
Design of an Asynchronous Processor

Christos Panagiotis Sotiriou

Doctor of Philosophy
University of Edinburgh

2001

2:
-J

N

Abstract

Designing performaiice-scalable couipiiter architectures is becoiiiiiig an in-

creasingly complex problem in small dimension integrated circuits, as the effects

of physical laws increasingly constrain circuit design and computer architecture.

This thesis investigates the implementation of asynchronous circuits and asyn-

chronous computer architectures. In the area of asynchronous circuits, it proposes

the direct-mapped approach to control circuit design, originally devised by Hol-

laar, mapped to CMOS technology. In the area of asynchronous computer ar-

chitecture, it investigates scalable, concurrent computer architectures, with the

aim of solving the problems of scaling performance and utilising the increasing

device count. The design and implementation of two hardware structures, Shared

Register Files and Itnet (micronet) architectures is detailed, together with their

incorporation into the design of an asynchronous prototype processor, the Al

chip.

The Shared Register File approach provides a scalable and segmented datap-

ath by partitioning the conventional monolithic register file into multiple register

files which physically share registers. Communication and synchronisation be-

tween the shared register files takes place via the shared registers. This approach

can be used to implement a clustered uniprocessor or a single-chip multiprocessor

system. The shared register file approach allows for the exploitation of program

level concurrency, where different parts of the same program or different pro-

grams can run on the different shared register file datapaths. The design and

implementation of shared register files is presented.

The tnet approach is a methodology for asynchronous processor design, which

allows fine-grain instruction level parallelism to be exploited. It implements a pro-

cessor architecture as a non-linear pipeline with inputs at every pipeline stage. In

this way, a inet architecture exploits more fine-grain parallelism than a conven-

tional pipelined architecture. The design and implementation of generic, scalable

Itnet architectures is described and evaluated.

Acknowledgements

First atici foremost I would like to thank my supervisor Prof. Rolaiid N. Ihbett

for his invaluable help, support and guidance. Without him this work would not

have been possible.

I also want to thank my fellow PhD students, with which we became close

friends, and everyone that made my stay in Edinburgh a very special and mem-

orable time.

Finally, I would like to thank my family for all their help and support.

Declaration

I (le(:lare that this thesis has 1)eeIl (O111J)Osecl by myself and all time work (011-

tamed in this thesis is my own, except where otherwise stated in the text.

Christos Panagiotis Stiriou

Table of Contents

List of Figures 	 5

List of Tables 	 10

Chapter 1 	Introduction 11

1.1 Scalable Architectures 11

1.1.1 	Scalability in Architectures 11

1.1.2 	Scaling Performance 12

1.1.3 	Architectures of today and tomorrow 15

1.1.4 	The Role of the Register File 17

1.1.5 	Alternatives to the MRF 18

1.2 The SRF Approach 20

1.2.1 	Register Windows 20

1.2.2 	Overlapping or Shared Register Files 21

1.2.3 	SRFs in Architectures 22

1.3 Timing in Circuits and Architectures 23

1.3.1 	Synchronous Systems 23

1.3.2 	Asynchronous Systems 24

1.4 Asynchronous Processors 25

1.5 Aims of the thesis 27

1.6 Thesis 	Structure 28

Chapter 2 Asynchronous Direct-Mapped Finite-State Machines 29

	

2.1 	Digital Circuit Design 29

	

2.2 	Circuit Specification Nlethods30

2.3 Implementation of Digital Control Circuits31

2.3.1 	Transistors and Logic Gates31

2.3.2 	Combinational Logic32

2.3.3 	Sequential Logic32

2.4 Circuit Implementation Problems33

1

2.4.1 	Hazards 34

2.4.2 	Races 36

2.4.3 	Example 36

2.5 Delay 	Models 39

2.6 Modes of Operation of Sequential Circuits 39

2.6.1 	Synchronous Circuits 40

2.6.2 	Asynchronous Circuits 41

2.7 Asynchronous Finite State Machines 41

2.8 Asynchronous CMOS Direct-Mapped FSMs 46

2.8.1 	Domino CMOS Structure 47

2.8.2 	CMOS Direct-Mapped AFSMs 48

2.8.3 	The CMOS Direct-Mapped Approach 50

2.8.4 	Comparison with other implementation techniques 60

2.8.5 	Automating the CMOS Direct-Mapped Approach 67

2.9 Conclusions 68

Chapter 3 	Asynchronous Processor Design 70

3.1 Fundamentals of Asynchronous Systems 70

3.1.1 	Communication and Synchronisation 70

3.1.2 	Completion Detection 71

3.1.3 	Arbitration 73

3.2 Asynchronous Processor Design 74

3.2.1 	Pipelining 74

3.2.2 	Synchronous Pipelining 75

3.2.3 	Asynchronous Pipelining 75

3.2.4 	Instruction Pipelines 76

3.2.5 	Instruction Pipeline Hazards 77

3.3 The 1.net (micronet) architectural approach 77

3.4 unet 	Structure 78

3.5 jioperations 79

3.6 /ioperation Dependencies 79

3.7 Generic Itnet Implementation 80

3.7.1 	unet Control Implementation 81

3.7.2 	Itnet Data Registers 82

3.8 Scaling a pnet Datapath 83

3.8.1 	Implementing a Scalable pnet Datapath 83

3.8.2 	Multiple pnet Datapaths 87

3.9 Shared Register Files 88

3.9.1 	Concept of register sharing89

3.9.2 	Possible Sharing Schemes89

3.9.3 	SRF design 91

3.9.4 	SRF and MRF issues91

3.9.5 Asynchronous vs. Synchronous SRFs 	92

3.10 Conclusions 93

Chapter 4 	Implementation of Shared Register Files 94

4.1 Asynchronous SRF Circuit Design 94

4.1.1 	Completion Detection 97

4.1.2 	Control Circuitry 98

4.1.3 	The 2-way sharing organisation 99

4.1.4 	The 1-way sharing organisation 105

4.1.5 	The 4-way sharing organisation 107

4.1.6 	SR.F Access Times 108

4.2 Effectiveness of SRFs in a system 110

4.2.1 	SRF Performance Metrics 110

4.2.2 	SRF Performance 110

4.3 A Four SRF 2-way System 115

4.4 Bus-Based Systems 121

4.4.1 	Implementation 124

4.5 Conclusions 132

Chapter 5 The Al Processor Design 133

5.1 The Al Prototype Chip 133

5.2 The Al 	Architecture 135

5.3 Instruction Flow and Execution 140

5.3.1 	fioperation Issue 140

5.3.2 	Operand Fetch 141

5.3.3 	Operand Data Arrival 142

5.3.4 	Functional Unit Execution 142

5.3.5 	Result Data Arrival 143

5.3.6 	Result Write-back 144

5.3.7 	Register Locking Mechanism 144

5.4 Processor Components 145

5.4.1 	Data Registers 145

5.4.2 	icontrol1ers 146

5.4.3 	Processor Control Unit 153

3

5.4.4 Processor Control Unit Simulation . 	 159

5.4.5 Memory Interface 162

5.4.6 Write-Back Unit 164

5.4.7 32-bit and 8-bit Adders with Completion Detection . . 166

5.4.8 32-hit Comparator with Completion Detection 173

5.4.9 Shared Register Files 175

5.5 	Al Testing and Simulations 179

5.5.1 Simple Program Test 179

5.5.2 SRF Addition Test 185

5.6 	Conclusions 187

Chapter 6 	Conclusions and Future Work 188

6.1 	Al 	Evaluation 188

6.1.1 	Parallelism 188

6.1.2 	Performance 189

6.1.3 	Design Problems 190

6.1.4 	Silicon 	Areas 191

6.1.5 	Testing 191

6.2 	Future Work 193

6.2.1 	Shared Register File Architectures 194

6.2.2 	Irnet Architectures 195

6.3 	Conclusions 195

Bibliography 	 196

4

List of Figures

1.1 Example Limited Comiectivitv VLI\V Architecture 	 19

1.2 Clustered Queue Register File Architecture19

1.3 Part of a dual-node Multicluster Architecture19

1.4 Example Multiscalar Architecture20

1.5 Partitioned Register File Architecture20

1.6 	Register Windows21

1.7 	Shared Register Files22

2.1 Truth Table for an AND gate 30

2.2 Flow Table for a 2-bit grey-code Counter 31

2.3 State Diagram for 2-bit Counter 31

2.4 Different Realisations of a.b+c 32

2.5 Complex CMOS Gate Structure 33

2.6 General Form of a Sequential Circuit or FSM 33

2.7 Combinational Hazards 34

2.8 Flow Table for a 2-bit grey-code Counter 37

2.9 Realisation of the 2-bit grey-code Counter 37

2.10 Hazard-Free Realisation of the 2-bit grey-code Counter 38

2.11 Hollaar's One-hot AFSM Example 45

2.12 Scale-of-two loop implementation 46

2.13 Properly functioning scale-of-two loop 47

2.14 Synchronous Domino CMOS Structure 47

2.15 Asynchronous Direct-Mapped State Gate 48

2.16 Asynchronous Direct-Mapped Example 51

2.17 Closed Loop Example 52

2.18 Parallel Path Expansion Example, states s2 and s3 53

2.19 Parallel Path Expansion Example, state si 53

2.20 Parallel Path Merging Example, state s3 54

2.21 Parallel Path Merging Example, states si and s2 54

2.22 Scale-of-two loop CMOS implementation 55

5

2.23 Properly Functioning Scale-of-two loop 56
2.24 Flow Table for a 2-bit grey-code Counter 59
2.25 Four State Counter 59
2.26 Semi-decoupled latch controller using asymmetric C-gates 61

2.27 Structure of an asymmetric C-gate 61

2.28 State graph for semi-decoupled latch controller 62

2.29 Semi-decoupled latch controller using DM-AFSMs 62

2.30 Fully-decoupled latch controller using asymmetric C-gates 	. . 63

2.31 State graph for fully-decoupled latch controller 64

2.32 Fully-decoupled latch controller using DM-AFSMs 64

2.33 Sbuf-send-ctl Burst-mode AFSM (Davis et. al) 65

2.34 Sum-of-Products realisation for output Y0 of Sbuf-send-ctl AFSM 66

2.35 Sum-of-Products realisation for output Yl of Sbuf-send-ctl AFSM 66

2.36 Sbuf-send-ctl minimised AFSM state graph 67
2.37 Sbuf-send-ctl minimised AFSM state graph 67

2.38 CMOS Direct-Mapped AFSM Synthesis Tool CDL/Spice Output 69

3.1 2 and 4-phase Handshaking Protocols 71

3.2 Mutual Exclusion Element 74

3.3 Linear and Non-Linear Pipelines 74

3.4 Synchronous Pipeline Implementation 75

3.5 Asynchronous Pipeline Implementation 75

3.6 Two-Phase Micropipeline Implementation 76

3.7 A typical Instruction Pipeline 76

3.8 Example of a pnet Architecture - 	 toperation Issue 78

3.9 Example of a /nlet Architecture - Datapath Handshakes 78

3.10 jtoperation Dependencies in the Al Processor 80

3.11 Operation Dependencies in a pipeline 80

3.12 zoperation Control Implementation 82

3.13 poperation Detailed Control Implementation 83

3.14 Example FSM of a unit selection circuit 84

3.15 Example of a scaled inet implementation 86

3.16 Part of a scalable ,anet implementation 87

3.17 Bus Interconnections in a scaled /met implementation 87

3.18 Multiple jinet Architecture 88

3.19 Register Sharing: 	Unidirectional 89

3.20 Register Sharing : 	Bidirectional 90

3.21 Register Sharing : 	4-way 91

6

4.1 Register Sharing : 	Bidirectional 95

4.2 1-hit register cell layout 96

4.3 32-bit register cell 96

4.4 FSM of read/write port logic 98

4.5 Layout of the read/write port logic 99

4.6 Bidirectional Connectivity Diagram 100

4.7 Bidirectional Register File Floorplan - 16 local, 8 shared registers 101

4.8 Bidirectional Register File Layout - 16 local, 8 shared registers 101

4.9 Access Time Map for the 16/8, 2-way Shared RF 103

4.10 Access Time Measurement Waveforms 104

4.11 Access times(ns) for 2-way SRF with 4, 8 and 16 shared registers 105

4.12 Unidirectional Register File Layout - 28 local, 4 shared registers 106

4.13 4-way Connectivity Diagram 107

4.14 4-way Register File Layout - 16 local, 8 shared registers 108

4.15 Access times(ns) for 4-way SRF with 4, 8 and 12 shared registers 108

4.16 Average Access Times in ns for Local and Shared Registers . . . 109

4.17 Execution of a program that adds 8 numbers 112

4.18 Program execution on 2 nodes of a 4 node, 2-way organisation . . 113

4.19 Program execution on 4 nodes of a 4 node, 2-way organisation . . 113

4.20 Program execution on 4 nodes of a 4-way organisation 114

4.21 Layout of the 4 SRF 2-way System 116

4.22 Top level Connectivity of the 4 SRF 2-way system 117

4.23 Four MRF 2-way Bus System 122

4.24 Four MRF Unidirectional Bus System 123

4.25 Arbitration control circuit FSM for Bus System Ports 125

4.26 Arbitration control circuit layout for Bus System Ports 126

4.27 RF acknowledgement gate 126

4.28 Layout of the 4 MRF Arbitrated Bus System 127

4.29 Top level Connectivity of the 4 MRF Arbitrated Bus system 	. . . 128

4.30 Program execution on 4 nodes of a 4 node, MRF bus organisation 131

5.1 The Al Prototype top-level Chip Layout 134

5.2 The Al Prototype top-level Hierarchy 134

5.3 Processor node layout 135

5.4 High-level Diagram of an Al node 136

5.5 Al Instruction Formats 137

5.6 Datapath Architecture of one Node of the Al processor 138

5.7 FSM of jisync&ex control circuit 146

7

5.8 Layout of psync&ex control circuit 147

5.9 FSM of isync&ex&fwd control circuit 148

5.10 Layout of jisync&ex&fwd control circuit 149

5.11 FSM of isync&2ex control circuit 150

5.12 Layout of jisync&2ex control circuit 151

5.13 FSM of jtsync&ex&fwd-rn control circuit 151

5.14 Layout of zsync&ex&fwd-m control circuit 152

5.15 Simulation of the .tsync&ex&fwd control circuit 153

5.16 Control Unit Layout 154

5.17 FSM of the instruction fetch and issue control circuit 155

5.18 Layout of the instruction fetch and issue control circuit 155

5.19 Instruction decode combinational logic equations 156

5.20 Layout of the instruction decode circuit 156

5.21 FSM of the Iloperation issue circuit 157

5.22 Layout of the 	Loperation issue circuit 157

5.23 FSM of the COp ftoperation issue circuit 158

5.24 Layout of the COp ioperation issue circuit 158

5.25 Layout of the 	toperation issue circuit 159

5.26 FSM of the program counter control circuit 160

5.27 Layout of the program counter control circuit 160

5.28 Simulation of the fetch and issue of an immediate instruction 161

5.29 Simulation of the fetch and issue of a branch instruction 162

5.30 FSM of Memory Unit 163

5.31 Layout of the Memory Unit 164

5.32 FSM of Write-Back Unit 165

5.33 Layout of the Write-Back Unit 165

5.34 Combinational logic equations for addition 166

5.35 Dual-rail encoded carry equations 166

5.36 Full-Adder, result generation 167

5.37 Full-Adder, carry output generation and completion detection 167

5.38 Layout of the asynchronous full-adder 168

5.39 Layout of the asynchronous 32-bit ripple-carry Adder 168

5.40 FSM of the adder control logic 168

5.41 Layout of the adder control logic 169

5.42 Simulation of an addition with no carries 170

5.43 Simulation of the 01+01 addition 171

5.44 Simulation of an addition with one sequential carry. 01+11 	 171

F:'

5.45 Simulation of an addition with two sequential carries, 001+111 . . 172

5.46 Simulation of an addition with three sequential carries, 0001+1111 172

5.47 Addition Time in ns as a function of the number of sequential carries 173

5.48 Layout of the asynchronous 32-bit comparator 173

5.49 cascade 32-input dynamic NAND gate 174

5.50 cascade 32-input dynamic OR gate 174

5.51 Simulation of a true and a false comparison 175

5.52 Layout of the Shared Register File with 8 shared and 16 local registers 176

5.53 Access time map for one unconnected Al SRF 177

5.54 FSM of the SRF read/write port logic 178

5.55 Layout of the SRF read/write port logic 179

5.56 Simple test program for testing all the Al processor instructions . 180

5.57 Simulation of the simple program - Instruction Fetch 180

5.58 Simulation of the simple program - Register toperat.ion Hancishakes181

5.59 Simulation of the simple program - FU ioperation Handshakes 182

5.60 Simulation of the simple program - Register File Ports 183

5.61 Simulation of the simple program - FU Handshakes 184

5.62 SRF Program - one node addition 185

5.63 SRF Program - two node addition 185

5.64 One-node SRF addition program simulation - Instruction Fetch 	. 186

5.65 Two-node SRF addition program simulation - Instruction Fetch 	. 186

6.1 Conventional CMOS direct-mapped AFSM structure192

6.2 CMOS direct-mapped AFSM with BIST additions192

6.3 2-phase synchronous DFF circuit193

9

List of Tables

4.1 Access times(ns) for 2-way SRF with 4, 8 and 16 shared registers 105

4.2 Access tiines(ns) for 4-way SRF with 4, 8 and 16 shared registers 108

4.3 SRF Performance Metrics 111

4.4 Execution times for different organisations 114

4.5 Access Times(ns) for 4 SRF 2-way System 118

4.6 Performance Metrics for 4 SRF 2-way System 119

4.7 SRF Metrics for an unconnected SRF of this system 119

4.8 Average Interconnect Distances for control and data signals (in

rni) 	between 	SRFs 120

4.9 Updated Execution times for SRF system 121

4.10 Access Times(ns) for 4 MRF Bus System 129

4.11 Performance Metrics for a 4 MRF Bus System 130

4.12 Updated Execution times for SRF system 132

5.1 	Al tinstruction Decoding . 137

5.2 Summary of the comparison speeds175

5.3 Access times(ns) for 2-way SRF with 4, 8 and 16 shared registers 176

5.4 Access time Ratios between Al ALCATEL SRF and 2-way ES2

1-read port SRF177

6.1 Areas of various Al components191

10

Chapter 1

Introduction

1.1 Scalable Architectures

1.1.1 Scalability in Architectures

Scalability requires a compositional architecture, where components can be added

or removed. These components should be designed with emphasis on both phys-

ical scalahility and potentially scalable performance. Since the 1970s, fine-grain,

scalable architectures have been identified as the best possible way to utilise

the increased device count that the breakthrough in VLSI technology has pro-

vided [DL99]. The key aspects of these architectures relevant to performance

scalability have been identified as regularity in structure, programmability in

terms of the hardware-software interface and, most importantly, concurrency.

With the transition from Very Large Scale Integration (VLSI) to Giga Scale

Integration (GSI), another increase in the device count is expected of the order of

1000. The number of available transistors on a single chip is rising exponentially

and is expected to be in the order of 1 billion before 2010.

Additionally, as feature sizes scale, the metal wire bandwidth is becoming a

potential limiting factor to circuit speed and inter-circuit communication. The

propagation of signals in metal wires is now becoming comparable to the switching

speed of transistors and the capacitance, resistance or even inductance of metal

wires has to be considered in circuit design [CAD]. One way of tackling this

problem is to change the metallisation material, currently Aluminium, to reduce

RC delay and IR drop. The only three metals with better conductivity than

Aluminium are silver, copper and gold. Unfortunately, even using silver, the

improvement in resistance cannot exceed a factor of 2. Copper interconnect is

now being used by some manufacturers [1BM97][MOT97a], despite its processing

difficulties; it requires an extra barrier layer as it diffuses through Si02 and

an extra passivation layer to prevent corrosion. The net effect is a 20 to 30%

11

reduction of the effective resistance [CS96].

So, these technology issues must be considered when new architectures are

being designed. The important challenges faced by computer architects are to

manage locality, to reduce the communication overhead and to provide efficient

synchronisation mechanisms.

1.1.2 Scaling Performance

Increases in the performance of a computer system can be achieved in two different

ways; the time it takes to perform a certain task can be reduced and/or more tasks

can he performed in a unit of time. The former is usually hounded by physical

and implementation constraints imposed by the circuit technology. The speed

of transistors, the RC delays of metal tracks, the parasitic capacitances between

layers and the power supply voltage are some of the factors which influence circuit

speed. Such factors depend on the technology type (e.g. CMOS or BiCvIOS)

and the feature size (e.g. 0.7tm, 0.35tm). Therefore, as the technology sets

an upper bound to speed, concurrency is necessary for scaling performance. All

of today's high-performance architectures exploit concurrency in some way to

achieve performance.

Compositionality and concurrency are very much related issues. Any system

which is able to perform operations in parallel must be compositional in some

way. An element in such an architecture which is not compositional may act as a

constraint on performance. As the performance requirements increase, so does the

size of compositional architectures. Non-compositional, centralised components

are potential bottlenecks, especially those whose performance scales badly with

the size of the architecture. Concurrency can exist both in time and in space and

both between program instructions and data.

1.1.2.1 Instruction Level Concurrency

Since the third generation of computers (1965-74), techniques such as pipelining,

multiple functional units and scorehoarching have been used to exploit instruc-

tion level concurrency (or instruction level parallelism, ILP) and to scale perfor-

mance [HP90]. The first general-purpose machines to introduce pipelining were

the IBM 7030 [Blo59], known as Stretch, and Atlas [KELS62]. The IBM 7030, for

example, overlapped fetch, decode and execute using a 4-stage pipeline. Then, in

1963, the CDC 6600 introduced extensive use of multiple functional units (FUs)

along with scoreboarding [Tho64].

12

The scoreboard is essentially a hardware data structure which analyses in-

struction dependencies and allows instructions to execute out of order when suf-

ficient resources and no data dependencies exist. Three years later, the IBM

360/91 went a step further by using another data dependency analysis scheme,

the Tomasulo Algorithm [Toin67]. This distributed the data dependency analysis

logic among the architecture's hardware units and registers and eliminated false

dependencies. True dependencies exist between two instructions when the result

of one instruction is required by another, also known as Read-After-Write (RAW)

hazards because of the order that they impose. True dependencies cannot be re-

moved and have to be respected for correct program execution. Two types of false

dependency exist. The first type of false dependency occurs when two instruc-

tions share the same destination register and is known as a Write-After-Write

(WAW) hazard. The second type of false dependence occurs when time result of

one instruction is the operand of another earlier in the instruction stream but the

former has not yet read its operands, and is known as a Write-After-Read (WAR)

hazard. False dependences can he removed by increasing the register usage and

using different registers as destinations or operands for the instructions that cause

them.

The next evolutionary step was to make the pipeline structure known to the

compiler. That happened in the early 80's with Reduced Instruction Set Com-

puter (RISC) machines, such as the Berkeley RISC [PS82]. The instruction set

became simpler and better suited to conform to a pipelined structure. Hardware-

software interaction was enhanced by allowing the compiler to select instructions

for the pipeline structure. From then on, to exploit even more instruction level

concurrency, machines which fetch and issue multiple instructions in a single step

were proposed.

Two types of systems were devised, Very Long Instruction Word (VLIW) [Fis83]

and superscalar [Joh9l][SS95]. In VLI\V architectures, multiple instructions are

packed into a single fixed-format instruction word by the compiler and then each

instruction in that word feeds into an appropriate functional unit of a multiple

FU architecture. Superscalar architectures, in which, multiple independent in-

structions are fetched and issued, operate at the hardware level, placing fewer

demands to the compiler. Superscalar architectures check dynamically for FU

availability and can support out of order issue and execution.

13

1.1.2.2 Data Level Concurrency

Array processors followed a different approach to increasing concurrency [Hwa93].

Instead of increasing the complexity of the single processor, array processors

replaced it with a number of simpler ones. The argument for array processors is

that although each processor in an array processor system is not as powerful as

the most powerful single processor, their combination is both much more powerful

and cost-effective.

One of the first computers to adopt the idea of array processing was the

Illiac IV [Hor82]. It was delivered in 1972 to NASA but difficulties with the

project meant that only a quarter of the original design was implemented and

this somewhat hindered the investigation of this style of architecture. After that,

a number of such architectures emerged, the Burroughs BSP [KS82]. the ICL

DAP [Red73], the CM-2 [Thi90] and the MasPar MP1 [las91].

A typical array processor architecture comprises an array of processing ele-

ments and a central control unit. The control unit distributes array instructions

and data among the processing elements. The processing elements can he ele-

mentary 1-bit processors as in the Illiac IV or the ICL DAP architectures or more

complex as in the MasPar MP1. Typically, all processing elements execute the

same instruction and masking logic is provided to enable or disable a process-

ing element during the execution of an instruction. Communication between the

processing elements is necessary and is implemented by a data-routing network,

which is controlled by the executing program.

Vector architectures provide machine instructions that operate on data sets

rather than scalar values, hence exploiting spatial parallelism. They use vector

FUs which are pipelined and can operate on multiple data elements simulta-

neously, resulting in high data throughput and performance. The first vector

machines were the CDC STAR-100 [HT72] and the TI ASC [Wat72] which were

both announced in 1972. These were both memory-memory machines meaning

that a vector operation had a high start-up overhead due to the amount of mem-

ory fetches. Also, the vector size ranged from several hundred to several thousand

elements. The CRAY-1 [Rus78], introduced in 1976, was a vector-register archi-

tecture which reduced the start-up overhead of vector operations. The CRAY-1

was the first commercially successful vector machine clue to its high vector and

scalar performance. The evolution of vector machines continued and as the need

for higher performance continued, so did the exploitation of concurrency. Deeper

pipelining, exploitation of instruction level concurrency and the use of multiple

processors followed. The CRAY X-MP was the first vector architecture to intro-

14

duce multiprocessor configurations.

1.1.2.3 Program Level Concurrency

Architectures that exploit a different type of concurrency, i.e. explicit concur-

rency between program data and instructions were also devised. This class is

referred to as parallel architectures. Such architectures include multiprocessors

and multicomputers.

Multiprocessors and multicomputers are architectures with multiple process-

ing elements, which are able to execute multiple program threads simultaneously.

The nature of the processing elements can vary from a simple scalar processor to

a complex deeply-pipelined vector processor. The difference between multiproces-

sors and multicomputers is the memory system and the communication medium

between processing elements. In a multiprocessor system, processors corninu-

nicate via shared variables in a common memory. In a mnulticomputer system,

each computer node has a private, local memory and communication takes place

between nodes through messages on communication links.

Multiprocessors can be classified according to their memory access model: the

uniform memory access (UMA) model, the nonuniform memory access (NUMA)

model, and the cache only memory architecture (COMA) model. The difference

between these models is the structure of the memory hierarchy.

In the UMA model, all processors have equal access times to a uniformly

shared memory. In the NUMA model, the memory is physically distributed across

the processors and each processor has a local memory. The memory access time

varies with the physical location of a memory word; the local memory is the

fastest to access, remote memory access is longer because of the delay of the

interconnect. The COMA model is a special case of the NUMA model, where

the distributed memories are replaced by cache memories, which form a global

address space.

Multicomputers are composed of multiple processors with local memories and

a message-passing interconnection network which provides static connections be-

tween the nodes. The local memories in mnulticomputer systems can only be

accessed by the processor they are attached to, this is why they are sometimes

referred to as no-remote-memory-access (NORMA) machines.

1.1.3 Architectures of today and tomorrow

Conteiiiporary processors like the Intel Pentium family [Sha98] and clones, the

Alpha 21264 architecture [Com99] and the PowerPC architecture [Mot971-)] are

15

all ILP architectures. Their common characteristics is that they are all pipelined,

have multiple FUs, operate on multiple instructions simultaneously and support

out-of-order and speculative execution. ILP architectures use a mixture of static

(compiler driven) and dynamic (hardware) techniques.

They typically fetch multiple instructions in a single operation, in the original

program order. They then remove false instruction dependencies by renaming

the logical registers assigned by the compiler to physical ones. After this stage,

execution of instructions can occur out-of-order, i.e. depending on the availability

of operands. Results of instructions can be forwarded to other instructions. The

instruction's results are stored in the original program order in a queue called the

reorder buffer. Their results are committed to the registers and memory in-order

to ensure correct program behaviour. Branch instructions are handled in the fetch

stage. Their outcome is typically predicted by some scheme and instruction exe-

cution continues speculatively. Depending on whether the prediction was correct

or not, the results of speculatively executed instructions are comnmited.

The differences between these processors are their architectural parameters

and their fabrication processes. Examples of such parameters are the size of the

data and instruction caches, the number of registers and their size, the maximum

number of instructions that can be issued, the size of the branch prediction tables,

the number of FUs, etc.

The trend in ILP processor design is to keep increasing the processor resources

and investigate new techniques for exploiting parallelism. The number of regis-

ters, the number of FUs and the number of instructions that a processor can

handle in a given cycle are parameters which keep increasing.

There are limitations to this approach however [P.JS97][ONH96]. The regis-

ter requirements of ILP architectures are high [FJC95][MSAD92] both in terms

of the number of registers and the number of ports because of the high number

of instructions that are in flight in the architecture and the existence of multiple

FUs. The performance scalahility of the centralised, monolithic register file is a

problem for such architectures. Forwarding results between instructions directly

is a common approach used to bypass the register file and improve performance.

However, a typical implementation to allow full connectivity between the inputs

and outputs of all FUs also scales badly. This is because it is dominated by RC

delays due the use of multiple result busses and tn-state circuits.

The continuous shrinking of transistor sizes, the interconnect problem and

the ability to integrate more devices onto the same chip have triggerred a rethink

about the architectures of tomorrow. The ability to integrate a few small-scale,

16

embryonic processors on the same chip has given new potential to array processors

and multiprocessor systems, giving rise to clustered and single-chip multiproces-

sor architectures. Both of these architectures are compositional and therefore

scalable, whereas ILP processors are not. In general, they aim at a higher degree

of parallelism than the ILP processor, but ILP processors have reached the limits

of parallelism that they can exploit anyway.

Clustered and single-chip multiprocessor architectures are composed of a num-

ber of processing elements which are fed by a single or multiple instruction streams

respectively. Each processing element is typically composed of a number of FUs

and some form of local storage. The ability of the processing elements to com-

municate is paramount for the exploitation of parallelism and performance.

In this work, the problem of communication and synchronisation between pro-

cessing elements in a clustered or single-chip multiprocessor svsteui is considered.

1.1.4 The Role of the Register File

Historically, the first machines were accumulator based. Machine instructions

always involved the accumulator, a special register for storing one of the operands

of an operation, for reasons of hardware simplicity. This approach implied a

high memory traffic as no means of temporary storage existed. The CDC 6600

introduced hardware registers because the multiple FUs of the machine could not

be fed fast enough with operands at the speed of the main memory.

The register file (RF), a bank of general purpose registers has since become

almost ubiquitous as a component in computer architectures. In contemporary

architectures, the most common instruction types are load/store, I. e. instructions

which transfer data between the RF and the lower levels of the memory hierarchy,

and register-register, i.e. instructions which operate on data stored in registers

and store their result back into the RF. The RF is the part of the memory hierar-

chy closest to the processor; it can be randomly accessed and results stored once

can be read multiple times by multiple instructions. Although it is so commonly

used, it is one of the most difficult components to scale in an otherwise scalable

architecture, both in terms of perforniance and compositionality.

Assuming fixed length registers (say 32-bits), the speed of an RF depends

primarily on two factors, the number of registers it contains and the number

of access ports. The dependence is not linear but quadratic [Kum96]. This is

because an increase in either of these parameters has an effect on the electrical

parameters of the RF datapath, increasing both its capacitance and resistance,

whose product yields the time constant which determines circuit speed.

17

The numbers of ports and registers are determined by the architecture. For

maximum performance, if the number of FUs is increased, then the bandwidth

between the FUs and the registers must be increased, implying an increase in the

input and output ports of the RF. An architecture with n FUs requires 2n read

and n write ports. Concurrent, look-ahead architectures, such as superscalar

or VLIW, increase register usage even more, both through the use of register

renaming to remove false dependencies and by operating on many instructions

simultaneously [FJC95] [MSAD92]. It is important therefore to find an alternative

solution to the centralised or monolithic register file (MRF) approach.

1.1.5 Alternatives to the MRF

A number of scalable architectures have considered the MRF problem. Two

approaches have been followed: multiple RFs and partitioned RFs.

The use of multiple RFs is the most common approach, where the MRF is

segmented into a number of smaller RFs, i. e. with fewer registers and fewer ports.

Each of these RFs is then allocated a number of functional units (FUs), yielding

an architecture which is composed of a number of nodes or clusters of FUs. The

most important characteristic which distinguishes this type of architecture is the

communication method established between the nodes.

Capitanio's limited-connectivity VLIW machine [CDN92] (Figure 1.1) is a

clustered VLIW architecture which has multiple RFs and uses extra busses and

extra RF ports for inter-R.F communication (busses at the top of Figure 1.1).

Multiplexers are used to provide a fully connected network (a crossbar) between

the multiple RFs allowing them to write to all RFs busses.

Fernandes' queue RF approach [Fer98] (Figure 1.2) is again a clustered VLIW

architecture where all communication between RFs takes place via a number of

queues. These queues establish a hi-directional communication ring between the

clusters.

The inulticluster architecture, Farkas et a!, [FCJV97] (Figure 1.3) is a dynam-

ically scheduled superscalar architecture that uses multiple nodes, each with its

own RF, and that allows inter-node communication to take place at the register

level by using multiple register transfer busses between the nodes.

The Wisconsin-Madison inultiscalar processor [SBV95] (Figure 1.4) is a coarse-

grain machine, again with multiple nodes each with its own RF, but each node

runs a statically selected task and communication between the nodes takes place

with a uni-directional ring mechanism which follows the order of execution.

The other approach is partitioned RFs [JC95]. This approach, instead of

IN

II IlIl II 	 II IlI II_

!4T J!J!jgi —.
-It'-

Figure 1.1: Example Limited Connectivity VLIW Architecture

E!TIJ -
Node 1 I 	 I Node 2 I 	 I Node n

Figure 1.2: Clustered Queue Register File Architecture

node 0

FU bypassing k5 FUs

operand and result

transfer busses

operand and result

RFand
FU bypassing

node 1

Figure 1.3: Part of a dual-node iIulticluster Architecture

distributing the multiple RFs across the architecture, groups them together into

a single partitioned RE and views each RF as a partition of the complete one

(Figure 1.5). This is achieved by another level of register decoding in order to

select the partition.

,s Buses

Buses

19

Head 	
(

Tail

kadi.

Pnc.sdiig I 	 I pr...a.lngI 	 I Pceadn
Unit 	 ring 	

i.rn..t I H 	Unit

	

I 	Interconnicl 	I

Data 	I 	 Data
R 	 flank

t

Figure 1.4: Example Multiscalar Architecture

Figure 1.5: Partitioned Register File Architecture

1.2 The SRF Approach

1.2.1 Register Windows

The concept of register windows was introduced in the Berkeley RISC and SPARC

architectures. It was conceived as a means to address the problem of efficient com-

munication of register values between procedures in a program. Conventionally,

procedure calls have to use the stack, i. e. the main memory hierarchy, to com-

municate register values and the time required for writing to the stack is quite

considerable, firstly because all the registers of the machine have to be saved and

secondly because main memory accesses are slow.

In an architecture with register windows, procedures can only use a subset

of the RF at a time, the current register window, and this is composed of a set

of input registers, for receiving data from the calling procedure, a set of local

20

registers, for storing local variables, and a set of output registers for sending data

to a called procedure.

Along with register windows came the idea of overlapping registers. The input

and output registers of communicating procedures overlap. When a procedure

calls another it writes to its output registers and after the call the output registers

of the caller become the input registers of the callee. This is achieved through the

use of the current window pointer (CWP), a register which points to the start of

the current register window in the RF. A register windows RF is composed of a

number of windows as shown in Figure 1.6. In addition, the last window overlaps

with the first one.

out F_
local

RW(n)

Out 	__u,__ -'--cwp

local

out 	in

Figure 1.6: Register Windows

It is possible for overflow to occur, if the function call depth exceeds the

number of windows. In that case, the main memory has to be used, so capacity

is still a problem.

1.2.2 Overlapping or Shared Register Files

Register windows establish a communication pattern for coimnunicating proce-

dures of a single thread of code. Communication can he thought of as occurring

in the time dimension, as when one procedure calls another, it stops, then the

latter takes over until it is finished and then control is returned to the former.

In multiprocessor systems, the problem of communication through main mem-

ory between processors is similar to that of communication through main mem-

ory between procedures in a uniprocessor. The overlapping registers idea of the

register windows scheme inspired the idea of overlapping register files or shared

register files, where portions of RFs overlap and multiple RFs share a portion of

their registers. A scheme of shared register files (SRFs) is shown in Figure 1.7.

21

out 	in

loc
L±Tb!irr:

Figure 1.7: Shared Register Files

Shared register files establish a communication mechanism for multiple threads

of code running on separate nodes. Each of these threads is executing using

different RFs. Communication takes place in space, rather than time, as data

between these threads is shared through shared registers.

In this scheme, multiple neighbouring RFs share registers for communication.

If RF(n) wants to communicate with RF(n+1), it writes to its output section and

then the data can be read from the latter's input section. The shared portions

are physically shared. The scheme shown establishes a unidirectional connection

between the SRFs. It is possible to expand this scheme for multi-way communi-

cation as will be shown later in this thesis.

1.2.3 SRFs in Architectures

SRFs provide a fine-grain communication mechanism for scalable architectures by

providing a simple, efficient and scalable method for segmenting the centralised

RF. The details of such an architecture will affect the SRF sharing scheme but the

SRFs themselves do not impose a particular architecture. Different configurations

of SRFs are discussed in Chapter 4.

SRFs manage locality by providing local sections for local processing and

shared sections for inter-RF communication. The design and implementation

process of SRFs will show that they have a natural mapping to implementation

and not only provide conceptual but also physical locality for the local sections

and a scalable connection method for communication.

SRFs reduce the communication overhead by providing flexibility in the degree

of communication and by their ability to communicate multiple values at the

same time. The degree of communication is reflected by the number of shared

registers, the number of shared sections in an SRF and the register sharing scheme.

22

Although only one value can be written at any one time in any one SRF, (unless

multiple write ports are used), shared sections can be accessed directly by all

neighbours without the need for arbitration. This provides the potential for

multi-way communication with low complexity.

SRFs provide implicit synchronisation at the register level through the use

of a register locking mechanism, which is much more desirable for exploiting

concurrency than coarse grain process level synchronisation.

1.3 Timing in Circuits and Architectures

The most common approach to designing digital control circuits is the syn-

chronous one, i.e. the utilisation of a timing reference signal, called a clock,

for separating system states. In high-level terms, the clock signal has two phases,

an active phase and a wait phase. During the active phase, an operation is per-

formed, whereas during the wait phase communication of results takes place. The

clock period, i.e. the time between the clock signal changes is determined by the

speed of an operation.

