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Abstract

Morphology and syntax have both received attention in statistical machine translation

research, but they are usually treated independently and the historical emphasis on

translation into English has meant that many morphosyntactic issues remain under-

researched. Languages with richer morphologies pose additional problems and con-

ventional approaches tend to perform poorly when either source or target language has

rich morphology.

In both computational and theoretical linguistics, feature structures together with

the associated operation of unification have proven a powerful tool for modelling many

morphosyntactic aspects of natural language. In this thesis, we propose a framework

that extends a state-of-the-art syntax-based model with a feature structure lexicon and

unification-based constraints on the target-side of the synchronous grammar. Whilst

our framework is language-independent, we focus on problems in the translation of

English to German, a language pair that has a high degree of syntactic reordering and

rich target-side morphology.

We first apply our approach to modelling agreement and case government phe-

nomena. We use the lexicon to link surface form words with grammatical feature

values, such as case, gender, and number, and we use constraints to enforce feature

value identity for the words in agreement and government relations. We demonstrate

improvements in translation quality of up to 0.5 BLEU over a strong baseline model.

We then examine verbal complex production, another aspect of translation that

requires the coordination of linguistic features over multiple words, often with long-

range discontinuities. We develop a feature structure representation of verbal complex

types, using constraint failure as an indicator of translation error and use this to au-

tomatically identify and quantify errors that occur in our baseline system. A manual

analysis and classification of errors informs an extended version of the model that in-

corporates information derived from a parse of the source. We identify clause spans

and use model features to encourage the generation of complete verbal complex types.

We are able to improve accuracy as measured using precision and recall against values

extracted from the reference test sets.

Our framework allows for the incorporation of rich linguistic information and we

present sketches of further applications that could be explored in future work.
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Lay Summary

The field of machine translation was dramatically altered by IBM’s introduction of

statistical translation models in the early 1990s. Whereas previous approaches had

required the painstaking manual development of translation dictionaries and grammars,

IBM’s models were able to learn statistical patterns of translation from previously-

translated corpora and then translate new texts by generating and searching through

huge numbers of potential translations. In the following years, the field of statistical

machine translation (SMT) has made rapid progress.

Linguistically, the modelling of language in SMT is extremely simplistic — largely

by necessity. A significant proportion of SMT research is dedicated to ameliorating

modelling deficiencies, although doing so is rarely straightforward. Morphology and

syntax have both received a considerable amount of attention and these efforts have

been met with some success. However, these two aspects of grammar are usually

treated independently, which precludes the accurate modelling of many linguistic phe-

nomena. The historical focus on translation into English has meant that many mor-

phosyntactic issues remain under-researched.

In both computational and theoretical linguistics, feature structures, which are sim-

ple, structured collections of attributes, and the associated information-combining op-

eration of unification have proven powerful tools for modelling many aspects of lan-

guage. In this thesis, we propose a framework that extends a state-of-the-art syntax-

based SMT model by using feature structures to store morphosyntactic attributes of

target-language words. We then apply constraints to ensure that syntactically-related

words of the translation have compatible properties. Whilst our framework is language-

independent, we focus on problems in the translation of English to German, a language

pair that has a high degree of syntactic reordering and rich target-side morphology.

We first apply our approach to modelling agreement and case government phe-

nomena. We use feature structures to associate target-side words with grammatical

attributes, such as case, gender, and number, and we use constraints to ensure attribute

compatibility for the words in agreement and government relations. We demonstrate

improvements in translation quality over a strong baseline model.

We then apply our approach to modelling verbal complexes — multi-verb con-

structions where a main verb is used with auxiliaries (in English, examples are “will

play,” “has been playing,” and “is played”). We find that using target-side constraints

alone is insufficient for this task and we improve our model by incorporating additional

information about the corresponding source-side clauses and their verbs.
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Chapter 1

Introduction

But when we say that a translation is an acceptable one, what we name is
an overall relationship between source and target that is neither identity,
nor equivalence, nor analogy — just that complex thing called a good
match. — David Bellos (2011)

The task of statistical machine translation is framed in the following way: given

a string s in the source language, find the string t∗ in the target language that has the

highest probability according to the distribution p(t|s). Of course, the true distribution

p(t|s) is unknowable without first solving virtually every problem in artificial intelli-

gence, linguistics, and probably a number of fields yet to be invented. So instead we

try to define a model that assigns higher probabilities to “good” translations and lower

probabilities to “bad” translations.

Since the breakthrough development of IBM’s word-based models in the late 1980s

(Brown et al., 1990; 1993), the field has made rapid progress. Phrase-based models

(Och, 2002; Marcu and Wong, 2002; Zens et al., 2002; Koehn et al., 2003) translate

and reorder text in chunks, allowing the model to capture localized phenomena, such

as the reordering of adjectives and nouns between French and English, the insertion

or deletion of punctuation, and translations of multiword expressions and idioms like

“Arthur’s Seat” or “cry wolf.” Syntax-based models have followed, with the emphasis

being on the use of phrase-structure (Yamada and Knight, 2001; Galley et al., 2004;

Chiang, 2005) or dependency structure (Shen et al., 2008) to improve word order.

However, most research on statistical modelling over this time has been focused

on translation into English. Languages with richer inflectional morphologies pose ad-

ditional challenges for translation and conventional SMT approaches tend to perform

poorly when either source or target language has rich morphology (Koehn, 2005).

In this thesis our focus is on translation into morphologically-rich languages with

1



Chapter 1. Introduction 2

the aim of improving linguistic consistency of output. Previous approaches have suc-

cessfully applied sequence models (Koehn and Hoang, 2007; Toutanova et al., 2008;

Green and DeNero, 2012) to encourage consistent inflectional choices over adjacent

words. This works well for many localised phenomena, but the models do not account

for longer-range phenomena such as pronoun-antecedent agreement or subject-verb

agreement in verb-final languages. To do this requires keeping track of both morpho-

logical and syntactic features simultaneously.

In both computational and theoretical linguistics, many monolingual models of

phrase-structure grammar make use of feature structures to represent underlying lin-

guistic properties of words and constituents. Feature structures together with the asso-

ciated operation of unification have proven a powerful tool for modelling many aspects

of natural language, enabling concise accounts of agreement, case control, verb sub-

categorization, and verb-raising, among others.

We believe that the well-defined machinery of feature structures and unification

offer a means of incorporating further linguistic information into syntax-based models

and tackling problems that are poorly addressed by surface form and tree structure

representations alone. We therefore propose a framework that extends a strong syntax-

based model with a feature structure lexicon and unification-based constraints.

Whilst our framework is language-independent, we focus on problems in the trans-

lation of English to German, a language pair which has a high degree of syntactic

reordering and rich target-side morphology. Specifically, we apply the approach to

agreement, case government, and verbal-complex translation. We also present sketches

of further applications that could be explored in future work.

1.1 Thesis Outline

Chapter 2 outlines the three major types of model used in statistical machine transla-

tion: word-based, phrase-based, and syntax-based. Almost all of the related work that

we subsequently refer to is rooted in one of these approaches. The emphasis in this

chapter is on the models’ generative stories and mathematical formulation.

Chapter 3 describes the main algorithms that have been developed for rule extrac-

tion and decoding in string-to-tree models, the type of syntax-based model that we

use as our baseline. We will later adapt these standard rule extraction and decoding

algorithms to incorporate unification-based constraints in the grammar and to enforce

constraints during translation.
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Chapter 4 introduces the fundamental concepts of unification-based approaches to

grammar. We discuss the use of unification-based models in transfer-based approaches

to machine translation.

Chapter 5 presents the unification-based framework that we use throughout the rest

of the thesis. We first describe the grammar formalism, an extension of synchoronous

context-free grammar that adds constraints to the target-side of the grammar rules. We

then describe how constraint evaluation can be integrated into decoding.

Chapter 6 describes the baseline model and data that are used for experiments in

subsequent chapters.

Chapter 7 discusses the problems posed by inflectional morphology in statistical

translation and particularly issues of agreement and government. We show experimen-

tally that naively integrating morphological tags can harm translation quality and we

discuss previous approaches to the problem. We apply our unification-based approach

to specific problems of agreement and case government in German.

Chapter 8 examines verbal-complex production, another aspect of translation that

requires the coordination of linguistic features over multiple, often discontiguous,

words. The problem is again morphosyntactic, but with a greater intermixture of syn-

tactic and morphological form than is seen in agreement or government. We discuss

the multiple sources of model error that can contribute to translation failure before de-

veloping a unification-based model of verbal-complex production. We use the failure

to form satisfactory feature structures as an indicator of translation error and use this to

automatically identify and quantify errors that occur in our baseline system. A manual

analysis and classification of these errors informs the next chapter.

Chapter 9 extends our verbal-complex model to incorporate source-side informa-

tion into the constraints. We use syntactic information from the source to identify

clause spans and use model features to encourage the generation of complete verbal-

complex types. We measure accuracy against values extracted from the reference test

sets.

Finally, Chapter 10 sketches other applications for our framework that could be

explored in future work and concludes.

1.2 Thesis Contributions

• We develop a language-independent framework for incorporating additional lin-

guistic information into syntax-based translation models using the well-understood
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machinery of feature structures and unification.

• We describe how unification-based constraint evaluation can be efficiently in-

tegrated into parsing-based decoding. We demonstrate that, although there are

computational costs, our approach is viable for full-scale translation tasks.

• We develop models for agreement, government, and verbal-complex translation

in German, and demonstrate improvements in translation quality over a strong

baseline model.

• We demonstrate that constraints can be useful for pinpointing translation errors

in a system. For our model of verbal-complex production, we find that approx-

imately 80% of incomplete and inconsistent feature structures indicate genuine

translation errors. Using this as the basis of a semi-automatic approach to anal-

ysis, we present a fine-grained error classification for our baseline system.

• Finally, we outline further applications that could be addressed in future work.

1.3 Related Publications

Chapters 5 and 7 expand on work that was published under the title “Agreement Con-

straints for Statistical Machine Translation into German” in the Proceedings of the

Sixth Workshop on Statistical Machine Translation (Williams and Koehn, 2011).

The baseline system described in Chapter 6 and used throughout the thesis is based

on the system described in the paper “GHKM Rule Extraction and Scope-3 Parsing in

Moses” published in the Proceedings of the Seventh Workshop on Statistical Machine

Translation (2012) (Williams and Koehn, 2012).

Chapters 8 and 9 present an expanded version of work that was published under

the title “Using Feature Structures to Improve Verb Translation in English-to-German

Statistical MT” in the Proceedings of the 3rd Workshop on Hybrid Approaches to

Machine Translation (Williams and Koehn, 2014).



Chapter 2

Statistical Machine Translation Models

But it must be recognized that the notion “probability of a sentence” is
an entirely useless one, under any known interpretation of this term. —
Noam Chomsky (1969)

2.1 Introduction

In this chapter we outline the three major types of model used in statistical machine

translation: word-based, phrase-based, and syntax-based. These three approaches de-

compose the full problem of translation in different ways, making different simplifying

assumptions, but they all fit within a common statistical framework that has its roots in

information theory and machine learning.

The task of statistical machine translation is framed in the following way: given a

string, s, in the source language, find the string, t∗, in the target language that has the

highest probability according to a distribution p(t|s):

t∗ = argmax
t

p(t|s) (2.1)

The challenge is threefold: first, to model a probability distribution p(t|s) that, given

suitable parameters, assigns relatively high probabilities to “good” translations of s and

relatively low probabilities to “bad” translations. Second, to learn the parameters of

the model. And third, to provide a practical means of finding, or approximating, the

highest probability target string t∗ among a potentially infinite number of candidates.

In the following sections, we outline the statistical models that are used to define

p(t|s). Our main emphasis is on the generative stories and linguistic expressiveness of

the models. We defer discussion of how the models are trained and the computational

search process to later chapters.

5



Chapter 2. Statistical Machine Translation Models 6

Almost all of the related research uses one of these three model types and this

chapter introduces concepts that are referred to later in the thesis.

First, we take a step back and consider the task of translation in terms that are

more familiar to the human translator. Ultimately, we are trying to mimic human

translation — the observed results, if not the underlying processes (which we are far

from understanding). So what are the kinds of process that we are hoping to capture in

our models?

2.2 The Translation Task

To better illustrate the strengths and weaknesses of these different models, we first

examine two examples of human translation and draw attention to aspects of translation

that we would like an ideal statistical model to capture. We will use these translations

as the basis for running examples.

2.2.1 Example 1

Our first example sentence pair is taken from the development set that we will de-

scribe in Chapter 6. The original sentence is from an English-language article in The

Economist magazine and was translated into German by a human translator.

English As British political scandals go, this one is not particularly juicy.

German Für britische Skandale ist dieser nicht besonders schlüpfrig.

Gloss for British scandals is this not particularly juicy.

Figure 2.1: Sentence 1,460 from the newstest2008 development set

Apart from the dropping of the adjective ‘political’ the translation is faithful to the

original. The simplest statistical approach, a direct word-for-word translation based

on a frequency dictionary, might produce a gloss that a human reader could interpret

with moderate success, but clearly we would prefer a translation that is closer to the

human translator’s above. Let us consider some of the aspects of this translation that

we would like a statistical system to reproduce:

Idiomatic constructions The English sentence uses the adverbial construction as . . . go,

which cannot be translated literally into German. In this case, the translator

chooses a prepositional phrase similar to the English for . . . .
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Verb placement The position of German verbs is fixed according to the clause type.

For a declarative main clause, the finite verb always appears in the second posi-

tion. This requires a change in constituent order relative to the English sentence,

where the finite verb occurs in the third position (after the adverbial clause and

the subject).

Case marking The subject of the English sentence is this one. Its role as subject is ap-

parent from the syntactic structure of the clause: it appears before the finite verb

in a declarative clause. German uses a freer verb argument order than English

and the subject role of the translation, dieser, is instead indicated through inflec-

tion (if this one were instead the object it would be translated as an accusative

form, such as diesen).

Noun-modifier agreement Unlike in English, German attributive adjectives are in-

flected to agree with the nouns that they modify. Since the noun Skandale is

plural and occurs in an accusative-case phrase, the modifying adjective britis-

che must be used rather than one of the four other attributive forms: britischen,

britischem, britischer, britisches.

2.2.2 Example 2

Our second example is taken from the same development set as the first. The orig-

inal sentence is from an English-language article in The New York Times and was

translated by a human translator.

English Members of the general public could buy tickets for 30 euros ($44.57).

German Die Öffentlichkeit konnte Tickets für 30 Euros (44.57 Dollar) kaufen.

Gloss the public could tickets for 30 Euros (44.57 dollars) buy.

Figure 2.2: Sentence 1,573 from the newstest2008 development set

Paraphrasing The translator chooses to render the English members of the general

public as die Öffentlichkeit (“the public”) instead of the closer possibility Mit-

gliedern der Öffentlichkeit. The longer form has a very similar meaning in both

languages, but is used with differing frequencies (in the Europarl corpus, ‘mem-

bers of the public’ occurs 203 times while ‘Mitglieder(n) der Öffentlichkeit oc-

curs 10 times).
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Verb-final constructions In many German constructions, the main verb is placed at

the end of a clause. When translating an English sentence, this can involve the

arbitrarily large movement of the main verb relative to its original position. The

grammar rules that decide verb-final placement are very regular: in this instance,

it is the use of a modal finite auxiliary construction: konnte . . . kaufen.

Subject-verb agreement Both English and German require present-tense finite verbs

to agree in person and number with the subject. In Example 1, the subject (‘this

one’) is singular and in the third person and so the verb form ‘is’ is used, rather

than ‘am’ or ‘are.’ For most English verbs, only two finite present-tense forms

are distinguished (via the presence or absence of the suffix ‘-s’). Modal verbs

are an exception and in this example the same form, ‘could,’ would be used

if the subject were singular. The same is not true of German, which requires

agreement of finite modals and distinguishes a richer set of forms. For instance,

‘could’ would we be translated ‘konntest’ in the second-person singular.

2.3 Word-Based Models

The development in the late 1980s of IBM’s word-based models (Brown et al., 1990;

1993) was a breakthrough in machine translation. Whilst these models are no longer

state-of-the-art, having been supplanted by phrase-based models in the early 2000s,

many of the concepts introduced with this work are still present in some form in con-

temporary models, and word-based models themselves are still used for the sub-task

of automatic word alignment and as the basis of translation scoring features.

2.3.1 Word Alignments

A fundamental concept in word-based models is that of word-by-word alignments. In

its most general form, a word alignment is a function that defines a many-to-many re-

lationship between the source and target words of a sentence pair. Figure 2.3 illustrates

two possible alignments for our example translation from Section 2.2.1.

Whilst the definition permits alignment links between any pair of words, it is clear

that among all possible links, some reflect an underlying translational equivalence bet-

ter than others. For example, the first alignment in Figure 2.3 defines a mapping be-

tween ‘nicht’ and ‘not’ which is clearly a truer equivalence than the second alignment’s

mapping between ‘nicht’ and ‘this one is not particularly juicy.’
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As British scandals go notis juicyonethis particularly, .

Für britische Skandale ist nicht besondersdieser schlüpfrig .

political

As British scandals go notis juicyonethis particularly, .

Für britische Skandale ist nicht besondersdieser schlüpfrig .

political

Figure 2.3: Two possible word alignments

2.3.2 The Noisy-Channel Model

Following an information theoretic approach that had recently been applied in auto-

matic speech recognition, Brown et al. (1993) applied Bayes’ theorem to obtain

p(t|s) =
p(s|t)p(t)

p(s)
(2.2)

For any given source sentence, the denominator p(s) is fixed and can therefore be

factored out when comparing target string probabilities. The translation task is thus

defined as the search for the target string t∗ such that

t∗ = argmax
t

p(t|s)

= argmax
t

p(s|t)p(t) (2.3)

In speech recognition, the equivalent p(t) component had been successfully modelled

using m-gram language models. Brown et al. (1993) adopted the same solution, mak-

ing the p(s|t) component their focus of attention.

2.3.3 IBM Models 1-5

As the term ‘word-based’ suggests, the fundamental unit used by the IBM models is

the word. To model p(s|t), the sentences s and t are treated as sequences of words,

which we will denote as s1,s2, . . . ,s|s| and t1, t2, . . . , t|t|, respectively, and the problem

of sentence translation is cast as a problem of combining lexical translations.
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All five models presuppose the existence of many-to-one alignments from s to t,

treating the alignment object as a hidden variable. The probability p(s|t) can therefore

be expressed as a sum over every possible many-to-one aligment a from s to t:

p(s|t) = ∑
a

p(s,a|t) (2.4)

As we have already noted, some alignments are more plausible than others and this

is where the models differ: in Model 1 all alignments are assumed to have uniform

probability. In the higher models, alignment weighting models become increasingly

sophisticated.

Model 1

In common with the other four models, IBM Model 1 makes the simplifying assump-

tion that the probability of a word si being produced from an aligned target word t j

depends only on the word t j. In order to explain source words that have no natural

target counterpart, a special target word, null, is added and ‘unaligned’ source words

are aligned to null. Under the restriction that alignments are many-to-one, this gives

a total of (|t|+ 1)|s| possible alignments. IBM model 1 is therefore expressed in the

following equation:

p(s|t) =
ε

(|t|+1)|s| ∑a

|s|

∏
i=1

p(si|tai) (2.5)

where ε is a normalizing constant.

Model 2

Model 2 introduces the concept of a distortion function, d, a probability distribution

where reordering of words is conditioned on |s|, |t|, and absolute target word position,

i.

p(s|t) = ε∑
a

|s|

∏
i=1

p(si|tai)d(ai|i, |s|, |t|) (2.6)

One possible definition of d is 1/(|t|+1)|s| and therefore Model 1 is a special case

of Model 2.
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Models 3-5

Models 3-5 progressively introduce improvements over Model 2, at the cost of addi-

tional training complexity.

Model 3 refines Model 2 by introducing the notion of fertility. This corresponds

to the intuitive idea that some words are more likely than others to be dropped during

translation, whilst some words — like compounds or contractions — are more likely

than others to be translated into multiple words. The fertility model is defined formally

as a probability distribution p(n|w) that indicates how likely it is that a word w will be

be translated into n words.

Model 4 refines Model 3 by replacing the absolute distortion function with a rela-

tive model. Essentially, the relative distortion model is a probability distribution that

indicates how likely it is that a translation of word ti+1 is placed at a distance d from

the translation of word ti.

Model 5 refines Model 4 by addressing a technical deficiency whereby probability

mass is assigned to events that are not actually possible.

2.3.4 Shortcomings of Word-based Models

The suitability of a particular statistical approach to translation will depend to some

extent on the characteristics of the source and target languages that are involved. For

instance, making the word an atomic unit of translation has different implications for

a minimally-inflected language like Chinese compared to a highly-inflected language

like Finnish. All of the approaches in this chapter treat the surface-forms of words as

atomic and we will return to this issue in Chapter 7 where we will describe some of

the extensions and related models that have been proposed in the literature.

For translation between lightly-inflected languages, a more prominent shortcoming

of word-based models is the assumption of independence between lexical translations.

Many aspects of language and of translation are difficult to account for in terms of

individual words and would be better explained by many-to-many translation rules.

For instance, in the example translation of Section 2.2.1 the construction “as X go”

was translated to “für X.” The generative story of IBM Model 4 goes something like

this:

1. For the word ‘as’ choose a fertility of 0; for ‘go’ choose 1 (or vice versa)

2. Translate ‘go’ (or ‘as’) to ‘für’
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3. Choose fertilities and translate the individual words of X

4. Reorder the resulting German words so that ‘für’ occurs before the translations

of X’s words (if we chose ‘as’ then no reordering is necessary)

The problem is that although translating “as X go” to “für X” may be quite likely,

the individual steps of the above generative story are not: für is not a good translation

of either as or go. Fertility and distortion scoring also has little context to go on.

2.4 Phrase-Based Models

Phrase-based models (Och, 2002; Marcu and Wong, 2002; Zens et al., 2002; Och and

Ney, 2004) decompose sentence translation into a problem of combining phrasal trans-

lations. A ‘phrase’ in this case is simply a substring and is not related to the conven-

tional linguistic notion of a phrase. The source and target sentences s and t are thus

sequences of some number, 1 ≤ L ≤ min(|s|, |t|), of phrases. Phrasal alignment is sim-

pler than word alignment: source and target phrases are aligned one-to-one and there

is no null phrase. We will use the term derivation to refer jointly to a segmenta-

tion of a source sentence together with a one-to-one alignment to a sequence of target

phrases. For a derivation that segments the source sentence into L phrases, we will

denote the resulting sequence of target phrases as t1, t2, . . . , tL and we will denote the

source phrase corresponding to t i as si (the source sentence is thus a permutation of the

sequence s1,s2, . . . ,sL).

Figure 2.4 illustrates two possible derivations for the example translation of Sec-

tion 2.2.1. The first involves comparatively large phrase pairs, which are able to ac-

count for localised phenomena such as the deletion of the comma and the translation of

the phrasal construction as . . . go to für. However, translation relies upon the model’s

repository of phrase-pairs and longer source phrases are likely to be sparse or unseen

in the training data. The second derivation shows an alternative generative story that is

more realistic under these conditions.

Early phrase-based models followed the noisy-channel approach used in word-

based models. The objective is therefore as in Equation 2.3:

t∗ = argmax
t

p(s|t)p(t)

Just as the word-based models involve a sum over all possible alignments, the phrase-
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As British political scandals go , this one is not particularly juicy .

Für britische Skandale ist dieser nicht besonders schlüpfrig .

As British political scandals is juicygo , this one not particularly .

Für britische Skandale dieser nicht besonders schlüpfrig .ist

Figure 2.4: Two possible phrase-based derivations.

based model involves a sum over all possible derivations:

t∗ = argmax
t ∑

d

p(s,d|t)p(t)

where d ∈ D(s, t), the set of derivations over s and t. To avoid the computationally

intractable sum over derivations, the search objective is approximated using a single

derivation:

t∗ ≈ argmax
t,d

p(s,d|t)p(t) (2.7)

As in the word-based models, p(t) is modelled using an m-gram language model,

leaving p(s,d|t) as the focus of attention. Here is the formulation from Koehn et al.

(2003):

p(s,d|t) =
L

∏
i=1

p(si|t i)r(ai −bi−1) (2.8)

The function r is a probability distribution that models relative distortion. The argu-

ment is the difference between ai and bi−1, where ai is the position of the first word of si

and bi−1 is the position of the last word of si−1. In other words, ai −bi−1 is a distance-

based measure of the degree of source phrase reordering with respect to the aligned

target phrases. In use, r is defined such that phrase reordering is penalized. Later work

(Tillmann, 2004; Koehn et al., 2005) introduces more sophisticated reordering models

that take into account the lexical content of the phrases.

2.4.1 Log-linear Models

At around the time the early phrase-based models were being developed, Och and

Ney (2002) proposed a more general framework in place of the noisy-channel model.
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Following the maximum entropy approach of Berger et al. (1996), they reformulated

the fundamental equation of statistical machine translation as

p(t|s) =
exp
(

∑M
m=1 λmhm(t,s)

)

∑t ′ exp
(

∑M
m=1 λmhm(t ′,s)

) (2.9)

where h1, . . . ,hM are real-valued functions and λ1, . . . ,λM are real-valued constants.

The denominator in Equation 2.9 is a sum over all possible translations of s. Com-

puting its value is clearly a computationally demanding proposition for non-trivial

functions hm (and non-zero λs) even if the length of a translation is bounded. For-

tunately, this term is constant for a given source sentence and so can be ignored for the

purposes of decoding.1 The noisy-channel formula of Equation 2.3 is thus replaced

with

t∗ = argmax
t

p(t|s)

= argmax
t

M

∑
m=1

λmhm(t,s)

= argmax
t ∑

d

M

∑
m=1

λmhm(t,s,d) (2.10)

As before, the search objective is approximated by a search for the best derivation:

d∗ = argmax
d

M

∑
m=1

λmhm(t,s,d) (2.11)

As Och and Ney (2002) point out, the noisy-channel formulation is a special case

of Equation 2.11 (when M = 2, λ1 = λ2 = 1, h1 = log p(s,d|t) and h2 = log p(t)).

The log-linear formulation has the advantage that arbitrary feature functions can be

added to the model and that the individual components can be weighted using the λ

parameters. They demonstrated that this led to improvements in translation quality.

The log-linear approach was rapidly adopted and a common core of feature func-

tions established. A modern phrase-based system typically includes feature functions

for the language model, phrasal translation probabilities (in both directions), lexical

translation probabilities (in both directions), a target-sentence length penalty, phrase

count penalty, and a lexicalised reordering model.

1The denominator (or an approximation to it) may be required for training, depending on the ap-
proach. For instance, Och and Ney (2002) use the Generalized Iterative Scaling algorithm (Darroch and
Ratcliff, 1972) to learn values for λ1, . . . ,λM that maximise the likelihood of the training data according
to the model. To perform the renormalization required by the algorithm, they use a sampling-based
approach to approximate the denominator. Starting with MERT (Och, 2003), most modern training
approaches use task-specific criteria, such as the optimization of BLEU score, which do not require
renormalization.
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2.4.2 Shortcomings of Phrase-based Models

The phrase-based model as described in Section 2.4 defines a search problem that is

exponential in sentence length (Knight, 1999). In practice, reordering must be reduced

to a small window, which precludes many of the reorderings necessary in translating,

for example, from an SVO language to an SOV language. Even for short and medium-

range reordering, analysis has shown the phrase-based model to perform poorly (Birch

et al., 2009).

The definition of translation rules as substring pairs means that many potentially

useful generalizations cannot be learned. For example, knowing the mapping from ‘as

British political scandals go’ to ‘für britische Skandale’ is of no help in translating ‘as

Polish political scandals go.’

In common with the word-based models, the phrase-based model has no means of

incorporating linguistic structure, such as syntax, morphology, or semantics, beyond

the surface forms.

2.5 Syntax-Based Models

2.5.1 Hierarchical Phrase-based Models

Hierarchical phrase-based models (Chiang, 2005; 2007) generalize the concept of a

phrase to allow gaps into which other hierarchical phrases can be nested. Figure 2.5

illustrates one possible hierarchical phrasal segmentation for the example translation

of Section 2.2.1.

 , this one is not particularlyAs                                               go juicy .

ist dieser .

British political scandals

Für britische Skandale nicht besonders schlüpfrig 

Figure 2.5: A possible hierarchical phrasal alignment

The model is formalized as a synchronous context-free grammar (SCFG) (Aho and

Ullman, 1969) in which gaps are represented by non-terminals with the generic label

X . The grammar rules (with two exceptions) are of the form
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X → 〈γ,α,∼〉

where γ is a string of source terminals and non-terminals, α is a string of target ter-

minals and non-terminals, and ∼ is a one-to-one correspondence between source and

target non-terminals.

The segmentation shown in Figure 2.5 can be viewed as a sequence of three partial

derivations (the first yields “as British political scandals go” on the source side, the

second “this one is not particularly juicy”, and the third “.”). The first can be derived

using the following SCFG rules (we use subscripted indices to denote the rules’ non-

terminal correspondences):

X → 〈für X[1],as X[1] go〉

X → 〈britische Skandale,British political scandals〉

The grammar contains two further rules:

S → 〈X[1],X[1]〉

S → 〈S[1] X[2],S[1] X[2]〉

S is the start symbol. Together, the two S rules, referred to as “glue” rules, can mono-

tonically combine X derivations to produce S derivations. In Figure 2.5, the glue rules

can be thought of as combining the sequence of partial derivations into a full sentence

pair derivation.

Whereas the phrase-based model decomposed sentence translation into a problem

of i) segmenting the source into phrases, ii) translating the phrases, and then iii) re-

ordering the translations, the hierarchical model decomposes sentence translation into

a process of i) segmenting the source sentence into hierarchical phrases and then ii)

translating the hierarchical phrases. In the SCFG framework, the result is a syn-

chronous derivation d, which is a sequence of rule applications.

As with modern phrase-based systems, Chiang (2005) formulated the hierarchical

phrase-based model within the log-linear framework of Och and Ney (2002):

t∗ = argmax
t ∑

d

M

∑
m=1

λmhm(t,s,d) (2.12)

In this instance, d ∈ D, the set of synchronous derivations with source s and yield t.

The set of feature functions is analagous to those of the phrase-based model, including

hierarchical phrasal translation probabilities, lexical translation probabilities, word and

rule count penalties, and an m-gram language model.
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Again, the search is approximated by a search for a single derivation:

d∗ = argmax
d

M

∑
m=1

λmhm(d,s)

= argmax
d

(

λ1 log pLM(d)+∑
ri

M

∑
m=2

λmhm(ri)

)

(2.13)

where ri is a rule application in the derivation d. Whilst the derivation’s score would

ideally be decomposed fully into a sum of subderivation scores, the m-gram language

model’s cannot be decomposed in this way. We will return to this issue in Section 3.3

when we describe search algorithms for this model.

