the transformed pBSK-ORF.3F4 (3.5kB), 

successful substitution at nucleotide 414 would have created a NdeI site therefore 

double digestion with XbaI! NdeI was expected to produce fragments of 0.25kb. 

5.3.2.4 Results - PCR mediated mutagenesis. 

In contrast to the single-primer mediated mutagensis method, following ligation and 

transformation, PCR-mediate mutagenesis did not produce high numbers of colonies 

for screening, it was therefore possible to screen all colonies efficiently by restriction 

digestion with NdeI and XbaI. After three repeated attempts at PCR mediated 

mutagensis, a positive clone was identified by restriction digestion, the result was 

confirmed further by PCR (result not shown). Full sequencing (Figure 5.7) of the 

mutated PrP ORF ensured that no further mutations had been introduced into the 

fragment by PCR other than the intended mutation at nucleotide position 414. This 

plasmid is known as pPSH.3F4. 
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Xmal 

pPSH3F4: 	1 	 • cccggga 7 

11111 	I 	I 
M31313: 151 GACCAAAACCTGGCGGAGGATGGAACACTGGGGGGAGCCGATAccccA 200 

P1 

pPSH3F4: 	8 cagggcagtcctggaggcaaccgctatccacctcagggagggggtggctg 57 
1111111 	I 	11111111111 	I 	11111111 	IlIllIlIllIllIll 	III 

M31313: 201 CAGGGCAGTCCTGGGCAACCGCTATCCACCTCAGGGAGGGGGTGGCTG 250 

pPSH3F4: 	58 gggtcagccccatggaggtggctggggccaacctcatggaggtggctggg 107 
liii 	1111111111111111 	11111 	Iii 	IllilIllIllIllIll 	II 

M31313: 251 GGGTCAGCCCCATGGAGGTGGCTGGGGCCAACCTCATGGAGGTGGCTGGG 300 

pPSH3F4: 108 gtcagccccatggtggtggctggggacagccacatggtggtggaggctgg 157 
111111 	1111111111111 	11111 	111111111 	III 	111111111 

M31313: 301 GTCAGCCCCATGGTGGTGGCTGGGGACAGCCACATGGTGGTGGAGGCTGG 350 

pPSH3F4: 158 ggtcaaggtggtagccacagtcagtggaacaagcccagtaagccaaaaac 207 
I 	11111111111111111111 	I 	1111111 	1111111111111 	liii 

M31313: 351 GGTCAAGGTGGTAGCCACAGTCAGTGGACAGCCCAGTAJGCC 	JC 400 

Pstl 

pPSH3F4: 208 caacatgaagcatatggcaggagctgctgcag 
IIIIIIIIIIIII 	IIIIIIIIIIIIIIIIII 

M31313: 401 CAACATGAGCATGTGGCAGGAGCTGCTGCAGCTGGAGCAGTGGTAGGGG 450 

E439 

Figure 5.7: PCR mediated mutaqenesis of the ovine PrP open readina. The 

plasmid pPSHPrP was used in mutagenesis studies to modify the ovine PrP open 

reading frame to encode the hamster 31F4 epitope. The clone pPSH3F4 was 

successfully created by PCR mutagenesis. Comparison of pPSH3F4 sequence 

(upper line) to the published Suffolk PrP open reading frame (accession number 

M31313.em_om, lower line) shows the mutation from G to A at the equivalent 

pPSH3F4 nucleotide position. Oligonucleotides represented by dark blue arrows. 
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5.3.3 Conclusions. 

Site directed mutagenesis was successful in creating the hamster 3174 epitope 

nucleotide sequence within the sheep ORF using the PCR mediated method rather 

than the single-primer mutagenesis method. The single primer method was chosen 

first primarily on the basis of theory - priming ssDNA synthesis from a mutagenic 

oligonucleotide should have conserved the mutation during dsDNA formation. 

Secondly the planned screening method of hybridisation and restriction digestion 

should have been efficient and should have reduced the background of non-mutated 

clones. However the method was time consuming and did not produce any positive 

clones. Several reasons may explain the failure of the single primer mediated 

mutagenesis. For example: incomplete polymerisation, primer displacement by 

DNA polymerase, and host mismatch-repair in favour of the original sequence. 

Many new methods now described use two or more primers for mutagenesis. The 

presence of the other primers allow for selection or prevent displacement of the 

mutagenic primer. In contrast the PCR-mediated mutagenesis was successful and 

produced a positive clone quickly. This method was convenient and efficient in 

producing the desired mutagenesis. Sequencing was completed to ensure that no 

further mutations were introduced by PCR. 
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5.4 Insertion of 3F4 Fragment into Clones pNPU7PM and 

pNPU2PM. 

The mutated sheep nucleotide sequence in clone pPSH.3F4 (Section 5.3) was 

inserted into clone pNPU7PM and pNPU2PM to allow for detection of transiently 

expressed sheep PrP in sheep cell lines against a background of endogenous sheep 

PrP protein using 3F4 anti-PrP antibody. Due to time restrictions, a decision was 

taken to concentrate on transient expression of PrP from plasmids pNPU2PM and 

pNPU7PM as these constructs resemble the known ovine endogenous in vivo PrP 

mRNAs. Construct pNPU3PM was therefore not modified further by the insertion of 

the 3F4 sequence. 

5.4.1 Experimental approach and results. 
Briefly, the 3F4 epitope was created by PCR-mediated site directed mutagenesis in 

plasmid pPSHPrP to create the clone pPSH3F4 (Section 5.3). By restriction 

digestion with enzymes Dralli and HincII a 0.3kb fragment containing the mutated 

sheep sequence was isolated from pPSH3F4 and cloned into the construct pNPU2PM 

(Figure 5.8). Correct orientation and insertion of the fragment into pNPU2PM was 

confirmed by restriction mapping and partial sequencing. The presence of the 3F4 

epitope was confirmed by restriction digestion with NdeI (Figure 5.lOa, lane 3). The 

resulting plasmid, pNPU2.3F4, contains the PrP promoter/exon I, a truncated exon 

III to position 1929, and encodes for the 3F4 epitope in the amino acid sequence. 

Following conformation of the structure of plasmid pNPU2PM.3F4 it was possible to 

clone the 3F4 epitope into plasmid pNPU7PM to create pNPU7PM.3F4 (Figure 5.9). 

Restriction digestion of PNPU2.3F4 with BamHI and XbaI lead to the purification a 

1.5kb fragment carrying the PrP ORF mutated to encode the 3F4 epitope. The 1.5kb 

fragment was inserted into pNPU7PM using BamHI and XbaI and confirmed by 

partial sequencing and restriction mapping. Again the presence of the 3F4 epitope 

was confirmed by digestion with NdeI (Figure 5.1OB). Purification of the 

Bam}iTI/Xba I site from pNPU7.3F4 and further digestion with NdeI produced a 

fragment of 1kb (Figure 5.1013, lane 5) 



A) 
DraHI 	HincIl 	Dralll 	 DralII 	HincII 

I 	h 
PuP ORF 	 PrP promoter! exon I PiP exon III 

0.7kb 	 0.5kb 	 2.5kb 
pPSH3F4 
(3.4kb) 

Dralil/Hincil digestion 
$ SAP treatment 

B) DralIl 	Hincll 	DraIlI 	 Dralli 

	

ii 	 I 	H 

	

(0.3kb) 	 (2kb) 

ligation 

pNPU2PM 
(6.3kb) 

Hind l 	DralIl 

(4kb) 

Dralli HincII 
Dralli 	 I 

pNPU2.3F4 

PrP promoter! exon I 	PrP exon III 	 (6.3kb) 

	

0.5kb 	 (2,5kb 

Figure 5.8: Cloning of DNPU2.3F4. 

A) Restriction digestion with Dralll/ HinclI and shrimp alkaline phosphatase 

(SAP) treatment of plasmids pNPU2PM and pPSH3F4. B) Fragments 2kb and 

4kb were purified from pNPU2PM digestion and set up in a three way ligation 

with the 0.3kb fragment from pPSH3F4 digestion. The 0.3kb fragment carries 

the PrP coding region encoding the 3F4 epitope. 

	

Key. • PrP promoter 	0 PrP exon UTR • PrP open reading frame 

• 3F4epitope 
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BamHl 	 XbaI 

H{ 	ii. I 	I 

	

PiP exon Ill 	 PNPU2.3F4 
PrP promoter! exon 	(2.5kb) 	 (6.3kb) 

BamHl 	 Xbal 

PrP promoter! exon I 
0.5kb 	 PrP exon III 	pNPU7PM 

	

4.1 kb 	(10.1kb) 

Insertion and ligation of 1.5kb 

	

I 	BamHI/Xbal fragment into 
V pNPU7PM 

BamHl 	 XbaI 

i 	 -- 

PrP promoter! exon I 
0.5kb 	 PrP exon Ill 	PNPU7.3F4 

	

4.1 kb 	(110.1 kb) 

Figure 5.9: Cloning of PNPU7.3F4 

Restriction digestion with BamHlI Xbal of plasmids pNPU3F4.2 and pNPU7PM. 

The 1.5kb fragment from pNPU3F4.2 digestion, carrying the 3F4 epitope, was 

ligated into the 8.6kb fragment of pNPU7PM after BamHl/XbaI digestion to form 

pNPU3F4.4 

	

Key. ! PrP promoter 0 PrP exon UTR 	• PrP open reading frame 

I 3F4 epitope 

190 



1 	2 	3 	4 	5 

Mw (kb) 
4 
3-
2 

1 - 

0.8 -  

0.5- 

  
Mw (kb) 	

1 	2 	3 	4 	5 

0.8 ... .!!!!!! 

Figure 5.10: Screening pNPU2.3F4 and pNPU7.3F4 clones for mutagenic Ndel site. 

A)Restriction digestion of pNPU2.3F4 with Ndel to confirm presence of mutated 

ovine sequnce. Digestion of pNPU2.3F4 with Ndel should produced a 0.8kb 

fragment if the mutagenesis is successful. Lane 1; 1 Kb markers: lane 2; Ndel 

restriction digest of pNPU2PM; lane 3; Ndel restriction digest of pNPU2.3F4: lane 4; 

BamHl IScal restriction digest of pNPU2PM: lane 5; BamHlIScal restriction digest of 

pNPU2.3F4. B) Restriction digestion of pNPU7.3F4 to confrim the presence of 

mutated ovine PrP sequnce. Purification and digestion of the BamHl/Xbal fragment 

from pNPU2.3F4 and pNPU7.3F4should produce a 1.1kb fragment if mutagensis 

has been successful. Lane I; markers VI: lane 2; Ndel resitriction digest of 

BamHlIXbaI fragment of pNPU7PM; lane 3; Ndel restriction digest of BamHl/Xbal 

fragment of pNPU2.3F4: lane 4; Ndel digestion of BamHl Mal fragment of 

pNPU7.3F4 clone7: lane 5; Ndel digestion of BamHI/Xbal fragment from 

pNPU7.3F4 clone 8. 
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5.5 Immunological Detection of Transiently Expressed Ovine 

P rPC Protein in Mouse and Ovine Cell Lines 

5.5.1 Introduction 

In vitro expression is frequently used for the study of protein structure and function, 

protein—protein interactions, antibody production and mutagenesis. It can also be 

employed to assess the levels of protein synthesis as a result of enhancer/ repressor 

elements controlling gene expression at the level of transcription or translation. 

Analyse of a protein sample often involves purification which can be dependent on 

the biochemical properties of the protein i.e. solubility or size. Sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) has become the most 

popular method for analysis and isolation of small amounts of protein. Successful 

SDS-PAGE allows for individual gel bands to be visualised and recovered, or 

transferred onto a membrane, for further analysis. The most commonly used 

methods for visualising bands after gel electrophoresis are Coomassie blue and silver 

staining which often require stringent conditions making proteins difficult to 

manipulate further. Coomassie and silver stains do not differentiate between proteins 

within a sample, staining the majority of proteins present within the isolated fraction. 

For more specific analysis of particular proteins immunological detection is essential. 

Immunological detection of proteins is possible using either monoclonal or 

polyclonal antibodies. Antibodies are widely used to detect antigens in a variety of 

methods; immunodetection can be classified as either solution based (enzyme-linked 

immunosorbent assay (ELISA), immunoprecipitation) or sample-immobilisation 

based (i.e. Western, dot blotting). In general the method for inimunodetection is 

determined by the sensitivity and specificity of the antibodies available, nature of 

sample or tissue, and ease of purification/ extraction of target protein. Always of 

importance are the conditions for stringency in antibody-antigen detection as changes 

in the environment (i.e. temperature, salt concentration, and presence of detergents) 

may cause non-specific binding or limited antibody-antigen binding. Furthermore, 

antibodies may recognise epitopes that may be denatured or buried during processes 
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such as SDS-PAGE or Western blotting and so antibody-binding sensitivity may be 

reduced. 

Developing a reliable method for PrPC  protein extraction was vital for the study of 

endogenous and transient PrPC  expression studies. Methods for PrPSC  isolation are 

well established (first described by Hope et al., 1986), however this is not the case 

with PrPC .  PrPC differs in physical properties to PrPSC  which means different 

isolation methods must be used to isolate PrPC.  Firstly  PrPC  is detergent soluble (e.g. 

Sarkosyl) but detergents can make samples viscous and difficult to analyse by SDS-

PAGE. Secondly, PrPC  is not as physically stable as PrPSC  and may be degraded by 

the presence of strong denaturing agents or heat treatment. Further, as PrPC  is 

proteinase K sensitive, steps must be taken to prevent proteinase contamination. PrP 

protein has a distinctive band pattern on SDS-PAGE, it has a molecular weight of 33-

35kDa (Meyer et al., 1986) and separates into three bands due to the glycosylation 

status (un-, mono-, di- glycosylated)( Oesch et a!, 1985; Barry and Prusiner, 1986). 

The development of a suitable method for PrP extraction and detection was greatly 

assisted by the advice and guidance of Angela Chong, Neuropathogenesis Unit, 

Edinburgh. 

As discussed in Section 1.9 the level of PrPC  protein detected in different cell types and 

tissues can vary considerably, with the highest level of PrPC  protein recorded in the 

brain levels (Oesch et al., 1985; Caughey etal., 1988; Manson etal., 1992a and b; Sales 

etal., 1998; Goldmann et al., 1999). Within the brain PrP expression is thought to be 

largely associated with neurones and astrocytes (Kretzschmart etal., 1986; Manson et 

al., 1992a; Harris et al., 1993; Moser et al., 1995 Raeber et al., 1997). It was 

necessary to determine the level of endogenous PrPC  expression, if any, within the 

ovine cell lines as this may have implications for the detection level of transiently 

expressed PrPC  from the PrP constructs. For instance, although the immortalised brain 

cell lines (sA80BR and pA80BR) tested positively for the presence of neurones and 

glial cells (Chapter 3) they may be altered intrinsically so that they express low, or high, 

levels of PrPC.  Also, one may expect PrPC  expression from the primary cerebellum 

cells, IS 1 20.Cer (positive for neuronal cells, Chapter 3) as PrP expression in neurones is 
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well established (Kretzschmart et al., 1986; Manson et al., 1992a; Harris et al., 1993). 

