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Abstract

We address the problem of dynamic user modelling for referring expression gen-

eration in spoken dialogue systems, i.e how a spoken dialogue system should choose

referring expressions to refer to domain entities to users with different levels of domain

expertise, whose domain knowledge is initially unknown to the system. We approach

this problem using a statistical planning framework: Reinforcement Learning tech-

niques in Markov Decision Processes (MDP).

We present a new reinforcement learning framework to learn user modelling strate-

gies for adaptive referring expression generation (REG) in resource scarce domains

(i.e. where no large corpus exists for learning). As a part of the framework, we present

novel user simulation models that are sensitive to the referring expressions used by

the system and are able to simulate users with different levels of domain knowledge.

Such models are shown to simulate real user behaviour more closely than baseline user

simulation models.

In contrast to previous approaches to user adaptive systems, we do not assume that

the user’s domain knowledge is available to the system before the conversation starts.

We show that using a small corpus of non-adaptive dialogues it is possible to learn an

adaptive user modelling policy in resource scarce domains using our framework. We

also show that the learned user modelling strategies performed better in terms of adap-

tation than hand-coded baselines policies on both simulated and real users. With real

users, the learned policy produced around 20% increase in adaptation in comparison

to the best performing hand-coded adaptive baseline. We also show that adaptation to

user’s domain knowledge results in improving task success (99.47% for learned pol-

icy vs 84.7% for hand-coded baseline) and reducing dialogue time of the conversation

(11% relative difference). This is because users found it easier to identify domain

objects when the system used adaptive referring expressions during the conversations.
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Chapter 1

Introduction

Spoken dialogue systems (SDS) are becoming popular and successful both in academic

research and in industry with advances in speech and dialogue research. This has re-

sulted in the development of industrial standards like Voice XML, SCXML, SRGS,

SISR, PLS, SSML,1 etc. However this success has been limited to information seeking

dialogue tasks like getting flight or restaurant information. Industry is now venturing

into using dialogue systems for collaborative problem solving in technical domains,

where a system plays a role of a domain expert to help its users (Acomb et al. (2007);

Boye (2007); Williams (2007)). Examples of technical domain tasks include 1) helping

users with a high-functionality software application like MS-Excel, etc, 2) supporting

users in troubleshooting malfunctioning gadgets like laptops, mobile phones, etc, 3)

helping users install broadband Internet connections and 4) helping users learn how to

use complex gadgets like digital cameras, mobile phones, etc. In such technical tasks,

the system must be able to identify the domain knowledge levels of its current user and

adapt its instructions accordingly. Similarly, in domains like town information where

dialogue systems are deployed as tour guides to help tourists navigate the town, the

system should be able to adapt to varying levels of the user’s knowledge of the town

when giving them directions and tour plans. As dialogue systems progress to tackle

more and more complex domains, the knowledge of the domain in both dialogue part-

ners becomes a major factor determining the success of the conversation. Therefore,

in order to be natural and successful, dialogue systems should be able to use the do-

main communication knowledge appropriately to adapt to its users (Rambow (1990);

1Voice XML, State Chart XML, Speech Recognition Grammar Specification, Semantic Interpreta-
tion for Speech Recognition, Pronunciation Lexicon Specification, Speech Synthesis Markup Language,
etc are standards developed by World Wide Consortium (www.w3.org) to standardize voice enabled web
technologies.

1



Chapter 1. Introduction 2

Kittredge et al. (1991)).

In this thesis, we focus on one of the important dimensions of adaptation in system

utterances: referring expressions (RE). Referring expressions are linguistic expres-

sions that are used to refer to the domain objects of interest. Ideally, there are different

ways of referring to the same domain entity and therefore such expressions have to be

tailored to the user’s knowledge of the task domain. A co-operative dialogue system

whose goal is to provide users with instructions or information effectively must be able

to choose the most appropriate expressions in its utterances. Traditionally, the refer-

ring expression generation (REG) task includes selecting the type of expression (e.g.

pronouns, proper nouns, common nouns, etc), selecting attributes (e.g. colour, type,

size, etc) and realising them in the form of a linguistic expression. However, in this

thesis, we focus only on the user modelling aspects of referring expression generation.

User modelling and user adapted interaction has been one of the major research

trends in the Artificial Intelligence community (see section 2.1). The objective of

user modelling is to make interactive information systems gather information about

their users and present information adapted to a variety of users. This is done by

maintaining a user model, which stores relevant information about the user (Kobsa

and Wahlster (1989); Kass (1991); McTear (1993)). User models and modelling tech-

niques have been used in a variety of information systems like information retrieval,

question-answering, dialogue systems, etc. While some systems use pre-configured

static user models, others use user modelling techniques based on hand-coded rules and

supervised learning methods to dynamically populate and use user models (see section

2.1.2). Dynamic user models contain information about the user that can be modified

or revised by the system during the course of the conversation (McTear (1993)). In the

case of dynamic models, information is obtained from users either explicitly by asking

them for relevant information or implicitly inferred using rules.

In this thesis, we present a reinforcement learning (RL) approach to user modelling

in a dialogue setting. We present the user modelling problem as a Markov Decision

Process and use reinforcement learning algorithms to learn optimal actions to model

unknown users dynamically and to adapt to them by choosing the appropriate referring

expressions. We will show that a user modelling strategy can be learned from limited

training data in terms of the size of the corpora and domain expertise and that such

learned strategies will be able to dynamically sense the users’ initial knowledge levels

using unobtrusive methods and to present adapted information to them. We also show

that strategies learned using our framework outperform hand-coded strategies for user
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modelling built using limited training data and domain expertise.

1.1 Motivation

Why must interactive systems adapt to their users? A number of studies from human-

computer interaction, linguistics, science communication, psycholinguistics and edu-

cational psychology (listed below) have shown that it is indeed beneficial for interac-

tive systems to adapt to users on various dimensions, because such adaptation increases

task success and makes the interaction more natural and comfortable.

1.1.1 Human-Computer Interaction (HCI)

Usability studies suggest that systems should be able to adapt to different users with

different domain expertise levels (Eberts (1994); Nielsen (1993)). Inappropriate use

of referring expressions in instructions has been identified as a serious problem affect-

ing a system’s usability (Molich and Nielsen (1990)). Adaptation to users in human-

computer interaction systems has been widely studied since (Carberry (1983)). User

models containing information about the users provide adaptive systems with the capa-

bility to distinguish between different kinds of users and tailor their reaction based on

the user’s attributes (Rich (1999); Brusilovsky and Maybury (2002)). Several dialogue

researchers have shown that adaptation at different levels to different attributes of the

user have improved the performance of dialogue systems (Walker et al. (2004); Hassel

and Hagen (2005); Winterboer and Moore (2007); Forbes-Riley and Litman (2010)). It

has been shown that systems that are adaptive to users’ expertise are more usable and

achieve higher user satisfaction scores (Hassel and Hagen (2005)). For example, stud-

ies have shown that a system that adapts dialogue initiative strategies to the ASR error

conditions at the user’s end performed better than ones that did not in terms of task

success rate (Litman and Pan (1999, 2002); Chu-Carroll and Nickerson (2000b)). In

addition, Walker et al. (2004) show that users rate systems that tailor information to the

preferences of the users much more highly than a baseline system. Similarly, Winter-

boer and Moore (2007) showed that user-tailored information presentation improved

task success and reduced dialogue duration. Studies have also shown that tutorial dia-

logue systems adapting to learners’ certainty in responses improves their learning gain

(Forbes-Riley and Litman (2009a,b, 2010)).
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1.1.2 Linguistics

Gricean maxims describe the principles of cooperative behaviour in a conversation

(Grice (1975)). These maxims govern the contribution made by each interlocutor in a

cooperative conversation. In particular, the maxim of manner suggests that contribu-

tions should be brief and orderly and that they should not be ambiguous or obscure.

Therefore, the system should produce referring expressions that are not ambiguous

to the users. Using expressions that the user cannot resolve because of their lack of

knowledge is a kind of ambiguity. A technical expression, that is unknown to the user,

is ambiguous since it can be taken to be denoting any of the domain entities in the

task. Dale (1988, 1989a) suggests that one of the principles to adhere to in REG is the

principle of sensitivity: REs generated should take into account the hearer’s domain

knowledge. In addition, Reiter (1991b,a) points out that using inappropriate expres-

sions could confuse users and make it hard for them to understand what the system is

implying. Let us consider the following examples.

1. “There is a shark in the water”

2. “There is a dangerous fish in the water”

The intention of the speaker in example 1 is not only to inform the hearer of the

fact that there are sharks in the water but also to caution the hearers (or users) that

it is dangerous to venture into the water. A knowledgeable user would know that

sharks are dangerous and therefore this utterance perfectly communicates the speaker’s

intention to the user. But for those users who know nothing about sharks, one should

use example 2 instead. The two utterances are not interchangeable as they would

produce unwanted implications when directed to the wrong kind of user. Using the

second one with knowledgeable users would confuse them as to why the system is not

using the word “shark” and cause them to wonder whether there is some importance

in using the words “dangerous fish” instead. The user may be led to think that the

fish in the water is not a shark, but something else that he/she might not know about,

which is clearly not the case here. Similarly, with naive users the former form would

not produce the intended inference. Therefore, the system must produce appropriate

referring expressions based on the user’s domain knowledge to avoid what is called

false conversational implicatures.
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1.1.3 Technical/Science communication

Studies on technical/science communication always advise speakers/writers to anal-

yse and adapt to the audience (McMurrey (2001)). This is called Audience Analysis.

Paris (1988) points out that a variety of technical texts like adult encyclopedias, junior

encyclopedias, manuals and text books follow different strategies to present the same

subject matter. The text in adult encyclopedias is directed at an expert audience who

have more knowledge than the audience for text books and junior encyclopedias. How-

ever, manuals are written for professionals who are more knowledgeable than the adult

encyclopedia readers. Authors use different strategies based on the kind of modalities

available to them and the kind of audience they are targeting. These observations are

very much applicable to dialogue systems interacting with users with different levels

of background domain knowledge. Therefore, in order to be successful, dialogue sys-

tems should also adapt to their users. For expert users, the system could use technical

terms and for novice users use descriptive terms.

Similarly, during oral presentations to lay people, presenters are advised to avoid

jargon and abbreviations (Lucas (2003); Beebe and Beebe (2003)). Even the content of

the talk could be tailored to the audience’s knowledge levels in order to make the talk

interesting and useful. Although technical writing and oral presentations are not the

same as technical conversations, the same principles can be applied here. Therefore,

we believe that conversations, in any domain where the users’ knowledge of the domain

can play a part in their success, should be at the level of the user’s understanding in

order to be useful.

1.1.4 Psycholinguistics

Adaptations, as described above, are very natural in human conversations. In human-

human conversations, dialogue partners gauge each other’s domain expertise levels

during the conversation using cues available from each other’s utterances. Issacs and

Clark (1987) show how two interlocutors adapt their language in a conversation by as-

sessing each other’s domain expertise during dialogue, by observing how they react to

each other’s referring expression choices. Based on their observations, dialogue part-

ners predict the knowledge pattern of their partner and carefully adapt to their level of

expertise. If their predictions are wrong, they simply use the evidence to quickly alter

their predictions and adapt again for the benefit of their partner. They behave this way

to maximize their chances of being understood. This process has been called align-
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ment through Audience Design (Clark and Murphy (1982); Bell (1984); Clark (1996)).

Clark and Murphy suggest that the dialogue partners adapt to each other by predicting

each other’s community membership. For instance, when a doctor talks to his new pa-

tient, he might start using simple and easy to understand words. But when he observes

that his infrequent jargon is also well received by his patient and that his patient’s re-

sponses contain medical jargon, he might realise that his patient is himself a medical

doctor and their conversation changes to contain more jargon expressions and medical

terms (Clark and Murphy (1982)). A closer look into such efficient adaptation shows

that the model of the dialogue partner keeps changing dynamically during the course

of the dialogue and records what his partner knows that is of interest to the current con-

versation. More importantly, the speaker is able to predict what else his partner might

know based on what he already knows about his partner. Such adaptive behaviour is

very much desirable in a dialogue system where users have different levels of back-

ground knowledge about the domain and their domain knowledge is not available to

the system before the conversation starts.

1.1.5 Educational Psychology

Adapting to the user’s domain knowledge is pedagogically beneficial too. Studies in in-

structional science emphasize the importance of accounting for a learner’s prior knowl-

edge in designing instructional material. Studies in Educational Psychology explain

why information presented to novices can also not be presented to expert users. Expert

learners tend only to benefit from complex instructions that challenge their domain

skills and simplified problems or instructions tend to be beneficial to novice users only

(Kalyuga (2003)). Kalyuga (2007) presents a number of empirical studies that show

that complex instructions (or information) are detrimental to novices but are good for

expert learners, and that simple instructions that are helpful to novices are detrimental

to expert users since they increase their cognitive load considerably to process redun-

dant information. Inappropriate levels of instruction produce wasteful cognitive load

that is not useful for learning. For experts, simplified instructions and detailed worked-

out steps induce unnecessary working memory load and distract them from focussing

on the essentials (Renkl and Atkinson (2007); Wittwer and Renkl (2008)). Kalyuga

(2009) studied two types of instruction - dynamically adaptive and non-adaptive with

learners having different levels of prior knowledge. The study showed that adaptive

instructions were better in terms of cognitive load, instruction time, and instructional
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efficiency.

Clearly, all the above studies emphasize the need for adaptation to the user’s do-

main knowledge level so that the user is presented with appropriate information and

by doing so increases task success, avoids unnecessary clarification subdialogues and

repair episodes and decreases the user’s cognitive load.

1.2 Challenges in dynamic user modelling

One of the important issues in adaptation is sensing the system’s prior knowledge of

the user. It is currently taken into account by state-of-the-art REG algorithms by query-

ing an internal user model that has information about user’s knowledge. It precisely

answers the question whether the user would be able to relate the referring expres-

sion made by the system to the intended referent. The state-of-the-art REG algorithms

(Dale (1988); Reiter and Dale (1992, 1995); Krahmer and Theune (2002); Krahmer

et al. (2003); Belz and Varges (2007); Gatt and Belz (2008); Gatt and van Deemter

(2009)) handle this problem using static user models. These user models are used to

verify whether the user knows or would be able to determine whether an attribute-value

pair applies to an object. So, if the user cannot associate an attribute-value pair (e.g.

< category,recliner >) to the target entity x, then the user model would return false.

On the other hand, if he can associate the pair < category,chair > to x, the user model

would return true. This would inform the algorithm to choose the category “chair” in

order to refer to x. Therefore, using an accurate user model, an appropriate choice can

be made to suit the user.

But how would a system adapt when the user’s knowledge is initially unknown

during run-time? In such cases, accurate user models will not be available to the sys-

tem beforehand and therefore, the state-of-the-art attribute selection algorithms cannot

be used in their present form. They need better user modelling to cope with unknown

users. In order to deal with unknown users, a system should be able to learn about

the user’s domain knowledge (partially) during the course of interaction by sensing

information about the user’s knowledge and populate the user model, and to use this

to predict the rest of the user’s domain knowledge and adapt effectively. This is called

dynamic user modelling. The more information the system has in its user model, the

easier it is to predict the unknown information about the user and choose appropriate

expressions accordingly. This is because of the fact that there are different underly-

ing knowledge patterns for different communities of users. Novice users may know
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technical expressions only for commonplace domain objects. Intermediates may have

knowledge of a few related concepts which form a subdomain inside a larger domain

(also called as local expertise by Paris (1984)). Experts may know almost all the do-

main objects. Therefore, by knowing more about a user, the system can easily identify

his/her community and more accurately predict the user’s knowledge that the system

is not privy to yet. There are three important steps in user modelling in this sense-

predict-adapt approach:

1. Sensing the user’s traits: How and when should the system seek information to

populate the user model?

2. Adapting to the user: How can the system use an incomplete and probably a

slightly inaccurate user model to predict unknown information about the user

and adapt to him/her?

3. Modifying the utterance: How can the system modify its utterance to suit the

user’s domain knowledge based on its model of the user?

Mairesse and Walker (2010) also present a three step process to adaptation. How-

ever their focus is on the third step where they explore in detail how the adaptation

parameters can be realised in the system utterances. In this thesis, we use a template

based generator to handle the last step and our focus is primarily on the first two steps:

sensing and adapting to the user.

One approach to sensing is to elicit information from users explicitly or implic-

itly in order to populate the user model dynamically during the interaction. In some

dialogue systems, explicit pre-task questions about the user’s knowledge level in the

domain are used so that the system can produce adaptive utterances (McKeown et al.

(1993)). However, it is hard to decide which subset of questions to ask in order to

help prediction later even if we assume conceptual dependencies between referring ex-

pressions. Another approach is to ask users explicit questions during the conversation

like “Do you know what a broadband filter is?” (Cawsey (1993)). Such measures are

taken whenever inference is not possible during the conversation. It is argued that ask-

ing such explicit questions at appropriate places in the conversation makes them look

less obtrusive. However, we believe that this approach is very time consuming and

obtrusive for large tasks and therefore sensing should be as unobtrusive as possible.

Another issue in user modelling is to be able to use the sensed information to pre-

dict unknown facts about the user’s knowledge. Rule-based and supervised learning
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approaches have been proposed to solve the problem of adapting to users. Rule-based

approaches require domain experts to hand-code the relationship between domain con-

cepts and rules to infer the user’s knowledge of one concept when his/her knowledge

of other concepts is established (Kass (1991); Cawsey (1993)). Hand-coded policies

can also be designed by dialogue system designers to inform the system when to seek

information in order to partially populate the user model (Cawsey (1993)). However,

hand-coding adaptation policies can be difficult for large and complex tasks. Similarly,

supervised learning approaches like Bayesian networks can be used to specify the re-

lationship between different domain concepts and can be used for prediction (Akiba

and Tanaka (1994); Nguyen and Do (2009)). It is also not clear how information can

be sought unobtrusively from the user when using a Bayesian network approach.

While rule based approaches require domain experts to write down explicit infer-

ence rules, supervised learning approaches require large corpora of expert-lay-person

interactive dialogues. In such a corpus, the expert should have exhibited adaptive be-

havior with users of all types. However, corpora of expert-layperson interaction or ex-

perts with both domain knowledge and experience in interaction with all kinds of users

are scarce resources. Another issue is that domain experts suffer from what psycholo-

gists call the curse of expertise (Hinds (1999)). It means that experts have difficulties

communicating with non-experts because their own expertise distorts their prediction

about non-experts. Such inaccurate predictions lead to underestimating or overestimat-

ing the non-expert’s capabilities. We therefore believe that, in resource scarce domains,

it would be beneficial if such predictive rules for adaptation be learned using as less

data as possible with little or no input from domain experts.

Our objective therefore in this study is to build a framework that can address the

following two challenges:

1. Unobtrusive dynamic user modelling

2. User modelling with limited data and domain expertise

Another important point to note is that users may learn new referring expressions

during the course of the interaction, and therefore the user’s domain knowledge may be

dynamically changing. We restrict ourselves to modelling and adapting to the initial

knowledge state of the user. However, we believe that modelling and adapting to a

dynamically changing user knowledge state would be an interesting extension to our

current work.
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1.3 Adaptive REG using Reinforcement Learning

Reinforcement Learning (RL) is a set of machine learning techniques in which the

learning agent learns the optimal sequence of decisions from the feedback it gets from

its environment (Kaelbling et al. (1996); Sutton and Barto (1998)). Reinforcement

learning has been widely used to learn dialogue management policies that decide what

dialogue action the system should take in a given dialogue state (Levin et al. (1997);

Eckert et al. (1997); Williams and Young (2003); Cuayahuitl et al. (2005); Henderson

et al. (2005)). A policy (or strategy) is a data structure that maps the system’s various

states to one of the actions that it can take in its environment. Reinforcement learning

techniques are used to automatically learn policies that select the most “optimal” action

in any given system state. Recently, Lemon (2008); Rieser and Lemon (2009b) have

extended this approach to natural language generation (NLG) to learn NLG policies

to choose the appropriate attributes and strategies in information presentation tasks.

However, the application of RL for generation of referring expressions to unknown

users based on user’s domain knowledge has never been tried before.

Our hypothesis is that, reinforcement learning can be applied to the task of user
modelling for adaptive referring expression generation where learned policies
would adapt to co-operative users with different levels of domain knowledge
using unobtrusive sensing methods and that such adaptation can be learned

using limited resources in terms of data and domain expertise.

In this thesis, we first design the framework and build an RL agent to learn a user

modelling policy from a hand-coded user simulation. We chose to study this problem

in a technical support dialogue system that chooses between two kinds of expressions:

technical and descriptive. Technical expressions (or jargon) are very specific names

given to the entity and are known only to experts in the domain. Descriptive expres-

sions, as the name suggests, are more descriptive and general. Although, the choices

may be motivated by different reasons, we focus only on getting the user with different

domain knowledge levels to identify the target entity. By domain knowledge, we mean

the user’s capability to identify domain objects when the system uses jargon expres-

sions to refer to them. This is also called domain communication knowledge (Rambow

(1990); Kittredge et al. (1991)). Therefore, this means that an expert user as defined in

this thesis will not necessarily be able to reason about domain entities in terms of their

functionality and how they relate with each other. It simply means that he will be able

to identify the domain entities using jargon expressions.
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The agent learns to adapt to users whose domain knowledge levels are unknown at

the start of the conversation unobtrusively. It adapts by choosing the type of referring

expression that is the most suitable to the current user. It learns the user’s expertise

level in the domain and adapts accordingly as the conversation proceeds. We verified

the validity of our framework empirically by training the agent to learn with real user

data and evaluated it with both user simulations trained using real user data, and later

directly with real users. We first collected relevant data, including dialogues between

real users and a “wizarded” dialogue system, using our data collection framework (see

chapter 5). We then used this data to build user simulation models that simulate the

real users’ dialogue behaviour (see chapter 6). Using the data-driven user simulation

models, we train our reinforcement learning agent to learn user modelling policies to

adaptively generate referring expressions to different users dynamically. Finally, we

evaluated the learned policies with simulated users and real users (see chapters 7 and

8). Figure 1.1 shows the step-by-step approach that we have followed in this study

to build and validate the data-driven RL framework. Arrows represent how each step

feeds into other steps in terms of design and data.

Figure 1.1: Building a data-driven RL agent
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1.4 Contributions

1.4.1 RL Framework for User modelling for Adaptive REG

This thesis presents a reinforcement learning framework for modelling users’ knowl-

edge unobtrusively and adapting dynamically to users with different levels of domain

expertise by choosing appropriate referring expressions in spoken dialogue systems.

We show how to model the user modelling problem as a Markov Decision Process.

We show that, in this framework, the learning agent not only learns to senses informa-

tion and adapts to users but also learns to trade off between sensing information and

adapting, such that its adaptation to the user is “optimal”. We also show that the agent-

learned policies generalize very well to users unseen during the training phase. We

validate our framework by first training and testing the agent’s learned policies using

data-driven user simulation models and later evaluating them on real users. We show

that results from evaluation with simulated users transfer to evaluation with real users

as well. We show that the learned policies adapted better than adaptive hand-coded

policies in both simulated user and real user evaluation.

1.4.2 Novel user simulation models

We present new user simulation models that simulate the dialogue behaviour of users

with different levels of domain knowledge levels (e.g. novices, experts, intermediates,

etc.). Our models are sensitive to the referring expressions used by the system. Dia-

logue actions are based on the user’s domain knowledge and are therefore knowledge-

consistent. These models also simulate learning behaviour of real users where users

learn new technical terms when engaged in a technical conversation. We first present

a hand-coded simulation (in chapter 4) and later extend it to a data-driven model (in

chapter 6). We show that our data-driven models simulate real users more closely

than other existing models populated from the same dialogue data. We also show that

the user modelling policy learned using our data-driven model outperforms our hand-

coded model.

1.4.3 Bootstrapping from non-adaptive dialogue system

We also present an approach to collect a dialogue corpus with a non-adaptive dialogue

system and then train the user simulation models using those non-adaptive dialogues.
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This approach provides our RL framework a clear advantage over the state-of-the-

art rule-based and supervised learning approaches which require domain experts to

either hand-code the adaptation rules or adaptively interact with real users to create

an adaptive dialogue corpus to learn from. We show that our user simulation models

are designed to be responsive to the system’s adaptive behavior even though they are

populated from non-adaptive dialogue data.

1.4.4 Effects of adaptive REG

We show that adaptation matters significantly in a technical conversation. We also

show from our experiments with real users that adaptation at the level of referring

expressions does affect dialogue parameters like task success and dialogue duration.

From the user satisfaction surveys conducted, we show that users found it easy to find

domain entities during the conversation when using the system that adapted well to

them.
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1.6 Thesis plan

In chapter 2, we review some of the previous work related to our study in this thesis.

Our work relates to several subdomains of Artificial Intelligence and Natural Language

Processing. We review work relating to spoken dialogue systems, referring expression

generation and user modelling.

In chapter 3, we present the technical background to the Reinforcement Learning

techniques and algorithms that are used in building the basic framework of this study.

We also present work on how reinforcement learning techniques have been used to

learn policies for dialogue management, natural language generation and language

understanding.

In chapter 4, we first present an analysis of the user modelling problem and dis-

cussed why reinforcement learning is a suitable candidate to solve this user modelling

problem. We have shown how to represent this problem as a Markov Decision Pro-

cess. We also present our 5-step approach towards developing a data-driven adaptive

dialogue system.

In chapter 5, we present the data collection framework in which we used a “wiz-

arded” dialogue system to collect a small corpus of non-adaptive dialogues with real

users. We then present an analysis of the collected data.

In chapter 6, we analyse why the state-of-the-art user simulation models are not

suited for the problem at hand. We then describe in detail, the design and implemen-

tation of new data-driven models called three-step pipeline models that are used in

this study and how these models are trained using the data that we collected. We also

show that the new models simulate real user dialogue behaviour more closely than our

baseline models.

In chapter 7, we describe how we retrained the learning agent using three-step

user simulation models. We show that the system using the policy learned using the

data-driven user simulation performed better than other baseline policies and policies

learned using a hand-coded user simulation. We also show that the learned policies

generalise to new users who were not seen during the training phase.

In chapter 8, we present the evaluation of the learned policies with real users in

lab conditions. We show that the policy learned with the data-driven user simulation

model adapted better than a baseline policy when the system interacted with real users.

We also show that real users found it easier to identify domain objects when interacting

with the system using the learned policy than with the baseline policy.
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In chapter 9, we summarize the contributions of this thesis, and discuss applications

and future research directions.



Chapter 2

Related work

We first review user modelling techniques used in various interactive systems like spo-

ken dialogue systems, question answering systems, information retrieval systems, etc

and discuss how they relate to our current problem of domain knowledge adaptation.

In the next two sections, we review earlier work in user-adaptive spoken dialogue sys-

tems, natural language generation (NLG). In each of these sections, we first present a

survey of different approaches and then focus on what user traits have been adapted to

by these systems in the past. In the final section, we discuss previous work in referring

expression generation (REG) and how our work fits into the state-of-the-art in REG.

2.1 User modelling techniques

In this section, we discuss how interactive systems represent information pertaining to

users, how they are populated and how unknown information is predicted during the

course of interaction. User modelling is the process of acquiring information about

the users and using it to enhance the performance of the system with respect to the

users. Use of user models for building adaptive interactive systems has been stud-

ied since Hayes and Rosner (1976). Kobsa and Wahlster (1989); Wahlster and Kobsa

(1989); McTear (1993) survey a number of interactive systems that used user mod-

els for adaptation. Information about the user concerning his/her goals, preferences,

beliefs, domain knowledge, etc is acquired, stored in user models and utilized for a

variety of systems to produce user-adaptive behaviour. User models have been used in

a number of information systems like information retrieval systems, recommendation

systems, dialogue systems, intelligent tutoring systems, question answering systems,

expert systems, adaptive hypermedia, online shopping malls, game playing, etc (Cohen

18
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and Jones (1989); Wilkinson (2006); Quarteroni and Manandhar (2006b,a); Kay et al.

(2002)). In such systems, user models provide the system with essential information

to adapt its output to suit the needs of the users. Similarly, user models can also be

used to adapt to the user’s input when it is not articulated properly or when the input is

distorted in a noisy environment.

2.1.1 Representing user information

Information in user models can be represented using different kinds of models: stereo-

types, overlay, differential, and perturbation models (Nguyen and Do (2008)). In

stereotypical models, users can belong to one of the several predefined groups. For

example, these groups can be defined based on the knowledge scale as novices, inter-

mediates and experts (Rich (1989); Kavcic (2000)). These stereotypes define what a

user knows if he belongs to that category. On the other hand, individual users’ knowl-

edge can be modelled by representing what each one of them knows instead of cat-

egorising them as novices, experts, etc. Overlay user models basically represent a

individual user’s knowledge as a subset of the domain knowledge model of the system.

It can simply be a set of variables representing various domain concepts with binary

values representing whether the user knows the concept or not. The differential model

represents the learner’s knowledge as an overlay on the knowledge he/she is supposed

to acquire, and not the entire domain. The perturbation model however can store in-

formation that is not a part of the domain model. For example, it can store mal-rules

representing the user’s misconceptions (Martins et al. (2008)). In this thesis, we use an

overlay model to represent the user’s domain knowledge in the dialogue system. How-

ever, it is updated dynamically and is used to predict and adapt to different user types.

We also use stereotypes to represent different user types in our user simulation mod-

ule which is used to train the dialogue system to learn adaptive strategies for referring

expression generation (see chapter 6).

Another important problem in user modelling is how user models are populated

with relevant information about the user. Many systems use static user models which

are populated before the interaction with the user starts. As mentioned in some of

the earlier sections, many REG and NLG systems use static user models (see section

2.3.2). In other systems, user models are populated dynamically during the interac-

tion. Systems, like GRUNDY and KNOME, that represent users’ interest in terms of

stereotypes, use explicit questions at the beginning of the conversation to infer the cat-
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egory a user belongs to and then use the appropriate user model to adapt to the user

(Rich (1979, 1989); Chin (1989)). But having identified a category, the system then

uses the information attributed to the stereotype to adapt to the user. However, ex-

plicit questions are considered to be intrusive as they do not directly relate to the task

at hand. Cawsey (1993) also uses explicit questions like “Do you know what a light

dependent resistor is?” to populate the user model. However, it is argued that when

such questions are asked during the conversation at appropriate points, they are not

intrusive. In contrast to these approaches, implicit approaches use information from

user’s utterances, request for clarifications, etc to populate the user model. Even sys-

tems like GRUNDY and KNOME use stereotype information once the user has been

classified. On the other hand, our system acquires information about the user’s do-

main knowledge by using jargon expressions in its instruction giving utterances during

its interaction with him/her. It does not ask intrusive and explicit questions to gauge

the user’s knowledge of the domain. Instead the user’s responses are used to infer

his/her knowledge of the jargon expression. By not explicitly asking about the user’s

knowledge, we follow a less obtrusive approach.

