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Chiral α-branched allylic amines are important building 
blocks for organic synthesis, and several catalytic asymmetric 
methods have been developed for their synthesis. For 
example, enantioselective metal-catalyzed amination of 
allylic electrophiles[ 1 , 2 , 3 ] and rearrangement of allylic 
imidates[4,5,6] have proven to be highly effective. 

An alternative approach to chiral allylic amines that can 
be advantageous from the viewpoint of convergency is the 
catalytic enantioselective union of an alkenyl nucleophile 
with an imine.[7,8,9,10,11,12] In view of the widespread success 
of enantioselective Rh(I)-catalyzed additions of arylboron 
reagents to imines as a means to access chiral α-aryl branched 
amines,[13,14,15] development of the corresponding reactions of 
alkenylboron reagents to prepare chiral α-branched allylic 
amines should be an attractive goal. Surprisingly however, 
only very limited precedent exists for this transformation.[16] 

Brak and Ellman have developed highly diastereoselective 
Rh(I)-catalyzed additions of alkenylboron reagents to N-tert-
butanesulfinyl aldimines (Scheme 1A).[17] The only existing 
enantioselective variant is that of Shintani, Hayashi, and co-
workers who, as part of a study involving additions of 
potassium aryltrifluoroborates to N-sulfonyl ketimines, also  
described one example using an alkenyltrifluoroborate 
(Scheme 1B).[15c] Also of relevance is a single example of an 
enantioselective Rh(I)-catalyzed addition of an alkenylsilane 
to an N-sulfonyl aldimine.[ 18 ] Therefore, a general 
enantioselective Rh(I)-catalyzed addition of alkenylboron 
reagents to imines remains undeveloped. 

Herein, we demonstrate that cyclic imines are highly 
effective substrates for enantioselective Rh(I)-catalyzed 
additions of potassium alkenyltrifluoroborates,[19,20] providing 
products in excellent enantioselectivities and generally good 
yields. The cyclic structure of these imines, where the C=N 
bond is constrained in the Z-geometry, appears to be 
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Scheme 1. Rh(I)-catalyzed additions of alkenylborons to imines 

 
important for the success of the reactions.  

This study began with attempted alkenylation of acyclic 
imines 1a–1d with potassium (E)-1-hexenyltrifluoroborate (2 
equiv) at 80 °C in dioxane for 24 h in the presence of MeOH 
(5 equiv) and 1.5 mol% of the dimeric rhodium complexes 
derived from chiral diene ligands[21,22] L1[15a] or L2[23] (Table 
1). Given that imines 1a–1d are highly effective substrates 
for enantioselective Rh(I)-catalyzed additions of arylboron 
reagents,[14] and chiral diene L1 has provided excellent 
results in these types of reactions,[15a] we were surprised to 
learn that imine alkenylation was far from straightforward. 

 
Table 1: Attempted Rh-catalyzed alkenylation of various imines. 
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Entry Imine Ligand Product Yield [%][a] ee [%][b] 

1 
2 1a L1 

L2 3a <5 
<5 

n/a 
n/a 

3 
4 1b L1 

L2 3b 11 
80 

23 
7 

5 
6 1c L1 

L2 3c <5[c] 

<5[c] 
n/a 
n/a 

7 
8 1d 

L1 
L2 3d 45 

55 
43 
55 

9 
10 2a L1 

L2 4a 76 
>95 

96 
98 

[a] NMR yields calculated using nitromethane as an internal standard. 
[b] Determined by HPLC analysis on a chiral stationary phase. [c] 
Significant decomposition of 1c was observed.  
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 Tosylimine 1a and diphenylphosphinoylimine 1c were 
not viable substrates, and no alkenylation was observed using 
L1 (entries 1 and 5). In these reactions, imine 1a remained 
largely intact, but imine 1c underwent significant 
decomposition. While appreciable alkenylation was observed 
using L1 with both nosylimine 1b and N,N-
dimethylsulfamylimine 1d,the enantiomeric excesses of  the 
corresponding products were low (entries 3 and 7). Similar 
results were obtained using L2 as the ligand (entries 2, 4, 6, 
and 8), with the exception that alkenylation was significant 
with nosylimine 1b (entry 4).  