Because of the dominance of the synchronous approach in circuit design, most

contemporary systems including processor architectures are synchronous. Histori-

cally, the synchronous approach has dominated due to its simplicity, however with

today's complex systems it is no longer clear whether the synchronous approach

is still the simplest one.

1.3.1 Synchronous Systems

Synchronous systems are time-driven. The most important parameter of a syn-

chronous system is the clock period (or the clock frequency, its inverse), which

is either specified before a system design, or estimated after a system has been

designed. All clocked blocks in a synchronous system must have delays which are

less than the clock period for correct circuit operation.

The most common way of increasing the performance of a synchronous system

is to make the clock period smaller. This involves identifying the longest paths in

the control circuit logic, the critical paths, as they are called, and attempting to

make them faster. The global nature of the clock signal implies that all of the con-

trol circuits must have delays of the same order. Therefore, operations longer than

a specified clock period must be broken down into suboperations which take less

than or equal to the clock period. This implies than if the speed of an operation

is not an exact fraction of the clock period, a performance penalty is incurred.

23

This is one of the difficulties of synchronous design, i. e. that inhoniogenuities

between circuit speeds cannot be efficiently accommodated.

The implementation of synchronous circuits is becoming more and more dif-

ficult as the density of integration increases and higher clock frequencies are re-

quired in order to achieve high-performance. Clock buffering and clock skew are

becoming important problems in GSI. As the number of devices that can be im-

plemented on a single chip is increased, so must the drive strength of the clock to

drive them. Therefore, the silicon area which is occupied by the clock routing and

buffers is increasing. In addition, minimising clock skew, i.e. the differences in

the arrival time of the clock at different circuit parts, is a hard problem, because

both the clock buffers and the wire delays must match among different circuit

parts. In addition, as the wire delays are becoming increasingly significant, the

amount of die area which is reachable in a single clock cycle is dropping [Mat97].

The power consumption of synchronous circuits is another problem. Not only

the clock buffers and clock routing, but also circuits which are inactive consume

a lot of power without performing any useful function. The increasing power

dissipation of the clock, with increasing clock frequencies and integration densi-

ties, has presented the need for power management techniques. In a synchronous

circuit, current is drawn globally when the clock switches. This maximises radio

interference at frequencies which are harmonics of the clock frequency.

1.3.2 Asynchronous Systems

Asynchronous (also called self-timed) systems do not rely on an external timing

reference. They are composed of asynchronous circuit blocks. Communication

between these blocks is no longer based on timing, but on an asynchronous com-

munication protocol. Each of these blocks is responsible for communication with

other blocks and for detecting the completion of its operation.

In this way, each block operates autonomously, taking only as much time

as is necessary to perform its function, rather than waiting for the next clock

transition to occur. It is often the case that the time required for the completion

of an operation is variable and depends on the operands, rather than being fixed.

In such cases, an asynchronous implementation is more advantageous, as it can

accommodate these variations and does not incur a performance penalty. In

a synchronous implementation, the clock period must allow for the worst case,

the critical path, yielding worst-case performance for the particular circuit being

implemented, whereas an asynchronous implementation that is data-dependent

will yield average-case performance.

24

The most important advantages of asynchronous systems, which are direct

consequences of the autonomy of their constituent components, are composition-

ality and therefore scalahility, expandability and ease of improvement.

Compositionality and scalability are key aspects for scalable performance, as

they allow for the exploitation of parallelism. Expandability and ease of improve-

ment relate to compositionality. Once a system has been specified and possibly

implemented, it is generally possible to expand one of its parts, without having

to make global changes. In addition, it is possible to replace an asynchronous

component with an improved one, without having to make any changes to the

system.

The asynchronous system model is well suited to the GSI era, as the commu-

nication mechanism does not rely on explicit timing assumptions. Its properties

make it particularly attractive for implementing systems-on-a-chip, the latest

trend in semiconductor manufacturing, where single-chip systems can he con-

structed from standard circuit blocks. The asynchronous model solves the im-

portant problem of interfacing between these independent blocks and allows for

scalable and expandable systems to be implemented. The absence of a clock sig-

nal is also advantageous for mixed analogue and digital circuits, as the clock poses

interference problems for analogue circuit parts, which are usually separated, for

this reason, from the digital parts as much as possible.

1.4 Asynchronous Processors

Historically, asynchronous architectures first appeared in the 1950s. One of the

earliest machines to exploit asynchronous operation was the Atlas machine [KELS62],

designed at the University of Manchester in the late 1950's. Asynchronous oper-

ation was used because Atlas had a single accumulator for floating-point instruc-

tions and time floating-point unit had a much longer latency for multiply and divide

operations than it did for add or subtract. The MU5 Computer System [1C78},

the successor to Atlas at Manchester, inherited this asynchrony and exploited

it more extensively. It employed asynchronous communication among processor

units (although some of the units were internally synchronous) and between pro-

cessor units and memory, firstly to allow different instructions to follow different

paths through the various sections of the pipeline and secondly to address the

problem of variable functional unit delays.

The complexity of asynchronous circuit design and the preconception that

asynchronous circuits are wasteful in logic and area impeded asynchronous pro-

25

cessor design. But the problems of the synchronous approach gave new potential

to research into asynchronous architectures. In 1989, the first fully-asynchronous

microprocessor [MBL+89] was designed and implemented at the University of

California, based on Martin's Communicating Processes method [Mar9Oa]. In

the same year, Sutherland's asynchronous micropipelines [Sut89] gave new po-

tential to asynchronous research.

Today, a number of asynchronous architectures exist, some of which have

been fabricated and found to operate correctly. The AMULET family of proces-

sors first appeared in 1994 with AMULET1 [FDG94]. AMULET2 [FGR97]

and AMULET3 [GFC99] followed. The AMULET processors implement the

ARM instruction set and follow the inicropipeline approach. The first processor,

AMULET1, employed a 2-phase, bundled data design style and a register locking

mechanism for respecting dependencies between instructions. The AMULET2

used a 4-phase design style and was a more complex architecture including data

forwarding and branch prediction. The AMULET3 processor implements the lat-

est version of the ARM architecture which includes "thumb" instructions, a set of

compressed instructions to improve code density. In the AMULET3 the register

locking mechanism has been replaced by an reorder buffer.

The MiniMIPS Processor [MLM97] developed at the University of California

is an asynchronous MIPS R3000 architecture. It implements precise exceptions

and allows for bypassing of the register file. The MiniMIPS allows for out-of-order

execution of instructions and employs an instruction queue for writing back the

results of instructions in the original program order.

The Counterfiow Pipeline Processor [RFS94] developed at Sun is a novel type

of architecture which mixes instruction and data flow. In a counterfiow architec-

ture instructions and data flow in opposite directions. Instructions look for their

operands and then for a pipeline stage where they can he executed. The problem

with counterilow architectures is the circuit complexity of the logic required at

the pipeline stages.

The TITAC [NUK94] and TITAC2 [TKI97} processors were developed at

the Tokyo Institute of technology. TITAC implements a simple accumulator-

based instruction set. TITAC2 is an asynchronous pipelineci processor with a

five stage pipeline. Due to the fact that both processors use a dual-rail encoded

datapath, they have a high gate count compared to a synchronous equivalent

datapath.

The SCALP processor [End96] is an asynchronous architecture aiming at

power efficiency. The SCALP processor allows for explicit forwarding of in-

26

struction operands by encoding functional unit identifiers into the processor's

instruction set. It still uses a register file, as values cannot be forwarded beyond

branches and often the results of one instruction are used by several others.

As industry is beginning to realise the benefits of asynchronous circuit de-

sign, commercial asynchronous chips are beginning to appear. Commercial asyn-

chronous chips include the Cogency DSP [PDF98], the Philips 80051 micro-

controller [vGvBP98] and the Shari) DDMPs [TM199]. Cogency's asynchronous

DSP and Philips' 80051 are both compatible with synchronous versions.

The Cogency DSP architecture employs the 4-phase, bundled data protocol

and implements a three stage pipeline. One of the interesting features of this ar-

chitecture is the implementation of communication between the datapath units.

A central control unit sends control signals to the datapath units instructing

them to stall or proceed, hence resolving data dependencies in the datapath.

This feature saves on the chip area compared to the synchronous design. The

asynchronous version shows a reduction in power consumption of up to 47% and

a great difference in electromagnetic interference. The Philips 80051 microcon-

troller demonstrated a power reduction of about 25%.

1.5 Aims of the thesis

This thesis investigates asynchronous circuit and asynchronous processor design.

In the area of asynchronous circuit design, it presents the CMOS direct-

mapped asynchronous finite state machine approach. The simplicity of this ap-

proach, and its robustness are demonstrated.

In the area of asynchronous processor systems, it investigates the circuit mi-
plementation of hardware structures for supporting concurrency and scalability.

Two approaches are presented; Shared Register Files (SRFs) and pnet architec-

tures.

The SRF approach can be used to implement clustered uniprocessors or single-

chip multiprocessor systems and aims at exploiting program level concurrency.

The implementation of SRFs and the effect that register sharing has on the access

times of register files are studied. An SRF system is contrasted, at the layout

level, with the more conventional bus-based alternative.

The btnet approach [Reb96] is an architectural approach for exploiting fine-

grain parallelism in an asynchronous datapath. It is capable of exploiting a higher

amount of instruction level parallelism than a conventional pipelined architecture.

An implementation methodology is presented for both scalar and superscalar

27

jrnet-based architectures.

All of these ideas have been implemented in a prototype chip design, the Al

processor architecture, which has been laid out and simulated at the transistor

level. The Al is a dual-node multiprocessor, which employs the SRF approach

for communication between the nodes. Each node is implemented with the /tnet

approach and is capable of executing a simple instruction set.

1.6 Thesis Structure

The structure of the remaining chapters of this thesis is as follows. Chapter 2 re-

views some of the l)rOhlenlS associated with implementing asynchronous control

circuits and describes the CMOS direct-mapped approach for designing asyn-

chronous finite state machines. Chapter 3 presents the basic principles of asyn-

chronous processor systems, along with two methods for exploiting temporal

and spatial parallelism, i.e. the Itnet (micronet) approach and shared regis-

ter files. Chapter 4 describes the implementation of different configurations of

asynchronous shared register files, discusses issues of their implementation and

contrasts the performance of a four shared register file system to that of a more

conventional bus-based system. Chapter 5 describes the design and inipleinen-

tation of the Al processor. Chapter 6 presents the conclusions and proposes

possible future work.

Chapter 2

Asynchronous Direct-Mapped
Finite-State Machines

In this chapter, the problems associated with implementing asynchronous con-

trol circuits are described along with the existing approaches for designing asyn-

chronous finite-state machines. The CMOS direct-mapped approach for designing

asynchronous finite-state machines approach in CMOS technology is presented.

Based on the one-hot encoding method, it is a simple, elegant and intuitive ap-

proach that produces regular, fast asynchronous control circuits.

2.1 Digital Circuit Design

Digital circuits can be divided into control circuits and datapaths. A datapath

is a set of interconnected elements through which data flows for an operation to

be performed. The operation of the datapath elements is controlled by control

circuits.

A digital control circuit can be combinational or sequential. In a combina-

tional circuit the output signals are functions only of the input signals, whereas

a sequential circuit has internal state, and its output signals, as well as its future

internal state, depend both on its inputs and its current internal state. Sequential

circuits are also referred to as finite state machines (FSMs).

Although certain circuits can be implemented combinationally, it is frequently

the case that a circuit cannot be implemented as an input-output mapping. This

occurs when it is necessary for a circuit to perform a sequence of operations,

"remembering" the step in the sequence that it is currently in. In such a case

the storage of an internal circuit state is necessary and the circuit must be im-

plemented sequentially.

29

2.2 Circuit Specification Methods

In order to implement a circuit its behaviour must first be specified. There are

various ways of specifying a circuit's behaviour [Hau93], some of which are closer

than others to the details of the implementation. After the specification has been

produced, it may need to be converted into an implernentable form. It is possible,

for example, to specify a circuit at a high level of abstraction, for example as a

program or as a graph of transitions, and at that level even the nature of the

circuit, i.e. whether it is combinational or sequential is not obvious. Such a

specification will need to be analysed and refined into a lower level specification.

The lowest level of a circuit specification can be directly mapped to a circuit

implementation.

For combinational circuits, a directly implementable specification is a simple

function that defines an input-output mapping. For sequential circuits, it is a

sequential function, i.e. a function that maps inputs to outputs assuming a

particular internal state. The input-output mapping for combinational circuits is

specified by a truth table. A truth table is a one dimensional array, where rows

represent the input signals and the table entries the output signals. The truth

table for an AND gate is shown in Figure 2.1. Signals a and b are the inputs and

o is the output.

a 	11 0
000
010
100
111

Figure 2.1: Truth Table for an AND gate

Sequential circuits can be specified in a tabular form as a flow table [Ung69]

or in a graph form as a state diagram. A flow table is a two dimensional array,

where columns correspond to input values, rows to the internal states and the

table entries are ordered pairs representing the next internal state and the current

output respectively. Figure 2.2 shows the flow table specification of a 2-bit counter

with an input x and two outputs. The numbers in the left-hand column represent

the circuit states and the table entries represent the next state and the outputs.

When the next state is the same as the current state, the circuit is stable and the

next state table entry is shown in brackets.

A state diagram represents the relationship between inputs, states and outputs

graphically. States are represented by vertices and transitions between states by

30

Y

- 0 1
T (1), 00 2, 01
2 3, 11 (2), 01
3 (3), 11 4, 10

1, 00 (4), 10

Figure 2.2: Flow Table for a 2-bit grey-code Counter

labelled edges that connect the states. The circuit outputs are specified for each

vertex in the graph, i.e. for each circuit state. The state diagram for the 2-bit

counter is shown in Figure 2.3. The labels inside the states indicate the state and

the circuit outputs. Note that the stable transitions are not shown.

X

Figure 2.3: State Diagram for 2-bit Counter

2.3 Implementation of Digital Control Circuits

2.3.1 Transistors and Logic Gates

The fundamental element used for the implementation of modern electronic cir-

cuits is the transistor. A transistor (transfer-resistor) is an analogue electronic

device with three ports, such that the voltage or current across or through one

pair of these ports, controls the current through the other pair.

CMOS (Complementary Metal Oxide Semiconductor) technology [WE93] pro-

rides two transistor types, an n-type transistor and a p-type transistor, fabricated

31

by using negatively doped and positively doped silicon respectively. The MOS

structure provides a gate, a source and a drain port. The gate port controls, by

a field-effect mechanism, the flow of current between the source and the drain

ports. CMOS transistors can be used to implement digital logic gates, i.e. digital

circuits that perform the fundamental logical operations, such as NOT, AND,

OR, NAND, NOR, XOR, etc.

2.3.2 Combinational Logic

Combinational circuits can be implemented by connecting together transistors or

logic gates to produce the output signals, c.f. Figure 2.4. In CMOS, so called

complex gates can be used to produce an output signal depending on a number

of inputs [WE93] [B1a921. These typically contain a pull-down network of ii-types

and a pull-up network of p-types, Figure 2.5. The function of the pull-down

network is to short the output of the gate to logic 0 and of the pull-up network to

short the output to logic 1. For correct digital operation these must he mutually

exclusive.

vdd

bd

-I 	

a.b+c

c-I
Vs

Figure 2.4: Different Realisations of a.b+c

2.3.3 Sequential Logic

Implementing sequential circuits is a more complex task - sequential circuits re-

quire feedback. Firstly, the internal state of the circuit must be stored in memory

elements. Secondly, the future internal state must be produced and this must

not interfere with the current state. The circuits that produce the future state

and the outputs are combinational. The general form of a sequential circuit or

finite-state-machine (FSM) is shown in Figure 2.6.

The internal state is represented by the internal state variables, which must

be used as inputs to the circuit to produce the future internal state, or the excita-

a

a

IN

32

Vdd

p-type
inputs —i

•
i pull-up

network

I output

1 n-type
inputs —I

• pull-down

j network

Vss

Figure 2.5: Complex CMOS Gate Structure

tion state variables. When the future internal state is different from the current

internal state, the circuit is unstable and changes state. The number of state

variables depends on the number of states of the circuit, for n states, a minimum

Of 1 092n state variables are needed.

yl
	

El

y2 Internal
	

Excitation E2

Variables
	

Variables

ys
	

Es

Combinational

Circuit

Zr ' x2
Inputs

xr

Z1
Z2

Outputs

zt

Figure 2.6: G'iiei'aI Form of a Sequential Circuit or FSM

2.4 Circuit Implementation Problems

Although digital circuits use discrete values and can be modelled in a discrete

manner, they are implemented using inherently analogue devices and interconnec-

tions which have a continuous rather than a discrete response and finite, varying

33

delays depending on physical parameters such as device sizing and path length.

This mismatch between the logical and physical implementation, and in par-

ticular the finite, varying delays between circuit components, can lead to circuit

failures called hazards. Depending on the nature of the circuit, combinational or

sequential, different types of hazards are possible. Sequential circuits also present

another problem, races. These circuit failures are described below.

2.4.1 Hazards

Delays in circuit elements and the interconnect can produce transient errors,

called hazards [Mi165][Ung69], that may also cause incorrect circuit behaviour.

Two types of hazard exist depending on whether the circuit is combinational or

sequential.

2.4.1.1 Combinational Hazards

The existence of hazards in a combinational circuit depends on its implemen-

tation. A combinational circuit implemented by simple logic gates does not

necessarily have the same hazards when implemented as a complex gate. The

advantage of using complex gates is that they minimise the possibility of haz-

ards because they localise the interconnect and element delays in a small area.

In addition, the existence of hazards in a combinational circuit depends on its

implementation, for example as a sum-of-products or as a product-of-sums. Ac-

cording to switching theory, in single-input-change (SIC) combinational circuits,

i.e. circuits where only one input is assumed or allowed to change at a time, two

types of combinational hazards are possible, static hazards and dynamic hazards,

shown in Figure 2.7.

static O-hazard

static1_hazardi

dynamic hazardsJl 	 jlJ

Figure 2.7: Combinational Hazards

A static hazard is a short, positive (0-hazard) or negative (1-hazard) glitch

34

on a combinational logic output that should have been stable, i.e. not change

value after an input change. In logic gate circuits, static hazards are caused by

differences in propagation delays in the logic gates and the interconnect. Given

any combinational function, a sum-of-products expression can be realised with

no 1-hazards, provided that not only are all the 1-points covered by a single

product term, but also all adjacent 1-points are too. Sum-of-products circuits

implemented by logic gates or as complex gates do not contain 0-hazards, as for a

0-hazard to occur the minterms must include both a signal and its complement.

Dynamic hazards occur on input transitions that cause the output to change.

They manifest themselves as a superfluous output changes, before the output

settles to its final value. As with 0-hazards, they cannot occur in SIC sum-of-

products circuits.

If multiple-input-changes (MIC) are allowed in a combinational circuit, a third

type of hazard is possible, a function hazard. Function hazards are multiple out-

put transitions in response to multiple input transitions, when the output should

have remained stable. Function hazards can occur even in basic gates, but only

for MIC. They cannot he removed through logic design and are a property of

the implemented combinational function. They occur when, for an input tran-

sition, the minimum length path between the transition points in the function's

Karnaugh map contains more than one function change. For MIC combinational

logic, if more than one prime implicant is present in a function, the possibility

of a function hazard exists. To stop function hazards from occurring, constraints

must be set for the environment that provides the inputs, or the circuit must be

changed to implement a different specification.

2.4.1.2 Sequential Hazards

In FSMs, Figure 2.6, where the internal state outputs are fed hack to the internal

state inputs, incorrect circuit operation is possible due to sequential hazards.

Three types of sequential hazard are possible, essential hazards, d-trio hazards

and transient hazards.

Essential and transient hazards occur when the internal state change is per-

ceived by some part of the sequential circuit before the input change, due to

propagation delays in the circuit. If that part of the circuit produces another

state variable, then the hazard is an essential one; if it produces an output, then

it is a transient one. Practically, the problem is that there is not enough delay

between the outputs of the internal states and the inputs, i.e. the current and

future states are not properly isolated.

35

Switching theory specifies the presence of an essential hazard in the following

way: for an input x and a total state T 1 , assuming that the system is initially at T

and that x changes once, then if the total state T' reached is not the same as the

one reached if x is changed two more times, an essential hazard exists. Transient

hazards happen because the input change is perceived at the same time as the

internal state change and that causes a combinational hazard at an output signal.

D-trio hazards, also called nonessential hazards, occur when, for an input

change, the circuit does eventually settle to the correct final state, but does so

by going through a third state, different from both the initial internal state and

the final state. Therefore, the state transitions are correct but the path through

this third state may cause hazards at the outputs. Formally, for an input x and a

total state T, assuming the system is originally at T and x changes once, then if

the total state T' reached is the same as the one reached if x is changed two more

times, but on the second change, a different state T" is reached, then a d-trio

hazard exists.

Essential and transient hazards are a property of the sequential circuit imple-

mentation and can be detected by the flow table and the Karnaugli map of the

output logic. They cannot be removed by logic design.

2.4.2 Races

A race condition occurs in a sequential circuit when more than one state variable

must change in the course of a state transition. If the correct behaviour of the

circuit depends upon the outcome of the race, i.e. the order of state variable

changes, then the race is called critical.

Critical races in a sequential circuit can be removed by changing the assign-

ment of state variables. For a sequential circuit to he free of critical races, the

assignment of state variables must be such that every transient intermediate state

between a starting state and a destination state also produces the same destina-

tion state. This may require more state variables to be added.

2.4.3 Example

As an example of a circuit with hazards, consider the implementation of the 2-bit

grey-code counter that was specified in Figures 2.2 and 2.3 as an asynchronous

FSM.

Figure 2.8 shows its flow table specification and the state encodings assigned

to states 1 to 4. In this case, it is possible to encode the states to have the same

'total state is the set of inputs and internal state

36

Y0
0 	1

00 	1

01 1 	1

y1 yO 	 -

11 1

10

Y0 = x.yl +

	

Yl 	0X1

00

	

01 	1
ylyO 	 -

11 U, - A
10

1

Yl = x.yl + x.yO

V

- 0 1 state enc.
1 (1), 00 2, 01 00
2 3, 11 (2),01 01
3 (3), 	11 4, 10 11

± 1,00 (4), 10 10

Figure 2.8: Flow Table for a 2-bit grey-code Counter

value as the outputs to save on the circuit's size. State changes in this example

are sequential, 1-2--3--4-1, so the encoding is valid and no races are possible,

as for any state change, only one state signal changes at a time.

X

Y0

Yl

Figure 2.9: Realisation of tile 2-bit grey-code Counter

Figure 2.9 shows the Karnaugh maps derived from the flow table specification

for the output signals YO and Yl, their logic equations and the minimum gate

circuit. The logic equations that produce the minimum gate circuit are formed

by the prime implicant groupings indicated by the solid lines in the maps.

Signals yO and yl are the fedback versions of Y0 and Yl, the previous state,

delayed by the feedback delays 50 and 61 respectively, and perceived as inputs.

This minimal gate circuit contains 7 gates, and as, in CMOS, the 2-input AND

and OR gates are composed of 6 transistors each and the inverters of 2, the total

37

number of transistors required for this circuit is 34.

This minimum gate circuit has both combinational and sequential hazards,

if arbitrary gate delays are assumed. In terms of combinational hazards, the

outputs have static-1 hazards for x transitions when ylyO are 01 for Y0 and 11

for Yl respectively, because, for these transitions, the output variables cross the

prime implicant groupings. For these to be removed, the minterms indicated by

the dotted lines must also be included in the equations. Dynamic hazards are

not possible in this circuit as it only has one input. Sequential hazards can be

detected from the flow table. Starting from any stable state, if x changes three

times, the resultant state will be different from the case where x changes once.

For example, in state 1, if x is originally 0 and changes three times 0—.1---*0, then

the final state will he 3, but if it changes once 0-1, it will be 2. Hence, the

circuit has essential hazards for all states. As the outputs are also the states, in

this case the essential hazards are also transient ones. There are no D-trios.

ME

x

Yo

Yl

61

Figure 2.10: Hazard-Free Realisation of the 2-bit grey-code Counter

Figure 2.10 shows the hazard-free realisation of the circuit. The static hazards

are removed by adding the extra minterms. The essential hazards are eliminated

by controlling the feedback delay of the output variables. Delay elements with

delays JO and 81 are shown. The condition for correct circuit operation is 80, 81

> 8inverter—x, i.e. the feedback path delays should be greater that the delay of

the inverters that produce the inverses of x and yl. The number of transistors in

this circuit is 50, not counting the delay elements.

2.5 Delay Models

In order to detect the existence of hazards or to verify their absence in a com-

binational circuit or an FSM, delay models are used. These models assign delay

values to devices and interconnect. The delay values are modelled as taking on

any value between zero and some upper bound. Various different delay models

have been described in the literature.

The most general delay model is the delay-insensitive one. This assigns de-

lays to devices and interconnect, and all interconnect paths are considered to be

independent. A circuit which works correctly under the delay-insensitive model

is independent of the fabrication technology. The delay-insensitive model is the

most robust and mathematically elegant, but true delay-insensitive implemnenta-

tions are typically unrealisable [rvlar9Oh].

The speed-independent delay model assigns delays only to devices, assuming

that interconnect delays are negligible, i.e. this model does not consider the

effects of interconnect on the circuit design.

Two delay assumptions, the isochronous fork and the equipotential region

model specific delay constraints in more detail. The isochronous fork assumption

is that the difference in delays on a given set of electrically connected wires is

insignificant. A signal driven on an isochronous wire propagates across the in-

terconnection so that it reaches all its destination devices simultaneously. The

equipotential region assumption is that a set of independent wires have indistin-

guishable delays. This assumption requires that the lengths of these independent

wires are approximately equal.

The quasi delay-insensitive model is a delay-insensitive model where some of

the forked connections must be isochronous for a circuit to be hazard-free. This

is a realistic model that tries to bridge the gap between the two extremes of

delay-insensitivity and speed-independence.

The choice of delay model depends on the assumptions that can be made

about the circuit and engineering knowledge about the ranges of delay values.

2.6 Modes of Operation of Sequential Circuits

In order to work around hazards and races, sequential circuits specify their inter-

action with the environment, namely their mode of operation. The two most gen-

eral modes of operation are synchronous and asynchronous. Synchronous circuits

only require a single delay assumption, the clock period, whereas asynchronous

circuits, depending on their design, may require restrictions on the environment

39

and on the timing of their gates and interconnections.

2.6.1 Synchronous Circuits

Synchronous or clocked circuits utilise a periodic pulse signal called a clock. The

clock signal is used to separate the internal system states. This class of circuits

filters the future internal state with flip-flops that are activated by the clock

signal. The flip-flops may be activated by the level of the clock, i.e. high or low,

or by the change of the clock (a clock edge), i.e. from low to high or from high

to low. The former type of circuits are called level-triggered, whereas the latter

are called edge-triggered.

Level-triggered clocked circuits feed back the internal states through level-

triggered flip-flops. If a single clock is used then for correct operation such a circuit

must operate in pulse mode. Pulse mode operation selects the high phase of the

clock, so it must be long enough for the future internal states to be generated and

for the internal state flip-flops to change state, but shorter than the time required

for the change in the flip-flops to propagate hack into the circuit. So, pulse mode

operation imposes lower and upper bounds on the width of the high phase of the

clock. If multiple clocks are used, with multiple level-triggered flip-flops in the

feedback path, then this delay assumption can be removed.

Edge-triggered synchronous circuits use edge-triggered flip-flops to feedback

the internal states. This type of flip-flop (Master-Slave) absorbs the change in

state on a clock edge and is implemented by two level-triggered flip-flops where

the one is fed by the clock signal and the other by its inverse. This technique

removes the need for multiple clocks.

For correct operation, the interaction between a synchronous sequential circuit

and its environment must ensure that its inputs do not change when the circuit

is in the active phase, i.e. when the clock enables a change of state. Multiple

input changes are permitted as long as they happen during the inactive phase of

the circuit.

Critical races and sequential hazards are not a problem with synchronous

circuits, as the clock separates system states in a discrete manner. So, the as-

signment of state signals can be arbitrary. This is the motivation for the use of

such a system.

The price paid for the use of synchronous circuits is that constraints in the

clock must be set to allow for worst cases of circuit delays and manufacturing

tolerances. Furthermore, a clock signal must be generated and distributed among

all the control circuits in a digital design. Hence, the loading on the clock signal

40

is very significant and a significant amount of buffering is necessary to allow for

the required degree of fan-out. Usually, a tree of buffers is used because if the

clock signals across different circuits are skewed, i.e. they differ in time by a small

amount, that may cause the overall system to malfunction, as the skew makes the

active phase shorter. In addition, clocked circuits always consume power, even

when the inputs do not change and the internal state remains constant. This is

because the transitions of the clock signal always switch transistors.

2.6.2 Asynchronous Circuits

Asynchronous circuits do not use a clock, but separate system states by inter-

nal signals. The mode of operation of an asynchronous circuit characterises the

allowable circuit delays and the circuit's interaction with the environment.

Depending on the delay model that it works correctly under, an asynchronous

circuit can be delay-insensitive, speed-independent or quasi delay-insensitive. The

class of delay-insensitive circuits is very limited for practical purposes, so the most

robust asynchronous circuits are quasi delay-insensitive.

Circuits that impose the constraint on the environment that it is not allowed

to change their inputs until their internal state has stabilised are called funda-

mental mode circuits. Depending on the number of inputs that the environment

is allowed to change simultaneously, the circuit is called single-input-change (SIC)

or multiple-input-change (MIC).

This thesis will only consider circuit implementations of asynchronous finite

state machine specifications. The advantage of implementing asynchronous cir-

cuits starting from an asynchronous finite state machine (AFSM) specification is

that they can be directly implemented in the form of a sequential circuit (c.f. Fig-

ure 2.6). In addition, the circuit structure in terms of states, inputs and outputs

is apparent and defined by the designer. Higher level approaches, such as petri-

nets [Mur89] and signal transition graphs (STGs) [Chu87], micropipelines [Sut89]

and programming and compilation approaches [Mar90a] [vB93] [BS89] have even-

tually to be converted into an FSM specification before implementation.

2.7 Asynchronous Finite State Machines

In an AFSM, the states of the machine are assigned binary codes, i.e. encod-

ings, and the outputs of the FSM are typically a function of the current state

and the inputs. In synchronous circuits, the assignment of encodings to states

can he unrelated to the circuit operation, whereas in asynchronous circuits, due

41

to the possibility of critical races between state variables, this assignment is of

paramount importance.

2.7.0.1 Single-Input-Change AFSMs

In the general case, an AFSM will change state on any input change. The prob-

lems involved in implementing AFSMs, namely races and hazards, depend on the

state encoding, the input and environment constraints. Unger's work [Ung69]

demonstrated that sequential asynchronous FSM circuits are mostly limited to

fundamental mode operation due to the common presence of essential hazards.

It also demonstrated that only single-input-change circuits without essential haz-

ards can be realised by a delay-free circuit. In practice, the single-input-change

requirement may be unrealisable or too restrictive for performance reasons.

2.7.0.2 Burst-Mode AFSMs

Multiple-input-change AFSM circuits require input restrictions or the use of spe-

cial design /implementation techniques. One technique that permits constrained

multiple-input-changes is the burst-mode design style [Ste94]. A burst is defined

as a set of signal transitions that can occur in arbitrary order. A burst-mode

FSM is one whose input and output activity is separated into bursts. Typically,

a set of input transitions takes place, but the machine will stay stable until the

input burst has completed, then change state, and then produce an output burst.

Three constraints are placed on the circuit by the burst-mode style. Firstly, all

inputs and outputs must strictly alternate for all valid state paths, i.e. a transi-

tion on an input x in a state S must never be followed by another transition of the

same type in one of the following states unless there is an opposite transition in

between. Because of this property, burst-mode FSMs are transition based rather

than level based, as opposed to a general AFSM. Secondly, no transition burst

is allowed to be a subset of another from the same starting state, to avoid ambi-

guity. Thirdly, if a state of the AFSM has multiple destination states, then the

input transitions to these states must he mutually exclusive to avoid interference.

These restrictions eliminate static and function hazards. However, essential haz-

ards are possible, so for correct operation burst-mode FSMs require fundamental

mode. It is possible to implement burst-mode FSMs using complex CMOS gates

or combinational logic [Ste94] [DCS93] or by using the 3D burst-mode AFSM

approach [YDN92]. The disadvantages of this approach are that (a) it requires

more logic to be implemented, due to the form of the flow table and therefore

produces a larger circuit, and (b) it implies that fundamental mode operation

42

must be ensured by the environment.

2.7.0.3 Direct-Mapped AFSMs

A different approach to building asynchronous FSMs is the direct implementation

or direct-mapped approach [Ho182]. This method will he presented in more depth

because a similar direct-mapped approach, but using CvlOS complex gates, has

been investigated and used to implement the control circuits in this research.

The direct-mapped approach uses the "one-hot" state assignment method to

encode the machine states. The one-hot state assignment method [Ung69] assigns

a state variable for each row in a flow table, i.e. one signal per state of the state

machine; when the machine is stable only one of the state signals is asserted. This

technique eliminates races between state variables as it does not encode states. It

also simplifies the circuit implementation as the equation generating each state is

of a regular form, Y, = T + yH, [Ung69], where T is the transition term, i.e. the

sum of all state transitions that lead to state i, and y1 H2 is the hold term which

keeps state i asserted until another state is entered. In a one-hot AFSM the state

diagram or flow-table structure maps directly to the circuit level connectivity.

The one-hot encoding method implies that the number of state signals and

circuitry required to implement a circuit is directly proportional to its number of

states, i.e. for an arbitrary circuit with it states, n state variables are required

and n circuit blocks to produce these variables.

The one-hot state encoding is a special case of state variable assignment.

AFSM approaches that do not use the one-hot encoding do not assign a single

state variable signal per state, but a state variable code. This implies that multiple

state variables must be decoded, but that less state signals will be needed. Such

approaches must analyse the flow-table and particularly the state transitions.

Then, the code assignment must be such that no critical races exist between

state transitions. Extra state variables may be required and also possibly extra

rows, as "bridging" states, depending on the state assignment strategy.

Some of these assignments, like one-hot encoding, are single-transition-time

(STT) assignments. This means that a state transition takes place in the time

of a single signal transition. The advantage of STT assignments is circuit speed,

although they may require more state variables and therefore an increase in circuit

area.

Possible state encoding schemes [Mi165] [Ung69] [I'Jan91] include the shared and

multiple row assignments and the connected row sets assignment, all of which

are not STT assignments, and STT assignments, such as the one-shot state as-

43

signment and unicode STT algorithms. The number of state variables required

to implement a flow-table depends on its structure and the state assignment

method. The connected row set assignment, for example, is a general type of

state assignment that requires 21092n state variables but is not STT. Unicode

STT assignments have been shown to require 1092n3+1092n state variables.

The advantages of one-hot coding as a state assignment are that it produces

fast circuits as it is STT, it eliminates state variable races, without requiring anal-

ysis of the flow-table for deriving a row-to-state code mapping, and it produces

a regular circuit as the state variable equations are regular. It does, however, re-

quire more state variables than other state assignments. Overall, it is an elegant

and simple way of implementing asynchronous control circuits.

2.7.0.4 Hollaar's Approach

Hollaar proposed a direct-mapped implementation of one-hot encoded asynchronous

FSMs [Hol82] based on set-reset (SR) flip-flops (FFs). This provides an even more

regular implementation than the AND-OR form of the logic equations. The set

input of the SR-FFs is driven by the transition term combinational logic, whereas

the reset input is driven by the inverse of the hold term logic.

An example portion of an AFSM constructed in this way and its state diagram

are shown in Figure 2.11. This illustrates the implementation of a sequential

section of a state diagram. Portions of states si and s2 are shown. Note that the

SR-FF inputs are active low because NAND gates are used. State s2 is entered

on the transition of signal x. The circuit operates as follows: if the input x is

asserted, then the output of the NAND gate to which x is input will drop as both

x and si are high. The consequence of this is the setting of state s2 and the

resetting of state si.

Although direct-mapped AFSMs are not specifically implemented for non-

fundamental mode operation and multiple input changes, they have those abil-

ities. The constraints they impose on the inputs are the following. If an input

does not cause a transition from the current state of the FSM, then no input

restrictions are imposed on it. Inputs that do cause a transition from the current

state must he (i) mutually exclusive if they cause transitions to multiple states

and (ii) remain stable until the machine has entered a following state. These con-

ditions must be fulfilled during the circuit design phase. So this approach allows

MIC and non-fundamental mode operation as long as the inputs fulfill the above

constraints.

During the process of changing state, a critical race is possible. For every state

44

J.

X

2 	 -

Y

si 	 s2

x

Figure 2.11: Ho1laar One-hot AFSM Example

transition, two state variables change value. The current state variable changes

from 1 to 0 and the next state variable changes from 0 to 1. The correct order,

which must be ensured by the implementation is 10—~ 11--~ 01, i.e. the next state's

variable is set first and then the current state's is reset.

In non-fundamental mode operation, where inputs can change before the ma-

chine is allowed to settle, the same critical race arises for a sequence of three or

more states. In this case, for correct operation, the state flip-flops should not

reset before they reset their predecessors. For example, for three states, if their

transition requirements are fulfilled, two correct orders are possible depending

on the set/reset ordering, 100-110---011--001 or 100-110--111--+011--+001. In

the former, the first state is left as the third is entered, whereas in the latter mo-

mentarily all states are active. They are both acceptable as long as the machine

ends up in the third state with the first and second states inactive.

For both cases, the race can be eliminated by ensuring uniform gate de-

lays [Hol82] 2 . In that way, the next state will he set before the current one

is reset for the first case and the resetting of a state will he faster than the setting

of the next state for the second case.

A special case which requires particular attention for direct-mapped AFSMs

is the implementation of scale-of-two loops. A scale-of-two loop is the case where

one state has another state, which acts as both its predecessor and successor. The

2 llollaar did not consider wire delays.

45

unplenwlltati()I1 discussed before cannot be used for scale-of-two loops.

si 	 s2 	 s3

x k z

T y

9 W Z 	 x 	 y

Figure 2.12: Scale-of-two loop implementation

Consider the example in Figure 2.12. Transitions x and z form a scale-of-two

loop. Assume that the circuit is initially in state si and x becomes true. Then

the set input of the state s2 flip-flip (coloured blue) will become active. But,

as can be seen in the circuit of Figure 2.12, as state si is s2's successor, s2 is

reset (by the connection coloured red) when si is active. Thus, both the set and

reset inputs to s2 will be active when x becomes true putting the flip-flop in an

unstable state where both its outputs become 1.