The reported level of PrP expression in peripheral tissues can vary greatly (Horiuchi 

et al., 1995; Goldmann et al., 1999). In sheep, PrP mRNA expression has been 

shown to be relatively high in the kidney despite the apparent absence of detectable 

PrPC (Honuchi et al., 1995). In contrast, heart tissue shows high level of both PrP 

mRNA and PrPC  protein (Horiuchi et al., 1995; Goldmann et al., 1999). 

The aim of this Section was to develop an immunological detection method for 

transiently expressed ovine PrPC  in brain and peripheral tissue-derived cell lines. 

Transient expression the PrP plasmids described in Section 5.4, may provide 

information relevant to the understanding of events leading to differential expression 

of the PrP protein and whether the factors that govern the level of PrP protein 

synthesis are found in the 3 'UTR of the PrP gene. 

5.5.2 Experimental Approach. 
At the start of this study the level of PrPC  protein expression in the cell lines was 

unknown and so the unmodified PrP plasmids (pNPU2PM, pNPU3PM, pNPU7PM) 

were transfected in to the sheep cells in the hope of being able to detect increased 

levels of PrP expression as a result of transient expression. Most emphasis however, 

was placed on the transient expression of the PrP constructs encoding the 3F4 

epitope (pNPU2.3F4 and pNPU7.3F4). The constructs were also expressed in mouse 

N2a cells as a control for extraction and immunological detection methods. 

N2a and ovine cell lines (5A80BR, pA80BR, pA80SK, 15120.Cer and 1S120.Liv) 

were transfected with the ovine PrP constructs (Sections 2.5 and 3.5). Successful 

transfection was confirmed by co-transfection and colorimetric assay of - 

galactosidase (n-gal). For approximately 6x10 7  cell, 3-gal assays completed on the 

recovered cell lysates allowed for differential transfection efficiency between 

experiments. Three methods were tested for efficient protein extraction from the cell 

lines: chloroform/methanol precipitation; Triton Xli 4 detergent extraction; 

immunoprecipitation. The level of purified PrPC  isolated was estimated by Western 

blot analysis. A full description of each method can be found in Sections 2.6. 
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Chloroform/ methanol extraction was the simplest of the methods involving lysis of 

the cells by shearing in the presence of SDS then precipitation in 

chloroform/methanol - a quick, crude protein preparation. Triton X114 detergent 

extraction is a laborious, precise process, temperature dependent, requiring several 

washes of a sucrose gradient with Triton Xl 14 solution to extract all protein. 

Extraction by Triton XI 14 can produce a sample collection that can be pooled and 

concentrated by methanol precipitation. Immunoprecipitation involves lysing cells 

in a cell lysis buffer, the antibody is applied overnight and isolated the next day by 

the addition of Sepharose A beads. Sepharose beads are covalently modified with 

isolated protein A molecules that occur naturally on the cell walls of Staphylococcus 

aureus and bind to the Fc region of IgG or 1gM molecules. The strategy behind 

immunoprecipitation is the interaction of the antigen with the antibody and then the 

addition of excess Sepharose A containing protein A to bind all appropriate 

antibodies. The immunoabsorbed antigen is purified from the crude extract by low-

speed centrifugation. Immunoprecipitation can be more sensitive than other methods 

if the antigen is in low concentration or sensitive to degradation. 

Both SDS-PAGE and Western blotting were completed after each extraction to 

determine the presence of PrP (Section 2.6.4). The antibodies used for Western 

analysis and immunoprecipitation are outlined in Table 2.3. Antibodies Fill 1 and 

3F4 were kindly supplied by Chris Birkett, IAH, Compton and Richard Kascsak, 

MRDD, New York, respectively. The secondary antibody was a peroxidase-

conjugated affinipure IgG complex. Purified PrPSC  samples were kindly provided by 

Angela Chong and Kasia Sobotnicki as positive controls for the SDS-PAGE and 

Western blotting procedures (full description of sample preparation and use in Section 

2.6). Positive controls were prepared from scrapie-affected mice or hamster brains 

available at the NPU. At the start of preparation a known weight of brain tissue (grams) 

was used for PrPSC  extraction. The purified sample is referred to as the amount of 

protein (gram Equivalent (gE)) extracted from a known weight of brain (Chong, 

personal communication). Within this thesis both proteinase K treated and non-treated 

sample were used. For SDS-PAGE, 25p1 of a control sample, dissolved in lOOjil lx 

sample buffer (Chapter 2, Section 2.6) was loaded on to a gel. Serum controls for the 
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antibodies available at the NPU were completed prior to this study (Angela Chong, 

personal communication: for 3F4 and 6H4 please refer to Kascsak etal., 1987 and 

Korth et al., 1997 respectively). 

5.5.4 Results. 

5.5.4.1 Chloroform/methanol extraction. 

Chloroform/ methanol extraction of mouse N2a cells transfected with plasmids 

pNPU2PM, pNPU3PM and pNPU7PM was repeated eight times. The ruminant-

specific antibody FH1 1 was used for immunological detection of transiently expressed 

ovine PrPC.  A typical Western bot is shown in Figure 5.11A. Despite several attempts, 

transiently expressed ovine PrP was not detected from any of the PrP constructs in the 

mouse N2a cell line (Figure 5.1 1A, samples 1-3). Successful extraction of endogenous 

N2a PrPC  by chloroform methanol extraction was demonstrated by immunoblotting 

with the polyclonal antibody 1B3 (Figure 5.11B. samples 1-3). Furthermore, the level 

of PrPC  extracted from N2a cells transfected with pNPU7PM does appear to be higher 

compared to the cells transfected with either pNPU2PM or pNPU3PM (Figure 5.1 1B, 

compare sample 3 to 1 and 2). However, this result was never repeated and no internal 

control was probed for, i.e a-actin, on the original blot which would have confirmed 

increased transient expression from pNPU7PM compared with the other PrP constructs. 

Similar transfections and extractions were carried out on the ovine cell lines sA80BR, 

pA80BR and pA80SK. A typical immunoblot result is shown in Figure 5.12. 

Chloroform/ methanol extraction was repeated four times on the transfected sheep cell 

lines and ovine PrP expression analysed by Western blotting coupled with antibodies 

1B3 and FH1 1. At the time of this study the monoclonal antibody 3F4 was not 

available at NPU and so the expectation at this stage was not to distinguish between 

endogenous and transiently expressed PrPC  but to detect an increase in PrPC  levels in 

the transfected cells compared to non-transfected cells. However, chlorofonn!methanol 

extraction was not efficient in extracting detectable levels of PrPC  from non-transfected 

or transfected ovine cells (Figure 5.12). 
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Figure 5.11: Chloroform methanol extraction of endogenous and transiently 

expressed PrP' from a mouse N2a cell line. Following extraction, the precipitate 

was dissolved in lx sample buffer for SDS-PAGE and then transferred on to a 

charged nylon membrane for Western blotting. Antibody control was purified goat 

PrPSC ,0.002 gE; N2a control is non-transfected cells processed for extraction; 

sample 1, N2a cells transfected with pNPU2PM ; sample2, N2a cells transfected 

with pNPU3PM; sample 3, N2a cells transfected with pNPU7PM. A) 

Immunodetection with the ovine specific antibody FH1 1. B) Immunodetection with 

the polyclonal antibody 1 B3. Detection of lower molecular weight bands may 

indicate degradation of PrP and higher molecular weight bands may be PrP dimers 

or trimers. Alternatively extra bands may be due to cross reactivity of the 1 B2 

antibody (Chong, personal communicationO. 
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Figure 5.12: Chloroform/methanol extraction of endogenous ovine PrP from cell 

lines sA80BR. pA80BR and pA80SK. From chloroform/ methanol extraction, the 

protein precipitate was dissolved in lx sample buffer and loaded for SDS-PAGE. 

The antibody positive control was 0.002gE (left) and 0.0002gE (right) of mouse 

P rPSC which had been proteinase K treated. Following western blotting, the 

polyclonal antibody 1 B3 was used to detect PrPC  from sA80BR (sample 1), pA80BR 

(sample 2) and pA80SK (sample 3). 
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5.5.4.2 Detergent extraction. 

During development of Triton X-1 14 extraction from mouse and ovine cells, the 

antibodies 3F4 and 6H4 became available at NPU and were used in conjunction with 

1B3 and PHi 1 in an attempt to detect endogenous and transiently expressed P rPC .  

Detergent extraction using Triton X-1 14 was completed a total of eighteen times on 

N2a cells transiently transfected with the PrP constructs. Figure 5.13 shows a blot 

with one half probed with the polyclonal antibody 1B3 and the monoclonal antibody 

3174. The right-hand side of the blot is a typical result using 1B3, confirming protein 

extraction. Immunodetection with the hamster specific antibody 3F4 on the left-hand 

side of the blot shows in lane 2 a protein of approximately 27 kDa that is equivalent 

to truncated, un-glycosylated form of PrPC  protein. Using Triton X-1 14 extraction it 

was not possible to detect transiently expressed ovine PrP in N2a cells using the 

ruminant specific monoclonal antibody FH 11 (Figure 5.14) 

Purification of endogenous and transiently expressed ovine PrP by Triton X-1 14 was 

completed a total of nineteen times followed by immunodetection with the antibodies 

1 B3, FH 11, 3F4 and 6H4. In the majority of instances the level of PrP protein 

purified was not sufficient to be detected at the level of Western blotting using these 

antibodies. The immunoblot shown in Figure 5.15 is typical of control and 

transfected ovine cell lines after detergent extraction, SDS-PAGE purification and 

Western blotting with 1B3. On one occasion, ovine PrP was detected by the 

antibody FM 1 in sA80BR cells which had been transfected with the plasmid 

pNPU7PM (Figure 5.1513, lane 7), PrPC  detected had an apparent molecular weight 

of 3 lkDa which would be approximate to a un-glycosylated PrP protein. In Figure 

5.15 no endogenous PrPC  was detected, imunoblotting similar samples with hamster 

anti-PrP 3F4 antibody failed to confirm this result (Figure 5.16). Using detergent 

extraction it was not possible to detect transiently expressed PrP with the hamster 

specific antibody 3F4 (Figure 5.16). 
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Figure 5.13: Detergent extraction and detection of transiently expressed PrP' from 

N2a cells with 3F4.. Cell lysate was recovered from control N2a cells (sample 1) and 

N2a cells transfected with the construct pNPU2.3F4 (sample 2) and PrPC  purified by 

Triton X-114 extraction. The precipitate was dissolved in lx sample buffer and 

processed by SDS-PAGE, transferred onto PVDF membrane and membrane split into 

two equal halves; one half was probed with 1 B3, the other with 3F4. The positive 

antibody control was a purified hamster PrP (0.05gE), non proteinase K treated. 
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Figure 5.14:Detergent extraction of ovine PrP' from N2a cells and detection with 

antibody FH1 1 Cell lysate was recovered from control N2a cells (sample 1) and N2a 

cells transfected with the constructs pNPU2PM (sample 2), pNPU3PM (sample 3), and 

pNPU7PM (sample 4) and protein purified by Triton X-114 extraction. The precipitate 

was dissolved in lx sample buffer and processed by SOS-PAGE as shown above and 

then transferred onto a PVDF membrane (western blotted). The ruminant specific 

antibody FH1 1 was used to probe the membrane. The positive antibody control was a 

purified goat PrP&  (0.025gE) non proteinase K treated. 
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Figure 5.15: Detection of PrPC protein from ovine cell lines following detergent 

extraction. Cell lysate was recovered from control ovine sA80BR cells and ovine cells 

transfected with the PrP constructs and protein purified by Triton X-1 14 extraction. The 

precipitate was dissolved in lx sample buffer and processed by SDS-PAGE and 

western blotted. The positive antibody control was a purified mouse (A) and goat (B) 

PrP (0.1 gE) non proteinase K treated. A) Immunoblotted with antibody 1 B3. 

Samplel: non-transfected sA80BR cells; sample 2: sA80BR cells transfected with 

pNPU2PM; sample 3: sA80BR cells transfected with pNPU7PM. B) Immunoblotted 

with antibody FH1 1. Sample 4: non-transfected sA80BR cells; sample 5: sA80BR cells 

transfected with pNPU2PM; sample 6: sA80BR cells transfected with pNPU3PM; 

sample 7; sA80BR cells transfected with pNPU7PM. 
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Figure 5.16:Triton X-1 14 extraction of transiently expressed PrPC  in sA80BR 

with the antibody 3F4. Cell lysate was recovered from control ovine sA80BR cells 

and ovine cells transfected with the PrP constructs pNPU2.3F4 and pNPU7.3F4. 

Protein was purified by Triton X-100 extraction. The precipitate was dissolved in lx 

sample buffer and processed by SDS-PAGE and Western blotted with the hamster 

anti-PrP 3F4. The positive antibody control was a purified hamster PrP (0.05gE) non 

proteinase K treated. Samplel: non-transfected sA80BR cells; sample 2: sA80BR 

cells transfected with pNPU2.3F4; sample 3: SA80BR cells transfected with 

pN PU7. 3F4. 
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5.5.4.3 Immunoprecipitation. 

Protein purification by immunoprecipitation was carried out on five separate 

occasions for N2a cells and four times for ovine cell lines populations which had 

been transfected with the PrP constructs encoding the 31 74 epitope. After harvesting 

of the cell, the cell lysate was incubated for sixteen hours with antibodies 3F4 or 

6H4. SDS-PAGE and Western blotting with 1B3 to detect endogenous and 

transiently expressed PrPC  protein followed precipitation of the immunocomplex. 

Figures 5.17 and 5.18 show typical blots from PrPC  protein purified by 

immunoprecipitation from both N2a and ovine cell lines. 

As with chloroform/methanol extraction (Section 5.5.4.1) cross reactivity of the anti-

PrP antibody 1B3 was observed. This does make interpretation of the blots more 

difficult. Immunoprecipitation with complete culture medium was negative (data not 

shown) where as immunoprecipitation with all cell-extract preparations showed 

positive for PrP. The blots in Figures 5.17 and 5.18 show PrPC  extracted from N2a 

cells transfected with constructs pNPU2.3F4 and pNPU7.3F4. From Figure 5.17 all 

of PrPC  has been precipitated with the Sepharose beads and does not remain in the 

supernatant. PrPC  was detected in both non-transfected and transfected N2a cells 

despite using hamster anti-PrP 3F4 monoclonal antibody. Expression of the PrP 

constructs was also examined in ovine cell lines, Figure 5.18 shows PrPC  extraction 

from sA80BR. Despite detection of higher molecular weight proteins, extraction of 

PrPC protein also from both cell lines using immunoprecipitation was successful and 

on most occasions all three glycoforms of PrPC  were visible (i.e un-, mono- and di-

gylcosylated). It is apparent that although immunoprecipitation was capable of 

extracting PrPC  from cell lysate preparations it was not possible to distinguish 

transiently expressed PrPC  from endogenous PrPC,  despite the transient PrP 

constructs encoding the hamster 3F4 epitope. 
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Figure 5.17: Immunoprecipitate of PrPC  protein from N2a cells with 3F4. Cell lysate 

was recovered from N2a cells transfected with the constructs pNPU2.3F4 and 

pNPU7.3F4 for immunoprecipitation overnight with the hamster specific antibody 3F4. 