The results of entries 1–8 clearly highlight the difficulties 
of these alkenylation reactions compared with the 
corresponding arylations.[13−15] The mostly poor conversions 
into the desired products may be explained by the lower 
stability of alkenylrhodium species compared with 
arylrhodium species, which renders protodeboronation or 
other decomposition pathways highly competitive with imine 
addition.[24] However, it is more difficult to rationalize the 
low enantioselectivities obtained when alkenylation was 
successful (Table 1, entries 3, 4, 7, and 8). One factor to 
consider in all catalytic asymmetric additions to imines is the 
possibility of E/Z isomerization of the imine during the 
reaction, which usually has a negative impact upon 
stereoselectivity.[7a] Although this issue does not appear to be 
problematic for Rh(I)-catalyzed imine arylation,[13−15] we 
surmised that it could be important in imine alkenylation.  

To test this theory, the alkenylation of benzoxathiazine-
2,2-dioxide 2a, a cyclic imine where E/Z isomerization is 
precluded, was examined. Surprisingly, to our knowledge, 
benzoxathiazine-2,2-dioxides have been virtually unexplored 
as electrophiles for carbon nucleophiles.[ 25 , 26 ] We were 
therefore delighted to observe that under conditions identical 
to those employed for imines 1a–1d, imine 2a provided the 
alkenylation product 4a in high conversions and 
enantioselectivities (Table 1, entries 9 and 10), with ligand 
L2 giving the best results (entry 10).[27]  
 Under the optimized conditions, imine 2a smoothly 
 
Table 2: Alkenylation of benzoxathiazine-2,2-dioxide 2a. 
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Entry Trifluoroborate Product Yield [%][a] ee [%][b] 

1 KF3B
n-Bu  4a 90 98 

2 KF3B
 4b 75 98 

3 KF3B
Me  4c 79 97 

4 KF3B
Cy  4d 94 99 

5 KF3B
PMP  4e 88 95 

6 
KF3B

Me

Me  
4f 94 94 

[a] Isolated yields. [b] Determined by HPLC analysis on a chiral 
stationary phase. PMP = para-methoxyphenyl. 

reacted with various alkenyltrifluoroborates[ 28 ] containing 
alkyl (Table 2, entries 1, 3, and 4) or aryl (entry 5) 
substituents at the β-carbon to provide alkenylation products 
in good yields and high enantioselectivities (95–99% ee). In 
addition, vinylation was successful (entry 2), and substitution 
at the α-carbon of the alkenyltrifluoroborate was tolerated 
(entry 6). Interestingly, conducting the experiments in entries 
2 and 3 with the corresponding alkenyl MIDA boronates in 
place of the alkenyltrifluoroborates under conditions 
described by Brak and Ellman[17b] provided only <20% 
conversion into 4b and 4c, respectively. 

Table 3 presents the alkenylation of more highly 
substituted benzoxathiazine-2,2-dioxides. Imines containing a 
range of arene substituents (including methyl, methoxy, 
chloro, bromo, and fluoro) at various positions were 
competent substrates, providing alkenylation products in 
≥81% yield and ≥94% ee (products 5a–5i). However, the 
reaction of potassium vinyltrifluoroborate with a 
benzoxathiazine-2,2-dioxide containing the electron-donating 
dioxole group provided 5j in only 50% yield, though in 97% 
ee.  Presumably, the modest yield observed here is due to the 
greater propensity of potassium vinyltrifluoroborate to 
undergo protodeboronation compared with its more sterically  

 
Table 3: Alkenylation of various benzoxathiazine-2,2-dioxides.[a] 
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[a] Cited yields are of isolated material. Enantiomeric excesses were 
determined by HPLC analysis on a chiral stationary phase. PMP = 
para-methoxyphenyl. 
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hindered counterparts, a problem that is compounded by the 
lower electrophilicity of this imine. As expected, a more 
highly substituted alkenyltrifluoroborate provided better 
results, with 5k being formed in 93% yield and 94% ee. 
Finally, the benzoxathiazine-2,2-dioxide derived from 2-
hydroxy-1-naphthaldehyde was also a suitable substrate, 
though the steric hindrance associated with this imine led to 
the product 5l being formed in a modest 55% yield. 