This problem occurs because in a scale-of-two loop both transitions 10-11-01

and 01-11-10 are possible and the unstable state 11 may lead to both 01 and

10. The proposed solution is either to convert the scale-of-two loop to a scale-of-

three loop and avoid the problem or to modify the reset logic incorporating the

input causing the transition. In this example, the reset line of state s2. i.e. the

complement, of si. must be replaced by the logical OR of the complement of si

and the input, that causes the transition to s2, x. The reset line of si must also

be modified appropriately. The updated circuit is shown in Figure 2.13.

2.8 Asynchronous CMOS Direct-Mapped FSMs

The asynchronous CMOS direct-mnipped FS\l is an alternative approach to de-

signing asynchronous control circuits. It is similar to the domino CMOS struc-

ture [Bla92] and Hollaar's one-hot encoded state machine. The domino structure

46

si 	 s2 	 s3

w

VA •

r

Y

W z 	 x

Figure 2.13: Properly functioning scale-of-two 1001)

is shown in Figure 2.14.

2.8.1 Domino CMOS Structure

Vdd

ir

-type
1 K 91 precharging transistor 01k

n-type 	 L n-type

pull-down 	 pull-down

network 	 network

01k 	,CSOInanSiSTOr 	01k

I 	 I 	 Yss

Figure 2.14: Synchronous Domino CMOS Structure

In a domino CMOS structure, a sequence of gates is put into a precharged state

and then the gates resolve in series, one after the other like a stack of dominos

falling over. Each gate consists of a precharging pull-up p-type transistor, an

n-type pull-down network, i.e. a set of interconnected ii-type transistors. an it-

type resolving transistor and an inverter at the output. The purpose of such a

structure is to implement a complex logic function dynamically as a function of

smaller functions. Typically, the gates are all controlled by the same clock. The

47

function implemented is realised by the n-type pull-down network and the result

of the function's output is valid when the clock pulse is high.

2.8.2 CMOS Direct-Mapped AFSMs

In this section, an overview of the CMOS direct-mapped approach is presented.

The next section presents AFSM examples and discusses the various characteris-

tics of the approach in more detail.

The CMOS direct-mapped FSM implements a one-hot encoded AFSM using

complex state-storing gates (Figure 2.15). This scheme is similar in circuit design

to the synchronous domino stage and has the same functionality as Hollaar's

approach, only in CMOS. Each state gate is equivalent to one SR-FF with its set

and reset logic as used in Hollaar's method. So, each state gate implements one

state of the state machine. A state gate consists of a single or multiple p-type pull-

up networks, a single or multiple p-type resolving transistors, a single or multiple

n-type pull-down networks, a single or multiple n-type resolving transistors and

a pair of back to back inverters, acting as a storage element, at the output of

the gate. The positions of the resolving transistors and the networks can be

interchanged.

Jdd

p-type p-type
pull-up 	pull-up
network 	network

n-type 	n-type

pull-down 	pull-down

network 	network

Vss

Figure 2.15: Asynchronous Direct-Mapped State Gate

The states of the FSM are the outputs of a group of such gates. When the

output of a gate is high (active) then the machine is in that state. Normally, only

one state is active at any time, although it is possible to have parallel FSM paths,

where multiple states are active simultaneously.

KLSI

In a state gate, the n-type pull-down networks detect the conditions appro-

priate to enter the state, like the set logic in Hollaar's approach, and the pull-up

networks, like Hollaar's reset logic, detect the conditions to leave it. The pull-

down and pull-up networks are activated by the resolving transistors. The n-type

resolving transistors are fed with the outputs of the previous states, enabling

the n-type pull-down networks to discharge the state gate and so enter the cor-

responding state. The p-type resolving transistors are fed with the outputs of

the following states enabling the p-type pull-up networks to leave the state. The

number of n-type pull-down networks depends on the number of states that a

state can be entered from and the number of p-type pull-ups on the number of

states that are followed from a state. Hence, the logic for entering and leaving a

state scales easily.

In the simplest case, there is a single n-type pull-down of a single transistor

which corresponds to the signal that triggers the transition into this state. So, a

total of two n-types is the mininiuin. An ii-type pull-down network may be more

complex depending on the conditions for entering the state. Correspondingly, for

p-types, in the simplest case there is a single p-type pull-up network, which in its

simplest form is a short circuit, i.e. it simply connects the input of the inverter

to the p-type resolving transistor. The input of the p-type resolving transistor is

fed by the inverted output of the following state, as in Hollaar's approach.

The form of the p-type pull-up network depends on the FSM structure. Nor -

mally, only a single resolving p-type transistor is required. In the case where

one or more of the previous states of one state are also its following states, i.e.

there are one or more scale-of-two loops in the state diagram, then there is a need

for a more complex p-type pull-up to ensure that the n and p-type parts of the

gate are never simultaneously ON. The structure of the p-type network in that

case should be the same as the n-type network of the following state, only with

inverted inputs. This is discussed in more detail in section 2.8.3.5.

The two back-to-back inverters are used to store the state of the gate, as the

gate is not statically driven. They form a 1-bit storage element. The advantage

of a dynamic gate is that no hazards, static or dynamic, are possible because the

n-types do not have complementary p-types. As in the domino approach, a state

gate precharges high (machine state is low), and then the n-type pulls it low. The

feedback inverter labelled w is weaker, i.e. has smaller width to length ratio (it)
transistors and therefore smaller current driving capacity. Its 1E ratio should be

smaller than the equivalent size of the n and p-types so that the state gate can be

forced to a different state. This is also discussed in more detail in section 2.8.3.7.

49

Because of the one-hot encoding, during the process of changing state, a crit-

ical race is possible, as in Hollaar's approach. The circuit implementation must

ensure that the order of state changes is 10—+11--01. This is also achieved by

transistor sizing (discussed in more detail in section 2.8.3.6).

A complete FSM is thus implemented by interconnecting the state gates to

match the FSM structure. The FSM outputs can be generated directly from the

FSM states. On reset, such an FSM must be correctly initialised. This pro-

cess requires extra pull-up and pull-down reset transistors of appropriate sizing.

Normally, only one state should be reset high and all others should he reset low.

2.8.3 The CMOS Direct-Mapped Approach

Apart from the one-hot critical race, this approach does not have the problem of

races and is less prone to hazards compared to conventional AFSMs because of

the one-hot coding. Hazards in direct-mapped AFSMs are further discussed in

section 2.8.3.10. It is potentially faster than a burst-mode FSM or a conventional

AFSM as, due to its structure, there are less gate delays between an input and an

output change. Also, it does not require fundamental mode for correct operation.

As with Hollaar's approach, due to the implementation, the inputs of the FSM can

arrive earlier than fundamental mode would allow. Also, multiple input changes

are permitted.

2.8.3.1 Simple AFSM Example

Figure 2.16 shows an example portion of a domino AFSM constructed from a

linear state diagram.

Signals ns2 and ns3 are the inverted versions of s2 and s3. If inputs x and y

are low to begin with and initially the machine is in state si, then signals s2 and

s3 will be low.

Now, consider the circuit operation. If input x is asserted, the (Si, x) pull-

down chain will pull signal ns2 low and raise s2 putting the machine into state

s2. Signal si will he lowered at this stage. In state s2 the machine is now waiting

for y to be asserted to change state. When this happens, the (s2, y) pull-clown

chain will pull ns3 low. This has two consequences, firstly s3 will be raised by the

s3 stage gate inverter and secondly ns2 will he raised by the s2 p-type resolving

transistor. (This is the same process by which state si was lowered.) The machine

has now entered state s3.

As was mentioned, in the process of entering the following state and leaving the

previous one, a delay assumption is present that removes the possible critical race.

50

x

Figure 2.16: Asynchronous Direct-Mapped Example

For correct operation, the following state must be entered before the previous one

is left. In this example, faulty operation can occur if ns3 is lowered, then ns2

is raised, but ns3 has not been lowered long enough by the (s2, y) chain for the

back to back inverters to settle and then returns high.

Now, consider the case when the inputs x and y are asserted simultaneously,

i.e. non-fundamental mode operation. Then, state s2 will only briefly be entered

arid the machine will stop at state s3, provided that the conditions for leaving

state s3 are not fulfilled. So, the machine will function correctly for multiple input

changes and inputs can arrive faster than fundamental mode operation allows.

The length of time that state s2 is active in this example is dependent on the

switching times of the gates and the propagation delays of the interconnect, so it

is implementation dependent. This illustrates an important issue in asynchronous

circuit design. If state s2 is to be used as an output and feeds to another circuit

part, then the FSM must be modified as it is very hard to ensure that its assertion

as a pulse rather than a level will he noticed. In that case, the circuit design should

be changed so that the condition for leaving state s2 is its acknowledgement by the

circuit's environment, and therefore transition y should be modified to y AND the

acknowledgement for output s2. This will ensure delay independent operation.

51

2.8.3.2 Closed Loops

Now, consider the case where another transition on an input z is added to bring

the FSM back to state si. The modified state diagram and circuit are shown in

Figure 2.17. The morphology of the circuit clearly resembles the state diagram.

Figure 2.17: Closed Loop Example

In this case, if inputs x, y and z are high simultaneously, the machine will

start oscillating between these states. This behaviour is usually unacceptable for

the FSM interface, if the states are used as outputs, but the machine will still

work correctly to specification. If two of the inputs are mutually exclusive, an

assumption which must be guaranteed by the environment, then the oscillation
'A71Il nrt rApoiir

Another interesting case is where z = not x. The machine will stop in state

s3 and then wait for x to be deasserted. There is a potential hazard in this case.

If the inputs x and its inverse are not generated simultaneously, then it is possible

to move from state s3 to s2 rather than si. This can also happen if y = not x.

2.8.3.3 Parallel Path Expansion

Another possibility is the existence of a point in the state diagram where a Se-

quential part of the FSM expands into parallel paths. This is illustrated in Figure

2.18.

In this case states s2 and s3 are parallel and can be entered from state si on

x and y respectively. In the circuit, the output from state si is therefore fed to

both the state gates.

52

I 	 I
I 	 I

Figure 2.18: Parallel Path Expansion Example, states s2 and s3

Figure 2.19 shows the stage gate for state si. As state si can he left by both

s2 and s3 two pull-tip resolving transistors are required.

I 	 I

I 	 I

Figure 2.19: Parallel Path Expansion Example, state si

iui11e tiiw iie iiiaciiirie is in state SI and the two inputs are asserted almost

simultaneously. Then either both states s2 and s3 will he entered, or one of them

will, depending on the arrival timing of the two input signals. This behaviour is

not desirable because it is non-deterministic. Therefore signals x and y should

be guaranteed mutually exclusive by the environment. Note that this mutual

exclusion property only has to hold when the machine is in state si, so it is

possible to design the circuit in such a way that, before the transition to state

si, signals x and y are mutually exclusive. The case where y = not x is similar,

it must be guaranteed before the machine has entered state si that both signals

are stable.

53

2.8.3.4 Parallel Path Merging

After a parallel paths expansion, the paths may merge into a single one. This is

shown in Figure 2.20.

Figure 2.20: Parallel Path Merging Example, state s3

State s3 is the state where the two paths merge, so it requires two pull-down

resolving transistors and two pull-down networks. This is because states si and s2

are both s3's predecessors. For the same reason, the p-type resolving transistors

of si and s2, Fig 2.21 are both fed by signal ns3, which will go low when state s3

has been entered.

I 	 I

ns3___j_oc*-i

- 	ns2

HI

Figure 2.21: Parallel Path Merging Example, states si and s2

2.8.3.5 Scale-of-two Loops

As was mentioned in section 2.8.2, in the case of a scale-of-two loop, the p-type

transistor circuitry required is more complex than the single resolving p-type

transistor used in the previous examples. The reason for this, as in Hollaar's

implementation, is that the actions of entering and leaving a state interfere. This

54

problem was illustrated in section 2.7.0.4 and manifested itself as the simultaneous

assertion of both the set and reset inputs of a state.

In CMOS direct-mapped AFSMs, the n-types perform the action correspond-

ing to the set input of the flip-flop in Hollaar's approach and the p-types the

action corresponding to the reset input. Figure 2.22 shows the implementation

of the same scale-of-two loop (transitions x and z) whose implementation was

considered by Hollaar's approach in section 2.7.0.4, Figure 2.13. In this case, the

p-type networks are left in their simplest form.

W

si

x z

T s2
_ 10

Figure 2.22: Scale-of-two 1001) CMOS implementation

Consider state si. It has two predecessors, one state not shown in the diagram

and state s2. Transitions to state si from t.hes tte hrrr

z respectively. Therefore, two pull-down networks and two pull-down resolving

transistors are required. Consider the circuit operation for the transition from

state si. The machine is originally in state si and x is asserted, so output node

ns2 will be pulled low by the (si, x) chain. But s2 is also si's successor and

time p-type with nsl as its input will pull ns2 up. So, the p-types and ii-types of

state s2 will be ON simultaneously, which is not desirable behaviour as this will

not produce a correct logic value for ns2. This is similar to the behaviour of the

circuit of Figure 2.12 where the set and reset inputs of state s2 are both asserted.

Figure 2.23 shows an updated version of the circuit, where departure from

states si and s2 is made sensitive to the inputs x and z respectively, the signals

that form the state-of-two loop. Now, when x is asserted in state si, the p-type

pull-up chain will be OFF as the input z will not be active and state s2 will be

entered correctly. The transition from s2 to si works in a similar manner. If both

55

W

Si

x z

s2

Y

Figure 2.23: Properly Functioning Scale-of-two loop

inputs x and z, which form the state-of-two loop, are asserted simultaneously then

both states si and s2 will be asserted simultaneously and stay asserted until one

of those signals returns low. For example, if both x and z were originally asserted

and then eventually x was deasserted, state si would go low and the machine

would stay in s2. So, even if both inputs in a scale-of-two loop stay asserted, the

machine will still function correctly.

In Hollaar's circuit, the reset inputs are active low. For this reason, the inputs

to the OR gates that feed them are in the opposite order, z into the reset input

of si and x into s2. In Hollaar's approach the reset input of a state is ORed

with the input causing the transition to the state's predecessor. In the CMOS

direct-mapped approach, the extra series p-type is fed with the input causing the

transition to the state's successor.

In the general case, where two states m and n form a state-of-two loop and

n is m's successor, the p-type network of the state m must be identical to the

ii-type pull-down of n's. If more than one scale-of-two loop is present between

state m and its successors, then m will have multiple complex p-type networks.

2.8.3.6 Transistor Sizing and the One-hot Critical Race

It was mentioned that the feedback inverter of state gates must be weak, i.e.

have a smaller 	ratio than the n and p-types. As the feedback inverter holds

the output of the n and p-type chains to its old value, the equivalent sizes of these

56

chains must be such as to force the node to change state.

For example, when a state is low, the output of the n and p-types was high,

and is now held high by the feedback inverter. For a state change to take place,

it should turn to low, so the n-types must be able to force that node low. Their

equivalent should be sufficiently larger than that of the p-type of the feedback

inverter that drives that node high. Similarly, the p-types of the stage gate

should be sufficiently larger than the n-type of the feedback inverter. During a

state change, the n-types or p-types will force their output and that change will

be reflected at the output of the forward inverter, i.e. the input of the feedback
inverter.

The relative sizing of the p and n-type networks is important to eliminate the

one-hot critical race. It must be ensured that the current, previous state pair

changes are in the order 10—+11----01, i.e. the next state must he entered before

the current one is left. In the CMOS implementation, the next state is entered by

its ii-types, whereas the current state is left by its p-types. For correct operation,

the ii-type resolving transistor of the following state must he ON long enough

for the following state to he entered. This n-type resolving transistor will be

turned from ON to OFF by the p-types of the previous state, as the next state's

variable begins to rise. For the next state to he properly entered, it must stay

ON long enough for the state gate to switch. It therefore follows that the 1)-type

pull-up must he slower than the n-type pull-down. This can be ensured by the

transistor sizing by making the p-types of smaller - ratio compared to the n-

types. In practice however, as p-types are inherently slower that n-types (about

four times for the processes that were used in this research), there is no need

for the pull-up p-types to have different sizes from the ii-types. For the case of

more than two states, with their transition requirements simultaneously fulfilled,

correct operation will occur if the delays of state gates and their interconnections

are relatively uniform.

In the following chapters, all of the control circuits are implemented using the

direct-mapped approach. Typical values used in these implementations were for

the strong inverter and 1 for the weak one. For the n-type chains an equivalent

of 2 and for the p-types were used.

'The equivalent size is calculated in the same way as the equivalent resistance for a network
of series and parallel resistors.

57

2.8.3.7 State Output Buffering

The state outputs can he fed directly to another circuit block or to additional

output logic that produces the output signals. Care must be taken when loading

the outputs of state gates without any additional buffering.

Excessive loading of a state output, by long routing or by feeding it to multiple

inputs, may unbalance the weak/strong relationship of the back-to-back inverters,

making it impossible for the output to change state. To solve this problem, two

extra buffering inverters can be added at the state outputs.

2.8.3.8 AFSM Initialisation

Typically, the AFSM should be initialised by a reset signal into a single initial

state, so one state resets high and all others low. This can be achieved by extra

reset transistors connected in parallel with the ii and p-chains and which drive

the state gate during the circuit initialisation. A state that resets high requires

a reset n-type, whereas states that reset 0, reset p-types. The size of these reset

transistors should be large enough to force a state change like that of the n and

p-type chains.

2.8.3.9 Persistent States

So far it has been assumed that an AFSM's state is left when its immediate

sucessor is entered. It is possible to relax this condition and create persistent

states, i.e. states which are left by a state other than their immediate sucessor.

Persistent states are possible due to the one-hot encoding and in a machine with

persistent states, multiple states may be active.

The use of persistent states often removes the need for extra circuitry. In

this work, persistent states were found useful in two cases: in the design of an

arbitration circuit for remembering the requestor (c.f. Section 4.4.1) and in the

design of the Al processor's tcontrolIers where it was often necessary to hold

handshake signals high while performing another handshake (c.f. Section 5.4.2).

2.8.3.10 Hazards in Direct-Mapped AFSMs

Direct-Mapped AFSMs will not have any combinational hazards at the state

outputs because of their design. As long as the machine is stable in some state,

no combinational hazards are possible, no matter what the input changes. The

active state output is held high by the state-storage structure, so even if some of

the inputs now return low, as a response to the assertion of that state, the output

will remain stable. In addition, only if another state is entered can that output

go low.

In this case, where there is a state change, there is the possibility of an essential

hazard, depending on the flow-table structure that the machine implements. The

essential hazard can lead the machine to the wrong final state, and can occur if

arbitrary delays are assigned to the circuit components.

This can be illustrated by contrasting the conventional AFSM implementation

of a 2-bit grey-code counter, which was discussed in section 2.4.3, with its direct-

mapped CMOS implementation. The flow table specification is shown again in

Figure 2.24.

V

0 1
(1), 00 2, 01

2 3, 11 (2), 01
3 (3), 11 4, 10

1, 00 (4), 10

Figure 2.24: Flow Table for a 2-hit grey-code Counter

The design and realisation of the asynchronous FSM circuit that implements

this specification was shown in Figure 2.9, and its hazard-free version in Figure ZD

2.10. That circuit can be realised using direct-mapped AFSMs by the circuit

shown in Figure 2.25.

4

Figure 2.25: Four State Counter

The difference between the two circuits is that the direct-mapped circuit does

not generate 2-hit grey-code but only 1-bit state signals. This current version of

the circuit requires 30 transistors. If grey-code outputs are to be generated, the

extra logic requires 2 OR gates. The grey-code output equations would in that

case be YO = si + s2 and yl = s3 + s2.

59

The flow-table specification contains essential hazards for all stable states. For

example, with the machine originally in state 1,0, if x changes to 1, it is possible

to end up in state 3, if the state change is perceived before the input change.

So, in the conventional AFSM circuit, to avoid this hazard, it was necessary to

include a feedback delay at the state outputs, to ensure that the state change is

perceived after the input change. The direct-mapped AFSM exhibits the same

essential hazard. With the machine in state si, if x is asserted, then the machine

will enter state s2, but if the delay in generating the inverse of x that feeds into

the s3 state gate is very long, it can happen that the machine enters s3 because

the inverse of x is still high, i.e. the state change is perceived before the input

change. So, the condition for eliminating the possibility of the essential hazard is

that the delay of the state gates, 5s9 must he greater that that of the inverter that

produces R , 5jnverter—x, 1. e. 15,g > & nt,ertei--x. This can be ensured at the physical

level. D-trio hazards are possible in the same way.

The logic that generates the outputs, such as yo and yl in this example,

may indeed contain transient output hazards, depending on the delays between

the state outputs and the output logic. It is therefore preferable that the use

of output logic is minimised and that all the circuit outputs are state machine

outputs which handshake with the FSM states.

For this example, the total number of transistors including the extra OR gates

is 40 for the direct-mapped AFSM. Contrasting this to the conventional AFSM

transistor count of 34 for the inininmni gate circuit and 50 for the hazard free

version, it can he concluded that the direct-mapped method is better for this

example, even though it uses more state signals.

2.8.4 Comparison with other implementation techniques

In this section, the direct-mapped CMOS implementation of a few example cir-

cuits is contrasted with their implementation with different circuit design ap-

proaches.

2.8.4.1 Latch Control Circuits

The first example is the implementation of four-phase, level-triggered latch control

circuits. A latch controller is the control part of an asynchronous pipeline stage.

In its simplest form, a latch control circuit must store input data into a latch and

pass them to the output, i.e. the next pipeline stage.

The control signal sequencing must be such that it is possible for all pipeline

stages to be filled. This implies latching the input data before checking that

60

the output stage is busy. In addition, if the completion of the input handshake

depends on the initiation of the output handshake, then the latch controller is said

to be semi-decoupled, whereas if the input and output handshakes are entirely

independent, then it is said to be fully-decoupled.

Figure 2.26 shows the implementation of a semi-decoupled latch controller [FD96].

This implementation uses asymmetric C-gates and has been produced using the

Signal Transition Graph (STG) approach [Chu87]. The structure of an asymmet-

ric C-gate is shown in Figure 2.27.

Reqin 	 Ackin

Ackout 	Reqout

Figure 2.26: Semi-decoupled latch controller using asymmetric C-gates

The asymmetric C-gate is like a generalised version of a C-Muller gate, where

an input may control the rising, the falling or both edges of the output depending

on whether is it connected to the extension marked '+', '-' or to the main body

of the gate.

A]D__ Z

Figure 2.27: Structure of an asyninietric C-gate

This implementation of the semi-decoupled latch controller requires two asym-

metric C-gates and a buffer, represented by the triangle in the diagram, for driving

61

=

P eq

Ackout

Ackout

the latch enable bits. The total number of transistors required to implementing

the control part, i.e. the two asymmetric C-gates is 20.

Figure 2.28: State graph for seiin-decoupled latch controller

The state graph shown in Figure 2.28 can be used to implement the semi-

decoupled latch controller as a CMOS direct-mapped AFSM. The AFSM circuit

corresponding to this state graph is shown in Figure 2.29. The total number of

transistors required to implement the latch control in this way is 26.

Hence, for this particular example, the direct-mapped approach requires more

transistors than the STG approach in order to implement the same circuit.

Reqou

S

Reqi

Le

Figure 2.29: Semi-decoupled latch controller using DM-AFSMs

None of these two circuits fully-decouple the input/output handshakes. The

problem with the asymmetric C-gate circuit is that the Ackin signal cannot return

low until Ackout has been asserted. Hence, the previous pipeline stage in this

case would wait longer than necessary incurring a potential performance loss.

62

In the direct-mapped version, the situation is similar. Here, signal Reqout

cannot be asserted until Reqin has been acknowledged, i.e. Ackin has been

asserted, and Reqin has returned low. Hence, in this case, the output handshake

is delayed longer than necessary.

Figure 2.30 shows the asymmetric C-gate implementation of a fully-decou pled

latch controller [FD96].

Reqin 	Ackin

Ackout 	Reqout

Figure 2.30: Fully-decoupled latch controller using asymmetric C-gates

This circuit fully-decouples the input and output handshakes. In this circuit,

as soon as the data has been latched, i.e. Lt has been asserted, the handshake

on the input side, Ackin, will return to zero. The transistor count for the control

part of this circuit is 42.

The fully-decoupled latch controller cannot be implemented by a single AFSM.

This is because implementing this circuit as a single AFSM implies imposing an

order on the sequencing of the handshakes and that order implies that they are

not decoupled. To implement the fully-decoupled latch controller as an AFSM,

two AFSMs, or one with multiple parallel paths is required.

Figure 2.31 shows an AFSM state graph that contains two parallel paths,

i.e. effectively two AFSMs, in order to fully decouple the input and output

handshakes.

The circles in the AFSM represent the points in the state graph where the flow

is parallelised or sequentialised. When Reqin is asserted, the flow is parallelised

and both states Ackin and Reqout are entered. The circle at the bottom joins

the two flows and brings them into state idle.

63

Figure 2.31: State graph for fully-decoupled latch controller

nAck 1

idle

Req n

Figure 2.32: Fully-decoupled latch controller using DM-AFSMs

Figure 2.32 shows the AFSM implementation of the state graph. The number

of transistors required for this circuit is 41. Hence, for this example, the number

of transistors required by both an asymmetric C-gate realisation and a direct-

mapped AFSM realisation are almost identical.

The next section compares the implementation of an example burst-mode

AFSM to a direct-mapped AFSM.

64

2.8.4.2 Comparison with a Burst-mode FSM example

The second example is the implementation of a control circuit using the burst-

mode design style and the direct-mapped AFSM approach. Figure 2.33 shows a

burst-mode state graph of an AFSM. It is taken from [DCS93]. This example

is one of the control circuits of a multicomputer communication chip called the

Post Office.

C

deliver-

Cazch-addr, nidie-

del dyer-

beqn sercU

letch - acidi - -

eck-senci--

beg tn--send-

send- p k t.

ack-end*

send-nkt-
dsltver-, ack--send+

send-pkt-, latch-addr+

5 	 6 	 7

Figure 2.33: Shuf-send-ctl Burst-mode AFSM (Davis et. al)

This circuit has three inputs, i.e. deliver, begin-send and ack-send, and

three outputs, i.e. latch-addr, idle (which is active low) and send-pkt.

When minimised by the MEAT tool, this specification results in an sum-of-

products implementation with two state variables. The complex CMOS gates

that implement the two state variables, YO and Yl are shown in Figures 2.34 and

2.35 respectively.

The total number of transistors required to implement these two gates is

22 transistors. To implement the complete circuit 22 additional transistors are

required in order to generate the three outputs. This brings the total circuit size

to 44 transistors.

65

ack-send 	-

deliver

begin-send

begin-send

Yo

begin-send

YO

deliver

Figure 2.34: Sum-of-Products realisation for output YO of Shuf-send-ctl AFSM

Figure 2.35: Sum-of-Products realisation for output Yl of Shuf-send-ctl AFSM

The minimised state graph has fewer states than the burst-mode state graph.

This is because some of the states of the latter can be merged. For example, states

1 and 2 have been merged into state wait. States 5 and 7 have been removed by

adding signal ack-send in the input conditions of state wait. The total number

of transistors required to implement the specification as a direct-mapped AFSM

is 48.

In this example too the difference in transistor sizes between the burst-mode

complex gate realisation and the direct-mapped approach is quite small.

From studying the implementation of these example circuits it can he con-

cluded that it is not straightforward that the direct-mapped AFSM approach

incurs a size penalty, it is rather circuit-dependent. Due to the one-hot encoding

of direct-mapped AFSNIs, it is likely that circuits with a large number of states

will require more transistors if implemented using the direct-mapped approach

than if implemented using a different encoding method and the conventional

sum-of-products implementation. However, most practical asynchronous control

circuits are relatively small in size, as asynchronous systems are highly modular.

mal

idle

deliver .ack-send

latch- addr

ack-send (W defiver.k-senc1.begin--send

wait

deliver. ack-send

begin-send

deliver

1- rn-i pktj 	 (send-pk

Figure 2.36: Sbuf-send-ctl minimised AFSM state graph

	

ii-d1 	ir

	

idle—f walrack....Ir 	 L
L1 latch-addr

deliver
ark-send 	deliver

begin-send

	

deliver -1 ack-send -I 	ack-send

ch- d(ir 	latc.' - _]c

idle

begin-send

deliver—fl ark-send

Figure 2.37: Sbuf-send-ctl minimised AFSM state graph

In addition, the direct-mapped approach is simpler to implement and produces

faster circuits.

2.8.5 Automating the CMOS Direct-Mapped Approach

Due to the regular nature of the CMOS Direct-Mapped implementation, it is

relatively straightforward to automate the design process and to produce, from

an AFSI\I specification, a transistor-level circuit description.

A simple synthesis program has been written in the C programming language

67

to demonstrate this. The specification of the circuit which is to be implemented

is given in terms of the circuit states, the transitions between these states and

the circuit inputs that cause these transitions. The program produces a circuit

description in CDL/Spice file format. The CDL/Spice file can then be simulated

using HSPICE or imported into the Cadence tool set. In this way, the circuit

produced by the synthesis tool can be further developed, i.e. its layout can be

automatically generated, or saved in a library and used in a circuit design.

As an example of the circuit synthesis process. consider the following AFSM

specification; there are three states sO, si and s2, where sO is the initial one,

two primary inputs, 1 and r and the following transitions: from state sO to state

si (sO—+sl) on input mr (where mr = 1), s1—sO on nlnr (where nlnr =

s1—s2 on ir (where ir = ir) and s2—*sO on nlnr. This AFSM specification

detects, whenever state s2 is entered, that the inputs 1 and r performed a high

transition in sequence, i.e. I is asserted and then r. The need to recognise

the order of transitions is quite common in mechanical systems, for determining

the direction of motion or measuring displacement. From the specification, the

synthesis tool then produces the CDL/Spice circuit description shown in Figure

2.38.

At the top of the CDL/Spice file, the global supply signals, vdd, gnd, and

the AFSM reset signal, rst are defined. Then, the strong and weak inverters are

described as subcircuits, as they are used to form the state gates. The strong

inverter is three times wider in this example.

Then, each state of the AFSM is defined as a subcircuit, the n-type transistors

which form the n-type pull-down networks, then the p-types, which form the pull-

up networks and finally the two back-to-back inverters. All transistors are of equal

width.

At the bottom of the file, the state gate suhcircuits are joined together to

form the complete AFSM, which is defined as the auto-f sm suhcircuit. The reset

transistors are also added at this stage.

2.9 Conclusions

In this chapter, the CMOS direct-mapped AFSM approach to control circuit

design was presented. It produces regular, fast, asynchronous control circuits

without the need to analyse the flow-table specification to derive a state variable

assignment. It allows for MIC, non-fundamental mode asynchronous operation.

The complex state gates are free of combinational hazards. Sequential hazards can

This is an autasaticaily generated COL/Spice fi.1e

global vddp gnd:g rat:p
pins odd gad

.subckt inverter-strong out I in
MpI out in odd vdd p v-2.40 1-0.8u
Mat out in gad gad a v-2.4u 1-0.8u
• ends inverter

•subckt inverter-weak out / in
14p3 out in vdd odd p v0.8u 1.8u
Mn3 out in gad gad n w0.8u 10.8u
.ends inverter

.subckt state..storage out / in
XiS out in /inverter-strong
X14 in out /inverter-weak
ends state_storage

• subckt state-0 ns0 sO / nlnr nat at ns2 52
Mn6 nsO alar nodeo gad a 1-0.8 v-2.4
Mn7 nodeO at gad gad a 1-0.8 v2.4
Mn8 ns0 nlnr nodal gad a 1-0.8 w2.4
Mn9 nodal s2 gad gad n 1-0.8 w-2.4
MplO nodal 0.51 vdd odd p 10.8 v.2.4
MpIl asO ajar oode2 odd p 1-0.8 w-2.4
XssI2 sO nsO /state-storage
ends state

.subckt state-1 nat 01 / br n.sO sO
Ma13 Sal lax aode3 gad a 10.8 v.2.4
Mn14 aod,3 sO god gad a 1=0.8 v.2.4
MplS node4 asO odd odd p 1-0.8 v.2.4
Mp16 aol lax aode4 odd p 1-0.8 v.2.4
Mp17 aol asl odd odd p 1-0.8 v.1.6
Xsa18 at nat /otate_storage
ends state-i

•subakt state-2 ns2 s2 I lx ml Si

Mn19 nsl lx nodeS gad a 10.8 v.2.4
Mn20 noda5 at gad gad a 1-0.8 w-2.4
Mp21 ns2 naO odd odd p 1-0.8 v.1.6
1.s22 s2 ns2 /state-storage
ends state-2

.subckt auto-tao asO sO asi 81 as2 s2 I flax lax lr
Xs123 060 sO alar nsl al ns2 s2 /state-0
1i24 node6 rat /inverter-strong
Ma25 ns0 node6 gad god a 1-0.8 v.3.2
Xsi26 nsl al mr nsO sO /state-1
Mp27 nat rat vdd odd p 1-0.8 v.3.2
1si28 as2 s2 ir nat at /state-2
Mp29 aol rat odd odd p 1=0.8 v.3.2
ends auto-f so

Figure 2.38: CMOS Direct-Mapped AFSM Synthesis Tool CDL/Spice Output

be present, depending on the flow-table, and must be handled by ensuring that

hazard-free delay assumptions are fulfilled at the physical level. Transient hazards

are also possible if output logic is used. Direct-mapped AFSMs will generally

require more state variable signals, although that does not necessarily imply that

their circuit size is larger than an AFSM with a different state encoding. At the

physical level, fewer feedback signals are required, as connectivity between the

state gates is local. The ClOS direct-mapped approach can easily he automated.

From a state machine diagram, a circuit netlist can be derived.

69

Chapter 3

Asynchronous Processor Design

In this chapter, the fundamentals of asynchronous systems and asynchronous

processors are reviewed. Two hardware mechanisms for exploiting concurrency

are presented; shared register files and itnet architectures. Shared register files

have explicitly defined common regions and allow for communication and syn-

chronisation to take place through the shared registers. pnet architectures break

down instructions into pinstructions, which they attempt to issue and execute

concurrently in the processor datapath.

3.1 Fundamentals of Asynchronous Systems

An asynchronous system is a composition of interconnected asynchronous units.

These units can themselves be asynchronous systems, or monolithic asynchronous

circuits. Due to the fact that these asynchronous units do not rely on specific

timing assumptions, they are autonomous, i.e. the interface they provide to the

system is independent of their functionality and implementation. This charac-

teristic makes asynchronous systems compositional, scalable and flexible. An

asynchronous unit in a system can easily be modified by swapping one part for

another without worrying about timing or interfacing issues.

3.1.1 Communication and Synchronisation

Communication between units in an asynchronous system is typically achieved

via a two-phase or four-phase communication protocol (handshake), Figure 3.1.

The two-phase version is transition based and works as follows. The sender

initiates the communication operation by asserting a request signal. At that time

any data relative to this communication should be available. The data travels as

a bundle relative to the request signal. The receiver will then accept the data

and, when it has done so, it will assert an acknowledgement signal. This signals

70

Req

2-phase

Ack

Req

4-phase 	 Ack

Data
Ack'

Figure 3.1: 2 and 4-phase Handshaking Protocols

the end of the communication. At the end of a two-phase handshake, both the

request and the acknowledge signals are asserted. The next communication action

will deassert the request signal and so on.

The four-phase handshake is level based. It works in the same way as the two-

phase, only both signals must return to zero at the end of the communication.

The bundled data may be attached to the request or acknowledge signals as the

bottom part of Figure 3.1 shows. In the 4-phase handshake on the left, the data

is attached to the request signal, whereas in the 4-phase handshake on the right,

the data is attached to the acknowledge signal. After the acknowledgement signal

has been raised, the request must return to zero and then the acknowledgement

signal will also return to zero. It is not allowable to raise the request signal when

the acknowledge is still high.

3.1.2 Completion Detection

As there is no constant timing reference, it is necessary in asynchronous circuits

to detect the completion of an operation. The ability to do this is of great

importance as it can greatly increase performance by making the latency of an

operation sensitive to its input data rather than being fixed on the basis of its

critical path. For many operations, the critical path or the worst-case delay path

71

can he considerably greater than the average case delay. There are two ways of

achieving this, bounded or relative delay and transition detection.

The hounded or relative delay approach relates the latency for the completion

of an operation to a reference delay, which must he guaranteed to be slightly

greater. The reference delay is usually the delay of another signal. The assertion

or deassertion of the reference signal will signal the completion of the operation,

for this reason its implementation should be clear of any hazards. It should be

asserted and deasserted monotonically. The bounded delay approach is particu-

larly suitable for implementing bundled datapath operations, where all bits have

approximately the same latency. An extra bit can then be used, the delay of

which is guaranteed at the physical level to he an upper bound to the delays

of the others. This hit is usually initialised high or low at the initiation of the

operation and when it changes state that signals completion. Implementing the

reference signal logic requires implementing an extra delay path of similar delay.

That can be provided by simply copying the logic that produces the output. This

approach requires only a slight area increase. In practice, the circuit operation is

not necessarily at the worst-case speed, because the delay of the reference signal

need not be constant.

The transition detection approach detects transitions on the outputs of the

circuit that performs the operation. For some operations, an output transition

may not be the final one, so care must be taken when using this approach. Tran-

sition detection approaches must detect both 0—*1 and 1-0 transitions and also

remember the initial state of the output signal. The most common way of iinple-

menting transition detection is dual-rail encoding. This uses two signals rather

than a single one to represent an output value. It represents a logical 0 by a

01, a logical 1 by a 10 and the remaining values 00 and 11 are invalid and used

for initialising the circuit. When a circuit input is one of the invalid values then

the output will also be invalid, so dual-rail coding also acts as a synchronisation

mechanism, as the output is waiting for a valid input.

The detection of the completion of an operation is implemented by exclusive

OR-ing the dual-rail coded output. If more than one output is present, the

completion signals must be ANDeI. When dual-rail coding is used, the logic that

implements the operation has to he modified for dual-rail coded inputs and dual-

rail coded outputs. It may seem that dual-rail coding is expensive as it requires

doubling the number of signals involved and therefore potentially doubling the

logic. But, dual-rail coding does not have to be used for all the datapath input

and output signals.

72

In principle, dual-rail coding can be used as a synchronisation mechanism,

replacing a handshake, although a handshaking protocol is more commonly used,

even with dual-rail encoding, as it is in general simpler to implement and requires

less signals.

Completion detection is associated with a special type of hazard, the delay

hazard. The delay hazard manifests itself at the output of the combinational

circuit that produces the completion signal. This occurs in the case when multiple

gates of varying delays are used to produce the completion signal, as a sum-of-

products circuit, and multiple gates turn on but some switch faster than others.

A quick response from the environment may produce a static 1-hazard if the gate

that was turned on is now turned off because of an input change and the other

gate(s) have still not yet turned on.

Implementing the completion detection circuitry as a dynamic. prechargeci

gate, rather than in a sum-of-products circuit eliminates the delay hazard. During

the inactive circuit period, the completion detection gate output is precharged

low, for example, by a pull-down transistor. Then, a number of pull-up transistor

chains, which implement the completion detection mechanism and depend on the

nature of the operation, can then assert it, while the circuit is active. In this way,

the 0-1 transition is monotonic.