2.1.2 Predictive approaches to user modelling

In addition to representing user specific information as a user model and populating

the model, interactive systems need a way to predict unknown information concerning

the user’s interests, goals, knowledge, etc from whatever information is initially known

about the user or a community of users. This can be considered as a way of implicitly

acquiring more information about the user based on information the system already

has about the user. For example, predicting if a user knows X, given that he knows Y.

Predictive user modelling is usually done using either content based modelling or col-

laborative modelling or a mixture of the two. In content-based user modelling, systems

adapt to users based on their interaction history. For instance, a system delivering news

information on the web would be able to suggest new news items for a user based on his

choices in the past (Magnini and Strapparava (2010)). This is based on the assumption

that any given user repeats the same behaviour in any given (repeating) circumstance.

In collaborative modelling, also called social filtering, users’ preferences or goals are

predicted based on the preferences and goals of other users. This is based on the as-

sumption that users tend to have similar tastes as a group. Therefore by knowing a

community of users who share the same rating or pattern as the current active user, a



Chapter 2. Related work 21

system can predict what the active user might like (Das et al. (2007)). However, these

two approaches are not mutually exclusive. These two can be combined in such a way

that, using content-based modelling, the active user’s patterns can be used to predict

his community and thereafter use collaborative modelling methods to predict his inter-

ests (Basu et al. (1998)). The user’s intentions or goals and their plans to achieve them

are predicted by observing a sequence of his/her actions. This process is called plan

recognition (Schmidt et al. (1978); Carberry (1990)). However, our goal is to predict

the user’s knowledge of jargon expressions used in the domain. We now examine the

state-of-the-art in predictive user modelling in various interactive systems.

2.1.2.1 Rule based models

One way to predict unknown information is by using inference rules (Chin (1989);

Cawsey (1993)). EDGE is a system that produces an interactive explanation through

dialogue to users in the domain of electronic circuits (Cawsey (1993)). The system

updates the user model based on the user’s clarification requests, user acknowledge-

ments, and the system’s explicit and implicit questions. The system has rules to infer

what the user knows from dialogue exchanges and updates such information in the user

model. The following are examples of direct inference rules.

1. If the user asks X, then the user doesn’t know X.

2. If the system tells user X and the user acknowledges, then the user knows X.

The system also has a set of indirect inference rules that are used to predict a user’s

knowledge of which the system has no information. The following is an example of an

indirect inference rule.

1. If all subconcepts are known, then the parent concept is known.

The disadvantage of this approach is that the inference rules have to be hand-coded.

Also, domain expertise is required to identify how concepts are related to each other.

However, rules can get more specific than the ones given above and such rules can be

learned from data. Rule induction is a process of automatically learning sets of rules

for user modelling. Basu et al. (1998) uses an inductive learning system called RIPPER

that learns rules from data presented as set-valued attributes (Cohen (1995)). However,

such learning requires a large amount of training data.
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2.1.2.2 Linear models

Linear models predict users’ preferences in order to recommend items of interest by

summing up weighted attributes from the users’ ratings in the past or the ratings of

other similar users. Raskutti et al. (1997) uses a user’s long term preferences saved in

user profiles to recommend documents that may be of interest to the user (i.e. content-

based modelling). Here, user profiles are created offline using a Heuristic-Statistical

approach. A user’s profile records the user’s likes and dislikes by recording the features

of the items they select and the qualitative ratings (e.g. like, love, hate, etc) they give

them. Each feature-value pair is then rated and their ratings are accumulated and nor-

malised, which is called CombRating. These are then used to build selectional indices,

which contain conjunction/disjunction of feature-value pairs that are then used to filter

items to recommend to the users. These items are then checked for compatibility with

the user profile using the following linear model.

Compatibility = ∑Priority∗CombRating

Priority is the priority of each attribute in the domain and is hand-coded during the

implementation. Items with a high Compatibility score will finally be recommended

to the users.

Resnick et al. (1994) predicts user scores based on the ratings of other users (i.e.

collaborative user modelling). User ratings are predicted using a linear model of

weighted averages of all the other user ratings on the item of interest. User A’s rat-

ing of item i is predicted from the ratings of all other users, their mean ratings, and

their correlation with user A (rAB) using the following linear model.

Ai = A+ ∑B∈users(Bi−B)rAB
∑B |rAB|

Linear models, such as the above, have been used in recommendation systems.

These models are created using data collected from users on the features that they like

and dislike. However, it is not clear how such models can be used for adaptation to

domain knowledge of users. Although it might be possible to collect data on user’s

domain knowledge using this method, it is not sufficient to model them dynamically.

In this thesis, we present an approach that learns linear models for each possible action

using reinforcement learning that satisfies our objective of dynamic user modelling.
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2.1.2.3 TF-IDF

The Term Frequency - Inverse Document Frequency (TF-IDF) model is a user mod-

elling technique that has been used extensively in information retrieval in which each

document in the corpus is represented by a vector of weights, with each weight rep-

resenting a word in the document. Cosine similarity between the user’s query vector

and the document vector is then used for recommendation (Salton and McGill (1983)).

Balabanovic (1998); Moukas and Maes (1998) used TF-IDF based methods to rec-

ommend documents to users based on their interests. Balabanovic (1998) presents an

interesting way to model user’s interests for information retrieval. In this method, a set

of documents D is represented using a n-dimensional vector ({d1,d2...dn}). Each doc-

ument di is represented by a set of values for p keywords ({t1, t2...tp}). Each element

of this vector is derived by multiplying a term frequency (T F) component, which is

the number of times the word j appears in the document di, by an inverse document

frequency (IDF) component, which is the inverse of the number of documents in the

corpus in which the word j appears.

The system represents each user with a user model. The user model (q) is also

represented as a p-dimensional vector. This contains an array of weights {w1,w2...wp}
corresponding to the keywords. The transpose of q is denoted by qT . User adaptation

is then done using a linear preference function f (d) as follows.

f (di) = qT t = ∑1≤ j≤p w jt j

The above function returns a preference value for each of the documents in the set D

which helps the system in presenting the user with the most preferred document. User

models such as these can be learned using a simple gradient descent procedure (Wong

and Yao (1990)). The disadvantage of this method is that it cannot be directly applied

to our user modelling problem for adaptive REG as adaptation to a user’s knowledge

is not the same as the adaptive information retrieval problem.

2.1.2.4 Markov models

Markov models have been widely used for user modelling. Bestavros (1996); Horvitz

et al. (1998); Zukerman et al. (1999) use Markov models based on the Markov assump-

tion, according to which the occurrence of the next event is based only on previously

occurring event. This is a collaborative approach to user modelling, in that, the current

user’s choice of document is predicted based on the other users’ choices in the past.
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Zukerman et al. (1999) use Markov models to predict the most likely document (P(D))

that the user might ask for given the user’s request history (H). This helps the remote

server to send webpages or documents that are highly likely to be requested before they

are even requested, with the objective of reducing the user wait time. Such a model

is called a Time Markov model and can be modelled as a conditional probability as

shown below.

P(D|H)

Similarly, a Space Markov model predicts the next document based on the referring

document that has a link to the next document. A Linked Space-Time Markov model

predicts based on both the previously requested document and the referring document.

These probability models are built using a large corpus of user requests. Although,

Markov models can also be used to predict a user’s knowledge of technical terms using

incomplete information about their knowledge, it still doesn’t solve our problem of

dynamic modelling. For instance, how can user models be populated at the beginning

of the conversation?

2.1.2.5 Clustering models

Some studies use clustering algorithms to cluster similar web pages together so that

related webpages can be presented to users based on their visiting patterns. Perkowitz

and Etzioni (2000) presents Page Gather algorithm which takes as input the website

logs. Using a variant of a traditional clustering algorithm called Cluster Mining, it

clusters similar webpages together using co-occurence frequencies and creates an in-

dex page for each cluster. Based on the current user’s visit pattern, appropriate index

pages can be presented to them. One of the main advantages in clustering approaches

is that they do not require a labelled corpus of training data like supervised methods.

However, this type of adaptation can be used only for document retrieval problems.

2.1.2.6 Bayesian networks

Bayesian Networks are directed acyclic graphs with nodes representing random vari-

ables and arrows between them representing causal or influential links from parent

nodes to child nodes (Pearl (1988)). Each node has a conditional probability distri-

bution which defines the probability of the random variable taking different values

given the values of its parent nodes. Bayesian networks support both collaborative
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and content-based modelling. The conditional probability distributions can be learned

using collaborative methods from a corpus of user interactions and can be used with

individual users using content-based modelling to set the prior probabilities. These

probabilities can then be used for inference and prediction of unknown information

about the user. Several studies have used Bayesian networks for predictive user mod-

elling (Akiba and Tanaka (1994); Jameson (1995); Horvitz et al. (1998); Albrecht et al.

(1998); Horvitz et al. (1999); Jameson et al. (2000)).

Recently, Nguyen and Do (2009) proposed a combination of Bayesian networks

with the overlay model to predict the learner’s knowledge in a tutorial domain. In

this study, the learner’s knowledge of domain concepts is represented as hidden vari-

ables and the learner’s activities that serve as evidence to his knowledge (e.g. his per-

formance in assignments/tests) are represented as evidence variables of the network.

These variables are binary and represent the two states of whether the learner knows

the domain concepts. The domain concepts are places in a hierarchy of prerequisites

(parent-child relationship in the network) representing what the learner should already

know in order to master a larger concept. For example, in order to know “Java”, the

learner must know “Control structure”, “Class & Object” and “Interface” concepts.

Each of these prerequisites are weighted such that the sum of all the weights on dif-

ferent parents on a child add up to 1. Finally, the conditional probability distribution

of every node is defined by building conditional probability tables using the following

formula.

P(X = 1|Y1,Y2...Yn) = ∑n
i=1 wi ∗hi

where hi = {1 i f Yi = 1, 0 otherwise}

The conditional probability tables are then used predict the learner’s knowledge

of concepts (represented by hidden nodes) based on the available information (rep-

resented by evidence nodes). This process is called knowledge diagnosis. Although

Bayesian networks provide an elegant way to represent a user model and reason with

it under uncertainty, the relationships between the nodes have to defined by domain

experts. Nguyen and Do (2009) also notes that the disadvantage of Bayesian networks

is that it requires a large data storage for the probability tables as the network becomes

larger and more complex and that the computation of the posterior probability of the

hidden nodes takes considerable amount of time. Another disadvantage is that, similar

to Markov models, Bayesian Network models cannot be used for dynamic modelling
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without another mechanism to populate the input nodes at the beginning of the conver-

sation.

In summary, we have reviewed several user modelling techniques used in user-

adaptive systems. We argue that some of these, like TF-IDF and clustering models, are

applicable only to information retrieval tasks. However, others can be tailored to solve

our problem of adapting to user’s domain knowledge. We also argue that techniques

like Markov models and Bayesian Network models cannot be applied directly with-

out a mechanism to first partially populate the user model using which inference can

be done. In contrast to these techniques, we implement a combination of reinforce-

ment learning and linear models to both adapt to user’s domain knowledge and do so

dynamically during the conversation.

2.2 Spoken Dialogue Systems

Spoken Dialogue systems (SDS) are human-computer interfaces that converse with a

human user in order to complete a task or solve a problem. These systems provide the

user with a very natural means of interaction with a computer. Over the past years,

several task specific dialogue systems have been built. There are systems that provide

flight schedule information (Seneff and Polifroni (2000); Levin et al. (2000); Rud-

nicky et al. (2000)), town information (Johnston et al. (2002); Lemon et al. (2006)),

bus information (Raux et al. (2003, 2005)), weather reports (Zue et al. (2000)), etc.

Dialogue systems are also used as in-car applications for music track selection (Hassel

and Hagen (2005); Becker et al. (2006)), news and route advice (Rogers et al. (2000)),

etc. Dialogue interfaces are also finding their way in to multi-modal systems that in-

clude other modalities like gestures and GUIs (Lemon et al. (2001); Lopez-Cozar et al.

(2005)). Dialogue interfaces have also been widely used in intelligent tutoring systems

that interact with students to help them solve problems and learn during the process

(Graesser et al. (1999); Litman and Silliman (2004); Jordan et al. (2006); Callaway

et al. (2007)). Recently, the focus has shifted to more complex domains like Self-Help,

where the system engages the user in technical tasks like troubleshooting (Acomb et al.

(2007); Boye (2007); Williams (2007)). For instance, the system could help the user

troubleshoot his broadband connection by requesting information and providing in-

structions.

A standard architecture of dialogue systems is shown in figure 2.1. The user’s utter-

ance (as acoustic signals) are translated to a stream of words by the automatic speech
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Figure 2.1: Spoken Dialogue System - Architecture

recogniser module. The semantic parser is a natural language understanding (NLU)

module converts the stream of words into semantic frames called dialogue actions

which are meaning representations of the user’s utterances. The user dialogue actions

are analysed by the dialogue manager (DM) and an appropriate response is formu-

lated in consultation with the current state of the dialogue and the backend application.

The system dialogue action produced by the dialogue manager is translated into utter-

ance form by the natural language generator (NLG) module and then is converted into

acoustic signals by the speech synthesizer (or text-to-speech (TTS)) module.

But, designing a dialogue system is more than putting together these modules. Al-

though these modules are necessary, what makes a dialogue system natural and effec-

tive is its ability to coordinate these modules in a natural conversation with its dialogue

partner. This task is the responsibility of the dialogue manager (DM). It manages the

conversation using a plan, called the dialogue policy (or dialogue strategy) that maps

any dialogue state to a dialogue action. The dialogue state maintains the system’s

knowledge, beliefs and observations of its environment (i.e. its current user), dialogue

history, goals, etc. An enriched state may also contain the modality of interaction, and

the user’s profile containing his level of expertise, cooperativeness, etc. Actions that

the DM can select (collectively called the action set) include for example, greeting the

user, requesting more information, presenting the results of the task, confirming exist-

ing information, closing the dialogue, etc. Dialogue policies can be manually coded

for different tasks and situations. But when there is a large number of factors affect-

ing the dialogue (i.e. larger state space), manual coding can become difficult. One

of the solutions to this problem is to learn the policies from human-human or human-

machine dialogue data. Reinforcement learning has been widely used to learn dialogue
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management policies (see section 3.5.1 for a brief discussion).

2.2.1 Adaptive Spoken Dialogue Systems

User-adaptation has been identified as an important attribute that contributes to the

success of dialogue systems. In the past, several spoken dialogue systems have been

developed with user-adaptive features. In the following sections, we discuss the user

traits that these systems have been designed to adapt to.

2.2.1.1 User’s speech patterns

User models based on a user’s speech patterns can be used to improve the performance

of automatic speech recognition modules of dialogue systems. Information on the

user’s barge-in patterns and how accurately his/her speech has been decoded in the past

(ASR accuracy) have been used to improve the performance of the system. Komatani

and Okuno (2010) present a method to automatically classify correct and incorrect

barge-ins using user models. When barge-in utterances from users are detected, the

system stops its prompt and starts listening to the user. Hence, when background noise

is incorrectly interpreted as a barge-in, the system incorrectly stops its prompt. By

using user models containing information on user’s ASR accuracy and barge-in rates

from previous conversations together with the current ASR confidence scores, it is

possible to accurately identify false barge-ins and respond appropriately. Evaluation

on an annotated corpus of 7000 barge-in utterances showed that this approach of using

a user model containing information on ASR accuracy measures and barge-in rates

along with ASR confidence scores classifies barge-ins more accurately (92.6%) than

other approaches.

2.2.1.2 User’s system skills

Chu-Carroll (2000); Chu-Carroll and Nickerson (2000a) present MIMIC, a dialogue

system that adaptively chooses initiative strategies during the conversation based on

the user’s skills in handling the dialogue system. The system takes initiative in a con-

versation with a novice user whereas it behaves as a passive partner with an expert

user. The user’s dialogue behaviour is analysed based on discourse and analytical cues

of their utterances and based on this information, the system responds to the user ap-

propriately. For instance, the system gives the user a sub-task in order to take the con-

versation forward when the user himself is not forthcoming with any new information.
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Evaluation with real users showed that the adaptive version of the system performed

better than its non-adaptive counterparts in terms of task success and user satisfaction.

Hassel and Hagen (2005) present an in-car dialogue system that adapts its lan-

guage to users’ skill levels in handling the dialogue system. While for experts, the

prompts are generally short and terse, for novices they are exhaustive, giving all pos-

sible options the users can say, etc. Adaptation is done unobtrusively in the sense that

the system evaluates the user for his skill level after every dialogue session, which is

used for adaptation in future interactions. Similarly, AthosMail, a speech based inter-

active e-mail application, adaptively interacts with users based on their system skills

(Jokinen and Kanto (2004); Jokinen (2006)). Adaptation is done based on two user

models: online and offline. The offline model evaluates the user’s expertise at the

end of each dialogue and feeds it to the online model. The online model is updated

during the dialogue and allows the system to adapt to variations found in the imme-

diate context during runtime. Parameters like time-outs, help requests, interruptions

and speech recognition problems are used to judge the user’s expertise. Based on this

judgement, appropriate responses are chosen. Three levels of responses are available

to choose from based on the skill level of the user. Responses are detailed for novices.

Unnecessary excessive information is removed and only core information is presented

as expertise increases.

Komatani et al. (2003, 2005) present a learning approach to user adaptation. Using

a corpus of dialogue data, a decision tree is learned to classify users based on their

skills in using the dialogue system. The classification is done on dialogue features like

user’s silence, barge-ins, recognition scores, etc. The decision tree is used after every

utterance to update the user model and issue responses based on the user model. Al-

though the system also adapts to the skills of the user, the information about the user’s

skills is updated only at the end of the dialogue to be used in subsequent dialogues with

the same user. As with other systems, the responses are short for hasty, expert users

and are detailed for others. In contrast to this approach, our system updates the user

model during the conversation and adapts dynamically.

2.2.1.3 Users’ goals and preferences

In many spoken dialogue systems that present information from databases to users,

there is a common problem of how the results can be presented so that they are useful

to the user, and how they must be organized so that they are easy to understand and

memorable to the user. GRUNDY is a dialogue system that plays the role of a librarian
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(Rich (1979)). It interacts with users using a typed natural language messages and rec-

ommends books that users might like based on their interests and preferences. It uses a

user modelling component that stereotypes users into many classes (e.g. sports-person,

feminist, etc). It uses explicit questions to classify the user and then uses stereotype

information to present information to the user. Carberry et al. (1999) also present a

rule-based approach to modelling user preferences. Rogers et al. (2000) present an

in-car dialogue system that advises users on routes to take, gives town information,

and reads news. The system adapts to the user’s task based preferences which it learns

automatically from the user’s choices in previous interactions. The system keeps up-

dating the user model using simple heuristics to modify the user model. For example, if

the user listens to the whole story, it is considered a positive feedback and when a new

story is interrupted it is considered a negative feedback. It uses the updated models to

choose appropriate content that is interesting or useful to the user.

Carenini and Moore (2001) present a framework for producing evaluative argu-

ments using user models based on multi-attribute decision theoretic models. They

showed that arguments that were tailored to user’s preferences produced more effective

arguments than the non-tailored version. Moore et al. (2004) present an adaptive in-

formation presentation module called FLIGHTS (Fancy Linguistically Informed Gen-

eration of Highly Tailored Speech) which presents flight information to users based

on their preferences. Three sample user profiles: student, frequent flyer and busi-

ness class flyer were used to tailor the system utterances at a number of levels like

content selection, referring expression generation, aggregation, discourse cues and the

use of appropriate scalar terms. Multi-attribute decision models were used to repre-

sent the user’s preferences (Carenini and Moore (2001); Walker et al. (2002, 2004)).

These models are developed by asking the users to rank a list of attributes (e.g. fare-

class, layover-airport, etc) and specify preferred and dispreferred attributes. Using

these models for different users and measures of compellingness, the results from the

database search can be filtered so that only those flights that suit the users’ preferences

are selected. Attributes to describe were also then selected on how compelling they are

to be presented to the user. Finally, a planning agent is used to produce an informa-

tion presentation strategy which decides how to group and order the options and the

attributes, choose referring expressions, decide how to contrast between options and

decompose the strategies into dialogue acts and rhetorical relations.

In a similar study in the restaurant domain, Walker et al. (2004) showed that users

rate the responses generated using their own models more highly than ones generated
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using a random user model. Later, Demberg and Moore (2006) extended informa-

tion presentation in dialogue systems to handle large numbers of options by building a

cluster-based tree structure to rank the options based on user preferences for stepwise

refinement. Winterboer and Moore (2007) found this approach to be more effective

than the summarize and refine approach presented in Polifroni et al. (2003). It was

found that in a dual task environment (with one task demanding huge cognitive load),

the user-model tailored presentations with stepwise refinement were more effective in

terms of both task success and dialogue duration, although it did not get better user

satisfaction ratings than the baseline system. Recently, Rieser and Lemon (2009b) pre-

sented a reinforcement learning based approach to information presentation in which

the system learns to choose the number of attributes to present and the strategy to be

used (e.g. summarize, compare, etc). We discuss this work further in section 3.5.3.

2.2.1.4 Users’ domain knowledge

Users’ domain knowledge is also one of the user traits that is modelled by interactive

systems in order to present useful and adapted information to users. UNIX Consultant

(UC) is an interactive dialogue system that answers questions about the UNIX oper-

ating system (Wilensky et al. (1984); Chin (1986)). It advises users on queries about

various commands used in an UNIX environment (e.g. rm, vim, etc). The UC sys-

tem uses a user modelling module called KNOME (Chin (1989)). It represents users’

knowledge of UNIX as stereotypes using which UC tailors its response to its users.

It tries to not present information that the user already knows. It is also used to un-

derstand a user’s problem from a proper perspective. For instance, if an expert or an

intermediate user asks how to delete a file (which even a beginner would know), the

system should try and understand if there are additional problems the user is trying to

solve. UC represents users using stereotypes at different levels of domain knowledge:

novices, beginners, intermediates and experts. It also classifies the knowledge com-

ponents in terms of difficulty: simple, mundane, complex and esoteric. It is assumed

that novices know at most simple facts, intermediates know all simple, most mundane

and few complex facts, and so on. The system starts off with an assumption that the

user it is interacting with is a beginner. It then deduces the category to which a user

belongs to by examining the statements he makes during the course of his interaction

with the system. Based on whether the user knows a simple, mundane, complex or

esoteric concept, the system deduces the user’s category based on hand-coded rules. It

eliminates categories based on the rules to select the stereotype that best matches the
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current user. However, once a stereotype is selected, it is not possible to change it in the

face of conflicting evidence. Hand-coding rules to classify users to different sterotypes

and classify concepts to different levels of difficulty requires significant manual effort

from domain experts. UC uses stereotypes and classifies users dynamically through a

process of elimination into a category using hand-coded rules. In contrast, our system

does not classify users but predicts user’s domain knowledge based on a user modelling

policy that it has learned from other (simulated) users.

COMET (Coordinated Multimedia Explanation Testbed) is a multimodal dialogue

system that interacts with users in a technical domain task (McKeown et al. (1993)).

An important feature of this system that is relevant to this thesis is that it is able to

modify its utterances to different users. The objective of this system is to only use

words that the user knows when there are no accompanying pictures to disambiguate

or facilitate interpretation. Using different words in place of each other may not be

as easy as it seems. For instance, its not easy to replace the word “polarity” with a

simpler word in the utterance “Check the polarity”. Instead, it rather needs an entire

overhaul of the utterance by means of rephrasing it in simpler language. E.g. “Make

sure that the plus on the battery lines up with the plus on the battery compartment”.

The choice of words not only affects the other words in the utterance but also the

subsequent utterances. Therefore the words need to be chosen with utmost care.

The lexical choice module of the text generator component of the system that gen-

erates the utterances selects words using the following four strategies.

1. Alternative words: Selecting alternative words that fit in instead of a complex

one (e.g. “some number” instead of “arbitrary number”).

2. Conceptual definitions: Use conceptual definitions to rephrase the utterance (like

the “polarity” example).

3. Descriptive expressions: Use descriptive expressions instead of technical ones

(e.g. “cable that connects to KY57” instead of “COMSEC cable”).

4. Anaphoric expressions: Use anaphora to refer to entities mentioned in the past

discourse (e.g. “the cable that you just removed” instead of “COMSEC cable”).

The lexical choice module chooses the words based on several constraints: syn-

tactic, semantic, discourse, and user model. Initially, the lexicon is consulted to re-

trieve the appropriate rules to translate the semantic constraints in the given logical

form to lexical and syntactic features. These are then translated into utterances by
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choosing appropriate words that satisfy the pragmatic and user model constraints. If

none of the readings produced are intelligible to the user, the utterance is rephrased.

The lexical choice module interleaves with the content planner to choose appropriate

words/phrases and therefore replan the content of the whole utterance when user model

constraints are not satisfied. The user model indicates the domain knowledge level of

the user in terms of his word preferences, known abbreviations and technical terms.

Although the system adapts to users at different levels of domain expertise, it is to

be noted that an accurate model of the user’s expertise is made known to the system

before the conversation starts. Like COMET, our objective is to build a technical sup-

port dialogue system that adapts to users with different levels of domain knowledge.

However, unlike COMET, we assume that the user’s knowledge level is unknown to

the dialogue system at the beginning of the conversation. Although there are several

levels of adaptation to users based on their domain knowledge, we focus on the use of

appropriate referring expressions.

2.3 Natural Language Generation systems

Natural Language Generation (NLG) is the process of converting semantic and other

forms of information into their equivalent textual form. NLG systems are used in

a number of applications including generation of weather forecasts (Goldberg et al.

(1994)), summarizing statistical data (Iordanskaja et al. (1992)), producing responses

to the user in dialogue contexts, generating answers in question answering (QA) sys-

tems (Reiter et al. (1995); Paris (1987)), explaining the reasoning of an expert system

(William (1983)), etc. These modules are used either as independent systems or as a

part of larger interactive systems like dialogue systems, QA systems, etc. In the last

section, we discussed adaptive NLG modules used in dialogue systems. In this section,

we focus on independent NLG systems and NLG modules in other interactive systems.

2.3.1 Approaches to NLG

First, let us briefly explain the language generation processes in general before . There

are several ways to generate text in information systems.

Template: The simplest method is to use templates, strings or syntactic trees with

slots to be filled during processing. The appropriate template is retrieved and its slots

are filled to produce a final text (van Deemter and Odijk (1997); White and Caldwell
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(1998); Busemann and Horacek (1998); Theune et al. (2001); McRoy et al. (2003)).

For example, a template with unfilled slots (e.g. $n, $departure city) and an utterance

with slots filled in with information is given below.

Template: “There are $n flights from $departure city to $arrival city.”

Example: “There are 5 flights from Edinburgh to London Heathrow.”

Pipeline approaches: When there is a need for more flexibility in language gener-

ation, a pipeline architecture is used. It generates language in several steps: content

determination, discourse planning, sentence aggregation, lexicalisation, referring ex-

pression generation and linguistic realisation (Reiter and Dale (1997, 2000)). In the

first step, the system decides what information to communicate to the user. In the dis-

course planning step, the order and structure of the text are decided. In the sentence

aggregation step, the system structures the information as a sequence of sentences. It

also tries to aggregate information into fewer sentences if possible. Finally, in the lex-

icalisation step, the system decides what words or phrases to use in order to express

the information that is to be conveyed to the user. For a detailed explanation see Reiter

and Dale (1997, 2000). NLG systems like Joyce (Rambow (1990)), PERSONAGE

(Mairesse and Walker (2007, 2008, 2010)) have been built based on the pipeline archi-

tecture.

Planning approaches: One of the earliest works in using planning for natural lan-

guage generation was done by Cohen and Perrault (1979). Koller and Stone (2007);

Garoufi and Koller (2010) present a planning approach to generation of LTAG (Lexi-

calised Tree Adjoining Grammars) trees. The sequence of actions consisting of sub-

stitutions and adjunctions from the top most node to build a grammatically complete

tree from a semantic representation is seen as a sequence of planning actions. The

syntactic and semantic constraints are encoded as preconditions and subtree they build

are encoded as effects of these actions. Classical planning algorithms are then used to

build a plan which is decoded into a TAG derivation.

Statistical approaches: Langkilde and Knight (1998) present Nitrogen, a two-step

architecture that combined both symbolic and statistical methods towards natural lan-

guage generation. The architecture uses two steps: generation and extraction. The
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generation step produces a word lattice of all possible renderings for the given se-

mantic input. This is done using symbolic databases containing morphological and

grammatical knowledge. In the extraction step, the system extracts the most fluent

path through the word lattice. This is done by statistically ranking all the possible

paths through the word lattice using bigram and unigram statistics from a large corpus.

Oberlander and Brew (2000) proposed a variant of Nitrogen in which the generation

(i.e. the first step) was also a stochastic process. Oh and Rudnicky (2002) presented

a statistical approach for both content planning and a surface realisation. Models for

both subtasks were trained on a corpus of travel reservation dialogues. The utterance

is generated in a three step process of first selecting the number of attributes to include

given the utterance class (e.g. inform flight, query depart date, etc), second identi-

fying the attributes to present, and third choosing the word sequence to use (surface

realisation). Each of these steps were modelled using probabilistic models trained us-

ing the corpus. The candidate utterances produced were scored using a penalty score

based on heuristics like length of the utterance, repetition of information, presence of

invalid information, absence of valid information, etc and the one with the lowest score

or zero was presented to the user. Duboue and McKeown (2003); Barzilay and Lapata

(2005) present approaches to learning content selection rules from a corpus. Walker

et al. (2007) presents SPARKY, a sentence plan generator and ranker that produces

plans and ranks the alternative realizations. The ranker is trained on corpus data con-

taining human rankings. A clear advantage of this approach is being able to train a

NL generator from a human-human corpus and therefore produce utterances mimick-

ing that of the humans. However, supervised learning approaches to train statistical

models requires large amounts of data to train and can only learn strategies that are

available in the data.

