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Abstract 
 

Epstein-Barr virus (EBV) is a gammaherpes virus that infects >90% of the adult 

population worldwide. During childhood infection is generally sub-clinical, 

however if delayed until adolescence infectious mononucleosis (IM) may 

develop. The virus has also been aetiologically linked with a number of tumours 

including B-cell lymphoma following organ transplantation: post-transplant 

lymphoproliferative disease (PTLD). The symptoms of IM are caused by an 

expansion of immune cells in response to infection whilst in the transplant 

situation immunosuppressive drug therapy allows the outgrowth of the tumour. 

Understanding the immuno-regulatory mechanisms involved in such EBV-

associated diseases is crucial for devising new treatment strategies.  

We undertook 3 separate studies (1-3) investigating different aspects of the 

immune response to EBV. In a recently reported phase II trial using allogenic, 

EBV-specific cytotoxic T-cell (CTL) to treat PTLD, tumour response was 

significantly increased with a high degree of donor/recipient HLA-allele 

matching suggesting that further refinement of the matching procedure may be 

important. In study 1 we investigated the epitope specificity and T-cell receptor 

(TCR) clonality of the infused CTL to identify potential areas for refinement. We 

found the protein specificity of the CTL to be polyclonal with dominant 

recognition of Epstein-Barr nuclear antigen-3 proteins and sub-dominant 

recognition of Latent membrane protein (LMP)-1 and LMP-2 proteins. Where 

possible, specificity was confirmed at the peptide level. No single TCR family 

was preferentially used by CTLs. The CTL epitope specificity did not differ 

between treatment responders and non-responders however the response was 

improved in those with several CTL HLA-restricted epitope matches and those 

infused with CTL containing polyclonal TCR families as opposed to monoclonal. 

CTL/recipient matching based on HLA matching alone was improved when also 

matched via HLA- restricted epitiope specificity. Therefore mapping CTL 

peptide epitope specificity prior to CTL infusions may enhance patient 

responses. 

In recent years, interest has developed in genetic variation within components of 

the immune system. Of particular interest are cytokine/cytokine receptor genes 
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and genes of the human leukocyte antigen (HLA), both of which act to regulate 

the immune response. Variation within these genes could potentially alter the 

immune response leading to disease. In study 2 we investigated single nucleotide 

polymorphisms (SNPs) in several cytokine genes (TNF, IL-1, -6, -10) in both IM 

and PTLD cases and compared with relevant control groups. We found that the 

frequency of two TNF promoter alleles was significantly increased in PTLD 

patients compared to controls whilst the frequency of a TNF receptor II allele 

was increased in IM and EBV seropositive individuals, suggesting a role for this 

allele in susceptibility to EBV infection. The frequency of a second TNF receptor 

II allele was increased in both PTLD and IM subjects compared to controls 

highlighting the possible significance of TNF and its receptor in the development 

of EBV associated disease.  

In study 3 we analyzed two microsatellite markers and two SNPs located near the 

HLA class I locus in IM, PTLD and control subjects to further determine whether 

the HLA genes may affect development of EBV-associated diseases. Alleles of 

both microsatellite markers were significantly associated with development of 

IM. Specific alleles of the two SNPs were also more frequent in IM patients. 

Moreover IM cases possessing the associated microsatellite allele had 

significantly fewer lymphocytes, increased neutrophils, and displayed higher 

EBV titres and milder IM symptoms relative to IM cases lacking the allele. The 

results indicate that HLA class I polymorphisms may predispose patients to 

development of IM upon primary EBV infection and suggest that genetic 

variation in T cell responses can influence the course of EBV infection.  
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1. Introduction 

1.1 The Herpes Family 

The herpesvirus family is one of the most widely disseminated, infecting mammals and 

birds as well as a range of lower vertebrate (reptilian, amphibian and fish) and 

invertebrate (bivalve) hosts. Since 1971 herpesvirus taxonomy has been addressed by 

the International Committee on Taxonomy of Viruses (ICTV) and over the years a 

consensus for herpes virus classification has been achieved based upon morphological, 

biological and molecular attributes. In the most recent ICTV report the family 

Herpesviridae is shown to consist of 3 sub-families: Alphaherpesvirinae (containing the 

Simplexvirus, Varicellovirus, Mardivirus and Iltovirus genera), Betaherpesvirinae 

(containing the Cytomegalovirus, Muromegalovirus and Roseolovirus genera) and 

Gammaherpesvirinae (containing Lymphocryptovirus and Rhadinovirus genera). The 3 

sub-families are estimated to have arisen approximately 400 million years ago with 

subsequent division (genera) occurring around 80 million years ago (McGeoch, Rixon, 

and Davison, 2006;McGeoch et al., 1995).   

The primary criterion for inclusion in the herpes family is that of virion morphology.  

The virion is spherical in shape, and comprises 4 major components: the core, capsid, 

tegument and the envelope (Figure 1.1). The virion size differs between species but is 

approximately 200nm in diameter. The core consists of a single copy of a linear, 

double-stranded DNA molecule, ranging in size from 125-240 kilobase pairs (kbp) and 

encoding between 70 and 200 genes (Pellet and Roizman, 2006). The icosahedral 

shaped capsid (diameter 100-110nm) consists of 162 capsomeres each containing 5 or 6 

copies of the major capsid protein and is surrounded by the tegument which contains 30 

or more viral proteins and is poorly defined structurally. The tegument is further 

surround by a lipid envelope containing viral membrane glycoproteins (Kieff and 
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Rickinson, 2006). The protein composition of the tegument and envelope components 

varies across the herpes family. 

                                    

Figure 1.1 Herpes virus virion structure 
Herpes virus virion detailing spherical shape consisting of genome, nucleocapsid, tegument and 
membrane components. Reproduced with permission from Dr. Marko Reschke, www.biografix.de. 

 

 

The second main criterion for inclusion within the family is that of biological attributes. 

There are four principal biological characteristics attributed to Herpes viruses: 

1. Herpes viruses express a large number of enzymes involved in the 

metabolism of nucleic acid, DNA synthesis and processing of proteins. 

2. The synthesis of viral genomes and assembly of capsids occurs in the 

nucleus. The capsid is then enveloped when budding from the nuclear 

membrane. 

3. Productive viral infection is accompanied by cell destruction. 

4. Herpes viruses are able to establish and maintain a latent state in their host. 

Latency involves stable maintenance of the viral genome in the nucleus with 

limited expression of a subset of viral genes. 

 

Due to advances in molecular technology a third criterion of genomic characterisation is 

now also used to define family members. Nucleotide and amino acid sequence analysis 
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allow genomic comparisons to be made across the various viruses and the construction 

of phylogenetic trees. Figure 1.2 shows an example of such a tree for the herpes virus 

family.                                                                                                                                                                          

  

Figure 1.2 Composite phylogenetic tree of the herpes viruses. 
The tree is base upon amino acid sequence alignments of 8 sets of homologous genes. Thick lines 
designate areas of uncertain branching. From ‘Overview of classification’ by A.J.Davison (2007); Human 
herpesviruses: Biology, Therapy, and Immunoprophylaxis (Arvin, A. et al eds), by permission of 
Cambridge University Press (Davison, 2007).  

 

1.1.2 Human Herpes Viruses 

Eight human herpes viruses (HHV) have so far been identified with HHV-8 the most 

recent inclusion in 1994 (Chang et al., 1994). All 3 herpes virus sub-families contain at 

least one human representative, summarised in Table 1.1. 

Similar to the herpes family in general, the 8 HHV are categorised according to their 

morphological, biological and molecular characteristics. The biological properties of the 

HHV are shown in Table 1.2.    
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   Table 1.1 Human herpes virus classification 

Human 
Herpes 
Virus 

Sub-family Genus Alternative name 

1 Alpha- Simplexvirus Herpes-Simplex 1 (HSV-1) 

2 Alpha- Simplexvirus Herpes-Simplex 2 (HSV-2) 

3 Alpha- Varicellovirus Varicella Zoster virus (VSV) 

4 Gamma- Lymphocrytovirus Epstein-Barr virus (EBV) 

5 Beta- Cytomegalovirus Human Cytomegalovirus (HCMV) 

6 Beta- Roseolovirus - 

7 Beta- Roseolovirus - 

8 Gamma- Rhadinovirus 
Kaposi’s Sarcoma-associated Herpes 

Virus (KSHV) 

 

 

  Table 1.2 Biological properties of human herpes viruses 

Biological Properties Herpes 
Sub-

family 

Genus Growth 
Cycle 

Cytopathology Site of Latency 

Simplexvirus 
Alpha 

Varicellovirus 

Short  
(< 24hrs) 

Cytolytic 
Sensory ganglia 

and neurons 

Cytomegalovirus Cytomegalic 
Glands 
Kidney Beta 

Roseolovirus 

Long 
(> 24hrs) 

Lymphoproliferative Lymphoid tisssue 

Lymphocrytovirus 
Gamma 

Rhadinovirus 
Variable Lymphoproliferative Lymphocytes 

 

 

 

 

1.2 Epstein Barr Virus (EBV) 

In 1957 Denis Burkitt, a British surgeon, working in Mulago Hospital in Kampala, 

Uganda, was consulted about a child with unusual swellings in the jaw. Whilst visiting a 

second hospital sometime later he came across another child with similar swellings. He 

later wrote ‘a curiosity can occur once, but two cases indicated something more than a 

curiosity’ (Burkitt, 1983). His subsequent investigation of the swellings revealed that 

the jaw tumours were common, sometimes associated with tumours at other anatomical 

sites (adrenal glands, kidney and liver) and usually presented within the first decade of 

life (Burkitt, 1958). Following collaboration with a pathologist colleague the tumour 
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was designated a lymphoma and subsequently became known as Burkitt’s lymphoma 

(Burkitt and O'Conor, 1961).  

In 1961, Denis Burkitt presented his findings to the Academic Surgical Unit at The 

Middlesex Hospital, London. In the audience was M.Anthony Epstein, an experimental 

pathologist with an interest in the oncogeneicity of Rous sarcoma virus. On hearing 

Burkitt’s description of the tumour, and the distribution patterns associated with 

climatic factors, Epstein postulated that a biological agent may play a role in the 

aetiology of the lymphoma. A collaboration between the two was established, with 

Burkitt sending biopsy material from his lymphoma patients to Epstein’s laboratory in 

London. For 2 years Epstein and colleagues investigated the biopsy material, 

specifically looking for a viral agent, but with no success. In 1963, a fortuitous transport 

delay in biopsy material resulted in the formation of a single cell suspension of tumour 

cells, from which the first BL-derived continuous cell line (EB-1) was established 

(Epstein and Barr, 1964). This finding was quickly followed by the identification of a 

virus-like particle in the BL line using electron microscopy (Epstein, Achong, and Barr, 

1964). Confirmation of the finding was performed in the laboratory of Werner and 

Gertrude Henle in Philadelphia where the virus was referred to as ‘herpes-type’ and 

subsequently renamed Epstein-Barr (EB) virus after the original BL-cell line (Epstein et 

al., 1965).  

The past 40 years have seen advances in our understanding of the molecular 

characteristics of the virus and of the various interactions of the virus with the host 

immune system. EBV has been shown to infect a number of cell types, including B-

cells, epithelial cells and T-cells, both in vitro and in vivo. It is now associated with 

several other diseases including infectious mononucleosis (IM), Hodgkin’s lymphoma 
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(HL), nasopharangeal carcinoma (NPC) and more recently some forms of gastric 

cancer.  

 

1.2.1 EBV epidemiology and transmission 

EBV is one of the more successful herpes viruses infecting over 90% of the adult 

population globally. Recent epidemiological studies suggest that in western populations 

approximately 75% are infected with the virus by early adulthood (Crawford et al., 

2002;Crawford et al., 2006) whilst in non-westernised countries this percentage is 

increased with almost all children over the age of two infected (de-The et al., 1978). If 

infection is delayed until adolescence then infectious mononucleosis (IM), a self-

limiting lymphoproliferative disease, may result (Niederman et al., 1970). Although two 

peaks of sero-conversion occur (Pereira, Blake, and Macrae.A.D, 1969) only a few 

studies have attempted to identify the factors involved in sero-conversion. Early studies 

associated high socio-economic status with the level of EBV sero-negativity (Hesse et 

al., 1983;Hallee et al., 1974) however, more recently EBV sero-positivity has also been 

associated with female gender, age and the number of siblings (Higgins et al., 2007).  

EBV is routinely detected in saliva of infected individuals and transmission is thought 

to predominately occur through salivary contact, however the virus has also been 

detected in both male and female genital secretions (Israele, Shirley, and Sixbey, 

1991;Sixbey, Lemon, and Pagano, 1986). In a recent sero-epidemiological study of 

university students sexual contact was identified as a significant risk factor for EBV 

sero-conversion (Crawford et al., 2002).  

Two sub-types of EBV have been identified since its discovery. EBV sub-type 1 (or A) 

and EBV sub-type 2 (or B) share between 70 and 85% sequence homology (Sample et 

al., 1990) and studies suggest that type 1 is more prevalent than type 2, although type 2 

is more prominent in Africa (Gratama and Ernberg, 1995). Indeed recent investigation 



   Chapter 1: Introduction    

 

 - 7 - 

of young adults suggests that 77% of infected individuals carry type 1 EBV, 17% type 2 

and around 5% carry both types (Higgins et al., 2007). The same study also found type 

1 infected subjects to have similar risk factors for sero-conversion to that of EBV 

overall whilst sexual activity was the only risk factor for type 2 infected subjects 

(Higgins et al., 2007). Type I  EBV was also identified as a risk factor in the 

development of IM (Crawford et al., 2006). 

 

1.2.2 The EBV genome 

EBV (the B95-8 strain) was the first of the herpes virus family to be completely 

sequenced (Baer et al., 1984).  More recently, the sequences of the B95-8 and Raji 

strains have been used to create a composite reference sequence- EBVwt (de Jesus et 

al., 2003). Its genome is composed of a linear, double stranded DNA approximately 

170kb in length and contains 84 open reading frames (ORFs). A repeated DNA 

sequence, the terminal repeat (TR), present at either end of the linear form mediates 

circularisation upon infection of a cell. EBV also contains tandemly repeated DNA 

sequences, one of which is the major internal repeat (IR1), which contains the latency 

promoter Wp. The IR1 divides the genome into the long (UL) and short (US) unique 

sequences where the majority of the genes are clustered (Figure 1.3).  

 

 

Figure 1.3 Schematic diagram of the EBV linear genome. 

TR: terminal repeat; UL: unique long; US: unique short; IR1: internal repeat 1. The linear form is 
circularised via the terminal repeats. 
 

  US 

TR TR IR1 

  UL 

 Wp 
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In other herpes virus genomes the genes are numbered according to their position within 

the unique sequences, however in EBV they are named according to the BamH1 

restriction fragment in which they start. Conventionally the fragments are named 

according to size, with A the largest. For example BARF1 is the first right forward 

reading frame in BamH1A. Figure 1.4 depicts the BamH1 restriction endonuclease map 

of the B95-8 genome. 

 

 

Figure 1.4 BamH1 restriction endonuclease map of B95-8 genome. 
The map shows the location of the ORFs for the latent proteins. The largest fragment is A with lowercase 
letters referring to the smallest fragments. TR: terminal repeats; Nhet: heterogenic region. Reproduced by  
kind permission of  Cambridge University Press: Epstein-Barr virus infection: basis of malignancy and 
potential for therapy, Murray,PG and Young,L. Exp Rev Mol Med; 2001: 3(28):1-20. 

 

The EB virus expresses different gene combinations and proteins depending on the type 

of infection: latent (types I, II and III) or lytic. 

 

1.2.2.1 EBV latency patterns 

EBV proteins are differentially expressed in a variety of EBV-associated diseases, more 

commonly known as EBV latency patterns or programmes. There are 3 latency patterns 

observed in EBV-associated disease (I, II and III) with the highest number of antigens 

expressed found in latency type III and the lowest with latency type I (summarised in 

Table 1.3). In normal healthy individuals resting EBV-infected B-cells display a fourth 

latency pattern, type 0, where only Epstein-Barr encoded small RNA (EBERs) are 

detected.  
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Table 1.3: EBV latency patterns and associated disease 

Latency Pattern Antigen expressed Disease association 

Latency I/ latency 
programme 

EBERs* 
EBNA-1 
BARTs* 

Burkitt’s Lymphoma 

Latency II/ default 
programme 

EBERs* 
EBNA-1 

LMP-1 and or LMP-2A 
BARTs* 

Hodgkin’s Lymphoma 
Nasopharangeal carcinoma 

Undifferentiated nasopharangeal 
carcinoma 

T-cell Lymphoma 

Latency III/ growth 
programme 

EBERs* 
EBNA-1, -2, -3A, -3B, -

3C, -LP 
LMP-1, -2A, -2B 

BARTs* 
 

Lymphoblastoid cell lines in vitro 
Infectious Mononucleosis 

Post-transplant Lymphoproliferative 
Disease 

EBERs: Epstein-Barr encoded small RNA, EBNA: Epstein-Barr nuclear antigen, LMP: latent membrane 
protein, LP: leader protein, BARTs: BamH1 A rightward transcripts  
 *Detection of RNA only 
 

 

1.2.2.2 Latent gene expression 

Latent cycle genes were discovered through a mixture of RNA and protein analysis. 

There are a total of 9 latent viral antigens, 6 of which are nuclear antigens (EBNAs) and 

3 which are membrane proteins (LMPs). Epstein-Barr encoded small RNAs (EBERs) 

are also transcribed but not translated during latency. Transcripts from the BamH1A 

region (BARTs) can also be detected (Table 1.4). 

Within 24 hours of infection the linear genome circularises to form an episome within 

the infected cell (Hurley and Thorley-Lawson, 1988;Alfieri, Birkenbach, and Kieff, 

1991) (Figure 1.5). In latency type III all the EBNAs are expressed from a single 

mRNA transcript that undergoes alternate splicing to produce mRNAs for the individual 

EBNAs. During initial infection transcription is initiated from the Wp promoter in the 

IR1. As the cells immortalise and expand the Wp promoter activity is reduced and 

transcription is then initiated from a second promoter, Cp (Woisetschlaeger, Strominger, 

and Speck, 1989;Woisetschlaeger et al., 1990).  This switch in promoter usage is 

regulated by expression of the EBNA-2 protein. In latency type I only EBNA 1 is 
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expressed and the mRNA is transcribed from a third promoter, Qp (Schaefer, 

Strominger, and Speck, 1995). EBNA-2 and EBNA-LP are the first viral genes 

expressed followed by EBNA-1 (Allday, Crawford, and Griffin, 1989;Rooney et al., 

1989). Expression of the membrane proteins is controlled by the expression of EBNA-2. 

Both LMP-1 and LMP-2B are transcribed from a bi-directional promoter that responds 

to EBNA-2 (Johannsen et al., 1995) while LMP-2A is controlled by a different 

promoter also controlled by EBNA-2 (Zimber-Strobl et al., 1991;Zimber-Strobl et al., 

1993). Both promoters are located within the BamH1N fragment (Young and Murray, 

2003). The coding exons for both LMP-2A and -2B are spliced across the terminal 

repeat region with LMP-1 expressed subsequent to EBNA-1 expression, as EBNA-1 

acts as a transcriptional transactivator, up-regulating the LMP-1 promoter (Kieff and 

Rickinson, 2006).   

                             

Figure 1.5 Location and transcription of EBV latent genes on the episome 
Purple solid arrows represent the exons encoding for the latent EBNA and LMP proteins. LMP-2A and -
2B are composed of multiple exons located on either side of the terminal repeat. Orange arrows represent 
transcription of EBERS. The red arrow is the pattern followed during type III latency while the blue 
arrow is that followed by type I latency. Reproduced by  kind permission of  Cambridge University Press: 
Epstein-Barr virus infection: basis of malignancy and potential for therapy, Murray,PG and Young,L. Exp 
Rev Mol Med; 2001: 3(28):1-20. 
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Combined with EBV antigen expression, there is up-regulation of various cellular genes 

including interleukins (ILs)-5, -6 and -10, tumour necrosis factors (TNF), receptors 

CD21, CD23 and CCR7, as well as adhesion molecules CD11a, CD58 and CD54. It is 

postulated that these molecules induce and maintain proliferation by EBV through 

autocrine routes and cell-cell contact. Indeed EBV drives the infected cell from G0 to 

G1-phase and then into S-phase of the cell cycle, replicating the viral genome alongside 

the cell genome (Adams, 1987;Murray and Young, 2001). These regulatory events are 

primarily controlled by the various latent genes and summarised in table 1.4. 

 

  Table 1.4 Latent genes and their function 

Latent Gene Gene Function 
EBNA-1 Genome maintenance (binds origin of replication) 

EBNA-2 
Transcription factor 

Activates cellular and viral genes 

EBNA-3A Regulates EBNA-2 

EBNA-3B Transcriptional regulator 

EBNA-3C Overcomes cell cycle check points 

EBNA-LP 
Co-activates EBNA-2 responsive genes and increases efficiency of 

immortilisation 

LMP-1 Activates NF�B, a homologue to CD40 and prevents apoptosis 

LMP-2A Inhibitor of B cell receptor signalling and provides survival signals 

LMP-2B Function unclear – may regulate LMP-2A 

EBER RNAs Possible role in tumourigenicity 

BARTs Function unclear 

   EBNA: Epstein-Barr nuclear antigen; LP: leader protein; LMP: latent membrane protein;    
   EBER: Epstein-Barr virus-encoded small RNA; BARTs: Bam H1A rightward transcripts.    
   NF�B: nuclear factor kappa B 
 

 

EBNA-1 

EBNA-1 is a phosphoprotein, coded for by the BKRF1 open reading frame (Figure 1.4, 

pg.8). It is the only viral protein that binds directly to DNA in a sequence specific 

manner (Rawlins et al., 1985) with DNA binding mediated through the carboxy-

terminal domain which is rich in acidic and basic residues. Multiple EBNA-1 binding 

sites, termed the family of repeats and the dyad symmetry element, occur in the latent 
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viral origin of replication, Ori P, where the binding of EBNA-1 is the only viral factor 

required for viral episome maintenance (Rawlins et al., 1985;Yates, Warren, and 

Sugden, 1985). The only other EBNA-1 binding sites occur in the Qp promoter where 

EBNA-1 binding negatively regulates the promoter ensuring that the gene is only 

transcribed when required (Davenport and Pagano, 1999).  

EBNA-1 also contains a glycine-alanine repeat region within the N-terminal domain 

that has been shown to prevent proteasomal degradation and peptide loading to major 

histocompatability complex (MHC) class I molecules (Levitskaya et al., 

1995;Levitskaya et al., 1997).  This allows infected cells a mechanism to bypass 

recognition by circulating cytotoxic T-cells. More recently the glycine- alanine repeat 

region has also been implicated in prohibiting the translation of EBNA-1 mRNA (Yin, 

Manoury, and Fahraeus, 2003).  

 

EBNA-2 

The EBNA-2 open reading frame, BYRF1 is located near the genome dividing IR1 

region (Figure 1.4, pg.8). Deletion of this open reading frame results in virus unable to 

immortalise B-cells suggesting that EBNA-2 is essential for B-cell immortalisation 

(Miller et al., 1974). EBNA-2 is a phosphoprotein that localises to various 

compartments of the nucleus, including the nucleoplasm, the chromatin fraction and the 

nuclear matrix (Petti, Sample, and Kieff, 1990;Sauter and Mueller-Lantzsch, 1987) 

where it plays a crucial role in activating the transcription of other viral and cellular 

genes summarised in Table 1.5. Unlike EBNA-1, EBNA-2 lacks any sequence specific 

DNA binding activity and therefore requires alternative DNA binding factors to activate 

promoters of viral and cellular genes. A cellular protein, RBP-J�, mediating binding of 

EBNA-2 to a response element was first described for the LMP-2A promoter and then 
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subsequently for other EBNA-2 responsive promoters (Ling, Rawlins, and Hayward, 

1993;Grossman et al., 1994;Zimber-Strobl et al., 1993;Laux et al., 1994a). 

 

  Table 1.5: EBNA-2 responsive viral and cellular genes and possible functions 

Gene Function EBNA-2 effect 

LMP-1 
Viral oncogene. CD40 homologue that induces B-cell 

proliferation and protects from apoptosis 
Up-regulation 

LMP-2 
Inhibits virus lytic cycle. B-cell receptor homologue that 

protects from apoptosis 
Up-regulation 

EBNAs 
Maintenance of viral genome and transactivation of viral 

and cellular genes involved in lymphoproliferation 
Up-regulation 

CD21 C3d receptor that binds EBV Up-regulation 

CD23 
B-cell activation marker implicated in cell cycle 

progression and IgE receptor 
Up-regulation 

BLR2/EB
11 

G-protein coupled receptor with role in lymphocyte 
trafficking 

Up-regulation 

BATF Negative regulator of AP-1. Inhibits lytic cycle Up-regulation 

c-fgr 
Cellular proto-oncogene. Encodes a tyrosine kinase that 

promotes cell proliferation 
Up-regulation 

c-myc 
Cellular proto-oncogene and transcription factor. 
Activates genes involved in cell cycle progression 

Up-regulation 

Ig-� Encodes IgM Down-regulation 

   Table adapted from ‘EBNA2 transcription regulation in EBV latency’ by Zetterberg H. and Rymo L.;     
   Chapter 22, Epstein-Barr Virus, edited by Robertson ES. By permission of Caister Academic Press. 
 

 

Indeed EBV carrying a mutated EBNA-2 unable to bind RBP-J� cannot immortalise B-

cells (Yalamanchili et al., 1994). RBP-J� binds to a conserved sequence and is involved 

in both activation and repression of genes depending on other recruited complexes. 

EBNA-2 can also activate viral and cellular genes in a RBP-J�-independent manner. A 

number of transcription factors including PU.1, POU domain protein, AUF1 and DP103 

have been associated with EBNA-2 (Sjoblom et al., 1998;Johannsen et al., 1995;Voss et 

al., 2001). The transcription activity of EBNA-2 is potentiated by interaction with 

EBNA-LP (Peng et al., 2004;Peng, Zhao, and Kieff, 2004). This interaction is important 

in the transition from G0 to G1-phase of the cell cycle (Sinclair et al., 1994). Also 

EBNA-3C has been associated with regulation of EBNA-2 mediated gene activation 

(Rosendorff et al., 2004).   
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The EBNA-2 gene shows extensive DNA sequence diversity between type-1 and type-2 

EBV with homology of approximately 55%. The most conserved regions include those 

regions essential for immortalisation. 

 

EBNA-3 (3A, 3B and 3C) 

The EBNA 3 (A, B and C) proteins, also known as EBNA 3, 4 and 6, are coded for by 

the BERF open reading frames and are thought to have arisen from a common point of 

origin (Figure 1.4; pg.8). They are encoded by alternatively spliced transcripts initiating 

from the Cp promoter. EBNA-3A and -3C are required for immortalisation of B-cells 

whereas EBNA-3B is not (Tomkinson, Robertson, and Kieff, 1993). All 3 proteins 

show sequence divergence between EBV types-1 and -2 but these differences do not 

affect their immortalisation potential (Sample et al., 1990;Tomkinson and Kieff, 1992). 

The EBNA-3B protein has been associated with transcriptional regulation of CD40, 

CD77 and vimentin genes whilst the EBNA-3C protein has been associated with the 

LMP-1 and CD21 genes (Allday, Crawford, and Thomas, 1993;Silins and Sculley, 

1994;Wang et al., 1990). All 3 EBNA 3 proteins also inhibit activation of EBNA-2 

responsive promoters by preventing RBP-J� and associated complexes from binding to 

their RBP-J� binding sites thereby counterbalancing the action of EBNA-2 (discussed 

above) (Bain et al., 1996;Johannsen et al., 1996;Radkov et al., 1997;Radkov et al., 

1999). EBNA-3C has also been shown to cooperate with EBNA-2 in the activation of 

the LMP-1 promoter through the transcription factor PU.1 (Zhao and Sample, 2000) and 

to over-ride a number of cell cycle check points at G1 and G2/M-phases (Wade and 

Allday, 2000;Parker et al., 1996;Parker, Touitou, and Allday, 2000).  
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EBNA-LP 

EBNA-LP, also known as EBNA-5, is encoded by the BWRF1 (Figure 1.4; pg.8) open 

reading frame and forms either the leader sequence of the EBNA mRNAs or, via 

alternative splicing, EBNA-LP mRNA. EBNA-LP is one of the first viral genes 

expressed after infection (Allday, Crawford, and Griffin, 1989;Rooney et al., 1989) and 

although it is not strictly essential for B-cell immortalisation it does promote efficient 

outgrowth of lymphobalstoid cells in vitro (Allan et al., 1992;Hammerschmidt and 

Sugden, 1989). The exact function of EBNA-LP is still unknown. It is thought to 

interact with EBNA-2 in transcriptional regulation and potentiate the transctivating 

functions of EBNA-2, such as the activation of LMP-1(Nitsche, Bell, and Rickinson, 

1997;Peng, Tan, and Ling, 2000). The protein has been reported to co-localise in the 

nucleus with the retinoblastoma gene product Rb (Jiang et al., 1991) and to bind to both 

Rb and the tumour suppressor gene product p53 in vitro (Szekely et al., 1993).  EBNA-

LP phosphorylation has also been found to be dependent on cell cycle stage (Kitay and 

Rowe, 1996) and EBNA-LP, in collaboration with EBNA-2, can induce cyclin D2 and 

cell cycle activation (Sinclair et al., 1994). These findings together would suggest that 

EBNA-LP is involved in the control of cellular proliferation. 

 

LMP-1 

The LMP-1 gene is located adjacent to the EBV genome terminal repeat and 3 

alternative promoters can regulate LMP-1 gene transcription. In latency type III LMP-1 

transcription is regulated by EBNA-2 and EBNA-LP (Peng et al., 2004;Peng, Zhao, and 

Kieff, 2004;Nitsche, Bell, and Rickinson, 1997) whilst in latency type II LMP-1 

transcription initiates from a signal transducer and activator of transcription (STAT) 

regulated upstream promoter in the terminal repeat region (Sadler and Raab-Traub, 

1995). A third promoter located in the first intron is activated late in lytic replication 
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and transcribes a truncated form of LMP-1 (Fennewald, van Santen, and Kieff, 1984). 

LMP-1 expression is required for in vitro proliferation and immortalisation of B-cells, 

thereby acting as an oncogene (Dirmeier et al., 2005). Expression at low levels has been 

shown to induce a number of adhesion molecules and activation markers including 

CD23, CD39, CD40, CD54 and CD58 (Wang et al., 1990). LMP-1 can induce up-

regulation of the anti-apoptotic molecule Bcl-2 as well as down-regulate pro-apoptotic 

molecules such as Bax (Cahir-McFarland et al., 2004;Dirmeier et al., 2005). Bcl-6, a 

gene physiologically involved in the formation of germinal centres, is also down-

regulated by LMP-1 (Carbone et al., 1998). Several of these functions have been 

attributed to the ability to induce nuclear factor kappa B (NF-�B) (Cahir-McFarland et 

al., 2000;Feuillard et al., 2000).  LMP-1 is now known to be a member of the tumour 

necrosis factor (TNF) receptor family, activating several downstream cellular pathways, 

including the NF-�B, the JNK/AP-1, the p38/MAPK and JAK/Stat pathways (reviewed 

in (Cahir-McFarland and Kieff, 2005). The functional properties of LMP-1, such as 

activation of NF-�B, JNK and p38 cellular pathways, are similar to that the B-cell 

activator CD40 (Gires et al., 1997;Hatzivassiliou et al., 1998).  Indeed, CD40 ligand 

can maintain lymphoblastoid cell line (LCL) proliferation in the absence of LMP-1 

(Kilger et al., 1998) and LMP-1/CD40 fusion proteins can replace LMP-1 in LCL 

outgrowth assays (Dirmeier et al., 2003). Another shared function between LMP-1 and 

CD40 is the ability to bind the lytic transactivator BZLF1, thereby contributing to the 

maintenance of the latent state (Adler et al., 2002). However the signalling methods of 

LMP-1 and CD40 are quite distinct. LMP-1 signals through the TNF receptor-

associated death domain (TRADD) whilst CD40 signals through the associated factor-6 

(TRAF6) (Bornkamm, 2001). 
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LMP-2 

The LMP-2 genes are encoded near the termini of the EBV genome and upon genome 

circularisation the 2 LMP-2 genes (2A and 2B) are alternatively transcribed from 2 

different promoters.  Both promoters are regulated by EBNA-2 through the transcription 

factors RBP-J� and PU.1 (Laux et al., 1994b;Meitinger et al., 1994).  LMP-2B is a 

truncated form of LMP-2A and lacks the cytosolic amino-terminus of LMP-2A. Neither 

LMP-2A nor LMP-2B is essential for B-cell immortalisation in vitro (Kim and Yates, 

1993) however LMP-2A shares several properties with molecules involved in B-cell 

receptor signalling. It undergoes tyrosine phosphorylation, is associated with several 

phosphotyrosine kinases (PTK) and has an immunoreceptor tyrosine based activation 

motif (ITAM) (Burkhardt et al., 1992;Beaufils et al., 1993). Studies have shown that 

LMP-2A disrupts B-cell signalling through association with PTKs and acts as a 

constitutively activated B-cell receptor homologue (Caldwell et al., 1998). Disruption of 

B-cell signalling allows LMP-2A to prevent EBV infected cells from entering the lytic 

replication cycle, thereby contributing to maintenance of latency (Miller et al., 1994).  

The role of LMP-2B is unclear; however, the conservation of both LMP-2B expression 

and the EBNA-2 responsive element of its promoter would suggest that LMP-2B plays 

an important role (Rivailler, Quink, and Wang, 1999). One suggested role is that it 

down-regulates the actions of LMP-2A. 

 

EBERS 

Epstein-Barr virus encoded small nonpolyadenylated RNAs (EBERS) -1 and -2 are the 

most abundant viral transcripts in latently infected cells and are coded for by the 

BCRF1 open reading frame. EBERs are largely located in the nucleus however they 

have also been detected in the cytoplasm and in the nuclei of interphase cells 

(Schwemmle et al., 1992). They have a similar secondary structure and genomic 
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organisation to the Adenovirus-associated RNAs (VA1 and VA2), although little 

sequence homology (Bhat and Thimmappaya, 1983), and like VAs bind and inactivate 

RNA activated protein kinase (PKR); a mediator of the antiviral effect of interferon 

(Sharp et al., 1993). EBERs exist in nuclear ribonucleoprotein (RBP) complexes that 

bind to the La protein and the large ribosomal subunit L22 (Toczyski et al., 

1994;Toczyski and Steitz, 1991) however the significance of this aggregation is still 

unclear. It has been suggested that L22 levels may be a determinant in cell 

immortalisation and that L22 interferes with EBER induced inhibition of PKR (Elia et 

al., 2004). EBERs are not required for B-cell immortalisation however they may have a 

role to play in oncogenesis. The re-introduction of EBERs into EBV-negative Akata B2 

cell line clones restored tumourigenicity in SCID mice, resistance to apoptotic inducers 

and up-regulation of Bcl-2 (Komano et al., 1999;Ruf et al., 2000;Maruo, Nanbo, and 

Takada, 2001).  More recently, EBERs have also been shown to induce human IL-10 

expression in BL cells (Kitagawa et al., 2000), IL-9 expression in EBV infected T-cells 

(Yang et al., 2004) and expression of insulin-like growth factor in EBV-associated 

gastric carcinoma (Iwakiri et al., 2003). In all 3 cases EBERs are thought to act as an 

autocrine growth factor.  

 

BamH1 A rightward transcripts (BARTs) 

Similar to EBERs, BARTs are highly spliced polyadenylated RNAs (Brooks et al., 

1993), the function of which remains unclear. BARTs are expressed in number of EBV-

associated malignanacies including NPC, BL and HL (Tao et al., 1998;Chiang et al., 

1996;Deacon et al., 1993) and are thought to encode proteins that may potentially 

interact with the Notch pathway and the subsequent expression of LMP-1. As the Notch 

pathway is primarily involved in cellular differentiation and proliferation, protein 
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interactions with this pathway could affect the development of EBV malignancies 

(Hayward, 2004).  