2.5.2 String-to-Tree Models

Chiang’s (2005) model is syntactic in a purely formal sense. It is able to capture

hierarchical structure inherent in the data, but it does not make use of linguistically-

motivated syntactic annotation, which can be both a strength and a weakness.

If syntactic trees are available for the target-side of the training data then a richer

model, often called a string-to-tree model2, can be learned. Motivated by the potential

for a stronger model of reordering, Yamada and Knight (2001) developed an early

noisy-channel model in which a target parse tree is recovered from a source string

that is presumed to have been transformed via a series of reordering, insertion, and

translation operations. More recent work, such as that of Galley et al. (2004), Galley

et al. (2006), Marcu et al. (2006), Zollmann and Venugopal (2006), and Zhang et al.

(2011) is closer to the hierarchical phrase-based model.

Figure 2.6 shows part of the hierarchical phrasal segmentation from Figure 2.5

annotated on the English side with a phrase structure tree fragment. In this example,

we treat the English side as the target-side, making this a string-to-tree model.

Two aspects are particularly important. The first is that the segmentation decom-

poses the target sentence into substrings that are each matched by a single subtree. The

second is that the annotation is multi-level: that is, the annotation includes intermediate

structure between the subtree root and the words and gaps (like the internal S and VP

in the outer phrase’s annotation in Figure 2.6). The use or not of intermediate structure

determines the variety of synchronous grammar required to formalise the model.

2On this pattern, a hierarchical-phrase based model is sometimes called a string-to-string model,
referring to the fact that the model operates on string pairs with the formal syntactic representation
being somewhat latent.
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Für britische Skandale

IN

SBAR

S

as

JJ

British

JJ

political

NNS

scandals

NP

go

VBP

VP

Figure 2.6: Hierarchical phrasal alignment with tree annotation

If intermediate structure is used then the model can be formalised as a synchronous

tree-substitution grammar (STSG), a variant of synchronous tree-adjoining grammar

(Shieber and Schabes, 1990) that includes the substitution operation but not the ad-

junction operation.

The STSG grammar rules are of the form

〈γ,π,∼〉

where γ is a string of source terminals and non-terminals, π is a tree with target terminal

and non-terminal leaves, and ∼ is a one-to-one correspondence between source and

target non-terminals.

Adopting the same convention of using subscripted indices for non-terminal corre-

spondences, the STSG rules for Figure 2.6 can be written

X[1] , S

SBAR[1]

(r1)

für X[1] , SBAR

VP

VBP

go

NP[1]IN

as

(r2)
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britische Skandale , NP

NNS

scandals

JJ

political

JJ

British

(r3)

The internal structure of π does not influence rule application and therefore an

STSG is always weakly-equivalent to an SCFG in which the πs are ‘flattened’ and

their root labels converted to rule left-hand sides. In this case, the model can be for-

malised identically to the hierarchical phrase-based model except that the non-terminal

vocabulary is expanded to include the tree labels and additional glue rules are included

to combine derivations with label types from this richer vocabulary.

If we ignore the internal structure of Figure 2.6 then the corresponding derivation

can be produced using the following SCFG rules:

S′ → 〈X[1],SBAR[1]〉

SBAR → 〈für X[1],as NP[1] go〉

NP → 〈britische Skandale,British political scandals〉

We use S′ as the start symbol avoid confusion with the constituent label S.

The string-to-tree model decomposes sentence translation into a process of i) seg-

menting the source sentence into hierarchical phrases and then ii) translating the hi-

erarchical phrases, which generates a target tree. Apart from the constraint that the

target tree is well-formed, the process is the same as for the hierarchical phrase-based

model. The formulation of the model given in Equation 2.13 therefore carries over to

the string-to-tree scenario unchanged, though of course the option opens up to define

feature functions in terms of the syntactic annotation.

2.5.3 Tree-to-String Models

Tree-to-string models are formalized exactly as for string-to-tree models except that

tree structure annotation is added to the source-side of the segmentation instead of the

target-side. This alters the generative process, introducing the requirement that a parse

tree is available for the source sentence. Thus, the tree-to-string model decomposes

sentence translation into a process of i) segmenting the source tree into syntactically-

annotated hierarchical phrases and then ii) translating the hierarchical phrases, which

generates a target string.

Early tree-to-string models were developed by Huang et al. (2006) and Liu et al.

(2006). The former refer to the approach as syntax-directed translation and as their
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name suggests, the motivation for the incorporation of source syntax lies in the use of

source language analysis as additional context for the selection of translation rules.

Tree-to-string systems have the practical advantage that the translation step is asymp-

totically faster than in hierarchical or string-to-tree models. Huang and Mi (2010)

present a tree-to-string search algorithm that has linear time complexity with respect

to sentence length.

2.5.4 Tree-to-Tree Models

Figure 2.7 shows a hierarchical phrasal segmentation annotated with phrase structure

tree fragments on both the source and target sides.

IN

SBAR

S

as

JJ

British

JJ

political

NNS

scandals

NP

go

VBP

VP

PP-MO

ADJA NN

Skandalebritischefür

APPR

Figure 2.7: Hierarchical phrasal alignment with source and target tree annotations

Whereas the segmentation in Figures 2.5 and 2.6 contained a mapping between the

phrases ‘britische Skandale’ and ‘British political scandals,’ such a segmentation is not

possible here due to the non-isomporphic nature of the phrase-structure trees (there is

not a tree node covering the two words ‘britische Skandale’).

The non-isomorphicity of source and target syntax trees has proven problematic in

practice, with naïve implementations severely underperforming compared to string-to-

tree or tree-to-string models (Chiang, 2010). Chiang’s solution, extended by Zhang
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et al. (2011), is to use syntax as a soft constraint. This improves translation quality,

though the resulting model is somewhat more complex.

STSG was proposed as a suitable formalism for tree-to-tree translation by Eisner

(2003). The grammar rules include tree fragments on both sides of the rules. For

example, rules to derive the segmentation shown in Figure 2.7 can be written

PP-MO

NN[1]ADJA

britische

APPR

für

, SBAR

S

VP

VBP

go

NP

NNS[1]JJ

political

JJ

British

IN

as

(r4)

NN

Skandale

, NNS

scandals

(r5)

2.5.5 Shortcomings of Syntax-based Models

Syntax-based models have primarily been motivated by the need to efficiently model

the long-distance reorderings such as those found between SVO and SOV languages.

The synchronous formalisms that have been employed allow the direct incorporation

of syntactic information into the translation rules. However, the models make no direct

provision for other forms of linguistic knowledge, such as morphology or semantics.

Whilst the grammar labels are arbitrary and permit the inclusion of information beyond

syntax, there has so far been little research in this area.

The dependence on linguistic resources and tools restricts most of the syntax-based

approaches to the small number of languages in which those resources are available.

The exception is Chiang’s hierarchical phrase-based model, which requires no linguis-

tic resources. Even where resources exist, the linguistic annotation may not be ideally

suited to the task of translation. Addressing these mismatches is an active area of

research, particularly in handling non-constituent phrases (Zollmann and Venugopal,

2006; Burkett and Klein, 2012).
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2.6 Conclusion

In this chapter we presented the three main modelling approaches that are used in

statistical machine translation: word-based, phrase-based, and syntax-based. Our main

emphasis was on the linguistic expressiveness of the models. SCFG or STSG-based

models can readily incorporate syntactic annotation in the form of non-terminal labels

and recent models have incorporated phrase-structure and dependency labels .

At the time of writing, phrase-based and syntax-based models offer similar transla-

tion quality in empirical comparisons, usually with one or other appearing to have the

edge for any particular language pair (Zollmann et al., 2008; Kalijahi et al., 2012). The

exception is tree-to-tree, which typically underperforms due to syntactic-divergence,

though approaches are being developed to address this issue (Chiang, 2010).

The small differences in automatically-measured translation quality together with

differences in implementation details make it difficult to draw any firm conclusions that

one approach is inherently superior to the other. However, syntax-based models offer

greater scope for developing linguistically richer models and improving the integration

of syntax is an active area of research.



Chapter 3

String-to-Tree Translation

3.1 Introduction

This chapter discusses string-to-tree models in greater depth, introducing the major al-

gorithms used for rule extraction and decoding with these models. We first describe the

string-to-string rule extraction algorithm of Chiang’s (2005) Hiero hierarchical phrase-

based model, which can straightforwardly be extended to incorporate syntactic annota-

tion (Zollmann and Venugopal, 2006; Chiang, 2010). We then describe the alternative

GHKM algorithm (Galley et al., 2004), which was designed specifically for string-to-

tree models.

Decoding for these models involves a monolingual parsing step and we describe

two parsing algorithms that have been used for translation, CYK+ (Chappelier and

Rajman, 1998) and Hopkins and Langmead’s (2010) chart parsing algorithm for scope-

k grammars. Efficiently integrating m-gram language model scoring into syntax-based

decoding has proven challenging; we describe cube pruning (Chiang, 2007), the most

widely used approximate approach.

We will use a string-to-tree model as our baseline in experiments thoughout this

thesis. In subsequent chapters we will adapt these rule extraction and decoding al-

gorithms to incorporate unification-based constraints in the grammar and to enforce

constraints during decoding.

3.2 Rule Extraction

Syntax-based rule extraction has largely developed along two lines, one originating

in hierarchical phrase-based translation (Chiang, 2005; 2007) and the other in GHKM

23
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As British scandals go notis juicyonethis particularly, .

Für britische Skandale ist nicht besondersdieser schlüpfrig .

political

Figure 3.1: Word alignment from Figure 2.3

(Galley et al., 2004; 2006).

Hierarchical rule extraction generalizes the established phrase-based extraction

method to produce formally-syntactic synchronous context-free grammar rules with-

out any requirement for linguistic annotation of the training data. In subsequent work,

the approach has been extended to incorporate linguistic annotation on the target side

(as in SAMT (Zollmann and Venugopal, 2006)) or on both sides (Chiang, 2010).

In contrast, GHKM presupposes that parse trees are available for the target-side

of the parallel corpus. It places target-side syntactic structure at the heart of the rule

extraction process, producing STSG rules that map strings to tree fragments.

3.2.1 Hiero and Syntactic Extensions

The rule extraction algorithm in Chiang’s hierarchical phrase-based model takes as

input a parallel corpus of sentence pairs with many-to-many word alignments. It pro-

ceeds in two steps, which are repeated for every sentence pair. For examples, we use

one of the word-aligned sentence pairs from Figure 2.3, which for convenience we

repeat in Figure 3.1.

Step 1: Lexical Rules

An initial set of phrase-pairs is extracted from each word-aligned sentence pair 〈s, t〉

using the standard phrase-based approach (Koehn et al., 2003; Och and Ney, 2004).

Informally, the initial set is the set of all substring pairs of the form 〈s, t〉 in which at

least one word of s is aligned to one or more words of t and in which no word of s is

aligned to a word outside t (and vice-versa). Each phrase pair, 〈s, t〉, forms a lexical

grammar rule X → s | t.

For the sentence pair in Figure 3.1, the set of lexical rules includes:

X → scandals | Skandale
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X → political scandals | Skandale

X → British political scandals | britische Skandale

Step 2: Non-Lexical Rules

Having extracted the initial set of lexical rules for a sentence pair, non-lexical rules are

generated by repeatedly choosing pairs of rules r1 and r2:

X → s | t (r1)

X → γ | α (r2)

such that r1 is a lexical rule from step 1, r2 is a rule from either step, and s and t are

substrings of γ and α, respectively. A new rule r3 is formed from r2 by substituting a

pair of non-terminals for the substrings s and t.

For our example sentence pair, this process produces the following rules, among

others:

X → X1 Skandale | X1 scandals

X → für X1 | as X1 go ,

X → für X1 ist X2 nicht | as X1 go , X2 is not

Limiting the Grammar Size

The algorithm as currently defined would extract an unusably large set of rules. To

restrict grammar size, Chiang (2007) imposes the following limits:

1. Initial phrase pairs are discarded if they have unaligned words at the edges of

phrases.

2. Initial phrase pairs are limited to 10 words on either side.

3. Rules are limited to five non-terminals plus terminals on the source side.

4. Rules are limited to two non-terminals.

5. Source-side non-terminals must not be adjacent.

6. Rules must include at least one pair of aligned words.

All of the example rules in this section fulfil these criteria.
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Label Condition

C t is exhaustively dominated by a node with label C

X t is not exhaustively dominated by any node

C1 +C2 t is exhaustively dominated by adjacent nodes with labels C1 and C2

C1/C2 t = ti, . . . , t j and there exists a k > j such that ti, . . . , tk is exhaustively

dominated by a node with label C1 and t j+1, . . . , tk is exhaustively dom-

inated by a node with label C2

C2\C1 t = ti, . . . , t j and there exists a h < i such that th, . . . , ti−1 is exhaustively

dominated by a node with label C1 and ti, . . . , tk is exhaustively domi-

nated by a node with label C2

Table 3.1: Labelling rules for SAMT

Adding Syntactic Annotation

Given parse trees for the source or target training sentences, Chiang’s rule extraction

method can be adapted to produce string-to-tree, tree-to-string, or tree-to-tree gram-

mars. Zollmann and Venugopal (2006) take this approach to develop the string-to-tree

Syntax-Augmented Machine Translation (SAMT) model.

In the SAMT model, non-terminal labels are derived from target-side parse tree

labels. If a parse tree node with label C exhaustively dominates the target words of a

lexical rule then the rule is given the label C instead of the generic X that would be used

in Hiero. This raises the question of how to label the remaining lexical rules, or whether

they should be extracted at all. The latter option risks discarding potentially useful

rules and so Zollmann and Venugopal (2006) introduce a set of rules for generating

complex labels. Step 1 of Chiang’s method is thus adapted such that a lexical rule for

an initial phrase pair 〈s, t〉 is assigned a label according to the rules given in Table 3.1.

A phrase pair may satisfy multiple conditions, resulting in multiple rules with distinct

labels.

Having labelled the initial rules, Zollmann and Venugopal (2006) apply Step 2

(without modification) to generate the full grammar.

For example, given the word-aligned sentence pair from Figure 3.1 and the parse

tree in Figure 3.2, the SAMT algorithm would generate the following rules (among

many others):

ADJP/JJ → nicht besonders | not particularly
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Figure 3.2: Word-aligned sentence pair with target-side parse tree

NP+VBZ → ist dieser | this one is

X → ist dieser nicht | this one is not

NP+VP → X1 nicht besonders X2 | NP+VBZ1 not particularly JJ2

Whilst SAMT’s extraction algorithm retains the high phrasal coverage of Hiero,

the labelling scheme leads to a large set of non-terminals (typically numbering in the

thousands), which can cause sparsity issues for parameter estimation and increase the

grammar-related costs of decoding. Subsequent research has proposed rule labelling

methods that lessen these issues whilst still producing labels for non-constituent target

spans: Hanneman and Lavie (2013) introduce a technique to cluster SAMT labels, and

Weese et al. (2012) use labels taken from CCG derivations.

3.2.2 GHKM

As we have seen, the Hiero rule extraction algorithm does not use or require linguis-

tic annotation. Extensions that add syntactic annotation, such as SAMT, do so by

generating labels for the rules; they do not take syntactic structure into account when

determining which rules to extract. In contrast, Galley et al.’s (2004) GHKM algo-

rithm assumes the availability of target-side parse trees for all sentence pairs. Given a

word-aligned sentence pair and parse tree, GHKM generates a set of synchronous rules
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that can be applied to the source sentence in order to reconstruct the target parse tree,

something that is not necessarily possible with Hiero (assuming the usual restrictions

on rule size). The algorithm is motivated in part by Fox’s (2002) finding that early

syntax models could not account for some of the complex reordering relationships that

occur in human translation data.

In Figure 3.2, the word-aligned sentence pair was shown together with a target-

side parse tree. GHKM treats the two as a single directed graph structure called an

alignment graph. Given a word-aligned sentence pair and parse tree, the graph is

formed in a straightforward manner: there are nodes for each of the source words,

target words, and parse tree nodes, and there are edges for each of the word alignment

links and parse tree edges. The graph edges are directed from the parse tree root node

toward the target word nodes and from the the target word nodes toward the source

word nodes.

The algorithm centres around the classification of parse tree nodes into two types,

frontier nodes and non-frontier nodes. A frontier node can be thought of as being the

head of a subtree with a yield t that is aligned exclusively to a single substring s of the

source sentence (cf. the definition of SAMT’s C-labelled lexical rules).

A few definitions are required before the algorithm can be presented. The span of

a node n is the set of source word nodes reachable from n. For example, in Figure 3.2,

the span of the VP node is {s4,s6,s7,s8}. The closure of a span is the smallest superset

that contains a contiguous sequence of source word nodes. For the VP node, the closure

is {s4,s5,s6,s7,s8}. The complement span is defined recursively: for the root node it is

the empty set; for a non-root node n it is the union of the complement span of n’s parent

with the spans of n’s siblings. The complement span of the VP node is {s1,s2,s3,s5,s9}.

Note that the complement span is not necessarily the set-theoretic complement of the

span. For example, the span and complement span of the lower S node both contain s1.

The definition of a frontier node can now be given more precisely: a node n is a

frontier node if the intersection of its closure and its complement span is empty. In

other words, if the closure of n’s span contains no source nodes that are reachable

from nodes other than n or n’s descendents. In Figure 3.2, the ADJP node is a frontier

node, but its parent VP node is not (because its span’s closure includes dieser, which is

reachable from a non-descendent NP).

Figure 3.3 shows the algorithm. The input is an alignment graph g and the output

is a list of STSG rules. It is assumed that the span of each node is already known. For a

node n the corresponding span is referred to as n.span. The spans are used to compute
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GHKM(g)

1 rules = empty list
2 for each node n in g, visited in topological order
3 n.c-span = ∅

4 for each parent p of n
5 n.c-span = n.c-span∪ p.c-span
6 for each sibling s of n
7 n.c-span = n.c-span∪ s.span
8 frontier-set = ∅

9 for each node n in g, visited in topological order
10 if n.c-span∩CLOSURE(n.span) =∅

11 frontier-set = frontier-set∪n
12 for each node n in frontier-set
13 define a subgraph h containing n, its children, and any connecting edges
14 while h contains a sink node s 6∈ frontier-set
15 expand h such that it include s’s children and any connecting edges
16 γ = sink nodes of h ordered by span position
17 π = h with sinks replaced in span position order by variables x1 . . .xn

18 add rule (γ,π) to rules
19 return rules

Figure 3.3: The GHKM rule extraction algorithm

the complement spans (c-spans) of every node (lines 2-7). The spans and complement

spans are used in line 10 to identify the frontier nodes. Lines 12–18 produce one rule

from each frontier node.

The rules are minimal in the sense that the corresponding subgraphs are expanded

only to the extent necessary to be consistent with the word alignments — they include

as little context as possible. The combination of graphically-adjacent minimal rules

into larger, contextually-richer rules (called composed rules) has been found to signif-

icantly improve translation quality (Galley et al., 2006).

3.2.3 Closing Remarks

Ultimately, both the Hiero and GHKM rule extraction algorithms define rules accord-

ing to a sentence pair’s word-alignments using the same notion of consistency that is

carried through from phrase-based models. Without any restriction on rule size they

will produce an exponentially large set of rules and so in practice only a subgrammar

can be extracted. It is the differing rule selection heuristics that distinguish the two
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approaches, with hierarchical approaches being motivated by phrasal coverage and

GHKM by target-side tree coverage.

3.3 Decoding as Parsing

Recall from Section 2.5.1 that the objective of a syntax-based translation system is to

find the synchronous derivation d∗ with the highest total score according to a sum of

weighted feature function scores (Equation 2.13). The target yield of d∗ is the output

translation, which is an approximation to the highest-scoring translation.

As Chiang (2007) notes, the search problem defined by Equation 2.13 could be

solved exactly by a dynamic-programming algorithm if the calculation of a derivation

d’s weighted score could be decomposed into a sum of weighted scores for d’s sub-

derivations (in dynamic-programming terms, if the problem had optimal substructure

and overlapping subproblems). Unfortunately, the m-gram language model score of d

cannot be decomposed this way: the m-gram LM score of a subderivation over a sub-

string [i, j] cannot be fully calculated without knowledge of the target words produced

by translating source words outside [i, j] and therefore the optimality of a subderivation

cannot be determined without knowledge of some larger optimal derivation.

We will return to the problem of integrating language model scoring later. For

now, we note that the problem can be solved approximately through a combination of

dynamic-programming and beam-search. As such, our search algorithm must record

partial solutions (bounded in number by the beam width) at each step of the dynamic-

programming procedure.

If we disregard language model scoring, translation is simply a variation on weighted

monolingual parsing: we can parse the input sentence using a monolingual projection

(described shortly) of our synchronous grammar to find the highest-scoring derivation

and then recover the translations as a post-processing step. We can therefore employ

the dynamic-programming algorithms that have been developed for monolingual pars-

ing. The choice of parsing algorithm may be influenced by properties of the grammar,

which will depend on the rule extraction method and whether binarization (of the tree

or grammar) is used.

Variants of CYK (Kasami, 1965) are frequently used for decoding. We describe

the CYK+ algorithm. Specialised chart parsing algorithms for translation grammars

have been developed by DeNero et al. (2009) and Hopkins and Langmead (2010). We

describe the latter, which is suited to a larger subclass of synchronous grammars.
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Before presenting the parsing algorithms, we describe the projection that produces

the monolingual grammar.

3.3.1 Projecting the Synchronous Grammar

As we have seen, string-to-tree translation rules use linguistically-motivated non-terminal

labels on the target-side and the generic X non-terminal on the source-side. For the

purposes of parsing-based decoding, the source-side of the synchronous grammar is

used, with target-side non-terminal labels projected onto their corresponding source-

side non-terminals. For example, the SCFG rule:

SBAR → für X1 | As NP1 go

is projected to the CFG rule:

SBAR → für NP

This process produces a monolingual grammar from a synchronous grammar with a

one-to-many mapping from monolingual to synchronous rules.

3.3.2 The CYK+ Parsing Algorithm

CYK+ (Chappelier and Rajman, 1998) is a close algorithmic relation of the better-

known CYK and Earley (Earley, 1970) algorithms. It has the same O(n3) upper-bound,

but removes CYK’s restriction that the grammar must be in Chomsky Normal Form

(for a discussion of why monolingual grammar binarization techniques are problematic

for synchronous grammars, see Zhang et al. (2006)).

In Chappelier and Rajman’s (1998) original description, the algorithm requires that

grammar rules are either purely lexical or purely non-lexical, but they note that this

restriction was made to simplify the algorithm and is easily eliminated. Since partially

lexicalized rules are ubiquitous in translation grammars we describe a modified version

here.

In addition to the standard |s|×|s| chart, CYK+ associates two lists with each chart

cell. For each cell, chart[i, j], there is a type-1 list, which records the set of labels A

for which A ⇒∗ si . . .s j, and a type-2 list, which records the set of Earley-style dotted

rules α• such that α ⇒∗ si . . .s j and such that the grammar contains some rule A → αβ,

where α and β are non-empty strings of terminals and non-terminals.

Figure 3.4 shows the CYK+ algorithm. For readability, the pseudocode shows a

CYK+ recogniser (the input s is recognised if the type-1 list of chart cell [1, |s|] contains
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CYK-PLUS-PARSE(G,s)

1 for i = 1 to |s| // initialize
2 MATCH(G, i, i,si)
3 for width = 1 to |s|
4 for i = 1 to |s|−width+1 // start
5 // “Standard” filling procedure
6 j = i+width−1 // end
7 for k = i+1 to j // split-point
8 for α• in type-2 list of chart[i,k−1]
9 for B in type-1 list of chart[k, j]

10 MATCH(G, i, j,αB)
11 // Special handling for partially-lexicalized rules
12 if width > 1
13 for α• in type-2 list of chart[i, j−1]
14 MATCH(G, i, j,αsi)
15 // “Self-filling” procedure
16 for B in type-1 list of chart[i, j]
17 MATCH(G, i, j,B)

MATCH(G, i, j,π)

1 for each rule A → πγ in G
2 if γ is empty
3 add A to type-1-list of chart[i, j]
4 else

5 add π• to type-2-list of chart[i, j]

Figure 3.4: The CYK+ algorithm.

the start symbol). As with CYK, the algorithm can straightforwardly be extended to

build a representation of the parse forest or to find the Viterbi parse of a weighted

grammar.

The algorithm visits chart cells in order of increasing width (for cells of the same

width, the order is unimportant, but the algorithm shown visits them from left-to-right).

At each cell, the algorithm attempts to extend predecessor dotted rules to cover the

current span by adding a non-terminal symbol (lines 8-10) or a terminal (lines 12-

13). Dotted rules that cover the current cell’s full span with a single non-terminal

are produced during the “self-filling” procedure in lines 15-16. This procedure also

handles unary rule applications over the span.



Chapter 3. String-to-Tree Translation 33

3.3.3 The Scope-3 Parsing Algorithm

In general, context-free parsing complexity is exponential with respect to the arity

(or rank) of the grammar (that is, the maximum number of non-terminals on any rule

right-hand side), with cubic-time parsing relying on either explicit binarization (like in

CYK (Kasami, 1965)) or implicit binarization (like in the Earley parser (Earley, 1970)).

This is problematic for GHKM grammars, which have no inherent limit on rank: whilst

effective synchronous binarization techniques have been developed (Zhang et al., 2006;

Huang et al., 2009), they come with their own drawbacks, including inflation of the

number of grammar rules and implementation complexity. With the specific, highly-

lexicalised nature of translation grammars in mind, Hopkins and Langmead (2010)

define a useful subclass, called scope-k grammars. They prove that a grammar with

scope k can be used to parse a sentence of length n in O(nk) chart updates without

binarization. They also show empirically that reducing a GHKM grammar to scope-3

by pruning does not harm translation quality compared to synchronous binarization.

In order to define the concept of scope and Hopkins and Langmead’s (2010) chart

parsing algorithm, we must first define a few concepts: an application context is an

object describing the span over which a grammar rule is applied and the subspans to

which its source non-terminals are applied. A rule pattern is the source side of a rule

with non-terminal labels replaced by a special substitution symbol ⋄. A label sequence

in general is a sequence of non-terminal labels. A rule’s label sequence is its sequence

of non-terminal labels in source-side order.

The concept of scope can now be defined: for a grammar rule r with pattern p, r’s

scope is the number of pairs of adjacent substitution symbols in the pattern ⋄p⋄. For

example,

Pattern Scope Pattern Scope
a b c d e 0 a ⋄ ⋄ ⋄ e 2
a ⋄ c ⋄ e 0 ⋄ b c d ⋄ 2
a ⋄ ⋄ d e 1 ⋄ ⋄ c d ⋄ 3
⋄ b c d e 1 ⋄ ⋄ ⋄ ⋄ ⋄ 6

The maximum number of possible application contexts for a rule is a function of

its scope and sentence length. The scope of a grammar G is the maximum scope of

any rule in G .

Figure 3.5 shows Hopkins and Langmead’s (2010) parsing algorithm. It takes as

input a scope-k grammar G and an input sentence s. Each chart cell [i, j] contains a list
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SCOPE-PARSE(G,s)

1 PRE-COMPUTE-PATTERN-CONTEXT-PAIRS(G, s)
2 for width = 1 to |s|
3 for i = 1 to |s|−width+1
4 j = i+width−1
5 pairs = RETRIEVE-PATTERN-CONTEXT-PAIRS(i, j)
6 for each pair (pattern,context) in pairs
7 lhs-rhs-pairs = RETRIEVE-LABELS(pattern)
8 for each (lhs,rhs in lhs-rhs-pairs
9 check for rhs’s labels in cells defined by context, continue if missing

10 add lhs to chart[i, j]

Figure 3.5: The scope parsing algorithm

of non-terminal labels from the left-hand-side of rules that cover the span (identical to

CYK+’s type-1 list).

At line 1, the complete set of (pattern,application context) pairs is generated. That

is, if a grammar rule has a pattern p that can be applied to the input sentence with

application context c, the pair (p,c) is recorded. The pairs are stored for lookup ac-

cording to chart cell position (line 5). Line 7 retrieves the set of pairs (lhs,rhs) for all

rules in the grammar that share a specific pattern, where lhs is the left-hand-side label

of the rule and rhs is the label sequence of the rule. These sets can be pre-computed

once per grammar.

Williams and Koehn (2012) provides details of how to efficiently implement the

steps at lines 1 and 9.

For readability, the pseudocode shows a recogniser (the input s is recognised if

the chart cell [1, |s|] contains the start symbol. As with CYK+, the algorithm can be

extended to build a representation of the parse forest or to find the Viterbi parse of a

weighted grammar.

3.3.4 The Parse Hypergraph

Parsing an input sentence with a context-free grammar results in a forest of parse trees.

As Klein and Manning (2001) show, the parse forest can be represented by a directed

hypergraph, a generalisation of a directed graph in which a hyperedge can connect two

sets of nodes. Hypergraphs prove to be useful for reasoning about and implementing

syntax-based decoding algorithms since the search space can also be represented as
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a hypergraph. A representation of the parse forest, which we refer to as the parse

hypergraph, is used as a starting point for exploring the decoding search space.

More specifically, a context-free parse forest can be represented by a hypergraph

that is rooted, connected, labelled, directed, and acyclic. The source nodes of the hy-

pergraph correspond to input words and the non-source nodes to parsing states, with

the root node representing the goal state. Each hyperedge corresponds to a deriva-

tion step, connecting one or more parsing states to a successor parsing state via the

application of a rule.

Each rule in a projected monolingual grammar maps to one or more rules in the syn-

chronous grammar, therefore each hyperedge in the parse hypergraph can be thought of

as representing one or more synchronous rule applications. The hypergraph, in com-

bination with the grammar projection, thus represents the full space of synchronous

derivations for an input sentence.

Figure 3.6 gives an example SCFG grammar, which has the monolingual CFG

projection shown in Figure 3.7. Figure 3.8 shows the hypergraph representation of

the parse forest formed by parsing the input sentence ‘für britische Skandale’ with the

projected monolingual grammar.

Depending on the input length, n, and on properties of the projected grammar G,

it may be practical to construct the entire parse hypergraph: for an arbitrary scope-3

grammar, the parse hypergraph contains a maximum of O(n3|G|) hyperedges, since

scope-3 pruning guarantees1 that the maximum number of application contexts for

any rule is O(n3). The maximum number of nodes is O(n2|C|), where C is the set of

non-terminals.