2.3.2 User-adaptive NLG

While we are not developing an alternative approach to NLG, we focus on user mod-

elling which is an important problem in the development of user-adaptive NLG sys-

tems. Several systems have tried to present information to users in an adaptive fashion

taking into account the user’s interests, goals, knowledge and so on. We already dis-

cussed some adaptive NLG modules in the context of interactive dialogue systems in

Section 2.2.1. In the following section, we present some NLG systems that are adaptive

to a user’s personality and domain knowledge.
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2.3.2.1 Adapting to user’s personality

Mairesse and Walker (2007, 2008, 2010) present PERSONAGE, a parameterizable

personality based natural language generation (NLG) module. This system can gener-

ate language displaying different personality styles based on the “Big Five” model of

personality traits (Digman (1990)). PERSONAGE can generate system utterances for

recommendation and comparison of restaurants. Such utterances can be tailored to dif-

ferent personalities based on different scales like extroversion (i.e. dominance versus

submissiveness), emotional stability (nervous vs confident), agreeableness (compas-

sionate and cooperative vs suspicious and antagonistic), conscientiousness (organized

vs carelessness) and openness to experience (curious vs cautious). Evaluation of utter-

ances produced by PERSONAGE by human judges showed that the utterances were

moderately natural with a mean score of 4.59 out of 7. In future, PERSONAGE could

be used in interactive dialogue systems to adapt utterances to a user’s personality.

2.3.2.2 Adapting to user’s knowledge

In this section, we discuss four NLG systems: ROMPER, EPICURE, TAILOR, and M-

PIRO, which adapt to users’ domain knowledge. ROMPER is a system that provides

clarification to users’ misconceptions about the domain using a user model to tailor its

responses to their domain knowledge (McCoy (1985, 1989)). It deals with two kinds of

misconceptions: misclassification and misattribution. An example of misclassification

would be for a user to think that whales are fish. In such a case, ROMPER offers the

user an explanation containing different pieces of information such as whales are not

fish (denial), whales and fish are similar in some aspects (possible reason for misclassi-

fication), whales are mammals (correct classification), whales breathe using lungs and

not gills (reason behind correct classification) and so on. Appropriate bits of informa-

tion are chosen based on a user model that informs the system of the user’s knowledge

structure that led to the misconception in the first place. The output of ROMPER is

a formal specification of the explanation which is then converted to actual text using

a realiser called MUMBLE (McDonald (1980). ROMPER uses hand-coded rules to

select appropriate schemas for explanation based on the misconception and the user

model. Also, it is not clear how the user models are populated in the first place, which

is an issue that we focus upon in this thesis.

EPICURE is an NLG system that adapts the complexity of instructions in pre-

senting cookery recipes according to the user’s domain knowledge (Dale (1989a,b)).
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EPICURE is similar to our system in the sense that our system produces a technical

recipe for setting up a broadband Internet connection at home. EPICURE starts with

discourse planning where plans are retrieved from a plan library to satisfy the top-

level goal (e.g. making butterbean soup). The plan is recursively decomposed into

simpler plans or primitive operations (or domain actions) that are known to the user.

The detailed plan structure is used to produce the discourse structure. Besides dis-

course planning, the system pays much attention to generating referring expressions

for domain objects which by themselves undergo changes as one reads the recipe. For

instance, carrots or onions that are countable nouns before grating or chopping actions

then become mass nouns. We will focus on user adaptive aspects of the system that

are of interest to this thesis. The system stores information concerning the user it is

interacting with in a user model. It consists of three kinds of information:

1. Knowledge of domain actions: Whether the user knows how to carry out domain

specific actions (e.g. prepare the beans).

2. Knowledge of domain entities: Whether the user knows and would identify do-

main entities (e.g. kumquats).

3. Knowledge of the taxonomy of domain entities/actions: How entities/actions

relate to each other (e.g. “salt” is an ingredient of “seasoning”)

The user model is applied extensively in discourse planning. Complex actions (or

high-level actions) that the user does not know how to execute are in turn decomposed

into simplified sequences recursively until the whole plan is compatible with the given

user model. The user adapted discourse plan is then sent for realisation.

TAILOR is a natural language generation component of a question answering sys-

tem that provides access to a large knowledge base of information (Paris (1987, 1988)).

Such systems become more usable if they tailor their responses to the user’s domain

knowledge levels. The main objective of the TAILOR module is to produce descrip-

tions of domain objects tailored to the level of the domain expertise of the user. The

module employs user models that represent the domain knowledge levels of the users.

The models contain two kinds of information: whether the user knows the underlying

basic concepts of the domain and the list of domain objects that they know in terms

of their use and functionality. The module uses two strategies: constituency schema

and process trace. A constituency schema (McKeown (1985)) is a textual structure

that describes a domain object in terms of its subparts. And a process trace is a textual
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structure that describes the functionality of the domain object in terms of the mechan-

ical process and causal links involved in the functioning of the domain object. The

system produces more process trace type information to novice users who do not know

even basic information as to how domain objects interact with each other. With expert

users, the system produces more constituency schema type information assuming that

they will be able to mentally construct the process information when new information

about subparts are presented to them. The two strategies are combined for intermediate

users who have local knowledge of some domain objects but not others.

The following illustration explains how the system switches between the two strate-

gies and finds a balance between the two according to the user model. Let us suppose

that the system is requested to generate a description of a telephone. Futher assume

that the user model hints at the fact that the user is an intermediate user since he knows

something about the domain. Therefore, it uses a constituency schema to describe the

subparts of a telephone: transmitter and receiver. It then describes how the transmitter

works, which is a process trace. However it only uses the constituent structure for the

receiver, as the user already knows about loudspeakers. In this way, the system mixes

the two different strategies to provide the user with useful information, and at the same

time avoid redundant information. However, as with the previous systems, TAILOR

assumes the availability of an accurate user model to support its text planning activity.

ILEX is a NLG system that produces natural language descriptions of artifacts in

a museum (O’Donnell et al. (2001)). It produces descriptions that are tailored to the

user’s interests. The description of the artifact that the user is currently viewing would

be personalised based on the artifacts that the user has already seen. However, this

system does not distinguish between user types in terms of their domain knowledge.

This system was followed up with M-PIRO, which allowed the domain authors to

define one or more user types (Androutsopoulos et al. (2001); Isard et al. (2003)). Each

entity (abstract or physical) in the database is annotated with specific information with

regard to various user types. The database therefore contains information about how

important or interesting each artifact is to different user types. This information, which

is populated with the help of museum guides, domain experts and curators, is then used

to generate descriptions adapted to the current user.

The ROMPER system deals with misconceptions in a user’s domain knowledge.

However, we do not study misconceptions at this stage of research. We might however

extend our work to learning strategies to deal with users’ misconceptions as well. EPI-

CURE and TAILOR use user models that are static containing information on users’
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domain knowledge. M-PIRO on the other hand uses stereotypes which can be set or

reset when the interaction starts. In contrast to these approaches, in our system we use

a dynamic user model that records the user’s expertise in the domain during the course

of the conversation. In contrast to these systems where the association between the user

models and the kind of information presented to the user is done manually by domain

experts, we learn such associations from interactions with simulated users. Although,

we focus only on adaptation at the level of referring expressions, we hypothesize that

our framework can be used to learn user modelling strategies for all stages of NLG

such as content determination, sentence planning, etc.

2.4 Referring Expression Generation

In this section, we present how our work relates to the current state-of-the-art in refer-

ring expression generation. First, we present general approaches to traditional referring

expression generation (REG) problems and later discuss adaptive generation of refer-

ring expressions based on users’ domain knowledge. Referring Expression Generation

is a sub-process of natural language generation (NLG) which identifies the most ap-

propriate linguistic form to refer to domain entities or eventualities (Reiter and Dale

(2000); Oberlander and Dale (1991)). The choices range from noun phrases (e.g “the

blue chair”), pronouns (e.g. “it”), one-anaphora (e.g. “the blue one”), etc. A classic

problem that has been addressed by a number of researchers is to determine which at-

tributes should contribute to the content of definite noun phrases that refer to a domain

entity. This is called the content determination or attribute selection problem. The

entity to be referred to is called the target entity. It is usually assumed to be present

in a context of several other entities called distractors. The task of the REG algorithm

is to then find attributes that will identify the target entity uniquely from that of the

distractors. Attributes or properties of the entities can either be absolute like colour,

size, orientation, and so on, or relative to other entities in the scene (e.g. “next to”, “on

top of”).

Some work in REG focusses on how to generate expressions that satisfy multiple

goals (Appelt (1985)). Referring expressions can be chosen in such a way that they

carry out more actions than just identifying the referent to the hearer. For instance,

an utterance like, “Could you get me the wheelpuller?” along with a pointing action

towards the object not only requests the hearer to help the speaker reaching the object

but also informs the ignorant hearer that the strange object being pointed to is called
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“a wheelpuller”. One may use words like “genius” instead of “man” to not only point

to the person but also display the speaker’s emotion (e.g. reverence or admiration) to-

wards the referent. Poesio et al. (1999) presented an approach to generate non-referring

parts of referring expressions. Non-referring parts are added to expressions to commu-

nicate additional information about the referent to the user. However, unlike these two

approaches that produce referring expressions to satisfy multiple goals, our work fo-

cuses on generating referring expressions for the sole objective of enabling the hearer

to identify the referred entity.

2.4.1 Approaches to REG

2.4.1.1 Rule-based approaches

The incremental algorithm is a popular attribute selection algorithm that selects at-

tributes in a predetermined order incrementally (Reiter and Dale (1992, 1995)). This

is motivated by the idea that humans prefer these descriptive properties in some or-

der. For instance, humans prefer types of objects (e.g. chair, table, etc), followed by

absolute properties like colour (e.g. red, brown, etc), followed by relative properties

like size (e.g. small, big, etc) and orientation (e.g. facing front, facing back, etc). The

algorithm iterates over the above order to see if adding a property to the description

will help disambiguate the target from its distractors and if so, the property is added

to the description. The algorithm iterates until a description is found that completely

disambiguates the target entity from its distractors or if it fails to find one because it

ran out of properties. While properties are added to the description only when they

have distinguishing character, the type information is always added to the list. For ex-

ample, there will never be a referring expression “red”. However, the algorithm does

not guarantee a minimal expression. For instance, attributes added to the description

during earlier iterations cannot be removed when they are found to be redundant later.

However, this shortcoming is claimed to be psychologically plausible in the human

referring expression generation mechanism. Others have studied relational attributes

(Dale and Haddock (1991); Krahmer et al. (2003)), expressions for entity sets (van

Deemter (2002); Gatt and van Deemter (2009)), etc using the algorithmic approach.

Several algorithms of different computational complexities and efficiency for simi-

lar purposes have been proposed (Dale and Haddock (1991); Reiter and Dale (1992,

1995); Krahmer and Theune (2002); van Deemter (2002); Krahmer et al. (2003); Sid-

dharthan and Copestake (2004); Belz and Varges (2007); Gatt and Belz (2008); Gatt
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and van Deemter (2009)).

2.4.1.2 Planning approaches

Some of the earliest planning approaches to referring expression generation were pre-

sented by Cohen (1981); Appelt (1985). Heeman and Hirst (1995) presented a compu-

tational framework of how dialogue partners collaborate in generating and clarifying

referring expressions. The model proposed two primitive actions: s-refer and s-attrib,

using which referring expressions can be generated. The s-refer is an action that is per-

formed by the speaker to convey his intention to generate a referring expression and

the s-attrib is an action that ascribes some attribute like category, colour or shape to

the referent. Koller and Stone (2007) presented a planning approach to sentence gen-

eration (described in section 2.3) that was extended to referring expression generation

as well. They also adapt to the hearer’s knowledge of domain entities by keeping track

of what the hearer knows, does not know and the potential confusion the hearer may

have among the domain entities. The goal state is defined as a referring expression

that does not refer to any distractors or entities that the hearer does not know about.

Therefore, the referents that the hearer knows are appropriately introduced (e.g. “the

rabbit” instead of “a rabbit”). The hearer’s knowledge is modelled using a static user

model like most other systems.

2.4.1.3 Statistical approaches

Poesio et al. (1999); Cheng et al. (2001); Stoia et al. (2006); Greenbacker and Mc-

Coy (2009) present supervised learning approaches to referring expression generation.

Poesio et al. (1999) and Cheng et al. (2001) use a manually annotated corpus of mu-

seum descriptions to study and model the production of parts of referring expressions

that do not serve to disambiguate the intended referent from distracting entities but

to provide additional information about the entity being referred to. These are called

non-referring parts. They model this using a decision tree learned automatically from

the corpus using supervised learning methods.

Stoia et al. (2006) also presented a decision tree learning approach to choose appro-

priate referring expressions in a virtual world navigation task based on the discourse

history, spatial features like the user’s view angle, distance from the target, distractors

in the view, etc. The algorithm was evaluated by humans who judged the output to be

better or as good as human output 62.60% of the time.
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Similarly, Greenbacker and McCoy (2009) used supervised learning methods to

learn decision trees to choose between different types of main subject referential ex-

pressions (MSRE). A main subject referential expression is a referring expression that

refers to the main subject of the article. They use a human annotated corpus called

GREC, which contains Wikipedia articles about countries, rivers, cities and people,

and choose between names, pronouns and noun phrases (of varying length) to refer

to the main subject referent. Features for learning a decision tree were carefully cho-

sen based on their utility as reported by psycholinguistic studies. Different versions

of decision trees trained using different sets of features produced an accuracy between

68.2% and 72.6% when tested on the testing corpus.

2.4.2 Opportunities for adaptation

In many complex domains like technical support, dialogue systems must adapt to users

at the level of referring expressions in addition to other dimensions such as complexity

of instructions. Previously, some REG modules adapt to users’ domain knowledge

(Dale and Haddock (1991); Reiter and Dale (1992); Koller and Stone (2007)) and to

their physical environment (Stoia et al. (2006)). Most of the above studies in REG

adapt to users by consulting a static user model that contains information about what

(parts of) referring expressions they already know. In a sense, these approaches assume

that a completely trustable user model is available before they output utterances or texts

adapted to their users. However, we argue that it is not always the case. In most cases,

users using interactive systems are unknown to the system. To be adaptive to such

users, these systems have to analyse the user’s traits and adapt to them online during

the interaction. In this thesis, we attempt to model such dynamic adaptive behaviour

in referring expression generation in spoken dialogue systems.

Referring expression generation (REG) is usually seen as a translation problem:

translating a semantic representation of a referent into a linguistic expression (Reiter

and Dale (2000)). But we view it as a choice problem rather than a translation problem

(van Deemter (2009b,a)). Given a semantic representation of the target entity, a REG

algorithm must choose from several alternatives an appropriate expression that satisfies

all the criteria of the system. We see the problem of choice at three different levels:

1. Choice of RE type: What type of expression to use: proper noun, common noun,

pronoun or one-anaphora?
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2. Choice of attributes (for common nouns): What attributes to include: category,

shape, size, colour, location, functionality, etc?

3. Choice of attribute values: What values should the selected attributes take (e.g.

red or crimson, James or James Bond or Mr. Bond)?

Several of these choices can be made based on the user’s domain knowledge. For

instance, how do we choose between a common noun and a proper noun reference for

a domain object? For example, we may have to use “the French president” instead

of “Nicholas Sarkozy” because the user does not know him by name. How do we

choose the attributes once we have decided to use the common noun reference? For

example, we may have to use “the red phone in the corridor” instead of “the emergency

phone” because the user does not know that the phone can only be used for emergency

calls (i.e. attributes like color and location can be used instead of functionality for

the same common noun “phone”). In case of attribute values, we might have to use

“the cushioned leather armchair” instead of “the recliner” because the user does not

know that the entity also belongs to a category of recliners (note: the attribute here is

the category of the entity). Entities may belong to more than one category and they

may be related to each other (e.g. hypernym-hyponym relations like recliners, chairs,

furniture) or be independent of each other (e.g. man, American, postgraduate, chef,

customer, passenger, etc). The choice of categories may be based on several factors.

However, the user’s knowledge of the category and the target entity’s membership in

the category must be taken into account. In summary, user-adaptive REG can be seen

as a choice (of referring expression) between what is known to the user and what is

unknown. Therefore, what we need is a user modelling component that informs the

REG algorithm in making appropriate choices to adapt to the user. In addition to the

above, another distinction that can be made is how reference subsequent to the initial

one be made using referring expressions. In such contexts, referring expressions are

usually shortened but such shortening should take into account what the user knows or

recently learned during the previous references.

Although, as described above, there is a hierarchy of levels in referring expression

generation where choices have to be made with respect to user’s domain knowledge,

in this thesis, we present a problem of choice between expressions (and not parts of

them) that are known and unknown to the user. Also, we do not focus on subsequent

references and therefore only use the same referring expression as the initial one during

subsequent references. We build a user modelling component that chooses between a
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set of referring expressions that are known and another set of expressions that are

unknown to users.

2.5 Conclusion

In this chapter, we presented several user modelling techniques ranging from simple

representational models to advanced predictive models. In contrast to most models

developed for information retrieval tasks, we will focus on learning user modelling

strategies for dialogue systems that seek information to populate the user model, pre-

dict using incomplete user models and adapt to user’s domain knowledge effectively

using reinforcement learning techniques.

We also presented some spoken dialogue systems and natural language generation

systems that adapt to users. These systems, adapted to different user features like

expertise, personality, preferences, goals, environmental constraints, and so on. Al-

though some of them focussed on adapting to user’s domain knowledge like we do,

they do so either using rule based or supervised learning approaches. Also very few

systems adapt dynamically which we argue is an important factor in building adaptive

interactive systems. In contrast, our thesis focuses on dynamic adaptation to user’s

domain knowledge in interactive dialogue contexts. We also presented an overview

of the state-of-the-art in referring expression generation, opportunities for adaptation

in REG and finally, how our work on user modelling fits into the larger framework of

REG.



Chapter 3

Reinforcement Learning

3.1 Introduction

Reinforcement Learning is a computational learning framework for stochastic planning

in which the learning agent learns the optimal action to take in a non-deterministic

environment to maximize its expected long term rewards over a sequence of actions

(Kaelbling et al. (1996); Sutton and Barto (1998)). It is a framework where the agent

learns from its trial-and-error interactions with its environment based on the envi-

ronment signals. The environment signals include reward and punishment and the

objective of the agent is to accumulate rewards and avoid punishments.

It is different from the two most popular machine learning techniques: supervised

and unsupervised learning. Supervised learning is a way of learning from examples,

in which there is an oracle who tells the agent what to do in different contexts by

presenting the agent with example context-action pairs to learn from. In a way, the

agent learns from positive and negative examples and generalizes them to new unseen

contexts. On the other hand, unsupervised learning presents a way for learning agents

to cluster all available contexts into several distinct groups whose members are closer

to each other than the members of other groups.

In contrast to these two approaches, in reinforcement learning the agent gets a nu-

merical reward/punishment signal from a stochastic environment depending on the ac-

tion it takes in different contexts and learns using trial-and-error learning techniques.

The reward signal suggests to the learning agent how good or bad the action or a se-

quence of actions have been. Therefore, an advantage of reinforcement learning over

supervised learning techniques is that it can be applied to tasks where actions cannot

be classified strictly as right or wrong but be rewarded based on how good or bad its

45
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effects were to achieve the agent’s goals. Another key feature is that, while supervised

learning, informs the learning agent if its actions are correct or not after every action,

reinforcement learning agents can be rewarded after a sequence of actions, thereby

learning an optimal sequence of actions. While using supervised learning methods, an

agent learns to imitate the experts and therefore can only learn strategies that are as

good as the experts in the corpus, reinforcement learning agents can learn better strate-

gies by searching the policy space to maximize the expected rewards (Rieser (2008)).

3.2 Learning agent and its Environment

Figure 3.1: Reinforcement Learning agent in environment

Figure 3.1 shows a reinforcement learning agent interacting with and learning from

its environment. The agent is situated in an environment with which it interacts. The

agent is capable of a set of actions and it senses responses from the environment. The

environment also sends a reward signal to the agent. The reward signal is a scalar

numeric signal and proportional to how good or bad the agent’s actions were in the

environment. Often, the signals are positive (i.e. rewards) when the agent’s actions

are favourable to the environment and negative (i.e. punishment) when they are not.

The agent has an internal representation of the environment context as it observes it,

which is called the state of the agent. At each step in this interaction, the agent’s

action changes the state of the environment. The agent then updates its state based on

its observations of the environment or the environment’s responses. The learning task

therefore is to choose the optimal action for each of the states that maximises its sum

total of the expected reward signals at the end of the interaction (i.e. total reward). In

order to do so, the agent should learn to map the most appropriate action that it can
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take in a given state. This mapping is called the agent’s policy (or strategy). Usually,

the agent starts with a random policy (i.e. choose actions at random for any given state)

and updates its policy based on the rewards from the environment until it figures out

the optimal action for each of its states.

An example of a reinforcement learning task would be that of a robot learning to

avoid obstacles on its path from point A to point B (fig 3.2). It may have a set of actions

it can take to interact with its environment, like moving forwards and backwards, turn-

ing left and right, etc. It may have sensors like bump sensors and sonars using which

it can observe the state of its environment. Let us assume that its proximity to point

B can also be sensed using a light sensor and that point B is a light source. By giving

the robot a negative reinforcement (i.e. punishment) whenever it bumps into a wall or

other obstacle, the robot can be made to learn to take evasive action in environmental

states where the sensors indicate proximity to obstacles in a particular direction. Simi-

larly, by giving a positive reinforcement (i.e. reward) when it reaches point B, it can be

made to learn a sequence of actions to follow the light to reach the source. Therefore,

through reward and punishment, the robot can be made to learn a policy to navigate

from point A to point B avoiding obstacles on the way. It is also possible that there

may be several paths (shown by many dotted lines) to take and one path may be better

than others in a certain way. For instance, a certain path may be easier to navigate and

another faster in terms of time and distance. It is possible to make the robot learn such

optimal paths by incorporating these parameters in the reward function by rewarding

shorter paths more than longer paths.

Figure 3.2: Robot path navigation
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3.3 Markov Decision Processes

The learning problem of the agent is usually modelled as a Markov Decision Process

(MDP) (Bellman (1957)). It is a formal representation of the state space of the envi-

ronment, the actions that the agent can take, the possible transitions from one state to

another by taking various actions, and the reward the agent gets for such transitions.

An MDP can represented as a 4-tuple as follows:

< S,A,T,R >

S - Set of states (s ∈ S) of the environment

A - Set of actions (a ∈ A) that the agent can take

T (st ,st+1,ai) - Probaility of transitioning from state st to state st+1 by taking action ai

R(st ,st+1,ai) - Reward signal for transiting from st to st+1 by taking action ai

At each time step t, the agent can traverse through the MDP from one state st

to another st+1 (st ,st+1 ∈ S) by taking action at (a ∈ A). The transition to the next

state st+1, however, is probabilistically determined by T . During such transitions, it

receives a reward rt+1 (where rt+1 ∈ R). Usually, the learning task is assumed to

satisfy the Markov property, so that the environment state transitions (to the next state

st+1) are defined based only on the previous state (st) and the agent’s current action

(at). Therefore, the probability of transiting from one state (st) to the next and the

probability of obtaining a reward rt+1 at time step t is given by.

P(st+1|st ,at ,st−1,at−1,st−2,at−2..s1,a1) = P(st+1|st ,at)

P(rt+1|st ,at ,st−1,at−1,st−2,at−2..s1,a1) = P(rt |st ,at)

In a Markov Decision Process (MDP), we make an assumption that the learning

agent is able to correctly observe its environment and update its internal state without

any uncertainty (i.e. they are fully observable). However, it is not always the case.

In the case of our robot example, the robot’s sensors may be faulty or other environ-

mental circumstances may not allow the sensors to make accurate measurements of the

environment around the robot. In such cases, the internal state of the agent is treated

as belief state, which represents the agent’s beliefs of its environment. Such mod-

els are called Partially Observable Markov Decision Processes (POMDP) (Kaelbling

et al. (1998)). In this thesis, we assume that the user’s actions are fully observable and

therefore use MDPs to represent the user modelling problem. However, we do not rule

out the possibility of improved performance if our problem is modelled as a POMDP.

We discuss scenarios where POMDPs can be applied in chapter 9.
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3.3.1 Learning objective

The objective of the learning agent can be defined as the total reward that it accumulates

over several steps (n) in the future starting from t (denoted by total reward below).

total rewardt = rt+1 + rt+2 + ...rt+n

Reinforcement learning also uses the concept of delayed rewards (Watkins (1989);

Barto et al. (1990)). Delayed rewards is a concept of rewarding the agent after a se-

quence of actions that it takes in its environment. By using delayed rewards, the agent

can be made to learn a sequence of actions that would lead it from the start state to

the goal state where it would be rewarded handsomely. In this thesis, we use delayed

rewards in the sense that we reward the agent at the end of the conversation. It makes

the agent learn a sequence of decisions to both populate the user model and to use it

efficiently to adapt to the user and to trade-off between the two goals. These type of

problems are also called sequential decision making problems. In such tasks, it is also

possible to discount the future rewards using a discounting factor (γ). The total reward

can then be rewritten as follows.

total rewardt =
n

∑
i=0

γi ∗ rt+i

where 0≤ γ≤ 1

The discounting factor determines the value of future expected rewards. When

γ = 1, future rewards are considered as important as the current reward. As it ap-

proaches 0, the importance of the future reward is reduced. In such a case, the learning

agent is said to be short-sighted as it considers the current reward as the most im-

portant. There are tasks where the learning agent has to learn to take less rewarding

actions at first to enable it to get far higher rewards later than it could have got if it had

taken actions that would have given it the highest reward at every state earlier. Such

a trade-off is seen in many tasks. Since the action of the agent affects the state of the

environment, sometimes taking less rewarding actions could possibly take the agent

through a different path than taking highly rewarding actions and such paths may con-

tain avenues to get even more rewards. Tasks such as these suggest that learning agents

must be mindful of future rewards as well and not just current or immediate rewards.
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3.4 Policy Learning

3.4.1 Policy

A policy (π : si→ a j) maps every state of the agent to an action. Sometimes, a policy

is also called strategy. The policy that enables the agent to choose optimal actions to

get the maximum total reward is called the optimal policy (π∗). In order to choose

the optimal actions at each state, the learner must know the expected rewards for each

of the actions that it has at its disposal. The expected rewards are defined by a state

value function (V π(s)) for each state and an action-value function (also called Q-value

function, Qπ(s,a)) for each state-action pair for any policy π. The value function

(V π(s)) for each state is the expected value of total reward that the agent will get if

it takes an action from state s and continues taking actions thereafter following the

policy π. Similarly, the Q-value of taking an action a in state s is the expected value

of the total reward that the agent will get if it starts from s and takes action a and

thereafter takes actions from the next state according to policy π. We use Eπ to signify

the expected reward.

V π(s) = Eπ{total rewardt |st = s}= Eπ{
n

∑
k=0

γkrt+k+1|st = s}

Qπ(s,a) = Eπ{total rewardt |st = s,at = a}

There can be several policies that an agent can follow to reach the goal state. How-

ever, the objective of solving the task using reinforcement learning is to find an optimal

policy π∗. An optimal policy is better than or equal to all other policies. By follow-

ing the optimal policy, the agent is guaranteed to achieve the maximum reward in the

long run. The optimal policy (or policies) (π∗) have the optimal value and Q-value

functions. They can be defined as follows.

V ∗(s) = maxπV π(s)

Q∗(s,a) = maxπQπ(s,a)

Finally, an optimal policy is the one that maps every state of the agent to the optimal

action that the agent can take in order to obtain maximum reward in the long run. It

can be defined as the action that has the largest Q-value in the given state.

π∗(s) = argmaxa{Qπ∗(s,a)}
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3.4.2 Exploration vs Exploitation

Reinforcement learning algorithms introduce a trade-off between taking actions that

are known to deliver good rewards and taking new actions whose results are unknown.

During learning, the agent sometimes takes tried and well-tested actions which it

knows would deliver the best expected reward. This process of choosing an action

that is known to deliver high reward is called exploitation. However, at other times it

takes untried suboptimal actions with lower Q-values in order to find out whether they

might turn out to return more reward then the current optimal action. This process of

choosing new and untried actions is called exploration. Exploration allows the agent to

learn new actions in certain states and exploitation allows it to use what it learned dur-

ing exploration. A mixture of exploration and exploitation over a large number of trials

allows the agent to learn optimal actions in the different states of the state space that

will maximise the overall total reward. This behaviour is controlled by the exploration

variable (ε). ε is the probability that the actions taken by the learner are exploratory

actions. The value of ε can be gradually reduced over time in order to reduce explo-

ration and increase exploitation of high scoring actions towards the end of the learning

phase. This decay is controlled using a halving-time parameter that defines when the

ε is to be halved. For example, if the having-time parameter is n cycles, the ε will be

halved every n cycles.

3.4.3 Algorithms for learning

State value and action values can be estimated using different classes of reinforce-

ment learning algorithms like Dynamic Programming (DP), Monte-Carlo methods and

Temporal difference (TD) methods (Sutton and Barto (1998)). Dynamic programming

methods require a complete and accurate model of the environment. In other words,

we need the transition probabilities (T ) and rewards (R) in order to calculate the Q-

values of all state-action pairs and therefore discover the optimal policy. However, in

several tasks, the environment models are not readily available. The agent can only

get to know the environment’s responses and reward signals by interacting with it (i.e.

through experience). Monte-Carlo and Temporal difference methods, in contrast to

Dynamic programming methods, do not require a complete specification of the envi-

ronment model for learning.

Monte-Carlo methods follow a two-step process: policy evaluation and policy im-

provement. Policies are evaluated and improved in episodic cycles from the start state
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to the goal state and therefore these methods can be used only for episodic tasks with

small and finite MDPs. Temporal difference combines the ideas of Monte-Carlo and

Dynamic programming. Like dynamic programming, TD methods estimate the current

estimate of reward from the previous learned estimate. This process is also called boot-

strapping. And like Monte-Carlo methods, TD methods learn from their experience

in the environment and not using a model. Unlike Monte-Carlo methods which revise

their policy after every episode, TD methods revise their estimates incrementally after

every step.

Since we don’t have an accurate model of the environment, we don’t use DP algo-

rithms for policy learning. It is not clear which of the other two methods: Monte-Carlo

and Temporal Difference, is most appropriate to our user modelling problem. We

use a temporal difference learning algorithm called SARSA (Rummery and Niranjan

(1994)) to learn the action-value function to estimate the expected rewards for different

state-action combinations.

SARSA is a algorithm which starts with an arbitrary policy and optimizes it whilst

exploring it. The algorithm for action-value function update is given in Table 3.1.

