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Abstract

Lexical-semantic resources, including thesauri and WORDNET, have been successfully incor-

porated into a wide range of applications in Natural Language Processing. However they are

very difficult and expensive to create and maintain, and their usefulness has been severely

hampered by their limited coverage, bias and inconsistency. Automated and semi-automated

methods for developing such resources are therefore crucial for further resource development

and improved application performance.

Systems that extract thesauri often identify similar words using thedistributional hypothesis

thatsimilar words appear in similar contexts. This approach involves using corpora to examine

the contexts each word appears in and then calculating the similarity between context distri-

butions. Different definitions of context can be used, and I begin by examining how different

types of extracted context influence similarity.

To be of most benefit these systems must be capable of finding synonyms for rare words.

Reliable context counts for rare events can only be extracted from vast collections of text. In

this dissertation I describe how to extract contexts from a corpus of over 2 billion words. I

describe techniques for processing text on this scale and examine the trade-off between context

accuracy, information content and quantity of text analysed.

Distributional similarity is at best an approximation to semantic similarity. I develop improved

approximations motivated by the intuition that some events in the context distribution are more

indicative of meaning than others. For instance, the object-of-verb contextwear is far more

indicative of a clothing noun thanget. However, existing distributional techniques do not

effectively utilise this information. The new context-weighted similarity metric I propose in

this dissertation significantly outperforms every distributional similarity metric described in

the literature.

Nearest-neighbour similarity algorithms scale poorly with vocabulary and context vector size.

To overcome this problem I introduce a new context-weighted approximation algorithm with

bounded complexity in context vector size that significantly reduces the system runtime with

only a minor performance penalty. I also describe a parallelized version of the system that runs

on a Beowulf cluster for the 2 billion word experiments.

To evaluate the context-weighted similarity measure I compare ranked similarity lists against

gold-standard resources using precision and recall-based measures from Information Retrieval,
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since the alternative, application-based evaluation, can often be influenced by distributional

as well as semantic similarity. I also perform a detailed analysis of the final results using

WORDNET.

Finally, I apply my similarity metric to the task of assigning words to WORDNET semantic

categories. I demonstrate that this new approach outperforms existing methods and overcomes

some of their weaknesses.
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Chapter 1

Introduction

introduction : launch0.052,implementation0.046, advent 0.046, addition 0.045,
adoption 0.041, arrival 0.038, absence 0.036, inclusion 0.036, creation 0.036, de-
parture 0.036, availability 0.035, elimination0.035, emergence 0.035, use 0.034,
acceptance 0.033, abolition0.033, array 0.033, passage 0.033, completion 0.032,
announcement 0.032,. . .

Natural Language Processing (NLP) aims to develop computational techniques for understand-

ing and manipulating natural language. This goal is interesting from both scientific and engi-

neering standpoints:NLP techniques inspire new theories of human language processing while

simultaneously addressing the growing problem of managing information overload. Already

NLP is considered crucial for exploiting textual information in expanding scientific domains

such as bioinformatics (Hirschman et al., 2002). However, the quantity of information avail-

able to non-specialists in electronic form is equally staggering.

This thesis investigates a computational approach tolexical semantics, the study of word mean-

ing (Cruse, 1986) which is a fundamental component of advanced techniques for retrieving,

filtering and summarising textual information. It is concerned with statistical approaches to

measuringsynonymyor semantic similaritybetween words using raw text. I present a detailed

analysis of existing methods for computing semantic similarity. This leads to new insights that

emphasise semantic rather than distributional aspects of similarity, resulting in significantly

improvements over the state-of-the-art. I describe novel techniques that make this approach

computationally feasible and scalable to huge text collections. I conclude by employing these

techniques to outperform the state-of-the-art in an application of lexical semantics. The seman-

tic similarity example quoted above has been calculated using 2 billion words of raw text.

1
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1.1 Contribution

Chapter 1 begins by placingsemantic similarityin the context of the theoretical and practical

problems of defining synonymy and other lexical-semantic relations. It introduces the man-

ually constructed resources that have heavily influencedNLP research and reviews the wide

range of applications of these resources. This leads to a discussion of the difficulties of man-

ual resource development that motivate computational approaches to semantic similarity. The

chapter concludes with an overview of the context-space model of semantic similarity which

forms the basis of this work.

Chapter 2 surveys the many existing evaluation techniques for semantic similarity and moti-

vates my proposed experimental methodology which is employed throughout the remainder of

the thesis. This chapter concludes by introducing the detailed error analysis which is applied to

the large-scale results in Chapter 6. This unified experimental framework allows the systematic

exploration of existing and new approaches to semantic similarity.

I begin by decomposing the similarity calculation into the three independent components de-

scribed in Section 1.8:context, similarity andmethods. For each of these components, I have

exhaustively collected and reimplemented the approaches described in the literature. This work

represents the first systematic comparison of such a wide range of similarity measures under

consistent conditions and evaluation methodology.

Chapter 3 analyses several different definitions of context and their practical implementation,

from scientific and engineering viewpoints. It demonstrates that simple shallow methods can

perform almost as well as far more sophisticated approaches and that semantic similarity con-

tinues to improve with increasing corpus size. Given this, I argue that shallow methods are

superior for this task because they can process much larger volumes of text than is feasible for

more complex approaches. This work has been published as Curran and Moens (2002b).

Chapter 4 uses the best context results from the previous chapter to compare the performance

of many of the similarity measures described in the literature. Using the intuition that the most

informative contextual information is collocational in nature, I explain the performance of the

best existing approaches and develop new similarity measures which significantly outperform

all the existing measures in the evaluation. The best combination of parameters in this chapter

form thesimilarity systemwhich is used for the remaining experimental results. This work has

been published as Curran and Moens (2002a).
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Chapter 5 proposes an ensemble approach to further improve the performance of the similarity

system. This work has been published as Curran (2002). It also considers the efficiency of the

näıve nearest-neighbour algorithm, which is not feasible for even moderately large vocabular-

ies. I have designed a new approximation algorithm to resolve this problem which constrains

the asymptotic complexity, significantly reducing the running time of the system, with only

a minor performance penalty. This work has been published in Curran and Moens (2002a).

Finally, it describes a message-passing implementation which makes it possible to perform

experiments on a huge corpus of shallow-parsed text.

Chapter 6 concludes the experiments by providing a detailed analysis of the output of the

similarity system, using a larger test set calculated on the huge corpus with the parallel imple-

mentation. This system is also used to determine thesupersenseof a previously unseen word.

My results on this task significantly outperform the existing work of Ciaramita et al. (2003).

1.2 Lexical Relations

Lexical relations are very difficult concepts to define formally; a detailed account is given by

Cruse (1986). Synonymy, the identity lexical relation, is recognised as having various de-

grees that range from complete contextual substitutability (absolute synonymy), truth preserv-

ing synonymy (propositional synonymy) through to near-synonymy (plesionymy). Hyponymy,

or subsumption, is the subset lexical relation and the inverse relation is calledhypernymy(or

hyperonymy). Hypernymycan loosely be defined as theis-aor is-a-kind-of relation.

1.2.1 Synonymy and Hyponymy

Zgusta (1971) defines absolute synonymy as agreement indesignatum, the essential properties

that define a concept;connotation, the associated features of a concept; andrange of appli-

cation, the contexts in which the word may be used. Except for technical terms, very few

instances of absolute synonymy exist. For instance, Landau (1989, pp. 110–111) gives the

example of the ten synonyms ofJakob-Creutzfeldt disease, includingJakob’s disease, Jones-

Nevin syndrome andspongiform encephalopathy. These synonyms have formed as medical

experts recognised that each instance represented the same disease.

Near-synonyms agree on any two of designatum, connotation and range of application ac-
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DENOTATIONAL DIMENSIONS CONNOTATIVE DIMENSIONS

intentional/accidental formal/informal
continuous/intermittent abstract/concrete

immediate/iterative pejorative/favourable
emotional/emotionless forceful/weak

degree emphasis

Table 1.1: Example near-synonym differentia from DiMarco et al. (1993)

cording to Landau (1989), but this is not totally consistent with Cruse (1986), who defines

plesionyms as non-truth preserving (i.e. disagreeing on designatum). Cruse’s definition is sum-

marised by (Hirst, 1995) aswords that are close in meaning . . . not fully inter-substitutable but

varying in their shades of denotation, connotation, implicature, emphasis or register. Hirst and

collaborators have explored near-synonymy, which is important for lexical choice in Machine

Translation and Natural Language Generation (Stede, 1996). In DiMarco et al. (1993), they

analyse usage notes in theOxford Advanced Learners Dictionary(1989) andLongman’s Dic-

tionary of Contemporary English(1987). From these entries they identified 26 dimensions of

differentiaefor designatum and 12 for connotation. Examples of these are given in Table 1.1.

DiMarco et al. (1993) add near-synonym distinctions to a Natural Language Generation (NLG)

knowledge base and DiMarco (1994) shows how near-synonym differentia can form lexical

relations between words. Edmonds and Hirst (2002) show how a coarse-grained ontology

can be combined with sub-clusters containing differentiated plesionyms. They also describe

a two-tiered lexical choice algorithm for aNLG sentence planner. Finally, Zaiu Inkpen and

Hirst (2001) extract near-synonym clusters from a dictionary of near-synonym discriminations,

augment it with collocation information (2002) and incorporate it into anNLG system (2003).

However, in practicalNLP, the definition of lexical relations is determined by the lexical re-

source which is often inadequate (see Section 1.5). For instance, synonymy and hyponymy is

often difficult to distinguish in practice. Another example is that WORDNET does not distin-

guish types from instances in the noun hierarchy: bothepistemologist andSocrates appear as

hyponyms ofphilosopher, so in practice we cannot make this distinction using WORDNET.

1.2.2 Polysemy

So far this discussion has ignored the problem of words having multiple distinct senses (poly-

semy). Sense distinctions in Roget’s and WORDNET are made by placing words into different
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places in the hierarchy. The similarity of two terms is highly dependent on the granularity

of sense distinctions, on which lexical resources regularly disagree. Section 2.2.3 includes a

comparison of the granularity of the gold-standards used in this work. WORDNET has been

consistently criticised for making sense distinctions that are too fine-grained, many of which

are very difficult for non-experts to distinguish between.

There have been several computational attempts to reduce the number of sense distinctions and

increase the size of each synset in WORDNET (Buitelaar, 1998; Ciaramita et al., 2003; Hearst

and Scḧutze, 1993). This is related to the problem ofsupersense taggingof unseen words

described in Section 6.2.

Another major problem is that synonymy is heavily domain dependent. For instance, some

words are similar in one particular domain but not in another, depending on which senses are

dominant in that domain. Many applications would benefit from topical semantic similarity

(the tennis problem), for example relatingball, racquet andnet. However, Roget’s is the only

lexical resource which provides this information.

Finally, there is the issue ofsystematicor regular relations between one sense and another. For

instance, a systematic relationship exists between words describing a beverage (e.g.whisky)

and a quantity of that beverage (e.g.a glass of whisky). Acquiring this knowledge reduces

redundancy in the lexical resource and the need for as many fine-grained sense distinctions.

There have been several attempts to encode (Kilgarriff, 1995) and acquire (Buitelaar, 1998) or

infer (Wilensky, 1990) systematic distinctions. A related problem is the semantic alternations

that occur when words appear in context. Lapata (2001) implements simple Bayesian models

of sense alternations between noun-noun compounds, adjective-noun combinations, and verbs

and their complements.

1.3 Lexical Resources

Rather than struggle with a operational definition of synonymy and similarity, I will rely on lex-

icographers for ‘correct’ similarity judgements by accepting words that cooccur in thesaurus

entries (synsets) as synonymous. Chapter 2 describes and motivates this approach and com-

pares it with other proposed evaluation methodologies. The English thesaurus has been a pop-

ular arbiter of similarity for 150 years (Davidson, 2002), and is strongly associated with the

work of Peter Mark Roget (Emblen, 1970). Synonym dictionaries first appeared for Greek and



6 Chapter 1. Introduction

Latin in the Renaissance, with French and German dictionaries appearing in the 18th century.

In English, synonym dictionaries were slower to appear because the vocabulary was smaller

and rapidly absorbing new words and evolving meanings (Landau, 1989, pp. 104–105).

Many early works were either lists of words (lexicons) or dictionaries of synonym discrim-

inations (synonymiconsor synonymies). These were often targeted at “coming up members

of society and to eligible foreigners, whose inadequate grasp of the nuances of English syn-

onymies might lead them to embarrassing situations” (Emblen, 1970, page 263). A typical

example was William Taylor’sEnglish Synonyms Discriminated, published in 1813. The para-

graph distinguishing betweenmirth andcheerfulness (page 98) is given below:

Mirth is an effort, cheerfulness a habit of the mind; mirth is transient, and cheerfulness
permanent; mirth is like a flash of lightening, that glitters with momentary brilliance,
cheerfulness is the day-light of the soul, which steeps it in a perpetual serenity.

Apart from discriminating entries in popular works such as Fowler’sA Dictionary of Modern

English Usage(1926), their popularity has been limited except in advanced learner dictionaries.

1.3.1 Roget’s Thesaurus

The popularity of Roget’s 1852 workThesaurus of English Words and Phraseswas instrumen-

tal in the assimilation of the wordthesaurus, from the Greek meaningstorehouseor treasure,

into English. Roget’s key innovation, inspired by the importance of classification and organ-

isation in disciplines such as chemistry and biology, was the introduction of a hierarchical

structure organising synsets by topic. A testament to the quality of his original hierarchy is that

it remains relatively untouched in the 150 years since its original publication (Davidson, 2002).

The structure of Roget’s thesaurus is described in detail in Section 2.2.3.

Unfortunately, Roget’s original hierarchy has proved relatively difficult to navigate (Landau,

1989, page 107) and most descendants include an alphabetical index. Roget’s thesaurus re-

ceived modest critical acclaim and respectable sales although people were not sure how to use

it. The biggest sales boost for the thesaurus was the overwhelming popularity of crossword

puzzles which began with their regular publication in theNew York Worldin 1913 (Emblen,

1970, page 278). Solvers were effectively using Roget’s thesaurus to boost their own recall of

answers using synonyms. The recall problem has motivated the use of thesauri in Information

Retrieval (IR) andNLP. However, the structure of Roget’s thesaurus and later work using such

structured approaches has proved equally important inNLP.
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1.3.2 Controlled vocabularies

Controlled vocabularies have been used successfully to indexmaintained(or curated) docu-

ment collections. Acontrolled vocabularyis a thesaurus of canonical terms for describing

every concept in a domain. Searching by subject involves selecting terms that correspond to

the topic of interest and retrieving every document indexed by those terms.

Two of the largest and up-to-date controlled vocabularies are theLibrary of Congress Subject

Headings(LCSH) and theMedical Subject Headings(MeSH). Both contain hierarchically struc-

tured canonical terms, listed with a description, synonyms and links to other terms. TheLCSH

(LOC, 2003) contains over 270 000 entries indexing the entire Library of Congress catalogue.

An abridged entry forpathological psychology is given in Figure 1.1:

Psychology, Pathological
Here are entered systematic descriptions of mental disorders. Popular works . . . [on] mental disorders
are entered undermental illness . Works on clinical aspects . . . are entered underpsychiatry .
UF Abnormal psychology; Diseases, Mental; Mental diseases; Pathological psychology;
BT Neurology
RT Brain–Diseases; Criminal Psychology; Insanity; Mental Health; Psychiatry; Psychoanalysis
NT Adjustment disorders; Adolescent psychopathology; Brain damage; Codependency; . . .

–Cross-cultural studies

Figure 1.1: An entry from the Library of Congress Subject Headings

MeSH (NLM , 2004) is the National Library of Medicine’s controlled vocabulary used to index

articles from thousands of journals in theMEDLINE and Index Medicus databases. TheMeSH

hierarchy starts from general topics such asanatomy or mental disorders and narrows to specific

topics such asankle andconduct disorder. MeSH contains 21 973 terms (descriptors) and an

additional 132 123 names from a separate chemical thesaurus. These entries are heavily cross-

referenced. Part of theMeSH hierarchy and entry forpsychology is given in Figure 1.2.

Other important medical controlled vocabularies are produced by the Unified Medical Lan-

guage System (UMLS) project. TheUMLS Metathesaurus integrates over 100 biomedical vo-

cabularies and classifications, and links synonyms between these constituents. TheSPECIAL-

IST lexicon contains syntactic information for many terms, and theUMLS Semantic Network

describes the types and categories assigned to Metathesaurus concepts and permissible rela-

tionships between these types.
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Behavioural Disciplines and Activities [F04]
Behavioural Sciences [F04.096]

. . .
Psychology [F04.096.628]

Adolescent Psychology [F04.096.628.065]
. . .

Psychology, Social [F04.096.628.829]

MeSH Heading Psychology

Tree Number F04.096.628

Scope NoteThe science dealing with the study of mental processes and behaviour in man and animals.

Entry Term Factors, Psychological; Psychological Factors; Psychological Side Effects; . . .
. . .

Entry Version PSYCHOL

Figure 1.2: An entry from the Medical Subject Headings

1.3.3 WORDNET

The most influential computational lexical resource is WORDNET (Fellbaum, 1998). WORD-

NET, developed by Miller, Fellbaum and others at Princeton University, is an electronic re-

source, combining features of dictionaries and thesauri, inspired by current psycholinguistic

theories of human lexical memory. It consists of English nouns, verbs, adjectives and adverbs

organised into synsets which are connected by various lexical-semantic relations. The noun

and verb synsets are organised into hierarchies based on the hypernymy relation. Section 2.3

describes the overall structure of WORDNET in more detail, as does the application-based eval-

uation work in Section 6.2.

1.4 Applications

Lexical semantics has featured significantly throughout the history of computational manipu-

lation of text. InIR indexing and querying collections with controlled vocabularies, and query

expansion using structured thesauri or extracted similar terms have proved successful (Salton

and McGill, 1983; van Rijsbergen, 1979). Roget’s thesaurus, WORDNET and other resources

have been extremely influential inNLP research and are used in a wide range of applications.

Methods for automatically extracting similar words or measuring the similarity between words

have also been influential.

Recent interest in interoperability and resource sharing both in terms of software (withweb ser-

vices) and information (with thesemantic web) has renewed interest in controlled vocabularies,

ontologies and thesauri (e.g. Cruz et al. 2002).
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The sections below describe some of the applications inIR andNLP that have benefited from

the use of lexical semantics or similarity measures. This success over a wide range of appli-

cations demonstrates the importance of ongoing research and development of lexical-semantic

resources and similarity measures.

1.4.1 Information Retrieval

Lexical-semantic resources are used inIR to bridge the gap between the user’sinformation need

defined in terms of concepts and the computational reality of keyword-based retrieval. Both

manually and automatically developed resources have been used to alleviate this mismatch.

Controlled vocabulary indexing is used in libraries and other maintained collections employing

cataloguers (see Section 1.3.2). In this approach, every document in the collection is annotated

with one or more canonical terms. This is extremely time consuming and expensive as it

requires expert knowledge of the structure of the controlled vocabulary. This approach is only

feasible for valuable collections or collections which are reasonably static in size and topic,

making it totally inappropriate for web search for example. Both theLCSH andMeSH require

large teams to maintain the vocabulary and perform document classification.

The hierarchical structure of controlled vocabularies can be navigated to select query terms

by concept rather than keyword; unfortunately, novices find this difficult as with Roget’s the-

saurus (cf. Section 1.3.1). However, the structure can help to select more specific concepts

(usingnarrower termlinks), or more general concepts (usingbroader termlinks) to manipu-

late the quality of the search results (Foskett, 1997). As full-text indexing became feasible and

electronic text collections grew, controlled vocabularies made way for keyword searching by

predominantly novice users on large heterogeneous collections.

Lexical semantics is now used to help these novice users search by reformulating user queries

to improve the quality of the results. Lexical resources, such as thesauri, are particularly helpful

with increasingrecall, by expanding queries with synonyms. This is because there is no longer

a set of canonical index terms and the user rarely adds all of the possible terms that describe a

concept. For instance, a user might typecat flu into a search engine. Given no extra information,

the computer system would not be able to return results containing the termfeline influenza

because it does not recognise that the pairscat/feline andflu/influenza are equivalent.

Baeza-Yates and Ribeiro-Neto (1999) describe two alternatives for adding terms to the query:
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globalandlocal strategies (and their combination). Local strategies add terms usingrelevance

based feedbackon the results of the initial query, whereas global strategies use the whole

document collection and/or external resources.

Attar and Fraenkel (1977) pioneered feedback based approaches by expanding queries with

terms deemed similar based on cooccurrence with query terms in the relevant query results. Xu

and Croft (1996) use passage level cooccurrence to select new terms, which are then filtered

by performing a correlation between the frequency distributions of query keywords and the

new term. These local strategies can take into account the dependency of appropriate query

expansion on the accuracy of the initial query and its results. However, they are not feasible

for high demand systems or distributed document collections (e.g. web search engines).

Global query expansion may involve adding synonyms, cooccurring terms from the text, or

variants formed by stemming and morphological analysis (Baeza-Yates and Ribeiro-Neto,

1999). Previously this has involved the use of controlled vocabularies, regular thesauri such

as Roget’s, and also more recent work with WORDNET. Query expansion using Roget’s and

WORDNET (Mandala et al., 1998; Voorhees, 1998) has not been particularly successful, al-

though Voorhees (1998) did see an improvement when the query terms were manually disam-

biguated with respect to WORDNET senses. Grefenstette (1994) found query expansion with

automatically extracted synonyms beneficial, as did Jing and Tzoukermann (1999) when they

combined extracted synonyms with morphological information. Xu and Croft (1998) attempt

another similarity/morphology combination by filtering stemmer variations using mutual in-

formation. Voorhees (1998) also attempts word sense disambiguation using WORDNET, while

Scḧutze and Pedersen (1995) use an approach based on extracted synonyms and see a signifi-

cant improvement in performance.

1.4.2 Natural Language Processing

NLP research has used thesauri, WORDNET and other lexical resources for many different

applications. Similarity measures, either extracted from raw text (see Section 1.6) or calculated

over lexical-semantic resources (see Section 1.7), have also been used widely.

One of the earliest applications that exploited the hierarchical structure of Roget’s thesaurus

was Masterman’s work (1956) on creating an interlingua and meaning representation for early

machine translation work. Masterman believed that Roget’s had a strong underlying mathe-
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matical structure that could be exploited using a set theoretic interpretation of the structure.

According to Wilks (1998), this involved entering a reduced Roget’s thesaurus hierarchy onto

a set of 800 punch cards for use in a Hollerinth sorting machine. Spärck Jones (1964/1986,

1971) pioneered work in semantic similarity, defining various kinds of synonymy in terms of

rows(synsets) for machine translation and information retrieval.

The structure of Roget’s thesaurus formed the basis of early work in word sense disambiguation

(WSD). Yarowsky (1992) used Roget’s thesaurus to define a set of senses for each word, based

on the topics that the word appeared in. The task then became a matter of disambiguating the

senses (selecting one from the set) based on the context in which the terms appeared. Using a

100 word context, Yarowsky achieved 93% accuracy over a sample of 12 polysemous words.

More recently, Roget’s has been effectively superseded by WORDNET, particularly inWSD,

although experiments have continued using both; for example, Roget’s is used for evaluation

in Grefenstette (1994) and in this thesis. The Roget’s topic hierarchy has been aligned with

WORDNET by Kwong (1998) and Mandala et al. (1999) to overcome thetennis problem, and

Roget’s terms have been disambiguated with respect to WORDNET senses (Nastase and Sz-

pakowicz, 2001). The hierarchy structure in Roget’s has also been used in edge counting mea-

sures of semantic similarity (Jarmasz and Szpakowicz, 2003; McHale, 1998), and for comput-

ing lexical cohesion using lexical chains (Morris and Hirst, 1991). Lexical chains in turn have

been used for automatically inserting hypertext links into newspaper articles (Green, 1996) and

for detecting and correcting malapropisms (Hirst and St-Onge, 1998). Jarmasz (2003) gives an

overview of the applications of Roget’s thesaurus inNLP.

Another standard problem inNLP is how to interpret small or zero counts for events. For in-

stance, when a word does not appear in a corpus of 1 million words, does that mean it doesn’t

exist or just that we haven’t seen it in our first million words. I have demonstrated empirically

(Curran and Osborne, 2002) that reliable, stable counts are not achievable for infrequent events

even when counting over massive corpora. One standard technique is to use evidence from

words known to be similar to improve the quantity of information available for each term. For

instance, if you have seencat flu, then you can reason thatfeline flu is unlikely to be impossi-

ble. These class-based and similarity-based smoothing techniques have become increasingly

important in estimating probability distributions.

Grishman and Sterling (1994) proposed class-based smoothing for conditional probabilities

using the probability estimates of similar words. Brown et al. (1992) showed that class-based
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smoothing using automatically constructed clusters is effective for language modelling, which

was further improved by the development ofdistributionalclustering techniques (Pereira et al.,

1993). Dagan et al. (1993, 1995), Dagan et al. (1999) and Lee (1999) have shown that using the

distributionally nearest-neighbours improves language modelling andWSD. Lee and Pereira

(1999) compare the performance of clustering and nearest-neighbour approaches. Baker and

McCallum (1998) apply the distributional clustering technique to document classification be-

cause it allows for a very high degree of dimensionality reduction. Lapata (2000) has used

distributional similarity smoothing in the interpretation of nominalizations.

Clark and Weir (2002) have shown measures calculated over the WORDNET hierarchy can be

used for pseudo disambiguation, parse selection (Clark, 2001) and prepositional phrase (PP)

attachment (Clark and Weir, 2000). Pantel and Lin (2000) use synonyms from an extracted

thesaurus to significantly improve performance in unsupervisedPP-attachment. Abe and Li

(1996) use a tree-cut model over the WORDNET hierarchy, selected with the minimum de-

scription length (MDL ) principle, to estimate theassociation normbetween words. Li and Abe

(1998) reuse the approach to extract case frames for resolvingPP-attachment ambiguities.

Synonymy has also been used in work on identifying significant relationships between words

(collocations). For instance, (Pearce, 2001a,b) has developed a method of determining whether

two words form a strong collocation based on the principle of substitutability. If a word pair is

statistically correlated more strongly than pairs of their respective synonyms from WORDNET,

then they are considered a collocation. Similarity techniques have also been used to identify

when terms are in idiomatic and non-compositional relationships. Lin (1999) has used similar-

ity measures to determine if relationships between words are idiomatic or non-compositional

and Baldwin et al. (2003) and Bannard et al. (2003) have used similar techniques to determine

whether particle-verb constructions are non-compositional.

Similarity-based techniques have been used for text classification (Baker and McCallum, 1998)

and identifying semantic orientation, e.g. determining if a review is positive or negative (Tur-

ney, 2002). InNLG, the problem is mapping from the internal representation of the system to

the appropriate term. Often discourse and pragmatic constraints require the selection of a syn-

onymous term to describe a concept (Stede, 1996, 2000). Here the near-synonym distinction

between terms can be very important (Zaiu Inkpen and Hirst, 2003). Pantel and Lin (2002a)

have developed a method of identifying new word senses using an efficient similarity-based

clustering algorithm designed for document clustering (Pantel and Lin, 2002b).
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In question answering (QA), there are several interesting problems involving semantic similar-

ity. Pasca and Harabagiu (2001) state that lexical-semantic knowledge is required in all mod-

ules of a state-of-the-artQA system. The initial task is retrieving texts based on the question.

Since a relatively small number of words are available in the user’s question, query expansion

is often required to boost recall. Most systems in the recentTREC competitions have used

query expansion components. Other work has focused on using lexical resources to calculate

the similarity between the candidate answers and the question type (Moldovan et al., 2000).

Harabagiu et al. (1999) and Mihalcea and Moldovan (2001) createdeXtendedWORDNET by

parsing the WORDNET glosses to create extra links. This then allows inference-based checking

of candidate answers. Lin and Pantel (2001a) use a similarity measure to identify synonymous

paths in dependency trees, by extension of the word similarity calculations. They call this in-

formation aninference rule. For example, they can identify thatX wrote Y andX is the author

of Y convey the same information, which is very useful in question answering (Lin and Pantel,

2001b).

This review is by no means exhaustive; lexical-semantic resources and similarity measures

have been applied to a very wide range of tasks, ranging from low level processing such as

stemming and smoothing, up to high-level inference in question answering. Clearly, further

advancement inNLP will be enhanced by innovative development of semantic resources and

measures.

1.5 Manual Construction

Like all manually constructed linguistic resources, lexical-semantic resources require a signif-

icant amount of linguistic and language expertise to develop. Manual thesaurus construction is

a highly conceptual and knowledge-intensive task and thus is extremely labour intensive often

involving large teams of lexicographers. This makes these resources very expensive to de-

velop, but unlike many linguistic resources, such as annotated corpora, there is already a large

consumer market for thesauri. The manual development of a controlled vocabulary thesaurus,

described in detail by Aitchison et al. (2002), tends to be undertaken by government bodies in

the few domains where they are still maintained.

The commercial value of thesauri means researchers have access to several different versions

of Roget’s thesaurus and other electronic thesauri. However, they are susceptible to the forces
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of commercialism which drive the development of these resources. This often results in the

inclusion of other materials and difficulties with censorship and trademarks (Landau, 1989;

Morton, 1994). Since these are rarely marked in any way, they represent a significant problem

for future exploitation of lexical resources inNLP. (Landau, 1989, page 108) is particularly

scathing of the kind of material that is included in many modern thesauri:

The conceptual arrangement is associated with extreme inclusiveness. Rarely used words,
non-English words, names, obsolete and unidiomatic expressions, phrases: all thrown in
together along with common words without any apparent principle of selection. For ex-
ample, in the fourth edition of Roget’s International Thesaurus – one of the best of the
conceptually arranged works – we find included under the subheadingorator: “Demos-
thenes, Cicero, Franklin D. Roosevelt, Winston Churchill, William Jennings Bryan.” Why
not Pericles or Billy Graham? When one starts to include types of things, where does one
stop? . . .

Landau also makes the point (Landau, 1989, page 273) that many modern thesauri have entries

for extremely rare words that are not useful for almost any user. However, for some computa-

tional tasks, finding synonyms for rare words is often very important.

Even if a strict operational definition of synonymy existed there are still many problems as-

sociated with manual resource development. Modern corpus-based lexicography techniques

have reduced the amount of introspection required in lexicography. However, as resources

constructed by fallible humans, lexical resources have a number of problems including:

bias towards particular types of terms, senses related to particular topics etc. For instance,

some specialist topics are better covered in WORDNET than others. The subtree fordog

has finer-grained distinctions than forcat and worm which doesn’t necessarily reflect

finer-grained distinctions in reality;

low coverage of rare words and senses of frequent words. This is very problematic when the

word or sense is not rare. Ciaramita et al. (2003) have found that common nouns missing

from WORDNET 1.6 occurred once every 8 sentences on average in theBLLIP corpus.

consistencywhen classifying similar words into categories. For instance, the WORDNET

lexicographer file forionosphere (location) is different toexosphere andstratosphere

(object), two other layers of the earth’s atmosphere.

Even if it was possible to accurately construct complete resources for a snapshot of the lan-

guage, it is constantly changing. Sense distinctions are continually being made and merged,

new terminology coined, words migrating from technical domains to common language and

becoming obsolete or temporarily unpopular.
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In addition, many specialised topic areas require separate treatment since many terms that

appear in everyday language have specialised meanings in these fields. In some technical do-

mains, such as medicine, most common words have very specialised meanings and a significant

proportion of the vocabulary does not overlap with everyday vocabulary. Burgun and Boden-

reider (2001) compared an alignment of the WORDNET hierarchy with the medical lexical

resourceUMLS and found a very small degree of overlap between the two.

There is a clear need for fully automatic synonym extraction or in the least, methods to as-

sist with the manual creation and updating of semantic resources. The results of the system

presented in this thesis could easily support lexicographers in adding new terms and relation-

ships to existing resources. Depending on the application, for example supersense tagging in

Section 6.2, the results can be used directly to create lexical resources from raw text in new

domains or specific document collections.

1.6 Automatic Approaches

This section describes the automated approaches to semantic similarity that are unrelated to the

vector-space methods used throughout this thesis. There have been several different approaches

to creating similarity sets or similarity scores.

Along with work in electronic versions of Roget’s thesaurus, there has been considerable work

in extracting semantic information from machine readable dictionaries (MRDs). Boguraev and

Briscoe (1989b) gives a broad overview of processingMRDs for syntactic and semantic infor-

mation. For instance, Lesk (1986) used theAdvanced Oxford Learners Dictionaryfor sense

disambiguation by selecting senses with the most words in common with the context. This

work has been repeated using WORDNET glosses by Banerjee and Pederson (2002, 2003).

Fox et al. (1988) extract a semantic network from twoMRDs and Copestake (1990) extracts a

taxonomy from theLongman’s Dictionary of Contemporary English.

Apart from obtaining lexical relations fromMRDs, there has been considerable success in ex-

tracting certain types of relations directly from text using shallow patterns. This work was

pioneered by Hearst (1992), who showed that it was possible to extract hyponym related terms

using templates like:

• X, . . . , Y and/or other Z.
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• Z such as X, . . .and/or Y.

In these templates, X and Y are hyponyms of Z, and in many cases X and Y are similar,

although rarely synonymous – otherwise it would not make sense to list them together. This

approach has a number of advantages: it is quite efficient since it only requires shallow pattern

matching on the local context and it can extract information for words that only appear once

in the corpus, unlike vector-space approaches. The trade-off is that these template patterns are

quite sparse and the results are often rather noisy.

Hearst and Grefenstette (1992) combine this approach with a vector-space similarity measure

(Grefenstette, 1994), to overcome some of these problems. Lin et al. (2003) suggest the use

of patterns likefrom X to Y, to identify words that are incompatible but distributionally simi-

lar. Berland and Charniak (1999) use a similar approach for identifying whole-part relations.

Caraballo (1999) constructs a hierarchical structure using the hyponym relations extracted by

Hearst (1992).

Another approach, often used for common and proper nouns, uses bootstrapping (Riloff and

Shepherd, 1997) and multi-level bootstrapping (Riloff and Jones, 1999) to find a set of terms

related to an initial seed set. Roark and Charniak (1998) use a similar approach to Riloff and

Shepherd (1997) but gain significantly in performance by changing some parameters of the

algorithm. Agichtein and Gravano (2000) and Agichtein et al. (2000) use a similar approach to

extract information about entities, such as the location of company headquarters, and Sundare-

san and Yi (2000) identify acronyms and their expansions in web pages.