3.3.5 The Search Hypergraph

As we have already noted, an exact search for the highest scoring synchronous deriva-

tion cannot be performed by a dynamic programming approach that decomposes the

problem among subderivations because the m-gram language model must score se-

quences of target words that cross subderivation boundaries. For the same reason, the

locally-optimal subderivation at a given node in the (weighted) parse hypergraph is not

guaranteed to include the highest-scoring incoming hyperedge, nor is it guaranteed to

include subhypergraphs that are themselves locally-optimal.

1Under the assumption that each word occurs only once in a given input sentence. See Hopkins and
Langmead (2010) for a discussion of this assumption.
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SBAR → für X1 | As NP1 go (r1)

NP → britische Skandale | British political scandals (r2)

NP → britische Skandale | British scandals (r3)

NP → X1 X2 | JJ1 NNS2 (r4)

JJ → britische | British (r5)

JJ → britische | UK (r6)

NNS → Skandale | scandals (r7)

Figure 3.6: SCFG grammar fragment.

SBAR → für NP (q1)

NP → britische Skandale (q2)

NP → JJ NNS (q3)

JJ → britische (q4)

NNS → Skandale (q5)

Figure 3.7: Monolingual projection of SCFG grammar in Figure 3.6

für0 britische1 Skandale2

JJ1,1 NNS2,2

NP1,2

SBAR0,2

q4 q5

q3

q1

q2

Figure 3.8: Hypergraph representing the parse forest generated by parsing the input

‘für britische Skandale’ with the grammar in Figure 3.7. There are two derivations: the

first is indicated using solid arrows. The second differs in the production of the NP, as

indicated by dashed lines.
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britische1 Skandale2

JJ1,1,British,British JJ1,1,UK,UK NNS2,2,scandals,scandals

NP1,2,British,scandals NP1,2,UK,scandals

r5 r6 r7

r4 r4r2,r3

Figure 3.9: Search hypergraph representing the portion of the search space corre-

sponding to the second two words of the input ‘für britische Skandale’ and the grammar

in Figure 3.6.

However, the parse hypergraph can in principle be expanded to a larger hypergraph,

the search hypergraph, in which these properties do hold: whereas a non-leaf node in

the parse hypergraph represents the set of subderivations that share a category and

span, the non-leaf nodes in the search hypergraph must also differentiate (some of) the

target words generated during translation since those are relevant to m-gram scoring

of superderivations. Specifically, each node must record the m−1 words to the left of

the translation and the m−1 words to the right. Since the target words are relevant to

search, the hyperedges must now correspond to rules in the original grammar, not the

projected grammar.

Figure 3.9 shows an example search hypergraph that expands (part of) the parse hy-

pergraph from Figure 3.8. It assumes a bi-gram language model and therefore records

one left boundary word and one right boundary word.

Using dynamic programming, the optimal translation can be determined from the

search hypergraph in time linear to the size of the hypergraph. Unfortunately, exploring

the full search hypergraph is usually impractical. The maximum number of hyperedges

is O(n3|G||T |2A(m−1)) where T is the set of target-side terminals and A is the maximum

rule arity (the number of non-terminals in the right-hand-side). The number of nodes
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CUBE-PRUNE(n,k)

1 beam = empty ordered list
2 q = empty priority queue
3 for e in n’s hyperedge set
4 PUSH(q,CUBE-PRUNE-HYPEREDGE(e))
5 while |beam|< k and |q|> 0
6 lazy-list = POP(q)
7 (hypothesis,score) = POP(lazy-list)
8 ADD-TO-BEAM(beam,(hypothesis,score))
9 if lazy-list is not empty

10 PUSH(q, lazy-list)
11 return beam

CUBE-PRUNE-HYPEREDGE(e)

1 q = empty priority queue
2 h = BEST-FIRST-HYPO(e)
3 PUSH(q,(h,SCORE(h)))
4 while |q|> 0
5 hypothesis = POP(q)
6 yield hypothesis
7 for h in CREATE-NEIGHBOURS(hypothesis)
8 PUSH(q,(h,SCORE(h)))

Figure 3.10: The cube pruning algorithm

is O(n2|C||T |2(m−1)).

3.3.6 Integrating m-gram Language Model Scores

To make the problem tractable, several approximate search algorithms have been pro-

posed, the most widely used being cube pruning (Chiang, 2007), which we will de-

scribe shortly. All of the approximate algorithms involve a beam search where a lim-

ited set of subderivations is fully scored at each node of the parse hypergraph. The

nodes of the parse hypergraph are visited in bottom-up order and at each node the

beam is filled by combining and scoring subderivations from the beams of incoming

nodes using the synchronous rules corresponding to incoming edges.

Cube Pruning

The cube pruning algorithm is shown in Figure 3.10. The function CUBE-PRUNE
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operates on a hypergraph node n, filling a beam with hypotheses to a maximum size of

k. A hypothesis is a subderivation together with auxiliary information. The function

CUBE-PRUNE-HYPEREDGE is a generator function that lazily produces a sequence of

scored hypotheses for a hyperedge e.

CUBE-PRUNE-HYPEREDGE initially constructs the single most promising hypoth-

esis (line 2). This is the subderivation formed by combining the highest-scoring sub-

derivations from the incoming nodes’ beams using the highest-scoring synchronous

rule. This initial hypothesis is scored using the model (including the language model

score) and pushed onto a priority queue that holds hypothesis-score pairs in best-first

order. The loop at lines 4-8 generates hypotheses by popping the highest scoring hy-

pothesis then constructing its neighbouring hypotheses: the set of hypotheses that are

identical except for either using the next best rule or substituing the next best hypoth-

esis from one of the incoming nodes’ beams.

CUBE-PRUNE begins by forming a lazy-list for each hyperedge in e’s hyperedge

set and pushing them onto a priority queue (line 4). This queue orders lists by the score

of the hypothesis at the head of the list. Lists are then popped from the queue (line 6),

the head hypothesis is removed from the list (line 7) and added to the beam (line 8)

and then if the list still has items, it is pushed back onto the queue (line 10).

Alternatives to Cube Pruning

Cube pruning is currently the most widely-used algorithm for approximately exploring

the search hypergraph. Alternatives include cube growing (Huang and Chiang, 2007),

which seeks to reduce the search effort by employing a top-down approach that fills

beams on demand instead of generating a fixed number of hypotheses at each node.

The authors apply cube growing to tree-to-string decoding and Xu et al., (2012) apply

it to string-to-string. We are not yet aware of any implementation for the string-to-tree

case.

Heafield et al. (2013) presents an algorithm that exploits the tendency for the lan-

guage model to score hypotheses more similarly if they share boundary words. At each

node, partially-scored hypotheses with common boundary words are grouped accord-

ing to the outer boundary words and the groups are lazily explored by progressively

uncovering words and updating scores. Hypotheses are added to the beam as they are

fully scored. The speed versus accuracy trade-off is shown empirically to be better

than that of cube pruning for string-to-string and string-to-tree systems.



Chapter 3. String-to-Tree Translation 40

3.4 Conclusion

This chapter has introduced the main algorithms used for rule extraction and decod-

ing in string-to-tree models. Our baseline model, which we will describe in detail in

Chapter 6, uses the GHKM rule extraction algorithm with scope-3 pruning. Decoding

uses Hopkins and Langmead’s chart parsing algorithm with cube pruning for language

model integration. We will later adapt the rule extraction and decoding algorithms

from this chapter to incorporate unification-based constraints in the grammar and en-

force constraints during decoding.



Chapter 4

Unification-based Approaches to

Grammar

4.1 Introduction

In Chapter 2, we saw the basic unit of translation progress from words to phrases and

then, in the syntax-based models, to hierarchical phrases. The last of these approaches

was motivated primarily by the need to model reordering, since the word order of

the source and target language can vary greatly, even when translating closely-related

languages.

In SCFG and STSG grammars – the formalisms with which hierarchical phrases

were defined – both the terminals and non-terminals are atomic symbols. In models

that use linguistically motivated non-terminal labels, the labels are typically derived

from treebank constituent labels. However, at the start of Chapter 2 we also saw ex-

amples of morphosyntactic relations, such as subject-verb agreement and case control,

that fall outside the domain of constituency. In those two examples, the inflection

expressed on one or more words must be consistent with respect to underlying linguis-

tic properties. In practice, violations of this type of morphosyntactic relationship are

common in machine translation output. This is especially true for morphologically-

rich target languages where there can be inflectional distinctions that are not present in

the source language.

In computational and theoretical linguistics, many monolingual models of phrase-

structure grammar go beyond constituency by making use of feature structures to

represent underlying linguistic properties of words and constituents. For example, in

Functional Grammar (Kay, 1979) and Head-Driven Phrase Structure Grammar (Pol-

41
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owls →










CAT N

AGR





NUM pl

PER 3















screech →






CAT V

AGR

[

NUM pl

]







Figure 4.1: AVM representations for owls and screech

lard and Sag, 1994), feature structures encode phonological, syntactic, and semantic

properties of words and phrases and even encode the grammatical rules. In Lexical-

Functional Grammar (Bresnan, 1982), constituent structure (called c-structure) is de-

fined in terms of words and constituent labels, which are atomic symbols as in context-

free grammar, while a second, parallel, layer of structure, f-structure, uses feature

structures to represent attributes such as grammatical function (subject, object, modi-

fier, etc.) and agreement features.

Since their introduction at the end of the 1970s, feature structures and unification

have proven powerful tools for modelling many aspects of natural language, enabling

concise accounts of agreement, case control, verb subcategorization, and verb-raising,

among others.

There is extensive literature on unification-based approaches to grammar, employ-

ing a rich variety of terminology and linguistic machinery. In this thesis, we use only a

few of the core ideas, which we outline in this chapter. For simplicity of exposition and

implementation, we borrow the terminology and notation of PATR-II (Shieber, 1984;

1986), a minimal unification-based formalism that extends context-free grammar. Our

presentation in this chapter is kept informal. For a rigorous theoretical treatment of the

topic, see Francez and Wintner (2011).

4.2 Feature Structures and Unification

Feature structures come in two varieties: atomic feature structures are untyped, indivis-

ible values, such as NP, nom, or sg, and complex feature structures are partial functions

that map features to values, with the values themselves being feature structures.

Conventionally, complex feature structures are written as attribute-value matrices

(AVMs). Figure 4.1 shows two possible AVMs that represent category and agreement

attributes for the noun owls and the verb screech.

A value within a complex feature structure can be specified using a path notation

that describes the chain of features in enclosing feature structures. For both of the
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examples in Figure 4.1, the path 〈AGR NUM〉 specifies the atomic value pl. If the symbol

X refers to the feature structure for owls then we can write X(〈AGR PER〉) to refer to the

value 3. This is also written 〈X AGR PER〉 when the meaning is clear from the context.

Values may be shared between features, either within the same complex feature

structure or between multiple distinct feature structures. This is called re-entrancy and

is denoted in AVMs using co-index boxes.

In order to describe the unification operation we first introduce the binary subsump-

tion relation. One feature structure is said to subsume another if it contains (only) a

subset of the information contained in the other. For example, the feature structure

[

CAT V

]

(X1)

subsumes both itself and the more specific





CAT V

AGR

[

NUM pl

]





(X2)

But it does not subsume either





CAT N

AGR

[

NUM pl

]





(X3)

or

[

AGR

[

NUM pl

]

]

(X4)

Note that X3’s informational content is inconsistent with that of X1 (since they contain

conflicting CAT values), whereas X4’s is not. The respective content of X1 and X4 is

able to coexist within a single feature structure and the smallest such feature structure

is said to be their unification. The unification of X1 and X4 is in fact X2. In general, the

unification of two feature structures X and Y is the smallest feature structure Z that is

subsumed by both X and Y, if such a feature structure exists.

The symbol ⊑ is used to denote the subsumption relation and the symbol ⊔ is used

to denote the unification operation. So we can write X1 ⊑ X2 and X1 ⊔X4 = X2.

4.2.1 Graph-Based Unification Algorithms

An equivalent means of representating a feature structure, and the one typically used

for implementation, is that of a rooted, labelled, directed graph. In this section, we

describe a graph representation and the associated unification algorithm from Wrob-

lewski (1987), which is adapted from Pereira (1985).
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Each node of the graph is labelled with a record, r, containing three fields: fwd,

label, and feats. The fwd field contains an auxiliary pointer that optionally forwards

incoming edges onto a second node (otherwise it takes the special value null); the

label field takes the special value null for complex feature structures, otherwise it

holds a label representing the atomic value; finally, the feats field contains a set of

edge pointers, which are labelled with the feature names.

Figure 4.2 shows graphs corresponding to the AVMs from Figure 4.1.

C
AT

P
E
R

N
U

M

AG
R

fwd        null

label      null

feats     ⟨   ,   ⟩

fwd        null

label      null

feats      ⟨      ⟩

fwd         null

label       pl

feats       ⟨⟩

fwd         null

label       3

feats       ⟨⟩

CAT
AG

R

fwd        null

label      null

feats     ⟨   ,   ⟩

fwd         null

label       null

feats       ⟨    ⟩

fwd        null

label      V

feats       ⟨⟩

N
U

M

fwd         null

label       pl

feats       ⟨⟩

fwd        null

label      N

feats       ⟨⟩

Figure 4.2: Graph representations of the feature structures in Figure 4.1

The graph unification algorithm is shown in Figure 4.3. The algorithm takes two

feature structure graphs, f and g, as input and returns TRUE or FALSE, respectively,

depending on whether the unification operation succeeded or not. On success, the con-

tents of the input structures are altered such that they both describe the common unified

value. On failure, the contents of the input structures are undefined. The algorithm is

recursive (line 17). There are a number of ancillary functions: DEREFERENCE(n) re-

turns n if n. fwd is NULL or DEREFERENCE(n. fwd) otherwise. All other functions use

DEREFERENCE and operate on the end-point nodes. The IS-EMPTY, IS-COMPLEX,

and IS-ATOMIC are simple predicate functions that are used as a shorthand for expres-

sions that test the properties of their argument node. The VAL function returns the edge

pointer that is labelled with the given feature name. The FIND-OR-CREATE-EMPTY

function does likewise, except that it first tests for the existence of an outgoing edge

from g with the given feature label. If no such edge exists, it creates an empty feature

structure and adds an outgoing edge to g.

Figure 4.4 shows the modified graph structures from Figure 4.2 after applying the

unification algorithm to the AGR feature structures.



Chapter 4. Unification-based Approaches to Grammar 45

UNIFY(f ,g)

1 f ′ = DEREFERENCE(f )
2 g′ = DEREFERENCE(g)
3 if f ′ = g′

4 return TRUE

5 if IS-EMPTY(f )
6 f . fwd = g′

7 return TRUE

8 if IS-EMPTY(g)
9 g. fwd = f ′

10 return TRUE

11 if (IS-ATOMIC(f ) and IS-COMPLEX(g)) or (IS-ATOMIC(g) and IS-COMPLEX(f ))
12 return FALSE

13 if IS-COMPLEX(f )
14 for feature in f ′. feats
15 x = VAL(f , feature)
16 y = FIND-OR-CREATE-EMPTY(g, feature)
17 if UNIFY(x,y) = FALSE

18 return FALSE

19 elseif f ′. label 6= g′. label
20 return FALSE

21 f . fwd = g′

22 return TRUE

Figure 4.3: Destructive graph unification algorithm
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Figure 4.4: Feature structures from Figure 4.2 after unification of their AGR values.
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Written as AVMs, the two modified input structures are:

owls →




CAT N

AGR 1





screech →










CAT V

AGR 1





NUM pl

PER 3















4.3 Grammar Rules

Grammar rules in PATR-II are a generalization of context-free grammar rules, with a

single symbol on the left-hand side that rewrites to a sequence of symbols on the right.

Whereas the symbols in context-free grammar are atomic, the non-terminal symbols

in PATR-II are feature structure values. The rule symbols are denoted Xi where the

subscript i indicates the symbol’s position in the rule: X0 is used for the left-hand side

symbol and X1, . . . ,Xn for the right-hand-side symbols.

Each rule is associated with a, possibly empty, set of identities. These act as con-

straints on the values of the rule’s feature structures. An identity relates two feature

structure terms f and g, where f is Xi(π) for some rule symbol Xi and feature path π.

g is either a constant value or is X j(ρ) for some rule symbol X j and feature path ρ.

A context-free grammar rule can be converted to a PATR-II rule by encoding the

terminal and non-terminal labels as atomic feature structure values and identifying

the values with the corresponding rule symbol values. Any context-free grammar is

therefore trivially equivalent to a PATR-II grammar. For example, the context-free

rules S → NP VP and N → owl could be written

X0 → X1 X2 X0 → X1

〈X0〉= S 〈X0〉= N

〈X1〉= NP 〈X1〉= owl

〈X2〉= VP

A PATR-II grammar becomes more interesting when complex feature structures are

used as rule elements. The context-free constituency constraints can be retained by

encoding category labels using an atomic feature within a richer feature structure. This

feature can be given any name, but conventionally the name CAT is used. The CAT

feature may be one of multiple features. For example, we could add a LEX feature for

lexical values and an AGR feature to define agreement constraints on number and person

values:
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X0 → X1 X2 X0 → X1

〈X0 CAT〉= S 〈X0 CAT〉= N

〈X1 CAT〉= NP 〈X1 LEX〉= owls

〈X2 CAT〉= VP 〈X0 AGR NUMBER〉= pl

〈X1 AGR〉= 〈X2 AGR〉 〈X0 AGR PERSON〉= 3

Note that the rule on the right uses identities to express the same information as the

feature structure in Figure 4.1.

As a notational convenience, the CAT value of a rule element may substitute for the

X symbol, allowing the corresponding CAT identity to be omitted:

S → NP VP N → owls

〈NP AGR〉= 〈VP AGR〉 〈N AGR NUMBER〉= pl

〈N AGR PERSON〉= 3

The optionality of the CAT feature (or an equivalent) provides additional expressiv-

ity for the grammar author. Shieber (1986) gives an example of modelling verb subcat-

egorization where forty similar rules can be collapsed into a single rule by allowing one

of the constituents to take an underspecified category label. The requirement or other-

wise of context-free constituency constraints varies between formalisms. For example,

LFG requires that constituency structure is fully specified by the rules.

4.4 An Example Grammar Fragment

Figures 4.5 and 4.6 show the lexicon1 and rules of a simple grammar G. The language

defined by this grammar includes, for example, the sentence ‘the owl screeches,’ but

not ‘the owl screech,’ in accordance with the English subject-verb agreement rules

found in most dialects.2

Figure 4.7 shows a parse tree for a derivation of the sentence ‘the owl screeches.’

The non-leaf nodes show feature structures formed by satisfying the constraints through

destructive unification, the result being that a single agreement value is shared between

the noun, the verb, and the noun phrase. In a bottom-up interpretation, the NUMBER

and PERSON values can be thought of as originating in the lexicon and being propa-

gated upwards by constraint evaluation.

1Note that the person value ¬3 is an atomic symbol. Whilst some unification-based formalisms
allow logical operations in feature structures, we do not use them in this work.

2G does not allow for the interpretation of the latter as a noun phrase, though of course English does.
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the →






CAT DET

AGR

[

PER 3

]







an →










CAT DET

AGR





NUM sg

PER 3















owl →










CAT N

AGR





NUM sg

PER 3















owls →
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
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AGR




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













screeches →










CAT V

AGR





NUM sg

PER 3















screech →










CAT V

AGR





NUM sg

PER ¬3












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screech →
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CAT V

AGR
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NUM pl

]







Figure 4.5: Example grammar G (lexicon)

S → NP V NP → DET N

〈NP AGR〉= 〈V AGR〉 〈NP AGR〉= 〈DET AGR〉

〈NP AGR〉= 〈N AGR〉

Figure 4.6: Example grammar G (rules)
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CAT S

]
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AGR 1
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
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


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owl

[

CAT DET

]

the

Figure 4.7: Parse tree for the sentence ‘the owl screeches’ as derived from grammar G
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4.5 Unification-based Approaches to MT

Machine translation was proposed early on as an application for unification-based ap-

proaches, with Kay (1984) arguing that Functional Unification Grammar (FUG) would

provide the expressive power to describe the conventional analysis, transfer, and gen-

eration steps of machine translation within a single formalism. Kay proposed that

analysis and generation grammars for the source and target languages be bridged with

a transfer grammar, and that all three could be expressed within the same unification-

based framework.

4.5.1 Deep-Syntactic Transfer-Based Systems

The modern transfer-based models of Riezler and Maxwell (2006), Bojar and Hajič

(2008), and Graham et al. (2009) are partial realizations of Kay’s proposal, though

they all take a looser approach to transferring the feature structures that are used for

intermediate representation.

In these models, the source and target training sentences are first parsed using a

unification-based parser (Riezler and Maxwell (2006) and Graham et al. (2009) both

use LFG and Bojar and Hajič (2008) use Functional Generative Description). The re-

sulting feature structures encode deep syntactic structure in the form of dependency

relations between the elements of the sentence. Transfer rules between source and tar-

get feature structures are then learned and incorporated into a log-linear model with

feature functions similar to those used in conventional phrase-based models. Having

transferred the deep structural representations, the target side grammar is used to gen-

erate constituent structure and strings.

These models have so far been severely limited by the poor coverage of the non-

stochastic parsers that are used, though Riezler and Maxwell (2006) find that their

model compares favourably to a phrase-based model when the comparison is limited

to in-coverage test data.

4.5.2 Stat-XFER

The Stat-XFER transfer-based framework (Lavie, 2008) is a tree-to-tree synchronous

formalism with unification-based constraints that transfer information from source fea-

ture structures to target feature structures. The formalism allows source-side con-

straints for determining where transfer rules apply; target-side constraints for encour-
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aging well-formedness during generation; and source-target constraints for transferring

feature values.

Compared to the deep-syntactic transfer-based systems, Stat-XFER assumes less

about the underlying linguistic theory. The framework is neutral with regard to the rule

acquisition method and Lavie (2008) describes a manually developed Hebrew-English

transfer grammar, which includes a small number of agreement feature transfer rules.

In Hanneman et al. (2009) the framework is used with a large automatically-extracted

grammar, though this does not incorporate non-constituent features.

4.6 Conclusion

This chapter has introduced the basic concepts of unification-based approaches to

grammar. In this thesis we propose that targeted use of unification-based methods

can be used to improve the grammaticality of statistical machine translation. In the

next chapter we will introduce the framework that we use for exploring this approach.

Our framework supports the use of target-side constraints in a string-to-tree statistical

machine translation model.

Unification-based approaches have been applied to machine translation before, no-

tably in transfer-based approaches where feature structures are deployed as the basic

units for mapping information between the source and target languages. The transfer-

based models typically employ linguistically-rich models for monolingual analysis and

synthesis, but incorporate concepts from statistical machine translation into the trans-

fer process. In a sense, we are working in the other direction, starting from minimally-

linguistic statistical models and gradually introducing linguistically-motivated features

and constraints.
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Framework

5.1 Introduction

This chapter presents the unification-based framework that we use throughout the rest

of the thesis. Our framework is an extension of a conventional string-to-tree model

that adds unification-based constraints to the target-side of the synchronous grammar

rules. We describe the extended grammar formalism and how constraint evaluation is

integrated into the search process.

The grammar extraction method is not prescribed by our framework since the

definition of the constraints is dependent on the linguistic phenomena being mod-

elled. In principle, a grammar extraction method could incorporate arbitrarily complex

phenomena-specific processing to generate the constraints. In Chapter 7 we present

one possible method for extracting rules with simple agreement constraints. This in-

volves the automatic annotation of target trees together with a simple extension of

GHKM. The method is then adapted to generate the constraints for a different applica-

tion — verbal complex translation — in Chapter 8.

In the examples given in this chapter we use English as the target language since

the linguistic phenomena will already be familiar to any reader. In subsequent chapters

we will use German since there are prominent machine translation issues for which a

unification-based approach seems well suited, but in Chapter 10 we will outline some

potential applications in other languages, including English.

51
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5.2 Formalism

Our model is an extension of the SCFG-based string-to-tree model described in Sec-

tion 2.5.2. The formalism extends SCFG by adding a lexicon, which associates target-

side terminals with feature structure values, and by adding target-side constraints to

the rules.

5.2.1 Lexicon

Let T denote the target-side terminal vocabulary of a grammar. We associate with

every terminal t ∈ T a non-empty set of complex feature structures. This mapping is

referred to as the lexicon. Our feature structures take the form described in Section 4.2

and we will list lexicon entries in the same style as we did there. For example, the

entry for the terminal screech might be a set of two feature structures:

screech →






CAT V

AGR

[

NUM pl

]







screech →










CAT V

AGR





NUM sg

PER ¬3















The lexicon’s feature structures can be empty. A minimal lexicon entry therefore asso-

ciates a terminal with a set containing a single empty feature structure.

5.2.2 Grammar Rules

We extend the grammar rules by adding target-side constraints. A rule takes the form

C → 〈γ,α,∼, I〉

where C is a target non-terminal, γ is a string of source terminals and non-terminals,

α is a string of target terminals and non-terminals, ∼ is a one-to-one correspondence

between source and target non-terminals, and I is a set of constraints.

Our constraints are similar to those of PATR-II and other monolingual formalisms,

but our formalism is not an exact generalisation of PATR-II to the synchronous case, the

main difference being that our rules are always reducible to SCFG rules by discarding

the constraints. As we saw in Section 4.3, the combinatory rules in PATR-II are an

abstracted form of CFG rule (with constraints) that only by convention employ a CAT

feature to specify the phrase-structure labels of constituents. Our rules are strictly

SCFG rules augmented with a set of constraints. In this regard, our formalism is like

LFG in that it requires a context-free backbone.



Chapter 5. Framework 53

Our terminals and non-terminals are atomic symbols, but during derivation each

target-side symbol is paired with a feature structure value. We refer to the value as-

sociated with a rule’s head, C, as F0. We refer to the values associated with the right-

hand-side target symbols as F1,F2, . . .Fn, where n is the number of symbols in the target

right-hand-side α.

The constraints are identities involving feature structure values. There are three

types of constraint: relative, absolute, and probabilistic.

Relative Constraints

A relative constraint is an identity between two feature structure values Fi(π) and

Fj(ρ), where Fi and Fj are the values associated with the i-th and j-th target sym-

bols of a rule, and π and ρ are feature paths referring to values within Fi and Fj. For

example, the rule

S → X1 schreien | NP1 screech

might have a constraint F1(〈AGR〉) = F2(〈AGR〉) that requires identity between the AGR

values of F1 and F2, the feature structure values associated with the target non-terminal

NP and the target terminal screech.

When the meaning is unambiguous, we will refer to a feature structure value Fi

using the corresponding target-side symbol. For the rule just given we will write

S → X1 schreien | NP1 screech

〈NP AGR〉= 〈screech AGR〉

Absolute Constraints

An absolute constraint is an identity between two feature structure values Fi(π) and G,

where π is a feature path and G is a constant value. For example, the rule just given

might have a further constraint F2(〈CAT〉) = V that requires identity between the CAT

value of F2 and the atomic value V. We will write

S → X1 schreien | NP1 screech

〈screech CAT〉= V

Probabilistic Constraints

A probabilistic constraint is an identity between a feature structure value Fi(π) and a

random variable with an associated probability distribution. As in the other constraint
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types, π is a feature path and Fi is the feature structure value associated with one of the

target symbols.

For our example rule, the absolute constraint might be relaxed to a probabilistic

constraint that allows F2(〈CAT〉) to take on two possible values, V or N with respective

probabilities 0.95 and 0.05.

We will write this as

S → X1 schreien | NP1 screech

〈screech CAT〉= x P(X = x) = {V : 0.95,N : 0.05}

5.2.3 Derivations

Like in SCFG, a derivation begins with a pair of source and target start symbols, X and

S, and ends with a pair of source and target sentences. A sequence of production steps

links the initial state to the final state. Additionally to SCFG, every target symbol in

the derivation is paired with a feature structure value. The target start symbol, S, is

paired with an empty feature structure value.

Derivation States

For each state in a derivation, we will write the source and target sentential forms,

separated by a bar, followed by the sequence of target feature structure values. The

initial state is therefore written

X1 | S1
[]

The subscripts indicate the one-to-one correspondence between non-terminal symbols,

just as in the notation used for rules. An intermediate state will include a mix of

terminals and non-terminals, with at least one source-target non-terminal pair. For

example,

X1 X2 schreien | DET1 N2 screech
[

AGR 1

] [

AGR 1

]
[

AGR 1
[

NUM pl

]

]

The three feature structures correspond to the DET, N, and screech target symbols,

respectively. Co-index boxes indicate the sharing of values (re-entrancy) between fea-

ture structures within a sequence. In our example, all three feature structures share a

common AGR value.

In the final state, the source and target sentential forms consist of terminals only.
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Production Steps

Each production step links one state to the next by the application of some rule r. This

involves three substeps: i) rewriting a linked pair of source and target non-terminal

symbols with the source and target symbol sequences from the body of r, ii) rewriting

a feature structure value with a sequence of values, one for each target side symbol in

r’s body, and iii) unifying the new feature structure values from step ii) according to

r’s constraints.

The first substep is performed just as in SCFG derivation. For the rewrite to occur,

r’s head non-terminal must match the target non-terminal that is to be rewritten. The

second and third substeps are more complex, involving the selection of feature struc-

ture values from the lexicon and the satisfaction of constraints. As an illustration, we

will consider the application of the rule

S → X1 schreien | NP1 screech

〈NP AGR〉= 〈screech AGR〉

〈screech CAT〉= V

given the initial state

X1 | S1
[]

The rule’s head non-terminal, S, matches the non-terminal in the target sentential form

and therefore the X-S non-terminal pair can be rewritten using the source and target

symbol sequences from the rule’s body:

X2 schreien | NP2 screech
[]

We use distinct indices for the newly-inserted non-terminals to distinguish them from

non-terminals that were introduced in previous steps.

Having rewritten the non-terminal pair, we proceed to rewrite the feature structure

that corresponds to the target non-terminal. We will refer to this feature structure value

as F0 and we refer to the values in the replacement sequence as F1,F2, . . . ,Fn. The

initial value of an element Fi depends on whether the i-th target symbol in r’s body is

a terminal or a non-terminal: if it is a terminal, t, then a value is selected from the set

of feature structure values in t’s lexicon entry. If it is a non-terminal then Fi is initially

empty. For example, if the lexicon entry for screech includes the feature structure







CAT V

AGR

[

NUM pl

]






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then we can rewrite the feature structure value as follows:

X2 schreien | NP2 screech
[]







CAT V

AGR

[

NUM pl

]







The final substep is to apply the rule’s constraints. This is done by unifying the values

on the two sides of each identity. The first constraint is 〈NP AGR〉 = 〈screech AGR〉,

which requires unification between the AGR values of F1 and F2. This results in F2’s

AGR value being shared with F1:

X2 schreien | NP2 screech
[

AGR 1

]






CAT V

AGR 1
[

NUM pl

]







The second constraint is 〈screech CAT〉= V, which requires unification between the CAT

value of F2 and the constant value V. Unification does not change the value of F2 and

so the state just shown is the result of this production step.