The precipitate was collected and protein eluted and processed by SDS-PAGE and 

Western blotting with the polyclonal antibody 1 B3. The supernatant collected from the 

precipitate was methanol precipitated and also processed. The antibody control for 

Western blotting was mouse PrP, (0.05gE) proteinase K treated. Sample 1, 

immunoprecipitate from mouse cells transfected with pNPU2.3F4: sample 2; 

immunoprecipitate from mouse cells transfected with pNPU7.3F4: sample 3; 

supernatant from sample 1: sample 4; supernatant from sample 2 
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Figure 5.18: Immunoprecipitation of PrPC  protein from N2a and sA80BR cell lines 

transfected with 3F4 encoding PrP constructs. Cell lysate was recovered from N2a 

and sA80BR cell lines from both controls and lines transfected with the constructs 

pNPU2.3F4 and pNPU7.3F4 for immunoprecipitation overnight with the hamster 

specific antibody 3F4. The precipitate was collected and protein eluted and processed 

by SDS-PAGE and Western blotting with the polyclonal antibody 1 B3. The antibody 

control for Western blotting was hamster PrP&  (0.05BE) non proteinase K treated. 

Sample 1, immunoprecipitate from non-transfected mouse cells; sample 2, 

immunoprecipitate from N2a cells transfected with pNPU2.3F4, sample 3, 

immunoprecipitate from N2a cells transfected with pNPU7.3F4; sample 4, 

immunoprecipitate from non-transfected sA80BR cells; sample 5, immunoprecipitate 

from sA80BR cells transfected with pNPU2.3F4, sample 6, immunoprecipitate from 

sA80BR cells transfected with pNPU7.3F4. 
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5.6 Discussion 

The ovine PrP gene 3'UTR has been shown to mediate in vitro protein levels. In 

vivo expression from the PrP gene is not fully understood. Hunter et al. (1994) 

described two PrP mRNAs transcribed mRNAs (2.1kb and 4.6kb), these transcripts 

are known to be identical in 5' sequence differing only in the length of the 3'UTR as 

a result of alternative polyadenylation (Goldmann et al., 1990). It is still not known 

whether the 2.1kb mRNA is a transcript for PrP protrein. As discussed in Chapter 

One (Section 1.9) the level of PrP mRNA, the ratio of the two transcripts and the 

amount of detectable PrP protein varies greatly between tissues (Horiuchi et al., 

1995; Goldmann et al., 1999). In an attempt to study the relationship between PrPC 

levels and the in vivo ovine PrP transcripts, PrP constructs were designed with 

3'UTRs as those described for the 4.6kb and 2.1 kb mRNAs. 

Expression from the constructs was to be driven by a region SOObp upstream of the 

transcription start site on the Cheviot PrP gene. This region has been shown 

previously to initiate transcription of a CAT reporter gene in ovine cell lines (O'Neill 

et a!, in preparation). The promoter region, which also includes exon I and the splice 

donor site, was cloned upstream of the Suffolk el PrP exon III for all constructs used 

in this study. Restriction digestion of the PrP exon III 3'UTR at defined sites created 

UTRs of varying lengths with known polyadenylation sites. Transient expression 

of the PrP constructs concentrated mainly on the plasmids pNPU2PM, pNPU23F4, 

pNPU7PM and pNPU7.3F4. Constructs pNPU2PM and pNPU2.3F4 are truncated at 

nucleotide (nt) 1929 and so only encoded one active pA site (nt 1523). Constructs 

pNPU7PM and pNPU7.3F4 contain the full length PrP gene 3'UTR and therefore 

encodes conserved pA sites at 1522, 2221, 2281, 2668 and 4046. RT-PCR analysis 

showed constructs pNPU2PM and pNPU7PM were actively transcribed in a mouse 

N2a cell line. The use of cell free translation assays may have confirmed protein 

synthesis form the PrP construct. 

Immunological detection of PrPC  proved difficult if not impossible. Although PrPC 

was easily extracted and detectable from the N2a cell line, endogenous PrP' from the 

ovine cell lines was more difficult to detect and the methods of PrPC  extraction 
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employed in this thesis had varying results. Protein extraction from N2a cells was 

successful using all methods described. Endogenous protein from ovine cell lines 

was only reliably determined by immunoprecipitation. Using N2a cells as a control 

for transfection and extraction, transient expression from the ovine PrP constructs 

was not detected by FH1 1, regardless of the extraction method. FH1 1 also failed to 

detect endogenous and transient PrPC  expression in the ovine cells. Following Triton 

X-1 14 extraction, a 3 1-32kDa protein was detectable by FH1 1 in sA80BR cells 

which had been transfected with pNPU7PM (Figure 5.15). The antibody FH1 1 

recognises an epitope in the PrP amino acid sequence (aa sequence 51-55; 

Somerville, personal communication) which is upstream of the proteinase K site in 

the N-terminus region. The protein detected in Figure 5.15 may indicate that the 

PrPC synthesised in vitro by sA80BR cells is un-glycosylated. It is not possible to 

state clearly that the PrPC  detected (Figure 5.15) was not endogenous, however from 

the same set of experiments no endogenous PrPC  was detected. Similar experiments 

in N2a cells using the monoclonal antibody 3F4 (Figure 5.13) showed detergent 

extraction of a protein with molecular weight 29kDa, suggesting a PrPC  protein that 

is both un-glycosylated and N-terminally degraded. Weighed with the failure of 

FH1 1 to detect transient and endogenous PrPC  expression and the detection of a 

truncated protein, the cell lines may not be synthesising/ modifying mature PrPC 

correctly. Alternatively the PrPC  may have been degraded by proteinases despite 

action taken to prevent protein degradation i.e. extraction carried out on ice and in 

the presence of proteinase inhibitors. 

Mutating the cloned ovine PrP ORF gene sequence in constructs pNPU2PM and 

pNPU7PM to encode the hamster 31 74 epitope hsould have allowed for the detection 

of transiently expressed PrPC  on a background of endogenous ovine PrPC.  Prior to 

the start of this study the hamster anti-PrP 31 74 antibody was recognised as not cross-

reacting with the sheep PrP protein (Kascsak et al., 1987). Probing for PrPC  with 

3F4 following detergent extraction of N2a cells successfully detected transient 

expression from PrP construct pNPU2.3F4 (Figure 5.13). However, despite several 

attempts PrPC  expression from constructs pNPU2.3F4 and pNPU7.3F4 was never 

detected in ovine cell lines following Triton X-1 14 extraction. Immunoprecipitation 
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with the antibody 3F4 was developed for extraction of transiently expressed PrPC 

from constructs pNPU2.3F4 and pNPU7.3F4 from both N2a and ovine cell lines. 

Results from immunoprecipitation were difficult to interpret but appeared to show 

precipitation of endogenous and transiently expressed PrPC  from both the mouse and 

sheep cell lines (Figure 5.17 and 5.18). Due to the absence of a cell lysate negative 

control for the PrP 3174 antibody it is difficult to say with confidence that PrP has 

been detected. However the pattern of protein detected between molecular 

weights30-36kD is characteristic for PrPC  as is the pattern of three distinct bands 

corresponding to the gylcosylation status (un-, mono- and di- glycosylated). 

Furthermore, from published data available at the start of this study, 3F4 was 

understood not to cross react with endogenous ovine PrP. From Figure 5.18 protein 

bands characteristic of PrP were detected in the non-transfected ovien cell line 

(Figure 5.18, lane4), indicating that ovine PrPC  was detectable by 

immunoprecipitation. In support of this idea, a recent report (Baron et al., 1999) has 

shown that in vitro expression of sheep PrP fusion proteins was detectable by 

Western blotting using the hamster monoclonal antibody 3F4. 

Despite detection of expression, at both the RNA and protein level, from the PrP 

construct in N2a cells, detection of transient expression within ovine cell lines was 

not achieved. There are several reasons for this failure. Firstly, the original paper 

describing anti-hamster PrP antibody (Kascsak et al., 1987) used purified PrPSC  from 

mice and hamsters brains infected with hamster scrapie strain (263k). At the start of 

this study the anti-hamster PrP antibody was thought to detect only hamster and 

human PrP while not detecting sheep, rat, cattle and rabbit PrP (Kascsak et al., 

1987). It was only recently that 3F4 has been described as cross reacting with the 

sheep PrP protein (Baron et al., 1999). Secondly, it has also been shown that the 

level of recoverable PrPSC  from different brain-tissue samples can vary depending on 

the method of protein extraction and the specific PrP antibody (Madec et al., 1998). 

Furthermore, within the same study the choice of anti-PrP antibody also lead to 

variable results. Madec et al, (1998) compared two widely used methods for 

extraction of PrP sc  based on detergent methods (Sarkosyl) and showed that the 

methods varied on sensitivity, depending on the starting levels of PrPSC  within the 
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tissue (Madec et al., 1998). Also when coupled with a ruminant specific PrP 

monoclonal antibody the methods were again distinguishable in their efficiency to 

detect PrP. Madec et a!, 1999, speculate that such variation in extraction efficiency 

may be affected, for example, by the presence of lipid in the tissues. It may be 

expected then that extraction methods that worked for N2a cells did not work for the 

ovine cell lines as the ovine cells had different endogenous PrPC  levels and contained 

different cellular concentrations of molecules such as lipids. Optimising an 

extraction method solely for ovine cells may have led to detection of endogenous and 

transiently expressed P rPC .  

Also, it would appear that PrPC  synthesised from the PrP constructs was truncated 

and unmodified. Incorrect expression of the PrPC  construct may be a due to the 

absence of exon II or full length sequence of introns I and II. As discussed in Chapter 

one (Section 1.8.3) the mouse intron I has been shown capable of promoter activity 

and promoter suppresser activity (Baybutt and Manson., 1997). The absence of 

intron II from the PrP gene lead to undetectable levels of PrP expression in Purkinj e 

cells of the cerebellum without affecting the level of PrP expressed in other brain 

areas (Fischer et al., 1996), implying that intron II may contain sequences necessary 

for cell-specific PrP expression. Lacking full PrP gene sequence, in vitro expression 

from the PrP constructs may have lead to reduced (or abnormal) protein synthesis. 

The synthesis of a truncated PrPC  protein would account for why the ruminant 

specific antibody FH1 1 was unable to detect transiently expressed PrP. 

Transient expression of PrPC  protein from the ovine PrP constructs in mouse N2a 

cell lines has shown that the PrP gene 3'UTR associated with the 2.1kb transcript is 

capable of supporting translation. However, this was not confirmed in ovine cell 

lines. Work presented within this Chapter highlights the need for more research into 

PrP extraction methods. There is a concern that alternative extraction methods used 

in different laboratories may give rise to ambiguous reporting of the presence of PrP 

protein in various tissue samples. Finally due to the conserved nature of the PrP 

gene it is difficult to reliably obtain species specific antibodies to the PrP protein. 

Antibodies that recognise defined host-derived PrP proteins may be forced to cross- 
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react with PrP from other species if conditions for extraction do not denature the PrP 

protein sufficiently or do not allow for stringent protein purification. The 

development of improved extraction methods for PrPC  and sensitive PrP antibodies 

may give more accurate results for future PrPC  analysis. 
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Chapter 6: Final Discussion and Conclusions. 

Implications for Scrapie Susceptibility. 

6.1 Results Summary and Discussion. 

Prior to the start of this study, in vitro expression experiments with the 

chioramphenicol acetyl transferase (CAT) gene linked to the PrP 3 'UTR had 

revealed an inhibitor effect on translatability of the CAT reporter gene in a mouse 

neuroblastoma cell (N2a) (Cheung, 1996; Goldmann et al., 1999). The PrP 3'UTR 

fragment used for the CAT analysis work was originally cloned from a Suffolk 

sheep, with PrP allele ci and A 136R154Q 171  (Goldmann et al., 1991a). The CAT-PrP-

3 'UTR constructs available at the NPU were used to further study the role of the 

3 'UTR in determining protein levels in ovine cell lines derived from different tissues 

/ 	and PrP genotype origins. The cell lines used in this study were derived from Cheviot 

brain tissue, PrP genotypes VV 136RR154QQ 171  (scrapie susceptible) and 

AA 1 36RR154QR171  (scrapie resistant), and cerebellum and liver from an Icelandic 

sheep breed, PrP genotype AA136RR154QQ1 7 1 (scrapie susceptible). As observed in 

mouse N2a cells, the PrP 3 'UTR was capable of altering the detectable level of CAT 

protein in brain-derived sheep cells. 

In all ovine cell lines tested in this study, no significant difference was observed in 

the level of transiently expressed CAT protein between CAT/PrP-3 'UTR constructs 

pEYR and pDl7. Constructs pEYR and p1317 were designed to resemble in vivo PrP 

mRNAs 4.6kb and 2.1kb respectively. From the lack of indifferent control of protein 

synthesis from constructs pEYR and pDl7, the conclusion may be that tissue origin 

and PrP genotype does not affect gene expression. However there was a significant 

difference in the observed response of the cell lines transiently transfected with CAT 

constructs containing deletions within the 3 'UTR sequence (summarised in Figure 

6.1). CAT activity from a construct with sequence deleted upstream from PrP 3'UTR 

nt position 2000 was significantly up-regulated compared to pEYR and pDl7 in cell 

lines sA80BR (Cheviot VV 136RR154QQ 171  brain cell line) and 1S120.Liv (Icelandic 
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sheep AA 136RR154QQ 171  liver cell line). This response was not observed in the 

pA80BR (Cheviot AA136RR154QR 171  brain cell lines) and 1S120.Cer (Icelandic sheep 

breed cerebellum AA136RR 154QQ 171  cell line) (Figure 6. 1, Tables 4.2, 4.5 and 4.7). 

Instead, in cell lines pA80BR and 1S120.Cer, the level of expression from pEYR, 

pD 17 and pD20 increased gradually following deletions of sequences upstream from 

nt position 27000. Interestingly CAT/PrP-3 'UTR constructs produced a similar 

expression pattern in the Icelandic (AA136RR 154QQ 171 ) liver cell line as the Cheviot 

(VV136RR154QQ 171 ) brain cell (Section 4.4, Figure 4.6), both genotypes in these 

breeds are known to be scrapie susceptible. 

Results presented in this thesis confirm the inhibitory effect of the PrP gene 3 'UTR. 

It is further proposed that the sequence 2000-2700 (region E-part F) of the 3'UTR 

functions as a repressor of PrP gene expression in brain cells of sheep encoding PrP 

genotypes normally associated with scrapie resistance. The repressor element is 

proposed to be an RNA-binding protein acting through 3' UTR sequence 2000-2700 

(regions E-part F, Figure 4.1). 
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Figure 6.1. Summary diagram of transient CAT/PrP-3'UTR constructs in ovine derived cell lines (Chapter Four) 



Several points for discussion for PrP gene expression arise from the above 

observations. Firstly, the 2.1 kb and the 4.6kb PrP 3 'UTRs are capable of supporting 

the same level of protein synthesis regardless of PrP genotype, this observation 

suggests that sequence shared by both 3 'UTRs can mediate steady state expression. 