1.7 Semantic Distance

There is a increasing body of literature which attempts to use the link structure of WORDNET to

make semantic distance judgements. The simplest approaches involve computing the shortest

number of links from one node in WORDNET to another (Leacock and Chodorow, 1998; Rada

et al., 1989) using breadth-first search. Other methods constrain the breadth-first search by only

allowing certain types of lexical relations to be followed at certain stages of the search (Hirst

and St-Onge, 1998; St-Onge, 1995; Wu and Palmer, 1994). However, all of these methods

suffer from coverage and consistency problems with WORDNET (see Section 1.5). These

problems stem from the fact that, intuitively, links deeper in the hierarchy represent a shorter

semantic distance than links near the root. Further, there is a changing density of links (the
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fanout factoror out degree) for different nodes in different subjects.

These problems could either represent a lack of consistent coverage in WORDNET, or alterna-

tively may indicate something about the granularity with which English covers concept space.

There are two approaches to correcting the problem. The first set of methods involves weight-

ing the edges of the graph by the number of outgoing and incoming links (Sussna, 1993). The

second method involves collecting corpus statistics about the nodes and weighting the links

according to some measure over the node frequency statistics (Jiang and Conrath, 1997; Lin,

1998d; Resnik, 1995).

Budanitsky (1999) and Budanitsky and Hirst (2001) survey and compare all of these existing

semantic similarity metrics. They use correlation with the human similarity judgements from

Rubenstein and Goodenough (1965) and Miller and Charles (1991) to compare the effective-

ness of each method. These similarity metrics can be applied to any tree-structured semantic

resource. For instance, it is possible calculate similarity over Roget’s thesaurus by using the

coarse hierarchy (Jarmasz, 2003; Jarmasz and Szpakowicz, 2003).

1.8 Context Space

Much of the existing work on synonym extraction and word clustering, including the template

and bootstrapping methods from the previous section, is based on thedistributional hypoth-

esisthat similar terms appear in similar contexts. This hypothesis indicates a clear way of

comparing words: by comparing the contexts in which they occur. This is the basic principle

of vector-space modelsof similarity. Eachheadwordis represented by a vector of frequency

counts recording the contexts that it appears in. Comparing two headwords involves directly

comparing the contexts in which they appear. This broad characterisation of vector-space sim-

ilarity leaves open a number of issues that concern this thesis.

The first parameter is the formal or computational definition ofcontext. I am interested in

contextual information at the word-level, that is, the words that appear in the neighbourhood

of theheadwordin question. This thesis is limited to extracting contextual information about

common nouns, although it is straightforward to extend the work to verbs, adjectives or ad-

verbs. There are many word-level definitions of context which will be described and evaluated

in Chapter 3. This approach has been implemented by many different researchers inNLP in-

cluding Hindle (1990); Brown et al. (1992); Pereira et al. (1993); Ruge (1997) and Lin (1998d),
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all of which are described in Chapter 3.

However, other work inIR and text classification often considers the whole document to be

the context, that is, if a word appears in a document, then that document is part of the context

vector (Crouch, 1988; Sanderson and Croft, 1999; Srinivasan, 1992). This is a natural choice

in IR, where this information is already readily available in the inverted file index.

The second parameter of interest is how to compare two contextual vectors. These functions,

which I call similarity measures, take the two contextual vectors and return a real number

indicating their similarity or dissimilarity.IR has a long history of comparing term vectors

(van Rijsbergen, 1979) and many approaches have transferred directly from there. However,

new methods based on treating the vectors as conditional probability distributions have proved

successful. These approaches are described and evaluated in Chapter 4. The only restriction

that I make on similarity measures is that they must have time complexity linear in the length of

the context vectors. This is true for practically every work in the literature, except for Jing and

Tzoukermann (1999), which compares all pairs of context elements using mutual information.

The third parameter is the calculation of similarity over all of the words in the vocabulary

(the headwords). For the purposes of evaluating the different contextual representations and

measures of similarity I consider the simplest algorithm and presentation of results. For a

given headword, my system computes the similarity with all other headwords in the lexicon and

returns a list ranked in descending order of semantic similarity. Much of the existing work takes

the similarity measure and uses a clustering algorithm to produce synonym sets or a hierarchy

(e.g. Brown et al., 1992; Pereira et al., 1993). For experimental purposes, this conflates the

results with interactions between the similarity measure and the clustering algorithm. It also

adds considerable computational overhead to each experiment since my approach can be run

on just the words required for evaluation. However, I also describe methods for improving the

efficiency of the algorithm and scaling it up to extremely large corpora in Chapter 5.

Finally, there is the issue of how this semantic similarity information can be applied. Sec-

tion 1.4 has presented a wide range of applications involving semantic similarity. In Chapter 6

I describe the use of similarity measurements for the task of predicting the supersense tags of

previously unseen words (Ciaramita et al., 2003).



Chapter 2

Evaluation

evaluation : assessment0.141, examination 0.117,appraisal0.115,review0.091,
audit 0.090,analysis0.086, consultation 0.075, monitoring 0.072, testing 0.071,
verification 0.069, counselling 0.065, screening 0.064, audits 0.063, considera-
tion 0.061, inquiry 0.060, inspection 0.058,measurement0.058, supervision 0.058,
certification 0.058, checkup 0.057,. . .

One of the most difficult aspects of developingNLP systems that involve something as nebu-

lous as lexical semantics is evaluating the quality of the result. Chapter 1 describes some of the

problems of defining synonymy. This chapter describes several existing approaches to eval-

uating similarity systems. It presents the framework used to evaluate the system parameters

outlined in Section 1.8. These parameters:context, similarity andmethodsare explored in the

next three chapters. This chapter also describes the detailed error analysis used in Chapter 6.1.

Many existing approaches are too inefficient for large-scale analysis and comparison while oth-

ers are not discriminating enough because they were designed to demonstrate proof-of-concept

rather than compare approaches. Many approaches do not evaluate the similarity system di-

rectly, but instead evaluate the output of clustering or filtering components. It is not possible

using such an approach to avoid interactions between the similarity measure and later pro-

cessing. For instance, clustering algorithms are heavily influenced by the sensitivity of the

measure to outliers. Later processing can also constrain the measure function, such as requir-

ing it to be symmetrical or maintain the triangle inequality. Application-based evaluation, such

as smoothing, is popular but unfortunately conflates semantic similarity with other properties,

e.g. syntactic substitutability.

19
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This thesis focuses on similarity for common nouns, but the principles are the same for other

syntactic categories. Section 2.1 summarises and critiques the evaluation methodologies de-

scribed in the literature. These methodologies are grouped according to the evidence they use

for evaluation:psycholinguisticevidence,vocabulary tests, gold-standardresources,artificial

synonymsandapplication-basedevaluation.

I aim to separate semantic similarity from other properties, which necessitates the methodology

described in Section 2.2. Computing semantic similarity is posed in this methodology as the

task of extracting a ranked list of synonyms for a given headword. As such, it can be treated

as anIR task evaluated in terms of precision and recall, where for a given headword:precision

is the percentage of results that are headword synonyms; andrecall is the percentage of all

headword synonyms which are extracted. These measures are described in Section 2.2.4.

Synonymy is defined in this methodology by comparison with several gold-standard thesauri

which are available in electronic or paper form. This eschews the problem of defining syn-

onymy (Section 1.2) by deferring to the expertise of lexicographers. However, the limitations

of these lexical resources (Section 1.5), in particular low coverage, make evaluation more dif-

ficult. To ameliorate these problems I also uses the union of entries across multiple thesauri.

The gold-standards are described and contrasted in Section 2.2.3.

This methodology is used here, and in my publications, to examine the impact of various system

parameters over the next three chapters. These parameters include the context extractors de-

scribed in Chapter 3 and similarity measures in Chapter 4. To make this methodology feasible

a fixed list of headwords, described in Section 2.2.2, is selected, covering a range of properties

to avoid bias and allow analysis of performance versus these properties in Section 6.1.

Although the above methodology is suitable for quantitative comparison of system configura-

tions, it does not examine under what circumstances the system succeeds, and more importantly

when it fails and how badly. Theerror analysis, described in Section 2.3, uses WORDNET

to answer these questions by separating the extracted synonyms into their WORDNET rela-

tions, which allows analysis of the percentage of synonyms and antonyms, near and distant

hyponyms/hypernyms and other lexical relatives returned by the system.

I also perform an application-based evaluation described in Chapter 6. This application in-

volves classifying previously unseen words with coarse-grained supersense tags replicating the

work of Ciaramita and Johnson (2003) using semantic similarity.
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2.1 Existing Methodologies

Many approaches have been suggested for evaluating the quality of similarity resources and

systems. Direct approaches compare similarity scores against human performance or exper-

tise. Psycholinguistic evidence (Section 2.1.1), performance on standard vocabulary tests (Sec-

tion 2.1.2), and direct comparison against gold-standard semantic resources (Section 2.1.3) are

the direct approaches to evaluating semantic similarity described below. Indirect approaches

do not use human evidence directly. Artificial synonym or ambiguity creation by splitting or

combining words (Section 2.1.4) and application-based evaluation (Section 2.1.5) are indirect

approaches described below. Results on direct evaluations are often easier to interpret but

collecting or producing the data can be difficult (Section 1.5).

2.1.1 Psycholinguistics

Both elicited and measured psycholinguistic evidence have been used to evaluate similarity

systems. Grefenstette (1994) evaluates against theDeese Antonyms, a collection of 33 pairs of

very common adjectives and the most frequent response in free word-association experiments.

Deese (1962) found that the responses were predominantly a contrastive adjective. However,

Deese (1964) found the most common response for rarer adjectives was a noun the adjective

frequently modified. Grefenstette’s system chose the Deese antonym as the most or second

most similar for 14 pairs. In many of the remaining cases, synonyms of the Deese antonyms

were ranked first or second, e.g.slow-rapid, rather thanslow-fast. Although this demonstrates

the psychological plausibility of Grefenstette’s method, the large number of antonyms extracted

as synonyms is clearly a problem. Further, the Deese (1964) results suggest variability in low

frequency synonyms which makes psycholinguistic results less reliable.

Rubenstein and Goodenough (1965) collected semantic distance judgements, on a real scale

0 (no similarity) – 4 (perfect synonymy), for 65 word pairs from 51 human subjects. The

word pairs were selected to cover a range in semantic distances. Miller and Charles (1991)

repeated these experiments 25 years later on a 30 pair subset with 38 subjects, who were asked

specifically forsimilarity of meaningand told to ignore any other semantic relations. Later

still Resnik (1995) repeated the subset experiment with 10 subjects via email. The correlation

between mean ratings between the two sets of experiments was 0.97 and 0.96 respectively.
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Resnik used these results to evaluate his WORDNET semantic distance measure and Budanitsky

(1999) and Budanitsky and Hirst (2001) extend this evaluation to several measures described in

the literature. McDonald (2000) demonstrates the psychological plausibility of his similarity

measure using the Miller and Charles judgements and reaction times from a lexical priming

task.

The original 65 judgements have been further replicated, with a significantly increased number

of word pairs, by Finkelstein et al. (2002) in the WordSimilarity-353 dataset. They use the

WordSimilarity-353 judgements to evaluate anIR system. Jarmasz and Szpakowicz (2003)

use this dataset to evaluate their semantic distance measure over Roget’s thesaurus. However,

correlating the distance measures with these judgements is unreliable because of the very small

set of word pairs. The WordSimilarity-353 dataset goes some way to resolving this problem.

Pad́o and Lapata (2003) use judgements from Hodgson (1991) to show their similarity system

can distinguish between lexical-semantic relations. Lapata also uses human judgements to eval-

uate probabilistic models for logical metonymy (Lapata and Lascarides, 2003) and smoothing

(Lapata et al., 2001). Bannard et al. (2003) elicit judgements for determining whether verb-

particle expressions are non-compositional. These approaches all use the WEBEXP system

(Keller et al., 1998) to collect similarity judgements from participants on the web.

Finally, Hatzivassiloglou and McKeown (1993) ask subjects to partition adjectives into non-

overlapping clusters, which they then compare pairwise with extracted semantic clusters.

2.1.2 Vocabulary Tests

Landauer and Dumais (1997) used 80 questions from the vocabulary sections of theTest of

English as a Foreign Language(TOEFL) tests to evaluate theirLatent Semantic Analysis(Deer-

wester et al., 1990) similarity system. According to Landauer and Dumais a score of 64.5% is

considered acceptable in the vocabulary section for admission intoU.S. universities.

The Landauer and Dumais test set was reused by Turney (2001), along with 50 synonym se-

lection questions fromEnglish as a Second Language(ESL) tests. Turney et al. (2003) use

these tests to evaluate ensembles of similarity systems and added analogy questions from the

SAT test for analysing the performance of their system on analogical reasoning problems. Fi-

nally, Jarmasz (2003) and Jarmasz and Szpakowicz (2003) extend the vocabulary evaluation by

including questions extracted from theWord Powersection ofReader’s Digest.
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Vocabulary test evaluation only provides four or five alternatives for each question which limits

the ability to discriminate between with similar levels of performance. Also, the probability of

randomly selecting the correct answer is high for a random guess, and even higher when often

at least one option is clearly wrong in multiple-choice questions.

2.1.3 Gold-Standards

Comparison against gold-standard resources, including thesauri, machine readable dictionaries

(MRDs), WORDNET, and specialised resources e.g. Levin (1993) classes, is a well established

evaluation methodology for similarity systems, and is the approach taken in this thesis.

Grefenstette (1994, chap. 4) uses two gold-standards,Roget’s thesaurus(Roget, 1911) and the

Macquarie Thesaurus(Bernard, 1990), to demonstrate that his system performs significantly

better than random selection. This involves calculating the probabilityPc of two words ran-

domly occurring in the same topic (colliding) and comparing that with empirical results. For

Roget’s thesaurus, Grefenstette assumes that each word appears in two topics (approximating

the average). The simplest approach involves calculating the complement – the probability of

placing the two words into two (of the thousand) different topics without collision:

Pc = 1−Pc̄ (2.1)

≈ 1− (
998
1000

)2 (2.2)

≈ 1− (
998
1000

997
999

) (2.3)

≈ 0.4% (2.4)

Equation 2.2 is used by Grefenstette, but this ignores the fact that a word rarely appears twice

in a topic, which is taken into account by Equation 2.3.Pc is calculated in a similar way for

the Macquarie except the average number of topics per word is closer to three.

Grefenstette uses his system (SEXTANT) to extract the 20 most similar pairs of words from the

MERGERScorpus (Section 2.2.1). These pairs collided 8 times in Roget’s, significantly more

often than the one collision for 20 random pairs and the theoretical one collision in approxi-

mately 250 pairs. Grefenstette analysed the 20 most similar pairs from theHARVARD corpus

(Section 2.2.1) and found around 40% of non-collisions were because the first word in the pair

did not appear in Roget’s. Results were significantly better on the Macquarie, which suggests

caution when using low-coverage resources, such as Roget’s (1911). A smaller number of pairs
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were synonyms in some domain-specific contexts which are outside the coverage of a general

English thesaurus. Other pairs were semantically related but not synonyms. Finally, there were

the several pairs which were totally unrelated.

Grefenstette also uses definition overlap, similar to Lesk (1986), on content words fromWeb-

ster’s 7th edition(Gove, 1963) as a gold-standard for synonym evaluation.

Comparison with the currently available gold-standards suffers badly from topic sensitivity.

For example, in Grefenstette’s medical abstracts corpus (MED), injection andadministration are

very similar, but no general gold-standard would contain this information. This is exacerbated

in Grefenstette’s experiments by the fact that he did not have access to a large general corpus.

Finally, measures that count overlap with a single gold-standard are not fine-grained enough to

represent thesaurus quality because overlap is often quite rare.

Practically all recent work in semantic clustering of verbs evaluates against the Levin (1993)

classes. Levin classifies verbs on the basis of their alternation behaviour. For instance, the

Vehicle Names class of verbs includesballoon, bicycle, canoe, and skate. These verbs all

participate in the same alternation patterns.

Lapata and Brew (1999) report the accuracy of a Bayesian model that selects Levin classes for

verbs which can be disambiguated using just the subcategorisation frame. Stevenson and Merlo

(1999, 2000) report the accuracy of classifying verbs with the same subcategorisation frames as

eitherunergatives (manner of motion),unaccusatives (changes of state) orobject-drop (unex-

pressed object alternation) verbs. In their unsupervised clustering experiments Stevenson and

Merlo (1999) discuss the problem of determining the Levin class label of the cluster. Schulte im

Walde (2000) reports the precision and recall of verbs clustered into Levin classes. However,

in later work for German verbs, Schulte im Walde (2003) introduces an alternative evaluation

using theadjusted Rand index(Hubert and Arabie, 1985).

Finally, Hearst (1992) and Caraballo and Charniak (1999) compare their hyponym extraction

and specificity ordering techniques against the WORDNET hierarchy. Lin (1999) uses an idiom

dictionary to evaluate the identification of non-compositional expressions.

2.1.4 Artificial Synonyms

Creatingartificial synonymsinvolves randomly splitting the individual occurrences of a word

into two or more distinct tokens to synthesise a pair of absolute synonyms. This method is in-
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spired bypseudo-wordswhich were first introduced for word sense disambiguation (WSD) eval-

uation, where two distinct words were concatenated to produce an artificial ambiguity (Gale

et al., 1992; Scḧutze, 1992a). This technique is also used by Banko and Brill (2001) to create

extremely large ‘annotated’ datasets for disambiguating confusion sets e.g.{to, too, two}.

Grefenstette (1994) creates artificial synonyms by converting a percentage of instances of a

given word into uppercase. This gives two results: the ranking of the ‘new’ word in the original

word’s results and the ranking of the original term in the new word’s list. In practice, raw text

often contains relationships like artificial synonymy, such as words with multiple orthographies

caused by spelling reform (e.g.colour/color), or frequent typographic errors and misspelling.

Artificial synonyms are a useful evaluation because they don’t require a gold-standard and can

measure performance on absolute synonymy. They can be created after context vectors have

been extracted, because a word can be split by randomly splitting every count in its context

vector, which makes these experiments very efficient. Further, the split ratio can easily be

changed which allows performance to be compared for low and high frequency synonyms.

There are several parameters of interest for artificial synonym experiments:

frequency: the frequency of the original word. Grefenstette split the terms up into 4 classes:

frequent(top 1%),common(next 5%),ordinary (next 25%) andrare (the remainder).

From each class 20 words were selected for the experiments.

split: the percentage split used. Grefenstette used splits of 50%, 40%, 30%, 20%, 10%, 5%

and 1% for each frequency class.

contexts: the number of unique contexts the word appears in, which is often correlated with

frequency except for idiomatic expressions where a word appears in very few contexts.

polysemy: the number of senses of the original word.

Grefenstette shows that for frequent and common terms, the artificial synonyms are ranked

highly, even at relatively uneven splits of 20%. However, as their frequency drops, so does the

recall of artificial synonyms. Gaustad (2001) has noted that performance estimates forWSD

using pseudo-word disambiguation are overly optimistic even when the distribution of the two

constituent words matches the senses for a word. Nakov and Hearst (2003) suggest this is

because polysemous words often have related senses rather than randomly selected pseudo-

word pairs. They useMeSH to select similar terms for a more realistic evaluation.
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2.1.5 Application-Based Evaluation

Application-based evaluation involves testing whether the performance on a separate task im-

proves with the use of a similarity system. Many systems have been evaluated in the con-

text of performing a particular task. These tasks include smoothing language models (Dagan

et al., 1995, 1994), word sense disambiguation (Dagan et al., 1997; Lee, 1999), information

retrieval (Grefenstette, 1994) and malapropism detection (Budanitsky, 1999; Budanitsky and

Hirst, 2001). Although many researchers compare performance against systems without sim-

ilarity components, unfortunately only Lee (1999) and Budanitsky (1999) have actually per-

formed evaluation of multiple approaches within an application framework.

2.2 Methodology

The evaluation methodologies described above demonstrate the utility of the systems developed

for synonym extraction and measuring semantic similarity. They show that various models of

similarity can perform in ways that mimic human behaviour in psycholinguistic terms, human

intuition in terms of resources we create to organise language for ourselves and human perfor-

mance as compared with vocabulary testing. These methods also show how performance on

wider NLP tasks can be improved significantly by incorporating similarity measures.

However, the evaluation methodologies described above are not adequate for a large-scale com-

parison of different similarity systems, nor capable of fully quantifying the errors and omissions

that a similarity system produces. This section outlines my evaluation methodology, which is

based on using several gold-standard resources and treating semantic similarity as information

retrieval, evaluated in terms of precision and recall.

The overall methodology is as follows: A number of single word common nouns (70 ini-

tially and 300 for detailed analysis) are selected, covering a range of properties described in

Section 2.2.2. For each of theseheadwords, synonyms from several gold-standard thesauri

are either taken from files or manually entered from paper. The gold-standards used are de-

scribed and compared in Section 2.2.3. The 200 most similar words are then extracted for each

headword and compared with the gold-standard using precision- and recall-inspired measures

described in Section 2.2.4.
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2.2.1 Corpora

One of the greatest limitations of Grefenstette’s experiments is the lack of a large general

corpus from which to extract a thesaurus. A general corpus is important because it is not

inconceivable that thesaurus quality may be better on topic specific text collections. This is

because one particular sense often dominates for each word in a particular domain. If the

corpus is specific to a domain the contexts are more constrained and less noisy.

Of course, it is still a significant disadvantage to be extracting from specific corpora but evaluat-

ing on a general thesaurus (Section 2.1.3). Many fields, for example medicine and astronomy,

now have reasonably large ontologies which can be used for comparison and they also have

large electronic collections of documents. However, evaluation on domain-specific collections

is not considered in this thesis.

Grefenstette (1994, chap. 6) presents results over a very wide range of corpora including: the

standard Brown corpus (Francis and Kucera, 1982);HARVARD andSPORTcorpora which con-

sist of entries from extracted from Grolier’s encyclopedia containing a hyponym of institution

and sport from WORDNET; MED corpus of medical abstracts; and theMERGERScorpus of

Wall Street Journal articles indexed with themerger keyword. The largest is the Brown corpus.

Other research, e.g. Hearst (1992), has also extracted contextual information from reference

texts, such as dictionaries or encyclopaedias. However, a primary motivation for developing

automated similarity systems is replacing or aiding expensive manual construction of resources

(Section 1.5). Given this, the raw text fed to such systems should not be too expensive to

create and be created in large quantities, neither of which is true of reference works. However,

newspaper text, journal articles and webpages satisfy these criteria.

Corpus properties that must to be considered for evaluation include:

• corpus size

• topic specificity and homogeneity

• how much noise there is in the data

Corpus size and its implications is a central concern of this thesis. Chapter 3 explores the

trade-off between the type of extracted contextual information and the amount of text it can be

extracted from. It also describes some experiments on different types of corpora which assess

the influence of the second and third properties.
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2.2.2 Selected Words

Many different properties can influence the quality of the synonyms extracted for a given head-

word. The most obvious property is the frequency of occurrence in the input text, since this

determines how much contextual evidence is available to compare words. Other properties

which may potentially impact on results include whether the headword is:

• seen in a restricted or wide range of contexts

• abstract or concrete

• specific/technical or general

• monosymous or polysemous (and to what degree)

• syntactically ambiguous

• a single or multi-word expression

It is infeasible to extract synonym lists for the entire vocabulary over a large number of exper-

iments, so the evaluation employed in Chapters 3–5 uses a representative sample of 70 single

word nouns. These nouns are shown in Table 2.1, together with counts from the Penn Treebank

(PTB, Marcus et al., 1994), British National Corpus (BNC, Burnard, 1995) and the Reuters Cor-

pus Volume 1 (RCV1, Rose et al., 2002) and sense properties from the Macquarie and Oxford

thesauri and WORDNET. To avoid sample bias and provide representatives covering the pa-

rameters described above, the nouns were randomly selected from WORDNET such that they

covered a range of values for the following:

occurrence frequency based on counts from the Penn Treebank,BNC andRCV1;

number of sensesbased on the number of Macquarie, Oxford and WORDNET synsets;

generality/specificity based on depth of the term in the WORDNET hierarchy;

abstractness/concretenessbased on distribution across all WORDNET unique beginners.

The detailed evaluation uses a larger set of 300 nouns, covering several frequency bands, based

on counts from thePTB, BNC, the Brown Corpus, and 100 million words of New York Times

text from theACQUAINT Corpus (Graff, 2002). The counts combine both singular, plural and

alternative spelling forms. The 300 nouns were selected as follows: First, the 100 most frequent

nouns were selected. Then, 30 nouns were selected from the ranges 100–50 occurrences per

million (opm), 50–20 opm, 20–10 opm and 10–5 opm. 15 nouns each were selected that

appeared 2 opm or 1 opm. The remaining 20 words were those missed from the original 70

word evaluation set. The 300 nouns are listed in Appendix A.
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

company 38 4 098 57 723 459 927 8 5 9 5/8 ENT, GRP, STT

market 45 3 232 33 563 537 763 4 3 4 4/10 ACT, ENT, GRP

stock 69 2 786 9 544 248 868 15 11 17 5/11ABS, ENT, GRP, POS, STT

price 106 1 935 27 737 335 369 2 3 7 6/10ABS, ENT, POS

government 110 1 051 66 892 333 080 3 2 4 5/9 ACT, GRP, PSY

time 116 1 318 180 053 173 378 14 8 10 3/8 ABS, EVT, PSY

people 118 907 123 644 147 061 4 5 4 3/8 GRP

interest 138 925 38 007 147 376 12 8 7 4/10ABS, ACT, GRP, POS, STT

industry 151 927 24 140 121 348 5 3 3 7/7 ABS, ACT, GRP

chairman 184 744 10 414 65 285 1 1 1 7/7 ENT

house 230 687 49 954 69 124 10 7 12 5/8 ACT, ENT, GRP

index 244 545 4 587 123 960 5 3 5 9/11 ABS, ENT

concern 268 550 12 385 39 354 7 6 5 5/7 GRP, PSY, STT

law 311 470 31 004 61 579 8 7 7 4/10 ABS, ACT, GRP, PSY

value 315 440 25 308 56 954 12 3 6 4/9 ABS, PSY

dollar 321 581 3 700 153 394 2 – 4 7/14 ABS

street 326 431 14 777 47 275 2 1 5 5/8 ENT, GRP, STT

problem 344 623 56 361 63 344 4 3 3 5/9 ABS, PSY, STT

country 374 502 48 146 172 593 5 5 5 4/7 ENT, GRP

work 382 354 75 277 36 454 9 10 7 4/8 ACT, ENT, PHE, PSY

power 414 367 38 447 86 578 16 9 9 3/10 ABS, ENT, GRP, PHE, PSY, STT

change 536 407 40 065 55 487 9 3 10 4/14 ABS, ACT, ENT, EVT, PHE

thing 566 373 77 246 27 601 7 16 12 3/8 ABS, ACT, ENT, EVT, PSY, STT

car 595 390 35 184 45 867 4 2 5 9/10 ENT

gas 623 242 8 176 64 562 10 1 6 5/10 ENT, PHE, STT

statement 666 226 13 988 126 527 7 1 7 4/10 ABS, ACT, ENT

magazine 742 260 6 008 8 417 5 1 6 7/10 ENT, GRP

man 929 269 98 731 43 989 9 6 11 3/11 ENT, GRP

floor 1 008 138 12 690 12 056 6 4 9 5/12 ENT, GRP, PSY

hand 1 086 206 53 432 25 307 13 7 14 4/11ABS, ACT, ENT, GRP, PSY

size 1 102 116 14 422 14 290 6 1 5 4/8 ABS, ENT, STT

energy 1 142 174 12 191 41 054 3 2 6 5/12 ABS, GRP, PHE, STT

idea 1 220 134 32 754 13 535 10 6 5 5/9 ENT, PSY

newspaper 1 220 164 8 539 58 723 1 1 4 7/10 ENT, GRP

image 1 466 97 11 026 6 697 10 8 7 5/9 ABS, ENT, PSY

book 1 487 151 37 661 16 270 7 3 8 7/9 ABS, ENT

aircraft 1 586 94 6 200 17 165 1 1 1 9/9 ENT

limit 1 661 116 6 741 14 530 2 4 6 5/8 ABS, ENT

word 1 766 124 43 744 8 839 8 11 10 6/10ABS, ACT, PSY

opinion 1 935 80 9 295 16 378 4 1 6 6/10 ABS, ACT, PSY

apple 2 000 100 3 237 5 927 4 – 2 10/11 ENT

fear 2 187 109 9 936 19 814 2 4 2 5/6 PSY

radio 2 267 98 9 072 26 060 2 – 3 8/10 ENT

patient 2 432 63 21 653 8 048 1 1 1 7/7 ENT

crop 2 467 65 3 011 32 327 9 4 3 7/10 ACT, ENT

purpose 3 006 74 15 180 9 031 3 6 3 6/6 ABS, PSY

70 headword evaluation set
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

promotion 3 071 61 3 696 4 258 5 3 4 5/9 ABS, ACT

star 3 199 65 8 563 11 538 11 4 7 6/10 ABS, ENT

location 3 265 57 5 499 5 470 7 1 3 3/8 ACT, ENT

wine 3 603 49 7 349 3 559 1 1 2 9/10 ABS, ENT

apparel 3 788 29 67 1 978 2 1 1 7/7 ENT

human 5 099 37 2 593 7 138 1 1 2 4/11 ENT

knowledge 5 099 19 14 580 2 836 3 5 1 3/3 PSY

dream 5 537 23 6 416 2 223 8 4 6 4/8 PSY, STT

entity 6 077 28 1 818 4 352 2 3 1 2/2 ENT

taste 6 401 18 4 413 1 173 6 7 7 5/9 ABS, ACT, EVT, PSY

ball 7 130 29 8 750 7 730 9 3 10 5/11 ABS, ACT, ENT, GRP

chaos 7 130 13 1 633 2 445 2 1 3 5/9 PHE, PSY, STT

boat 8 136 17 7 345 6 128 2 1 2 10/10 ENT

fish 8 721 9 9 711 3 042 3 1 2 7/8 ENT

village 10 247 13 13 359 9 949 2 – 3 6/7 ENT, GRP

pants 12 636 5 547 282 3 2 2 9/11 ENT

religion 12 636 7 5 127 1 596 2 1 2 6/10 ABS, GRP, PSY

forum 14 425 9 1 823 6 067 4 3 3 6/10 ENT, GRP

moisture 20 917 2 699 1 806 2 1 1 5/5 STT

tightness 28 728 1 122 2 025 5 – 3 6/7 ABS, STT

announcement – 120 2 391 22 222 2 2 2 8/9 ABS

hair – 16 14 999 1 388 3 3 6 6/7 ABS, ENT

handful – 36 1 489 2 574 2 2 2 6/6 ABS

mix – 26 1 908 2 933 3 1 3 6/8 ACT, ENT, EVT

70 headword evaluation set

2.2.3 Gold-Standards

There are several drawbacks of evaluation by comparing against gold-standards (Section 2.1.3),

many of which are a result of the problems that manually constructed resources suffer from

(Section 1.5). This section describes one approach to overcoming these problems by combining

multiple resources for the purposes of evaluation. I also describe and compare the different

gold-standards to give a sense of the difficulty of the task. A comparison of Roget’s, Macquarie,

and information retrieval thesauri and WORDNET can be found in Kilgarriff and Yallop (2000).

The gold-standard thesauri used in this evaluation are as follows:

Roget’s Roget’s 1911(Roget, 1911) andRoget’s II(Hickok, 1995)

Moby Moby Thesaurus(Ward, 1996)

Oxford The New Oxford Thesaurus of English(Hanks, 2000)

Macquarie The Macquarie Encyclopedic Thesaurus(Bernard, 1990)
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Abstract Relations
Order
Collective Order
72. Assemblage

Number
Determinate Number
88. Accompaniment

Intellectual Faculties
Communication of Ideas
Means of C. Ideas
Conventional Means
599.The Drama

Voluntary Powers
Individual Volition
Antagonism
Conditional A.
712.Party
726.Combatant

Sentiment and Moral P.
Sympathetic Affections
Social Affections
892.Sociality

Figure 2.1: company in Roget’s Thesaurus of English words and phrases (Roget, 1911)

Also for comparison purposes I have included the most recently completed paper thesaurus

Roget’s Thesaurus: 150th Anniversary Edition(Davidson, 2002). In terms of coverage and

structure these thesauri are very different.

Roget’sThesaurus of English words and phrases(1911) is included in these experiments for

comparison with Grefenstette (1994) and because it is freely distributed on the Internet by

Project Gutenberg. It was created byMICRA, Inc. in May 1991, who scanned the out of

copyright 1911 edition and released it under the nameThesaurus-1911. MICRA Inc. also

added more than 1000 words not present in the 1911 edition. However, it has very limited

coverage in many areas because of its age and many uncorrectedOCR errors. In other places

it suffers from Landau’s extreme inclusiveness (Section 1.5), including many famous phrases,

obsolete and idiomatic expressions and French, Greek and Latin expressions which are often

not indicated as such. However, it has been used by a number ofNLP researchers and it also is

reasonably representative of Roget’s 1852 edition.

The distinguishing feature of Roget’s original work was the use of a hierarchical topic struc-

ture to organise the synsets. Hierarchy paths for synsets containingcompany are shown in

Figure 2.1. The hierarchy consists of 6 top level semantic roots:Abstract Relations, Space,

Matter, Intellectual Faculties, Voluntary Powers andSentiment and Moral Powers. These were

further broken down into two or three further distinctions leading to a list of 1000topicsrang-

ing from 1.Existence, . . . , 622.Pursuit, . . . , 648.Goodness to 1000.Temple. These topics are

often found in contrasting pairs, such asExistence-Inexistence andGoodness-Badness.

Roget’s contains approximately 60 000 terms in total of which 32 000 are unique. Roget’s

hierarchy is relatively deep (up to seven levels) with words grouped in 8 696 small synsets

within the 1000 topics at the leaves of the hierarchy. These synsets are often difficult to identify

in their electronic transcription because they are delimited by punctuation alone, which is often

incorrect or missing. Topics frequently contain relation pointers to other topics.
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company noun
1. A number of persons who have come or been gathered together : assemblage, assembly,
body, conclave, conference, congregation, congress, convention, convocation, crowd, gather-
ing, group, meeting, muster, troop.Informal: get-together.SeeCOLLECT. 2. A person or
persons visiting one : guest, visitant, visitor.SeeACCOMPANIED. 3. A pleasant association
among people : companionship, fellowship, society.SeeCONNECT, GROUP.
4. A commercial organization : business, concern, corporation, enterprise, establishment,
firm2, house.Informal: outfit. SeeGROUP. 5. A group of people acting together in a shared
activity : band2, corps, party, troop, troupe.SeePERFORMING ARTS. company verb To be
with or go with (another): accompany, attend, companion, escort.Obsolete:consort.Idiom:
go hand in hand with.SeeACCOMPANIED.