 

1.2.2.3 Lytic gene expression 

The herpesviruses follow a strategy of life-long latency in the host that on occasion is 

interrupted by lytic reactivation in a small subset of infected cells thereby allowing the 

production of free virions for shedding and transmission between hosts. In the case of 

EBV latency a number of established cell lines are available for investigation however 

there is no definitive culture system for investigating lytic replication. Instead our 

understanding of lytic replication is derived from latently infected cell lines that are 

induced to reactivate using a number of methods including B cell receptor cross-linking 

via anti-immunoglobulin antibody (anti-IgG) (Shimizu and Takada, 1993;Takada, 

1984), transforming growth factor-� (TGF-�) activation (Fahmi et al., 2000) and CD4+ 

T-cell activation (Fu and Cannon, 2000). From such studies we now know that during 

lytic EBV infection a cascade of viral genes is activated that functions to produce the 

free virion – the immediate early genes followed by the early and then the late genes 

(Figure 1.6). 

The viral immediate early genes are induced via signal transduction after initial 

activation (anti-IgG, TGF-�, CD4+). Messenger RNAs encoding two immediate early 

proteins BZLF1 and BRLF1 are expressed within 30 minutes of activation (Flemington, 

Goldfeld, and Speck, 1991), and function as transcription factors. BZLF1 appears to be 

the dominant transactivator as expression of BZLF1 alone is sufficient to trigger the 

expression cascade (Rooney et al., 1989). BZLF1 has binding sites in several viral early 

gene promoters, the lytic origin of replication (oriLyt), its own promoter (Zp) and it also 

activates the adjacent BRLF1 gene (Speck, Chatila, and Flemington, 1997). Both 
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BZLF1 and BRLF1 are required for subsequent activation of the early genes (Cox, 

Leahy, and Hardwick, 1990;Feederle et al., 2000).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6:EBV lytic cycle 
Immediate early, early and late genes are expressed in sequential order. (Figure adapted from 
‘Reactivation of Epstein-Barr virus from latency’ by Amon W. and Farrel P (2005).  Rev Med Virol: 15: 
149-156. By permission of John Wiley & Sons, Ltd) 

 

 

Early lytic gene products function to regulate transcription, RNA transport and to inhibit 

cellular apoptosis. For example, the early gene product BMRF1 activates the oriLyt 

promoter and the BHLF1 gene (Holley-Guthrie et al., 2005). BMLF1 promotes the 

transport of viral transcripts from the nucleus to the cytoplasm (Boyer, Swaminathan, 

and Silverstein, 2002); BHRF1, a homologue of Bcl-2, prevents apoptosis mediated by 

a number of different agents (Henderson et al., 1993;Tarodi, Subramanian, and 

Chinnadurai, 1994). Regulation of the viral late genes is less well understood. EBV late 
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promoters are thought to be activated upon viral replication however some evidence 

exists in support of late gene activation by the immediate early gene product BRLF1 

(Ragoczy and Miller, 1999). Nucleocapsid proteins, glycoproteins, anti-apoptotic 

proteins and viral IL-10 are all encoded for by late proteins and function to package the 

virus, minimise detection by the host immune system and prevent cellular apoptosis 

(Salek-Ardakani, Arrand, and Mackett, 2002;Inman et al., 2001). 

 
 

1.2.3 EBV attachment and fusion 

EBV was originally recognised for its ability to infect and immortalise B-cells; 

however, soon after initial discovery it was also shown to infect epithelial cells in NPC. 

Epithelial cell infection was subsequently confirmed in a number of studies (Shibata 

and Weiss, 1992;Sixbey et al., 1984). Under some circumstances the virus will also 

infect T-cells, natural killer cells and smooth muscle cells (Rickinson and Kieff, 2006), 

and more recently EBV has also been shown to infect monocytes and neutrophils 

(Savard and Gosselin, 2006;Tugizov et al., 2007). Our understanding of how EBV 

enters each of these different cell types is limited however intense investigation of B-

cell and epithelial cell entry highlights some of the mechanisms that may be involved. 

 

1.2.3.1 EBV infection of B-cells  

Eight virus glycoproteins have been implicated in EBV entry into either B-cells or 

epithelial cells (Table 1.6). The most abundant of these, gp350/220, is responsible for 

attachment of the virus with high affinity to the complement receptor 2 (CR2 also 

known as CD21) on B-cells (Fingeroth et al., 1984;Frade et al., 1985;Nemerow et al., 

1985;Nemerow et al., 1987;Tanner et al., 1987;Tanner et al., 1988). However 

recombinant virus lacking gp350/220 can still immortalise B-cells albeit with reduced 

efficiency perhaps indicating the presence of alternative binding sites (Janz et al., 2000). 
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Glycoprotein gp350/220 however is probably the dominant binding site as antibodies to 

gp350/220 and soluble forms of CR2 and gp350/220 can neutralise B cell infection 

(Moore et al., 1991;Tanner et al., 1988).  

Binding of gp350/220 triggers capping of CR2 and endocytosis of the virus (Tanner et 

al., 1987;Nemerow and Cooper, 1984) and may contribute to positioning the virus  

 

  Table 1.6: EBV envelope glycoproteins involved in virus entry 

Protein Gene Role in virus entry 
gp350/220 BLLF1 Attachment to B cell receptor CR2/CD21 

gH (gp85) BXLF2 
Fusion: attachment to epithelial cell receptor/co-

receptor; complexes with gL and gp42 

gL (gp25) BKRF2 Complexes with gH and gp42; chaperone for gH 

gp42 BZLF2 
Fusion: interaction with B-cell co-receptor HLA 

class II 

gB (gp110) BALF4 Fusion 

gN BLRF1 

gM BBRF3 

Co-dependent for expression; involved in post 
fusion events 

BMRF2 BMRF2 Binds integrins 

   EBV glycoproteins are named for their mass, their homologues or open reading frame 
 
 

closer to the cell membrane (Hutt-Fletcher, 2007) both of which are essential for fusion 

of the virus with the B-cell. Four other glycoproteins are necessary for efficient fusion: 

gH, gL, gB and gp42 (Haddad and Hutt-Fletcher, 1989;Molesworth et al., 2000) which 

form a non-covalently linked complex within the virus. Glycoprotein gH is the largest 

of the glycoproteins and depends on gL for folding and transport through the cell 

(Molesworth et al., 2000). The gHgL and gB proteins form the core fusion machinery. 

Glycoprotein gp42 also associates with gHgL and interacts with the beta chain of HLA 

class II molecules (Mullen et al., 2002;Li et al., 1997), essential co-receptors for B-cell 

infection (Haan et al., 2000;Li et al., 1997). MHC class II-gp42 binding may trigger 

further signalling events but as yet these are still unknown. The binding of gp42 to 

specific non-functional HLA-DQ alleles has been reported (Haan et al., 2000) however 

since HLA-DP, -DQ and –DR alleles can all be used it is unlikely that specific HLA-
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DQ alleles would have a major impact in a large outbred population (Hutt-Fletcher, 

2007). The overall model proposed for B-cell entry is that following attachment of 

gp350/220 to the CR2/CD21 receptor, gp42 interacts with HLA class II molecules 

activating the core fusion machinery consisting of gHgL and gB (Figure 1.7). 

 

 
 

Figure 1.7: Putative model of EBV attachment and fusion with B cell 

The virus binds to CR2 via gp350/220, initiating signalling events and triggering endocytosis. Interaction 
of gp42 with HLA class II triggers the interaction of the gHgLgB complex with the endosomal membrane 
activating further signalling cascades. The virus and endosomal membranes then fuse allowing entry of 
the tegumented capsid into the cell cytoplasm. (Adapted from Epstein-Barr virus entry into cells by 
Speck,P, Hann, KM, Longnecker,R (2000). Virology:277(1): 1-5. By permission of Academic Press) 

 

 

 

1.2.3.2  EBV infection of epithelial cell 

The attachment and fusion of EBV to epithelial cells is more controversial than that of 

B-cells, with several mechanisms postulated. CR2/CD21 is expressed at low levels on a 

small subset of epithelial cells and engineered CR2 expressing epithelial cells are easily 

infected (Borza et al., 2004;Li et al., 1992). Unlike B-cells epithelial cells lack the 

machinery associated with the CR2 signalling complex and therefore must signal 

through an alternative route, possibly through CR2 clustering with homologues of 

formin; molecular scaffolds that nucleate actin (Gill et al., 2004). However the majority 

of epithelial cells do not express CR2 so this route of attachment is probably unlikely. 

gp350/220 

CR2/CD21 

 gHgL 

Attachment Fusion 

gB 
  gp42 

MHC class II 
HLA-DR -DP -DQ Cell 

membrane 



   Chapter 1: Introduction    

 

 - 24 - 

Several alternative attachment strategies have been proposed that do not involve CR2: 

• Binding through the polymeric immunoglobulin-A (IgA) receptor. Virus coated 

with IgA specific for gp350/220 binds to the IgA receptor (Sixbey and Yao, 

1992). 

• The glycoprotein complex gHgL as a ligand, binding to an as yet unidentified 

gHgL receptor (gHgLR). Virus derived from a B-cell can bind well to a CR2 

deficient epithelial cell whereas recombinant virus lacking the complex cannot 

(Molesworth et al., 2000;Oda et al., 2000). Also addition of soluble antibody 

specific for gHgL can reduce virus binding (Borza et al., 2004;Molesworth et al., 

2000). 

• Binding through the membrane protein BMRF2. In polarised epithelial cells an 

interaction between BMRF2 and integrins has been demonstrated (Tugizov, 

Berline, and Palefsky, 2003). Specifically the RGD motif of BMRF2 binds to �1, 

�5, �3 and �v integrins (Xiao et al., 2008). Antibodies to both integrins and the 

BMRF2 protein partially block binding and have a significant effect on infection 

via the basolateral surface of the polarised cell. 

Fusion of the virus once attached is also different to that of B-cells. Fusion does not 

appear to require endocytosis (Borza and Hutt-Fletcher, 2002) or the co-receptor MHC 

class II binding to gp42. In fact gp42 may act as an inhibitor to fusion in epithelial cells 

(Wang et al., 1998). The main fusion event is thought to occur through the binding of 

gHgL to its receptor, however, infection is generally less efficient than that mediated 

through gp42 in B-cells (Borza and Hutt-Fletcher, 2002). Successful fusion also 

requires higher levels of the glycoprotein gB to that observed in B-cell fusion, most 

likely to facilitate fusion via the gHgL-gHgLR interaction (Neuhierl et al., 

2002;McShane and Longnecker, 2004). 
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Once fusion occurs (in both B cell and epithelial cells) the virus genome travels to the 

cell nucleus, however the post-fusion events leading to this movement are poorly 

understood. Two glycoproteins gN and gM have been implicated in some immediate 

post-fusion events. Glycoprotein gM is a transmembrane protein with a long, highly 

charged cytoplasmic tail, rich in potential phosphorylation sites required for signalling 

mechanisms. Both gN and gM play important roles in virus assembly and enveloping. It 

has been postulated that these proteins may also be required for disassembly of the 

tegument allowing release of the genome to the nucleus (Hutt-Fletcher, 2007). 

It is interesting that the main difference between B-cell and epithelial cell entry is the 

involvement of gp42 (gHgLgp42 complex in B-cell, gHgL in epithelial cell) suggesting 

that the levels of each complex may affect the tropism of the virion. Indeed virions 

produced from epithelial cells are rich in the tri-complex and infect B-cells readily 

whereas virions produced by B-cells are rich in the gHgL complex and infect epithelial 

cells more efficiently (Borza and Hutt-Fletcher, 2002;Laichalk and Thorley-Lawson, 

2005). This alternate tropism strategy may be important for in vivo infection and the 

lifelong persistence of the virus within its host.   

 

1.2.4 EBV primary infection and persistence in vivo 

The mechanism by which primary EBV infection resolves into lifelong persistence in 

vivo is controversial. Two differing hypothesis revolve around the first cell type to be 

infected – B-cell or epithelial cell. The first hypothesis advocates that B-cells 

underlying the squamous epithelium of the oropharynx are directly infected. The second 

hypothesis involves the indirect infection of B-cells via the squamous epithelial cell of 

the oropharynx. Evidence is available to support both mechanisms. 
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1.2.4.1 B-cell hypothesis 

The oropharynx acts as a natural point of entry for most HHVs and exchange of salivary 

products has long been established as a route of transmission for EBV (Gerber et al., 

1972). Waldeyers ring designates a functional unit of lymphoid tissue within the 

pharynx and includes the adenoids and palatine tonsils. Within the lymphoid tissue 

loosely bound crypt structures interweave through the tonsil (Macsween and Crawford, 

2003;Perry and Whyte, 1998) and B-cells have been found infiltrating these crypts 

(Faulkner, Krajewski, and Crawford, 2000). These lymphoepithelial crypts are a 

potential point of entry for EBV to infect B-cells, and conversely, for EBV virion 

release into saliva and subsequent transmission. Indeed in a recent localisation study 

EBV was detected in both the adenoid and palatine tonsil tissue with higher viral titres 

observed in the adenoid tissue (Berger et al., 2007). The current model for EBV 

infection and persistence within B-cells is closely entwined with the normal biology of 

B-cells (Figure 1.8).  

EBV infects resting naïve B-cells in the lymphoepithelial crypts driving their 

proliferation into B-cell blasts in an EBNA-2 dependent fashion (latency type III or 

Growth programme) (Babcock, Hochberg, and Thorley-Lawson, 2000;Babcock and 

Thorley-Lawson, 2000;Thorley-Lawson, 2005). This reflects B-cell activation upon 

exposure to antigen. In normal B-cell differentiation the antigen activated B-blast 

migrates to the follicle to undergo a germinal centre reaction and selection for antibody 

production. Exposure to T-cells and specific cytokines act to rescue the B-blast into the 

circulating memory pool. Memory B-cells then enter the circulation and occasionally 

divide to maintain cell numbers. Upon antigen stimulation memory B-cells can re-enter 

the lymphoepithelium and differentiate into an antibody producing plasma cell. Virus 

infected B-blasts follow a similar route. Once in the germinal centre they switch to a 
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latency type II pattern (default programme) (Babcock and Thorley-Lawson, 

2000;Thorley-Lawson, 2005) where LMP-1 provides a CD40-like activation signal and 

LMP-2A a rescue signal from apoptosis (Caldwell et al., 1998;Gires et al., 1997). Upon 

entering the peripheral circulation EBV infected memory B-cells down-regulate all 

latent genes (latency I) occasionally expressing EBNA-1 during homeostatic cell 

division to ensure viral division with the cell process. Subsequent differentiation into an 

antibody producing plasma cell triggers EBV to replicate and shed virions along with 

antibody (Laichalk and Thorley-Lawson, 2005;Thorley-Lawson, 2005;Crawford and 

Ando, 1986). 

 

1.2.4.2 The epithelial cell hypothesis  

The epithelial hypothesis suggests that EBV infects epithelial cells within the 

oropharynx with subsequent transfer of the virus to underlying B-cells (Allday and 

Crawford, 1988). There are several reasons to support such a role for epithelial cells. 

Firstly, EBV has been detected in several carcinomas particularly NPC where nearly all 

tumours are EBV-positive and usually express a latency type II pattern (Brooks et al., 

1992a), suggesting the presence of a latent EBV infection. Secondly, EBV replication 

has also been detected in epithelial lesions resulting from the disease Oral Hairy 

Leukoplakia (OHL) (Greenspan et al., 1985). Lastly, as stated above (section 1.2.3.1) 

the presumed site of entry and exit is the lymphoepithelium of the Waldeyer’s ring 

where the majority of cells are epithelial in nature. The hypothesis suggests that EBV 

infects epithelial cells within the lymphoepithelium allowing the virus to replicate to 

high titres thereby increasing the chances of subsequent infection of B-cells within the 

underlying lymphoid tissue, and increasing the amount of virus shed into saliva.  
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Figure 1.8: Normal B-cell differentiation pathway and EBV persistence 
Adapted from ‘EBV persistence and latent infection in vivo’ by Thorley-Lawson,DA. (2005). In 
Epstein-Barr Virus. Robertson,E.S. (ed). By permission of Caister Academic Press. 
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However the role of the epithelium in this model is controversial with several studies 

highlighting the importance of the B-cell to persistence. For example, bone marrow 

transplant patients undergoing complete bone marrow ablation either lose their EBV or 

acquire the donor strain, depending on donor status (Gratama et al., 1988). Also, 

patients with X-linked agammaglobulinaemia, a genetic disorder resulting in a lack of 

B-cells, are unable to be infected with EBV (Faulkner et al., 1999). Both studies 

indicate that an intact lymphoid system, especially B-cells are required for persistence. 

However they do not eliminate the involvement of epithelial cells. Indeed the recent 

advances in our understanding of the mechanisms involved in EBV entry to both B-cells 

and epithelial cells and the production of dual tropic virions (section 1.2.2) would 

indicate an important role for epithelial cells in virus egress to the saliva. Further 

support for this association between B-cells and epithelial cells is obtained from the 

presence of a unique EBV receptor, �5�1integrin, on epithelial cells which allows 

infection only through the basolateral surface of the cell (Tugizov, Berline, and 

Palefsky, 2003). Similarly, EBV can be detected in ex-vivo tonsil epithelial cell culture 

presumably via infection from B-cells prior to or shortly after explantation (Pegtel, 

Middeldorp, and Thorley-Lawson, 2004). More recently, EBV particles attached to the 

surface of a B cell have been shown to infect epithelial cells in a cell-to-cell mediated 

fashion and that this infection was more effective than cell-free virus infection of 

epithelial cells (Shannon-Lowe et al., 2006). Taking these studies together there is 

strong evidence that normal naso-oropharangeal epithelium is infected with EBV. This 

may provide an explanation for the presence of EBV in diseases such as NPC and OHL. 
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1.3 The Immune Response 

EBV establishes a life-long infection in B-cells, generally without causing disease, in 

over 90% of the world’s adult population. This fact is extraordinary as EBV has strong 

growth transforming capacities for B-cells both in vivo and in vitro. Our survival as a 

species is therefore reliant on the efficient immune control of EBV in vivo. Co-

evolution of humans with the virus has probably shaped the human immune response 

we see today (McGeoch et al., 1995).  

Primary infection generally occurs in early childhood and is usually sub-clinical making 

investigation of the immune response to acute infection in these subjects difficult. 

However at an older age primary infection can manifest as infectious mononucleosis 

(IM), a symptomatic benign lymphoproliferation, observed in approximately 25% of 

adolescent conversions (Crawford et al., 2006;Crawford et al., 2002). IM patients 

therefore provide a source for investigation of the acute infection and healthy EBV 

carriers for persistent infection.  Unfortunately in vivo investigation of very early events 

in the immune response is still problematic as IM patients only seek medical help 

following the development of symptoms therefore, in vitro studies are generally used to 

investigate these early events. From such in vivo and in vitro studies it has been 

determined that the immune response to EBV is mediated by both innate and adaptive 

immune responses.  

 

 

1.3.1 Innate immunity to EBV 

The earliest immune response observed is the production of type I interferons-alpha and 

-beta (IFN-�, -�). In vitro infection of peripheral blood mononuclear cells (PBMCs) 

demonstrated peak production of IFN-� approximately 24 hours post-infection (Kikuta 

et al., 1984) with B-cells and natural killer cells (NK) the main producers (Lotz et al., 
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1986). The secretion of type I IFNs is induced by two types of receptor: toll-like and 

cytosolic receptors, both of which detect viral nucleic acids. Cytosolic receptors are 

ubiquitous receptors whereas toll-like receptors are found in endosomes of specialised 

cells (Stetson and Medzhitov, 2006). Activation of both receptors results in the 

secretion of type I IFNs which act to induce an antiviral state. For example, IFN-� 

reduces B-cell outgrowth following EBV immortalisation (Lotz et al., 1985) although 

this action is only apparent during the first 24 hours, after which time the immortalised 

B-cell becomes resistant to IFN (Lotz et al., 1985). Several mechanisms for this IFN 

effect have been postulated: inhibition of CR2 capping during EBV entry (Delcayre, 

Lotz, and Lernhardt, 1993), repression of EBNA-1 transcription (Nonkwelo, Ruf, and 

Sample, 1997) and inhibition of translation via modulation of the double-stranded 

RNA-activated PKR (Gao, Xue, and Griffin, 1999). These mechanisms halt viral 

replication and lead to apoptosis of the cell thus preventing spread of virus to 

neighbouring cells. Concurrently, type I IFNs up-regulate the expression of MHC class 

I molecules on uninfected cells making them more resistant to NK-cell and cytotoxic T-

cell activity. Resistance to the effects of type I IFNs coincides with the transcription of 

EBV latent genes EBNA-2 and EBNA-LP, both of which confer resistance to IFN-� in 

transfection experiments (Aman and von Gabain, 1990). In addition LMP-1 has been 

shown to mediate protection from IFN-� induced apoptosis (Henderson et al., 1991) and 

resistance may also be mediated via the EBERS (Nanbo and Takada, 2002;Nanbo et al., 

2002). Therefore the type I IFN response is limited to approximately the first 24 hours 

of infection and prior to expression of latent proteins. As the adaptive response does not 

take over until around day 5 other innate systems have to protect until this time. 
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1.3.1.1 Natural killer cell component 

NK-cells account for approximately 10% of the peripheral lymphocyte population and 

are a major component of the innate immune system.  NK-cells can lyse virus infected 

cells via perforin release and secrete immunoregulatory cytokines that augment the 

adaptive immune response (Cooper, Fehniger, and Caligiuri, 2001;Biron et al., 1999). 

The importance of NK-cells in EBV infection was highlighted by the isolation of the 

mutated gene involved in a fatal primary EBV infection, X-linked lymphoproliferative 

disease (XLP). In healthy individuals the gene product SAP (signalling lymphocytic 

activation molecule (SLAM) associated protein) (Coffey et al., 1998;Sayos et al., 1998) 

acts as a cell activation modulator via interaction with the cell surface co-receptor 

CD244 (Nakajima 2000). CD244 binds CD48, a molecule highly expressed on B-cells 

(Brown et al., 1998) activating the NK-cell. However NK-cells derived from XLP 

patients fail to kill EBV immortalised B-cells (Parolini et al., 2000) emphasising the 

pivotal role of NK-cells in EBV infection. A number of other receptors are utilised by 

NK-cells in a cell dependent manner: Natural cytotoxicity receptors (NCRs) and the 

NKG2D receptor (Pende et al., 2002;Moretta et al., 2001).  

During asymptomatic EBV infection the peripheral T-cell repertoire is largely not 

perturbed (Silins et al., 2001) suggesting that immune control is established at the site 

of infection, the oropharynx. The oropharynx contains a unique non-cytolytic NK-cell 

population that secretes cytokines, mainly IFN-�, upon activation (Ferlazzo and Munz, 

2004;Ferlazzo et al., 2004b;Ferlazzo et al., 2004a). In in vitro studies IFN-� is 10-fold 

more potent at inhibiting EBV immortalisation than IFN-� and can suppress 

immortalisation for up to 4 days (Lotz et al., 1985) suggesting an antiviral role for IFN-

� producing NK-cells within the oropharynx. NK-cells therefore have the ability to limit 

infection for several days perhaps until the adaptive specific immune system kicks in. 
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1.3.2 Adaptive immunity to EBV 

Reports on the specific immune response to EBV characterise the already primed 

adaptive immune response during acute or persistent infection but little is known about 

the actual events involved in initiation of the specific immune response. EBV 

immortalised B-cells are unable to elicit EBV-specific T-cell responses in peripheral 

blood lymphocyte cultures from EBV-negative donors (Calender et al., 

1987;Nikiforow, Bottomly, and Miller, 2001;Hurley and Thorley-Lawson, 1988) but 

can from EBV-positive donors (Wilkie et al., 2004;Rooney et al., 1995). However when 

CD25-positive T-cells are selected for stimulation or IL-12 added to the EBV-negative 

culture EBV-specific responses could be observed (Metes et al., 2000;Savoldo et al., 

2002) suggesting that immortalised B-cells can act as targets but do not initiate specific 

immunity (Bickham et al., 2003;Bickham and Munz, 2003). On the other hand, 

dendritic cells (DCs) when added to EBV-infected cultures derived from negative 

donors, prevent the outgrowth of immortalised B-cells and elicit an EBV-specific T-cell 

response: both CD4 and CD8 mediated (Bickham et al., 2003). Cross-presentation of 

EBV antigens from infected B-cells is thought to be the mechanism used as cross-

presentation has been observed in the priming of naïve T-cells and the expansion of 

memory T-cells (Bickham et al., 2003;Subklewe et al., 2001). Myeloid DCs have also 

been shown to stimulate NK-cell proliferation, NK-cell IFN-� production and increase 

NK-cell cytotoxic activity against MHC class I negative cells (Ferlazzo et al., 

2002;Gerosa et al., 2002;Piccioli et al., 2002). DC activation of NK-cells may help limit 

the EBV infection in the early stages but also assist in the development of EBV-specific 

T-cell responses via cytokine release (Figure 1.9). 
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Figure 1.9 Innate and adaptive control of EBV infection. 
Initiation of a specific immune response is mediated by DC via cross presentation of EBV antigens. In 
latent infection NK, CD8+ and CD4+ T-cells target infected B-cells. In lytic infection CD4+ T-cells can 
target infected B-cells however the role of NK and CD8+ T-cells is still unclear. Antibodies produced by 
B-cells can neutralise the virus. Figure adapted from ‘Immune response and evasion in the host-EBV 
interaction’ by C.Munz; Epstein-Barr Virus edited by ES. Robertson, (2005). By permission of Caister 
Academic Press. 
 
 

1.3.2.1 Antibody response to EBV 

The specific antibody response to EBV can be divided into acute and persistent 

responses. Antibody responses against both latent and lytic antigens peak during the 

acute phase of the infection and include IgM, IgA and IgG antibodies to viral 

nucleocapsid antigens (VCA), immediate early (IE) and early lytic antigens (EA) 

(Rickinson and Kieff, 2006). However no peak in response is seen against the latent 

antigen EBNA-1 or the lytic antigen gp350, one of the more abundant envelope 

proteins, during this phase. During the persistent phase the antibody pattern changes 

with IgM and IgA antibodies becoming undetectable and IgG antibodies maintaining a 

steady state. Both anti-EBNA-1 and gp-350 responses peak during this phase of 

infection (Henle et al., 1987). The reasons for this late development in response are 
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unknown. EBNA antigens are generally intracellular therefore a role in protective 

humoral immunity is highly unlikely. However IgG responses against gp350 do have 

neutralising capabilities and may contribute to the immune regulation of the infection 

(Thorley-Lawson and Geilinger, 1980;Hoffmann, Lazarowitz, and Hayward, 1980). 

These changes in antibody response are used diagnostically to assess if an individual is 

infected with EBV. An acute infection is defined by the presence of IgM antibodies 

against VCA and a lack of IgG antibodies against EBNA-1, whilst a persistent infection 

is defined by the presence of IgG antibodies against EBNA-1 and VCA in the absence 

of an IgM response. Sero-negative individuals lack responses to all of these antigens.  

IgA antibodies against gp350 can be detected in the serum and saliva of a small 

percentage of infected individuals and may have a role in prevention of virus spread 

(Yao et al., 1991) however they are not routinely used for diagnosis of infection. IgA 

antibody responses are however associated with EBV-positive NPC with increased 

levels of EA and VCA IgA readily detected (Henle and Henle, 1976). Glycoprotein 

gp350 specific IgA may facilitate EBV infection of epithelial cells in this situation 

(Sixbey and Yao, 1992) (see page 24). 

 

1.3.2.2 CD8+ T-cell response to EBV 

Following IM patients from the acute phase through convalescence to a persistent state 

of infection has allowed the study of the T-cell response in great detail. The important 

effector role of the CD8+ T-cell response has been elucidated from such studies. During 

the acute phase of IM an atypical lymphocytosis is observed. Several studies have 

speculated that this expansion is due to a non-specific bystander effect (Welsh et al., 

2000;McNally and Welsh, 2002) or as a response to a virus induced superantigen 

(Sutkowski et al., 2001), however the expanded CD8+ population is in fact oligoclonal 
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in T-cell receptor (TCR) usage (Annels et al., 2000;Callan, Steven, and Krausa, 1996) 

and is EBV epitope-specific (Steven et al., 1996;Steven et al., 1997). In the acute 

infection up to 50% of the CD8+ population recognise EBV-specific lytic antigens 

(Callan et al., 1998a), in particular the IE antigens BRLF-1 and BZLF-1, and the EAs 

BMRF-1, BMLF-1 and BALF-2 (Steven et al., 1997). These cells are cycled rapidly 

during the acute phase (Macallan et al., 2003) and decrease dramatically as the acute 

infection progresses (Hislop et al., 2002;Callan et al., 2000).  

In contrast the CD8+ T-cell population recognising latent antigens is lower during the 

acute phase of the infection and reach their highest frequencies during the convalescent 

phase (Hislop et al., 2002;Callan et al., 1998b) although they never reach the high 

frequencies observed against lytic antigens during the acute phase. The EBNA -3 

proteins tend to be the dominant antigens recognised by CD8+ T-cells (Steven et al., 

1996;Khanna et al., 1992;Murray et al., 1992) although strong responses have been 

reported for several eptiopes identified from the LMP-2 protein. The levels of lytic and 

latent CD8+ T-cell specificity tend to follow the natural course of the EBV infection 

from lytic to latent states.  

During persistent infection both lytic and latent antigen specific CD8+ T-cells can be 

detected. The immunodominant eptiopes recognised by CD8+ T-cells have been 

mapped to specific HLA types (Munz, 2005;Moss et al., 2001). HLA-B*08 restricted 

CD8+ T-cells appear to be one of the more dominant with as much as 5% of the total 

CD8+ population, from persistently infected individuals, directed against the lytic 

antigen BZLF-1 and as much as 1% against an EBNA-3A epitope (Tan et al., 

1999;Burrows et al., 1990). In initial screens CD8+ T-cell responses to EBNA-1 could 

not be detected (Khanna et al., 1992;Murray et al., 1992) presumably due to the 

presence of its gly-ala repeat domain which prevents degradation by proteosome and 
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mRNA translation (Levitskaya et al., 1997;Yin, Manoury, and Fahraeus, 2003), thus 

escaping T-cell presentation. However, in subsequent investigations EBNA-1 CD8+ T-

cells have been detected in individuals with HLA-B*35 and -B*07 haplotypes (Blake et 

al., 1997;Blake et al., 2000;Lee et al., 2004). MHC class I presentation of EBNA-1 via 

proteosomal degradation of defective ribosomal products (DRiPs) is one suggested 

mechanism for EBNA-1 specific T-cell responses in these haplotypes (Munz, 2004).  

Latent antigen-specific CD8+ T-cells tend to have the differentiation phenotype 

CD28+/CD27+ whilst lytic antigen-specific cells sometimes harbour a CD28-/CD27- 

phenotype (Hislop et al., 2001;Appay et al., 2002). Latent antigen-specific T-cells also 

frequently express CCR7, a homing marker for secondary lymphoid organs (Appay et 

al., 2002) which could facilitate the regulation of EBV reactivation within the tonsils. 

Changes in phenotype tend to be associated with the T-cell potential to proliferate and 

their cytotoxic capabilities. For example CD28-/CD27- CD8+ T-cells have greater 

cytotoxic potential and a reduced ability to proliferate.  

Two main mechanisms, cytolytic and anti-viral cytokine secretion, are employed by 

CD8+ T-cells (Figure 1.9). Early investigation concentrated on the use of the cytolytic 

molecule perforin to lyse EBV immortalised B-cells (Khanna et al., 1992;Murray et al., 

1992). However, in some cases this cytolytic lysis was weak especially with EBNA-1 

specific T-cells (Hill et al., 1995;Blake et al., 2000). More recently, anti-viral cytokine 

production has been investigated with reports of EBNA-3C specific T-cells controlling 

B-cell outgrowth via IFN-� secretion (Shi and Lutz, 2002). Similarly IFN-� production 

has been detected from EBNA-1 specific T-cells in response to LCL stimulation (Lee et 

al., 2004). Moreover, IFN-� production is increased upon removal of the gly-ala domain 

(Lee et al., 2004). 
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1.3.2.3 CD4+ T-cell response to EBV 

CD4+ specific T-cells prime both the humoral and cellular mediated immune responses 

discussed above but despite their crucial function they have not been studied in detail 

until recently. This has probably been due to the low frequencies of CD4+ T-cells in 

peripheral blood. During IM latent and lytic antigens, EBNA-1, EBNA-3A, BZLF-1 

and BMLF-1, stimulate only 0.3% of the CD4+ T cell population (Precopio et al., 2003) 

whilst in persistent infection this percentage drops to 0.1% (Amyes et al., 2003). On 

average the frequency of CD4+ T-cells reaches one tenth that of CD8+ T-cells during 

both acute and persistent infection (Munz, 2005).  

Investigation of epitope specificity revealed that CD4+ T-cells recognise different latent 

antigens to that of CD8+ T-cells. Most notable is the recognition of EBNA-1 (Munz et 

al., 2000;Leen et al., 2001;Mautner et al., 2004) which is consistently recognised in 

persistent carriers and is more frequently recognised than other latent antigens. EBNA-

3B and -3C antigens are recognised by approximately 50% of persistent carriers 

however in contrast to CD8+ T-cells EBNA-3A specific CD4+ T-cells are rarely 

detected (Paludan and Munz, 2003). Similarly LMP-1 specific responses are more 

readily detected in CD4+ compared to CD8+ T-cell populations (Marshall, Vickers, and 

Barker, 2003). Unfortunately little is known regarding the specificity toward lytic 

antigens although CD4+ T cell responses have been reported for gp350, BZLF-1, 

BMLF-1 and BHRF-1 antigens (Precopio et al., 2003;Landais et al., 2004).  

The majority of EBV-specific CD4+ T-cells secrete Th1 ctyokines such as IFN-� 

(Amyes et al., 2003). Both EBNA-1 and EBNA-3C specific CD4+ T-cells have been 

shown to secrete IFN-� in vitro (Bickham et al., 2001) and also in vivo in the case of 

EBNA-1 (Bickham et al., 2001). Th1 polarisation of CD4+ T-cells may help to mediate 

efficient protection against viral infections (Rentenaar et al., 2000). Interestingly LMP-1 



   Chapter 1: Introduction    

 

 - 39 - 

specific CD4+ T-cells from persistent carriers are not Th1 polarised but secrete IL-10 

(Marshall, Vickers, and Barker, 2003) suggesting a role in regulation of T-regulatory 

cells (Treg). Moreover, CD4+ T-cells from persistently infected individuals have been 

shown to have an effector role in immune regulation. The addition of CD4+ T-cells 

prevented the proliferation of EBV infected B-cells in culture and conversely the 

removal of CD4+ T-cells allowed the B-cells to grow (Nikiforow, Bottomly, and Miller, 

2001). This was attributed to IFN-� secretion and the Fas/FasL interaction between B 

cell and CD4+ T-cells (Nikiforow, Bottomly, and Miller, 2001;Paludan et al., 2002). 

Interestingly, Burkitt lymphoma cells expressing only EBNA-1, largely undetected by 

CD8+ T-cells, can be targeted by EBNA-1 specific CD4+ T-cells (Paludan et al., 

2002;Fu, Voo, and Wang, 2004). These studies indicate the important effector role of 

CD4+ T-cells. 

 

1.3.3 Cytokine interactions 

Cytokines are protein factors produced by cells to act on cells. They are generally 

soluble, have a similar structure to hormones and growth factors, and bind to specific 

receptors to activate intracellular signalling pathways. Normally they are tightly 

controlled and are induced in response to host challenge from microbial infections. As 

we can see from the previous sections they have a pivotal role to play in both innate and 

adaptive immunity. Cytokines can be divided into 4 main groups based upon induction 

and function: initial and innate, adaptive, chemokines, and haematopoietic growth 

factors. The first 3 mediate defence against infection through a complex network while 

the fourth mediates leucocyte growth and differentiation. Some cytokines such as IFN-�  

belong to more than one group. 
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Unique microbial structures, such as double-stranded RNA in virus infected cells, 

recognised by cell receptors, are thought to elicit the initial and innate response cytokine 

cascades (Medzhitov and Janeway, 1998;Yang et al., 1998). Upon recognition several 

positive and negative regulatory gene elements are activated that bind to specific 

transcription factors activating downstream elements such as NF�B (Maran et al., 1994) 

which is required for transcription of IFN-� and some IFN-� genes. Interferon 

regulatory factors (IRFs) are also activated and bind to specific DNA elements in IFN 

genes activating their transcription which in turn activates transcription of other IRFs 

(Marie, Durbin, and Levy, 1998). Therefore initial IFN production in response to 

infection can induce further innate responses. Production of IFN-�/� can also regulate 

expression of a number of other innate cytokines such as IL-15 (Waldmann and Tagaya, 

1999) and IL-12 (McRae et al., 1998) as well as modify immune cell distribution and 

function. Changes associated with IFN-�/� include activation of NK-cell cytotoxicity, 

inhibition of NK-cell responsiveness to IL-12, enhancement of MHC-class I 

presentation, and facilitation of T-cell IFN-� responses (Cousens et al., 1999;Nguyen et 

al., 2000;Biron et al., 1999). Thus the IFN-�/� cascade has the potential to regulate a 

variety of innate and adaptive immune responses.  