5.2.4 Example: Modelling Subject-Verb Agreement

Section 4.4 gave an example of a monolingual unification grammar fragment that mod-

elled subject-verb agreement in English. We now give an example synchronous frag-

ment, G2, that generates German-English sentence pairs whilst imposing the same

agreement constraints on the English side. The lexicon is unchanged from that of

Figure 4.5 but we reproduce it here for convenience (Figure 5.1). The synchronous

grammar rules are shown in Figure 5.2.

Figure 5.3 shows the derivation of a sentence pair using the grammar G2. Figure 5.4

shows an incomplete derivation that starts out identically, but differs in the selection

from the lexicon of a feature structure for screech. This choice leads to a dead-end.

Finally, Figure 5.5 shows the target-side derivation tree that results from the deriva-

tion in Figure 5.3.
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the →






CAT DET

AGR

[

PER 3

]







an →










CAT DET

AGR





NUM sg

PER 3















owl →










CAT N

AGR





NUM sg

PER 3















owls →










CAT N

AGR





NUM pl

PER 3















screeches →










CAT V

AGR





NUM sg

PER 3















screech →










CAT V

AGR





NUM sg

PER ¬3















screech →






CAT V

AGR

[

NUM pl

]







Figure 5.1: Example grammar G2 (lexicon)

DET → die | the (r1) N → Eulen | owls (r2)

〈the CAT〉= DET 〈owls CAT〉= N

〈DET AGR〉= 〈the AGR〉 〈N AGR〉= 〈owls AGR〉

V → schreien | screech (r3) NP → X1 X2 | DET1 N2 (r4)

〈screech CAT〉= V 〈NP AGR〉= 〈DET AGR〉

〈V AGR〉= 〈screech AGR〉 〈NP AGR〉= 〈N AGR〉

S → X1 X2 | NP1 V2 (r5)

〈NP AGR〉= 〈V AGR〉

Figure 5.2: Example grammar G2 (rules)
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X1 | S1
[]

r5⇒ X2 X3 | NP2 V3
[

AGR 1

] [

AGR 1 []
]

r3⇒ X2 schreien | NP2 screech
[

AGR 1

]






CAT V

AGR 1
[

NUM pl

]







r4⇒ X4 X5 schreien | DET4 N5 screech
[

AGR 1

] [

AGR 1

]






CAT V

AGR 1
[

NUM pl

]







r1⇒ die X5 schreien | the N5 screech




CAT DET

AGR 1





[

AGR 1

]











CAT V

AGR 1





NUM pl

PER 3















r2⇒ die Eulen schreien | the owls screech




CAT DET

AGR 1









CAT N

AGR 1















CAT V

AGR 1





NUM pl

PER 3















Figure 5.3: An example derivation of a sentence pair using the production rules and

lexicon from grammar G2. The feature structure sequences correspond to the target-

side terminal / non-terminal sequences of each intermediate form.

X1 | S1
[]

r5⇒ X2 X3 | NP2 V3
[

AGR 1

] [

AGR 1 []
]

r3⇒ X2 schreien | NP2 screech
[

AGR 1

]











CAT V

AGR 1





NUM sg

PER ¬3















r4⇒ X4 X5 schreien | DET4 N5 screech
[

AGR 1

] [

AGR 1

]











CAT V

AGR 1





NUM sg

PER ¬3















Figure 5.4: An incomplete derivation. The same production rules are applied as in

Figure 5.3, but the second step differs in the choice of lexical entry for screech. This

leads to a dead-end: only one further rule can be applied and no sentence pair can be

derived.
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S
[]

V
[

AGR 1

]

screech




CAT V

AGR 1





NP
[

AGR 1

]

N
[

AGR 1

]

owls












CAT N

AGR 1





NUM pl

PER 3

















DET
[

AGR 1

]

the




CAT DET

AGR 1





die Eulen schreien

Figure 5.5: Target-side derivation tree corresponding to the derivation in Figure 5.3.

The aligned source words are shown, but the source-side derivation tree is not.

5.3 Decoding

We saw in Chapter 2 that decoding is an approximate search for the highest-scoring

translation t of a sentence s according to a model of p(t|s). We saw in Chapter 3 that

the search space of a string-to-tree (or similar syntax-based) model can be represented

as a rooted, directed hypergraph and that decoding is then an approximate search for

the optimal path through this hypergraph. By adding constraints to the grammar, we in-

troduce a means of identifying ungrammatical paths in the search hypergraph.1 Faced

with a constraint failure, we can either remove the path from consideration (a hard

constraint) or we can downweight it (a soft constraint). In this section, we briefly

elaborate on the distinction between hard and soft constraints and then we describe

the extended search hypergraph and how constraint evaluation is integrated into the

decoding process.

1Technically, adding constraints also changes the structure of the hypergraph by splitting search
states. We return to this point later.
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5.3.1 Hard Versus Soft Constraints

Typically when parsing with a monolingual constraint-based grammar, the parser will

reject the application of a rule in a context where the rule’s constraints cannot be sat-

isfied. If the parser assigns scores to derivations — as our string-to-tree translation

decoder does — then an alternative is to permit the application but to incur a penalty

so that the otherwise-illegal derivation is downweighted. The former approach uses

hard constraints and the latter soft constraints.

Clearly, allowing soft constraints risks diminishing the capability of the constraint

system to enforce grammaticality. However, soft constraints may be appropriate if

the constraint extraction process is noisy or if the linguistic phenomenon that is being

modelled is not completely regular and fully accounting for irregularity is difficult.

The choice of using hard or soft constraints will depend on the specific application

and therefore our framework allows for both options. A natural means of defining a

penalty for ill-formed derivations is to add a feature function that counts constraint

failures. In Chapter 7 we compare the use of hard and soft constraints for one applica-

tion.

5.3.2 The Expanded Search Hypergraph

In Section 3.3.5 we described the hypergraph structure of the string-to-tree search

space. The label of each node encoded the category, the source span, and the m-gram

language model context that were common to a set of subderivations. Each hyperedge

was labelled with the synchronous rule that could be applied to the source subderiva-

tions to yield the target subderivations.

Adding constraints to the model requires that the hypergraph node labels also en-

code information about the subderivation’s feature structure values. The minimal in-

formation that must be encoded is the single feature structure value for the root of the

subderivation tree. In our description of the derivation process (Section 5.2.3), this was

the F0 value. In the context of bottom-up hypergraph search, we refer to this value as

the frontier feature structure value. It is this value that determines whether a node can

satisfy the constraints required for a traversal.

Figure 5.6 shows a very simple search hypergraph with hyperedges corresponding

to applications of the rule r3 from grammar G2 (Figure 5.2) with the two different

lexical feature structure values, f1 and f2, for the terminal screech.

Since the choice of lexical feature structures does not affect the score of a sub-
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schreien

V3,3; screech;





AGR





NUM sg

PER ¬3











V3,3; screech;
[

AGR

[

NUM pl

]

]

r3, f1 r3, f2

Figure 5.6: Search hypergraph in which the node labels distinguish states based on

category, source span, m-gram LM context, and frontier feature structure value. On the

hyperedge labels, f1 and f2 refer to the two lexical feature structure values for the target

word screech.

schreien

V3,3; screech;















AGR





NUM sg

PER ¬3










,

[

AGR

[

NUM pl

]

]











r3

Figure 5.7: Search hypergraph in which the node labels distinguish states based on

category, source span, m-gram LM context, and a set of frontier feature structure values.
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derivation, we can collapse the states reached by the traversals r, f1 and r, f2 into a

single state that records both possible frontier feature structure values. This is depicted

in Figure 5.7.

These two styles of hypergraph can both be used to encode the same space of

derivations, but the reduction in states in the latter can be important when using an

approximate search strategy like cube pruning where only a subset of all possible states

can be considered. We therefore adopt this latter style of hypergraph for decoding.

It is important to be clear aboout how constraint model state is defined. Recall

that for an m-gram language model, state is defined by the boundary target words of a

subderivation. If two subderivations yield the same boundary target words then their

states are equivalent (with respect to the language model). For the constraint model,

state is partially defined by the frontier feature structure value of a subderivation. State

can only be fully defined by considering a set of related subderivations: specifically, it

is defined as the set of frontier feature structure values from the set of subderivations

that are identical other than for the choices of lexical feature structure values. Two

constraint model states are equivalent if they contain identical sets of feature structure

values.

To give a more complete example, Figure 5.8 shows the hypergraph that represents

the search space for grammar G2 when decoding the input sentence die Eulen schreien.

We assume a bi-gram language model and therefore language model state records one

left boundary word and one right boundary word. This hypergraph includes the senten-

tial derivation from Figure 5.3. Note that the intermediate state reached by applying r3

to schreien contains two feature structure values due to there being two lexical entries

for screech. The presence of the second value allows the rule r5 to be applied. With

only the first value, this state would be a dead end. Note also that once the S node

is reached, the feature structure values are no longer relevant (indicated by the empty

feature structure value of the state).

The Feature Structure Sequence

Our search hypergraph does not record the details of which predecessor feature struc-

tures and which lexical feature structures participate in a traversal, not does it record

non-frontier values. Usually, we are only interested in the target sentence strings that

are produced as the end result of decoding and so this loss of derivational detail does

not pose a problem. If the feature structure values were needed then the full derivation

— or rather the set of derivations corresponding to the common SCFG derivation —
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die(1) Eulen(2) schreien(3)

DET1,1,the
{

[

AGR

[

PER 3

]

]

}

N2,2,owls















AGR





NUM pl

PER 3





















V3,3,screech















AGR





NUM sg

PER ¬3










,

[

AGR

[

NUM pl

]

]











NP1,2,the owls















AGR





NUM pl

PER 3





















S1,3,the . . . screech
{

[]
}

r1 r2 r3

r4

r5

Figure 5.8: Search hypergraph for the input sentence die Eulen schreien and the gram-

mar G2.

could be reconstructed as a post-decoding step.

5.3.3 Integrating Constraint Evaluation

We integrate constraint evaluation into the decoding process in a similar manner to

the m-gram language model. The requirement that the grammar has a context-free

backbone means that constraint evaluation can be performed as a distinct secondary

step of a rule application. We exploit this property for integration, leaving the de-

coder’s context-free parsing algorithm (Section 3.3) unchanged; instead, the evaluation

of a synchronous derivation’s constraints is deferred until the beam-filling step (Sec-

tion 3.3.6). We use cube pruning as the beam-filling strategy in experiments and in our

description here, but we note that our method is compatible with other approximate

search strategies such as that of Heafield et al. (2013).

Figure 5.9 shows the cube pruning algorithm adapted for hard constraints. Con-

straint evaluation is performed immediately prior to the point that a hypothesis is to
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CUBE-PRUNE-HC(n,k)

1 beam = empty ordered list
2 q = empty priority queue
3 for e in n’s hyperedge set
4 PUSH(q,CUBE-PRUNE-HYPEREDGE(e))
5 while |beam|< k and |q|> 0
6 lazy-list = POP(q)
7 (hypothesis,score) = POP(lazy-list)
8 if EVAL-CONSTRAINTS(hypothesis)
9 ADD-TO-BEAM(beam,(hypothesis,score))

10 if lazy-list is not empty
11 PUSH(q, lazy-list)
12 return beam

Figure 5.9: The cube pruning algorithm modified to include hard constraints.

be added to the beam, the only change being that the call to ADD-TO-BEAM (line 9)

is made conditional on the result of a call to EVAL-CONSTRAINTS, a function that

returns true if the constraints can be satisifed for a hypothesis and false otherwise. The

implementation of EVAL-CONSTRAINTS is described shortly. Note that for hard con-

straints, constraint failure does not affect the exploration of the cube since the failed

hypotheses’ neighbours will have been added to the priority queue as usual during the

call to CUBE-PRUNE-HYPEREDGE.

When using soft constraints, a constraint failure can be reflected in the score. This

requires no direct change to the cube pruning algorithm, only that the SCORE function

that is called by CUBE-PRUNE-HYPEREDGE (Figure 3.10) calls a variant of EVAL-

CONSTRAINTS and incorporates the result into the score calculation. Unlike for hard

constraints, soft constraint failures can affect the exploration of the cube, since the

score dictates the priority of items in the queue.

The EVAL-CONSTRAINTS Algorithm

For decoding, we are interested in a bottom-up exploration of the search graph that

dynamically constructs nodes by applying rules to existing source nodes. Our adoption

of set-based constraint model state means that a single traversal may involve taking into

account multiple frontier feature structure values for each source node and multiple

lexical feature structure values for each terminal of the rule. The EVAL-CONSTRAINTS

algorithm is used to determine if any combination of incoming feature structures can
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EVAL-CONSTRAINTS-NAIVE(h)

1 r = top-level rule in h
2 cs = r’s constraint set
3 frontier-values = empty set
4 for fs-tuple in CARTESIAN-PRODUCT(sequence-of -incoming-fs-sets)
5 PREPEND(fs-tuple,

[]

)

6 if SOLVE-CONSTRAINTS(fs-tuple,cs)
7 INSERT(frontier-values, fs-tuple[0])
8 SET-FRONTIER-VALUES(h, frontier-values)
9 return |frontier-values|> 0

Figure 5.10: The naive constraint evaluation algorithm.

satisfy the constraints of the rule, and for any such combinations, what the resulting

frontier feature structure value are.

We will present two versions of the EVAL-CONSTRAINTS algorithm. The first is

simple, but inefficient. In order to illustrate how our second version improves on the

first, we introduce a new example application using constraints. The application is

somewhat artificial but serves to illustrate why care must be taken to avoid inefficien-

cies arising from a combinatorial explosion of potential analyses. In the next chapter,

when we look at agreement and government in German, we will see some examples

that occur in natural language.

The Naive Algorithm

Figure 5.10 shows a naive constraint evaluation algorithm. For a single hyperedge in

the search graph, it determines the set of feature structures in the head node’s frontier

set based on the contents of the frontier sets of incoming nodes and on the constraints

associated with the hyperedge’s grammar rule. At line 4, it enumerates all combi-

nations of incoming feature structures by generating the Cartesian product from the

sequence of incoming feature structure sets. The feature structure prepended at line 5

corresponds to the head rule symbol. Since search operates in bottom-up order, this

value is empty prior to constraint satisfaction. For each resulting feature structure tuple

the algorithm then attempts to unify values according to the constraints (line 6). If uni-

fication succeeds for all constraints then the head value is added to the set of frontier

values. At line 8, the frontier set is recorded for the hypothesis, meaning that it can be

used for recombination when the hypothesis is added to the beam.
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Example: Repeated Vowel Sounds

Suppose we wish our grammar to generate target sentences in which the subject and

the verb share at least one vowel sound. For example, the target sentence the kittens

hiss would be grammatical because the subject and verb both contain an I sound2, but

an owl screeches would not. We could model this by using the lexicon to list the vowel

sounds of nominals and finite verbs and using constraints to test for matching vowel

pairs. For example, a German-English grammar that could generate the target sentence

the kittens skittered down the garden might include these lexical entries:

the →
[

CAT D

]

down →
[

CAT PREP

]

kittens →




CAT N

VOWEL I





kittens →




CAT N

VOWEL @





skittered →




CAT V

VOWEL I





skittered →




CAT V

VOWEL @





garden →




CAT N

VOWEL A:





garden →




CAT N

VOWEL @





and these rules:

r1 : N → Kätzchen | kittens r2 : NP → den Garten | the garden

〈N VOWEL〉= 〈kittens VOWEL〉 〈NP VOWEL〉= 〈garden VOWEL〉

〈kittens CAT〉= N 〈garden CAT〉= N

r3 : NP → die X1 | the N1 r4 : S → X1 liefen X2 hinunter |

〈NP VOWEL〉= 〈N VOWEL〉 NP1 skittered down NP2

〈NP1 VOWEL〉= 〈skittered VOWEL〉

〈skittered CAT〉= v

Prior to the application of rule r4, the search hypergraph would contain the nodes

shown in Figure 5.11 (assuming a bi-gram language model). Now consider what the

EVAL-CONSTRAINTS-NAIVE algorithm does for a hypothesis formed by the applica-

tion of the rule r4. The incoming feature structure sets are the sets S1,S2,S3,S4 where:

S1 is the frontier set for the predecessor NP node that covers die Kätzchen

S2 is the set containing the two lexical feature structures for skittered

S3 is the set containing the one lexical feature structure for down

S4 is the frontier set for the predecessor NP node that covers den Garten

2In examples, we use the phonetic symbols from the International Phonetic Alphabet (IPA).
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die(1) Kätzchen(2) . . . den(4) Garten(5)

N2,2,kittens
{

[

VOWEL I

]

,
[

VOWEL @

]

}

NP4,5,the garden
{

[

VOWEL A:

]

,
[

VOWEL @

]

}

NP1,2,the kittens
{

[

VOWEL I

]

,
[

VOWEL @

]

}

r1

r2

r3

Figure 5.11: Partial search hypergraph for the input sentence die Kätzchen liefen den

Garten hinunter and the grammar G3.

At line 4, the algorithm enumerates all |S1|.|S2|.|S3|.|S4| = 2× 2× 1× 2 = 8 com-

binations of the incoming feature structures, evaluating constraints for each. This is

wasteful because: i) the values in |S4| cannot affect the set of frontier values that is

produced since r4 has no constraints involving NP2, and ii) there are two combinations

involving I for the subject’s vowel and @ for the verb’s (and vice versa), both of which

fail unification, regardless of any other values. If a pair (or some larger subset) of

incoming feature structures is found to be non-unifiable in one combination then no

other combination containing that pair (or subset) need be enumerated.

The Improved Algorithm

Our second version of EVAL-CONSTRAINTS improves on the first in the following

ways:

1. Feature structure tuples are built up progressively, starting with the elements of

the single incoming feature structure set S1. These initial tuples are extended

by adding elements from S2 to form tuples from the Cartesian product S1 × S2,

then tuples from S1 × S2 × S3, etc. At each step, the constraints are evaluated

and tuples for which evaluation fails are eliminated. In the example, the partial

tuples involving the non-unifiable subject and verb vowel choices I and A: would

be eliminated after the first expansion.

2. If the i-th target rule symbol does not occur in any of the rule’s constraints then

the incoming feature structure set Si is not included in the Cartesian product. In
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our example, only the incoming feature structure sets S1 (for the subject NP) and

S2 (for the verb) are included: we include tuples from S1 × S2 only, not tuples

from S1 ×S2 ×S3 ×S4.

3. The constraint set is partitioned to form the minimal subsets in which no rule

symbol is referenced by constraints from more than one subset. Consider a rule

with the following target right-hand side,

NP1 skittered , NP2 bounded , and NP3 meandered

The constraint set would be partitioned into three subsets, one for each subject-

verb pair. Evaluation would be performed separately for each subset, reducing

the maximum number of feature structure tuples from O(|S1|.|S2|.|S4|.|S5|.|S8|.|S9)

to O(|S1|.|S2|+ |S4|.|S5|+ |S8|.|S9).

Figure 5.12 shows the second version of the constraint evaluation algorithm. It

partitions the constraint set (line 3) and then calls the subroutine EVAL-CONSTRAINT-

SUBSET for each subset. The index sets are the sets of rule symbol indices after par-

titioning. In the example just given, the three index sets are {1,2}, {4,5}, and {8,9}.

The partition of a given constraint set does not depend on any external factors and so

can be performed as a preprocessing step.

EVAL-CONSTRAINT-SUBSET generates tuples of feature structures, starting with

the elements of the first incoming feature structure set (lines 3 and 4) and then iter-

atively extending the tuples (lines 5-14), subject to successful constraint evaluation

(lines 10 and 11). If the index set includes the head rule symbol then the set of frontier

values is recorded (lines 15-19) for the hypothesis.

5.4 Conclusion

In this chapter we presented the unification-based framework that is used throughout

the rest of the thesis. The framework can be used to add constraints to string-to-tree

models without requiring changes in the base model.

In the next we will describe our baseline system and then in the following three

chapters we will describe applications of our framework to several prominent mor-

phosyntactic problems in English-German translation. Some of the technical choices

relating to constraint evaluation and search were informed by these morphosyntactic

applications. The details become much more relevant in the context of translating into
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EVAL-CONSTRAINTS(h)

1 r = top-level rule in h
2 cs = r’s constraint set
3 for (subset, index-set) in PARTITION(cs)
4 if !EVAL-CONSTRAINT-SUBSET(h,subset, index-set)
5 return false

6 return true

EVAL-CONSTRAINT-SUBSET(h,constraint-subset, index-set)

1 fs-tuples = empty list
2 i = index-set[0]
3 for fs in Si

4 INSERT(fs-tuples, INIT-TUPLE(fs))
5 for i in index-set[1..|index-set|−1]
6 extended-tuples = empty list
7 for fs in Si

8 for tuple in fs-tuples
9 extended-tuple = EXTEND-TUPLE(tuple, fs)

10 if UNIFY(extended-tuple,constraint-subset)
11 INSERT(extended-tuples,extended-tuple)
12 if |extended-tuples|= 0
13 return false

14 fs-tuples = extended-tuples
15 if 0 ∈ index-set
16 frontier-values = empty list
17 for tuple in fs-tuples
18 INSERT(frontier-values, tuple[0])
19 SET-FRONTIER-VALUES(h, frontier-values)
20 return true

Figure 5.12: The improved constraint evaluation algorithm.
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richly morphological languages and in the following chapters we will see examples of

feature value ambiguity that arise in natural language.



Chapter 6

Baseline Setup

6.1 Introduction

In this chapter we describe the baseline English-German system that is used in experi-

ments throughout the following chapters. We first give an outline of the system before

describing the data, rule extraction, and feature functions in more detail.

Our baseline closely resembles the string-to-tree system described in Williams and

Koehn (2012), which was one of Edinburgh’s submissions to WMT 2012’s translation

task and which performed competitively: based on human evaluation, it was ranked

second highest out of the eight systems that were trained on the same data (Callison-

Burch et al., 2012); based on BLEU, it was ranked joint third of nine systems. In the

2013 translation task, an identically configured system trained using the 2013 training

data was the highest ranked of 11 systems, based on human evaluation (Bojar et al.,

2013).

6.2 System Description

6.2.1 System Outline

Our baseline system uses a string-to-tree SCFG translation grammar and a 5-gram

language model. We used the Moses SMT toolkit (Koehn et al., 2007b) for training

the model and decoding, with some additional toolkits for subtasks.

The translation grammar was learned from a word-aligned English-German par-

allel corpus with phrase-structure parse trees on the target side. The corpus was au-

tomatically word-aligned using MGIZA++ (Gao and Vogel, 2008), a multi-threaded

71
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implementation of GIZA++ (Och and Ney, 2003). The German-side of the parallel

corpus was then parsed using the BitPar1 parser. If a parse failed then the sentence pair

was discarded. The SCFG grammar was then extracted using the GHKM algorithm,

subject to scope-3 pruning.

The monolingual German data was used to train seven 5-gram language models

(one each for Europarl, News Commentary, and the five News data sets). These were

interpolated using weights optimised against the development set and the resulting

language model was used in experiments. We used the SRILM toolkit (Stolcke, 2002)

with Kneser-Ney smoothing (Chen and Goodman, 1998).

The feature function weights were tuned on the news-test2008 dev set using the

Moses implementation of minimum error rate training (Och, 2003).

For evaluation we use case-sensitive BLEU-4 (Papineni et al., 2002) with a single

reference.

6.2.2 Data

Our systems use all of the available English-German data from the 2012 Workshop on

Machine Translation (Callison-Burch et al., 2012). The parallel corpus, which is used

to learn the translation grammar, is derived from two genres, European Parliamentary

proceedings (92.4%) and news (7.6%). The monolingual corpus, which is used to

learn the m-gram language model, is derived from the same two genres but in almost

the opposite proportion: 6.6% European Parliamentary proceedings and 93.4% news.

The tuning set (newstest2008) and three test sets (newstest2009, newstest2010,

newstest2011) are all drawn from the news genre.

Table 6.1 shows the sizes of the data sets used for training, tuning, and evaluation.

Two values are shown for the parallel training corpus: the larger value is for the pre-

processed corpus,2 which is used for automatic word alignment. The parsed version,

which is used for grammar extraction, is slightly smaller because BitPar is unable to

parse some of the target sentences. These sentence pairs (0.7%) are discarded prior to

grammar extraction.

The tuning and test sets all have a single reference translation.

1http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html
2We use the standard Moses corpus filtering script, which removes sentence pairs where one or both

sentences is overly long (80 tokens in this case) or where the pair has a dubious length ratio. Prior to
cleaning the corpus size is 2.08M sentence pairs.

http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html
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Data Set Sentences Data Set Sentences

Parallel (preprocessed) 2.04M Tuning 2,051

Parallel (parsed) 2.03M Test (2009) 2,525

Monolingual 33.02M Test (2010) 2,489

Test (2011) 3,003

Table 6.1: Sizes of the training, tuning, and evaluation data sets.

6.2.3 Rule Extraction

The SCFG translation grammar is extracted from the word-aligned parallel training

data using the Moses implementation (Williams and Koehn, 2012) of the GHKM al-

gorithm that was described in Section 3.2.2. Minimal rules are composed into larger

rules subject to the following limitations, defined in terms of the target tree fragment:

Rule depth the maximum distance from the composed rule’s root node to any other

node within the fragment, not counting preterminal expansions. This is set to 3.

Node count the number of target tree nodes in the composed rule, excluding target

words. This is set to 15.

Rule size the measure defined in DeNeefe et al. (2007): the number of non-part-of-

speech, non-leaf constituent labels in the target tree. This is set to 3.

Fully non-lexical unary rules are eliminated using the method described in Chung

et al. (2011a). Rules with scope greater than 3 (Section 3.3.3) are not added to the

translation grammar.

6.2.4 Feature Functions

Our feature functions assign various scores to the synchronous derivations that are

produced during translation. As explained in Section 3.3, the m-gram language model

probability of the derivation’s target yield cannot be computed by summing scores for

the individual rules. However, the remaining scores can be decomposed in this way.

Each grammar rule is therefore associated with a set of pre-computed scores, one for

each feature function. For a grammar rule of the form

C → 〈γ,α,∼〉
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where C is a target-side non-terminal label, γ is a string of source terminals and non-

terminals, α is a string of target terminals and non-terminals, and ∼ is a one-to-one

correspondence between source and target non-terminals, we score the rule according

to the following functions:

• p(γ |C,α), the noisy-channel translation probability.

• p(C,α | γ), the direct translation probability.

• plex (α | γ) and plex (γ | α), the direct and indirect lexical weights (Koehn et al.,

2003).

• ppcfg (π), the monolingual PCFG probability of the tree fragment π from which

the rule was extracted. This is defined as ∏n
i=1 p(ri), where r1 . . .rn are the con-

stituent CFG rules of the fragment. The PCFG parameters are estimated from

the parse of the target-side training data. All lexical CFG rules are given the

probability 1. This is similar to the pcfg feature used in Marcu et al. (2006) and

is intended to encourage the production of syntactically well-formed derivations.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty.

6.2.5 Glue Rules

During development we found that allowing MERT to learn a glue rule penalty led to

highly variable levels of glue rule use between optimisation runs,3 suggesting that the

tuning metric, BLEU, is not particularly sensitive to higher-level syntactic structure.

Fixing the glue rule penalty at a strongly negative weight (we used -1) forces the gen-

eration of syntactic structure and we found that this had little effect on the final BLEU

score. See Table 6.2 for average scores on the three test sets. Following the recom-

mendation of Clark et al. (2011), we ran the MERT optimization step three times for

each system and repeated the evaluation with each set of feature weights.

Given the size of the translation grammar and given that GHKM grammars include

highly-permissive non-lexical rules, it is perhaps not too surprising that when forced

not to use glue rules, the decoder is able to find some combination of high-level rules

3Although in the final experiments presented here, glue rule use happened to be very consistent over
MERT runs at an average of 2.4 glue rules per sentence with a standard deviation of only 0.02.
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Test Set 2009 2010 2011

Glue 15.0 0.0 16.5 0.1 15.3 0.1

No glue 15.1 0.1 16.6 0.1 15.4 0.2

Table 6.2: Average BLEU scores and standard deviations for the three test sets, with

and without glue rules.

that are no worse than glue rules, especially if the preference that the decoder might

otherwise have had for using glue rules was based on weak evidence in the first place.

6.3 Conclusion

In this chapter we presented the baseline system that is used throughout the rest of the

thesis. A similar system was found to perform strongly in the WMT 2012 translation

task.

In the next three chapters we will describe applications of our framework to sev-

eral prominent morphosyntactic problems in English-German translation. Namely, the

issues of agreement, government, and discontiguous verb complex construction.



Chapter 7

Agreement and Government

If you want to do agreement, I don’t think the right way of doing it is to
look back at 5-grams, you just need so many of them. Better to look back
and ask questions about, where’s the noun? — Peter Brown (2013)

7.1 Introduction

In this chapter we apply our framework to the task of modelling agreement and govern-

ment in German. The majority of surface-form inflection in German and other Indo-

European languages can be understood in terms of these phenomena and by modelling

the underlying grammatical relationships we aim to improve the generation of inflec-

tional surface forms in machine translation.

We first introduce the relevant linguistic concepts and explain why these phenom-

ena pose a problem for SMT. We then look at the previous approaches that have been

taken to modelling inflection in SMT before describing how to model German agree-

ment and government phenomena using the feature structures and constraints of our

framework. To evaluate the effectiveness of the approach, we extend the common

baseline model and data that was described in Chapter 6 and then present experimental

results and analysis.

An early version of this work was presented in Williams and Koehn (2011). In that

work we found soft constraints to be more effective than hard constraints, whereas we

now find the opposite. Since we believe this to be due to improvements in our train-

ing process, we provide a summary of the main differences in the training compared

to Williams and Koehn (2011). This chapter also includes extensions and additional

experiments that were developed subsequently.