Figure 2.2: Roget’s II: the New Thesaurus (Hickok, 1995) entry for company

Roget’s II: The New Thesaurus, Third Edition(Hickok, 1995), like many modern “Roget’s”

thesauri, is in fact a dictionary-style thesaurus where synonyms are listed for each headword

in alphabetical order. The entry forcompany appears in Figure 2.2. There are some similari-

ties to the original Roget’s Thesaurus including a thematic index and a large number of cross

references to other entries, but it contains a larger, modern vocabulary.

The Moby thesaurus, released as part of theMoby lexicon projectby Grady Ward in June

1996, consists of 30 259 head terms. It is alphabetically ordered with each entry consisting of

a single large synonym list which conflates all the headword senses. Unfortunately, Moby does

not make part of speech distinctions. However, it is freely available in electronic form.

The New Oxford Thesaurus of English(Hanks, 2000) is a modern alphabetically organised

thesaurus, which claims to contain over 600 000 “alternative and opposite words”. The Ox-

ford contains a lot of other information: entries for discriminating between near-synonyms e.g.

credulous-gullible; for selecting commonly confused terms e.g.affect-effect; and lists on sub-

jects such as monetary units. The entry for the wordcompany appears in Figure 2.3. The 300

entries for this thesaurus were typed from the paper edition. For consistency, this did not in-

clude entering any cross-referenced synsets, nor any lists that the entry referred to. For several

nouns, includingaircraft, gas andpants, this policy resulted in a headword appearing in the

thesaurus, but no synonyms being associated with that headword.

The Macquarie Encyclopedic Thesaurus(Bernard, 1990) is an electronic version of a large

modern thesaurus of Australian English, which claims to contain over 180 000 synonyms.

The Macquarie thesaurus consists of 812 topics (similar to Roget’s) containing 5602 distinct

subtopic and syntactic distinctions, which are further split into 21 174 small synonym sets.
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company I noun ➊ he works for the world’s biggest oil companyFIRM, business, corpora-
tion, house, establishment, agency, office, bureau, institution, organization, operation, concern,
enterprise, venture, undertaking, practice; conglomerate, consortium, syndicate, group, chain,
combine, multiple, multinational;informal outfit, set-up.
– RELATED WORD: corporate.
➋ I was greatly looking forward to the pleasure of his companyCOMPANIONSHIP, presence,
friendship, fellowship, closeness, amity, camaraderie, comradeship; society, association.
➌ I’m expecting companyGUESTS, a guest, visitors, a visitor, callers, a caller, people, some-
one;archaic visitants.
➍ he disentangled himself from the surrounding company of poetsGROUP, crowd, body, party,
band, collection, assembly, assemblage, cluster, flock, herd, horde, troupe, swarm, stream,
mob, throng, congregation, gathering, meeting, convention;informal bunch, gang, gaggle,
posse, crew, pack;Brit. informal shower.
➎ he recognized the company of infantry as FrenchUNIT, section, detachment, troop, corps,
squad, squadron, platoon, battalion, division.

Figure 2.3: New Oxford Thesaurus of English (Hanks, 2000) entry for company

There is no hierarchy above the topics, instead navigation is via an alphabetical index into the

topics at the back of the paper version. Slightly abridged subtopics containingcompany appear

in Figure 2.4. From these diagrams it is clear that selecting the whole subtopic for evaluation

would be unsatisfactory. The same is true for the entries forcompany in the 150th Anniversary

Roget’s shown in Appendix B. In general I have chosen the smallest sense distinctions, which

is a very tough comparison.

Since some of the extracted thesauri do not distinguish between different senses, I convert the

structured thesauri into headword ordered format by concatenating the synsets that the head-

word appears in. Initially I had planned to evaluate against the individual gold-standards and

their union. Although the performance differed on each gold-standard, the ordering between

systems did not vary significantly between different thesauri. For this reason, only evaluations

against the union gold-standard are presented in Chapters 3–5. For the 70 noun evaluation

sample, this resulted in a gold-standard thesaurus containing a total of 23 207 synonyms.

There is also a significant number of multi-word expressions. For the 70 noun testset, multi-

word terms account for approximately 23% of synonyms in Roget’s, 25% in the Macquarie,

14% in the Oxford and 23% in Moby. However, almost none of the context extractors described

in Chapter 3 recognise multi-word words explicitly, the exception being Lin’s MINIPAR, giving

it a potential advantage of at least 14%. This again makes the evaluation tougher, but will allow

comparison with later systems that can extract multi-word expressions.
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company
n. band 701.2
company
(companionship) 133.1

company (society) 701.7
company (trade) 761.3
group 307.1
ship’s crew 468.1
social relations 699.1
squad 269.3

v. accompany 133.4
partner 541.4

COMPANIONSHIP 133
n. 1 companionship, coexistance, commensalism, commensality, comradeship,

partnership, presence, togetherness;accompaniment, backing, obbligato,
support, vamp;company, association, concomitance, conjunction.
· · ·

v. 4 accompany, associate with, assort (Archaic), bear company with, chap-
erone, companion, company (Archaic), consort, join with, keep company
with, run with; escort, arm, conduct, convoy, guide, walk;follow, dangle,
go around with, hang about, hang round, run around with, string along with;
partner , see, squire, take out.

FIGHTER 269
n. 3 armed forces, armed services, army, artillery, cavalry, foot, general staff,

horse, infantry, light horse, military, musketry (Obs.), rifles, soldiery;navy,
flotilla, marine, R.A.N., senior service;air force, Kamikaze, R.A.A.F.,
R.A.F.; nation in arms, army of occupation, host (Archaic), land power,
Sabaoth, standing army;unit , arm, battalion, battery, battle (Archaic),
brigade, century, cohort, column, command, contingent, division, force,
garrison, legion, maniple, regiment, section;squad, cadre, company, ele-
ment, escadrille (U.S.), group, platoon, squadron, sub-unit, troop; . . .

GATHERING 307
n. 1 gathering, association, bee, get-together, meet, muster, roll-up, turnout;

assembly, assemblage, body, confluence, conflux, congregation, constella-
tion, convocation;meeting, hui (N.Z.), indaba (S. Africa), witan, witenage-
mot;group, band, cohort, company, outfit, party, phalanx;gang, crew, emu
parade, mob, pack, rabble, ruck, shower;crowd, crush, huddle, multitude,
press, sea of faces, throng;jam, bunfight, squeeze;coroboree; grouping,
class, college, school;stable, string;pack, pride;bevy, covey, flight, flock,
gaggle;herd, drove, horde, troop;shoal, school;association. . .

MARINER 468
n. 1 mariner, boatie, hearty, jack, lascar, matelot, raftsman, sailor, salt, sea-dog,

seafarer, shellback, shipman (Archaic), shipmate, submariner, tar, tarpaulin
(Rare); ship’s crew, company, complement, crew, ship;navy, mercan-
tile marine, merchant marine, merchant navy, senior service;yachtsman,
rock-hopper, sailor, windsurfer, yachtswoman, yachty, yottie;windjam-
mer, reefer, sheethand;ferryman , bargee, boatman, bumboatman, gondo-
lier, lighterman, wherryman;oarsman, bow, bowhand, bowman, bow oar,
canoeist, galley slave, oar, paddler, punter, rower, sculler, stroke, waterman;
rowing crew, bank, eight, four.

PARTNER 541
v. 4 partner, accompany, associate, assort (Archaic), chaperone, company (Ar-

chaic), consociate, consort, mate, squire;ally with , go into business with,
hang around with, hang with, keep company with, latch on to, mess with,
pal up with, string along with, take up with, tie up with;haunt, follow,
shadow;assist, attend, have a hand in, help, participate, take a hand in.

Figure 2.4: The Macquarie Thesaurus (Bernard, 1990) entries for company
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company
n. band 701.2
company
(companionship) 133.1

company (society) 701.7
company (trade) 761.3
group 307.1
ship’s crew 468.1
social relations 699.1
squad 269.3

v. accompany 133.4
partner 541.4

SOCIABILITY 699
n. 1 sociability, companionableness, conviviality, good fellowship, gregarious-

ness, hospitableness, hospitality, party spirit, sociableness, sociality;cor-
diality , advances, approachability, approachableness, backslapping, bon-
homie, cordialness, expansiveness, gladhanding, joviality, mellowness;so-
cial relations, commerce, companionship, company, comradeship, fellow-
ship, routs and revels, social intercourse, socialness, society;open house,
welcome.

SOCIETY 701
n. 2 crowd, army, cohort, galaxy, host;band, caravan, choir, chorus, com-

pany, consort (Obs.), flock (Rare), rout (Archaic), squad, tribe, troop (Rare),
troupe;corps, body, brigade, phalanx, regiment;meeting, assembly, jam-
boree, mass meeting, muster, parade, rally, unlawful assembly;congre-
gation, communion, ecclesia, parish council, vestry;reception, audience,
durbar, levee.
· · ·

7 corporation, body corporate, business house, enterprise, no-liability
company, incorporated association, unlimited company;establishment,
aunty, organisation;cartel, combine, conference (Shipping), consortium,
monopoly, pool, ring, syndicate;trading bloc, common market, co-op,
EEC, farmers’ cooperative, OPEC;company, cast, firm, line-up, outfit;
partnership, duumvirate, group practice, triumvirate;team, rink, side.

TRADE 761
n. 3 company, holding company, joint-stock company, limited company, pri-

vate company, private enterprise, proprietary limited company, straw com-
pany, subsidiary company, unlimited company;conglomerate, amalgama-
tion, cartel, concern, cooperative, cooperative society, empire, firm, group,
group, house, industry, interest, mixed business, mixed industry, multina-
tional, pool (U.S.), pyramid, syndicate, transnational;commercial centre,
entrepot, fort, marketplace, mart, office;chamber of commerce.

Figure 2.4: The Macquarie Thesaurus (Bernard, 1990) entries for company (continued)

Finally, it is interesting to look at the coverage of the existing thesauri by comparing the entries

for the same headwords. For thecompany example, every thesaurus contains synonyms that

do not appear in the other thesauri, that is, they all contribute words to the union gold-standard.

There is also a range in the sense distinctions forcompany, including the use ofcompany as a

verb in only the Oxford thesaurus. Table 2.1 shows significant variation in the number of senses

attributed by the Macquarie and Oxford thesauri and WORDNET for the 70 tests nouns. Also,

there is no trend for a single thesaurus to prefer less or more senses than the others. The size

of each entry varies dramatically between the alphabetical and topic ordered thesauri. There is

also considerable disagreement on marking obsolete, slang and foreign expressions.
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2.2.4 Evaluation Measures

The evaluation methodology frames semantic similarity as an information retrieval or extrac-

tion task, which involves extracting a list of synonyms for a given headword. On this basis

the standard measures ofprecision, recall andF-scoreare applicable.Precisionis the percent-

age of correct synonyms that have been extracted against the total number of terms extracted

as judged by comparison with the gold-standards defined above. We fix the number of terms

retrieved to 200 which makes precision effectively an accuracy measure. This is because de-

termining a sensible cutoff for the various systems evaluated is very difficult. 200 synonyms is

larger than the number of synonyms that have been used in application-based evaluations. For

some very rare words several systems cannot return the full 200 synonyms.

Recallis the percentage of correct synonyms against the total number of correct synonyms in

the given gold-standard. However, the recall measure is influenced heavily by the significant

differences in each gold-standard. Also, it is not possible to determine whether the corpus

actually contains instances of a word in every sense in the gold-standard. Thus it is not possible

to measure the true recall. For instance, if the wordfirm only appears in an adjectival sense

(solid) in the input corpus, then a system should not be penalised for missing synonyms of

the noun sense (company). Finally, most applications of extracted synonyms, including the

supersense classifier in Chapter 6, use a constant number of synonyms. My approach assumes

that the number of correct synonyms is larger than the 200 returned by the system and focuses

on precision as an evaluation measure.F-scoreis the harmonic mean of precision and recall.

The simplest evaluation measure is direct comparison of the extracted thesaurus with gold-

standards (DIRECT). The comparison of the 200 proposed synonyms is a very coarse-grained

measure of the performance of the system which is badly affected by low coverage in the gold-

standards. Also, DIRECT does not take into consideration the ranking within the 200 terms,

which is important, given that most applications will not use all 200 synonyms.

We also consider metrics that relate to how systems might use the thesaurus list, by consid-

ering the precision of the term list at certain intervals. We consider the precision of the topn

synonyms (P(n)) for the top ranked term, the top 5 terms, the top 10 terms and in the detailed

evaluation the top 1–20 terms. This is in keeping with much of the work that has been done to

use thesaurus terms. The DIRECT evaluation is proportional toP(200).

The final evaluation score is the sum of the inverse ranks (INVR) of each matching synonym
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from the gold-standard. For example, if the gold-standard matches terms at ranks 3, 5 and

28, the inverse rank score is calculated as1
3 +

1
5 +

1
28 ≈ 0.569. With at most 200 synonyms,

the maximum INVR score is approximately5.878(1+ 1
2 + · · ·+

1
200). The inverse rank scoring

method has been used in theIR community to evaluate systems that return a fixed, limited

number of answers (e.g. theTRECQuestion Answering track). Inverse rank is a useful measure

of the subtle differences between ranked results.

In the results presented in Chapters 3–5, the direct match score is summed over all test terms

and each P(n) and INVR score is averaged over the extracted synonym lists for all 70 thesaurus

terms. For the purposes of comparing systems it turns out that the different evaluation metrics

are fairly strongly correlated (Curran, 2002).

2.3 Detailed Evaluation

The evaluation measures proposed above are effective for distinguishing between extraction

systems, but are not designed to measure the quality and usability of the similarity system.

In particular, it is important to know the types and seriousness of the errors a system makes

and also how the system performs depending on the properties of the headword. The detailed

evaluation in Chapter 6 will use the evaluation method described below to analyse the final

output of my similarity system.

2.3.1 Types of Errors and Omissions

Until now the definition of error for this task has not taken into consideration thetypesof

errors that can occur, proposed synonyms either appear in the gold-standard entry or they do

not. However, under some circumstances and for some applications these errors may not be

significant, but for others they may be critical.

The most significant problem with existing system are obvious errors – those terms which

are blatantly unrelated to the headword. These make the extracted thesaurus unusable for

many practical purposes. Part of the problem with Grefenstette’s work was that there was no

quantification of the serious errors, only the number of synonymous words that were extracted.

For the purposes of development and comparison of thesaurus extraction algorithms, it is in-

teresting to identify the types of omissions and errors. Omissions range from total omission to
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being just below the cutoff:

• the headword or synonym does not appear in the corpus

• headword and synonym share no contexts in common

• headword and synonym share no synonymous contexts in common

• headword and synonym share some contexts in common but not enough to rank highly

• headword and synonym attribute vectors are dominated by particular attributes which are
not representative of their similarity

• headword and synonym share many contexts in common but not enough to rank highly

Before describing the types of errors within a complete synonym set, it is necessary to describe

relationships between headword/synonym pairs:

• the words are synonymous in general English

• the words are synonymous within subdomains of English (as indicated)

• the words are synonymous within subdomains of English (not indicated)

• the words are synonymous only in specific contexts in the corpus. For example idiomatic
or stylised expressions and metaphorical usage in the corpus.

• the words share one or more common hypernyms but are not synonymous. For example,
dog andcat are hyponyms ofanimal, but they are not synonyms. These are calledsisters.

• the words are in some other kind of lexical-semantic relation:

antonymy which appears to be very difficult to distinguish contextually. The problem
is that this relation is as strong as synonymy but negative in value. The usefulness
of a thesaurus that cannot distinguish synonyms from antonyms is dubious at best.

hyponymy/hypernymy hypernyms of a headword are rarely considered synonymous
with the headword. However, hyponyms are quite regularly considered synony-
mous in gold-standard thesauri.

meronymy/holonymy meronyms may or may not be considered to be synonymous. For
instance, in some varieties of English, acar is commonly called amotor or wheels.
In fact this appears to be a major mechanism for creating new synonyms in English.

The detailed evaluation in Section 6.1 analyses the top 10 synonyms for each of the 300 large

evaluation set nouns. It counts the number of times each lexical-semantic relation appears in

the synonym list. It also gives an indication of WORDNET coverage by counting the number

of synonyms not seen in WORDNET.



2.4. Summary 39

2.4 Summary

This chapter has described existing evaluation methodologies for synonym extraction. In doing

so I have discussed the strengths and weaknesses of each approach. This motivates my own

evaluation methodology which is focused on distinguishing semantic similarity from other fac-

tors, such as distributional similarity or syntactic substitutability. The remainder of this thesis

will use this new evaluation methodology to compare practically all of the existing vector-space

similarity systems component by component.

This chapter also introduces the detailed error analysis performed on the best results that my

similarity system has produced in Chapter 5. This will be complemented by an application-

based evaluation described in Chapter 6.





Chapter 3

Context

context : perspective 0.107, significance 0.095,framework 0.086, implication 0.083,
regard 0.083, aspect 0.082, dimension 0.078, interpretation 0.07, meaning 0.069,
nature 0.063, importance 0.062, consideration 0.061, focus 0.06, beginning 0.06,
scope 0.06, continuation 0.058, relevance 0.057, emphasis 0.055,backdrop 0.054,
subject0.054,. . .

Context plays an central role in many statisticalNLP problems. For example, the accuracy of

part of speech (POS) taggers and word sense disambiguation systems depend on thequality

andquantityof contextual information that these systems can extract from the training data.

When predicting thePOSof a word, for instance, the immediately preceding word is usually

more important than the following word or the tenth previous word. A crucial part of training

these systems lies in extracting from the data high-quality contextual information, in the sense

of defining contexts that are bothaccurateandcorrelatedwith the information (thePOStags,

chunks or word senses) the system is trying to extract.

The quality of contextual information is heavily dependent on the size of the training corpus:

with less data available, extracting contextual information for any given phenomenon becomes

less reliable. However, corpus size is no longer a limiting factor: whereas up to now researchers

have typically worked with corpora of between one million and one hundred million words, it

has become feasible to build much larger document collections; for example, Banko and Brill

(2001) report on experiments with a one billion word corpus. However, dramatically increasing

the corpus size is not without other practical consequences and limitations. For instance, Banko

and Brill’s experiments only used a small subset of the data available in their corpus.

41
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Scaling context space involves balancing several competing factors, many of which can be

interpreted in terms of thequality/quantitytrade-off. For instance, although it is easy to collect

vast quantities of text from the web, this text is often much noisier than newswire, e.g. Reuters

Corpus Volume 1 (RCV1), edited newspaper text, e.g.ACQUAINT Corpus, or carefully selected

samples, e.g. the British National Corpus (BNC). On the other hand, the breadth of topic

coverage provided by the web or theBNC may produce better results than using news stories.

Section 3.2 describes the corpora used in these experiments and Section 3.5.3 examines corpus

influence on similarity systems.

The quality/quantity trade-off appears in the contextinformativeness, which is, in part, de-

termined by the sophistication of the extraction algorithm.Shallow processing, such asPOS

tagging or chunking, identifies local syntactic relationships, whiledeep processing, such as full

parsing, extracts syntactically richer information at the cost of increased complexity. Conse-

quentially, extraction takes significantly more time and resources which results in much less

text being processed in practice. Sections 3.3 and 3.4 describe various existing and new extrac-

tion processes compared in this experiment. Section 3.5.1 presents the results and Section 3.5.2

discusses the quality/quantity trade-off for similarity systems.

Finally, the extra information must be exploitable by the learning algorithms. However, the

expanded space may make it infeasible to train some learners because of algorithmic efficiency

or limited computational resources. Also, some algorithms cannot manage such large datasets

effectively thus reducing rather than increasing the quality of the results.

Collecting reliable distributional evidence over informative contexts is crucial for exploiting the

distributional hypothesis using vector-space models (Section 1.8). However, scaling context

space can be a problem because these models often record every context seen in the text.

Vector-space similarity is a good task to use to experiment with scaling training data. The naı̈ve

nearest-neighbour search is very simple, causing few interactions between the data and the

nature of the chosen learning algorithm, making any conclusions drawn as robust as possible.

This chapter analyses a continuum of approaches to context extraction for vector-space similar-

ity systems. These approaches differ in their linguistic sophistication, speed, reliability and the

amount of information that they annotate each context with. The results in Section 3.5 establish

some relationships between context informativeness and quality, algorithmic complexity and

representation size and the performance of similarity systems and language systems in general.
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3.1 Definitions

Formally, acontext relation(or context) is a tuple(w, r,w′) wherew is a headword occurring

in somerelation typer, with another wordw′ in one or more the sentences. Each occurrence

extracted from raw text is aninstanceof a context, that is, a context relation/instance is the

type/token distinction. We refer to the tuple(r,w′) as anattributeof w.

Therelation typer labels the context with extra annotation describing the particular relationship

between the two words. If there is no extra information to convey it can be empty. For instance,

the relation type may convey syntactic information from grammatical relations or it may label

the position ofw′ in a sliding window. The tuple(dog, direct-obj, walk) indicates that the term

dog was the direct object of the verbwalk. The context instances are extracted from the raw

text, counted and stored inattribute vectors, which are lists of the attributes associated with a

given headword and their raw frequencies. Notation for describing statistics over contexts is

defined in Section 4.1.

3.2 Corpora

There is little research into the effect of corpus type, genre and size on performance ofNLP

systems; exceptions include studies in cross-domain parsing (Gildea, 2001; Hwa, 1999). How-

ever, it is commonly acknowledged that domain independence is a significant problem inNLP.

Banko and Brill (2001) present learning curves for confusion set disambiguation on several

different machine learning techniques. Early similarity systems used small (Hindle, 1990) or

specialist (Grefenstette, 1994) corpora (Section 2.2.1) but with growing computing power more

recent work by Lin (1998d) has used 300 million words of newspaper text.

The data used in this thesis involves two aggregated text collections. Theexperimental corpus

consists of the British National Corpus and the Reuters Corpus Volume 1, and is used to com-

pare context extractors, similarity measures and algorithms in this and the next two chapters.

The large-scale corpusconsists of theBNC, RCV1, and much of the English news holdings

of the Linguistic Data Consortium (LDC). It contains over 2 billion words of text, part of

which was collected and processed for Curran and Osborne (2002). It is used in the large-scale

experiments and detailed evaluation in Chapter 6.
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3.2.1 Experimental Corpus

The experimental corpus consists of two quite different corpora: the British National Corpus

(BNC, Burnard, 1995) and the new Reuters Corpus Volume 1 (RCV1, Rose et al., 2002). The

size of the two corpora are shown in Table 3.1. This is after the text has been reprocessed and

includes punctuation in the word counts (unlike the quotedBNC numbers).

CORPUS LABEL DOCUMENTS SENTENCES WORDS

British National Corpus BNC 4 124 5.6M 115M

Reuters Corpus Vol 1 RCV1 806 791 8.1M 207M

Table 3.1: Experimental Corpus statistics

TheBritish National Corpuswas collected by a consortium of publishers, industry and univer-

sity partners. It consists of samples (of up to 45 000 words each) of both written and spoken

British English. Approximately 10% (10 million words) is spoken and the remaining 90 mil-

lion words text. The written portion has been collected from a wide range of domains (see

Burnard, 1995, page 11) and a range of different formats including letters, books, periodicals,

leaflets and text to be spoken (such as autocue text). It also covers a range of authors in gen-

der, age and location. Some samples have been extracted from various sections of larger texts.

The spoken component has also been designed in a similar way. These experiments have been

restricted to the text component only because of problems parsing spoken text reliably.

The corpus has been marked up usingSGML based on theText Encoding Initiativeguidelines

(Sperberg-McQueen and Burnard, 2002) and includes sentence splitting, tokenization andPOS

tagging. ThePOStagging uses theCLAWS4 tagset and tagger (Leech et al., 1994). TheCLAWS4

tagger combines some common multi-word expressions such asaccording to andfor the time

being. Some higher level structures, such as lists are also marked up.

TheReuters Corpus Volume 1is a recently released archive of all of the English stories written

by Reuters journalists between 20 August 1996 and 19 August 1997, made freely available to

the research community. It consists of 806 791 news articles markedup with some meta-data

using anXML schema. Unfortunately, the body text has not been marked up in any way. The

text is much noisier than the heavily filteredBNC corpus and includes things like lists and tables

rendered in text using whitespace and symbol characters. These are often difficult to identify

automatically which adds considerable noise to the date. Also, the text has not been annotated

with end of sentence markers or part of speech tags.



3.2. Corpora 45

The text in both corpora has been retokenized using alex (Lesk and Schmidt, 1975) grammar

extending on the tokenizer described in (Grefenstette, 1994, pp. 149–150). This resulted in a

slight increase in the number of words in theBNC because of tokenization errors in the original

corpus, such as not splitting on slashes appropriately givingblood/mosquito and bites/toilet.

The BNC sentence splitting was maintained and simple heuristics were used to split theRCV1

sentences based on paragraph markers, newlines and recognising acronyms.

For the scaling experiments, described in Section 3.5.2, the text is grouped into a range of

corpus sizes. The writtenBNC and RCV1 were first randomly shuffled together to produce

a single homogeneous corpus of approximately 300 million words (MWs). This is split into

two 150MW corpora over which the main experimental results are averaged. We then created

smaller corpora of size12 down to 1
64th (2.34MW) of each 150MW corpus.

3.2.2 Large-Scale Corpus

The large-scale corpus consists of theBNC, RCV1, and most of theLDC’s American and inter-

national newswire and newspaper text that has been collected since 1987: Continuous Speech

Recognition III (CSR-III , Graff et al., 1995); North American News Text Corpus (NANTC,

Graff, 1995); theNANTC supplement (NANTS, MacIntyre, 1998); and theACQUAINT Corpus

(Graff, 2002). The components and their sizes (including punctuation) are given in Table 3.2.

CORPUS LABEL DOCUMENTS SENTENCES WORDS

British National Corpus BNC 4 124 6.2M 114M

Reuters Corpus Vol 1 RCV1 806 791 8.1M 207M

Continuous Speech Recognition-III CSR-III 491 349 9.3M 226M

North American News Text Corpus NANTC 930 367 23.2M 559M

North American News Text SupplementNANTS 942 167 25.2M 507M

ACQUAINT Corpus ACQUAINT 1 033 461 21.3M 491M

Table 3.2: Large-Scale Corpus statistics

TheLDC has recently released theEnglish Gigawordcorpus (Graff, 2003) including most of the

corpora listed above. I tokenized the text using the Grok-OpenNLP tokenizer (Morton, 2002)

and split the sentences using MXTerminator (Reynar and Ratnaparkhi, 1997). Any sentences

less than 3 words or more than 100 words long were rejected, along with sentences containing

more than 5 numbers or more than 4 brackets, to reduce noise. The large-scale corpus is over

2 billion words, which makes the experiments in Chapter 6 currently the largest collection of

text processed by statisticalNLP tools for published research.
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3.3 Existing Approaches

There are a wide range of methods inNLP, IR and data-mining that share the same basic vector-

space approach to measuring similarity (Section 1.8). Where these methods often differ is the

way in which “context” is defined. In these experiments we will only consider sententially and

syntactically local context, unlikeIR approaches such as Crouch (1988) and Sanderson and

Croft (1999) which consider document level cooccurrence as context.

The context extractors described below cover a wide range of linguistic sophistication ranging

from none(the sliding window methods), throughshallow methods(CASS and SEXTANT) to

more sophisticateddeep methods(M INIPAR and RASP). The more sophisticated methods will

produce more informative context relations by extracting relationships between syntactically

related words and annotating them with extra structural information. However, the speed of

each system is reduced dramatically as the sophistication increases.

The following example, from Grefenstette’sMED corpus, will be used to compare extractors:

It was concluded that the carcinoembryonic antigens represent cellular constituents which are

repressed during the course of differentiation of the normal digestive system epithelium and

reappear in the corresponding malignant cells by a process of derepressive dedifferentiation.

Figure 3.1: Sample sentence for context extraction

3.3.1 Window Methods

Methods that define the context of the headword in terms of the neighbouring words within a

limited distance (either words or characters) are calledwindowmethods. In these methods, a

fixed-width sliding window with respect to the headword is used to collect words that often

occur with the headword.

Window-based extractors have a very low complexity and so are very easy to implement and

can run very quickly. They are also practically language independent once the text has been

segmented. However, this implies that they do not leverage any extra linguistic information.

For instance, when we are building a noun similarity system, not being able to distinguish

between noun and verb terms is a significant disadvantage. It would be possible to add this

information with aPOStagger, but this would reduce the simplicity, speed and language inde-

pendence of the approach.
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The important factors to consider for window methods are the geometry of the window and

whether to consider every word within the window. There are several aspects to the geometry:

width how many words or characters does the window extend over.

symmetry whether the headword is placed in the centre of the window, i.e. does the window
extend the same distance to the left and right.

boundaries whether the window is fixed regardless of boundaries, such as sentence and para-
graph breaks, in the underlying text; e.g. does the window extend over sentences.

The simplest approach collects counts for every word in the window. However, another com-

mon approach is to filter the words in some way, either to eliminate high frequency but unin-

formative words such as function words, or to reduce the number of dimensions that must be

dealt with in later processing. Finally, the window extractor may record the direction and/or

position in the window using the relation type. Not recording the position, which is labelled

with an asterisk in the experimental results, is a form of smoothing.

The context windows used inPOStagging and other sequence annotation tasks tends to be rela-

tively local, such as the previous and next two or three words (see Daelemans, 1999). Normally,

they do not extend beyond the sentence boundaries. Some work in vector-space similarity has

also used such short lengths including lengths up to 10–20 words (e.g. McDonald, 2000). On

the other hand, early experiments in word sense disambiguation used very large windows of up

to 500 words (Yarowsky, 1992). Beeferman (1998) also used a 500 word window fortrigger

(collocation) extraction in a broadcast news corpus because it approximates average document

length. However, as the number of words processed increases the cost of storing these con-

texts becomes prohibitive. Another factor is whether a word that appears so far away from the

headword is informative, that is, correlated with the headword.

A practical problem with larger window models is that they may become too large to ma-

nipulate. For instance, in work on dimensionality reduction for vector-space models Schütze

(1992a,b) uses a window of 100 words either side, but only considers the 1000 most frequent

terms within the window. This fixes the context matrix to have rows of length 1000. Lan-

dauer and Dumais (1997) use a similar technique withLatent Semantic Indexing(Deerwester

et al., 1990) but argue that a 500characterlimit is more appropriate. Their reasoning is that

a fixed character window will select either fewer longer (and thus more informative) words or

more shorter (and thus less informative) words, extracting a consistent amount of contextual

information for each headword.
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MARKED UNMARKED DESCRIPTION

W(L1R1) W(L1R1∗) first word to the left or right
W(L1) – first word to the left
W(L1,2) W(L1,2∗) first or second word to the left
W(L1−3) W(L1−3∗) first, second or third word to the left
W(R1) – first word to the right
W(R1,2) W(R1,2∗) first or second word to the right

Table 3.3: Window context extractor geometries

Many window extractors employ astopword list(or stoplist) containing uninformative and very

frequent words, such as determiners and pronouns, which are filtered out of context relations.

Eliminating stopwords significantly reduces the number of relations, but, because they are

uninformative for judging similarity, this rarely impacts negatively on the quality of results.

In fact, results often improve because large stopword counts can swamp other information.

Jarmasz (2003) gives a list of stopwords he uses in similarity experiments and Grefenstette

uses a stopword list (1994, page 151) in theWebster’sdictionary evaluation.

The experiments in this thesis cover a range of window methods including those with and with-

out the position and direction encoded using the relation type, and using a range (from 1 to 3

words) of window lengths. They also explore different lengths to the left and right to see which

is most informative. The window geometries used are listed in Table 3.3. Extractors which

do not distinguish between different directions or positions are identified with an asterisk, e.g.

W(L1R1∗) looks one word to the left and right but does not record the position in the window.

3.3.2 CASS

The CASS parser (Abney, 1991, 1996), part of Abney’sSCOL system (1997), uses cascaded

finite state transducers (FSTs) to produce a limited-depth parse ofPOS tagged text. CASS has

been used in variousNLP tasks including vector-space similarity for word sense disambiguation

(Lee and Pereira, 1999), induction of selectional preferences (Abney and Light, 1999) and

modelling lexical-semantic relations (Lapata, 2001).

The parser identifieschunkswith 87.9% precision and 87.1% recall, and a per-word chunk

accuracy of 92.1% (Abney, 1996). The parser distribution includes a large grammar for English

(the e8 demo grammar) and a tool (thetuples program) that extracts predicate-argument

tuples out of the parse trees that CASS produces. I use the output of theC&C POS tagger

(Curran and Clark, 2003a) as input to CASS. The experiments are based onSCOL version 1e.
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RELATION DESCRIPTION

subj subject (active frames only)
obj first object after the verb (active frames only)

surface subject (passive frames only)
<prep> head of the prepositional phrase

labelled with the prepositionprep
obj2 surface object (passive frames only)

Table 3.4: Some grammatical relations from CASS involving nouns

Any CASS grammatical relation (GR) that links a noun with any content word (nouns, verbs,

adjectives) is a context relation. Inverse context relations are also created for noun-nounGRs;

for instance, ininterest rate, rate is modified byinterest, so there is an inverse relation indicating

interest modifiesrate. TheGR type is used as the relation type. Some of the most frequentGRs

are shown in Table 3.4. Lee and Pereira (1999) only used the object relations and Lapata (2001)

only used the object and subject relations.

The finite state parsing algorithm is very efficient. The times reported below include thePOS

tagging time. CASS is not capable of identifying indirect objects, so Joanis (2002, page 27)

usestgrep expressions to extract them. I use the default CASS output for consistency.

0 concluded :obj It
3 represent :obj constituents :subj antigens
10 repressed :during course :obj which
25 reappear :in cells :by process

Figure 3.2: CASS sample grammatical instances (from tuples)

3.3.3 SEXTANT

The Semantic EXtraction from Text via Analysed Networks of Terms(SEXTANT) system has

been designed specifically for automatic thesaurus extraction (Grefenstette, 1994). It consists

of a fast shallowNLP pipeline and a näıve grammatical relation extraction tool. The shallow

pipeline consists of lexical and morphological analysis,POS tagging and chunking. The rela-

tion extraction tool makes five passes over the chunker output associating nouns with verbs,

modifiers and prepositional phrases.