The 2.1kb mRNA may be responsible for constitutive expression in peripheral 

tissues. Furthermore in VV 136RR154QQ 171  brain cells, the 4.6kb mRNA may have 

potential for increasing protein levels on the removal of a repressor element. Factors 

binding to the repressor element of the 4.6kb PrP mRNA may reduce protein levels 

from the 4.6kb mRNA by increasing the rate of mRNA degradation or inhibiting 

translation. 

Over expression of the PrP gene is known to increase susceptibility of transgenic 

mice to infection with TSEs (Scott et al,, 1989; Prusiner et al., 1990), therefore loss 

of control, or up-regulation, of PrPC  protein expression would also increase scrapie 

susceptibility. Natural scrapie transmission must occur through a peripheral route. 

Expression of the PrP gene in ruminants is known to differ between brain and 

peripheral tissues through differential transcription of PrP niRNA species (Hunter et 

al., 1994; Goldmann et al., 1999). According to the prion hypothesis, increasing the 

amount of PrPC  protein would increase the amount of template for conversion of 

PrPC to PrPSC  (Janet and Lansbury, 1993; Prusiner, 1993). On the other hand, the 

virino hypothesis, the increased concentration of PrPC  would increase the number of 

replication sites of the scrapie agent. The function of peripheral tissue in scrapie is 

slowly being understood: perhaps in sheep susceptible to scrapie abnormal 

expression of PrP protein in peripheral tissues is induced by the scrapie agent to 

promote agent replication. Such an argument is proposed in this thesis where loss of 

control of gene expression through a repressor element in the PrP 3'UTR may lead in 

adherent expression of PrP which in turn allows for increased potential for PrPSC 

formation. 

The creation of PrP null mice has shown that expression of the PrP gene is vital for 

TSE development (Bueler et al., 1993; Sailer et al., 1994). In mice, TSE disease 

incubation period is also determined by the level of PrP gene expression (Scott et al., 
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1989; Prusiner, 1990; Bueler et al., 1992). To date there is little evidence that sheep 

of different breeds or genotypes show significantly different PrP gene expression 

levels which can account for increased scrapie susceptibility in known populations. 

For example, tissue distribution of PrPC  protein, determined by western blotting was 

similar in Suffolk sheep, PrP genotype AA 136RR154QR171  and Blue-dc-Dorset, PrP 

genotype AA136RR154QQ 171  but were found to be different in a second Suffolk sheep 

of genotype AA 136RR154QR171  (Horiuchi et al., 1995). Furthermore the observed 

PrPC glycosylation pattern between sheep and different sheep tissues varied, the 

authors speculated that heterogeneity might arise from cell type specific P rPC 

expression or the influence of PrP genotype. Considering the later point, published 

sequence data from different breeds acknowledges several point mutations within the 

PrP gene 3'UTR between different sheep breeds and between sheep of the same 

breed ( Goldmann et al., 1990; Westaway et al., 1994; Lee et al., 1998). The 

existence of polymorphic sites in the 3 'UTR may allow for differential regulation of 

the PrP mRNA and therefore regulation of PrP protein through translation of the PrP 

transcripts. 

6.2 PrP Genotype and Scrapie Susceptibility. 

PrP genotype strongly influences susceptibility of sheep to scrapie. In 1962, Parry 

concluded that natural scrapie was a genetic disease, caused by an autosomal 

recessive gene but which was also transmissible (Parry, 1962). The discovery of 

maternal and lateral transmission (Brotherston et al., 1968; Dickinson et al., 1965; 

Dickinson and Outram, 1988) and sheep with scrapie susceptible genotypes in 

scrapie-free countries (Hunter et al., 1997) indicates that scrapie is an infectious 

disease. The current view is that host genetics are important for natural scrapie 

incidence but that it is not purely a genetic disease (Hunter et al., 1995; Foster et al., 

1996b). 

Analysis of natural and experimental scrapie in the NPU South Country Cheviot 

sheep flock (section 1.7, Table 1.4) has made a considerable contribution to the 

understanding of scrapie susceptibility. With this flock it was demonstrated that a 
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major gene, now designated PrP, controlled scrapie susceptibility (Dickinson and 

Outram, 1988; Hunter etal., 1987; Hunter etal., 1989; Hunter et al., 1991; Hunter et 

al., 1996). Polymorphic variants of the PrP gene have been extensively characterised 

and associated with incidence of scrapie in sheep (Goldmann etal., 1991a;Hunter et 

al., 1994), goats (Goldmann et al., 1996) and humans (Collinge et al., 1991). To 

date, seven polymorphic amino acid codons have been described in sheep with three 

known to be vital in determining scrapie susceptibility, these are codons 136, 154 

and 171 (Goldmann etal., 1990; Goldmann etal., 1991; Laplance etal., 1993; 

Bosser etal., 1996; see also Chapter 1, section 1.7). 

In NPU Cheviots, sheep homozygous for valine at codon 136 (V 136) have a short 

incubation period after challenge with experimental scrapie (SSBP/1), whereas sheep 

heterozygous at codon 136 with alanine (A 136) have longer incubation periods 

(Goldmann et al., 1990). Alanine homozygotes, AA 136 , are linked with scrapie 

resistance. Different TSE strains respond to different PrP polymorphisms. For 

example, Cheviots homozygous for glutamine at codon 171 (QQI7I)  are susceptible 

to experimental challenge with BSE or scrapie strain CHI 641 where as arginine at 

codon 171 (R 171 ) leads to longer incubation periods (Goldmann et al., 1994). A 

polymorphism for histidine at codon 154 (H 154) has been associated with resistance 

to scrapie infection in NPU Cheviots (Hunter et al., 1996). PrP polymorphisms at 

codons 136 and 171 have been associated with natural scrapie infection in 

throughout the world and in various sheep breeds (Laplanch et al., 1993; Belt et al., 

1995; Ikeda etal., 1996). 

Intensive PrP genotyping studies have revealed five allelic variations associated with 

scrapie incidence, the frequency and distribution of the allelic variants differ from 

breed to breed (section 1.7, Table 1.4; Dawson et a!, 1998). For example, the PrP 

allele V 136R154Q 171  is rare in Suffolk sheep but not in Texels or Cheviots and in 

contrast A 136R154H 171  allele is common in Texels but not in other breeds. In breeds 

which encode V 136  alleles (valine breeds), e.g. Cheviots, Swaledales and Shetlands, 

the allele V 136R154Q 171  shows the strongest association with scrapie susceptibility, 

sheep homozygous for this allele almost always develop scrapie in affected flocks. 

217 



PrP allele A 136R154Q171  is often associated with scrapie susceptibility, especially in 

breeds where the V 136R154Q 171  allele is rare i.e. Suffolk and Icelandic sheep breed. In 

valine breeds the A 136R154Q 171  allele tends to show a lower or incomplete penetrance 

to scrapie infection, as shown by longer survival times or relative resistance 

compared to V 136R154Q171  encoding sheep (Goldmann et al., 1991a; Clouscard et al., 

1995). Also, in valine breeds combining the V 136R154Q 171  allele with A 136H 154Q 171  or 

A136R154R171  offers relative resistance to scrapie infection (Laplanche et al., 1993; 

Hunter et al., 1996). 

There are on occasion however, incidences of scrapie or resistance to scrapie, which 

defy the well-defined polymorphisms discussed above. For instance, sheep 

homozygous for PrP allele V 136R154Q 171  have been found, apparently scrapie free, at 

an age well past life expectance of a sheep with such a susceptible genotype (Hunter 

et al., 1997). In contrast sheep with the V 136R154Q 171  allele coupled to A 136R154R171  

allele, normally linked to relative resistance, were found to be affected by scrapie 

(Hunter et al., 1997). Additionally in non-valine breeds (Suffolk) sheep 

homozygous for allele A 136R154Q 171  do not always develop scrapie whereas scrapie 

did occur occasionally in sheep with genotype AA136RR154QR1 7 1 (Hunter et al., 

1997). To date on one case of scrapie has been identified in AA 136RR154RR171  

throughout the world (Ikeda et al., 1995) 

Due to the observed variation in PrP allelic variants in scrapie-affected sheep, factors 

other than known PrP gene polymorphisms must control susceptibility. Results 

presented within this thesis show detectable differences in in vitro protein levels 

between CAT/PrP-3 'UTR constructs transiently expressed in brain cell lines derived 

from sheep with different PrP genotypes and scrapie susceptibilities. Brain cell lines 

used in this thesis were derived from a Cheviot VV 136RR154QQ 171  (scrapie 

susceptible), Cheviot AA136RR 154QQ 171  (scrapie resistant) and an Icelandic sheep 

breed, AA 1 36RR154QQ171  (scrapie susceptible). The PrP gene 3'UTRs associated 

with the 2.1 kb or 4.6kb PrP mRNA did not result in varying amount of protein. 

However, constructs containing 3'UTR regions E-G (pD20, figure 4.1) did function 

differently in the brain cell lines with genotypes VV 136RR154QQ 171  compared with 
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AA136RR154QQ1 7 1 /AA 136RR 154QR171 . Brain cells derived from sheep with at least one 

copy of the A 136R154Q 171  allele appeared capable of repressing expression from 

constructs containing sequence 2000-2700 (i.e. pEYR and pD20) equivalent to the 

construct with UTR resembling the 2.1kb PrP mRNA (pD 17). In contrast, 

VV 136RR154QQ171  brain cell line appeared incapable of repressing expression from 

pD20 (Figure 4.3) 

The association between the speculative repressor quality of PrP 3 'UTR and PrP 

genotype does not apply to scrapie susceptibility. The Cheviot brain cell line 

VV 136RR154QQ171  is known to be scrapie susceptible where as the Cheviot 

AA 1 36RR154QR171  brain cell line is resistant to natural scrapie. The Icelandic sheep 

breed in contrast has a genotype of AA 136RR154QQ 171 , a genotype normally 

associated with resistance to natural scrapie in Cheviots, but scrapie susceptible in 

Icelandic sheep (Thorgeirsdottir et al., 1999). So despite sharing similar PrP 

genotypes and response to the CATIPrP-3'UTRs constructs, the Icelandic cerebellum 

and the AA 136RR154QR171  Cheviot brain cells are derived from sheep of different 

scrapie susceptibilities. PrP allele disease linkage is well established, therefore other 

factors must function to increase, or decrease, the susceptibility of a particular sheep, 

and breed to scrapie. Several reasons may be given for this: control of PrP 

expression may differ depending on the host genotype; susceptibility may also be 

determined by further, as yet unknown polymorphisms in the PrP untranslated region 

or other genes may have a role in TSE infection; different scrapie strains may have 

different affinities for different PrP alleles. 

The implications here are that breed differences may allow for differential control of 

PrP gene expression during scrapie infection i.e. variation in genes or gene products 

other than PrP influence scrapie susceptibility. PrP polymorphisms are strongly 

linked to incidence of scrapie however other factors may act co-ordinately with PrP 

to influence scrapie susceptibility. These genes may be involved in controlling 

expression of the PrP gene. It is feasible that expression of the PrP gene may, in 

part, be controlled by sequences within the 3'UTR as proposed within this thesis. 

Suppression of gene expression, either at the level of transcription or translation, will 
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reduce the amount of available PrP protein which has been strongly linked with a 

role in facilitating infection of TSEs. 

6.3 Brain and Peripheral ExDression of the PrP Gene. 

The discovery of selective polyadenylation of the PrP gene in brain and peripheral 

tissue first led to the idea that the function of the PrP 3'UTR is far more complex 

than previously believed (Hunter et al., 1994). The 4.6kb transcript is preferentially 

produced in sheep brain tissue, and both rnRNA species have also been shown to be 

present at low level in bovine tissue (Goldmann e t al., 1999). The level of PrP 

mRNA in peripheral organs is lower than in the brain (kidney PrP mRNA 

approximately seven times less than brain) despite the presence of two mRNAs. 

However the level of PrP protein is significantly higher in the brain than in 

peripheral organs (more than 40 times the level of the kidney). Although no 

significant difference in PrP mRNA level has been detected between scrapie-free and 

scrapie-infected sheep, an increase in the PrP protein is consistently observed. This 

is assumed to be due to accumulation of PrPSC which is not degraded by the cells. An 

increase in protein levels that are not associated with an increase in mRNA levels 

may also be the result of increased stability or translatability of the mRNA. 

Therefore, translational control of the PrP gene may be vital for maintaining protein 

levels. Sequence present within the 3 'UTR were shown to regulate in vitro protein 

synthesis (Cheung, 1996; Goldmann et al., 1999; this thesis.) 

Understanding the molecular events of differential PrP gene expression may lead to 

an understanding of scrapie susceptibility. The protein associated with TSEs, PrP 5', 

has been found in peripheral and neural tissues and expression of the PrP gene is 

known to vary in different tissues. Relating this to the disease, although the 

conditions for the conversion of PrPC  to PrPSC  are still unknown, the existence of 

PrPC in many tissues suggests that the scrapie agent may potentially be able to 

replicate in a variety of tissues. Natural scrapie must be transmitted via a peripheral 

rather than the intracerebral route so the differential expression of PrP in peripheral 

tissues is of particular interest (section 6.4). 
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To address whether the 3 'UTR also shows tissue specific control over gene 

expression, in vitro expression studies of the CAT/PrP-3 'UTR constructs were 

completed in ovine cells derived from cerebellum and liver tissues of the Icelandic 

sheep breed Ovis brachyura borealis pall (genotype AA 136RR154QQ 171 ). In general, 

CAT protein levels were higher in the liver cells compared to the cerebellum cells 

(Figure 4.7A and B), in contrast to the in vivo pattern of expression of PrP (Honuchi 

et al., 1995). This may indicate that brain tissue, the site of TSE pathology, is more 

efficient in controlling gene expression. As observed in the brain cell lines, there 

was no significant difference in the overall mean level of CAT protein expression, 

with the majority of the constructs displaying a characteristic expression pattern. 

However, expression from the construct with a 1.1kb deletion at the 5' end of the 

3'UTR (containing regions E-G, pD20) was significantly higher in the liver derived 

cell line compared to the cerebellum derived cell line (Compare figures 4.5A and 

4.5B). A further deletion of 0.7kb appeared to remove repression of protein 

expression in the cerebellum cell line. Interestingly, pD20 shows the same 

expression pattern in VV 136RR154QQ 171  Cheviot brain cells as in AA136RR1 54QQ 171  

Icelandic sheep liver cells (Figure 4.6, in that the observed repressor quality regions 

E-part F are not functional. Several reasons may explain this observation. Firstly 

PrP mRNA expression liver tissue is normally low with PrP protein detection limited 

(Horiuchi et al., 1995; Goldmann et al., 1999; Hunter personal communication). 