76
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7.2 Background

7.2.1 Agreement and Government

In natural language, agreement is the repeated marking of grammatical features in

syntactically distinct parts of a sentence. We have already seen the example of subject-

verb agreement in English, where the number of a common noun is usually expressed

via inflection on the noun itself (owl versus owls) and if the noun is the subject of

a clause then the same information is re-expressed on the finite verb of the clause

(screeches versus screech). Agreement relations are asymmetric in the sense that one

participant is the source of the information, sometimes called the controller, and the

rest are targets. In subject-verb agreement, the subject noun or pronoun is the source

of the information and the verb is the target.

Cross-linguistically, the main grammatical features involved in agreement are gen-

der, number, and person. It is typical that the controller is nominal in nature (Corbett,

2006, p7).

Government is closely related to agreement. Like in agreement, a source element

(the governer) determines one or more features that are marked on syntactically dis-

tinct parts of the sentence. However, unlike agreement, the features are not marked on

the source element itself. An example is verbal case government in Russian, where the

lexical choice of the verb determines the cases of the noun phrase complements.

We will use the more general term selector to refer to both controllers and govern-

ers.

7.2.2 Inflection

Agreement and government figure prominently in morphologically-rich languages.

Although their broad definitions cover other possibilities (such as clitic agreement),

agreement and government usually involve the coordination of inflectional affixes.

Whilst English makes limited use of inflectional morphology, many languages use

inflection to mark a much wider range of grammatical distinctions. Corbett (2012,

p74) gives the following examples1 from Russian showing gender marking on nouns

and verbs:
1In examples, we use the Leipzig Glossing Rules: http://www.eva.mpg.de/lingua/resources/

glossing-rules.php

http://www.eva.mpg.de/lingua/resources/
glossing-rules.php
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(1) Žurnal by-l zdes′

magazine(M).SG.NOM be-PST[M] here
‘The magazine was here’

(2) Kniga by-l-a zdes′

book(F).SG.NOM be-PST-F here
‘The book was here’

As in English, the verb is inflected to agree with the subject, but in Russian this includes

gender agreement: byl agrees with the masculine noun Žurnal and byla agrees with the

feminine noun Kniga.

Cross-linguistically, grammatical features can be marked for word classes that are

uninflected in English, such as determiners and adjectives in Russian. For non-nominal

word classes, the inflection is usually defined by one or more agreement or government

relations.

7.2.3 Inflection and SMT

The coordination of inflectional markers poses a problem for statistical machine trans-

lation since the words that bear the markers may be produced by the application of

independent translation rules. Typically, the m-gram language model is the only means

of enforcing consistency.

Consider the following hierarchical SCFG rules, which could be learned from a

corpus containing the two English-Russian translations from Section 7.2.2:

X → the magazine | Žurnal X → X1 was here | X1 byl zdes′

X → the book | Kniga X → X1 was here | X1 byla zdes′

These rules can produce correct translations of the two English sentences, but they also

allow ungrammatical derivations such as:

X

zdes′bylaX

Žurnal

magazinethe was here

Producing correctly inflected translations is particularly challenging for translation

into languages with rich morphology where features, like gender in Russian, are often

not present in the source language.
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7.3 Previous Work

There is a large body of work that addresses the problem of producing accurate tar-

get morphology, most of which is motivated by similar problems of agreement and

government. The majority of this work has been based on phrase-based models.

7.3.1 Inflection Marking as Post-Processing

To improve translation in language pairs with complex source-side inflection, an ef-

fective approach has been to simplify the source-side of the data, either by stemming

or a similar word-clustering approach (Nießen and Ney, 2001; Goldwater and Mc-

Closky, 2005; Talbot and Osborne, 2006). Much of the information encoded in the

morphological distinctions is redundant for translation (for example, source-side gen-

der distinctions when translating into a language without grammatical gender) and

simplifying the data has the advantage of reducing data sparsity for word alignment

and in the translation model. For rich target-side side morphology, a similar approach

can be taken, provided that there is also some means for restoring morphology.

Minkov et al. (2007) explore how a post-processing step might generate target in-

flection from stemmed translation output. They develop a maximum entropy model

that predicts the target inflection given features from a small window of neighbouring

words and aligned source words. The model is evaluated by measuring its accuracy at

restoring the surface-forms of stemmed English-Arabic and English-Russian sentence

pairs, where it significantly outperforms the random and language model baselines.

Toutanova et al. (2008) continue this line of research, applying Minkov et al.’s

(2007) model directly to English-Arabic and English-Russian machine translation sys-

tems. They compare systems that re-inflect fully inflected output with those that in-

flect stemmed output, where the target input is either stemmed before or after word

alignment. For their English-Russian dependency tree-based system, they find that all

three methods improve BLEU score significantly, with stemmed word alignment and

re-inflection providing similar and complementary improvements. For a phrase-based

English-Russian system they only try re-inflection, finding a smaller improvement.

An English-Arabic dependency tree-based system shows gains for re-inflection, with

smaller gains for the methods that use stemmed training data. The authors suggest this

is likely due to the loss of inflectional information that could otherwise be inferred

from evidence in the English source.
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Fraser et al. (2012) also proposes a two-step approach in which English is first

translated into a morphologically-simplified form of German using a conventional

phrase-based model and then the output is fully inflected using a CRF-based model.

The intermediate German representation is produced by stemming the surface forms

and then adding inflection-related tags according to a scheme that takes into account

whether features are inherent or contextual for a given word class (for instance, gender

tags are added to nouns, which are controllers, but not to adjectives, which are targets).

7.3.2 Factored Translation Models

In factored translation models (Koehn and Hoang, 2007), the surface-form tokens of

phrase-based models are replaced with vectors of factors, where a factor is an arbitrary

token. Typically, factors are used to represent linguistic types such as lemmas, part-

of-speech tags, or morphological features. The translation process involves one or

more factor mapping steps, each operating on a subset of source and target factors,

followed by zero or more generation steps, which combine target factors to produce

a final output form. Koehn and Hoang (2007)’s framework generalizes a number of

lemma-tag approaches that were used in earlier work on morphology in SMT.

There is a large body of experimental work that applies factored models to transla-

tion issues in a diverse range of language pairs (Koehn et al., 2007a; Holmqvist et al.,

2007; Bojar, 2007; Stymne et al., 2008; Avramidis and Koehn, 2008; Ramanathan

et al., 2009). The most successful approaches are typically those where the number of

mapping steps is kept small and any generation steps are carefully chosen such that the

number of possible expansions is limited. Koehn and Hoang (2007) warn that the use

of more complex factored models in their experiments was precluded by the combina-

torial expansion of the search space associated with generating translation options and

this is a danger in any system that generates surface forms from more general types.

This is further cited as a factor in the decision by Toutanova et al. (2008) to construct

an inflection model as an independent post-processing step rather than integrate it into

the decoder.

7.3.3 Global Discriminative Models

In the log-linear models we saw in Chapter 2, the individual translation units — phrase

pairs or synchronous rules — were scored independently of the context in which they

were applied. For some aspects of translation, source context is crucial for accurate
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unit selection and so researchers have explored approaches for integrating global dis-

criminative models into SMT systems. For instance, Carpuat and Wu (2007) integrate

a discriminative word sense disambiguation model that improves target word selection

based on the full source context.

Jeong et al. (2010) and Subotin (2011) have both applied this approach to improv-

ing target morphology. Jeong et al. (2010) were able to improve translation quality for

English into Bulgarian, Czech, and Korean by incorporating a discriminatively-trained

log-linear model defined over large numbers of features involving various aspects of

source and target morphology. Subotin (2011) took a similar approach for English-

Czech, but also allowed for the generation of unseen Czech forms.

7.3.4 Morpheme Segmentation

For translation involving an agglutinative language, such as Finnish or Turkish, tokens

are typically segmented into individual morphemes prior to translation. For English-

Finnish translation, Clifton and Sarkar (2011) achieve an improvement in translation

quality by using a phrase-based model defined over segmented tokens combined with

a post-processing step similar to that of Toutanova et al. (2008).

Arabic-English translation typically also involves morphological segmentation (Lee,

2004; Zollmann et al., 2006). Although Arabic’s morphological system is fusional

rather than agglutinative, Arabic shares the characteristic that single multi-morpheme

tokens frequently correspond to morphemes that would be distinct tokens in English.

For translation into Arabic, Green and DeNero (2012) propose a model that involves

both segmentation and agreement modelling. They represent agreement features as

tags and train a CRF model to generate bi-gram tag sequences using features derived

from the surface, such as prefixes, affixes, and indicators for digits. Segmentation and

sequence tagging are both performed during decoding, as hypotheses are generated.

7.3.5 Unification-based Approaches

As discussed in Chapter 4, unification has been widely used in transfer-based ap-

proaches to machine translation. Agreement constraints are a natural component of

the target-language translation step in these models and Lavie (2008) uses constraints

to enforce number and gender agreement.

In a precursor to the current work, we developed a unification-based agreement

checker within the hierarchical-phrase based framework (Williams, 2009). This was
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limited to testing short sequences of words (strictly within the range of the m-gram lan-

guage model) using pre-defined part-of-speech sequences to identify word sequences

that were likely to share features. Whilst this approach was found to have a negligi-

ble effect on BLEU score, manual analysis revealed that the approach was successful

at identifying agreement failures. It was observed that the decoder would frequently

circumvent agreement constraints by producing syntactically ill-formed sequences, a

finding which helped motivated the syntax-based approach proposed in this thesis.

7.3.6 Advantages of the Proposed Approach

Whilst most SMT research has historically been focussed on translation into English,

there is now a diverse set of approaches for handling rich source or target morphology.

Most of these approaches have been based on an underlying phrase-based model and

have focussed on ensuring consistent inflection across phrasal boundaries. With the

exception of the global discriminative models, the approaches have treated inflection as

a sequence tagging problem, where the inflection of a word is informed by a window of

neighbouring words. For example, Green and DeNero (2012) use a bi-gram agreement

model for English-Arabic and Fraser et al. (2012) uses a CRF model for English-

German with features defined over the preceeding and subsequent five words.

Our framework offers a number of advantages over existing approaches, in that it:

1. allows agreement and government relations to be defined in terms of target syn-

tactic structure. For many target words, the relationship to the controller or gov-

erner is difficult to describe without reference to syntax.

2. places no inherent restriction on the range of agreement and government rela-

tions. Whilst many agreement issues are highly-localized, there are important

exceptions that present difficulties for sequence models. For example, subject-

verb agreement in languages with verb-final syntactic configurations.

3. produces inflected forms during search. The parameters for the model’s feature

functions can therefore be estimated from fully inflected forms. In practice,

data sparsity may lead to worse rather than better parameter estimation, but our

approach does not preclude the use of feature functions estimated from both

inflected and uninflected data (although note that in the experiments presented

here we use only inflected data).
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7.4 Model

We apply our approach to German, which has a rich inflectional morphology and ex-

hibits a range of agreement and government phenomena. This section describes how

we model these phenomena using the lexicon and constraints of the formalism that was

described in Chapter 5.

7.4.1 Internal NP and PP Inflection

Within a German noun phrase or prepositional phrase, inflectional suffixes are added

to determiners, attributive adjectives, and nouns. The choice of suffix on an individual

word is determined by multiple factors, which, with one exception, are internal to

the phrase. The single external factor — case marking of noun phrases according to

grammatical function — is deferred until Section 7.4.2.

The inflectional markers take the form of single-morpheme suffixes. These are

highly syncretic: that is, a single suffix form may be shared between many feature

values. Whilst the feature values of an inflected form may be ambiguous when the

word is observed in isolation, they are usually unambiguous within the context of the

phrase. For instance, in isolation the inflected adjective großen could be analysed as

big-N.SG.ACC, as big-PL.GEN, or as one of nine other morphological analyses. In

the noun phrase der großen Hunde the interpretation is unambiguously the.PL.GEN

big.PL.GEN dogPL[GEN].

Noun-Modifier Agreement

Determiners and attributive adjectives are inflected to agree with the gender and num-

ber feature values that are inherent to the noun. Number is usually marked on the noun,

as in English, but gender is not.

We model this in a similar manner to the English subject-verb agreement example

in Section 5.2.4: the lexical entry for a noun includes agreement features that indicate

the inherent gender and number values of the noun. The lexical entries for determin-

ers and attributive adjectives contain agreement values that are consistent with their

inflection.

As we will see shortly, it is convenient to treat the agreement value as one part of

a larger structure that determines inflection. We refer to this larger feature value as the

INFL feature.
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Constraints are used to ensure that agreement values are compatible under unifica-

tion. For example, given the following lexical entries:

das →


















CAT ART

INFL











AGR





GENDER n

NUM sg





. . . ...





























Kätzchen →


















CAT NN

INFL











AGR





GENDER n

NUM sg





. . . ...





























the following rules would allow the translation of the input the kitten to the output das

Kätzchen:

ART → the | das NP-SB → X1 kitten | ART1 Kätzchen

〈das CAT〉= ART 〈Kätzchen CAT〉= NN

〈ART INFL〉= 〈das INFL〉 〈ART INFL〉= 〈Kätzchen INFL〉

Given constraints of this type, it is the absence of compatible lexical entries that

prevents the production of grammatically incorrect derivations.

The relationship between the noun and modifiers is symmetrical in our model: no

distinction is made between the controller and target of the agreement relation.

Prepositional Case Government

The case of a prepositional phrase is governed by the preposition. For example, a

phrase headed by the preposition mit (‘with’) will always be in the dative case. Most

prepositions either govern one case exclusively or govern two cases with the choice

of case indicating a difference in meaning (usually relating to whether movement is

involved).

We model this in a similar way to noun-modifier agreement: a lexical entry for a

preposition contains a case value corresponding to a case governed by that preposition.

For example, the preposition unter (‘under’) has two lexical entries, one for each of

the cases it governs:

unter →






CAT APPR

INFL

[

CASE acc

]







unter →






CAT APPR

INFL

[

CASE dat

]







The inflection of determiners, attributive adjectives, and nouns depends on the case

of the noun phrase, and so their lexical entries also contain a case value that must be

compatible under unification.
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Adjectival Declension Type

In addition to nominal agreement and phrasal case, the choice of inflectional suffix on

an attributive adjective is determined by one further factor: the adjectival declension

paradigm. The choice of paradigm is determined by the presence or absence of a de-

terminer within the phrase, and, if present, its definiteness. In the context of analysing

German adjective agreement in GPSG, Zwicky (1986) argues that this phenomenon

should be considered an instance of government.

The absence of a determiner requires the use of the most expressive adjectival in-

flection paradigm with five possible suffixes. This is referred to as ‘strong’ declension.

If the phrase includes a definite article then the least expressive inflection paradigm is

used, with two possible suffixes. This is referred to as ‘weak’ declension. For all other

determiners, a hybrid inflection pattern is used — ‘mixed’ declension.

Like gender, number, and case, we model the choice of declension paradigm with

a feature. The declension feature has an important difference that complicates mod-

elling: the value depends not only on a property of the controller (the definiteness of a

determiner), but also on the presence or absence of the controller. We therefore model

declension control in two parts. The first is the same as for other features: determiners

in the lexicon specify a declension value (mixed or weak) according to their definite-

ness and attributive adjectives have a declension value that matches their inflection.

For example, lexical entries for the attributive adjective wilde (‘fierce’) and Kätzchen

(‘kitten’ or ‘kittens’) are (among others):

wilde →


















CAT ADJA

INFL











CASE nom

DECL strong

AGR

[

NUM pl

]





























Kätzchen →






CAT NN

INFL

[

AGR

[

NUM pl

]

]







Since noun inflection does not depend on the adjectival declension paradigm, lexi-

cal entries for nouns do not have a declension feature.

The second part to modelling is purely syntactic: if a determiner is absent from a

phrase then a constraint is used to require that any attributive adjectives have the strong

declension value. For example:

ADJA → fierce | wilde NP-SB → X1 kittens | ADJA1 Kätzchen

〈wilde CAT〉= ADJA 〈Kätzchen CAT〉= NN

〈ADJA INFL〉= 〈wilde INFL〉 〈ADJA INFL〉= 〈Kätzchen INFL〉

〈ADJA INFL DECL〉= strong
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7.4.2 NP Case Marking

The features and constraints in Section 7.4.1 are designed to enforce consistency of

case marking within phrases. For prepositional phrases, the case is governed by the

preposition, but for noun phrases we do not yet have any mechanism for making the

overall case choice. As we have already mentioned, the primary use of case is to mark

the grammatical relation of the noun phrase to the head verb — nominative case is used

for subjects, accusative for the direct object, and so on. If we know the grammatical

role of a noun phrase then we can constraint the case value of the phrase.

The Tiger corpus, on which the parser is trained, has several layers of annotation,

including both phrase-structure and syntactic function labels (Brants et al., 2002). Bit-

Par produces constituent labels that include both label types and our baseline system

retains these. For example, the non-terminal label NP-SB is used for a noun phrase

that functions as a subject. We thus have a ready source of syntactic annotation that

pertains directly to case value choice.

We add constraints that set the case value for the noun phrase according to the

grammatical function indicated by the constituent label. For example:

NP-SB → X1 kittens | ADJA1 Kätzchen

〈Kätzchen CAT〉= NN

〈ADJA INFL〉= 〈Kätzchen INFL〉

〈ADJA INFL CASE〉= nom

〈ADJA INFL DECL〉= strong

Tiger uses a rich set of grammatical function labels and whilst the grammatical

function label unambiguously determines the case value for the core role labels, it

does not hold for all function labels. Therefore, for each of the function labels, we

determine empirically from our training data whether to constrain the noun phrase

case value or not. We will provide details in Section 7.5.2 once we have outlined the

training process.

7.4.3 Subject-Verb Agreement

Like in English, finite verbs agree in number and person with their subjects. We model

this exactly as we did for English in Section 5.2.4: the lexical entries for nouns include

agreement features that indicate inherent number and person values; the lexical entries

for finite verbs include number and person feature values that are consistent with the
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Feature Values Target(s) Determined By:

Det Adj Noun Verb

case nom, acc, gen,

dat

X X X grammatical role of

phrase, preposition

decl strong, mixed,

weak

X presence and definiteness

of determiner

gender m, f, n X X inherent property of noun

number sg, pl X X X inherent property of noun

person 1, 2, 3 X inherent property of noun

Table 7.1: Lexical features and values used in this chapter.

inflection. We use the constituent labels to identify the participants in constraints. For

example:

S-TOP → X1 hiss | NP-SB1 fauchen

〈fauchen CAT〉= VAFIN

〈NP-SB INFL〉= 〈fauchen INFL〉

7.4.4 Summary of Features

The lexical features and values used are summarised in Table 7.1. The target column

indicates the parts of the phrase — determiner, attributive adjectives, noun, and verb —

on which the information is marked. The source column states how the feature values

are determined.

7.5 Training

We now describe how our model’s lexicon and constraints can be derived from the

training data. This is a straightforward rule-based procedure but it relies upon the

availability of a statistical phrase-structure parser and morphological analyser to gen-

erate linguistic annotation of the data. These tools are readily available for German

(we will touch on the availability of tools for other languages when we discuss the

potential application of our approach to other languages in Chapter 10).
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> wilde

wild<+ADJ><Pos><Fem><Nom><Sg>

wild<+ADJ><Pos><Fem><Akk><Sg>

wild<+ADJ><Pos><NoGend><Nom><Pl><St>

wild<+ADJ><Pos><NoGend><Akk><Pl><St>

wild<+ADJ><Pos><Masc><Nom><Sg><Sw>

wild<+ADJ><Pos><Neut><Nom><Sg><Sw>

wild<+ADJ><Pos><Neut><Akk><Sg><Sw>

Figure 7.1: Output of the Morphisto morphological analyser for the input word wilde

(fierce).

7.5.1 Lexicon Extraction

Morphological analysis is a standard task in natural language processing and there are

freely-available tools for extracting exactly the feature values that we are interested

in. We use the Morphisto morphological analyser (Zielinski and Simon, 2009) in this

work.

For each distinct target word in our training corpus, the morphological analyser

produces a set of possible analyses. Figure 7.1 shows the analyses for the adjective

wilde. Each analysis includes a lemma, a part of speech value, and a set of feature

values. The features values are the same as those listed earlier in Table 7.1 except for

superficial differences (like a single value <Sw/Mix> to indicate that the inflection is

consistent with both the weak and mixed adjective declension paradigms).

The part of speech values are similar but not identical to those used in the Tiger

corpus (and output by the BitPar statistical parser). Generally speaking, the categories

used by the morphological analyser are coarser-grained but the same fine-grained dis-

tinctions are instead encoded as feature values. We use a simple mapping scheme to

produce the Tiger-compatible CAT values for our lexicon. Full details are provided in

Appendix A.

7.5.2 Constraint Extraction

In our baseline system, the rule extraction step (described in Section 6.2.3) uses the

GHKM algorithm to extract an SCFG translation grammar. We extend rule extraction

to generate the same grammar but with a set of constraints for each SCFG rule. This

involves the following steps:

1. Tree annotation. The syntax of the German parse trees is used to match selectors
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votes&apos;tomorrowinconsiderationintotakenbewillproposalmyhopeI

S-TOPa

S-OCb

VVFINb

findetb

NP-OAd

NNd

Berücksichtigungd

NP-SBb

PP-MNRc

NNc

Abstimmungc

ADJAc

morgigenc

ARTc

derc

APPRc

inc

NNb

Vorschlagb

PPOSATb

meinb

KOUS

daß

PUNC,

,

VVFINa

hoffea

NP-SBa

PPERa

icha

Figure 7.2: Alignment graph for sentence pair from training data. The target sentence

has four selector-target sets, indicated by colour (and by the subscripts a, b, c, and d).

(nouns and prepositions) with their targets (determiners, attributive adjectives,

nouns, and finite verbs) and label the participating nodes in each selector-target

set.

2. Identity generation. Rule extraction is extended to generate identities between

feature values whenever an SCFG rule contains two or more nodes from a com-

mon selector-target set. CAT identities are added for terminals that appear in other

identities to allow for disambiguation of lexicon entries based on part of speech.

We now outline how these two steps are performed.

Annotation of Selector-Target Sets

Figure 7.2 shows a sentence-pair from the training data with the selector-target sets

indicated using colour. In our annotation scheme, a selector-target set contains one

or more selectors and target words, their lowest common constituent node, and any

intermediate constituent nodes.

If a target word is selected by two distinct selectors, a single selector-target set con-

taining both selectors is formed. For example, the determiner der in the prepositional

phrase is case-governed by the preposition in and controlled by the noun Abstimmung.

All three words are added to the same set (along with the selectors’ other target, the

adjective morgigen).
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The Tiger treebank annotation allows for identification of selector-target relation-

ships based on simple constituency patterns. Whilst there are a few tricky cases to

deal with, most relationships can be identified from a few syntactic patterns and so

we use a simple rule-based procedure. The procedure is purely syntactic (lexical con-

tent is ignored) and includes rules like “a word is a noun phrase head (and therefore

a controller) if its preterminal label is one of NN, NE, PPER, or PDS, its grandparent’s

category is NP, there are no commas among its left siblings, and there are no nouns or

pronouns among its right siblings (unless they are preceded a comma).” The full set of

rules is given in Appendix B.

Induction of Constraints

Recall from Section 3.2.2 that in GHKM each grammar rule r is derived from a sub-

graph h of the alignment graph. If r is written

Y0 → X1 X2 . . .Xm | Y1 Y2 . . .Yn

then the head symbol Y0 is projected from the root node of h and the target body

symbols, Y1 . . .Yn, are projected from its sink nodes. For a rule symbol Yi we will

write hi to denote the projecting node of the subgraph. If Yi is a terminal we will

write pos(i) to denote the part-of-speech label from hi’s parent node. If hi is a NP or is

dominated by a NP then we will write np(i) to denote the lowest dominating NP.

The constraints for each rule r are generated as follows:

1. For each pair i and j, i< j ≤ n, for which hi and h j belong to a common selector-

target set S and where i is the least value such that hi ∈ S, the following identity

is a constraint: Yi(INFL) = Y j(INFL).

2. If Yi(π) is a constraint term and Yi is a terminal then Yi(CAT) = pos(i) is also a

constraint.

3. If Yi(π) is a constraint term, hi belongs to a selector-target set S that does not

contain a determiner, and i is the least value such that hi ∈ S then Yi(DECL) =

strong is also a constraint.

4. If Yi(π) is a constraint term and hi is either an NP or is dominated by a NP, and if

the syntactic category of np(i) has a predominant case value c then Yi(INFL CASE)=

c is also a constraint.
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In the resulting constraint set, every constraint is associated with exactly one selector-

target set since i) every constraint includes at least one non-constant constraint term

Yi(π), ii) the corresponding node hi must belong to a selector-target set, and iii) if the

constraint includes a second non-constraint constraint term Y j(π) then h j must belong

to the same selector-target set as hi. This property means that the constraint set can be

partitioned such that there is one subset of constraints for each selector-target set.

Whilst constraint induction has been described using the terminology of GHKM,

the same process can be used for Hiero-based string-to-tree rule extraction methods (as

was the case in Williams and Koehn (2011)).

Example

As an example, Figure 7.3 shows the alignment graph for a sentence pair from the

training data. There are two selector-target sets (indicated in blue and orange, and with

the subscripts a and b). The root and sink nodes of one possible subgraph are shown

using boxes. This subgraph is one of many that can be formed by composing minimal

GHKM rules.

Figure 7.4 shows the SCFG grammar rule that is extractable from this subgraph

along with the constraints that are induced. The constraint set can be partitioned into

two subsets (indicated by the dashed line) where the constraints of each correspond to

one of the two selector-target sets.

The case constraints, a5 and b5, result from the fact that NPs with the syntactic

categories SB and AG are predominantly in nominative and genitive case, respectively.

Partial Coverage of Selector-Target Sets

In the example just given, the rule is produced from a large subgraph that fully incorpo-

rates the two selector-target sets. Note that the inclusion of a complete selector-target

set is not a precondition for the extraction of effective constraints since unification fa-

cilitates the propagation of relevant information from smaller derivations: for example,

a subgraph covering only the NP-SB constituent would result in a rule with constraints

that propagate agreement information to the root. A second rule derived from a sub-

graph containing the S-TOP but with NP-SP as a sink node would have a constraint that

unifies the information from NP-SP subderivation with that of the verb.
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.distributedbeenhavesittings’yesterdayofMinutesthe

TOP-S

PUNC.

.

S-TOPa

VP-OC

VVPP

verteilt

VAFINa

wurdea

NP-SBa

NP-AGb

NNb

Sitzungb

ADJAb

letztenb

ARTb

derb

NNa

Protokolla

ARTa

dasa

Figure 7.3: Alignment graph for sentence pair from training data. The boxes indicate

the root (TOP) and sink nodes of a subgraph from which a composed rule is extractable

(as defined by the GHKM algorithm).

TOP → the X1 of X2 sitting have been X3 X4 |

das NN1 der ADJA2 Sitzung wurde VP-OC3 PUNC.4

〈das INFL〉= 〈NN INFL〉 (a1)

〈das INFL〉= 〈wurde INFL〉 (a2)

〈das CAT〉= ART (a3)

〈wurde CAT〉= VAFIN (a4)

〈das INFL CASE〉= nom (a5)

- - - -

〈der INFL〉= 〈ADJA INFL〉 (b1)

〈der INFL〉= 〈Sitzung INFL〉 (b2)

〈der CAT〉= ART (b3)

〈Sitzung CAT〉= NN (b4)

〈der INFL CASE〉= gen (b5)

Figure 7.4: SCFG grammar rule and induced constraints for the subgraph in Figure 7.3.
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Tag Meaning Nom Acc Dat Gen Total Relative

SB Subject 99.8 0.0 0.1 0.1 1,316,357 46.7%

AG Genitive attribute 0.1 0.0 0.1 99.8 775,305 27.5%

OA Accusative object 1.2 95.5 2.9 0.4 258,307 9.2%

DA Dative 0.9 0.6 97.5 1.0 161,518 5.7%

HD Head 7.9 11.1 67.8 13.2 99,389 3.5%

Table 7.2: NP case frequencies for the five most common syntactic relation tags.

Case Frequencies

Case constraints are added for rule elements that belong to NPs with syntactic cate-

gories for which there is one predominant grammatical case. For many of these cat-

egories, the appropriate case is clear from the definition of the category used in the

treebank annotation. For example, the AG category is used to indicate a ‘genitive at-

tribute.’ For other categories there may not be a clear choice.

Rather than relying on treebank definitions, we determine empirically when a syn-

tactic category label can be relied upon to indicate a single case. To do this, we annotate

the target-side of our training corpus to indicate selector-target set membership, as we

have just described. We also extract a feature structure lexicon, again using the method

just described. We then induce and evaluate constraints for the smallest possible com-

posed rule that fully covers each selector-target set. For each NP, we record a count for

the case value occurring with the NP’s syntactic category label. If there are multiple

possible case values then we divide the counts between the values. Table 7.2 shows the

case frequencies for the five most frequently occurring NP syntactic category labels.

During training, we use the frequencies to determine whether or not to induce a case

constraint. We use a threshold of 95%.

Dealing with Conflicting Constraints

Our constraint extraction method relies on syntactic annotation from a statistical parser.

However good we make the procedure for annotating selector-target sets, there will

always be a danger that erroneous constraints are learned due to parse errors. For

example, if the parser were to misidentify the definite article of a noun phrase as a

relative pronoun — in German, some forms, like der and die, function in both roles —

then grammar rules derived from the (presumed-determiner-less) noun phrase would
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gain a spurious strong declension constraint.

As a guard against this kind of error, we test for conflicting constraints during

training: for each set of rules that share a common target-side (that is, a pair (C,α)

where C is the rule’s left-hand-side non-terminal and α is the target right-hand-side),

we count the distinct constraint sets and retain the most frequent set, provided it has

a relative frequency of 0.7 or higher.2 The chosen constraint set is then used for all

rules with that target-side. If the most frequent constraint set does not meet the relative

frequency threshold then constraints are dropped from those rules.

7.6 Experiments and Analysis

To evaluate the effect of our agreement and government constraints we compare the

baseline system from Chapter 6 with three systems. The first is identical to the baseline

except that BitPar’s morphological tags were retained during training and included

in the translation grammar’s non-terminal labels. During the early development of

the baseline, we had found that including the morphological tags degraded translation

quality and so they were stripped from the parse tree labels prior to rule extraction. As

we see shortly, we now observe a small improvement in BLEU from retaining them and

so we include this system for comparison. The other two systems use constraints, one

with hard constraints and one with soft constraints. For the soft constraint model, we

add a single feature function: a count of the number of constraint evaluation failures.

7.6.1 BLEU

Following the recommendation of Clark et al. (2011), we ran the MERT optimiza-

tion step three times for each system and repeated evaluation with each set of feature

weights. Table 7.3 shows the averaged single-reference BLEU scores and standard

deviations.