A second innate cytokine cascade, which has been extensively studied in bacterial 

infection, includes production of TNF, IL-1 and IL-6. This pathway may also be utilised 

in viral infection, particularly with herpes virus infection (Pulliam, Moore, and West, 

1995;Kanangat et al., 1996;Orange and Biron, 1996). TNF-� mediates several 

immunoregulatory and anti-viral functions including apoptosis, monocyte activation, 

dendritic cell migration, enhancement of IFN-� responses and up-regulation of MHC-

class I expression (Balkwill, 2006;Biron and Sen, 2001). IL-1 also enhances IFN-� and 

IL-6 production whilst IL-6 promotes B-cell growth (Biron and Sen, 2001). IL-12 
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induces production of IFN-� by NK-cells and also promotes some CD4+ T-cell 

responses associated with the production of IL-2 and IFN-� (Biron and Sen, 2001).  

During the adaptive immune response a major function for IL-2 is to promote T-cell 

proliferation however it can also induce IFN-� production by T-cells and promote 

antibody synthesis by B-cells (Stark et al., 1998). Likewise IFN-� has several 

immunoregulatory functions including upregulation of MHC class I and II expression, it 

promotes expression of the IL-12 receptor, and can influence immunoglobulin class 

switching on B-cells (Biron and Sen, 2001). During the adaptive response T-cells also 

secrete IL-4, -5, and -13 that promote B-cell responses and activate eosinophils. T-cells 

also produce TGF-�, IL-10 and lymphotoxin (LT). LT has similar effects to that of 

TNF-� and is often produced along with IFN-� and functions to promote 

lymphomorphogenesis (Chaplin and Fu, 1998).  

The interaction of the various cytokines produced during both the innate and adaptive 

immune response is therefore an important one with components of the cascade 

dependent upon each other for activation and regulation. Alterations to these cascades 

could affect several aspects of the immune response. During lytic EBV infection a viral 

homologue of IL-10 (vIL-10) is expressed which can suppress immune responses 

through inhibition of IL-12 and IFN-� in vitro (Moore et al., 2001). Also expressed 

during lytic infection is BARF1, a soluble receptor for colony stimulating factor-1(CSF-

1), which blocks CSF-1 stimulation of monocyte proliferation and the release of 

cytokines such as IFN-� (Cohen and Lekstrom, 1999). 
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1.4 EBV-associated disease 

In order to counterbalance the immune surveillance mechanisms discussed in section 

1.3 EBV has developed several strategies to avoid clearance from the human host. As 

already discussed, EBNA-1 contains a cis-acting gly-ala repeat domain that limits the 

amount of antigen displayed by MHC class I molecules and EBNA-1 specific T-cells 

possibly depend upon derived DRiPs for recognition of infected cells (Munz, 2004). 

However, perhaps the most efficient escape mechanism is the number of antigens 

expressed at low copy numbers per cell. Indeed frequency estimates of epitopes, for 

example the RRIYDLIEL epitope from EBNA-3C, are as little as 1 copy per cell 

(Crotzer et al., 2000). Low antigen expression may be problematic for efficient antigen 

presentation to T-cells. In addition antigen expression is further restricted depending on 

the stage of B-cell differentiation with only EBNA-1, LMP-1 and LMP-2 expressed in 

germinal centre B-cells or EBNA-1 alone in long-lived memory B-cells (discussed in 

section 1.2.3.1). EBV depends upon such evasive measures for survival and in the vast 

majority of immunocompetent individuals causes no disease. However, in some cases 

T-cell immunity can be comprised either through diversion/alteration of these EBV-

specific evasive manoeuvres or via immunosupression of the host. Some of the resultant 

diseases are listed in Table 1.7 and discussed in subsequent sections of this chapter. 

 

1.4.1 Infectious mononucleosis (IM) 

Infectious mononucleosis (IM) is an acute self-limiting lymphoproliferation that was 

first described in the medical literature towards the end of the 19th century when Filatov 

and Pfeiffer simultaneously described an illness characterised by fever, pharyngitis, 

lymphadenopathy, hepatosplenomegaly and abdominal discomfort, which later became 

known as Glandular Fever (Schooley, 1995). However due to a lack of diagnostic  
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   Table 1.7 EBV-associated disease of lymphoid and epithelial cell origin 

Disease Population at risk 
EBV 

association 

Lymphoid origin 

Infectious Mononucleosis (IM) 
Young adults with high socio-economic 

status 
>90% 

B-lymphoproliferative disease 
(BLPD) 

Immunosupressed individuals: 
Post-transplant lymphoproliferative disease 

(PTLD)  

 
HIV-infected individuals:  

Primary CNS lymphoma 
Peripheral lymphoma 

 
~90% 

 
 
 

100% 
~50% 

Burkitt’s lymphoma (BL) 
African children (endemic) 
HIV-infected individuals 

>90% 
~25% 

Hodgkin’s lymphoma (HL) 

Children in developing countries 
Young adults from high socio-econimic 

groups and history of IM 

~65% 
25-50% 

X-linked lymphoproliferative 
disease (XLP) Males with mutation in XLP gene 

>90% 

Primary effusion lymphoma 
(PEL) HIV-infected individuals 

~70% 

T/NK cell lymphoma 
Individuals with chronic active EBV 

HIV-infected individuals 
10-100% 
10-100% 

Epithelial origin 

Nasopharangeal carcinoma 
(NPC) Southern Chinese and Inuit races 

~100% 

Oral hairy leukoplakia (OHL) 
HIV-infected individuals 

Immunosupressed individuals 
~100% 

Gastric carcinoma Unknown ~10% 

 

 

techniques the disease was not fully recognised as a clinical entity until 1921 when a 

mononuclear lymphocytosis was first described and the characteristic atypical 

lymphocyte identified (discussed in section 1.3.2). A major advance in the diagnosis of 

IM occurred in the 1930’s when Paul and Bunnell observed the presence of non-specific 

IgM antibodies, called heterophile antibodies, in the blood of IM patients (Schooley, 

1995). Diagnostic techniques were developed based upon detection of these antibodies: 

the monospot test, which is still used today in conjunction with the EBV-specific 

antibody profile (discussed in section 1.3). Perhaps the most significant development in 

the history of IM was the observation that EBV was the causative agent. Sequential 
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serum samples obtained from a technician with IM in the laboratory of Werner and 

Gertrude Henle were analysed for EBV-specific antibodies (Henle, Henle, and Diehl, 

1968). The results suggested that acute EBV infection was associated with the illness. 

Subsequent epidemiological studies demonstrated that IM occurred in EBV sero-

negative individuals who upon EBV infection developed an antibody response to EBV 

(Evans, Niederman, and McCollum, 1968;Sawyer et al., 1971;Niederman et al., 1968). 

We now know that approximately 90% of all IM cases are aetiologially linked to 

primary infection with EBV; the remaining 10% are linked to other agents, most 

frequently cytomegalovirus. 

In most countries IM is not a notifiable disease and as a result determining the incidence 

can be difficult. However in 1955 a pilot study asking hospital laboratories in England 

and Wales to report serologically confirmed IM cases to the Public Health Laboratory 

Service estimated an incidence rate of 50 cases per 100,000 persons per year (Newell, 

1956). A similar rate of 45 cases per 100,000 persons per year was obtained from a 

study carried out in the USA in the 1970’s (Heath, Jr., Brodsky, and Potolosky, 1972). 

Ireland is one of the few countries to notify IM on a regular basis and results between 

1988 and 2003 estimate a rate of 40 cases per 100,000 persons per year suggesting that 

the incidence rate has remained fairly stable over the past 50 years.  More recently, an 

epidemiological study investigating IM in university students demonstrated an annual 

incidence rate of 3.7% among those who were sero-negative (Crawford et al., 2006). 

However, there are reports that the number of hospital admissions due to IM in France 

is increasing from 1.4/year to 7/year and that more cases are being admitted to intensive 

care units (Tattevin et al., 2006) suggesting that severe IM may be increasing. 

Epidemiological data from several studies suggest that the highest incidence rates for 

IM are seen in the 15-24 year old age group, in those with a higher socio-economic 



   Chapter 1: Introduction    

 

 - 45 - 

status, and in those who are sexually active (Crawford et al., 2002;Niederman et al., 

1970;Hallee et al., 1974;Hesse et al., 1983). 

The classical symptoms of IM (pharyngitis, fever and lymphadenopathy) usually appear 

following an incubation period of 4-7 weeks (Hoagland, 1964) and resolve within 2-6 

weeks of development (Williams and Crawford, 2006). However in some cases the 

symptoms can persist as in chronic active EBV (CAEBV) resulting in a high viral load 

within the peripheral blood and abnormal antibody responses (Macsween and Crawford, 

2003;Cohen, 2005). CAEBV has a high morbidity and a high mortality rate (>40%) 

resulting from complications such as lymphoma, sepsis and haemophagocytic syndrome 

(Macsween and Crawford, 2003). Complications from classic IM can also occur such as 

airway obstruction, splenic rupture, liver failure and secondary bacterial infections 

(Macsween and Crawford, 2003;Cohen, 2006) and epidemiological data has also linked 

IM with the development of HL (Jarrett et al., 2003;Hjalgrim et al., 2007;Hjalgrim et 

al., 2000). 

The immune response during IM is characterised by a massive expansion of activated 

lymphocytes (discussed in section 1.3.2). The majority of activated lymphocytes 

observed in IM are oligoclonal, EBV-specific CD8+ cytotoxic T-cells (Annels et al., 

2000;Callan, Steven, and Krausa, 1996;Steven et al., 1996;Steven et al., 1997). This 

CD8+ T-cell expansion is believed to control the infection through lysis of infected cells 

and to cause the symptoms of IM via excessive cytokine secretion particularly the TH1 

cytokines IL-2 and IFN-� (Foss et al., 1994;Biglino et al., 1996). Indeed recent studies 

show a correlation between the level of activated T-cells and the severity of symptoms 

during IM with higher levels associated with more severe symptoms (Williams et al., 

2004). The resolution of symptoms has also been associated with the number of EBV 

antigens recognised by T-cells: a broader T cell response resulted in quicker resolution 
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of symptoms (Bharadwaj et al., 2001). During convalescence the level of virus within 

the peripheral blood drops to baseline levels however the levels of virus within saliva 

remains elevated for up to 6 months (Fafi-Kremer et al., 2005b;Fafi-Kremer et al., 

2005a) suggesting that patients can remain infectious for some time following 

resolution of symptoms. 

Although much is known about the incidence of IM and the cellular immune response 

during IM it is still unclear why some individuals develop symptoms upon primary 

EBV infection and others do not. IM is rare in children and it has been postulated that a 

less developed immune system (children) may prevent the development of IM and 

conversely that a more mature immune system (adolescents) would allow development 

of IM upon primary infection. However, this does not fully explain why sero-

conversion in adolescence is largely asymptomatic. It has also been suggested that the 

level of virus transferred to a sero-negative individual may be important however results 

suggest that there is no difference in viral load between asymptomatic and symptomatic 

individuals (Silins et al., 2001). Genetic differences in components of the immune 

response may also be important and these shall be discussed in chapter 5. 

 

1.4.2 Burkitt’s lymphoma (BL)  

As stated previously BL was first identified in African children by Denis Burkitt in 

1958 and it remains one of the commonest childhood malignancies of Equatorial Africa 

(Magrath, 1990). There are 3 types of BL as defined by the World Health Organisation 

(WHO): endemic BL which occurs mainly in Africa, sporadic BL and 

immunodeficiency-related BL. BL was originally designated a sarcoma of the jaw, but 

was later determined to be a lymphoid tumour giving rise to tumours in other sites such 

as liver, kidney, the ovary, and mammary glands. Histologically, BL is characterised by 
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a rapid proliferation of B-cells with small round or oval nuclei and prominent basophilic 

nucleoli. Macrophages are often present within the tumour mass giving rise to the 

classic ‘starry sky’ pattern observed. The cellular origin is thought to be a germinal 

centre B-cell as B-cell surface markers are expressed and there is evidence of somatic 

hypermutation in IgG genes (Gregory et al., 1987;Kuppers, 1999;Kuppers and 

Hansmann, 2005). The development of BL is a multi-step process involving at least 3 

factors: malarial infection, dysregulation of the c-myc oncogene and EBV infection. 

Based on the geographical distribution of endemic BL and the age of onset it was 

postulated that an infectious agent may be linked with the development of BL. It was 

evident that the highest incidences of endemic BL occurred in regions with the highest 

rate of malaria transmission by Plasmodium falciparum (Morrow, 1985). Furthermore 

endemic BL levels were reduced in areas where mosquito eradication measures were 

introduced and in those with malarial resistance due to the sickle cell trait (Crawford, 

2001). However the mechanism for the interaction between the two is unclear. 

P.falciparum malaria can lead to defects in cell-mediated responses (Ho et al., 

1998;Hviid et al., 1992) and to alterations in B-cell homeostasis (Nagaoka et al., 2000) 

therefore 2 mechanisms have been proposed: suppression of T-cell immunity and 

activation/expansion of B-cells. In support of the T-cell suppression theory it has been 

demonstrated that PBMCs isolated from patients with acute malaria are unable to 

control outgrowth of EBV immortalised cells and that healthy adults living in endemic 

regions have impaired EBV-specific T-cell responses (Whittle et al., 1984;Whittle et 

al., 1990;Moormann et al., 2005). However, it is argued that the immunosuppressive 

effect of malaria does not explain the relationship fully. Lam et al (1991) demonstrated 

that the number of EBV-infected B-cells increases during acute malarial episodes and 
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young children living in endemic areas had EBV loads typical to that seen in acute IM 

(Moormann et al., 2005;Lam et al., 1991). 

A molecular hallmark of all 3 types of BL is the activation of the c-myc gene on 

chromosome 8. Chromosomal breaks that result in the translocation of the c-myc gene 

to sites involved in Ig gene expression on chromosomes 2, 14 and 22 can result in 

aberrant expression of the c-myc gene (Magrath, 1990). Constitutively active c-myc is a 

prominent feature in BL cases. c-myc is a transcription factor that regulates cell growth, 

differentiation and apoptosis and may contribute to the development of BL by 

promoting cell cycle progression (Hecht and Aster, 2000;Lindstrom and Wiman, 2002).  

EBV is associated with >90% of endemic BL (Labrecque et al., 1994). The association 

of EBV with sporadic BL and immunodeficiency-related BL is around 25% and 30% 

respectively (Griffin and Rochford, 2005). This variation has led to speculation that 

EBV is merely a passenger in BL pathogenesis however there is strong evidence that 

EBV is linked to BL development. A large scale prospective study carried out in 

Uganda in the 1970’s demonstrated very high antibody titres directed against EBV 

VCA prior to development of BL suggesting the EBV infection was poorly controlled 

and contributed to the development of BL (de-The, 1977). The EBV genome is present 

in BL cells as multiple nuclear episomes and has been shown to be clonal, suggesting 

that infection is an early event (Raab-Traub and Flynn, 1986;Neri et al., 1991). Viral 

antigen expression is limited to EBNA-1, EBERs and BARTs (Rowe et al., 1986) 

which may explain the BL cell’s ability to avoid immune detection.  As with malaria the 

mechanisms involved with the association are still unclear. BL cell lines lacking EBERs 

are more sensitive to apoptotic signals then EBERs positive cell lines suggesting that 

EBV may block apoptosis (Takada and Nanbo, 2001). The expression of Tcl-1, a 

protein originally detected in T-cells, can be stimulated by EBV in BLs thereby 
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promoting cell survival (Kiss et al., 2003). Upon EBV infection and during B-cell 

expansion translocation of the c-myc gene may occur rendering expression of EBV 

latent antigens redundant (Griffin and Rochford, 2005).  

The pathogenesis of BL is probably due to all 3 factors. Firstly EBV-infection leading 

to viral persistence within B-cells, followed by recurring bouts of malaria resulting in 

increased viral production and/or T cell suppression. Expression of viral antigens 

protects from apoptosis and promotes cell cycle progression. Rapid proliferation and 

prolonged expression of viral antigens may lead to increased incidence of c-myc 

translocations leading to outgrowth of malignant cells with a restricted EBV antigen 

expression. Therefore EBV-infection alone may not be sufficient, but rather a necessary 

co-factor, in the development of endemic BL. 

 

1.4.3 Hodgkin’s lymphoma (HL) 

HL is one of the commonest tumours in young adults in the West where its incidence is 

increasing (Swerdlow, 2003). Approximately 1500 new cases occur each year in the 

UK, and HL now accounts for one in eight of all lymphomas diagnosed. The lymphoma 

is characterised by the disruption of normal lymphnode architecture and the presence of 

the malignant Reed-Sternberg (RS) cell comprising less than 2% of the tumour mass 

(Harris et al., 1994). Identification of non-functional re-arranged Ig genes and somatic 

mutation suggests that RS cells are of B-cell origin, more specifically of post-germinal 

centre origin (Kuppers and Rajewsky, 1998;Tamaru et al., 1994). The RS cells are 

surrounded by a complex mixture of immune cells, fibroblasts and stromal cells that 

cross-talk via a cytokine network to favour tumour survival (Pinto et al., 1998). HL 

comprises 4 subtypes: nodular sclerosing (NS), mixed cellularity (MC), lymphocyte 

depleted (LD) and lymphocyte predominant (LP).  
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The incidence of HL is bimodal with a peak in childhood and another in late adulthood 

however there are socio-economical and geographical variations in age of onset. The 

childhood peak occurs later (15-35yrs) in more prosperous countries compared to an 

earlier peak (5-10yrs) in less prosperous countries (Macsween and Crawford, 2003). 

This disparity in age is similar to that seen for EBV sero-conversion and the 

development of IM suggesting an association between the two. Indeed in less affluent 

countries HL is predominantly EBV-associated. However in more affluent countries HL 

is predominantly of the non-EBV-associated NS variety. A recent UK based study 

confirmed the non-EBV-associated peak but also demonstrated a smaller bimodal 

distribution for EBV-associated HL in the younger age groups (Jarrett, 2002;Jarrett et 

al., 2005).  

The detection of raised antibody titres to EBV antigens in HL patients prior to treatment 

provided the first evidence that EBV was associated with HL pathogenesis (Mueller et 

al., 1989;Levine et al., 1971). In addition IM was identified as a risk factor for the 

development of HL (Gutensohn and Cole, 1980) and recent reports suggest that EBV-

associated HL is increased four-fold following IM, usually developing on average 3yrs 

after resolution of IM symptoms (Hjalgrim et al., 2003;Hjalgrim et al., 2007;Hjalgrim 

et al., 2000).  Advances in molecular technology led to the identification of the EBV 

genome in the RS cells (Weiss et al., 1989;Wu et al., 1990) of approximately 25-50% of 

HL cases from affluent areas (Andersson, 2006) and in around 65% of HL cases from 

less prosperous areas (Dinand et al., 2007;Glaser et al., 1997). Other immuno-

suppressive factors may account for this increased HL development in underdeveloped 

areas. Higher EBV-positive HL rates observed in HIV-infected subjects would support 

this theory (Uccini et al., 1990). EBV is detected most readily in MC and LD type HL 

(60-80% of cases) and less so in LP type HL (<10%) (Rickinson and Kieff, 2006). The 
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viral genome is normally clonal suggesting an early infection event (Anagnostopoulos 

et al., 1989) and the virus persists at multiple HL sites (Coates, Slavin, and D'Ardenne, 

1991). EBV-positive RS cells display a type II form of latency (Grasser et al., 

1994;Deacon et al., 1993;Pallesen et al., 1991), in particular LMP-1and LMP-2A are 

expressed at high levels suggesting an important role in disease progression. LMP-1 

upregulates B-cell activation markers, IL-10, cell adhesion molecules and anti-apoptotic 

genes; and acts as a constitutively activated member of the TNF receptor family 

activating a number of signalling pathways. LMP-2A acts as a constitutively activated 

BCR driving proliferation and protecting from apoptosis (discussed in section 1.2.2.2). 

Between them, LMP-1 and -2A provide the necessary signals for EBV-infected B-cells, 

and in the case of HL, RS cells, to undergo proliferation in the germinal centre and 

protect from apoptosis.  LMP-1 and -2A are also potential targets for CTL (Khanna et 

al., 1998;Lee et al., 1997). The survival of EBV-infected RS cells expressing these 

antigens would suggest that mechanisms are employed to evade CTL detection. This is 

supported by the observation that IL-10 is increased in HL serum as is the expression of 

thymus and activated regulated cytokine (TARC) (Herbst et al., 1996;Poppema et al., 

1998) both of which act to skew the environment from a Th1 type to a Th2 type of 

response.  

Interestingly there are few differences between EBV-positive HL and EBV-negative HL 

therefore in the absence of EBV other cellular genetic events may be required to elicit a 

similar pathogenesis. 

 

1.4.4 Post transplant lymphoproliferative disease (PTLD) 

PTLD encompasses a heterogeneous group of disorders that can follow solid organ 

transplantation (SOT) or bone marrow transplantation (BMT) as a consequence of 
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immunosupression and range from reactive hyperplasia to malignant monoclonal 

entities (Gottschalk, Heslop, and Rooney, 2005;Burns and Crawford, 2004). 

Classification by the WHO divides PTLD into early lesions (reactive plasmacytic 

hyperplasia and mononucleosis-like syndrome), polymorphic lesions, monomorphic 

lesions and Hodgkin’s like lesions. Progression from early lesions to the more 

aggressive monomorphic lesions can occur (Larratt et al., 2001).  

The incidence of PTLD varies with type of transplant, level of immunosupression and 

EBV sero-status. PTLD occurs in approximately 1-3% of all renal, heart or liver, 7-33% 

of lung, intestine and multi-organ, and less than 1% of bone marrow transplants 

(Cockfield, 2001). The highest incidence occurs in the first few years following 

transplant and may involve the grafted organ as well as other sites such as the 

gastrointestinal tract, lungs and central nervous system (Gottschalk, Heslop, and 

Rooney, 2005). High levels of immunosuppressive agents such as cyclosporine and 

tacrolimus have been linked with an increased incidence of PTLD (Brumbaugh et al., 

1985;Sokal et al., 1997) as has the use of anti-CD3 antibodies and anti-thymocyte 

globulin (Sokal et al., 1997;Swinnen et al., 1990). Furthermore, the incidence of PTLD 

rises from 1% to 24% in BMT recipients receiving T-cell depleted bone marrow, 

suggesting that removal of T-cells further promotes PTLD development (Shapiro et al., 

1988). EBV sero-status is also important in PTLD development. EBV sero-negative 

transplant recipients constitute a major risk group with estimations of a 10-76 fold 

increase in incidence compared to sero-positive recipients (Cockfield, 2001). Indeed 

around 50% of PTLD cases are associated with primary EBV infection and present with 

IM-like symptoms soon after transplantation (Ho et al., 1985). A sero-negative status 

may account for the particularly high PTLD incidence in children who are less likely to 

have encountered the virus. However, not all PTLD cases are associated with EBV. 
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EBV-negative lesions are well documented and tend to occur several years after 

transplantation (Swerdlow et al., 2000;Leblond et al., 1998). 

Immunosuppressive drug therapy to prevent graft rejection following transplantation 

results in severely reduced T-cell function, leading to increased virus replication and an 

accumulation of latently infected B lymphocytes which in some individuals may result 

in uncontrolled EBV driven B-cell lymphoproliferation and the onset of PTLD. EBV 

may be the key factor in the development of disease, particularly the hyperplastic and 

polyclonal forms in which the infected B-cells express all of the latent genes required to 

drive B-cell immortalisation. However, viral gene expression can vary within and 

between tumours with restricted expression patterns such as those seen in HL and BL 

observed in some cases (Cen et al., 1993). Moreover, immunosupression increases the 

number of circulating infected B-cells but only a small proportion of individuals 

develop PTLD suggesting that only a few infected cells have the ability to immortalise. 

Therefore, other factors in addition to EBV may be required.  

PTLD tumours may originate from donor cells, as predominantly occurs in the BMT 

situation, or from recipient cells as generally occurs in the SOT scenario (Shapiro et al., 

1988). More recently, investigation of somatic mutations in Ig heavy chain genes has 

shown that tumours can arise from naïve or post GC memory B-cells as opposed to the 

situation in healthy persistently infected individuals where infection is contained with 

the memory compartment only (Timms et al., 2003). Moreover when tumours arose 

from memory B-cells frequent Ig gene mutations were observed suggesting that EBV 

infection provided rescue signals to abnormal B-cells, preventing apoptosis, and 

encouraging proliferation. A similar mechanism has been proposed in the development 

of HL (section 1.4.3).  
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T-cells and the production of cytokines may be an important co-factor in the 

development of disease as cytokines can support the growth of EBV infected B-cells. 

Elevated serum levels of IL-4, -6 and -10 have been reported as well as the detection of 

IL-4 and IL-10 messenger RNAs (Mathur et al., 1994;Nalesnik et al., 1999;Tosato et 

al., 1993). Interestingly, PTLD biopsies show an infiltrate of CD4+ T-cells which are a 

potential source of these cytokines (Perera et al., 1998). The population of CD4+ T-

cells are also important for the development of tumours from PBMCs in severe 

combined immunodeficiency (SCID) mouse models of PTLD, as reduced of numbers 

CD4+ T-cells in PBMC  result in reduced tumour incidence (Veronese et al., 

1992;Johannessen, Asghar, and Crawford, 2000). In addition, polymorphisms within 

cytokine genes have been associated with the development of PTLD. Polymorphisms 

leading to low level expression of IFN-� have been shown to be more frequent in PTLD 

subjects following renal and liver transplantation and may predispose to its development 

(VanBuskirk et al., 2001). However, this observation has been refuted in other studies 

(Thomas et al., 2005). Other genetic abnormalities may play a role, particularly in the 

case of the monomeric forms of the disease. Mutations of the oncogenes ras and c-myc 

and the tumour suppressor p53 have been detected in some monomeric PTLD cases 

perhaps contributing to the more aggressive nature of this tumour (Knowles et al., 

1995;Chadburn, Cesarman, and Knowles, 1997). 

A number of strategies are employed in the treatment of PTLD. Reduction of 

immunosupression with the aim of restoring EBV-specific immunity is usually the first 

line of treatment in solid organ recipients. However tumour regression is only observed 

in approximately 20-50% of cases (Paya et al., 1999) and may be limited by the onset of 

graft rejection due to reduced immunosuppression (Swinnen et al., 1995). Other forms 

of treatment such as chemotherapy, radiotherapy, rituximab (anti-CD20 monoclonal 
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antibody) are often utilised but often have debilitating side effects (Swinnen et al., 

1995;Choquet et al., 2006). However, despite these treatments the overall mortality 

from PTLD in solid organ transplantation is still around 50% (Armitage et al., 

1991;Opelz and Dohler, 2004). In recent years the use of adoptive cellular 

immunotherapy has been developed for the treatment of PTLD and has shown 

promising results without significant side effects or the risk of graft rejection (section 

1.5). 

 

1.5 Adoptive immunotherapy 

The concept of immunotherapy, which involves harnessing or restoring immune 

mechanisms to treat disease, is an attractive one, since controlled manipulation of 

natural defences promises to be less invasive and/or less toxic than other available 

therapeutic options. Most immunotherapeutic approaches use antibodies or cellular 

components of the immune system to target specific antigens on diseased tissues, 

particularly those expressed on virus infected or tumour cells. Our increased 

understanding of the gene expression in tumour cells and the mechanisms by which the 

immune system, in particular T-cells,  recognises antigens, has facilitated the 

development of adoptive CTL immunotherapy for the treatment of EBV-associated 

malignancies. 

T-cell immunotherapy using antigen specific cytotoxic T-cell lines (CTL) was first 

pioneered in the USA for the treatment of cytomegalovirus (CMV) infection in BMT 

patients.  Early studies using a murine (M) CMV model showed that large numbers of 

virus specific CD8+ memory T-cells could be grown ex vivo from latently infected 

immunocompetent mice, that they retained their cytotoxic activity, and were able to 

prevent virus replication in vivo when transferred to immunodepleted mice challenged 

with MCMV (Reddehase et al., 1988;Reddehase et al., 1987).  Riddell et al (1992) 
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reported the first adoptive transfer of CMV antigen specific CTLs in humans, 

demonstrating that CTL from BMT donors grown ex vivo and then administered to the 

BMT recipients remained detectable for up to 1 month post infusion and retained their 

cytolytic potential (Riddell et al., 1992).  This study set the scene for the use of ex vivo 

expanded CTL to treat virus infections with high morbidity and mortality in 

immunodeficient patients such as EBV-associated PTLD. 

 

1.5.1 Adoptive T-cell immunotherapy for EBV-associated PTLD 

Early studies using unselected populations of peripheral blood leucocytes from EBV 

seropositive BMT donors to treat PTLD in the BMT recipients suggested that these 

transferred cells could control the EBV driven lymphoproliferation.  In one study 3/5 

patients showed some tumour regression (Papadopoulos et al., 1994), presumably due 

to the presence of EBV-specific cytotoxic T-cell precursors in the infusions.  However, 

this treatment was associated with potentially fatal complications, including 

pneumonitis and graft-versus-host disease, probably mediated by non-specific cell 

populations, such as NK-cells, activated macrophages and alloreactive T-cells, within 

the infusions.  The emphasis therefore shifted to refining the infused cell populations by 

ex vivo expansion of EBV-specific T-cells from peripheral blood prior to infusion. 

 

Generation of EBV-specific T-cell lines for infusion  

EBV-specific CTL can be routinely grown ex vivo from the peripheral blood of healthy 

EBV sero-positive donors. EBV immortalised LCL generated by EBV infection of 

peripheral blood B lymphocytes serve as antigen presenting cells for EBV latency III 

antigens while the addition of IL-2 to the culture system stimulates T-cell growth.   CTL 

are normally expanded for 8-10 weeks with weekly LCL stimulation to ensure 

specificity, after which flow cytometry and cytotoxicity analyses generally show 
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expanded CTL to contain predominately activated CD8+ cells, often with a minority 

population of CD4+ cells, and good HLA class 1 restricted killing specific for EBV-

positive target-cells expressing a latency III pattern.  

 

 Autologous EBV-Specific CTL 

Rooney et al (1998) were the first to demonstrate the effective use of donor derived 

EBV-specific CTL for the prevention of PTLD following T-cell depleted BMT (Rooney 

et al., 1995;Rooney et al., 1998). Of the 39 patients treated with CTL none developed 

PTLD compared to a 11.5% PTLD rate in a historical control group with no CTL 

prophylaxis.  The same group also showed that donor derived EBV-specific CTL could 

be used to successfully treat established PTLD in BMT patients with complete 

resolution of tumour observed in two cases (Rooney et al., 1998). Studies have shown 

that infused CTL can be detected within the tumour mass post treatment and survive 

long term in their adoptive hosts (Heslop et al., 1996). 

Similar studies on PTLD in solid organ transplant (SOT) patients have used autologous 

EBV-specific CTL expanded from the patients themselves prior to transplant. This has 

induced tumour regression in several cases, including lung and renal transplant 

recipients, with no infusion related toxicity (Comoli et al., 2005a;Khanna et al., 1999).  

However there are a number of drawbacks to the use of autologous CTL as a first line 

therapy, particularly in the SOT situation where generally the donor can not be used as a 

source of CTL.  Due to the length of time required to grow CTL ex vivo there may be a 

delay of up to 3 months before treatment can be administered, and this is not acceptable 

for an aggressive tumour.  It is also difficult to expand CTL from EBV sero-negative 

individuals, who are at high risk of developing PTLD following transplant, and 
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generating LCL for CTL stimulation from patients treated with B lymphocyte depleting 

regimens such as rituximab is not always possible.   

 

Allogeneic EBV-Specific CTL  

The problems inherent in the use of autologous CTL, where the treatment must be 

tailored to each individual patient, mean that this expensive, labour intensive form of 

therapy is not suitable for general use. An alternative option which overcomes some of 

these problems is to use allogeneic EBV-specific CTL expanded from healthy EBV 

sero-positive blood donors.  Haque et al (2007) employed this approach in a phase II 

clinical trial treating PTLD in patients with partially HLA-matched CTL from a frozen 

bank of 100 EBV-specific CTL of known HLA type (Wilkie et al., 2004;Haque et al., 

2002;Haque et al., 2007).  No CTL related toxicity was detected and complete or partial 

response was observed in 52% of patients, all of whom had failed on conventional 

treatment regimens.  Successful outcome correlated with a high percentage of CD4+ 

cells in the infused CTL suggesting that these ‘helper’ T-cells promote the survival and 

cytotoxic function of the majority CD8+ population in vivo.  During the trial CTL from 

the bank were sent to locations as distant as Australia where they were used 

successfully to treat PTLD patients (Gandhi et al., 2007).  Thus a single bank of CTL 

can provide for a large area making this a feasible option for routine clinical practice.  

 

1.5.2 Adoptive T-cell therapy for EBV-associated diseases other than PTLD 

Following the success of CTL therapy for PTLD, both autologous and allogeneic EBV-

specific CTL have been used to augment patient immune responses in NPC and HL.  

However, as expected, EBV-specific CTL grown in the conventional way are mainly 

directed against the EBNA-3 complex, with only a small proportion of T-cells within 

the polyclonal population recognising the subdominant epitopes on LMP-1, -2 and 



   Chapter 1: Introduction    

 

 - 59 - 

EBNA-1 which are the major ‘tumour antigens’ expressed by HL and NPC tumour 

cells.  Not surprisingly success is limited with only a few cases showing complete 

regression of tumour (Straathof et al., 2005;Comoli et al., 2005b;Bollard et al., 

2004;Lucas KG et al., 2004;Comoli et al., 2004).  

It is clear that CTL targeting sub dominant epitopes in LMP-1, -2 molecules are 

required for successful immunotherapy of malignancies with restricted EBV gene 

expression. New ways of expanding EBV-specific CTL ex vivo are now providing CTL 

specific for these rare viral epitopes by altering antigen presentation to EBV-specific 

CTL precursors.  Various methods of presenting these antigens have been employed 

including the use of LCL loaded with EBV peptides, transduction of LCL or dendritic 

cells with vectors expressing specific EBV antigens, and EBV peptide coated beads 

(Gottschalk et al., 2003;LU et al., 2006;Ayako Demachi-Okamura et al., 2006).  In all 

cases EBV-specific CTL reactive against sub-dominant EBV epitopes have been 

generated which display similar growth properties and phenotypes to those expanded by 

established methods and show good EBV-specific cytolytic activity.   

Although improvements in cell targeting and expansion are extending the potential use 

of CTL immunotherapy from PTLD to other EBV-associated malignancies with more 

restricted gene expression, some caution is still required when directing CTL against 

individual epitopes. An EBV (EBNA-3B) deletion mutant has been described following 

CTL treatment which allowed the tumour cells to evade CTL killing and continue to 

grow (Gottschalk et al., 2001). Such mutants may potentially contribute to some of the 

treatment failures observed in various studies. However, even with such concerns CTL 

immunotherapy for EBV-associated malignancies is becoming a practical option in the 

clinical setting. 
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1.6 Aim  

As discussed in previous sections the host immune response to EBV infection has a 

major role to play in the development of disease, especially with regard to IM and 

PTLD. Understanding both the viral and host immuno-regulatory mechanisms involved 

in the development of disease is crucial for devising new and improved treatments. 

The aim of this thesis was to investigate several aspects of the immune response to 

EBV-associated disease. This resulted in 3 independent studies. 