Therefore expression of CAT/PrP-3 'UTR constructs may not be representative of 

control exerted by the PrP 3'UTR in peripheral tissues. Or perhaps repression from 

the 4.6kb mRNA 3 'UTR is not necessary in peripheral tissue under normal 

conditions i.e. scrapie free, as the 2.6kb mIRNA is constitutively expressed. 

Alternatively the repressor may only be functioning in brain derived cells with the 

A136R154Q171  PrP allele. On consideration, the second account may be correct as the 

same region, nucleotides 2000-2700 also repressed expression in mouse N2a cells. 

Although the PrP genotype of the N2a cells is not known at this time, PrP protein 

expression is detectable in N2a cells. 
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In the brain, neurones were originally thought to be the site of agent replication and 

pathology as PrP mRNA was primarily located with neurones (Kretzschmart et al., 

1986; Manson et al., 1992a; Harris et al., 1993) suggesting that neurones were the 

site of synthesis for PrPSC  which was then transported axonally to the white matter. 

Support for this theory came from the study of scrapie development in transgenic 

mice expressing hamster PrP under the control of the neurone specific enolase (NSE) 

promoter (Race et al., 1995). Expression of PrP in neurones was only sufficient to 

sustain infection when the transgenic mice were inoculated intracerebrally with 

hamster derived scrapie isolate. However, it has been observed that PrPSC  deposition 

in astrocytes precedes neuronal loss (Diedrich et a!, 1991) indicating that astrocytes 

maybe a primary target for the scrapie agent (Diedrich et al., 1991) and are 

subsequently primary producers of PrP SC  which in turn leads to neuronal loss (Muller 

et al., 1993). Alternatively, astrocytes can be mopping up PrP SC  produced and 

exported by neurones. Recent studies have shown that a considerable amount of PrP 

mRNA within the brain is accounted to astrocyte expression (Moser et al., 1995). 

Furthermore, PrP null mice transgenic for the hamster PrP gene under the control of 

the glial fibrillary acidic protein (GFAP, astrocyte specific) promoter were 

susceptible to intracerebral inoculation with hamster scrapie (Raeber et al., 1997). 

These mice showed typical scrapie pathology with spongiform changes, astrocytosis 

in the neocortex and hippocampus and accumulation of PrPS.  The neurone and 

astrocyte specific expression studies described above highlight the relationship 

between neurones and astrocytes wherein astrocytes function to maintain the normal 

status of neurones and may indicate a co-operative relationship for astrocytes and 

neurone in TSE development. Loss of normal neuronal or astrocyte function during 

scrapie development may affect a common pathway and lead to dysfunction in both 

cell types. 

The cell type involved in the replication of the scrapie agent in vivo has not yet been 

identified, however evidence is growing in favour of follicular dendritic cells in the 

spleen functioning as sites of propagation for the agent (McBride et al., 1992, see 

also section 6.4). Strict control of PrP expression may be vital in tissues known to 
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express PrP at relatively high levels or those considered to be necessary for 

trafficking the scrapie agent to the CNS. Conversely the scrapie agent (or specific 

scrapie strains) may target particular PrP genotypes and tissues in which the PrP 

synthetic pathway can be modified to promote its replication. 

6.4 Transmission of Scrapie 

Natural transmission of scrapie is assumed to be via the oral route with the alimentary 

tract as a possible route of entry for the infectious agent. Ingestion of TSE-infected 

material is considered the major route of infection for TSE agents responsible for Kuru, 

vCJD, scrapie and BSE. Attempts to track the route of infection during scrapie 

development in mice and sheep have used two methods. Firstly immunoblotting and 

immunohistological detection of PrPSC  are widely used as a marker for infectivity due to 

the observation that PrP sc  is never found in the absence of TSE infection. However it 

has been shown that infectivity can be detected without PrPSC  deposition so sensitivity 

of detection by the latter method may be limited. Mouse bioassay, although more time 

consuming can also be used to produce a lesion profile (section 1.4) and give further 

information on TSE strains. 

Hadlow et al, 1980, 1982, used a mouse bioassay to show infectivity was detectable, 

and persistent, in lymphiod tissues of naturally infected sheep months, or years, before 

becoming detectable in brain (Hadlow etal., 1982). This observation was confirmed by 

immunohistological detection of PrPSc  in spleen, retropharyngeal lymph nodes, 

mesenteric lymph nodes and palatine tonsils of naturally infected, clinical positive 

scrapie sheep (van Keulen et al., 1996). A similar PrP sc  detection pattern was described 

recently during experimental transmission of BSE to lemurs (Bons et al., 1999). These 

data suggested that during oral exposure, the TSE agent crosses the intestinal barrier via 

cells in the lumen of the digestive tract (including the tonsils). The cell populations 

involved in this transport are unknown but could involve M cells (which have been 

shown to be responsible for the uptake of bacteria, Trier, 1991). Alternatively, 

lymphocytes present in the tissues may also be involved and transport the agent through 

the lymphoreticular system (LRS) to the lymph nodes and spleen. Within the spleen 
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cells thought to be vital for scrapie replication are follicular dendritic cells (FDC) 

(McBride et al., 1992). Severe combined immunodeficent (SCTD) mice, which lack B 

and T lymphocytes and mature FDCs, are resistant to peripheral (mtraperitoneal) 

challenge with scrapie and are unable to replicate the agent in their spleens (Fraser et 

al., 1996; Lasmezas etal., 1996; O'Rourke etal., 1994). Furthermore, transgenic 

models with immune systems manipulated to produce lymphocytes but not mature 

FDCs were resistant to infection with scrapie strain ME7 (Brown etal., 1999). 

Therefore the LRS, or specifically the gut associated lymphoid tissue (GALT), and the 

spleen may play a vital role in scrapie agent replication and spread of disease from 

peripheral tissues to the brain (CNS). 

Several studies have indicated a second route for the spread of the disease in a host. 

Kimberlin et al. (1989b) demonstrated that splenectomy did not prevent mice 

developing scrapie when challenged intragastrically with mouse-adapted scrapie strain 

139A. In hamsters, infection with scrapie strain 263K shows little involvement of the 

spleen in scrapie replication early in pathogenesis following oral infection (Beekes at 

el., 1996). More recently PrPSC  deposition was recorded in myentric and submucosal 

plexuses of the gut wall, stomach, caudal oesophagus and enteric nerves of sheep with 

clinical signs of natural scrapie (van Keulen et al., 1999). This was confirmed by 

Beekes and McBride (2000) where infection was detected early in pathogenesis in 

various GALT tissues and ENS ganglia which suggests that the enteric nervous system 

may be an alternative route. Once located in the ENS or GALT the agent is presumed to 

spread to the thoracic spinal cord or dorsal motor nucleus of medulla oblongata (van 

Keulen eta! 1999; Beekes and McBride, 2000) via nerve cell pathways. 

The route of infection and replication in the spleen would appear to be strain specific 

and host dependent. For example in hamsters, infection with scrapie strain 263K does 

not involve replication in the spleen (Kimberlin et al., 1989b). Similarly, the spleen 

does not seem vital to BSE infection in cows, however infectivity has been reported in 

sheep experimentally infected with BSE (Foster et al., 1996a). Also van Keulen eta!, 

1999, reported significantly more peripheral deposition of PrPSC  in the ENS of sheep 

with highest genetically determined scrapie susceptibility compared with those with a 

PrP genotype associated with scrapie resistance (van Keulen, et al., 1999). 
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The role of PrP gene expression in TSE susceptibility and development is slowly being 

understood. Fundamentally, factors known to increase TSE susceptibility are defined 

mutations and polymorphisms in the PrP coding region and, as determined by studies in 

transgenic mice, overexpression of the PrP gene. Scrapie is not a spontaneous genetic 

disease (Hunter et al., 1997), therefore an infectious agent must be involved in disease 

development. Following oral contamination the agent may begin replication within 

tissues, or cell types, in which it can interact with the normal PrPC  synthetic pathway. 

Differential control, or expression, of the PrP gene between tissues may dictate the 

route of infection taken by the scrapie agent. 

6.5 Controllinci PrPC  ExDression. 

Production of an active protein from a gene requires multiple regulated steps, many of 

these steps involve some aspect of RNA processing. Disease caused by mutations that 

affect RNA processing are relatively rare compared to mutations that disrupt protein 

function. The vast majority of RNA processing faults linked to disease are due to the 

loss of function of a single gene as a result of mutations in elements required for pre-

mRNA splicing. However, a few diseases are caused by alternations in transacting 

factors required for RNA processing. One interesting example of such a process was 

observed in expression of amyloid precursor protein (APP) mRNA (Amara etal., 

1999). Similar to TSEs, Alzheimer's disease (AD) is associated with deposition of an 

amyloid peptide (amyloid - 13 , A13) in the CNS and neurodegeneration (Ishiura et al., 

1991; Lendon etal., 1997). A13  formation is thought to be linked to abnormally 

processed, or high levels, of APPs as a result of over expression of APP mRNA 

(Johnson etal., 1990; Ishiura etal., 1991;Hardy, 1997). In vitro, APP mRNA levels 

were observed to increase in astrocytes in response to TGF-13 1  (Gray and Patel, 1993). 

Consequently, levels of transforming growth factor (TGF- 1 ) were found to be 

increased in AD patients, to associate with lesions (Peress and Perille, 1995) and to 

promoter amyloid deposition in transgenic mice (Wyss-Coray et al., 1997). Therefore 

TGF- 1  appeared to be a candidate for increasing APP mRNA levels and promoting 
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AD. TGF-3 1  is a known transcriptional regulator (Massague, 1990), however TGF-f3 1  

has also been shown to regulate genes involved in mRNA stability (Amara etal., 1996). 

In vitro analysis of APP mRNA expression in human astrocytes in response to TGF- 1  

confirmed the results of Gray and Patel, 1993, but also showed that in the presence of 

TGF-3 1 , APP mRNA stability increased five-fold (Amara et al., 1999). As 3'UTRs 

are known to function in controlling mRNA stability the authors examined any possible 

role of APP mRNA 3'UTR in TGF-13 1  induced stabilisation and discovered that the 

APP mRNA 3'UTR conferred stability on the CAT reporter gene product (Amara et al., 

1999). Band shift and UV cross-linking assays revealed that sequence in the 3 'UTR 

interacted with a cytoplasmic protein to form a 68kDa RNA-protein complex in 

response to TGF-3 1  treatment. Formation of the RNA-protein complex led to increased 

stability of the CAT mRNA. Deletion of the TGF-f3 1  response element (region of UTR 

the TGF-13 1 - responsive protein bound to) from the 3'UTR of APP mRNA prevented 

stabilisation of CAT mIRNA in the presence ofTGF-13 1 . Amara eta!, 1999, proposed 

that TGF-3 1  may increase and stabilise APP mRNA expression indirectly by regulating 

a responsive protein and its interaction with the 3 'UTR sequence. 

There is little knowledge on the PrP regulatory pathway and the role of PrPC  in 

peripheral and its contribution to scrapie agent infection and replication. Peripheral 

tissues are a potential source for scrapie replication and subsequent transport to the 

brain (section 6.4), understanding the mechanism of PrP expression is vital for 

elucidating the function of PrPC  in TSEs. From in vitro and in vivo studies there is 

evidence that the level of PrP mRNA expression may increase in the presence of 

specific cytokines and growth/differential factors such as interlukin —6 (IL-6), nerve 

growth factor (NGF), migratory inhibitory factor-related protein(IVIIRP8) (Mobley et al., 

1988; Wion etal., 1988; Lazarini etal., 1994; Kniazeva etal., 1997). In contrast, PrP 

expression is inhibited in human fibroblasts by the presence of platelet derived growth 

factor (PDGF). Therefore, known transacting factors (regulatory proteins) have already 

been shown to influence the level of detectable PrP expression. The majority of the 

transacting factors are transcription activators or regulators (Table 4.6). However as 
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discussed for Alzheimer disease (AD, Section6.5), transacting factors such as cytokines 

can also regulate at the post-transcriptional level. 

Work presented within this thesis confirms that the ovine PrP gene 3 'UTR contains a 

sequence capable of mediating PrP protein levels and proposes that sequence 2000-

2700 represses expression from the 4.6kb mRNA. This speculative repressor sequence 

may be in either secondary structure or specific sequence (cis-acting) for the binding of 

regulatory factors (nuclear or cytoplasmic). Alteration of the PrP metabolic pathway 

by the agent may be indirectly through interaction with transcriptional/ translational 

machinery or directly with the pre-rnIRNA or mRNA (Figure 6.2). Cheung (1996) 

observed no change in mIRNA levels but increased translatability (protein levels) from 

various CAT/PrP-3 'UTR constructs. This would suggest that different PrP mRNAs 

show either enhanced stability or translation efficiency. If the scrapie agent were 

capable of modulating PrP metabolism increasing stability/translation of PrP mRNA 

would increase PrP protein levels, which in turn would enhance agent replication. The 

agent may bind directly to PrP mIRNA or affect trans-acting factors that bind to the 

RNA. Genotype and scrapie susceptibility differences observed between, and within, 

flocks may be explained by efficiency of the scrapie agent to interact with PrP synthesis 

in sheep with different genetic backgrounds. 
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Figure 6.2 Potential sites for control of PrP gene expression. 

Within this thesis, control of in vitro gene expression has been examined in 

association with the PrP gene 3'UTR. A putative repressor of expression has been 

proposed within the 3'UTR which functions preferentially in brain cells with at least 

one ARQ allele. Sites for repression include: X 1 ; down regulation of transcription, 

repression of transcription termination: X 2 ; interaction with trans-acting factors 

preventing efficient processing; differential regulation of polyA degradation; X 3 ; 

association with cytoplasm trans-acting factors which prevent translation or stabilise 

mRNA; down regulation of translation efficiency. RER: rough endoplasmic 

reticulum. 
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6.5 Final Thoughts and Future Work. 

Expression of the PrP gene is vital for the development and spread of TSE disease.. 

Although scrapie in sheep and goats is known not to be spontaneous genetic disease, 

polymorphisms have been linked to increased susceptibility. However, how can a 

sheep of susceptible genotype remain apparently healthy when housed with an infected 

flock, or a sheep with resistant genotype develop scrapie? One explanation for selective 

development of scrapie in sheep of particular PrP genotype and breed is proposed in 

this thesis: differential control of PrP gene expression. Factors other than PrP genotype 

frequency may also influence scrapie susceptibility. A putative repressor —binding site 

in the PrP gene 3'UTR has been identified in the 4.6kb PrP mRNA 3'UTR sequence 

which acts specifically in brain cells derived from sheep with at least one A 1  36R 1  54Q 1 71 

allele. However the repressor element does not seem to be associate strictly with scrapie 

resistance as the regulatory function was operational in A 1  36R1 54Q1 71 brain-derived cells 

from known scrapie resistant and susceptible sheep. Perhaps highly susceptible breeds 

and genotypes already have reduced control over PrP gene expression which can be 

exploited by the scrapie agent. During the process of replication, the agent may 

interfere with the pathway of PrP synthesis by increasing stability of the 4.6kb mIRNA, 

leading to increased levels of the 4.6kb mRNA and may produce PrPSC  as a by-product. 