Contrary to our earlier results (Williams and Koehn, 2011), we find that hard con-

straints perform better than soft constraints. In that work, we suggested that our con-

straint extraction heuristics may be introducing significant numbers of spurious con-

straints and that using soft constraints allowed the decoder to overcome these defi-

2This value was chosen during system development by decoding the dev set with hard constraints
obtained using various settings. In practice, the value was found to have a small effect on resulting
BLEU scores and a wide range of settings produced near-identical results. Once the value had been
chosen it was not re-tuned.
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System 2009 2010 2011

Baseline 15.1 0.1 16.6 0.1 15.4 0.2

Morph tags 15.3 0.0 16.6 0.1 15.5 0.1

Soft constraint 15.4 0.0 16.9 0.0 15.6 0.0

Hard constraint 15.6 0.0 17.1 0.1 15.7 0.1

Table 7.3: Average BLEU scores and standard deviations over three optimization runs.

s-BLEU

Worse Same Better Total

Worse 12.8 13.1 17.8 43.7

Model score Same 0.0 53.0 0.0 53.0

Better 1.1 1.0 1.3 3.4

Total 13.9 67.0 19.1

Table 7.4: Effect on model score and s-BLEU of using hard constraints (values are

percentages of sentences, calculated over the three test sets).

ciencies by permitting some constraint failures. Since that work we have substantially

improved the tree annotation scheme and numerous other aspects of training and so

we believe that softening the constraints is less helpful (we provide a summary of the

main training improvements at the end of this section).

Sentence-Level Analysis

To get a clearer picture of the effect our constraints were having, we ran a system

with and without hard constraints using identical tuning weights. We used the weights

from the first baseline tuning run. This comparison removes optimization-related noise

from consideration, making analysis of individual sentence-level changes meaningful,

though it disadvantages the hard constraint system by using non-optimized weights.

Table 7.4 shows the effect of using hard constraints on model score and sentence-

level BLEU (s-BLEU). The results from the three test sets were aggregated.

One possible advantage of using hard constraints is that removing ungrammatical

subderivations early in the search allows for greater diversity, ultimately improving

search accuracy. Based on the low proportion (3.4%) of sentences for which the model

score improves, this appears to be a minor effect. A far larger proportion of sentences
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System 2009-20 2010-20 2011-20

Baseline 16.8 17.1 14.5

+noun-modifier 17.0 17.5 14.7

+prep-gov 17.0 17.5 14.7

+adj-decl 17.0 17.6 14.7

+np-case 17.1 17.8 14.9

+subj-verb 17.2 17.8 14.9

Table 7.5: BLEU scores for short sentences as constraint types are progressively in-

cluded.

(43.7%) have a worse model score, and just over half are unchanged.

As we would expect from the increase in test-set BLEU, the number of sentences

for which s-BLEU increases (19.1%) outweighs the number for which it decreases

(13.9%). In other words, according to s-BLEU, for every sentence that translation

quality is degraded, there are approximately 1.4 for which it is improved.

Of the sentences that change when hard constraints are used, s-BLEU gives identi-

cal scores for approximately 29.8%. Since the agreement and government constraints

leave many words unchanged, it is unsurprising that BLEU will fail to detect some

changes: replacing a word that does not occur in the reference with another word that

does not occur in the reference will leave the score unchanged.

Contribution of Individual Constraint Types

To measure the contribution of individual constraint types, we progressively added

constraint types to the baseline, measuring the BLEU score at each point. To eliminate

optimization noise, we used a single set of baseline weights and did not re-tune. We

used constrained versions of the test set in this experiment, including sentences up to

20 tokens only. During development, we found our constraints to be more effective

on shorter sentences and since the BLEU changes are already small, this shows up the

differences more clearly.

Table 7.5 shows the results. The constraint types follow the description in Sec-

tion 7.4: noun-modifier agreement, prepositional case government, adjectival declen-

sion types, NP case marking, and subject-verb agreement.
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7.6.2 Human Evaluation

Whilst BLEU remains the most widely used automatic metric for statistical machine

translation, its limitations are well documented (see Callison-Burch et al. (2006) for a

critique of BLEU and see the many proposals for alternative metrics). Given BLEU’s

limitations, human evaluation remains an essential part of translation competitions and

is the basis of the offical WMT system rankings (Bojar et al., 2013).

To perform a similar evaluation, we asked two native German speakers to com-

pare the translation quality of the baseline and hard constraint systems (again, re-using

baseline weights). From the 45% of sentences that changed between baseline and

hard-constraint systems we removed sentences longer than 20 tokens (leaving 1,203)

and then generated a random sample of 300 sentences (without duplicates). We asked

two annotators to judge which translation they preferred. We restricted our sample to

short sentences because they tend to be easier to compare.

Figure 7.5 shows a screenshot of the web interface that was used by our annotators.

The order of the two output sentences was randomly chosen (and the same for both

annotators). If an annotator thought the two translations were equally good (or equally

bad) then they had the option to state that they did not have a preference. We did not

suggest any judgement criteria and the annotators were not told anything about the

translation systems. The results are shown in Table 7.6.

Figure 7.5: Screenshot of the web interface used for the human evaluation task.

Following the advice of Carletta (1996) and the example of the WMT evaluation

task (Bojar et al., 2013), we used Cohen’s kappa coefficient (Cohen, 1960) to calculate

a measure of inter-annotator agreement. The kappa coefficient is defined as

κ =
P(A)−P(E)

1−P(E)
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Annotator A

Judgement Worse Same Better Total

Worse 31 15 8 18.0%

Annotator B Same 28 33 77 46.0%

Better 8 12 88 36.0%

Total 22.3% 20.0% 57.7%

Table 7.6: Judgements for the 300 sentences by the two annotators.

where P(A) is the proportion of sentences on which the annotators agree and P(E) is

the proportion of sentences that we would expect the annotators to agree on by chance.

The agreement value is low (κ = 0.253). It is clear from Table 7.6 that the an-

notators have different views on when a translation difference is qualitatively worse

or better or is the same. If we only include sentences for which the annotators both

stated a preference one way or the other then this leaves 135 sentences for which the

coefficient is much higher (κ = 0.712).

Recall that for the full test sets, s-BLEU indicated that for every sentence that trans-

lation quality is degraded, there were approximately 1.4 for which it improved. For the

300 sentence sample, s-BLEU gives a higher ratio of 1.6 (the worse/same/better per-

centages were 27.0%, 29.3%, and 43.7%). The ratios for the two annotators are higher

at, respectively, 2.0 and 2.6 improved sentences for every degraded one.

7.6.3 Translation Examples

We now give some examples of the changes that our constraints produce. In the first

(Figure 7.6), there is a change of case for the object (ein Kerl versus einen Kerl) and

a change in noun from one synonym to another (Jacke versus Jackett) to match the

inflection. Both annotators prefer the hard constraint output, and s-BLEU scores it

higher:

Input I saw a guy of about thirty with a green jacket.
Ref. Ich habe einen Kerl in den Dreissigern mit einer grünen Weste gesehen.
Baseline Ich sah ein Kerl von etwa 30 mit einem grünen Jacke.
HC Ich sah einen Kerl von etwa 30 mit einem grünen Jackett.

Figure 7.6: Sentence 1232 from the newstest2010 test set.

In the next example (Figure 7.7), the inflection of the verb changes to match the
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subject. s-BLEU scores the baseline higher, whereas both annotators prefer the hard

constraint output:

Input The minimum width for one should be 90cm in double bed, i.e. 180 cm
altogether.

Ref. Jedem der Schläfer sollten mindestens 90 cm Liegebreite zur Verfügung
stehen, zusammen also 180 cm.

Baseline Die Mindestbreite für einen sollten im Ehebett 90cm sein, d. h. 180 cm.
HC Die Mindestbreite für einen sollte im Ehebett 90cm sein, d. h. 180 cm.

Figure 7.7: Sentence 210 from the newstest2011 test set.

The reverse is true in the third example (Figure 7.8): the human annators prefer the

baseline, but the hard constraint output receives a better s-BLEU score. The inflection

of the hard constraint system is correct, unlike the baseline, but it involves a poorer

choice of noun:

Input Cockell was not part of the research team.
Ref. Cockel war nicht Teil des Forschungsteams.
Baseline Cockell war nicht Teil der Forscherteam.
HC Cockell war nicht Teil des Teams der Forschung.

Figure 7.8: Sentence 1395 from the newstest2011 test set.

In the next example (Figure 7.9), the choice of determiner is changed to agree with

the noun. The human annotators prefer the change, but the s-BLEU score does not

change:

Input Without an excessive ego, the ultimate mark of quality.
Ref. Ohne übermäßiges Ego, äußerstes Qualitätsmerkmal.
Baseline Ohne eine übermäßige Eitelkeit, die ultimative Zeichen der Qualität.
HC Ohne eine übermäßige Eitelkeit, das ultimative Zeichen der Qualität.

Figure 7.9: Sentence 1824 from the newstest2009 test set.

Whereas the previous examples have involved changes over a short distance, the

final example (Figure 7.10) illustrates a change that is well beyond the range of a

typical m-gram language model. In this example, the verb inflection (from könnte

to könnten) is changed to agree with the plural subject (the first wir), the choice of

determiner is changed to agree with the noun. One human annotator prefers the change

whilst the other does not have a preference. The s-BLEU score does not change.
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Input The only threat was that if we don’t stop this, we could lose our bus
licence.

Ref. Die einzige Drohung war, wenn wir darauf nicht verzichten, dass wir
dann auch die Buslizenzen verlieren können.

Baseline Die Bedrohung war nur, dass wir, wenn wir das nicht stoppen, unseren
Bus Lizenz verlieren könnte.

HC Die Bedrohung war nur, dass wir, wenn wir das nicht stoppen, unseren
Bus Lizenz verlieren könnten.

Figure 7.10: Sentence 447 from the newstest2010 test set.

7.6.4 Computational Costs

Constraint evaluation adds computational cost to decoding, which we have measured

empirically for our model. We compared the baseline system to the systems with hard

and soft constraints by decoding the same test set with each system and then comparing

translation time and peak memory usage.

The test set was sampled from the newstest2009-2011 test sets by randomly choos-

ing (without replacement) ten sentences of length 1-10, ten of length 11-20, and so on.

We decoded the test set four times for each system, discarding the first set of results (to

allow for filesystem cache priming) and then averaging the remaining three. The de-

coder was run in single-threaded mode in order that we could obtain accurate decoding

times for individual sentences.

Table 7.7 shows the total decoding times for each system and the peak virtual mem-

ory usage. The test machine had 48GB of physical memory, which was more than suf-

ficient for the processes to run without swapping out to disk. The machine was lightly

loaded, which is reflected in the low variance in decoding times between system runs.

Since the decoding algorithm is deterministic, peak memory usage is effectively con-

stant for runs of the same system and so variance is not reported (the largest difference

was less than 0.5MB).

Figure 7.11 shows plots of sentence length against decoding time for the three

systems. The empirical exponents were calculated by using the least-squares method

to fit a straight line to the data-points (in log space). The resulting curves are shown

along with their exponents.
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System Time (s) ∆ s.d.(s) VM (MB) ∆

Baseline 7,507 - 20.5 7,744 -

Hard constraint 8,765 +16.7% 12.4 10,649 +37.5%

Soft constraint 10,315 +37.4% 14.6 10,966 +41.6%

Table 7.7: Total decoding time and peak virtual memory usage, averaged over three

runs. The percentage changes relative to the baseline are shown, as are the standard

deviations.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

D
ec

od
in

g
T

im
e

(s
ec

on
ds

)

Sentence Length

Baseline (exp 2.44)
Hard (exp 2.38)
Soft (exp 2.31)

Figure 7.11: Sentence length vs decoding time for the baseline, hard constraint, and

soft constraint systems.



Chapter 7. Agreement and Government 102

7.6.5 Comparison to Williams and Koehn (2011)

In an earlier version of this work (Williams and Koehn, 2011) we found soft constraints

to be more effective than hard constraints, whereas we now find the opposite. A di-

rect comparison of results is not possible due to changes in experimental setup (the

experiments in Williams and Koehn (2011) used less training data (from 2011’s WMT

shared task rather than 2012’s) and were only evaluated on short sentences). How-

ever, the training process did evolve considerably during the development of this thesis

and we think it is plausible that a cumulation of training improvements is the main

reason for the apparent superiority in hard constraints (although we believe that both

the soft and hard constraint models could be improved further, as we will discuss in

Chapter 10). We summarise the main changes to the training process below.

• We switched from using a Hiero-based rule extraction method to using GHKM

with scope-3 pruning. This had two benefits: it led to an improvement in base-

line translation quality and it removed the reliance on glue rules (as reported in

Williams and Koehn (2012)). We observed in Williams (2009) and during early

development of this model that the decoder would frequently circumvent con-

straints by using glue rules or producing syntactically ill-formed constructions.

• The tree annotation procedure (Section 7.5.2 and Appendix B) is more accurate

than that of Williams and Koehn (2011). This was measured indirectly during

development by inducing and evaluating constraints (in the same way that we

did for case frequencies) for a portion of the training data. A lower failure count

was taken to indicate an improvement.

• Unlike in Williams and Koehn (2011), case constraints are not probabilistic, but

are absolute (and only used where a single choice of case value has an observed

relative frequency that surpasses a high threshold). Whilst this may seem like a

disadvantage, it is a more natural fit for the most frequent syntactic relation tags

(such as subject and genitive attribute) where only one case value is acceptable.

During development, the latter approach was found to work better than the for-

mer. It also has the benefit of removing a feature weight that must otherwise be

learned during tuning.
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7.7 Conclusion

In this chapter we have shown how our framework can be applied to the task of mod-

elling agreement and government phenomena, and how such a model can be trained.

We used German as our target language, but similar phenomena occur in most Indo-

European languages.

Compared with previous work on generating target inflection in SMT, our approach

allows for inflection patterns to be modelled in terms of constituent structure and with-

out restriction on the range of relationships. Our model directly links syntax (in the

grammar rules) and morphological features (in the lexicon) via constraints.

We showed empirically that our approach improves translation quality. Narrowly-

focused changes are difficult to measure using BLEU and so we also used human eval-

uation. We found that the human annotators had a stronger preference for our system

over the baseline than was reported by s-BLEU (a reported ratio of 2.0 or 2.6 improved

sentences to each degraded one, compared with 1.6 measured by s-BLEU).

Whereas many of the observed improvements occur over short distances and could

conceivably be obtained through the use of a better m-gram language model, the com-

binatorial nature of language means that a m-gram language is always likely to en-

counter combinations of words that were not seen during training, and this is partic-

ularly true for languages with rich inflectional morphology. For Arabic, the bi-gram

agreement model of Green and DeNero (2012) provides further evidence for the ef-

fectiveness of models that are complementary to the m-gram language models. For

Czech, Ondřej Bojar (personal correspondence) reports that agreement errors at short

distance are common even using a m-gram model trained on 3.6 billion words.



Chapter 8

Verbal Complex Production

. . . finally, all the parentheses and reparentheses are massed together be-
tween a couple of king-parentheses, one of which is placed in the first line
of the majestic sentence and the other in the middle of the last line of it –
after which comes the VERB, and you find out for the first time what the
man has been talking about; and after the verb – merely by way of orna-
ment, as far as I can make out – the writer shovels in “haben sind gewesen
gehabt haben geworden sein,” or words to that effect, and the monument
is finished. — Mark Twain (1880)

8.1 Introduction

A verbal complex is a main verb and its accompanying auxiliary verbs taken as a (pos-

sibly discontinuous) unit. This chapter investigates the problem of producing verbal

complexes in translation.

Like agreement and government, accurate production of verbal complexes involves

aspects of both syntax and inflectional morphology, with coordination over multiple

target words. There are some parallels with the phenomena studied in the previous

chapter that suggest feature structures and unification are well-suited to the task of

modelling verbal complex production. In the previous chapter, each word in a selector-

target set contributed partial information to a shared INFL structure — an abstract rep-

resentation of inflectional features. A lexicon was used to list the set of valid INFL

structures for each target form and, via the constraints, to block ungrammatical com-

binations of forms. Similarly, each individual verb form in a verbal complex can be

thought of as contributing partial information to a single abstract verbal complex struc-

ture. Some combinations of forms are consistent whilst others are not, and a feature

structure lexicon provides a means of specifying the valid types of verbal complex

104
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structure that are possible through combination (thus blocking non-grammatical com-

binations).

We begin this chapter with a discussion of why verbal complex production is a

challenging problem for statistical machine translation, particularly for languages like

German and Dutch that involve long-range separation of auxiliaries and main verbs.

We then develop a representation of German verbal complexes as feature structures,

using constraints to ensure that consistent values are produced during translation. By

testing for failures in verbal complex production, we identify where errors occur in our

baseline system and present a detailed manual analysis.

We find that using constraints alone leads to little improvement over the baseline,

but our analysis confirms that the method is effective at identifying translation errors.

This allows us to quantify the errors and shows that they occur frequently enough for

the problem to be worth addressing. The analysis also suggests how to proceed and in

the next chapter we will extend the model to use source-side information to influence

the selection of verbal complex types during search.

8.2 Background

8.2.1 Verbal Complexes

Many languages use multi-verb constructions in which a main content verb, possibly

with associated particles, is combined with one or more auxiliary verbs. For example,

in English we can say ‘is producing,’ ‘will have been produced,’ and ’should produce.’

The inflection of the main verb and the choice of auxiliary verbs jointly express gram-

matical properties that are crucial to meaning, such as tense, mood, and voice. The

inclusion of particles usually changes the semantics of the verb (for example, ‘pick up’

instead of ‘pick’). In this thesis, we adopt the terminology of Gojun and Fraser (2012)

and use the term ‘verbal complex’ to mean a main verb and any associated auxiliaries

and particles within a single clause.

In English, a verbal complex can be discontiguous. Typically, this is due to the

insertion of adverbs separating the auxiliaries and the main verb (for example, in ‘is

carefully playing’ and ‘is once again playing’). In Dutch and German, the auxiliary

and main verb can appear at opposite ends of a clause, separated by an arbitrarily-long

sequence of arguments and adjuncts.
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8.2.2 Verbal Complexes and SMT

Correctly producing verbal complexes is a difficult task for SMT. For some construc-

tions, a word-for-word translation of each source verb produces a reasonable transla-

tion — for instance, translating the English ‘have played . . . ’ to the German ‘habe

. . . gespielt’ by independently translating ‘have’ to ‘habe’ and ‘played’ to ‘gespielt’

— but in general there is not a one-to-one equivalence between individual source and

target verbs.

Syntax-based translation models are able to learn discontiguous rules and so in

principle they can learn rules that capture complete verbal complex translations, but

in practice the resulting verbal complexes are often garbled, incomplete, or missing

altogether. There are multiple routes by which ill-formed constructions come to be

licensed by the model. We highlight two prominent sources of error: automatic word

alignment and overly-strong independence assumptions implicit in the treebanks from

which the syntactic annotation is derived. These underlying problems are certainly not

specific to verbal complex production and are themselves the subject of active research.

Word Alignment Errors

Automatic word alignment, which is typically based on the IBM word-based models

of Chapter 2, can introduce errors into rule extraction. For instance, Figure 8.1 shows

an example from the training data in which a missing alignment link (between has

and ist) allows the extraction of a rule that translates has failed to the incomplete

fehlgeschlagen.

Figure 8.2 shows an example of a similarly incomplete rule being used by our

baseline system. The input contains a single verb ‘read’ which is translated in the

reference to ‘habe . . . gelesen.’ In the baseline system, the auxiliary verb ‘habe’ is

correctly produced, but the main verb is missing. ‘Habe’ can be used as a full verb

in its own right and can occur in combination with verbs other than past participles,

making interpretation of the incomplete output harder still for readers. The system is

able to produce this derivation because the grammar contains the rule VAFIN → read |

habe. In the training example from which the rule is learned, the translation is ‘habe

. . . gelesen’ but the automatically-learned word-alignment is missing a link between

‘read’ and ‘gelesen.’
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.failedhaspolicythisyet

TOP-S

PUNC.

.

S-TOP

VP-OC

VVPP

fehlgeschlagen

NP-SB

NN

Strategie

PDAT

diese

VAFIN

ist

KON

doch

Figure 8.1: Alignment graph for a sentence pair from the training data. The target

sentence has a single verbal complex comprising a main verb, fehlgeschlagen, and an

auxiliary verb, ist.

TOP-S

.PP-MO

NN

manga

meinemin

ichVAFIN

habe

PROAV

darüber

Input I read about that in my manga .
Reference davon habe ich in meinen Manga-Comics gelesen .
Gloss about-it have I in my Manga-comics read .

Figure 8.2: 1-best translation of a sentence from the newstest2009 test set. The trans-

lation contains the auxiliary ‘habe’ but is missing the main verb.

Treebank-based Independence Assumptions

Even with perfect word alignments, the automatically extracted rules of a synchronous

grammar may not include sufficient context to ensure the overall grammatically of

a derivation. The extent of this problem will depend partly on the original treebank

annotation style, which typically will not have been designed with translation in mind.

For instance, the Tiger treebank convention of attaching finite verbs to the clause

node and embedding non-finite verbs in nested VPs may make the learning of rules

containing complete verbal complexes more challenging than if, for example, all verbs

were attached directly to the clause node. For grammar sizes to be practical, rule

extraction algorithms place restrictions on rule size. Overly deep constituent structure



Chapter 8. Verbal Complex Production 108

TOP-S

.VP-OC

wordenVP-OC

kritisiertPP-MO

NN

Passivität

für

PN-SB

Deutschland

hatBeispielzum

Input for example , Germany has been criticized for passivity .
Reference wegen Passivität wurde zum Beispiel Deutschland kritisiert .
Gloss for passivity was for example Germany criticized .

Figure 8.3: 1-best translation of sentence 777 from the newstest2008 test set.

may fall foul of restrictions on node count and tree depth; on the other hand, overly

flat constituent structure may pose problems where there are restrictions based on rule

symbol counts.

Figure 8.3 shows a second example from our baseline system. In this example, the

individual rules are reasonable in isolation, but the derivation contains an ungrammat-

ical combination of verbs: for consistency with the choice of ‘worden,’ the finite verb

should be a form of ‘sein’ not ‘haben,’ giving ‘ist . . . kritisiert worden.’ Even with this

substitution, the less-literal translation in the reference, ‘wurde . . . kritisiert,’ would be

more natural.

8.3 Previous Work

So far there has been little work on tackling verbal complex production as a problem

in its own right. The wider problems of word alignment errors and treebank style have

received more attention, though with different motivations.

8.3.1 Verbal Complexes

Gojun and Fraser (2012) tackle the problem of verbal complex translation in English-

to-German in the context of phrase-based SMT. They address the fixed-window re-

ordering limitation of phrase-based SMT by preprocessing the source-side of the train-

ing and test data to move English verbs within clauses into more ‘German-like’ posi-
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tions.

Arora and Sinha (2012) consider a similar problem in English-Hindi translation.

They improve a phrase-based model by merging verbs and associated particles into sin-

gle tokens on both the source and target sides, thus simplifying the task of word align-

ment and phrase-pair extraction. Their approach relies upon the mostly-contiguous

nature of English and Hindi verbal complexes. The discontiguity of verbal complexes

rules out this approach for translation into German.

8.3.2 Word Alignment

There is a substantial body of work on improving word alignment for statistical ma-

chine translation. Specifically for syntax-based models, Wang et al. (2010) propose

a syntax-based EM algorithm that realigns words after bootstrapping with GIZA++.

However, they only find modest improvements in end-to-end translation quality. Fos-

sum et al. (2008) train a supervised model that deletes word alignment links to promote

the extraction of GHKM rules. They find that this leads to improvements in alignment

link precision and BLEU score. Riesa et al. (2011) incorporates both source and tar-

get syntax into a discriminative word alignment model, improving both precision and

recall compared to GIZA++.

8.3.3 Syntactic Annotation

Several approaches have been proposed for adapting treebank annotation for the spe-

cific task of statistical machine translation. Wang et al. (2010) proposes an EM algo-

rithm to split or merge category labels on the target side of the training data prior to

rule extraction and Chung et al. (2011b) applies a similar method to post-process the

extracted synchronous grammar.

Automatic restructuring of trees has also been proposed, with the main motivation

being to increase rule coverage. Wang et al. (2010) use an EM-based model to learn

a tree binarization strategy and Burkett and Klein (2012) use a transformation-based

error-driven learning approach that maximises the number of extractable rules.

8.3.4 Advantages of the Proposed Approach

It may be possible to improve verbal complex in our baseline system by re-implementing

one or more of the approaches that we have just described. However, there are a num-
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ber of reasons for adopting a constraint-based approach:

1. There is no inherent limit on the range of the verbal complex relationships that

can be modelled. In phrase-based models, as have been used in previous work,

the wide separation of main verbs and auxiliaries in German will often exceed

the range of the m-gram language model and of any individual phrase-pair.

2. Our constraints can be targeted specifically to verbal complex translation. Whilst

work on improving word alignment and tree annotation has been shown to im-

prove overall translation and may indirectly improve verbal complex translation,

its effect on any individual aspect of translation is hard to predict.

3. Our approach is largely orthogonal to the previous work. By taking a constraint-

based approach, we are not precluding the later adoption of other approaches

into our baseline model.

8.4 Model

We apply our approach to German, which has particularly challenging verbal complex

forms due to the long-range separation of auxiliaries and main verbs. This section

describes how we model verbal complex production using the lexicon and constraints

of the formalism that was described in Chapter 5.

8.4.1 Feature Structures

A German verbal complex can be as small as a single word, as in ich spiele (“I play”)

or ich spielte (“I played”), or it can involve up to four words, as in es wird gespielt

worden sein (“it will have been played”). In all verbal complex forms, there is a single

finite verb and zero or more non-finite verbs. The finite verb is inflected to indicate

tense (past or present), mood (indicative or one of two subjunctive classes), and for

agreement with the subject. The non-finite verbs are uninflected.

The grammatical properties of the finite verb are not necessarily the same as for the

construction as a whole. For example, the future tense is expressed using an infinitive

and a form of the auxiliary ‘werden’ in the present tense (similarly to in English, where

‘will’ and ‘shall’ are used to express the future tense).

Our feature structures are an abstracted representation of a verbal complex. They

have two top-level features: FIN, which represents the finite verb, and NON-FIN, which
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represents the non-finite part. The non-finite part may be empty or may involve one or

more verbs.

As an example, Figures 8.4 and 8.5 show parse trees for two sentences from the

training data together with the feature structure values that describe the verbal com-

plexes. Apart from the internal NP structure, the syntactic structure of these two sen-

tences is identical. In particular, they both have an auxiliary finite verb (labelled VAFIN)

and a past-participle main verb (labelled VVPP). Within this syntactic configuration,

the different lexical choices for the auxiliary verbs are used to express different types

of grammatical voice (the first uses the sein-passive and the second uses the werden-

passive).
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Figure 8.4: Sentence 3394 from Europarl. Gloss: today / is / urgent / change / required
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Figure 8.5: Sentence 4402 from Europarl. Gloss: now / is being / the / soul / attacked.

The FIN part of each feature structure value describes the properties of the auxiliary

verb that contribute to the properties of the verbal complex as a whole. In this chapter,

we do not model subject-verb agreement and so we abstract away number and person

features.

The NON-FIN part describes the non-finite verbs that combine with the auxiliary. A

sein-passive always includes a single past-participle. A werden-passive can include a
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past-participle, as here, or a combination of fixed forms. The W-PASSIVE value indicates

which of these are present. The lemma feature is used to distinguish between forms of

haben, sein, and werden, and all other verbs (indicated with an asterisk).

Altogether, our feature structures use three different kinds of FIN value, of which

AUX (used for auxiliary verbs) is one, and four kinds of NON-FIN value. Table 8.1 shows

the mutually-exclusive categories to which the FIN and NON-FIN values can belong. The

category of each FIN and NON-FIN value is indicated using a CAT feature.1 The absence

of a non-finite part is indicated by the use of the value none for the NON-FIN feature.

Feature Category Description

FIN FULL Full verb. Usually occurs without NON-FIN part

AUX Non-modal auxiliary verb. Requires NON-FIN part

MODAL Modal auxiliary verb. Requires NON-FIN part

NON-FIN PP/SP Non-finite part of perfect or sein-passive construction

W-PASSIVE Non-finite part of werden-passive construction

INF Infinitive, possibly with modal

P-INF Perfect Infinitive, possibly with modal

Table 8.1: Finite and non-finite sub-features

Table 8.2 shows the minimal pairs of finite and non-finite values that unambigu-

ously express the six German tenses in the active voice. In effect, these minimal values

constitute signatures for the active tenses. The optional addition of the mood feature

to the finite verb refines the values along this grammatical dimension.

8.4.2 The Lexicon

We use the lexicon to specify the set of verbal complex feature structures that an in-

dividual verb can be a part of. For example, the entry for a past-participle includes

feature structure values for sein-passive and werden-passive constructions, among oth-

ers. Crucially, it does not include constructions in which there is no past-participle

(such as future tense constructions).

1The CAT feature was suggested by the thesis examiners. In experiments, the lexicon used separate
feature names for each category. The full set of three FIN features and four NON-FIN features was
listed for each entry and a none value was used to indicate the values that weren’t applicable. The two
approaches lead to the same outcome, but the CAT approach is more elegant and readable, so we adopt
it here.
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Tense Finite Feature Non-finite Feature Example

Present










CAT FULL

TENSE present

LEMMA *











none
ich laufe

I run

Past










CAT FULL

TENSE past

LEMMA *











none
ich lief

I ran

Perfect










CAT AUX

TENSE present

LEMMA h/s

















CAT PP/SP

PP

[

LEMMA *

]







ich bin gelaufen

I have run

Pluperfect










CAT AUX

TENSE past

LEMMA h/s

















CAT PP/SP

PP

[

LEMMA *

]







ich war gelaufen

I had run

Future










CAT AUX

TENSE present

LEMMA werden

















CAT INF

INF

[

LEMMA *

]







ich werde laufen

I shall run

Future

perfect











CAT AUX

TENSE present

LEMMA werden























CAT P-INF

INF

[

LEMMA *
]

HSINF

[

LEMMA h/s

]













ich werde gelaufen

sein

I shall have run

Table 8.2: Features corresponding to the six German tenses in the active voice. An

example is shown for each along with its English equivalent. The lemma value h/s is

an abbreviation for haben/sein.
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For a multi-verb verbal complex, the lexicon includes a feature structure value for

each participating verb. The values for the individual verbs are identical except for

their FOUND values (described shortly) and for the mood feature, which depends solely

on the inflection of the finite verb. The mood feature is specified for the relevant verb

and left unspecified for the others.