Study 1: investigated the epitope specificity and T-cell receptor (TCR) clonality of CTL 

used to successfully treat a panel of PTLD patients. Characterisation at this level may 

improve matching procedures between donor and recipient when using immunotherapy 

based treatments as well as provide insights into the recognition process of virus-

infected cells by activated T-cells. 

Study 2: investigated single nucleotide polymorphisms (SNPs) in several cytokine 

genes (TNF, IL-1, -6, -10) in both IM and PTLD cases and compared these with 

relevant control groups. As discussed the cytokine network has a pivotal role in the 

immune response to infection and variation in cytokine genes, and ultimately cytokine 

levels, may alter this response. 

Study 3: analyzed two microsatellite markers and two SNPs located near the HLA class 

I locus in IM, PTLD and control subjects to determine whether HLA genes may affect 

development of EBV-associated diseases. The HLA locus, particularly the class I 

region, is primarily involved with antigen presentation to T-cells. Variation in the genes 

of this locus could potentially alter how viral peptides are presented to the immune 

system thereby dictating the overall level of the immune response.
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2.1  Suppliers and Manufacturers 

Autoimmun Diagnostika  Ebinger Strasse 4, 72479 Strassberg, Germany 
GmbH 
 
GE Healthcare UK Ltd  Amersham Place, Little Chalfont, HP7 9NA, 
  UK 
 
Applied Biosystems   7 Kingsland Grange, Woolston, Warrington,  
   WA1 4SR UK 

BD Biosciences/PharMingen  21 Between Towns Road, Cowley, Oxford,  
  OX4 3LY, UK 
 
Beckman Coulter   Oakley Court, Kingsmead Business Park, London 

Road, High Wycombe, HP11 1JU, UK 
 
Bioline Ltd  16 The Edge Business Park 
   Humber Road, London, UK 
 
Biometra GmbH i. L.    Rudolf-Wissell-Stra�e 30, 37079 Goettingen, 

Germany 
 
Chiron Corporation  4560 Horton Street, Emeryville, 94608-2926 

California,USA 
 
DAKO Ltd  Denmark House, Angel Drive 
   Ely, CB7 4ET 
 
Dynex Technologies  Billinghurst, West Sussex, UK 
 
European collection of   Porton Down, UK 
Animal cell culture (ECACC)  
 
Exalpha Biologicals Inc  20 Hampden St, Boston, MA 02119, USA 
 
Greiner BioOne Inc   1205 Sarah St, Longwood, 32750 Florida, USA 
 
Invitrogen   3 Fountain Drive, Inchinnan, Business Park, Paisley, 

PA4 9RF, UK 

 
Miltenyi Biotec Ltd   Almac House, Church Lane, Bisley, Surrey,  
   GU24 9DR, UK 

 
Oxoid Limited   Wade Road, Basingstoke, RG24 8PW, UK 

 
Perkin Elmer Life Sciences  Chalfont Road, Seer Green, Beaconsfield,  
  HP9 2FX, UK 
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Promega UK  Delta House, Chilworth Science Park, Southampton, 
SO16 7NS, UK 

 
Qiagen Ltd   Qiagen House, Fleming Way, Crawley, RH10 9NQ, 

UK 
 
R&D Systems   19 Barnton Lane, Abingdon Science Park, Abingdon, 

Oxon, OX14 3NB, UK 
 
Roche   Roche Diagnostics Ltd, Bell Lane, Lewes,  
   BN7 1LG, UK 
 
Sandoz Ltd   Unit 37, Woolmer Way, Bordon, GU35 9QE, UK 
 
Sanyo Gallenkamp (MSE)  Monarch Way, Belton Park, Loughborough,  
   LE11 5XG, UK 
 
Sigma   Sigma-Aldrich Company Ltd, The Old Brickyard, 

New Road, Gillingham, SP8 4XT, UK 
 
Sigma-Genosys Ltd   Sigma-Aldrich House, Homefield Business Park, 

Homefield Road, Haverhill, CB9 8QP 
 
Scientific Laboratory   Coatbridge Business Centre, 204 Main Street  
Supplies (SLS)  Coatbridge, ML5 3RB, UK 
   
 
Stratagene 11011 N. Torrey Pines Road, La Jolla,  
                                                      California CA92307, USA 

 
Sterilin  Barloworld Scientific Ltd. Beacon Road, Stone, ST15 

0SA, UK 
 
Stuart Scientific   Barloworld Scientific Ltd. Beacon Road, Stone, 

Staffordshire, ST15 0SA, UK  
 
ThermoFisher Scientific  Bishop Meadow Rd, Loughborough, Leicestershire, 

LE11 5RG, UK 
 
Thistle Research  27 Westbourne Crescent 
   Glasgow, G61 4HB   

 
Ultra-Violet Products Ltd  Unit 1, Trinity Hall Farm Estate, Nuffield Road, 

Cambridge, CB4 1TG, UK 
 
Vector Laboratories  3 Accent Park, Bakewell Road, Orton,Southgate, 
   Peterborough PE2 6X3, UK 
VWR Intl Ltd   Merck House, Poole, Dorset, BH15 1TD, UK 
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2.2  Consumables and Equipment 

2.2.1 Consumables 

All tissue culture flasks, 96-well, 48-well, 6-well tissue culture plates and cryovials 

were obtained from Nunc. 

0.2ml PCR tubes were supplied by Greiner, 0.5ml and 48-well PCR tubes by Anachem. 

LP-2 gamma counter tubes were supplied by Thermo. 

Unless otherwise stated all other plastic-ware was obtained from either SLS or Sterilin.  

 

2.2.2 Equipment 

Several types of centrifuge were used in the course of this work and are listed below: 

Sanyo MSE Mistral 3000E (Rotor 43124129) for cell spins. 

Sanyo MES Mistral 3000i (Rotor43124129) for cell spins with temperature control. 

Beckman Coulter TJ-6 for spins with chromium 51 loaded cells. 

Sigma SciQuip 1-15K (Rotor 12124) for general temperature controlled spins and 

DNA/RNA extractions. 

 

Two thermocyclers were used for all PCR and reverse transcriptase reactions: T3 

Thermocyler from Biometra and the Stratagene Robocycler 96. PCR products were 

visualised on a UVP transilluminator whilst fluorescent PCR amplicons were analysed 

in the ABI 3730 sequencer with ABI Genemapper software. 

 

 FACS analysis was performed on the BD FACScan machine with CellQuest Software. 

Chromium release from cells in cytotoxicity assays was analysed on the 1480 Wizard 3” 

Automatic Gamma Counter from Perkin Elmer. 
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The AID Elispot Reader (version 3.2.3) [Autoimmun Diagnostika] was used to count 

interferon gamma producing cells in Elispot assays. 

All ELISA plate readings were performed on the MRX II ELISA plate reader from 

Dynex Technologies. 

 

2.3  Reagents and solutions  

The following is a list of media, solutions and reagents used in the course of this work. 

 

2.3.1 Tissue culture media and solutions 

All media used are detailed in Table 2.1. 

Table 2.1: Tissue culture media preparations. 

 
Abbreviations used: CTL: cytotoxic T lymphocyte, LCL: lymphoblastoid cell line, TK-143B: thymidine 
kinase deficient 143B cell, DC: dendritic cell, RVacc: recombinant vaccinia virus, RPMI: Rosewell Park 
memorial institute, DMEM: Dulbecco’s modified essential medium, L-Glut: L-glutamine, P/S: 
penicillin/streptomycin, NEAA: non-essential amino acids, FBS: foetal bovine serum, HEPES: 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid, BrdU: bromodeoxyuridine.   

 

Toluidine blue stock (1%): 1g toluidine blue [Sigma] diluted with 10ml ethanol [VWR] 

and 90ml distilled water with filtration through a 0.4�m filter. 

Phosphate buffered Saline (PBS):1 PBS tablet [Oxoid] diluted in 100ml distilled water 

and autoclaved to sterilise. 

Cell type Medium L-Glut P/S NEAA FBS HEPES BrdU 

CTL 
RPMI 
1640 2mM 100IU/ml - 20%(v/v) - - 

LCL/ 
B958/ 
K562 

RPMI 
1640 2mM 100IU/ml - 10%{v/v) - - 

TK143B DMEM 2mM 100IU/ml 1%(v/v) 10%(v/v) - 15�g/ml 

DC 
RPMI 
1640 4mM 100IU/ml - 10%(v/v) 25mM - 

RVacc DMEM 2mM 100IU/ml 1%(v/v) 10%(v/v) - - 

Supplier Invitrogen Invitrogen Invitrogen Invitrogen Invitrogen Invitrogen Sigma 
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4% Neutral buffered formalin (NBF): 50ml of 10% NBF stock solution [VWR] 

diluted in 75ml PBS.  

Magnetic activated cell sorting (MACS) buffer: PBS (pH 7.2) containing 0.5% bovine 

serum albumin (BSA) [Sigma] and 2mM EDTA [Sigma]. 

Fluorescent activated cell scanning (FACS) buffer: PBS (pH 7.2) containing 1% BSA, 

0.1% sodium azide [VWR] and 0.1mM EDTA. 

FACS fix: 1ml BD CellFixTM (10%) [BD] in 9ml sterile distilled water. 

 

2.3.2 Molecular solutions 

TE (x0.5) buffer: Water containing 45mM Tris-borate [Sigma] and 1mM EDTA. 

Agarose gels: TE (x0.5) buffer containing 2% agarose [Bioline] and 100�g/ml Ethidium 

Bromide [ThermoFisher Scientific]. 

Quantitative polymerase chain reaction (QPCR) wash buffer: Distilled water 

containing 600mM sodium chloride [Sigma], 60mM sodium citrate [Sigma] and 0.5% 

Tween 20. 

Cresol Red buffer: Nuclease free water [VWR] containing 0.6% cresol red [Sigma]. 

 

2.3.3 Antibodies  

Fluorescent activated cell scanning antibodies and working dilutions are detailed in 

Table 2.2.  
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 Table 2.2: Details of fluorescent activated cell scanning antibodies. 

 
  Abbreviations used: PE: phycoerythrin; FITC: fluorescent isothiocyanin; IgG1: immunoglobulin isotype   
  1; IgG2b: immunoglobulin isotype 2b; CD: clusters of differentiation; DC-SIGN: dendritic cell-specific    
  ICAM-3 grabbing non-integrin 

 
 

2.3.4 Recombinant Vaccinia Virus Constructs 

Recombinant vaccinia virus constructs were obtained from Professor Alan 

Rickinson and Dr Stephen Lee, Cancer Research UK, Institute for Cancer Studies, 

University of Birmingham, Birmingham, UK. The recombinant vaccinia virus 

constructs expressed the following Epstein Barr virus-antigens: Epstein Barr nuclear 

antigen (EBNA) -1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C, EBNA-Leader protein 

(LP), Latent membrane protein (LMP) -1, LMP-2 and matrix antigen (MA:gp350). A 

recombinant vaccinia virus construct with no EBV antigen insertion was included as a 

control in all experiments where these constructs were used. 

 

2.4  Tissue Culture Methods 

2.4.1 Density Gradient Separation of Peripheral Blood Mononuclear cells 

  (PBMC) 

In a 50ml tube Histopaque®-1077 Hybri-Max® [Sigma] was overlaid with an equal 

volume of blood or cell suspension and centrifuged in a MSE refrigerated centrifuge for 

15 minutes at 800g. The resulting cell layer was removed into a fresh tube and 40ml of 

Hank’s balanced salt solution (HBSS) medium [Invitrogen] added with further 

centrifugation for 7 minutes at 190g. The cell pellet was then re-suspended in an 

appropriate volume of culture medium and counted using trypan blue (see section 

Antibody Clone Conjugate 
Volume/106 

cells (�l) Supplier 

CD14 rmC5-3 PE 20 BD Pharmingen 

DC-SIGN 120507 FITC 20 R&D Systems 

IgG1,k MOPC-21 PE 20 BD Pharmingen 

IgG2b,k 27-35 FITC 20 BD Pharmingen 
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2.4.2). Cells were then either used fresh or viably frozen for use in functional assays, or 

frozen in aliquots ready for DNA/RNA extraction. 

 

2.4.2 Cell Counts with Trypan Blue Exclusion 

Cells were counted using the trypan blue exclusion method, where a 1:1 mixture of cell 

suspension and 0.4% trypan blue [Sigma] was applied to a haemocytometer and both 

the live (unstained) and dead cells (stained) were counted in the 25 central squares. This 

number was multiplied by the dilution factor of cells and trypan blue and multiplied by 

104 to give the number of cells per ml of cell suspension. 

 

2.4.3 Cryopreservation of Cells 

The same cryopreservation protocol was observed for all cell types. Cells were 

centrifuged for 7 minutes at 190g and pellet re-suspended in 1ml (10% v/v dimethyl 

sulphoxide (DMSO) [Sigma], 90% v/v FBS) and transferred to 1.8ml cryovials. 

Cryovials were stored overnight at -80°C and then transferred to liquid nitrogen for 

long-term storage. 

 

2.4.4 Monocyte Isolation 

PBMC were isolated by density gradient centrifugation, re-suspended in RPMI 1640, 

passed through a 30�m nylon mesh [BD] to obtain a single cell suspension and counted 

using trypan blue. Monocytes were isolated via a negative selection method using the 

Monocyte Isolation Kit II [Miltenyi Biotec] as per manufacturer’s instructions. Briefly, 

counted cells were centrifuged and re-suspended in 30�l of MACS buffer per107 total 

cells and 10�l Fc receptor (FcR) Blocking reagent (human IgG, supplied with kit) 

together with 10�l of Biotin Antibody Cocktail (containing biotinylated anti- CD3, 
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CD7, CD16, CD19, CD56, CD123 and glycophorin A antibodies, supplied with kit) per 

107 total cells added. After a 10 minute incubation at 4˚C a further 30�l of MACS 

buffer and 20�l of Anti-Biotin Microbeads (supplied with kit) per 107 total cells were 

added. Cells were incubated at 4˚C for 15 minutes and then washed with MACS buffer 

(10 x labelling volume) and centrifuged for 10 minutes at 190g. Cells were re-

suspended in 500�l MACS buffer for every 108 cells and applied to a pre-washed MS 

MACS column [Miltenyi Biotec] attached to MACS magnet [Miltenyi Biotec]. 

Monocytes (unlabeled cells) were collected from the run-through and the column was 

washed x3 with MACS buffer (washes collected and added to run-through). The column 

was then removed from the magnet, 500�l MACS buffer added and cells eluted with 

pressure to produce the non-monocyte fraction. Monocyte and non-monocyte fractions 

were re-suspended in appropriate medium and the purity estimated by FACS analysis 

(see section 2.4.12). Purified monocyte fractions were then cultured (see section 2.4.5). 

 

2.4.5 Dendritic Cell Culture 

Isolated monocytes were resuspended in 10-15ml of DC culture medium containing 

granulocyte-macrophage colony stimulating factor (GM-CSF) (20ng/�l) [R&D 

Systems] and IL-4 (20ng/�l) [R&D Systems] and incubated for 7 days at 37˚C with 5% 

carbon dioxide (CO2). Three millilitres of fresh culture medium was added on days 3 

and 6. On day 7 the culture medium was collected into a tube and cells centrifuged for 7 

minutes at 190g  to pellet. Immature DC were then re-suspended in 10ml of fresh 

medium, counted, and the purity assessed by FACS analysis (see section 2.4.12) before 

use in the standard cytotoxicity assay (see section 2.5.1).  
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2.4.6 TK-143B Cell Culture 

TK-143B cells (thymidine kinase deficient human bone osteosarcoma cell line ECACC-

91112502) were seeded at 2-3x106 cells per 175cm2 culture flask with 50mls of TK-

143B culture medium. Cells were incubated for 2-3 days at 37˚C with 5% CO2 until the 

monolayer was 100% confluent before harvesting with 20mls of trypsin-versene 

(1:1volume) mix. Cells were then washed with culture medium and counted. For culture 

in a 6 well plate 1x105 cells in 3ml of medium per well were used. 

 

2.4.7 Lymphoblastoid cell line (LCL) Culture 

EBV-immortalised LCLs were initially setup and grown by Dr Tanzina Haque and Mrs 

Gwen Wilkie (Wilkie et al., 2004). Briefly, LCLs were established by mixing a 

loosened cell pellet of 2x106 PBMC with 100�l of EBV B95.8 virus preparation and 

10�l of 100�g/ml cyclosporine A [Sandoz]. The total volume was made up to 1ml with 

LCL culture medium and transferred into one well of a 48-well plate. PBMCs were 

incubated at 37°C with 5% CO2. Cultures were fed weekly, split when required and 

cells transferred to tissue culture flasks upon establishment of the culture before 

cryopreservation in liquid nitrogen.  

 

2.4.8 Cytotoxic T-cell line (CTL) Culture 

CTL cultures were established and maintained by Dr Tanzina Haque and Mrs Gwen 

Wilkie following the method described by Wilkie et al, (2004). Briefly, �-irradiated 

autologous LCLs were used to stimulate PBMC at a 40:1 PBMC:LCL ratio. The 

stimulated PBMC were re-suspended at a concentration of 1x106 cells/ml in CTL 

culture medium. Ten days after initial stimulation CTLs were re-stimulated using �-

irradiated autologous LCLs at a 4:1 CTL:LCL ratio and subsequently re-stimulated on a 
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weekly basis. 20IU/ml of recombinant IL-2 [Chiron] was added to the culture 14 days 

after the initial stimulation and every 3 days thereafter. Once shown to be EBV-specific 

cells were frozen in liquid nitrogen. 

 

2.4.9 B95.8/K562 Cell Culture  

B95.8 and K562 cells (Lozzio and Lozzio, 1975;Miller et al., 1974) were maintained in 

culture medium at a concentration of 1x106 cells per ml. Cells were centrifuged at 190g 

for 7 minutes to pellet, washed with PBS and counted. Viable cells were cryopreserved 

in liquid nitrogen. Aliquots of B95.8 cells were prepared containing 10 million cells/ml 

PBS and centrifuged for 5 minutes at 15500g. The supernatant was removed and the cell 

pellet frozen at -80˚C for DNA/RNA extraction. 

 

2.4.10 Recombinant Vaccinia Virus Culture  

TK-143B cells were grown in 175cm2 culture flasks until they reached confluence. 

Culture medium was removed and cells overlaid with recombinant vaccinia virus (2x107 

plaque forming units (pfu)/3.5ml sterile PBS) and incubated at 37°C with 5%CO2 for 2 

hours. After incubation, 45ml of growth medium was added and flasks incubated for a 

further 3 days until the cell monolayer detached. The detached cells were then collected 

into a 50ml Falcon tube and centrifuged at 500g for 15 minutes and the pellet re-

suspended in 1ml PBS. Cells were then freeze-thawed multiple times to release virus, 

and then centrifuged at 225g for 5 minutes before collecting supernatant into a fresh 

tube and storing at -80°C. 
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2.4.11 Recombinant Vaccinia Virus Titration 

TK-143B cells were grown to confluence in a 6 well plate and culture medium removed 

prior to addition of recombinant vaccinia virus. Dilutions (10-1-10-7) of recombinant 

vaccinia virus stock were prepared in PBS and 400�l of each dilution was added to the 

wells and the plate incubated at 37°C with 5%CO2 for 2 hours. Three millilitres of 

growth medium were then added to each well and the plate incubated for a further 3 

days. On day 3 the medium was removed and 1ml of 4% NBF added and incubated at 

room temperature for 30mins to fix the cells. The NBF was removed and 1ml of 0.1% 

toluidine blue added for a further 30 minutes before washing the plate with 2ml PBS 

and allowing it to air dry. Unstained viral plaques were then counted using a light 

microscope and the number of PFU per ml estimated. 

 

2.4.12 Fluorescent activated cell scanning (FACS) Antibody Staining 

Cells were distributed into 5ml FACS tubes to give 1x105 cells per 100�l per tube and 

1ml FACS buffer added prior to centrifugation at 190g for 7 minutes. The supernatant 

was aspirated and appropriate volumes of FACS antibody or isotype control antibody 

added and tubes incubated for 20 minutes at 4˚C. One millilitre of FACS buffer was 

then added and cells centrifuged as before. The resultant cell pellet was re-suspended in 

0.5ml of FACS fix and kept covered in the dark until analysis was performed using the 

BD FACScan [Bectin Dickinson] in conjunction with Cellquest software. 

 

2.5   Cell Cytotoxicity Methods 

2.5.1  Chromium Release Assay 

Target cells (LCL and K562 cell line) were distributed into 15ml Falcon tubes to give 

0.5x106 cells per tube and centrifuged at 130g for 5 minutes to pellet cells. Fifty 
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microcuries (�Ci) of 51Chromium (Chromium-51 supplied as sodium chromate in sterile 

sodium chloride solution at 1mCi/ml, GE Healthcare) were added to each pellet and 

incubated for 1 hour at 37˚C. Cells were washed with RPMI (x2) and re-suspended in 

5ml of CTL culture medium to give a concentration of 1x 105 cells per ml. Effector cells 

(CTL) were re-suspended to 2x106 cells per ml with CTL culture medium and a 1 in 2 

dilution series prepared. One hundred microlitres of each dilution was added in 

triplicate to a 96 well round bottom plate to give 2x105, 1x105 and 5x104 cells per well. 

Control wells containing 100�l culture medium or 100�l 1% triton-X were also 

prepared in triplicate. One hundred microlitres of chromium labelled target cells were 

then added to each well and the plate incubated for 4 hours at 37°C with 5%CO2. 

Centrifugation at 200g for 7 minutes was performed to pellet the cells and 100�l of 

supernatant removed to LP-2 gamma counter tubes [ThermoFisher] for analysis in a 

gamma counter. Triplicate values were averaged and the percent specific lysis for each 

effector:target ratio was calculated as follows:. 

     

    Test release – Spontaneous release (Medium only)        X 100 

     Maximum release (Triton X) – Spontaneous release 

 

 

2.5.2 Chromium Release Assay Using Recombinant Vaccinia Virus Infected 

Dendritic Cells 

Dendritic cells were re-suspended in DC medium to give 1x106/ ml and 100�l (1x105 

cells) added to 11 wells of a 96 well plate. Recombinant vaccinia virus constructs were 

added to each well at a multiplicity of infection (MOI) of 10:1 (1x106pfu) and incubated 

overnight at 37˚C with 5%CO2. Cells were transferred to a 15ml Falcon tube containing 
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5ml of medium and centrifuged for 7 minutes at 190g to pellet the cells. Ten 

microcuries of 51Chromium were added to each pellet and incubated for 1 hour at 37˚C. 

Cells were washed with RPMI and re-suspended in 900�l of CTL culture medium. 

Effector cells were re-suspended at 1x106 cells per ml and 100�l added in triplicate to a 

96 well round bottom plate to give 1x105 cells per well and the method continued as per 

standard chromium release assay (see section 2.5.1). 

 

2.5.3 Human Interferon-gamma Elispot Assay  

Elispot assays were carried out using the Human Interferon-gamma kit (IFN-�) from 

R&D systems. Plates (coated with monoclonal antibody specific for human IFN-�) were 

equilibrated with 200�l of sterile CTL culture medium (SCM) and incubated at room 

temperature for 30mins. Cell combinations were prepared as follows: LCL (1x104/50�l 

SCM) with CTL (5x104/50�l SCM); PBMC (1x105/50�l SCM with or without peptide) 

with CTL (5x104/50�l SCM). The peptides used are detailed in Table 2.3. One hundred 

microlitres of prepared cell combination was added to triplicate wells and incubated at 

37˚C with 5%CO2 for 24 hours. Wells were washed with 250�l of 1x kit wash buffer 4 

times and blotted dry before addition of 100�l of detection antibody (biotinylated 

polyclonal antibody specific for human IFN-�) and a further incubation overnight at 

4˚C. The plate was washed as before and 100�l of streptavidin-AP added to each well 

and incubated for 2 hours at room temperature. After a further series of washes, 100�l 

of BCIP/NBT (5-Bromo-4-Chloro-3’Indolyphosphate p-Toluidine salt/ Nitro blue 

Tetrazolium Chloride) chromagen solution was added to each well, and the plate was 

protected from light and incubated for 1 hour at room temperature. The plate was then 

washed with de-ionised water and allowed to air dry. Interferon-� producing cells were 

then counted using an AID Elispot reader [Autoimmun Diagnostika]. 
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   Table 2.3 Peptide sequences and HLA restriction 

Peptide sequence 
Abbreviated 

sequence HLA restriction EBV protein 
VLKDAIKDL  VLK A2 EBNA 1 

SVRDRLARL  SVR A2 EBNA 3A 

QAKWRLQTL QAK B8 EBNA 3A 

FLRGRAYGL  FLR B8 EBNA 3A 

IVTDFSVIK  IVT A11 EBNA 3B 

AVFDRKSDAK  AVF A11 EBNA 3B 

VEITPYKPTW  VEI B44 EBNA 3B 

GQGGSPTAM  GQG B62 EBNA 3B 

LLDFVRFMGV   LLD A2 EBNA 3C 

QPRAPIRPI  QPR B7 EBNA 3C 

KEHVIQNA KEH B44 EBNA 3C 

QNGALAINTF  QNG B62 EBNA 3C 

YLLEMLWRL YLL A2 LMP 1 

LLWTLVVLL  LLW A2 LMP 2 
 
    Abbreviations used: HLA: human leukocyte antigen; EBNA: Epstein Barr nuclear antigen; LMP: latent   
    membrane protein 

  

2.6   Molecular Methods 

2.6.1 Deoxyribonucleic Acid (DNA) Extraction 

Extractions were carried out using the Invitrogen Easy DNA kit as per manufacturer’s 

instructions. Frozen cell pellets (approximately 5x106 cells) were thawed and re-

suspended in 200�l PBS immediately before extraction. Briefly, 350�l of solution A 

(lysis solution) was added to cells, vortexed to mix and then incubated at 65˚C for 10 

minutes. One hundred and fifty microlitres of solution B (precipitation solution) was 

then added to form a precipitate of proteins and lipids, followed by the addition of 500�l 

chloroform [Sigma] and micro-centrifugation at maximum speed (15500g) for 15mins 

at 4˚C to separate layers. After centrifugation the top layer of the tri-phasic separation 

containing the DNA was removed to a clean tuce and 1ml of 100% ethanol added 

before incubating overnight at -20˚C. The DNA solution was then centrifuged as above 

to pellet and washed with 80% ethanol with a further centrifugation for 5 minutes. The 
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DNA pellet was allowed to air dry prior to the addition of 50�l nuclease free water. The 

DNA concentration was then measured (see section 2.6.3) and aliquots prepared for 

storage at -20˚C. 

 

2.6.2  Ribonucleic Acid (RNA) Extraction 

Extractions were carried out using the Qiagen RNeasy Mini Kit. Three hundred and 

fifty microlitres of RLT buffer (RNeasy lysis buffer containing guanidine thiocyanate) 

was added to a PBMC cell pellet (5x106 cells) and vortexed to mix. The lysate was then 

added to a Qiashredder spin column [Qiagen] and centrifuged for 2mins at 15500g to 

homogenize. Three hundred and fifty microlitres of 70% ethanol were added to the 

lysate and mixed before applying to an RNeasy spin column. The column was 

centrifuged for 15 seconds at 9000g before addition of 700�l RW1 buffer (RNeasy 

wash buffer containing ethanol) and further centrifugation. Two more washes with 

500�l RPE buffer (RNeasy wash buffer containing ethanol) were performed with a final 

centrifugation for 1 minute. To elute RNA 30�l of RNase free water was added and the 

column centrifuged at 15500g for 1 minute. Eluted RNA concentration was then 

measured (see section 2.6.3) and 1�g RNA treated with the RQ1 RNase-Free DNase kit 

[Promega] to remove any contaminating DNA. The resultant DNase free RNA was 

frozen in aliquots at -70˚C prior to complementary DNA synthesis (see section 2.6.4). 

  

2.6.3 DNA/RNA Spectrophotometer Measurement 

DNA and RNA concentration was determined on a GeneQuant ultraviolet (UV) 

spectrophotometer [GE Healthcare] using the following formulas: 
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DNA concentration = Absorption at 260nm (A260) x 50 x dilution factor 

 where an A260 of 1.0 is equivalent to 50mg/ml of DNA.  

RNA concentration = Absorption at 260nm (A260) x 40 x dilution factor 

 where an A260 of 1.0 is equivalent to 40mg/ml of DNA.     

The spectrophotometer was blanked at A260 using 4�l of nuclease-free water. Four 

microlitres of eluted DNA/RNA were added to a quartz capillary [GE Healthcare] to 

determine the concentration and quality of extracted product.  

 

2.6.4 Complementary DNA (cDNA) Synthesis 

The ThermoScript™ Reverse Transcriptase kit (Invitrogen) was used for the synthesis 

of first-strand cDNA from the RNA and this was performed following the 

manufacturer's instructions. Briefly, components of the kit (random hexamers, dNTP 

and DEPC treated water) were added to 1�g RNA and denatured for 5 minutes at 65˚C. 

The denatured solution was then added to the kit reaction mix and incubated for 10 

minutes at 25˚C, followed by 50 minutes at 50˚C with a final 5 minute incubation at 

85˚C. RNase H was then added and incubated for 20 minutes at 37˚C before storing 

cDNA at -20˚C. 

 

2.6.5 Polymerase Chain Reaction (PCR) 

Unless otherwise stated, DNA was diluted with nuclease free water to 100ng/ml for use 

in PCR and all PCR was carried out on a T3 Thermocycler [Biometra] or a Robocycler 

96 [Stratagene]. Promega and GE Healthcare reagents were used throughout unless 

otherwise stated and all primers were obtained from Sigma Genosys. PCR of house 

keeping genes was performed to verify the quality of extracted DNA and cDNA: the �-
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globin gene was used for DNA and �-actin for cDNA. Primer sequences are shown in 

Table 2.4 with reaction conditions and cycling times detailed in Table 2.5.  

 

Table 2.4: Primer sequences and product size. 

 
Abbreviations used: 1˚: primary PCR round; 2˚: secondary PCR round. a Primers designed in house using 
Primer 3 software;  b (Saiki et al., 1985);  c (Joseph, Babcock, and Thorley-Lawson, 2000);  d (Hopwood 
et al., 2002);  e (Brooks et al., 1992b); f (Rochford and Mosier, 1995);  g (Stevens et al., 1999); N/A: not 
applicable  

 

Primer Primer Sequence (5’-3’) 
Base pair 

size 
�-globin forwardb ACA CAA CTG TGT TCA CTA GC 

�-globin reverseb CAA CTT CAT CCA CGT TCA CC 110 

�-actin forwardd CTC CTT AAT GTC ACG CAC GAT TTC 

�-actin reversed GTG GGG CGC CCC AGG CAC CA 540 

EBNA 1 forwarda GAT GGA GAT GAG GGT GAG GA 

EBNA 1 reversea GGA GCT GAG TGA CGT GAC AA 218 

EBNA 2 forwarda CTC TGC CAC CTG CAA CAC TA 

EBNA 2 reversea GAG GGT GCA TTG ATT GGT CT 171 

EBNA 3a forwarda GCC CTG AGC CAG AGT GTT AG 

EBNA 3a reversea GAT GTT GGA CCA CGT CAG TG 193 

EBNA 3b forwardc TTC CAT GTT GCA ATC GGA CC 

EBNA 3b reversec AAA GTG ACC TAG CAC GAC GT 398 

EBNA 3c forward 1˚ d GGC TGT CAA GAA TCG CAC CT 

EBNA 3c reverse 1˚ d GTG TTT AGA GTT CGT GCC GC 

EBNA 3c forward 2˚ d CAT CTT GTG CTT CGT GAT GG 

EBNA 3c reverse 2˚ d TAA CAT GAT GCT GTC AGC CC 

198 
 

EBNA LP forwarda CAC AAA TGG GAG ACC GAA GT  

EBNA LP reversea ACC GCT TAC CAC CTC CTC TT  

LMP-1 forward 1˚ e ACA CAC TGC CCT GAG GAT GG 

LMP-1 reverse 1˚ e ATA CCT AAG ACA AGT AAG CA 

LMP-1 forward 2˚ e CTT CAG AAG AGA CCT TCT CT 

LMP-1 reverse 2˚ e ACA ATG CCT GTC CGT GCA AA 104 

LMP-2 forward 1˚ d ATG ACT CAT CTC AAC ACA TA 

LMP-2 reverse 1˚ d TCA CCA GAA CGT AAA TGC CT 

LMP-2 forward 2˚ d CTC GTG TTT CAC GGC CTC AG 

LMP-2 reverse 2˚ d AAG GTG GGT CCT CAA TCC TC 197 

GP 350 forward f CAC AGG CCC CAC TGT ATC 

GP 350 reverse f GAG GTG GAG CTG GTC ATT G 142 

QP 1 g GCC GGT GTG TTC GTA TAT GG 

QP 2 biotin g CAA AAC CTC AGC AAA TAT ATG AG 

Wild type probe g TCT CCC CTT TGG AAT GGC CCC TG 

Internal standard probe g CTA TAT GCC TGC TTC CTC CGG CG N/A 
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For �-globin amplification, 5�l of DNA were used and for �-actin 1�l of cDNA. 

Appropriate positive and negative controls were included in all reactions. PCR 

products were run on a 2% agarose gel containing ethidium bromide with TBE (0.5) 

buffer and visualised under a UV light source [UVP transilluminator, Ultra Violet 

Products]. 

 

Table 2.5: PCR reaction mix and cycling conditions for �-globin and �-actin. 

 

�-globin �-actin Supplier 
1 x reaction buffer  1 x reaction buffer  Promega 

1.5mM MgCl2 1.5mM MgCl2 Promega 

200�M dNTP’s 200�M dNTPs GE Healthcare 

50pmol forward primer 20pmol forward primer Sigma genosys 

50pmol reverse primer 20pmol reverse primer Sigma genosys 

0.3U Taq polymerase 0.625U Taq polymerase  Promega 

NF water: final volume 50�l NF water: final volume 25�l  

   

95˚C for 5’ 
28 cycles of: 
94˚C for 1’ 
49˚C for 2’ 
72˚C for 2’ 

final extension: 
72˚C for 10’ 

95˚C for 5’ 
35 cycles of: 
95˚C for 1’ 
65˚C for 2’ 

final extension: 
72˚C for 10’  

 
Abbreviations used: MgCl2: magnesium chloride; dNTPs: deoxy-nucleoside triphosphates; NF: nuclease 
free, U: units; reaction buffer contains 10mM tris (pH 9), 50mM KCl and 0.1% Triton X-100   

 

 

2.6.5.1  Latent and Lytic EBV Gene PCR 

Latent (EBNA 1, 2, 3a, 3b, 3c, LP, LMP-1, 2) and lytic (gp350) genes were amplified 

using the primers detailed in Table 2.4. Five microlitres of cDNA was amplified in 50�l 

of each reaction shown in Table 2.6. Where nested PCR was performed, 2�l of primary 

product was added to second round of PCR. 
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Cycling conditions for each PCR are detailed in Table 2.7. Ten microlitres of amplified 

product were visualised on a 2% agarose-ethidium bromide gel under UV illumination. 