I have implemented several variants of SEXTANT that are described in detail in Section 3.4.

Since the shallow pipeline and the grammatical relation extraction is fast, SEXTANT is very

efficient, and has been used to process the 2 billion word collection used in Chapter 6.
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One difficulty that Grefenstette (1994) describes is the interpretation of long noun compounds

in SEXTANT. For instance,civil rights activist should be interpreted as((civil rights) activist).

Therefore, the extracted relations should be(civil rights) and(rights activist) rather than(civil ac-

tivist). Unfortunately, SEXTANT extracts all three relations, and in general causes the two right

most nouns in compounds to share all of the modifiers to their left as context. For frequent

compound nouns, this made the nouns appear more similar than they were. For frequent long

noun compounds, common in technical domains, this can be a significant problem. To over-

come this problem Grefenstette does not allow nouns adjacent in frequent noun compounds

to be similar. However, this eliminates a common form of synonym production; for instance,

denim jeans can be abbreviated todenims, but Grefenstette’s policy would not allow them to

be similar (after morphological analysis).

3.3.4 MINIPAR

Lin (1998a) has usedGRs extracted from newspaper text with MINIPAR to calculate seman-

tic similarity, which in turn has been applied in manyNLP applications (Section 1.4.2). The

M INIPAR parser (Lin, 1998b) is a broad-coverage principle-based parser, a descendent of the

PRINCIPAR parser (Lin, 1993, 1994). In an evaluation on theSUSANNE corpus (Sampson,

1995) MINIPAR achieves about 88% precision and 80% recall on dependency relationships

(Lin, 1998b). Given the complexity of the parser, MINIPAR is quite efficient, at 300 words per

second (Lin, 1998a). However, this is still significantly slower than CASS and SEXTANT.

RELATION DESCRIPTION

appo apposition
comp1 first complement
det determiner
gen genative marker
mod the relationship between a word and its adjunct modifier
pnmod post nominal modifier
pcomp-n nominal complement of prepositions
post post determiner
vrel passive verb modifier of nouns
obj object of verbs
obj2 second object of ditransitive verbs
subj subject of verbs
s surface subject

Table 3.5: Some grammatical relations from MINIPAR involving nouns

I have extracted context relations directly from the full parse tree using thepdemo program



3.3. Existing Approaches 51

distributed with MINIPAR. As with CASS, context relations were created for everyGR that

linked nouns with other content words and inverse relations were also created. Table 3.5 lists

the MINIPAR grammatical relation types involving nouns (from theREADME file in the MINIPAR

distribution). Pad́o and Lapata (2003) use chains of MINIPAR grammatical relations with a

vector-space similarity model, which allows them to distinguish between several different types

of lexical-semantic relationship.

M INIPAR is also the only extractor that identifies multi-word expressions, which means it has a

minor advantage over the other approaches when it comes to the evaluation, since it has some

chance of identifying the multi-word synonyms in the gold-standard thesauri which make up

between 14–25% of the synonyms.

fin C:i:V conclude
conclude V:s:Subj it
conclude V:be:be be
conclude V:expletive:Subj it
conclude V:fc:C fin
fin C:c:COMP that
fin C:i:V represent
represent V:s:N antigen
antigen N:det:Det the
antigen N:mod:A carcinoembryonic
represent V:subj:N antigen
represent V:obj:N constituent
constituent N:mod:A cellular
constituent N:rel:C fin
fin C:whn:N which
fin C:i:V repress
repress V:be:be be
repress V:obj:N which
repress V:mod:Prep during
during Prep:pcomp-n:N course
course N:det:Det the

course N:mod:Prep of
of Prep:pcomp-n:N differentiation
differentiation N:mod:Prep of
of Prep:pcomp-n:N epithelium
epithelium N:det:Det the
epithelium N:mod:A normal
epithelium N:nn:N digestive system
digestive system N:lex-mod:(null) digestive
repress V:conj:V reappear
reappear V:subj:N which
reappear V:mod:Prep in
in Prep:pcomp-n:N cell
cell N:det:Det the
cell N:mod:A corresponding
cell N:mod:A malignant
cell N:mod:Prep by
by Prep:pcomp-n:N process
process N:det:Det a
process N:mod:Prep of
of Prep:pcomp-n:N dedifferentiation
dedifferentiation N:mod:A derepressive

Figure 3.3: MINIPAR sample grammatical instances (from pdemo)

3.3.5 RASP

The Robust Accurate Statistical Parsingproject (RASP) parser (Briscoe and Carroll, 2002)

uses a statistical model over the possible state transitions of an underlyingLR parser with a

manually constructed phrase structure grammar. RASP achieves an F-score of 76.5% on a

manually annotated 500 sentence subset of theSUSANNE corpus (Sampson, 1995) using the

grammatical relation-based evaluation proposed by Carroll et al. (1998).
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McCarthy et al. (2003) have used RASP to extract a thesaurus of simplex and phrasal verbs

which was applied to determining compositionality. Weeds and Weir (2003) have used RASP

GRs for vector-space semantic similarity comparing the work of Lin (1998d) and Lee (1999)

in terms of precision and recall. John Carroll has kindly supplied me with the RASP GRs from

the written portion of the British National Corpus for these experiments. The RASP GRs used

as context relations in this thesis are shown in Table 3.6. Once again, these are theGRs which

link nouns with other content words and again inverse context relations are also generated.

RELATION DESCRIPTION

mod relation between head and modifier
ncmod non-clausal modifiers (includingPP, adjectival and nominal modification)
detmod relation between noun and determiner
ncsubj non-clausal subjects
obj most general object relation
dobj direct object relation, first non-clausal complement not introduced by preposition
iobj indirect object relation, non-clausal complement introduced by preposition
obj2 second non-clausal complement in ditransitive constructions
xcomp predicate and clausal complement with no overt subject
conj conj used to annotate the type of conjunction and heads of conjuncts

Table 3.6: Some grammatical relations from RASP involving nouns

(|ncsubj| |conclude+ed:3_VVN| |It:1_PPH1| |obj|)
(|clausal| |conclude+ed:3_VVN| |represent:8_VV0|)
(|clausal| |conclude+ed:3_VVN| |reappear:26_VV0|)
(|ncsubj| |reappear:26_VV0| |antigen+s:7_NN2| _)
(|iobj| |in:27_II| |reappear:26_VV0| |cell+s:31_NN2|)
(|iobj| |by:32_II| |reappear:26_VV0| |process:34_NN1|)
(|ncsubj| |derepressive:36_VVG| |antigen+s:7_NN2| _)
(|dobj| |derepressive:36_VVG| |dedifferentiation:37_NN1| _)
(|ncsubj| |represent:8_VV0| |antigen+s:7_NN2| _)
(|dobj| |represent:8_VV0| |constituent+s:10_NN2| _)
(|clausal| |represent:8_VV0| |be+:12_VBR|)
(|ncsubj| |be+:12_VBR| |which:11_DDQ| _)
(|xcomp| _ |be+:12_VBR| |repressed:13_JJ|)
(|ncmod| _ |antigen+s:7_NN2| |carcinoembryonic:6_JJ|)
(|detmod| _ |antigen+s:7_NN2| |the:5_AT|)
(|ncmod| _ |constituent+s:10_NN2| |cellular:9_JJ|)
(|ncmod| _ |epithelium:24_NN1| |system:23_NN1|)
(|ncmod| _ |epithelium:24_NN1| |digestive:22_JJ|)
(|ncmod| _ |epithelium:24_NN1| |normal:21_JJ|)
(|detmod| _ |epithelium:24_NN1| |the:20_AT|)

Figure 3.4: RASP sample grammatical relations (abridged)
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3.4 Approach

My approach is based on Grefenstette’s SEXTANT system introduced in Section 3.3.3. Except

for the window methods, SEXTANT is the simplest context extractor and is extremely fast. It

uses näıve grammatical relation processing over shallow phrase chunks in place of the manually

developed grammars used by the parsing approaches. The efficiency of the SEXTANT approach

makes the extraction of grammatical relations from over 2 billion words of raw text feasible.

Finally, it was the only context extractor not made freely available in source code or executable

form, but is instead described in detail in Grefenstette (1994). Reimplementing it completes

the survey of approaches to context-space similarity systems in the literature.

There are three versions of my SEXTANT implementation, each using different shallowNLP

tools which vary in their sophistication, complexity and speed. SEXTANT(NB) uses sim-

ple Näıve Bayes tagging/chunking models, SEXTANT(LT) uses theText Tokenisation Toolkit

(Grover et al., 2000), and SEXTANT(MX ) uses theC&C maximum entropy tools (Curran and

Clark, 2003a,b). They demonstrate the sensitivity of SEXTANT to the quality of these compo-

nents, which are described below.

3.4.1 Lexical Analysis

SEXTANT uses a lexical analyser and sentence splitter generated from alex grammar (Lesk

and Schmidt, 1975), reproduced in Grefenstette (1994, pp 149–150). This grammar identifies

contractions (e.g.’d and ’ll), genitive markers (’s), abbreviations (such as month names) and

some acronym forms. Lexical analysis is followed by simple name recognition which concate-

nates titlecase words into a single term when they do not directly follow a period. The lexical

analysis used in my experiments is described in Sections 3.2.1 and 3.2.2.

3.4.2 Part of Speech Tagging

Grefenstette (1994) assigns a set of possiblePOStags from theCLARIT dictionary (Evans et al.,

1991) which occurs as part of morphological normalisation. TheCMU POS tagger, a trigram

tagger based on de Marcken (1990) and trained on the Brown Corpus (Francis and Kucera,

1982), is used to disambiguate the set ofPOStags.



54 Chapter 3. Context

In my reimplementations, SEXTANT(NB) uses a very simple Naı̈ve BayesPOStagger with the

same feature set as Ratnaparkhi (1996). This tagger makes local classification decisions rather

than maximising the probability over the sequence using Viterbi or beam search. This is very

simple to implement and is extremely fast. SEXTANT(LT) uses theLT-POS tagger from the

Language Technology Group at the University of Edinburgh (Grover et al., 2000).LT-POS is

the slowest of thePOStaggers. SEXTANT(MX ) uses a maximum entropyPOStagger developed

jointly with Stephen Clark (Curran and Clark, 2003a). It has been designed to be very efficient,

tagging at around 100 000 words per second. The only similar performing tool is theTrigrams

‘n’ Tags tagger (Brants, 2000) which uses a much simpler statistical model. All three taggers

have been trained on the Penn Treebank (Marcus et al., 1994), so the remaining components

are designed to handle the PennPOStag set (Santorini, 1990).

3.4.3 Phrase Chunking

Grefenstette (1994) uses a simple transition table algorithm to recognise noun phrase (NP) and

verb phrase (VP) chunks. TheCanBegin table containsPOS tags allowed to start anNP or

VP. TheCanContinue table contains pairs ofPOStags across which the phrase may continue.

TheCanEnd table containsPOS tags allowed to terminate phrases. The algorithm scans for a

CanBegin POStag, then collects the longest chain ofCanContinue pairs, and finally backtracks

until a CanEnd tag is found. Grefenstette states that the tables are designed to produce the

longest possibleNPs including prepositional phrases (PPs) and conjunctions.

As above, SEXTANT(NB) uses a Näıve Bayes classifier with word andPOS features, SEX-

TANT(LT) uses the rule-basedLT-CHUNK, and SEXTANT(MX ) uses a maximum entropy chun-

ker which uses the same features as theC&C Named Entity recogniser (Curran and Clark,

2003b). The Näıve Bayes and maximum entropy chunkers are trained on the entire Penn Tree-

bank (Marcus et al., 1994) chunks extracted using the CoNLL-2000 script (Buchholz, 2000).

The Penn Treebank separatesPPs and conjunctions fromNPs so these chunks are concatenated

to match Grefenstette’s table-based results.

3.4.4 Morphological Analysis

Grefenstette (1994) uses theCLARIT morphological normaliser (Evans et al., 1991) beforePOS

tagging. My implementations usemorpha, the Sussex morphological analyser (Minnen et al.,



3.4. Approach 55

[it]NP [be conclude]VP that [the carcinoembryonic antigen]NP [represent]VP [cellular

constituent]NP which [be repress]VP [during the course of differentiation of the normal di-

gestive system epithelium]NP and[reappear]VP [in the correspond malignant cell by a process

of derepressive dedifferentiation]NP .

Figure 3.5: Chunked and morphologically analysed sample sentence

2000, 2001), which is implemented usinglex grammars for both affix splitting and generation.

This analyser is also used internally by the RASP parser.morpha has wide coverage – nearly

100% against theCELEX lexical database (Minnen et al., 2001) – and is very efficient, analysing

over 80 000 words per second (Minnen et al., 2000).

Unlike Grefenstette, the analysis is performed afterPOStagging sincemorpha can usePOStag

information.morpha often maintains sense distinctions between singular and plural nouns; for

instance:spectacles is not reduced tospectacle, but fails to do so in other cases:glasses is

converted toglass. This inconsistency is problematic when using morphological analysis to

smooth vector-space models. The benefit of morphological smoothing of context relations is

described in Section 3.5.4.

3.4.5 Grammatical Relation Extraction

After the raw text has beenPOStagged and chunked, the grammatical relation extraction algo-

rithm is run over the chunks. This consists of five passes over each sentence that first identify

noun and verb phrase heads and then collect grammatical relations between each common noun

and its modifiers and verbs.

Passes 1 and 2 associate adjectival, nominal andPPmodifiers with the nouns they modify and

also identifies the head within theNP. VP heads and their voice (active, passive or attributive)

are then identified. Passes 3–5 associate verbs with their subjects and objects. A global list of

grammatical relations generated by each pass is maintained across the passes. The global list is

used to determine if a word is already attached. Once all five passes have been completed this

association list contains all of the noun-modifier/verb pairs which have been extracted from the

sentence. The grammatical relations extracted by SEXTANT are shown in Table 3.7. As with

the previous parsing context extractors, inverse context relations are also created for noun-noun

grammatical relations (nn andnnprep). Figure 3.6 shows the grammatical relations extracted

for the sample sentence.
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RELATION DESCRIPTION

adj relation between a noun and an adjectival modifier
dobj relation between a verb and a direct object
iobj relation between a verb and an indirect object
nn relation between a noun and a noun modifier
nnprep relation between a noun and the head of aPPmodifier
subj relation between a verb and a subject

Table 3.7: Grammatical relations from SEXTANT

the carcinoembryonic

represent

antigen

cellular constituent

which

repressbe

during coursethe

and

of differentiation of the normal digestive system epithelium

reappear

in cellthe correspond malignant by a process of derepressive dedifferentiation

Figure 3.6: SEXTANT sample grammatical relations coloured as follows:

adj , nn , nnprep , subj , dobj and iobj

Pass 1: Noun Pre-modifiers

This pass scansNPs, left to right, creating adjectival (adj) and nominal (nn) pre-modifierGRs

with every noun to the pre-modifier’s right, up to a preposition or the phrase end. This corre-

sponds to assuming right-branching noun compounds. For example,normal forms anadj GR

with digestive, system andepithelium in the sample sentence. Within eachNP only theNP and

PPheads remain unattached.

Pass 2: Noun Post-modifiers

This pass scansNPs, right to left, creating post-modifierGRs between the unattached heads of

NPs andPPs. If a preposition is encountered between the noun heads, a prepositional noun

(nnprep) GR is created, otherwise an appositional noun (nn) GR is created. This corresponds

to assuming right-branchingPP-attachment. For example,dedifferentiation modifiesprocess,
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which in turn modifiescell. After this phrase only theNP head remains unattached.

Tense Determination

The rightmost verb in eachVP is considered the head. AVP is initially categorized asactive. If

the head verb is a form ofbe then theVP becomesattributive. Otherwise, the algorithm scans

theVP from right to left: if an auxiliary verb form ofbe is encountered theVP becomespassive;

if a progressive verb (exceptbeing) is encountered theVP becomesactive.

Only the noun heads on either side ofVPs remain unattached. The remaining three passes

attach these to the verb heads as either subjects or objects depending on the voice of theVP.

Pass 3: Verb Pre-Attachment

This pass scans sentences, right to left, associating the firstNP head to the left of theVP with

its head. If theVP is active, a subject (subj) relation is created; otherwise, a direct object (dobj)

relation is created. For example,antigen is the subject ofrepresent.

Pass 4: Verb Post-Attachment

This pass scans sentences, left to right, associating the firstNP or PP head to the right of the

VP with its head. If theVP was classed asactive and the phrase is anNP then a direct object

(dobj) relation is created. If theVP was classed aspassive and the phrase is anNP then a subject

(subj) relation is created. If the following phrase is aPPthen an indirect object (iobj) relation is

created. The interaction between the head verb and the preposition determine whether the noun

is an indirect object of a ditransitive verb or alternatively the head of aPP that is modifying the

verb. However, SEXTANT always attaches thePP to the previous phrase.

Pass 5: Verb Progressive Participles

The final step of the process is to attach progressive verbs to subjects and objects (without con-

cern for whether they are already attached). Progressive verbs can function as nouns, verbs and

adjectives and once again a naı̈ve approximation to the correct attachment is made. Any pro-

gressive verb which appears after a determiner or quantifier is considered a noun. Otherwise, it

is considered a verb and passes 3 and 4 are repeated to attach subjects and direct objects. This

pass is dependent on the way the chunker includes progressive participles.

Finally, SEXTANT collapses thenn, nnprep andadj relations together into a single broad modi-

fier grammatical relation. Grefenstette (1994, page 46) claims this extractor has a grammatical

relation accuracy of 75% after manually checking 60 sentences.
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SYSTEM SPACE RELS. ATTRS. TERMS DIRECT P(1) P(5) P(10) INVR TIME

MB M M k COUNT % % % – –

RASP 267 43.22 12.44 185 1956 70 53 45 2.08 6.0 d

SEXTANT(LT) 178 20.37 7.84 97 1835 70 53 45 2.04 3.2 d

M INIPAR 376 68.41 16.22 828 1921 65 50 44 2.01 1.9 d

CASS 191 38.30 9.31 191 1517 53 43 35 1.63 1.6 hr

SEXTANT(NB) 269 30.25 11.92 268 1856 73 51 44 2.05 1.4 hr

SEXTANT(MX ) 313 38.78 16.11 400 1910 71 51 44 2.08 1.1 hr

W(L1) 124 79.81 7.50 422 1660 64 46 38 1.84 6.7 m

W(L1,2) 348 155.41 18.75 463 1705 64 50 41 1.91 7.0 m

W(L1,2∗) 269 155.41 16.03 463 1679 69 47 41 1.91 7.0 m

W(L1−3) 582 226.40 31.34 467 1623 69 47 41 1.87 7.5 m

W(L1−3∗) 401 226.40 23.65 467 1603 60 45 39 1.77 7.5 m

W(L1R1) 278 159.62 14.97 452 1775 73 50 41 2.00 7.0 m

W(L1R1∗) 224 159.62 13.35 452 1700 63 49 40 1.91 7.0 m

W(R1) 124 79.81 7.49 371 1277 44 28 24 1.23 6.7 m

W(R1,2) 348 155.41 18.79 438 1490 47 39 32 1.47 7.0 m

Table 3.8: Thesaurus quality results for different context extractors

3.5 Results

There are four sets of results related to context extraction. The first results compare context ex-

tractors on the written portion of the British National Corpus (BNC). Section 3.5.2 investigate

the impact of corpus size on similarity systems and the trade-off between corpus size, run-

ning time and representation size using the experimental corpus (Section 3.2.1). Section 3.5.3

considers the impact of corpus type by comparing results from theBNC andRCV1 text. The

remaining sections investigate the benefit of smoothing and filtering the context representation.

The 70 word experimental test set (Section 2.2.2) is used for all of these experiments. Sim-

ilarity has been calculated using the JACCARD measure with the TTEST weighting function,

which is found to be the best semantic similarity measure function in the next chapter.

3.5.1 Context Extractors

Table 3.8 summarises the representation size and performance of each context extractor applied

to the written portion of theBNC, which was used because the RASP GRs were supplied by John

Carroll and SEXTANT(LT) took too long to process theRCV1 corpus.



3.5. Results 59

RASPperforms significantly better than the other context extractors using the direct match eval-

uation but MINIPAR and SEXTANT(NB) also produce quite similar results over the other eval-

uation metrics. Amongst the simpler methods, W(L1R1) and W(L1,2) give reasonable results.

Depending on the components, the shallow methods vary quite considerably in performance.

Of these the state-of-the-art maximum entropy SEXTANT(MX ) performs the best. Overall,

the more sophisticated parsers outperform the shallow parsing approaches which significantly

outperform the majority of window-based approaches.

The first thing to note is the time spent extracting contextual information: RASP, SEXTANT(LT)

and MINIPAR take significantly longer to run (in days) than the other extractors and the window

methods run extremely quickly (in minutes). SEXTANT(MX ), which has been designed for

speed, runs 40 times faster than MINIPAR and over 120 times faster than RASP, but performs

almost as well. These ratios are only approximate because RASP was run on different (but

comparable) hardware. On the other hand, SEXTANT(LT) was one of the slowest systems even

though it was also a very shallow approach, clearly implementation efficiency is important.

Also, MINIPAR extracts many more headwords and relations with a much larger representation

than SEXTANT, whereas RASPextracts more relations for a smaller number of headwords. This

is partly because MINIPAR extracts more types of relations from the parse tree than SEXTANT

and RASP and partly because it extracts extra multi-word expressions. The larger window

methods have low correlation between the headword and context and so extract a massive

context representation, but the results are over 10% worse than the syntactic extractors.

Given a medium-sized corpus and a reasonable amount of time, it is clear that RASP or MINI -

PAR will produce the best results. However, the choice is no longer obvious when the quantity

of raw text available is effectively unlimited.

3.5.2 Corpus Size

Similarity systems need large quantities of text to reliably extract contextual information. In

light of the amount of raw text now freely available in news corpora (Section 3.2.2) and on

the web, we must reconsider the limiting factors of the previous results. Table 3.9 shows what

happens to thesaurus quality as we decrease the size of the corpus to1
64th of its original size

(2.3MWs) for SEXTANT(NB). Halving the corpus results in a significant reduction for most of

the measures. All five evaluation measures show the same log-linear dependence on the size

of the corpus. Figure 3.7 shows the same trend for Inverse Rank evaluation of the MINIPAR

extractor with a log-linear fitting the data points.
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CORPUS SPACE RELS. ATTRS. TERMS DIRECT P(1) P(5) P(10) INVR
MWs MB M M k AVG % % % –

150.0 274 53.07 12.08 268.94 23.75 64.5 47.0 39.0 1.85

75.0 166 26.54 7.38 181.73 22.60 58.0 43.5 36.0 1.73

37.5 98 13.27 4.36 120.48 21.75 54.0 41.0 34.5 1.62

18.8 56 6.63 2.54 82.33 20.45 47.0 36.5 31.0 1.46

9.4 32 3.32 1.44 55.55 18.50 40.0 32.5 27.5 1.29

4.7 18 1.66 0.82 37.95 16.65 34.0 29.5 23.5 1.13

2.3 10 0.83 0.46 25.97 14.60 27.5 25.0 19.5 0.93

Table 3.9: Average SEXTANT(NB) results for different corpus sizes

We can use the same curve fitting to estimate thesaurus quality on larger corpora for three of the

best extractors: SEXTANT(NB), M INIPAR and W(L1R1). Figure 3.8 does this with the direct

match evaluation. The estimate indicates that MINIPAR will continue to be the best performer

on direct matching. We then plot the direct match scores for the 300MW corpus to see how

accurate our predictions are. The SEXTANT(NB) system performs almost exactly as predicted

and the other two slightly under-perform their predicted scores, thus the fitting is accurate

enough to make reasonable predictions.
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Figure 3.7: MINIPAR INVR scores versus corpus size
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Figure 3.8: DIRECT matches versus corpus size

Using Figure 3.8 and the timing data in Table 3.8 it is possible to make “engineering” decisions

regarding the trade-off between extractor complexity, relation quality and speed. For instance,

if we fix the total time and computational resources at an arbitrary point, e.g. the point where

M INIPAR can process 75MWs, we get an average direct match score of 23.5. However, we can

get the same resultant accuracy by using SEXTANT(NB) on a corpus of 116MWs or W(L1R1)

on a corpus of 240MWs. From Figure 3.8, extracting contexts from corpora of these sizes

would take MINIPAR 37 hours, SEXTANT(NB) 2 hours and W(L1R1) 12 minutes.

However, there is an almost linear relationship between the amount of raw text consumed and

the size of the resulting model, in terms of the number of unique relations and the number of

headwords. Interpolation on Figure 3.9 predicts that the extraction would result in 10M unique

relations from MINIPAR and SEXTANT(NB) and 19M from W(L1R1). Figure 3.10 indicates

that extraction would result in 550k MINIPAR headwords, 200k SEXTANT(NB) headwords

and 600k W(L1R1) headwords. The window methods and MINIPAR suffer from the greatest

representation inflation as the raw text is consumed.

These results suggest that accurate, efficient shallow context extractors, such as SEXTANT(MX ),

are the most successful approach when large quantities of text are available.
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Figure 3.9: Representation size versus corpus size
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SYSTEM CORPUS SPACE RELS. ATTRS. TERMS DIRECT P(1) P(5) P(10) INVR
MB M M k COUNT % % % –

M INIPAR BNC 376 68.41 16.22 828 1921 65.0 50.0 44.0 2.01

M INIPAR RCV1 422 117.61 17.02 1001 1472 58.0 43.0 37.0 1.68

SEXTANT(NB) BNC 269 30.25 11.92 268 1856 73.0 51.0 44.0 2.05

SEXTANT(NB) RCV1 279 75.89 12.25 269 1468 56.0 43.0 34.0 1.66

W(L1R1) BNC 278 159.62 14.97 452 1775 73.0 50.0 41.0 2.00

W(L1R1) RCV1 245 262.87 13.17 417 1356 51.0 39.0 33.0 1.52

Table 3.10: Results on BNC and RCV1 for different context extractors

MORPH. SPACE ATTRS. TERMS DIRECT P(1) P(5) P(10) INVR
MB M k AVG % % % –

none 345 14.70 298 20.33 32.5 36.9 33.6 1.37

attributes 302 13.17 298 20.65 32.0 37.6 32.5 1.36

both 274 12.08 269 23.74 64.5 47.0 39.0 1.86

Table 3.11: Effect of morphological analysis on SEXTANT(NB) thesaurus quality

3.5.3 Corpus Type

Table 3.10 gives the results for MINIPAR, SEXTANT(NB) and W(L1R1) on theBNC andRCV1

text collections. The performance from all of the systems is significantly better on theBNC

than theRCV1 corpus. There are a number of possible explanations for this including that the

BNC has been more heavily edited and so is a much cleaner corpus; also it contains a wide

range of genres and, perhaps more importantly, topics.

Unfortunately,BNC andRCV1 differ in noise and topic coverage so it is not possible to draw a

stronger conclusion. Clearly corpus type has a very large impact on performance. These results

illuminate another aspect of thequality/quantitytrade-off. Assembling a very large corpus of

freely available raw text will not guarantee an improvement in performance. Creating a noisy

corpus with wide topic coverage will allow the dominant factor in these results to be identified.

3.5.4 Smoothing

Since MINIPAR and RASP perform morphological analysis on the context relations we have

added an existing morphological analyser (Minnen et al., 2000) to the other extractors. Ta-

ble 3.11 shows the improvement gained by morphological analysis of the attributes and rela-

tions for the SEXTANT(NB) 150MW corpus.
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SYSTEM SPACE RELS. ATTRS. TERMS DIRECT P(1) P(5) P(10) INVR
MB M M k AVG % % % –

300M 431 80.33 20.41 445 25.30 61.0 47.0 39.0 1.87

150M 274 53.07 12.08 269 23.75 64.5 47.0 39.0 1.85

FIXED 244 61.17 10.74 265 24.35 65.0 46.5 38.5 1.86

LEXICON 410 78.69 18.09 264 25.25 62.0 47.0 40.0 1.87

>1 149 67.97 6.63 171 24.20 66.0 45.0 38.0 1.85

>2 88 62.57 3.93 109 23.20 66.0 46.0 36.0 1.82

Table 3.12: Thesaurus quality with relation filtering

The morphological analysis of the attributes does not significantly affect performance but it

does reduce the representation size. However, when both headwords and attributes are pro-

cessed, improvement in results is very large, as is the reduction in the representation size and

the number of context relations. The reduction in the number of terms is a result of coalescing

the plural nouns with their corresponding singular nouns, which greatly reduces the data sparse-

ness problems. The morphological analysis makes a significant impact on the data-sparseness

problem, unlike the minimal improvement forPP-attachment (Collins and Brooks, 1995). The

rest of the experiments use morphological analysis of both the headwords and attributes.

3.5.5 Filtering

The context representation is very large even for the most constrained context extractor. This

section considers some methods for limiting the size of the context representation. Table 3.12

shows the results of performing various kinds of filtering on the representation size.

TheFIXED andLEXICON filters run over the full 300MW corpus, but have size limits based on

the 150MW corpus. TheFIXED filter does not allow any object/attribute pairs to be added that

were not extracted from the 150MW corpus. TheLEXICON filter does not allow any objects

to be added that were not extracted from the 150MW corpus. TheFIXED andLEXICON filters

show that counting over larger corpora does produce marginally better results, that is, getting

more reliable counts for the same contexts does slightly improve performance.

The>1 and>2 filters prune relations with a frequency of less than or equal to one or two.

The>1 and>2 filters show that the many relations that occur infrequently do not contribute

significantly to the vector comparisons and hence do not impact on the final results, even though

they dramatically increase the representation size.
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3.6 Future Work

The context experiments in this chapter leave several open problems to be explored. Firstly,

there are still context extractors missing from these experiments. for example, the very large

window methods described in Section 3.3.1 that use only the 1000 most frequent attributes.

How does this limit impact on performance for computationally-intensive approaches like La-

tent Semantic Analysis (LSA). There are also many combinations of grammatical relations from

the parsing extractors which are worth exploring individually. This chapter has only discussed

using all of theGRs that are associated with nouns for each extractor. There are a number of

larger problems described below that build on this work.

3.6.1 Multi-word Terms

Most of the context extractors only handle single word terms. However, around 25% of terms

in manually created thesauri are multi-word (Section 2.2.3). The treatment of multi-word terms

has not been adequately treated in mostNLP tasks. FewPOS taggers use knowledge of com-

pound nouns or phrasal verbs to improve their accuracy. The first problem is identifying multi-

word expressions and the second is incorporating them into the shallow pipeline. Adding

multi-word terms will significantly increase the representation size. However, they should im-

prove the attribute quality by removing highly correlated contexts (e.g.(rate, nn, interest) and

splitting up very high frequency attributes (e.g. verb-particle will split(object, get)).

3.6.2 Topic Specific Corpora

There is an increasing interest in extracting technical and specialised terms, usage and vocab-

ulary from topic specific corpora. There are two motivations for doing this. Firstly, lexical

resources for many of these domains is scarce while raw text is usually in abundance, so auto-

matic extraction methods are particularly attractive. I would like to extract thesauri for domains

such as bioinformatics, which generate vast amounts of text and already have lexical resources

available for evaluation.

Secondly, comparing extracted synonyms may provide an avenue for comparing the vocabulary

of particular specialised domains with everyday usage. Additions and omissions would then

indicate differences in language usage between the domains. Direct comparison of the attribute
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vectors may also highlight differing usages in different domains. If the attribute vectors of a

term from two different corpora were quite different then it is likely that the term has a different

meaning in each corpus.

3.6.3 Creating a Thesaurus from the Web

Finally, I would like to construct a thesaurus from webpages spidered from the web. Firstly,

this would demonstrate the efficiency of the SEXTANT(MX ) shallow pipeline and the parallel

implementation described in Section 5.3. It could also be used to address the noise or coverage

question posed by the corpus type results in Section 3.5.3. There are two components that

would need to be added to the similarity system. The first component is a web spider for

collecting randomly distributed web pages. The second component is new tokenization and text

processing that takes into account theHTML tags. This component will be crucial in extracting

text which is relatively noise-free. Using document clustering techniques fromIR or document

collections generated from domain-specific queries it may be possible to build topic specific

thesauri from large general text collections such as the web. These topic specific thesauri could

then be compared and perhaps merged together into a single thesaurus with topic markers.

3.7 Summary

This chapter has introduced and compared a wide range of approaches to extracting contex-

tual information for measuring semantic similarity. The performance of these approaches was

correlated with the sophistication of the linguistic processing involved. Unfortunately, the best

systems are therefore also the least scalable. Until recently, large enough quantities of text

were not available to make efficiency an issue. However, my results in Section 3.5.2 demon-

strate that once we have effectively unlimited amounts of raw text, shallow systems which are

linguistically informed but very efficient can prove to be the most effective.

It is a phenomenon common to manyNLP tasks that the quality or accuracy of a system in-

creases log-linearly with the size of the corpus. Banko and Brill (2001) also found this trend for

the task of confusion set disambiguation on corpora of up to one billion words. They demon-

strated behaviour of different learning algorithms with very simple contexts on extremely large

corpora. We have demonstrated the behaviour of a simple learning algorithm on much more

complicated contextual information on very large corpora.
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My experiments suggest that the existing methodology of evaluating systems on small corpora

without reference to the execution time and representation size ignores important aspects of the

evaluation ofNLP tools.

These experiments show that efficiently implementing and optimising theNLP tools used for

context extraction is of crucial importance, since the increased corpus sizes make execution

speed an important evaluation factor when deciding between different learning algorithms for

different tasks and corpora. These results also motivate further research into improving the

asymptotic complexity of the learning algorithms used inNLP systems. In the new paradigm, it

could well be that far simpler but scalable learning algorithms significantly outperform existing

systems.





Chapter 4

Similarity

similarity : resemblance0.122,parallel 0.083, contrast 0.061, flaw 0.060, dis-
crepancy 0.060, difference 0.056,affinity 0.052, aspect 0.052,correlation 0.052,
variation 0.052, contradiction 0.051, distinction 0.050, divergence 0.049, com-
monality 0.049, disparity 0.048, characteristic 0.048, shortcoming 0.048, signifi-
cance 0.046, clue 0.046, hallmark 0.045,. . .