3.1.3 Arbitration

In certain cases it is desirable to establish a luany-to-one relationship between

units in an asynchronous system. This implies a one-to-many connectivity be-

tween a number of sources and a single sink. As any of these sources should be

able to communicate with the sink, and multiple sources may be active at any

one time, additional circuitry is required to select. in the case of multiple active

sources, a single one. This circuit is called an arbiter and the process is called

arbitration.

An n-way arbiter arbitrates between n sources, i.e. n request /acknowledge

pairs into a single sink, a single request/acknowledge pair. The implementation

of an arbiter is based on the mutual exclusion element, a 2-way version of which

is shown in Figure 3.2.

The mutual exclusion element consists of two parts, the digital part that

actually performs the mutual exclusion action by a set-reset flip-flop, and the

analogue part, a metastability filter for the case when multiple requests occur

simultaneously and the flip-flip becomes unstable.

The disadvantage of this type of arbiter is that it does not guarantee fairness.

73

gri

ri

r2

Vs s

gr2

Figure 3.2: Mutual Exclusion Element

i.e. the result of the arbitration can always be the same on a clash. In addition,

in the case where the flip-flop becomes unstable, there is no upper bound to the

time it takes for it to become stabilised [KW76], as this depends on physical

circuit delays and random processes such as noise.

3.2 Asynchronous Processor Design

This section reviews the most common processor design technique, i.e. pipelining

and contrasts synchronous and asynchronous pipelines.

3.2.1 Pipelining

A pipeline, Figure 3.3, is a collection of processing stages that perform a function

over a stream of data.

Input 	s 	s +tage~2 __P.j stage
3__•OutPUt

Linear Pipeline

Input _stage 0
	stage 1 	Est.g. 	stage

	Output

Non-Linear Pipeline

Figure 3.3: Linear and Non-Linear Pipelines

In a linear pipeline, the processing stages are linearly connected. A non-linear

or dynamic pipeline is one which contains additional feedforward and feedback

74

connections. A linear pipeline always performs a fixed function, whereas a dy-

namic one can be reconfigured, by making use of its feedforward and feedback

connections, to perform variable functions. A pipeline has typically a single input,

where data can be inserted, and potentially multiple outputs, where data may be

removed. Depending on the implementation of the control flow, a pipeline may

he synchronous or asynchronous.

3.2.2 Synchronous Pipelining

A synchronous pipeline can he implemented as shown in Figure 3.4.

register 	register 	 register 	 register

Input
	o[_.] stage 1 	 stage 2 	

stage 3___Output

clock

Figure 3.4: Synchronous Pipeline Implementation

Clocked registers are used for interfacing between the pipeline stages. Dif-

ferent clocking strategies may be used, the most common being edge-triggered.

When a clock edge arrives, the edge-triggered latches transfer data to the next

pipeline stage simultaneously. In a synchronous pipeline, it is desirable to have

an approximately equal delay for all the pipeline stages, so that the clock period,

and hence the speed of the pipeline, can be determined.

3.2.3 Asynchronous Pipelining

In an asynchronous pipeline, Fig. 3.5, the flow of data between pipeline stages is

controlled by an asynchronous communication protocol, commonly a handshake.

Req 	Req 	Req 	Req 	Req
BIN

Ak 	 Ak 	 Ak 	 Ak 	 Ak
stage 0 	stage 1 	stage 2 	stage 3

D 	 D 	 Out

Figure 3.5: Asynchronous Pipeline Implementation

Communication between pipeline stages in an asynchronous pipeline takes

place individually between pairs of pipeline stages that are ready to transmit

and receive data respectively, rather than being globally controlled. In an asyn-

chronous pipeline, the delay of the pipeline stages may vary. In such a case, the

speed of the pipeline is limited by the speed of the slowest stage, but even so.

75

it still performs better than a synchronous one, where all the stages would op-

erate at that slowest speed. In addition, it is often the case that the delays of

asynchronous pipeline stages are data-dependent and therefore variable.

A micropipeline [Sut89] is a simple implementation form of an asynchronous

pipeline. Fig. 3.6 shows a two-phase micropipeline with logic between the pipeline

stages. The delay inserted between the pipeline stages must match the processing

delay through the logic.

ackout

I C pd

dataout

I 	III
I LU H 15) 	 0

IJT 	
-J

Cd

delay I 	reqout

Figure 3.6: Two-Phase Micropipeline Implementation

3.2.4 Instruction Pipelines

An instruction pipeline breaks clown the instructions execution. and in conse-

quence the datapath of an architecture, into distinct stages. In this way, the

pipeline stages can be occupied by different instructions, and as the different

pipeline stages are operating concurrently, temporal parallelism is exploited. By

breaking down the execution of instructions into N stages, the throughput of

instructions is, in general, increased by N.

Figure 3.7 shows the structure of a typical instruction pipeline.

lnPuLj IF
	ID ~~~~

 tput

Figure 3.7: A typical Instruction Pipeline

There are five pipeline stages, IF. Instruction Fetch, ID, Instruction Decode,

EX, Execute, MEM, Memory Access, and WB, Write-Back. In this pipeline, when

instruction n is in time WB stage, instruction (n - 1) is in the MEM stage, instruction

(n - 2) is in the EX and so on. If multiple similar pipeline stages are provided,

76

for example multiple EX stages, then spatial parallelism can also be exploited. In

this case, an instruction in its ID stage does not necessarily have to wait for the

previous one to finish its EX stage if another EX stage is available.

3.2.5 Instruction Pipeline Hazards

Certain conditions, called hazards, prevent the normal, continuous pipeline oper-

ation, and cause pipeline stages to stall.

There are three classes of hazards; structural hazards, control hazards and

data hazards. Structural hazards arise when the architecture cannot accommo-

date some instruction combinations due to resource conflicts, for example there

may be one RF write port but two write requests, and one of them will have to be

stalled. Control hazards arise from the pipelining of control transfer instructions.

When a conditional control transfer instruction enters the pipeline, its outcome

may not he known until it propagates all the way through the pipeline. Therefore,

it is not known at the front of the pipeline, from which of the two possible paths

instructions should be fetched. The pipeline must stall until the branch outcome

is known. Data hazards arise from dependencies between instructions which must

he respected for correct program execution.

Hazards reduce the amount of temporal parallelism that can be exploited and

therefore the performance gain of pipelining. A pipeline stall is the situation

where one or more pipeline stages are not allowed to communicate data but must

wait.

3.3 The unet (micronet) architectural approach

Time pilot (or nucronet), introduced bV Rehello [Reb96] , is a mechammisimi for or-

ganising an asynchronous datapath in order to exploit fine-grain temporal and

spatial parallelism. It is effectively an extension of instruction pipelining and of

asynchronous micropipelines.

Rebello's work concentrated on architectural level simulations of a scalar pnet

architecture without being concerned about the specific circuitry required to im-

plement it.

In the following sections, the implementation of the pnet is investigated with

the aim of implementing a transistor-level Itnet processor.

77

3.4 unet Structure

The fundamental characteristic of the /inet approach is that program instructions

are broken-down into /ioperations, i.e. their corresponding basic datapath oper-

ations. These can be parallelised, when possible, for one or more instructions

being executed in the datapath, hence exploiting fine-grain parallelism. The

ioperations are distributed by the inet control unit, by assigning a pair of hand-

shaking signals to each poperation, which handshake with the appropriate itblock,

implementing that /ioperation.

Figures 3.8 and 3.9 show an example /met architecture. Figure 3.8 shows the

control unit connectivity to the datapath components. In this diagram, the solid

arrows represent the four-phase #operation handshakes. Figure 3.9 shows possi-

ble connections between datapath components. The solid arrows here represent

additional datapath handshakes that carry data between the datapath compo-

nents.

Figure 3.8: Example of a Imet Architecture - i operation Issue

	

K 	
1FU1I

	

Read 	
Exec N

I Opi
jrro1

I 	I 	 FU2 	 Write
Fetch 	Decode 	 Exec 	Result

Read
0p2

FU3
Exec

Figure 3.9: Example of a jinet Architecture - Datapath Handshakes

As call be seen in Figure 3.8, the control unit can issue toperations to all of

the #blocks in the architecture. In this way, instructions only use the pblocks that

are necessary for their execution, in contrast to a pipeline, where an instruction

must always pass through all of the stages. For example, an instruction which

uses only one RF port will only use that j.thlock, an immediate instruction which

does not need to read register values or use the FUs will only use the Write Result

pblock.

The Itnet is effectively an asynchronous, fine-grain, non-linear pipelined struc-

ture, where stages are datapath operations, and pipeline inputs are provided at

all pipeline stages.

3.5 1uoperations

The iLoperation signals are equivalent to the datapath control signals in a syn-

chronous processor architecture, which may be generated by a central control unit

or by different pipeline stages. The /ioperations, much like the datapath control

signals, depend on each other. In a synchronous processor, such dependencies are

respected by the order of the pipeline stages, and by the order that control sig-

nals are asserted at different clock cycles. In a /net architecture, all jtoperations

are issued into the datapath simultaneously, and therefore dependencies must be

respected by additional control circuitry implemented in the datapath structure.

3.6 1tioperation Dependencies

ioperation dependencies may be data or control dependencies. Data dependen-

cies exist between toperations and their data; for example, a /ioperation that adds

two numbers cannot execute before its data are available. Control dependencies

exist between zoperations that must be executed in a certain order.

The dependencies between poperations can be represented in the form of a

graph. Figure 3.10 shows the Itoperation dependencies of the Al architecture.

The longest dependency chain in this graph involves three levels. Rx and Ry

do not depend on any other poperations, whereas AOp and COp depend on both

Rx and Ry. MOp depends only on Ry. Wz depends on AOp and MOp and has a

hidden data dependence, drawn with a dashed line, with the immediate value,

labelled 1mm. The hidden dependence exists because, although there is no explicit

immediate value handshake, there is a data dependence between the immediate

value of the current instruction and its write-back poperation, Wz.

79

Wz

S

..
S

AOp 	 MOP 	 1mm 	 COP

Rx 	Ry 	 Ry 	 Rx 	Ry

Figure 3.10: ioperation Dependencies in the Al Processor

A pipeline can also be drawn in the form of a dependence graph, Figure 3.11.

In this graph, the operations are the coarser-grain instruction execution stages;

IF. Instruction Fetch, ID, Instruction Decode, EX, Execute, MEM. Memory and WB.

Write-Back, which are identical for all instructions.

IF > ID > EX _> MEM > WB

Figure 3.11: Operation Dependencies in a pipeline

The circuit implementation of a generic itnet, which respects the poperation

data and control dependencies is discussed in the next section.

3.7 Generic jrnet Implementation

In order to exploit the maximum possible parallelism for a specified set of zoperations

and dependencies between them, each poperation must he mapped to a itnet

stage (or itblock) in the circuit implementation. Each such stage implements a

fine-grain datapatli operation and requires access to an FU port. A Itnet stage

resembles a pipeline stage. The difference between them is that a Iznet provides

inputs at each one of its stages, whereas a pipeline usually provides a single input

where instructions enter. Communication between these stages, and the isolation

of their data, requires additional control circuitry and data registers.

The number of ioperations, and the dependencies between them, determine

the morphology of the Itnet datapath, i.e. the connectivity between jhlocks,

and the amount of additional control circuitry and data registers necessary to

implement the architecture.

EM

3.7.1 itnet Control Implementation

The purpose of the additional control circuitry is to implement communication

between priet stages, and to store data into the datapath data registers. Often, the

control circuits must synchronise handshakes and sequentialise data operations,

for example, wait until two request signals have been asserted, or assert a request

signal when the data has been stored into a data register. In this way, the

operation dependencies are respected. The nature of the control can also he

extracted from the dependencies graph.

The toperation handshakes (generated by the control unit) must connect to

the iblocks, which perform as much of the operation as possible locally. Then,

when data is available or required, they synchronise and communicate with other

units. The data dependencies between toperations require synchronisation and

communication to be implemented between them. In general, the initiation of a

datapath operation requires synchronisation with the data, and the completion

of a datapath operation must be followed by a communication action. Hence, the

tblocks that correspond to dependent /zoperations will require additional control

handshakes to be implemented between them.

For the Al /operation dependencies of Figure 3.10, for example, it is neces-

sary to implement a handshake between the Rx and AOp jioperations. In the Al

processor, this was implemented by using the bus handshake signals. One-to-

many dependencies are also present, for example Rx may potentially handshake

with AOp or COp and Ry with AOp, MOp or COp.

In the case of a multiple dependence, the state of the relevant poperation

handshakes, i.e. the global datapath state, is used to determine which pair of

jiblocks must communicate. For example, if the toperations Rx and AOp have their

request signals asserted, this implies that they must communicate. The write-

back jioperation, Wz in the Al implementation, also uses the state of the relevant

Iloperation handshakes to resolve the multiple dependencies and determine the

data source for the write back. When multiple dependences exist, the ioperation

acknowledgement signals should only he asserted after the multiple dependencies

have been resolved, i.e. their state has been read.

Only in the case when multiple toperations depend on the same data source,

should the multiple ib1ocks that correspond to them be allowed to request data

from the single ihlock unit that corresponds to the dependent poperation. This

multi-way forwarding of data may be exploited in the case when register contents

need to be fed to multiple FUs of the architecture. In the Al design this is not

possible, as it is not allowed by the instruction decoding and is not supported by

the circuit design. Multi-way data forwarding requires multi-way data synchroni-

sation to be implemented, and also requires a more complex instruction decoding

process.

Figure 3.12 shows the necessary handshakes that must be implemented for

the dependencies that were shown in Figure 3.10.

H
S

S
S

S
S

POP 	 RP 	 FOP

U
E I Py 	H H

Figure 3.12: Itoperation Control Implementation

Each Itoperation in Figure 3.10 corresponds to a iblock, i.e. a datapath unit

in Figure 3.12. Dependent toperations must handshake with each other. In this

diagram multiple instances of the same block are shown. In the circuit design

though, each /ioperation must correspond to a unique thIock.

Figure 3.13 shows a more detailed diagram of the required control, which is

closer to the implementation, as each pblock is unique. The horizontal handshakes

in the diagrarn represent the handshakes between the iblock and the control unit

(not shown).

In this diagram, it is evident that the dependencies map to necessary commu-

nication paths. The two jtoperations at the lowest level of the hierarchy, Rx and

Ry that have multiple dependencies must handshake with two and three units and

with the control unit respectively.

3.7.2 inet Data Registers

As handshakes follow multiple paths, so do the data. Each handshake that spawns

from a ,uoperation dependency potentially carries data. In order to isolate the

data of different ihlocks, data registers are necessary.

The number of registers required depends on the amount of data required

per pblock. Figure 3.13 requires a total of 7 data registers, 3 for AOp (2 for the

operands and one for the result), 2 for MOp (one for the operand and one for the

S
S

< ale FOP] >'

 RP 	1mm

RxJ >

FCOPI

Figure 3.13: /toperation Detailed Control Implementation

result) and 2 for COp. This number does not count the extra instruction data

registers. There are 3 instruction data registers required, one for the immediate

value, and two for the register indices of Rx and Ry.

In the Al, two of these data registers were dropped to reduce the circuit size,

at the cost of parallelism between jiblocks. The result of the adder is not stored

in a data register and thus the AOp fioperation must wait, to hold the data valid,

until the data has been written back. Hence, there is no parallelism between the

AOp and Wz poperations. The memory data register has also been dropped by

assuming that the memory holds the data valid.

3.8 Scaling a rnet Datapath

So far, only a scalar Jinet. (latapatli has been considered. Except for the register

read operations, Rx and Ry, only single instances of one type occur.

In a scalable /net architecture, the datapath must have the ability to handle

multiple units of the same functionality, for example, multiple FUs, multiple RF

read ports, etc. Hence, jLoperations and .th1ocks do not necessarily have a simple

one-to-one mapping. The assignment of jLoperations to available jihlocks must be

implemented either in hardware, by the control unit, or in software, by a compiler.

3.8.1 Implementing a Scalable linet Datapath

Implementing the assignment of poperations to multiple available jiblocks in hard-

ware involves implementing a mechanism for selecting an available unit for a

/zoperation. For example, in an architecture with two adders, an AOp poperation

IM

a

req. r.

can he sent to one of the two adders, depending on availability. In addition, if

both are available, one must be selected. The control unit must map the AOp

ioperation to AOpl or A0p2.

An asynchronous hardware implementation of a circuit that will select units

based on their availability is challenging and prone to metastability. The cases

where multiple units are available and one of them must be selected and where

none are available must be handled. A circuit which will sequentially check the

units for availability when an input request arrives is prone to metastability, i.e.

it may mulfunction under certain timing conditions. Figure 3.14 shows the AFSM

of such a circuit.

Figure 3.14: Example FSM of a unit selection circuit

The circuit has an input handshake pair, reqin and ackin, which represents

the incoming request. Three units are available, where the incoming request can

be serviced with handshake signals, requl, ackul, requ2, acku2 and requ3 and

acku3. The AFSM upon receiving an incoming request enters the begin state.

At this point, the status of the first unit is checked by inspecting the status of its

acknowledgement signal.

If ackul is deasserted, then this signals that unit 1 is available, thus the

niachine enters state requl. When unit 1 has received the data and ackul is

asserted, the incoming request is acknowledged by asserting ackin. When reqin

returns low, another request can be serviced, as the machine enters returns to

state idle.

If at state begin signal ackul was asserted, then that would signal that unit

1 is busy. The machine would enter state ibusy and check unit 2. This process

continues until the last unit is checked and then if this is also busy, the machine

returns to state begin and tries again to find an available unit.

The problem with this approach is the timing of the unit acknowledgement

signals, i.e. ackul, acku2 and acku3. States begin, ibusy and 2busy, where

the status of the acknowledgement signals is checked, have two successors which

are entered upon the acknowledgment signal or its inverse. It is possible for the

acknowledgement signal to change at such a time as to cause both of these states

to be entered and thus the circuit would malfunction.

To implement the assignment of Iioperations in software, the compiler must he

made aware of the jmet's architectural characteristics, i.e. the number and type of

1tblocks and the dependencies between them. It also implies the use of a different

instruction format. As the selection of itblocks is performed by the compiler. the

instruction width will have to be increased to include a iblock identification field.

A positive consequence of this is that the instruction decoding in the control unit

will he greatly simplified. The advantage of a software implementation is that

the compiler has a broader-view of the dependencies between instructions and

can potentially utilise the datapath more efficiently.

Once /ioperations have been mapped to their jihlocks, the dependencies be-

tween them become fixed. In the scalable jinet, the units which are replicated

also replicate the dependencies. For example, if another adder is added to the

architecture of Figure 3.13, this will create two dependencies with the RF ports

and one with the write-hack unit. The extra dependencies imply extra intercon-

nections.

Although it is possible to restrict the connectivity, exploiting as much paral-

lelism as possible requires a scalable inet to provide full connectivity between all

the possible combinations of dependencies. It is also necessary that phlocks of

independent chains of operations can communicate simultaneously with no inter -

ference. To implement the full-connectivity requirement, the control handshake

that synchronises and communicates data between a pair of itblocks, along with

their attached data, must be connected from each phlock to all other jiblocks

with which communication can occur. This is shown in Figure 3.15.

As more dependencies have now been added, by adding multiple units of the

IF/ID
Common
Commit
Unit

Figure 3.15: Example of a scaled jmet implementation

same type, more dependencies must be resolved. In the scalar pnet, allowing

pblocks to inspect the global state, i.e. the state of the dependent poperation

handshakes is sufficient to determine which phlocks must communicate. In a

superscalar architecture with multiple dependent jiblocks, such as multiple read

ports and multiple FUs, allowing a pblock to inspect the global state, i.e. the

state of all the dependent tLoperation handshakes, is not sufficient, as multiple

itblocks of the same type may be made active by multiple instructions. Hence, it

will not be known which of these active handshakes are relevant to the current

ioperation that is being executed in a iblock.

A solution to this problem is for the control unit to supply, to each ttblock,

the next ioperation that is to be executed. This resolves the dependencies and

indicates to each /tblock where any results generated will be sent.

Figure 3.16 shows part of a scalable inet datapath. In this datapath, there are

multiple register read ports, multiple adders and multiple write-back units. The

two-way arrows represent the handshaking signal pairs of /ioperations. A partic-

ular instruction is to use toperations Rxl, Ry3, A0p4 and Wz2, which correspond

to ports 1 and 3 of the register file, adder 4 and write-back unit 2. Each datapath

block also receives the joperation handshake of the next zoperation, i.e. Rxl

and Ryl receive the A0p4 handshake and A0p4 receives the Wz2 handshake.

Interconnecting a iblock to the other phlocks that it can communicate with

can be implemented using busses to route the control handshakes between phlocks

and their data, instead of fixed connections. Hence, the handshake that speci-

fies the next ILoperation which is to be executed, determines the control and

data busses to which the output handshake and data will he connected. Figure

Px1 	ACp4

4 	 > El
FAA L______J 	A)p4 	 -Jz2

Fy1 	AOp4

Figure 3.16: Part of a scalable jinet implementation

3.17 shows the control and data bus interconnections between two sets of fully-

connected /Lhlocks. There are in busses, which connect the n 1ihlocks on the left

side of the figure to the in /Lblocks to the right. Each jiblock must steer its outputs

to in busses in this case.

control and data busses

Figure 3.17: Bus Interconnections in a scaled ftnet implementation

This approach cannot deal with collisions, i.e. two or more jiblocks attempting

to communicate with the same [iblock cannot take place. as the bus control and

data signals would, in such a case, assume undefined values and the circuit would

malfunction. As long as no feedback connections exist in the inet structure,

appropriate ;ihlock selection will prevent collisions from occurring.

3.8.2 Multiple /inet Datapaths

A different way of scaling a //nct architecture is to replicate the entire fniet dat-

apath, instead of adding more datapath units. Figure 3.18 shows how a scalar

87

pnet datapath can be replicated.

urilcation

Un Cat ±Ofl

Figure 3.18: Multiple p net Architecture

In this scheme, instructions from the same instruction stream are distributed

to different ftnets, effectively forming a clustered uniprocessor architecture. It is

also possible to assign different instruction streams to the different p.nets, forming

a single-chip multiprocessor architecture.

For both of these architectures, communication between the nodes is necessary

to exploit a sufficient amount of program level concurrency. The next section

presents an approach for achieving this, Shared Register Files.

3.9 Shared Register Files

The Shared Register File (SRF) approach partitions the conventional monolithic

register file of a processor into multiple register files that share registers. The

SRF approach does not imply a particular architecture, it is only a technique

for segmenting the MRF and communicating register values. The SRFs can be

incorporated into a processor datapath in different ways: (a) the datapath may

be partitioned too, i.e. the processor FUs are local to the SRFs, a clustered

uniprocessor architecture, (b) the datapath and the flow of control are partitioned,

i.e. not only the FUs, but also the instruction flow is local to the SR-Fs, i. e. a

multiprocessor architecture and (c) the datapat.h is not partitioned, i.e. the SRFs

connect to a single set of FUs. Cases (a) and (b) implement architectures that

exploit program level concurrency, by running different code fragments on the

different SRFs from a single or multiple flows of control.

3.9.1 Concept of register sharing

A shared register is one that is common to two or more RFs of an architecture.

Hence, it can be read or written to by all the RFs to which it is common. A shared

register file (SRF) is one that contains a multiplicity of shared registers. In ad-

dition, an SRF may also contain registers not accesible by other RFs, referred to

as local registers. In an SRF organisation, the shared register identifiers overlap

across RFs. This overlap provides the communication and synchronisation mech-

anism. For example, shared register 0 of RF(0) may be the same physical register

as register 28 of RF(3).

3.9.2 Possible Sharing Schemes

Shared RF organisations depend on four parameters: the size of the shared re-

gions, i.e. the number of shared registers, the number of ports of a shared region,

i.e. the degree of sharing, the number of shared regions per RF and the register

mapping which establishes the register connections. These parameters affect the

logical and physical topology of the RFs and dictate the paths and degree of

communication.

The simplest register sharing scheme was first mentioned in Chapter 1, Sec-

tion 1.2.2 and is shown again in Figure 3.19. This establishes a one-way or

unidirectional communication path between RFs and is therefore referred to as

unidirectional or 1-way register sharing.

RF(n-1)

out 	in

local

RF(n)

out 	in

local

RF n+1
out 	in

Figure 3.19: Register Sharing : Unidirectional

89

This scheme, inspired by the register windows concept (Section 1.2.1) divides

each RF into three sections: a local section and two shared sections, labelled in

and out. For each RF, its bottom output section, which is used to send data to its

successor, overlaps with the latter's input section, which is used to receive data

from its predecessor. Therefore, data written to the out section of RF(n) can be

read by RF(n+1) as it maps to one of its in registers. The RFs are organised in

a circular manner so that the last one overlaps with the first.

As each RF can only write to its output section and only read from its input

section, and these are respectively read from and written to by its neighbours,

no extra read or write ports are required. Because of this, there is virtually no

access time penalty for accessing registers of another RF.

A more versatile scheme is one that will allow one RF to read and write to

more that one neighbour, establishing two communication paths. This 2-way or

bidirectional schenie is shown in Figure 3.20.

R F(n)

local

I 	shared I 	shared I 	shared 	I 	shared I

local 	 local

RF(n-1) 	 RF(n+1)

Figure 3.20: Register Sharing : Bidirectional

In the 2-way scheme, each RF has two shared sections, one common with its

predecessor and one common with its sucessor. The difference here is that the

shared sections can both be written to and read from both processing nodes that

share them. As can be seen from Figure 3.20, each shared section requires read

and write access from two RFs, and therefore requires one additional read and

one additional write port.

A scheme with greater communication ability, but one which would imply a

greater number of processing nodes, is the 4-way or quad scheme. As its name

implies, each RF in this scheme has four shared sections which it shares with

three of its neighbours, as shown in Figure 3.21.

KE

RF(n).. 	 I- - -,

N 	: local'

I loca\ share local I

localLE ,o42oa

localLd /7:
L local:

Figure 3.21: Register Sharing : 4-way

This organisation is very similar to a 2D processor mesh, where each R.F

can communicate in four directions: north, south, east and west. Each shared

section in the 4-way scheme can be accessed by four RFs, hence three additional

read/write ports are necessary.

These three schemes are not the only ones possible. Thus, the degree of

sharing can he further increased, to 6-way, 8-way, etc. and the number of shared

sections per processing node can also be increased. In the bidirectional scheme, for

example, each RF could have four rather that two shared sections communicating

with each other in two paths, horizontally and vertically.

3.9.3 SRF design

When all the parameters for an SRF scheme have been defined, the design of the

SRF can take place. This involves specifying the logical structure of each SRF,

that is the register mapping, which determines the relationship between register

identifiers and register location, and the sharing architecture which determines

how the shared sections of this and its neighbouring RFs overlap.

To provide for both logical and physical scalability, an SRF should be designed

as a repeatable circuit block. This allows for an arbitrary number of SRFs to be

connected.

3.9.4 SRF and MRF issues

SRFs differ from their monolithic counterparts in two respects. Firstly, not all

their registers have the same number of ports. Registers of shared sections will

91

have more ports than the local ones. Secondly, register accesses of one SRF may

need to be routed to another. A register access in one SRF's shared section

could mean that the particular register may not physically be in that SRF. This

depends on the physical design of the sharing scheme, as will be illustrated later.

Because of this, local and shared registers will have different access times. The

difference between local and shared accesses can he thought of as the communica-

tion latency. Comparing an SRF with an MRF with the same number of physical

registers, we can expect a slowdown of all register accesses. The reason for this

is the existence of registers with different numbers of ports which all connect to

the same bus. A slowdown of the local registers is to he expected clue to second

order capacitive effects; a register with more ports introduces more capacitance

on the input and output busses. This slowdown of all register accesses compared

to an MRF with the same number of physical registers can he thought of as the

sharing overhead, the price paid for having the ability to communicate.

The nature of RFs is that they are datapath components, essentially arrays

of static RAM cells with multiple input and output ports, where all cells connect

to the same input and output busses [WE93]. This implies that their access

time is significantly affected by low level layout details and process parameters.

Factors like the circuit topology, i.e. the organisation of the datapath and the

control logic, parasitic delays (such as the capacitance of metal tracks) and process

characteristics (such as the number of metal levels), all directly affect the access

time. At the schematic level it is very hard to model the capacitive loading on

an RF's busses or the effect of data and control routing, as these are usually

implemented using different metal layers. In order to be able to assess the access

times of SRFs and to study the impact of register sharing, a set of both SRFs

and MRFs were laid out and simulated.

3.9.5 Asynchronous vs. Synchronous SRFs.

SRFs with a higher communication ability than 1-way require a larger number

of ports for their shared sections. This implies that the access times of shared

registers will be greater than that of local register. SRFs are effectively a register-

level equivalent of Non-Uniform-Memory-Access memories, where the speed of

access varies depending on the type of access (local or shared). This characteristic

makes SRFs hard to implement using the synchronous approach, as a multicycle

implementation is necessary for the shared accesses. Asynchronous design, on the

other hand, can accommodate the non-uniformity of accesses and for this reason

SRFs are easier to implement as asynchronous components.

92

3.10 Conclusions

In this chapter, the fundamentals of asynchronous systems and asynchronous

processors have been reviewed. Two hardware mechanisms for exploiting concur -

rency have been presented; shared register files and pnet architectures. Shared

register files have explicitly defined common regions and allow for communication

and synchronisation to take place through the shared registers. They allow for

coarse-grain parallelism to be exploited by providing a scalable and segmented

datapath organisation which can be used in clustered uniprocessors or single-chip

multiprocessor architectures. tLnet architectures allow for fine-grain parallelism

to be exploited, by allowing pinstructions to be issued and executed concurrently

in a pnet datapath. An implementation methodology for scalar and superscalar

pnets has been presented. By combining together these two approaches, a seal-

able asynchronous processor which exploits both fine-grain and coarse-grain par-

allelism can be implented. The next chapter discusses the implementation of

Shared Register Files.

93

Chapter 4

Implementation of Shared
Register Files

In this chapter the shared register approach is presented as a means of partitioning

the monolithic RF and of enabling inter-RF communication. This technique aims

at a scalable organisation of RFs with explicitly identified common regions where

all necessary communication and synchronisation takes place through the shared

registers. Further on, the shared register file approach attempts to avoid using

complex interconnections and long wires by localising all communication at the

"heart" of the datapath, i.e. the RFs.

4.1 Asynchronous SR.F Circuit Design

The SRFs were designed and laid out (hut not fabricated) using ES2's 0.7jim,

5V, 2 level metal, digital CMOS process [EUR]. This technology was supplied by

EUROPRACTICE-IMEC. The custom layout package was used with the Cadence

Opus layout tools. This package contains a technology file for the layout editor

containing all the technology details, a design rule checker for Cadence's DIVA

DRC tool and a full flat post-layout circuit extractor. The circuits were laid

out hierarchically using the layout editor, then verified for DRC errors and then

a post-layout netlist with all the parasitic devices was created and fed into the

HSPICE simulator [Met90].

The circuits were designed with minimum size transistors and minimum width

wires, unless otherwise required, for reasons of speed. The widths of the power

tracks were calculated for each circuit block depending on the current drawn by

each circuit. 'Wider transistors were used when implementing transistor chains

(to keep the equivalent load and current drive similar to that of a minimum size

transistor) and for buffering. As the purpose of these experiments was to study

94

relative delays, the use of buffering was kept to a minimum to reduce circuit

complexity and save on design and implementation time.

To implement the logical sharing structure physically, a physically repeatable

pattern must be created, as mentioned above, where neighbouring RFs logically

overlap. This is implemented by allocating part of the shared section of one SRF

to its neighbours. For example, as shown later in Section 4.1.3, in the 2-way or

bidirectional scheme, the shared section on the left, in Figure 4.1, between RF(n)

and RF(n-1) resides in RF(n), but the shared section on the right, between RF(n)

and RF(n+1) resides in RF(n±l). Thus, an arbitrary number of SRFs can be

cc)IlIle(te(l iii d bidirectional ring.

RF(n)

local

I 	shared I 	shared I 	shared 	I 	shared I

local 	 local

RF(n-1) 	 RF(n+1)

Figure 4.1: Register Sharing : Bidirectional

Three types of register operation were implemented; read, write and clear. All

SRFs in the experiments have one port for each operation. All ports implement

a four-phase asynchronous handshaking protocol with two signal wires each, a

request and an acknowledge.

Figure 4.2 shows the layout of a 1-bit register cell. This is a 1-bit dynamic

register cell with a weak p-type feedback transistor. It has an extra buffer for

driving the output. This ensures that no matter what the output loading is, the

state of the cell can still be changed. The two n-type pass transistors at the input

and output are used for writes and reads respectively. Increasing the number of

ports implies increasing the number of pass transistors.

Each register is composed of 32 register cells (Figure 4.3) whose write and read

lines are driven by x32 buffers. Registers are organised in a 2D array and selected

by row and column. This reduces the complexity of the decoding logic and yields

a better layout aspect ratio [WE93]. The shared registers have extra ports for

remote accesses. The SRF main input and output data busses are formed by

95

!

p

- saw 	 A

______ 	__________ 	I
;

El

--

Figure 4.2: 1-bit register cell layout

Figure 4.3: 32-bit register cell

joining together all the input and output data busses of the registers that can be

accessed. These include the input and output busses of the local registers and

the input arid output busses of the local port of the shared registers. The remote

ports of the shared registers are also connected together to form the remote input

and output data busses. This is where other SRF busses can be connected to.

An SRF operation takes place as follows:

a register access is initiated.

t he register identifier is decoded and register select signals are asserted.

. for a read access, the register select signals enable the outputs of the selected

register to drive the SRFs output bus.

fur a write access, the register select signals enable the inputs of the selected

register to be driven from the SRFs input bus.

• for a local register access, the register select signals enable a local register,

for a shared register access they enable one of the shared register ports.

96

• for shared registers which reside in another SRF, the register select signals,

which are routed to the other SRF, drive one of these shared register ports

onto this SRF's input or output bus.

. when the data have been read, written or cleared, then the operation has

completed.

A register has different access times depending on the access distance to it,

with local registers being the fastest to access. Access times to shared registers

depend on the distance of the shared register - a shared register may be physically

contained in the same SRF where the operation was initiated, or in another SRF

to which the initiating SRF has access. The former can be called a shared-near

access and the latter a shared-far access. Thus, each SR.F has three possible access

times when connected into a system of SRFs: local (the fastest), shared-near and

shared-far (the slowest).

When an SRF is simulated as an isolated circuit block, the links to its neigh-

bours are unconnected, so the shared-far access time cannot be measured. In

addition, the access times of the local and shared accesses may change depending

on the placement and distance of its neighbours, as these links load the SRF's

input and output busses.

Connectivity between SRFs is achieved by connecting the remote data busses

of one SRF to another's main SRF busses and connecting some of the latter's

register select signal to the former's shared registers.

4.1.1 Completion Detection

Completion detection is necessary to detect that data have been read or written to

and that the operation has completed. Register locking is a useful and common

approach for synchronising out-of-order read and write operations. Both are

implemented using a 33rd hit, the valid bit. The valid bit is set when data are

written to a register to indicate that the register contents are valid. The valid

bit has multiple read ports, one associated with each of the reach, write and clear

operations. These connect together to form the valid bit busses. In the simplest

case, i.e. 3 ports, one write, one read and one clear, there are three valid bit

busses.

One of the ways of detecting completion in an asynchronous circuit is to use a

constant delay path reference, which is longer by circuit design than the datapath

(c.f. Section 3.1.2). The valid bit is used in this way. During an operation, the

corresponding valid bit bus is firstly precharged before the register to be accessed

97

is selected. The precharging is of the opposite value to that which will signal

completion of the operation. For reads and writes the valid bit bus must be read

as a logic 1. For a write, this means that the SRAM cell of the valid hit has

been written to and therefore so have the other 32. For a read, it means that

the SRAM cell of the valid hit has been read and therefore so have the other 32,

so the output bus data are valid. So for reads and writes, the valid bit bus is

precharged to a logic 0. Clear operations clear the valid bit and their completion

is signalled by a logic 0, so the clear valid bit bus is precharged to a logic 1.

Due to the use of the valid hit as a locking mechanism, a read of a register

which is waiting to be written, i.e. its valid bit is zero, will thus not complete until

the write takes place. For correct operation, valid bits must he cleared before a

register with valid data can be written to. This is usually performed in a processor

before instructions are issued. Although reads and writes of shared sections can

he performed by multiple SRFs, clears have been physically restricted to the SRF

in which an operation takes place. This restricts the number of clear valid bit

ports and busses to one.

4.1.2 Control Circuitry

The SRF's control circuits were implemented from asynchronous state machine

specifications using the direct-mapped AFSM method described in Chapter 2.

t. req

Figure 4.4: FSM of read/write port logic

Figures 4.4 and 4.5 show the FSM and the layout of the read and write port

logic. The handshake signals are req and ack, signal out is the bus of the

completion detection signals and signal prelow precharges this bus low by being

connected to a pull-down transistor not shown in the FSM. This FSM does not

MI

-

Figure 4.5: Layout of the read/write port logic

reset to either of its states; this is why the top and bottom transistions are shown

to come and go from and to the outside. When req is asserted, this triggers

the start of the read or write operation and puts the FSM in the prelow state.

This precharges the completion detection bus. When the bus of the completion

detection signal (out) has been pulled to a low enough value, the machine asserts

the ack signal, by entering that state. The acknowledge signal is fed to the column

decoders enabling them to select the register being accessed. This initiates the

access. When the register is selected for a read or a write, its valid bit will be

enabled onto the out bus. When the out bus is asserted and the req signal has

gone low, the ack signal goes low, signifying the end of the operation.

In the following section the implementation of the three different organisations

studied here is described. The 2-way scheme is described first as it illustrates more

clearly the SRF issues and then the other two. the unidirectional and the 4-way

scheme. The access times of the unconnected SRFs are measured and asseseci.

4.1.3 The 2-way sharing organisation

The 2-way sharing organisation (Figure 3.20) establishes a bidirectional ring be-

tween SRFs by having each share a section with two of its neighbours. The

implementation is illustrated in Figure 4.6. When a register access occurs, the

register select signals. represented by the dashed lines, may access a local or a

shared register residing in the SRF to which the access was made. or a shared

register in the next SRF.

99

RF(n-1)

Register Access

Figure 4.6: Bidirectional Connectivity Diagram

The floorplan for a 2-way SRF implemented with 16 local and 8 shared reg-

isters per SRF is shown in Figure 4.7. The shared registers are those which

physically exist in the SRF. This shows 16 local registers at the top of the picture

labelled with register indices from 8 to 20 and 8 shared registers at the bottom

labelled 0 to 7. The total number of registers accessible from this SRF when

connected to its neighbours is 32. Shared registers 24 to 31 exist physically in the

next SRF and can only be accessed when the SRF is appropriately connected.