It is hypothesised that: 

Scrapie susceptibility, although strongly linked to PrP gene polymorphisms, may 

also linked to control of PrP gene expression 

In sheep with high-risk scrapie associated alleles the scrapie agent may be able to 

increase the level of PrP gene expression at the post-transcriptional level. 

PrP expression may be controlled through transacting factors at a 3 'UTR cis-

element (specific sequence). 

PrP gene expression is controlled in cell/tissue specific manner that may dictate the 

route of scrapie spread to the CNS. 

Work for the future should be aimed at confirming the regulatory role of the 3'UTR in 

gene expression. Transient expression of the CAT/PrP-3 'UTR constructs in cells 

derived from various non-neuronal tissues thought to participate in scrapie infection 
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(distal ileum, spleen, lymph nodes) would clarify whether or not the repressor was 

specific to the brain or not. It would be interesting to see if the CAT/PrP —3 'UTR 

constructs showed the same expression in tissues known to express PrP in peripheral 

tissue i.e spleen or lung. The spleen would be of particular interest as this is one of 

the few non-neural tissues in which natural scrapie infectivity can be detected. Also, 

expression in follicular dendritic cells, one of the assumed sites for scrapie 

replication outside the CNS may, lead to further understanding of PrP expression and 

the disease process. Furthermore, wider in vitro expression analysis in cell lines 

derived from sheep of other PrP genotypes would confirm the association of 

A1  36R1 54Q17 1 allele with reduced expressional control and indicate that other factors 

(based on genetic differences) may control PrP gene expression. If cells from PrP 

expressing peripheral tissues derived AA 136RR154QQ 171  or AA136RR154QR171  sheep 

also showed repression of the CAT/PrP-3'UTR vectors over sequence 2000-2700 

this would further imply that control of PrP gene expression is vital for maintaining 

scrapie resistance. Transient expression of the PrP gene should be possible in the future 

with development of more specific antibodies and extraction methods. Using this 

approach a clearer understand may be reached on specific control of the PrP gene. 

Studies should concentrate on potential binding of transacting factors to the PrP gene 

3'UTR. This could be achieved by DNA footprinting (Galas and Schmitz, 1978), DNA 

mobility shift assays or gel retardation (Fried and Crothers, 1981; Garer and Revzin, 

1981) and methylation interference assays (Sienbenlist and Gilbert, 1980). 

Confirmation of transacting factors by a combination of these methods could lead to 

purification and characterisation of the regulatory molecules, and then hopefully 

identification. Furthermore, the efficiency of in vitro expression could be monitored as 

cells response to chemical or physical treatments (growth factors, heat stress) 

potentially able to control gene expression through cell signalling pathways. 

If one function of the 3'UTR is regulation of PrP gene expression via sequence at 

nucleotides 2000-2700 what about the 2.1kb PrP niRNA? The 2.1kb transcript is 

processed upstream of this putative repressor region so can we assume that this mRNA 

is controlled in the same way? No major difference has been recorded in expression of 
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the PrP transcripts between scrapie free and infected animals. From in vivo 

observations, it would appear that expression of the 2.1kb mRNA and the ratio of two 

PrP transcripts in particular tissues is further controlled through regions not included in 

this study. 

Natural scrapie must be transmitted through the peripheral route, so understanding the 

differential expression of PrP gene is of particular interest. It cannot yet be speculated 

whether this putative repressor sequences functions as a structural motif or 

recognition factor for nucleic acid binding proteins. Further more, this region may 

indeed interact with sequences at the 5' region of the PrP gene, a matter not 

addressed within this thesis. It is interesting to note that this repressor region is 

immediately 5' of the polymorphic EcoRI site loosely associated with scrapie 

incidence (Hunter et al., 1991). However, it is feasible to imagine that expression the 

PrP gene may be, in part, controlled by sequences within the 3 'UTR. Suppression of 

gene expression, either at the level of transcription or translation, will reduce the 

amount of available PrP protein which has been strongly linked with a role in 

facilitating infection of TSEs. Consequently a loss of repressor function may lead to 

aberrant PrP expression. PrP gene expression is vital for scrapie development, 

therefore variation in gene expression control may alter the levels of PrP protein in 

tissue and hence scrapie agent infection, replication and ultimately pathology. 
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Appendix A: Solutions, Reagents and Plasmids 

General solutions. 

Agar Broth. 
20g of LB broth base to iLt of dH20. 
Autoclave as for agar plates. 
Add ampicillin to final concentration 1mg/mi. 

Agar Plates. 
32g of LB agar 
makeup to iLt with dH20 
Autoclave for 15mins at 121'C 

Agar can be poured immediately or stored for use. To melt, re-heat in microwave at low 
for 30 minutes, shake regularly. Leave for one hour to cool, then pour. 

1% Agarose Gels. 
ig agarose 
lOOmi lx TBE buffer 
4p.l Ethidium Bromide 

Alkaline lysis solution 1. 
50mIvI Glucose 
2.5mM Tris Cl (pH 8.0) 
2m1 0.5M EDTA stock 
Prepare in lOOm! aliquots, autoclave and store at 4 °C. Glucose added after autoclaving. 

Alkaline lysis solution 2. 
7m1 dH2O 
2m1 4M NaOH (final conc 20mM) 
lml 10%SDS 

Alkaline lysis solution 3. 
60m1 5M Potassium acetate (final conc 3M) 
11 .5ml Glacial acetic acid 
28.5ml dH20 
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Ampicillin plate. 
As agar plates; when the agar is ready to pour add ampicillin to final concentration of 
ltg/MI. 

Ethidium Bromide. CAUTION 
0.25g Ethidium Bromide 
lOOml dH2O 
or lx 10mg tablet to im! dH20. Make up to 2m1. 

Loading buffer (agar gels) 
0.25% bromophenol blue (0.025g) 
50% glycerol + dH20 

TB. 
0.6g 10mM PIPES 
2.18g 55mMMnC12  
0.44g 15mM CaCl2  
3.73g 250mM KCL 

TBE (l Ox). 
108g Tris 
55g Boric acid 
40m1 0.5M EDTA pH 8.0 
Makeup toiL 

Tris-HC1 (pH7.5) 
0.1M Tris-HC1 , pH7.4 
pH to 7.4 with HC1 
Distilled water to lOOm! 

2XYT Medium 
1 Og LB Broth 
5g Bacto-tryptone 

Add dH20 to 500m1, autoclave to sterilise. oH to 7.05. 
Filter sterilise and store at 4 °C (there is a brown precipitate autoclave instead) 
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General Tissue Culture solutions 

Fetal Calf Serum (FCS). 
500m1 heat inactivated FCS aliquoted into 10x50m1, stored at -20 °C. FCS heat 
inactivated at 56°C for 45 mins. Immediately before use centrifuge at 2000rpm for 10 
minutes. 

FCS supplied by Gibco-BRL. 

Complete Culture Medium. 
500ml of IMDM (Gibco) 
50m1 of centrifuged, heat inactivated FCS 
Penicillin/Streptomycin to final conc. 100 units/ml 
Add 5m1 Pen/Strep to 500m1 medium 

Complete Culture Medium with Nerve Growth Factor(NGF). 
1 OOml of complete culture medium 
NGF to final conc. of lOng/mi (Sigma N-0153) 

Freezing Medium. 
30m1 of complete culture medium 
1 .5m1 heat inactivated FCS (centrifuged) 
5m1 of DMSO 
aliquot into 8x6ml and tore at -20 °C 

Trypsin! Versene. 
4ml 25%Trypsin 
16m1 0.02% Versene 

0.1% Gelatin. 
0.4g gelatin (Biorad gelatin electrophoretic grade) 
400m1 dH2O 
autoclaved for 15 minutes at 12 1 °C, store at 4°C 

TENS. 
40mM Tris-HCL pH 7.5 
1mM EDTA pH 8.0 
150mM NaCl 
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FITC Blocking buffer 

0.2g BSA 
0.745g Tris pH 7.4 
To lOOm! H20 

General solutions and requirements for protein extraction 

Protein Standards. 
Prestained proein molecular weight Standards (Gibco BRL, 26041-020), 14,300-200,000 
molecular weight range, lyophilized 

Running conditions - 200V, 1 5OmA (2 gels) for 1 hour. 

Apparatus - Mini protean II Electrophoresis cell (Biorad) 
- Semi-dry transfer cell (Biorad) 

12% Acrylarnide Resolving gel 
10.02m1 Acryl/bis mix 
1.285g Tris 
3.Og Sucrose 
0.77m1 1M HC1 
8.75m1 TEMED 
H20to25m1 
Store at 4 °C. To pour gel, 7m1 12% acrylamide mix + 120tl APS 

3.5% Acrylarnide Stacking gel 
5.82m1 Acryl/bis mix 
0.327g Tris 
2.65m1 0.5M H2SO4 
55m1 TEMED 
H20 to 50m1 
Store at 4°C. To pour gel, 3.8m1 3.5% acrylamide mix + 60.tl APS. Apply on top of 
12% gel. 
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10% Ammonium Persuiphate (APS) 
0.1g in 1 ml water 
NB - make fresh daily 

Sx Sample Buffer (SB) 
000.81g Tris 
1.25g SDS 
0.667m1 1MH2 SO4  
1 .25m1 -mercaptoethanol 

Lower Reservior Buffer 
28.22g Tris 
16.9m1 1M HC1 
Distilled water to 500m1. 
Note- make fresh on day of use. 

Upper Reservoir Buffer (20x) 
24.8g Boric acdi 
49.6g Tris 
10.Og SDS 
Distilled water to 500m1. 
For running: lOmi 20x stock to 190 ml distilled water for 2 gels. 

Solutions for Chemiluminescence blottinci. 

Semi-dry transfer buffer. 
2.93g glycine 
5.81g Tris 
0.37g SDS 
200m1 methanol 
H20 to 1L 
Store at 4 °C 

TBS. 
6.05g Tris base 
8.76g NaCl 
H20 to 800m1, pH 7.5 with HC1 - top up to 1L with water 
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TBST 
For one blot: 0.25m1 TWEEN (Roche) in 250m1 TBS 

1% Blocking solution. 
Per blot: imI Blocking agent (Roche) in lOOmi TBS 

0.5% Blocking agent 
Per Blot: 5m1 Blocking agent in lOOm! TBS 

Detection solution. 
Pre-warm solution A for 30 minutes at 25°C 
Per blot: 1.5rn1 solution A, 15m1 solution B. Incubate at room temperature for 30 
minutes. 

BM Chemiluminescence Blotting Substrate (POD) Cat no: 1 500 694 (Roche 
Diagnostics,LJK) 

Solutions for Triton X-1 14 extraction. 

Extraction Buffer. 
For 50m1; 
Sm! 0.1M Tris-HC1, pH 7.4 (10mM) 
0.438g NaCI (150mM) 
4.385m1 Triton X-1 14 (1%) 
note - Triton X- 114 must be pre-condensed 
is 11%. Store at 4 °C 

Sucrose Buffer 

For 50m1; 
5m1 0.1M Tris-HC1, pH7.4 (10mM) 
3g Sucrose (6%) 
0.43gNaCl (150mM) 
H20 to 50 ml 
Store at 4 °C 

Approximate concentration of Triton X-1 14 
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Plasmids. 

amp 

fl (-) origin 

lac Z 

pBluescript SK (-) 
2.9kb 

on 

KpnI 
Apal, Drall 
XhoI 
AccI,HincII,SalI 
Cia! 
Hindlil 
EcoRV 
EcoRI 
Sma! 
BanHI 
Spel 
Xba! 
EagI, Nod 
Sad!, BstXII 
Sac! 

Figure A. 1 Cloning vector pBluescript SK II (-) 

fl (+) origin 

amp 	pGEM-7Zf(+) 
3kb 

on 

lacZ 
Apal 
AatI 
Sph! 
XbaI 
XhoI 
EcoRI 
Kpn! 
Smal 
Csp45! 
Clal 
Hindu! 
BamHI 
Sac! 
BstXI 
Nsi! 

Figure A. 2 Cloning vector pGEM-7Zf (+) 
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EcoRI 

Ovine PrP exon III 
(7kb) 

p71 
9.6kb 

/ SphI 
/ Pstl 

Hind!, Sal!, Acci 

Xbal 
BamHl 
Smal, Xmal 

Kpnl  Sac! 

EcoRI 

Figure A. 3 p71 pUCI8 derived (Goldmann et al, 1990) 

Hindu 

Ovine PrP promoter 

HindU 
	(0.5kb) 

SmaI, XmaI 
Asp718 
Kpnl 
Sad 
EcoRI 

Figure A. 4 pNPU 110-1. PT7/T3a-18 derived. Wilfred Goldmann 

Ulm 



Hindlil 
SphI 
PstI 

M  OR 

Ovine PrP promoter 
(0.5kb) 

Ovine PrP exon III 
	

EcoRI 
(7kb) 

Figure A. 5 pNPU7PM 

KpnI 
Apal 
Xhoi 
Acci 
Clal 
Hindill 
SphI 
PstI 

Hindu 

Ovine PrP promoter 
pBs.promoter 	 (0.5kb) 
3.4kb 	 t IlindlI 

Xbal 
Bami-Il 
Smal, Xmal 
Asp718 
KpnI 
PstI 
Sad 
EcoRl 
Smal 
l3anHI 
Spel 
Xbal 
Eagi, Nod 
Sacli, BstXlI 
Sad 

Figure A. 6 pBs.promoter. Cloned from pNPU 110-1 by Hindill-EcoRl digestion into pBluescnpt SK(-) 
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Apal 

XhoI 
Acci 

Cal 
Hindlil 

SphI 
PstI 

Hindil Ovine PrP promoter 
(0.5kb) 

pGem. promoter 
XbaI 

XhoI 
Ecorl 
KpnI 
Smal 
Clal 
Hindlil 
I3amHJ 
Sac! 
BstXI 
Nsi I 

Figure A. 7 pGEM.promoter. Cloning by ApaI-Xbal digestion of pBs.promoterinto pGEM-7Zf(+) 

Apal 

AatI 

Sphl 
XbaI 

Xhol 

EcoRl 

pGem.3kb 
6.6kb 

Ovine PrP exonlil 
fragment (3.6kb) 

NO 

BstXI 

Sac! 

Barn HI 

Hindu! 

EcoRl 

Figure A. 8 pGem.3kb Cloning of 3.6kb EcoRl-Clal digestion of p71 into pGEM-7Zf(+) 
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Xho! 
Ace! 

CIa! 
Hind!!! 
SphI 
Pat! 

•\ / ' Hind!l 

Ovine PrP promoter 

pNPU3PM 	

HZXhof

0.5kb) 

aI 7.1kb 

EcoR! 

Ovine PrP exonill 
fragment (3.6kb) 

Figure A. 9pNPU3PM. Insertion of(XhoI)ApaI-Xhol digestion from pGem.Promoter into 
pGem.3kb to form vector with truncated exonlil 

XhoI 
Acci 
CIa! 
lindli! 
Sph! 
Ps!! 