 

 
 Table 2.6: PCR reaction conditions for EBV latent and lytic genes 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

  Abbreviations used: MgCl2: magnesium chloride; dNTP’s: deoxy-nucleoside  
  triphosphates; U: units; reaction buffer contains 10mM tris (pH 9), 50mM KCl and   
  0.1% Triton X-100   

 
 

Table 2.7: Cycling conditions for EBV latent and lytic genes 

 

  Abbreviations used: 1˚: first round; 2˚: second round 

 
 

 

Reagent 

EBNA 
1, 2, 3A, 

LP 
EBNA 

3B 

EBNA 
3C, 

LMP-
1,-2 gp350 

Reaction buffer (Promega) 1x 1x 1x 1x 

MgCl2 (Promega) 1.5mM 2.5mM 1.5mM 2mM 

dNTP’s (GE Healthcare) 200�M 200�M 200�M 200�M 

Forward Primer 30pmol 25pmol 50pmol 50pmol 

Reverse Primer 30pmol 25pmol 50pmol 50pmol 

Taq polymerase (Promega) 1U 1U 1U 1U 

 
EBNA 1, 2, 

3A, LP   EBNA 3B LMP 2 (1˚) LMP 1 (1˚) 
EBNA 3C 

(1˚) 

LMP 1 (2˚), 
LMP 2A 

(2˚), 
EBNA 3C 

(2˚) 

Denaturation 94˚C:10mins 94˚C:10mins 94˚C:10mins 94˚C:10mins 94˚C:10mins 94˚C:10mins 

Cycle 

94˚C:30sec 
61˚C:45sec 
72˚C:45sec 

94˚C:30sec 
62˚C:30sec 
72˚C:45sec 

94˚C:1min 
55˚C:2min 
72˚C:2min 

94˚C:1min 
50˚C:1min 
72˚C:1min 

94˚C:1min 
54˚C:1min 
72˚C:1min 

94˚C:1min 
57˚C:2min 
72˚C:2mins 

Cycle 
Number x 40 x 40 x 35 x 35 x 35 x 35 

Final 
Extension 72˚C:10mins 72˚C:5mins 72˚C:10mins 72˚C:10mins 72˚C:10mins 72˚C:10mins 
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2.6.5.2 Quantitative EBV PCR 

Quantitative EBV PCR was performed on 200-500ng of extracted DNA using the 

method described by Stephens et al (1999). DNA was amplified in a 50�l reaction 

containing 10mM tris (pH 9), 50mM KCl, 0.1% triton x-100, 1.5mM MgCl2, 200�M 

dNTPs, 25pmol of QP1 forward and QP2 reverse primers (Table 2.4) and 2U Taq 

polymerase. Each sample reaction contained an internal standard with a set number of 

EBV copies (1-106). Initial denaturation was performed for 5mins at 95˚C followed by 

40 cycles of 1 min each of 95˚C, 55˚C and 72˚C, with a final extension of 5mins at 

72˚C. PCR product was diluted 10 fold and 50�l added to a streptavidin coated plate 

[Streptowell, Roche] with incubation at 37˚C for 1 hour. The plate was then washed 

with QPCR wash buffer and distilled water before denaturation of DNA with 0.2M 

sodium hydroxide for 15mins at room temperature.  Further washing was performed 

followed by the addition of 50pmol/ml of digoxigenin (DIG) labelled probe (made 

using the Roche DIG labelling kit) specific for either wild type EBV or the internal 

standard (Table 2.4). After incubation at 37˚C for 1 hour the plate was again washed 

and anti-DIG AP [Roche] added for another hour. Final wash steps were carried out and 

nitrophenyl phosphate (pNPP) substrate [Sigma] added for 1 hour to develop colour on 

the plate. The plate was read on a plate reader [MRX II reader, Dynex] at 405nm. EBV 

copy number was estimated by plotting the log optical density (OD) [wild type/internal 

standard] against the log number of internal standard copies. The EBV copy number in 

the sample is equivalent to where graph cuts the x-axis (Figure 2.1). 
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Figure 2.1 Estimation of copy number in EBV control sample 
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Variables

     Slope

     Y-intercept

     X-intercept

     1/slope

EBV control 1

-0.3391 ± 0.04054

1.016 ± 0.1266

2.996

-2.949

EBV control 2

-0.3513 ± 0.02185

1.005 ± 0.06824

2.862

-2.847
 

 
Log OD [wild type/internal standard] versus internal standard copy number for duplicate EBV control 
samples containing 10-3 copies of the EBV genome. Linear regression was performed to calculate x-
intercept and the copy number calculated as the inverse log of the x-intercept. 

 

 

2.6.6 Cytokine Polymorphism PCR 

DNA was amplified in 47 separate PCR reactions using primers (detailed in Table 2.8) 

amplifying TNF-� and -�, IL-1, IL-6, IL-10 cytokine genes and the equivalent cytokine 

receptor genes.  

Primers were reconstituted to 2�g/ml and diluted to working concentrations in 1ml of 

NF water (Table 2.9). Each primer mix also contained a set of control primers 

(housekeeping genes) depending on the base pair size of the specific primer set, and 

cresol red buffer for visual purposes.  
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   Table 2.8 Cytokine primer sequences and genes 

Primer label Primer Sequence (5’– 3’) Gene 
1971 CAAAGGAGAAGCTGAGAAGAT TNF alpha 

1972 CAAAGGAGAAGCTGAGAAGAC TNF alpha 

1973 CGAGTATGGGGACCCCCC TNF alpha 

1974 GAGTATGGGGACCCCCA TNF alpha 

1986 CCGGGAATTCACAGACCCC TNF alpha 

1988 AAGGATAAGGGCTCAGAGAG TNF alpha 

1975.2 CTACATGGCCCTGTCTTCG TNF alpha 

1976.2 TCTACATGGCCCTGTCTTCA TNF alpha 

1359 GCAGTGGTCGAGTCTGCAG IL-1 receptor 

1360 GCAGTGGTCGAGTCTGCAA IL-1 receptor 

1361 CCAGCCTGGATTTGTCCGG IL-1 receptor 

2405 GAAGACCCCCCTCGGAATCG TNF alpha 

2406 GAAGACCCCCCTCGGAATCA TNF alpha 

2403 ATAGGTTTTGAGGGGCATGG TNF alpha 

2404 ATAGGTTTTGAGGGGCATGA TNF alpha 

710 GCATCCCCGTCTTTCTCCAC TNF alpha 

711 GCATCCCCGTCTTTCTCCAT TNF alpha 

706 GAGCAGCAGGTTTGAGGT TNF beta 

707 GAGCAGCAGGTTTGAGGG TNF beta 

638 GGGGTCGGGGGGTGCTG TNF beta 

641 GGGGTCGGGGGGTGCTC TNF beta 

1414 GCTTTCCAAGCCTCCTGAGC TNF receptor I 

1453 AGAGCAGAGGCAGCGA TNF receptor I 

1454 AGAGCAGAGGCAGCGG TNF receptor I 

1478 AGAGGCAGCGAGTTGT TNF receptor I 

1479 AGAGGCAGCGGGTTGT TNF receptor I 

1480 AGAGGCAGCGAGTTGG TNF receptor I 

1481 AGAGGCAGCGGGTTGG TNF receptor I 

1476 GCCTCTGCTGCCATGGC TNF receptor I 

1477 GCCTCTGCTGCCATGGT TNF receptor I 

T362T GACGTGCAGACTGCATCCA TNF receptor II 

T362g GACGTGCAGACTGCATCCC TNF receptor II 

T341 GAGAACCGCATCTGCACCT TNF receptor II 

PAN7 TGGAAAACAGATCCAGACAGG TNF receptor I promoter 

PAN8 ATTGGAAAACAGATCCAGACAGT TNF receptor I promoter 

PAN-9 GTTATGTGTCTGAGAAGTTCATTTG TNF receptor I promoter 

PAN-10 AGTTATGTGTCTGAGAAGTTCATTTA TNF receptor I promoter 

PAN-12 TCCCTGGTCTCACCAGC TNF receptor I promoter 

PAN-13 GTCCCTGGTCTCACCAGT TNF receptor I promoter 

PAN-21 TCTTCTTGCACAGTGGACCG TNF receptor II promoter 

PAN-22 TCTTCTTGCACAGTGGACCA TNF receptor II promoter 

PAN-27 CGGCACAGCTAAAGGAGG TNF receptor II promoter 

PAN-28 GCGGCACAGCTAAAGGAGA TNF receptor II promoter 

1030 CTACTAAGGCTTCTTTGGGAA IL-10 

1031 CTACTAAGGCTTCTTTGGGAG IL-10 

1034 CAAACTGAGGCACAGAGATG IL-10 
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Primer Label Primer Sequence (5’– 3’) Gene 
1035 GCAAACTGAGGCACAGAGATA IL-10 

778 CTGTTGAAAGACCACTGATCT IL-6 

779 CTGTTGAAAGACCACTGATCC IL-6 

784 GAGGAACAAGCCAGAGCTGT IL-6 

IL6P-G AATGTGACGTCCTTTAGCATG IL-6 

IL6P-C AATGTGACGTCCTTTAGCATC IL-6 

IL6OX TCGTGCATGACTTCAGCTTTA IL-6 

IL10RAb-Conc: TGGTCATAACTCAGCCCTTTG IL-10 receptor 

IL10RAb-A: AGCAGAACCTCACATCCCTAT IL-10 receptor 

IL10RAb-G: GCAGAACCTCACATCCCTAC IL-10 receptor 

1165 CTTTAATAATAGTAACCAGGCAACAC IL-1 alpha 

1164 CTTTAATAATAGTAACCAGGCAACAT IL-1 alpha 

1166 AAGTAGCCCTCTACCAAGGA IL-1 alpha 

211 TTCATCAGTTGCTGCCCCTC Control 

210 ATGATGTTGACCTTTCCAGGG Control 

63 TGCCAAGTGGAGCACCCAA Control 

64 GCATCTTGCTCTGTGCAGAT Control 

 
   Primer sequences were obtained from Professor Kenneth Welsh, the National Heart and Lung  
   Institute, Imperial College, London and have been published previously  (Grutters et al., 2002;Grutters  
et al., 2003;Fanning et al., 1997;Koss et al., 2000)  

 

 

Between 60 and 80ng DNA were amplified in a reaction mix containing BioTaq DNA 

polymerase and reagents [Bioline]: 1x NH4 buffer; 1.5mM MgCl2; 200�M dNTPs and 

0.35U Taq polymerase. Five microlitres of each primer mix were added to give a final 

volume of 13�l.  Cycling parameters were staged as follows: 96˚C for 1min; 4 cycles of 

96˚C for 20sec, 75˚C for 45sec, 72˚C for 25sec; 20 cycles of 96˚C for 25sec, 65˚C for 

50sec, 72˚C for 30sec; 3 cycles of 96˚C for 30sec, 55˚C for 60sec, 72˚C for 90sec; 5˚C 

for 10mins. The resultant PCR product was visualised on a 2% agarose- ethidium 

bromide gel under UV illumination. 
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Table 2.9 Cytokine polymorphism primer mix preparations 
 

PCR 
No. 

Gene position  
and base  

Product 
Size (bp) 

Primer 
1 Vol (ul) 

Primer 
2 Vol (ul) 

Control 
Primers 

1 TNF-1031 T 433 1971 10 1986 10 63/64 

2 TNF-1031 C 433 1972 8 1986 8 63/64 

3 TNF-863 C 263 1973 8 1986 8 63/64 

4 TNF-863 A 262 1974 8 1986 8 63/64 

5 TNF-857 G 270 1988 5 1975.2 5 63/64 

6 TNF-857 A 270 1988 5 1976.2 5 63/64 

7 IL1-R1 1359 C 288 1359 20.7 1361 22.7 63/64 

8 IL1-R1 1359 T 288 1360 19 1361 22.7 63/64 

9 
TNF g-g-g  
haplotype 835 710 1.5 2403 1.5 210/211 

10 
TNF g-g-a  
haplotype 835 710 5 2404 5 210/211 

11 
TNF a-g-g  
haplotype 763 711 1.5 2405 1.5 210/211 

12 
 TNF g-a-g  
haplotype 763 710 2.5 2406 2.5 210/211 

13 
TNF� GGT 
haplotype 390 707 8.7 641 11.4 63/64 

14 
TNF� TCC 
haplotype 390 706 8.9 638 9.1 63/64 

15 
TNF� GCT 
haplotype 390 707 8.7 638 9.1 63/64 

16 
 TNF� TGT  
haplotype 390 706 8.9 641 11.4 63/64 

17 
TNF receptor  

1663 A 430 1453 43.9 1414 2.25 63/64 

18 
TNF receptor  

1663 G 430 1454 11.6 1414 2.25 63/64 

19 
TNF receptor  

1668 T 424 
1478 
1479 

21.8 
18.9 1414 2.25 63/64 

20 
TNF receptor  

1668 G 424 
1480 
1481 

22.8 
16.7 1414 2.25 63/64 

21 
TNF receptor  

1690 C 404 1476 14.7 1414 2.25 63/64 

22 
TNF receptor  

1690 T 404 1477 12 1414 2.25 63/64 

23 TNF-RII ex-6 T  1127 T362T 5 T341 5 210/211 

24 TNF-RII ex-6 G  1127 T362G 5 T341 5 210/211 

25 
TNF-R promoter  

201G-x-845G  681 PAN-7 7 PAN-12 7 210/211 

26 
TNF-R promoter 

201G-x-845A  681 PAN-7 7 PAN-13 7 210/211 

27 
TNF-R promoter 

201T-x-845G  681 PAN-8 7 PAN-12 7 210/211 

28 
TNF-R promoter 

201T-x-845A  681 PAN-8 7 PAN-13 7 210/211 

29 
TNF-R promoter 

x-230G-845G  657 PAN-9 7 PAN-12 7 210/211 

30 
TNF-R promoter 

x-230G-845A 657 PAN-9 7 PAN-13 7 210/211 

31 
TNF-R promoter 

x-230A-845G  657 PAN-10 7 PAN-12 7 210/211 
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PCR 
No. 

Gene position  
and base  

Product 
Size (bp) 

Primer 
1 Vol (ul) 

Primer 
2 Vol (ul) 

Control 
Primers 

32 
TNF-R promoter 

x-230A-845A  657 PAN-10 7 PAN-13 7 210/211 

33 

TNF-RII 
promoter x-x-

839G-x-1135C  300 PAN-21 5 PAN-27 5 63/64 

34 

TNF-RII 
promoter x-x-
839A-x-1135C  300 PAN-22 4 PAN-27 4 63/64 

35 

TNF-RII 
promoter x-x-
839G-x-1135T  300 PAN-21 5 PAN-28 5 63/64 

36 

TNF-RII 
promoter x-x-
839A-x-1135T  300 PAN-22 4 PAN-28 4 63/64 

37 
IL10-1082A--

819T 303 1030 10 1035 10 63/64 

38 
IL10-1082A--

819C 303 1030 10 1034 10 63/64 

39 
IL10-1082G--

819C 303 1031 10 1034 10 63/64 

40 IL6 intron 4 A ~800 778 23.1 784 18.8 210/211 

41 IL6 intron 4 G ~800 779 21.5 784 18.8 210/211 

42 IL6-174 C 156 IL6P-G 10 IL6OX 10 63/64 

43 IL6-174 G 156 IL6P-C 10 IL6OX 10 63/64 

44 IL10RAb-G >800 
IL10R-

G 5 IL10RX 5 210/211 

45 IL10RAb-A >800 
IL10R-

A 5 IL10RX 5 210/211 

46 IL1 alpha C 150 1165 40 1166 10 63/64 

47 IL1 alpha T 150 1164 40 1166 20 63/64 

 
47 different PCR reactions were prepared containing one set of control primers (63/64 or 210/211: 
1.5�l of each primer per ml of nuclease free water) and 2 or more specific primers (primer 1 and 2) for 
each gene analysed. Volume used is based on a 2�g/ml primer stock and is diluted in 1ml of nuclease 
free water. bp: base pair. 

 

 

2.6.7 Human Leukocyte Antigen (HLA) PCR 

Three microsatellite markers, 2 from the HLA class I (D6S265 and D6S510) and 1 from 

the HLA class III regions (D6S273) were amplified using PCR performed in a total 

volume of 10�l containing 25ng of DNA. The reaction mix contained 1x GoTaq Flexi 

buffer (pH8.5), 2.5mM MgCl2, 200�M dNTP [GE Healthcare], 25�M of forward and 

reverse primer and 0.5 units of GoTaq Flexi polymerase [Promega].   The reverse 

primer was 5’ labelled with fluorochrome 6-(fluorescein-5 carboxamido)hexanoate (6-
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FAM) (Table 2.10). The cycling conditions consisted of an initial denaturation at 94˚C 

for 5mins followed by 35 cycles of 94˚C for 30secs, 55/62˚C for 30secs, 72˚C for 

45secs and a final extension at 72˚C for 5mins. Five microlitres of PCR product were 

diluted in 45�l of nuclease free water and then further diluted 1 in 10 with Hi-Di 

formamide (containing Genescan 500LIZ size standard [ABI]) before electrophoresis in 

an ABI 3730 (Dye set 5) automated sequencer. ABI Genemapper software (version 3.7) 

was used to analyse the data. 

 

Table 2.10 Primer and PCR information for microsatellite markers 

Locus 
HLA 
Class 

Primer Sequence 
(5’ – 3’) 

Number 
of alleles 

Annealing 
Temp. 

Forward 
AATGTTCCTGCTTTCATTTCTTT 

D6S510 I 
Reverse 6FAM-

GTCAAAACTGCAATGGGCTACTA 10 62˚C 

Forward 
ACGTTCGTACCCATTAACCT 

D6S265 I 
Reverse 6FAM-

ATCGAGGTAAACAGCAGAAA 13 55˚C 

Forward 
GCAACTTTTCTGTCAATCCA 

D6S273 III 
Reverse 6FAM-

GACCAAACTTCAAATTTTCGG 9 55˚C 

   Abbreviations used: FAM: 6-(fluorescein-5 carboxamido)hexanoate. Primer sequences  
   published in Diepstra et al (2005). 

 
 
 
 

 

2.6.8 T Cell Receptor (TCR) PCR 

Functionally re-arranged TCR �-chain variable (BV) gene sub-families were amplified 

across the complementarity determining region 3 (CDR3) encoding regions using 23 

subfamily-specific primers and a FAM conjugated �-chain constant region specific 

primer (Table 2.11). PCR amplifications were performed on 1�l of cDNA in a total 

volume of 20�l containing 10mM-Tris-HCL (pH 8.3), 50mM-KCl , 2mM MgCl2, 

200�M of each dATP, dTTP, dGTP, dCTP, 1�M of variable and constant primers and 



  Chapter 2: Materials and methods   

 

- 87 - 

0.5U of Amplitaq Gold polymerase [ABI]. One microlitre of PCR product was diluted 

in 10�l of nuclease free water and then further diluted 1 in 10 with ABI Hi-Di 

formamide (containing ABI Genescan 500LIZ size standard) before electrophoresis in 

an ABI 3730 (Dye set 5) automated sequencer. ABI Genemapper software (version 3.7) 

was used to analyse the data.  

 

2.6.9 Single nucleotide polymorphism (SNP) PCR 

SNP PCR and analysis were performed by Ms Annette Lake and Professor Ruth F 

Jarrett at the LRF Virus Centre, Institute of Comparative Medicine, University of 

Glasgow, Glasgow. SNP analysis was carried out using TaqMan SNP Genotyping 

Assays from Applied Biosystems. Reactions were performed in a final volume of 25�l 

containing 1x TaqMan Universal Master Mix with no AmpEraseUNG, 900nM of each 

primer (ABI), 200nM of probes labelled with either FAM or VIC and 20ng of extracted 

DNA. Thermal cycling (2min at 50˚C, 10min at 95˚C followed by 40 cycles of 15sec at 

95˚C and 1min at 60˚C) and allelic discrimination were performed on an ABI 7500 Real 

Time PCR System. 

 

 

 

 

 

 

 

 

         



  Chapter 2: Materials and methods   

 

- 88 - 

         Table 2.11   TCR  �-chain variable gene primer sequences 

TCR 
(BV) Primer Sequence (5’-3’) 

Base pair 
size  

1 GCACAACAGTTCCCTGACTTGCAC 195-207 

2 TCATCAACCATGCAAGCCTGACCT 195-207 

3 GTCTCTAGAGAGAAGAAGGAGCGC 190-208 

4 ACGATCCAGTGTCAAGTCGAT 334-346 

5 CTGATCAAAACGAGAGGACAGCA 354-375 

6 TCAGGTGTGATCCAATTTC 329-347 

7 CCTGAATGCCCCAACAGCTCTC 190-214 

8 GGTGACAGAGATGGGACAAGA 355-373 

9 CACCTAAATCTCCAGACAAAGCT 194-212 

11 TGTTCTCAAACCATGGGCCATGAC 321-333 

12 GrCATGGGCTGAGGCTGAT 267-290 

13 CTCTCCTGTGGGCArGTC 408-425 

14 ACCCAAGTACCTCATCACAG 328-383 

15 AGTGTCTCTCGACAGGCACAG 193-208 

16 AAAGAGTCTAAACAGGATGAGCC 241-256 

17 TTTCAGAAAGGAGATATAGCT 226-241 

18 AGCCCAATGAAAGGACACAGTCAT 325-337 

20 CTCTGAGGTGCCCCAGAA 218-227 

21 GGCTCAAAGGAGTAGACTCC 185-200 

22 ATGAAATCTCAGAGAAGTCT 234-252 

23 GATCAAAGAAAAGAGGGAAAC 358-370 

24 TACCCAGTTTGGAAAGC 353-368 

25 CAGGTATGCCCAAGGAAAGA 226-241 

Cb(FAM) 6 FAM-TTCTGATGGCTCAAACAC  

 
      Abbreviations used: FAM: 6-(fluorescein-5 carboxamido)hexanoate. Primer sequences consist  
      of 23 V� forward primer sequences and 1 reverse constant chain (C�) primer conjugated to FAM    
      (Foster et al., 2004) 
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2.7   Study Cohorts 

2.7.1 Cytotoxic T-Cell Lines 

A bank of cytotoxic T-cell lines was grown as part of a phase II multicentre clinical trial 

carried out at Edinburgh University. The CTL and the study have been detailed 

elsewhere (Wilkie et al., 2004;Haque et al., 2002). Briefly, PBMC were obtained from 

HLA typed, EBV sero-positive blood donors (Scottish National Blood Transfusion 

Service) and LCL and CTL grown as detailed (sections 2.4.7 and 2.4.8). CTL were 

tested in standard cytotoxicity assays against phytohaemagglutinin stimulated blasts, 

autologous and HLA mismatched LCL, and K562 cells. CTL specific for autologous 

LCL were analysed by FACS for B-cell, NK-cell and a wide range of T-cell activation 

and differentiation markers and then frozen in vials containing 20x106 cells in liquid 

nitrogen. A small panel of CTL (those used to treat patients with EBV-associated 

tumours in the phase II trial) was chosen for further characterisation in this thesis. 

 

2.7.2 PTLD Patient and Control Cohorts 

A cohort of EBV-associated post transplant lymphoproliferative disease (PTLD) 

patients was accrued as part of the pilot study and phase II multi-centre clinical trial 

detailed in Haque et al (2007). Patients from 19 transplant centres were recruited to the 

trials with informed written consent from patients or guardians. The study was approved 

by the Lothian Research Ethics Committee. The diagnosis of PTLD and its 

classification was determined by histological examination. EBER staining was 

performed by in situ hybridisation using a commercial kit from DAKO and 

immunohistochemistry carried out using commercial antibodies for EBNA 1, 2, and 

LMP 1 expression [DAKO]. Assessment of tumour cell clonality was performed using a 
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DAKO in situ hybridisation kit for kappa and lambda mRNA. PTLD patients were 

monitored at regular intervals for tumour regression and PBMC samples were taken pre 

and post CTL treatment, and frozen viably in liquid nitrogen or as a cell pellet at -70˚C. 

DNA, RNA and cDNA were prepared from frozen PBMC pellets as described (sections 

2.6.1, 2.6.2 and 2.6.4) then frozen until required.  

An anonymised control cohort of EBV sero-positive heart transplant patients with no 

development of PTLD was obtained from Dr Paul Hopwood (Hopwood et al., 2002). 

DNA, RNA and cDNA were prepared and frozen in a similar manner to the PTLD 

cohort. 

PTLD and control samples were analysed in the HLA microsatellite and the cytokine 

polymorphism studies. PTLD patient outcome/tumour regression was also assessed in 

relation to CTL characterisation.  

 

2.7.3 IM and Control Study Cohorts 

EBV seropositive and seronegative individuals were recruited as part of an 

epidemiological study carried out at Edinburgh University (Crawford et al., 

2002;Crawford et al., 2006). The study was approved by the Lothian Research Ethics 

Committee and all participants provided written signed consent. In brief, all students 

enrolling at the University during 1999 and 2000 were approached to take part in the 

study and upon recruitment provide a blood sample for EBV serology.  EBV serostatus 

was determined by routine indirect immunofluorescence of IgG antibody against EB 

viral capsid antigen. EBV seropositive individuals formed the EBV seropositive group 

used in this thesis but were not followed further. EBV seronegative individuals were 

monitored for development of IM during their university career (approximately 4 years). 
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A diagnosis of IM was made upon detection of IgM antibodies to EB viral capsid 

antigen and/or a positive monospot test in a known EBV seronegative. Upon diagnosis 

IM patients were examined and asked to provide a blood sample for full blood count 

(FBC) which was carried out on a Coulter counter (Coulter) and these patients formed 

the IM subject group used in this thesis. Those students seronegative at enrolment and 

who did not report symptoms of IM were asked to return for further testing upon exit 

from university. Students who remained EBV negative formed the seronegative group 

used in this thesis whilst students who tested EBV-positive were regarded as 

asymptomatic sero-convertors and joined the EBV seropositive group. The EBV 

seropositive, seronegative and IM groups formed the subject groupings for investigation 

in the HLA microsatellite study and the cytokine polymorphism study. 

 

2.8  Statistical Methods  

Each HLA microsatellite marker, cytokine and cytokine receptor gene for each group of 

subjects was tested for Hardy Weinberg disequilibrium by comparing the observed 

allele frequency with the expected frequency if equilibrium applied. Classical 

association analysis was conducted to compare allele frequencies between the groups of 

subjects (EBV- positive with symptoms of IM, EBV-positive without symptoms of IM, 

EBV-negative, PTLD positive and PTLD negative post transplant cohorts ) and tested 

using the Fisher’s Exact or Chi-square test (this was not adjusted for multiple testing). 

Clinical characteristics such as total lymphocyte count, neutrophil count and viral load 

were compared across groups using the Mann-Whitney U test. Within the HLA 

microsatellite study the Fisher’s Exact test was used to compare the severity of 
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symptoms among IM cases who were positive compared to those who were negative for 

particular alleles. 

Advice on use of statistical parameters was obtained from Dr Craig Higgins, Infectious 

Disease Epidemiology Unit, Department of Epidemiology and Population Health, 

London School of Hygiene and Tropical Medicine, London.
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3.1 Introduction 

We recently investigated the use of partially HLA-matched allogeneic CTL for the 

treatment of EBV-positive PTLD. A frozen bank of 107 HLA-typed polyclonal CTL 

lines specific for EBV was established from healthy blood donors (Wilkie et al., 2004). 

Donor CTL lines partly matched to the recipient on HLA-A, -B and –DR alleles (a 

maximum of 6 allele matches) were tested ex vivo and the lines showing maximum 

specific and minimum non-specific killing of recipient cells were chosen for infusion. 

Our initial pilot study demonstrated complete remission of tumour in 3/5 PTLD patients 

treated and also highlighted the safe, cheap and rapid use of our bank of allogeneic CTL 

(Haque et al., 2002). A subsequent phase II trial using the same bank of CTL further 

demonstrated the effective use of HLA-matched allogeneic CTL, with complete or 

partial response observed in 52% of patients 6 months post treatment. Significantly 

better tumour responses were seen in patients infused with CTL with a high degree of 

donor CTL-recipient HLA matching and containing high proportions of CD4+ T-cells 

(Haque et al., 2007).  During the phase II trial no attempt was made to characterise the 

epitope specificity of the infused CTL or to correlate this with patient outcome. 

However, the observed importance of donor CTL-recipient HLA matching suggests that 

further refinement of the donor CTL-recipient matching procedure may be beneficial.  

The present study was undertaken to investigate the HLA-restricted epitope specificity 

at the protein and peptide level, and to determine the T-cell receptor clonality, of donor 

CTL used to treat 28 EBV-positive PTLD patients (Appendix I) who completed the 

phase II trial, and to correlate the results with tumour response.
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3.2 Optimisation of modified chromium release assay  

The standard chromium release assay, using LCL as targets for estimation of CTL 

killing, was modified to use DCs infected with recombinant vaccinia virus constructs as 

an alternative target. Each recombinant vaccinia construct expressed one of eight latent 

EBV proteins: EBNA -1, -2A, -3A, -3B, -3C, -LP, LMP-1, -2 (Murray et al., 1990).  

 

3.2.1 Establishment and characterisation of dendritic cell cultures 

We used a magnetic bead  method to isolate monocytes from PBMCs (detailed in 

section 2.4.4) for culture of DCs. Magnetic isolation of monocytes routinely enriched 

monocyte populations giving >90% purity when stained with an anti-CD14 antibody 

(Figure 3.1 and Table 3.1). After 1 week of culture with IL-4 and GM-CSF the CD14 

positive population decreased and the proportion of cells positive for the DC marker 

CD209 (DC-SIGN) increased (Figure 3.1 and Table 3.1). This method proved 

consistent and produced adequate numbers of viable DCs to act as targets in our 

chromium release assay. 

 

 

         Table 3.1: Percentage of CD14 and CD209 cells in monocyte rich pre-  

          and post-culture 

 

Median 
CD14 % 
(Range) 

Median 
CD209 (DC-SIGN) % 

(Range) 

Monocyte Rich Fraction 
95.5 

(90-99) 
9 

(1-74) 

Monocyte Rich Culture (DC) 
8 

(1-40) 
97 

(82-99) 
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Figure 3.1: FACS analysis of monocyte rich fraction pre- and post-culture 
Panel A: monocyte rich fraction – gate 1; panel B: cultured DC fraction – gate 2; panel C: CD14 
expression, monocyte rich fraction isotype control - black, DC culture isotype control – green, 
monocyte rich fraction CD14 – red, DC culture CD14 – blue; panel D: CD209 expression, 
monocyte rich fraction isotype control - black, DC culture isotype control – pink, monocyte rich 
fraction CD209 – green, DC culture CD209 – blue  
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3.2.2 Confirmation of recombinant vaccinia infection of dendritic cells 

All 8 recombinant vaccinia virus constructs containing EBV latent genes (EBNA-1, -2, 

-3A, -3B, -3C, -LP and LMP-1, -2) were grown and the virus titre estimated on 

thymidine kinase deficient 143B cells (section 2.4.10, 2.4.11). Infection and expression 

of viral transcripts in 143B cells was confirmed by RT-PCR (Figure 3.2). 

Dendritic cells were isolated and grown as detailed in section 2.4.4 and 2.4.5. RT-PCR 

was performed on infected DCs to determine that infection and expression of EBV 

proteins was successful. Approximately 1x106 cells were infected with the recombinant 

vaccinia EBV constructs at an MOI of 10:1 and incubated overnight. Infected cells were 

then harvested, RNA extracted and reverse transcribed prior to amplification in a 

specific RT-PCR. Transcripts for all 8 EBV proteins were detected in the infected cells 

(Figure 3.3). It was therefore concluded that infection with recombinant vaccinia 

constructs at MOI 10:1 was sufficient for infection and expression of EBV proteins in 

DCs. 
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Figure 3.2: RT-PCR analysis of 143B cells infected with recombinant vaccinia EBV 
constructs.  
Panel A: EBNA-1 construct (218bp); panel B: EBNA-2A (171bp); panel C: EBNA-3A (193bp); panel D: 
EBNA-3B (398bp); panel E; EBNA-3C (198bp); panel F: EBNA-LP (188bp); panel G: LMP-1 (381bp); 
Panel H: LMP-2 (197bp). B958 positive control: lane 1; 143B cells infected with empty recombinant 
vaccinia construct: lane 2; 143B cells infected with EBV-specific recombinant vaccinia construct: lane 3; 
uninfected 143B cells: lane 4; RNA negative control (no RT step): lane 5; negative water control: lane 6; 
100bp marker: lane M. 
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Figure 3.3: RT-PCR analysis of dendritic cells infected with recombinant vaccinia EBV 
constructs.  
Panel A: EBNA-1 construct (218bp); panel B: EBNA-2A (171bp); panel C: EBNA-3A (193bp); panel D: 
EBNA-3B (398bp); panel E; EBNA-3C (198bp); panel F: EBNA-LP (188bp); panel G: LMP-1 (381bp); 
Panel H: LMP-2 (197bp). LCL positive control: lane 1; uninfected DCs: lane 2; DCs infected with EBV-
specific recombinant vaccinia construct: lane 3; DCs infected with empty recombinant vaccinia construct: 
lane 4; RNA negative control (no RT step): lane 5; negative water control: lane 6; 100bp marker: lane M. 
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3.3 EBV latent protein specificity of CTL 

The modified chromium release assay was used to determine which of the 8 EBV latent 

proteins were preferentially recognised by the CTL lines (n=21). Peripheral blood DCs 

from the CTL donors were infected with recombinant vaccinia virus constructs 

containing one of the 8 EBV latent proteins and used as targets in the assay. In a few 

cases donor DCs were unavailable and so DCs partially matched on HLA-A, -B and –

DR alleles were used instead. Autologous LCL and an empty vaccinia virus construct 

were also included as controls.  Figure 3.4 depicts the results obtained from one line 

(CTL 14). A response was deemed positive if the percentage of specific lysis was 

greater than that obtained with the empty vaccinia virus control plus 3%. The highest 

percentage of specific lysis obtained was termed a dominant response, whilst specific 

lysis percentages between the control and maximum levels, were termed sub-dominant. 

CTL 14 displayed a dominant response to EBNA-3C and a sub-dominant response to 

LMP-1. 

In general EBV latent protein recognition by CTL lines was polyclonal in nature. Of the 

21 CTL lines tested 19% (4/21) produced a response against 1 EBV protein, 43% (9/21) 

produced a response against 2 EBV proteins and 38% (8/21) against 3 or more EBV 

proteins. The majority (95%) of the CTL lines tested recognised at least one of the 

EBNA 3 proteins with 28% recognising EBNA-3A, 28% recognising EBNA-3B and 

71% recognising EBNA-3C (Figure 3.5). Sub-dominant responses were also seen in a 

number of CTL lines against the LMP proteins with 24% recognising LMP-1 and 33% 

recognising LMP-2 (Figure 3.5).  Sub-dominant responses were observed in a small 

number of lines against the EBNA-1 (19%), -2 (9%) and -LP (24%) proteins, with 1 line 

displaying a dominant response towards EBNA-1 (70% EBNA-1 specific lysis). 

Appendix II details the protein specificity for each individual line. 
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Figure 3.4 Modified chromium release assay of CTL 14 
Approximately 1x105 DCs were infected at an MOI of 10:1with each specific construct. Triplicate wells 
for each construct were averaged and the percent specific lysis estimated. Autologous LCLs were 
included as a positive control. Percent specific lysis greater than lysis obtained from vaccinia control plus 
3% was designated a response 
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Figure 3.5 Protein specificity of CTL.  
CTL were tested in a modified chromium release assay using recombinant vaccinia constructs containing 
EBV latent genes as targets. The percentage of CTL lines recognising each latent protein was calculated. 

 

3.4 Optimisation of peptide Elispot assay 

A human IFN-� elispot assay was established and optimised for determination of CTL 

peptide specificity. Two kits were initially tested as per maunfacturer’s instructions: the 



  Chapter 3: Results I

 
 

- 101 - 

R&D Systems Human IFN-� kit (EL285) and the Endogen Human IFN-� kit (FF72474). 

Both kits were screened using LCL as targets for the CTL. Three concentrations of LCL 

were used: 1x105, 1x104 and 1x103 together with CTL at CTL:LCL ratios of 1:1, 2:1, 

5:1,10:1 and 20:1. For both kits the maximum number of IFN-� positive spots was 

observed at a CTL:LCL ratio of 20:1 (3-129 spots for the R&D kit; 1-50 for the 

Endogen kit) with decreasing spot formation seen for lower CTL:LCL ratios. Increased 

numbers of spots were also observed with increasing numbers of LCL although it was 

difficult to count spots at the 1x105 LCL concentration due to smudging, particularly for 

the Endogen kit (Figure 3.6).  
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Figure 3.6 Comparison of Human IFN� kits (R&D Systems and Endogen). 
CTL were tested using increasing numbers of LCL and increasing CTL:LCL ratios. Where possible IFN� 
producing spots were counted and the average of duplicate wells compared between kits. 

 

No major differences were observed between the kits. The R&D Systems kit was 

quicker to process and was therefore selected for further optimisation.  

 

3.4.1 Optimal peptide presentation 

Autologous PBMC were chosen as the vehicle for antigen presentation of peptide. For 

initial experiments a concentration of 1x105 cells was selected based upon the numbers 
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of PBMC available for use from our frozen stock. PBMC were incubated with varying 

concentrations of peptide: 1�g/ml, 5�g/ml and 10�g/ml and used as targets in the assay. 