The shared registers are shown wider (c.f Figure 4.8 which shows the physical

layout) as they have one extra read and one extra write port. The remaining

blocks illustrate the position of the SRF's control logic and its data busses.

As registers are organised in a 2D array, their outputs and inputs have to be

connected by busses running both vertically and horizontally. The busses in the

middle contain the two main busses of the SRF. These connect all the inputs and

all the outputs of the local registers along with the inputs and the outputs of

the first ports of the shared registers. The third bus in the middle connects the

outputs of the 2nd port of the shared registers while the bus at the bottom of the

diagram connects the inputs of the 2nd port of the shared registers. The last two

are to be connected to the data busses of the previous SRF.

Contrasting the layout with the floorplan, the local and shared registers and

the control circuits can be distinguished. Their difference in width is apparent.

The METAL1 layer, the darker blue. is used for horizontal routing and power and

ground lines, whereas METAL2, the lighter blue, is used for vertical routing. The

data bits and completion signals of the registers are routed vertically using METAL2

100

Clear
Logic]

Write
Logic

11 10 9 8

15 14 13 12
------- - -----

19 18 17 16
- -------------

23 22 21 20
Read
Logic

input and output busses of local registers and output busses of shared registers

7 6 5 4

3 2 1 0

input bus of shared registers

Figure 4.7: Bidirect it iial Register File Floorplan - 16 local. 8 shared registers.

----- 	 --

Figure 4.8: Bidirectional Register File Layout. - 16 local, 8 shared registers.

and horizontally using METAL1 to form the SR F's data and completion signal

busses.

Connecting SR Fs into a 2-way system involves connecting the following signals

for each pair of SRFs:

o data busses, input and output, of the shared registers of SRF(n+1) to

SRF(n).

• completion signals of the shared registers of SRF(n+1) to the completion

-ignaIs of SRF(n).

• register select signals for columns of SRF(n) to the columns of the shared

registers of SRF(n+1).

101

• register select signals for rows of SRF(n) which access the shared registers

of SRF(n+1) to these registers.

The layout strategy followed has been to place the shared registers, which will

be physically wider than the local ones as they have a greater number of ports,

at the bottom of the SRF layout, and the local registers at the top. The SRF

port circuits, that enable the SRF to be connected into a system, and include the

handshaking circuit and the register decoding have been fitted into the empty

vertical space created by the difference in width between the shared and local

registers.

The register sharing programming model defines linear ranges of the register

indices of an SR.F which map to local and shared registers respectively. These

ranges map to groups of local and shared registers in the layout. It is possible

to mix local and shared registers in the physical level, i.e. in the layout, while

maintaining the logical grouping of local and shared register by routing the reg-

ister select signals appropriately, but this would imply an irregular layout. If this

approach was followed, it would he harder to find space to place the SRF port

circuits. In addition, such a layout would be a lot harder to route, debug and

test because it is irregular.

One of the most important factors that determines register access time is the

distance of a register from the port circuit. The further away the register is, the

longer the register select signals have to travel to select it. When considering

the physical organisation of the registers it is desirable to place them uniformely

around the ports to keep the effect of the different register positions negligible.

In the implementation presented, registers are organised in rows and columns.

This avoids using a monolithic register index decoder, as decoding circuitry does

not scale well in terms of speed or number of transistors, so it is best if it is

kept small. The number of columns in the SRF has been fixed to four, for both

local and shared sections. The height of the local or shared sections can vary

depending on the number of each. It is limited by the number of hits that the

row decoder can handle. For example, in the bidirectional SRF, a 3 to 8 decoder

has been used allowing for a total of 8 rows, but some of these row select signals

route to the neighbour, for example in the 2-way SRF with 16 local and 8 shared

registers, 4 row select signals route to the local registers, 2 to the shared registers

and the remaining 2 must route to the second port of the neighbouring SRF.

The row and column organisation could have been different. For example,

two rather than four columns could have been used. That would increase the row

decoding complexity, a 4 to 16 row decoder would be required, and would yield a

102

different layout aspect ratio. The choice of a four column layout organisation was

made because, firstly it yields an overall layout which is closer to a square shape

than other column organisations, i.e. three or five, and secondly as it keeps the

decoding logic simple.

Due to the asynchronous circuit operation, the access time of each register

can be observed to vary depending on its physical location and on the previous

access. The former is due to signals travelling different distances and the latter

because the column select signals are always enabled and therefore another access

in the same column will be faster.

To visualise this access time variation over an RF. ail access time map can be

drawn. Such a map shows the access times of registers relative to their position

and for a fixed access order. The latter is important as it also affects the access

time. The access time map of the 2-way SRF with 16 local and 8 shared registers

is shown in Figure 4.9.

Read
442ns 10 9 •8
15 	14 13 12
19 	18 17 16
29 	22 21 320

4O2ns 	6 	5

3935ns 	2

Write

10 9 42.8

15 	14 13 12
19 	18 17 16
3ns 22 21 4M

475ns 	6 	5

Access Path

11 	8

t 	N/

Access Order

20,23,11,8,0,3,7,4

I 	2 	1 	4.O8n1

Figure 4.9: Access Time Map for the 16/8, 2-way Shared RF

The access order is shown and illustrated on the right hand side. On the left

the measured access times are overlayed on top of the register locations for both

reads and writes. Register 20 is accessed first, on the bottom right corner of the

local area and then the other three corners in a clockwise manner. Then, the four

corners of the shared area are accessed, again clockwise. Recalling that the write

logic is physically on the left of the local area and the read logic on the right we

103

can see from the diagram that write accesses to the left of the SRF are faster

than those on the right, and the opposite for reads. In addition, we can see that

consecutive accesses on the same row are faster, for example the read of register

8 is faster than the read of register 20 although register 20 is closer to the read

logic; that is because the access preceding that to register 8 was to register 14 and

the top row was already selected when register 8 was accessed. Another example

is the write to register 3; it is faster than the next. write, to register 7 although

register 7 is closer to the write logic, this is again because the access preceding

that to register 3 was to register 0.

rf bidirectional - 32 logical rags. 8 overlapping
98/06/03 09:00:48

•° si.tr0.4

j :.:

ft .
0.

04

::i
i[1111I[11[rt[r

£ ILLiA 1i444' TTTT
0. 200. On 400 On E.00. On 	 800. On 	 1.0u 	 l.20u

0. time 	(Un) 	 1.30(1

Figure 4.10: Access Time Measurement Waveforms

Figure 4.10 shows the t.estbench simulation waveforms from HSPICE. The

top panel Shows the read handshakes and the read valid bit bus completion signal

and the bottom panel the write handshakes and the write valid bit completion

signal. The request signals are drawn in black. the acknowledge in green and

the completion signals in blue. The completion signals are precharged low at the

beginning of an operation, then left to float, and when detected high this signals

completion of the operation.

From the access times measured with this fixed ordering we can estimate the

average read and write access times for an asynchronous SRF. This is done by

averaging the four local and the four shared access times for both reads and writes

to produce the average local and average shared access times. These averages are

not meaningful in themselves. but are useful metrics for comparing different SRF

configurations. For this SRF these values are 36.31ns and 39.741is for reads and

37.77ns and 42.14ris for writes.

To study the effect of increasing the number of shared registers two more 2-way

104

SRFs were implemented, one with 20 local and 4 shared registers and the other

with 8 local and 16 shared registers, i.e. the total number of physical registers

remained constant.

45.00

43.89

42.78

41.67

40.56

39.44

38.33

37.22

36.11

35.00
4s 	 8s 	 16s

45.00

43.89 -

42.78

41.67

-
 40.56

	

local-read1
	- 	-- _.

- shared-read

	

j 	_.

38.33

37.22 	 -

36.11

35.00 -
4s 	- 	8s 	 16s

- local-write

- shared-write

Figure 4.11: Access t.irnes(ns) for 2-way SRF with 4, 8 and 16 shared registers

No. of shared registers local-read local-write shared-read shared-write

4 35.37 38.78 36.86 40.40

8 36.31 39.74 37.77 42.14
16 38.19 41.21 40.22 44.73

Table 4.1: Access times(ns) for 2-way SRF with 4, 8 and 16 shared registers

The average access times for the three 2-way SBFs are shown in Figure 4.11

and Table 4.1. The graph on the left, in Figure 4.11, is the average access time in

us for local and shared reads and the one on the right for local and shared writes.

The effect of swapping local for shared registers is a quadratic increase in access

times of both local and shared registers.

This quadratic increase is due to the increase of both the resistance and the

capacitance of the HF dat.apat.h when swapping local registers for shared ones,

as the latter have a larger number of ports. This effect was first mentioned in

Section 1.1.4 in relation to the access time for an MRF and is an expected result..

So, the larger the shared section of a 2-way SRF, the slower the access time, with

a quadratic dependance on the latter.

4.1.4 The 1-way sharing organisation

The 1-way organisation was first described in Section 1.2.2. Figure 3.19. This

establishes a unidirectional ring between SRFs using a connectivity similar to the

register windows mechanism.

105

This scheme is different from the 2-way scheme as the shared registers here

require no extra read or write ports. This is because some of the registers in

each SRF are read-only and some write-only. The fact that all registers. local or

shared, have the same number of ports implies that an SRF in this scheme will

show little difference in access time relative to a monolithic scheme with the same

total number of registers.

The differences between the two are the routing of the register select signals

and that of the data and valid bit busses. For the shared registers of this scheme,

their register select signals will come from the previous SRF for writes and will

go to the next SRF for reads. The data and valid bit busses must also be con-

nected appropriately, just as in the 2-way. The input, bus of the previous SRF is

connected to the shared registers' input bus and the output bus is connected to

the next SRF's output bus. The valid bit outputs of the shared registers go to the

previous SRF and the valid hit busses of the local registers have to be connected

to the valid bit busses of the next SRF's shared registers.

The fact that more ports are not required for the shared registers of an SRF

in this scheme implies that the number of shared registers does not have a first

order effect on the SRF's access time.

Figure 4.12 shows the layout of a unidirectional RF.

1

Figure 4.12: Unidirectional Register File Layout - 28 local. 4 shared registers.

The access time was estimated in the same way as for the 2-way, i.e. by

averaging the measured access times of the four corners. The values obtained

were 33.57ns for local arid shared reads and 36.01ns for local and shared writes.

106

4.1.5 The 4-way sharing organisation

The 4-way scheme was first described in Section 3.9.2. Figure 3.21. This estab-

lishes a 4-way communication between every SRF and its neighbours. Each SRF

has access to four shared sections that it shares with its neighbours to the east,

west, north and south.

Physically, each SRF is composed of one local section, one shared section and

three external interfaces, through which it call he connected to the shared sections

of its neighbours. Figure 4.13 shows part. of such a configuration.

	

shared 	'shared

	

RF(x, y) :shared 	, RF(x+1, y)

share local share local shared

- - share - - - :shared

hare local shared

RF(x, y+1)
:shared

Figure 4.13: 4-way Connectivity Diagram

In the 4-way sharing organisation the register indices are organised differently,

as the number of shared sections is more than two. Local registers start from

register index 0 up to n, for n local registers. The rest of the indices are allocated

to the east, west, north and south shared sections respectively.

The layout of the 4-way SRF with 16 local and 8 shared registers is shown

in Figure 4.14. The total number of registers accessible from this SRF when

connected to its neighbours is 48. The differences between this and the 2-way

scheme are the register indexing, the width of the shared registers (wider as they

require four rather than two ports) and also the number of busses required, four

read and four write.

Three 4-way SRFs were implemented with 4 shared and 20 local registers. 8

shared and 16 local registers and 12 shared and 12 local registers. The average

107

8s 	 12s

55.00

53.33

51.67

50.00

48.33

46.67

45.00

43.33

41.67

4000

4s

- local-wnte

- shared-write

Figure 4.14: 4-way Register File Layout - 16 local, 8 shared registers.

access times for the three 4-way SRFs are shown in Figure 4.15 and Table 4.2.

55.00

53.33

51.67

50.00

48.33 local-read
: 	

-

- thared read
45.00

43.33

41.67

40.00 4s 8s 12s

Figure 4.15: Access times(ns) for 4-way SRF with 4, 8 and 12 shared registers

No. of shared registers local-read local-write shared-read shared-write

4 41.09 44.04 46.77 51.76
8 40.96 46.21 47.91 51.41
12 43.25 46.45 49.55 54.81

Table 4.2: Access times(ns) for 4-way SRF with 4. 8 and 16 shared registers

4.1.6 SRF Access Times

The access times for reads and writes for all the SRFs studied here are shown in

Figure 4.16.

Moving along the x-axis changes the configuration. The gap between the two

lines of the upper graph shows the difference in access time between a local and

a shared register read and the gap between the two lines of the lower graph the

difference between a local and a shared register write. For the 1-way SRF there

IM

50.00 -

46.00

42.00

38.00

34.00

- local-read

- shared-read

30.00

cJ C14 — -
(I)

(I) (I)
CO

(0

CU cc CU

CJ

c\J

(6 	46 (6
(0 ('J

>. 	>'
CU 	Ca >,

CU

'I.

soo . T50.83

46.67

42.50

3833

134.17

30.00

CD 	 CD 	Cli

- local-write

- shared-write

Figure 4.16: Average Access Times in us for Local and Shared Registers

is no difference between a local and a shared access. For the 2-way and 4-way

configurations, the graph shows the effect of swapping local registers for shared

registers while keeping the total number of physical registers in a cluster constant.

The difference between a local register access and a shared register access

increases with increasing distance along the x-axis, i.e. the read and write graphs

move further apart. A quadratic increase in the access time can be observed

among the 2-way and 4-way configurations and there are clear jumps when moving

between different. configurations.

109

The ratio between these unconnected SRF access tunes and between the access

times of local and shared registers varies depending on the connectivity between

an RF and its neighbours, as will be shown in Section 4.3. It has been found

that the placement of a neighbouring RF has a significant effect on the local

and shared register access times, as the control and data signals travel different

distances depending 011 the neighbours' positions.

4.2 Effectiveness of SRFs in a system

In the previous section the implementation of three SRF organisations was de-

tailed and the measured access times were presented. In this section the effec-

tiveness of the SRF approach is quantified. Unconnected SRFs and, in the later

sections a fully connected system of SRFs, are evaluated using quantitative per-

formance metrics.

In order to consider the impact of using SRFs in an architecture, the SRFs

presented are compared with a reference MRF. This has the same number of total

physical registers as the SRFs and the same number of ports as the local section

of the SRFs. It is used as a reference because the SRFs are effectively derived

from it.

4.2.1 SRF Performance Metrics

The use of SRFs has two effects on performance. It slows down all register accesses

by a certain amount, and implies an extra delay for shared register accesses. These

two effects can be abstracted to two metrics, cost, i.e. a universal penalty for using

this approach, and communication latency, i.e. an extra delay for communication.

The metrics can he defined as follows. The cost metric is the ratio of extra time

required for register accesses (local) compared to the reference MRF, i.e. with

the same number of physical registers. The communication latency is the ratio

of extra time required for a shared register access compared to a local one. The

normalised communication latency is the ratio of extra time required for a shared

register access compared to the access time of the reference MRF. The latter is

used as it makes communication delay more apparent.

4.2.2 SRF Performance

The values calculated for the performance metrics described for the 2-way and

4-way unconnected SRFs are shown in Table 4.3.

110

2-way reads writes

4 shared
Cost(%) 9.34 9.18
Latency(%) 4.22 4.18
Norm-Lat(%) 13.95 13.74

8 shared
Cost (%) 12.25 11.89
Latency(%) 4.03 6.04
Norm-Lat(%) 16.76 18.64

16 shared
Cost (%) 18.06 16.02
Latency(%) 5.32 8.55
Norm-Lat(%) 24.33 25.93

4-way reads writes

4 shared
Cost (%) 27.02 23.99
Latency(%) 13.83 17.53
Norm-Lat(%) 44.58 45.73

8 shared
Cost(%) 26.62 30.15
Latericy(%) 16.97 11.26
Norm-Lat(%) 48.1 58.92

12 shared
co t(%) 33.7 30.78
Latency(%) 14.57 18
Norm-Lat(%) 53.17 1 	54.31

Table 4.3: SRF Performance Metrics

To illustrate the use of SRFs and the effect of the cost and latency metrics on

performance, the execution of a simple program is considered at the instruction

level.

Consider a program (Figure 4.17) that is to acid eight numbers, ill, n2,

n8 and accumulate the result in a register. It first adds the first two numbers

together and then adds the next number to the result until all the numbers have

been added. Two operations are shown in the program, OF, operand fetch, which

reads a register, and ADD, which adds two numbers together and writes the result

back to the RF. The brackets show the value being fetched or the result of an

add. The time steps show the time taken to execute a program operation; the

steps are not necessarily of equal length.

These two operations are assumed to be executed on an imaginary processor

in which everything takes zero time except the register accesses. The time taken

111

time operation
t0 OF1(nl)
t1 0F2(n2)
t2 ADD(nl+n2)
t3 OF1(nl+n2)
N 0F2(n3)
t5 ADD(nl+n2+n3)

t 14 0F2(n8)
t 1 5 ADD(n1+n2+n3+n4+n5+n6+n7+n8)

Figure 4.17: Execution of a program that adds 8 numbers

to execute an OF operation is the time for a register read and the time for an ADD is

that for a register write. The reason for doing this is to show the effect of different

RF organisations on the execution time of this program. The processor can have

an MRF or multiple SRFs, i.e. multiple nodes as its datapath. These operations

can then be executed on a single node or multiple nodes of an imaginary processor.

The OF and ADD operations take 1 time unit for a processor with the reference

MRF as its datapath. For other configurations, an ADD still takes 1 time unit

whereas an OF takes (1 + cost), where the cost depends on the configuration.

For shared reads and writes the time taken is (1 + cost + latency) for the cor -

responding values of cost and latency. It will also be assumed that the cost and

latency values calculated for the unconnected SRFs do not change when SRFs are

connected into a system. In reality they could change but here it will he assumed

that the change is relatively small. All the operations of the program will he

assumed to execute on the processor in lockstep. If multiple operations execute

in parallel on a processor configuration then, before the next operation can be

executed, all the preceding ones must finish, i.e. the time of the longest operation

dominates. This simplifies the timing as operations do not overlap. Then, if the

program of Figure 4.17 is executed on the processor with the reference MRF (24

physical registers) this will take 16 * 1 16 time units.

Consider now the execution of the program on a 4 node, 2-way SRF system

where it is allocated to two execution nodes of the system with the aim of utilising

these two SRFs as much as possible. Then, the program must be allocated in such

a way that both nodes of the system execute instructions for as long as possible.

The execution of the program with such an allocation is shown in Figure 4.18.

The hold text in brackets shows the shared register operations. SW stands

for shared write and SR for shared read. The program is broken down into two

threads with four adds taking place in the first SRF and four in the second one.

At time step t 8 , the result of the four additions in SRFO is communicated to SRF1

112

time SRFO SRF1
t0 OF1(nl) OF1(n3)
tj 0F2(n2) 0F2(n4)

ADD(nl+n2) ADD(n3+n4)
t3 OF1(n5) OF1(n7)
t4 0F2(n6) 0F2(n8)
t5 ADD(n5+n6) ADD(n7+n8)

OF1(nl+n2) OF1(n3+n4)
t7 0F2(n5+n6) 0F2(n7H-u8)
t8 [SW] ADD(nl +n2+n5+n6) ADD(n3+n4+n7+ii8)

OF1(n3+n4+n7+n8)
tio [SR] 0F2(n1+n2+n5+n6)
til ADD(n1±n2+n3+n4+n5+n6+n7+n8)

Figure 4.18: Program execution on 2 nodes of a 4 node, 2-way organisation

by being written to a shared register. It is then read at time step t 10 by SRF1

and the final result is calculated. If the 2-way organisation is to have 8 shared

and 16 local registers, then by using the cost and latency data from Table 4.3,

the OF delay can he calculated to be 1.1225 and the ADD delay to be 1.1189

for local accesses. For the shared write at t 8 , its delay will he 1.1793. Thus the

execution time can he calculated to he 13.5613 time units.

time SRFO SHFI SRF2 SRF3

t0 OFI(nl) OFI(n3) OFI(n5) OF1(n7)
t1 0F2(n2) 0F2(n4) 0F2(n6) 0F2(n8)

ADD(nl+n2) [SW] ADD(n3+n4) [SW] ADD(n5-4-n6) ADD(n7+n8)
OF1(n1+n2) [SR] OF1(n5+n6)

[SR] 0F2(n3+n4) 0F2(n7+n8)
ts ADD(nl +ii2+n3+n4) [SW] ADI)(n5+n6+n7+n8)

OF1(nl+ri2+n3+n4)
t7 [SR] 0F2(n5+n6+n7+n8)
t8 ADD(n1-En2+...+n8)

Figure 4.19: Program execution on 4 nodes of a 4 node, 2-way organisation

Next, the execution of the program is reorganised to use all 4 execution nodes

in a 4 node. 2-way organisation. Here, all the nodes are to he utilised as much as

possible. This is shown in Figure 4.19. To begin with, an addition takes place in

each node. Then the results of SRF1 and SRF2 are written to shared registers.

Then, two more additions are performed in parallel in nodes 0 and 3 and then

the final addition takes place in node 0 after a shared write from SRF3 at time

step t 6 . This time the execution time can be calculated to be 10.3337 time units.

Figure 4.20 shows the execution of this program using 4 nodes of a 4-way sys-

tem. It begins similarly to the previous example, but the different communication

pattern chosen makes the distribution of instructions different. Nodes 0 to 3 form

a square with node 0 in the top right and other nodes numbered clockwise. If

113

time SRFO SRF1 SRF2 SRF3
to OFI(nl) OFI(n3) OF1(n5) OF1(n7)
t1 0F2(n2) 0F2(n4) 0F2(n6) 0F2(n8)
t2 ADD(nl+n2) ADD(n3+n4) [SW] ADD(n5+n6) [SW] ADD(n7-Fn8)
t3 OF1(nl+n2) OF1(n3+n4)
t4 [SR] 0F2(n7+n8) [SR] 0F2(n5+n6)
t3 ADD(nl+n2+n7+n8) [SW] ADD(n3+n4±n5+n6)
t6 OFI(nl+n2+n7+n8)
t7 [SRI 0F2(n3+n4+n5+n6)

ADD(nl±n 2+... +n8)

Figure 4.20: Program execution on 4 nodes of a 4-way organisation

this 4-way organisation has 4 shared and 20 local registers, then the execution

time can be calculated to be 11.9781 time units.

The execution times (in time units) for executing this program on all these

different organisations are shown in Table 4.4.

organisation exec. time speedup
MRF 24 regs. 16 1

4xSRFs 2-way, 8 sh., 16 loc. (2 used) 13.5613 1.18
4xSRFs 2-way, 8 sh., 16 loc. (4 used) 10.3337 1.55
nxSRFs 4-way, 4 sh., 20 loc. (4 used) 11.9781 1.34

Table 4.4: Execution times for different organisations

By increasing the parallelism of the datapath and using an SRF, the execution

time of the program has decreased, under the assumptions considered. Hence, as

can he seen in the table, when using 2 nodes of a 4xSRF processor rather than

a single node with an MRF with the same number of registers as each of these

nodes, a speedup of 1.18 can be calculated. When all 4 nodes of this system

are used, a greater speedup of 1.55 can be calculated. When moving to a 4-way

organisation though, although the available degree of register sharing increases,

this cannot be exploited by this program and the higher cost of the 4-way drops

the speedup to 1.34.

These execution times are a hit too optimistic, however, because they assume

that connecting SRFs together does not significantly increase their cost and la-

tency parameters. This example was presented simply to illustrate the tradeoff

between using an SRF organisation which makes a certain degree of sharing and

effective parallelism available and the cost that such an organisation puts on the

execution time of program operations.

114

4.3 A Four SRF 2-way System

So far, only unconnected SRFs have been considered. In this section the effects

of connecting SRFs together in a complete organisation will be studied.

As mentioned in the implementation section, connecting SRFs into a 2-way

system involves connecting the following signals for each pair of SRFs:

. data busses, input and output, of the shared registers of SRF(n+1) to

SRF (n).

• conipletion signals of the shared registers of SRF(n+1) to the completion

signals of SRF(n).

• register select signals for columns of SRF(n) to the columns of the shared

registers of SRF(n+1).

• register select signals for rows of SRF(n) which access the shared registers

of SRF(n+1) to these registers.

The distances that these lines have to travel will affect the access times of

each SRF in the system differently.

The SRF system implemented (but not fabricated) using ES2's 0.7pm process,

is a 4 SRF, 2-way with 16 local and 2 pairs of 8 shared registers per SRF. This

system was chosen because the number of shared registers is large enough to he

realistic for an architecture and the number of SRFs is large enough to illustrate

the SRF interconnection issues. Each SRF has 24 physical registers and the

system has a total of 96 registers.

115

Tii
 iM

14L-

j..jJ..L.
ii . i• 1 .
•1 . 1.• 1•

:.

I. L..J..

I v __________ • •,I1

rn'r
JIM

;rrt:

: 1J11
Figure 4.21: Layout of the 4 SRF 2-way System

116

The layout of the 4 SR.F 2-way system is shown in Figure 4.21. The SRFs

are numbered 0 to 3. SRFO is the top right SRF and the SRF numbers increase

clockwise. SRF1 is the reflected image of SRFO about the x-axis, SRF2 is the

reflected image of SHF0 about the x and y-axis and SRF3 is the reflection of

SRFO about the y-axis.

RF3
	

RFO

RF2
	

RF1

Figure 4.22: Top level Connectivity of the 4 SRF 2-way system

Figure 4.22 shows the top-level connectivity of the layout. The metal lines

in light and dark blue (METAL2 and METAL 1 respectively) show the numbers of

signals and how they connect between SRFs. The thick METAL 1 lines on the top

and bottom of time picture are the VDD and VSS tracks. The vertical METAL2 lines

on time right between SRF() and SRF1 connect the inputs of the shared registers

of the latter to the bus of the former. Similarly, time METAL2 lines on the left of

the picture connect the inputs of the shared registers of SBF3 to SRF2. The

horizontal METAL1 tracks at the centre of the picture connect the input bus of

the shared registers of SRFO to the bus of SRF3. The METAL1 and METAL2 lines

at the periphery of the SRFs connect the row and column register select signals.

The rightmost set of vertical METAL2 lines at the centre of the picture connect

the output bus of the shared registers of SRF1 to SRFO along with their read

and write completion signals to SRFO. On their left and at the bottom are the

connections between the outputs of the shared registers of SRF2 and SRF1's

bus, along with their write and read completion signals, whereas at the top the

connections between the Outputs of the SRFO's shared registers and SRF3's bus.

along with their write and read completion signals. There are two more sets of

METAL2 lines to the left. The first set connects the inputs of the shared registers

117

of SRF2 to the bus of SRF1. The second one connects the outputs of the shared

registers of SRF3 to the bus of SRF2. Thus, all the busses of the shared registers,

their completion signals and the register select signals are connected.

The access times, from HSPICE, for each SRF in the system are shown in

Table 4.5. In a system of SRFs, shared register accesses are slower when the shared

register resides in another SRF rather than where the access was initiated. The

access distance of a shared register in this case is greater than when the shared

register resides in the same SRF. In the table local register access times are

labelled 1-read and 1-write respectively. Shared register access times are labelled

s-read-n, s-write-n for near accesses and s-read-f and s-write-f for far accesses.

The access times are calculated in the same way as for the unconnected SRFs,

i.e. by averaging the access times of the four corners of a portion of the SRF

(local, shared-near or shared-far) accessed in a fixed order.

SRF 1-read 1-write s-read-n s-write-n s-read-f s-write-f

0 44.72 47.81 46.84 50.90 48.57 51.22
1 55.22 54.52 55.47 56.94 60 56.55
2 45.86 47.99 47.11 50.67 49.02 51.46

3 55.45 54.11 55.88 1 	57.05 1 	59.55 1 	57.06

Table 4.5: Access Tinies(ns) for 4 SRF 2-way System

Table 4.6 shows the cost and latency performance metrics for each SRF in

the system relative to the reference MRF, i.e. with 24 registers. Contrast these

metrics with those of an unconnected SRF. These were shown in table 4.3 and

are repeated in table 4.7.

From these two tables it can be observed that the cost metric has changed

significantly. For SRFs 0 and 2, the cost has increased by 3 and 3.2 times re-

spectively. For SRFs 1 and 3 it has increased by 5.15 and 5.12 times respectively.

The latencies for near accesses which are comparable to the latency of the un-

connected SRF have remained close to their unconnected value for SRFs 0 and

2, with a difference of 0.57 and -0.88 respectively. For SRFs 1 and 3, they have

decreased with differences of -2.82 and -1.93 respectively. The latencies for far

accesses are, for SRFs 0 and 2, 1.41 and 1.7 times greater than the near latencies

respectively. For SRFs 1 and 3, they are 2.8 and 2.07 times greater respectively.

The increase in the cost was expected. As the shared register data busses

and completion detection signals of one SRF are connected to the bus of another,

the loading of the bus and the completion signals increases the latter's access

time. The distances of the register select signals, for both rows and columns, from

118

SRFO reads writes
Cost(%) 38.24 34.61
Latency-near(%) 4.75 6.47
Latency-far(%) 8.61 7.14
Norm-Lat-near(%) 44.8 43.3
Norm-Lat-far(%) 50.14 44.21

SRF1 reads writes
Cost(%) 70.7 53.5
Latency-near(%) 0 4.44
Latency-far(%) 8.66 3.73
Norm- Lat-near(%) 71.47 60.31
Norm-Lat-far(%) 85.48 59.21

SRF2 reads writes
Cost(%) 41.77 35.11
Latency-near(%) 2.73 5.59
Latericy-far(%) 6.9 7.24
Norm-Lat-near(%) 45.63 42.66
Norni-Lat-far(%) 51.54 44.88

SRF3 reads writes
Cost (%) 71.41 52.34
Latency-near(%) 0.78 5.44
Latency-far(%) 7.4 5.46
Norm- Lat-near(%) 72.74 60.62
Norm-Lat-far(%) 84.09 60.65

Table 4.6: Performance Metrics for 4 SRF 2-way System

2 way, 8 shared. 16 local reads writes average
Cost (%) 12.25 11.89 12.07
Latency((/10) 4.03 6.04 5.04
Norm-Lat(%) 16.76 18.64 17.7

Table 4.7: SRF Metrics for an unconnected SRF of this system

registers also has an impact on the access times of far registers. The distance that

these have to travel depends on the distance between two SRFs and their relative

position. Due to their relative position, i.e. facing each other, the SRFO, SRF1

and SRF2, SRF3 pairs can he connected efficiently. The shared registers' data

busses, their completion signals and the column register select signals of SRF1 and

SRF3 connect vertically to SRFO and SRF2 respectively. The row select signals

also travel mostly vertically but at the periphery of the SRF pairs. Hence, the

connections between these pairs are relatively short and efficient. For the other

119

two pairs though, i.e. SRF1, SRF2 and SRF3, SRF0 the busses and completion

signals cannot be routed so easily and longer routes between the horizontal pairs

are required. These can be seen in Figure 4.21 between the SRFs at the centre

of the figure. The column register select signals can be routed horizontally. The

row select signals have to travel significant distances for these pairs. The write

port is on the left and the read port on the right of an SRF. As the system is

symmetrical about the x and y axes, the ports near the centre are write ports

and the ports at the outside are read ports. Hence, the read register select signals

travel quite significant distances between the horizontal pairs.

SRF pair read write
0, 1 1557.6 1525.0

2 3258.6 1291.4
3 1557.6 1550.0
0 3220.0 1215.2

Table 4.8: Average Interconnect Distances for control and data signals (in urn)
between SRFs

Table 4.8 shows the approximate average interconnect distances that control

and data signals travel between the clusters. It can be seen that for reads, the

SRF1 to SRF2 and SRF3 to SRFO connections are more than twice as long as

the SRFO to SRF1 and SRF2 to SRF3 connections. For writes, the differences in

ratios in the order of 1.2 to 1.3.

The SRFs have inhomogeneous access times due to the interconnect delays de-

pending on their physical position. The layout organisation of the SRFs implies

that two SRFs placed vertically opposite to each other, like SRFO and SRF1 in

this system, can be routed together with short connections, whereas SRFs placed

horizontally opposite, like SRF1 and SRF2, require long connections. These con-

nections are directional. For example, SRFO can read and write to SRF l's shared

section but not vice versa. This sterns from the physical organisation of the 2-way

sharing scheme. So, an SRF with long connections to its neighbour will have a

slow access time. For example. SRF1 requires long connections to SRF2, hence its

slow access time. On the other hand, SRF2 has short connections to SRF3, hence

it will he faster. Second order capacitive effects imply that the large capacitance

of the SRF1 bus will affect the access time of SRF2. due to sidewall capacitances

between them, but the first order factor is the length and the loading of each

SRF's bus.

The assumption about the cost of an SRF increasing only slightly when con-

120

organisation exec. time speedup
MRF 24 regs. 16 1

4xSRFs 2-way, 8 sh., 16 loc. (2 used) 19.7960 0.81
4xSRFs 2-way, 8 sh., 16 loc. (4 used) 12.7416 1.26

Table 4.9: Updated Execution times for SRF system

nected to an SR.F system does not consider the placement and routing effects. In

Section 4.2.2, the effect of the SRF organisation on the execution of a program was

investigated. Now that accurate cost and latency values for the SRF system are

available, the execution time of the program can be more realisticaly estimated.

In that section, to calculate the execution time it was assumed that the nodes were

executing instructions in lockstep and in the case of a slow operation taking place

in parallel with a faster one, both must have finished, before the next program

instruction could be executed, i.e. the longest operation dominated. Because of

the fact that SRFs in a system are found to have inhornogeneous access times,

this assumption must he relaxed if the execution time is not to be overestimated.

The new execution times for the program are shown in Figure 4.9. Due to the

increase in the cost of register accesses, it is now slower to execute the program

on 2 SRFs of this system compared to the MRF with 24 registers. It is still faster

though to execute the program on 4 SRFs. So, if enough parallelism is available,

the penalty of using shared registers is redeemed.

4.4 Bus-Based Systems

An alternative, and more conventional approach to segmenting the MRF is a bus-

based, multiple RF system. Such a system is composed of a number of MR.Fs

which can communicate through a set of busses. The number of busses and the

bus interconnections can vary depending on the design of such a system. In

some designs, the busses are shared only between a certain number of RFs in

a system, whereas in others, like the limited-connectivity VLI\V approach, the

RFs are connected to busses through a crossbar, allowing any RF to write to

any other RF's bus. In a system with multiple devices such as RFs sharing a

common bus, arbitration is required to stop the multiple devices using the single

bus simultaneously. To compare an SRF system with a bus-based system, the

two systems have to be equivalent.

To reason about this equivalence, an architecture in which these systems can

be connected must be considered. RFs in an SRF system or in a bus-based

121

system accommodate a certain number of FUs in a particular architecture. For

example, it could be that each node of such a system was connected to a set of

multiple FUs to form a clustered architecture. On the other hand, it could be

that the nodes shared a single set of FUs, where control was implemented using

a scoreboard. The important aspects about equivalence of the two systems are

the total number of physical registers that they contain, the number of ports that

these registers have, the degree of inter-RF communication, and finally that they

have to be interchangable in an architecture. The first two are obvious. The

degree of inter-RF communication is the connectivity that such a bus-based or

SRF system provides between RFs. The interchangeability property means that

for two systems to be equivalent it should be possible to exchange one for the

other in an architecture without modifying any other aspects of that architecture.

For example, an SRF system with 4 SRFs is not interchangable with a bus-based

system with 2 SRF because they cannot be exchanged in an architecture without

modifying other aspects of it.

It can be concluded that the 4 SRF 2-way organisation with 16 local and

8 shared registers presented in the previous section is identical with a 4 MRF

bus-based system where each MRF has 24 registers, the same number of ports as

an SRF's local section in the SRF system and a bus connectivity to match the

achievable degree of communication of the SRF system. Such a bus system in

11()\VI1 iii Figure -1.23.

rea

rfj U

RF(3) 	 RF(o)

11 __j

All Ai
rite write: r

 RF(1)

read

?ad

Figure 4.23: Four MRF 2-way Bus System

In this system each RF can communicate with its two neighbours, enabling

data in such a system to flow in both directions, as in the 2-way SRF system.

122

Because of this, two busses per operation are required, making a total of four

busses between each pair of RFs necessary. An access to an RF can come from

three possible sources, the two internal ones from its neighbours and the external

port. This implies that three-way arbitration is required to sink these three

sources into a single RF port. The complexity of this system, particularly the

large number of busses and the three-way arbitration makes it hard to implement.

A unidirectional bus system, a simpler alternative allowing unidirectional flow of

data, is shown in Figure 4.24. This simpler system was designed and laid out in

order to compare its performance with the 4 node, 2-way SRF system, Section

4.3.

read

RF(3) 	I 	I 	RF(0)

write - - write

AfTead

read! 	 write!
write

RF(2) 	I 	I 	RF(1)

read

Figure 4.24: Four MRF Unidirectional Bus System

In this system, a maximum of two accesses per port are possible, requiring

two-way rather than three-way arbitration and two rather than four busses are

required per RF pair. The data busses and the register index lines of these two

data sources must be multiplexed so that the selected ones will pass onto the RF's

busses and the RF's register index lines. The multiplexing of the data busses and

of the register index lines is implemented using tn-states. In addition, each of

these data busses has a register index bus for identifying which register is to be

to read. The two data busses and the two register index busses are connected

to tn-state elements which enable the ones which are allowed as a result of the

arbitration. 5 tn-state elements are required for the register index lines and 32

for the data busses, all fed by the result of the arbitration. The large number of

tn-states for the data busses means that buffering of the select signal is required

otherwise it will change state very slowly.

123

There are two main differences between a bus-based system that allows bidi-

rectional flow of data and a 2-way system of SRFs. Firstly, in a bus based system,

the value of any of the registers of an RF can be communicated, whereas in an

SRF system only the shared registers can be communicated between SRFs. Sec-

ondly, in a bus based system, an access from one RF to another blocks both.

Neither the RF which initiated the access nor the RF that actually performs the

access can be used for another access until the first access has completed in both.

4.4.1 Implementation

The unidirectional bus system was implemented to compare its performance with

the SRF system. Connecting the MRFs into a bus system involves connecting:

• input data bus of RF(n+1) to RF(n) through tn-states.

• output data bus of RF(n) to RF(n+1) through tn-states.

• read register index bus of RF(n+1) to RF(n) through tn-states.

• write register index bus of RF(n) to RF(n+1) through tn-states.

• local handshake signals and external handshake signals from neighbouring

RFs to arbitration circuits.

Each RF in this system has two request inputs and a single acknowledgement

output. One request is for local accesses and the other for remote ones. Only one

request should take part in the handshaking protocol.