The learning starts with a policy with arbitrary Q-values for state action pairs. Based

on action-value function Q and the exploration variable ε, actions are chosen as the

learner hops from one state to another. The learning agent receives a reward, every

time it takes an action and transits to a new state. The Q-value of the state-action pair

is updated based on its previous estimate and the reward and the Q-value of the action

it takes at the new state as follows:

Q(st ,at)← Q(st ,at)+α[rt+1 + γQ(st+1,at+1)−Q(st ,at)]

α is called the learning rate (0 < α < 1) which determines how fast or slowly

the algorithm learns from its experience. The name SARSA comes from the quin-

tuple < st ,at ,rt+1,st+1,at+1 > in the above update equation. In this study, we use a

reinforcement learning toolkit called REALL (previously called ICARUS) which im-

plements the SARSA algorithm (Shapiro and Langley (2001, 2002)).

3.4.4 Linear function Approximation

Linear function approximation is a generalisation technique which is used in rein-

forcement learning algorithms to scale them up to states which were not visited during

training. So far, we have assumed that the learned state-values for states or action-

values for state-action pairs are stored in the form of a table. However, the number
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Initialize Q(s,a) arbitrarily

Repeat (for each episode):

Initialize s

Choose a from s using policy derived from Q

Repeat (for each step of episode):

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q

Q(s,a)← Q(s,a)+α[r+ γ Q(s′,a′)−Q(s,a)]

s← s′;a← a′;

until s is terminal

Table 3.1: SARSA algorithm (Sutton and Barto (1998))

of entries in the table could grow exponentially with the task complexity. The prob-

lem with huge state spaces is that learning becomes more difficult as it requires more

time and data to visit all possible states. Generalisation techniques like linear function

approximation have been employed to resolve the problem of large state spaces (Hen-

derson et al. (2008)). This is an instance of supervised learning that takes examples

from any desired function (e.g. value or action-value functions) and generalizes them

to construct an approximation function. Instead of training the agent with a large state

space, we could train it with a smaller state space with linear function approximation,

which could then be employed to handle large state spaces during evaluation with real

users. The generalisation function can therefore produce a good approximation over

unseen states.

Let Q′ be the linear approximation function for the action-value function Q pre-

sented in the SARSA algorithm. Each state (s) is represented as a column vector of

state variables (ϕs = (ϕs(1),ϕs(2), ..,ϕs(n))T ). Q′ is a linear function of a parameter

vector (θa = θa(1),θa(2), ..,θa(n)) for each action (a) and the state vector (ϕs) and is

given by,

Q′(s,a) =
n

∑
i=0

θa(i)ϕs(i)

The learning algorithm learns the parameter vector (θa) for each action (a) pair,

using which Q-values for any state-action pair can be predicted. The method there-

fore generalises even to states unseen in the training phase by computing how similar

unseen states are to those that were seen during training.
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3.5 Applications of Reinforcement Learning techniques

Reinforcement learning methods have been successfully applied to solve many prob-

lems. Machine learning methods offer a lot of advantages like data-driven and low-cost

development, optimal policies, generalisation to unseen states, etc. Reinforcement

learning has been used to solve problems like mobile robot navigation (Malmstrom

et al. (1996); Smart and Kaelbling (2002); Su et al. (2004)), air traffic management

(Alves et al. (2008)), diagnosis using medical images (Netto et al. (2008)), etc. Re-

inforcement learning has been also used for adaptive interactive page recommenda-

tion (Hernandez et al. (2003, 2004); Taghipour et al. (2007)). Taghipour et al. (2007)

presents page recommendation as a Q-learning problem. A window of pages visited by

the user and those previously recommended by the system are treated as the state and

the choice of pages that the system could recommend is treated as the set of actions.

3.5.1 Dialogue Management Strategies

We discussed dialogue management briefly in section 2.2. In dialogue management,

the system has to decide how to act in a dialogue situation which is decided by a dia-

logue management policy. These policies are sometimes manually coded using finite

state machines and standard markup languages like Voice XML, Call Control XML,

State Chart XML, etc (Seneff and Polifroni (2000); Pietquin and Dutoit (2003); Brusk

et al. (2007); Griol et al. (2010)). The performance of the dialogue management mod-

ule directly depends on how good the dialogue policy is. The task of designing a good

dialogue policy is therefore considered more of an artistic task rather than an engineer-

ing task. Such policies are very difficult to be manually coded and maintained by dia-

logue system designers as the dialogue task becomes more complex thereby increasing

the dialogue state space. Machine learning methods like reinforcement learning have

been successfully used to learn dialogue policies in increasingly complex and uncertain

dialogue scenarios (see below).

Levin et al. (1997) showed how to describe a dialogue system in terms of states,

actions and strategies and how to use reinforcement learning to learn such strategies

describing what action to take in different dialogue states. The dialogue state (Ss,t) rep-

resents the knowledge of the system at any given point of time about itself (i.e. goals,

resources available, filled slot values, etc) and the environment (i.e. the user, noise

conditions, database, etc). The dialogue action set (As,t) includes all possible actions

that the dialogue manager can take. This includes greeting the user, asking for infor-
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mation, presenting information, confirmation of known information, etc. Sometimes

more complex actions are also used like asking for more information while implic-

itly confirming old information. Finally, a dialogue strategy (πdm(Ss,t)→ As,t) is the

component that maps the dialogue state to the most optimal action. The above setup

is represented as a Markov Decision Process (MDP) and the dialogue strategy is opti-

mised to maximize a long term reward. The reward could be modelled on parameters

like dialogue duration or on user satisfaction scores. Therefore, the agent’s goal is to

learn a dialogue management strategy that maximizes the user’s satisfaction score or

minimizes dialogue duration and so on.

During the learning phase, the dialogue manager needs to interact with real users.

In general, this is very difficult, as the learning phase for any RL agent requires thou-

sands of dialogue interactions with users before it can find an optimal policy. Besides,

the system in learning mode would explore different dialogue actions that can be very

bizarre and annoying to real human users. Real users can therefore not be obviously

used during the learning phase. On the other hand, the learning agent could learn from

a dialogue corpus. However, such corpora have to be extremely large to cover all of

the dialogue state space and still produce the variety of user behaviour. Since such

huge corpora are not always readily available or created, user simulation models were

proposed to replace real users (Eckert et al. (1997)). The user simulation models are

themselves built using a small dialogue corpus containing real user interactions. These

models were further smoothed and discounted, so that they generalise to produce un-

seen behaviours in the corpus. User simulations can interact with the learning agent

indefinitely producing a variety of dialogue behaviour that we need for learning a good

policy. We describe user simulation models in detail in chapter 6. Using the above

setup (figure 3.3), it has been shown that reasonably good policies could be learned

automatically from small amounts of corpus data. Many studies have examined more

complex dialogue management problems based on the above model. Schatzmann et al.

(2007b) uses this approach to learn DM strategies that handle uncertain noise condi-

tions at the user’s end. The system learns when to appropriately produce confirmation

moves to ground mutual information about the user’s goals. Typical system dialogue

actions include asking for slot information, confirming slot information, presenting re-

sults, etc. Similarly, Rieser and Lemon (2009a) use this framework to learn to choose

between different modalities (speech vs display) to present information in a dual task

situation (with high cognitive load on the user) based on user’s environmental con-

straints and the database hits. Henderson et al. (2005, 2008) extended the simulation



Chapter 3. Reinforcement Learning 56

based RL framework to handle large state spaces using linear function approximation.

Figure 3.3: Learning Dialogue Management policy using RL

In contrast to simulation based reinforcement learning methods, Singh et al. (1999,

2002); Walker et al. (2000); Tetreault and Litman (2006) presented dialogue manage-

ment strategy learning using a model based reinforcement learning framework. In

this framework, the strategies are learned from limited real user data using dynamic

programming techniques and not from a simulated user. Because of limited data, the

system can only learn strategies for states seen in data. Therefore only partial strategies

are learned. In Tetreault and Litman (2006), the RL agent learns using a dynamic pro-

gramming algorithm called value iteration to choose between different kinds of ques-

tions to ask the student interacting with the system based on state features like learner’s

frustration, certainty in response, performance so far, etc. In a similar work, Jokinen

et al. (2002) used reinforcement learning inspired methods to learn user interaction pat-

terns from a corpus to build different user models at different levels: individual, group

and general. These user models were then used by the dialogue system to adapt to the

user’s dialogue strategy patterns. Recently, the representation of the dialogue states

has been made using partially observable MDPs (POMDPs) to learn dialogue manage-

ment policies under uncertainty arising from noisy speech recognition and stochastic

user behaviour (Young (2006); Williams et al. (2006); Williams and Young (2007)).
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3.5.2 Language Understanding

Recently, Branavan et al. (2009); Vogel and Jurafsky (2010); Branavan et al. (2010)

presented interesting ways to learn to understand natural language commands using

reinforcement learning. Branavan et al. (2009) presented a study in which a reinforce-

ment learning agent learns to map natural language instructions in controlled domains

to sequences of executable actions. For instance, the agent learns to decode instruc-

tions like “Click Start, point to search, and then click for files or folders” and execute

them just the way human users reading a Windows Help document would. Therefore,

the actions of the learning agent include “left-click”, “double-click”, “type-into”, etc

along with parameters. The state of the agent comprises information concerning the

GUI objects that the agent can interact with, current instruction, etc. The agent is either

immediately rewarded after every step based on whether there is a correspondence be-

tween the environment objects at the new state and the words in the following instruc-

tion (i.e. environment reward) or task completion calculated using expert annotations.

The study found that with a combination of little annotation and the environmental

reward, the learning agent was able to map instructions sequences to action sequences

much better that other baseline approaches. Branavan et al. (2010) extend this ap-

proach to decode high-level instructions, where there is no one-to-one correspondence

between the words and the environment objects.

Similarly, Vogel and Jurafsky (2010) present an agent that learns to associate words

in the user’s instructions (i.e. directions) to actual physical actions in a map task. The

direction following task is modelled as a sequential decision making problem. The

action set of the learning agent includes all possible moves it can make from the current

location on the map. Each of these actions specify the next landmark and the cardinal

direction (i.e. which side to pass the landmark e.g. left, top, etc.). The state of the

agent comprises of the instruction it is currently following and its current position on

the map. The instruction is represented in terms of features consisting of spatial terms,

landmarks on the map, etc. The reward function rewards when the path taken by the

agent on the map is close to that of an expert path (i.e. visiting the landmarks in the

same order and orientation). Using the SARSA reinforcement learning algorithm, the

agent learns to associate various spatial terms and current location information to the

most optimal action such that the final reward is maximized.
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3.5.3 Natural Language Generation policies

Recently, Lemon (2008); Rieser and Lemon (2009b) extended the above MDP model

for dialogue management policy learning to NLG policy learning. It was shown that

RL can be used for learning strategies that make high-level NLG decisions like utter-

ance (or content) planning in an information presentation task in the restaurant recom-

mendation domain. The study examines how information can be presented such that

various parameters like utterance length, amount of information conveyed and cogni-

tive load are balanced optimally. The NLG module is the learning agent which has to

choose between seven complex actions. Each complex action is a sequence of primi-

tive NLG actions: summarize, compare and recommend. It chooses primitive actions

one after another incrementally and at each decision point it consults the dialogue state

and updates it. It also chooses how many attributes (of the restaurants) need to be dis-

cussed in its utterances. Action selection is based on the dialogue state which consists

of number of matching database hits, number of sentences generated so far, and the

user’s response. An internal user simulation model predicts the user’s response to the

partial utterance generated so far, which helps the system to decide whether to generate

more information or stop. The NLG agent learns to choose the optimal sequence of

primitive actions along with the number of attributes for each primitive action based

on the changing contexts. In comparison to baseline hand-coded policies, it has been

shown that the learned policies perform much better in terms of maximizing the overall

reward.

In summary, reinforcement learning has been used to learn policies for dialogue

management, language understanding and language generation in dialogue systems. In

contrast, we employ reinforcement learning techniques to learn user-modelling strate-

gies for referring expression generation. This promises a fully reinforcement learning

approach to dialogue system development in future.

3.6 Conclusion

In this chapter, we introduced reinforcement learning techniques that we use in the

following chapters to approach the problem of user modelling for adaptive REG. We

presented an introduction to Markov Decision Processes and the notion of optimizing

long term rewards. We also discussed policy learning in terms of value functions and

action-value functions. We briefly discussed various approaches to policy learning be-
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fore presenting the SARSA algorithm that we will use to learn user modelling policies.

We have also introduced other key concepts like the exploration-exploitation trade-off

and delayed rewards.

We discussed some of the applications of reinforcement learning in various do-

mains. We showed how reinforcement learning techniques have been applied to policy

learning in dialogue management, language understanding and natural language gen-

eratio in spoken dialogue systems in the past.

In chapter 4, we discuss why reinforcement learning is a suitable candidate to solve

our user modelling problem, how the problem can be cast as a Markov Decision Pro-

cess and how reinforcement learning algorithms like SARSA can be used to learn a

user modelling (UM) policy that adapts to unknown users by choosing the most appro-

priate referring expressions based on their domain knowledge levels. We examine the

following questions in the following chapters:

1. How to build an RL framework for learning adaptive REG policies? What should

the dialogue state look like for adaptive REG action? What actions should we

consider for unobtrusive adaptation?

2. Can the user simulation models used for dialogue management policy be used

for learning adaptive REG policies as well? If not, how do we enhance them for

user modelling policy learning? What should the new user simulation model be

capable of? How to build a simulation using limited data

3. Can we learn a user modelling policy for adaptive REG with an RL framework

that will adapt online to users with different levels of domain expertise?

4. Will such a learned policy perform well with real users as well?

5. Does adaptation to user’s domain knowledge affect other task parameters like

time taken, task success, etc?



Chapter 4

Basic Framework

In this chapter, we present a basic reinforcement learning framework for adaptive user

modelling in dialogue contexts. First we analyse the nature of the problem at hand (in

section 4.1) and describe why Reinforcement Learning is a suitable method to address

this problem. In section 4.2, we describe the task domain that is supported by our

dialogue system. We then build the basic framework to represent the user modelling

problem as a RL problem (in section 4.3). And finally, we present our 5-step approach

to develop a data-driven user-adaptive dialogue system (in section 4.4).

4.1 Analysis of the problem

In this section, we analyse the nature of the problem at hand. We believe that there are

three important factors in the problem setting that suggest the use of Reinforcement

Learning.

4.1.1 Learning from interactions

Adapting to unknown users involves learning about their domain knowledge and de-

ciding which referring expression to use based on an incomplete user model. In super-

vised learning approaches, such decisions can be learned from experts using a corpus

containing interactions between the expert and a variety of users. However, it requires

a large corpus of interactions to learn a good adaptive policy, which is not readily avail-

able in several domains. Another problem is that it is not easy to create such a corpus

as it is difficult to find an expert who is not only highly knowledgeable in the domain

but also an expert at conversing with and adapting to different types of users (Hinds

60
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(1999)).

Instead, we propose an approach to learn to choose the most appropriate expres-

sions from the user’s (implicit and explicit) feedback. For instance, users might com-

plain when they do not understand new referring expressions, and they might implic-

itly acknowledge when they know and understand them. These feedback signals can

be used when choosing different expressions in different contexts on a trial and error

basis to reinforce the best choices and to learn to avoid the bad decisions taken by the

system. Therefore, we hypothesize that by interacting with users the system can learn

to model and adapt to the user’s unknown domain knowledge during the course of the

conversation.

4.1.2 Sequential decision problem

A sequential decision problem is one in which a decision (in our case, to use a partic-

ular expression) at a time t at state St will update the state St+1 and therefore affect the

decisions taken at time t + 1. Choosing referring expressions based on user’s domain

knowledge is a sequential decision making problem because the use of inappropri-

ate expressions reveals the user’s domain knowledge in the form of user’s request for

clarifications. This allows the system to take corrective action and adapt to the user.

Therefore, the decisions taken by the system in a dialogue context are not isolated de-

cisions. Each decision taken by the system results in the update (or not) of the context

based on which the next decision is taken. The REG module has to learn when it is

a good time in the sequence to seek information to build the user model and when to

adapt in order to maximize the overall adaptation to the user.

4.1.3 Stochastic environment

It should be noted that the information given by the users that is used to populate the

user models is not always reliable. Although we can reasonably assume that the users

are cooperative and ask for clarifications when presented with an unknown referring

expression, they may not always do so. For example, they may like to avoid such clar-

ification questions for some reason or they may misinterpret the expression to refer to

an incorrect entity. Such incorrect user responses (or lack of responses) lead to incor-

rect updates in the user model. Although this may happen occasionally, the system

must be robust enough to deal with uncertainties arising from the user’s actions.

To summarize, the problem of adaptive user modelling in dialogue contexts is a
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All Jargon: Please plug one end of the broadband

cable into the broadband filter .

All Descriptive: Please plug one end of the thin

white cable with grey ends into the

small white box .

Mixed: Please plug one end of the thin

white cable with grey ends into the

broadband filter .

Table 4.1: Referring Expression examples for 2 entities

sequential decision problem in stochastic environments. Adaptive user modelling poli-

cies can be learned by interacting with different types of users. Reinforcement Learn-

ing is well suited to learn an agent’s behaviour based on environmental responses and

rewards (Kaelbling et al. (1996); Sutton and Barto (1998)). Several research stud-

ies have used RL to solve stochastic sequential decision making problems in the past

(Barto et al. (1990); Littman (1996)). For these three reasons, we propose to explore

reinforcement learning techniques to address the problem of user modelling for REG

for unknown users.

4.2 Problem domain

We chose to study this problem in a spoken dialogue system environment in a technical

support domain. The dialogue system interacts with users and helps them with their

technical problems such as troubleshooting or setting up broadband Internet connec-

tions. In this setup, the system gives step by step instructions to install a broadband

Internet connection as shown in figure 4.1. The system should choose appropriate re-

ferring expressions to refer to domain entities in a dialogue setting based on its knowl-

edge of the user. The system could choose to use technical expressions (or jargon

expressions) or descriptive expressions or even a mix of the two as appropriate (see

examples in Table 4.1).

In this task, instead of making REG choices hierarchically (as described in section

2.4.2), we only choose between technical expressions and more general descriptive

expressions. However, this choice is made based on the user’s ability to identify the
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Figure 4.1: Dialogue task domain

domain objects using jargon expressions. Although, this is an important limitation, we

make this simplification because our goal is to demonstrate a framework that can be

used to learn a user modelling (UM) policy in a dialogue context that chooses referring

expressions based on the user’s knowledge of the domain.

4.3 Basic framework

As the first step, we model the user modelling problem as a Markov Decision Process

(MDP). As explained in chapter 3, an MDP is represented by a 4-tuple < S,A,T,R >,

where S is the set of states of the learning agent, A is the set of actions it can take

to move from one state to another, T is the probability of transition from one state

to another and R is the reward the agent gets when it transits between states. We

explain how each of these components are modelled to represent the problem of user

modelling.

4.3.1 Action set

As discussed earlier, the actions that the agent takes are basically adaptive actions in

which it chooses amongst various choices the optimal referring expressions that fit the

user’s domain knowledge levels. But before that, as a modelling agent, the system

should learn more about the partner it is interacting with progressively so that it can

adapt better. Hence the action set should reflect the twin objectives of being adaptive

as well as sensing its dialogue partner’s domain knowledge. One approach would

be to design different sets of actions to fulfill these objectives. For instance, we can
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build explicit questions (e.g. “Do you know what a broadband filter is?”) in order to

sense the user’s knowledge of domain objects. However, as discussed earlier, asking

explicit information sensing actions are intrusive when used excessively without care

and therefore we explore the possibility of using unobtrusive actions for sensing.

In natural human-human conversations, one of the ways the interlocutors acquire

information about their dialogue partner’s domain knowledge is based on their part-

ner’s requests for clarification about referring expressions that they cannot interpret.

In such cases, the interlocutor’s use of hard-to-interpret referring expressions has two

goals: to identify the target domain entity to the dialogue partner and to elicit informa-

tion on the partner’s domain expertise. This approach is unobtrusive because the user

is not being asked to answer questions that relate only to adaptation. We decided to

follow a similar use and clarify approach where the system learns to use jargon expres-

sions decisively to sense information about the user’s domain knowledge. Here jargon

expressions sometimes have two outcomes: sensing and adapting.

We define two unobtrusive adaptive actions. We call them REG actions (e.g.

choose-jargon, choose-descriptive, etc). One should note that these two actions rep-

resent two different ways of addressing the domain referents. However, the system

should also learn to use these actions appropriately based on the user’s knowledge of

the domain. These consitute a part of the domain communication knowledge of the

system (Rambow (1990); Kittredge et al. (1991)). These actions can be used to not

only reflect the system’s adaptive behaviour towards the user, but also serve to elicit

information from the users that is required for adaptation in the first place. For in-

stance, the use of unknown jargon would automatically elicit clarifications from users

which can then be used to inform the system that the user is unaware of the expression.

So by decisively using jargon, the system can gather information to predict the domain

knowledge of the user and actively adapt to the user. Therefore, we model our action

set to contain only REG actions.

Additionally, we foresee the combined use of jargon and descriptive expressions

in order to tutor the users about the domain objects (e.g. “The broadband filter is the

small white box with two sockets. Can you plug the broadband filter into the phone

socket?”). We call such an REG action choose-tutorial. We also add to list of REG

actions a choice for the system to use the same expression used by the user. Such

a behaviour is called lexical alignment or entrainment (Pickering and Garrod (2004);

Porzel et al. (2006); Buschmeier et al. (2010)). This REG action will enable the system

to lexically align with users. Therefore, given the state of the system and the domain
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1. choose-jargon

2. choose-descriptive

3. choose-tutorial

4. choose-user-choice

Table 4.2: REG Actions

object to refer to in the current utterance, the system’s choice of REG actions are given

in table 4.2.

The result of these actions would then be a set of referring expressions RECs,t re-

ferring to one or more domain objects mentioned in the utterance. The act of referring

expression generation is a part of a conversation between the system and the user.

Therefore in addition to the REG actions described above, our framework prescribes

the use of a dialogue management module that generates dialogue actions (As,t) that

sustains the conversation. In future, this framework can be extended to adaptive user

modelling for dialogue management as well. For example, in dialogue management,

the system could face adaptive choices such as choosing between simple and complex

instructions depending on the user’s domain expertise.

4.3.2 State space

The state of the system represents what the system knows about the environment that

it acts upon. For a dialogue system interacting with a user, the system state represents

all the information it has about the interaction it has with the user and information

concerning the user. The state of the system is usually represented in terms of vari-

ables. Although there may be variables concerning various aspects of the system, the

dialogue, etc, here we focus on those that are used for user modelling. Our objective is

to make the system take the actions, shown in 4.2, based on the user’s domain knowl-

edge. We therefore represent the user’s domain knowledge using a set of variables

(a.k.a. user model) as a part of the system’s state variables. We present a simple vector

where each variable records whether the user knows a jargon expression (JEi) in the

domain (see table 4.3).

These variables only represent the system’s beliefs about the user’s knowledge as

they are not pre-loaded into the system from any external source before the interaction

starts. It is instead populated dynamically based on interaction and user responses.
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User Knows(JE1)

User Knows(JE2)

...

User Knows(JEn)

Table 4.3: User Model

Each of these variables is three-valued. They are initially set as “unknown”, signifying

that the system has no idea about the user it is interacting with at the beginning of

the conversation. Later these are set to “true” or “false” values based on evidence

presented to the system by the user actions.

4.3.3 State transition

Transition from one state to another is based on the action taken by the system and the

environmental response to the action. In our context, state transition means the change

of system’s beliefs about the user’s domain knowledge. By user’s domain knowledge,

we mean the user’s ability to identify referents when they are addressed using technical

terms. In order to update the user model, which is the system’s beliefs about the user,

the user’s dialogue actions are used. In the training phase, when the system learns how

to adapt to users, we use a user simulation model. This is because agent learning re-

quires a lot of interaction between the agent and the users and such interactions would

be very exploratory in nature. Therefore, instead of real users with different levels of

domain knowledge, we use simulated users during training. However, in the evalu-

ation phase, we use real human users (in chapter 8). The user simulation simulates

the user’s dialogue behaviour by responding to the system’s dialogue actions. For in-

stance, it might follow the system’s instructions in a technical domain conversation and

acknowledge the instruction (example 1 in table 4.4), provide requested information to

the system (example 2 in table 4.4), etc. This list depends on the domain and task

handled by the system. However, for adaptive REG, we prescribe that the user simu-

lation model be capable of asking for clarifications on unknown referring expressions

(example 3 in table 4.4).

Users’ requests for clarification can be used to signal their ignorance of the expres-

sion or the domain concept. Figure 4.2 shows an example of how the user model state

can be changed based on the user’s response. Similarly, their acceptance of the jargon
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Example 1:

System: Please plug the TV cable into the circular socket.

User: (carries out the instruction) Yes. I did that.

Example 2:

System: Is the power light on?

User: No. It is still off.

Example 3:

System: Plug the broadband cable into the ADSL socket.

User: What do you mean by ‘broadband cable’?

Table 4.4: Examples of user responses

can be assumed to indicate their knowledge of the same. Although this is not a safe

assumption as users can have misconceptions and this could affect task success, we

could reduce the effect of a user’s misconceptions by explicitly requesting users before

the interaction starts to ask for clarifications if they are not sure of the domain concepts

and that misconceptions might leading to delay in solving their problems.

Figure 4.2: Example of state transition

4.3.4 Reward

Finally, we define the reward function R of the MDP. The reward function represents

the goals of the system and is a numerical score of the system’s performance. We

reward the system at the end of each dialogue session for its choice of REG actions.
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The system’s high-level dialogue management actions are not studied and therefore

their choice at different dialogue states are kept deterministic and therefore make no

contribution to the reward. But the REG actions like choosing jargon and descriptive

expressions at different states affect adaptation. Since our objective is to maximize

adaptation, the reward function should be able to present the learning agent with a

higher reward it had adapted well to its user and low reward it had not.

Due to the choices of referring expressions made by the system, users might waste

dialogue time asking for clarifications, and misinterpret unknown expressions result-

ing in low task success, increased user satisfaction or learn new jargon expressions and

so on. These parameters can be effective indicators of the adaptive behaviour exhib-

ited by the system. For instance, if the system is very adaptive, it might reduce the

number of clarifications requested by the user on referring expressions and therefore

the number of turns and duration. The overall dialogue time may also be drastically

reduced because adaptive behaviour reduces misunderstanding between the users and

the system. A reward function could factor in all or some of these parameters to reflect

how well the system has adapted. However some questions need to be answered be-

fore we decide which parameters to use in the reward function that signifies adaptation.

Does dialogue duration and number of turns decrease substantially when the system

adapts to a user? Does user satisfaction, user learning or task success increase due to

adaptation? Answers to these questions is the key to designing good reward functions.

4.3.5 Learning

RL algorithms are typically used to solve MDPs. The objective of RL algorithms,

as described in the previous chapter, is to find an optimal policy that maps each of

the above mentioned states of the learning agent to an optimal action. By optimal

action, we mean the action that has the potential to fetch maximum long term rewards

to the agent. The state of our learning agent represents the system’s beliefs about the

user’s knowledge, and the reward function rewards the agent for choosing referring

expressions adaptively towards the user’s domain knowledge levels. Therefore, the

system must learn to choose the appropriate referring expression for the user in order

to receive higher rewards. However it does not initially have any information about

the user’s knowledge and therefore it cannot adapt. Therefore, it must also learn to

acquire information about the user’s knowledge before it adapts. Also note that sensing

information by using jargon expressions is done at the expense of adapting to the user.



Chapter 4. Basic Framework 69

For instance, using a jargon expression may reveal that the user does not know it.

But such a move is not adaptive because an unknown expression may be presented

to the user. Therefore, the system should know how and when to sense information

and when to exploit the sought information to predict the unknown facts in order to

adapt to the user. Otherwise, it would simply be sensing more and more information

and not be adapting to the user. In case it gets its prediction wrong, it should use that

information to adapt later. Therefore, the system has to effectively learn to trade-off

between sensing to populate the user model and exploiting the user model to predict

and adapt to the unknown user.

During the learning phase, the system is presented with several users with differ-

ent levels of domain expertise. The system interacts with each user several times over

several dialogue sessions. Each user behaves according to its knowledge pattern. For

instance, when the system interacts with a novice user and presents a lot of technical

expressions, the user requests a lot of clarifications. These requests are assumed to be

indications of the user’s ignorance and are duly noted in the system’s state (i.e. user

model). At the end of each dialogue session, the user simulation evaluates the system’s

adaptation towards the user’s domain knowledge and rewards the system proportion-

ally. The reward is higher if the system used the appropriate expressions and lower if

otherwise. The system progressively learns to choose an appropriate REG action for

the current system state (i.e. user model) such that the final reward is maximized.

Please note that when the system uses jargon expressions that the user does not

know, the user could learn them. This means that the user’s knowledge is dynamic.

However, in this study, we are not modelling this dynamic aspect of the user’s knowl-

edge. Our system models only the user’s initial knowledge state in its user model.

However, in future, it would be interesting to study the learning behaviour of the user

as well. Our basic framework prescribes the minimum requirement for presenting the

problem of user modelling for REG as a Markov Decision Process. We discuss this

further in chapter 7.

4.4 Approach to learning dialogue policies

As discussed in section 3.5.1, dialogue policies have been learned using simulation

based reinforcement learning techniques in the past. For this, user simulations were

built using dialogues between real users and dialogue systems (Henderson et al. (2005)).

However, recently, such dialogues have been collected using Wizard-of-Oz studies
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and used for building user simulation models (Becker et al. (2006); Schatzmann et al.

(2007b)). These practices have evolved into a 5-step process for development of new

spoken dialogue systems (Rieser (2008); Rieser and Lemon (2011)). We propose to

use this approach to learn and evaluate a user modelling policy in this study.

Step 1. Data collection using Wizard-of-Oz (WoZ) framework: Small amounts

of dialogue data are collected using a Wizard-of-Oz framework. In this framework, a

human wizard disguises himeself as a dialogue system and interacts with real human

users. The interactions are logged and annotated. We describe this in detail in chapter

5.

Step 2. Build User Simulation models using WoZ data: We design a user simu-

lation model that can simulate real user’s dialogue behaviour in response to a dialogue

system. This model is trained using the data we collected in the previous step. We

evaluate the simulation model using appropriate metrics to see how realistic they are

in simulating real users. We describe this in detail in chapter 6.

Step 3. Model and train a policy learning agent in a simulated user environ-
ment: We model the dialogue system as a reinforcement learning agent in a Markov

Decision Process or as a Partially Observable Markov Decision Process. Here, states

and action choices of the learning agent are defined. A reward function is designed that

models the goals of the agent. We then train the learning agent by letting it interact

with the user simulation. The interaction produces thousands of dialogues in which the

learning agent first explores different options in various dialogue states and then learns

to associate optimal actions with states in order to maximize its long term expected

reward. This step is explained in detail in chapter 7.