For example, the entry for the infinitive laufen (‘to run’) contains the following

feature structure, among others:

laufen →




































CAT VVINF

VC































FIN











CAT AUX

LEMMA werden

FOUND []











NON-FIN











CAT INF

INF





LEMMA *

FOUND true

















































































The presence of this feature structure in the lexicon enables the form laufen to

participate in active voice, future tense constructions such as sie wird laufen (“she will

run”) and es würde laufen (“it would run”). Note that the FIN value selects for forms

of werden (which include wird and würde). The absence of similar entries for laufen

with the LEMMA values haben and sein rule out ungrammatical verbal complexes like

habe . . . laufen.

The participation of laufen in alternative tense/voice constructions, such as wir

laufen (“we run”) or constructions with modal finite verbs, such as wir müssen laufen

(“we must run”) is enabled by the presence of separate feature structures in laufen’s

lexicon entry (the entry for laufen, like most other infinitives, contains a total of five

feature structure values). Note also that variant verb forms, such as laufe or gelaufen,

require entirely separate lexicon entries.

Whilst the multiplicity of feature structure values for individual forms can increase

the size of the search space, the effect is mitigated by the choice of set-based search

state representation adopted in Section 5.3.2: much of the ambiguity is contained

within the search state and so does not affect pruning decisions. In later experiments

(Section 8.6.2) we compare the effect on search in isolation and find the change in

search quality to be minimal in practice.

We add a feature FOUND to indicate whether or not an individual verb is present. For

each verb in the lexicon, the FOUND value in its feature structures is true for that verb

and empty for any other verb that participates in the verbal complex. In combination



Chapter 8. Verbal Complex Production 115

with a minor extension to the constraint mechanism, the FOUND values are used to

ensure that the feature structures composed through unification are complete.

8.4.3 Constraints

We use constraints to ensure that VC values are compatible under unification. For

example, the following rule requires that the clause’s auxiliary and past-participle have

compatible values:

S-TOP → X1 X2 required today | heute VAFIN2 NP-SB1 gefragt
〈VAFIN VC〉= 〈gefragt VC〉
〈gefragt CAT〉= VVPP

In order to ensure that the decoder does not produce incomplete verbal complexes

(such as a past-participle without an auxiliary finite verb), we add a constraint that sets

a flag indicating when a verbal complex is required to be complete:

S-TOP → X1 X2 required today | heute VAFIN2 NP-SB1 gefragt
〈VAFIN VC REQUIRE-COMPLETE〉= true

The REQUIRE-COMPLETE constraints are added at the clause level where all parts of the

verbal complex are present. We modify the decoder to perform the check for complete-

ness. We do this by extending the EVAL-CONSTRAINTS algorithm (Section 5.3.3) to

test the resulting VC values after constraint evaluation. If any FOUND value is not set to

true within a VC value for which REQUIRE-COMPLETE is true then the VC value is dis-

carded (as if it had failed constraint evaluation). This extension is enabled or disabled

by a decoder configuration flag in order to allow for comparison.

The completeness condition here bears some similarity to the identically-named

condition in LFG (Bresnan, 2001, p63). Both are well-formedness conditions that are

applied to feature structures after the satisfaction of constraints. In LFG, completeness

requires that every argument designated by a predicate feature be present in the feature

structure containing the predicate.

8.5 Training

We now describe how our model’s lexicon and constraints can be derived from the

training data.
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8.5.1 The Lexicon

Every verb observed in the training data has a non-empty entry in the lexicon. The

lexicon’s CAT values are derived from the parse trees on the target-side of the training

data. The VC values are assigned according to CAT type from a small set of hand-

written feature structures. For example, we saw the following feature structure for

laufen earlier:

laufen →




































CAT VVINF

VC































FIN











CAT AUX

LEMMA werden

FOUND []











NON-FIN











CAT INF

INF





LEMMA *

FOUND true

















































































All verbs with the CAT value of VVINF are assigned this feature structure value as part

of their lexicon entry. Every main verb is assigned one of three possible groups of VC

values depending on whether the verb is finite, a past-participle, or an infinitive. The

entries for the auxiliary and modal verbs are hand-written.

8.5.2 Constraint Extraction

The constraints are learned using a similar procedure to that used for agreement and

government in Chapter 7:

1. Tree annotation. The syntax of the German parse trees is used to group verb

nodes into sets, one for each verbal complex.

2. Identity extraction. Rule extraction is extended to generate identities between

VC feature values whenever an SCFG rule contains two or more nodes from a

common verbal complex set. CAT identities are added for terminals that appear

in VC identities to allow for disambiguation of lexicon entries based on part of

speech.

Annotation of Verbal Complex Sets

Figure 8.6 shows a sentence-pair from the training data with the verbal complex set

highlighted. In our annotation scheme, a verbal complex set contains all the verbs of
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backpaidisaidstateunlawfulthatensurewedohow

S-TOPa

VP-OCa

S-OCb

VAFINb

werdenb

VVPPb

zurückgezahltb

NP-SB

NN

Beihilfen

ADJA

staatliche

ADJA

unrechtmäßige

KOUS

daß

PUNC,

,

VVINFa

sicherstellena

NP-SB

PPER

wir

VMFINa

könnena

PWAV

wie

Figure 8.6: An alignment graph for a sentence pair from the training data. The target

sentence has two verbal complex sets, indicated by colour (and by the subscripts a and

b).

a verbal complex, their lowest common clause node, and any intermediate constituent

nodes.

As with agreement and government relations, the Tiger treebank annotation makes

it possible to identify verbal complexes using a few syntactic patterns. We use a sim-

ple rule-based procedure that identifies verbs and then groups them according to con-

stituency patterns. The procedure is fully described in Appendix C.

Induction of Constraints

As for agreement and government constraints (Section 7.5.2), verbal complex con-

straint induction is defined for an SCFG grammar rule r in terms of the subgraph h of

the alignment graph from which it was extracted. We use the same notation, which we

repeat here: if r is written

Y0 → X1 X2 . . .Xm | Y1 Y2 . . .Yn

then the head symbol Y0 is projected from the root node of h and the target body

symbols, Y1 . . .Yn, are projected from its sink nodes. For a rule symbol Yi we will

write hi to denote the projecting node of the subgraph. If Yi is a terminal we will write

pos(i) to denote the part-of-speech label from hi’s parent node.

The constraints for each rule r are generated as follows:

1. For each pair i and j, i < j ≤ n, for which hi and h j belong to a common verbal

complex set S and where i is the least value such that hi ∈ S, the following identity
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is a constraint: Yi(VC) = Y j(VC)

2. If Yi(π) is a constraint term and Yi is a terminal then Yi(CAT) = pos(i) is also a

constraint.

In the resulting constraint set, every constraint is associated with exactly one verbal

complex. This means that the constraint set can be partitioned such that there is one

subset of constraints for each verbal complex set.

Example

rebuiltbeenthesehaverecentlyonly

S-TOPa

VP-OCa

VVPPa

aufgebauta

ADV

wieder

NP-SB

PDS

diese

VVFINa

wurdea

PP-MO

NN

Zeit

ADJA

jüngster

APPR

in

ADV

erst

Figure 8.7: An alignment graph for a sentence pair from the training data. The target

sentence has a single verbal complex set with node membership indicated in blue (and

by the subscript a).

Figure 8.7 shows the annotated alignment graph for a sentence pair from the train-

ing data. From this graph, the following two rules could be extracted (among others):

VP-OC → rebuilt | wieder aufgebaut

〈VP-OC VC〉= 〈aufgebaut VC〉

〈aufgebaut CAT〉= VVPP

S-TOP → X1 have X2 been X3 | PP-MO1 wurde NP-SB2 VP-OC3

〈S-TOP VC〉= 〈wurde VC〉

〈S-TOP VC〉= 〈VP-OC VC〉

〈wurde CAT〉= VAFIN
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8.6 Experiments and Analysis

8.6.1 BLEU

We first compare our baseline system from Chapter 6 to systems in which compatibil-

ity of verbal complex values is enforced using hard constraints, both with and without

the REQUIRE-COMPLETE check. We will refer to these as the “HC” and “HC, complete”

systems, respectively. The hard constraint systems are otherwise identical to the base-

line (including tuning weights). The constraints produce changes to the 1-best output

of between 7.5% and 7.9% of sentences in the dev set and three test sets, but this only

results in negligible changes to the BLEU scores (the largest change is +0.1 BLEU).

In the remainder of this section we present a finer-grained analysis to determine

what effect our constraints are having and to gain a clearer picture of where the prob-

lems lie in verbal complex production.

8.6.2 Accuracy of Verbal Complex Types

In Section 8.2 we gave the following example of an ungrammatical verbal complex

from our baseline system: ‘hat . . . kritisiert worden.’ The model we have developed

is designed to ensure that translations use grammatical and complete combinations

of auxiliary and main verbs. However manually inspecting the changes between the

baseline and hard constraint systems indicates that the latter system often satisfies the

constraints by producing structures that are grammatically complete but have a differ-

ent meaning (for example, ‘hat . . . kritisiert’ or just ‘hat . . . ’).

We can distinguish four outcomes of verbal complex production. The verbal com-

plex can be:

1. Grammatical, with the correct feature values (tense, mood, etc.)

2. Grammatical, with the wrong feature values

3. Incomplete

4. Inconsistent

Clearly, there is little benefit to eliminating verbal complexes of types 3 and 4 if

they are only being exchanged for ones of type 2. In the rest of this section, we attempt

to measure how often the four outcomes occur in our baseline and hard constraint

systems. We do this by extracting reference feature structure values from our reference

translations and using the standard precision, recall, and F1 metrics.
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Reference Feature Structure Values

We extract verbal complex values from our reference sets using the following steps:

1. Parse the reference sentences.

2. Annotate the trees with verbal complex set membership (as for the training data).

3. For each verbal complex, lookup feature structure sets for each verb in the lexi-

con and unify.

Simple Declarative Sentences

To calculate accuracy metrics across all verbal complex values we would require align-

ments between the clause nodes of the test and reference trees. Accurately aligning

clauses is a challenging task in its own right and so we restrict our analysis to a sim-

pler task: translations of simple declarative sentences. That is, sentences comprising a

single finite declarative clause with no finite subordinate clauses. For most such sen-

tences, the translation is also a simple declarative sentence (in the training data, this

is true for 99.1% of cases) and we restrict our analysis to those instances. With this

simplification, we base our accuracy measures on the count of matches between the

top-level verbal complex values in the test and reference sentences.

To select test sentences, we first parse the source-side of the dev and test sets using

the Berkeley parser (Petrov and Klein, 2007), which is trained on the Penn Treebank.

We filter out sentences that are not simple or declarative, basing our identification

criteria on the treebank annotation guidelines (Bies et al., 1995) (a sentence must be an

S with an NP child and a finite VP child, in that order, and with no finite subclauses).

We then parse the reference translations using the BitPar parser and remove sentences

that are not simple and declarative. This leaves 491, 533, 584, and 738 sentences for

the 2008, 2009, 2010, and 2011 sets, respectively.

We modify our baseline to use soft constraints with a weight of 0. This allows us

to generate a trace of verbal complex feature structures for the baseline. The addition

of constraint model state to the baseline affects search, albeit minimally. In order to

get a truer representation of the baseline behaviour, we drop any sentences for which

the 1-best model score is changed by the introduction of soft constraints.2

2Over the full 2008, 2009, 2010, and 2011 sets, this was found to amount to 0.9% of sentences. The
largest change in BLEU score compared to the constraint-free baseline was for 2008, which (fortuitously)
increased from 15.68 to 15.70 due to the change in search behaviour.
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Precision, Recall, and F1

Having generated test and reference feature structure values, we count the number of

matches and report precision, recall, and F1-measure values, where: if m is the number

of matches, t the total number of test set values, and g the number of gold values, then

precision p and recall r are:

p =
m

t
, r =

m

g

and F1 is

F1 =
2pr

p+ r

These three measures are widely used in reporting task accuracy in NLP evaluation.

For example, in the PARSEVAL metric, which measures labelled bracketing accuracy

for parser output (Black et al., 1991).

Our count, t, of test set values excludes empty and incomplete feature structures.

An empty feature structure indicates either that unification failed or that there are no

VC identities (which should only occur if the clause is without a finite verb). We test

for incompleteness by checking for the presence of empty FOUND values.

Table 8.3 shows the results for the baseline and the two hard constraint systems.

While the number of incomplete and inconsistent values is reduced by the constraints

(indicated by the decreasing g−t values), the numbers of values matching the reference

(the m values) are only minimally increased. This leads to slight increases in recall with

some loss in precision, although the effects are small.

8.6.3 Error Classification

We have claimed that empty and incomplete feature structures indicate translations

containing verbal complexes that are incomplete or inconsistent. Table 8.3 suggests

that these account for a significant proportion of verbal complexes (between 10.2%

and 12.8% depending on data set). In order to verify that these are genuine transla-

tion errors and to understand the types of errors that occur, we manually check 150

sentences from our baseline system and classify the errors. The sample is chosen at

random (without replacement) from the 227 sentences in the 2009, 2010, and 2011

baseline output for which the top-clause feature structure is empty or incomplete.

We choose to categorize the errors in terms of German-specific grammatical errors

rather than adopt one of the typologies that have been proposed for general SMT error

analysis. For describing errors in verbal complexes, general error classifications tend
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Data Set Experiment t g m g− t Prec. Recall F1

2008 Baseline 433 482 214 49 49.4 44.4 46.8

HC 444 482 221 38 49.8 45.9 47.7

HC, complete 454 482 224 28 49.3 46.5 47.9

2009 Baseline 458 525 215 67 46.9 41.0 43.7

HC 474 525 222 51 46.8 42.3 44.4

HC, complete 481 525 223 44 46.4 42.5 44.3

2010 Baseline 506 574 273 68 54.0 47.6 50.6

HC 520 574 272 54 52.3 47.4 49.7

HC, complete 529 574 274 45 51.8 47.7 49.7

2011 Baseline 633 725 323 92 51.0 44.6 47.6

HC 644 725 328 81 50.9 45.2 45.2

HC, complete 671 725 335 54 49.9 46.2 48.0

Table 8.3: Feature structure accuracy for the development set (2008) and three test

sets (2009, 2010, and 2011). The VC values of the output are compared against the

reference (or ‘gold’) values giving the number of matches (m). The counts t, g, and

m (the numbers of test values, gold values, and matches, respectively) are used to

compute precision, recall, and F1 values.
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to be too broad (for example, all errors would be classed simply as ‘syntactic’ under

the typology of Farrús et al. (2010)) or they tend not to be particularly illuminating for

this particular task (for example, “missing words / filler,” “word order / word level” in

the typology of Vilar et al. (2006)).

For each error category we give the percentage of errors found:

Inconsistent Combination (36.0%) An ungrammatical combination of auxiliary and

main verbs.

Example: zwei Häftlinge haben nicht überleben .

Perfect missing aux (21.3%) There is a past-participle in sentence-final position, but

no auxiliary verb.

Example: die Eltern 1600 Kronen oder mehr pro Impfung bezahlt .

No verb (11.3%) The input contains at least one verb that should be translated but the

output contains none.

Example: Fluocompact Lampen im Durchschnitt zwischen 6000 und 10.000

Stunden .

False positive (10.7%) The verbal complex is grammatical. In the sample this is ei-

ther because the output string is well-formed in terms of verb structure, but the

tree is wrong, or the parse of the source is wrong and the input does not actually

contain a verb.

Invalid sentence structure (10.0%) The verbs are present and make sense, but the

sentence structure is wrong.

Example: der Ausschuß Gélineau in Quebec , das Mandat erfüllt hat .

Infinitive missing auxiliary / misplaced finite verb (6.7%) There is an infinitive in

sentence-final position, but no auxiliary verb or the main verb is erroneously in

final position (the output is likely to be ambiguous).

Example: Glücklicherweise Tabellen der Berechnungen erleichtern .

Unknown verb (2.7%) The source verb is untranslated.

Example: dann scurried ich zu meinem Sitz .

Werden-passive missing aux (1.3%) There is a werden-passive non-finite part, but

no finite auxiliary verb.

Example: “ Aber keine konkreten Abschluss erzielt worden .
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In our classification, the most common individual error type in the baseline is the

inconsistent combination of verbs, at 36.0% (54 out of 150). However, there are multi-

ple categories that can be characterized as the absence of a required verb: the “perfect

missing aux,” “no verb,” and “werden-passive missing aux” categories all involve in-

complete verbal complexes. The category “infinitive missing auxiliary / misplaced

finite verb” is an ambiguous error type that may or may not indicate a missing auxil-

iary. Combined, these incomplete verbal complex categories total between 33.9% and

40.6% of the errors, depending on whether errors of the latter category are included.

There are also some false negatives (10.7%) and potentially misleading results in which

wider syntactic errors result in the failure to produce a feature structure (10.0%), but

the majority are genuine errors.

8.7 Conclusion

In this chapter we have investigated the task of verbal complex translation. We devel-

oped a lexicon-based representation of verbal complex types as feature structure val-

ues and added constraints to enforce consistency of the values produced during clause

composition.

By extracting verbal complex values from the reference sentences, we measured

accuracy in our baseline and hard constraint systems using standard precision, recall,

and F1 metrics. We found that the baseline failed to produce complete and consis-

tent feature structures for between 10.2% and 12.8% of simple declarative sentences

(depending on data set) and performed a detailed analysis to verify that these resulted

from genuine translation errors. We found that whilst there were some false posi-

tives resulting from wider syntactic errors, the majority of empty or incomplete feature

structure values were the result of errors in verbal complex production, indicating that

our method can successfully detect errors during clause composition. Our hard con-

straint systems performed better than the baseline in terms of producing complete and

consistent verbal complexes and in terms of recall, but the improvement was small.

We conclude from our analysis that removing ill-formed hypotheses from the search

is insufficient if the model frequently allows source verbal complexes to be trans-

lated as incomplete target verbal complexes, not translated at all, or translated with

the wrong grammatical features. This finding motivates the work in the next chap-

ter where we use additional information derived from the source-side to influence the

production of verbal complexes on the target-side.
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Improving Verbal Complex Production

9.1 Introduction

In the previous chapter, we developed a representation of German verbal complexes as

feature structures and used constraints to ensure that consistent and complete values

were produced during translation. However, we found that using constraints alone led

to little improvement over the baseline. Our analysis indicated that the model did little

better than the baseline at producing verbal complexes with the correct grammatical

features (as compared to the reference) and that many source verbal complexes were

allowed to go untranslated.

In this chapter, we extend our verbal complex model to use information about

clause structure and source verbs derived from a parse of the input sentence. We

develop two feature functions: one that penalises the non-translation of source ver-

bal complexes and one that scores a target verbal complex choice based on the con-

tent of the source verbal complex. In experiments, we repeat the precision and recall

measurements of the last chapter and find that using our feature functions leads to

improvements over our earlier results.

9.2 Model

We add two verbal-complex-specific feature functions to our baseline model. In order

to define the feature functions, we first describe ‘clause projection,’ a simple source-

syntactic restriction on decoding. We then describe our heuristic method of obtaining

probability estimates for a target verbal complex value given the input clause.

125
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Experiment 2008 2009 2010 2011

Baseline 15.7 15.0 16.6 15.4

Clause projection 15.8 15.1 16.9 15.5

Table 9.1: BLEU scores for the development and test sets with and without clause

projection.

9.2.1 Clause Projection

In order to define our feature functions we require that we have an alignment from

source-side clauses to target clauses. However, our translation model does not use

source syntax and, as was discussed in Section 2.5.4, naively adding it to string-to-tree

models has been found to perform poorly without the development of more complex

translation models.

Rather than incorporate full syntactic structure on the source-side, we adopt a

simple restriction that finite declarative clauses (both main and embedded) on the

source-side must be translated as clauses on the target-side. This is clearly an over-

simplification from a linguistic perspective but it appears not to harm translation qual-

ity in practice. Table 9.1 shows BLEU scores for our baseline system run with and

without this restriction.

It is perhaps not too surprising to find that this selective introduction of source

syntax can improve translation: Marton and Resnik (2008), working with a Chinese-

English hierachical phrase-based model, found that when grammar rules were required

to match the bracketing of a source parse tree during decoding, the benefit or harm of

imposing such constraints was highly dependent on constituent type. For example, us-

ing a penalty feature for rules that violate the bracketing of Chinese source PPs proved

harmful, whereas a similar penalty was beneficial for NPs. Whilst we leave a deeper

investigation of clause projection to future work, it seems reasonable to assume that,

on aggregate, the benefit of using additional context (from the source parse) for rule

selection outweighs the harm of disallowing legitimate structural divergence between

English and German clause structures.

Clause projection is implemented as follows:

1. The input sentence is parsed and a set of clause spans is extracted according to

the 1-best parse. We use the Berkeley parser (Petrov and Klein, 2007), which

is trained on the Penn Treebank and so we base our definition of a declarative
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clause on the treebank annotation guidelines.

2. The clause spans are adjusted to take account of the differing attachment styles

for sentence-ending punctuation between the Penn and Tiger treebanks (in the

Penn Treebank the punctuation is a child of the clause node whereas in Tiger

it is a sibling, with the clause and punctuation nodes being children of the TOP

node).

3. We modify the decoding algorithm to produce derivations in chart cells only if

the cell span is consistent with the set of clause spans (i.e. if source span [i,j]

is a clause span then no derivation is built over span [m,n] where i < m ≤ j and

n > j, etc.).

4. We modify the decoding algorithm so that grammar rules can only be applied

over clause spans if they have a clause label (‘S’ or ‘CS’, since the parser we use

is trained on the Tiger treebank).

As an example, consider the following input sentence, which uses an embedded

clause to report indirect speech:

TOP

S

.

.

VP

VBD

said

NP

NNP

Bloomberg

,

,

S

Official forecasts predicted just 3 percent

Under our model of clause alignment, the decoder is forced to build clause nodes

over source spans [1,6] and [1,9]. For this sentence, the 1-best derivation already does

so, with the following sub-derivation for span [1,6]:

S-RE

VP-OC

vorhergesagtNP-OA

ProzentAP-HD

3nur

NP-SB

NN

Prognosen

offiziellendie

However, the translation for this embedded clause contains an incomplete verbal com-

plex resulting from the application of a grammar rule containing a clause with no finite
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verb. The source verb ‘predicted’ is translated, but it is translated within the child

VP-OC to a past-participle or adjective (‘vorhergesagt’). With a model of clause align-

ment, we are able to define feature functions that use properties of an input clause to

influence the verbal complex produced in the corresponding target clause.

9.2.2 Verbal Complex Probabilities

When translating a clause, the source-side verbal complex will often provide suffi-

cient information to select a reasonable type for the target verbal complex, or to give

preferences to a few candidates.

By matching up source-side and target-side verbal complexes we estimate co-

occurrence frequencies in the training data. To do this for all pairs in the training

data, we would need to align clauses between the source and target training sentences.

However, it is not crucial that we identify every last verbal complex. We simplify the

task by restricting training data to sentence pairs in which both source and target sen-

tences are declarative sentences, making the assumption that the main clause of the

source sentence aligns with the main clause of the target.

We represent source-side verbal complexes with a label that is the string of verbs

and particles and their POS tags in the order that they occur in the clause, for exam-

ple, plays_VBZ and is_addressing_VBZ_VBG. The target-side feature structures are

generated by identifying verbal complex nodes in the training data parse trees (as in

Section 8.5.2) and then unifying the corresponding feature structures from the lexicon.

Many source verbal complex labels exhibit a strong co-occurrence preference for

a particular target type. For example, Table 9.2 shows the three most frequent feature

structure values for the target-side clause when the source label is is_closed_VBZ_VBN.

The most frequent value corresponds to a non-modal, sein-passive construction in the

present tense and indicative mood.

9.2.3 Feature Functions

We add two feature functions to the baseline model, hvcm and hmvp (where vcm stands

for “verbal complex model” and mvp stands for “missing verb penalty”). As with the

baseline feature functions, our verbal complex-specific functions are evaluated for ev-

ery rule application ri of the synchronous derivation. Like the language model feature

function, they are non-local and so cannot be pre-computed. Unlike the baseline func-

tions, the value returned depends on whether the source span that the rule is applied to
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Table 9.2: Observed values and relative frequencies (RF) for is closed, which was

observed 44 times in the training data. For readability, none-values have been omitted

for top-level features.

is a declarative clause or not.

Both feature functions are defined in terms of X , the frontier VC feature structure

value of the sub-derivation at rule application ri. If there are multiple frontier VC values

then the scores are calculated for each value and the maximum is taken. If there are no

frontier VC values then the score is calculated as if X were the empty value, [].

The first feature function, hvcm, uses the source verbal complex label, l, and the

relative frequency probability estimate, P(X |l), learned from the training data:
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hvcm(ri) =















P(X |l) if ri covers a clause span with source

verbal complex label l and cl ≥ cmin

1 otherwise

The probability estimates are not used for scoring if the number of training observa-

tions falls below a threshold, cmin. We use a threshold of 10 in experiments.

The second feature function, hmvp, is simpler: it penalizes the absence of a non-

empty verbal complex value when translating a source declarative clause:

hmvp(ri) =

{

exp(1) if ri covers a clause span and X is empty

1 otherwise

Unlike hvcm, which requires the source verbal complex label to have been observed

a number of times during training, hmvp is applied to all source spans that cover a

declarative clause.

Dropped verbs were found to be a frequent problem in our baseline model (Sec-

tion 8.6.3) and this function, together with the REQUIRE-COMPLETE check from the pre-

vious chapter, is intended to curb this tendency.

9.3 Experiments and Analysis

In this section we compare our baseline system against five systems:

HC, complete This is identical to the hard constraint system from the pre-

vious chapter (with the REQUIRE-COMPLETE check).

HC, complete, CP As “HC, complete” but also uses clause projection.

hmvp As “HC, complete, CP” but also uses the missing verb

penalty feature function.

hvcm As “HC, complete, CP” but also uses the verbal complex

model feature function.

hmvp +hvcm As “HC, complete, CP” but uses both feature functions.

We found BLEU proved too coarse-grained to measure changes in verbal complex

accuracy, so we instead tuned the weights of the hmvp and hvcm features by running a

line search to optimize the F1 score (as defined in Section 8.6.2) on a subset of the

news-test2008 development set containing sentences up to 30 tokens in length. We

first tuned the weight for hvcm and then tuned hmvp with the hvcm weight fixed.

We first present BLEU scores and then return to verbal complex accuracy.
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9.3.1 BLEU

Table 9.3 shows BLEU scores for the baseline and five test systems. Preliminary ex-

periments showed that re-tuning the system weights made little difference to the BLEU

scores and so we re-use the tuning weights for the baseline feature functions to avoid

introducing variance from the weight optimisation process. There is a small gain from

using clause projection, but no additional gain in BLEU using our two feature func-

tions.

Experiment 2008 2009 2010 2011

Baseline 15.7 15.0 16.6 15.4

HC, complete 15.7 15.0 16.6 15.4

HC, complete, CP 15.8 15.1 16.9 15.6

hmvp 15.8 15.2 16.8 15.6

hvcm 15.7 15.1 16.9 15.6

hmvp +hvcm 15.8 15.1 16.8 15.6

Table 9.3: BLEU scores for the development and test sets with clause projection (CP)

and the two verbal complex feature functions, hmvp and hvcm.

9.3.2 Feature Structure Accuracy

Table 9.4 shows accuracy results for the baseline and the five constraint systems, cal-

culated as in the previous chapter (Section 8.6.2). The results for the three test sets are

similar and so we sum their t, g, and m counts and give aggregate precision, recall, and

F1 values.

The hmvp and hvcm feature functions appear to be effective at reducing the number

of incomplete and inconsistent values (the g− t column), with the lowest values being

achieved by a combination of the two. In the previous chapter we found that using

constraints alone led to slight increases in recall with some loss in precision for the test

sets, whereas we now achieve increases in both precision and recall.

Whilst combining hmvp and hvcm produces the highest counts of complete VC values,

this comes at a slight loss in precision over using hvcm alone.
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Data Set Experiment t g m g− t Prec. Recall F1

dev Baseline 433 482 214 49 49.4 44.4 46.8

HC, complete 454 482 224 28 49.3 46.5 47.9

HC, complete, CP 442 482 223 40 50.5 46.3 48.3

hmvp 460 482 228 22 49.6 47.3 48.4

hvcm 470 482 251 12 53.4 52.1 52.7

hmvp +hvcm 475 482 251 7 52.8 52.1 52.5

test Baseline 1,597 1,824 811 227 50.8 44.5 47.4

HC, complete 1,681 1,824 832 143 49.5 45.6 47.5

HC, complete, CP 1,663 1,824 835 161 50.2 45.8 47.9

hmvp 1,713 1,824 857 111 50.0 47.0 48.5

hvcm 1,764 1,824 941 60 53.3 51.6 52.5

hmvp +hvcm 1,777 1,824 941 47 53.0 51.6 52.3

Table 9.4: Feature structure accuracy for the development set and three test sets (ag-

gregated). As in Table 8.3, the VC values of the output are compared against the refer-

ence (or ‘gold’) values giving the number of matches (m). The counts t, g, and m (the

numbers of test values, gold values, and matches, respectively) are used to compute

precision, recall, and F1 values.
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9.3.3 Manual Analysis

In order to get a clearer picture of the changes produced by our features, we perform

a manual analysis of a sample of 100 sentences. We select sentences for which, ac-

cording to our metric, the baseline feature structure does not match the reference, but

the hvcm feature structure does. We choose the hvcm system for comparison because it

achieves the highest F1 scores.

We chose 100 sentences at random (without replacement) from the three test sets.

The sentences are categorised according to whether the comparison against the refer-

ence is correct (Y) or not (N) for the baseline and hvcm system respectively. For each

category we give the number of sentences in parentheses:

Y/Y (69)

Verb constructions are grammatical and we agree with both comparisons against the

reference value: the baseline system does not match the reference value but the hvcm

system does.

In the following example, the baseline output does not contain a verb, whereas the

hvcm output does:

Input His step-daughter went to Plymouth .
Ref. Seine Stieftochter ging nach Plymouth.
Baseline Seine step-daughter nach Plymouth .
hvcm Seine step-daughter ging nach Plymouth .

In the next example, the ungrammatical verbal complex “hatte . . . montiert worden”

is replaced by “war . . . versammelt,” which is grammatical and matches the reference

feature structure type.

Input The commission had been assembled at the request of Minister of Sport
Miroslav Drzeviecki .

Ref. Die Kommission war auf Anfrage von Sportminister Miroslaw Drzewiecki
zusammengekommen .