The additional circuitry required to implement the bus system includes the

bus control circuits, one per RF port, which "glue" onto the RF ports, and the

tn-stating of the busses. Each bus control circuit is composed of a 2-way mutual

exclusion element (cf. Figure 3.2), the arbitration control circuit and a complex

CMOS gate for producing the RF acknowledgement signal.

The 2-way mutual exclusion element arbitrates between an access from the

local port and one coming from the neighbouring RF. The request signals of

the local and remote handshakes are connected to the two inputs of the mutual

exclusion element. The result of the arbitration, i.e. the outputs of the mutual

exclusion element selects which of the two sources will drive the input or output

busses, depending on the type of access, and the register index busses. The

mutual exclusion element outputs are also fed into the arbitration control circuit,

which registers whether the access is local or remote, performs the handshaking

with the RF port and generates an acknowledgement signal when the access has

124

completed. This acknowledgement signal must assert the output acknowledge

of this RF, in the case of a local access, or the acknowledgement signal of the

neighbour in the case of a remote access. This is achieved by the acknowledgement

gate.

The FSM and layout of the arbitration control circuit are shown in Figures

4.25 and 4.26 respectively.

f i fli

i.chi

Figure 4.25: Arbitration control circuit FSM for Bus System Ports

The gate that produces the RF acknowledgement signal is shown in Figure

4.27.

The machine resets into state idle. This is indicated by the incoming arrow

with no label. When an access is initiated, then depending on the outcome of the

arbitration, one of the two mutual exclusion element outputs, gi or g2 will be

asserted. This will put the FSM into either state chi or ch2. As the two inputs

gi and g2 are mutually exclusive, there is no race between states chi and ch2

and only one will be entered.

States chi and ch2 are persistant states and are only left when state final is

finished. This is the mechanism by which the arbitration control circuit registers

whether the access is a local or a remote one: chi indicates a local access, whereas

ch2 indicates a remote access. Then, the handshake with the RF port takes place,

125

uriir' :

1 ri;
* *

Figure 4.26: Arbitratioii control circuit layout for Bus Svstem Ports

chi

AckoutRFl

Ar EX

F2

Figure 4.27: RF acknowledgement gate

i.e. signals Requ, Acku. When signal Acku has been asserted, then the local or

remote access can be acknowledged. This is achieved by signal AckOUT and the

complex gate. Depending on whether chi or ch2 are asserted, that identifies

the acknowledgement, signal, i.e. AckoutRFl or AckoutRF2, that will assert the

acknowledgement signal of the RF. When the acknowledgement has been received,

the request signal will become deasserted, dropping signal gi or g2. The transition

to state final can then take place. The expression jLch1 + F2.ch2 ensures that

the appropriate request signal is deasserted, as it is possible that the other one is

now asserted. State final is necessary to deassert the two persist.ant states chi

and ch2, which also deasserts the acknowledgement signal. When both states chi

and ch2 are left, the FSM returns to state idle.

126

Figure 4.28: Layout of the 4 MRF Arbitrated Bus System

127

The layout of a four HF shared bus system is shown in Figure 4.28. This has

the same number of total registers per RF as the SRF system presented in Section

4.3. As in the SRF system, the RFs are numbered 0 to 3. RFO is the top right

HF and the RF numbers increase clockwise. Each RF in the bus system has 24

registers and the bus connectivity allows each RF to read from its successor and

write to its predecessor. The RFs are symmetrical to each other as in the SRF

system, RF1 is the reflected image of RFO about the x-axis. RF2 is the reflected

image of RFO about the x and y-axis and RF3 is the reflection of RFO about the

Y-axis.

RFJ
	

RFO

RF2
	

RFJ

Figure 4.29: Top level Connectivity of the 4 MRF Arbitrated Bus system

Figure 4.29 shows the top-level connectivity of the layout. This highlights the

tn-state buffers and the bus routing. Comparing this with Figure 4.22, which

shows the top-level connectivity of the 4 SRF 2-way system. it can be seen that

a lot more routing is required for the bus system and this hints that interconnect

delays may affect the performance of the bus system to a greater extent.

The loading of the tn-states onto an RF's bus is another potential problem.

The inputs and outputs of the registers already use pass transistors. Connecting

tn-states to the input and output busses connects another set of pass transistors

in series. Pass transistors are slow in the first place, because they route a signal

through the transistor channel.

A total of 16 sets of tn-states is necessary for the data and register index

busses, i.e. 2 sets of 8, one for reads and the other for writes. So, the design

contains 8 read and 8 write busses. The tn-states for the data busses contain a

128

buffer of strength 32 and an extra pass transistor circuit for detecting that the

busses have been driven. The buffer amplifies the bus enable signal to drive all

the data bus bits. The extra pass transistor circuit is identical to the tn-states,

except that its output is held low with an extra pull-down transistor, rather than

floating when its enable signal is low. Its input and enable signals are shorted to

the bus enable signal, the strength 32 buffer's output, and it is placed next to the

bit furthest from the control logic to ensure that its delay is an upper bound to

the delays of the individual hits. When its output turns high, this signifies that

the bus has been driven and its signal is fed back to the control logic.

Each RF has an external and an internal port for each type of access. The

former is for accesses from outside the system, the latter for accesses between

neighbours. The external port is to connect to other architectural components,

FUs for example. For RFO, the data busses of the external ports are at the top of

the RF, 2nd and 3rd from the right, the former being the output bus for external

reads and the latter the input bus for external writes. These connect to sets of

tn-states and onto the RF's bus. The relative position for these is the same for

all RFs. The register index busses and the request and acknowledge handshake

signals are near the accessed port, at the bottom left of RFO for the write port and

at the bottom right for the read port. The other two sets of tn-states connecting

to RFO are for reads and writes from neighbouring RFs. The bus at the bottom

left of RFO is the write input bus of RF1 connecting to RFO through tn-states

enabling RF1 to write to it. The bus at the bottom right of RFO is the read input

bus of RF1 connecting to RFO through tn-states enabling RFO to read from it.

The other pairs of RFs in the system are connected in a similar way.

The access times for each RF in the bus system are shown in Table 4.10. These

were calculated by averaging the HSPICE access times of the four corners of each

RF accessed in a fixed order. In this table the local access times are labelled

1-read and 1-write. The access times for accessing the registers of a neighbour RF

are labelled n-read, for reading from the next RF in the system, and p-write, for

writing to the previous RF in the system.

RF 1-read 1-write n-read p-write
() 65.59 55.68 60.31 54.94
1 64.99 55.78 143.48 50.25
2 65.50 55.16 60.61 54.13
3 65.51 55.79 128.58 49.99

Table 4.10: Access Times(ns) for 4 MRF Bus System

129

Table 4.11 shows the cost and latency performance metrics for each RF in the

bus system relative to the reference MRF, i.e. an individual, unconnected MRF.

RFO reads writes
Cost(%) 102.76 56.76
Latency(%) -8.06 -1.33
Norm-Lat(%) 86.43 54.68

RF1 reads writes
Cost(%) 100.9 57.04
Latency(%) 120.78 -9.92
Norrn-Lat(%) 343.53 41.47

RF2 reads writes
Cost(%) 102.48 55.3
Latency(%) -7.47 -1.87
Norm-Lat(%) 87.36 52.4

RF3 - reads writes
Cost(%) 102.51 57.07
Latency(%) 96.28 -10.4
Norm-Lat(%) 297.47 40.74

Table 4.11: Performance Metrics for a 4 MRF Bus System

Just as in the SRF system, R.Fs 1 and 3 have different access time charac-

teristics due to their relative position. The first striking observation about these

timings is the very long access times for reading from the next RF for RFs 1 and

3. For RF1 to read from RF2, it is 2.2 times slower than a local read, and for

RF3 to read from RFO, it is 2 times slower. In addition, reads to the next RF

are faster for RFs 0 and 2 to local accesses, not something expected. The reasons

for this are the distance of the tn-states from the control logic and the length

that the bus data signals must travel between RFs. For RFO, for example, the

tn-states for local reads are on its top side, 2nd bus from the right. On the other

hand, the tn-states for reading from the next RF are at the bottom right, next to

the control logic. In this example, the inter-RF bus is short, connected vertically

in METAL2. A read access to the next RF will enable the tn-states faster, data on

the bus will be valid earlier and will therefore finish sooner. For RF1, the read

bus of RF2 has to be routed horizontally from RF2 to RF1 and then connected

to tn-states. The bus enable signal and the data lines must travel a significant

distance - the data lines have to travel a distance of approximately 10,000pm.

This is similar for reads of RFO from RF3. This is why these accesses are signifi-

cantly slower. Access times for writes are relatively uniform but all writes to the

previous RF are slightly faster than local writes for the same reason as the reads.

130

The cost for reads is higher than for writes and on average almost double that

of the SRF system. The cost for writes is slightly less than 30% slower compared

to the SRF system. Using a bus system increases the cost of register accesses

more than using shared registers. The latencies for remote accesses are mostly

negative except for reads from RF1 and RF3.

The cost and latency metrics can now be used to calculate the execution time

for the program considered in Section 4.2.2 using this bus system. The differences

between executing the program on an SRF and a bus system are that in a bus

system, one access alone is enough to transmit data and a remote access on the

bus system blocks both the source and destination RFs. In the SRF system

communication takes place by a shared write followed by a shared read, whereas

in the bus system a remote read can read any register. A remote access though

implies that the destination RF is blocked and cannot access any register, for as

long as the remote access takes. The different communication ability means that

the allocation of the program to the MRFs of the bus system has to be different.

time MRFO MRF1 MRF2 MRF3

to OF1(ril) OF1(n3) OFI(n5) OF1(n7)

tj 0F2(n2) 0F2(n4) 0F2(n6) 0F2(n8)

t2 ADD(n1+n2) ADD(n3+n4) ADD(n5+n6) ADD(n7+n8)
t3 OF1(n1+n2) OF1(n5+n6)

[RN] 0F2(n3+n4) XR [RN] 0F2(n7+n8) XR

t5 ADD(nl+n2±n3±n4) XW [WP] ADD(n5+ii6+n7+n8)
t1 OF1(n1+r12+n3+n4)
t7 [RN] 0F2(n5+n6+n7+n8) XR

ADD(nl+n 2± ... +n8)

Figure 4.30: Program execution on 4 nodes of a 4 node, MRF bus organisation

Figure 4.30 shows one possible way of executing the example program on a

4 node processor with an arbitrated bus organisation. The bold text in brackets

shows remote register accesses through the shared busses, RN stands for read

from the next MRF, WP for write to the previous MRF. The X's show the RFs

which lock because of a remote access and the operation for which they lock,

XR stands for read locked, XW for write locked. Assuming, just as with the

SRF system, that the nodes execute instructions without synchronising at every

time unit, the execution time for the program can be calculated to he 16.7072

time units. The execution times for the different organisations are summarised

in Figure 4.12.

So, the high value of the cost parameter that the bus-based MRF organisation

imposes, makes this system slower than the single MRF even though it allows for

more parallelism to be exploited.

131

organisation exec. time speedup
MRF 24 regs. 16 1

4xSRFs 2-way, 8 sh., 16 loc. (2 used) 19.7960 0.81
4xSRFs 2-way, 8 sh., 16 loc. (4 used) 12.7416 1.26
4xMRFs unidirectional, 24 regs. each 16.7072 0.96

Table 4.12: Updated Execution times for SRF system

4.5 Conclusions

In this chapter, the shared register approach was presented, targetted to scal-

able architectures. SRFs have explicitly defined common register regions used

for communication and synchronisation. The degree of sharing can he varied to

match a particular architecture. The asynchronous implementations of unidirec-

tional, 2-way and 4-way SRFs were presented, along with the implementation

of a 4 SRF, 2-way system. Cost and latency performance metrics were used to

quantify the effect of this approach to the architect, tire and were used to calculate

the execution time of a simple program running on an imaginary processor with

different RF organisations. It was found that interconnect delays have a signif-

icant effect on circuit performance, even for relatively large dimension processes

like the one used (0.7tin) and they should not be overlooked. It was shown that

the amount of interconnect required for a bus system to establish unidirectional

communication between R.Fs was greater than that required for an SRF system

with 2-way communication. The SRF system with 16 shared registers per pair of

SR.Fs performed better than the unidirectional bus system with the same number

of physical registers. Through the exploitation of parallelism the SR.F system can

perform better than a smaller MRF with as many registers as one R.F of the SRF

system. This demonstrates the performance potential of the SRF approach.

132

Chapter 5

The Al Processor Design

In this chapter, the structure and implementation of the Al prototype processor

are described. The Al prototype processor is a fully asynchronous, micronet-

based, shared register file, dual-node architecture. The two processor nodes are

decoupled, as they execute different instruction threads. Communication between

the two nodes takes place at the register level, using shared register files (SRFs).

The Al processor exploits flue-grain parallelism, at the thread-level by sharing

registers and at the instruction-level by allowing independent toperations to ex-

ecute concurrently.

5.1 The Al Prototype Chip

The top-level chip layout is shown in Figure 5. 1 and the top-level hierarchy show-

ing the pad connections is shown in Figure 5.2. The chip width and length

dimensions are approximately 11.511 -im and 10.8mm respectively.

The Al-chip has been designed and laid out (but not fabricated) using ALCA-

TEL's 0.7jnn, 5V, 2-level metal, digital CMOS process supplied by EUROPRACTICE-

IMEC. The move from the ES2 process, used for the design and layout of the

SRFs in Chapter 4, to the ALCATEL process was due to the fact that the former

has been discontinued. As with the SRF design and layout, the Cadence Opus

tools were used for layout design, design-rule checking and circuit extraction and

HSPICE was used for circuit simulation.

As can be seen in Figure 5.1, the Al-chip is symmetrical across the x-axis,

the top part being node 0 and the bottom being node 1. The size of the chip

is dominated by the SRFs, which are easy to distinguish. The chip width is

dominated by their shared section. The other processor units have been placed in

the rectangular space between the local and shared registers and above the local

registers.

133

• 1 •-"' 	. . 	••• 	- H-i- . -

i 	 — 	-----' :E 	T
-:

i!IJIII 	 r 	i l7 	 -

- 	 - 	 a
— 	..--

no19 0 	 .------ - -

1111
• 	I-J

" --i —

111111 Ili 1 	1
• 	•... ._;

Figure 5.1: The Al Prototype top-level Chip Layout

=jna

It

-f
S

I:

Figure 5.2: The Al Prototype top-level Hierarchy

134

The type of SRF used for the Al is a 2-way scheme with 8 shared and 16 local

registers. The shared section of SRFO is connected to the shared section of SRF1

and vice versa. This enables the 2-way communication of register values. Each

node contains three functional units (FUs).

Figure 5.3 shows the layout of a processor node. Its width and length diinen-

sions are approximately 9.5min and 4.1mni respectively.

- - ---
	 .II 	 ttfl IT1W1t P

1
32 bi

	

 ii- 	 - 	- 	-

IA- 	 24.t rsq...t 	 32 bt ,egl.t r 	
b tr .tat. 	11kz32-bxt tn

	

- - - 	 r 	 -

c.4irator

	

I 	Id

ShaQdI1tItr F4e

TriE 	 41F r

.....1 	 ..,. 	 ,.j:J

. 1 	 p
.:i1ldd 	 I!id.

Figure 5.3: Processor node layout

Ili the next sections, the architectural design and circuit implementation of

the Al processor are detailed.

5.2 The Al Architecture

Implementing the Al architecture required mapping the abstract. /tnet. concept.

into a CMOS implementation. A high-level diagram showing the Itnet structure

and jtinstructiofl or toperation stages of each processor node is shown in Figure

5.4.

Each processor node is a scalar processing unit, i.e. it fetches and issues

a single instruction at a time. Each node is composed of a control unit (net

control in the diagram) that fetches. decodes and issues instructions into the

inet datapath, and the datapath itself, which contains iblocks, i.e. datapath

units that implement the jinet toperations. a 2-way shared RF with 16 local and

8 shared registers per node and 2 read ports and 1 write port, the functional units

135

Add Exec Adder

XBus
jiYis

Read 	I 1
Control Unit %

4T_Register
Shared 	%

Fetch+Decode Cmp Exec H Cmp
File

Read 2 	 i
%- - ------

External
Mem Exec Memory

Figure 5.4: High-level Diagram of an Al node

(FUs) of the node, an external iiieinory interface and a write-back unit. The FUs

include a 32-bit adder and a 32-hit. comparator.

Instruction execution takes place as follows. An instruction is broken down

into fiinst.ructions (toperations), and these are sent., in parallel, to their corre-

sponding jb1ocks. A /1operation consists either of control or of both control and

data signals and may feed more than one ;Lhlock. The control part of a lioperation

consists of a handshake, whereas the data part consists of any associated data (a

register index for example. or a result). Each tblock consists of control circuitry,

possible buffering and access to a datapath operation.

The handshaking protocol between the control unit and the inet datapath is

interpreted in the following way. When the Ack signal of a toperation is asserted,

then that topera.tion has been received, and is considered issued. When all of

the poperations that make lip an instruction have been acknowledged, then the

current instruction is considered issued. The next instruction can then be fetched

and the control unit, will attempt to issue the next instruction's jtoperat.ions. For

as long as a ;i.operat.ions Ack signal stays asserted, that signifies that the iihlock

is busy and a new ioperat.ion that must use that same pblock must wait. When

the Ack signal is deasserted, a new ioperation can be issued. The toperat.ions

must syrichronise with data and with other /ioperations.

Figure 5.5 shows the instruction formats.

The Al's instruction set is small and simple. with an instruction width of

17+1 1 bits. Five instructions have been implemented: LI. load immediate, ADD,

'bit 17 is used for memory instructions to distinguish loads from stores.

136

REGISTER 	 IMMEDIATE
17161514 	109 	54 	0 	17161514 	10987 	 0

op Rz Rx E UI LediatI

BRANCH 	 MEMORY
17161514 109 	54 	0 	17161514 109 	54 	0

offsetI Rx 	E 	I1 op 	Rz 3ddres1 Ry

Figure 5.5: Al Instruction Formats

addition, BEQ, branch if equal and MEM-LD and MEM-ST, memory loads and stores.

The instruction opcode is decoded by bits 16 and 15 of the instruction and addi-

tionally by hit 17 if the instruction is a memory operation. Five bits are allocated

for register accesses, 8 bits are available for immediate values, 5 bits for branches

relative to the PC, and 5 bits for the memory address. For relative branches,

one of the problems encountered with this instruction format is that backward

branching requires a negative value, and the branching field is shorter than the

program counter (PC) which is 8-bits wide. To overcome this problem, while

keeping the design simple, branches are assumed to be negative and bits 5 to 7

of the offset are set in the case of a branch instruction.

Table 5.1 shows how different instructions are broken down into tinstructions.

i operations

Instruction opcode (op16 op15) Rx Ry Wz AOp MOp COp

LI 00 0 0 1 0 0 0

ADD 01 1 1 1 1 0 0

BEQ 10 1 1 0 0 0 1

MEM-LD (op17=0) 11 0 0 1 0 1 0

MEM-ST (°P17= 1) 11 0 1 0 0 1 0

Table 5.1: Al tinstruction Decoding

The number of toperations in each instruction varies depending on the in-

struction itself. Six different ioperations are defined. Rx and Ry read a register

from the first port of the SRF into the XBus and from the second one into the

YBus respectively. Wz writes results back into the SRF. AOp performs an addition.

MOp uses the memory interface to read or write data from/to an external memory.

COp performs a bitwise compare and is used as part of the BEQ instruction.

A detailed architectural diagram of a node's datapath is shown in Figure 5.6

(the control unit that issues the ioperations to the datapath is not shown).

137

1

-

-'
00

C

rP

y
7-
C
-

The diagram shows the two functional units (FUs) of the architecture, the

32-bit adder and the 32-bit comparator in blue. Both of these FUs implement

completion detection, and therefore, the time required to perform these operations

is dependent on the input data. Both units have 32-bit inputs; the adder has two

dual-rail coded carry inputs and a 32-bit result output, whereas the comparator

has a completion signal output, Cf in, that is asserted when the comparison has

completed, and two dual rail coded outputs zi and zO, which determine whether

the branch is to be taken or not. These three outputs connect to the control unit

in order to modify the value of the PC.

The SRF is shown in green. The two read ports are labelled readi and

read2, the write port write and the clear port clear. Each port consists of two

handshake signals, a 5-bit long register index, and except for the clear port, a

32-bit input or output.

As poperations carry data with them and parallelism between independent

toperations is to be exploited, decoupling registers are necessary to separate the

data that Itoperations carry, between the different ph1ocks and between itblocks

and the control unit. The decoupling registers store a toperation's attached data.

They are similar in functionality to pipeline registers. For the write-back, tn-state

elements are necessary to implement the multiplexing and to select the source of

the write: the adder result, the memory input or the immediate value. In the

diagram the decoupling registers and the tn-states are shown in yellow.

Decoupling registers are used in three sections of the datapath, in the operand

fetch part, for storing the register indices, in the execute part, for storing the input

data of the FUs, and finally in the write-back part for storing the value of the

immediate. In this way, when all the toperations of the current instruction are

issued and the next one is fetched, the new instruction's fields will not interfere

with the register indices. In addition, an instruction using another FU does not

interfere with an issued instruction because the FU inputs are buffered. Separate

buffers are used, in order to allow the forwarding of the two operands to the FUs

to take place in parallel. When both registers have been loaded, the operation

can begin. In practice, the amount of parallelism that can be exploited depends

on the speed of the poperations, the instruction order and the type of poperations

required by each instruction. As the instruction set implemented is very simple,

and there are only two FUs and only two read ports, the amount of parallelism

exploited is limited.

The control circuits are shown in the diagram in red. These include a total of

seven icontroI circuits, for sequencing the actions of poperations, and the write-

139

back and memory interface units. There are three control circuits for each port of

the SRF, one iex&fwd (execute and forward) unit per read port and a ,isync&2ex

(synchronise and execute two operations) for the write port. There are two control

circuits per FU, one per operand, one tsync&exec&fwd (synchronise and execute

and forward) and one psync&ex&fwd-m (synchronise and execute and forward to

memory) unit for the adder and two psync&ex (synchronise and execute) units

for the comparator.

The basic functionality of a jicontrol circuit is to receive data, to perform an

operation in the datapath to which it is attached, and to forward the operation's

result data to another datapath unit. The different types of iicontrol circuits are

slight variations of this basic functionality. The tcontrol circuits are equivalent

to latch control circuits of micropipelines [DW95]. The simplest type of icontrol

circuit is the ,tex&fwd. Its purpose is to execute a local action with the data

that is already available and then forward the result. Buffering of the input

data is necessary, so it is attached to a local register. Hence, before the local

action can he performed, the data must be buffered. The second type, isync&ex,

must synchronise two operations, then buffer the incoming data and perform a

datapath operation without forwarding a result. The data travels with one of the

two handshakes. The third type, zsync&2ex synchronises two operations, buffers

the data and then performs two datapath operations. Finally, the 11sync&ex&fwd

combines the actions of synchronisation, local buffering, local execution and data

forwarding.

5.3 Instruction Flow and Execution

Depending on the type of instruction that is to be executed, different Loperations

are issued to the datapath and executed. In order to understand how poperations

and their data flow into the datapath and are used to execute instructions, the ex-

ecution of an instruction can be broken down into the following stages; ioperation

issue, operand fetch, operand data arrival, functional unit execution, result data

arrival and result write-back.

5.3.1 ioperation Issue

The first stage of the execution of an instruction is the issue of its poperations

from the control unit into the datapath. Depending on its type, a poperation may

feed to only a single datapath zhlock, thus initiating only one datapath operation,

or it may feed to multiple ones and initiate multiple operations. In the latter case.

140

the acknowledgement signal for such a poperation must be generated either by

using all of the acknowledgement signals of the iblocks to which that Iioperation

is connected, or by using one of them, that of the last operation to complete. The

itblocks which are initiated may themselves initiate datapath operations, in the

same way. The control handshakes that take place between the datapath 1iblocks

are similar in nature to the jtoperatiorl handshakes between the datapath and the

control unit, as they are necessary to execute the instructions.

As can be seen from the detailed architectural diagram, Figure 5.6, in the case

of addition, the AOpReq signal is fed to three units, the two jiblocks that send data

to the adder, i.e. isync&ex&fwd and tsync&ex&fwd-m and to the write-back

unit. The AOpAck signal is generated by the write-back unit. For branches, the

COpReq signal is fed, much like the ADpReq, to the two 1ihlocks that send data to

the comparator. In this case, the completion of the comparator signals the end

of the operation, so the COpAck signal is generated by Ming the two COpAckX

and COpAckY signals of the two units. These two signals show that the tsync&ex

blocks have detected the completion of the operation.

Another interesting case is the Wz poperation. The WzReq signal is fed to both

the write-back unit and to the isync&2ex block that writes the results back

into the SRF. The WzAck signal is generated by Ming the busy signals of the

write-back and the ,usync&2ex units, so as long as one of them is still active, it

will stay asserted.

5.3.2 Operand Fetch

Instructions that need to read one or two operands from the SRF will have one or

both Rx and Ry jioperations activated. The data parts of these toperations are

the register indices, and these are buffered by 5-hit registers, one per port. This

is necessary to avoid possible interference, in the case when another instruction

is fetched.

The two 1iex&fwd units begin their operation when triggered by RxReq and

RyReq respectively. They are assigned to the two SRF ports. They perform

the register read operation and when the SRF has asserted its acknowledgement

signal, i.e. the value of the register being read is on the output bus of the port,

they then initiate a bus handshake by asserting the XBusReq and YBusReq signals

respectively. If only one operand is to be read, then only one read and one bus

handshake takes place. The request signal of the SRF must remain asserted until

the data travels down the bus lines and is successfully received.

141

5.3.3 Operand Data Arrival

An FU operation cannot begin unless its data is available. The data must synchro-

nise with the FU ioperatior1 which has already been initiated by the control unit.

The XBusReq and YBusReq signals, generated at the operand fetch stage, hand-

shake with the icontrol circuits of the FU operands, one per operand. The bus

data have to be buffered by 32-bit registers, to release the bus and the operand

fetch circuits, and allow another instruction to use them. As soon as the bus

data has been written to an operand register, the bus acknowledgement signal,

XBusAck or YBusAck is asserted.

The operands may not arrive simultaneously, depending on the SRF delay. A

shared access, for example, may take longer than a local one, or there may be a

RAW dependence, where one of the registers has not been written back yet, i.e.

its contents are not marked as valid. When an operand has been written to its

register, the request signal of the corresponding operand iicontrol circuit, requ,

is asserted. This signal shows that this operand is ready to he used for execution

at the FU. The adder and the comparator require two operands to arrive before

execution can begin, whereas the external memory interface requires only one,

the memory data to be written into the memory (in the case of a store). The

memory interface and the second operand of the adder share the Y Bus and the

same operand itcontrol circuit, isync&ex&fwd-m. The difference between this and

the 1isync&ex&fwd circuit, used for the first operand, is that the former does not

perform the requ, acku handshake if its mem input is asserted, i.e. in the case of

a memory instruction.

5.3.4 Functional Unit Execution

Only FU instructions enter this stage. As soon as the number of necessary

operands is available, the functional unit operation can proceed. For FU op-

erations that require more than one operand, the requ signals of the operand

itcontrol circuits are ANDed together to produce Fffs request signal. As can be

seen in the architectural diagram, Figure 5.6, this is how the request signals of

the adder, addreq, and the comparator, cmpreq, are generated.

The FU operation then takes place and, when it has completed, the acknowl-

edgement signal of the FU is asserted. Both the adder and the comparator im-

plement completion detection, so the time required for the execution stage of ADD

and BEQ instructions depends on the values of the instruction's operands. The ac-

knowledgement signal of the FU is fed to the ILcontrol circuits of both operands.

For the tsync&ex operand circuits of the comparator, the assertion of the FU

142

acknowledgement signal completes their operation and, in fact, the execution of

a BEQ instruction in the datapath. They then return to their idle state.

5.3.5 Result Data Arrival

Three types of instructions write data back into the SRF: ADD, LD and LI. Memory

stores send data to memory and do not use this stage. The write-back process

can only be initiated when the data to be written back is available and placed

on the SRF's input bus. The three possible sources that can write-back data are

multiplexed by tn-state elements, the outputs of which are connected together to

form the Z Bus, and connected to the input bus of the SRF. The three enable

signals, ImEn, MemEn and AddEn select the write-back data source.

Instructions that require data to be written hack have their Wz ttoperation

asserted. The WzReq signal feeds to the write-back unit and to the tsync&2ex

control circuit.

The arrival and availability of data for the write-back is checked by the

write-back unit. For immediate instructions the write-back data is always avail-

able, as it is part of the instruction, and is stored in an 8-bit register, when the

Wz zoperation is active.

Memory loads enter the datapatli at this stage. When the id/st input of the

memory unit is deasserted, that identifies the memory instruction as a load and

handshaking with the external memory unit is performed by signals MemReqEX

and MemAckEX. The external memory interface must obey the bundled data pro-

tocol, so when the MemAckEX signal is asserted, the memory data is considered

valid. When the MemAckEX signal is asserted, the MUWReq signal, that feeds to the

write-back unit and initiates the write-hack for loads, is asserted.

Stores do not use the MUWReq, MIJWAck handshake. When the data of a store

instruction has been written by the i.sync&ex&fwd-m circuit into the 32-bit, Y

Bus register that store instructions share with adds, the psync&ex&fwd-m circuit

will assert its reqnextY signal, which feeds to both the write-back and to the

memory i/face circuits. That shows that the memory data is available, and

will initiate the MemReqEX, MemAckEX handshake. In the case of a store, when the

MemAckEX signal is asserted, that completes both the operation of the memory i/f,

which enters its idle state, and the store instruction.

ADD instructions must wait until the result of the addition is available. When

the addack signal of the adder is asserted, then the two isync&ex&fwd and

psync&ex&fwd-mem circuits will assert their reqnextX and reqnextY signals re-

spectively. At this point, the result of the addition is on the adder's output and

143

the write-back can be initiated. The addreq signal must stay asserted to keep

the result data valid, until the write-back has completed.

5.3.6 Result Write-back

The writing-back of results is performed by the jisync&2ex control circuit, that

controls the clear and write ports of the SRF and is initiated by the WzReq signal.

As writing-back must synchronise with the data, the write-back process does

not actually start until the startwrite signal is asserted, which is controlled

by the write-back unit. The two handshaking signal pairs of the jisync&2ex

control circuit, requl, ackul and requ2, acku2 are connected to the clearreq,

clearack and writereq, writeack SRF signals respectively, handshaking with

the SRF's clear and write ports.

Except for the data to be written back, the write-back toperation also re-

quires the index of the destination register into which the data is to be stored.

That index must be buffered, as are the operand fetch register indices, to allow

another instruction to be fetched, without its data interfering with the current

instruction's write-back /loperation. The outputs of the 5-bit write-back register

are fed to the clear and write register index inputs of the SRF.

As soon as the startwrite signal is asserted, a clear operation is performed,

followed by a write. A clear operation will deassert the register valid bit of the

register that will be written to, and then the write will store the result into that

register and set its valid hit. The valid bit implements a register locking mecha-

nism, so that any hazards between instructions that are 'tin-flight" simultaneously

in the datapath are respected.

The assertion of the writeack signal of the SRF signifies that the write-back

has completed. This signal is shorted to the w-f in output of the isync&2ex,

and it serves as the acknowledgement of the startwrite signal. Wlieii w-f in is

asserted, both the psync&2ex control circuit and the write-back unit will enter

their idle state, and the instruction's execution will have completed.

5.3.7 Register Locking Mechanism

In the Al. the register locking mechanism is implemented in the following way; a

register clear preceds a register write. The reason for performing the register clear

before the write is because at this point it is known that any register operands

of the instruction will have been read. Alternatively, if the clear took place when

the instruction was issued, then instructions whose result is the same as one of

144

their operands would have to be handled in a special way, increasing the design

complexity.

By performing the clear so late in an instructions execution, a timing assump-

tion is introduced and it is in theory possible that a RAW hazard might not be

handled appropriately. This may happen in the case where the register contents

are valid before a register clear, i.e. the register valid bit is set, and the following

instruction attempts to read this register. If the read takes place before the clear,

it is possible that the previous register value is read. However, due to the delays

of the architecture, the clear of one instruction will take place before the read of

the next one, so this problem does not occur in practice.

5.4 Processor Components

In this section, the design and implementation of the processor components, along

with their performance, where relevant, is described. The processor's control

circuits have been implemented from FSM diagrams using the Direct-Mapped

CMOS AFSM approach described in Chapter 2.

5.4.1 Data Registers

The registers used for data buffering are composed of the appropriate number

of SRAM cells, and an extra valid bit for performing hounded-delay completion

detection. They have three inputs signals, prech, clear and write and two

precharged output signals out-c and out-w. The input signals precharge the two

output lines, clear the valid bit and write to the register and set the valid hit

respectively. The two output signals are the outputs of two read ports of the

register's valid bit, and are enabled by the clear and write inputs respectively.

They are used as acknowledgement signals to the inputs.

Precharging of the output port lines is necessary to detect the output tran-

sition correctly, independent of the initial value of the valid-bit and of circuit

delays. Precharging sets the floating node to the opposite of the value that the

transition that is to be detected ends, for example to detect a 0-1 transition,

the node is precharged to 0, for a 1-0, to 1. This forces and guarantees a single

output transition. If precharging were not used, the possibility of either no transi-

tions or two output transitions occurring would exist. These two cases cannot he

distinguished without timing assumptions that are unrealistic in an asynchronous

implementation.

145

5.4.2 icontro11ers

The five pcontrol circuits, i.e. isync&ex, isync&ex&fwd, ,iex&fwd, tsync&2ex

and isync&ex&fwd-m, and their functionalities were described in Section 5.2.

The operations that these circuits perform and the sequencing of these op-

erations depends on the pcontrol circuit type. These include synchronisation of

two handshakes, data buffering in a local register that is attached to the itcontrol

circuit, generating control handshakes and signals and interfacing with datapath

elements to perform datapath operations.

5.4.2.1 isync&ex

Figs 5.7 and 5.8 show the FSM diagram and layout of the /isync&ex circuit

respectively.

a c k c = ITEITe

qc

aq-

ecnrireGc

Ut c.out-w

Ut C

CCC

Figure 5.7: FS\1 of psvnckex control circuit

The psync&ex circuit synchronises the ioperation that is issued by the control

unit, reqc. ackc, with its data. which is attached to another poperation. reqin.

146

1i{ 	i ?

- 	 - 	 II 	
'':•--

-

'- 	•S

Figure 5.8: Layout of zsyncex control circuit

ackin. It then stores the data into a local register and performs a datapath

operation. requ. acku. The reqin. ackin data are connected to the inputs of the

local register, the outputs of which are inputs to the datapath operation.

In most cases, the state names represent output signals, for example state

write asserts the write output, in others, there is no corresponding output signal,

as with state wait.

The assertion of the reqc signal initiates the circuit operation. The FSM

leaves the idle state and enters the wait state. The ackc output signal is asserted

at this stage. The acknowledgement signals of itcontrol circuits are asserted as

early as possible, to enable the Iiinstructions to be issued as soon as possible

into the datapath, so as to disengage the control unit and allow it to fetch and

consider the next instruction for issue. When the reqin handshake is asserted,

and therefore the input data is available, the FSM will leave the wait state. This

implements the synchronisation between the two handshakes.

The next three states, prech, clear and write perform the local buffering. In

state prech, the out-c and out-w lines are prcchargecl high and low respectively,

as their low—*high and iiigh—*low transitions are to be detected. These two lines

float when the clear and write register inputs are deasserteci. After precharging,

a clear is performed, followed by a write. When the clear input is asserted, the

register is cleared and the out-c output is driven with the valid-bit value. The

clear state is left when the out-c signal returns low. The write works in a

similar way; its next state ackin-requ. which produces both the ackin and requ

signals. will only be entered when the acku signal is deasserted. thus obeying the

four-phase protocol.

As the data have now been written to the register. the ackin and requ signals

can be asserted. to signal that the reqin. ackin itoperation has completed and to

147

initiate the FU operation. This is the final stage in the control circuit's operation.

When the FU operation has been acknowledged, and the reqin, ackin Itoperation

has dropped its request signal, the FSM will return to its idle state. The ackc

signal, which is not shown in the FSM diagram, is produced by negating the idle

state signal. In this way, the control unit will not re-assert its request signal until

the FS-NI has finished its operation.

The other four circuits, ILex&fwd, isync&2ex, [tsync&ex&fwd and tsync&ex&fwd-m,

are variations of the /isync&ex circuit.

5.4.2.2 psync&ex&fwd

The isync&ex&fwd circuit forwards the result of the FU operation to another

unit. It performs an extra reqnext, acknext handshake (Figure 5.9), with which

the FU result data travel.

reqc reqln

nr

reqc acknexti 	W

write

Figure 5.9: FS)J of 1isviicScexkfwcl control circuit

The jtsync&ex&fwd circuit can be used to form an asynchronous pipeline,

where the input and output handshakes of each pipeline stage are fully-decoupled.

148

It. is similar to a fully-decoupled micropipelme latch control circuit [FD96], as the

timing of the output acknowledgement does not influence the completion of the

input, handshake. Its silicon layout is shown in Figure 5.10.

	

[à.di -q 	 I 	L. 	LriTi :i4
- - -1

liii 	ii 	Ii 	 ii 	ill 	. 	 II 	 II 	
I'

	

U II 	I
4'-!L-

Figure 5.10: Layout of 1isyiicextfwd control circuit.

This FSM is almost identical to the FSM of the psync&ex (Figure 5.7) up

to state ackin-requ. As this circuit does not interface directly to the control

unit., the wait state has been dropped, to save on one state, and the reqc sig-

nal is acknowledged late. After the FU operation has completed and acku has

been asserted, the reqnext, acknext handshake will forward the data. State

ackin-requ, must stay asserted, for as long as the data forwarding handshake is

in progress to ensure that the FU data are valid. State ackin-requ is double-

circled because it is a persistent. state (c.f. Section 2.8.3.9). It is left, when state

idle (shown next to it in brackets in Figure 5.9) is entered.

The fact that the idle state resets both its immediate predecessor and state

ackin-requ is reflected in the p-type transistor routing in Figure 5.10. For all

state blocks, apart from the last two, the purple horizontal metal routing at the

top of the figure connects the p-type pull-up with the inverse of the next state

(three purple lines near the top of the layout.), whereas the p-type l)m111-Ups of the

last two are shorted and connected to the inverse of the idle state.

5.4.2.3 pex&fwd

The 1iex&fwd circuit, which is used for performing the operand fetch, has not been

implemented as a new circuit. As its only difference from the j1sync&ex&fwd is

that synchronisation between two operations is not necessary. it is implemented

by connecting together the reqc and reqin signals to the input request. and

assigning ackc as its acknowledgement..