Targets were incubated with 5-fold dilutions of CTL from 5x104 to no CTL and the 

assay performed in triplicate. The number of spot forming cells was counted and the 

average compared. The highest number of spot forming cells (average 42 spots) was 

observed at a CTL concentration of 5x104 and a peptide concentration of 10�g/ml 

(Figure 3.7). 
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Figure 3.7 Optimisation of peptide concentration 
CTL 14 (EBNA-3C specific, HLA-A*02 positive) was tested against the the HLA-A*02 restricted, 
EBNA-3C specific peptide LLDFVRFMGV. Autologous PBMC (1x105) and PHA blasts (1x105) with 
various peptide concentrations were used a targets 

 

In case of autologous PBMC being unavailable the CTL were also tested against peptide 

loaded PHA blasts (1x105) with 10�g/ml of peptide. The highest number of spot 

forming cells (average 24 spots) was again seen at the highest concentration of CTL 

although the number was slightly reduced compared to the autologous PBMC (Figure 

3.7). In light of this result we opted to use 1x105 PBMC or blasts in conjunction with 

5x104 CTL and 10�g/ml of peptide for subsequent experiments. 
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3.4.2 Confirmation of peptide specificity 

To confirm that our selected conditions were appropriate and specific we obtained a 

CTL with known peptide specificity from Dr Stephen Lee, Department of Cancer 

Studies, University of Birmingham, UK. The CTL obtained was HLA-A*11 restricted 

with specificity for the EBNA-3B peptide AVFDRKSDAK. We tested the CTL in 

triplicate using the optimised conditions (see section 3.4.1) 
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Figure 3.8 Elispot analysis of CTL with known specificity 
The CTL was tested using optimised conditions of 1x105 PBMC, 10�g/ml of EBNA-3B, HLA-A11 
restricted peptides AVF and IVT or EBNA-3B, HLA-B62 restricted control peptide GQG, with or 
without the presence of 5x104 CTL. CTL alone and medium were also included as controls. 

 

The results indicated that the CTL was specific for the HLA-A*11 restricted EBNA-3B 

peptides with maximal spot forming cells observed for the AVF peptide (Figure 3.8). 

This was in line with the specificity observed by Dr S.Lee and therefore our conditions 

were deemed acceptable to continue with the analysis of the CTLs. 

 

3.5 EBV peptide specificty of CTL 

Human IFN-� elispot assays were used to confirm the protein specificity at the peptide 

level in 20 of the 24 CTL lines (PBMC and PHA blast numbers were insufficient in 4 



  Chapter 3: Results I

 
 

- 104 - 

lines). CTLs were tested against a variety of peptides with the same HLA-A or HLA-B 

restriction as detailed in Table 2.3, and a control peptide with a mismatched HLA allele 

restriction. LCLs were also included as a positive control for IFN-� release. A total of 8 

CTL lines displayed a positive response towards peptides with the same HLA subtype 

restriction and to those peptides derived from proteins corresponding to CTL protein 

specificity (Table 3.2). In the case of three CTL lines (CTL 40, 91 and 67) more than 

one HLA-restricted peptide response was recognised (Table 3.2). The remaining CTL 

lines did not respond to our panel of peptides (Appendix II). 

 

3.6  CTL protein and peptide specificity did not correlate with patient 
response       

                                                                                      
A total of 28 PTLD patients were treated with CTL and monitored for tumour 

regression 6 months post treatment. Protein specificity data were available for all CTL 

lines used to treat the 11 non-responders and for CTL lines from 14 of the 17 

responders. Within the responder group 21% (3/14) of CTL lines recognised 1 EBV 

protein, 57% (8/14) recognised 2 EBV proteins and 21% (3/14) recognised 3 or more 

EBV proteins. No significant difference was noted for the non-responder group with 9% 

(1/11) of CTL line recognising 1 EBV protein, 36% (4/11) recognising 2 and 54% 

(6/11) recognising 3 or more EBV proteins (p=0.22).   
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   Table 3.2: Peptide specificity of CTL.  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  CTL protein specificity was determined via a modified chromium release assay. 
  Peptides corresponding to CTL specific proteins and matched to CTL HLA were tested in  
  an IFN� Elispot assay.  

 

 

Analysis of the specific proteins recognised showed that the majority of CTL lines from 

both the responder and the non-responder groups recognised the EBNA-3C protein 

(64% and 73% respectively). The number of CTL specific for EBNA-3A and EBNA-3B 

proteins was slightly increased in the responder group compared to the non-responder 

group (EBNA-3A: 36% responders, 18% non-responders; EBNA-3B: 36% responders 

and 18% non-responders) but not significantly so (p=0.4 for both EBNA-3A and -3B). 

In comparison the number of CTL displaying a response to EBNA-2 and EBNA-LP was 

decreased in the responder group compared to the non-responder group (EBNA-2: 7% 

CTL CTL HLA 

CTL 
protein 

specificty 

CTL 
peptide 

specificty 

Peptide 
HLA 

restriction 

50 
A3,11; B7,51; 

DR15(2), 4 
EBNA-3B 

 
IVT 
AVF 

A11 
A11 

A2,68; 
B51,62;  

DR4, 13(6) 55 
 A2,68; 

B51,62; 
DR4, 13(6) 

EBNA-3C LLD 
 

A2 
 

58 
A3,11; 
B55,64; 

DR15(2), 4 
EBNA-3B IVT A11 

48 
A1,2; B7,8; 
DR15(2), 

17(3) 
EBNA-3A QAK B8 

40 
A2; B7,44: 

DRBr, 4 
EBNA-3C 

LMP-2 
LLD 
LLW 

A2 
A2 

95 
A2; B44,49; 

DR4, 7 
EBNA-3C LLD A2 

91 
A2,68; 

B44,62: DR4 

EBNA-3B 
 

EBNA-3C 

VEI 
GQG 
LLD 

B44 
B62 
A2 

67 
A2,11; B7,62: 

DR15(2), 4 
LMP-2 

EBNA-3B 
LLW 
GQG 

A2 
B62 
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responders, 27% non-responders; EBNA-LP: 14% responders and 36% non-responders) 

but again not significantly so (p=0.28 and p=0.35, respectively). CTL responses to 

LMP-1, LMP-2 and EBNA-1 were similar in both treatment groups (LMP-1: 21% 

responders and 27% non-responders; LMP-2: 29% responders and 36% non-responders; 

EBNA-1: 14% responders and 18% non-responders) (Figure 3.9).  
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Figure 3.9 CTL protein specificity in responder and non-responder groups.  
The percentage of CTL within each group recognising each latent protein was estimated. Non-responders: 
black bar; responders: white bar. 

 

Where available CTL specificity at the peptide level was compared between treatment 

responders (n=5) and non-responders (n=4).  Within the non-responder group infused 

CTL peptide specificity was restricted to 1 protein (EBNA-3 complex proteins) and 1 

HLA allele. In comparison 3/5 responders displayed multiple peptide specificities 

(EBNA-3 complex and LMP proteins) (Table 3.3). 
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      Table 3.3: Peptide specificity of CTL: comparison with patient response 

 
      CTL protein specificity was determined via a modified chromium release assay. 
      CTL peptide specificity was compared between responder and non-responder groups. 
      * Recipient-CTL HLA matched alleles 

 

 

 

3.7 CTL epitope specificity did not correlate with EBV antigen 
 expression of tumour cells 
 
Although the majority of PTLDs showed the classic histological features of the disease 

(classified as hyperplastic (n=4), polymorphic (n=8), or monomorphic (n=10) type), 5 

patients with Hodgkin’s-type PTLD and 1 with a Burkitt-like PTLD were included in 

the trial (Appenndix 1).  These tumours are known to have a restricted pattern of viral 

CTL CTL HLA 

CTL 
protein 

specificty 

CTL 
peptide 

specificty 

Peptide 
HLA 

restriction 

Tumour 
response:  
6 month  

50 
A3*,11; 
B7*,51; 

DR15(2), 4* 

EBNA 3B 
 

IVT 
AVF 

A11 
A11 

Non-
responder 

A2*,68; 
B51*,62*; 

DR4*, 13(6) 

Non-
responder  

55 
 A2*,68; 

B51,62*; 
DR4*, 13(6) 

EBNA 3C LLD 
 

A2 
 Non-

responder 

58 
A3,11*; 
B55*,64; 

DR15(2)*, 4 
EBNA 3B IVT A11 

Non-
responder 

48 
A1*,2; B7,8*; 

DR15(2), 
17(3)* 

EBNA 3A QAK B8 Responder 

40 
A2*; B7,44*: 

DRBr, 4* 
EBNA 3C 

LMP 2 
LLD 
LLW 

A2 
A2 

Responder 

95 
A2*; 

B44*,49; 
DR4*, 7* 

EBNA 3C LLD A2 Responder 

91 
A2*,68*; 
B44*,62: 

DR4* 

EBNA 3B 
 

EBNA 3C 

VEI 
GQG 
LLD 

B44 
B62 
A2 

Responder 

67 
A2*,11; 
B7*,62*: 

DR15(2)*, 4* 

LMP 2 
EBNA 3B 

LLW 
GQG 

A2 
B62 

Responder 
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gene expression which is less likely to be recognised by CTLs selected only on the basis 

of the best HLA-match (Rowe et al., 1986;Grasser et al., 1994;Deacon et al., 1993). We 

therefore analysed viral gene expression in tumour biopsy, and compared this with 

protein specificity of infused CTL and tumour response in these 6 cases.  

All 6 tumours were EBER-positive, and 5/5 Hodgkin’s PTLDs expressed monoclonal � 

or � mRNA, however the Burkitt-like PTLD stained for neither � or � mRNA.  Four out 

of five Hodgkin’s-type PTLDs tested stained LMP-1 positive and EBNA-2 negative, 

whereas the Burkitt-like PTLD was negative for both markers (Table 3.4).  

At 6 month after the last infusion 4 of the 5 Hodgkin’s-type PTLDs, and the one 

Burkitt-like tumour, showed a complete response to CTL therapy, whereas the 

remaining Hodgkin’s-type tumour showed no response. All 6 recipients were treated 

with CTL lines with a dominant EBNA-3 specificity: 4 received CTL lines with 

multiple protein specificities and 2 received lines specific for EBNA 3A alone (Table 

3.4).  Each CTL was chosen on the best recipient-CTL HLA match (between 2 and 5 

matching alleles), however, analysis of HLA-restricted peptide specificity showed that 

the treatment non-responder (number 3, Table 3.4) was infused with a CTL line 

restricted through HLA-A*11; a mismatched allele (Table 3.4). 
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3.8 Optimisation of T-Cell receptor PCR product analysis 

The T-cell receptor PCR was adapted from Peggs et al (2001) with no modifications to 

the published PCR conditions. However the subsequent analysis of the PCR products by 

the ABI 3730 automated sequencer and Genemapper software in our laboratory required 

optimisation. 

cDNA from PBMC was amplified as described in methods section 2.6.4. The PCR 

products were then diluted 10, 50 and 100 times. Approximately 1�l of neat and diluted 

product was further diluted 1 in 10 with Hi-Di formamide/size marker mix prior to 

running on the sequencer. For each individual �-variable sub-family the 1 in 50 and 1 in 

100 dilutions produced peak heights below that of the base pair size marker making 

these dilutions unreliable for detection (Figure 3.10). The opposite was observed for 

undiluted product with peak heights vastly exceeding the height of the marker. The 1 in 

10 dilution was in line with the base pair size marker peak height and was therefore 

chosen for all subsequent analysis (Figure 3.10). 
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Figure 3.10 Dilution of sub-family BV-21 PCR product (PBMC sample) 
Sample was diluted 1 in 100: panel A; 1 in 50: panel B; 1 in 10: panel C and undiluted: panel D. Diluted 
sample was then further diluted 1 in 10 for screening on ABI 3730 sequencer. Size standard (bp) labelled 
in panel A.  
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3.9 PBMC T-cell receptor (TCR) clonality 

cDNA extracted from 5 PBMC samples from healthy volunteers was prepared as 

described in methods section 2.6.4. Integrity of the cDNA samples was checked in a �-

actin PCR. All 5 cDNA samples were successfully amplified (Figure 3.11). 

             

Figure 3.11 �-actin amplification of PBMC cDNA. 
Lanes 1-5: cDNA from PBMC donors 1-5; lanes 6-10: RNA from PBMC donors 1-5; lane 11: nuclease 
free water; M: 100bp marker 

 

Following �-actin PCR the cDNA was analysed in a TCR spectratyping PCR as 

described in section 2.6.8.  Sub-family usage was designated according to the number of 

specific peaks observed: 3 or more peaks in a Gaussian or skewed-Gaussian distribution 

was termed polyclonal usage, a single or double peak was termed clonal (Figure 3.12).  

 

        

          Figure 3.12  Polyclonal (A) and clonal (B) distribution patterns 
           Distribution pattern shown in blue and size standard shown in orange 
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Across each individual sub-family all 5 PBMC samples were polyclonal in nature with 

few if any clonal distributions observed. Figure 3.13 is an example of of the PBMC 

profiles obtained. 
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Figure 3.13: TCR spectratyping profile of PBMC sample  
Polyclonal distribution patterns were obtained for 20 of 23 sub-families tested. 4 sub-families (-14, -17, -
24 and -25) were undetectable. 

 

 

3.10 CTL T-cell receptor (TCR) clonality 

CTL lines (n=22) were analysed for use of the TCR �-chain variable gene sub-families 

using the spectratyping PCR. Polyclonal and clonal peaks were observed for 22 of the 

23 sub-families; no polyclonal peaks were seen for sub-family 25. No one particular 

sub-family was preferentially used by the CTL lines. However, more CTL lines had 

polyclonal distribution patterns for sub-families -1, -2, -3, -6, -8, -9, -12, -13, -15, -17 

and -22.  A polyclonal distribution pattern was particularly enhanced for sub-family -9 

(polyclonal: 77%(17/22); clonal: 18%(4/22); undetected: 4%(1/22)) (Figure 3.14). In 

contrast, the majority of CTL lines had clonal distribution patterns for sub-families -4, -

11, -16, -21, -23 and -24 (Figure 3.14). Sub-families -18 and -25 were rarely used in 
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comparison to the other families (sub-family -18: polyclonal- 32%, clonal- 18%, 

undetected- 50%; sub-family -25: polyclonal- 0, clonal- 27%, undetected- 73%). 
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Figure 3.14: T-cell receptor �-variable sub-family usage of CTL.  
Spectratyping analysis for 23 sub-families was performed. Each sub-family was analysed for clonal: 
black bar; polyclonal: hatched bar or undetected: white bar; distribution patterns. The percentage of CTL 
presenting with each pattern was estimated 

 

3.11 Polyclonal TCR usage correlates with patient response 

CTL TCR spectratyping data were available for 16 PTLD treatment responders and 11 

non-responders.  A significant difference was observed between the responder and non-

responder groups for sub-family -2 with 75%(12/16) of responders and 27%(3/11) of 

non-responders presenting a polyclonal distribution; 19%(3/16) of responders and 

73%(8/11) of non-responders a clonal distribution; and undetectable usage in 6%(1/16) 

of responders (p=0.01). Sub-families -3 and -9 also had an increase in polyclonal 

distribution within the responder group compared to the non-responder group (sub-

family-3: 81%(13/16) responders and 45%(5/11) non-responders, p=0.05; sub-family-9: 

94%(15/16) responders and 54%(6/11) non-responders, p=0.05) (Figure 3.15, Table 

3.5).  
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Figure 3.15: T cell receptor �-variable sub-family usage of CTL responder and non-
responder groups.  
Panel A: clonal, polyclonal and undetected distribution patterns for sub-family -2. Panel B: sub-
family -3. Panel C: sub-family -9. Non-responder: black bar; responder: white bar. 
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A reduced polyclonal distribution for sub-families -5 and -16 was observed in the 

responder group compared to the non-responder group but this did not reach statistical 

significance (sub-family-5: 37%(6/16) of responders and 64%(7/11) of non-responders; 

p=0.4; sub-family-16: 19%(3/16) of responders and 45%(5/11) of non-responders; 

p=0.24) (Table 3.5). As with the overall CTL analysis, sub-families -18 and -25 were 

rarely used by CTL lines in both the responder (sub-family -18: 31%, 25%) and 44% for 

polyclonal, clonal and undetected use respectively;  sub-family -25: 0, 31% and 69%, 

respectively) and non-responder groups (sub-family -18: 18%, 9% and 73% for 

polyclonal, clonal and undetected use;  sub-family -25: 0, 18% and 82%, respectively) 

(Table 3.5). 
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3.12 Discussion 

In a recently reported phase II clinical trial using allogeneic, EBV-specific CTL lines to 

treat PTLD, we have shown that tumour response significantly increased with the 

number of CTL-recipient HLA allele matches (varying from 2 to 6) and the percentage 

of CD4 positive T-cells in the infused CTL (Haque et al., 2007).  In the present study 

we sought further correlates of tumour response in the trial participants by 

characterising the epitope specificity and TCR clonality of the infused CTL lines.   

Analysis of CTL protein specificity revealed that the majority (81%) were directed 

against 2 or more EBV latent proteins and this protein specificity was confirmed at the 

peptide level (HLA-restricted) in 8 of the CTLs.  In line with previous studies on ex vivo 

grown, EBV-specific CTL, the lines predominantly recognised the EBNA-3 proteins, in 

particular EBNA-3C (Steven et al., 1996;Whitney et al., 2002).   Since most PTLDs 

display full latent viral gene expression, CTLs with specificity for the EBNA 3 proteins 

would be expected to recognise and kill the tumour cells.  However, when CTLs were 

chosen for specific recipients on HLA allele matching alone, without knowledge of the 

peptide specificity and HLA restriction of the CTL, mismatches clearly occurred (see 

Table 3.4, where recipient 3 was matched with the CTL donor for HLA-A*03, -B*07, 

and –DR*04, but the predominant peptide specificities of the CTL were both restricted 

through HLA-A*11).   Thus prior knowledge of CTL specificity and HLA restriction at 

the peptide level would have enhanced the CTL-recipient matching process. 

The complete resolution of Hodgkin’s-type and Burkitt’s-like PTLD tumours in patients 

which was sustained at 6 months in 5 of the 6 cases was unexpected since these tumours 

were all treated with CTLs with a predominant specificity for EBNA-3, a protein not 

normally expressed by these tumour cells.  In one case (recipient 1) tumour cell killing 

could have been mediated by the subdominant clones within the CTLs with specificity 
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for EBNA-1, LMP-1 and LMP-2 proteins, but in the other cases no such activity could 

be detected using the methods and peptide panel available (Table 3.4). The modified 

chromium assay using recombinant vaccinia constructs may have missed subdominant 

clones expressed at low levels, whilst a more extensive peptide panel may have detected 

a larger array of subdominant responses. Uncharacterised minor HLA allele matching 

may also play a role in CTL recognition in these cases. During EBV transcription 

processes EBNA -2 is switched on prior to activation of the EBNA-3 proteins, therefore 

detection of EBNA-2 protein normally indicates that EBNA-3 is also present. In these 

cases, we demonstrated a latency type II (HD cases) phenotype by the absence of 

EBNA-2 expression in tumour cells, and a latency type I (BL case) phenotype by the 

absence of EBNA-2 and LMP-1 expression; the assumption being that no EBNA-3 

proteins are expressed. Recently, rare Burkitt cell lines with mutated EBNA 2 genes that 

express EBNA-3A, -3B, -3C and –LP in the absence of EBNA-2 have been reported 

(Kelly et al., 2005), and extrapolation of these findings to the in vivo situation could 

account for the response of the Burkitt’s like tumour in our study.  However, to our 

knowledge no such EBNA-2 mutants have been identified in vivo, therefore this 

scenario is unlikely.  In two of the cases, CTL lines with subdominant reactivity 

directed against EBNA-1 were used. EBNA-1 has been identified as a target for HLA 

class II restricted, CD4 positive T-cell mediated killing (Mautner et al., 2004;Leen et 

al., 2001) and may therefore form a suitable target, along with the other antigens, for the 

CD4 positive T-cell population in the infused CTL if HLA matched to the recipient. Of 

the 2 EBNA-1 specific CTL lines only one was matched on the HLA-DR locus and 

corresponded to the non-responder HD case (Table 3); possible matching with HLA-DQ 

and -DP alleles was not assessed. Despite the significant relationship between HLA 

matching and a favourable patient outcome, it is possible that the infused allogeneic 
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CD4 and CD8 positive T-cells initiated a inflammatory response, either through 

activating endogenous EBV-specific CTL, through minor HLA mismatching, or by 

recruiting non-specific cytotoxic T-cells to the tumour site.  Such a response would be 

similar to the beneficial graft-versus-leukaemia (GVL) response often seen following 

allogeneic bone marrow transplant where donor lymphocytes display anti-tumour 

effects primarily through T-cell recognition of mismatched minor histocompatability 

and/or tumour associated antigens (Bleakley M and Riddel SR, 2004). Recently donor 

natural-killer cells, antigen presenting cells and CD4 positive effector memory cells 

within infusions have been shown to facilitate this anti-tumour response in GVL 

(Parham and McQueen, 2003;Chakraverty and Sykes, 2007;Zheng et al., 2007). The 

small CD4 T-cell population within our CTL lines may contribute a similar effect. 

Indeed recognition of possible anti-tumour targets by CD4 T-cells has been reported 

(Gudgeon et al., 2005). CD4 T-cells were found to recognise autologous LCL but not 

EBV negative B lymphoblasts, nor, EBV-specific latent and lytic antigens, suggesting 

that the CD4 T-cells recognise a tumour specific or an unidentified EBV-specific 

antigen.     

TCR spectratyping analysis of the CTL lines found that no single TCR sub-family was 

preferentially used, a result that was not unexpected when considering the polyclonal 

nature of the lines, the fact that they were stimulated weekly with LCLs expressing all 

the latent viral antigens, and that they contained a mixed population of CD8 and CD4 

positive T-lymphocytes (CD4+ percentage range: <1-60%) (Haque et al., 2007). 

However it is interesting that for some TCR sub-families (notably 2, 3 and 9) a 

polyclonal distribution was significantly more likely to induce a tumour response than a 

monoclonal distribution (Figure 3.14; Table 3.5). This was probably because of the 

wider spectrum of epitope specificities inherent in the polyclonal distribution, and, 



  Chapter 3: Results I

 
 

- 121 - 

indeed, this was the reason for not attempting to clone the banked CTL lines grown for 

in vivo use.    

In summary, the results of this study suggest that, in conjunction with donor and 

recipient HLA allele matching, mapping CTL peptide epitope specificity prior to CTL 

infusions would enhance patient responses by identifying those epitopes restricted 

through the recipient HLA alleles.  These improved CTL selection criteria may now 

allow other EBV-associated tumours with restricted EBV latent gene expression to be 

treated effectively with CTLs.  However, since we found no relationship between CTL 

protein specificity, tumour EBV antigen expression, and outcome in Hodgkin’s-type 

and Burkitt’s-like PTLD cases, other, perhaps non-specific, tumour cell killing 

mechanisms may be responsible for tumour regression in these cases. 
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4.1 Introduction 

Cytokine networks interact in a dynamic way to regulate the immune response, thus it is 

not surprising that variations in cytokine levels have been correlated with susceptibility 

to disease and disease progression. Cytokines play an important role in IM with the 

symptoms observed in IM attributed to the release of IFN-� and IL-2 from activated T-

cells. However studies on IM cytokine levels have shown varied and conflicting results. 

Increased levels of IFN-� are routinely observed in most studies with reports of 

continued raised IFN-� detected 6 months after development of symptoms (Attarbaschi 

et al., 2003). Mixed results have been obtained for IL-2, TNF-�, IL-4, IL-6 and IL-10 

with some studies reporting increased levels while others report a decrease (Foss et al., 

1994;Biglino et al., 1996;Attarbaschi et al., 2003). All of these studies have been 

performed on small numbers of subjects and this may account for the variations seen. 

However a fundamental issue of such studies is whether variation in the level of 

cytokine is a primary cause for the disease or a secondary downstream effect of the 

immune regulation process. Investigation of cytokine gene polymorphisms is one 

approach to unravelling the issue. 

Polymorphisms within cytokine genes and cytokine receptor genes may be responsible 

for the differing cytokine levels and the immune response observed in many viral 

infections. For example, TNF-� gene polymorphisms have been associated with the 

progression of Hepatitis B infection and the hemorrhagic manifestations observed in 

Dengue virus infection, whilst specific haplotypes of IL-2 are associated with 

susceptibility to infection with HIV (Xu, Lu, and Tan, 2005;Niro et al., 

2005;Fernandez-Mestre et al., 2004;Shrestha et al., 2006). Cytokine gene studies on 

primary EBV infection and the development of IM have also been reported. A base-

exchange polymorphism located at position -1082 (G/A) of IL-10 has been implicated 
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in primary EBV infection. A reduction in the frequency of the high IL-10 producing G 

allele in EBV seropositive and IM subjects has been reported, suggesting that high IL-

10 production protects against EBV infection and, conversely, that low IL-10 

production predisposes to EBV infection (Helminen, Lahdenpohja, and Hurme, 

1999;Wu et al., 2002). Another report by Hurme et al (1998)(Hurme and Helminen, 

1998) indicates that a base exchange polymorphism in the IL-1 gene complex may also 

protect against EBV infection.  

Similarly, polymorphisms in cytokine genes have been implicated in the risk of 

developing several EBV-associated tumours. IL-18 variants have been associated with 

more aggressive forms of NPC whilst, in contrast to the protective role in IM, the high 

producer IL-10 haplotype has been associated with EBV-positive gastric cancer (Pratesi 

et al., 2006;Wu et al., 2002).  The low producer IFN-� genotype has been implicated in 

EBV reactivation following stem cell transplantation and with the development of 

PTLD following renal and liver transplantation (Bogunia-Kubik et al., 2006;Lee et al., 

2006;VanBuskirk et al., 2001). However, we recently investigated the low producer 

IFN-� genotype in EBV-positive PTLD following SOT and found no association with 

the development of disease (Thomas et al., 2005). The reasons for this difference are 

unknown but may in part be due to the difference in the study groups; one type of organ 

transplant versus mixed organ transplant types. Similar to the cytokine gene 

polymorphisms studies in IM, small study cohorts may also account for the 

contradictory reports observed; our study was one of the larger cohorts with 37 PTLD 

patients enrolled.  

Many cytokine polymorphism studies have been criticised for use of small cohorts, 

unmatched controls and investigation of single polymorphic alleles (Ollier, 2004). 

Therefore, to resolve the differences observed in the literature with regard to cytokine 
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gene polymorphisms in IM and PTLD we analysed several cytokine gene and cytokine 

receptor gene polymorphisms (alleles, genotypes and haplotypes) in a large cohort of 

IM, EBV-positive PTLD patients and appropriate controls to determine correlations, if 

any, with the development of disease. 

 

4.2 Cytokine Polymorphism PCR 

The cytokine polymorphism PCR conditions and primer sequences for all reactions 

were kindly provided by Professor Ken Welsh and Ms Anna Lagan, National Heart and 

Lung Institute, London (see section 2.6.6). Based on the current literature and in 

conjunction with Professor Welsh and Ms Lagan a panel of cytokine and cytokine 

receptor genes was chosen for investigation (see section 2.6.6). The pro-inflammatory 

cytokines TNF, LT� (also known as TNF-�), IL-1�, IL-6 and IL-10 were selected. 

Experimental conditions were tested upon transfer to our laboratory using DNA from a 

healthy volunteer (Figure 4.1). All primer sequences produced adequate amplicons for 

determination of genotypes 
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4.3  Analysis of cytokine gene and receptor gene polymorphisms in     
          PTLD 
 
Cytokine and cytokine receptor genotyping for TNF, LT�, IL-1�, IL-6 and IL-10 was 

performed on transplant patients with (n=45) or without (n=65) the development of 

EBV-associated post-transplant lymphoproliferative disease (designated PTLD and 

Control subject groups, respectively). Each polymorphism was assessed for Hardy-

Weinberg equilibrium (HWE) in both study groups prior to statistical analysis. For 

Figure 4.1: Cytokine Polymorphism PCR-
SSP 
A total of 47 reactions with sequence specific 
primers (SSP) were performed. Each reaction 
contained a set of control primers dependent on 
size of specific product; either a double band 
located above specific band (highlighted as in 
lanes 1) or as a single band below the specific 
band (as in lanes 9). 
Specific primers were dispensed as follows: 
Lanes 1-2: TNF�-1031; lanes 3-4: TNF�-863; 
lanes 5-6: TNF�-857; lanes 7-8: IL-1RI-1339; 
lanes 9-12: TNF� haplotype; lanes 13-16: 
lymphotoxin-� haplotype; lanes17-18: 
TNF�RI-1663; lanes 19-20:TNF�RI-1668; 
lanes 21-22: TNF�RI-1690; lanes 23-24: 
TNF�RII-676; lanes 25-32: TNF�RI-promotor 
haplotype; lanes 33-36: TNF�RII-promotor 
haplotype; lanes 37-39: IL-10 haplotype; lanes 
40-41: Il-6 intron 4; lanes 42-43: Il-6-174; 
lanes 44-45: Il-10R-241; lanes 46-47: IL-1�-

889 (as detailed in section 2.6.6) 



Chapter 4: Results II

 

- 126 - 

appropriate conclusions to be drawn from analysis polymorphisms are required to be in 

HWE; conclusions regarding association with disease cannot be drawn if not in HWE. 

  

4.3.1 Increased frequency of the tumour necrosis factor -1031C and -863A alleles 

in PTLD subjects 

A total of 5 polymorphisms within the TNF promoter region (nucleotide positions -

1031, -863, -857, -307 and -237) were investigated. All five polymorphisms were in 

HWE for both subject groups. For the TNF promoter polymorphism at position -1031 

we observed a significant increase in the frequency of the TNF -1031C allele in the 

PTLD subject group compared to the control group without PTLD (37% versus 19%; 

p=0.005); Table 4.1). A significant difference was also found in the genotype frequency 

of this polymorphism with homozygous CC and heterozygous TC frequencies increased 

while homozygous TT frequencies decreased (CC: 9% PTLD subjects versus 3% 

control subjects; TC: 38% versus 32%; TT: 44% versus 65%; p=0.01; Table 4.2).  

Likewise for position -863 we observed a significant increase in the TNF -863A allele 

frequency in the PTLD group compared to the control group (32% versus 11%; 

p=0.0001; Table 4.1). Comparison of the genotype frequencies within each group also 

revealed a significant difference for this polymorphism (CC: 44% PTLD subjects versus 

82% control subjects; CA: 47% versus 15%; AA: 9% versus 3%; p=0.0003; Table 4.2). 

The remaining investigated TNF promoter polymorphisms, at nucleotide positions -857, 

-307 and -237, revealed no differences in allele or genotype frequency between 

transplant patients with PTLD and transplant patients without PTLD (Table 4.1). 
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  Table 4.1: Allele frequencies of the TNF promoter polymorphisms in transplant   
  patients with and without PTLD  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 a Fisher’s Exact 2-sided p-value 
 * Significant p-value, p<0.05 
 
 
 

   Table 4.2: Genotype frequencies of the TNF promoter polymorphisms in 
    transplant patients with and without PTLD 
 

Polymorphism Genotype 

Transplant 
subjects 

without PTLD 
(n=65) 

 
Frequency (%)  

Transplant 
subjects with 

PTLD 
(n=45) 

 
Frequency (%) p-valuea 

-1031 TT 65  44 

 TC 32  38 

 CC 3  9 0.01* 

-863 CC 82  44 

 CA 15   47 

 AA 3  9 0.0003* 

-857 CC 89  78 

 CT 11  20 

 TT 0  20 0.18 

-307 GG 63  66 

 GA 32  27 

 AA 5  7 0.78 

-237 GG 88  98 

 GA 12   2 

 AA 0  0 0.08 

  
 a Chi-square 3x2 contingency table 
 * Significant p-value, p<0.05 

Polymorphism Allele 

Transplant 
subjects without 

PTLD 
(n=65) 

 
Frequency (%)  

Transplant 
subjects with 

PTLD 
(n=45) 

 
Frequency (%) p-valuea 

T 81  63 
-1031 C 19  37 0.005* 

C 89  68 
-863 A 11  32 0.0001* 

C 95  88 
-857 T 5  12 0.08 

G 74  80 
-307 A 21  20 1.0 

G 94  99 
-237 A 6  1 0.08 
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From the investigated TNF promoter polymorphisms it is possible to assign 1 of 6 TNF 

promoter haplotypes, detailed in Table 4.3 (Grutters et al., 2002). Haplotype-1 

(TCCGG) was under represented within the PTLD group compared to the control group 

(62% versus 83%, p=0.02; OR=2.6 (95%CI:1.2-7.29)) whereas haplotype-3 (CACGG) 

was over represented (50% versus 14%, p=0.0001; OR=0.16 (95%CI:0.06-0.4)) (Table 

4.3). Haplotypes-2, -4, -5 and -6 were comparable between both groups (Table 4.3). 

 

4.3.2 Altered frequency of the tumour necrosis factor receptor I and II promoter 

polymorphisms in PTLD subjects 

Several polymorphisms within the TNF receptor II (exon-10 nucleotide position -1663, 

-1668, -1690 and exon 6, position -676) locus and TNF receptor I (nucleotide positions 

-201, -230, -845) and receptor II (nucleotide positions -839, -1135) promoter regions 

were investigated. All but one polymorphism was in HWE: TNF receptor I promoter 

nucleotide position -230 was not in HWE for the control subject group. Analysis of the 

TNF receptor I promoter at position -201 revealed a significant increase in the 

frequency of the -201T allele within the PTLD group compared to the control group 

(71% versus 53%, p=0.02) (Table 4.4). The TNF receptor II promoter-1135C allele was 

also significantly increased in the PTLD group compared to the control group (71% 

versus 57%, p=0.03) (Table 4.4). No differences were observed for TNF receptor II 

positions -1663, -1668, -1690, -676, TNF receptor I promoter positions -230, -845 and 

TNF receptor II promoter position -839 (Table 4.4). 
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  Table 4.4: Allele frequencies of TNF receptor I and II polymorphisms 

Polymorphism Allele 

Transplant 
subjects 
without 
PTLD 

 
Frequency 

(%) 

Transplant 
subjects 

with PTLD 
 

Frequency 

(%) p-valuea 

TNF receptor II 

Exon 10-1663 A 36 48 

 G 48 52 
0.56 

-1668 T 95 95 

 G 5 5 
1 

-1690 C 37 40 

 T 63 60 
0.67 

Exon 6-676 T 78 79 

 G 22 21 
1 

TNF receptor I promoter 

-201 G 55 71 

 T 45 29 
0.02* 

-230† A 100 98 

 G 0 2 
0.16 

-845 A 62 49 

 G 38 51 
0.07 

TNF receptor II promoter 

-839 G 98 98 

 A 2 2 
1 

-1135 T 43 29 

 C 57 71 
0.03* 

  

 a Fisher’s Exact 2-sided p-value 
 * Significant p-value, p<0.05 
 † Not in Hardy-Weinberg equilibrium 

 

 

Genotype frequencies of TNF receptor I and II polymorphisms were also compared 

between the PTLD and control groups. Analysis of the TNF receptor I promoter at 

position -201 revealed a significant increase in the frequency of the -201GG genotype 

and a decrease of the -201TT genotype in the PTLD group compared to the control 

group (GG: 47% versus 31%, TT: 4% versus 20%, p=0.03) (Table 4.5). Similar analysis 

of the TNF receptor II promoter position -1135 resulted in an observed decrease in the  
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frequency of the genotype -1135TT (4% versus 17%) and an increase in the frequency 

of genotype -1135CC (47% versus 31%) within the PTLD group compared to the 

control group, however, this did not reach significance (p=0.06) (Table 4.5). No 

genotypic differences were observed for TNF receptor II positions -1663, -1668, -1690, 

-676, TNF receptor I promoter positions -230, -845 and TNF receptor II promoter 

position -839 (Table 4.5). 

Determination of the TNF receptor I promoter haplotypes from nucleotide positions -

201, -230 and -845 results in 5 possible haplotypes, detailed in Table 4.6. An increase in 

the frequency of haplotype-1 (GAG) was observed in the PTLD group compared to the 

control group (80% versus 63%) and a decrease in the frequency of haplotype-3 (TAA: 

53% versus 69%, Table 4.6). However these differences did not reach statistical 

significance (p=0.05 and p=0.11, respectively).  