Once an accurate and informative contextual representation of each headword has been ex-

tracted from raw text, it is compiled into a vector-space representation by counting the number

of times each context occurs. Headwords are then compared using the distributional hypothesis

that similar words appear in similar contexts, i.e. they have similar context vectors. With a con-

text space defined, measuring semantic similarity involves devising a function for measuring

the similarity between context vectors that best captures our notion of semantic similarity.

This chapter begins by factoring the existing similarity measures into two components: mea-

sures and weights. Section 4.1 defines the notation to describe them. Themeasurefunctions,

which calculate the overall similarity between the two weighted vectors, are described with

their motivation in Section 4.2.

Theweight functions transform the raw counts for each context instance into more compara-

ble values by incorporating a measure of the informativeness of the attribute and its frequency.

Intuitively, weight functions model the importance of an attribute. Section 4.3 describes the ex-

isting weight functions and in the process motivates an analogy between weight functions and

collocation extraction statistics. This insight leads to new weight functions that significantly

outperform the state-of-the-art using the evaluation described in Chapter 2.

69
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There are two types of similarity measures:distanceor dissimilaritymeasures, for instance the

L2 NORM distance, which increase as the distance between the vectors increases; andsimilarity

measures, for instance the COSINEmeasure, which decrease as the distance between the vectors

increases. I will use the termsimilarity measureloosely for all similarity functions, whether

they are similarity or dissimilarity measures.

There are also other properties that may be important depending on the application; for in-

stance, whether the similarity function issymmetric, sim(a,b) ≡ sim(b,a), and whether it satis-

fies thetriangle inequality, sim(a,b)+sim(b,c) ≥ sim(a,c). These properties are important for

clustering and search applications which sometimes rely on these assumptions for their cor-

rectness. For my evaluation methodology, which only relies on ranking, such properties are

not important; whether the function calculates similarity or dissimilarity simply just changes

whether ranking must be in ascending or descending order. Other work, e.g. Lee (2001), has

used a negative exponential to convert distance measures into similarity measures.

Lee (1999) considers these formal properties in her analysis of several different similarity mea-

sures. Lin (1998d) describes and compares several similarity functions. Weeds and Weir (2003)

compare the performance of the similarity measures proposed by Lee and Lin in terms of pre-

cision and recall. Strehl (2002) gives a detailed comparison of measure functions and their

impact on clustering.

Grefenstette (1994) breaks the weight function down into two further factors: aglobal weight

g and alocal weight l. The global weight is a function of the headword and attribute in the

relation and involves frequency counts over all extracted contexts. The local weight function

is based directly on the context instance frequency. The weight function is constrained to be

in the range 0–1. Pantel and Lin (2002a) incorporate a relation frequency-based correction

function that can also be considered as a local weight.

The work in this thesis does not explicitly consider separating local and global weight func-

tions. Also, my implementation does not restrict the weight function to the range 0–1, although

most of the successful weight functions are restricted to this range. Section 4.4 describes some

interesting results when the weight functions are allowed negative values.

Some measure functions are designed to compare frequency distributions, for instance, the

information theoretic measures proposed by Lee (1999). In these cases the weight function is

either the relative frequency or is a normalisation (to a total probability of one) of some other

previously applied weight function.
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4.1 Definitions

The context extractor returns a series of context relations with their instance frequencies. These

relations can be represented in nested form(w, (r,w′)), which distinguishes the attribute, but can

easily be flattened to give(w, r,w′). Computationally, nested relations are represented as sparse

vectors of attributes and frequencies for each headword.

From this representation we can calculate a large range of values including the headword,

attribute and relation frequencies (both token and type). These counts are not the same as

the number of times the headword or attribute occurs in the corpus because a single attribute

can appear in the overlapping context of several headwords, and a single headword may have

several attributes within each context. Also, not every instance of a headword in the corpus will

result in context instances being produced by the extractor. Hence the true instance frequency

of headwords and attributes is currently lost in the relation extraction process.

I describe the functions evaluated in this chapter using an extension of the notation used by

Lin (1998a), where an asterisk indicates a set of values ranging over all existing values of that

component of the relation tuple. In this notation, everything is defined in terms of the existence

of context instances, that is context relations with a non-zero frequency. The set of attributes

for a given headwordw on a given corpus is defined as:

(w,∗,∗) ≡ {(r,w′) | ∃ (w, r,w′)} (4.1)

For convenience, I have extended the notation to weighted attribute vectors by defining a

generic weighting function for each relationwgt(w, r,w′). This is the place holder for the

weight functions described in Section 4.3.

A subscripted asterisk indicates that the variables are bound together:∑
wgt(wm,∗r ,∗w′)×wgt(wn,∗r ,∗w′) (4.2)

which is a notational abbreviation of:∑
(r,w′)∈(wm,∗,∗)∩(wn,∗,∗)

wgt(wm, r,w
′)×wgt(wn, r,w

′)

For frequency counts used in defining weight functions there is a similar notation:

f (w,∗,∗) ≡
∑

(r,w′)∈(w,∗,∗)

f (w, r,w′) (4.3)
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p(w,∗,∗) ≡
f (w,∗,∗)
f (∗,∗,∗)

(4.4)

n(w,∗,∗) ≡ |(w,∗,∗)| (4.5)

Nw ≡ |{w |n(w,∗,∗) > 0}| (4.6)

Here f (w,∗,∗) is the total instanceor token frequency of the contexts thatw appears in;

n(w,∗,∗) is the totaltype frequency, i.e. the number of attributes thatw appears with. Us-

ing this notation, we can define the token and type frequency of each context, headword and

attribute, and within each attribute the word and relation type frequencies. These values rep-

resent all that is available from the relation extraction output by simple counting. All of the

measure and weight functions are defined in terms of these fundamental values.

4.2 Measures

Measure functions perform the high-level comparison of weighted vector-space representations

of each headword. Table 4.1 lists the measure functions which are described below and eval-

uated in Section 4.4. These measure functions cover several different types including simple

distance metrics like L-norms (Manhattan and Euclidean distance), Information Retrieval in-

spired set measures, weighted versions of these developed by Grefenstette (1994) and others,

other measures used in the literature and finally distributional methods which compare the rel-

ative frequency distributions based on information theoretic principles. I have also created my

own extensions to the set based measures using similar principles to Grefenstette (described in

Section 4.2.3). Alternative generalisations are marked with a dagger. An extensive but slightly

dated study of distance measures is given in Anderberg (1973).

4.2.1 Geometric Distances

The L1, L2 and theL∞ norms (also calledMinkowskidistances) are well known measures of

distance derived from a coordinate geometry perspective of distance. The norm numbern

indicates the power in the following general form:

Ln(w1,w2) = n
√∑

(wgt(w1,∗r ,∗w′)−wgt(w2,∗r ,∗w′))n (4.7)

TheL1 norm is also called theManhattanor Levenshteindistance:

L1(w1,w2) =
∑
|wgt(w1,∗r ,∗w′)−wgt(w2,∗r ,∗w′)| (4.8)
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L1 NORM
∑
|wgt(w1,∗r ,∗

′
w)−wgt(w2,∗r ,∗

′
w)| L2 NORM

√∑
(wgt(w1,∗r ,∗

′
w)−wgt(w2,∗r ,∗

′
w))2

SETCOSINE
|(w1,∗,∗)∩(w2,∗,∗)|√
|(w1,∗,∗)|×|(w2,∗,∗)|

COSINE
∑

wgt(w1,∗r ,∗w′ )×wgt(w2,∗r ,∗w′ )√∑
wgt(w1,∗,∗)2×

∑
wgt(w2,∗,∗)2

SETDICE
2|(w1,∗,∗)∩(w2,∗,∗)|
|(w1,∗,∗)|+|(w2,∗,∗)|

DICE
∑

wgt(w1,∗r ,∗w′ )×wgt(w2,∗r ,∗w′ )∑
wgt(w1,∗r ,∗w′ )+wgt(w2,∗r ,∗w′ )

DICE† 2
∑

min(wgt(w1,∗r ,∗w′ ),wgt(w2,∗r ,∗w′ ))∑
wgt(w1,∗r ,∗w′ )+wgt(w2,∗r ,∗w′ )

SETJACCARD
|(w1,∗,∗)∩(w2,∗,∗)|
|(w1,∗,∗)∪(w2,∗,∗)|

JACCARD
∑

min(wgt(w1,∗r ,∗w′ ),wgt(w2,∗r ,∗w′ ))∑
max(wgt(w1,∗r ,∗w′ ),wgt(w2,∗r ,∗w′ ))

JACCARD†
∑

wgt(w1,∗r ,∗w′ )×wgt(w2,∗r ,∗w′ )∑
wgt(w1,∗r ,∗w′ )+wgt(w2,∗r ,∗w′ )

L IN
∑

wgt(w1,∗r ,∗w′ )+wgt(w2,∗r ,∗w′ )∑
wgt(w1,∗,∗)+

∑
wgt(w2,∗,∗)

α-SKEW see Section 4.2.5

JS-DIV see Section 4.2.5

Table 4.1: Measure functions evaluated

and measures the component-wise absolute difference between two vectors. Lee (1999) quotes

a bounding relationship between theL1 norm and theKL -divergence (see Section 4.2.5). The

L2 norm is also called theEuclideandistance:

L2(w1,w2) = ||wgt(w1,∗r ,∗w′)−wgt(w2,∗r ,∗w′)|| (4.9)

=

√∑
(wgt(w1,∗r ,∗w′)−wgt(w2,∗r ,∗w′))2 (4.10)

Lee (1999) quotes Kaufman and Rousseeuw (1990) who suggest that theL2 norm is extremely

sensitive to the effects of outliers in the vector and prefer theL1 norm. The final norm is theL∞

norm, which is equivalent to taking the maximum distance between the corresponding relation

weights of the two terms.

Finally, many methods simply combine the weights of the corresponding context relations.

This is particularly common with mutual information weighted scores, for example, Hindle

(1990) and Luk (1995) (see Section 4.3.4).

4.2.2 Information Retrieval

The measure functions prefixed with SET- in Table 4.1 use the set theoretic model from early

experiments inIR (van Rijsbergen, 1979). These measures include theDice, Jaccard, co-

sineandoverlapmeasures which are summarised in Manning and Schütze (1999, page 299).

These methods have been extended to incorporate weightings for each set member. Thecosine

measure, originally taken from linear algebra, extends naturally to weighted vectors and has

become the standard measure for weighted vectors inIR.
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Theoverlapmeasure counts the number of attributes the two headwords have in common as a

fraction of the number of attributes in the smaller headword, i.e. the one with fewer attributes

by type. For objectsobjm andobjn the overlap measure is:

2|(w1,∗,∗)∩ (w2,∗,∗)|
min(|(w1,∗,∗)|, |(w2,∗,∗)|)

(4.11)

TheDice measure (Dice, 1945) is twice the ratio between the number of shared attributes and

the total number of attributes for each headword, i.e. including the common attributes twice.

The constant ensures the function ranges between 0 and 1. Dice has been used in manyNLP

andIR applications including compiling multi-word translation lexicons (Smadja et al., 1996).

2|(w1,∗,∗)∩ (w2,∗,∗)|
|(w1,∗,∗)|+ |(w2,∗,∗)|

(4.12)

TheJaccardmeasure, also called theTanimotomeasure (Tanimoto, 1958), compares the num-

ber of common attributes with the number of unique attributes for a pair of headwords:

|(w1,∗,∗)∩ (w2,∗,∗)|
|(w1,∗,∗)∪ (w2,∗,∗)|

(4.13)

Grefenstette (1994) uses a weighted generalisation of Jaccard (Section 4.2.3).

Witten et al. (1999) motivate the use of thecosinemeasure inIR over the dot product and

the L1 and higher order norms. Thedot or inner productof two document vectors developed

naturally from generalising coordinate wise matching. Unfortunately it does not account for

the length of each vector, so it always favours longer vectors. However, the norm distances

(Section 4.2.1) discriminate too strongly against vectors with significantly different lengths,

such as documents and queries in anIR context, or common and rare words inNLP. The cosine

measure overcomes these problems by considering the difference indirectionof two vectors in

context space as opposed to the distance. This has a well understood geometric interpretation

starting from the inner product between two vectors~w1 and~w2:

~w1 · ~w2 = ||~w1|| ||~w2||cosθ (4.14)

which can be transformed giving the angle (the cosine of the angle) between the two vectors:

cosθ =
~w1 · ~w2

||~w1|| ||~w2||
(4.15)

=

∑
wgt(w1,∗r ,∗w′)wgt(w2,∗r ,∗w′)√∑

wgt(w1,∗,∗)2∑wgt(w2,∗,∗)2
(4.16)
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4.2.3 Set Generalisations

Grefenstette (1994) generalises the Jaccard similarity measure to non-binary value (fuzzy sets)

semantics, by relaxing the binary membership test, so that each attribute is represented by a

real value in the range 0–1. This means that intersection, union and set cardinality must be

reformulated. Grefenstette’s generalisation replaces intersection with the minimum weight,

and union with a maximum weight. Set cardinality is generalised to summing over the union

of the attributes of the headwords:∑
min(wgt(w1,∗,∗),wgt(w2,∗,∗))∑
max(wgt(w1,∗,∗),wgt(w2,∗,∗))

(4.17)

By constraining the weights to either 0 or 1, it is clear that the weighted measure reduces to

the binary Jaccard measure. There are also alternative generalisations for Jaccard and other set

measures. For example, the overlap metric can be generalised as the sum of the maximum of

weights forw1 andw2 on the numerator, and the sum of the minimum weights on the denom-

inator. The Dice measure can be extended in a similar way. It turns out that the generalisation

for Dice and Jaccard can be equivalent depending on the method under consideration. Table 4.1

shows the different generalisations used in this thesis for Jaccard and Dice. Alternate gener-

alisations are marked with a dagger. There are other possible generalisations of the Jaccard

function that I have not considered here (e.g., Strehl, 2002, page 94). Dagan et al. (1993) use

a form of Jaccard which separates the left and right contexts which is equivalent to using a

window extractor with the relation type equal toleft or right.

4.2.4 Information Theory

Lin (1998d) proposes his own similarity metric based on three intuitions:

• The similarity between objectsA andB is related to what they have in common (called

theircommonality). The more commonality they share the more similar they are.

• The similarity between objectsA andB is inversely related to the differences between

them. The more differences they have, the less similar they are.

• The maximum similarity between objectsA andB should only be reached when they are

identical, no matter how much commonality they share.

He then presents a series of information theoretic (and other) assumptions to constrain his

definition of a similarity measure. The information theory used is the information measure
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I (X) for an eventX, defined as the negative log probability (Cover and Thomas, 1991):

I (X) = − logP(X) (4.18)

The 6 assumptions which define Lin’s similarity measure are:

Assumption 1: Commonality is defined asI (common(A,B)) wherecommon(A,B) is a com-

mon proposition or event. In our case,common(A,B) refers to common attributes be-

tween headwordsA andB.

Assumption 2: Difference is defined asI (desc(A,B))− I (common(A,B)) wheredesc(A,B) is

a proposition that describes “whatA andB are”. In our case,desc(A,B) is the attributes

representing each headword.

Assumption 3: Similarity is only a function of commonality and difference.

Assumption 4: The similarity of identical objects is one.

Assumption 5: The similarity of objects with no commonality is zero.

Assumption 6: Overall similarity between objects is a weighted average of their similarity

from “different” perspectives. For instance, if there are two sources of features, similarity

should be calculated by combining the individual similarities using a weighted average.

Using these assumptions Lin derives the equation of similarity as:

sim(A,B) =
logP(common(A,B))

logP(desc(A,B))
(4.19)

Lin (1998d) then goes on to use this similarity measure for three tasks: similarity between

ordered ordinal values based on their distribution; string similarity (compared with edit distance

and trigram similarity); and for word similarity using grammatical relations from MINIPAR

(Section 3.3.4) using the equation:

sim(w1,w2) =
2I (F(w1)∩F(w2))
I (F(w1))+ I (F(w2))

(4.20)

whereF(w) returns the set of features (which I callattributes) for the headwordw.

Any generalisation of the intersection here will lose any extra information about the joint prob-

ability of the feature set. However, in this context, wordsw1 andw2 are assumed to be in-

dependent, so there is no such information. By factoring out the information measure, we



4.2. Measures 77

are left with a function similar to a partially generalised Dice. Again, there is the problem of

interpreting the intersection:

sim(w1,w2) =
2wgt(F(w1)∩F(w2))

wgt(F(w1))+wgt(F(w2))
(4.21)

Taking the product of the two weight functions will lead to the generalised Dice measure. An

alternative that I consider here, as does Lin (1998a), is to consider the sum of the two weights,

and remove the constant so the assumptions are still satisfied:∑
wgt(w1,∗r ,∗w′)+wgt(w2,∗r ,∗w′)∑

wgt(w1,∗,∗)+
∑

wgt(w2,∗,∗)
(4.22)

4.2.5 Distributional Measures

Pereira et al. (1993) consider the task of vector-based similarity as one of comparing the con-

ditional distributions of the headwordsp = P(∗|w1) and q = P(∗|w2). Their approach uses

information theoretic measures ofdistributional similarityas measures of semantic similar-

ity. The P(∗|w) distributions are either estimated directly as relative frequenciesf (x,w)
f (x) or after

smoothing has been applied to the raw counts.

The basis of these distributional measures is theKullback-Leibler divergence(KL -divergence)

or relative entropy(Cover and Thomas, 1991, page 18):

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

(4.23)

where0log0 is defined to be zero using limiting arguments. TheKL -divergence can be inter-

preted as the expected value of theloss of informationI (q(x))− I (p(x)) of modelling the source

distributionp(x) with another distributionq(x). In this sense, if one distribution can be used to

encode another without much loss of coding efficiency they are similar.

The KL -divergence is non-negative and equal to zero iffp(x) ≡ q(x)∀x. It is not symmetrical

(i.e. D(p||q) . D(q||p)), but this is not a major difficulty since we can easily take the sum of

bothKL -divergences (which Kullback called thedivergence). Lee (1997) gives several different

motivations for the use of theKL -divergence as a measure of distributional similarity.

Although theKL -divergence has many theoretical benefits, it is hard to implement in practice

because it is undefined for the case whereq(x) = 0 and p(x) , 0. For semantic similarity, the

distributions are very sparse making this is a significant problem. There are two alternatives:

use of smoothing on the distributionsp(x) andq(x) or modify the divergence in some way to
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handle this problem. Lee (1997) considers both approaches, using a back-off smoothing, with

weightα(x), to the marginalp(y) for theKL -divergence:

pBO(y|x) =


f (x,y)
f (x) f (x,y) > 0

α(x)p(y) otherwise
(4.24)

A significant disadvantage of this approach is that the calculation becomes very expensive

because the zeros can no longer be ignored (p.c. Stephen Clark). I will not consider using back-

off, but instead use the modifications to theKL -divergence that Lee (1997, 1999) proposes.

The first of these is thetotal divergence to the mean, also called theJensen-Shannon(JS)

divergence, which involves comparing both distributions to the mean of the two distributions:

A(p,q) = D(p||
p+q

2
)+D(q||

p+q
2

) (4.25)

This overcomes the problem of zeros in either thep or q distribution and at the same time makes

the measure symmetrical. Also,A(p,q) still maintains the property that only identical distri-

butions have a score of zero. Lee (1999) gives an algebraic manipulation of 4.25 which only

requires calculation over the shared attributes, giving some performance improvement over the

näıve approach. She also demonstrates thatA(p,q) has a maximum value of2 log2. Lee (1997)

compares divergence with other measures graphically suggesting that they are less susceptible

to sampling error because their values deviate less for small changes in the parameters.

An alternative to theJS-divergence is to only add a weighted amount of the second distribution

to the first, which leads to theα-skew divergence(Lee, 1999):

sα(p,q) = D(p||αp+ (1−α)q) (4.26)

Forα = 1 theα-skew divergence is theKL -divergence and forα = 1
2 theα-skew divergence is

twice theJS-divergence. Commonly used values forα are 0.1 and 0.01.

4.3 Weights

The context relation weight function is designed to assign higher value to contexts that are

more indicative of the meaning of that word. These weight functions can incorporate fre-

quency counts for any component(s) of the relation tuple. Table 4.2 lists the weight functions

considered in this thesis. The weight functions include simple frequency functions; approaches

from information retrieval; and from existing systems (Grefenstette, 1994; Lin, 1998a,d).
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IDENTITY 1.0 FREQ f (w, r,w′)

RELFREQ
f (w,r,w′)
f (w,∗,∗) TF-IDF

f (w,r,w′)
n(∗,r,w′)

TF-IDF† log2( f (w,r,w′)+1)

log2(1+
N(r,w′)
n(∗,r,w′) )

GREF94 log2( f (w,r,w′)+1)
log2(n(∗,r,w′)+1)

CHI2 see Section 4.3.5 LR see Section 4.3.5

L IN98A log( f (w,r,w′) f (∗,r,∗)
f (∗,r,w′) f (w,r,∗) ) L IN98B − log(n(∗,r,w′)

Nw
)

DICE
2p(w,r,w′)

p(w,∗,∗)+p(∗,r,w′)

MI log( p(w,r,w′)
p(w,∗,∗)p(∗,r,w′) ) TTEST

p(w,r,w′)−p(∗,r,w′)p(w,∗,∗)
√

p(∗,r,w′)p(w,∗,∗)

Table 4.2: Weight functions compared in this thesis

My proposed weight functions are motivated by the intuition that highly predictive attributes

are strong collocations with their headwords. This in itself is not a new concept,mutual in-

formationhaving been successfully used as a weighting function by a number of systems in

the past (Hindle, 1990; Lin, 1998c; Luk, 1995). However, this is the first research to con-

nect weighting with collocational strength and test various weight functions systematically. I

have implemented most of the approaches in theCollocationschapter of Manning and Schütze

(1999), including the t-test,χ2-test and likelihood ratio.

I have also experimented with limiting these functions to a positive range, which has been used

in the past (Hindle, 1990; Lin, 1998c), and adding extra frequency weighting. In the weight

function naming convention, the± suffix indicates an unrestricted range and the LOG suffix

indicates that an extralog2( f (w, r,w′)+1) factor has been added to promote the influence of

higher frequency attributes. The† suffix indicates an alternative formula.

4.3.1 Simple Functions

The simple weight functions include using the value 1 if a relation exists regardless of its

frequency and zero otherwise (IDENTITY); using the raw frequency directly (FREQ) or using

the relative frequency (RELFREQ). The distributional methods, such as theα-skew divergence,

are only properly defined with the relative frequency weight function. However, it is possible to

consider alternative weight functions by renormalising the vector after applying the alternative

weight function.
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4.3.2 Information Retrieval

The standardIR term weighting functions are based on the term frequency-inverse document

frequency (TF-IDF) principle. Theterm frequencyis the number of times the term appears in

a particular document, or in our case the context instance frequencyf (w, r,w′). Large term

frequencies indicate the term is representative of the document (in this case, the meaning of

the headword). Thedocument frequencyis the number of documents the term appears in, or in

our case the attribute frequencyn(∗, r,w′). Large document frequencies indicate the term does

not discriminate well between documents (meanings). For instance, it might be a determiner.

TF-IDF balances these two competing factors by taking the ratio.

Witten et al. (1999, pp. 183–185) describe various ways of encoding theTF-IDF principle. The

term frequency can be either taken directlyf (w, r,w′) or using a logarithm to reduce the impact

of high frequencieslog2(1+ f (w, r,w′)). Here we have followed Grefenstette’s convention of

adding one to the frequency so thatf (w, r,w′)= 1 gives a weight of one after the logarithm. The

inverse document frequency can be used directly1n(∗,r,w′) or again reduced using a logarithm:

log2

(
1+

Nw

n(∗, r,w′)

)
(4.27)

Witten et al. also describe several other variations forTF-IDF.

4.3.3 Grefenstette’s Approach

In developing my implementation of SEXTANT, a number of inconsistencies were discovered

between the description inExplorations in Automatic Thesaurus Discovery(EATD, Grefen-

stette, 1994) of the local and global weight functions and the quoted examples and results.

With Grefenstette’s assistance I was able to identify his original weighting functions. Making

a clear distinction between attributes and relations clarifies the weighting function descriptions.

In particular, the global weight function (EATD, page 48) does not satisfy the 0–1 range con-

straint, does not match the experimental results (EATD, Figure 3.14, page 52) and the results

obtained with this formula are not as good as those quoted (EATD, Figure 3.12, page 51) using

Grefenstette’s original data. With Grefenstette’s assistance and access to his original SEXTANT

implementation I have inferred the global weight function used. Grefenstette’s source code

contains the several different formula which could be selected.



4.3. Weights 81

The global function, based on the description inEATD with corrections from the source code is

an entropy-based global measure (p.c. Grefenstette):

g(w, r,w′) = 1+
∑

p(w|r,w′) log2(p(w|r,w′)) (4.28)

wherep(w|r,w′) is f (w,r,w′)
f (∗,r,w′) . The local weighting function is a log-frequency measure:

l(w, r,w′) = log2(1+ f (w, r,w′)) (4.29)

These functions resolve some of the inconsistencies inEATD. However, the best performance

on my dataset was produced by a different weight function from Grefenstette’s source code,

which was another variation ofTF-IDF:

log2( f (w, r,w′)+1)
log2(n(∗, r,w′)+1)

(4.30)

4.3.4 Mutual Information

Perhaps the most widely-used weight function in both vector-space similarity and widerNLP

tasks ismutual information(MI , Fano, 1963), which is often defined inNLP as:

I (x,y) = log
p(x,y)

p(x)p(y)
(4.31)

However this ispointwisemutual information, i.e. between two random eventsx∈ X andy∈ Y.

The full definition of mutual information between two random variablesX andY is:

I (X;Y) =
∑

x

∑
y

p(x,y) log
p(x,y)

p(x) p(y)
(4.32)

The mutual information can be interpreted as theKL -divergence (defined above) between the

joint distributionp(x,y) and the product or independent distributionp(x)p(y).

Church and Hanks (1989, 1990) use the termassociation ratiorather than (pointwise) mu-

tual information because for word tasks with order encoded in the frequency count( f (x,y) .

f (y, x)), the calculation does not satisfy the symmetrical property of information(I (x,y) ≡

I (y, x)). The second reason is that Church and Hanks use a window method for extracting

frequency counts can sof (x,y) can be larger thanf (x) or f (y). They employ mutual informa-

tion to identify strong collocations. It is now recognised as the standard approach to this task

(Manning and Scḧutze, 1999).
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Hindle (1990) uses pointwise mutual information as a weight function between headwords and

attributes (in Hindle’s case the subject and object relations between the nouns and their verbs)

for vector-space similarity experiments:

I (w, r,w′) = log2
p(w, r,w′)

p(w,∗,∗) p(∗, r,w′)
(4.33)

= log2
f (w, r,w′) f (∗,∗,∗)
f (w,∗,∗) f (∗, r,w′)

(4.34)

Hindle claims thatMI is better than cosine because it is roughly proportional to the number of

contexts in common, and better than inner product because it is guaranteed that the noun will

be most similar to itself. In fact, Hindle’s weighting is a bit more complicated than pointwise

mutual information. He uses the smallest absolute mutual information value if the weights are

both positive or both negative, otherwise the similarity score for that particular relation is zero.

It is common to restrict the range of the mutual information score to non-negative values e.g.

Lin (1998d) and Dagan et al. (1993).

Lin (1998a) uses a slightly different calculation of the mutual information for a relation than

the earlier work of Hindle, based on different dependence assumptions in the product estimate:

I (w, r,w′) = log2
p(w, r,w′)

p(w)p(r |w)p(w′ |w)
(4.35)

= log2
f (w, r,w′) f (∗, r,∗)
f (w, r,∗) f (∗, r,w′)

(4.36)

Brown et al. (1992) use mutual information to determine which clusters to merge in their cluster

based n-gram language modelling. Dagan et al. (1993) use mutual information for estimating

cooccurrence probabilities. Luk (1995) uses mutual information to score cooccurrences in

definition concepts as part of a word sense disambiguation system. Turney (2001) uses mutual

information with cooccurrence probabilities for selecting the correct word in vocabulary tests.

4.3.5 New Approach

The previous section has shown that a wide range of systems have used mutual information

to weight similarity terms by their significance. The success of mutual information in both

collocation identification and vector-space similarity suggests there are parallels between these

tasks. My hypothesis is thatstrong correlates are very informative for semantic similaritybe-

cause they occur frequently enough to be reliable and their correlation with specific headwords

makes them indicative of the nature of the headword. I have tested this by implementing the
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t-test,χ2-test and likelihood ratio methods described in Manning and Schütze (1999, chap. 5)

for extracting collocations.

The t-test and theχ2-test are standard hypothesis testing techniques. The standard approach

is to define anull hypothesisthat contradicts what we wish to demonstrate and then reject

it using the statistical test. For collocation extraction, thenull hypothesisis that there is no

relationship or dependence between the two words, that is the product distributionp(x,y) =

p(x)p(y) accurately models the relationship between two words. To reject this we compare the

product distribution with the observed joint distribution using a statistical test.

For instance, the t-test compares a valuex against a normal distribution defined by its meanµ,

sample variances2 and sample sizeN:

τ =
x−µ

s

√
N (4.37)

In the context of calculating association strength within relations, that is between headwords

and attributes, this becomes:

p(w, r,w′)− p(∗, r,w′)p(w,∗,∗)√
p(∗, r,w′)p(w,∗,∗)

(4.38)

Theχ2-test for collocation extraction, uses a 2 by 2contingency tablewhich counts the events

involving the headword and the attribute. The four cells store the frequency of the headword

and attribute cooccurring (Owa), the headword occurring without the attribute (Owā), the at-

tribute occurring without the headword (Ow̄a), and neither of them occurring (Ow̄ā). For context

relation weighting theχ2-test becomes:

N(OwaOw̄ā−OwāOw̄a)2

(Owa+Owā)(Owa+Ow̄a)(Owā+Ow̄ā)(Ow̄a+Ow̄ā)
(4.39)

where N is the total number of contextsf (∗,∗,∗) and the contingency cells are:

Owa = f (w, r,w′) (4.40)

Owā = f (w,∗,∗)−Owa (4.41)

Ow̄a = p(∗, r,w′)−Owa (4.42)

Ow̄ā = N−Owā−Ow̄a+Owa (4.43)
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MEASURE WEIGHT DIRECT P(1) P(5) P(10) INVR
COUNT % % % –

SETCOSINE TTEST 1276 14 15 15 0.76
SETDICE TTEST 1496 63 44 34 1.69

SETJACCARD TTEST 1458 59 43 34 1.63
COSINE TTEST 1276 14 15 15 0.76
DICE TTEST 1536 19 20 20 0.97
DICE† TTEST 1916 76 52 45 2.10

JACCARD TTEST 1916 76 52 45 2.10
JACCARD† TTEST 1745 40 30 28 1.36

L IN TTEST 1826 60 46 40 1.85
JS-DIV RELFREQ 1619 66 46 35 1.76
α-SKEW RELFREQ 1456 51 40 30 1.53

Table 4.3: Evaluation of measure functions

4.4 Results

For computational practicality, I make the simplifying assumption that the performance of mea-

sure and weight functions are independent of each other. I have run experiments over a range

of measure-weight combinations which suggest that this is a reasonable approximation. There-

fore, I have evaluated the weight functions using the DICE† measure, and the measure functions

using the TTEST weight because they produced the best results in my previous experiments.

The exception to this is the divergence measures, which require the RELFREQ weight.

Table 4.3 presents the results of evaluating the measure functions. The best performance across

all measures was shared by JACCARD and DICE†, which produced identical results for the 70

test nouns. DICE† is slightly faster to compute and is to be preferred, although for historical

reasons JACCARD has been used in later experiments. The next best system, which performed

almost 5% worse on DIRECT, was Lin’s measure, also another variant of the DICE-JACCARD

measure functions. On the other evaluation measures, particularly the precision measures,

DICE† and JACCARD have produced outstanding results. The combination of measuring the

common and unique attributes that these measures encode (Lin, 1998d) performs best for se-

mantic similarity experiments. TheJS-divergence is the best of the rest, significantly outper-

forming the remaining measures. Surprisingly, theα-skew divergence performs badly, but this

might be improved by experimenting with the value ofα.

Table 4.4 presents the results of evaluating the weight functions. Here TTEST significantly

outperformed the other weight functions, which supports the intuition that good context rela-

tions are strong collocates of the headword. Lin’s information theoretic measure LIN98A and

Hindle’s mutual information MI measure are the next best performing weights, adding further
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WEIGHT DIRECT P(1) P(5) P(10) INVR
COUNT % % % –

IDENTITY 1228 46 34 29 1.33
FREQ 1227 63 38 28 1.51

RELFREQ 1614 64 49 36 1.79
TF-IDF 1509 46 39 33 1.53

TF-IDF† 1228 59 38 29 1.47
GREF94 1258 54 38 29 1.46
L IN98A 1735 73 50 42 1.96
L IN98B 1271 47 34 30 1.37

MI 1736 66 49 42 1.92
CHI2 1623 33 27 26 1.24
DICE 1480 61 45 34 1.70

TTEST 1916 76 52 45 2.10
LR 1510 53 39 32 1.58

Table 4.4: Evaluation of bounded weight functions

WEIGHT DIRECT P(1) P(5) P(10) INVR
COUNT % % % –

DICELOG 1498 67 45 35 1.73
TTESTLOG 1865 70 49 41 1.99

MIL OG 1841 71 52 43 2.05

Table 4.5: Evaluation of frequency logarithm weighted measure functions

WEIGHT DIRECT P(1) P(5) P(10) INVR
COUNT % % % –

MI± 1511 59 44 39 1.74
MIL OG± 1566 61 46 41 1.84
TTEST± 1670 67 50 43 1.96

TTESTLOG± 1532 63 50 42 1.89

Table 4.6: Evaluation of unbounded weight functions

support for the collocation hypothesis. It is surprising that the other collocation extractors did

not perform as well, since TTEST is not popular for collocation extraction because of its be-

haviour on low frequency counts. Clearly, this behaviour is beneficial for semantic similarity.

The results for the frequency logarithm weighted evaluation functions are shown in Table 4.5.

The performance of the DICE and MI weight functions improve with this added frequency

weighting which suggest that DICE and MI do not take frequency into account enough. On the

other hand, the performance of TTEST is reduced suggesting frequency is already contributing.

One difficulty with weight functions involving logarithms or differences is that the score is

sometimes negative which often has a detrimental effect on the overall performance. The

results in Table 4.6 show that weight functions that are not bounded below by zero do not
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perform as well on thesaurus extraction. However, unbounded weights do produce interesting

and unexpected results: they tend to return misspellings of the headword and its synonyms,

abbreviations and lower frequency synonyms.