149

5.4.2.4 psync&2ex

The purpose of the jisync&2ex circuit is to interface with the write and clear

ports of the SRF. It performs two operations, a clear followed by a write with

the same operand data. The FSM and layout of this circuit are shown in Figures

5.11 and 5.12.

r eqo

reflreqC

h

out - C Out W

acku2
door

Out C

küT.out w

r C-

Figure 5.11: FSM of isyuc&2ex control circuit

This FSM is identical to that of [Lsync&ex (Figure 5.7) up to the state write.

After this the data have been stored into the register, and the two handshakes

take place, the one after the other.

5.4.2.5 1zsync&ex&fwd-m

The psync&ex&fwd -m is a generalisation of the jisync&ex&fwd circuit that can

behave either as the the former, or only synchronise and forward data, with-

150

Ali

U .: 	.. H

- - 	 - 	-, 	 - * ., 	 -

Figure 5.12: Layout of jisynck2ex control circuit

out performing the execution handshake. It is used to synchronise the operand

bus data and depending on the type of instruction, perform an FU operation

and forward the result, or forward the bus data. The FS\I and layout, of the

psync&ex&fwd-m circuit are shown in Figures 5.13 and 5.14.

Figure 5.13: FSM of jisyncexfwd-m control circuit

151

r

-

k

This FSM is similar to the FSM of the jzsync&ex&fwd (Figure 5.9) up to state

write. When the writing of the register has completed, the type state will be

entered. and the next. operation. FU or forwarding, depends on the mem, nmem

inputs. The nmem input is the negation of mem, and must be settled in value

before state type is entered to avoid both its successors being entered, and a

one-hot FSM sequential hazard occuring.

If the instruction does not require a memory access, then state requ is entered,

and the FU operation is performed. If it is a memory instruction, then state

ackin-reqnext is entered, and the forwarding of the bus data is performed.

Different data busses are associated with the reqnext, acknext signals depending

on the operation performed. Due to the fact that the bus data must remain valid

until the ackin-reqnext state, as the instruction may be a memory one, the

ackin signal is asserted after the reqnext, acknext handshake has completed.

Figure 5.14: Layout of jtsync&ex&fwd-m control circuit

5.4.2.6 Siniulation of the ;isync&ex&fwd circuit

As the operation of the 1isyiic&ex&fwd circuit is characteristic of the icont.rol

circuits and it is also similar to the fully-decoupled latch control circuit of a

nucropipeline, its circuit simulation output is studied in this section.

Figure 5.15 shows the graphical simulation output of the typical circuit op-

eration. The top diagram shows the handshake signals and the bottom one the

register control signals.

After the circuit is initialised. the two handshakes that are to be synchronised.

reqc and reqin, are asserted at the simulation time of 2ns and 3ns respectively.

As the circuit leaves its idle state (signal idlebuf in the bottom diagram),

the ackc output is asserted. At this point. the process of writing the incoming

data into the register is initiated. As shown in the bottom diagram. the prech

state is entered. and the out-c input, which conies from time valid bit of the

152

6.0 	/rflext

5.0

4.0

3.0

2.0

10

0.0

—1_0 -
0.0

I: /prech

6.0 .: /Out — C

5.0

4.0

3.0

2.0

0.0

0.0

17

/ockn—requ
- 	 •-

I 	 I 	 I 	 I 	 I 	 I

100 	 20n 	 300 	 40n 	 500 	 60n
cinar 	 -. ,wrI'e

/dlobuf

I 	 I 	-

øn 	 20,1 	 30ri
	

40n 	 SOn 	 On

Figure 5.15: Simulation of the jtsync&ex&fwd control circuit

register, is asserted. Then, the clear output clears the out-c input., and hence the

register valid hit is cleared. Then, state write is entered and the corresponding

output is asserted. Input out-w is asserted at the simulation time of 12ns. At

this point, the data have been written, so the FU operation can be initiated

and the reqin input can be acknowledged. Hence, the ackin-requ output is

asserted, and reqin gets deasserted at the simulation time of 20ns. At 25ns,

the FU acknowledgement, acku. is asserted signalling the completion of the FU

operation and the availability of output data. and reqnext is asserted at 28ns.

The corresponding acknowledgement. acknext, is asserted at 32ns, signaling the

data transfer. Finally, the reqc input drops at 45ns. As an instruction will take

quite a long time to issue. this signal will take a long time to return to zero.

At this point, the ackc. reqnext and ackin-requ signals are deassert-ed, and in

response to this, signals acku and acknext are also deasserted.

5.4.3 Processor Control Unit

The purpose of the control unit is to fetch and issue instructions into the dat-

apath. The control unit is responsible for the control flow of the program. and

153

Contains the processors program counter (PC). It must be connected to an ex-

ternal instruction memory, from which instructions are to he fetched.

The control unit first performs an instruction fetch, by sending the value of the

PC to the instruction memory. When it receives an instruction from memory, it

breaks down the instruction into /i.instructions. and issues them in parallel to the

datapath. When the issue of all of the p.instructions of the instruction has been

acknowledged, the PC is incremented and the next instruction can he fetched.

The PC is 8-bits wide. The layout of the control unit is shown in Figure 5.16.

vd4 - 	. - 	- ..-. - 	- 4

;04
. -"p 	r

F7 v1
ILI vdid

cop

._

Ik

jissua pp .
- 	-

--

5f

-- - - 	_ii 	_.

It
yonro _ __

Figure 5.16: Control Unit Layout

The control unit contains an 8-bit adder for incrementing the PC and relative

branches and decode and issue detection circuitry. It also contains a total of

eight control circuits. Two of them are used for the instruction fetch and the PC

control respectively, and the remaining six are the toperation issue circuits, one

per i,operatiOn.

5.4.3.1 Instruction Fetch

Instruction fetching is performed by the CTRL _fetch circuit. Its FSM and layout

are shown in Figures 5.17 and 5.18 respectively.

154

a

Figure 5.17: FS\I of the nitr11etioIi h't(h1 ilhl(1 1SS1I((olitrol (ir('llit

B •
S 	 .

S

S 	 S

: 	: 	 : 	: 	.. 	: 	: 	•• 	:: 	',
• 	S 	 S 	 • 	 S S S 	 S •S •

.-..,.... 	 	 •..-..S• 5
!

Figure 5.18: Layout of the instruction fetch and issue control circuit

\Vhen the processor is reset., the CTRL_f etch circuit will be initialised in the

fetchreq state ind will initiate the fetching of the first instruction. One of the

circuit inputs. STOP, is introduced for debugging purposes. The STOP input is to

be connected to an external switch and external logic, so that when activated, it

allows a program to be single stepped, by preventing the next instruction from

being fetched. In this way, it would be possible, once the circuit was fabricated,

to observe the datapath state at the end of an instruction, using, for example, a

logic analyser.

The decode signal indicates that the fetching of the instruction has completed,

and passes control to the p.operation issue circuits. At this stage. the instruction is

assumed to have already been decoded into poperations, as there is no completion

155

signal associated with instruction decode.

5.4.3.2 Instruction Decode

When the instruction has been fetched, it is decoded by a combinational logic

circuit, which implements the instruction to toperations mapping that was shown

in Table 5.1.

= 5jY1 + (opi opo 5)
Rx = OPi xor OPo
Ry = (opi xor opo) + (OP1OPOOP ?n)

AOp = °Pi°Po
Mop OPiopo

cop = °Pi°Po

Figure 5.19: Instruction decode combinational logic equations

S 	 - L- • 	 S 	-

---,

- •'h. 	. 	j 	• 	- - 	'p •'_, 	 ,- .,'- 	. .,

.*
.u. 	 - 	 .. 	4• 	•* 	•

S

Figure 5.20: Layout of the instruction decode circuit

The instruction decode combinational logic equations are shown in Figure 5.19

and the corresponding layout in Figure 5.20. Inputs 0Th, op1 and op are bits 15,

16 and 17 of the instruction respectively. The Iioperation outputs are each fed to

their corresponding issue circuit, in order to activate it.

5.4.3.3 Instruction Issue

Each toperation which is active must be issued into the datapat.h. There are six

issue circuits, one per /ioperation. They are all identical. except for the one that

issues the COp jioperatiori, used for branches, due to its special functionality, i.e.

potentially modifying the value of the PC. The FSM and layouts for the other

five jioperation issue circuits are shown in Figures 5.21 and 5.22 respectively.

The decode input is fed by the fetch control circuit- and enables the issuing

of the instruction to begin. The active input is connected to the output of the

156

Figure 5.21: FSl of t lie /ioperat loll i-slIe circuit

decode circuit to which this issue circuit. corresponds. It is set if this floperation

is active for the current instruction. Hence, if this Loperat.ion is to be issued, the

iopreq state will be entered. When the Itoperation has been issued, the topack

input will he asserted and the FSM will enter state waiting. The issue circuits

must wait in this state, until all the /Loperat ions have been issued and the issued

signal is asserted.

a a • a 	 a.

: 	: 	• 	 :: 	a 	::

- 	,-

Figure 5.22: Layout of the ioperation issue circuit

Figure 5.23 shows the FSM of the COp /ioperation issue circuit and Figure 5.24

shows its layout. This FSM has a different behaviour from the FS\Is of the other

issue circuits, after the ;ioperation has been issued. i.e. after state /iopreq. It will

then enter state pcsel and wait until the comparator has completed its operation.

157

i ssc

Figure 5.23: FSM of the Cop /2operation issue circuit

i.e. signal cf in is asserted and, depending on the result of the comparison, will

add the branch offset to the PC, or directly enter its waiting state. Signal zO will

he asserted if the comparison outcome was true, i.e. the processor must branch,

zi otherwise. Signal addreqx_ex enables the offset as the 2nd operand of the PC

adder (the 1st operand is the PC itself) and initiates the PC addition. When the

PC addition is completed, the waiting state is entered.

L.

H H 	Hi

II Z.
LJL Lt 	LJIJ H

, 	 ;)g

- 	
.4- 	.. - 	---. 	 - 	.4- 	 4 	- 	.a- 	•

Figure 5.24: Layout of the COp jzoperation issue circuit

158

5.4.3.4 Issue Detection

The issue of an instruct ion's toperations is detected by performing a bitwise

compare of the outputs of the instruction decode circuit with the waiting Output

of their corresponding issue circuit.. It is implemented as an XOR/AND tree, the

output of which is fed to the issued input of the fetch control circuit. The layout

for the issue detection circuit is shown in Figure 5.25.

•1 _- —a

nr* 	S 	 St 	t* 	* *5W 	k ** 	S

LM
-

Figure 5.25: Layout of the poperation issue circuit.

5.4.3.5 Program Counter Control

The PC control circuit is responsible for incrementing or adding the branch offset

value to the PC. It interfaces to a register that holds the value of the PC. This

is necessary to isolate the outputs of the adder from their inputs. The FSM and

layouts of the PC control circuit are shown in Figures 5.26 and 5.27 respectively.

Signal addreq is the input that initiates the PC addition. Signals requ and

acku handshake with the 8-bit PC adder. Signal requ is generated by negating

the idle state signal, so as soon as the FSM leaves the idle state it will be

asserted. The assertion of acku signals the completion of the addition, and at

this point tile result must be stored into tile PC register. After the result has

been written and the addreq signal has been deasserted. the FSM will return to

its idle state. Signal write enables the inputs of the PC register to write the

result of the addition. An early inverse of this signal enables the PC register

outputs, so that no feedback occurs.

5.4.4 Processor Control Unit Simulation

Figure 5.28 shows the graphical simulation output of the control unit when fetch-

ing and issuing an immediate. LI, instruction. The top diagram shows the exter-

nal signals, 1.€. the fetch handshake, signals fetchreq and fetchack in red and

green respectively, and the 8-bit PC outputs.

After the circuit is reset, the fetchreq output is asserted. At this point, the

PC value is zero. Then. an immediate instruction is presented and the fetchack

159

ac2crErq 	 GtC

o -c

Oct - w

daa c

Figure 5.26: FS\l of the prograIli counter control circuit

t' 	 ;rVTrflflTi - 	
*t 	 4, X A 	 Lw ..1i9

- 	

- ---

I 	 i 	I 	 ii 	i 	i 	II
- 	I 	 I

- 	 -:

Figure 5.27: Layout of the program counter control circuit

signal is asserted at the simulation time of Gus. After the instruction is decoded

and issued, the fetchreq signal is again asserted, at the simulation time of ap-

proximately 84ns. and at this time. the least-significant-bit of the PC has been

asserted, requesting an instruction from address 1. The PC output rises almost

simultaneously with the request signal, and as the output of the PC register does

160

6.0 	: /PC<5> 	 -: JPC<> 	 -. fetchre 	 ...

5.0

4.0

3.0

2.0

1.0

0.0 - 	A 	 *—-- *

0.00 20.øn 40.On 60.On

I: /oddock -:

/issued .: /RxReq
- /MpF. 	: /CpReq

6.0 '. 	
, .. 	/Wz -: 	/decode 	• 	'l'

5.0 	-

4.0

-

::

2.0

1.0

0.00 20.On 40.0n 60.O.

BOOn 	 lOOn

BOOn 	 lOOn

Figure 5.28: Simulation of the fetch and issue of an immediate instruction

not use full pass-transistor logic, it rises to a level lower than the supply line 2 .

The bottom diagram shows the internal control signals. As soon as the in-

struction has arrived, it is decoded by the instruction decode circuitry, and its

output Wz is asserted. The instruction fetch and issue circuit, will then enter its

decode state and assert this signal. This enables the instruction issue circuits

to initiate the issue, and the request signal of the only poperation that is to be

issued, WzReq, is asserted at simulation time of approximately 20ns. After the

WzAck signal is asserted, the issue detection circuit asserts the issued signal. The

instruction has now been issued and the fetch and issue circuit asserts the addreq

signal to increment the PC value. \Vhieii the PC has been incremented, i.e. signal

addack has been asserted, another instruction can be fetched, and fetchreq is

again asserted.

Figure 5.29 shows the simulation output for a branch-if-equal. BEQ instruction.

In this simulation. the outcome of the branch will evaluate to true, so the

value of the PC must be appropriately updated. The branch offset is set to -4,

i.e. bits 14 to 10 of the instruction are set. to 00100 (c.f. Section 5.2). In the top

2 due to the transistor threshold voltage drop.

161

6.0
	 •: /PC<7> 	 -: ,tetchce 	 • /tc3c.

5.0

4.0

3.0

2.0

1.0

0.0

—1.0

	

0.00 	 30.en
- 	nddocl

	

ci 	 'cl

6.0 . 	-

	

I 	 i 	 I 	 I 	 I

60.øn 	 90.On 	 120n 	 150n 	 180n

	

s: fWzRq 	.: 1WzAcI 	: /RxReq 	. ;. 	 : /RvAI.
—: A4QpAck 0: /CopReq .. 	cpAci 	- '.iddq_e .:

, 	 v: 	 : ,iWz 	- 	.code 	• 'addeq

5.0

3.0

2,0

1.0

0.0 = A*
—1.0 I I - 	-. -

0.00 	 40.On 	 BO On 	 120n 	 l6Ori 	 200n

Figure 5.29: Simulation of the fetch and issue of a branch instruction

diagram, the value of the PC of the second instruction fetch is 11101001.

The bottom diagram which shows the internal control signals is more complex

in this case. Three ioperat.ions are decoded, when the instruction data arrive, Rx,

Ry and COp. When signal decode is asserted. the corresponding request signals

are asserted. The acknowledgement signals RxAck and RyAck are simultanesouly

asserted at the simulation time of 25ns, and COpAck is asserted at, the simulation

time of 30ns. As the comparison evaluates to true, state addreq_ex of the COp

instruction issue circuit is entered and its corresponding output, is asserted. This

asserts the addreq signal of the PC control adder and sets bits 5 to 8 of the PC.

After the addition has been performed at the simulation time of approximately

lOOns, the issued signal is asserted. Then, the PC is incremented and the next

instruction can be fetched.

5.4.5 Memory Interface

The memory interface connects a processor node to an external data rilemory via

an 8-bit data bus and two handshake signals. MemReqEX and MemAckEX. The type

of the operation, i.e. a read or a write is determined by bit 17 of the instruction.

162

The FSM and layout of the memory interface are shown in Figures 5.30 and 5.31.

0p17 .Meii

reqne

MemAc)

OPReq

Figure 5.30: FSM of Memory Unit

The FSM leaves the idle state when the MOpReq itoperation is asserted. Signal

MOpAck is generated early by inverting the idle signal. From state start, the

FSM is divided into two paths, the LBS is for stores, the RHS for loads, and the

selection of the path depends on bit 17 of the instruction (op 17).

Stores must wait until the data has been put onto the bus. Memory instruc-

tions use the Ry toperation and data is placed on the Y bus. When reqnextY

has been asserted, the external handshake may take place. Then the Y bus data

is acknowledged (acknextY) and the FSM will return via final to state idle.

Loads initiate the memory operation, and then perform a request to the write-

back unit, by entering state MUWReq and asserting this signal. Signal MemReqEX

does not stay asserted until the write-back completes; the data on the memory

bus is assumed to stay valid until the next request. The assertion of signal

MUWAck signals the completion of the write-back, and then, as long as the memory

toperation request has been deasserted, the FS-NI will return to state idle.

163

a

a 	
II 	

a

Ii 44iiiLI*i 	 642&MM

Figure 5.31: Layout of the Memory Unit

5.4.6 Write-Back Unit

The purpose of the write-back unit is to write data back into the SRF. The data

conies from one of three possible sources, an ADD instruction, an ilfllfle(liate, or

a load (Figure 5.6). The write-back unit is connected to the jisync&2ex which

controls the clear and write ports of the SRF, to an 8-bit immediate register and

to a three-way multiplexer which feeds to the Z bus, the input data bus of the

SRF. The FSM and layout of the write-back unit are shown in Figures 5.32 and

5.33.

As with the memory interface, the write-back FSM leaves its idle state, when

its corresponding jtoperation is asserted, i.e. WzReq. Its acknowledgement is also

generated in the same way, i.e. by negating the idle state signal. When the FSM

has entered state waiting, it must effectively decode the current instruction, to

decide which path in the FS\I is to be followed.

If signals reqnextX and reqnextY are asserted, then this implies that the re-

sult of an ADD instruction is to be writen back and the leftmost path is followed,

and state AEn, startwrite, AOpAck is entered. Signal AEn enables the data

output of the adder onto the Z bus, signal startwrite initiates the clear/write

operation (Section 5.3.6) and signal AOpAck is the acknowledgement of the AOp

poperation to the control unit. Signal finished indicates the end of the write-

back operation and after handshaking with the jisync&ex&fwd circuits of the

adder (signals acknextX and acknextY), and as long as the WzReq has been low-

ered, the circuit will return to its idle state.

If. on the other hand, the instruction is an immediate one, i.e. the two

least significant bits of the instruction are zero, then the value contained in the

instruction can be written hack. As was explained in Section 5.3.6. it is necessary

to hold the immediate value in a register. The way this is implemented is the

same as in the icontrol circuits presented in the previous sections. To reduce the

164

r crxtX

f i ri ishd

r erriex. X.

Figure 5.32: FS\ I of Write-Bark Unit

Figure 5.33: Layout of the Write-Back Unit

diagram complexity, the immediate value write to the local data register is drawn

as a single dotted state. After the immediate value has been buffered, the ImEn

signal enables the contents of the immediate register to be multiplexed onto the

Z bus and performs the write-back in the same way.

Finally. the assertion of MTJWReq implies that a load instruction is to write

back. State MEn, startwrite is entered. and when time write-back has completed.

MUWAck is asserted. On the completion of the handshake with the memory unit.

165

i. e. MUWReq, MTJWAck, the write-back circuit completes its operation.

5.4.7 32-bit and 8-bit Adders with Completion Detection

There are two adders in the Al design, an 8-bit adder in the control unit and a

32-bit adder in the datapath. Their design is identical, except for their bit length,

and is based on the use of a ripple carry [WE93]. An n-bit adder is implemented

as a chain of n asynchronous full adders. The full adder design implements

completion detection by dual-rail coding the input and output carries [Gar93].

sum = a xor b xor cm
cout = (a xor b)cin + ab

Figure 5.34: Combinational logic equations for addition

The combinational logic equations for addition can be expressed in the form

shown in Figure 5.34, where a and b are the operands of the addition, sum is the

result and cin and cout are the values of the input and output carries respectively.

As can be seen from these equations, if the two inputs, a and b, are both 0 or

both 1, then the value of the output carry does not depend on the input carry

bit, so the time required to produce a result is data dependent.

To implement the dual-rail encoding for the carry input and the carry output,

they are represented by two signals each, cinO and cml and coutO and couti

respectively. The dual-rail encoding assigns the represented value to the LSB

of the dual-rail code and its inverse to the MSB, i.e. a 0 is represented by 10

(MSB=l, LSB=0) and a 1 is represented by 01 (MSB=0, LSB=l). Values 00 and

11 do not represent valid data and are used for initialising the circuit. The dual-

rail combinational logic is shown in Figure 5.35. The completion of the full-adders

can be detected by exclusive-Offing the carry output bits, coutO and couti.

The full adder can be divided into two sections, the result generation section

(Figure 5.36) and the carry generation and completion detection section (Figure

5.37). Pass-transistor logic [WE93] exclusive-OR (XOR) gates are used for most

of the circuit.

The sum output is generated by chaining two of these gates. The advantage

cout0 = (a xor b)cin0 + ab
coutl = (a xor b)cinl + äb

Figure 5.35: Dual-rail encoded carry equations

166

a xor b 	 sum

a4 a 	 cinOcinO
--I--

a xor

1 -r 	 y —r
a 	 cinO cinO

Figure 5.36: Full-Adder, result generation

of this implementation is that it saves on the number of transistors required. The

pass-transistor logic implementation uses 16 transistors to implement the result

logic, whereas CMOS gates would require 42 transistors. The disadvantage of

pass-transistor logic is its low output drive strength, making buffering of such

outputs essential.

act a

cinO

a xor b

act

acti

ncoutO

a 	cmi

b 	a xor b

act a

fin
ncouti 	

coutO coutO

a

TD 	

couti
-cout-

F m
coutO coutO

Figure 5.37: Full-Adder, carry output generation and completion detection

The dual-rail carry outputs are implemented using dynamic logic. They are

both precharged high by signal active, which is deasserted while the full-adder

is idle. They then resolve, when active is asserted. Outputs coutO and couti

are generated by inverting the signals ncoutO and ncoutl. The fin signal is the

completion detection output which, when asserted, shows that the full adder is

finished.

The layout of the full-adder is shown in Figure 5.38, and the layout of the 32-

bit ripple-carry adder implemented by chaining together 32 full-adders is shown

in Figure 5.39.

Apart from the 32 full-adder cells, the 32-bit ripple-carry adder contains a

completion detection tree of AND gates which implements the global completion

detection signal, buffering for the global active control signal and control logic

for implementing the handshaking protocol. The 8-bit adder is implemented in

167

cr.1 	 t 	 Pc It

ca.,• B 	 •. U N B 	 U 	 B 	 B 	 U 	 U I I 	 U

UI U 	 B 	 U U B 	U • 	B 	S 	 U 	U 	 N 	U 	N S 	U U 	B 	U

.i•• U---- 	-- I 	I 	 • 	• SI U
a

-c1
I

B
a a 	 • • 	a x 	 - . U -

a
U

a 	a I 	•U 	• 	- 	U 	a 	Ia 	a a 	a a 	•á

,_,U a 	• a U 	 -. a 	a 	a 	a 	a 	a 	a 	S U.---I S 	n

• 	B w-. 	 U

Figure 5.3: Livut ut the ts.vii(Iti'mioi is f1lhl-n(1(ler

	

i flTT

	 A fre tree a

-

It

	

I•-r--1 UI' 	 - .1 	 ¶ 	
- 	 —- 	-

E_Ur_,J, r_JrurLaJp_IIr r rr.pr.ipJ1r_
I p I LIII 	 ii 	i 	 l

	

iJirJr.i,_.(it..
I

	

 I 	
I

 I 	 lI 	 II 	ul;i 	i 	I

Figure 5.39: Layout of the asynchronous 32-bit ripple-carry Adder

the same way.

The same control logic can be used for implementing an adder of arbitrary bit

length. Its FS\l and layout are shown in Figures 5.4() and 5.11.

addreq fin

cidd c k

Figure 5.30: FSM of the adder control lugic

To save on the number of states, this FSM is implemented as a single CMOS

gate with one state. It differs from the AFSM examples seen so far, as there is

no active state on reset. The addack state is entered by the n-types, and left

by the p-types. Both share the same inputs (Figure 5.41). In fact, this FS-NI is

effectively the two-input C--Muller gate [I1165].

168

Al t

	

i. a 	a a • a a

• • - • • • a U U

	

U • 	U U U

	

• U 	U

	

• U_ 	U

	

• 	.

	

• 	U

	

• 	a •

	

• 	U

a

	

a 	U 	•• 	.

	

U 	U

	

U 	a • a

	

U 	• u • a a U

	

a 	• a U • a u1

Figure 5.41: Layout of the adder control logic

With this implementation, the speed of addition depends on the input data.

The worst-case performance occurs when a carry generated at the LSB propagates

sequentially all the way to the last bit of the adder. This occurs when one of the

two operands has all its bits asserted (111...1), and the other has only its LSB

asserted, i.e. is the number 1. Carries that are generated in parallel speed up

the addition. It can be seen from the carry out equations (Figure 5.34) that if

both inputs to the addition have the value 1, then the value of the carry output

is a 1, no matter what the carry input value may be. So. adding zero to zero, i.e.

all the bits are zero and no carries are generated. takes approximately the same

time as adding the two largest values that can be represented by n bits, i.e. all

the bits are set and n carries are generated in parallel.

The performance of the 32-bit adder was measured in this way, Z'. e. by varying

the number of sequentially propagated carries of the addition. This was done by

adding the number 1 to a number with a varying number of 1's, from the LSB

Up.

Figure 5.42 shows the graphical HSPICE simulation output for an addition

with no carries and all 32 inputs being zero. This graph shows the handshake

signals of the adder, addreq and addack. labelled req and ack in the graph

and coloured red and green respectively. It also shows the global completion

169

signal. labelled fin32 in the graph. in blue. The rest of the signals include the

active control signal, the result outputs and completion signals of the four least-

significant hits, res and fin.

•: /re<2> 	. 	 /fn<3> 	 /fin<2,

6
'0 o: /fin<O> 	: /.:t 	 : /f1n32 	 - /ok 	 .: /req

5.0

4.0

3.0

2.0

1.0 /

0.0 	- 	-

-1.0

Figure 5.42: Simulation of an addition with no carries

After the assertion of the req signal, the active signal is asserted, which

feeds to the 32 full-adders. Then, all the fin signals will be asserted almost

simultaneously, as there are no carries. This can he seen in the graph as the four

fin signals are all asserted simultaneously. Then, the AND-tree will assert the

global completion signal, and ack will be asserted, indicating that the result is

available. When the req signal is deasserted, active will be cleasserted and so

will the partial and then the global completion signal. deasserting the ack signal.

As can be seen from Figure 5.42, the fastest addition time is 1711s. This is the

time it takes to produce the result, i.e. the time it takes for the acknowledgement,

signal to be asserted, after the request signal is asserted. The time to complete

the handshake and reset the completion signals is an extra 10.73ns.

Figure 5.43 shows the simulation output when adding the number 1 to itself,

i.e. the two least-significant bits are asserted. This will produce a single carry at

hit. 1 of the adder. The carry will not propagate sequentially, hut, will be absorbed

by bit 1.

This graph is similar to the previous one, only the result bit res<1> gets as-

serted. This graph does not contain the negative part of the handshake. The

glitch on res<O> is caused because the carry inputs to the least-significant bit

is only considered after active is asserted. therefore the result hit momentarily

rises when the inputs arrive. The time taken for the addition is approximately

the same. 17ns. As the data will have arrived when the request signal has been

asserted, i.e. to obey the 4-phase protocol, the carry output of hit. 0 is gener-

ated before its carry in has been received, so hits 1 and 0 receive their carries

170

• /r3S(2> 	.: re 	 ..: /fn<3> 	 /fin<2>

6.0 	 . 	 : 	 /oct.. 	 : ffn32 	 - 	 ç.

5.0

4.0

L L
0.0 	 løn 	 20n 	 30n

Figure 5.43: Simulation of the 01+01 addition

•: /res<2> 	.: /res<1> 	. 	- 	 - /fin<3> 	 /fin<2>

6.0 	
./fr 	 : /ocUve 	 : /f1n32 	 - : /ock 	 •

4.:3.

2.0

0.0 ~ _

-1.0!

7T1;1..T7TII
0.0 	 10n 	 20n 	 Mn

Figure 5.44: Simulation of an addition with one sequential carry, 01+11

simultaneously.

Figure 5.44 shows the simulation output when a sequential carry must be

propagated. The addition performed is 01+11. In the graph, it can be seen that

now bit. 1 of the result gets asserted before its carry inputs arrive, and then returns

to zero, for the same reason that the glitch occurs on bit 0. The completion signals

of bits 2 and 3, fin<3> and fin<2> get asserted almost. simultaneously. This is

because they do not depend on the previous carries. The completion signal of

bit 0 is asserted next. fin<O>. Signal fin<1> depends on the two dual-rail coded

carry outputs of hit. 0 and is asserted last. This addition takes 19.05ns.

To increase the number of places that the carry generated at bit 0 must be

propagated, is are appended to the most-significant bit of the second operand.

Figures 5.45 and 5.46 show the simulation output for 2 and 3 sequential carries.

The same pattern can be observed here. In Figure 5.45, fin<3> is asserted

first, and then fin<O>. fin<1> and f±n<2>, as the carry propagates. As the

carries propagate, the result bits change value in both figures.

171

: /r,s<2> 	. 	1•

6.0 	Jfk1>

50

4.0

3.0 .. 	 /

2.0 L 	
/

1.0

/fin<3>
: /5n32 	 -.'ack • 	rq

I I- 	I 	- 	 - 	 - 	-

	

ion 	 20ri 	 30n

Figure 5.45: Simulation of an addition with two sequential carries. 001+111

	

I: /re5<2> 	. 	,.. . 	 . 	 : /fin<2>

	

/fin' 1). 	 - 	 . /fin32

,On 	 20n 	 30n

Figure 5.46: Simulation of an addition with three sequential carries, 0001+1111

The addition speed can then be plotted as a function of the number of se-

quentially propagated carries, Figure 5.47.

The relationship between the addition speed and the number of sequential

carries is linear, with the difference between the best and worst case performance

being in the order of ten, 17ns for no carries and 95.42ns for 31 carries. In the

latter case, n circuit stages must evaluate before the addition completes. This is

what limits the performance of a synchronous implementation of a ripple-carry

adder; its clock period must be set to the worst-case addition time.

A study at Manchester University [Gar93], that considered both data process-

ing operations and address calculations, reports that the highest percentage of

operations contained between 2 and 4 sequential carries. Other operations which

occurred frequently contained 16. 12. 32 and 20 sequential carries, in this order.

Therefore, as the worst-case addition time is not close to the average case ad-

dition time, asynchronous adder design is advantageous and more economical in

this case. as it requires no carry look-ahead logic.

6.0

5.0

4.0 -

3.0 L

2.0

1.0

0.0

0.0

172

100

90

80

70

60

50

40

30

20

10

II t :II :H;J;2

0
cJ C,, 	14) (0 N (0 0) 0 - C'4 C') 	4) (0 N (00) 0 '- 04 C') 	41) (0 N (00) 0 - 04

04 C'J C') C') CO

Addition Time(ns)I

Figure 5.47: Addition Time in ns as a. function of the number of sequential carries

5.4.8 32-bit Comparator with Completion Detection

The 32-bit comparator is used by the BEQ branch instruction. It compares two

32-bit numbers and provides two outputs to the control unit, a completion signal,

fin, and a dual-rail encoded result signal represented by two wires. zi and zO. If

the two numbers are equal. zO will be asserted and zi deasserted and the opposite

otherwise.

The comparator is implemented by exclusive- ORirig the bits of the two operands

together and then feeding the result bits into a 32-hit cascaded dynamic NAND

gate and their inverse to a 32-bit cascaded dynamic OR gate. The outputs of

these gates are then exclusive-ORed to provide the completion detection signal.

The layout of the 32-bit comparator is shown in Figure 5.48.

3
- OILAr a4

ii 	 --

AC

Figure 5.48: Layout, of the asynchronous 32-bit comparator

173

The design of the cascaded dynamic NAND gate is shown in Figure 5.49.

	

in<O>-dl 	in<4>-di 	in<;

	

in<5>-d1 	in<;
in<1>

in<6>-di

	

in<7>-di 	 in<

iri<3

	

nactive-41 	nactive-41 	nact

0

1st stage 	2sL stage 	8th stage

Figure 5.49: cascade 32-input dynamic NAND gate

The inputs to this gate come from the exclusive-OR outputs, the inputs of

which are the two comparator operands. The output zO is asserted if all the 32

inputs all low, i.e. the two operands are identical, and therefore, the result of the

comparison is true. The circuit is broken down into eight stages of four inputs

each. The output of each stage is inverted and fed onto the next. The cascaded

dynamic OR gate is implemented in a similar way. It is shown in Figure 5.50.

2 , 	 _r,-28-A(<29 ,A r'<30> 	31> 	

>_zl

nactiveH

1st stage 	 8th stage

Figure 5.50: cascade 32-input dynamic OR gate

The inputs to this gate are the inverted exclusive-OR (nXOR) of the operand

bits. Thus, the output zi is asserted if any of the inputs are high, i.e. the

two operands differ, and therefore, the result of the comparison is false. It is

implemented in the same way, i.e. with eight stages of four inputs each.

The two cascaded gate outputs zO and zi are XOR-ed to produce the com-

pletion detection signal, fin. The control logic of the comparator is identical to

that of the adder.

Figure 5.51 shows the graphical HSPICE simulation output for a true and a

false comparison. The request signal, req is drawn in req, and the acknowledge-

174

merit signal, ack in green. The completion signal fin is in blue. The two result

signals zO and zi are drawn in purple and grey.

6.0 - 	 .: /fin

01

4.0

3.0

2.0

1.0

0.0

—1.0 	-------------- - 	 ---.------ -
0.00 	 20.On 	 40,On 	 60.øn 	 60.0ri 	 1ø0n

Figure 5.51: Simulation of a true and a false comparison

The first comparison is one which should evaluate to true. After the inputs

are applied, zO and the completion signal fin are asserted. The acknowledgement

signal is asserted 19.72ns after the request signal. After the request signal drops,

the comparators' signals also drop. The ack signal takes 12.9ns to drop in this

case.

The second comparison should evaluate to false. The zi signal rises a lot

faster in this case, as the dynamic OR gate produces the result. It takes 7.95ns

for the acknowledgement signal to get asserted in this case, and 15.28ns to return

to zero. Signal zi will take longer to return to zero, as it is the output of the

dynamic OR gate.

Hence, a comparison which will evaluate to true will take longer than one

which will evaluate to false. The results are summarised in Table 5.2.

True Comparison False Comparison
Comparison Time 19.72 7.95

Return Time 12.9 15.28
Total Time 32.62 23.23

Table 5.2: Summary of the comparison speeds

5.4.9 Shared Register Files

Each node of the Al contains a 2-way Shared Register File, which contains 16

local registers and 8 shared registers. The total number of physical registers of

175

the Al is 48, whereas the total number of logical registers is 64, as 16 registers

are shared.

The layout of the 2-way SRF contained in each node is shown in Figure 5.52.

ri

lid 	Si .Jj Si Uhi]] Ud
Orr r i rTTi

II Itt 	tfj E ul i lli 	iit 	td II 	Ld h il 	i 	I 	RI 	fi

Figure 5.52: Layout of the Shared Register File with 8 shared and 16 local registers

The SRF design was presented in Chapter 4. The Al SRFs are different in

three aspects however. Firstly, they are implemented for a different fabrication

process, ALCATEL 0.7txn rather than ES2 0.7im. Secondly, they have two

read ports and one write port, rather than one read port and one write port,

to allow instructions with two operands (ADD and BEQ) to perform two reads

in parallel. This implies that shared registers require four read ports and two

write ports rather than two read ports and two write ports. So, the Al SRFs

have twice as many read busses. Finally, the control circuit design has been

modified, so that the SRF provides the register data of a read access on the

positive acknowledgement edge. rather than the negative. In this way, the SRF

data can be held active on the SRF bus by holding the request signal high. The

SRF connections allow node 0 to access shared registers in node 1 and vice versa.

As in Chapter 3, an access time map can be drawn to measure the access

time variation of different registers in the SRF. The access time map of one

unconnected Al SRF is shown in Figure 5.53. This is similar to the 2-way access

time map that was shown in Chapter 3, Figure 4.9. The average access times for

the different types of accesses are summarised in Table 5.3.

local-read local-write shared-read shared-write
45.04 47.38 49.58 52.02

Table 5.3: Access times(ns) for 2-way SRF with 4. 8 and 16 shared registers

176

Read
445ns 10 9 40.9

15 14 13 12
19 18 17 16

22 21 rM

5Jns 	6 	5

4834ns 	2

Write
443ns 10 9 499

15 14 13 12
19 18 17 16
4g 22 212

Access Path

11 > 8

23 <CO)
7
+
3<0

Access Order

20,23,11,8,0,3,7,4 I
57727ns 	6 	5

4539ns 	2 	1

Figure 5.53: Access time map for one unconnected Al SRF

local-read local-write shared-read shared-write

1.14 1.1 1.19 1.13

Table 5.4: Access time Ratios between Al ALCATEL SRF and 2-way ES2 1-read
port SRF

Table 5.4 contrasts these access times with those of the 2-way SRF with the

same number of shared registers but one read port. implemented using the ES2

0.71im process 3 . Hence, adding a read port and migrating to a new process has

increased the access time on average by a factor of approximately 1.14.

As mentioned, the control logic for the read, write and clear ports has been

slightly modified. In Chapter 3. the access would complete when the four-phase

acknowledgement signal returned low, but this presents problems when the SRF is

to be connected to a system, as the data lines cannot be held valid by the request

signal. Hence, the control logic had to he changed so that for read accesses

the acknowledgement is asserted when the data is available, whereas for write

accesses, it is asserted when the data have been written. As in Chapter 3. the

read and write port logic is identical.

3The simulation temperature is 70°C for both.

-7..,

1I

The FSM and layout of the read and write port logic are shown in Figures

5.54 and 5.55.

sq. access

(req)

Figure 5.54: FSM of the SRF read/write port logic

This FSM does not initialise to any state. The assertion of the request signal,

req and the fact that the SRF is not already processing an access, i.e. sig-

nal access being low, will take the machine to state prelow. This state must

precharge the SRF bus completion signal out to low, so that a low—*high transi-

tion can he detected. When out is low, the FSM will enter state access which

enables the column decoders to select the appropriate register (c.f. Chapter 3).