Step 4. Evaluate the learned policy in user simulation: The learned policy is

then evaluated with a slightly varied version of the user simulation model. We com-

pare the performance of the learned policy in terms of objective parameters like reward,

number of turns, time taken, etc with baseline policies. This is also explained in chap-

ter 7.

Step 5. Evaluate the learned policy with real users: Finally, the best performing

hand-coded policies and learned policies are evaluated with real human users. Users
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are given tasks or goals and are allowed to interact with dialogue systems implement-

ing the learned and other baseline policies. Like simulated evaluation in the previous

step, objective measures are used. Real users are asked to fill out questionnaires that

measure user’s satisfaction scores. Based on the objective measures and subjective

scoring, the policies are compared. We describe this step in chapter 8.

Although, this approach has been used by many for developing and evaluating dia-

logue management policies Schatzmann et al. (2007b); Rieser (2008) and information

presentation strategies Rieser and Lemon (2009b), we adapt it to learn a user modelling

policy.

4.5 Conclusion

In this chapter, we have first presented an analysis of the user modelling problem and

discussed why reinforcement learning is a suitable candidate to solve this user mod-

elling problem. We have shown how to represent this problem as a Markov Decision

Process. We also present an outline of our approach to developing and evaluating

learning policies in dialogue systems. In the following chapters, we validate this basic

framework using dialogue data from real users and build a data-driven user simulation

and learning framework.
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Data Collection

Several studies have used pre-existing corpora of real user’s dialogues with dialogue

systems to train user simulations (Singh et al. (2002); Henderson et al. (2005); Georgila

et al. (2005)). However, such dialogue corpora do not exist in all domains and even if

they do, they are not ideally suited for the variety of tasks such as optimizing the sys-

tem’s NLG actions instead of dialogue actions, etc. In such cases, what we need is a

dialogue system to collect a dialogue corpus by interacting with real users. This leaves

us with a chicken-and-egg problem wherein on the one hand we need a dialogue sys-

tem to build a dialogue corpus with real users and on the other hand we need a dialogue

corpus to build a dialogue system. In these circumstances, dialogue system researchers

have used the Wizard-of-Oz framework wherein data is collected using a “wizarded”

dialogue system and such data is later used to build a dialogue system. In this chapter,

we use a Wizard-of-Oz (WoZ) framework for data collection in a real situated spo-

ken dialogue task for adaptive referring expression generation (REG). We also present

methods to collect additional information like a user’s domain knowledge before and

after the dialogue task and a user’s interaction with his/her physical environment. We

later show how such information can be combined to build user simulation models to

train adaptive policies for REG (see Chapter 6).

In section 5.1, we present the Wizard-of-Oz framework in general and some pre-

vious work. In section 5.2, we describe the WoZ environment designed for collecting

dialogues to learn adaptive referring expression generation in detail. Section 5.3 de-

scribes the task performed by participants. Section 5.4 describes the data collected in

this experiment. Section 5.5 presents an analysis of the corpus data.

72
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5.1 Wizard-of-Oz framework

Wizard-of-Oz frameworks are used in the absence of appropriate dialogue corpora con-

taining dialogues between real users and domain experts or simulated domain experts.

It is an effective way to collect dialogues between real users and dialogue systems be-

fore actually implementing the dialogue system. In this framework, participants inter-

act with an expert human operator (known as “wizard”) who is disguised as a dialogue

system. These dialogue systems are called wizarded dialogue systems (Forbes-Riley

and Litman (2010)). These wizards replace one or more parts of the dialogue system

such as speech recognition, natural language understanding, dialogue management,

natural language generation modules and so on. The dialogue partners (the participant

and the wizard) are usually seated in different rooms and interact using communica-

tion devices like microphone headsets on a computer network. In a setup where the

wizard plays the role of a dialogue manager, she hears the user’s responses and usually

chooses appropriate dialogue action. However, the wizard’s choices are restricted by

the system design and therefore they can only choose those actions that will be avail-

able in a fully developed system in the future. Dialogue actions are then converted into

natural language utterances and eventually into acoustic outputs using a speech syn-

thesizer. Speech synthesizers are used so that the participants can be made to believe

that they are interacting with a spoken dialogue system. The interaction between the

system (wizard) and the user is shown in figure 5.1. Wizard-of-Oz (WoZ) frameworks

have been used since Fraser and Gilbert (1991) in order to collect human-computer

dialogue data to help design dialogue systems. WoZ systems have been used exten-

sively to collect data to learn dialogue management policies (See Hajdinjak and Miheli

(2003); Cheng et al. (2004); Strauss et al. (2007)). For example, Whittaker et al. (2002)

present a WoZ environment to collect data concerning dialogue strategies for present-

ing restaurant information to users.

In addition to the dialogue data, users are sometimes requested to fill in question-

naires that ask them to rate the system features on a Likert scale. This information

is later used for calculating user satisfaction scores for the reward function using the

PARADISE framework (Walker et al. (2000)) based on step-wise linear regression.

This framework was considered to be better than relying on intuitions or human-human

conversation data to design dialogue system behaviours. Real users interact differently

with humans and computers. While their expectations with human interlocutors are

high and varied, they are ready to adapt and “go easy” on computers during interaction
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(Pearson et al. (2006)). So, in a WoZ framework, the conversation between real users

and the wizards are of an appropriate type to be used for dialogue system design. Also,

dialogue data collected from human-human conversations are often more difficult to

use in dialogue system development because human interlocutors employ a variety of

complex strategies to make the conversation successful. It is very difficult to build a

dialogue system that is capable of what human interlocutors can do in a conversation.

Dialogue systems are usually constrained and are built to be task specific and offer

limited freedom to users. Therefore, in order to collect relevant data for development,

the Wizard-of-Oz framework is employed.

Figure 5.1: Wizard of Oz setup for Dialogue Management

5.2 WoZ for Referring Expression Generation

Our primary objective is to collect user responses to the system’s use of different kinds

of referring expressions in a technical domain task and to study how participants (here-

after called users) with different domain knowledge and expertise interpret and resolve

different types of referring expressions (RE) in a situated dialogue context. We also

study the effect of the system’s lexical alignment due to priming (Pickering and Gar-

rod (2004)) by the user’s choice of REs. The users follow instructions from an imple-

mented dialogue manager and realiser to perform a technical but realistic task – setting

up a home Internet connection. The dialogue system’s utterances are manipulated to

contain different types of REs - descriptive, technical, tutorial or lexically aligned REs,

to refer to various domain objects in the task. The users’ responses to different REs are

then logged and studied. This data will be used to build user simulations to simulate

the dialogue behaviour of users with different levels of domain expertise.
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However, in our task we do not study dialogue management policies and therefore

we do not want the human wizard to make dialogue management choices for the sys-

tem. Instead we use a dialogue manager with a hand-coded DM policy to manage the

conversation. On the other hand, we still need a solution to the problem of speech

recognition and annotating the users’ utterances into dialogue acts. Forbes-Riley and

Litman (2010) presented a “wizarded” dialogue system where a human wizard is em-

ployed to listen to the user’s utterances and annotate their uncertainty levels for the

system to choose an appropriate action. We use a similar setup to collect data to train

the user simulation models.

Our framework consists of the Wizard Interaction Tool, the dialogue system and

the wizard. The users wear a headset with a microphone and sit in a different room

with all domain entities laid out in front of them. Their utterances are relayed to the

wizard who then annotates them using the Wizard Interaction Tool (WIT). The WIT

interacts with the dialogue manager and sends it an appropriate user dialogue action.

The manager responds with a natural language utterance which is automatically con-

verted to speech and is played back to the user and the wizard. The interaction between

the dialogue system and a real user is shown in figure 5.2. In contrast to previous WoZ

frameworks used for data collection (Whittaker et al. (2002); Hajdinjak and Miheli

(2003); Cheng et al. (2004); Strauss et al. (2007)), the human wizard does not make

strategic decisions on system dialogue actions. The wizard only replaces the speech

recognition and decoding modules of a spoken dialogue system. The task of dialogue

management is done by the dialogue manager. The wizard stays concealed to the par-

ticipants. The participants are informed that they will be interacting with a dialogue

system and the involvement of the wizard is not informed to them. This is done so that

the participants have a reasonable expectation towards the system.

5.2.1 Wizard Interaction Tool (WIT)

We implemented a tool that the wizard can use to interact with the dialogue manager

called the Wizard Interaction Tool (WIT) (shown in figure 5.3). It is implemented in

the Java programming language. The GUI is divided into several panels.

a. System Response Panel - This panel displays the dialogue system’s utterances

and RE choices for the domain objects in the utterance. It also displays the strategy

adopted by the system currently and a visual indicator of whether the system’s utter-

ance is being played to the user.
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Figure 5.2: Wizard of Oz setup for Referring Expression Generation

b. Confirmation Request Panel - This panel lets the wizard handle issues in commu-

nication (for e.g. noise). The wizard can ask the user to repeat, speak louder, confirm

his responses, etc using appropriate pre-recorded messages or build his own custom

messages.

c. Confirmation Panel - This panel lets the wizard handle confirmation questions

from the user. The wizard can choose ‘yes’ or ‘no’ or build a custom message.

d. Annotation panel - This panel lets the wizard annotate the content of participant

utterances. User responses (dialogue acts and example utterances) that can be anno-

tated using this panel are given in Table 5.1. In addition to these, other behaviours, like

remaining silent or saying irrelevant things are also accommodated.

e. User’s RE Choice panel - The user’s choice of REs to refer to the domain objects

are annotated by the wizard using this panel.

5.2.2 Instructional Dialogue Manager

The dialogue manager was implemented in the Prolog programming language. It

drives the conversation by giving instructions to the users. It follows a deterministic di-

alogue management policy so that we only study variation in the decisions concerning

the choice of REs. Our dialogue system has three main responsibilities - choosing the

NLG strategies, giving instructions and handling clarification requests. The dialogue

system initially randomly chooses the RE and the alignment strategies at the start of

the dialogue.

During the conversation, the dialogue manager responds to the user dialogue ac-
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Figure 5.3: Wizard Interaction Tool - Data Collection

tions with system dialogue actions. It provides step-by-step instructions to set up the

broadband connection which are hand-coded as a dialogue script. The script is a sim-

ple deterministic finite state automaton, which contains execution instruction acts (e.g.

“Plug in the ethernet cable into the ethernet socket in the livebox”) and observation

instruction acts (e.g. “Is the ethernet light flashing?”) for the user. Based on the user’s

response, the system identifies the next instruction. By using a fixed dialogue manage-

ment policy and by changing the REs, we only explore users’ reactions to various RE

strategies.

Similarly, the dialogue system handles two kinds of clarification requests - open

requests and closed requests. With open CRs, users request the system for location

of various domain objects (e.g. “where is the ethernet cable?”) or to describe them.

With closed CRs, users verify the intended reference, in case of ambiguity (e.g. “Do

you mean the thin white cable with grey ends?”, “Is it the broadband filter?”, etc.). The

system handles these requests using a knowledge base of the domain objects. Although

illustrated with system utterances in Table 5.1, the outputs of the dialogue manager are

just dialogue actions.
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Figure 5.4: Objects in user environment

5.2.3 NLG module

The NLG module produces the system utterances from system dialogue actions and

RE and alignment strategies. It produces the system utterances in the Speech Synthe-

sis Markup Language (SSML) format. The NLG realiser uses templates which has

references to domain objects as replaceable slots. The following is an example utter-

ance template.

“Plug in the $ethernet cable$ into the $ethernet socket$ in the $livebox$”

These slots (e.g. $livebox$) are replaced with referring expressions based on the

selected strategy to create final utterances. The utterances are finally converted to

speech and are played back to the user. We use three strategies for choosing referring

expressions:

1. Jargon: Choose technical terms for every reference to all the domain objects.

E.g. “Plug in the ethernet cable into the ethernet socket in the livebox”.

2. Descriptive: Choose descriptive terms for every reference to all the domain ob-

jects. E.g. “Plug in the thick cable with red ends into the square socket with the

red stripe in the big white box”.
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Example Utterance Dialogue act

“Yes it is on” yes

“No, its not flashing” no

“Ok. I did that” ok

“What’s an ethernet cable?” req description

“Where is the filter?” req location

“Is it the ethernet cable?” req verify jargon

“Is it the white cable?” req verify desc

“Please repeat” req repeat

“What do you mean?” req rephrase

“Give me a minute?” req wait

Table 5.1: User Dialogue Actions with example utterances.

3. Tutorial: Use technical terms, but also augment the description for every refer-

ence. Heller et al. (2009) uses a name-then-description strategy similar to that

of our tutorial strategy. E.g. “Plug in the ethernet cable in to the ethernet socket

in the livebox. The ethernet cable is the thick white cable with red ends. The

ethernet socket is the square socket with the red stripe. The livebox is the big

white box.”

The above three RE strategies are also augmented with the alignment strategy.

There are two alignment strategies:

1. Align with user: Use the RE used by the user for referents and ignore the RE

strategy.

2. Don’t align with user: Ignore the user’s use of REs and continues to use its own

RE strategy.

The NLG module generates system utterances using the algorithm given in ta-

ble 5.2. It retrieves the list of referents mentioned in the current system dialogue

act (using get re f erents() subroutine) and the template for current utterance (using

get template()). It then replaces every referent in the template with appropriate refer-

ring expression based on RE and alignment strategies selected by the dialogue man-

ager. The system abandons the existing strategy (Jargon, Descriptive or Tutorial) for a

domain object reference when the user uses a different expression from that of the sys-

tem to refer to the domain object if it is calibrated to align with the user. For instance,
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Input: System Dialogue Act As,t , RE strategy RES, Alignment strategy AS

Algorithm:

Re fs,t = get re f erents(As,t)

templates,t = get template(As,t)

for each r ∈ Re fs,t

if (AS == dont align) then

if (RES == jargon) then replaceall(templates,t ,r, jargon(r))

if (RES == descriptive) then replaceall(templates,t ,r,descriptive(r))

if (RES == tutorial) then replaceall(templates,t ,r, tutorial(r))

else

replaceall(templates,t ,r,user choice(r))

return templates,t

Table 5.2: WoZ NLG Algorithm

under the Descriptive strategy, the ethernet cable is referred to as “the thick cable with

red ends”. But if the user refers to it as “ethernet cable”, then the system uses “ethernet

cable” in subsequent turns instead of the descriptive expression.

5.2.4 Speech synthesiser

The utterance produced by the NLG module is marked up with Speech Synthesis

Markup Language (SSML), which is input into the speech synthesiser. These are con-

verted automatically into speech by the Cereproc Speech Synthesiser and played back

to the user.

5.2.5 The Wizard

The primary responsibility of the wizard is to understand the participant’s utterance

and annotate it as one of the dialogue acts in the Annotation panel, and send the dia-

logue act to the dialogue system for response. In addition to the primary responsibility,

the wizard also requests confirmation from the user (if needed) and also responds to

confirmation requests from the user. The wizard also observes the user’s usage of novel

REs and records them in the User’s RE Choice panel. As mentioned earlier, our wiz-

ard neither decides on which strategy to use to choose REs nor chooses the next task

instruction to give the user.
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5.3 The Domain Task

The domain task for each user was to listen to and follow the instructions from the

WoZ system and set up their home broadband Internet connection. See appendix A for

instructions given by the system. We provided the users with a home-like environment

with a desktop computer, phone socket and a Livebox package from Orange containing

cables and components such as the modem, broadband filters, a power adaptor, etc.

Figure 5.4 shows a part of the environment setup that was presented to the user. During

the experiment, they attempted to set up the Internet connection by connecting these

components to each other.

Prior to the task, the users were informed that they were interacting with a spoken

dialogue system that will give them instructions to set up the connection. The users

were requested to have a conversation as if they were talking to a human operator,

asking for clarifications if they were confused or failed to understand the system’s

utterances. They were also told that misunderstanding might affect task success. The

user followed the instructions and assembled the components.

5.4 Data collection

We followed a step-by-step process to collect data from the users. This process not only

collected the dialogue exchanges between the user and the system but also collected

other information such as the user’s domain knowledge before and after the dialogue

task, user’s interaction with the physical environment and user’s review of the dialogue

system. We used all this information to build user simulation models and some reward

functions (See chapter 6).

Step 1. Background of the user - The user was asked to fill in a pre-task background

questionnaire containing queries on their experience with computers, Internet and dia-

logue systems. (See appendix B.2)

Step 2. Knowledge pre-test - Each user’s initial domain knowledge was recorded

by asking them to point to the domain object that was called out by the experimenter

by its jargon expression. (See appendix B.4)

Step 3. Dialogue - The conversations between the user and the system were logged
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as an XML file. The log contains system and user dialogue acts, times of system

utterances, system’s choice of REs and its utterance at every turn. It also contains

the dialogue start time, total time elapsed, total number of turns, number of words in

system utterances, number of clarification requests, number of technical, descriptive

and tutorial REs and number of confirmations. The user’s utterances were recorded

in WAV format in order to build acoustic and language models for automatic speech

recognition in future.

Step 4. Knowledge gain post-test - Each users’ knowledge gain during the dialogue

task was measured by asking them to redo the pointing task. The experimenter read out

the jargon expression aloud and asked the users to point to the domain entity referred

to. (See appendix B.4)

Step 5. Percentage of task completion - The experimenter examined the final set up

on the user’s table to determine the percentage of task success using a form containing

declarative statements describing the ideal broadband set up (for e.g. “the broadband

filter is plugged in to the phone socket on the wall”). The experimenter awards one

point to every statement that is true of the user’s broadband set up. (See appendix B.5)

Step 6. User satisfaction questionnaire - The user was requested to fill in a post-

task questionnaire containing queries on the performance of the system during the

task. Each question was answered in a four point Likert scale on how strongly the user

agreed or disagreed with the given statement. Statements like, “Conversation with the

system was easy”, “I would use such a system in future”, were judged by the user

and these will be used to build reward functions for reinforcement learning of REG

strategies. (See appendix B.3)

5.5 Corpus Analysis

The corpus consists of 17 dialogues from users with different levels of domain knowl-

edge. The participants were from various backgrounds. Some were students and some

were professionals. They had different backgrounds from arts, humanities, science,

medicine, etc. Each participant was paid 10 after the experiment was finished. They

listened to the instructions from the system and carried them out using the domain ob-

jects laid in front of them. The experiments examined the effect of using three types of
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Parameters Jargon Descriptive Tutorial

No. dialogues 6 6 5

Task Completion rate (%) 98.3 98.3 94.0

Pre-task score (max 13) 6.67 8.5 7.6

Post-task score (max 13) 12.33 10.66 12.2

Turns 28.17 25.83 25.2

CR 3.17 0 0

Sys Words 470.5 471.67 945.6

Time (min) 7.7 6.86 11.72

Time per turn (sec) 16.49 15.9 27.9

URT (sec) 7.47 5.3 5.85

Table 5.3: Corpus statistics (grouped on strategy)

referring expressions (jargon, descriptive, and tutorial), on the users.

5.5.1 Statistics

Out of the 17 dialogues, 6 used the Jargon strategy, 6 used the Descriptive strategy, and

5 used the Tutorial strategy. The task had reference to 13 domain entities, mentioned

repeatedly in the dialogue. In total, there are 203 jargon, 202 descriptive and 167

tutorial referring expressions. As expected, users who weren’t acquainted with the

some domain objects requested clarification on the jargon referring expressions used.

More statistics are shown in table 5.3.

Analysis shows that the Jargon and Tutorial strategies produce large learning gain

(i.e. difference between post and pre task scores). However, this is not surprising con-

sidering the fact that the Jargon and Tutorial are the only strategies that use technical

terms for reference. There was an average of 3.17 clarification requests in the Jargon

strategy dialogues, whereas there were none in the Descriptive and Tutorial strategy di-

alogues. This shows that participants of all expertise levels do not question the use of

descriptive or tutorial expressions even when they are not appropriate to their domain

knowledge levels.

Regarding time, the Jargon and Descriptive strategies produce much shorter dia-

logues than the Tutorial strategy. This is due to the fact that utterances with jargon and

descriptive expressions are much shorter than the Tutorial strategy dialogues (see Sys

Words in table 5.3). The Descriptive strategy dialogues are even shorter than the Jargon
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dialogues because of the absence of clarification requests. URT (user response time)

is the time taken by the user to respond to the system’s instructions. It also includes

the time taken by the wizard to annotate the user’s response. This is high in case of the

Jargon strategy dialogues. This could be due to two reasons: 1) users may not know

the referents and therefore take time to identify them or/and 2) the wizard takes more

time to annotate clarification requests. However, the important fact to note here is that,

after we subtract URT from Time per turn, we get the time taken to produce the system

utterances, which is lowest for jargon utterances owing to the short length of jargon

expressions. Based on these factors, we argue that, given the appropriate referring

expression based on expertise levels (so that no clarification requests are produced),

utterances containing jargon expressions will produce comparable or even shorter di-

alogues. However, since the current dialogue task is short and not complex enough,

there seems to be no difference between the Jargon and Descriptive strategies.

All three strategies produced almost the same level of task completion rates. The

mean task completion rate of the Tutorial strategy was a little lower than the other two.

However, the difference was not statistically significant. From the above analysis, we

conclude that each of the strategies have their own pros and cons. The Jargon strat-

egy may produce shorter dialogues with expert users but with novice users dialogues

may be quite long due to clarification requests. On the other hand, they produce high

learning gain for novice users. The Tutorial strategy produce high learning gain but

at the cost of time. The Descriptive strategy produces shorter dialogues than all other

strategies and little learning gain.

We analysed the user scores on the dimension of domain expertise as well. We

divided the users into two groups (Group 1 and Group 2) based on their pre-task scores.

The mean pre-task score was 7.58. Group 1 consisted of users who scored below the

mean (novices and intermediates) and Group 2 consisted of user who scored above

the mean (intermediates and experts). The mean pre-task score of Group 1 users was

5.25 whereas that of Group 2 users was 9.66. Group 2 users asked fewer clarification

requests (mean = 0.44) than Group 1 users (mean = 1.87). The mean time taken for

Group 1 users to finish the task was 9.37 minutes where as that of Group 2 users was

7.88 minutes. The task completion rates (mean) of Group 2 users were a little lower

than the Group 1 users. However, the difference was not statistically significant.



Chapter 5. Data Collection 85

Parameters Group1 Group2

No. dialogues 8 9

Task Completion rate (%) 97.5 96.6

Pre-task score (max 13) 5.25 9.66

Post-task score (max 13) 11.37 12

Turns 27.5 25.55

CR 1.87 0.44

Sys Words 660.25 566.55

Time (min) 9.37 7.88

Time per turn (sec) 20.94 18.51

URT (sec) 6.63 5.88

Table 5.4: Corpus statistics (grouped on expertise)

Dimension Jargon Descriptive Tutorial

Confidence on task success 3.33 3.16 3.4

Quality of voice 3.17 3 3.2

Easy to identify domain objects 3.16 3.16 3.4

Learned useful new expressions 3 2 2.8

Instructions with right level of complexity 3 3.33 2.2

Conversation of right length 3.17 3.17 2.2

Ease of conversation 3.5 3.3 3.4

Future use 3.33 3.16 2.6

Table 5.5: User scores (mean)

5.5.2 User scores

User scores are subjective ratings given by the users after they finished the dialogue

task based on their experience. Users rated the system along several dimensions on a

Likert scale between 1 and 4: 1 - strongly disagree, 2 - disagree, 3 - agree, 4 - strongly

agree. Table 5.5 presents the mean user scores for the three different strategies.

Firstly, on all three strategies, the users were confident on task success and agreed

on good voice quality of the TTS. Surprisingly, users agreed that the domain objects

were easy to identify on all three strategies. We suspect that this is so with the Jargon

strategy because users were given clarification when they requested for it. On dimen-
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Dimension Group 1 Group 2

Confidence on task success 3.13 3.44

Quality of voice 3.0 3.22

Easy to identify domain objects 3.0 3.44

Learned useful new expressions 2.88 2.33

Instructions with right level of complexity 2.75 3.0

Conversation of right length 2.87 2.88

Ease of conversation 3.38 3.44

Future use 3.12 3.0

Table 5.6: (Mean) User scores based on expertise levels

sions concerning time, the Tutorial strategy was scored the lowest. This acknowledges

the fact that the Tutorial strategy utterances were longer compared to the other two.

However, the Jargon and Descriptive strategies were not scored differently based on

time. In terms of learning new useful expressions, both the Jargon and Tutorial strate-

gies were scored highly as expected. Users scored the Jargon and Descriptive strate-

gies well on the complexity level of the instructions. However the Tutorial strategy

was scored lower in comparison. We hypothesize that it may be due to the length of

the tutorial expressions.

On two other dimensions of ease of conversation and future use, both the Jargon

and the Descriptive strategies were scored almost equally well. We hypothesize that

users ignored the fact that the Jargon strategy uses referring expressions that they don’t

know, because eventually they get a clarification when requested. This seems to im-

press them rather than frustrate them. Also, the times taken for these two strategies

were not very different from each other either. Therefore they were scored almost

equally. Although users agreed that the Tutorial strategy conversations were easy, they

did not agree to use it in the future. This is because of its information complexity and

longer dialogue time.

Table 5.6 shows scores given by users grouped based on their expertise levels.

Users of both groups were confident on task success. Users of group 2 found it easy

to recognise domain objects more easily and more or less agreed on the complexity

of instructions. However, users of both groups found that the conversations were easy

and that they would use the system in future.
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5.5.3 Shortcomings of the corpus

After analysing the collected corpus, we found that the following features of the corpus

were not optimal for the task at hand.

1. Lack of data to study Lexical alignment: User utterances were usually very

short in our data. Since the dialogue task is a simple instruction giving-following

task, each user’s utterances are mostly short indicating their acknowledgement to

instructions, providing answers to observation questions, etc. When users cannot

resolve a referring expression, they request a clarification. The users’ utterances

didn’t have content words referring to domain entities in them. Therefore, lexical

alignment between the users and the system could not be studied.

2. Lack of information on user’s domain knowledge: Another important disad-

vantage due to shorter user utterances is that we could not estimate the user’s

domain knowledge from their content. Contentful utterances can be used to

learn about the user’s knowledge levels based on the concepts they refer to in

their utterances. Therefore the only way of knowing their domain knowledge

levels is based on their responses like clarification requests, observations and

acknowledgements.

3. Easy task: The domain task of setting up a broadband connection seemed easy

for users. The mean task completion rate of different users was 97.05% (17

dialogues). This can attributed to the fact that we had no real internet connection

to test with and therefore had to contend only with the physical tasks of setting

up the domain objects in the right pattern and not worry about the on-computer

internet settings task.

4. Labels and contextual cues: In order to keep the task realistic, we presented

the users with a real broadband setup from Orange. Some of the entities that

are referred to in the dialogue are clearly labelled and some were made resolv-

able using contextual cues. Therefore, many users did not have any difficulty

in resolving the referents when presented with jargon technical expressions. For

example, the ADSL socket was labelled as “ADSL”. However there were some

entities which were difficult to identify without prior domain knowledge about

them (e.g. broadband cable, ethernet light, etc). This resulted in fewer clarifica-

tion requests than we had expected.
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5. Task repetition: The broadband installation task cannot be repeated with differ-

ent strategies with the same user. Therefore, we cannot compare the performance

of a user on different strategies. Ideally, the task would be repeatable with dif-

ferent strategies and the user’s performances must be comparable against each

other.

However, inspite of these shortcomings, the data was still useful in training a user

simulation model to learn user modelling policies for adaptive REG, as we show in

the following chapters. We were able to build useful user simulation models and train

them so that adaptive policies can be learned. We compensated for the deficiency in

our data with some domain expertise in classifying the referents and correcting the user

knowledge profiles. Therefore, even though the data that we collected were deficient,

we did not need collect more data.

5.6 Conclusion

We have presented a Wizard-of-Oz environment to collect spoken dialogue data in a

real situated task environment to study user reactions to a variety of REG strategies,

including the system’s lexical alignment. We have also presented an analysis of the di-

alogue data and users’ feedback on the conversation. The data will be used for training

user simulations for reinforcement learning of user modelling strategies for adaptive

REG to choose between jargon and descriptive expressions based on a user’s expertise

in the task domain. In the next chapter, we show how this data has been used to build

user simulation models for training and testing user modelling policies for adaptive

referring expression generation.
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Statistical User Simulation for NLG

In this chapter, we present new statistical data-driven user simulation models for learn-

ing adaptive referring expression generation (REG) policies. They serve as the envi-

ronment that responds to the learning agent’s actions and rewards it for taking different

actions at different states. In a dialogue situation, the role of an environment is fulfilled

by a dialogue partner. User simulation models replace human users and simulate their

dialogue behaviour. They have been used as dialogue partners for learning and evaluat-

ing dialogue management policies using reinforcement learning in many studies. They

have been used to substitute for real users since using real users for training can be very

expensive and they might get frustrated with anomalous (exploratory) behaviour of the

system that is still in the learning stage. Even for evaluation, user simulations are used

first in order to help iterative development before finally testing with real users.

In this chapter, we explore the following questions: Can user simulation techniques

used for learning dialogue management policies be used for learning user modelling

policies for adaptive REG? If not, what are the requirements for a new design of user

simulation models? How can they be implemented and trained using the limited data

that we collected? How well do such models simulate real user dialogue behaviour?

In section 6.1, we present some related work in the domain of user simulation in

spoken dialogue systems. Then, we list down the requirements for designing a new

simulation model in section 6.2. Section 6.3 describes in detail the novel simulation

models. In section 6.4, we present the baseline models whose performance we compare

our three-step models to. In section 6.5, we present the smoothing technique used to

smooth all the models to handle the problem of data sparsity. Finally, in section 6.6

and 6.7, we compare our three-step models to the other baseline models to show how

closely our models simulate real users’ dialogue behaviour.

89
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6.1 Related work

Several user simulation models have been used for training the different modules that

make up the dialogue system. At the end of training, the system learns dialogue poli-

cies that it can use to effectively communicate with users (both simulated and real).

Usually, studies that use user simulation models for training have also used them for

evaluating the system before final evaluation with real users (Eckert et al. (1997);

Scheffler and Young (2001); Chung (2004); Schatzmann et al. (2005); Cuayahuitl

et al. (2005); Georgila et al. (2005); Rieser and Lemon (2006); Georgila et al. (2006);

Pietquin and Dutoit (2006); Ai and Litman (2007); Schatzmann et al. (2006, 2007b);

Ai and Litman (2007, 2009)).

However, some studies have used user simulation models just for evaluation and

not for development (Butenkov (2009); Araki and Doshita (1997); Lopez-Cozar et al.