Cyclic N-sulfonyl ketimine 6 was also a viable substrate, 
providing sultam 7 in 68% and 90% ee [Eq. (1)].[29] This 
result further confirms the beneficial effect of a cyclic imine 
structure, and demonstrates that the high efficiency of these 
reactions is not confined to benzoxathiazine-2,2-dioxides. 
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 The sense of enantioinduction of these reactions[27] is 
consistent with the stereochemical model proposed for the 
1,4-arylation of cyclic enones.[21a] Following this model, 
binding of the imine to the chiral diene-ligated 
alkenylrhodium species is suggested to occur in a manner 
that minimizes unfavorable nonbonding interactions between 
the imine activating group and one phenyl substituent of the 
ligand (Figure 1). Carborhodation from the re-face of the 
imine then occurs to eventually provide the product.[30,31] 

 

 

Figure 1. Possible stereochemical model for the formation of 4. 
 

 Scheme 2 illustrates the utility of the alkenylation 
products. Aryl sulfamates have recently been shown to be 
highly effective in a range of nickel-catalyzed cross-coupling 
reactions.[ 32 , 33 , 34 ] For example, Wehn and Du Bois have 
described Kumada couplings of cyclic aryl sulfamates,[32b] 
and Garg and co-workers have developed Suzuki–Miyaura 
reactions of their acyclic counterparts.[33a,b] It was therefore of 
interest to ascertain whether nickel-catalyzed Suzuki–
Miyaura reactions would be successful with cyclic aryl 
sulfamates derived from the alkenylation products of this 
study. To this end, 4a was converted into cyclic sulfamate 8 
by alkene hydrogenation followed by N-methylation. 
Gratifyingly, application of Garg’s conditions[33a,b] for 
Suzuki–Miyaura coupling of 8 with PhB(OH)2 smoothly 
delivered the biaryl compound 9 in 72% yield after acid-
mediated cleavage of the sulfamic acid intermediate. 

Next, a hydroboration/oxidation sequence of 4b gave 
alcohol 10 in 91% yield. Treatment of 8 with LiAlH4 at 
reflux[35] followed by Boc2O provided carbamate 11, which 
was then converted into chroman-4-amine 12 via a 
Mitsunobu cyclization. Chroman-4-amines appear as core 
scaffolds in several drug discovery programs, for example in 
the human bradykinin B1 receptor antagonist 13.[36] 

Finally, N-allylation of 4b gave diene 14 which 
underwent efficient ring-closing metathesis using the 2nd 
generation Grubbs catalyst[ 37 ] to give dihydropyrrole 15. 
Dihydroxylation of 15 from the least hindered face followed 
by acetonide protection of the resulting diol provided 16, 
which was then transformed into the biaryl-containing 
dihydroxylated pyrrolidine 17 in 84% yield by nickel-
catalyzed Kumada coupling with PhMgBr and acidic workup 
according to the method of Wehn and Du Bois.[32b]  2-Aryl 
dihydroxylated pyrrolidines similar to 17 are of interest as 
potential glycosidase inhibitors.[38] 

In conclusion, the first enantioselective Rh-catalyzed 
additions of alkenylboron compounds to cyclic imines have 
been described. The cyclic structure of these imines, where 
the C=N bond is constrained in the Z-geometry, appears to be 
important, allowing alkenylation to proceed in generally good
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Scheme 2. Further transformations of alkenylation products 
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yields and high enantioselectivities (≥94% ee). Moreover, 
products containing aryl sulfamates may be exploited in 
subsequent reactions, including nickel-catalyzed cross- 
couplings, to generate further useful compounds.  
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Enantioselective Rhodium-Catalyzed 
Addition of Potassium   
Alkenyltrifluoroborates to Cyclic Imines  

Fixed: Cyclic imines, where the C=N 
bond is constrained in the Z-geometry, 
have been identified as highly effective 
substrates for enantioselective rhodium-
catalyzed additions of potassium 
alkenyltrifluoroborates. Not only is the 
alkene in the products a useful 

functional handle for subsequent 
manipulations, products containing aryl 
sulfamates may be employed in nickel-
catalyzed Suzuki-Miyaura and Kumada 
couplings to generate further 
compounds of interest. 

 
 
 
 
 
 