N / z Hind!! 

'iiePrP promoter 

pNPU2PM 	 Hind!! 	

(0.5kb) 

Xba! 6kb Xho! 

EcoRl 

Nsi 	

Ovine Pr? exonill 
fragment (2.5kb) 

Figure A. 10 pNPU2PM. Created by removing 1.5kb Nsi-Kpn digestion from pNPU3PM and 

re-insertion of 0.4kb Kpn-Pst digestion .(Pst and Nsi are complimentary sites) 

Nsi 
BstXI 
Sac! 
BamHI 
Hind!!! 

CIa! 
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EcoR! 

/ 	 _—coRV 
pPSHPrP 

/ 	(pUC 10/ 11) 
I 	 Ovine PrP ORF 

(0.8kb) 

EcoRV 

!Iindltl 

Figure A. 11 pPSHPrP Designed and supplied by Herbert Baybutt, NPU 

ill! 

3F4 epitope 
encoding amino 
acid sequence 

inch 

Figure A. 12 Construct pPSH3F4. Manipulation of the ovine ORF by PCR-mediated site directed 
mutagenesis introduced the hamster coding sequences for the amino acid epitope 3F4.. The 
manipulated ovine fragment (0.7kb) was cloned into clone pPSH3F4 (pBluescript backbone) using 
sites Pstl and Xn:al. 
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XhoI 
Acci 

Clal 
HndlII 

Sphl 

Psti 

Hindu 

Ovine PrP promoter 
Hindu 	(0.5kb) 

pNPtJ2PM 	/ EcoRlf1 
6kb 	 Xhol 

Nsil 

Hindi 
Ovine PrP exonlll 
fragment (2.5kb) 

Figure A. 13 Manipulated ovine sequence was cloned from pPSH3F4 in to pNPU2.3F4 using 
sites DraIII and HincII 

Hindu i 

Sphl 
Psul 

Eco RI 

Ovine PrP promoter 

(0.5kb) 

EcoR1 

Ovine PrP exon III 

(7kb) 

XbaBI 

Figure A. 14 Restriction digestion with BarnHIIXbaI of plasmids pNPU2.3F4 and pNPU7PM 
produced a 1.5kb fragment, encoding the nucleotide sequence for the 3F4 epitope, this was 
inserted into clone pNPU4.3F4. 
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\,rH 
Synthetic poly(A) signal 	

CAT 	 SV4O late and transcription 	SV40 	
poly(A) region siteSV40 promoter 	promoter 

Figure A. 15 pCAT3-Promoter vector (Promega, Southhamptom 15K). 

PiP 5' upstream 	 CAT 
	

SV4O late 
region 	 poly(A) region 

Figure A. 16 Construct pCAT5 was designed and supplied by Dr Herbert Baybutt and contains 
1.5kb insert of sequence 5' to the mouse PrP start site cloned upstream of the CAT coding region 
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Appendix B 

B 1.0 Optimisation of transfection protocol for ovine brain-derived cell line 
sA8OBR. 

Transfection methods tested are described in Chapter Two, Section 2.5.. The control vector 

pCAT3 -Promoter (Promega, UK, appendix A) which expresses chioramphenicol acetyl 

transferase (CAT), was used to optimise transfection methods by analysing CAT activity in cell 

lysates. The vector pSV--Galactosidase, which expresses 3-Galactosidase, was used to control 

for transfection efficiency or cell lysate recovery from transfection experiments. The cells, 

sA80BR, were harvested 48 hours post-transfection with the vector pCAT3-Promoter and a CAT 

assay was performed, the results of which were analysed by thin layer chromatography (TLC). 

Using the autorad developed from TLC, it was possible to isolate the acetylated products from 

the silica plate and the level of CAT activity determined by measuring [' 4C] by liquid 

scintillation counting (LSC, section 2.5.10). Relative CAT activity was determined by comparing 

the CAT activity of the reporter construct to a positive CAT control reaction (assumed to be 

100% for each experiment). The positive CAT control was 1 unit of purified CAT enzyme 

(Promega, UK). The negative control was cell lysate from non-CAT transfected cells 

Table B 1.1 Transient transfection sA80BR by calcium phosphate. 

Experiment Details 	1 	2 	3a 	4 	5a 

Cell Passage Number 
	

9 	13 	13 	14 	14 

[DNA] ug 
	

10 	10 	5 	5 	5 

Time (hours) 
	

6 	16 	16 	16 	16 

LSC (cpm) 
	

815.00 42.70 58.59 622 • 84b 57173b 

Positive control 
	

n/d 	36178.48 	22744.32 22744.32 

Negative control 	n/d 	47.66 	 277.12 	277.12 

Relative CAT % 	0 	0 	0 	0 	0 

a Experiment 3 was a duplicate of 2 and experiment 5 a duplicate of 4 
b  Results negative by TLC 



Table B 1.2 Transfection of brain sA80BR cell line by Electroporation. 

Experiment Details 1 2 3a 4a 

Cell Passage No. 12 5 5 5 

DNA (ug) 50 5 25 50 

Voltage, V 800 800 800 800 

Capacitance 300 300 300 300 

LSC (cpm) 1781.89 ob 0b ob 

Positive control 76458.28 54183.2 

Negative control 461.9 291.3 

Relative CAT % 1.74 0 0 0 
a Experiment 3 and 4 were duplicates of 2 
b Results negative by TLC 

Table B 1.3 Transfection of brain sA80BR cell line by Electroporation. 

Experiment Details 5 6a 7a 

Cell Passage No. 6 6 6 

DNA (ug) 20 20 20 

Voltage, V 200 250 300 

Capacitance 960 960 960 

LSC (cpm) 0* 0* 0* 

Positive control 34864.7 

Negative control 189.4 

Relative CAT % 0 0 0 

a Experiment 6 and 7 were a duplicate of 5 
b  Results negative by TLC 
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Table B 1.4 Transfection of brain sA80BR cell line by Dosper reagent (Roche 
Diagnostics East Sussex, UK) 

Experiment Details I 2a 3a 4a 

Cell Passage No. 11 

DNA(tg) 3 3 3 3 

Dosper (rd) 0 2 4 6 

LSC (cpm) 48276b 35161b 31288b 48575b 

Positive control 4176.32 

Negative control 413.21 

Relative CAT % 1.85 0 0 1.93 

'Experiments 2-4 were duplicates of 1 
bResults  negative by TLC 

Table B 1.5 Transfection of brain sA80BR cell line by Dosper reagent (continued) 

Experiment Details 5 65 7a 85 

Cell Passage No. 13 13 13 13 

DNA(p.g) 3 3 3 3 

Dosper (tl) 0 2 4 6 
LSC (cpm) 655.63 501.64 424.15 1483.54 

Positive control 92427.94 
Negative control 406.26 
Relative CAT % 0.27 0.1 0 1.17 
aExperiments  6-7 were duplicates of 5 

Table B 1.6 Transfection of sA80BR cell line by Tfx5O (Promega, Southampton, UK) 

Experiment Details 1 2 3 1 	2 	3 

Cell line sA80BR pA80BR 

[DNA]ug 3 3 3 3 3 3 

Tfx50 ratio 2:1 3:1 4:1 2:1 3:1 4:1 

LSC(cpm) 1534.74 2413.98 744.88 10566.09 8275.89 1162.57 

Positive control 109272.6 

Negative control 634.07 748.84 

Relative CAT % 0.83 1.64 0.1 9.05 6.94 0.38 

Note: sA80BR, cell passage number 16. pA80BR, cell passage number 10 
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Table B. 17 Transfection of sA80BR cell line by Tfx50; serum free 
Experiment Details 1 2 3 	1 2 3 

Cell Passage No 17 

Medium serum serum serum 	serum serum serum 
free free free 

Tfx50 ratio 2:1 3:1 4:1 	2:1 3:1 4:1 

LSC (cpm) for 0.5 360.56 471.8 523.25 	343.67 191.87 481.72 
DNA (tg); 	1 307.91 395.63 464.89 	395.65 226.49 520.29 

605.95 436.2 854.7 	7876.72 5173.91 1879.3 

Positive control 107605.7 
Negative control 322.85 
Relative CAT% 0.04 	0.14 	0.19 	0.02 	0. 	0.15 
for; 	0.5jtg 

1tg 0 	0.07 	0.13 	0.07 	0 	0.18 

3jtg 0.26 	0.11 	0.5 	7.04 	4.52 	1.45 

Table B 1.8 Transfection of sA80BR cell line by Tfx50 : serum free. 

Experiment Details 	1 	 2 	 3 

Cell Passage No 18 19 20 

DNA (ug) 3 3 2.5 2.5 1 1 

6 6 5 5 2.5 2.5 

10 10 10 10 4.5 4.5 

Tfx50 ratio 2:1 3:1 1:1 2:1 2:1 2:1 

LSC(cpm) 	3g 2108.88 1586.23 544.05 428.11 1103.84 814.62 

6jtg 5584.09 2232.76 391.68 581 4097.65 1883.18 

10.tg 15947.73 1122 663.57 3439.87 6207.42 8236.12 

Positive control 94705.14 80840.94 71577.68 

Negative control 499.65 297.98 540.38 

Relative 	3.tg 1.71 1.15 0.31 0.16 0.79 0.39 

CAT% 	6.tg 5.4 1.84 0.12 0.35 5.01 1.89 

10.tg 33.3 1.85 1.28 8.17 16.72 22.5 
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Table B 1.9 Transfection of sA80BR cell line by Tfx20 (Promega Southampton, UK) 

Experiment Details 1 2 a 3a 4 5 

Cell Passage No 4 6 7 

Tfx20 ratio 2:1 3:1 4:1 2:1 3:1 4:1 

CAT 	 0.25 471123.1 1309975 669431.69 0 0 0 
(net intensity) 360933.1 1411100 1248617.8 0 0 0 
for DNA (tg) 	0.5 

1075654 1465413 20131.39 0 0 0 
0.75 

1765868 2559327 1210601.4 0 0 0 
1.0 

Positive control 5222458 

Relative 	0.25 9.02 25.08 12.82 0 0 0 

CAT % 	0.5 6.91 27.02 23.91 0 0 0 

0.75 20.6 28.06 0.39 0 0 0 

33.81 49.01 23.18 0 0 0 
a Experiments 2 and 3 were duplicates of 1 and 6 was a duplicate of 5 

Table B 1.10 Transfection of sA80BR cell line by Superfect (Qiagen West Sussex, UK) 

Experiment - 	1 2 3 

Detail 
Cell Passage 9 10 11 

No 
Superfect (.tl)I 3 	6 	15 3 	3 1 	2 

jig DNA 
Vector pCATpromoter PSV2 	pCAT5 pCATpromoter 

CAT (net 3601188 1110619 	0 2275107 2484897 1707032 	5002714 
intensity) 
Positive 3093140 1962786 12778997 
control 
Relative CAT 116.43 	35.9 	0 115.91 	126.6 13.58 	39.15 

Table B 1.11 Transfection of Ovine liver cells with Effectene 
Date of Experiment 	 1 

Effectene (j.tl): DNA 1tgItl) 	 5:1 	 25:1 
CAT (net intensity) for 
DNA (tg) 	 0.2 	0 	 0 

	

0.4 	181978.2 	131910 

	

1 	833161.1 	479150.4 

Note; Cell passage number was 5 
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Table B 1. 12 Transfection of Ovine liver cells with Effectene 

Experiment Details 	2 a 	3 a 

Effectene (ml): DNA 25:1 	50:1 	10:1 
1mg/mi) 
CAT (net intensity) 2298265 	29017726 	42403465 

Positive control 45959099 
Relative CAT % 5 	63.14 	92.26 
a Experiments 3 and 3 were duplicates of 2 
Cell passage number for 2-4 was 4 

Table B 1.13 Transfection of Ovine liver cells with Effectene (continued) 

Experiment Details 1 	2 	3 	4 	5 	6 
Effectene(ml): 10:1 10:1 25:1 25:1 50:1 50:1 
DNA 1 mg/ml) 
CAT (net) 	0.2 0 N/a 1267876 745141.4 0 390912.4 
ForDNA (tg) 	0.4 2251224 N/a 43013453 0 5661907 2048627 

1.0 1093490 728756.4 4163298 4964755 0 1367386 

Positive control 4007509 
Relative CAT % 0 0 31.6 18.59 0 9.75 

56.17 0 107.33 0 141.28 51.12 

27.29 18.18 103.8 123.89 0 34.12 
Note: Passage number was 6. 

Table B 1.14 Transfection of Ovine Cerebellum cells with Effectene (Qiagen) 

Experiment Details 1 	2a 3a 	4a 5a 

Effectene (.il): 10:1 25:1 50:1 
DNA 1tg/.tl) 
CAT (net) 	0.1 0 	0 0 	0 0 	0 
for DNA (tg) 	0.2 1023404 38819.91 0 	741990.1 0 	0 

0.51 1341039 172436.41 0 	273313.91 0 	0 
Note : a Experiment 2 was duplicate of 1, 4 a duplicate of 3 and 6 and duplicate of 5. 
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B 2.0 Raw and Standardised CAT Data. 

Following transient transfection of the various cell lines as drawn out in section 2.5, cell 

lysate was recovered and a CAT assay completed. The enzyme CAT catalyses the 

transfer of acetyl groups to acetyl choline, in this case the substrate is radio-labelled 

[ 14C]chloramphenicol. To ensure equivalent recover of cell lysate independent on 

transfection efficiency, the cells were co-transfected with the plasmid -galactosidase 

and the appropriate -ga1actosidase assay carried out. The acetylated products were 

separated by thin layer chromatograph, and visualised by autoradiography, or by 

centrifugation by solubility in solvent (ethyl acetate). 

After purification from unconverted substrate, the amount of radio-labelled product was 

quantified by liquid scintillation counting or by densometirc reading of the autoradiograph using 

the Kodac system. From scintillation counting the amount of 14C labelled product was measured 

as counts per minute (cpm). From densometirc quantification the amount of 14C product was 

calculated by measuring the density (Net intensity) of the acetylated product detected by 

autoradiograph. The net intensity was measured by a Kodak Image Station and processed 

using the Kodak 1D Image Analysis software (section 2.5). As a positive control for CAT 

activity, the cell were transfected with the plasmid pCAT3 -Promoter (Promega), the amount of 

CAT activity from this plasmid was assumed to be 100% on each transfection and the chimeric 

CAT- PrP 3 'UTRs were standardised against this value. 
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B 2.1 CAT activity recorded following transient transfection of chimeric CAT-PrP 3'UTR 

plasmids in cell line sA80BR 

Table B 2.1.1 Experiment 1 

Plasmid Intensity Relative 
(cpm) CAT% 

PEYR 0 0 
PDI7 220.44 3.32 
PD20 673.51 10.15 
pD27 1757.96 26.50 
pD34 2371.33 35.74 
pD36 2058.43 31.03 

pCAT3- 6634.08 100 
Promoter  

Note: Cell passage number 17. 