(2003)). In order to evaluate a spoken dialogue system, Araki and Doshita (1997) pro-

posed a user simulation so that the dialogue system can be evaluated holistically and

objectively for its overall performance as against the methods evaluating the system’s

modules independently. This in essence captures how the modules of the system co-

operate with each other to produce an effective dialogue. In their setup, the dialogue

system interacts with the user simulation using text representation of the utterances.

The text being exchanged is passed through a coordinating program which introduce

linguistic noise to simulate speech recognition errors. The conversations are logged

and examined. Similarly, Lopez-Cozar et al. (2003) introduced a user simulation that

interacted at the level of acoustic speech signals instead of text. The speech format of

user utterances was sampled from a corpus of dialogues.

The interaction between the system and the user simulation models happen in dif-

ferent modes: speech, text, dialogue actions and so on. Chung (2004) presented a user

simulation model that interacts with the dialogue system using either text or speech in

order to train the speech recognition and understanding modules. The speech format of

the utterances was produced using a speech synthesizer. Several user simulation mod-

els have been proposed for dialogue management policy learning that interact with the

system using dialogue acts. (Eckert et al. (1997); Scheffler and Young (2001); Schatz-

mann et al. (2005); Cuayahuitl et al. (2005); Georgila et al. (2005); Rieser and Lemon

(2006); Georgila et al. (2006); Pietquin and Dutoit (2006); Ai and Litman (2007);

Schatzmann et al. (2006, 2007b); Ai and Litman (2007, 2009)).

We can also classify user simulations based on how they are created: rule-based
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and corpus-based. In a rule based simulation, the user’s dialogue behaviour is defined

using hand-coded rules by the dialogue system designers (Guinn (1998); Ishizaki et al.

(1999); Lin and Lee (2001); Smith (1998); Chung (2004); Lopez-Cozar et al. (2003)).

On the other hand, in the corpus based models, the user’s dialogue behaviour is defined

by probabilistic models trained on annotated dialogue corpus. Corpus based models

capture the uncertainty in the user’s dialogue behaviour while the rule based models

enforce strictly deterministic behaviour. Stochastic simulation models were therefore

employed instead which captures the less likely responses like barge-ins, hang ups,

digression, changing goals, etc. Parameters in stochastic simulations can also be set by

hand. But such an exercise requires careful consideration of real user behaviour and

parameters are usually hard to estimate without looking at data. Another disadvantage

is that the parameters set by the designer could be subjective and biased. However, pa-

rameters can be estimated objectively and directly using corpus data. Rather than rely-

ing on “common-sense” heuristics, parameters can be trained from a corpus containing

dialogues collected from real users. The following are some of the corpus-based user

simulation models that have been used in reinforcement learning of dialogue manage-

ment policies.

N-gram models: A bigram user simulation model for training dialogue management

policies was first proposed by Eckert et al. (1997); Levin et al. (2000). In this model,

the user’s dialogue act is decided by the immediate previous system dialogue act as

follows.

P(Au,t |As,t)

This simple model enjoys the advantage of being domain independent. However, it

does not produce a realistic behaviour consistent with the user’s goals, preferences or

even domain knowledge. Georgila et al. (2005) extended the bigram model to n-gram

model (n > 2) in order to take some dialogue history into account and therefore pro-

duce consistent behaviour.

Goal-directed models: Scheffler and Young (2001) proposed a goal directed model.

First, all the possible user moves at different choice points on the dialogue path are

mapped out in advance. The choice points are classified as deterministic where the

user moves are defined based only on their goals and as probabilistic where the user’s

responses are uncertain. By identifying probabilistic and deterministic choice points,
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the user behaviour is restricted to be goal directed. However this approach suffers

from being very domain specific and dependent on expert knowledge to map out the

all dialogue paths in advance.

Pietquin and Dutoit (2006) proposed a dynamic Bayesian Network model in which

the user’s dialogue action is conditioned on the user goal and memory as shown below.

P(Au,t |As,t ,goal,memory)

The goal attributes are ranked based on user preferences which determines how

likely is it for the user to drop a certain constraint. It also keeps track of the number of

times each constraint is mentioned during the dialogue. The model parameters were

initially hand-crafted. This model can be extended to include other user parameters

like cooperativeness, degree of initiative, etc.

Linear model: Georgila et al. (2005) proposed a linear feature combination model

that calculates the probability of different user actions given the user state using a lin-

ear combination of weights for each action and the state features. The weight vector

for each action was trained on the user state-action pairs observed in the training cor-

pus.

Cluster models: Rieser and Lemon (2006) proposed a cluster model in which the

user state spaces seen in the corpus are clustered and the user responses are modelled

based on clusters rather than individual states. During training, the current user state

is classified into one of the available clusters and a response is generated. The cluster

based model produces responses that are complete (all possible real user actions in a

given state are produced) and consistent (no unrealistic user actions in the current state

are permitted). Similarly, Ai and Litman (2007, 2009) presented a knowledge consis-

tent user model that behaves like a student responding to a tutorial dialogue system.

The student responses are conditioned on the knowledge cluster to which the system’s

question belongs and the correctness of the student’s previous response to the same

cluster. This model simulates the learning behaviour of the student. Also, the high

learners and low learners are modelled separately.

Agenda-based model: Schatzmann et al. (2007a,c) proposed an agenda based user

simulation model in which the user’s goals and constraints are stored in the form of

inform and request acts respectively in a stack called the agenda. The user’s dialogue
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action is produced therefore by popping n items out of the stack (n is defined as the

level of initiative the user takes). The agenda is then updated based on the system dia-

logue action using the agenda and the goal update models that are estimated from data.

The use of a dynamically updated agenda ensures that the user’s dialogue behaviour is

consistent with the goal of the user.

Although the above models have been used successfully to learn dialogue manage-

ment policies, they cannot be directly used for user modelling policy learning because

they are not sensitive to the system’s choice of referring expressions. Ideally, the user

simulation must produce clarification requests when the user does not understand the

referring expressions used by a system. Also, to learn an adaptive policy, the user sim-

ulations need to simulate user groups with different knowledge levels, a feature which

the current models do not support.

6.2 Requirements

As presented in section 6.1, several user simulation models have been presented ear-

lier for learning dialogue management policies using the reinforcement learning frame-

work. However, it is clear that those models cannot be used for learning user modelling

policies for adaptive REG because such learning requires user simulations to be sen-

sitive to the referring expressions used by the dialogue system. The earlier models

respond to the dialogue act (at the dialogue management level) and do not take into

account the words or phrases used by the system to address the user. However, the sys-

tem cannot learn to use appropriate referring expressions unless its dialogue partner is

sensitive and responds to their use. For instance, the user simulation should request

clarification when the system uses expressions that the user does not know.

Another issue with the earlier models is that they do not simulate a population of

users with different levels of domain knowledge. Our objective is to learn a user mod-

elling policy that adapts to users with different levels of domain knowledge. By domain

knowledge, we mean the capability of users to identify the referents when the system

uses jargon expressions. This is referred to as domain communication knowledge by

some researchers (Rambow (1990); Kittredge et al. (1991)). It would not be possible to

learn such a policy unless the user simulation can simulate the whole spectrum of users

from novices to experts and several intermediates in between by taking into account

the knowledge patterns of different users. Finally, like real users, it should simulate

learning new technical expressions during the course of the dialogue and has to be
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consistent with the users’ dynamically changing domain knowledge during the conver-

sation. For instance, the likelihood of requesting clarification over a jargon expression

that has been previously clarified must be less.

In addition to the above, we require a user simulation model that can be trained

using the non-adaptive dialogues that we described in Chapter 5. In summary, our

requirements for user simulation are three-fold.

1. Sensitive: Be sensitive to referring expressions used by the dialogue system.

2. Diverse: Simulate a diverse population of users with different domain knowledge

levels.

3. Consistent: Learning new referring expressions and be consistent with the (dy-

namically changing) domain knowledge (i.e. knowledge consistent).

4. Trainable: Be trainable using non-adaptive dialogues.

6.3 User simulation model

In this section, we present data-driven user simulation models which are extended

versions of the model presented in chapter 4. The user simulation model consists of

the three modules: the action selection module, the knowledge profiles and knowledge

update module. All these modules are data-driven and their parameters are populated

using the data collected using our data collection framework. Figure 6.1 shows how

the collected data drives the different modules of our user simulation model.

6.3.1 Dialogue Action Selection Module

The user’s dialogue action selection module selects a dialogue action in response to the

system’s input. Like the other models presented in section 6.1, this model also takes as

input the system’s dialogue act (As,t). However, with just the system dialogue action,

it is impossible to respond in way that is sensitive to the referring expression used.

Therefore, we also provide the user simulation with the system’s choice of referring

expressions (RECs,t). This can be seen as a way of abstracting the meaning and the

words used the system’s utterance. It outputs the user’s dialogue action (Au,t) and

environment action (EAu,t). Please note that u denotes user, s denotes system and t

denotes time step. This model can be designed to satisfy the first requirement listed
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Figure 6.1: Populating our user simulation models with data

above: being sensitive to referring expressions. We do this by enabling the model

to be able to ask for clarifications on referring expressions apart from other dialogue

actions. Table 6.1 shows an example interaction between a user simulation model and

the dialogue system at the dialogue action level. The dialogue system also passes its

choice of referring expressions to the user simulation. One should note that actual

literal expressions (REi ∈ RECs,t) is not used in these transactions. We only use (Ri,Ti)

which is a pair representing the referent (i.e. domain entity being referred to) and its

type information (i.e. jargon or descriptive). Therefore REi = (Ri,Ti). You can see

such pairs in the given example interaction, where the referring expression choices of

the system is represented in parenthesis following the dialogue action.

6.3.1.1 Dynamic Bayesian model

A simple approach to model real user behaviour that is sensitive to referring expres-

sions (as in requirement 1) is to model user responses (dialogue act and environment

act) on contextual information available in our corpus. These include all referring ex-

pressions used in the system’s utterance, the user’s current knowledge of the REs and

the system’s dialogue act. This will ensure that the responses are based on the user’s

domain knowledge and the referring expression types used by the system. Dynamic

Bayesian models were earlier proposed by Pietquin and Dutoit (2006), in which the

user’s responses were based on their goals as well as the system actions. We modify

that model to include system RE choices (RECs,t) and user’s domain knowledge of
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SYS: connect(broadband cable, livebox adsl socket);

{(broadband cable,jargon),(adsl socket,jargon)}
USR: request clarification((broadband cable,jargon))

SYS: provide clarification(broadband cable);

{}
USR: request clarification((adsl socket,jargon))

SYS: provide clarification(adsl socket)

USR: acknowledge instruction

SYS: connect(broadband cable, broadband filter);

{(broadband cable,jargon),(broadband filter,descriptive)}

Table 6.1: An example interaction between user simulation and dialogue system

jargon expressions (DKu,t) as follows.

P(Au,t |As,t ,RECs,t ,DKu,t)

P(EAu,t |As,t ,RECs,t ,DKu,t)

However, with so much contextual information, there are data sparsity problems

because many contexts are not seen in the small amount of data that we have in our

corpus. For instance, all the dialogues in the corpus followed the one-strategy-per-

dialogue rule. Therefore, there is more than one referent in the utterance, all of them

are either jargon or descriptive. There is no mixture of jargon and descriptive expres-

sions in any utterance in the corpus, which is precisely what we need in our experiment.

In other words, although this model is sensitive to REs used by the system, it is not

trainable using non-adaptive dialogues. Due to these problems, the dynamic Bayesian

model cannot be used in its current format in our problem.

6.3.1.2 A Three-step pipeline model

We propose a modified version of the dynamic Bayesian model called the three-step

model, in which the simulation of a user’s response is divided into three steps:

1. Review all the referring expressions used by the system.

2. Interact with the simulated environment.
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3. Respond to the system’s instruction.

The user simulation (US) receives the system action (As,t) and its referring expres-

sion choices (RECs,t) at each turn. For example,

As,t = manipulate(connect(broadband cable, livebox asdl socket))

RECs,t = {(broadband cable, jargon),(livebox adsl socket,descriptive)}

System utterance = “Please connect one end of the broadband cable to the square

socket with the gray stripe”

Please note that the system utterance (as in the above example) is not an input to

the user simulation model. It is presented here only to illustrate how the information

in As,t and RECs,t translate into a system utterance. However, in real user evaluation,

the user will be presented with a system utterance.

The US responds with a user action Au,t . This can either be a clarification request

(cr) or an instruction response (ir). In the first step, the simulation processes all the

referring expressions used by the system (RECs,t). We process the referring expres-

sions individually and not for the whole set of expressions (RECs,t) at once. Please

note that the data at our disposal are non-adaptive dialogues between users with differ-

ent levels of domain expertise and a dialogue system using either jargon or descriptive

expressions. Therefore, when there is more than one referent in the utterance, the

data collection dialogue system only produced the same type of expressions for all

referents. However, to learn adaptive policies for referring expression generation, user

simulation models have to be able to interact with an adaptive system (or a system

that learns to be adaptive) that uses both types of expressions (for different referents)

within the same utterance. Therefore, we propose a RE recognition model that pro-

cesses the referring expressions individually for each referent and is thereby able to

process any combination of RE types and respond appropriately to each referring ex-

pression. Therefore, this model can be trained using non-adaptive data that we have

and still be used to interact with adaptive dialogue systems. In the subsequent steps,

it deals with the environment action and responds to the dialogue system’s instruction.

The following are the three steps in this user simulation.

Step 1: The RE recognition model returns a clarification request based on the refer-

ring expression used and the user’s domain knowledge (DKu,t). We iterate this model

for producing clarification requests for each referring expression used in the system’s
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utterance (∀REi ∈ RECs,t). The model returns none when no clarification is produced.

Therefore, when there are n referring expressions used by the system in an utterance,

this model is used n times and clarification requests may be produced for any of the

referring expressions in the list. If a clarification request is produced, it is presented

to the system as the user’s response. If no clarification is produced, then the environ-

mental action model is used. The probability of the user’s dialogue action (Au,t) being

a clarification request on an expression REi (i.e. cr(Ri,Ti)) is given by the following

model.

P(Au,t = cr(Ri,Ti)|Ri,Ti,DKu,t(Ri))

For example, the user dialogue action request clarification((broadband filter,jargon))

may be produced by the above statistical model, because the user did not know the

jargon expression broadband filter in the system’s choice of expressions. We use

DKu,t(Ri) to represent the user’s knowledge of the jargon expression for the refer-

ent Ri. Please note that clarifications are requested not based on the system’s dialogue

action but only on its referring expressions. The above model simulates the process of

interpreting and resolving the each expression REi in RECs,t and identifying the do-

main entity of interest in the instruction. This model is, therefore both sensitive to the

REs and by processing the REs individually, it is also trainable.

Step 2: In this step, we simulate the user’s interaction with the environent. The envi-

ronment contains domain entities which the user can either observe or manipulate. The

environment action model simulates the user’s environment actions that include either

reporting the status of an observed entity to the system or manipulating them and ac-

knowledging the instruction. There are several distinct environmental actions that a

user can take following the system’s instruction. However, we employ a simple model

that classifies the user’s physical action as either correct or incorrect. The model uses

these classes to respond to the system’s instruction. Its responses are therefore correct

or incorrect action. When no clarification request is produced (i.e. Au,t == none) after

processing all the referring expressions, the environment action EAu,t is generated by

the following model based on the system’s dialogue action (As,t).

P(EAu,t |As,t)

Please note that no environmental action is produced when there is a clarification

request. In such cases, EAu,t = none.
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Step 3: Finally, we simulate the user’s response to the system’s instruction. We use

a instruction response model to produce the user’s response (As,t). Here, the user’s

dialogue action can be either provide in f o, acknowledgement or other based on the

system’s instruction. We denote them summarily as instruction response. The proba-

bility of user’s dialogue action being an instruction response (ir) is generated based on

the system’s action (As,t) and the user’s environment action (EAu,t) using the following

model.

P(Au,t = ir|EAu,t ,As,t)

Please note that steps 2 and 3 are executed only when there are no request for

clarifications generated in step 1. Figure 6.2 presents the flow chart of the three step

model. The advantage of the three-step model over the dynamic Bayesian model is

that it simulates real users in contexts that are not directly observed in the dialogue

data. For example, the dialogue data does not contain a user’s response to a mix of

RE types. However, our model can respond appropriately in such contexts. The model

will therefore respond to system utterances containing a mix of REG strategies (for e.g.

one jargon and one descriptive expression in the same utterance). Such combinations

of strategies are common in adaptive dialogues, where the system might decide to

use jargon for one referent and descriptive expression for another depending on its

knowledge of the user’s expertise. In future, this model can be extended to an n-step

model with one step for each kind of clarification request as classified by Schlangen

(2004).

6.3.1.3 Class-based Three-step pipeline model

Although the three-step model is closer to real user behavior in terms of Kullback-

Leibler divergence (see section 6.7), we observed some undesirable behaviour in the

model that would make learning very difficult in our framework. This was due to

the limitations in the data that we collected. There were many entities for which the

probability of raising a clarification was low, even when the system used jargon and

the user didn’t know them. This is because of two shortcomings in our data collection

set up:

• The system gave contextual clues for identifying some of the entities that the

users didn’t have to ask for clarifications. For example, when the users were

asked to pick up a broadband filter, the system also said that there were two of
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Figure 6.2: Flowchart of the three step user simulation model

them. Therefore even though users didn’t know what broadband filters were,

they recognised it because there were two of them in the box.

• Some of the entities were marked clearly using labels like “ADSL socket” (see

figure 6.3)

Figure 6.3: Issues in user environment during data collection

This problem affects policy learning because the fewer the clarification requests,

the less the system gets to know about the user and therefore adapt to the user. So,
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in order to prevent these problems from affecting learning, we combined the domain

entities into two classes: hard and easy.

• Hard class: This consists of domain entities that confuse the users when referred

to using jargon expressions. The confusion could be because the users do not

know the jargon expressions and it may be compounded when there are no other

contextual clues for resolving the referent.

• Easy class: This consists of domain entities that users could easily recognise

based on their knowledge or using contextual clues from the environment or

from the system’s utterances.

We classified them based on the number of clarification requests raised on the jar-

gon references to these entities in our corpus. The mean number of clarification re-

quests per referent was found to be 2.19. We classified those entities whose number of

CRs is greater than or equal to the mean as members of the hard class and others as

members of the easy class. The domain entities and their respective classes are given

in table 6.2. Classifying the domain entities into two classes helps to solve the problem

we faced in the three-step model. It allows us to move some entities between classes.

For instance, a broadband filter which was recognised by most users can be classified

as a member of the hard class based on the intuition that, although in the data collection

setup, the broadband filter was easily recognised by all users due to contextual cues,

in the final evaluation set up we could make it confusable and hard to recognise by not

providing any cues. Therefore, we could move such domain entities that we deem to

make hard to recognize in the evaluation process from the easy class to the hard class.

We further describe this move in Chapter 7.

The model produces a clarification request cr based on the class of the referent

(C(Ri)), type of the referring expression (Ti), and the current domain knowledge of the

user (DKu,t(Ri)). Clarification requests are produced as user’s dialogue actions using

the following RE recognition model.

P(Au,t = cr(Ri,Ti)|C(Ri),Ti,DKu,t(Ri))

The environment action and the instruction response are produced using the same

models as in the three-step model when there is no clarification request produced in

the first step. According to the data, clarification requests are much more likely when

jargon expressions are used to refer to the referents that belong to the hard class and
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Easy Hard

Livebox Ethernet cable

Wall phone socket Broadband cable

Livebox ADSL socket Livebox Broadband light

Livebox Power light Livebox Ethernet light

Broadband filter PC Ethernet socket

Livebox Ethernet socket Power Adaptor

Livebox Power socket

Table 6.2: Domain entities and their classes

which the user doesn’t know about. When the system uses expressions that the user

knows, the user generally responds to the instruction given by the system. We re-

trained these models using the same dialogue data after annotating them with classes

of referents.

Although the class-based model was developed to address the problems in our data,

it is a useful model in its own right. It will always be possible to classify referents into

several classes based on different features. In this work, we classified them into two

groups based on the clarification requests in our data. However, other classifications

are also possible. For instance, they can also be clustered into several classes based

on how they are related to each other and a user’s responses towards all the members

could be similar. Therefore, we believe that wherever referents can be meaningfully

classified and users’ responses towards the members of a class are similar, the class-

based model can be used. This is because the class-based model has a clear advantage

of being able to handle data sparsity.

6.3.1.4 Training Action Selection models

We trained action selection models using our dialogue data using relative frequency

estimation. We used the 12 dialogues (i.e. Jargon and Descriptive strategy) in our

corpus. We avoided the tutorial strategy dialogues, because users were frustrated (see

table 5.5) with the use of tutorial expressions which were longer than jargon and de-

scriptive expressions. Moreover, jargon expressions produced learning gains as much

as tutorial expressions (see table 5.5). We therefore planned to use only jargon and de-

scriptive expressions as system choices and to train the action selection models only on
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jargon and descriptive strategy dialogues in the corpus. The RE recognition model of

the three-step action selection model was trained from the following 4-tuple extracted

from the dialogue corpus for each referring expression used by the system in every

dialogue turn:

< R,T,DKu(R),Au >

e.g.1. < broadband f ilter, jargon, no, request clari f ication >

e.g.2. < livebox, jargon, no, none >

Where T is the type of expression used (jargon/descriptive), R is the domain entity

(referent), DKu(R) is the user’s knowledge of the jargon expression for R and Au is the

user’s response (clarification request or none). User responses that are not clarification

requests were first annotated as none. Therefore, user response in the above tuple was

either a clarification requested on the referring expression or none. There were 203

jargon expressions and 202 descriptive expressions used by the system in our corpus

which produced 405 tuples in the above format. We annotated the domain knowledge

of the user based on their pre-task recognition test scores. For the class-based three

step model, the referents were replaced by their classes. We use the following 4-tuple

to train the RE recognition model of the class-based three step model:

<C(R),T,DKu(R),Au >

e.g.1. < hard, jargon, N, request clari f ication >

e.g.2. < easy, jargon, N, none >

Where C(R) is the class of the domain entity (referent), T is the type of expression

used (jargon/descriptive), DKu(R) is the user’s knowledge of the jargon expression for

R and Au is the user’s response (clarification request or none).

The environmental action and instruction response models were trained on a 3-

tuple extracted from the corpus. These were extracted from dialogue turns where user

responses were not clarification requests, as they have been accounted for in the RE

recognition model. The information on user’s manipulation of the environment comes

from the task completion reports. Since we were not able to observe the user’s obser-

vation actions on the domain entities, we annotated them manually depending on their

response to the system. Both the manipulation and observation actions were manually

annotated as either correct or incorrect based on how appropriate they were to the sys-

tem instruction. Therefore, the three-tuple used to train the environmental action and

instruction response models is:



Chapter 6. Statistical User Simulation for NLG 104

< As,EAu,Au >

e.g. < manipulate(connect(broadband cable,broadband f ilter)),

correct, acknowledge >

Where As is the system’s dialogue action, EAu is the user’s environmental action, Au is

the user’s response.

6.3.2 Domain knowledge profiles

Complementary to the user action selection models presented in the previous section,

we also model the domain knowledge of the users in the simulation module. This ful-

fills our second requirement of simulating a diverse population of users with different

domain knowledge levels. During training, the dialogue system interacts with the user

simulation several times producing several dialogues. At the start of each dialogue,

we set the initial knowledge of the user simulation to one of the several knowledge

profiles. Once instantiated, the simulation produces a dialogue behaviour that is con-

sistent with its knowledge profile. For example, it behaves like a novice user asking

a lot of clarification requests on jargon expressions when instantiated with a novice

profile. The initial knowledge base (DKu,initial) for 5 different users is shown in table

6.3. A novice user knows only “wall phone socket”, and an expert knows all the jargon

expressions. Between these two extremes, there are three intermediate profiles as well.

The knowledge of a jargon expression x is represented by the corresponding do-

main entity (Rx) in the profile. We use Y in the table to denote the user’s knowledge

of the jargon expression. The model assumes that users can interpret the descriptive

expressions and resolve their references. Therefore, they are not explicitly represented.

We use these five stereotype knowledge profiles as initial domain knowledge levels of

users simulated during training and evaluation phases (see chapter 7). By using differ-

ent profiles, the models produce a consistent behaviour of different types of users at

various domain expertise levels.

Initially, the knowledge profiles from the pre-task knowledge test (see chapter 5)

were clustered using the k-means clustering algorithm into 5 clusters to produce stereo-

typical knowledge profiles of users with different domain expertise levels (MacQueen

(1967)). We used the centroid (i.e. center of the cluster) profiles as our stereotypes.

However, as we pointed out in section 6.3.1.3, users (i.e. participants) were able to

recognise some domain entities based on contextual cues provided by the system.

We therefore manually modified the profiles from the clustering algorithm to suit a
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Novice Int1 Int2 Int3 Expert

Phone socket Y Y Y Y Y

Livebox Y Y Y Y

Livebox Power socket Y Y Y Y

Livebox Power light Y Y Y Y

Power adaptor Y Y Y

Broadband cable Y Y

Ethernet cable Y Y Y

Livebox Broadband light Y

Livebox Ethernet light Y Y

Livebox ADSL socket Y

Livebox Ethernet socket Y Y

PC Ethernet socket Y Y Y

Broadband filter Y

Table 6.3: Domain knowledge of 5 different users

more challenging environment (that we describe in Chapters 7 and 8) than the one

used in data collection. For instance, novices and intermediates were able to iden-

tify an “ADSL socket” during data collection pre-test because the socket was labelled

“ADSL”. Similarly, they also recognised “broadband filter”. However, in our final

evaluation we remove such labels and therefore only experts will be able to identify

an ADSL socket based on how it appears. Therefore, “ADSL socket” and “broadband

filter” were marked unknown to all user types except experts. This revision of pro-

files required a small amount of domain expertise. The revised profiles are presented

in table 6.3. Ideally, when the final evaluation environment is the same as the data

collection environment, such revisions may not be necessary.

6.3.3 Knowledge update module

Corpus data shows that users can learn to associate new jargon expressions with do-

main entities during the conversation. We model this using the knowledge update

model. This satisfies our third requirement of producing a learning effect and a dia-

logue behaviour that is consistent with an evolving domain knowledge of the user. For

instance, a user who has been clarified on a jargon expression is more likely to have
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learned it and so would not thereafter ask for clarifications on the same expression later

on in the conversation. Such behaviour is not possible without a learning model. We

therefore model the user’s domain knowledge DKu to be dynamic which can be up-

dated during the conversation. The domain knowledge is updated based on two types

of system dialogue actions.

We observed in the dialogue corpus that users always learned a jargon expression

when the system provides the user with a clarification. Therefore, the knowledge up-

date is modelled using the following update rule.

i f (As,t == provide clari f ication(Rx)),

then DKu,t+1(Rx)← 1

Users also learn when jargon expressions are repeatedly presented to them. Learn-

ing by repetition follows a non-linear learning curve - the greater the number of rep-

etitions, the higher the likelihood of learning. This probabilistic update is modelled

as a function of the referent (Rx) and a repetition parameter (n(x)) as follows (where

x ∈ RECs,t) .

P(DKu,t+1(Rx)← 1) = f (Rx,n(x))

The final state of the user’s domain knowledge (DKu, f inal) may therefore be differ-

ent from the initial state (DKu,initial) due to the learning effect produced by the system’s

use of jargon expressions. We trained the above model from our corpus based on how

many times jargon expressions were repeated and users’ post-task recognition scores.

6.4 Baseline models

We developed the following baseline action selection models to compare the perfor-

mance of our pipeline models in simulating real users’ dialogue behaviour.

6.4.1 Bigram model

A simple bigram model was built using the dialogue data by conditioning the user

responses only on the system’s dialogue act (Eckert et al. (1997)).

P(Au,t |As,t)

P(EAu,t |As,t)
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Since it ignores all the context variables except the system dialogue act, it can

be used in contexts that are not observed in the dialogue data. It also satisfies our

first requirement that it must be sensitive to referring expressions by requesting for

clarifications. However, this model is not conditioned on a knowledge profile. Its

clarification request pattern may not be similar to the ones in our data collection. For

instance, it may ask for a clarification for a jargon expression already clarified by the

system.

6.4.2 Trigram model

The trigram model is similar to the bigram model, but with the previous system dia-

logue act As,t−1 as an additional context variable.

P(Au,t |As,t ,As,t−1)

P(EAu,t |As,t ,As,t−1)

With a little bit of history, this model may produce more sensible dialogue moves

of the user. However, it has the same disadvantages of the bigram model like not being

able to take the user’s dynamic domain knowledge into account.

6.4.3 Equal Probability model

The equal probability model is similar to the bigram model, except that it is not trained

on the dialogue data. Instead, it assigns equal probability to all possible responses for

the given system dialogue act.

6.5 Smoothing

We used Witten-Bell discounting to smooth all the above models, in order to account

for unobserved but possible events in dialogue contexts (Witten and Timothy (1991)).

Witten-Bell discounting extracts a small percentage of probability mass, i.e. number

of distinct events observed for the first time (T ) in a context, out of the total number

of instances (N), and redistributes this mass to unobserved events in the given context

(V −T ) (where V is the number of all possible events) . The discounted probabilities

P∗ of observed events (C(ei)> 0) and unobserved events (C(ei) = 0) are given below.

P∗(ei) =
C(ei)
N+T i f (C(ei)> 0)



Chapter 6. Statistical User Simulation for NLG 108

P∗(ei) =
t

(N+T )(V−T ) i f (C(ei) = 0)

On analysis, for our use case we found that Witten-Bell discounting assigns greater

probability to unobserved events than to observed events, in cases where the number of

events per context is very low. For instance, in a particular context, the possible events,

their frequencies and their original probabilities were - provide info (3, 0.75), other

(1, 0.25), request clarification (0,0). After discounting, the revised probabilities

P∗ are 0.5, 0.167 and 0.33 respectively. request clarification gets the whole

share of extracted probability as it is the only unobserved event in the context and

is more than the other event actually observed in the data. This is counter-intuitive

for our application. Therefore, we use a modified version of Witten-Bell discounting

(given below) to smooth our models, where the extracted probability is equally divided

amongst all possible events. Using the modified version, the revised probabilities for

the illustrated example are 0.61, 0.28 and 0.11 respectively.

P∗(ei) =
C(ei)
N+T + T

(N+T )V

Other smoothing methods like add-one and Good Turing are only effective when

there is a large corpus with a sizeable number of unique observed events (token count)

per frequency (Church and Gale (1991)). From the above example, however, one can

see that in the data at our disposal, this is not the case. There is one event that never

occurs, one that occurs once and one event that has frequency three. Applying Good

Turing smoothing to the above problem will re-estimate the frequencies of the events

whose frequencies were originally zero and one as one and three respectively (because

their relative frequency ratio is one). This is also counter-intuitive. Therefore, these

methods were not used for smoothing.