Baseline Die Kommission hatte auf Antrag der Minister für Sport Miroslav Drzeviecki
montiert worden .

hvcm Die Kommission war auf Antrag der Minister der Sport Miroslav Drzeviecki
versammelt .
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N/Y (18)

Verb constructions are grammatical. We agree with the comparison for the test system

but not the baseline.

In the following example, the verbal complex is of the same type in the baseline

as the reference, but the verb, erleichtert, appears in the wrong position leading to its

misinterpretation as an infinitive with a missing auxiliary rather than as a finite verb.

Whilst the metric classifies this as an error, this is due to a problem with sentence

structure rather than verb choice.

Input The Catalan group facilitated thousands of passports to Al Qaida
Ref. Die katalanische Zelle besorgte Al Qaida tausende von Reisepässen
Baseline Die katalanische Gruppe Al Qaida Tausende von Pässen erleichtert

hvcm Die katalanische Gruppe erleichtert Tausende von Pässen zu Al Qaida

Y/N (13)

We agree with the comparison for the baseline output but not hvcm.

In the following example, the baseline and hvcm output both begin Côte d ’ Ivoire

ist nervös (“Ivory Coast is nervous”) and then insert a translation of “expecting” some-

where later in the sentence. The reference simply uses erwartet (“expects”).

Input Ivory Coast is nervously expecting the announcement of the election results .
Ref. Elfenbeinküste erwartet aufgeregt die Ankündigung der Wahlergebnisse
Baseline Côte d ’ Ivoire ist nervös , die Bekanntgabe der Wahlergebnisse erwartet .
hvcm Côte d ’ Ivoire ist nervös , erwarten die Bekanntgabe der Wahlergebnisse .

In the baseline derivation, Côte d ’ Ivoire ist nervös is the main clause, with a

subordinate clause following the comma, and so the verb is taken to be ist. In the

hvcm derivation, Côte d ’ Ivoire ist nervös is a subclause and so the verb is taken to be

erwarten. The verb ist belongs to a separate verbal complex feature structure.

9.4 Conclusion

In this chapter we extended our verbal complex model to incorporate source-side in-

formation. We used source syntax to identify declarative clause spans and we used

feature functions to encourage the accurate production of verbal complex types in the

corresponding target clauses.
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In the previous chapter we found that our hard constraint systems improved recall

at the expense of precision. With the addition of our feature functions, we were able

to achieve increases in both precision and recall while substantially reducing the num-

ber of clauses for which an empty or incomplete verbal complex was produced (from

around 12.4% of single-clause declarative test sentence for the baseline to 2.6% for

the hmvp +hvcm system). This adds weight to our finding that removing ill-formed hy-

potheses from the search may prove an insufficient strategy if the model does not also

have some means of encouraging well-formed hypotheses.
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Conclusions and Future Work

10.1 Conclusions

Morphology and syntax have both received attention in statistical machine translation

research, but they are usually treated independently and the historical emphasis on

translation into English has meant that many morphosyntactic issues remain under-

researched. In computational and theoretical linguistics, feature structures and unifica-

tion have proven to be powerful tools for modelling many aspects of morphosyntax and

in this thesis we proposed a framework for extending string-to-tree statistical machine

translation models by adding a lexicon of feature structures and adding unification-

based constraints to the target-side of the synchronous grammar.

To demonstrate the viability and effectiveness of our proposed approach, we ex-

tended a full scale, state-of-the-art, string-to-tree baseline, adding constraints designed

to address two quite dissimilar aspects of morphosyntax, both of which are promi-

nent sources of error in German translation output. For agreement and government,

which are the linguistic phenomena underlying much of surface form inflection in

Indo-European languages, we used the lexicon to link surface form target words with

the grammatical features values that are relevant to inflection and we used constraints

to model the relations between selectors (controllers and governers) and their targets.

We were able to improve translation quality by up to 0.5 BLEU over a strong base-

line model. Manual evaluation verified that our constraints led to an overal improve-

ment in translation quality (with the two annotators preferring 2.0 and 2.6 sentences to

every one they dispreferred). We found that hard constraints outperformed soft con-

straints, contrary to our previous finding in Williams and Koehn (2011). We attribute

this mainly to improvements in training since that work.

136
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For verbal complex production, which in German can involve wide discontinuities,

we represented verbal complex types as feature structure values and used constraints

to ensure that the combination of main and auxiliary verbs was both consistent and

complete. We extracted reference values from parses of the reference set and used

these to measure accuracy. We found that constraints alone were inadequate since

the decoder was still able to drop verbs, but by using source-side information about

declarative clauses and their verbs we were able to improve accuracy.

To summarise the contributions of this thesis:

• We have presented a language-independent framework for incorporating addi-

tional linguistic information into syntax-based translation models using the well-

understood machinery of feature structures and unification.

• We described a means of efficiently integrating constraint evaluation into parsing-

based decoding. We demonstrated that, although there are non-negligible com-

putational costs, our approach is viable for full-scale translation tasks, provided

that feature structures and constraints are carefully designed. For agreement and

goverment constraints, decoding time increased by 16.7% over the baseline but

the empirical exponent for sentence length versus decoding time did not increase.

• We have developed models for agreement, government, and verbal complex for-

mation in German, demonstrating improvements in translation quality over a

strong baseline model.

• We have demonstrated that constraints can be useful for pinpointing translation

errors in a system. In our manual analysis in Chapter 8, we found that approx-

imately 80% of incomplete or inconsistent feature structures indicated genuine

translation errors. Using this semi-automatic approach, we presented a fine-

grained error analysis for verbal complex formation in the baseline.

10.2 Future Work

In this final section we suggest several directions for future work. We first consider

the models of English-German that were developed in Chapters 7, 8, and 9: in Sec-

tion 10.2.1, we highlight the aspects of those models where we feel that further research

and refinement is most likely to lead to improvements in translation quality beyond the

current level; and in Section 10.2.2, we suggest some extensions that fall within the
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scope of the current models. Next, in Section 10.2.3, we describe how similar models

could be developed for target languages other than German; finally, in Section 10.2.4,

we suggest some other linguistic phenomena that could be modelled using the frame-

work proposed in this thesis.

10.2.1 Improvements to the Current Models

Additional Feature Functions for the Soft Constraint Model

In the present work, soft constraints have been implemented using a single feature (a

count of the number of constraint failures). In future work, it would be worth exploring

whether a richer set of features could lead to a better soft constraint model.

Since the accuracy of our constraint extraction method is dependent on parse ac-

curacy, one direction for developing a richer feature set would be to learn features

that use characteristics of the parse trees to predict constraint reliablity. For instance,

it seems plausible that constraints learned from short sentences will be more reliable

than those learned from long sentences. Similarly, constraints learned from common

syntactic structures may be more reliable than those learned from obscure construc-

tions. Features derived from a subtree might indicate properties like constituent type,

head words, tree depth, numbers of nodes, and so on.

By using large-scale discriminative training methods such as MIRA (Chiang et al.,

2009) or PRO (Hopkins and May, 2011) researchers have shown that it is possible

to learn the parameters of models with large and highly-specific feature sets. Chiang

et al. (2009) demonstrate that large improvements in translation quality are possible by

using well-chosen syntactic features.

Improving Search for the Hard Constraint Model

When using hard constraints, constraint evaluation is performed immediately prior to

the beam-filling step (Section 5.3.3). Constraint failure does not affect the order of

cube exploration. It should be possible to improve search accuracy by integrating cube

pruning and constraint evaluation.

As an example, suppose that an input sentence contains the substring “a major

recession could break this cycle.” One promising rule for that span might be the fol-

lowing:
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S-TOP → a X1 recession X2 X3 | eine ADJA1 Rezession VMFIN2 VP-OC3

〈 eine AGR〉= 〈 ADJA AGR 〉

〈 eine AGR〉= 〈 Rezession AGR 〉

The highest scoring hypotheses in the ADJA stack might look something like the fol-

lowing (the scores were taken from a baseline system during development):

Target words Score

großen -0.404921

große -0.465708

großes -0.539664

bedeutenden -0.583893

wichtigen -0.584497

wichtige -0.600739

bedeutende -0.606069

großer -0.607750

größeren -0.619415

bedeutender -0.629519

Target words that are grammatical in the context of the phrase eine . . . Rezession are

indicated in bold.

For lexicalised rules like the example, search could be improved by applying con-

straints prior to cube pruning in order to pre-filter the stack dimensions. For the exam-

ple, this would filter the ADJA stack to leave the following entries:

Target words Score

große -0.404921

wichtige -0.600739

bedeutende -0.606069

erhebliche -0.677803

größere -0.680824

wesentliche -0.695622

umfangreiche -0.788670

schwere -0.823251

größte -0.845443

maßgebliche -0.850760
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When a SCFG rule has multiple non-terminals, the search over possible hypotheses

is likely to be quite shallow due to the tight bounds on cube pruning (the default setting

in Moses generates 1,000 hypotheses per cell).

A preliminary implementation has shown improvements in model score, but only

a very modest increase in BLEU score (roughly 0.05 using the baseline weights). Our

initial implementation was slow, but we intend to address the efficiency issues in future

work and to continue to investigate alternative search strategies.

Improving the Verbal Complex Model

There are several aspects of the verbal complex model that may be worth examining

further in future work:

• Clause projection relies on the 1-best parse containing accurate clause structure

information. In tree-to-string models, it has been found that using the k-best

input trees or a parse forest instead of the 1-best parse leads to improvements

(Mi and Huang, 2008). Taking multiple possible clause structures into account

would reduce the impact of parse errors.

• Clause projection is a considerable linguistic oversimplification. A better model

for mapping English to German clauses may lead to improvements. One ap-

proach would be to train a classifier, perhaps along similar lines to Roark et al.

(2012), who use classifiers to predict constituent boundaries in monolingual

parsing.

• When estimating verbal complex probabilities, our relative-frequency estimates

could be smoothed (for example, with Good-Turing smoothing). For rare or

unseen source verbal complexes, the model could back-off to POS-based labels.

10.2.2 Extensions to the Current Models

Incorporating Source-Side Information for Agreement and Government

In Chapter 9, we extended our verbal complex model finding that by incorporating ad-

ditional source-side information we could influence feature structure production lead-

ing to a better match with the reference. Whereas English verbal complexes express a

similar range of grammatical feature values to German ones, this is less true for En-

glish and German inflection. For instance, we would find scant information on the
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source-side for influencing the selection of German gender values on the target. How-

ever, there are still important aspects of German inflection that should be predictable

from the English source:

• It may be possible to improve case prediction by using syntactic cues in the

input, perhaps by taking a similar approach to Avramidis and Koehn (2008),

who use phrase-structure parse trees to mark English NPs with Greek-like case

information for English to Greek factored phrase-based translation. Where they

use factors to map case, we would use constraints.

• Number syncretism is far more common for German nouns than English (where

examples, such as “sheep”, are very rare). For example, in the genitive case,

the surface form Handys (“mobile phone”) is used for both the singular and plu-

ral. When translating “mobile phone” or “mobile phones” to Handys the number

distinction is lost. By using a morphological analyser to determine source-side

noun number in the training data, we could add target-side constraints that spec-

ify target the number. For example,

NN → mobile phone | Handys

〈Handys INFL AGR NUM〉= sg

There are a few nouns that are singular in English but plural in German, and vice

versa. For instance, Polizei (“police”) is singular in German. These could be

handled with a stop-list or by using probabilistic constraints.

Pronoun-Antecedent Agreement

In German, as in English, relative pronouns agree with their antecedents. For example,

in Der Mann der die Frau liebt (“the man who the women loves”) the relative pronoun

der agrees in case, number, and gender with the antecedent, der Mann. This could be

modelled similarly to subject-verb agreement (Section 7.4.3) by using the lexicon to

specify the agreement values of relative pronouns and using constraints to ensure that

the antecedent and the relative pronoun have compatible agreement values.

Combining the Constraint Models

In Chapters 7, 8, and 9, we developed two independent constraint models, one for

agreement and government, and one for verbal complex production. There is no reason
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System 2009-20 2010-20 2011-20

Baseline 16.8 17.1 14.5

+noun-modifier 17.0 17.5 14.7

+prep-gov 17.0 17.5 14.7

+adj-decl 17.0 17.6 14.7

+np-case 17.1 17.8 14.9

+subj-verb 17.2 17.8 14.9

+hvcm 17.3 18.1 15.0

Table 10.1: BLEU scores for short sentences as constraint types are progressively in-

cluded.

that these constraint models cannot both be used in a single system and we have built a

proof-of-concept system that does so, although we have not yet conducted any detailed

analysis.

In our combined model, we use the original lexicon and constraint extraction pro-

cesses unchanged, running them once for each for the two models. Every constraint is

assigned an index according to which constraint model it belongs to. During decoding,

constraints are evaluated for the two model types in turn, resulting in two indepen-

dent frontier feature structure sets for each hypothesis. The decoder looks up feature

structure values in the constraints’ respective lexicons.

Table 10.1 shows the experiment on short sentences from Section 7.6.1 continued

to include the hvcm feature function from Chapter 9. Compared to a system with hvcm

only, the F1 score is slightly lower at 0.482 compared to 0.487 (the baseline on this

test set is 0.423). We suspect that the increase in BLEU is mainly attributable to clause

projection.

10.2.3 Application to Other Target Languages

Agreement and Government

Many Indo-European languages have inflectional morphologies as rich as German’s, or

more so, and cross-linguistically, patterns of agreement and government tend to be sim-

ilar. Our model and training scheme for agreement and government should be straight-

forward to apply to other languages provided that suitable language-processing tools

are available: namely, a phrase-structure parser and morphological analyser. Our tree
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annotation procedure and constraint induction scheme (Section 7.5.2 and Appendix B)

were tailored to suit the German language and the conventions of the Tiger Treebank,

but similar annotation procedures could be developed for other languages.

Morphological analysers are available for a number of languages with rich inflec-

tion, including Russian, Czech, and Hindi. Where treebanks and parsers exist, they

tend to use dependency structure (partly due to the freer word order that comes with

grammatical case). Formally, conversion to phrase structure is always possible, though

non-projective structures require projectivization, which can lead to a loss of informa-

tion (see Nivre and Nilsson (2005) for a discussion of graph transformation techniques

for projectivization). Non-projective dependencies are frequent in some languages: for

Czech, Hajičová et al. (2004) report that 2% of words and 19% of sentences have non-

projective dependencies. Assuming a method for projectivization, the main question is

whether the syntactic content is suited to the task (see Rambow (2010) for a good dis-

cussion of this topic). There has been success converting dependency representations

to phrase-structure for adapting parsing models (for example, Collins et al. (1999);

Xia and Palmer (2001) do so for Czech) and so for languages that have dependency

treebanks and parsers, like Czech and Russian, it is likely that similar models could be

developed.

Verbal Complex Production

Like German, Dutch also has grammatical constructions in which auxiliary and main

verbs are separated by arbitrarily many constituents, but cross-linguistically, such con-

structions are rarer than long-range agreement and government phenomena. Whilst

discontinuties of this sort are especially challenging for statistical machine translation

models, they are far from the only problem in verbal complex formation. For example,

when we saw ‘has been criticized . . . ’ translated to hat . . . kritisiert worden by our

baseline system (Section 8.2), we noted that the problem was not only the choice of

auxiliary finite verb, but also the word-by-word verb translation that translated each

English verb to a German verb instead of producing the less-literal alternative wurde

. . . kritisiert. For capturing these types of translational preferences, our model is appli-

cable for any target language that uses separate main and auxiliary verbs.

Apart from auxiliary-main verb constructions, there are other similar phenomena

that could be modelled using our framework. For instance, many English multi-word

verbs are separable (‘take off,’ ’mark down,’ etc.) and constraints similar to those in

Chapter 8 could be used to penalize the production of particles without verbs.
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Automatically Learning Constraint Annotation Rules

The German models presented in this thesis used manually-developed constraint an-

notation rules that are, at least to an extent, language- and treebank-specific. To make

the application to other languages and treebanks easier, it may be worth exploring un-

supervised or semi-supervised methods for constraint learning.

It may be possible to learn tree annotation rules by generating candidate relations

according to linguistically-motivated ‘universal’ principles and then refining the rela-

tions using a data-driven approach. For instance, Generalized Phrase-Structure Gram-

mar proposes three universal feature instantiation principles that together form a theory

for agreement (Zwicky, 1986). Given a lexicon, candidate relations for the training

sentences could be tested and then removed if the words are found not to agree —

that is, if unification of agreement values fails. Since fortuitous unification is possible

(if the words are not in an agreement relation but happen to have compatible gram-

matical features), it may be possible to bolster this test with a machine-learning based

approach that classifies relations as agreement relations or not according to additional

discriminative features, such as part-of-speech m-gram sequences, the surface forms

of the candidates, and so on.

10.2.4 Modelling Other Linguistic Phenomena

Verb Subcategorization and Verbal Case Government

In unification-based grammars it is common to specify verb subcategorization require-

ments in the lexicon. For instance, requiring that the intransitive verb ‘dream’ never

takes an argument and permitting the verb ‘give’ to be used with one, two, or none.

In German, a verb’s subcategorization frame usually specifies the cases of the ar-

guments since verbs govern case in German. For example, the verbs unterstützten (“to

assist”) and helfen (“to help”) both require a single argument, but the argument must

be in the accusative case for unterstützten and the dative for helfen.

A minimal implementation in our framework could use atomic values to specify

subcategorization types in the lexicon and in constraints. For example, acc might

specify that the verb requires a single accusative argument and dat+acc might specify

that it requires a dative and accusative, in that order.

Given the following lexical entries for the past-tense 3-sg forms of unterstützten

and helfen:
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unterstützte →




CAT VVFIN

SUBCAT acc





half →




CAT VVFIN

SUBCAT dat





the rule:

S-TOP → she X1 X2 | sie VVFIN1 NP-OA2

〈VVFIN SUBCAT〉= acc

could be used in combination with the verb unterstützte but not half. For example, it

could be used in translating “she helped the man” to sie unterstützte den Mann but not

sie half den Mann, which is ungrammatical since the argument should be in the dative

case — sie half dem Mann — and requires an alternative rule that specifies a dative

argument (NP-DA instead of NP-OA).

An implementation would require a list of possible subcategorization frames for

each verb. Weller et al. (2013) describe a method for extracting this information from

dependency-parsed German text.

Semantic Relations

As well as morphosyntactic information, feature structures have been used for phono-

logical and semantic properties of words (for instance, in Functional Grammar (Kay,

1979) and Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994)). For ma-

chine translation, it may be useful to use the lexicon to restrict the semantic relations

in which specific verbs and their arguments can participate. For example, to allow

“house” to occur as the object of a clause in which it is “constructed,” but not one in

which it is “forged.”

Given a source of semantic relations, constraints could be used to restrict the com-

bination of verbs and arguments by requiring the presence in the lexicon of matching

relation types. Lewis and Steedman (2013) show how distributional clustering can be

used to learn relations suitable for use in wide-coverage settings.



Appendix A

Mapping Part-of-Speech Values from

Morphisto to Tiger

This appendix describes the mapping from Morphisto to Tiger part-of-speech tags that

we use in Chapter 7. The categories used by the morphological analyser are coarser-

grained than in Tiger, but finer-grained distinctions are instead encoded using feature

values. For example, Morphisto’s V category is used for all verbs, whereas Tiger sub-

divides categories depending on whether i) the verb is an infinitive, a past-participle,

finite, or imperative, and ii) it is an auxiliary, modal, or full verb. The morphological

analyser makes the former distinction using feature values (such as <inf> to indicate

an infinitive). The mapping therefore involves the Morphisto part-of-speech value and

also the presence or absence of feature tags. For instance, if the Morphisto part-of-

speech value is DEM and the analysis contains the <subst> feature tag then the Tiger

tag is PDS. Table A.1 shows the full mapping scheme.
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Morphisto POS Morphisto Features Tiger POS

ADJ or ORD <Adv> or <Pred> ADJD

No <Adv> and no <Pred> ADJA

ART ART

DEM <attr> or <pos> PDAT

<subst> PDS

INDEF <oD> or <mD> PIAT

POSS PPOSAT

PPRO <pers> PPER

<prfl> PRF

PREP APPR

PREPART APPRART

NN NN

V <imp> VAIMP, VMIMP, VVIMP

<inf> and <zu> VVIZU

<inf> and no <zu> VAINF, VMINF, VVINF

<ppast> VAPP, VMPP, VVPP

no <imp> and no <inf> and no

<ppast>

VAFIN, VMFIN, VVFIN

WPRO <subst> PWS

no <subst> PWAT

Table A.1: Mapping from Morphisto part-of-speech and feature tags to Tiger part-of-

speech tags



Appendix B

Annotation of Selector-Target Sets

This appendix describes the algorithm used for the annotation of selector-target sets

used in Chapter 7. The algorithm takes a Tiger-style German parse tree as input and

extracts a set of selector-target sets. We give the algorithm in procedural form.

Our algorithm uses the constituent labels of the parse trees only; words are ignored.

The constituent labels are categorized as shown in Table B.1:

Tree Level Category Labels

Phrase Subject *-EP *-SB

Part-of-speech Comma ,

FiniteVerb VAFIN VMFIN VVFIN

NounModifier ADJA ART PDAT PIAT PPOSAT PWAT

NounOrPronoun NE NN PPER PDS

ProperNoun NE

Preposition APPR

Table B.1: Definition of constituent categories used in the annotation algorithm.

Figure B.1 shows the top-level function EXTRACT. EXTRACT first calls the sub-

procedure EXTRACT-NP-PP to extract the set of selector-target sets that cover noun

phrases and prepositional phrases only. EXTRACT-SUBJ-VERB then expands these

sets to include finite verbs that are the targets of subject noun phrases. Finally (lines

5 to 9) EXTRACT searchs for nodes that are selector or target types, according to their

labels, but have not already been found to belong to a selector-target set. Even though

these nodes do not participate in agreement or government relations in this particular

parse tree it is important that they are annotated so that constraint induction will include
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them in rules extracted from subgraphs of the alignment graph.

EXTRACT(root)

1 for each child node n in root’s children
2 EXTRACT-NP-PP(n)
3 for each child node n in root’s children
4 EXTRACT-SUBJ-VERB(n)
5 for each leaf node n in root’s leaves
6 if n already belongs to a selector-target set
7 continue

8 else if ISSELECTORORTARGET(n)
9 add n and PARENT(n) to a new selector-target set

EXTRACT-NP-PP(n)

1 if n does not already belong to a selector-target set
2 if n is a NounPhrase or PrepositionalPhrase
3 Create a new selector-target set, s
4 ADD-NP-PP(n,s)
5 for each child node c in n’s children
6 EXTRACT-NP-PP(n)

EXTRACT-SUBJ-VERB(n)

1 if ISCLAUSE(n)
2 ADD-SUBJ-VERB(n)
3 for each child node c in n’s children
4 EXTRACT-SUBJ-VERB(c)

Figure B.1: Algorithm for extracting selector-target sets (continued in Figure B.2).

The sub-procedures are shown in Figure B.2. ADD-NP-PP first scans the node

n’s children looking for a head node (line 2). It then scans n’s children left-to-right

adding modifiers to the selector-target set s. If there are any prepositions then the last

preposition (only) is added to the selector-target set.

ADD-SUBJ-VERB scans the node n’s children looking for a subject node and a

finite verb node. If both are found then it searches for an existing selector-target set

containing the subject node. If no such set is found then a new set is created. Finally,

the subject, verb, and their parent node are added to the selector-target set.

Finally, Figure B.2 shows the subprocedure FIND-NOUN-PHRASE-HEAD. It scans

a node’s children looking for a noun or pronoun. If there is a sequence of consecutive

nouns or pronouns then the last is taken to be the head.
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ADD-NP-PP(n,s)

1 Add n to s
2 head = FIND-NOUN-PHRASE-HEAD(n)
3 prep = NIL

4 for each child node c in n’s children
5 if ISPREPOSITION(c)
6 prep = c
7 else if ISNOUNMODIFIER(c)
8 if prep
9 add prep to s

10 prep = NIL

11 add c to s
12 else if c == head
13 if prep
14 add prep to s
15 if not ISPROPERNOUN(c)
16 add c to s
17 break

ADD-SUBJ-VERB(n)

1 subj = NIL

2 verb = NIL

3 for each child node c in n’s children
4 if ISSUBJECT(c)
5 subj = c
6 else if ISFINITEVERB(c)
7 verb = c
8 if subj and verb
9 search for a selector-target s containing subj

10 if not found
11 s = new selector-target set
12 add subj to s
13 add verb to s
14 add n to s

Figure B.2: Algorithm for extracting selector-target sets (continued from Figure B.1 and

continued in Figure B.3).
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FIND-NOUN-PHRASE-HEAD(n)

1 head = null
2 for each child node c in n’s children
3 if head
4 if ISNOUNORPRONOUN(c)
5 head = c
6 else

7 return head
8 else if ISNOUNORPRONOUN(c)
9 head = c

10 else if ISCOMMA(c)
11 break

Figure B.3: Algorithm for extracting selector-target sets (continued from Figure B.2).
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Annotation of Verbal Complex Sets

This appendix describes the algorithm used for the annotation of verbal complex sets

used in Chapter 8. The algorithm takes a Tiger-style German parse tree as input and

extracts a set of verbal complex sets. As for the selector-target set extraction algorithm

in Appendix B, we give the algorithm in procedural form.

Our algorithm uses the constituent labels of the parse trees only; words are ignored.

The constituent labels are categorized as shown in Table C.1:

Tree Level Category Labels

Phrase Clause S-* CS-*

VerbPhrase VP-OC CVP-OC

Part-of-speech FiniteVerb VAFIN VMFIN VVFIN

Infinitive VAINF VMINF VVINF

PastParticiple VAPP VMPP VVPP

ClauseEndingPunc , .

Table C.1: Definition of constituent categories used in the annotation algorithm.

Figure C.1 shows the top-level function EXTRACT. It first calls sub-procedures that

make two separate passes over the tree. EXTRACT-PASS-1 checks each clause node

for a canonincal verbal complex (as defined by the EXTRACT-FROM-CLAUSE sub-

procedure) and creates a verbal-complex set for each one that is found. This process

omits some verb phrases, which are mopped up by the second pass in EXTRACT-PASS-

2. Any verbs that are still unclaimed are added to their own verbal-complex sets.

The EXTRACT-FROM-CLAUSE and EXTRACT-FROM-VERB-PHRASE sub-procedures

are shown in Figure C.2. EXTRACT-FROM-CLAUSE scans a clause node’s children
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EXTRACT(root)

1 EXTRACT-PASS-1(root)
2 EXTRACT-PASS-2(root)
3 for each leaf node n in root’s leaves
4 if n already belongs to a verbal complex set
5 continue

6 else if ISVERB(n)
7 add n to a new verbal-complex set

EXTRACT-PASS-1(n)

1 if ISCLAUSE(n)
2 EXTRACT-FROM-CLAUSE(n)
3 for each child node c in n’s children
4 EXTRACT-PASS-1(c)

EXTRACT-PASS-2(n)

1 if ISVERBPHRASE(n) and n does not already belong to a set
2 Create new verbal complex set s
3 EXTRACT-FROM-VERB-PHRASE(n,s)
4 for each child node c in n’s children
5 EXTRACT-PASS-2(c)

Figure C.1: Algorithm for extracting verbal complex sets (continued in Figure C.2).

from left-to-right searching for verbs and verb phrases. If no finite verb is found then

the procedure exits early (line 17) and no verbal complex is extracted. Otherwise, an

empty verbal complex set is created (line 18) and all verbs and relevant verb phrase

nodes are added (lines 19-28). The algorithm assumes that the first child verb phrase

containing a finite verb belong to a verbal complex and the others do not (lines 22-24).

EXTRACT-FROM-VERB-PHRASE gathers all verbs and sub-verb phrases from a

verb phrase node (line 1) and then adds them to a new verbal complex set (lines 4-6),

provided that at least one verb is found.

Finally, Figure C.3 shows the READ-VERBS-FROM-VERB-PHRASE procedure.

This scans a verb phrase node’s children from left-to-right searching for verbs and

nested verb phrases. Normally a verb phrase node will not contain a finite verb and

if one is found then the procedure exits early (line 5). The procedure then recursively

adds verbs and verb-phrase nodes from nested verb phrases (lines 13-19).
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EXTRACT-FROM-CLAUSE(n)

1 finite-verb-list = empty list
2 non-finite-verb-list = empty list
3 verb-phrase-list = empty list
4 for each child node c in n’s children, visited left-to-right
5 if ISFINITEVERB(c)
6 append c to finite-verb-list
7 else if ISINFINITIVE(c) or ISPASTPARTICIPLE(c)
8 append c to non-finite-verb-list
9 else if ISVERBPHRASE(c)

10 append c to verb-phrase-list
11 else if ISCLAUSEENDINGPUNC(c)
12 if finite-verb-list is empty
13 clear all lists
14 else

15 break

16 if finite-verb-list is empty
17 return

18 create new verbal complex set s
19 add n to s
20 add finite-verb-list[0] to s
21 add all verbs from non-finite-verb-list to s
22 for each vp in verb-phrase-list
23 list-1, list-2 = READ-VERBS-FROM-VERB-PHRASE(vp)
24 if list-1 is not empty
25 Add vp to s
26 Add all verbs from list-1 to s
27 Add all sub-phrase nodes from list-2 to s
28 break

EXTRACT-FROM-VERB-PHRASE(n,s)

1 verbs,subphrases = READ-VERBS-FROM-VERB-PHRASE(n)
2 if verbs is empty
3 return

4 add n to s
5 add all verbs from verbs to s
6 add all sub-phrase nodes from subphrases to s

Figure C.2: Algorithm for extracting verbal complex sets (continued from Figure C.2 and

continued in Figure C.3).
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READ-VERBS-FROM-VERB-PHRASE(n)

1 verb-list = empty list
2 vp-list = empty list
3 for each child node c in n’s children, visited left-to-right
4 if ISFINITEVERB(c)
5 return pair of empty lists
6 else if ISINFINITIVE(c) or ISPASTPARTICIPLE(c)
7 append c to verb-list
8 else if ISVERBPHRASE(c)
9 append c to vp-list

10 else if ISCLAUSEENDINGPUNC(c)
11 break

12 sub-phrase-list = empty list
13 for each verb phrase vp in vp-list
14 list-1, list-2 = READ-VERBS-FROM-VERB-PHRASE(n)
15 add verbs from list-1 to verb-list
16 add sub-phrases from list-2 to sub-phrase-list
17 if list-1 is not empty
18 add vp to sub-phrase-list
19 break

20 return verb-list, sub-phrase-list

Figure C.3: Algorithm for extracting verbal complex sets (continued from Figure C.2).
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