 

4.3.3 No difference in the frequency of the lymphotoxin-� polymorphisms in   

            PTLD subjects 

LT� polymorphisms at nucleotide positions -720, -365 and -249 were analysed in the 

PTLD and control groups. Within both groups each polymorphism was in HWE.  For 

all 3 polymorphisms no difference in allele frequency (Table 4.7) or genotype frequency 

(Table 4.8) was observed. Haplotype determination, based on all 3 polymorphisms, 

gives 4 possible haplotypes: CCA, AGG, CGA and ACA. Further analysis of each 

haplotype was performed with no difference between the PTLD and control groups 

observed (CCA: 55% versus 71%, p=0.1; AGG: 52% versus 52%, p=1; CGA: 59% 

versus 49%, p=0.12; ACA: no sample in either group had the type 4 haplotype). 
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  Table 4.5: Genotype frequencies of TNF receptor I and II polymorphisms 

Polymorphism Geneotype 

Transplant 
subjects 

without PTLD 
 

Frequency (%) 

Transplant 
subjects with 

PTLD 
 

Frequency (%) p-valuea 

TNF receptor II 

Exon 10-1663 AA 18 20 
 AG 35 55 
 GG 31 25 

0.39 

-1668 TT 91 90 
 TG 9 10 
 GG 0 0 

0.89 

-1690 CC 11 16 
 CT 52 48 
 TT 37 36 

0.25 

Exon 6-676 TT 65 64 
 TG 28 29 
 GG 8 7 

0.97 

TNF receptor I promoter 

-201 GG 31 47 
 GT 48 49 
 TT 20 4 

0.03* 

-230 AA 100 96 
 AG 0 4 
 GG 0 0 

0.08 

-845 AA 38 20 
 AG 48 58 
 GG 14 22 

0.12 

TNF receptor II promoter 

-839 GG 95 96 
 GA 5 4 
 AA 0 0 

0.96 

-1135 TT 17 4 
 TC 52 49 
 CC 31 47 

0.06 

  

 a Fisher’s Exact 2-sided p-value 
 * Significant p-value, p<0.05 
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   Table 4.6: TNF receptor I promoter haplotypes in PTLD 

TNF receptor I 
promoter 

polymorphism 

Haplotype 
-201 -230 -845 

Transplant 
subjects without 

PTLD 
 

Frequency (%) 

Transplant 
subjects with 

PTLD 
 

Frequency (%) 

p-
valuea 

1 G A G 63 80 0.05 
2 G A A 31 33 0.83 
3 T A A 69 53 0.11 
4 G G A 0 4 0.16 
5 G G G 0 0 - 

   

 a Fisher’s Exact 2-sided p-value 
  

 

  
  Table 4.7: Allele frequencies of IL-1, IL-6, IL-10 and LT� polymorphisms  

 

 
 
 
 

Polymorphism 

 
 
 
 

Allele 

Transplant 
subjects 
without 
PTLD 

 
Frequency 

(%) 

Transplant 
subjects with 

PTLD 
 
 

Frequency 

(%) 

 
 
 
 

p-valuea 

IL-1�-889 C 66 67 

 T 34 33 0.88 

IL-1 RI-1339 C 69 67 

 T 31 33 0.76 

IL-6-174 C 32 40 

 G 68 60 0.25 

IL-6 Intron 4 A 67 69 

 G 33 31 0.87 

IL-10-1082 A 53 45 

 G 47 55 0.33 

IL-10-819 C 71 80 

 T 29 20 0.15 

IL-10-592 C 71 80 

 A 29 20 0.15 

IL-10 RI-241 G 52 49 

 A 48 51 0.78 

LT�-720 C 67 68 

 A 33 32 0.88 

LT�-365 C 43 32 

 G 57 68 0.11 

LT�-249 A 67 68 

 G 33 32 0.88 
 

 a Fisher’s Exact 2-sided p-value 
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4.3.4 No difference in the frequency of interleukins -1, -6 and -10 

 polymorphisms in PTLD subjects 

Polymorphisms within the IL-1� (nucleotide position -889), IL-1 receptor I (-1339), IL-

6 (-174, intron 4-), IL-10 (-1082, -819, -592) and IL-10 receptor (-241) loci were 

analysed in both the PTLD and control groups. All polymorphisms were in HWE for 

both groups. No difference in allele frequency was observed for any of the 

polymorphisms studied between the PTLD and control groups (Table 4.7). Likewise no 

difference in genotype frequencies was seen between the two groups (Table 4.8). 

IL-10 haplotypes were determined from nucleotide positions -1082, -819 and -592. No 

difference in the frequency of the 3 possible IL-10 haplotypes (ACC, GCC, ATA) was 

observed between the PTLD and control groups (ACC: 43% versus 40%, p=0.84; GCC: 

75% versus 71%, p=0.66; ATA: 36% versus 51%, p=0.12).  
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      Table 4.8: Genotype frequencies of IL-1, IL-6 and IL-10 polymorphisms 

 
 
 
 

Polymorphism 

 
 
 
 

Geneotype 

Transplant 
subjects 
without 
PTLD 

 
Frequency 

(%) 

Transplant 
subjects 

with PTLD 
 

Frequency 

(%) 

 
 
 
 

p-valuea 

IL-1�-889 CC 42 44 

 CT 49 47 

 CC 9 9 
0.88 

IL-1 RI-1339 CC 45 40 

 CT 49 53 

 TT 8 7 
0.89 

IL-6-174 CC 9 18 

 CG 45 44 

 GG 45 38 
0.39 

IL-6 Intron 4 AA 43 45 

 AG 49 48 

 GG 8 8 
0.97 

IL-10-1082 AA 29 25 

 AG 48 41 

 GG 23 34 
0.33 

IL-10-819 CC 49 64 

 CT 43 32 

 TT 8 5 
0.15 

IL-10-592 CC 49 64 

 CA 43 32 

 AA 8 5 
0.15 

IL-10 RI-241 GG 32 22 

 GA 38 53 

 AA 29 24 
0.28 

LT�-720 CC 48 48 

 CA 38 41 

 AA 14 11 
0.92 

LT�-365 CC 15 9 

 CG 55 45 

 GG 29 45 
0.19 

LT�-249 AA 48 48 

 AG 38 41 

 GG 14 11 
0.92 

  
 a Chi-square 3x2 contingency table 
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4.4  Analysis of cytokine gene and receptor gene polymorphisms in   
          acute IM 
 
Cytokine and cytokine receptor genotyping was performed on EBV seropositive 

individuals with or without symptoms of IM (IM and EBV seropositive subject groups, 

respectively) and EBV seronegative individuals (EBV seronegative group; see section 

2.8 for cohort details). The study cohort included a total of 106 IM, 109 seronegative 

and 183 seropositive subjects (initial analysis was performed on two independent 

cohorts however these were combined to give greater statistical power). Each 

polymorphism was assessed for HWE in all 3 study groups prior to statistical analysis. 

Polymorphisms were analysed for differences in allele, genotype and haplotype 

frequency between the 3 subject groups. 

 

4.4.1 Increased frequency of tumour necrosis factor receptor II -1663G allele in  

            IM subjects 

Polymorphisms within the TNF receptor II (exon-10 nucleotide position -1663, -1668, -

1690) and exon 6-position 676) locus and the TNF receptor I (nucleotide positions -201, 

-230, -845) and receptor II (nucleotide positions -839, -1135) promoter regions were 

investigated. Polymorphisms at positions -1663, -1668, -1690, -201, -839 and -1135 

were in HWE across all 3 subject groups. Polymorphisms at positions -676 and -230 

were not in HWE for the seronegative group, and the polymorphism at position -845 

was not in HWE for the seropositive group, therefore no conclusions can be drawn from 

the statistical analysis. For the TNF receptor II region we observed a significant increase 

in the frequency of the G allele at position -1663 within the IM group compared to the 

seronegative group (56% versus 42%, p=0.005; Table 4.9). A significant increase in the 

frequency of the G allele was also observed for the seropositive group when compared 

to the seronegative group (51% versus 42%, p=0.03, Table 4.9). Analysis of the 
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genotype across the subject groups revealed a significant increase in the GG genotype 

within the IM group compared to seronegatives (31% versus 16%, p=0.01; Table 4.10). 

Likewise the GG genotype was increased in the seropositive group compared to the 

seronegative group reaching borderline significance (29% versus 16%, p=0.05; Table 

4.10).  

Within the IM group we observed a significant increase in the frequency of the 

nucleotide position -1135 C allele compared to the seropositive group (63% versus 

53%, p=0.02; Table 4.9). This increase was also apparent for the CC genotype reaching 

borderline significance (37% versus 25%, p=0.05; Table 4.10). At nucleotide position -

1668 we observed a significant increase in the heterozygous genotype TG within the 

seropositive group when compared to the seronegative group (20% versus 10%, p=0.03; 

Table 4.10). This difference was not replicated when comparing allele frequency. 

For nucleotide position -845 of the TNF receptor I promoter region we observed a 

significant decrease in the frequency of the GG genotype within the seropositive group 

compared to the seronegative group (9% versus 18%, p=0.03; Table 4.10) however this 

polymorphism was not in complete HWE across all 3 subject groups. No difference in 

allele or genotype frequencies was observed for polymorphisms at nucleotide positions -

1690, -676, -201, -230 or -839 (Table 4.9 and 4.10). Likewise, analysis of the TNF 

receptor I promoter haplotypes revealed no significant differences in frequency across 

the subjects groups (Table 4.11) 
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   Table 4.9: Allele frequencies of TNF receptor I and II polymorphisms in IM,    
   seropositive and seronegative subjects 
 

Polymorphism Allele 

IM 
 

Frequency 

(%) 

EBV 
seropositive  

 
Frequency 

(%) 

p-
valuea 

EBV 
seronegative 

 
 Frequency 

(%) 
p-

valuea 
p-

valuea‡ 

TNF receptor II 

Exon 10-1663 A 44 49 58 

 G 56 51 
0.33 

42 
0.005* 0.03* 

-1668 T 91 90 94 

 G 9 10 
0.76 

8 
0.26 0.11 

-1690 C 39 38 40 

 T 62 62 
1 

60 
0.76 0.72 

Exon 6-676† T 74 71 74 

 G 26 29 
0.62 

26 
1 0.56 

TNF receptor I promoter 

-201 G 61 53 58 

 T 39 47 
0.08 

42 
0.69 0.25 

-230† A 100 99 100 

 G 0 1 
1 

0 
1 0.3 

-845† A 60 64 61 

 G 40 36 
0.32 

39 
0.84 0.53 

TNF receptor II promoter 

-839 G 97 98 99 

 A 3 2 
0.37 

1 
0.5 1 

-1135 T 38 47 44 

 C 63 53 
0.02* 

56 
0.19 0.53 

  

 a Fisher’s Exact 2-sided p-value 
 * Significant p-value, p<0.05 
 † Not in Hardy Weinberg equilibrium 

 
‡ 

p-value for comparison of seropositive and seronegative subjects groups 
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Table 4.10: Genotype frequencies of TNF receptor I and II polymorphisms 

Polymorphism Allele 

IM 
 

Freq 

(%) 

EBV 
seropositive 

 
Freq (%) 

p-
valuea 

EBV 
seronegative 

 
Freq (%) 

p-
valuea 

p-
valuea‡ 

TNF receptor II 

Exon 10-1663 AA 20 26 32 

 AG 49 45 52 

 GG 31 29 
0.48 

16 
0.01* 0.05* 

-1668 TT 83 80 89 

 TG 17 20 10 

 GG 0 0 
0.62 

1 
0.16 0.03* 

-1690 CC 17 18 20 

 CT 43 41 41 

 TT 40 41 
0.96 

40 
0.86 0.89 

Exon 6-676† TT 55 52 59 

 TG 37 38 28 

 GG 8 10 
0.83 

12 
0.29 0.21 

TNF receptor I promoter 

-201 GG 35 26 35 

 GT 52 54 47 

 TT 13 20 
0.18 

18 
0.6 0.3 

-230† AA 99 98 100 

 AG 1 2 0 

 GG 0 0 
0.62 

0 
0.33 0.19 

-845† AA 32 37 41 

 AG 56 53 42 

 GG 12 9 
0.56 

18 
0.08 0.03* 

TNF receptor II promoter 

-839 GG 94 97 97 

 GA 6 3 3 

 AA 0 0 
0.34 

0 
0.33 0.34 

-1135 TT 12 20 20 

 TC 52 54 49 

 CC 37 25 
0.05* 

32 
0.25 0.51 

  

a Fisher’s Exact 2-sided p-value 
* Significant p-value, p<0.05 
† Not in Hardy Weinberg equilibrium 
‡ p-value for comparison of seropositive and seronegative subjects groups 
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 Table 4.11: TNF receptor I promoter haplotypes in IM, EBV seropositive      
   and seronegative subjects 
 

Haplotype 

IM 
 

Freq (%) 

EBV 
seropositive 

 
Freq (%) 

p-
valuea 

EBV 
seronegative 

 
Freq (%) 

p-
valuea 

p-
valuea‡ 

GAG 68 63 0.37 59 0.25 0.61 

GAA 36 29 0.24 33 0.77 0.5 

TAA 65 74 0.14 65 1.11 0.14 

GGA 1 1 1 0 1 0.53 

GGG 0 1 1 0  1 
   

 a Fisher’s Exact 2-sided p-value 

 
 
Investigation of the TNF promoter polymorphisms at nucleotide positions -1031, -865, -

859, -307, -237 and the corresponding TNF haplotypes (1-6) revealed no significant 

differences between the IM and seropositive, the IM and seronegative or the 

seropositive and seronegative groups (Appendix III). 

 

4.4.2 Increased frequency of lymphotoxin-� CCA haplotype in IM 

LT� polymorphisms at nucleotide positions -720, -365 and -249 were assessed to be in 

Hardy-Weinberg equilibrium. Statistical analysis of the 3 subject groups revealed a 

decrease in the frequency of the LT�-365G allele in IM subjects compared to the 

seronegative group (57% versus 70%, p=0.01; Table 4.12). No difference in allele 

frequency was observed between the IM and seropositive groups or the seropositive and 

seronegative groups. The homozygous GG genotype was also decreased in IM 

compared to the seronegative group (34% versus 53%, p=0.03, Table 4.12). Analysis of 

the corresponding LT� haplotypes CCA, AGG, CGA and ACA revealed an increase in 

the frequency of the CCA haplotype in IM compared to the EBV seronegatives (66% 

versus 47%, p=0.01; Table 4.12). Again no further difference in haplotype frequency 

was observed between the IM and seropositive groups or the seropositive and 

seronegative groups.   
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Table 4.12:   Analysis of Lymphotoxin-� polymorphisms in IM, seropositive and 
seronegative subjects 
 

Polymorphism 

IM 
 

Frequency 

(%) 

EBV 
seropositive  

 
Frequency 

(%) 

p-
valuea 

EBV 
seronegative 

 
 Frequency 

(%) 
p-

valuea 
p-

valuea‡ 

Allele 

-720 C 67 65 60 

 A 33 35 
0.64 

40 
0.12 0.23 

-365 C 43 37 30 

 G 57 63 
0.21 

70 
0.01* 0.09 

-249 A 67 65 60 

 G 33 35 
0.54 

40 
0.12 0.23 

Genotype 

-720 CC 42 44 36 

 CA 50 43 46 

 AA 8 13 
0.28 

17 

0.11 0.45 

-365 CC 20 16 13 

 CG 48 42 34 

 GG 34 42 
0.45 

53 

0.03* 0.2 

-249 AA 42 43 36 

 AG 50 44 46 

 GG 8 13 
0.28 

17 

0.11 0.45 

Haplotype 

1 CCA 66 58 0.25 47 0.01* 0.08 

2 AGG 58 57 0.9 64 0.47 0.31 

3 CGA 41 49 0.21 51 0.2 0.9 

4 ACA 0 0  0   
      

   a Fisher’s Exact 2-sided p-value for allele and haplotype analysis; Chi Square for genotype analysis 
 * Significant p-value, p<0.05 
 ‡ p-value for comparison of seropositve and seronegative subjects groups 
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4.4.3 No difference in the frequency of interleukins -1, -6 and -10 polymorphisms  

             in IM subjects 

Polymorphisms within the IL-1� (nucleotide position -889), IL-1 receptor I (-1339), IL6 

(-174, intron 4-), IL-10 (-1082, -819, -592) and IL10 receptor (-241) loci were analysed 

in IM, seropositive and seronegative subjects. Polymorphisms in IL-6 (-174), IL-1� (-

889) and IL-10 (-1082) were assessed to be in HWE for all 3 subjects groups. The IL-6 

(intron 4) and IL-1 receptor I (-1339) polymorphisms were not in HWE for the IM 

group whilst the IL-10 receptor (-241) and IL-10 (-819, -592) polymorphisms were 

assessed not to be in HWE for the seropositive group. An increase in the IL-10 -1082G 

allele was observed in seronegatives compared to the seropositive group (55% versus 

45%, p=0.02; Appendix III) however no corresponding difference was noted for the 

genotype or in comparison to the IM group (IL-10-819 and -592 were not in HWE, 

however no differences were seen in these alleles). Likewise no frequency differences 

were noted in IL-10 haplotypes across all 3 subject groups (Appendix III).  

Investigation of the IL-6 intron 4 genotype revealed a significant decrease in the 

frequency of the GG genotype in IM cases compared to seronegatives (8% versus 23%, 

p=0.006; Appendix III). However as not all subjects groups were in HWE this must be 

excluded from the disease association analysis. No further frequency differences were 

observed between the groups for the remaining polymorphisms IL-1� (-889), IL-1 

receptor 1(-1339), IL-6 (-174), IL-10 receptor (-241) and IL-10 (-819, -592). The 

analysis of allele, genotype and haplotype frequency is summarised in Appendix III. 

 

 

4.5  Disscussion 

In this study we have assessed polymorphisms within the TNF, LT�, IL-1�, IL-6 and 

IL-10 loci and their corresponding receptor loci for evidence of an association with the 
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development of EBV-associated PTLD and acute IM. An increase in the rarer alleles of 

the TNF promoter polymorphisms at nucleotide positions -1031(C allele) and -863(A 

allele) were found to be significantly increased in EBV-positive PTLD cases compared 

to non-PTLD transplant controls. Likewise genotypes containing the rare allele were 

also significantly increased in the EBV-positive PTLD cases compared to the control 

group. Furthermore, these polymorphic differences within the TNF promoter region 

resulted in a significant increase of TNF haplotype-3 (CACGG) and a decrease of TNF 

haplotype-1 (TCCGG) in EBV-positive PTLD subjects compared to controls suggesting 

an important role for these haplotypes in determining susceptibility to EBV-positive 

lymphoma following transplantation.   

Similarly a significant increase in the frequency of the TNF RII-1663G allele and 

corresponding GG genotype in acute IM compared to seronegative subjects would 

suggest that possession of the G allele may be a risk factor for the development of 

symptoms following primary EBV infection. However a similar significant increase in 

the frequency of -1663G allele in EBV seropositive over seronegative individuals would 

perhaps suggest that the -1663G allele is a risk factor for EBV seropositivity in general 

or that the -1663A allele confers a degree of protection from primary EBV infection. 

Also the LT�-365G allele and GG genotype frequencies were significantly reduced in 

IM compared to the seronegative group resulting in an increased frequency of the LT� 

CCA haplotype. A similar reduction in comparison to seropositives was not observed, 

nor was a frequency reduction in the seropositive group compared to seronegative 

subjects. Therefore we are unable to conclude the protective role of the G allele or the 

susceptibility of the alternate C allele in primary EBV infection. Interestingly the 

frequency of the TNFRII promoter -1135C allele was significantly increased in both 

EBV-positive PTLD and acute IM (compared to seropositives). A corresponding 
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increase in the frequency of the homozygous CC genotype was also observed for the 

PTLD and IM groups (p=0.06 and p=0.05) respectively confirming the importance of 

the TNF family of cytokines and their receptors in the development of EBV-positive 

PTLD and acute IM. 

TNF and LT� are both cytokines of the TNF family that function as potent mediators of 

immune regulation and inflammation. The TNF and LT� genes are located adjacent to 

each other in the HLA class III region on chromosome 6p21.3 and are closely linked to 

the polymorphic HLA-B and -DR regions (Nedwin et al., 1985). Both cytokines have 

similar biological activities, share approximately 50% sequence homology, and bind to 

the same group of cellular receptors; TNFRI, which is widespread in many cells types 

and activated by soluble ligand, and the TNFRII that is primarily expressed on 

haemopoietic cells (Locksley, Killeen, and Lenardo, 2001;Chan, Siegel, and Lenardo, 

2000). Both receptors are also shed and act as competitive soluble TNF binding proteins 

consequently affecting the levels of TNF production. In the case of TNF, ligand-

receptor binding leads to recruitment of intracellular adaptor proteins that activate 

several signal transduction pathways including the activation of the transcription factor 

NF-�B and the apoptotic pathway through capsase 8 (Balkwill, 2006) (Figure 4.2). 

Many pathological situations are characterised by the balance between such survival 

and apoptotic signals and therefore gene polymorphisms that alter this signalling 

process either through the ligand or the receptor are important.  

The function of the TNF-863A variant highlighted in our PTLD cohort has been widely 

investigated. The nucleotide change from C to A has been shown to have a clear effect 

on the binding of the NF-�B transcription complex to its DNA binding domain. In 
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Figure 4.2: TNF-TNF receptor signalling pathways    

                 

 

 

particular the affinity of the NF�B p50-p50 heterodimer, which acts as a transcriptional 

repressor when bound to the TNF promoter, is significantly decreased for the -863A 

variants (Udalova et al., 2000). Decreased binding is thought to result in inadequate 

down-regulation of TNF gene expression and therefore increased TNF production. As 

yet, there is no comparable molecular data for the TNF-1031C allele (however there is 

some degree of linkage between the -1031 and -863 alleles) or for the TNFRII-1663G 

and promoter -1135C alleles. Interestingly, the presence of the TNF-863A allele has 

also been positively associated with susceptibility to another group of B-cell 

malignancies, the Non-Hodgkin’s lymphomas (Spink et al., 2006). Possession of 

specific alleles that act to increase TNF expression may therefore be central to the 

mechanisms of pathogenesis and susceptibility to lymphoid disease. Indeed TNF based 

mechanisms such as direct DNA damage, anti-apoptotic activity and induction of 

cytokines, have been implicated in several cancers (reviewed in (Balkwill, 2006). 
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It is also noteworthy that we were unable to replicate the association of IL-10 and 

susceptibility to primary EBV infection obtained by Helminen et al (1999). This is 

perhaps due to the differences in study size. The Helminen report (1999) recruited a 

small number of subjects (36 IM, 52 seropositive and 20 seronegative cases) and 

investigated only the -1082 polymorphism rather that the complete haplotype. We 

investigated 3 polymorphisms and the associated haplotypes in a larger cohort of 

subjects (106 IM, 183 seropositive, 109 seronegative). Testing of multiple SNPs within 

a gene and analysis based upon the SNP haplotype is important. During meiosis alleles 

on the same small block of the chromosome segment tend to be transmitted as a block 

or haplotype, therefore, any given allele may simply be a marker for another. Likewise, 

a SNP in one individual may be part of a haplotype with functional downstream effects 

whilst the same SNP in a second individual may form a haplotype with no functional 

effect.    

In summary we have shown an association between variant alleles of the TNF promoter 

and the subsequent TNF promoter haplotype 3 (CACGG) with the development of 

EBV-positive PTLD. Likewise we have shown that the TNFRII -1663G allele may be a 

risk factor for susceptibility to EBV infection whilst the -1663A allele confers some 

protection. However, there remains a group of both PTLD and IM subjects who do not 

carry these alleles, genotypes or haplotypes, perhaps indicating that these 

polymorphisms are not completely functional and that other, as yet unidentified 

variants, are in linkage disequlibrium with these loci. These data also require 

confirmation in a second, similar sized cohort to be certain of an association and further 

analysis of soluble TNF and LT� levels may offer some information on the functional 

activity of the polymorphic alleles. Nevertheless, the genotypic evidence for the 
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involvement of TNF in both PTLD and IM is promising and may provide further 

information in identifying those most at risk particularly in the post-transplant situation.  
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5.1 Introduction 

Persistent EBV infection is aetiologically linked to a number of lymphoid and epithelial 

tumours including Hodgkin’s lymphoma (HL) and nasopharyngeal carcinoma (NPC). 

HL is one of the commonest tumours in young adults in the West where its incidence is 

increasing (Swerdlow, 2003). Approximately 1500 new cases occur each year in the 

UK, and HL now accounts for one in eight of all lymphomas diagnosed. In 

approximately 25-50% of Western HL cases the malignant  Reed-Sternberg (RS) cells 

carry the EBV genome (Andersson, 2006) and express viral antigens. The aetiological 

link between EBV and HL is further substantiated by the finding that a previous history 

of IM is a significant risk factor for EBV-associated HL with around one in 1000 cases 

of IM later developing HL (Jarrett et al., 2005;Hjalgrim et al., 2003). Further studies by 

Hjalgrim et al show that the risk of developing EBV-positive HL varies with time since 

IM with a median of 2.9 years ((Hjalgrim et al., 2007). 

The factors which determine the development of IM as opposed to silent primary EBV 

infection are unknown. Genetic differences in the HLA locus are of interest since HLA 

class 1 alleles may affect the efficiency of viral peptide presentation to T-cells, with 

resultant differences in the effectiveness of the immune response. Clearance of 

Hepatitis C virus, for example, has been associated with HLA-A*03 and B*27 alleles 

whilst CTL expressing different, but closely related HLA molecules, have shown 

significant functional differences when targeting identical HIV epitopes (McKiernan et 

al., 2004;Frahm et al., 2005;Leslie et al., 2006). Recent studies have highlighted HLA 

class I associations with both EBV-positive HL and NPC. Diepstra et al identified 

alleles of two microsatellite markers (D6S265: 126bp allele and D6S510: 284bp allele) 

which are significantly associated with EBV-positive HL and a class III microsatellite 

D6S273 which correlated with EBV negative HL (Diepstra et al., 2005). Further work 
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by the same group found Single-Nucleotide Polymorphisms (SNPs) within an 80kb 

region, located near the HLA-A and HcG9 genes, that are also associated with EBV-

positive HL (Niens et al., 2006), (Figure 5.1). Interestingly, the region between the 

D6S510 and D6S211 markers of the HLA-A locus is also associated with the 

development of NPC (Cheng-chan Lu et al., 2005), (Figure 5.1). Microsatellite markers 

show the highest degree of linkage disequilibrium with the HLA locus that is located 

nearest in the genome. In haplotype prediction studies both the D6S510 and D6S265 

microsatellite markers have been shown to have strong linkage disequilibrium with the 

HLA-A locus, with D6S510 associated with HLA*A1 subtype and D6S265 with HLA-

A*03 subtype (Malkki et al., 2005). Furthermore, the HLA-A1 subtype has recently 

been associated with an increased risk of developing EBV-positive HL whilst the 

HLA*A2 subtype appears to confer a reduced risk (Niens et al., 2007). 

Due to the well substantiated association between IM and EBV-positive HL, we 

speculated that the development of IM during primary EBV infection may also be 

associated with HLA class I polymorphisms. Likewise, since similar HLA class I 

polymorphisms have been associated with 2 EBV-associated tumours (HL and NPC) 

we speculated that these polymorphic variations may also have a role to play in the 

development of EBV-positive PTLD. We therefore analysed two microsatellite markers 

from the HLA class I region (D6S510 and D6S265) previously associated with EBV-

positive HL, and two SNPs (rs2530388 and rs6457110) situated within the 80kb region 

of interest, to identify links between IM or EBV-positive PTLD and allele frequency.  

One further marker from the class III region (D6S273), associated with EBV negative 

HL, was analysed as a control. 
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Figure 5.1: Map of markers and genes in the HLA region 
Major genes are indicated in black below the bar. Microsatellite markers are depicted above the bar 
(markers studied are highlighted in red). SNP’s studied are indicated in blue above the bar. [Adapted 
from ‘Association with HLA class I in Epstein-Barr-positive and with HLA class III in Epstein-Barr 
negative Hodgkin’s lymphoma’, Diepstra et al (2005), The Lancet. By kind permission of Elsevier 
Health Sciences] 
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5.2 Optimisation of HLA-PCR 

PCR conditions (magnesium concentration, primer concentration, annealing 

temperature and DNA concentration) and dilutions for analysis by Genemapper 

software were optimised for each microsatellite marker: D6S265, D6S510 and D6S273.  

 

5.2.1 Optimisation of magnesium concentration and annealing temperature 
 
A chequerboard of magnesium concentration (range: 1mM, 1.5mM, 2mM, 2.5mM) and 

annealing temperature (range 53˚C-64˚C) was performed for each marker. A primer 

concentration of 0.5�M for both the forward and reverse primers and 50ng of DNA, 

extracted from the peripheral blood of a healthy volunteer, were chosen for the initial 

experiment. Cycling conditions were selected based upon the size of the amplified 

products: initial denaturation at 94˚C for 5mins followed by 35 cycles of 94˚C for 

30secs, 53-64˚C for 30secs, 72˚C for 45secs and a final extension at 72˚C for 5mins. 

For all 3 markers a magnesium concentration of between 2 and 2.5mM was optimal 

(Figure 5.2). A magnesium concentration of 2.5mM was selected for all further 

experiments. Amplified products declined with increasing temperature range for all 3 

markers (Figure 5.2). For markers D6S265 and D6S273 a temperature of 55˚C was 

chosen and for marker D6S510 a temperature of 62˚C was selected.  
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Panel-1 

 

Panel-2 

 

Panel-3 

 
Figure 5.2: Optimisation of magnesium concentration and annealing temperature for 
markers D6S510, D6S265 and D6S273. 
Panel-1: marker D6S510; panel-2: marker D6S265; panel-3: marker D6S273. Magnesium concentrations 
of 1mM (A), 1.5mM (B), 2mM (C) and 2.5mM (D) are shown. Lanes 1-12 represent an annealing 
temperature range of 64˚C-53˚C. 
M: 100bp marker. 
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5.2.2 Optimisation of primer and DNA concentrations 

Further optimisation was performed for all 3 markers to reduce, if possible, the amount 

of primer and DNA required. The primer concentration was reduced from 0.5�M to 

0.25�M and the DNA from 50ng to 25ng. The selected magnesium concentration, 

annealing temperature and cycling conditions from the previous optimisation 

experiment were used. For all 3 markers the reduced primer and DNA concentrations 

were adequate and therefore selected for all future experiments (Figure 5.3).  

 

              

Figure 5.3: Optimisation of primer and DNA concentration for markers D6S510, D6S265 
and D6S273 
A: Marker D6S510, B: marker D6S265, C; marker D6S273. Lanes 1 and 2: 0.25�M forward and reverse 
primer, lanes 3 and 4: 0.5�M forward and reverse primer. Lanes 1 and 3: 50ng DNA, lanes 2 and 4: 25ng 
DNA, M: 100bp marker.  

 

 

5.2.3 Optimisation of PCR product dilution for Genemapper analysis 

Analysis of PCR products on the ABI 3730 automated sequencer and Genemapper 

software is often quite sensitive and it is therefore recommended to try various dilutions 

of the PCR product to obtain a peak height similar to that of the size standards used. We 

opted to use the Genescan 500LIZ size standard (ABI): 2�l diluted in 1ml of Hi-Di 

formamide (ABI) as per manufactures instructions. PCR products were diluted in 

nuclease free water to give 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640 and 1:1280 

dilutions. One microlitre of each dilution was then further diluted in 10�l of Hi-Di/size 

standard mix prior to running on an automated sequencer. Figure 5.4 shows the 
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spectratype obtained for the D6S265 marker. Dilutions of 1/1280 and 1/640 had the 

lowest relative fluorescent intensities whereas dilution 1/10 had the highest relative 

fluorescent intensity. A dilution of 1/50 was selected as optimal, giving a relative 

fluorescent intensity similar to the size standard. Similar spectratypes were obtained for 

markers D6S510 and D6S273, therefore, a dilution of 1/50 was chosen for all three 

markers (Table 5.1). 

 

 
Table 5.1: Optimisation of dilution factor for markers D6S510, D6S265 and D6S273 
  

 
RELATIVE FLUORESCENT 

INTENSITY OF ALLELE 

 D6S510 D6S265 D6S273 

Dilution 294bp 298bp 122bp 132bp 138bp 140bp 

1/10 26279 20262 16195 11020 21790 12570 

1/20 13945 10801 1768 1208 14576 8373 

1/40 9277 7403 5197 3589 8567 4672 

1/80 4785 3773 4892 3330 5533 3170 

1/160 3477 2743 3038 2049 4378 2485 

1/320 2024 1595 1775 1232 2575 1465 

1/640 59 66 1103 728 727 415 

1/1280 352 283 601 390 958 502 
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Figure 5.4: Spectratype of marker D6S265 dilution series 
Panel A: 1/1280; panel B: 1/640; panel C: 1/320; panel D: 1/160; panel E: 1/80; panel F: 1/40; panel G: 
1/20; panel H: 1/10. Allele base pair size is indicated (122 and 132bp).  
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5.3  Analysis of HLA class I microsatellite markers D6S510 and  
      D6S265 in Infectious Mononucleosis 

 
HLA genotyping was performed on EBV seropositive (n=146), EBV seronegative 

(n=50) and IM (n=98) subject groups (recruitment details are outlined in section 2.7.3).  

We identified 10 alleles (range 284-306bp) for the D6S510 marker, 13 alleles (range 

122-142bp) for the D6S265 marker and 9 alleles (range 128-144bp) for the D6S273 

marker (Table 5.2). All three markers were in Hardy Weinberg equilibrium for each 

group.  Among EBV-positive subjects, a significant difference between those with 

symptoms of IM and those without symptoms was observed for allele 1 of marker 

D6S510 (41.8% and 30.5% respectively, p=0.01) and allele 3 of D6S265 (45.9% and 

35.2%, p=0.02) (Table 5.2). Significant differences were also found between EBV 

seronegative subjects and IM patients for the same two alleles (allele 1: 28.0% versus 

41.8%, P=0.02; allele 3: 31.6% versus 45.9%, P=0.02) as well as for allele 8 of D6S510 

(24.0% versus 13.3%, P=0.02) (Table 5.2). 

Comparison of IM and EBV seropositive groups revealed that individuals homozygous 

for allele 1 of the D6S510 marker and allele 3 of the D6S265 marker had odds ratios for 

development of IM of 2.7 (95% CI: 1.1-8.5) and 2.7 (95% CI: 1.1-6.4) respectively. 

The corresponding odds ratios for heterozygotes were 1.6 (95% CI: 0.9-2.9) and 1.4 

(95% CI: 0.7-2.5) (Table 5.3).
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Odds ratios were also different upon comparison of IM and EBV seronegative groups for  

allele 3 (D6S265 marker) with odds ratios of 3.3 (95% CI: 1.0-4.1) for homozygotes and  

1.8 (95% CI: 0.8-4.1) for heterozygotes (Table 5.3). The increased odds ratio in IM  

subjects homozygous for these alleles indicates a co-dominant effect.  No significant  

frequency differences were observed between IM patients and either of the other two  

groups (EBV seropositive without IM symptoms, or EBV seronegative) for alleles of the  

control marker D6S273. 