6.6 Metrics for evaluation of simulations

Kullback-Leibler (KL) divergence, which is also called relative entropy, is a measure

of how similar two probability distributions are (Kullback and Leibler (1951); Kull-

back (1959, 1987)). It can be used to measure how similar the distributions of the

simulation models are to the real human user data. Several recent studies have used

this metric to evaluate how closely their user simulation models produce real user be-

haviour (Cuayahuitl et al. (2005); Cuayahuitl (2009); Keizer et al. (2010)).
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Model Au,t EAu,t

Dynamic Bayesian 1.25 0.97

Bigram 0.916 0.290

Trigram 0.981 0.301

Equal Probability 4.187 1.342

Three-step 0.862 0.274

Class-based three-step 0.711 0.232

Table 6.4: Dialogue Similarity (after smoothing)

We measure dialogue similarity (DS) based on Kullback-Leibler (DKL) divergence

between real and simulated dialogues. Since KL divergence is a non-symmetric mea-

sure, DS is computed by taking the average of the KL divergence between the simu-

lated responses and the original responses (i.e. DKL(simulated||real)) and vice versa

(i.e. DKL(real||simulated)). Dialogue Similarity (DS) between two models P and Q is

defined as follows:

DKL(P||Q) = ∑M
i=1 pi ∗ log( pi

qi
)

DS(P||Q) = 1
N ∑N

i=1
DKL(P||Q)+DKL(Q||P)

2

The metric measures the divergence between distributions P and Q in N different

contexts with M responses per context. Ideally, the dialogue similarity between two

similar distributions is close to zero. Please note that in this evaluation, we do not

divide the corpus into training and testing data.

6.7 Evaluation results

We compared the probability distributions of all the smoothed action selection mod-

els to the probability distribution of real user responses from our corpus using the

dialogue similarity measure. The results of the evaluation are given in table 6.4.

Results show that both three-step models are closer to real user data than the base-

line models. This is due to the fact that the bigram and trigram models don’t take into

account factors such as the user’s knowledge, the strategy used, and the dialogue his-

tory. By effectively dividing the RE processing and the environment interaction, the

three-step simulation model is not only realistic in observed contexts but also usable
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in unobserved contexts. We also show that the class-based three-step model is closer

to real data when compared to all the other models. It is even better than the (RE-

based) three-step simulation model. The class-based model is a generalised version

of the three-step model and therefore must be more divergent from real user data than

the three-step model. However, it is less divergent because the class-based three-step

simulation essentially compresses the number of contexts because of classifying the

domain objects into two classes and with fewer contexts, generalisation produced by

smoothing techniques have less impact on the class-based model than the other models.

It should be noted that dialogue similarity is measured at the turn level by com-

paring the real and simulated responses in different contexts at each dialogue turn.

However, simulated user responses have to be consistent across turns within a dialogue

based on user’s dynamic domain knowledge profile. Out of all the models presented

in this chapter, only the three-step models produce a knowledge consistent behaviour

because they take into account the user’s domain knowledge at all times. Although the

dynamic Bayesian model accounts for the user’s knowledge it is unusable due to data

sparsity issues in adaptive dialogue contexts.

6.8 Conclusion

We have presented data-driven user simulation models: the three-step and the class-

based three-step models that satisfy our requirements for learning user modelling poli-

cies for adaptive REG using reinforcement learning. We have also shown that the

three-step models are much closer to real user data than the other baseline models. By

reviewing the referring expressions used in the system’s utterance individually (and not

as a set) and by the use of knowledge profiles and a learning model, these two models

can be trained using limited non-adaptive dialogues and still be used to train and test

adaptive systems. In chapter 7, we show how the class-based three-step model was

used to train and test UM policies for adaptive referring expression generation.



Chapter 7

Learning Adaptive UM policies

In this chapter, we present a data-driven reinforcement learning framework to learn a

user modelling policy for adaptive REG using the data-driven user simulations pre-

sented in chapter 6. We show that in comparison to hand-coded adaptive baseline

policies the learned policies perform significantly better, with better adaptation accu-

racy over baseline policies. This is because the learned policy can adapt online to

changing evidence about the user’s domain expertise. We also compared the perfor-

mance of policies learned using hand-coded and data-driven simulations and show that

data-driven simulations produce better policies than hand-coded ones.

Section 7.1 describes the dialogue system framework and its modules. Section 7.2

describes the user simulation models. In section 7.4, we present the training results

and in section 7.5, we present the testing results for different adaptive UM policies.

7.1 Self-Help Dialogue System

In this section, we describe the different modules of the dialogue system. The inter-

action between the different modules is shown in figure 7.1 (in learning mode). The

dialogue system presents the user with instructions to set up a broadband connection

at home. Please note that the dialogue task is not exactly the same as the one described

in the basic framework (in chapter 4). In the Wizard of Oz setup that was used for

data collection (in chapter 5) and for real user evaluation (in chapter 8), the system

and the user interact using speech. However, in our machine learning setup which we

present in this chapter, they interact with user simulation models at the abstract level

of dialogue actions and referring expressions. Our objective is to learn to choose the

appropriate referring expressions to refer to the domain entities in the instructions.

111
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Figure 7.1: System User Interaction (in learning mode)

7.1.1 Dialogue Manager

The dialogue manager identifies the next instruction (dialogue act) to give to the user

based on the dialogue management policy πdm. Since, in this study, we focus only on

learning the user modelling policy, the dialogue management is coded in the form of

a finite state machine. In this dialogue task, the system provides two kinds of instruc-

tions - observation and manipulation. For observation instructions, users are supposed

to observe a domain object in their environment and report back its status to the system,

and for the manipulation instructions (such as plugging a cable in to a socket), they are

supposed to manipulate the domain entities in the environment and acknowledge the

instruction. When the user carries out an instruction, the system state is updated and

the next instruction is given. Sometimes, users do not understand the referring ex-

pressions used by the system and then ask for clarification. In such cases, the system

provides clarification on the referring expression (provide clari f ication), which is in-

formation to enable the user to associate the expression with the intended referent. The

system action As,t is therefore to either give the user the next instruction or a clarifi-

cation. When the user responds in any other way, the instruction is simply repeated.

The dialogue manager is also responsible for updating and managing the system state

Ss,t(see section 7.1.2). The system interacts with the user by passing both the system

action As,t and the referring expressions RECs,t (see section 7.1.3).
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7.1.2 Dialogue state

The dialogue state Ss,t is a set of variables that represent the current state of the con-

versation. In our study, in addition to maintaining an overall dialogue state, the system

maintains a user model UMs,t which records the initial domain knowledge of the user.

It is a dynamic model that starts with a blank slate where the system does not have

any idea about the user before the conversation starts. As the conversation progresses,

the dialogue manager records the evidence presented to it by the user in terms of his

dialogue behaviour, such as asking for clarification and interpreting jargon. Since the

model is updated according to the user’s behaviour, it may be inaccurate if the user’s

behaviour is itself uncertain. So, when the user’s behaviour changes (for instance, from

novice to expert), this is reflected in the user model during the conversation. Hence,

unlike previous studies mentioned in chapter 2, the user model used in this system is

not always an accurate model of the user’s knowledge and reflects a level of uncertainty

about the user.

Each jargon referring expression x has two corresponding variables in the dialogue

state: user knows x and user doesnt know x . They are both initially set to 0. The

variables are updated using a simple user model update algorithm. If the user responds

to an instruction containing the referring expression x with a clarification request, then

user doesnt know x is set to 1. Similarly, if the user responds with appropriate in-

formation to the system’s instruction, the dialogue manager sets user knows x to 1

and user doesnt know x to 0. Therefore only 3 states are possible for each jargon

expression (not 4, as one would expect with 2 binary variables). Since there are 13

entities and we only model the jargon expressions with 2 binary variables, there are 26

variables. Each pair of these variables takes only 3 out of 4 values, therfore the state

space size is 313 (approximately 1.5 million states).

The user’s knowledge is inferred and update by the dialogue manager during the

course of the dialogue from their behaviour after each turn. For instance, if the user

asks for clarification on a referring expression, his knowledge of the expression is set

to n and when no clarifications are requested, it is set to y. This rule has been used in

the past to implicitly acquire information about a user’s knowledge (Chin (1989)). The

user may have the capacity to learn jargon. However, only the user’s initial knowledge

is estimated and represented in the internal user model. This is based on the assump-

tion that an estimate of the user’s initial domain knowledge helps to predict the user’s

knowledge of the rest of the referring expressions.
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7.1.3 REG module

The REG module is a part of the NLG module whose task is to identify the list of

domain entities to be referred to in the dialogue act and to choose the appropriate

referring expression for each of the domain entities for each given dialogue act. In

this study, we focus only on the production of appropriate referring expressions to

refer to domain entities mentioned in the dialogue act. It chooses between the two

types of referring expressions - jargon and descriptive. For example, the domain entity

broadband filter can be referred to using the jargon expression “broadband filter” or

using the descriptive expression “small white box”1. We call this act of choosing the

REG action. The tutorial strategy was not investigated here since the corpus analysis

showed tutorial utterances to be very time consuming.

The REG module operates in two modes - learning and evaluation. In learn-

ing mode, the REG module is the learning agent. The REG module learns to asso-

ciate dialogue states with optimal REG actions. This is represented by a UM policy

πUM : UMs,t → RECs,t , which maps the states of the dialogue (user model) to optimal

REG actions. The referring expression choices (RECs,t) is a set of pairs identifying

the referent Rx and the type of expression Tx used (where x is literally the referring

expression). For instance, the pair (broadband filter,desc) represents the descriptive

expression “small white box”. Therefore,

RECs,t = {(Rx1,Tx1), ...,(Rxn ,Txn)}

7.2 User Simulations

Two kinds of user simulation models were used for training: data-driven and hand-

coded.

7.2.1 Class-based Three-step model

We use the class-based three-step model presented in section 6.3.1.3. The simulation

has a number of in-built knowledge profiles that determine the dialogue behaviour of

the user being simulated. The user’s knowledge of a referring expression x or the ability

of interpreting it affects its request for clarification. If the user is able to interpret all the

1We will use italicised forms to represent the domain entities (e.g. broadband filter) and double
quotes to represent the referring expressions (e.g. “broadband filter”).
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Easy Hard

Livebox Ethernet cable

Wall phone socket Broadband cable

Livebox Power light Livebox Broadband light

Livebox Power socket Livebox Ethernet light

PC Ethernet socket

Power Adaptor

Livebox ADSL socket

Livebox Ethernet socket

Broadband filter

Table 7.1: Domain entities and their classes : revised

referring expressions used by the system (RECs,t) and identify the references then the

model processes the system’s instruction, interacts with the environment and responds

to the system. These models were populated by data from our dialogue corpus.

The model classifies the referents in the domain into hard and easy classes. As

mentioned in chapter 6, the use of classes provides the flexibility to move some domain

objects from one class to another. We moved 3 domain entities from the easy class to

the hard class under the assumption that during real user evaluation these entities will

be made harder to recognise by avoiding contextual cues. We now have 9 domain

entities that are harder to recognize and 4 entities that are easier to recognise. The

revised list of domain entities and their classes are given in table 7.1. In chapter 8, we

show how we revise our evaluation environment accordingly.

Three out of the five domain knowledge profiles were used for training: Expert,

Novice and Int2 (an intermediate), while all five profiles were used during evaluation.

The user domain knowledge is initially set to one of several profiles at the start of

every conversation. There is also a knowledge update module that updates the domain

knowledge of the simulated user when they learn new jargon expressions (see section

6.3.2).

7.2.2 Hand-coded user simulation

We also built another simulation using the above models but where some of the pa-

rameters were set by hand instead of estimated from the data. The purpose of this
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simulation is to investigate how learning with a data-driven simulation compares to

learning with a hand-coded simulation. Here we modified the dialogue behaviour of

the users by setting them manually. The knowledge patterns and learning models were

the same as in the data-driven simulation. In the hand-coded simulation, however, the

user always asks for a clarification when he does not know a jargon expression (re-

gardless of the class of the referent) and never does this when he does knows it. This

enforces a stricter, more consistent behaviour for the different knowledge patterns,

which we hypothesize should be easier to learn to adapt to, but may lead to less robust

UM policies.

7.3 Reward function

As discussed in the previous chapters, a reward function generates a numeric reward

for the learning agent’s actions. It gives high rewards to the agent when the actions

are favourable and low rewards when they are not. In short, the reward function is a

representation of the goal of the agent. It translates the agent’s actions into a scalar

value that can be maximized by choosing good action sequences.

7.3.1 User score

Several other parameters like learning gain, dialogue time, etc could be used as a part

of the reward function based on the needs of the system designer. One of the systematic

ways of designing reward functions is to use the PARADISE framework (Walker et al.

(2000)). The PARADISE framework is generally used to construct a linear function to

predict user satisfaction scores from objective parameters like dialogue time, learning

gain, etc. Such a function could be used as reward function so that the agent learns

to maximise users’ satisfaction scores. The user score was calculated as the mean of

the following 5 dimensions on which we asked the user to rate the system during data

collection (see Chapter 5).

1. Easy to identify referents

2. Learned useful terms

3. Complexity of instructions

4. Conversation was of right length
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5. Will use the system in future

Each of these were rated on a scale of 1 to 4 (1 - strongly disagree, 2 - disagree,

3 - agree, 4 - strongly agree). We used linear regression to derive a linear function

for user score (US) based on (normalised) learning gain (LG), dialogue time (DT ) and

task completion rate (TCR) as given below (R2 = 0.49,P = 0.027). We could therefore

calculate the user score using the following linear function.

User Score (US) = 0.67+0.73∗LG+0.28∗TCR−0.08∗DT

However, we chose not to use user satisfaction scores as reward although we col-

lected them as a part of our data collection. The primary reason for this is that the user

satisfaction scores were not discriminative enough to identify adaptive dialogues from

non-adaptive ones because the user score (US) does not have a component based on

adaptivity of the system. This is because, during data collection, the strategies were

never mixed within a single conversation. Therefore, the participants were never pre-

sented referring expressions in an adaptive fashion. Either they were presented one of

the three types of expressions throughout the entire conversation as we did not have an

adaptive strategy to start with. We also did not pick expressions randomly. This was

done to avoid the user’s getting frustrated by random choices of expressions. Due to

this fact, no user score regarding adaptation was collected. Instead, users scored the

systems based on other parameters. Novice users scored the system well because of

learning gain and expert users scored it well due to low dialogue time. Due to this

reason and due to limited data that we had at our disposal, we decided to instead use an

objective parameter like accuracy of adaptation for reward function. We collected the

user’s feedback on the adaptive nature of the system during final evaluation with real

users (see chapter 8), which also show that users do not score highly adaptive systems

higher than less adaptive ones.

7.3.2 Accuracy of adaptation

Since we could not use user score as our reward function, we implemented another

way to measure adaptation. We designed a reward function for the goal of adapting to

each user’s domain knowledge. We present the Adaptation Accuracy score (AA) that

calculates how accurately the agent chose the expressions, with respect to the user’s

initial knowledge. Appropriateness of an expression is based on the user’s knowledge

of the expression. So, when the user knows the jargon expression for a referent (r), the
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appropriate expression to use is jargon, and if s/he doesn’t know the jargon expression,

a descriptive expression is considered appropriate. Although the user’s domain knowl-

edge is dynamically changing due to learning, we base appropriateness on the initial

state, because our objective is to adapt to the initial state of the user (DKu,initial). We

calculate accuracy per referent (Accr) as the ratio of number of appropriate expressions

to the total number of instances of the referent in the dialogue. We then calculate the

overall mean accuracy (AA) over all referents as shown below.

Accr =
#(appropriate expressions(r))

#(instances(r))

Adaptation Accuracy (AA) = 1
#(r)ΣrAccr

Note that this reward is computed at the end of the dialogue (it is a ‘final’ reward),

and is then back-propagated along the action sequence that led to that final state. Since

the agent starts the conversation with no knowledge about the user, it may try to use

more sensing moves to seek information about the user’s domain knowledge. How-

ever, by measuring accuracy to the initial user state, the agent is encouraged to restrict

its exploratory moves and start predicting the user’s domain knowledge as soon as pos-

sible. The system should therefore ideally balance sensing and adaptation to increase

accuracy. The above reward function returns 1 when the agent is completely accurate

in adapting to the user’s domain knowledge and it returns 0 if the agent’s REC choices

were completely inappropriate. Usually during learning, the reward value lies between

these two extremes and the agent tries to maximize it to 1.

7.4 Training

The REG module was trained (operated in learning mode) using the above simula-

tions to learn UM policies that select referring expressions based on the user expertise

in the domain. As shown in figure 7.1, the learning agent (REG module) is given a

reward at the end of every dialogue. During the training session, the learning agent

explores different ways to maximize the reward. The REG module was trained in

learning mode using adaptive accuracy (AA) as reward function. Using the SARSA re-

inforcement learning algorithm (with linear function approximation) (Sutton and Barto

(1998); Rummery and Niranjan (1994); Shapiro and Langley (2002)), the training pro-

duced approx. 5000 dialogues. The exploration parameter was set to 0.3. This means

that when the training starts, 30% of the time, the agent will choose to explore rather

than exploit the Q-values. This value however decays gradually over time.
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Two types of simulations were used as described above: Data-driven and Hand-

coded. Both user simulations were calibrated to produce three types of users: novice,

intermediate and experts. Novice users knew just one jargon expression, intermediates

knew seven, and experts knew all thirteen jargon expressions. There were underlying

patterns in their knowledge which were learned from the corpus data. For example, In-

termediate users were those who knew the commonplace domain entities but not those

specific to broadband connection. For instance, they knew “ethernet cable” and “pc

ethernet socket” but not “broadband filter” and “broadband cable”. The three profiles

were picked up randomly. However they were picked with equal probability so that the

agent would learn to adapt to different types of users without any bias towards users of

any particular type.

Figure 7.2 shows how the agent learns using the data-driven (Learned DS) and

hand-coded simulations (Learned HS) during training. It can be seen in figure 7.2 that

towards the end the curve plateaus signifying that a policy has converged.

Figure 7.2: Policy Learning curves

Initially, the learning agent chooses randomly between the referring expression

types for each domain entity in the system utterance, irrespective of the user model

state. Once the referring expressions are chosen, the system presents the user sim-

ulation with both the dialogue act and referring expression choices. The choice of
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referring expression affects the user’s dialogue behaviour which in turn makes the dia-

logue manager update the user model. For instance, choosing a jargon expression could

evoke a clarification request from the user, which in turn prompts the dialogue manager

to update the user model with the new information that the user is ignorant of the par-

ticular expression. The same process is repeated for every dialogue instruction. At the

end of the dialogue, the system is rewarded based on its choices of referring expression.

The reward is set to be proportional to how accurately (with respect to the user’s true

initial domain knowledge) the system chooses the referring expressions. So, if the sys-

tem chooses jargon expressions for novice users or descriptive expressions for expert

users, penalties are incurred and if the system chooses REs appropriately, the reward

is high. On one hand, those actions that fetch more reward are reinforced and on the

other hand, the agent tries out new state-action combinations to explore the possibility

of greater rewards. The pace of learning is governed by the learning rate parameter

and exploration is governed by a exploratory parameter which is halved periodically.

Therefore as the exploratory parameter reduces to zero, the learning agent stops explor-

ing new state-action combinations and exploits those actions that contribute to higher

reward. The REG module learns to choose the appropriate referring expressions based

on the user model in order to maximize the overall expected long-term reward.

7.5 Evaluation

We evaluate the learned policies with simulated users. Although it is ideal to test the

learned policies with real users, evaluation with real users is an expensive process.

Therefore it is a common strategy to first test the learned policies with simulated users

and then evaluate them with real users (Lemon et al. (2006); Filisko and Seneff (2006);

Frampton (2008); Rieser (2008)). In this section, we first present the evaluation metrics

used, the baseline policies that were hand-coded for comparison, and finally, the results

of evaluation. We test the policies with real users in chapter 8.

7.5.1 User simulation

In the evaluation mode, candidate policies interact with many unknown simulated users

in the same way as in the learning mode. However we set the learning rate and ex-

ploration parameters to zero. The system consults the learned policy to choose the

referring expressions based on the current user model. The data-driven simulation was
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calibrated to simulate 5 different user types. In addition to the three users - Novice,

Expert and Int2, from the training simulations, two other intermediate users (Int1 and

Int3) were added to examine how well the learned policies handle unseen user types

(see Table 6.3 for all the knowledge profiles).

7.5.2 Metrics

In addition to the Adaptation Accuracy (AA) score mentioned in the reward function,

we also measure other parameters from the conversation in order to show how learned

adaptive policies compare with other possible policies on other dimensions. We calcu-

late the time taken (Time) for the simulated user to complete the dialogue task. This

is calculated using a regression model (R2 = 0.98,P = 0.000) shown below from the

corpus based on number of words (#(W )), turns (T ), and mean user response time

(URT ).

Dialogue Time (DT )(mins) = (19.75+0.6∗#(W )+0.78∗URT ∗T )/60.0

We also measure the (normalised) learning gain (LG) produced by using unknown

jargon expressions. This is calculated using the pre and post scores from the user

domain knowledge (DKu) as follows.

Learning Gain LG = Post%−Pre%
100−Pre%

The time and learning gain parameters were used to later calculate simulated user

scores (US) (see section 7.3.1).

7.5.3 Baseline UM policies

In order to compare the performance of the learned policy with hand-coded UM poli-

cies, four rule-based adaptive policies were built.

Descriptive: Uses descriptive expressions for all referents by default.

Jargon-adapt: Uses jargon for initial reference for all referents by default. But it

changes to using descriptive expressions for those referents for which users asked for

clarifications. See table 7.2 for an example dialogue.
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Sys: Do you have a broadband cable in the package?

Usr: What is a broadband cable?

Sys: The broadband cable is the thin black cable with

colourless plastic ends.

Usr: Yes. I have that.

.........

Sys: Please plug one end of the thin black cable with

colourless plastic ends into the broadband filter.

Table 7.2: Jargon-adapt policy: An example dialogue

Switching-adapt: This policy starts with jargon expressions for initial references and

continues using them until the user requests for clarification. After a clarification re-

quest, it switches to descriptive expressions for all new referents and continues to use

them until the end. In an example dialogue shown in table 7.3, please note that after

the first clarification request it uses descriptive for the next referent onwards.

Stereotypes: In this policy, we use the knowledge profiles from our data collection.

The system starts using jargon expressions for the first n turns and then based on the

user’s responses, it classifies them into one of the five stereotypes and thereafter uses

their respective knowledge profiles in order to choose the most appropriate referring

expressions. For instance, if after n turns, the user is classified as a novice, the system

uses the novice profile to choose expressions for the referents in the rest of the dia-

logue. We tested various values for n with simulated users (see section 7.5.1) and used

the one that produced the highest accuracy (i.e. n = 6). Please note that as the value

of n goes up from 1, accuracy increases as it provides more evidence for classification.

However, after a certain point the adaptation accuracy starts to stabilize, because too

much sensing is not more informative. Later it starts to fall slightly because sensing

moves come at the cost of adaptation moves. See table 7.4.

Please note that the Jargon-adapt and Switching-adapt policies exploit the user

model in their subsequent references. When the system knows that the user does (or

doesn’t) know a particular expression, this knowledge is exploited in subsequent turns

by using the appropriate expressions and therefore the system is adaptive. We distin-

guish this kind of adaptation from the kind learned by the system using the reinforce-
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Sys: Do you have a broadband cable in the package?

Usr: What is a broadband cable?

Sys: The broadband cable is the thin black cable with

colourless plastic ends.

Usr: Yes. I have that.

Sys: Do you have a small white box that has two sockets

and a phone plug in the package?

.........

Sys: Please plug one end of the thin black cable with

colourless plastic ends into the small white box

that has two sockets and a phone plug.

Table 7.3: Switching-adapt policy: An example dialogue

No of steps Adatation Accuracy (%)

3 51.23

4 58.18

5 58.56

6 72.46

7 71.5

8 71.0

9 70.7

10 69.23

11 68.22

12 67.04

Table 7.4: Stereotypes: n-values and Adaptation Accuracy
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Policies AA (%) DT (mins) LG

Descriptive 46.15 (± 33.29) 7.44 0

Jargon-adapt 74.54 (± 17.9) 9.15 0.97
Switching-adapt 62.47 (± 17.58) 7.48 0.30

Stereotype (n=6) 72.46 (± 20.77) 8.15 0.49

Learned HS 69.67 (± 14.18) 7.52 0.33

Learned DS 79.99 (± 10.46) 8.08 0.63

Table 7.5: Evaluation on 5 simulated user types

ment learning framework. We call the former local adaptation and the latter global

adaptation.

7.5.4 Results

The REG module was operated in evaluation mode to produce around 200 dialogues

per policy distributed equally over the 5 user groups. Overall performance of the differ-

ent policies in terms of AdaptationAccuracy(AA), DialogueTime(DT ), LearningGain(LG)

and Userscore(US) are given in Table 7.5.

We found that the Learned DS policy (i.e. learned with the data-driven user simu-

lation) is the most accurate (Mean = 79.99, SD = 10.46) in terms of adaptation to each

user’s initial state of domain knowledge. It outperforms all other policies: Learned HS

(Mean = 69.67, SD = 14.18), Switching-adapt (Mean = 62.47, SD = 14.18), Jargon-

adapt (Mean = 74.54, SD = 17.9), Stereotype (Mean = 72.46, SD = 20.77) and Descrip-

tive (Mean = 46.15, SD = 33.29). The accuracy (AA) of the Learned DS policy and

all other policies were compared using two-tailed paired t-test. Accuracy of adaptation

of the Learned DS policy was significantly better than Descriptive policy (P = 0.000,

t = 9.11, SE = 37.413), Jargon-adapt policy (P = 0.01, t = 2.58, SE = 20.19), Stereo-

type policy (P = 0.000, t = 3.95, SE = 23.40), Switching-adapt policy (P = 0.000, t

= 8.09, SE = 22.29) and Learned HS policy (P = 0.000, t = 5.59, SE = 20.20). The

Learned DS policy performs better than the Jargon-adapt policy, because it is able to

predict accurately the user’s knowledge of referents unseen in the dialogue so far and

therefore adapts both locally and globally. It performs better than the Stereotype policy

and Learned-HS policies as its adaptive behaviour takes into account the uncertainty

in user’s dialogue behaviour. The Learned-DS policy also continuously adapts to new
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evidence which contributes to its high performance.

The Jargon-adapt policy performs better than the Learned HS, Switching-adapt and

Descriptive policies (P < 0.05). This is because the system can learn more about the

user by using more jargon expressions and then use that knowledge for local adap-

tation. However, it is not possible for this policy to predict the user’s knowledge of

unseen referents and therefore does not adapt globally. Jargon-adapt performs slightly

better than the Stereotype policy but increase in accuracy is not statistically significant

(P = 0.17).

The Stereotype policy performs significantly better than the Switching-adapt and

the Descriptive policies (P < 0.001) but not is not significantly different from the

Learned-HS and Jargon-adapt policies. The Stereotype policy adapts to users glob-

ally using their profiles. However, due to uncertainty in user’s responses, it is not al-

ways possible to pick the right profile for adaptation. This is probably why it beats the

Switching-adapt and the Descriptive policies and performs as well as the Learned-HS

and the Jargon-adapt policies.

Although the Learned HS policy is similar to the Learned DS policy, as shown in

the learning curves in figure 7.2, it does not perform as well when confronted with user

types that it did not encounter during training. Another reason for its poor performance

is that it does not take into account the uncertainty of the user’s dialogue behaviour.

The Switching-adapt policy, on the other hand, quickly switches its strategy (some-

times erroneously) based on the user’s clarification requests but does not adapt appro-

priately to evidence presented later during the conversation. Sometimes, this policy

switches erroneously because of the uncertain user behaviours. The Descriptive policy

performs very well with novice users but not so with other user types.

In terms of dialogue time (DT ), learned policies are a bit more time-consuming

than the Switching-adapt and Descriptive policies but less than the Jargon-adapt policy.

This is because learned policies use sensing moves (giving rise to clarification requests)

in order to learn more about the user. The Descriptive policy is non-adaptive and there-

fore scores better than other policies because it only uses descriptive expressions and

therefore causes no clarification requests from the users. Similarly due to fewer clar-

ification requests, the Switching-adapt policy also takes less dialogue time. Learned

policies spend more time in order to learn about the users they interact with before

they adapt to them. We argue that, although in this task where adaptation is only at the

level of referring expressions, Descriptive and Switching-adapt policy may take less

dialogue time than learned policies, in tasks where adaptation also happens at the level
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of dialogue management, adaptative systems will provide instructions of appropriate

complexity and therefore save dialogue time more than its non-adaptive competitors.

When the three high performing policies (by adaptation accuracy) are compared, the

Learned-DS policy has the shortest dialogue duration. This is due to better adaptation.

The difference between Learned-DS and Jargon-adapt policy is statistically significant

(P<0.05). However the difference between Learned-DS and Stereotype policy is not

significant.

With respect to (normalised) learning gain (LG), the Jargon-adapt policy produces

the highest gain (LG = 0.97). This is because the policy used jargon expressions for

all referents at least once. The difference between Jargon-adapt policy and others was

statistically significant at P < 0.0001. The Learned DS produced a learning gain of

0.63 which is a close second because it did use jargon expressions with novice users

until it was ready to adapt to them. While the use of jargon expressions with novices

and intermediates sacrificed adaptation accuracy, it served to increase (normalised)

learning gain apart from populating the user model.