When the input out has been asserted, i.e. the valid bit of the selected regis-

ter has been asserted, then the FSM will enter state ack, without leaving state

access. This holds the data valid until the req input is deasserted. Then, both

states ack and access will be left, and another access may be serviced.

The clear port control logic is similar. The only two differences are that the

precharge signal precharges high, in order to detect a high—*low transition, and

the order of the input out transitions is reversed in the FSM, i.e. state prehigh

of the clear port FSM is left when out is high and state ack is entered when out

is low.

178

at
I 	I U 	• U U U U 	U U 	U 	U 	• 	U U 	I 	II 	U 	•'

• 	• 	• 	• 	• S 	U S I • S 	S • 	S 	S 	S 	U S 	I 	U 	•• 	U

• 	S 	U 	I 	U U 	I U SU S 	U U

• 	S 	S U 	U U U 	• U

• 	• 	. U 	U I U 	U I

U

U S U 	 I

• Ill,

*1 •
• 	U U U -
• 	U • I U U

• 	U 	S 	U U U •I U U 	U 	I 1

U 	S 	U 	U U U S U • U 	U 	U 	U 	U U 	U 	U 	U 	U 	S

• 	• 	a • • • U U 	I 	•. 	• 	U • 	S 	U 	a 	• 	ii

Figure 5.55: Layout of the SRF read/write port logic

5.5 Al Testing and Simulations

Two tests been used to verify the correct operation of the Al processor, a simple

program test and an SRF addition test. The simple program test, which executes

on a single node (the UP-node circuit, Figure 5.3), verifies that all of the processor

instructions execute correctly. The SR F addition test executes a program that

performs a short series of additions on one and two nodes of the entire chip, to

investigate the effect of communicating data through a shared register.

5.5.1 Simple Program Test

Figure 5.56 shows the simple program test and the poperat ions corresponding

to each program instruction. It consists of two immediate instructions, one add,

two memory instructions and a branch. The result of register r4 (the number

68), which is stored in memory, verifies that the first three program instructions

have been executed correctly. The value of PC after the branch instruction is

executed, verifies that the branch instruction is correctly executed.

Both the result of register r4 and the PC value were found to be correct

therefore demonstrating that the program was executed correctly. Figures 5.57-

5.61 show the HSPICE graphical simulation outputs of various datapath signals.

Figure 5.57 shows the instruction fetch part of the control unit, i.e. the

fetch handshake and the PC. The first instruction is fetched at 6ns simulation

time, and the last, i.e. the branch instruction, at lOSOns. As can be seen from

179

/PC<2> 	 ..: /PC<3>
: 	 -: /f$hrq 	 - 	fI'h:L

6.0

5.0

4.0

3.0

2.0

1.0

0.0

o: /PC<5>

Instruction Rx Ry Wz AOp MOp 1COP
L1r2,65 X
LIrO,3 X

ADD r4,r2,rO X X X X
LDr5,0 X X
STr4,0 X

BEQ r4, r5, -4 X

Figure 5.56: Simple test program for testing all the Al processor instructions

—1.0 	
1.

	I 	 I 	 - 	 I

0.0 	 300n 	 600ri 	 900ri 	 1.2u 	 1.5u

Figure 5.57: Simulation of the simple program - Instruction Fetch

the diagram, the PC value increases by one at every instruction fetch until the

branch instruction is executed.

Figure 5.58 shows the register /zoperation handshakes of the processor control

unit. i.e. the handshakes of jioperations Rx, Ry and Wz. In the top diagram, the

two Rx handshakes correspond to the ADD and BEQ instructions. In the middle

diagram, the Ry handshakes correspond to the ADD, ST and BEQ instructions.

Finally, the four Wz handshakes of the bottom diagram correspond to the first

four instructions.

The exploitation of parallelism between different toperat ions can be observed

in these three diagrams. The write-back ioperation of the second instruction

(LI rO, 3). Wz, is executed in parallel in the datapat.h with the Rx and Ry

Itoperations of the third one (ADD r4, r2, rO). Also, the write-back /loperation

of the fourth instruction (LD r5, 0) is executed in parallel with the Ry poperation

of the fifth (ST r4, 0).

Figure 5.59 shows the FU Itoperation handshakes. i.e. AOp. COp and MOp. As

can be seen by the top diagram, the assertion of the AOpAck acknowledgement sig-

nal is delayed, compared to the acknowledgement signals of the other ioperations.

The AOpAck does not get- asserted until the addition has been performed and the

180

6.0 •

5.0

4.0

3.0

2.0

1.0

0.0

-I.0
0.0 3Oøri

6.0

5.0 -

4.0 -

3.0 -

2.0 -

1.0

0.0

-1.0
0.0 300n

-: /Wzk

6.0
.'

5.0

4.0

3.0

2.0

0.0 LL

0.0 300"

600"
	 gøOn

	
1.2u 	 l.5u

600n
	 gØØ

	
1.2u
	

1.5u

600"
	 goon

	
1.2u 	 1.5u

Figure 5.58: Simulation of the simple program - Register toperation Handshakes

result has arrived at the write-back unit (c.f. Section 5.4.6, Figure 5.32). The

reason for this is the lack of a datapath register for storing the adder's result.

The fact that the result is not stored in a datapath register, implies that the

handshakes of the adder and of the add zoperation must not complete until the

data has been written back. The former is achieved by the two jicontrol circuits

of the adder (tsync&ex&fwd and ,usync&ex&fwd-m). The latter is achieved by

generating the AOpAck signal from the sigiial that enables the adder's result onto

the Z bus (signal AEn, startwrite, AOpAck. Section 5.4.6, Figure 5.32). Al-

though this implementation fulfills the necessary requirement, it would have been

181

6.0

5.0 -

4.0

3.0 -

2.0 -

1.0 -

0.0 L

-1,0
0.0

	

6.0 	iCopAck

5.0

4,0 -

3.0

2.0 -

1.0

0.0L__

-1.0
0.0

6.0 .

5.0 -

4.0

3.0

2.0 -

	

.0 	-

0.0 1
-1.0

0.0

300n 	 600n 	 900n 	 1.2u

/ 1
I 	 I

3001, 	 600n 	 900n 	 1.2u

300n 	 600n 	 900n 	 1.2u

1.Su

1.5u

1 ,5u

Figure 5.59: Simulation of the simple program - FU p.operation Handshakes

beneficial to assert the AOpAck signal sooner, as this would issue the instruction

faster.

Figure 5.60 shows the RF port. handshakes. The two top panels show the

handshakes of the first and second RF read ports respectively. i.e. Read 1 and

Read2. The first read operations on both ports are performed by the ADD instruc-

tion. The second read on port 2 is performed by the ST instruction and the last

two reads of both ports are performed by the BEQ instruction. The third and

fourth panel show the handshakes of the clear and write BF ports respectively. A

clear always precedes a write to eliminate possible instruction hazards. As can be

182

goon
	

1.2u
	

l.5u

/ReodtReq
6.0 	/Reod1A

5 .0 -

4.0 -

3.0

2.0

::

-1.0
0.0 	 300n 	 600n

60 	,: /Reo.2Ac

5.0

4.0

3.0 -

2.0

0.0

-1.o

	

0.0 	 300n 	 600n 	 900n

6.0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0 	 I 	 I

	

0.0 	 300n 	 600n

6.0

5.0

4.0

3.0

2.0

1.0

0.0

TI TA [1

LL UL L

	

0.0 	 300n 	 600n

900n

1.2u
	

1 .5u

1 .2u
	 1.5u

goon 	 1.2u 	
1
.5u

Figure 5.60: Simulation of the simple program - Register File Ports

183

seen by the diagrams, the register write of the second instruction (LI rO, 3) and

the register read of the third (ADD r4, r2, rO) coincide. Similarly, the register

write of the fourth instruction (LD r5, 0) coincides with the register read of the

fifth (ST r4, 0). By clearing the register valid bit possible register dependencies

between these instructions are respected. In the case of a RAW hazard. a register

read will not complete until the register valid bit is set, i.e. a pending register

write has written its result. Hence, this simple register locking mechanism syn-

chronises the instructions' data without the need for a centralised complex data

structure such as a scoreboard.

6.0 	AddAc.

5.0

4.0

1.0 • ft.

	

0.0 	 300n 	 600n 	 900n 	 1.2u 	 1.5u
•: /Cfin 	 v: (20 	 : /zl

6.0 -

5.0 -

4.0

3.0

2.0

1.0

0.0

-

	

0.0 	 300n 	 600n 	 goon 	 1.2u 	 1.5u
: /instr<17>

6.0 -, - ' MernATk[X

5.0

4.0 -

3.0 -

2.0 -

1.0

0.0

—1.0 	 I 	 I 	 I 	 -

	

0.0 	 300n 	 600n 	 gOOn 	 1.2u 	 1.5u

Figure 5.61: Simulation of the simple program - FU Handshakes

184

Figure 5.61 shows the FU handshakes. The top panel shows the handshake of

the adder, the middle one the handshake of the comparator and the bottom one

the handshake of the memory unit. The parallelism in the datapatli is also evident

here. Part of the addition handshake coincides with the load from memory. As

can be measured by the top panel, the addition (65 + 3) takes approximately

40ns and the comparison takes approximately 36ns.

5.5.2 SRF Addition Test

Figures 5.62 and 5.63 show the one and two-node addition programs respectively.

node 0
LI r8, 1
LI r9, 2

ADD riO, r9, r8
LI ru, 3
LI r12, 4

ADD r13, ru, r12
ADD r14, riO, r13

ST r14, 0

Figure 5.62: SRF Program - one node addition

The one-node addition program performs three sequential additions in order

to add four numbers together. The two-node program performs the first two of

these additions in parallel and then using a shared register adds their results, in

a similar manner to the program presented in Section 4.2.2.

node 0 node 1
L1r8,1 L1r8,3
L1r9,2 L1r9,4

[SW] ADD sr0, r9, r8 ADD riO, r9. r8
[SR] ADD ru, riO, sr24

ST_ru,_0

Figure 5.63: SRF Program - two node addition

As with the simple program, the value stored into memory, i.e. register r14

in the one-node program and register r1I in the two-node program, verify that

the program executes correctly. Both of these programs were simulated using

HSPICE and were found to produce the correct result (i.e. the number 10).

185

- j:T_

6.0 	: /fetch.cL0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0
0.0 - 	 lOu 	 2.Ou

Figures 5.64 and 5.65 show the HSPICE graphical simulation outputs of the

instruction fetch handshakes for the one-node and two-node programs respec-

t ively.

Figure 5.64: One-node SRF addition program simulation - Instruction Fetch

6.0 	;V

5.0

4.0

3.0

2.0

1.0

0.0 U

	

0.00 	 200n

—: Itetchreq...l
6.0 -. /fehack...1

5.0

4.0

3.0

2.0

1.0 LJL

	

0.00 	 200n

I 	 I 	. 	 . 	 . 	 -
400n 	 600n 	 SOOn 	 1.0Ou 	 1.20u

-. --------- .1. .-._..___ ------__I-.. 	I - 	- 	 . 	I

400m 	 600n 	 BOOn 	 l.øOu 	 1.20u

Figure 5.65: Two-node SRF addition program simulation - Instruction Fetch

In general. the timing of instruction fetching is not directly proportional to

the execution time of a program, as the fetching of an instruction depends on the

issue of the previous instruction into the datapath, not on the completion of its

186

execution. In this case however, the two programs that are being compared are

identical instruction per instruction. In addition, there is a chain of dependencies

between the instructions and all of the program instructions except the last one,

i.e. the store, use the write-back unit, and hence cannot be issued before their

predecessor has completed its execution. Therefore, in this case the instruction

fetch tunings are proportional to the instruction execution times.

For the one-node program after all the program instructions have been fetched

and issued, the fetch unit asserts the fetchreq signal at approximately 1.84,.tsecs.

For the two-node program, after the final instruction of node 1 has been fetched

and issued, the fetch unit asserts its fetchreq signal at approximately 1.lisecs.

These timings indicate that the two-node program is approximately 40.2% faster

than the one-node program. The speedup value is approximately 1.7.

5.6 Conclusions

In this chapter. the structure and implementation of the Al prototype processor

have been described. The Al prototype processor is a fully asynchronous, inet-

based, shared register file, dual-node multiprocessor architecture. The two pro-

cessor nodes are identical, and execute instructions independently of each other.

Communication between them can only take place through the shared register

mechanism. The two processor nodes use the met approach for exploiting fine-

grain parallelism at the instruction level. Time architecture of the nodes has been

described, along with the implementation of the various processor components

and their performance. Two test programs were shown to demonstrate and verify

the processors' operation, a simple single-node program and an addition program

which can run on one or both processor nodes. This demonstrated the ability to

exploit parallelism in the Itnet datapath.

187

Chapter 6

Conclusions and Future Work

The main outeonie of the work described in this thesis has been the design and

implementation of the Al prototype processor. The Al prototype was irnple-

menteci by combining together the various techniques described in the earlier

chapters. The control circuit design was implemented using the asynchronous

CMOS direct-mapped FSM approach, the /inet approach was used to implement

the architecture of the processor nodes, and communication between the nodes

was implemented using Shared Register Files.

The Al processor simulations have demonstrated that the processor func-

tions correctly as it correctly executes all of its instructions and it also correctly

executed the two test programs. The execution time of instructions is variable,

depending on the instruction type and its operands. The Al can exploit fine-grain

parallelism in the datapath between ioperations. It can also exploit program level

parallelism by executing parts of the same program on different nodes and com-

municating the results through shared registers. These results demonstrate the

implementation feasibility and viability of the approaches which were followed,

both at the circuit and at the architectural level.

6.1 Al Evaluation

6.1.1 Parallelism

The simulations demonstrated the potential of the Al to exploit fine-grain par-

allelism. The /ioperations of different instructions and their datapath operations

overlap. In particular, the toperation handshakes of the FUs, and the FU hand-

shakes themselves overlap. This fine-grain parallelism would not have been ex-

ploited by a pipeline, as all of these FU operations would have been merged into

a single pipeline stage. In addition, by exploiting asynchrony, the execution time

of instructions depends on the instruction type and on the operands of the in-

struction. These are all benefits of the Itnet approach; it can not only exploit

temporal parallelism, but both also spatial parallelism. By introducing SRFs and

implementing a dual-node architecture, program level concurrency can also be

exploited. With the dual-node architecture it is possible for the two processors to

run either independent code, or "threads" of the same program. These threads

can synchronise and communicate through the shared registers. Hence, explicit

communication instructions or locks for synchronisation are not necessary. As the

SRF approach is scalable, it is possible to increase the number of shared registers,

if more data need to be shared between threads, or the number of nodes, if more

threads executing concurrently are needed.

The amount of fine-grain parallelism which can he exploited depends on nu-

merous factors. The decoupling of [toperations is important. In the Al processor,

a latch register was not included at the output of the adder. This register could

be included in a revised design. The impact of the lack of this register is that the

addition toperation is delayed as the adder itself must wait until the data has

been written back. This reduces the amount of parallelism that can he exploited,

as another addition jioperation, if available, cannot be issued.

It can be concluded that to decouple operations which produce results it is

necessary to insert latch registers for both the inputs and for the output of the

operation.

6.1.2 Performance

It is common to use the clock frequency of a synchronous processor as a measure

of performance. A more accurate performance measure is the average number of

instructions executed per second, i.e. MIPS (Million Instructions Per Second).

But even this metric is riot accurate enough, as different instructions have different

execution times even on a synchronous machine, so the instruction rate is not

constant.

In an asynchronous processor, it is even harder to give a general measure of

performance, as the execution rate and thus the measurable performance of the

Al processor is even more variable depending on the program executed than that

of a synchronous processor. The ordering of instructions and the data that these

instructions operate on determine their execution rate, firstly because of the exe-

cution of instructions depends on the state of the datapath and the dependencies

between them and secondly because the latencies of the FUs are data-dependent.

To get an idea of the Al processor performance, the rate of instruction exe-

cution can be approximated by the test programs executed in Section 5.5. Un-

fortunately, it is impossible to accurately measure the instruction execution rate

because of the nature of the architecture. The instruction fetch rate can be mea-

sured though, giving an idea of performance. In the simple program, Section

5.5.1, each instruction takes approximatelly 228ns to be issued. In the SRF addi-

tion test program, Section 5.5.2, the average issue time for the one-node program

is 230ns and for the two-node program 22411s. From these timings an equivalent

average clock frequency can be calculated as 4.39MHz.

This clock frequency implies an approximately 228ns period for a synchronous

system. For the 0.7pm process used, the input to output, low-to-high gate delay

is approximately 0.6ns, whereas the high-to-low gate delay is approximately ins

(for an unloaded, minimum transistor-size gate).

Therefore, the performance of the Al processor is evidently not as good as

would be expected for a processor implemented using this technology. The reason

for this is not due to the processor architecture itself, but because little effort was

made to optimise the transistor sizing in the circuit implementation.

Most of the transistors in the Al design are minimum size, except for circuit

parts where sizing transistors was necessary in order to achieve correct circuit

operation. These parts include the register cells and the AFSM control circuits.

In addition, most control signals were not buffered to increase their drive strength,

except for the enable signals of the 32-bit registers, where CMOS chain buffers

were used. It is expected that the Al processor performance would be greatly

improved if the transistor sizes were optimal, but unfortunately, one of the early

decisions in this research was that it would be too time-consuming for transistor

sizing analysis to be performed.

6.1.3 Design Problems

The Al processor simulations also identified a minor design problem, which will

have to be rectified if the Al prototype is to he fabricated. It is a timing violation

which occurs in the memory output port for ST instructions.

The request signal for the memory write is not synchronised with the data

coming from the RF, hence violating the handshaking protocol. When the cir-

cuit was designed it was assumed that the data would have arrived by the time

the request was asserted. Unfortunately, this is not the case as the simulation

showed, which shows both the importance of simulation and the fact that such

global assumptions about relative delays should generally not be made. Solving

this problem requires additional synchronisation to be implemented between the

memory interface and the register read port. The external memory request should

190

only be asserted after the RF port has asserted its acknowledgement signal, Z'. e.

when the data is on the output bus. The logic required to implement this is

straightforward, one extra pull-down transistor and one metal route.

6.1.4 Silicon Areas

A practical aspect that the Al implementation demonstrated is the silicon area

required to implement the various processor components. Table 6.1 shows the

areas of some of the processor components.

Component MM
Shared Register File 26.3
Adder 1.1
Control Unit 0.5
Comparator 0.3
32-bit Latch Register 0.1

Table 6.1: Areas of various Al components

The largest, by far, is the size of the SRF, with the 32-bit adder being the

second largest component. This shows the importance of knowing the optimal

sizes of local and shared registers.

6.1.5 Testing

If the Al processor, or an evolution of it, is to he fabricated, its functionality

will have to verified. Testing the processor requires connecting it to a small

system. This must include asynchronous instruction and data memories, so that

the processor can fetch the instructions and read and write data. One quick and

cost-effective way of implementing them is using programmable logic. Then, the

processor and the two memories can be connected on an experimental board and

the system can he tested.

The testing mechanism that the Al processor contains is the STOP input pad.

The STOP input controls the instruction fetch, as was mentioned in Section 5.4.3.1.

By connecting this input to external logic and a switch it is possible to single step

the program being executed and the status of the datapath to be frozen at the

end of each instruction. To inspect the status of the datapath additional test pads

will have to added. For more thorough testing before the fabrication of this or

future versions of the prototype, Built-in Self-Test (BIST) [KBJND96] techniques

can be added.

191

One of the established BIST techniques is scanning. Scanning involves serially

loading, via an external test interface, the inputs of a circuit part, letting the

values propagate through the logic and then serially reading its outputs. This

technique permits loading of multiple inputs and reading of multiple outputs by a

single input and a single output pin. In this way the different circuit parts can be

tested. In synchronous circuits, scanning is implemented by serial shift registers,

also called scan chains.

Although the current implementation of the Al does not include BIST, the

design of the CMOS direct-mapped AFSMs can be extended so that a future

implementation will. Figures 6.1 and 6.2 contrast a conventional AFSM structure

with one with BIST additions.

Figure 6.1: Conventional CMOS direct-mapped AFSM structure

TE- TE-
TEAL

TE-

AFSM TCLKA
p - type

I

I

TI I 	p-type

Pull-up Pull-up
al

 dDFF

AFSM
TIH

TI I 	AF'SM
n - type n-type

Pull-do TCLKB ' 1Pull-do

TE-1 TE

Figure 6.2: CMOS direct-mapped AFSM with BIST additions

192

These 131ST additions allow for the loading and unloading of the AFSMs

states via a synchronous test interface. Five signals are added, TE (Test Enable),

TI (Test Input), TO (Test Output) and two clock signals (TCLKA and TCLKB). Six

transistors are added to each state gate of the AFSM structure. Two transistors,

one n-type and one p-type are connected to the n and p-type networks of the

AFSM in order to disable them during the scanning. The other four load the

state gate with the value of the TI signal, when TE is enabled. Under normal

operation, TE is deasserted arid this circuit part is disabled. The output of the

state gate is fed into a synchronous 2-phase D-type flip-flop, DFF, a possible circuit

design of which is shown in Figure 6.3.

W
d q

TCLKA 	 TCLKB

Figure 6.3: 2-phase synchronous DFF circuit

The outputs of the flip-flop, q and iq are fed into another state gate of the

AFSM. This structure forms, (luring the scanning, a synchronous shift register

between the AFSM states. The two clock signals, TCLKA and TCLKB. should be

non-overlapping. The D-type captures during the TCLKA active phase and passes

the value during the TCLKB active phase. By clocking these pins and supplying

input data through the TI input pin the states of an AFSM can be loaded.

Once the states of this AFSM have been loaded, the TE signal can be de-

asserted, and the AFSM will he allowed to operate. To verify that the circuit

operates correctly the AFSM states of the circuit part being tested and those of

its neighbours must be inspected. This is achieved via the TO test pin, which

is connected to one of the AFSM states. The state of the system is frozen by

asserting the TE signal and then, by clocking the synchronous latches, the AFSM

states are unloaded onto the TO pin at every clock cycle.

6.2 Future Work

The work carried out has demonstrated the implementation feasibility of both

Shared Register Files and inet architectures. The next step of this research is

architectural exploration of both techniques.

193

6.2.1 Shared Register File Architectures

The aim of an architectural level exploration of Shared Register File architec-

tures would be to investigate the performance impact that the register sharing

mechanism has on the execution times of real programs running on various SRF

architectures. The architectural exploration space for these SRF architectures

would include different SRF organisations, i.e. unidirectional, 2-way. 4-way, etc.,

and the architectural parameters of these organisations, i.e. the number of shared

sections per RF and the numbers of local and shared registers of each RF.

To perform architectural level simulations, access times for these various SRF

organisations are required. These can either be obtained by performing HSPICE

simulations of a particular organisation, which requires a transistor-level im-

plementation, or by mathematical modelling. i.e. extrapolation of access time

graphs. Another possibility is to derive an analytical SRF model, i.e. attempt to

estimate the access time of an SRF as a function of the individual circuit compo-

nents. These three different approaches vary in flexibility and accuracy. HSPICE

simulations are the most accurate. The accuracy of the other two models is

debatable.

The next requirement is the specification of an SRF architecture, and of course

the choice of a architectural simulation tool. Various architectural characteristics

must he specified. These include the number of SRF nodes, the structure of

each node, the number and distribution of FUs, the memory hierarchy and the

number of flows of control. The memory hierarchy organisation is of paramount

importance because it has a direct effect on the register sharing mechanism. For

example, if a unified cache is used between all the nodes, then this provides a

second level of variable sharing. The same holds for a unified memory. For

shared register files to be proven effective it has to be shown that communicating

register values through time shared registers is indeed better than using a unified

cache.

The problem of distributing instructions to the architectural nodes can be

solved more effectively by the compiler than by a hardware mechanism. This is

because the compiler will always have a larger window of instructions in view than

any hardware mechanism and it also has a global view of the program. Hence, a

parallelising compiler must be implemented. The task of the parallelising compiler

would be to convert a sequential program (or multiple sequential programs in the

case of multiple control flows) to multiple threads, one per architectural node,

which use the shared register mechanism for communication.

In order to realistically model the execution of real programs on these ar-

194

chitectures, appropriate benchmark programs must be selected. The choice of

benchmarks depends on their characteristics. Desired benchmark characteristics

include parallelisable programs, in order to exploit the shared registers, and se-

quential programs, to measure performance in the case where parallelisation is

not possible. In addition, the benchmarks must solve a real problem, so that they

model effectively the behaviour of a real program.

6.2.2 itnet Architectures

A scalar znet architecture has already been simulated at the architectural level

by Rebello [Reb96]. Although that work demonstrated the potential of the scalar

tnet, it did not study the performance scalability of the architecture or the effect

that architectural parameters have on the architecture. Hence, as with the SRF

approach, additional architectural level exploration is necessary for both scalar

and superscalar architectures. They have to be contrasted to conventional scalar

and superscalar architectures in order to verify that the benefits of fine-grain

parallelism are greater that the cost of a more complex datapath structure. In

addition, superscalar Itnets will have to account for the cost of arbitration between

multiple /iinstructions requesting the same ILblocks.

The jnet approach can benefit from compiler support. Even in a scalar inet

the ordering of instructions has an effect on performance due to the dependencies

between instructions and the use that they make of the datapath Lblocks. One

complicating factor is that the latency of the FU operations is variable and data

dependent. There is ongoing work in this area [SSOO].

6.3 Conclusions

Overall, this thesis presented the ClOS direct-mapped AFS\I approach as a

solution to the problems involved with asynchronous control circuit design, and

used this approach to demonstrate the implementation feasibility of Shared Reg-

ister Files and pnet-based architectures. Further architectural exploration of both

Shared Register Files and inet-based architectures is necessary to demonstrate

their performance on real programs.

195

Bibliography

[B1a92] 	G. M. Blair. MOS Circiii.t Design.: an explanation. Chartwell-Bratt,

1992.

[B1o59] 	E. Bloch. The Engineering Design of the Stretch Computer. In Fall

Joint Computer Conference, pages 48-59, 1959.

[BS89] 	E. Brunvand and R. F. Sproull. Translating Concurrent Programs

into Delay-Insensitive Circuits. In Proceedings of ICGAD, pp. 262-
265, 1989.

[CAD] 	CADENCE. Deep Submicron Design Problems. Cadence Web

Site. http://www. cadence. com/software/DeepSubmicron/dsm-

paper.html.

[CDN92] 	A. Capitanio, N. Dutt, and A. Nicolau. Design Considerations for

Limited Connectivity VLIW Architectures. Technical Report TR59-

92, University of California, Irvine. 1992.

[Chu87] 	T. A. Cliii. Synthesis of Self-Timed VLSI Circuits from Graph-

Theoretic Specifications. Technical Report MIT/LCS/TR-393,

Massachusetts Institute of Technology, June 1987.

[Com99] 	Compaq Computer Corporation. Alpha 21264 Microprocessor Hard-

ware Reference Manual, July 1999.

[CS96] 	C. Y. Chang and S. M. Sze, editors. ULSI Technology. McGraw

Hill, 1996.

[DCS93] 	A. Davis, B. Coates, and K. Stevens. Automatic Synthesis of Fast

Compact Asynchronous Circuits. In S. Furber and M. Edwards,

editors, Asynchronous Design Methodologies, volume A-28 of IFIP

Transactions. Elsevier Science Publishers, 1993.

196

[DL99] 	W. J. Daily and S. Lacy. VLSI Architecture: Past, Present and

Future. In Advanced Research in VLSI, Atlanta, 1999.

[DW95] 	P. Day and J. V. Woods. Investigation into Micropipeline Latch

Design Styles. IEEE Transactions on VLSI Systems, 3(2):264-272,

June 1995.

[End96] 	P. B. Endecott. SCALP: A Superscalar Asynchronous Low-Power

Processor. PhD thesis, Department of Computer Science, University

of Manchester, 1996.

[EUR] 	EUROPRACTICE. ES2 0.7tm CMOS technology documentation.

[FCJV97] 	K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vrazenic. The Multi-

cluster Architecture: Reducing Cycle Time Through Partitioning.

In Proceedings of the 30th International Symposium on MicroArchi-

tecture ('MICRO-30), 1997.

[FD96] 	S. B. Furber and P. Day. Four-Phase Micropipeline Latch Control

Circuits. IEEE Transactions on VLSI Systems, 4(2):247-253, June

1996.

[FDG94] 	S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods.

AMULET1: A Micropipelined ARM. In Proceedings of the IEEE

Computer Conference (COMPCON), pages 476-485, March 1994.

[Fer98] 	M. M. Fernandes. A Clustered VLIW Architecture Based on Queue

Register Files. PhD thesis, Department of Computer Science, Uni-

versity of Edinburgh, 1998.

[FGR97] 	S. B. Furher, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu,

and N. C. Paver. AMULET2e: An Asynchronous Embedded Con-

troller. In Proceedings of the International Symposium on Advanced

Research in Asynchronous Circuits and Systems, pages 290-299.

IEEE Computer Society Press, April 1997.

[Fis83] 	J. A. Fisher. Very Long Instruction Word Architectures and the

ELI-512. In 10th Symposium on Computer Architecture, pages 140-

150, New York, 1983. ACM Press.

[FJC95} 	K. R. Farkas, N. P. Jouppi, and P. Chow. Register File Consid-

erations in Dynamically Scheduled Processors. Technical Report

197

95/10, Digital WRL, 1995. http://www.research.digital.com:

80/wrl/techreports/abstracts/95.10.html.

[Gar93] 	J. D. Garside. A CMOS VLSI Implementation of an Asynchronous

ALU. In S. Furber and M. Edwards, editors, Asynchronous Design

Methodologies, volume A-28 of IFIP Transactions, pages 181-207.

Elsevier Science Publishers, 1993.

[GFC99] 	J. D. Garside, S. B. Furher, and S-H Chung. AMULET3 Revealed.

In Proceedings of International Symposium on Advanced Research

in Asynchronous Circuits and Systems, pages 51-59, April 1999.

[Hau93] 	S. Hauck. Asynchronous Design Methodologies: An Overview.

Technical Report TR 93-05-07, Department of Computer Science

and Engineering, University of Washington, Seattle, 1993.

[11o182} 	L. A. Hollaar. Direct Implementation of Asynchronous Control

Units. IEEE Transactions on Computers, Vol. G-31, No. 12, De-

cember 1982.

[Hor82] 	R. M. Hord. The Illiac-IV, The First Supercomputer. Computer

Science Press, Rockville, Md., 1982.

[HP90] 	J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, 1990.

[HT72] 	R. G. Hintz and D. P. Tate. Control Data STAR-100 Processor

Design. In COMPCON Digest, volume 1-4, 1972.

[Hwa93] 	K. Hwang. Advanced Computer Architecture: Parallelism, Scalabil-

ity, Programmability. McGraw-Hill, 1993.

[1BM97] 	IBM. Back to the Future: Copper Comes of Age ? IBM Re-

search Magazine No. 4, 1997. http://www.research.ibm.com/

resources/magazine/1997/issue-4/copper497.html.

[1C78] 	R. N. Ibbett and P. C. Capon. The Development of the MU-5

Computer System. Communications of the AcM, 21:13-24, January

1978.

[JC95] 	J. Janssen and H. Corporaal. Partitioned Register File for TTAs.

In Proceedings on the 28th Annual Sympsium on MicroArchitecture

(MICRO-28), 1995.

198

[Joh9l] 	M. Johnson. Superscalar Microprocessor Design. Prentice-Hall, En-

glewood Cliffs, NJ, 1991.

[KBJND96] B. Konemann, B. Bennetts, N. Jarwala, and B. Nadeau-Dostie.

Built-In Self-Test: Assuring System Integrity. IEEE Computer,

November 1996.

[KELS62] 	T. Kilburn, D. G. B. Edwards, M. J. Lanigan. and F. H. Sumner.

One-level storage system. IRE Transactions on Electronic Comput-

ers EU-li, pages 223-235, April 1962.

[KS82] 	D. J. Kuck and R. A. Stokes. The Burroughs Scientific Proces-

sor (BSP). IEEE Transactions on Computers, pages 363-376, May

1982.

[Ku11196] 	R. Kumar. Scalable Register File Organisations for a Multiple Issue

Microprocessor. lEE Electronic Letters, 32(7), 28th March 1996.

[KW76] 	D. J. Kinniment and J. V. Woods. Synchronisation and Arbitration

Circuits in Digital Systems. lEE Proceedings, 123:961-966, 1976.

[Ma119l] 	M. Morris Mano. Digital Design. Prentice-Hall, 1991.

[Mar90a] 	A. J. Martin. Programming in VLSI: From Communicating Pro-

cesses to Delay-Insensitive Circuits. In C.A.R. Hoare, editor, Devel-

opments in Concurrency and Communication, California Institute

of Technology, 1990. Addison 'Wesley.

[Mar90b] 	A. J. Martin. The Limitations to Delay-Insensitivity in Asyn-

chronous Circuits. In Advanced Research in VLSI. MIT Press, 1990.

[Mas9 1] 	MasPar. The MasPar Family Data-Parallel Computer. Technical

report. MasPar Computer Corporation, Sunnyvale, CA, 1991.

[Mat97] 	D. Matzke. Will Physical Scalability Sabotage Performance Gains

? IEEE Computer, September 1997.

[MBL89] 	A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J.

Hazewindus. The Design of an Asynchronous Microprocessor. In

Proceeding of Advanced Research in VLSI. pages 351-373, 1989.

[Met90] 	Meta-Software. HSPJE User's Manual H9001, 1990.

199

[Mil65] 	R. E. Miller. Switching Theory, Volume II: Sequential Circuits and

Machines. John Wiley and Sons, 1965.

[MLM97] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes,

R. Southworth, U. Cummings, and T. K. Lee. The Design of an

Asynchronous MIPS R3000 Microprocessor. In Proceedings of Ad-

vanced Research in VLSI, pages 164-181, September 1997.

[MOT97a] MOTOROLA. New Dual Inlaid Copper Interconnect. Motorola

Press Release, September 30 1997. http: //mot2. indirect. com/

press/htm1/PR970930A . html.

[Mot97b] 	Motorola, IBM. PowerPC 750 RISC Microprocessor Technical Sum-

mary, 1997.

[MSAD92] W. Mangione-Smith, S. G. Abraham, and E.S. Davidson. Register

Requirements of Pipelined Processors. In Proceedings of the 1992

International Conference on Supercomputing, pages 260-271, 1992.

[Mur89] 	T. Murata. Petri-Nets: Properties, Analysis and Applications. In

Proceedings of the IEEE, volume 77-4, pages 541-580, 1989.

[NUK94] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Tokamura.

TITAC: Design of a quasi-delay-insensitive Microprocessor. IEEE

Design and Test of Computers, 11(2):60-63, 1994.

[ONH96] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.

The Case for the Single-Chip Multiprocessor. In ASPLOS VII, Oc-

tober 1996.

[PDF98} 	N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and

J. Liu. A Low-Power, Low Noise, Configurable Self-Timed DSP. In

Proceedings of the International Symposium on Advanced Research

in Asynchronous Circuits and Systems, pages 32-42, 1998.

[PJS97] 	S. Palacharla, N. P. Jouppi. and J.E. Smith. Complexity-Efficient

Superscalar Processors. In Proceedings of the 24th Annual Sympo-

sium on Computer Architecture, 1997.

[PS82] 	D. Patterson and C. Sequin. A VLSI RISC. IEEE Computer, 15(9),

1982.

200

[Reb96] 	V. E. F. Rehello. On the Distribution of Control in Asynchronous

Processor Architectures. PhD thesis, Department of Computer Sci-

ence, The University of Edinburgh, 1996.

[Red73] 	S. F. Reddaway. DAP - A Distributed Array Processor. In Pro-

ceedings of the 1st Annual Symposium on Computer Architecture,

December 1973.

[RFS94] 	C. E. Molnar R. F. Sproull, I. E. Sutherland. The Counterfiow

Pipeline Processor Architecture. IEEE Design and Test of Comput-

ers, 11(3):48-59, 1994.

[Rus78] 	R. M. Russell. The CRAY-1 Computer System. Communications

of the ACM, 21:63-72, 1978.

[SBV95] 	G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Pro-

cessors. In Proceedings of the 22nd International Symposium on

Computer Architecture, 1995.

[Sha98] 	T. Shanley. Pentium Pro and Pentium II System Architecture.

Addison-Wesley, 1998.

[SS951 	J. E. Smith and G. S. Sohi. The Microarchitecture of Superscalar

Processors. Technical report, University of Wisconsin, 1995.

[SSOO] 	S. Sotelo-Salazar. Global Optimisation and Scheduling for Asyn-

chronous Processor Architectures. PhD thesis, Institute for Com-

puting Systems Architecture, Division of Informatics, University of

Edinburgh, 2000.

[Ste94] 	K. S. Stevens. Practical Verification and Synthesis of Low Latency

Asynchronous Systems. PhD thesis, Department of Computer Sci-

ence, The University of Calgary, September 1994.

[Sut89] 	I. E. Sutherland. Micropipelines. Communications of the ACM,

Volume 32, Number 6, 1989.

[Thi90] 	Thinking Machines Corporation, Cambridge, MA. The CM-2 Tech-

nical Summary, 1990.

[Tho64] 	J. E. Thornton. Parallel Operation in Control Data 6600. In AFIPS

Fall Joint Computer Conference 26, volume 2, pages 33-40, 1964.

201

[TKI97] 	A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku,

Y. Ueno, and T. Nanya. TITAC-2: An Asynchronous 32-bit Micro-

processor based on Scalable-Delay-Insensitive Model. In Proceedings

of International Conference on Computer Design, pages 288-294,

October 1997.

[TMI99] 	H. Terada, S. Miyata, and M. Iwata. DDMPs: Self-Timed Super-

Pipelined Data-Driven Multimedia Processor. In Proceedings of the

IEEE, volume 87 of 2, February 1999.

[Tom67] 	R. M. Tomasulo. An efficient algorithm for exploiting multiple arith-

metic units. IBM Journal for Research and Development 11:1, pages

25-33, January 1967.

[Ung69] 	S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley

Interscience, Department of Electrical Engineering, Columbia Uni-

versity, 1969.

[vB93] 	K. van Berkel. Handshake Circuits: An asynchronous architecture

for VLSI programming. Cambridge University Press, 1993.

[vGvBP+98] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann,

D. Gloor, and G. Stegmann. An Asynchronous low-power 80051

Microcont roller. In Proceedings of the International Symposium on

Advanced Research in Asynchronous Circuits and Systems, April

1998.

[Wat72] 	W. J. Watson. The TI ASC - A Highly Modular and Flexible Super

Computer Architecture. In AFIPSFJCC, volume 41, pages 221-228,

1972.

[WE93] 	N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI

Design 2nd Edition. Addison Wesley, 1993.

[YDN92] 	K. Y. Yun, D. L. Dill, and S. M. Nowick. Synthesis of 3D Asyn-

chronous State Machines. In Proc. International Conf. Computer

Design (ICCD), Cambridge, Massachusets, 1992.

202