For instance, TTEST± returnedCo, Co. andPLC for company, but they do not appear in the

synonym lists extracted with TTEST. The unbounded weight functions also extracted more

hyponyms, for example, corporation names forcompany, includingKodak andExxon. Finally

unbounded weights tended to promote synonyms from minority senses because frequent senses

get demoted by negative weights. For example, TTEST± returnedwritings, painting, fieldwork,

essay and masterpiece as the best synonyms forwork, whereas TTEST returnedstudy, re-

search, job, activity andlife. The TTEST± function is negative when the joint probability is less

than the expected value from the product distribution (Equation 4.38). These results suggest

this occurs more often for more frequent synonyms, and so rare synonyms get a higher relative

rank when the weight function is unbounded.

4.5 Summary

This chapter has presented a systematic study of the semantic similarity measures described in

the literature. It begins by factoring similarity measures into a weight function that assesses

the informativeness of contextual information and a measure function that compares weighted

context vectors. It extends notation introduced by Lin (1998a) to conveniently describe the

measure and weight functions. The evaluation of a range of measure functions taken from

geometry,IR and existing similarity systems in this chapter has shown the DICE† and JACCARD

measures to be superior by a significant margin. DICE† is the preferred choice because it is

slightly more efficient to compute.

This chapter also proposes new weight functions inspired by the observation that informative

attributes are strong collocates with their headwords because strong collocations are relatively

frequent and highly correlated. Testing this intuition, I implemented the collocation extraction

statistics described in theCollocationschapter of Manning and Schütze (1999). The evaluation

shows that the TTEST weight function, based on the t-test significantly outperforms every

weight functions, fromIR and existing similarity systems, including MI. However, good results

using MI and the other collocation extraction functions suggests this intuition might be true.

However, the list of measure and weight functions is still incomplete. I intend to add other

measure and weight functions, and also test many more weight-measure function combinations.
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Methods

method : technique 0.169, procedure 0.095, means 0.086, approach 0.081,
strategy 0.074, tool 0.071, concept 0.062,practice 0.061, formula 0.059,tac-
tic 0.059, technology 0.058, mechanism 0.058,form 0.054, alternative 0.052,
standard 0.051,way 0.050,guideline 0.049,methodology0.048, model 0.047,
process0.047,. . .

This chapter covers three different algorithms and implementation techniques for improving

vector-space similarity systems. The first section describes the use of ensembles for improv-

ing the quality of similarity results, and corresponds to part of Curran (2002). The second

section improves the algorithmic complexity of the naı̈ve nearest-neighbour algorithm, and

corresponds to part of Curran and Moens (2002a). The third section describes the large-scale

experiments on over 2 billion words of text, using my efficient SEXTANT(MX ) implementation

with the best performing measure and weighting functions found in the previous two chapters.

It also describes the implementation techniques required to perform these large-scale experi-

ments using a parallelized version of the nearest-neighbour algorithm which runs on a Beowulf

cluster.

5.1 Ensembles

Ensemble learning is a machine learning technique that combines the output of several different

classifiers with the goal of improving classification performance. The classifiers within the en-

semble may differ in several ways, such as the learning algorithm or knowledge representation

87
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used, or data they were trained on. Ensemble learning has been successfully applied to numer-

ousNLP tasks, includingPOStagging (Brill and Wu, 1998; van Halteren et al., 1998), chunking

(Tjong Kim Sang, 2000; Tjong Kim Sang et al., 2000), word sense disambiguation (Pederson,

2000) and statistical parsing (Henderson and Brill, 1999). Dietterich (2000) presents a broad

introduction to ensemble methods.

Ensemble methods overcome learner bias by averaging the bias over different systems. For an

ensemble to be more effective than its constituents, the individual classifiers must have better

than 50%accuracyand must producediverseerroneous classifications (Dietterich, 2000). Brill

and Wu (1998) call this complementary disagreementcomplementarity. Although ensembles

are often effective on problems with small training sets, recent work suggests this may not be

true as dataset size increases. Banko and Brill (2001) found that for confusion set disambigua-

tion with corpora larger than 100 million words, the best individual classifiers outperformed

ensemble methods.

One limitation of their results is the simplicity of their task and methods used to examine the

efficacy of ensemble methods. However, the task was constrained by the ambitious use of one

billion words of training material. Disambiguation is relatively simple because confusion sets

are rarely larger than four elements. The individual methods must be inexpensive because of

the computational burden of the huge training set. They must perform limited processing of the

training corpus and can only consider a fairly narrow context surrounding each instance. Fi-

nally, because confusion set disambiguation only uses local context, these experiments ignored

the majority of the one billion words of text.

This section explores the value of ensemble methods for the more complex task of computing

semantic similarity, training on corpora of up to 300 million words. The increased complexity

leads to results contradicting Banko and Brill (2001), which are then explored further using en-

sembles of different contextual complexity. This work emphasises the link between contextual

complexity and the problems of representation sparseness and noise as corpus size increases,

which in turn impacts on learner bias and ensemble efficacy.

5.1.1 Existing Approaches

Hearst and Grefenstette (1992) have proposed a combination of the results of their respective

similarity systems to produce a hyponym hierarchy. Although this is strictly not an ensemble



5.1. Ensembles 89

method it does use the combined information from their two different systems to make a final

decision. The results from these two methods are very different, so each system brings a lot

of new information to the combination. In particular, Hearst and Grefenstette (1992) find a

significant improvement in recall, which is a major problem for hyponym extraction systems.

Turney et al. (2003) combine several different similarity systems including Latent Seman-

tic Analysis (Landauer and Dumais, 1997), pointwise mutual information (Turney, 2001),

thesaurus-based similarity and similarity calculated using cooccurrence scores fromGoogle.

They implement a committee of these approaches using several mixture models which de-

scribe how the probability distribution from each system is weighted. In each mixture model,

each system is associated with a weight which is optimized on training data using a simple

hill-climbing algorithm.

Littman et al. (2002) implement an open architecture for solving crossword puzzles where sev-

eral independent programs contribute candidate answers for each clue, which are then merged

and tested by a central solver. This problem is quite similar to the vocabulary tests used by

Turney et al. (2003) for evaluation.

5.1.2 Approach

The experiments in this section have been conducted using ensembles consisting of up to six

similarity systems each using a different context extractor described in Chapter 3. The six con-

text extractors are: CASS, M INIPAR, SEXTANT(NB), W(L1,2), W(L1R1) and W(L1R1∗). The

similarity systems use the same TTEST weight and JACCARD measure function. They cover a

wide range in performance, as summarised in the top half of Table 5.1. Each ensemble member

returns the usual 200 synonyms and scores for each of the 70 headwords in the experimental

test set.

I have built ensembles from all six context extractors, labelled with an asterisk in the re-

sults (e.g. MEAN(∗)), and the top three performing extractors, MINIPAR, SEXTANT(NB) and

W(L1R1), (e.g. MEAN(3)), based on the results in Table 5.1.

Ensemble voting methods for this task are interesting because the output of the component

systems consists of an ordered set of extracted synonyms rather than a single class label or a

probability distribution. To test for subtle ranking effects I have implemented three different

methods of combination:
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M EAN: the arithmetic mean rank of each headword over the ensemble.

HARMONIC : the harmonic mean rank of each term.

M IXTURE : ranking based on the mean score for each term.

For the arithmetic and harmonic mean voting methods, the system calculates the meanranking

for each synonym over all of the ensemble members, and then reranks them using the mean

rank. The arithmetic and harmonic means are compared because they behave very differently

when the values being combined vary considerably. For the mixture method, the system cal-

culates the meanscorefor each synonym over all of the ensemble members, and then reranks

them using the mean score. The individual member scores are not normalised because each

extractor uses the same similarity measure and weight function. Ties are arbitrarily broken.

The ensemble assigns a rank of 201 and similarity score of zero to words that did not appear

in the list of 200 synonyms returned by each ensemble member. These boundaries for unseen

synonyms were chosen to be slightly worse than the rank and score of the last extracted syn-

onym. The values of the boundary parameters could have a considerable impact on the results

since they determine how much of an influence words can have that are not returned by all of

the ensemble members. However, I have not attempted to experiment with these parameters.

5.1.3 Calculating Disagreement

To measure the complementary disagreement between individual ensemble members,a and

b, I have calculated both Brill and Wu’scomplementarityC and theSpearman rank-order

correlationRs (Press et al., 1992) to compare their output:

C(A,B) = (1−
|errors(A)∩errors(B)|

|errors(A)|
)∗100% (5.1)

Rs(A,B) =

∑
i(r(Ai)− r(A))(r(Bi)− r(B))√∑

i(r(Ai)− r(A))2
√∑

i(r(Bi)− r(B))2
(5.2)

whereA andB are synonym lists produced by the two members andr(Xs) is the rank of syn-

onym s in synonym listX andr(X) is the mean rank of the synonyms inX. The Spearman

rank-order correlation coefficient is the linear correlation coefficient between the rankings of

elements ofA andB. Rs is a useful non-parametric comparison for when the ranking is more



5.1. Ensembles 91

0 50 100 150 200 250 300 350
Corpus Size (millions of words)

800

1000

1200

1400

1600

1800

2000

D
ire

ct
 M

at
ch

es

Cass
Minipar
Sextant
W(L

1,2
)

W(L
1
R

1
)

W(L
1
R

1
*)

Figure 5.1: Individual performance to 300MW using the DIRECT evaluation

relevant than the scores assigned to the individual items. For the results shown in Table 5.2, the

average over all pairs in the ensemble is quoted.

5.1.4 Results

Figure 5.1 shows the performance trends for the individual extractors on corpora ranging from

2.3 million up to 300 million words. The best individual context extractors are SEXTANT(NB),

M INIPAR and W(L1R1), with SEXTANT(NB) outperforming MINIPAR beyond approximately

200 million words. These three extractors are combined to form the top-three ensemble. CASS

and the other window methods perform significantly worse than SEXTANT(NB) and MINIPAR.

Interestingly, the window extractor without positional information W(L1R1∗) performs almost

as well as the window extractor with positional information W(L1R1) on larger corpora, sug-

gesting that position information is not as useful with large corpora, perhaps because the left

and right set of words for each headword becomes relatively disjoint.

Figure 5.2 plots the learning curve over the range of corpus sizes for the best three individual

methods and the full ensembles. Although the ensembles clearly dominate the individual ex-
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Figure 5.2: Ensemble performance to 300MWs using the DIRECT evaluation

tractors for the entire learning curve, these plots indicate that ensemble methods are of more

value, at least in percentage terms, for smaller training sets. If this trend were to continue,

then we would eventually expect no benefit from using an ensemble, as suggested by Banko

and Brill (2001). However, the trend shown does not give a clear indication either way as to

whether the individual extractors will eventually asymptote to the ensemble methods.

Table 5.1 presents the final results for all the individual extractors and the six ensembles on the

experimental corpus. At 300 million words, all of the ensemble methods outperform the indi-

vidual extractors which contradicts the results obtained by Banko and Brill (2001) for confusion

set disambiguation. The best performing ensembles, MIXTURE(∗) and MEAN(∗), combine the

results from all of the individual extractors. MIXTURE(∗) performs nearly 10% better on the

DIRECT evaluation than SEXTANT(NB), the most competitive individual context extractor at

300MWs. Table 5.1 also shows that full ensembles, combining all six individual extractors,

outperform ensembles combining only the top three extractors. This seems rather surprising

given that the other individual extractors seem to perform significantly worse than the top three.

It is interesting to see how the weaker methods still contribute to ensemble performance. For
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System DIRECT P(1) P(5) P(10) INVR

CASS 1483 50% 41% 33% 1.58

M INIPAR 1703 59% 48% 40% 1.86

SEXTANT 1772 61% 47% 39% 1.87

W(L1,2) 1525 54% 43% 37% 1.68

W(L1R1) 1623 57% 46% 38% 1.76

W(L1R1∗) 1576 63% 44% 38% 1.78

MEAN(∗) 1850 66% 50% 43% 2.00

MEAN(3) 1802 63% 50% 44% 1.98

HARMONIC(∗) 1821 64% 51% 43% 2.00

HARMONIC(3) 1796 63% 51% 43% 1.96

M IXTURE(∗) 1858 64% 52% 44% 2.03

M IXTURE(3) 1794 63% 51% 44% 1.99

Table 5.1: Individual and ensemble performance at 300MW

thesaurus extraction, there is no clear concept ofaccuracy greater than 50%since it is not a

simple classification task. So, although most of the evaluation results are significantly less than

50%, this does not represent a failure of a necessary condition of ensemble improvement.

Considering the complementarity and rank-order correlation coefficients for the constituents

of the different ensembles proves to be more informative. Table 5.2 shows these values for

the smallest and largest corpora and Table 5.3 shows the pairwise complementarity for the

ensemble constituents. The Spearman rank-order correlation ranges between−1 for strong

anti-correlations through to 1 for high correlation. In these experiments, the average Spearman

rank-order correlation is not sensitive enough to compare disagreement within our ensembles,

because the values are very similar for every ensemble. However, the average complementarity,

which is a percentage, clearly shows the convergence of the ensemble members with increasing

corpus size, which partially explains the reduced efficacy of ensemble methods for large cor-

pora. Since the top-three ensembles suffer this to a greater degree, they perform significantly

worse at 300 million words. Further, the full ensembles can average the individual biases better

since they sum over a larger number of ensemble methods with different biases.

To evaluate an ensemble’s ability to reduce the data sparseness and noise problems suffered

by different context models, I have constructed ensembles based on context extractors with

different levels of complexity and constraints. Table 5.4 shows the performance on the exper-

imental corpus for the three syntactic extractors, the top three performing extractors and their

corresponding mean rank ensembles. For these more sophisticated context extractors, the en-
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Ensemble Rs C

Ensemble(∗) on 2.3M words 0.467 69.2%

Ensemble(3) on 2.3M words 0.470 69.8%

Ensemble(∗) on 300M words 0.481 54.1%

Ensemble(3) on 300M words 0.466 51.2%

Table 5.2: Agreement between ensemble members on small and large corpora

System CASS M INI SEXT W(L1,2) W(L1R1) W(L1R1∗)

CASS 0% 58% 59% 65% 63% 69%

M INI 57% 0% 47% 57% 54% 60%

SEXT 58% 47% 0% 54% 53% 58%

W(L1,2) 65% 58% 55% 0% 40% 43%

W(L1R1) 63% 54% 54% 39% 0% 33%

W(L1R1∗) 69% 60% 58% 43% 33% 0%

Table 5.3: Pairwise complementarity for extractors

sembles continue to outperform individual learners, since the context representations are still

reasonably sparse. The average complementarity is greater than 50%.

Table 5.5 shows the performance on the experimental corpus for a range of window-based ex-

tractors and their corresponding mean rank ensembles. Most of the individual learners perform

poorly because the extracted contexts are only weakly correlated with the headwords. Although

the ensemble performs better than most individuals, they fail to outperform the best individual

on DIRECT evaluation. Since the average complementarity for these ensembles is similar to

the methods above, we must conclude that it is a result of the individual methods themselves.

In this case, the most correlated context extractor, e.g. W(L1R1) in the centre ensemble of Ta-

System DIRECT P(1) P(5) P(10) INVR

CASS 1483 50% 41% 33% 1.58

M INIPAR 1703 59% 48% 40% 1.86

SEXTANT 1772 61% 47% 39% 1.87

MEAN(P) 1803 60% 48% 42% 1.89

W(L1R1) 1623 57% 46% 38% 1.76

M INIPAR 1703 59% 48% 40% 1.86

SEXTANT 1772 61% 47% 39% 1.87

MEAN(3) 1802 63% 50% 44% 1.98

Table 5.4: Complex ensembles perform better than best individuals
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System DIRECT P(1) P(5) P(10) INVR

W(L1) 1566 59% 42% 35% 1.70

W(L2) 1235 44% 36% 31% 1.38

W(R1) 1198 44% 28% 24% 1.19

W(R2) 1200 49% 30% 24% 1.25

MEAN(D1|2) 1447 54% 46% 37% 1.74

W(L1,2) 1525 54% 43% 37% 1.68

W(L1R1) 1623 57% 46% 38% 1.76

W(R1,2) 1348 53% 32% 29% 1.40

MEAN(D1,2) 1550 63% 46% 39% 1.81

W(L1,2∗) 1500 50% 41% 36% 1.60

W(L1R1∗) 1576 63% 44% 38% 1.78

W(R1,2∗) 1270 46% 29% 27% 1.28

MEAN(D1,2∗) 1499 64% 46% 39% 1.82

Table 5.5: Simple ensembles perform worse than best individuals

ble 5.5, extracts a relatively noise-free representation which performs better than averaging the

bias of the other very noisy ensemble members.

5.2 Efficiency

Vector-space approaches to similarity rely heavily on extracting large contextual representa-

tions for each headword to minimise data sparseness and noise. This large contextual represen-

tation must be extracted from an even larger quantity of raw text. As Chapter 3 demonstrates,

performance improves significantly as the corpus size increases.NLP is entering an era where

virtually unlimited amounts of text are available, but the computational resources and tech-

niques required to utilise it are not. Under these conditions, Chapter 3 examines the computa-

tional trade-offs to be considered between the quality and quantity of contextual information.

However, extracting a large, high-quality contextual representation is not the only computa-

tional challenge, because comparing these representations is not scalable. All of the similarity

measures can be computed inO(m) steps, wherem is the number of attributes for each head-

word. If there aren headwords and the similarity measure is computed in a pairwise fashion,

the total time complexity isO(n2m+n2 logn) which is very expensive.

In Chapter 3, Figure 3.9 shows that the total number of contexts grows almost linearly with
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corpus size (which relates tom); Figure 3.10 shows that the number of headwords also increases

linearly, but at a much slower rate. However, this does mean the vector-space nearest-neighbour

algorithm is effectively cubic in corpus size. Clearly, this expansion needs to be bounded in

some way without a significant loss in quality of results.

5.2.1 Existing Approaches

Grefenstette (1994, page 59) stores attribute vectors as linked lists with bit signatures which

allow for efficient checks for shared attributes. On Grefenstette’s small scale experiments,

bit vectors are reasonably effective at reducing the execution time because many vectors do

not share any attributes. A fundamental problem is that because attributes are not randomly

distributed, some attributes are extremely common, e.g.(obj, get), and may occur with many

headwords, making the bit signature ineffective.

Also, as the corpus size increases, the number of attributes increases, and so does the proba-

bility of sharing at least one attribute or the bit signatures returning false positives for a much

larger number of attributes. The only way to solve the latter problem is to increase the size

of the bit signature, which already takes up a considerable space overhead. Unfortunately,

memory usage is quite significant, as all of the relations and their frequencies must be kept in

memory for every object giving a space complexity ofO(nm).

One method that I have already implemented which considerably improves performance in-

volves pre-computing and caching attribute weights for the cases where the attribute does not

exist in the other vector. Calculating a similarity measure involves moving along each element

of the two attribute vectors. My implementation stores the cumulative sum of the remaining

attributes at each element in the vector. So when the shorter sparse vector is exhausted rather

than running along summing the remaining elements of the longer vector, the cached cumula-

tive sum can be used. This has quite a significant improvement on performance but at the cost

of O(nm) additional memory.

The previous methods reduce the complexity constants by relatively small factors but have

no impact on either the vocabulary sizen or the number of attributesm. What is required is

at least a much larger reduction in the complexity coefficients or even better a reduction or

bounding on the factorsm andn. One way this can be achieved is to eliminate low frequency

headwords because they have very little contextual information. This can significantly reduce
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the number of headwordsn but this impacts on the recall and precision of the system – usually

the recall drops and the precision is increased. Grefenstette (1994) does this by only comparing

headwords which have a frequency greater than 10. Some cutoff experimental results are given

in Section 5.2.2. Other work, such as (Lee, 1999), only considers the 1000 most frequent

common nouns. The experiments on merging morphological variants in Section 3.5.4 are also

a form of headword reduction by smoothing rather than filtering.

Clustering (Brown et al., 1992; Pereira et al., 1993) using methods such ask-meansalso reduces

the number of similarity comparisons that need to be performed, because each comparison is

to a small number of attribute vectors that summarise each cluster.k, the number of clusters,

is usually much smaller than the number of headwordsn. Algorithms used by Memory-Based

Learners (MBL ), such as the IGTrees (Daelemans et al., 1997), impose an ordering over the

features to efficiently search for a reasonable match. Vector-space models of semantic similar-

ity could be reformulated in terms of IGTrees over a very large number of classes consisting of

every headword in the representation.

Another approach is to reduce the number of attributesm, that is, the dimensionality of the

context space. Landauer and Dumais (1997) use Latent Semantic Analysis (Deerwester et al.,

1990) and Scḧutze (1992a,b) uses Single Value Decomposition to significantly reduce the di-

mensionality of context spaces. These methods have the added advantage of combining al-

most all of the information in the original dimensions in the new smaller dimensions, thereby

smoothing as well as reducing the number of dimensions. However, these methods them-

selves are computationally intensive. For instance, Schütze (1992a,b) only uses the 1000 most

frequent words as context because computing theSVD on a larger matrix is very expensive.

The same problem is true ofLSA as well. This means these methods are important for their

smoothing properties, but the dimensionality reduction itself is as expensive as performing the

nearest-neighbour comparisons.

There are other methods that fit into this category that have not been used for vector-space

semantic similarity such as Principle Component Analysis (PCA). What is needed are dimen-

sionality reduction techniques that do not need to operate on the entire matrix, but instead can

make local decisions based on a single attribute vector. In signal processing, these methods

include Fourier and Wavelet analysis, but it is not clear how these methods could be applied to

our attribute vectors, where there is no connection between thei-th and(i +1)-th elements of

the attribute vector.
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5.2.2 Minimum Cutoffs

Introducing a minimum cutoff that ignores low frequency headwords can eliminate many un-

necessary comparisons against potential synonyms with very little informative contextual infor-

mation. Figure 5.3 presents both the performance of the system using direct match evaluation

(left axis) and execution times (right axis) for increasing cutoffs. This test was performed us-

ing JACCARD and the TTEST and LIN98A weight functions. The first feature of note is that as

the minimum cutoff is increased to 30, the direct match results improve for TTEST, which is

probably a result of the TTEST’s weakness on low frequency counts.

The trade-off between speed, precision and recall needs to be investigated. Initially, the execu-

tion time is rapidly reduced by small increments of the minimum cutoff. This is because Zipf’s

law (Zipf, 1949) applies to headwords and their relations, and so small increments of the cutoff

eliminate many headwords from the tail of the distribution. There are only 29 737 headwords

when the cutoff is 30, 88 926 headwords when the cutoff is 5, and 246 067 without a cutoff, and

because the extraction algorithm isO(n2m); this results in significant efficiency gains. Since

extracting only 70 headwords takes about 43 minutes with a minimum cutoff of 5, the effi-

ciency/performance trade-off is particularly important from the perspective of implementing a

practical extraction system.

Even with a minimum cutoff of 30 as a reasonable compromise between speed and accuracy,

extracting a thesaurus for 70 headwords takes approximately 20 minutes. If we want to extract

a complete thesaurus for 29 737 headwords left after the cutoff has been applied, it would take

approximately one full week of processing. Given that the size of the training corpus is much

much larger in the next section, which would increase both the number of attributes for each

headword and the total number of headwords above the minimum cutoff, this is not nearly

fast enough. The problem is that the time complexity of thesaurus extraction is not practically

scalable to significantly larger corpora.

Although the minimum cutoff helps by reducingn to a reasonably small value, it does not

constrainm in any way. In fact, using a cutoff increases the average value ofm across the

headwords because it removes low frequency headwords with few attributes. For instance, the

frequentcompany appears in 11 360 grammatical relations, with a total frequency of 69 240

occurrences, whereas the infrequentpants appears in only 401 relations with a total frequency

of 655 occurrences.
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Figure 5.3: Performance and execution time against minimum cutoff

The problem is that for every comparison, the algorithm must examine almost the entire length

of both attribute vectors. Grefenstette (1994) uses bit signatures to test for shared attributes,

but because of the high frequency of the most common attributes, this does not skip many

comparisons. Our system keeps track of the sum of the remaining vector which is a signif-

icant optimization, but comes at the cost of increased representation size. However, what is

needed is some algorithmic reduction that bounds the number of fullO(m) vector comparisons

performed.

5.2.3 Canonical Attributes

My approach attempts to deal with the very large vocabulary and very large feature vectors

without significant loss of information while at the same time reducing the time complexity of

the algorithm so that it can scale to massive text collections.

The first requirement is that any dimensionality reduction or other preprocessing acts on each

individual attribute vector without considering other vectors. There are two reasons for this:
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• to ensure the time complexity of the preprocessing is not greater than the time taken to

actually perform the comparisons;

• to allow easy parallelisation of the algorithm by splitting the headwords across multiple

processes. This is needed for the very large-scale experiments in Section 5.3.

One way of bounding the complexity is to perform an approximate comparison first. If the

approximation returns a positive result, then the algorithm performs the full comparison. This

is done by introducing another, much shorter vector ofcanonical attributes, with a bounded

lengthk. If our approximate comparison returns at mostp positive results for each term, then

the time complexity becomesO(n2k+npm), which, sincek is constant, isO(n2+npm). So as

long as the system uses an approximation function and vector such thatp� n, the system will

run much faster and be much more scalable inm, the number of attributes. However,p� n

implies that we are discarding a very large number of potential matches and so there will be a

performance penalty. This trade-off is governed by the number of the canonical attributes and

how representative they are of the full attribute vector, and thus the headword itself. It is also

dependent on the functions used to compare the canonical attribute vectors.

A strong constraint on synonyms is that they usually share key verbs (and sometimes modi-

fiers) that they associate with. For instance,clothing is almost invariably associated with the

verb wear. Once the words are grouped into coarse “topic” categories using the verb con-

text relations, the similarity measure can be pairwise computed on each group. If there arek

categories the time complexity is greatly reduced toO(k(n
k)2m+nn

k log n
k).

This idea of pre-clustering can be used repeatedly to form a hierarchy of clusters. The head-

words in each cluster are then compared using the similarity measure. Another alternative is to

compare key verbs first before other relations, and if the key verbs score well, to then compare

the rest of the attribute vectors. This could reducem quite considerably on average and is a

similar idea to ordering the attributes in Memory-Based Learning described above.

The canonical vector must contain attributes that best describe the headword in a bounded

number of entries. The obvious first choice is the most strongly weighted attributes from the

full vector. Figure 5.4 shows some of the most strongly weighted attributes forpants with their

frequencies and weights. However, these attributes, although strongly correlated withpants,

are in fact too specific and idiomatic to be a good summary, because there are very few other

words with similar canonical attributes. For example,(adjective, smarty) only appears with two

other headwords (bun andnumber) in the entire corpus. The heuristic is so aggressive that too
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RELATION COUNT SCORE

(adjective, smarty) 3 0.0524
(direct-obj, pee) 3 0.0443

(noun-mod, loon) 5 0.0437
(direct-obj, wet) 14 0.0370

(direct-obj, scare) 10 0.0263
(adjective, jogging) 5 0.0246
(indirect-obj, piss) 4 0.0215
(noun-mod, ski) 14 0.0201

Figure 5.4: The top weighted attributes of pants using TTEST

RELATION COUNT SCORE

(direct-obj, wet) 14 0.0370
(direct-obj, scare) 10 0.0263
(direct-obj, wear) 17 0.0071
(direct-obj, keep) 7 0.0016
(direct-obj, get) 5 0.0004

Figure 5.5: Canonical attributes for pants

few positive approximate matches result.

To alleviate this problem I have filtered the attributes so that only strongly weightedsubject,

direct-obj and indirect-obj relations are included in the canonical vectors. This is because in

general they constrain the headwords more and partake in fewer idiomatic collocations with

the headwords. So the general principle is the most descriptive verb relations constrain the

search for possible synonyms, and the other modifiers provide finer grain distinctions used to

rank possible synonyms. Figure 5.5 shows the 5 canonical attributes forpants. This canonical

vector is a better general description of the headwordpants, since similar headwords are likely

to appear as the direct object ofwear, even though it still contains the idiomatic attributes

(direct-obj, wet) and(direct-obj, scare).

One final difficulty this example shows is that attributes like(direct-obj, get) are not informative.

We know this because(direct-obj, get) appears with 8769 different headwords, which means

the algorithm may perform a large number of unnecessary full comparisons since(direct-obj,

get) could be a canonical attribute for many headwords. To avoid this problem a maximum

cutoff is applied on the number of headwords the attribute appears with.

With limited experimentation, I have found that TTESTLOG is the best weight function for

selecting canonical attributes. This may be because the extralog2( f (w, r,w′)+1) factor encodes

the desired bias towards relatively frequent canonical attributes. If a canonical attribute is
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Figure 5.6: Performance against canonical set size

shared by the two headwords, then our algorithm performs the full comparison.

Figure 5.6 shows system performance and speed, as canonical vector size is increased, with

the maximum cutoff at 4000, 8000, and 10 000. As an example, with a maximum cutoff of

10 000 and a canonical vector size of 70, the total DIRECT score of 1841 represents a 3.9%

performance penalty over full extraction, for an 89% reduction in execution time.

5.3 Large-Scale Experiments

This section describes the very large-scale experiments using the 2 billion word corpus that is

introduced in Section 3.2.2. As far as I am aware this is the first work to perform experiments

using shallowNLP tools on a corpus of this size. Although there are experiments that have used

the web as a corpus, they only estimate cooccurrence relative frequencies using search engine

hit counts (Keller et al., 2002; Modjeska et al., 2003). Experiments by Banko and Brill (2001)

have used a 1 billion word corpus for ensemble experiments (as described in Section 5.1).

However, these experiments only considered selected examples (for confusion sets) from the
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STATISTIC VALUE

number of words in corpus 2 107 784 102
number of sentences in corpus 92 778 662
corpus space 10.6 GB

ALL results
number of headwords 541 722
number of relations (by type) 52 408 792
number of relations (by token) 553 633 914
number of attributes (by type) 1 567 145
representation space 0.99 GB

CUTOFF(5) results
number of headwords 68 957
number of relations (by type) 10 516 988
number of relations (by token) 488 548 702
number of attributes (by type) 224 786
representation space 0.19 GB

Table 5.6: Relation statistics over the large-scale corpus

corpus and thus did not process the entire corpus.

I first ran the entire SEXTANT(MX ) extraction pipeline: tokenization, tagging, chunking and

relation extraction over the entire 2 billion words of text. This is only feasible because each

component has been designed to run very quickly and these components use relatively shallow

methods. These issues are discussed in Section 3.4. The statistics for the extracted relations are

given in Table 5.6. The problem is that theALL data no longer fits in memory on commodity

hardware. And, even if it could fit, it would be extremely slow because of the significantly

increased vocabulary size. To overcome this problem I have written a parallelized version of

my similarity system which runs on a 64-node Beowulf cluster. TheALL results use the parallel

implementation with all of the extracted data on 10 nodes of the cluster.

TheCUTOFF(5) results use an attribute frequency cutoff of five or more. This cutoff was chosen

to make the dataset fit on a single machine for comparison. Notice that using a cutoff of five

dramatically reduces the number of relations and attributes by type, but has a much less severe

impact on the number of relations by token. The space required to store the representation is

also reduced by a factor of about 5. Finally, the number of headwords is drastically reduced.

5.3.1 Parallel Algorithm

The nearest-neighbour algorithm for finding the most similar synonyms simply iterates over the

vocabulary comparing each vector with the vector of the headword in question. Parallelising
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this task is relatively straightforward. It involves splitting the vocabulary into separate parts

and running the loop in parallel with each part on a separate process. After each process has

found the most similar words in its own part of the vocabulary, the results are combined, i.e. the

root process sorts the combined results and returns the topn. For this reason, high performance

computing people would call this taskembarassingly parallel.

The first question is how to split the words across the machine. The simplest approach would

be to take the firstm words for the first machine and so on, but this suffers from the problem

of uneven loading of the task across processes. In such a situation, many processes might be

waiting for the most heavily loaded process to catch up and so the efficiency of the parallisation

is limited by the unbalanced load.

In our case, the load is unbalanced because the frequency of words (and thus the size of their

vectors) is not consistent across the vocabulary. A more complicated approach would be to

count the number of headwords in each context vector and try to balance each process so it

contains a similar number of words and total length of the vectors. In practice, it suffices to

split the words by sending then-th word to then-th process (using the modulus operator), so

each machine gets a distribution over the vocabulary and hopefully the word frequency. I have

found this results in quite well balanced loads for these experiments.

However, there are more problems than simply splitting the vocabulary. The first problem is

that the attribute vector being compared against must be transmitted to each process. For a

fixed set of headwords this simply involves including the headwords in the data distributed to

each process, but for an online algorithm, the process containing the word must transmit the

vector to all other processes before they can start comparing it against their vocabulary part.

The second problem is that even relatively simple weighting functions use properties, such as

the attribute frequency, which must be summed over all relations which are distributed between

the processes. However, most of these global properties can be calculated once in advance and

stored in each process. For instance, storing the total frequency of each attribute is insignificant

compared with storing many large context vectors.

5.3.2 Implementation

For my parallel large-scale experiments I have modified my code to run on a large Beowulf

cluster using a message-passing approach. This approach involves each node having its own

memory (inaccessible to other nodes, as opposed to shared memory parallelism) and communi-
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MEASURE DIRECT P(1) P(2) P(5) P(10) P(20) INVR
COUNT % % % % % –

ALL 2021 77 69 58 48 38 2.23
CUTOFF(5) 1381 81 71 55 44 36 2.18

Table 5.7: Results from the 2 billion word corpus on the 70 experimental word set

cating and synchronising by sending messages between the nodes. This model of communica-

tion matches a cluster configuration very well but can also be efficiently implemented on shared

memory machines. This is not true in reverse for shared memory parallelism. The Message

Passing InterfaceMPI library (Gropp et al., 1996) is the emerging standard for implementing

message-passing algorithms portably in high performance computing. I have used this library

to communicate between the nodes.

The process begins with splitting the data file into node sized chunks and transferring one

chunk to each node of the cluster. I currently use 10 nodes, each calculating similarity over

representations of approximately 100MB. This runs faster than the usual singleCPU runs

which typically have representations of around 200MB. I create a separate common data file

containing the relations for the test headwords, and another file containing global attribute

counts. These files are also distributed to each node. TheMPI library then starts processes on

each node in the cluster. Each node iterates over the list of words it has for each word in the

testfile under control of the root node. Answers are sent back to the root node, which collates

and reranks the results to produce the standard output format.