Table B 2.1.3 ExDeriment2 
Plasmid Intensity Relative 

(cpm) CAT% 
pEYR 101.75 12.64 
pD17 77.02 9.57 
pD20 120.54 14.97 
pD27 149.23 18.54 
pD34 536.01 66.58 
pD36 285.72 35.49 

pCAT3- 805.12 100 
Promoter  

Note; Cell passage number 18  

Table B 2.1.2 duplicate of Experiment 1 

Plasmid Intensity Relative 
(cpm) CAT% 

pEYR 57.59 0.87 
pDl7 0 0 
pD20 3192.2 20.67 
pD27 1346.4 8.72 
p034 4847.7 31.38 
pD36 1425.77 9.23 

pCAT3- 15447.4 100.00 
Promoter  

Table B 2.1.4 ExDeriment 3 
Plasmid Intensity Relative 

(cpm) CAT% 
pEYR 224.56 26.21 
p017 117.69 13.74 
p020 372.57 43.49 
pD27 321.91 37.58 
pD34 741.17 86.52 
pD36 288.13 33.63 

pCAT3- 856.69 100.00 
Promoter 

Note; Cell passage number 4 

Table B 2.1.5 Experiment 4 

Plasmid Intensity (cpm) Relative CAT% 
pEYR 264.08 6.87 
pD17 194.84 5.07 
p020 320.46 8.34 
pD27 784.46 20.40 
pD34 1499.10 38.99 
pD36 0 0 

DCAT3-Promoter 3844.62 100 
Note; Cell passage number 5 
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B.2.2 CAT activity recorded following transient transfection of chimeric CAT-PrP 

3'UTR plasmids in cell line pA80BR 

Table B 2.2.1 Experiment 1 

Plasmid Net Relative 
Intensity CAT (%) 

pEYR N/A N/A 
pD17 23891.28 25.53 
pD20 4486.75 4.79 
pD27 N/A N/A 
pD34 86991.47 92.95 
pD36 89598.09 95.73 

pCAT3- 93592.05 100.00 
Promoter 
Note ;Cell passage number 6  

Table B 2.2.2 Experiment 2 

Plasmid Net Relative 
Intensity CAT (%) 

pEYR 182905.67 73.44 
pD17 117674.85 47.25 
pD20 148627.28 59.68 
pD27 522107.44 209.63 
pD34 659221.01 264.68 
pD36 18817.08 7.56 

pCAT3- 249061.13 100.00 
Promoter 

Note; Cell passage number 7 

Table B 2.2 .3 Experiment 3 
Plasmid Net 

Intensity 
Relative 
CAT (%) 

pEYR 3942.81 2.41 
pD17 2932.98 1.80 
pD17 20858.55 12.77 
pD20 
pD20 

28566.89 17.49 
40480.69 24.78 

pD27 7695.28 4.71 

pD34 
pD34 

345771.91 211.66 
367143.25 224.75 

pD36 5408.90 3.31 
pD36 35153.57 21.52 

pCAT3- 
Promoter  

1 163359.34 1  100.00 

Note ;Cell passage number 10  

Table B 2.2.4 Experiment 4 
Plasmid Net 

Intensity  
Relative 

pEYR 547266.5 16.28 
pD17 146087 4.35 
pD20 152586 4.54 
pD27 325563.3 9.69 
pD34 113979.7 3.39 
pD36 166444.9 4.95 

pCAT3- 
Promoter  

3362523 100 

Note; Cell passage number 11 



Table B 2.2.5 Exoerirnent 5 
Plasmid Net Relative 

Intensity CAT (%) 
pEYR 17675.97 2.93 
pD17 2222.69 0.37 
pD20 9802.06 1.62 
pD27 30553.70 5.06 
pD34 71699.00 11.86 
pD36 12636.38 2.09 

pCAT3- 583866.75 100.00 
Promoter 

Note: Cell passage number 11 

Table B 2.2.6 Exoeriment 6 
Plasmid Net Relative 

Intensity CAT (%) 
pEYR 15575.28 2.02 
pEYR 13201.65 1.71 
pD17 29188.72 3.79 
pD20 454.75 0.06 
pD27 29260.68 3.80 
pD34 53264.00 6.92 
pD36 68402.02 8.88 

PCAT3- 769940.13 100.00 
Promoter 

Note; Cell passage number 12 

Table B 2.2.7 Comparison of sA80BR and pA80BR relative CAT activity log e  data. 

Cell line 	Vector Collated % CAT activity Mean st.dev 
sA80 BR pEYR -2.30 -0.03 2.54 3.27 1.94 1.08 2.26 

pD17 1.23 -2.30 2.27 2.63 1.64 1.09 1.97 
pD20 2.34 3.03 2.71 3.77 2.13 2.80 0.65 
pD27 3.28 2.18 2.93 3.63 3.02 3.01 0.60 
pD34 3.58 3.45 4.20 4.46 3.67 3.87 0.44 
pD36 3.44 2.23 3.57 3.52 -2.30 2.09 2.52 

pA80BR pEYR 0.75 4.30 0.92 0.00 2.79 1.11 0.59 1.74 1.51 
pD17 3.24 3.86 0.64 2.55 1.49 -0.78 1.36 1.77 1.59 
pD20 1.59 4.09 2.87 3.21 1.53 0.54 -1.90 1.70 1.99 
pD27 5.35 3.11 1.57 2.27 1.65 1.36 2.55 1.51 
pD34 4.53 5.58 5.36 5.42 1.25 2.48 1.95 3.79 1.84 
pD36 4.56 2.03 1.22 3.07 1.61 0.78 2.19 2.21 1.27 



B.2.3 CAT activity recorded following transient transfection of chimeric CAT-PrP 3'UTR 
plasmids in cell line 1S120.Cer 

Table 2.3.1 Experiment 1 
	

Table 2.3.2 Experiment 2 (duplicate of 1) 

Plasmid Intensity Relative Plasmid Intensity Relative 

(cpm) CAT (%) (cpm) CAT (%) 

pEYR 472.82 5.26 pEYR 310.57 3.45 

pD17 513.55 5.71 pD17 421.36 4.68 

p020 593.04 6.59 p020 707.28 7.86 

pD27 586.09 6.52 pD27 1024.84 11.39 

pD34 2583.35 28.72 pD34 911.11 10.13 

p036 1756.54 19.53 pD36 8995.92 100.00 

PCAT3- 845.8 9.40 PCAT3- 845.8 9.40 

promoter promoter 

Note: Cell passage number 10, 3rd  August, 1999 

Table 2.3.3 Experiment 3  

Plasmid Intensity 

(cpm) 

Relative 

CAT (%) 

pEYR 86787.96875 19.7454362 

p017 107231.1953 24.40 

p020 32432.16797 7.38 

pD27 281823.25 64.12 

p034 118816.8984 27.03 

p036 146027.7813 33.22 

PCAT3- 548012 124.68 

promoter 

Table 2.3.4 Experiment 4 (duplicate of 3) 

Plasmid Intensity 

(cpm) 

Relative 

CAT (%) 

pEYR 143812.75 32.72 

pD17 123573.4219 28.11 

pD20 38378.27734 8.73 

p027 238240.8438 54.20 

pD34 212682.9531 48.39 

p036 148989.2813 33.90 

PCAT3- 331056.625 75.32 

promoter 

Note: Cell passage number 7, 3 rd  December, 1999. 



Table 2.3.5 Experiment 5 Table 2.3.6 Experiment 6 (duplicate of 5) 
Plasmid Intensity Relative Plasmid Intensity Relative 

(cpm) CAT (%) (cpm) CAT (%) 

pEYR 41931.85547 7.85 pEYR 19697.68945 3.69 

pD17 14404.44922 2.70 pD17 11226.77344 2.10 

pD20 19829.95313 3.71 pD20 40888.75 7.66 

pD27 45802.77344 8.58 pD27 226975.9531 42.52 

pD34 50073.15234 9.38 pD34 79789.0625 14.95 

pD36 99413.63281 18.62 pD36 95266.94531 17.85 

PCAT3- 282509.25 52.92 PCAT3- 785177 147.08 

promoter promoter 

Note: Cell passage number 8 

B 2.4 CAT activity recorded following transient transfection of chimeric CAT-PrP 3'UTR 
plasmids in cell line 1S120.Liv 

Table B 2.4.1 Experiment 1. 	 Table B 2.4.2 Experiment 2 

Plasmids Net Relative Plasmids Net Relative 
Intensity CAT (%) Intensity CAT (%) 

PEYR 0.0 0.00 pEYR 929.288 0.11 

PD17 30313.4 3.44 PD17 1511.5 0.17 

PD20 74007.9 8.39 PD20 81152.5 9.21 

PD27 139327 15.80 PD27 0 0 

PD34 616813 69.97 PD34 692904 78.60 

PD36 75743.2 8.59 PD36 184862 20.97 

PCAT3- 881595 100.00 
Promoter  
Note ; for both experiment I and 2 cell passage number was 11 
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Table B 2.4.3 Experiment 3 

Plasmids Intensity (cpm) Relative CAT (%) 

pEYR 576.68 86.63 

PD17 456.97 68.64 

PD20 445.11 66.86 

PD27 382.79 57.50 

PD34 2087.16 313.52 

PD36 380.81 57.20 

PCAT3-Promoter 665.73 100.00 

Note: Cell passage number 11, 12-08-1999 

Table B 2.4.4 Experiment 4 Table B 2.4.5 Experiment 5 (duplicate of 4) 

Plasmids Net Intensity Relative Plasmids Net Intensity Relative CAT 

CAT(%) (%) 

pEYR 51798.16 25.68 pEYR 52858.46 26.20 

PD17 46360.69 22.98 PD17 25038.26 12.41 

PD20 74095.64 36.73 PD20 14559.36 7.22 

PD27 25138.03 12.46 PD27 220116.6 109.11 

PD34 67181.86 33.30 PD34 16512.9 8.19 

PD36 164531.4 81.56 PD36 211291.2 104.74 

PCAT3- 201738.5 100.00 

Promoter 

Note; for both experiment 4 and 5 cell passage number 12 
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Table B 2.4.6 Comparison of 1S120.Cer and lS12O.Liv relative CAT activity log e  data. 

Cell line 	Vector Collated % CAT activity Mean st.dev 
1S120.Cer pEYR 1.68 1.27 2.07 1.33 2.99 3.49 2.14 0.91 

p017 1.76 1.56 1.03 0.79 3.20 3.34 1.95 0.94 
pD20 1.90 2.08 1.34 2.05 2.01 2.18 1.93 0.31 
pD27 1.89 2.16 3.75 4.16 3.99 3.19 1.13 
p034 2.44 3.36 2.25 2.71 3.30 3.88 2.99 0.50 
p036 2.33 2.98 2.93 2.89 3.51 3.53 3.03 0.42 

1S120.Liv pEYR -2.30 -1.56 3.26 3.27 4.46 1.43 2.67 
pD17 1.26 -1.31 3.14 2.53 4.23 1.97 2.12 
p020 2.14 2.23 3.61 1.99 4.20 2.83 1.00 
p027 2.77 0.00 2.53 4.69 4.05 3.51 1.03 
pD34 4.25 4.37 3.51 2.12 5.75 4.00 1.33 
pD36 2.16 3.05 4.40 4.65 4.05 3.66 1.04 
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B 2.5 Analysis of variants. 

Despite co-transfection to ensure consistent transfection efficiency, variation was observed in the 

overall level of CAT activity detected from independent transfection experiments. However, 

although the level of CAT measured may have varied between separate experiments the pattern 

of CAT expression from the individuals plasmids remained constant. It was necessary to 

determine if the observed variance between CAT values was significant. Analysis of variance 

(ANOVA) on the logged data was completed to look for significant differences (F) between the 

effect of the vectors overall and transfection efficiencies between each experiment. The purpose 

of analysis of variance (ANOVA) is to test for significant differences between population means. 

The source of variation in these experiments are the CAT-PrP/3'UTR plasmids and the 

efficiency of transfection. Residual variation estimates the with-in group variability, a factor that 

can not readily be accounted for in the current design. Sum of squares of a measurement of the 

amount of variation due to each source. Degrees offreedom are appropriate to the various sum 

of squares and reflect the number of populations (individual transfection experiments or 

plasmids). Mean of squares is the variance estimates obtained by dividing each sum of square by 

its appropriate degrees of freedom. The variance ratio is a comparison between the variance 

estimates and is used to determine the importance of the different sources of variation. 

The overall effect of plasmids was found borderline significant in all cell lines (tables 1-4). This 

means that there are differences in the overall magnitudes of the standardised CAT results 

between samples, which may be a result of variable transfection efficiencies. However, the 

estimated variation when considering the both the overall plasmid effect and transfection effect 

together (interaction) was found significant. This indicates that although the overall level of CAT 

activity detected for individual transfection experiments may have varied, the differences in 

standardised CAT measurements between plasmids are reasonably constant across all samples. 
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Table B 2.5.1 Analysis of Variants (ANOVA) using CAT activity (log e) obtained from 

transient transfection studies of cell line sA80BR. 

Source of Degrees of Sum of Mean of Variance ratio F probability 
variation freedom squares squares (F) 
Plasmids 5 24.44 4.89 5.37 0.100>p>0.050 

Transfections 3 21.53 7.18 7.89 0.050>p>0.025 

Interaction 15 45.97 3.06 3.37 p> 0.100 

Residual 4 3.64 0.91 

Total 30 95.4 

Table B 2.5.2 Analysis of Variants (ANOVA) using CAT activity (log e) obtained from 

transient transfection studies of cell line pA80BR. 

Source of Degrees of Sum of Mean of Variance ratio F probability 

variation freedom Squares Squares (F) 

Plasmids 5 30.21 6.04 5.69 0.050>p>0.025 

Transfections 5 43.52 8.70 8.20 0.025>p>0.010 

Interaction 25 73.89 2.96 2.78 p>0 . 100  

Residual 6 6.37 1.06 

Total 42 154.15 
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Table B 2.5.3 Analysis of Variants (ANOVA) using CAT activity (log e) obtained from 

transient transfection studies of cell line 1S120.Cer. 

Source of Degrees of Sum of Mean of Variance ratio F probability 
variation freedom squares squares (F) 
Plasmids 5 17.6 3.52 4.58 0.010>p>0.005 

Transfections 2 7.52 3.76 4.89 0.025 >p> 0.01 

Interaction 10 11.82 1.18 1.54 p> 0.100 

Residual 18 13.84 0.77 

Total 36 50.79 

Table B 2.5.4 Analysis of Variants (ANOVA) using CAT activity (log e) obtained from 

transient transfection studies of cell line 1S120.Liv. 

Source of Degrees of Sum of Mean of Variance ratio probability 

variation freedom Squares Squares (F) 

Plasmids 5 24.5 4.91 2.7 0.1>p>0.05 

Transfections 2 48.9 24.4 8.213.50 p>O.OlO 

Interaction 10 31.9 3.19 2.781.8 0.2>p>0.15 

Residual 12 21.7 1.81 

Total 30 127 
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