 

Table 5.3: Genotype frequency and odds ratios of D6S510 allele 1 and allele 8, and D6S265    
 allele 3 in EBV seropositive, seronegative and IM subjects 
 

Locus and 
genotype 

EBV-
positive  
subjects 

with 
symptoms 

of IM 
(n=98) 

EBV-
positive 
subjects 
without 

symptoms 
of IM 

(n=149) 

Odds 
Ratio 

(95%CI) 

 
p-

valueA  

EBV-
negative 
subjects 
(n=49) 

Odds 
Ratio 

(95%CI) 

 
p-

valueA 

D6S510 

Allele 1 
heterozygotes 46 (47%) 61 (42%) 

1.6  
(0.9-2.9) 0.12  18 (36%) 

2.0 
 (0.9-4.6) 0.07 

Allele 1 
homozygotes 18 (18%) 14 (10%) 

2.7 
 (1.1-8.5) 0.02  5 (10%) 

2.9  
(0.9-11) 0.08 

Allele 1 
negative 34 (35%) 71 (49%)    27 (54%)   

 

Allele 8 
heterozygotes 20 (20%) 49 (34%) 

0.5  
(0.3-1.0) 0.04  18 (36%) 

0.4 
 (0.2-0.8) 0.04 

Allele 8 
homozygotes 3 (3%) 1 (1%) 

3.8 
(0.3-203.6) 0.33  3 (6%) 

0.4  
(0.1-3.1) 0.35 

Allele 8 
negative 75 (77%) 96 (66%)    29 (58%)   

 

D6S265 

Allele 3 
heterozygotes 48 (49%) 73 (49%) 

1.4 
 (0.7-2.5) 0.09  21 (43%) 

1.8 
 (0.8-4.1) 0.13 

Allele 3 
homozygotes 21 (21%) 16 (11%) 

2.7 
 (1.1-6.4) 0.02  5 (10%) 

3.3 
 (1.0-4.1) 0.04 

Allele 1 
negative 29 (30%) 60 (40%)    23 (47%)   

 

A Fisher’s-exact 2-sided p-value 
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5.4  Analysis of single nucleotide polymorphisms rs253088 and  
       rs6457110 in Infectious Mononucleosis 

 
DNA from all three subject groups was sent to the LRF Virus Centre, Institute of 

Comparative Medicine, University of Glasgow, for Taqman PCR of two SNP’s 

(rs2530388 and rs6457110). Allele determination was performed by Ms. Annette Lake 

and Professor Ruth Jarrett. Analysis of SNP rs2530388 (T/A) and rs6457110 (T/A) was 

performed on 97 EBV IM, 49 EBV seronegative and 140 EBV seropositive subjects. 

Both SNPs were in Hardy-Weinberg equilibrium for all three subject groups. A 

significant difference in frequency was found between EBV seronegative subjects and 

IM patients for allele-A of SNP rs2530388 (30% versus 45%; p=0.011) and for allele-T 

of SNP rs 6457110 (57% versus 70%; p=0.038) (Table 5.4). Genotype analysis between 

EBV seronegative subjects and IM patients was also performed. For the SNP rs2530388 

the frequency of the A/A genotype was higher in the IM group compared to 

seronegative subjects (10% versus 23%) whilst the T/T genotype was lower in the IM 

group (51% versus 32%; p=0.049) (Table 5.4). Comparison between EBV seropositive 

subjects without symptoms of IM and IM patients was of borderline significance for 

allele-A of rs2530388 (37% versus 45%; p=0.07) with no significant difference 

observed for allele-T of rs6457110 (p=0.42). Further comparison between these groups 

for the genotype A/A of SNP rs2530388 revealed an increase in IM subjects carrying 

the A/A genotype (23%) compared to EBV seropositive subjects without IM (12%) 

although this did not reach statistical significance (p=0.098) (Table 5.4). No significant 

differences were observed between EBV seronegative and EBV seropositive 

individuals for any of the alleles or genotypes. 
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Table 5.4: Allele and genotype frequency of rs2530388 and rs6547110 SNPs in EBV 
seropositive, seronegative and IM subjects 

 

Locus Allele 

EBV-positive  
subjects with 
symptoms of 

IM 
(n= 97 subjects: 

194 alleles) 
 

Freq (%)  

EBV-positive 
subjects 
without 

symptoms of 
IM 

(n=140 
subjects: 280 

alleles) 
 

Freq (%) 

 
 
 
 
 
 

p-valueA  

EBV-negative 
subjects 
(n=49 

subjects: 98 
alleles) 

 
 

Freq (%) 

 
 
 
 
 
 

p-valueA 

A 45  37  30 

T 56  63 0.07  70 0.011 

        

AA 23  12  10 

AT 45  49  39 rs2530388 
 TT 32  39 0.098  51 0.049 

         

A 30  34  43 

T 70  66 0.427  57 0.038 

        

AA 10  13  20 

AT 40  42  45 rs6457110 
 TT 50  45 0.748  35 0.122 

 

A Fisher’s-exact 2-sided p-value 

 

 

5.5  Correlation between clinical data and HLA/SNP polymorphisms 
 
Clinical data and viral load estimations were available for 48 IM patients.  For each 

allele studied, IM patients were grouped according to the presence or absence of each 

allele and counts of total lymphocytes, neutrophils, and monocytes, as well as EB viral 

loads were assessed in relation to these groupings. 

 

5.5.1 Decreased total lymphocyte counts in IM patients positive for allele 1 
(D6S510 marker) and allele 3 (D6S265 marker) 

 
The median total lymphocyte count was significantly lower (p=0.03) among patients 

positive for allele 1 of marker D6S510 than among those who were negative for the 

allele (Figure 5.5-A; Table 5.5). The association was even stronger (p=0.001) with 
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respect to allele 3 of marker D6S265.  Those positive for the allele had a median total 

lymphocyte count of 3.15 compared to a count of 6.80 among those who were negative 

for the allele (Figure 5.5-D; Table 5.5). Individual CD3 T-cell counts for 18, CD4 T-

cell counts for 15 and CD8 T-cell counts for 19 IM cases were available for analysis. 

The CD3, CD8 and CD4 T-cell counts were reduced in IM cases that were positive for 

allele 1 of D6S510 and allele 3 of D6S265 compared to those that were negative 

although these did not reach significance (Table 5.6). All subjects who were positive for 

allele 1 of marker D6S510 were also positive for allele 3 of marker D6S265, so the 

apparent association observed for allele 1 of marker D6S510 may be due to the linkage 

with the other allele. In contrast, the small number of subjects who were positive for 

allele 3 of marker D6S265 but negative for allele 1 of D6S510 still had significantly 

lower (p=0.003) lymphocyte counts indicating the importance of the latter allele even in 

the absence of the former (Table 5.5). 
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Table 5.5: Analysis of D6S510 and D6S265 microsatellite markers in IM patients; 
comparison of total lymphocyte count, neutrophil count and viral load. 

  

Locus Allele Status 
Total 

Number 

Total 
lymphocytes 

 
Median (range)

 B
 

Neutrophils  

 

Median (range)
 B 

Viral load  

 

Median (range)
 C 

       

D6S510 1 Negative 19 5.8 (1.92 - 9.55) 2.36 (0.56 – 6.03) 2563 (0 – 16840) 

  Positive 29 3.22 (1.32 – 8.97) 3.16 (1.52 – 5.47) 10466 (59 – 48283) 

       

    p-value = 0.03 p-value = 0.03 p-value = 0.05 

       

       

D6S265 3 Negative 14 6.80 (4.13 – 9.55) 1.45 (0.56 – 5.97) 2409 (0 – 16840) 

  Positive 34 3.15 (1.32 – 8.97) 3.16 (1.52 – 6.03) 8387 (26 – 48283) 

       

    p-value = 0.001 p-value = 0.004 p-value = 0.12 

       

  Positive A 5 3.01 (1.92 – 3.41) 3.69 (2.36 – 6.03) 3766 (26 – 7800) 

       

    p-value = 0.003 p-value = 0.07 p-value = 0.84 

       

 
A Positive for Allele 3 D6S265 but negative for Allele 1 of D6S510 
B x106 cells/ml 
C EBV copies per million cells 
 
 
 

Table 5.6: Analysis of D6S510 and D6S265 microsatellite markers in IM patients; 
comparison of CD3, CD4 and CD8 count. 
 

Locus Allele Status 
CD3 

Median (range)
A 

CD4 
Median (range)

 A 
CD8 

Median (range)
A 

      

D6S510 1 Negative 5.38 (2.55-8.6) 0.86 (0.35-1.02) 4.2 (1.13-6.78) 

  Positive 3.33 (0.93-8.32) 0.52 (0.18-0.95) 2.34 (0.36-7.36) 

   P=0.23 P=0.18 P=0.38 

      

D6S265 3 Negative 5.68 (2.71-8.6) 0.86 (0.35-1.02) 4.4 (1.98-6.78) 

  Positive 2.55 (0.93-8.32) 0.52 (0.18-0.95) 2.14 (0.36-7.36) 

   P=0.12 P=0.18 P=0.19 
 

A x106 cells/ml 
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Figure 5.5: Analysis of microsatellite markers with clinical features in IM subjects.  
Panels A, B and C refer to subjects positive and negative for the microsatellite marker D6S510-allele 1; 
panels D, E and F to those subjects positive and negative for microsatellite marker D6S265-allele 3. Total 
lymphocyte counts (x106/ml): panels A and D; neutrophil counts (x106/ml): panels B and E; viral load 
(EBV genome copies per million cells): panels C and F 
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Similar analyses were performed for the SNP alleles and genotypes.  Allele-A 

(rs2530388) and allele-T (rs6457110) positive subjects had lower median total 

lymphocyte counts when compared to allele negative subjects however this did not 

reach statistical significance (rs2530388: p=0.31, rs6457110: p=0.67) (Table 5.7). 

Individuals homozygous for each of these alleles also displayed lower median total 

lymphocyte counts when genotypes were compared. 

 

Table 5.7: Analysis of rs2530388 and rs6457110 SNP’s in IM patients; comparison of total 
lymphocyte count, neutrophil count and viral load. 

 

Locus Allele Status 
Total 

Number 

Total 
lymphocytesA

  

 

Median (range) 

NeutrophilsA
  

 

 

Median (range) 

Viral loadB
  

 

 

Median (range) 

       

rs2530388 A Neg 29 4.58 (1.92 – 8.97) 2.94 (0.56 – 6.03) 3633 (26 – 48283) 

  Pos 25 3.35 (1.32 – 9.55) 3.03 (1.4 – 5.47) 9720 (0 – 48283) 

       

    p-value = 0.31 p-value = 0.31 p-value = 0.38 

       

 AA - 11 4.01 (1.32 – 9.55) 2.72 (1.4 – 5.97) 7366 (0 – 21466) 

 AT - 15 3.34 (2.16 – 8.97) 2.36 (0.56 – 6.03) 12400 (82 – 48283) 

 TT - 15 5.8 (1.92 – 7.86) 2.36 (0.56 – 6.03) 2716 (26 – 16840) 

       

    p-value=0.34 p-value=0.32 p-value=0.14 

       

rs6457110 T Neg 19 4.58 (2.16 – 7.7) 2.74 (0.56 – 6.03) 3633 (26 – 24650) 

  Pos 37 4.13 (1.32 – 9.55) 2.82 (0.9 – 6.03) 5841 (0 – 48283) 

       

    p-value = 0.67 p-value = 0.99 p-value = 0.54 

       

 AA - 4 6.69 (2.33 – 7.6) 2.2 (0.56 – 3.89) 2142 (59 – 16840) 

 AT - 15 3.41 (2.16 – 7.7) 3.12 (0.9 – 6.03) 4770 (26 –24650) 

 TT - 22 4.2 (1.32 – 9.55) 2.63 (1.32 – 5.97) 7366 (0 – 48283) 

    p-value=0.59 p-value=0.39 p-value=0.65 
 

A x106 cells/ml 
B EBV copies per million cells
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5.5.2 Altered neutrophil counts in IM patients positive for allele 1 (D6S510 
 marker) and allele 3 (D6S265 marker) 
 
Although within the normal range for the Coulter counter,  significantly higher 

neutrohil counts were observed among subjects positive for allele 1 of D6S510 

compared to those who were negative for the allele (p=0.03). However, as with total 

lymphocyte counts, a much stronger association (p=0.004) was observed for allele 3 of 

D6S265, in which the median count among those who were negative for the allele was 

below the normal range for the Coulter counter (Figure 5.5-B and E; Table 5.5). Again, 

the much stronger association for the latter allele suggests its relative importance. 

Similar analyses for the two SNPs revealed no significant differences (Table 5.7). 

 

5.5.3 Increased EB viral load in IM patients positive for allele 1 (D6S510 
marker) and allele 3 (D6S265 marker) 

 
There was a suggestion that viral loads were raised among subjects positive for allele 1 

of D6S510 compared to those negative for the allele but the association was of 

borderline significance (p=0.053).  Similarly, the viral load was raised among those 

who were positive for allele 3 of marker D6S265 but the association was not significant 

(p=0.12) (Figure 5.5-C and F; Table 5.5). This trend was also observed with allele-A 

(rs2530388) and allele-T (rs6457110) and for the homozygous genotype of both alleles 

(Table 5.7). 

 

5.5.4 IM patients positive for allele 1 (D6S510 marker) and allele 3 (D6S265) 
marker present with milder symptoms 

 
We analysed the IM groupings in relation to the severity of clinical symptoms. Data on 

sore throat were available for 39 of the patients and was assessed as mild (able to 

swallow a normal diet) (24 subjects) or severe (unable to swallow a normal diet) (15 

subjects). Among the 21 patients positive for allele 1 of the D6S510 marker, six (29%) 
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reported that their sore throat was severe, compared to nine (50%) of the 18 cases 

negative for the allele (p=0.20). Of the 25 patients positive for allele 3 of the D6S265 

marker, eight (32%) reported a severe sore throat compared to seven (50%) of the 

fourteen cases negative for the allele (p=0.32) (Figure 5.6).  
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Figure 5.6: Comparison of severe and mild sore throat in IM subjects.  
IM subjects positive and negative for marker D6S510-allele 1 and marker D6S265-allele 3 were 
compared for differences in presentation of sore throat. Mild: black bar; severe: white bar.  The p-value 
for comparison of mild symptoms between allele positive and negative subjects is indicated. 
 
 
 

5.6 Analysis of HLA class I microsatellite markers D6S510 and 
D6S265 in EBV-associated post transplant lymphoproliferative 
disease  

 
HLA genotyping for all 3 microsatellite markers (D6S510, D6S265 and D6S273) was 

performed on transplant patients with (n=34) or without (n=49) the development of 

EBV-associated post transplant lymphoproliferative disease (PTLD). All three markers 

were in Hardy Weinberg equilibrium for each group.  No significant differences were 
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observed between the two groups for any of the markers tested and therefore no further 

analyses were undertaken (Table 5.8). 

 

     Table 5.8: Allele frequency of microsatellite markers D6S510, D6S265 and D6S273 in     
      transplant subjects with and without  

    A Fisher’s-exact 2-sided p-value 

 
 
 
 
 
 
 
 

 
Locus 

 
Allele 

 
Base Pair 

Size 

Transplant 
subjects with 

PTLD 
 

Freq (%)  

Transplant 
subjects without 

PTLD 
 

Freq (%) 

 
 
 

p-valueA 
D6S510 1 284 29  29 1 
D6S510 2 290 1  1 1 
D6S510 3 292 9  4 0.32 
D6S510 4 294 12  10 0.79 
D6S510 5 296 6  9 0.76 
D6S510 6 298 19  28 0.44 
D6S510 7 300 6  1 0.16 
D6S510 8 302 16  16 1 
D6S510 9 304 0  1 1 
D6S510 10 306 0  2 0.5 

       D6S265 1 122 14  21 0.3 
D6S265 2 124 0  0 1 
D6S265 3 126 38  32 0.5 
D6S265 4 128 9  6 0.54 
D6S265 5 130 27  22 0.57 
D6S265 6 132 13  10 0.79 
D6S265 7 134 0  1 1 
D6S265 8 136 0  1 1 
D6S265 9 138 0  0 1 
D6S265 10 140 0  2 0.51 
D6S265 11 142 0  0  
D6S265 12 144 0  2 0.51 
D6S265 13 146 0  2 0.51 

       D6S273 1 128 4  4 1 
D6S273 2 130 7  5 0.74 
D6S273 3 132 13  17 0.52 
D6S273 4 134 21  19 0.84 
D6S273 5 136 41  41 1 
D6S273 6 138 4  4 1 
D6S273 7 140 9  9 1 
D6S273 8 142 0  0 1 
D6S273 9 144 0  0 1 
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5.7 Discussion 

In this study we have assessed two HLA class I and one HLA class III microsatellite 

markers for evidence of an association with acute IM and EBV-associated PTLD. Both 

HLA class I markers were found to be significantly associated with the development of 

IM, with allele 1 (284bp) of marker D6S510 and allele 3 (126bp) of marker D6S265 

showing the strongest effects. Furthermore a co-dominant effect was observed in IM 

subjects homozygous for these alleles. An unexpected observation was that the 

frequency of marker D6S510-allele 8 (302bp) was significantly reduced in the IM group 

when compared to the seronegative group but not when compared to the seropositive 

group, perhaps indicating a role for this allele in protection from IM. However the lack 

of any significant difference in allele frequency between the EBV seropositive subjects 

without symptoms of IM and the seronegative subjects for all three alleles is an 

indication that these alleles do not confer protection from sub-clinical EBV infection. 

No association was observed between the subject groups and the control HLA class III 

marker D6S273. These findings are similar to recent reports associating the HLA class I 

region, in particular the D6S510 (284bp allele)  and D6S265 (126bp allele) 

microsatellite markers, with EBV-positive HL (Diepstra et al., 2005) where the 

frequency of both markers in EBV-positive HL was almost double that of the controls. 

Our findings provide further evidence for an aetiological link between IM and EBV-

positive HL. 

Also in line with recent reports (Niens et al., 2006) showing an association between 

several SNPs from the HLA class I region and EBV-positive HL is our finding that 

allele-A of SNP rs2530388 and allele-T of rs6457110 are more frequent in the IM 

group compared to EBV seronegative individuals. The A/A genotype for SNP 

rs2530388 is also more frequent in IM compared to our EBV seronegative group. The 
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results suggest a genetic link between IM and EBV-associated HL, although the 

association between IM and the markers analysed in this study is slightly weaker than 

the reported association with EBV-positive HL.   

The markers we have identified as conferring a predisposition to IM are known to be in 

linkage disequilibrium with the HLA-A locus; marker D6S510 with HLA-A*01 and 

marker D6S265 with HLA-A*03 (Malkki et al., 2005). A number of studies have 

shown that specific EBV peptides are presented in the context of specific HLA class I 

alleles (Rickinson and Moss, 1997;Moss et al., 2001). Interestingly, the number of EBV 

specific epitopes restricted through HLA-A*01 and -A*03, so far identified, is low; one 

HLA-A*01 restricted LMP-2 epitope and two HLA-A*03 restricted epitopes (EBNA-

3A and BRLF1 proteins) (Hislop et al., 2007). This association of HLA class I markers, 

and subsequent linkage with HLA-A alleles, with IM suggests that the genetic makeup 

of an individual’s HLA class I locus dictates the efficiency of viral peptide presentation 

and the recruitment of T-cells during the immune response to primary EBV infection.  

Thus, as IM is assumed to be immunopathological in nature, caused by T-cell derived 

cytokines, possession of these markers might be expected to result in an exuberant T-

cell response and severe IM. However the results show that in individuals with these 

alleles lymphocyte counts are significantly lower than in those without.  The reduction 

in total lymphocyte count was accounted for by a reduction in individual median CD3, 

CD4 and CD8+ T-cell counts, and was not due to variations in the duration of IM 

symptoms at the time of bleeding (allele 1 positive and negative: median 9 days and 10 

days respectively post onset of symptoms (p=0.87); allele 3 positive and negative: 

median 8 days and 12 days respectively (p=0.25)). Allele positive patients also had 

higher viral loads than the allele negative group. This increase was not accounted for by 

a higher proportion of B-cells within the lymphocyte population in allele positive 
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subjects (allele 1 and 3 positive: 5%; allele 1 and 3 negative: 7%). This suggests that 

perhaps the virus specific T-cell response itself was insufficient to control the virus 

infection effectively, either through a reduction in the number of T-cells recruited or 

through T-cells undergoing more rapid and early apoptosis. Linkage of the markers 

with HLA-A*01 and -A*03 alleles may contribute to the insufficient T-cell response 

observed through presentation of low affinity peptides. Moreover, the HLA-A*01 allele 

is associated with an increased risk, and the HLA-A*02 allele a decreased risk, of 

developing EBV-positive HL (Niens et al., 2007): possibily as a result of low versus 

high immunogenic peptide presentation. In addition there is a suggestion that IM 

patients with the microsatellite alleles had milder IM symptoms than those without 

perhaps resulting from reduced levels of cytokine production by the virus-specific T-

cells present – less T-cells, less cytokine released. Thus possession of either of the 

alleles we have identified appears to result in a weakened or aberrant immune response 

to EBV which predisposes to a mild form of IM. It is also possible that other, as yet 

unidentified, alleles from microsatellite markers not investigated in this study may 

predispose to a more severe form of IM.  

The HLA-A gene locus is but one located within the vicinity of the microsatellite risk 

alleles. The region of interest also contains 9 psuedogenes, including MHC class I 

polypeptide-related sequence D (MICD), which are unlikely to be causative, and the 

protein-coding HLA complex gene 9 (HCG9). HCG9 belongs to a multigene family 

that associates with the MIC multigene family; both of which are dispersed throughout 

the HLA class I region. The MIC and HCG genes tend to form clusters within the HLA 

class I region; the function of which is unknown. Both MICA and MICB are recognised 

by NK-cells and CD8 T-cells expressing the NKG2D receptor and therefore have the 

potential to affect both innate and adaptive immune responses (Moretta et al., 
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2001;Pende et al., 2002). Due to its association with the MIC family, HCG9 may also 

be involved in activation of NK- and T-cells, therefore the reduced T-cell response 

observed in allele positive IM could also result from an association between the 

microsatellite markers and the HCG9 gene locus.  

The significantly higher neutrophil counts observed in IM patients positive for the 

alleles is more difficult to explain since there is no known direct link between the HLA 

locus and neutrophil function. As part of the innate immune response neutrophils, 

together with NK-cells and monocytes, are thought to form the main effector cells early 

in primary EBV infection. By releasing cytokines and chemokines they attract other 

immune cells to the site of infection and are thereafter depleted, mainly by apoptotic 

cell death (Savard and Gosselin, 2006). Recent reports suggest that EBV directly infects 

neutophils in the early phase of IM altering their cytokine production.  Infection is 

believed to occur in approximately 30% of neutrophils via a receptor other than CD21. 

In-vitro infection studies identified the secretion of the pro-inflammatory cytokines IL-

1�, IL-1�, the IL-1 receptor antagonist IL-Ra, IL-8 and macrophage inflammatory 

protein-1�. Secretion of these molecules is thought to attract other leucocytes to the 

infection site, thereby allowing EBV direct access to B-cells (Savard and Gosselin, 

2006). However, it seems more likely that the low neutrophil counts observed in allele 

negative subjects are a direct result of neutrophil apoptosis following recruitment of T-

cells to sites of infection. In a recent case control study on IM the median neutrophil 

count in IM subjects at time of diagnosis was significantly lower than that of age 

matched controls, with 26% of IM cases having neutrophil counts below the lower limit 

of the normal range (p=0.015, K Macsween, personal communication). Thus finding a 

significantly higher median neutrophil count (although still within the normal range) in 
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allele positive subjects in the present study may just reflect the milder IM symptoms in 

these subjects.   

The classic RS cells of HL represent post germinal centre B-cells which contain non-

functional immunoglobulin genes (Kuppers and Rajewsky, 1998;Tamaru et al., 1994). 

In EBV-positive HL these abnormal cells are thought to have been rescued from 

apoptosis in germinal centres by the expression of EBV latent membrane proteins 1 and 

2 which provide crucial survival signals (Brauninger et al., 2006). We postulate that the 

HLA class I markers, D6S510 and D6S265, predispose to EBV-associated HL by 

inducing a suboptimal T-cell immune response to the virus during IM which in turn 

would result in poor virus clearance allowing a high level of virus persistence in B-

cells. Indeed increased viral load in pre-treatment blood samples from EBV-positive 

HL patients has been reported (Khan et al., 2005). Elevated levels of viral persistence 

may increase the chance of EBV infection and survival of abnormal B-cells with 

malignant potential providing an explanation for the link between HL and IM.  

In contrast the development of EBV-positive PTLD following solid organ 

transplantation, which has the same suggested aetiology, does not appear to be 

associated with any of the HLA class I microsatellite markers tested. However, a recent 

study reports a negative association for the development of PTLD with the HLA-A*03 

and HLA-DR*07 alleles and a positive association with the HLA-B*18 and HLA-B*21 

alleles (Subklewe et al., 2006). In this context we may have expected to see an 

association with the D6S265 marker which is known to be in linkage disequilibrium 

with the HLA-A*03 allele (Malkki et al., 2005) however we did not find this to be the 

case. Differences in the numbers tested (34 versus 115 PTLD and 49 versus 1995 

controls) may account for the differing observations as the HLA-A*03 allele is only 
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present in approximately 25% of the population. Also we did not analyse markers from 

the HLA-B or HLA-DR loci which may have provided further interesting correlations. 

In summary, we have demonstrated an association between polymorphisms in the HLA 

class I region and IM, and show evidence suggestive of reduced T-cell control of EBV 

during primary infection in allele positive cases. We observed no associations between 

HLA class I polymorphisms and the development of EBV-associated PTLD.
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6. Concluding Remarks 

Understanding the viral and host immuno-regulatory mechanisms involved in the 

development of EBV-assciated disease is pivotal in devising new and improved 

treatments and in identifying those who are most susceptible to disease. The findings of 

this thesis cast some light on both of these aspects.  

Firstly, analysis of the specific characteristics of CTL used to treat PTLD patients 

revealed that patient response was enhanced when donor CTLs were matched to the 

recipient via HLA specificity and peptide epitope specificity rather than HLA 

specificity alone. Such an improved selection process may allow more restricted EBV-

associated tumours, such as HL and BL, to be treated effectively. As stated previously 

(introduction; section 1.5) new methods, such as peptide loading and transducing the 

LCL target used in the CTL culturing process, are being employed to generate epitope 

specific CTL. More recent approaches are aimed at engineering the TCR in order to 

redirect CTL to alternative antigens.  In this case TCR genes specific for a particular 

antigen are derived from T cell clones and transferred to naïve T-cells, thereby 

redirecting the cells to an alternative epitope. This approach has been shown to produce 

EBV-specific CTL that are fully functional, home to target sites and have some anti-

tumour effect (Kessels et al., 2001;Schaft et al., 2006). More robust matching criteria 

based upon HLA and peptide specificity mapping may be of benefit in the application 

of these treatment options. 

However, HLA restriction of CTL presents a continued barrier to main-streaming CTL 

therapy in the clinic as it dictates individualised patient treatment. Strategies have now 

been developed to bypass the HLA recognition process by creating antibody based 

chimeric receptors or ‘T-bodies’.  These constructs when cloned into T-cells replace the 

TCR element and enable T-cells to recognise antigen via the non-HLA-restricted 
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antibody recognition site, but still retain the down stream cytolytic function of the TCR 

(Gross and Eshhar, 1992).  T-bodies that target the CD19 molecule on B lymphocytes 

have been developed and shown to have some anti-tumour effect (Cheadle et al., 2005).  

The development of such ‘T-bodies’ specific for LMP-1 and and -2 antigens is currently 

being investigated in our laboratory and may provide an alternative HLA-independent 

treatment option for EBV-associated disease. 

Secondly, vaccination trials to prevent the development of IM have recently been 

reported and show promising results (Elliott et al., 2007;Moutschen et al., 2007). 

Therefore, identifying those most at risk of developing IM is crucial for the 

implementation of future vaccination strategies. The results of this thesis indicate that 

genetic variation within cytokine and HLA genes may render some individuals more 

susceptible to the development of IM, however, more detailed investigation of these 

genes is required to further enhance this observation. Similarly, genetic variation in 

cytokine genes may help to identify those with the highest risk of developing B-cell 

lymphomas following transplant. Time constraints in growing EBV-specific CTL 

restrict their use, especially with more aggressive tumours, therefore identification of 

risk groups would allow autologous EBV-specific CTLs to be established prior to 

transplant and development of tumour.  

The identification of such risk groups may also provide an environment for 

investigating the immune response in EBV-associated disease. In this thesis we 

observed that the T-cell response was reduced in the specific genetic group with a 

predisposition to IM (HLA-class I alleles). The reasons for this reduction are unclear 

and require further investigation. It would be interesting to investigate differences in 

EBV-specific T-cell response from  risk and non-risk genetic groups, especially as the 

alleles identified are located in the region of the genome involved with antigen 
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presentation to T-cells. We hope to investigate these differences in future studies by 

focusing on the quantitative and qualitative differences in T-cell recognition, binding, 

and killing of EBV targets. We aim to measure cytotoxic responses against EBV 

proteins using a modified chromium release assay and estimate the production of IFN-� 

by peptide-stimulated PBMCs in ELISPOT assays. Binding of T-cells will also be 

investigated by flow cytometry using HLA-A2 and A3 restricted latent and lytic 

peptide-specific tetramers. Differences in T-cell response identified may provide further 

explanation for the link between IM and EBV-positive HL.
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Appendix I: Patient information and 6 month outcome of CTL infusions 

Patient 
number Sex 

Age 
(years) 

Transplant 
type 

PTLD 
histology 

Infused 
CTL 

number 

Outcome 
6-

months 
1 F 1 Liver Monomorphic 67 R 

2 F 76 Liver Hodgkin 86 R 

3 M 51 Heart Monomorphic 91 R 

4 F 30 Stem cell Polymorphic 12 R 

5 M 27 Bone marrow Polymorphic 28 R 

6 F 68 Kidney Burkitt 86 R 

7 F 67 Kidney Hodgkin 95 R 

8 F 13 Liver Hyperplastic 68 R 

9 F 50 Liver Hodgkin 48 R 

10 M 3 
Liver, small 

bowel Hyperplastic 47 R 

11 F 5 Liver Hyperplastic 30 R 

12 M 2 
Liver, small 

bowel Hodgkin 7 R 

13 F 19 Kidney Polymorphic 24 R 

14 F 35 Kidney Monomorphic 40 & 15 R 

15 M 41 Kidney Monomorphic 57 R 

16 M 64 Kidney Monomorphic 68 R 

17 M 60 Liver Polymorphic 8 R 

18 M 11 Kidney Polymorphic 18 NR 

19 M 33 Heart Hyperplastic 9 NR 

20 M 14 Liver Hodgkin 50 NR 

21 F 51 Heart, lung Monomorphic 117 NR 

22 M 61 Kidney Monomorphic 44 NR 

23 M 49 Liver Polymorphic 58 NR 

24 M 48 Kidney Monomorphic 55 NR 

25 M 51 Kidney Monomorphic 13 NR 

26 M 19 Kidney Polymorphic 117 NR 

27 M 8 Lung Polymorphic 55 NR 

28 M 61 Liver Monomorphic 30 NR 

F: female, M: male, R: response, NR: No response 
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Appendix II: Protein and Peptide Specificity of Donor CTL 

CTL 
Number 

Dominant 
Response 

Subdominant 
Response Peptide Response 

7 EBNA-1 
EBNA-3C 
LMP-1, -2 

- 

8 EBNA-3A EBNA-1, -LP, -3C - 

9 EBNA-3C EBNA-LP - 

12 ND ND - 

13 EBNA-3C - - 

15 EBNA-3C - LLD (EBNA-3C) 

18 LMP-1 
EBNA-3C, -LP 

LMP-2 
- 

24 EBNA-3B - - 

28 ND ND - 

30 EBNA-3C EBNA-2 - 

40 EBNA-3C LMP-1 
LLD (EBNA-3C) 
LLW (LMP-2) 

44 EBNA-3A 
EBNA-3C 

LMP-2 
- 

47 EBNA-3C LMP-1 - 

48 EBNA-3A EBNA-LP QAK (EBNA-3A) 

50 EBNA-3B EBNA-1, -3C 
IVT (EBNA-3B) 
AVF (EBNA-3B) 

55 EBNA-3C EBNA-LP LLD (EBNA-3C) 

57 ND ND - 

58 EBNA-3B EBNA-1, -3A IVT (EBNA-3B) 

67 LMP-2 EBNA-3B 
GQG (EBNA-3B) 

LLW (LMP-2) 

68 EBNA-3C EBNA-3B - 

86 EBNA-3A - - 

91 EBNA-3B, -3C LMP-1, -2 
VEI (EBNA-3B) 

GQG (EBNA-3B) 
LLD (EBNA-3C) 

95 EBNA-3A, EBNA-3C LLD (EBNA-3C) 

117 EBNA-2 LMP-1, -2 - 

ND: not determined 
EBNA: Epstein-Barr nuclear antigen 
LMP: Latent membrane protein 
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Appendix III: Cytokine and cytokine receptor polymorphisms in IM, seropositive and 
seronegative subjects 
 

 
 
 

Polymorphism 
 

IM 
 
 

Freq 

(%) 

EBV 
sero-

positive 
 

Freq 

(%) 

 
 
 

p-
valuea 

EBV 
sero-

negative 
 

Freq 

(%) 

 
 
 

p-
valuea 

 
 
 

p-
valuea‡ 

Allele 

TNF-1031 T 75 77 74 

 C 26 23 
0.76 

26 
0.82 0.48 

TNF-863† C 85 85 83 

 A 15 15 
1 

17 
0.59 0.55 

TNF-857† C 89 91 91 

 T 10 9 
0.66 

9 
0.74 1 

TNF-307 G 83 80 77 

 A 17 20 
0.32 

23 
0.13 0.51 

TNF-237 G 97 95 95 

 A 3 5 
0.28 

5 
0.21 0.84 

IL-1-889 C 69 71 71 

 T 32 29 
0.63 

30 
0.74 1 

IL-1RI-1339† C 71 71 72 

 T 29 29 
0.92 

28 
0.74 0.84 

IL-6-174† C 38 41 46 

 G 62 59 
0.47 

54 
0.15 0.36 

IL-6 intron 4 A 65 63 57 

 G 35 37 
0.78 

43 
0.1 0.14 

IL-10-1082 A 49 55 45 

 G 51 45 
0.21 

55 
0.48 0.02* 

IL-10-819† C 76 73 79 

 T 24 27 
0.46 

21 
0.55 0.15 

IL-10-592† C 76 73 79 

 A 24 27 
0.46 

21 
0.55 0.15 

IL-10RI-241† G 59 51 56 

 A 41 49 
0.06 

44 
0.54 0.29 

Genotype 

TNF-1031 TT 56 57 53 

 TC 38 40 42 

 CC 6 3 

0.11 

5 

0.84 0.70 

TNF-863 CC 71 73 66 

 CA 29 25 34 

 AA 0 2 

0.24 

0 

0.46 0.11 

TNF-857 CC 79 84 82 

 CT 19 12 18 

 TT 1 2 

0.42 

0 

0.59 0.21 

TNF-307 GG 70 64 60 

 GA 27 32 34 

 AA 3 4 

0.55 

6 

0.26 0.73 

TNF-237 GG 94 90 89 

 GA 6 10 

0.21 

11 

0.17 0.77 
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 AA 0 0 0 

IL-1�-889 CC 46 49 51 

 CT 45 44 39 

 CC 9 7 

0.86 

10 

0.69 0.86 

IL-1 RI-1339 CC 45 48 50 

 CT 51 46 44 

 TT 4 5 

0.67 

8 

0.33 0.72 

IL-6-174 CC 11 17 18 

 CG 55 49 55 

 GG 34 34 

0.32 

27 

0.24 0.42 

IL-6 Intron 4 AA 38 39 37 

 AG 55 48 40 

 GG 8 13 

0.36 

23 

0.006* 0.06 

IL-10-1082 AA 27 28 22 

 AG 44 52 46 

 GG 29 19 

0.15 

32 

0.72 0.04* 

IL-10-819 CC 60 57 62 

 CT 32 33 33 

 TT 8 10 

0.77 

5 

0.65 0.35 

IL-10-592 CC 60 57 62 

 CA 32 33 33 

 AA 8 10 

0.77 

5 

0.65 0.35 

IL-10 RI-241 GG 35 22 35 

 GA 49 59 42 

 AA 17 19 

0.05 

23 

0.42 0.05 

Haplotype 

TNF TCCGG 80 76 0.45 70 0.13 0.39 

 TCCAG 28 37 0.14 38 0.17 0.89 

 CACGG 23 26 0.66 33 0.14 0.26 

 TCTGG 19 15 0.49 19 1 0.39 

 CCCGA 5 9 0.34 9 0.4 1 

 CCCGG 14 8 0.09 9 0.27 0.82 

IL-10 ATA 40 43 0.61 38 0.77 0.38 

 ACC 42 48 0.38 40 0.77 0.21 

 GCC 73 72 0.88 78 0.51 0.32 
a Fisher’s Exact 2-sided p-value for allele and haplotype analysis; Chi Square for genotype analysis 
* Significant p-value, p<0.05 
† Not in Hardy Weinberg equilibrium 
‡ p-value for comparison of seropositve and seronegative subjects groups 
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