5.3.3 Results

Table 5.7 shows the performance of the two datasets on the 70 word experimental evaluation.

The ALL results significantly outperform the best individual context extractor (RASP). How-

ever, theCUTOFF(5) results are very poor indicating just how important all of the contextual

information is, even those events that only occur 4 times in 2 billion words.

The results for the large 300 word detailed evaluation and also the results on the application-

based evaluation are given in the next chapter.
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5.4 Summary

This chapter has demonstrated three different algorithms for similarity systems. The first was

the application of ensemble learning to similarity systems. The second was a new approxima-

tion algorithm for efficient synonym extraction. The third was a parallel implementation of my

similarity system which has allowed the calculation of semantic similarity from over 2 billion

words of raw text.

This chapter also demonstrated the effectiveness of ensemble methods for synonym extraction

and investigates the performance of ensemble extractors on corpora ranging up to 300 million

words in size. Contrary to work reported by Banko and Brill (2001), the ensemble methods

continue to outperform the best individual systems for very large corpora.

The poorly constrained window methods, where contextual correlation is often low, outper-

formed the ensembles, which parallels results from Banko and Brill (2001). This suggests

that large training sets ameliorate the predominantly noise-induced bias of the best individ-

ual learner better than amortising the bias over many similar ensemble constituents. Noise

is reduced as occurrence counts stabilise with larger corpora, improving individual classifier

performance, which in turn causes ensemble constituents to converge, reducing complementar-

ity. This reduces the efficacy of classifier combination and contributes to individual classifiers

outperforming the ensemble methods.

For more complex, constrained methods the same principles apply. Since the correlation be-

tween context and target is much stronger, there is less noise in the representation. However,

the added constraints reduce the number of contextual relations extracted from each sentence,

leading to data sparseness. These factors combine so that ensemble methods continued to out-

perform the best individual methods.

This chapter has also investigate the speed/performance trade-off using minimum frequency

cutoffs to ignore headwords which are unlikely synonyms because of their limited contextual

support. This has lead to the proposal of a new approximate comparison algorithm based on

canonical attributesand a process of coarse- and fine-grained comparisons. This approxi-

mation algorithm is dramatically faster than simple pairwise comparison, with only a small

performance penalty, which means that complete thesaurus extraction on large corpora is now

feasible. Further, the canonical vector parameters allow for control of the speed/performance

trade-off. These experiments show that large-scale thesaurus extraction is practical, and al-
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though results are not yet comparable with manually constructed thesauri, may now be accurate

enough to be useful for someNLP tasks.

Finally, this chapter has introduced a parallel implemention of my similarity system that allows

semantic similarity to be calculated using contextual information extracted from over 2 billion

words of raw text. The output of this system is analysed in the next chapter using the detailed

evaluation and the large evaluation set.





Chapter 6

Results

result : consequence0.065, outcome 0.062, effect 0.056, finding 0.055, evi-
dence 0.054, response 0.048, possibility 0.042, kind 0.041, impact 0.041, da-
tum 0.041,reason0.041, extent 0.041, report 0.040, example 0.040, series 0.040,
aspect 0.040, account 0.039, amount 0.038, degree 0.038, basis 0.038,. . .

This chapter is devoted to analysing the output of the large-scale similarity system and demon-

strating its use in an application. The large-scale system and an evaluation on the experimental

test set were presented in Section 5.3. The detailed error analysis in Section 6.1 compares

performance against a number of variables that were introduced in Section 2.3 on a larger set

of words controlled for frequency. These frequency brackets are useful for estimating the per-

formance of the system in practice. The analysis also uses WORDNET to classify the system

output according to the types of lexical-semantic relations that are considered to be synonyms

by the system. In particular, it is important to know to what degree the system confuses syn-

onyms with antonyms, hyponyms and meronyms.

After describing the analysis of my similarity system, I demonstrate a relatively simple appli-

cation of semantic similarity. This involves repeating the recent experiments by Ciaramita and

Johnson (2003) in categorising previously unseen words usingsupersensesdefined in terms of

the WORDNET lexicographer files. This task represents the first step in automatically inserting

words in WORDNET. My approach significantly improves on the existing work. As mentioned

in Chapter 1, automatic methods can either be used directly or as an assistant to a lexicographer

to add words to WORDNET.

109
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HEADWORD DIRECT DIRECT P(1) P(2) P(5) P(10) P(20) INVR INVR
COUNT MAX % % % % % – MAX

company 31 378 100 100 60 50 45 2.78 6.51
interest 64 746 100 100 100 80 60 3.69 7.19
problem 30 283 100 100 80 60 30 2.53 6.22
change 32 576 100 100 60 60 50 2.76 6.93

idea 61 454 100 100 100 90 60 3.71 6.70
radio 26 177 100 100 60 40 45 2.20 5.76
star 32 588 100 100 80 50 35 2.62 6.96

knowledge 28 167 100 100 100 80 60 3.24 5.70
pants 12 241 100 100 40 40 20 1.91 6.06

tightness 6 152 0 0 20 10 10 0.61 5.60
Average (over 300) 26 316 68 68 55 45 35 2.08 5.92

Table 6.1: Performance on the 300 word evaluation set

6.1 Analysis

This section presents a detailed analysis of the large-scale results using the 300 word evaluation

set (see Appendix A). This evaluation was introduced in Section 2.3. The evaluation method-

ology used to compare the systems described in the previous three chapters needed to be easy

to compare and draw conclusions from. For this reason, a small number of evaluation measures

were reported so that a direct comparison was possible. Now that a single set of results is being

evaluated it is possible to perform a more detailed analysis.

Table 6.1 presents the results from the large-scale similarity system for some example head-

words and the average over the 300 word evaluation set. The two columns labelledMAX give

the maximum possible score for the previous column where it is not simply 100%. For exam-

ple,company could have a maximum DIRECT score of 378 synonyms from the gold-standard.

The average performance, at the bottom of Table 6.1, is significantly lower than the average

scores in Table 5.7 indicating how much harder the larger test set is. The main reason for this

is that it contains a larger portion of lower frequency words, including a number of words that

are very rare with less than 5 occurrences per million.

The next two sections analyse the results summarised in Table 6.1 in more detail. Section 6.1.1

considers how performance varies with a number of parameters, including the relative fre-

quency of the word and the amount of contextual information describing it. This is important

for estimating the reliability of the system on unseen words. Section 6.1.2 examines the distri-

bution of synonyms and errors across the results using WORDNET. This information is very

useful for determining if the system is accurate enough which is often application dependent
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REL. FREQ. NUM DIRECT P(1) P(2) P(5) P(10) P(20) INVR
OPM COUNT % % % % % –

TOP 100 111 32.3 67 66 55 46 39 2.20
50< fr ≤ 100 39 29.3 67 62 57 47 37 2.14
20< fr ≤ 50 30 27.9 80 70 62 50 39 2.28
10< fr ≤ 20 30 23.1 70 72 60 47 36 2.14
5< fr ≤ 10 30 20.9 63 62 51 43 31 1.88
2< fr ≤ 5 30 16.4 67 63 52 36 26 1.76
1< fr ≤ 2 15 17.7 73 60 48 43 30 1.85
0< fr ≤ 1 15 18.6 60 60 51 41 31 1.81

Table 6.2: Performance compared with relative frequency of the headword

NUMBER OF NUM DIRECT P(1) P(2) P(5) P(10) P(20) INVR
ATTRIBUTES COUNT % % % % % –

50k < n≤ 100k 13 35.8 69 65 54 52 45 2.39
10k < n≤ 50k 177 30.2 71 66 57 47 38 2.20
5k < n≤ 10k 35 21.9 60 64 51 38 31 1.84
1k < n≤ 5k 64 18.7 70 67 57 45 31 1.97
0< n≤ 1k 11 14.8 36 36 35 31 23 1.27

Table 6.3: Performance compared with the number of extracted attributes

(see Section 2.1.5). For instance, confusing antonyms with synonyms may be perfectly ac-

ceptable in a smoothing application, where the focus is purely on distributional similarity, but

in an information retrieval or extraction context, extracting antonyms could be worse than not

retrieving any synonyms.

6.1.1 Performance Breakdown

The evaluation of the results against headword relative frequency, in occurrences per million,

is shown in Table 6.2. The second column indicates how many examples there are in each bin.

The process of selecting these frequency ranges is described in Section 2.2.2. Although there

is a noticeable drop in the DIRECT and INVR measures as the relative frequency decreases, the

precision measures remain relatively stable. For instance, the top ranking synonym is still cor-

rect 60% of the time when the headword only occurs once every million words, demonstrating

that even for quite rare words the system can extract reasonable synonyms. Also, the large drop

in the DIRECT and INVR measures is partly caused by rarer words having fewer synonyms in

the gold-standards, an effect which has less impact on the precision measures.

Table 6.3 shows the performance against the number of attributes, and Table 6.4 the num-

ber of contexts, extracted for each headword from the 2 billion words. These results clearly
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NUMBER OF NUM DIRECT P(1) P(2) P(5) P(10) P(20) INVR
CONTEXTS COUNT % % % % % –

1M < n≤ 10M 60 34.6 70 65 56 49 41 2.30
100k < n≤ 1M 123 28.6 69 64 56 46 37 2.13
50k < n≤ 100k 23 23.2 70 74 61 43 33 2.10
10k < n≤ 50k 51 20.8 75 71 57 42 31 2.01
5k < n≤ 10k 22 18.9 64 61 51 42 31 1.84
0< n≤ 5k 21 15.9 48 50 42 39 27 1.56

Table 6.4: Performance compared with the number of extracted contexts

NUMBER OF NUM DIRECT P(1) P(2) P(5) P(10) P(20) INVR
SENSES COUNT % % % % % –

5< n≤ 8 11 49.8 64 73 65 61 52 2.73
3< n≤ 5 52 38.0 69 69 59 48 41 2.36
2< n≤ 3 59 30.5 71 62 54 46 37 2.15
1< n≤ 2 65 25.7 82 75 61 50 37 2.29
0< n≤ 1 113 17.2 59 58 49 39 29 1.74

Table 6.5: Performance compared with polysemy of the headword

demonstrate that to obtain reasonable results a large amount of contextual information must

be extracted. There is a very large drop in performance across all measures if the number of

attributes drops below 1000 or the number of context instances drops below 5000. The general

trend is that the precision measures are reasonably stable above the 1000 attribute threshold,

while the DIRECT and INVR measures show a steady decrease in performance with decreasing

numbers of attributes and contexts. These tables also show how large the contextual represen-

tation becomes for some words, with up to 100 000 attributes summarising up to 10 000 000

context instances extracted from the 2 billion word corpus. Also, a large percentage of the

words have over 10 000 attributes.

Table 6.5 shows the evaluation of the results against polysemy, i.e. the number of senses for the

headword in WORDNET. The DIRECT and INVR measures tend to increase with increasing

numbers of senses while the precision measures are fairly stable. An exception are headwords

with one sense which perform significantly worse, and two senses, which perform significantly

better. Single sense headwords tend to be rare, while highly ambiguous headwords tend to

be frequent, which conflates the trends. Intuitively, fewer senses will produce better results

because the context vector only represents one meaning. This is probably why the two sense

headwords are performing the best because they have few senses but are not as rare as many of

the one sense headwords. More experiments are needed with a large enough test set to control

for both number of senses and relative frequency.
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WORDNET NUM DIRECT P(1) P(2) P(5) P(10) P(20) INVR
ROOT COUNT % % % % % –

abstraction 149 30.4 70 64 56 46 37 2.16
activity 85 34.5 68 67 60 50 41 2.32
entity 184 27.4 67 65 54 45 35 2.07
event 33 36.0 82 73 61 52 44 2.49
group 72 32.8 67 69 56 49 40 2.24

phenomenon 25 36.8 72 72 64 49 42 2.43
possession 22 34.0 64 64 54 45 36 2.15

psych. feature 89 36.0 75 74 64 53 43 2.49
state 56 33.3 73 69 57 49 40 2.31

Table 6.6: Performance compared with WORDNET root(s) of the headword

Table 6.6 shows the evaluation of the results against the WORDNET unique beginner(s), or

roots, the headwords appears under. When a headword appears under multiple roots its evalu-

ation is added to all of the roots. These results suggest thatentity andabstraction words are the

hardest to find synonyms for, whilstevent, phenomenon andpsychological feature words are

slightly easier. Semantic properties do not appear to impact heavily on the results, and if there

is any influence it is significantly less than the influence of relative frequency.

6.1.2 Error Analysis

In this section I consider the types of errors produced by my similarity system. What constitutes

an “error” has been discussed in Section 2.3. Basically, the approach is to extract the top 10

synonyms for a headword and then look at the lexical relations that WORDNET uses to describe

the relationship between the headword and the synonym. The WORDNET relations considered

aresynonym, antonym, hyponym, hypernym, meronym andholonym.

RELATION SYNONYM

hyponym subsidiary
hypernym unit

sister firm, industry, business
sister bank, giant, maker
sister manufacturer

Table 6.7: Lexical-semantic relations from WORDNET for the synonyms of company

I have also created another category calledsisters which covers words that appear in any other

subtree of the parent of the headword. That is, you go up the hierarchy to the parent and

then down any other subtree. I also count synonyms which do not appear in WORDNET. The

relations found for the top ten synonyms ofcompany are given in Table 6.7.
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HEADWORD SYN ANT MER HOL HYPO HYPE SIS MISS ERR

company 0 0 0 0 1 1 8 0 0
interest 2 0 0 0 1 0 4 0 3
problem 1 0 0 0 0 2 0 0 7
change 1 0 0 0 9 0 0 0 0

idea 1 0 0 0 6 1 0 0 2
radio 0 0 0 0 0 1 6 0 3
star 0 0 0 0 0 3 3 1 3

knowledge 0 0 0 0 8 0 0 0 2
pants 1 0 0 0 2 0 6 1 0

tightness 0 0 0 0 0 0 1 0 9
Total (over 300) 177 15 26 34 384 215 673 92 1374

Percentage (over 300) 6 1 1 1 13 7 23 3 46

Table 6.8: Types of errors in the 300 word results

The relation distribution for the top ten synonyms over the 300 word results are shown in Ta-

ble 6.8. The bottom row of the table gives the percentage distribution over the relations. The

error column,ERR, shows the number of synonyms that do not appear in any of the other rela-

tions. Approximately 40% of extracted synonyms fall into classes that are reasonably compati-

ble with the headword (every class except antonyms, missing and error). The 6% of WORDNET

synonyms found is expected because synonym distinctions are very fine-grained in WORDNET.

The largest relation is the sister relation with 23% of the extracted synonyms, which gives an

indication of the level of sense distinction which the similarity system is capable of identify-

ing. Also, of the top ten extracted synonyms, approximately 3% do not appear in WORDNET

showing that gold-standard coverage is still a significant problem.

6.2 Supersenses

This section presents experiments in classifying previously unseen common nouns with WORD-

NET supersenses. It forms an application-based evaluation of the large-scale similarity system

described in the previous chapter and evaluated in the previous section. The task involves re-

peating the experiments and evaluation used by Ciaramita and Johnson (2003) with a similarity-

based approach rather than their classification-based approach.

The supersense tagger implemented by Ciaramita and Johnson (2003) is a multi-class percep-

tron classifier (Crammer and Singer, 2001), which uses the standard collocation, spelling and

syntactic features common inWSD and named entity recognition systems.
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WORDNET supersenses, as defined by Ciaramita and Johnson (2003), are the broad semantic

classes created by lexicographers as the initial step of inserting words into the WORDNET

hierarchy. These are calledlexicographer filesor lexfiles. For the noun hierarchy, there are 25

lexfiles (and a file containing the list of the top level nodes in the hierarchy calledTops).

Lexfiles form a set of coarse-grained sense distinctions included with WORDNET. For exam-

ple, the wordcompany appears with the following supersenses in WORDNET 1.7.1: group,

which coverscompany in the social, financial and troupe senses (amongst others), andstate,

which covers companionship. The names and descriptions of the noun lexfiles, taken from the

lexnames manpage distributed with WORDNET, are shown in Table 6.9. There are also 15

lexfiles for verbs, 3 for adjectives and 1 for adverbs.

LEXFILE DESCRIPTION

act acts or actions
animal animals
artifact man-made objects
attribute attributes of people and objects
body body parts
cognition cognitive processes and contents
communication communicative processes and contents
event natural events
feeling feelings and emotions
food foods and drinks
group groupings of people or objects
location spatial position
motive goals
object natural objects (not man-made)
person people
phenomenon natural phenomena
plant plants
possession possession and transfer of possession
process natural processes
quantity quantities and units of measure
relation relations between people or things or ideas
shape two and three dimensional shapes
substance substances
time time and temporal relations

Table 6.9: 25 lexicographer files for nouns in WORDNET 1.7.1

.

Some of these lexfiles map directly to the top level nodes in the noun hierarchy, calledunique

beginners, while others are grouped together as hyponyms of a unique beginner (Fellbaum,

1998, page 30). For example,abstraction subsumes the lexical filesattribute, quantity, relation,
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communication and time. There are 11 unique beginners in the WORDNET noun hierarchy

which could also be used as supersenses. Ciaramita (2002) has produced a mini-WORDNET by

manually reducing the WORDNET hierarchy to 106 broad categories. Ciaramita et al. (2003)

describe how the lexfiles can be used as root nodes in a two level hierarchy with all of the

WORDNET senses appearing directly underneath.

Other alternative sets of supersenses could be created by an arbitrary cut somewhere through

the WORDNET hierarchy near the top, or by using topics from a thesaurus such as Roget’s or

the Macquarie thesaurus. Their topic distinctions are much less fine-grained than WORDNET

senses, which have been criticised as being too difficult to distinguish even for experts. Further,

Ciaramita et al. (2003) state that most of the key distinctions between senses of a word are still

maintained with supersenses.

Supersense tagging can provide automated or semi-automated assistance to lexicographers

adding words to the WORDNET hierarchy. Once this task is solved successfully, it may be pos-

sible to insert words directly into the fine-grained distinctions of the hierarchy itself. Clearly,

this is the ultimate goal, to be able to insert new terms into the existing hierarchy, and extend

the hierarchy where necessary.

Supersense tagging is also of interest for the many applications that need coarse-grained senses,

for instance information extraction and question answering. Ciaramita and Johnson (2003) sug-

gest that supersense tagging is a similar task to named entity recognition, which also has a very

small set of options with similar granularity for labelling previously unseen terms (e.g.location,

person andorganisation). In these ways, it is also similar to the bootstrapping techniques for

learning members of a particular class (Riloff and Shepherd, 1997).

Ciaramita and Johnson (2003) have analysed theBLLIP corpus, finding that common nouns

that do not appear in WORDNET 1.6 have a relative frequency of 0.0054, and so on average an

unknown word appears every 8 sentences. Clearly it is important to be able to interpret these

words in some way.

6.2.1 Previous Work

There has been a considerable amount of work addressing the issue of structurally (and sta-

tistically) manipulating the hierarchy of the English WORDNET and the construction of new

wordnets using the concept structure from English.
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In terms of adding information to the existing English WORDNET, Beeferman (1998) adds

several different types of information including phonetic and rhyming similarity from theCMU

pronunciation dictionary using edit distance and anagram. More importantly, he also adds col-

location pairs extracted from a large corpus (160 million words of broadcast news) using mutual

information. The cooccurrence window was 500 words (which was designed to approximate

average document length). Over 350 000 trigger pairs were added. The result (and the regular

expression language that describes paths over the network) he termslexical FreeNet.

Caraballo and Charniak (1999) have examined the issue of determining the specificity of nouns

from raw text. They find that simple frequency counts are the most effective way of determining

the parent-child relationship ordering. Raw frequency achieves 83% accuracy over types of

vehicle, food andoccupation. The other measure Caraballo and Charniak found to be successful

was measuring the entropy of the conditional distribution of surrounding words given the noun.

This is a necessary step for determining hyponymy relationships between words and building

a noun hierarchy (Caraballo, 1999). However, it is clear that these methods cannot extend

to abstract types. For instance,entity is less frequent than many concepts it subsumes. This

suggests it will only be possible to add words to an existing abstract categories rather than

create categories right up to the unique beginners.

Hearst and Scḧutze (1993) flatten the structure of WORDNET into 726 categories using an

algorithm which attempts to minimise the variance between the size of each category. They

use these categories to label paragraphs with topics, effectively repeating Yarowsky’s (1992)

word sense disambiguation experiments using the WORDNET-derived categories rather than

Roget’s thesaurus. They then use Schütze’s (1992a) WordSpace system to add topical links,

such as betweenball, racquet andgame (the tennis problem) that are currently not supported

by WORDNET. Further, they also use the same context-space techniques to label previously

unseen words using the most common class assigned to the top 20 synonyms for that word.

These unseen words are common nouns, proper names, and existing words with previously

unseen senses.

Widdows (2003) uses a similar technique to Hearst and Schütze to insert words into the WORD-

NET hierarchy. He first extracts synonyms for the unknown word using vector-space similarity

measures with Latent Semantic Analysis and then searches for a location in the hierarchy near-

est to these synonyms. The same technique as Hearst and Schütze (1993) and Widdows (2003)

is used in my approach to supersense tagging.
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There are very few links between the noun and verb hierarchies, topically related words and

morphologically related terms in WORDNET. Harabagiu et al. (1999) set out to improve this

situation by augmenting WORDNET with links between concepts in the gloss of each synset.

This involves first disambiguating the words in the glosses with respect to WORDNET senses

for each word. Their motivation for doing this is the construction of a knowledge base for

common sense reasoning, in particular for inference in question answering.

Apart from augmenting WORDNET with different kinds of knowledge, there has been con-

siderable work trying to align WORDNET with other lexical resources, including Levin’s verb

classes (Green et al., 2001), topic categories from Roget’s thesaurus (Mandala et al., 1999; Nas-

tase and Szpakowicz, 2001) and information fromLDOCE (Kwong, 1998). Stevenson (2002)

uses three different similarity metrics to align WORDNET with CIDE+ to augment WORDNET

with related term links. Even the Dewey decimal system has been combined with WORDNET

(Cavaglìa, 1999).

There have also been efforts to augment WORDNET with domain-specific ontologies (O’Sullivan

et al., 1995) and also to prune senses and synonym relation links based on evidence from

domain-specific corpora (Basili et al., 1998; Turcato et al., 2000). The concept structure of

the English WORDNET has been used to automatically create wordnets for other languages

with the help of bilingual dictionaries for Catalan (Benı́tez et al., 1998; Farreres et al., 1998),

Spanish (Atserias et al., 1997; Farreres et al., 1998) and Korean (Lee et al., 2000). These

approaches must first disambiguate the entries in theMRD against the senses in the English

WORDNET core structure.

6.2.2 Evaluation

The supersense tagging task has a very natural evaluation: inserting the extra common nouns

that have been added to a new version of WORDNET. Ciaramita and Johnson (2003) use

the words that have been added to WORDNET 1.7.1 since the WORDNET 1.6 release. They

compare this evaluation with a standard cross-validation approach that uses a small percentage

of the words from their WORDNET 1.6 training set for evaluation. Their results suggest that

the WORDNET 1.7.1 test set is significantly harder because of the large number of abstract

category nouns, for instance,communication andcognition, that appear in the 1.7.1 data, which

are rather difficult to classify correctly.
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WORDNET 1.6 WORDNET 1.7.1
NOUN SUPERSENSE NOUN SUPERSENSE

stock index communication week time
fast food food buyout act
bottler group insurer group
subcompact artifact partner person
advancer person health state
cash flow possession income possession
downside cognition contender person
discounter artifact cartel group
trade-off act lender person
billionaire person planner artifact

Figure 6.1: Example nouns and their supersenses

My evaluation will use exactly the same test sets as Ciaramita and Johnson (2003). The WORD-

NET 1.7.1 test set consists of 744 previously unseen nouns, the majority of which (over 90%)

have only one sense. The WORDNET 1.6 test set consists of several cross-validation sets of 755

nouns randomly selected from theBLLIP training set used by Ciaramita and Johnson (2003).

Massimiliano Ciaramita has kindly supplied me with the WORDNET 1.7.1 test set and one

cross-validation run of the WORDNET 1.6 test set. All of my experiments are performed on

the WORDNET 1.6 test set with one final run on the WORDNET 1.7.1 test set. Some examples

from the test sets are given in Figure 6.1 with their supersenses.

6.2.3 Approach

My approach uses semantic similarity with a hand-crafted fall-back for unseen words. The

similarity approach uses the supersenses of extracted synonyms to choose the correct super-

sense. This is the approach used by Hearst and Schütze (1993) and Widdows (2003). The

synonyms are extracted using the large-scale similarity system described in Section 5.3. This

method is used if there is sufficient information about the unknown noun to extract reasonably

reliable synonyms. The fall-back method is a simple hand-coded classifier which examines the

unknown noun and makes a guess based on morphological analysis. These rules were created

by looking at the suffixes of rare nouns in WORDNET 1.6. The supersense guessing rules are

given in Table 6.10. If none of the rules match, then the defaultartifact is assigned.

The problem now becomes how to convert the ranked list of extracted synonyms into a single

supersense selection. Each synonym has one or more supersense tags taken from WORDNET

1.6 to match the training data used by Ciaramita and Johnson (2003). For this there are a
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SUFFIX EXAMPLE SUPERSENSE

-ness remoteness attribute
-tion, -ment annulment act
-ist, -man statesman person
-ing, -ion bowling act
-ity viscosity attribute
-ics, -ism electronics cognition
-ene, -ane, -ine arsine substance
-er, -or, -ic, -ee, -an mariner person
-gy entomology cognition

Table 6.10: Hand-coded rules for supersense guessing

number of parameters to consider:

• how many synonyms to use;

• how to weight each synonym’s contribution;

• whether unreliable synonyms should be filtered out;

• how to deal with polysemous synonyms.

The experiments described below consider a range of options for these parameters. In fact,

these experiments are so quick to run I have been able to exhaustively test many combinations

of these parameters. For the number of synonyms to use I have considered a wide range, from

just the top scoring synonym through to 200 extracted synonyms.

There are several ways to weight each synonym’s contribution. The simplest approach would

be to give each synonym the same weight. Another approach is to use the scores returned

by the similarity system. Finally, the weights can use the ranking of the extracted synonyms.

Again these options have been considered below. A related question is whether to use all of

the extracted synonyms, or perhaps filter out synonyms for which a small amount of contextual

information has been extracted, and so might be unreliable.

The final issue is how to deal with polysemy. Does each sense get a single count when it

appears or is it distributed evenly between senses like Resnik (1995)? Another alternative is to

only consider synonyms with a single supersense in WORDNET.

One disadvantage of the similarity approach is that it requires full synonym extraction, which

compares the unknown word against a large number of words when, in fact, we want to cal-

culate the similarity to a small number of supersenses. This inefficiency could be reduced

significantly if we consider only very high frequency words, but even this is still expensive.
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6.2.4 Results

I have used the WORDNET 1.6 test set to experiment with different parameter settings and have

kept the WORDNET 1.7.1 test set as a final comparison of best results with Ciaramita and John-

son (2003). The synonyms were extracted from the 2 billion word corpus using SEXTANT(NB)

with the JACCARD measure and TTEST weight function. The experiments were performed by

considering all possible combinations of the parameters described below.

The following weighting options were considered for each supersense: the initial weight for a

supersense could either be a constant (IDENTITY ) or the similarity score (SCORE) calculated by

the synonym extractor. The initial weight could then be divided by the number of supersenses

to share out the weight (SHARED). The weight could also be divided by the rank (RANK) to

penalise supersenses further down the list.

The best performance on the WORDNET 1.6 test set was achieved by using theSCOREweight

function, without any sharing or ranking penalties.

Synonyms are filtered before contributing to the vote with their supersense(s). This filtering

involves checking that the synonym’s frequency and number of attributes are large enough to

ensure the synonym is reliable. I have experimented with a wide range of minimum cutoffs for

the frequency and number of attributes. The best performance on the WORDNET 1.6 data was

achieved by using cutoffs of 5 for both the frequency and the number of attributes. However,

many systems performed almost as well with only one of the two cutoffs set.

The next question is how many synonyms are considered and whether that number applies

before or after the filtering has occurred. For instance, if this number applies before filtering,

then fewer than 50 synonyms may contribute to the supersense vote because they have been

filtered out. All of the top performing systems used 50 synonyms applied after the filtering

process has occurred.

The final consideration regarding the synonym list is whether highly polysemous nouns should

be filtered out. In fact, using a filter which removed synonyms with more than one or two

senses turned out to make little difference.

Finally, the decision needs to be made between using the similarity measure or the guessing

rules. This is determined by looking at the frequency and number of attributes for the unknown

word. Not surprisingly, the similarity system works better than the guessing rules if it has any
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information at all, so the frequency and number of attributes cutoffs were 0 or 5 for the top

performing systems.

The accuracy of the best performing system(s) was 68.2% with several other combinations of

the parameters described above performing almost as well. This accuracy should be compared

against the results of Ciaramita and Johnson (2003) who get 53.4% as their best accuracy. On

the WORDNET 1.7.1 test set, the performance of the best system (from the above experiments)

is 62.8%, which significantly outperforms Ciaramita and Johnson (2003) who get an accuracy

of 52.9%.

6.2.5 Future Work

An alternative approach worth exploring is to create vectors for the supersense categories them-

selves. This has the advantage of producing a much smaller number of vectors, but the question

then becomes how to construct such vectors. One solution would be to take the intersection

between vectors that fit into a particular class (i.e. to find the common contexts that these words

appear in). However, given the sparseness of the data this would not leave very large vectors.

Another solution is to sum the vectors but this could potentially produce very large vectors

which may not match well against the smaller vectors. A final solution would be to consider a

large set of the canonical attributes defined in the previous chapter for approximate matching.

Also, I would like to move onto the more difficult task of insertion into the hierarchy itself and

compare against the results from Widdows (2003) using latent semantic indexing. Here the

issue of how to combine vectors is even more interesting since there is the additional structure

of the WORDNET inheritance hierarchy and the small synonym sets that can be used for more

fine-grained combination of vectors.

6.3 Summary

This chapter has analysed the results of the large-scale system described in the previous chapter

and applied these results to the task of supersense tagging.

The analysis showed that for the DIRECT and INVR measures there is a strong dependence

between relative frequency of the headword and synonym quality. On the precision measures

the dependence was not as significant. Similar results were found for the number of extracted
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contexts and attributes. An important result was identifying a minimum number of extracted

contexts and attributes required to achieve reasonable results. The analysis also looked at

performance against semantic properties such as the number of senses of the headword and the

broad semantic category it belonged to.

The application of semantic similarity to supersense tagging follows similar work by Hearst

and Scḧutze (1993) and Widdows (2003). To classify a previously unseen word my approach

extracts synonyms and uses their supersenses as an indication of the supersense of the unseen

word. Using this approach I have significantly outperformed the existing work of Ciaramita

and Johnson (2003).
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Conclusion

conclusion : finding 0.067, outcome 0.057,interpretation 0.044,assertion0.043,
assessment 0.043,explanation 0.041, judgment 0.039,assumption0.039,de-
cision 0.039, recommendation 0.037,verdict 0.037, completion 0.036, infer-
ence0.036, suggestion 0.036,result 0.035, answer 0.035,view0.035, comment 0.034,
testimony 0.034, argument 0.034,. . .

This thesis explores a statistical approach to lexical semantics, in particular, the measurement

of semantic similarity, or synonymy, using vector-space models of context.

I have presented an exhaustive systematic analysis of existing vector-space approaches using

a methodology designed to separate synonymy from other related properties. This analysis

has inspired new measures of similarity that emphasisesemanticrather thandistributional

similarity, which results in a significant improvement over the state-of-the-art.

I have also developed techniques for improving similarity calculations. The first is an ensemble

of learners approach which improves performance over individual methods. The second is a

novel approximation algorithm which bounds the time complexity of the nearest-neighbour cal-

culations making this approach feasible for large collections. The third is a parallel implemen-

tation of my similarity system using message-passing which allows the calculates similarity on

a Beowulf cluster. This large-scale system is used to compute similarity over a 2 billion word

corpus, currently the largest quantity of text to be analysed using shallow statistical techniques.

A final experiment involved applying this large-scale system to supersense tagging, assigning

broad semantic classes taken from the WORDNET lexicographer files, to previously unseen

common nouns. My results significantly outperform existing approaches.
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126 Chapter 7. Conclusion

Chapter 1 introduces semantic similarity, describing the theoretical and practical problems

of defining synonymy and other lexical-semantic relations. It discussed Roget’s thesaurus,

WORDNET, and other manually constructed resources and their ongoing contribution toNLP

research and applications. However, the cost and complexity of manual development, and

the problems with manually developed resources, are presented motivating computational ap-

proaches to semantic similarity. The chapter concludes with an overview of the context-space

model of semantic similarity which forms the basis of this work. It also describes the partition-

ing of my experiments into context extraction, similarity measures and algorithmic methods.

Chapter 2 surveys existing evaluation techniques for semantic similarity, finding them un-

suitable for a systematic comparison of similarity systems. This motivates the experimental

methodology which compares ranked lists of extracted synonyms with a gold-standard created

by unifying several thesauri. This ensures semantic similarity is evaluated rather than other

properties such as distributional similarity or syntactic substitutability. This chapter also intro-

duces the detailed error analysis which is applied to the large-scale results in Chapter 6.

Chapter 3 argues that shallow methods are better suited to extracting contextual information

for semantic similarity because they can process larger volumes of text than is feasible with

complex methods. The chapter begins by evaluating several context extractors ranging from

simple window-based methods through to wide-coverage parsers. The results demonstrate that

shallow methods can perform almost as well as more linguistically sophisticated approaches.

However, shallow methods are often several orders of magnitude faster. The results also show

that similarity systems improve with increasing corpus size leading me to advocate shallow

methods for semantic similarity. Other results demonstrated that smoothing and filtering the

context relations can also improve performance whilst reducing the size of the representation.

Chapter 4 hypothesises that the most informative context relations for measuring similarity are

strong collocations, proposing new measures based on statistical collocation extraction tech-

niques. The chapter begins by factoring similarity measures into two components: functions

for weighting context relations (weights) and functions for comparing weighted vectors (mea-

sures). The DICE† measure and my new TTEST weight, based on the t-test for collocation

extraction, significantly outperform the state-of-the-art techniques. The combination of shal-

low context extraction with the DICE† and TTEST similarity measure forms my similarity

system which is used for the remaining results.

Chapter 5 describes an ensemble of similarity systems and proposes two algorithms for practi-
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cal synonym extraction. The ensemble combines several context extractors from Chapter 3 us-

ing three proposed voting techniques. The results obtained contradict those of Banko and Brill

(2001) which led to further analysis. Chapter 5 then discusses the inefficiency of the nearest-

neighbour algorithm for semantic similarity which makes extracting synonyms for even mod-

erately large vocabularies infeasible. It presents a novel approximation algorithm which con-

strains the asymptotic time complexity, significantly reducing the running time of the system,

with only a minor performance penalty. Finally, the chapter describes a parallelized version

of the similarity system which, running on a Beowulf cluster, allows similarity measurements

using contexts extracted from a 2 billion word corpus of shallow-parsed text, the largest such

corpus known at this time.

Chapter 6 presents a detailed analysis of the large-scale similarity results from Chapter 5 and

describes the application of these similarity results to supersense tagging. The detailed anal-

ysis of the large-scale results show that the quality is acceptable for manyNLP applications

even for quite rare words. The analysis suggests a the minimum number of contexts required

for reasonable performance. Finally, the error analysis breaks down the results into various

lexical-semantic relations using WORDNET. These results show that about 40% of the top 10

synonyms are closely related either by synonymy or another lexical relation. Chapter 6 also

applies the large-scale results to the task of supersense tagging previously unseen common

nouns. My results on this task significantly outperform the approach of Ciaramita and Johnson

(2003) who have introduced this task.

Through the detailed and systematic analysis of existing approaches to semantic similarity,

this thesis has proposed and evaluated a novel approach that significantly outperforms the cur-

rent state-of-the-art. It presents algorithms that make this approach feasible on unprecedented

quantities of text and demonstrates that these results can contribute to advancing widerNLP

applications.





Appendix A

Words

RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

percent 18 6 131 9 509 836 640 – – 1 8/8 ABS

company 38 4 098 57 723 459 927 8 5 9 5/8 ENT, GRP, STT

year 42 4 179 163 807 614 675 2 1 4 5/6 ABS, GRP

market 45 3 232 33 563 537 763 4 3 4 4/10ACT, ENT, GRP

share 65 3 204 16 815 450 387 4 1 5 4/12ABS, ACT, ENT, POS

stock 69 2 786 9 544 248 868 15 11 17 5/11ABS, ENT, GRP, POS, STT

sale 88 1 801 19 123 197 873 2 3 5 3/9 ABS, ACT, STT

trading 91 1 269 1 266 75 310 1 – 1 6/6 ACT

president 96 1 453 11 019 172 713 2 3 6 7/10ACT, ENT

business 102 1 438 39 154 143 163 10 4 9 4/8 ACT, GRP, PSY

price 106 1 935 27 737 335 369 2 3 7 6/10ABS, ENT, POS

government 110 1 051 66 892 333 080 3 2 4 5/9 ACT, GRP, PSY

cent 111 996 403 131 378 1 – 2 9/14 ABS

quarter 113 1 012 9 225 125 770 11 4 13 5/14ABS, ENT

time 116 1 318 180 053 173 378 14 8 10 3/8 ABS, EVT, PSY

people 118 907 123 644 147 061 4 5 4 3/8 GRP

investor 119 1 193 3 486 107 147 1 – 1 6/6 ENT

yesterday 124 1 708 96 36 182 1 – 2 5/6 ABS

month 125 1 468 39 779 234 134 – – 2 5/6 ABS

week 127 1 131 47 367 271 427 – – 3 6/7 ABS

bond 132 1 219 3 933 160 035 13 3 10 5/11ABS, ENT, PHE, POS, PSY

group 134 1 270 60 653 221 114 8 5 3 2/4 ABS, ENT, GRP

interest 138 925 38 007 147 376 12 8 7 4/10ABS, ACT, GRP, POS, STT

earnings 139 759 3 169 85 426 2 1 2 8/10 POS

industry 151 927 24 140 121 348 5 3 3 7/7 ABS, ACT, GRP

money 154 693 37 287 73 921 3 3 3 5/12 ABS, POS

official 155 854 7 875 177 957 3 1 2 6/7 ENT

program 156 905 5 733 19 431 7 – 8 6/11 ABS, ACT, EVT, PSY

300 headword evaluation set
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

analyst 157 1 000 1 773 169 046 4 – 3 6/12ENT

rate 163 1 237 30 335 270 409 3 3 3 5/9 ABS, POS

investment 165 887 12 119 114 115 2 4 3 4/9 ACT, ENT, POS

unit 166 836 17 950 85 910 7 3 7 3/8 ABS, ENT, GRP, PSY

day 170 1 075 93 261 195 186 5 4 10 5/7 ABS, ENT, STT

profit 177 756 11 427 116 465 2 2 2 7/8 ABS, POS

state 182 887 44 903 269 878 8 9 8 2/12ENT, GRP, PHE, PSY, STT

chairman 184 744 10 414 65 285 1 1 1 7/7 ENT

fund 189 926 12 587 113 668 3 3 3 8/12ABS, GRP, POS

security 191 1 031 15 737 140 834 6 5 9 4/10ABS, ACT, ENT, GRP, POS, PSY, STT

bank 198 1 414 20 959 431 169 11 5 10 5/11ACT, ENT, GRP, POS

firm 198 871 13 879 114 245 3 1 1 7/7 GRP

part 202 659 61 852 89 055 6 8 12 3/9 ABS, ACT, ENT, POS, PSY, STT

product 203 813 21 704 101 787 2 2 6 4/8 ENT, GRP, PHE, PSY

plan 207 800 23 710 100 372 6 3 3 6/9 ENT, PSY

issue 218 948 27 437 124 031 12 6 11 3/12ACT, ENT, EVT, PHE, POS, PSY

trader 223 583 1 666 182 529 3 1 1 8/8 ENT

loss 229 789 15 430 91 084 3 5 8 4/8 ABS, ACT, EVT, PHE, POS

house 230 687 49 954 69 124 10 7 12 5/8 ACT, ENT, GRP

way 231 590 109 981 65 929 10 11 12 4/8 ABS, ACT, ENT, POS, PSY, STT

tax 233 610 18 694 109 496 5 2 1 6/6 POS

growth 238 460 13 043 114 105 5 5 7 4/7 ENT, EVT, GRP, PHE, STT

index 244 545 4 587 123 960 5 3 5 9/11 ABS, ENT

executive 252 722 7 921 38 103 2 2 3 7/8 ENT, GRP

concern 268 550 12 385 39 354 7 6 5 5/7 GRP, PSY, STT

computer 278 705 17 300 30 538 2 1 2 6/8 ENT

case 287 562 61 488 52 481 11 12 18 4/10ABS, ACT, ENT, EVT, GRP, PSY, STT

today 292 400 528 57 237 1 2 2 5/6 ABS

number 295 465 60 584 91 595 8 5 11 5/10ABS, ENT, EVT, GRP

trade 307 556 20 394 168 530 5 3 7 5/9 ACT, GRP, PHE

oil 310 436 11 040 138 946 4 3 2 8/9 ENT

law 311 470 31 004 61 579 8 7 7 4/10 ABS, ACT, GRP, PSY

end 313 390 46 458 98 507 10 6 14 3/9 ABS, ACT, ENT, EVT, PSY, STT

value 315 440 25 308 56 954 12 3 6 4/9 ABS, PSY

dollar 321 581 3 700 153 394 2 – 4 7/14 ABS

system 324 716 61 885 95 161 9 4 9 3/8 ABS, ENT, GRP, PSY

street 326 431 14 777 47 275 2 1 5 5/8 ENT, GRP, STT

result 331 581 33 834 114 062 2 4 3 3/8 ABS, EVT, PHE

point 341 665 50 858 188 234 28 11 24 3/11ABS, ENT, PSY, STT

problem 344 623 56 361 63 344 4 3 3 5/9 ABS, PSY, STT

world 344 502 59 062 122 434 6 6 8 3/8 ENT, GRP, PSY, STT

country 374 502 48 146 172 593 5 5 5 4/7 ENT, GRP

work 382 354 75 277 36 454 9 10 7 4/8 ACT, ENT, PHE, PSY

report 411 490 34 119 120 036 10 8 7 5/9 ABS, ACT, EVT, PSY

power 414 367 38 447 86 578 16 9 9 3/10ABS, ENT, GRP, PHE, PSY, STT

service 419 776 54 938 120 161 7 8 15 4/9 ABS, ACT, ENT, GRP, PHE
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

home 425 435 39 798 56 565 6 6 9 4/10 ENT, GRP, STT

order 430 503 25 582 58 825 14 13 12 3/11ABS, ACT, GRP, STT

member 444 384 47 003 86 821 4 3 5 5/7 ABS, ENT, GRP

level 464 422 32 505 118 852 3 4 7 3/10ABS, ENT, STT

line 464 432 32 766 59 035 27 20 29 4/12ABS, ACT, ENT, GRP, PHE, POS, PSY

drop 492 256 3 502 19 362 16 7 8 6/9 ABS, ACT, ENT, EVT

life 508 333 64 797 36 123 9 10 13 4/11ABS, ENT, PHE, PSY, STT

area 519 395 58 417 74 497 5 5 6 5/7 ABS, ENT, PSY, STT

change 536 407 40 065 55 487 9 3 10 4/14ABS, ACT, ENT, EVT, PHE

information 566 238 38 630 41 975 3 1 5 4/15 ABS, GRP, PSY

thing 566 373 77 246 27 601 7 16 12 3/8 ABS, ACT, ENT, EVT, PSY, STT

car 595 390 35 184 45 867 4 2 5 9/10 ENT

gas 623 242 8 176 64 562 10 1 6 5/10 ENT, PHE, STT

fact 631 217 42 199 19 100 3 3 4 5/8 ABS, PSY, STT

family 653 257 42 486 27 718 8 5 7 4/7 ENT, GRP

statement 666 226 13 988 126 527 7 1 7 4/10ABS, ACT, ENT

talk 666 238 11 266 89 743 4 6 5 5/9 ABS, ACT

place 685 207 53 534 43 489 9 8 16 4/10ABS, ACT, ENT, PSY, STT

dealer 710 227 3 473 126 775 5 2 5 7/9 ENT, GRP

parent 735 234 20 046 12 525 4 2 1 9/9 ENT

magazine 742 260 6 008 8 417 5 1 6 7/10 ENT, GRP

head 753 183 38 526 48 014 39 7 32 4/11ABS, ENT, EVT, GRP, PHE, PSY

something 778 161 – 11 645 2 – 1 4/4 ENT

institution 826 206 11 389 20 980 8 5 5 5/9 ACT, ENT, GRP, PSY

course 836 162 26 849 16 095 18 9 8 4/7 ACT, ENT, GRP

team 843 183 22 794 41 252 6 2 2 5/6 GRP

trust 898 260 8 963 22 367 6 3 6 4/7 ABS, GRP, POS, PSY, STT

man 929 269 98 731 43 989 9 6 11 3/11ENT, GRP

question 936 245 39 108 26 486 3 3 6 6/9 ABS, ACT

floor 1 008 138 12 690 12 056 6 4 9 5/12ENT, GRP, PSY

night 1 022 147 39 188 23 955 4 1 8 5/10ABS, PSY, STT

announcement 1 041 135 2 758 24 180 2 2 2 8/9 ABS

school 1 052 239 52 132 28 876 5 4 7 5/8 ABS, ENT, GRP, PSY

side 1 052 184 39 608 42 559 9 8 12 5/10ABS, ENT, EVT, GRP, PSY

software 1 058 125 9 347 17 240 – – 1 10/10ABS

woman 1 058 224 63 042 33 566 5 3 4 5/10ENT, GRP

party 1 078 258 52 944 130 214 8 5 5 5/6 ENT, EVT, GRP

child 1 086 165 70 868 28 602 4 1 4 5/7 ENT

game 1 086 178 21 174 38 069 6 6 8 4/8 ABS, ACT, ENT, EVT

hand 1 086 206 53 432 25 307 13 7 14 4/11ABS, ACT, ENT, GRP, PSY

size 1 102 116 14 422 14 290 6 1 5 4/8 ABS, ENT, STT

space 1 102 133 14 108 12 231 8 6 10 3/10ABS, ENT

energy 1 142 178 13 078 41 270 3 2 6 5/12ABS, GRP, PHE, STT

letter 1 142 158 21 471 19 178 2 3 5 9/11ABS, ACT, ENT

study 1 142 167 33 083 18 947 9 4 10 6/9 ABS, ACT, ENT, PSY

justice 1 152 141 5 790 15 752 3 4 4 7/12 ABS, ACT, ENT, GRP
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

chain 1 184 155 4 968 10 863 8 4 10 4/9 ABS, ENT, GRP

total 1 184 116 4 306 28 254 4 1 2 4/8 ENT, PSY

age 1 208 117 25 419 9 774 3 4 5 5/7 ABS

idea 1 220 134 32 754 13 535 10 6 5 5/9 ENT, PSY

newspaper 1 220 164 8 539 58 723 1 1 4 7/10 ENT, GRP

form 1 269 131 37 651 14 684 18 12 16 4/10ABS, ENT, GRP, PHE, PSY

water 1 286 111 33 873 23 515 4 2 5 3/8 ENT

date 1 299 102 17 324 32 483 8 4 8 5/10ABS, ENT, GRP

room 1 414 131 36 352 12 451 3 3 4 5/7 ABS, ENT, GRP, STT

image 1 466 97 11 026 6 697 10 8 7 5/9 ABS, ENT, PSY

book 1 487 151 37 661 16 270 7 3 8 7/9 ABS, ENT

land 1 547 100 20 922 22 477 5 5 11 4/9 ACT, ENT, GRP, POS, STT

aircraft 1 586 94 6 200 17 165 1 1 1 9/9 ENT

hurricane 1 646 101 695 3 655 3 1 1 9/9 PHE

limit 1 661 116 6 741 14 530 2 4 6 5/8 ABS, ENT

improvement 1 683 107 6 610 19 417 2 1 3 4/6 ACT, EVT, STT

scientist 1 705 88 5 522 4 897 2 1 1 6/6 ENT

word 1 766 124 43 744 8 839 8 11 10 6/10ABS, ACT, PSY

sport 1 791 115 8 703 11 554 9 2 5 4/8 ABS, ACT, ENT

fraud 1 805 71 1 751 7 334 7 4 3 7/9 ACT, ENT

opinion 1 935 80 9 295 16 378 4 1 6 6/10 ABS, ACT, PSY

truck 1 962 126 1 863 14 004 7 2 2 10/10ENT

apple 2 000 100 3 237 5 927 4 – 2 10/11 ENT

sun 2 037 73 10 925 8 392 4 2 5 7/9 ABS, ENT, PHE

contrast 2 062 59 7 000 4 290 3 2 4 5/8 ABS, ACT, PSY

bit 2 127 59 14 842 17 888 12 3 10 5/9 ABS, ENT, EVT

fear 2 187 109 9 936 19 814 2 4 2 5/6 PSY

professor 2 267 65 2 274 4 038 2 1 1 9/9 ENT

radio 2 267 98 9 072 26 060 2 – 3 8/10 ENT

eye 2 344 82 39 153 8 131 7 7 5 6/8 ENT, PSY

patient 2 432 63 21 653 8 048 1 1 1 7/7 ENT

crop 2 467 65 3 011 32 327 9 4 3 7/10 ACT, ENT

picture 2 467 101 15 986 10 237 7 6 9 4/9 ABS, ENT, EVT, PSY, STT

sea 2 608 62 11 556 19 226 4 3 3 4/7 ABS, ENT, PHE

cause 2 818 61 10 696 7 426 2 4 5 3/10 ABS, ACT, ENT, EVT

stage 2 874 59 20 630 19 662 10 5 8 3/11ABS, ACT, ENT, STT

challenge 2 944 61 6 438 11 394 3 3 5 4/9 ABS, ACT, STT

concept 2 944 41 9 071 3 278 2 1 1 6/6 PSY

purpose 3 006 74 15 180 9 031 3 6 3 6/6 ABS, PSY

arrangement 3 071 58 9 051 7 349 6 4 8 3/8 ABS, ACT, ENT, GRP, PSY

promotion 3 071 61 3 696 4 258 5 3 4 5/9 ABS, ACT

star 3 199 65 8 563 11 538 11 4 7 6/10 ABS, ENT

analysis 3 265 40 14 229 5 675 8 2 6 6/11 ABS, ACT, PSY

location 3 265 57 5 499 5 470 7 1 3 3/8 ACT, ENT

remark 3 265 39 3 325 9 408 1 2 2 8/8 ABS, PSY

experiment 3 514 55 5 728 1 505 3 2 3 7/9 ACT, PSY
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

wine 3 603 49 7 349 3 559 1 1 2 9/10 ABS, ENT

apparel 3 788 29 67 1 978 2 1 1 7/7 ENT

novel 3 788 37 3 401 1 129 3 1 2 8/10 ABS, ENT

tool 3 788 52 5 382 4 849 5 2 4 6/8 ACT, ENT

indictment 3 900 32 401 1 842 1 1 2 10/15 ABS

crowd 4 030 35 5 650 7 486 6 4 2 5/5 GRP

consequence 4 262 32 7 719 3 909 5 2 3 3/9 ABS, EVT, PHE

skill 4 262 29 12 276 2 544 3 2 2 5/5 PSY

baby 4 577 31 11 496 3 747 5 3 6 5/8 ACT, ENT

bureaucracy 4 577 25 1 529 1 038 2 2 1 8/8 GRP

explanation 4 577 25 6 404 2 175 4 2 2 7/8 ABS, PSY

conflict 4 726 35 7 097 11 077 3 3 7 3/7 ABS, ACT, PSY, STT

missile 4 726 37 1 902 9 878 1 1 2 9/9 ENT

component 5 099 37 5 019 9 778 1 1 3 4/8 ABS, ENT, PSY

furniture 5 099 21 3 545 2 269 2 1 1 7/7 ENT

human 5 099 37 2 593 7 138 1 1 2 4/11 ENT

knowledge 5 099 19 14 580 2 836 3 5 1 3/3 PSY

tradition 5 099 23 6 740 2 242 2 3 2 5/5 PSY

box 5 314 38 11 478 5 169 16 3 10 6/11ABS, ACT, ENT, STT

song 5 314 28 6 832 2 110 3 2 6 5/9 ABS, ACT, ENT, EVT, GRP, POS

dream 5 537 23 6 416 2 223 8 4 6 4/8 PSY, STT

entity 6 077 28 1 818 4 352 2 3 1 2/2 ENT

enthusiasm 6 401 14 2 949 2 005 4 2 3 4/8 ABS, PSY, STT

taste 6 401 18 4 413 1 173 6 7 7 5/9 ABS, ACT, EVT, PSY

laboratory 6 760 50 3 748 3 285 2 1 1 7/7 ENT

anger 7 130 12 3 691 2 281 3 1 3 5/8 ACT, PSY, STT

ball 7 130 29 8 750 7 730 9 3 10 5/11 ABS, ACT, ENT, GRP

chaos 7 130 13 1 633 2 445 2 1 3 5/9 PHE, PSY, STT

limitation 7 130 14 2 734 1 106 3 2 5 5/8 ABS, ACT, PSY

boat 8 136 17 7 345 6 128 2 1 2 10/10 ENT

carpet 8 136 16 3 284 882 4 2 1 7/7 ENT

disadvantage 8 136 11 1 966 874 3 2 1 7/7 ABS

suburb 8 136 12 1 097 2 991 1 1 1 7/7 ENT

artery 8 721 16 575 865 1 2 2 8/9 ENT

fish 8 721 9 9 711 3 042 3 1 2 7/8 ENT

catholic 9 429 12 1 246 4 722 – – 1 7/7 ENT

nervousness 9 429 8 326 1 589 2 1 3 5/7 ABS, PSY, STT

reinforcement 9 429 11 608 861 4 3 5 6/9 ABS, ACT, ENT, PSY

garbage 10 247 14 262 666 6 2 1 7/7 ENT

ring 10 247 10 5 759 2 582 11 7 8 5/8 ABS, ENT, EVT, GRP

viewpoint 10 247 9 1 139 338 3 1 2 7/7 ENT, PSY

village 10 247 13 13 359 9 949 2 – 3 6/7 ENT, GRP

bat 11 236 9 1 360 976 11 1 5 5/9 ACT, ENT

bomb 11 236 10 4 070 13 236 9 3 3 6/10 ENT, EVT

fence 11 236 7 2 244 1 055 7 2 2 8/9 ENT

imagination 11 236 6 2 652 405 2 3 3 6/7 PSY
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

nonsense 11 236 6 1 632 551 4 3 2 6/7 ABS, ENT

probability 11 236 7 1 946 1 253 1 2 2 4/5 ABS

resentment 11 236 6 1 005 371 2 1 1 7/7 PSY

resilience 11 236 6 227 430 3 2 2 6/7 ABS, EVT

t-shirt 11 236 7 762 469 – – – –/–
championship 12 636 8 4 667 11 711 4 – 2 5/7 ACT, STT

jolt 12 636 10 192 225 3 4 2 6/7 ACT, EVT

pants 12 636 5 547 282 3 2 2 9/11 ENT

religion 12 636 7 5 127 1 596 2 1 2 6/10 ABS, GRP, PSY

sweater 12 636 7 773 129 2 – 2 5/9 ENT

forum 14 425 9 1 823 6 067 4 3 3 6/10 ENT, GRP

object 14 425 6 10 087 1 332 5 3 4 3/10 ABS, ENT, PSY

slogan 14 425 7 815 1 519 2 1 1 9/9 ABS

glitch 16 942 5 45 409 1 – 1 5/5 STT

graph 16 942 4 1 417 89 2 1 1 9/9 ABS

pistol 16 942 5 892 805 1 1 1 11/11 ENT

powder 16 942 5 1 413 898 2 1 3 6/8 ENT

routine 16 942 4 2 493 442 7 2 3 5/11 ABS, ACT, EVT

silence 16 942 5 5 803 1 398 4 3 4 4/6 ABS, STT

aroma 20 917 3 348 123 2 1 2 5/9 ABS, PSY

cab 20 917 4 1 570 438 1 2 3 9/11 ENT

disgust 20 917 2 620 196 1 2 1 5/5 PSY

felon 20 917 4 84 89 2 – 2 7/7 ENT, STT

instructor 20 917 3 868 387 1 1 1 8/8 ENT

moisture 20 917 2 699 1 806 2 1 1 5/5 STT

organisation 20 917 2 8 324 20 356 3 4 7 4/7 ABS, ACT, GRP, PSY

revenge 20 917 2 1 037 1 040 1 2 1 5/5 ACT

solicitor 20 917 4 5 582 350 1 1 2 7/8 ENT

spectacle 20 917 2 637 239 3 3 3 6/9 ABS, ACT, ENT

walk 20 917 3 5 554 1 217 7 4 7 5/8 ABS, ACT, ENT

warrior 20 917 4 1 069 670 1 1 1 5/5 ENT

alligator 28 728 2 109 107 1 – 2 10/10 ENT

bedding 28 728 1 416 91 6 1 2 5/7 ENT

connotation 28 728 2 373 49 3 1 2 7/8 ABS, PSY

grief 28 728 1 1 409 366 2 2 2 6/7 PSY

happiness 28 728 1 1 695 198 5 1 2 4/6 PSY

influenza 28 728 1 139 335 3 – 1 10/10 STT

psyche 28 728 1 242 71 4 1 3 4/9 ENT, PSY

tightness 28 728 1 122 2 025 5 – 3 6/7 ABS, STT

trousers 28 728 1 2 257 309 1 1 1 9/9 ENT

additive – 2 232 565 1 1 1 7/7 ENT

aristocrat – – 329 240 3 1 1 6/6 ENT

automatic – 4 33 85 3 – 2 13/13 ENT

beam – 7 1 698 317 10 3 6 7/9 ABS, ENT, PHE

bloke – – 1 616 26 1 1 1 7/7 ENT

cafeteria – 8 142 107 1 1 1 8/8 ENT
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RANK FREQUENCY SENSES DEPTH WORDNET
TERM PTB PTB BNC RCV1 MQ OX WN MIN /MAX ROOT NODES

capacity – 118 6 244 29 087 9 3 8 5/9 ABS, ACT, PHE, PSY, STT

celebrant – – 46 8 4 – 2 5/9 ENT

cipher – 4 88 2 10 4 5 5/10 ABS, ENT

coincidence – 6 982 311 4 3 3 5/9 ABS, EVT

colliery – – 533 255 1 – 1 7/7 ENT

cunning – – 114 16 4 1 3 7/10 ABS, PSY

diagnosis – 5 1 864 403 3 2 1 9/9 ACT

estuary – – 650 90 2 1 1 4/4 ENT

fortress – – 589 216 1 1 1 7/7 ENT

grin – 1 1 253 118 2 1 1 9/9 ABS

hair – 16 14 999 1 388 3 3 6 6/7 ABS, ENT

handful – 36 1 489 2 574 2 2 2 6/6 ABS

intuition – 3 572 40 2 2 2 6/7 PSY

knob – – 444 26 4 4 4 6/7 ABS, ENT

leadership – 61 4 870 9 747 2 2 4 4/6 ACT, GRP, PSY, STT

luggage – – 654 434 1 1 1 8/8 ENT

manslaughter – – 504 355 1 1 1 8/8 ACT

mix – 26 1 908 2 933 3 1 3 6/8 ACT, ENT, EVT

monarch – 1 961 796 1 1 2 9/11 ENT

monument – – 1 298 830 2 3 3 6/8 ENT

morale – 7 957 1 085 1 1 2 5/7 ABS, STT

mug – – 1 033 46 6 4 4 6/9 ABS, ENT

nothing – 133 29 14 227 3 4 1 5/5 ABS

novelist – 7 853 421 1 1 1 7/7 ENT

paradigm – – 677 107 1 1 4 5/7 ABS, GRP, PSY

pastry – 4 580 114 – 2 2 8/9 ENT

pint – 1 1 743 171 1 – 3 9/9 ABS

recess – 3 363 926 5 3 5 4/7 ABS, ACT, ENT, STT

sausage – – 985 224 2 1 2 8/12 ENT

sceptic – – 288 252 2 2 1 6/6 ENT

scream – 2 980 191 2 3 3 6/9 ABS, EVT

scuffle – 1 145 382 2 1 3 6/9 ACT, ENT

sermon – – 662 97 6 2 2 5/11 ABS, ACT

spanner – – 222 58 – – 1 9/9 ENT

standpoint – 7 339 540 1 1 1 7/7 PSY

terrier – – 300 45 2 – 1 13/13 ENT

thesis – 1 1 812 138 4 2 2 9/11 ABS

throw – – 677 527 6 2 6 5/8 ABS, ACT, ENT, EVT, STT

tonne – – 2 182 149 620 1 – 1 8/8 ABS

virus – 18 1 980 2 582 3 1 1 5/5 ENT

vocation – – 301 87 3 1 2 5/6 ACT, GRP

whisky – – 1 935 277 1 1 1 10/10 ENT

300 headword evaluation set





Appendix B

Roget’s Thesaurus

company
assembly74 n.
band74 n.
accompaniment89 n.
actor594 n.
personnel686 n.
workshop687 n.
association706 n.
corporation708 n.
party708 n.
formation722 n.

74 Assemblage
N. assembly, mutual attraction, 291attraction; getting together, gang-
ing up; forgathering, congregation, concourse, conflux, concurrence, 293
convergence; gathering, meeting, mass meeting, protest meeting, sit-in,
meet; coven; conventicle; business meeting, board m.; convention, con-
vocation, 985synod; gemot, shire moot, legislature, conclave, 692council;
eisteddfod, mod, festival, 876celebration; reunion, get-together, gathering
of the clans, ceilidh, 882social gathering; company, at home, party, 882
sociality; circle, sewing bee, knit-in; encounter group, 658therapy; discus-
sion group, focus g., quality circle, symposium, 584conference.

band, company, troupe; cast, 594actor; brass band, dance b., pop group,
rock g., boy-band tribute b., 413orchestra; team, string, fifteen, eleven,
eight; knot, bunch; set, coteri, dream team; clique, ring; gang, squad, party,
work p., fatigue p.; ship’s company, crew, complement, manpower, work-
force, staff, 686personnel; following, 67retinue; squadron, troop, platoon,
unit, regiment, corps, 722formation; squad, posse; force, body, host, 722
armed force; 104multitude; (Boy) Scouts, Girl Guides, 708society; band
of brothers, sisters, merry men, 880friendship; committee, commission,
754consignee; panel, 87list; establishment, cadre, 331structure.

89 Accompaniment
N. accompaniment, concomitance, 71continuity, 45 union, 5 intrinsical-
ity; inseparability, permanent attribute; society, 882sociability; compan-
ionship, togetherness, 880friendship; partnership, marriage, 706associa-
tion; coexistance, coagency, 181concurrence; coincidence, contemporane-
ity, simultaneity, 123synchronism; attendance, company; parallel course,
219parallelism.

Figure B.1: Roget’s Thesaurus of English words and phrases Davidson (2002)
entry for company

137



138 Appendix B. Roget’s Thesaurus

company
assembly74 n.
band74 n.
accompaniment89 n.
actor594 n.
personnel686 n.
workshop687 n.
association706 n.
corporation708 n.
party708 n.
formation722 n.

594 Drama, Ballet
N. actor, actress, Thespian, Roscius, luvvy (inf); mimic, mime, pan-
tomimist, 20 imitator; mummer, masker, guisard; play-actor, player,
strolling p., trouper, cabotin(e); barn-stormer, ham; rep player, character
actor; actor-manager, star, star actoror actress, star of stage and screen, film
star, starlet, matinée idol, 890favourite; tragedian, tragedienne; comedian,
comedienne, comedy actoror actress; opera singer, prima donna, diva; bal-
let dancer, ballerina, prima b., coryphée; danseur, danseuse, figurant(e);
protagonist, lead, second l., leading man, leading lady, juvenile lead, je-
une premier; understudy, stand-in, body double, stunt manor woman, 150
substitute; lookalike, 18analogue; supernumerary, super, extra, bit player;
chorus, gentlemenor ladies of the chorus, corps de ballet, troupe, company,
repertory c., stock c.; dramatis personae, characters, cast; presenter, narra-
tor; prologue, 579speaker.

686 Agent
N. personnel, staff, force, company, team, gang, squad, crew, comple-
ment, cadre, 74band; dramatis personae, 594actor; co-worker, fellow
w., mate, colleague, associate, partner, 707colleague; workpeople, hands,
men, payroll; labour, casual l.; workforce, labour pool, labour force, hu-
man resources, liveware, peopleware, manpower; working classes, prole-
tariat; personnel management, human resource management; staff turnover,
churn, churn rate.

687 Workshop
N. workshop, studio, atelier; workroom, study, den, library; laboratory, re-
search l.; plant, installation; business park, industrial estate, science park,
technopole; works, factory, manufactory; workshop, yard; sweatshop; mill,
cotton m., loom; sawmill, paper mill; foundry, metalworks; steelyard, steel-
works, smelter; blast furnace, forge, smithy, stithy, 383furnace; power
hourse, power station, gasworks, 160energy; quarry, mine, 632store; col-
liery, coal-mine, pit, coalface; tin mine, stannary; mint; arsenal, armoury;
dockyard, shipyard, slips; wharf, dock, 192shed; construction site, build-
ing s.; refinery, distillery, brewery, maltings; shop, shopfloor, bench, pro-
duction line; nursery, 370farm; dairy, creamery, 369stock farm; kitchen,
laundry; office, bureau, call centre; business house, firm, company; offices,
secretariat, Whitehall; manufacturing town, hive of industry, 678activity.

Figure B.1: Roget’s Thesaurus of English words and phrases Davidson (2002)
entry for company (continued)
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company
assembly74 n.
band74 n.
accompaniment89 n.
actor594 n.
personnel686 n.
workshop687 n.
association706 n.
corporation708 n.
party708 n.
formation722 n.

706 Cooperation
N. association, coming together; colleagueship, co-ownership, copartner-
ship, partnership, 775participation; nationalization, internationalization,
775 joint possession; pooling, pool, kitty; membership, affiliation, 78in-
clusion; connection, hook-up, tie-up, 9relation; consociation, ecosystem;
combination, consolidation, centralization, 45union; integration, solidar-
ity, 52 whole; unification, 88unity; amalgamation, fusion, merger; volun-
tary association, coalition, cohabitation, alliance, league, federation, con-
federation, confederacy, umbrella organisation; axis, united front, common
f., people’s f., popular f., 708political party; association, fellowship, col-
lege, club, sodality, fraternity, sorority, 708community; set, clique, coterie,
cell, 708party; workers’ association, trade union, chapel; business associa-
tion, company, joint-stock c., limited liability c., private c., public c., public
limited c., PLC, Ltd, syndicate, combine, consortium, trust, cartel, ring,
708 corporation; housing association, economic community, cooperative,
workers’ c., commune, 708community.

708 Party
N. party, movement; group, class, 77classification; subsect, confession,
communion, denomination, church, 978sect; faction, groupuscule, cabal,
cave, splinter group, breakaway, movement, 489dissentient; circle, inner
c., charmed c., kitchen cabinet; set, clieque, incrowd, coterie, galère; cau-
cus, junta, camarilla, politburo, committee, quango, club, cell, cadre; ring,
closed shop; team, eight, eleven, fifteen; crew, team, complement, 686per-
sonnel; troupe, company, 594actor; gang, knot, bunch, outfit, 74band;
horde, 74crowd; side, camp.

corporation, body; incorporated society, body corporate, mayor and cor-
poration, 692council; company, livery c., joint-stock c., limited liability
c., public limited c., holding c.; private c.; multinational c., transnational
corporation, dotcom, 706association; firm, concern, joint c., partnership;
house, business h.; establistment, organization, institute; trust, combine,
monopoly, cartel, syndicate, conglomerate, 706assocation; trade associa-
tion, chamber of commerce, guild, cooperative society; consumers’ associ-
ation.

722 Combatant. Army. Navy. Air Force
N. formation, array, line; square, phalanx; legion, cohort, century, decury,
maniple; column, file, rank; unit, group, detachment, corps, army c., divi-
sion, armoured d., panzer d.; brigade, rifle b., light b., heavy b.; artillery
brigade, battery; regiment, cavalry r., squadron, troop; battalion, company,
platoon, section, squad, detail, party, 74band.

Figure B.1: Roget’s Thesaurus of English words and phrases Davidson (2002)
entry for company (continued)
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