Figure 7.3 shows how each policy performs in terms of accuracy on the 5 types of

users. When compared in terms of how each policy performs with different user types,

we found that the Descriptive policy performs very well with novice users. How-

ever, its performance drops with increasing user expertise. The Switching-adapt pol-

icy performs well with users on both extremes of the knowledge spectrum: experts

and novices. This is because switching happens early in the dialogue for these user

types. But for the three intermediate user types, its performance falls below 60%. The

Learned-HS policy performs well with Novices, Intermediates 1 and 2, however as the

number of clarifications reduce (i.e. Intermediate 3 and Experts), it is not able to adapt

well them in the face of uncertainty. In contrast to these policies, the Stereotype pol-

icy performs well with all user types (around 60%-70% accuracy). This is because of

global adaptation using user knowledge profiles. However, it performs worse than the

Learned-DS policy because it is unable to handle uncertainty at the user’s end. It there-

fore misclassifies users at times. The Jargon-adapt policy adapts well with Experts but

its performance goes down as expertise decreases. However its performance is not as

bad as the Descriptive policy as it adapts locally even with Novice users. The only pol-

icy that adapts very well with all user types is the Learned-DS policy. Its adapts very

well with the user types its trained with (i.e. Novice, Intermediate 2 and Experts). It

also adapts considerably well with those users that were unseen in during the training

phase (i.e. Intermediates 1 and 3).
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Figure 7.3: Evaluation - Adaptation Accuracy vs User types

7.5.5 Discussion

In this study, we have shown that the Learned DS policy:

1. Learns to adapt: The learned policies sense the user’s expertise and predict their

knowledge patterns, in order to better choose expressions for referents unseen in the

dialogue so far. The system learns to identify the patterns of knowledge in the users

with little sensing. So, when it is provided with a piece of evidence (e.g. the user

knows “broadband filter”), it is able to accurately estimate unknown facts (e.g. the user

might know “broadband cable”). Sometimes, its choices are wrong due to incorrect

estimation of the user’s expertise (due to the stochastic behaviour of the users). In such

cases, the incorrect adaptation move is considered to be an sensing move to populate

the user model. This helps further adaptation using the new evidence.

2. Learns to sense and populate the user model: In addition to adaptation, learned

policies learn to identify when to sense information from the user to populate the user

model (which is initially set to unknown ). It should be noted that the system cannot

adapt unless it has some information about the user and therefore needs to decisively

sense information by using jargon expressions. If it senses information all the time, it

is partly sacrificing adaptation to the user. The learned policies therefore learn to trade-

off between information sensing moves and adaptive moves in order to maximize the
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overall adaptation accuracy score. By continuously using this �sense-predict-adapt ap-

proach, the system adapts dynamically to different users. Therefore, with little sensing

and better prediction, the learned policies are able to better adapt to users with different

domain expertise.

3. Adapts better than hand-coded policies: Results show that Learned DS policy

adapts better with all user types than all the hand-coded policies (See figure 7.3). Hand-

coded policies were manually coded with no expertise in the domain at all. Therefore,

some of the policies are biased towards one type of users or the other. Descriptive

policy is biased to novice users. One can see its performance steadily declining as the

expertise of the user types increases. Similarly, Jargon-adapt policy is biased more

towards expert users. One can also see that it adapts to all types of users although

locally. Switching-adapt policy is biased to both novice and expert users but performs

badly with intermediates. This is because it is susceptible to erroneously switching

strategies with intermediate users. The Stereotype policy performs well with all users

but is susceptible to uncertain user dialogue moves. In contrast to all these policies, the

Learned DS policy uses the information it has in the user model to predict the user’s

domain knowledge and choose appropriate referring expressions.

4. Adapts better than policy learned with hand-coded simulation: Results also

show that the Learned DS policy adapts better to all users than the policy learned using

the hand-coded user simulation (See table 7.5). Although the learning curves for both

these policies look similar to each other (See fig. 7.3), they perform differently with

different users during evaluation.

5. Genaralises to unseen users: This study has also shown that the Learned DS

policy which was trained only using three out of five user knowledge profiles (Novice,

Intermediate 2 and Expert), generalises to all five user types (See fig. 7.3). It adapts to

other intermediate user types (int1 and int3) very well although not at the same level

as the three profiles it was trained to adapt. In fact, it is the only policy that performs

more or less uniformly with all users.
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7.6 Conclusion

In this chapter, we have presented a data-driven framework to learn adaptive UM poli-

cies. We also showed that an adaptive user modelling policy can be learned using our

new class-based three-step user simulation model and that such policies generalise to

more users during testing than the ones used for training. Learned policies sensed

the users’ domain knowledge, modelled their knowledge patterns, and later adapted to

them successfully by choosing the most appropriate referring expressions. We have

shown that the policy learned using a data-driven simulation can significantly outper-

form both hand-coded adaptive policies and a policy learned using a hand-coded simu-

lation. This framework can be employed where adapting to an unknown user’s domain

knowledge is very important, for example in automated technical support. In the fol-

lowing chapter, we show how learned policies perform for real users in comparison

with hand-coded adaptive policies.



Chapter 8

Evaluation with Real Users

Do the learned policies perform as well with real users as they perform well with simu-

lated users? Henderson et al. (2005, 2008) and Rieser (2008) showed that results from

simulated user evaluation transfer successfully to real user evaluation. In this chap-

ter, we evaluate the performance of two policies with real users in real environments.

Users were given the task of setting up a broadband Internet connection while listen-

ing to instructions from our dialogue system. In a “wizarded” setup, similar to the one

used in our data collection, users interacted with dialogue systems using one of the two

user modelling policies. Their interactions were logged and analysed. We present the

results of the evaluation in this chapter.

8.1 Candidates for evaluation

Real user evaluation is expensive. We therefore compared the performance of only

two out of the six policies we evaluated with simulated users. We chose the top two

performing adaptive policies from the simulated user evaluation: Jargon-adapt and

Learned DS.

8.1.1 Jargon-adapt policy

The Jargon-adapt policy is a hand-coded policy whose behaviour is deterministic. It

always chooses a jargon expression for every domain object when it is first mentioned.

It continues to use jargon expressions for that domain object until the user asks for a

clarification of that expression. It then switches to using descriptive expressions for

that domain object thereafter. Please note that users do not ask for any clarifications

130
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when descriptive expressions are used. This policy follows the same strategy for every

domain object mentioned in the conversation. It therefore adapts only after a clarifi-

cation is asked by the user for each jargon referring expression. We called this kind

of adaptation local adaptation in chapter 7. This policy performs well with expert

users (AA = 96%) but very poorly with novice users (AA = 47%) based on simulated

user evaluation. An example dialogue between the dialogue system using Jargon-adapt

policy and a real user is given in Appendix D.

8.1.2 Learned DS policy

The Learned-DS policy was the policy trained using our data-driven class-based three-

step user simulation. As discussed in chapter 7, this policy learned from interacting

with three groups of users (novices, intermediate-2, and experts). It learned how to

identify the members of each group and adapt to them effectively. It also learned to

generalise what it learned to users it was never exposed to during the training phase

(i.e. intermediate-1 and intermediate-3 users). We found that this policy performs very

well with all five user groups during simulated user evaluation with an overall average

adaptation accuracy of 79.7%.

The decision to choose between using jargon expressions and descriptive expres-

sions for the referents is made based on the Q-values of the two actions (i.e. choose jargon

and choose desc) in the given user model state. The Q-value of each action (a) is cal-

culated using the following formula:

Q(s,a) =
n

∑
i=1

θa(i)s(i)T

where, s is the user model state with n variables

As explained in section 7.1.2, there are 26 variables (i.e. n = 26) in the user model

s (sT is the transpose of s). These variables are initially set to 0, signifying that the

agent does not know what the user’s domain knowledge levels are. These are then

set or reset to 1 or 0, based on the evidence available during the conversation. For

each action a, the NLG agent learns θ values for each of these variables in the user

model (θa = θa(1),θa(2), ..,θa(n)), during the training phase. Therefore, for each

referent, the agent learns 2 sets of θ values, one for each action. The θ values signify

the relevance of user’s knowledge of various jargon expressions in the domain to its

actions. The action that gets the highest Q-value is executed.
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8.2 Evaluation setup

8.2.1 Wizard Interface Tool

For evaluation with real users, the Wizard-of-Oz setup that was used for data collection

was reused (Figure 8.1). The wizard interface tool was re-designed to suit the needs of

the evaluation process as shown in the figure 8.2. The following changes were made

to the tool that we used for data collection:

1. All different kinds of clarification requests from the user were merged and cate-

gorised as the request clarification dialogue act instead of the different dialogue

acts used in the data collection setup.

2. The user’s choice of referring expressions that were captured by the User’s RE

Choice panel was removed because we could not study lexical alignment using

the data in our corpus.

3. Similarly, the capacity to align with users lexically was also removed.

Figure 8.1: Wizard-of-Oz setup - Evaluation



Chapter 8. Evaluation with Real Users 133

Figure 8.2: Wizard Interaction Tool - Evaluation

8.2.2 NLG module

The NLG module can be set to two different strategies - Learned-DS or Jargon-adapt.

The strategies select between Jargon and Descriptive referring expressions for the do-

main entities used in the system utterances. The NLG module automatically replaces

the RE slots with the expressions chosen by the strategies and the final utterances are

then generated.

8.2.3 User’s environment

The environment was modified to be more challenging than the one used in the data

collection exercise. Recall that we trained the system to learn a user modelling pol-

icy for a modified environment. Therefore these modifications were made to keep

the evaluation environment consistent with the environment provided for training the

policy (see section 7.2.1). The following modifications were made to the evaluation

environment that the participants interacted with:

1. Text labels like “ADSL”, “Ethernet”, etc for sockets on the Livebox were deleted

by whitening them out. However, symbolic labels on the status lights were not

altered.

2. One of the two broadband filters was replaced with a telephone-pin converter

(distractor).
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3. A USB cable (distractor) was added to the environment along with the two other

cables already supplied.

Similarly, contextual clues in the instructions were removed. For example, when

broadband filters were first mentioned, the additional clue (i.e., “there are two of them

in the package”) has been removed. Figure 8.3 shows the environment used for evalu-

ation. It shows how the environment has been modified to make the process of identi-

fying domain objects more difficult than it was during our data collection exercise (see

figure 6.3).

Figure 8.3: Objects in user environment during evaluation

8.3 Evaluation process

We followed a step-by-step process to collect all necessary data from the participant:

1. Background questionnaire: The participant’s background information including

their profession, gender, age group, and their previous experience in setting up

broadband Internet connections and in using spoken dialogue systems were col-

lected (see Appendix C.2).

2. Pre-task recognition test: A list of 13 technical terms were read out aloud to

the participants. They were asked to point to the domain objects based on their

knowledge of the domain and educated guesses (see Appendix C.4).



Chapter 8. Evaluation with Real Users 135

3. Dialogue task: Each participant was allowed to do the dialogue task only once.

Therefore, for each participant one of the two strategies were randomly cho-

sen. The participants then interacted with the dialogue system using headphones

and a wireless mic. The system gave them step-by-step instructions to setup the

broadband connection using the objects in front of them in their environment.

The participants responded to the instructions with acknowledgements, environ-

mental status information, requests for clarification, and other dialogue actions.

4. Post-task recognition test: The participants were given the same recognition test

as the pre-task recognition test to collect their domain knowledge after the dia-

logue task.

5. Task completion rate: The experimenter then examined the broadband setup to

calculate the task completion rate. This was revealed to the participant (see

Appendix C.5).

6. User feedback: The participants filled out a user feedback questionnaire on the

different features of the system based on the conversation (see Appendix C.3).

7. Debriefing: The participants were informed about the real setup and the role of

the wizard in the setup.

Please note that the questionnaires used for evaluation were slightly different from

the ones used for corpus collection. In the evaluation questionnaires, questions about

the system’s adaptive features were asked. These questions did not figure in the data

collection questionnaire because the strategies used then were not adaptive.

8.4 Data

The two strategies were evaluated on 36 participants. All of the participants were

students, but they came from different schools (arts, humanities, science and engineer-

ing). Besides the forms filled in by the participant and the experimenter, the interaction

between the system and the participant was audio recorded and logged 1. Objective pa-

rameters like dialogue time (DT), turn count, number of jargon and descriptive terms,

number of clarification requests, etc was automatically logged along with the conver-

sation. Normalised learning Gain (LG) was calculated using the pre-test and post-test
1This data will be made available as part of the CLASSiC project (www.classic-project.org) deliver-

ables
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recognition task scores. 17 participants (Group JA) used a dialogue system that exe-

cuted the Jargon-adapt policy and 19 others (Group LDS) used a system that executed

the Learned-DS policy. The initial knowledge of the users (mean pre-task recognition

score) of the two groups were not significantly different from each other (JA = 7.35 ±
1.9, LDS = 6.57 ± 2.29). Hence there is no bias on the user’s pre-task score towards

any strategy.

Technical referring expressions like “Livebox”, “Phone socket”, etc that belong

to the easy class were known to almost all participants. However, expressions like

“Broadband filter” and “Livebox ethernet socket” were known only to a few users.

The knowledge frequency of each technical expression is given in figure 8.4. This

data, as expected, is consistent with the changes we made to the environment before we

evaluated the strategies. For example, fewer participants identified the ADSL socket

in the evaluation setup than in the data collection setup.

Figure 8.4: Pre-task recognition frequency per RE

Similarly, we also clustered the initial knowledge profiles of the participants using

their pre-task scores into 5 clusters. Fig 8.5 shows the frequency of each cluster. The

centroid profiles of each cluster were the same as the knowledge profiles we used in

our data-driven user simulations. Please note that this pre-task test was carried out in

our new challenging environment. This validates our manual modification described
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in chapter 6 that was done keeping in mind the disparity between the environment used

in the data collection and the one we use currently in real user evaluation.

Figure 8.5: User pre-task knowledge profile distribution

8.5 Results

Table 8.1 presents the mean Adaptation Accuracy (AA), Dialogue Time (DT), Task

Completion Rate (TCR), (normalised) Learning Gain (LG), etc produced by the two

strategies that were evaluated with real users. Tests for statistical significance were

done using the two-tailed Mann-Whitney test for 2 independent samples (due to the

non-parametric nature of the data).

The Learned-DS strategy produced more accurate adaptation than the Jargon-adapt

strategy. The difference between the means was statistically significant (p = 0.000). It

also had significantly higher task completion rate (TCR) than the Jargon-adapt policy

(p = 0.000). The Learned-DS strategy produced significantly lower dialogue time

(DT) than the Jargon-adapt policy (p = 0.005) and fewer turns (p = 0.012). The

Learned-DS strategy saved time by almost 11.05% when compared to the Jargon-adapt

strategy. This time saving is due to the fact that users are able to find the intended re-

ferrent faster when the system adapted to the user. The Learned-DS strategy produced

less jargon according to the needs of the user and therefore elicits fewer clarification

requests (CR). Results therefore show that Learned-DS strategy is significantly better

than the hand-coded Jargon-adapt policy in terms of adaptation accuracy, dialogue time

and task completion rate. There was no difference between the performance of both

the strategies in terms of (normalised) learning gain. However, this is not a problem as

our objective was not to increase learning gain.
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Groups JA LDS

Strategy used Jargon-adapt Learned-DS

Adaptation Accuracy (%) 63.91 (± 8.4) 84.72***(± 4.72)

Learning Gain 0.71 (± 0.26) 0.74 (± 0.22)

Dialogue Time (mins) 7.86 (± 0.77) 6.98**(± 0.93)

Task Completion Rate (%) 84.7 (± 14.63) 99.47***(± 2.29)

No. of Turns 30.05 (± 2.33) 28.10*(± 1.85)

No. of Clarification Req 4.11 (± 2.36) 2.79 (± 1.43)

* Statistical significance (p < 0.05).
** Statistical significance (p < 0.001).
*** Statistical significance (p < 0.0001).

Table 8.1: Evaluation with real users

8.5.1 Low vs High users

The participants can be analysed based on their pre-task scores into two subgroups

(Low and High). Low users are those whose pre-task scores are lesser than the mean

pre-task score and High users are those whose pre-task scores are higher. We made

such a division for the users of each group (JA and LDS) to examine the effects of

adaptation on users with different levels of domain expertise. Figures 8.7, 8.6 and 8.8

show how the two different systems performed with the two groups of users.

Figure 8.6: Accuracy vs User Expertise

Accuracy of the Learned-DS system is not very different for both the user groups:

Low and High. For Low group users, the accuracy is 83% (±2.72) whereas for High
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group users it is 86.98% (±5.57). The reason why Low group users have lower accu-

racy because the system has to spend a few extra turns sensing the domain knowledge

of the user. The Jargon-adapt system does not perform well with the Low group users

(59.63%) whereas it performs better with High group users (70%).

Figure 8.7: Task Completion Rate vs User Expertise

Fig 8.7 shows how the two policies adapt to users having different levels of domain

knowledge before the dialogue task. The Jargon-adapt policy adapts very well to High

users whereas it performs poorly with Low users. Its performance increases with users’

expertise. Since the Jargon-adapt policy is designed to use jargon expressions in the

first instance, it performs well with expert users. On the other hand, the Learned-DS

policy adapts consistently with all users across the knowledge spectrum. By choos-

ing the appropriate expression based on user’s expertise, it seems make following the

instructions easier and therefore gives a higher overall task completion rate (99.47%).

Figure 8.8: Dialogue Time vs User Expertise

In terms of dialogue time, the Learned-DS system consistently produces lower

dialogue time for both the groups than the Jargon-adapt system. Especially, the High
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Groups JA LDS

Strategy used Jargon-adapt Learned-DS

Q1. Quality of voice 3.11 3.36

Q2. Had to ask too many questions 2.23 1.89

Q3. System adapted very well 3.41 3.58

Q4. Easy to identify objects 2.94 3.42

Q5. Right amount of dialogue time 3.23 3.26

Q6. Learned useful terms 2.94 3.05

Q7. Conversation was easy 3.17 3.42

Q8. Future use 3.23 3.47

Table 8.2: Real user feedback

group users seemed to save almost a minute when they used the Learned-DS system

compared with their counterparts using the Jargon-adapt system.

8.6 User satisfaction scores

Table 8.2 presents how users subjectively scored different features of the system based

on their conversations with the two different strategies. Statistical significance in dif-

ference between the means were also tested using the two-tailed Mann-Whitney test

for 2 independent samples.

User’s feedback on different features of the systems were not very different from

each other. The Learned-DS policy was rated slightly higher than its counterpart on all

questions. However, the differences were not statistically significant. Users of the sys-

tem employing the Learned-DS policy found it easier to identify domain objects (Q4)

during the interaction (p = 0.043). However, when Bonferroni correction is applied

(i.e. α = 0.006), it is not statistically significant.

Overall, the differences in the objective parameters like task completion rate, di-

alogue time, etc were not supported by the user’s feedback. Users seemed to not be

able to recognize the nuances in the way the system adapted to them. This is evident

from user ratings for Q3 (i.e. System adapted very well). They could have been satis-

fied with the fact that the system adapted (locally) at all. This adaptation and the fact

that the system offered help when the users were confused in interpreting the technical
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terms, could have led the users to score both systems well in terms of dialogue time

(Q5), ease of conversation (Q7) and future use (Q8). The users were given only one

of the two strategies and therefore were not in a position to compare the two strategies

and judge which one is better. The differences in user score (and the objective pa-

rameters) were therefore only compared using Mann-Whitney U test for independent

samples. Please note that, as pointed out (in chapter 7), user scores were not discrimi-

native enough to be used as a reward function. Results in table 8.2 lead us to conclude

that perhaps users need more information like experiencing two or more strategies in

order to judge the strategies better. It is not clear how well the users understand the

nuances in natural language generation of the system and therefore whether it is a good

idea to use user scores for training and evaluation.

We tested for correlation between the above parameters using two-tailed Spear-

man’s Rho correlation. We also found that accuracy of adaptation (AA) correlates

positively with task completion rate (TCR) (r = 0.584, p = 0.000) and negatively with

dialogue time (DT) (r = −0.546, p = 0.001). However, there are no correlations be-

tween these parameters when the two groups (i.e. Jargon-adapt and Learned-DS) are

investigated separately. These correlations and our results suggest that as a system’s

adaptation towards its users increases, the task completion rate increases and dialogue

duration decreases significantly.

8.7 Real vs Simulated evaluation

Our results show that the results of evaluation with simulated users transfer to real

users as well. In our simulated evaluation (see chapter 7), we found that the Jargon-

Adapt policy adapted to different users less than the Learned-DS policy. We found a

similar trend in the real user evaluation. The results in real user evaluation show that

the adaptation accuracy is much lower for Jargon-Adapt and much higher for Learned-

DS than the simulated evaluation. This is because, in simulated evaluation, all user

types were equally distributed, whereas in the real user evaluation, there were more

intermediates than novices and experts (see figure 8.5). We also find the same trend

in terms of dialogue time. The Learned-DS policy produced shorter dialogues than

the Jargon-adapt policy in both evaluations. However, there is a difference due to the

fact that the Internet setting-up task done by the participants in the real evaluation was

more difficult than the one used in the data collection from which the linear model for

calculating dialogue time in simulation was derived. Our results therefore reinforce
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such trends shown in previous studies that used reinforcement learning techniques for

dialogue policies (Henderson et al. (2005, 2008); Rieser (2008)).

8.8 Qualitative analysis

Table 8.3 presents samples of a dialogue between a real user (from the above eval-

uation) and the dialogue system using the Learned-DS policy. The dialogue shows

how the user asks for clarification on two jargon expressions: “broadband cable” and

“broadband filter” and how the system uses descriptive expressions to refer to broad-

band filter (“small white box..”) and broadband light (“second light..”) later on in the

dialogue. Please note that there are two kinds of adaptations here. The system clearly

knows that the user had asked for a clarification on the jargon expression “broadband

filter” and therefore does not know what it means. It therefore switches to its corre-

sponding descriptive expression. This is an example of local adaptation. On the other

hand, it also chose to use a descriptive expression for the broadband light. This is

due to the system’s ability to predict the user’s knowledge of the jargon expression

“broadband light” based on the information it already gathered about the user’s do-

main knowledge. This is an example of global adaptation. The system used jargon

for broadband filter in the first instance because it might not have had enough data for

predicting the user’s unknown domain knowledge. (See Appendix D for a transcript of

the full conversation).

While the Learned-DS system adapts well to its users globally, the Jargon-adapt

system adapts only locally. The Learned-DS strategy enabled the system to adapt

using the dependencies between knowledge concepts and different knowledge patterns

in users that it learned during the training phase. For instance, when the user asked

for clarification on “ethernet cable”, it used descriptive expressions for domain objects

like ethernet light and ethernet socket on the Livebox. Such adaptation across referents

enabled the Learned-DS system to score better than the Jargon-adapt strategy. On the

other hand, the Jargon-adapt policy only adapts after learning completely about the

user’s knowledge and does not predict at all. Therefore, it performs worse than the

Learned-DS policy.
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Sys: Do you have a broadband cable in the package?

Usr: Which one is the broadband cable?

Sys: The broadband cable is the thin black cable with colourless plastic ends.

Usr: Yes.

..................

Sys: Do you have a broadband filter in the package?

Usr: Which one is the broadband filter?

Sys: The broadband filter is the small white box that

has two sockets and an phone plug.

Usr: Yes.

..................

Sys: Please plug the small white box that has two sockets and a phone plug
into the phone socket on the wall.

Usr: Yes.

...................

Sys: What is the status of the second light from the left on the Livebox?

Usr: Its flashing red.

...................

Table 8.3: Learned-DS policy - Dialogue with real user
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8.9 Conclusion

In this chapter, we presented the evaluation framework that we employed to evaluate

the two high-scoring strategies from the simulated user evaluation (see chapter 7). We

presented the results of the evaluation of the strategies with real users, which showed

that the Learned-DS strategy that was learned using the reinforcement learning frame-

work and the data-driven user simulations adapted better to real users than the hand-

coded Jargon-adapt strategy. We also showed that adaptation to the user’s domain

knowledge results in improved task success (99.47% for a learned policy vs 84.7%

for a hand-coded adaptive policy) and reduced dialogue duration (11%). We also pre-

sented an analysis of the results that showed why the Learned-DS strategy scored well

on objective parameters like dialogue time, accuracy of adaptation and task completion

rates, and why most of the user satisfaction scores on the two different strategies are

inconclusive.



Chapter 9

Conclusion

User-adaptive spoken dialogue systems have been an important research topic for re-

searchers in Human-Computer Interaction. There are several aspects of users that an

interactive system can adapt to. Some of these aspects include users’ speech patterns,

goals, preferences, system skills, environmental constraints, domain knowledge level,

etc (Komatani and Okuno (2010); Chu-Carroll and Nickerson (2000a); Jokinen (2006);

Komatani et al. (2005); Rogers et al. (2000); Carenini and Moore (2001); Walker et al.

(2004); Stoia et al. (2006); Mairesse and Walker (2010); McKeown et al. (1993)). As

seen in Chapter 1, adapting to users’ domain knowledge levels has been shown to be

very important in technical domains where users talk to systems for technical assis-

tance, troubleshooting advice, etc. This involves adapting at various levels including

the choice of referring expressions, and complexity of instructions. In this thesis we fo-

cussed on adaptation to users’ domain knowledge at the level of referring expressions.

Our objective was to build a dialogue system that can adapt to the user’s capability to

identify the domain objects using jargon expressions.

Another important dimension to this problem is how much information systems

must have about users’ domain knowledge in order to adapt to them. Many interactive

systems in general and referring expression generation and natural language genera-

tion systems in particular have used static user models and therefore assumed that the

systems are informed of the domain knowledge of the user beforehand (Dale (1989a);

Reiter and Dale (1992, 1995); McKeown et al. (1993)). In contrast, this thesis ad-

dressed the idea of dynamic user modelling in which the system has no information

as to what the user’s domain knowledge levels are before the conversation starts (Rich

(1979); Chin (1989); Cawsey (1993); Carberry et al. (1999)). Therefore, the challenge

was to identify the domain expertise of the user dynamically during the conversation
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and adapt to him/her at the same time. This introduced an interesting trade-off be-

tween when to sense the user’s knowledge and when to adapt to the user provided the

modalities for sensing and adaptation are the same.

Several solutions to these problems have been proposed. Some systems used hand-

coded rules to seek information about the user’s domain knowledge (Rich (1979); Chin

(1989); Cawsey (1993)). They used hand-coded rules that can infer unknown facts

about the user’s domain knowledge from what is known already. Other rules informed

the system when and how to seek information about the state of user’s knowledge

when inference cannot be made using existing information. However, such approaches

require considerable domain expertise during system development. Others used super-

vised learning approaches to address the problem of predicting the user’s knowledge

(Akiba and Tanaka (1994); Jameson (1995)). However, this did not automatically ad-

dress the problem of when and how to sense information when prediction is impossi-

ble or unreliable. Besides, supervised learning approaches need large amounts of data

to learn from. In contrast to these approaches, this thesis presented an alternative ap-

proach that addresses the twin problem of seeking information and predicting the user’s

knowledge for adaptation, using only small amounts of WoZ data. Our system learns

to choose between two kinds of referring expressions: jargon and descriptive to refer

to the domain entities. It learns to sense the initial state of user’s domain knowledge

and adapt to it during the course of the conversation.

9.1 Thesis contributions

RL framework for UM policy learning: This thesis presented a reinforcement learn-

ing framework that learns to model users with different levels of domain knowledge

and adapt to them dynamically. We present the user modelling problem as a Markov

Decision Process and use reinforcement learning algorithms to learn user modelling

policies that adapt to users whose domain knowledge is not already known to the sys-

tem. The agent learns to sense information from users unobtrusively and adapt to them.

The agent also learns to find a beneficial trade-off between sensing and adaptation.

Novel user simulation models: This thesis also presented three-step pipeline mod-

els for user simulation that simulate the dialogue behaviour of real users in technical

conversations. To our knowledge, this is the first user simulation that has been built

to train dialogue systems to adapt at the level of referring expressions because unlike
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the previous user simulation models, these models simulate a variety of users with dif-

ferent levels of domain expertise and are sensitive to the referring expressions used

by systems. We have also shown that in comparison to other types of models such as

bigram, trigram an equal probabilty models, the three-step models are better at simu-

lating real users’ dialogue behaviour. We also showed that the policies learned using

our simulation models adapted better than hand-coded policies and policies learned

using a hand-coded simulation model.

Learning from limited resources: We showed that it is possible to populate statistical

user simulation models using a small corpus of non-adaptive dialogues (i.e., a system

that used only one kind of referring expression - jargon or descriptive throughout the

conversation) and knowledge profiles of different user types, which can then be used

for learning adaptive policies. This saves us from hand-coding an adaptive NLG mod-

ule or employing a domain expert to play the role of an adaptive NLG module in a

dialogue system used for data collection.

Learning a UM policy and evaluation with simulated users: This thesis experimen-

tally verified the reinforcement learning framework in which we trained and evaluated

a user modelling policy for adaptive referring expression generation on both simu-

lated and real users. Using a data-driven three-step pipeline user simulation model, we

trained the learning agent to learn a UM policy. The learned policy modelled unknown

users by dynamically seeking information about their domain expertise and adapted to

them by predicting unknown facts about their domain knowledge. We evaluated the

learned policy with simulated users and showed that the learned policy adapted more

accurately than other adaptive hand-coded policies. We also showed that the learned

policy was able to generalise to user types it never interacted with during its training

phase.

Performance of the learned policy on real users: In this study, we also evaluated the

same learned policy with real users in a wizarded dialogue system setup in a real tech-

nical environment and showed that the results from simulated user evaluation transfer

to real user evaluation as well. In fact, the learned policy adapted significantly better

to users than a high-scoring hand-coded adaptive policy. We showed that the learned

policy produced more adaptation (approx. 20%) than the Jargon-adapt policy. This is

because the learned policy senses continuously and adapts to users taking into account
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the stochastic nature of their dialogue behaviour.

Effect of adaptation on real users: We also showed that using the results of our

evaluation and correlation between adaptation accuracy, task completion rate and dia-

logue time that by improving adaptation accuracy at the level of user’s knowledge of

referring expression generations, their task success rates can be increased and overall

dialogue time can be reduced.

9.2 Future applications

The framework in this study can be used in future task oriented spoken dialogue sys-

tems where adaptation to user’s domain knowledge is important. The following are a

few examples to show how widely this method can be applied:

1. An assistive health care system which interacts with patients to educate and assist

them in taking care of themselves (Bickmore and Giorgino (2004)). Such a

system should be able to adapt to patients’ initial level of knowledge and in

subsequent dialogues change its language according to the improvement in the

patient’s understanding and improving knowledge of the domain.

2. A city navigation system that interacts with locals and tourists (Rogers et al.

(2000)). Such a system should use proper names and descriptions of landmarks

appropriately to different users to guide them around the city.

3. A technical support system helping expert and novice users (Boye (2007)). Sys-

tems like the one described in this thesis can be employed in different technical

domains like troubleshooting laptops, user manuals for complex gadgets, etc.

They should use referring expressions appropriate to the user’s expertise.

4. An Ambient Intelligence Environment in a public space (e.g., museum) interact-

ing with visitors (Lopez-Cozar et al. (2005)). Such systems can guide visitors

and describe the exhibits in a language that the user would appreciate and under-

stand.

5. A tutorial dialogue system that tutors students or trains personnel in industry

(Dzikovska et al. (2007)). Such systems should adapt to the needs of the learner

in terms of their levels of understanding and expertise.
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In all of the above examples, the task domain may contain a considerable number

of domain entities that are addressed differently by different groups of people. In such

cases, it is ideal that the system adapts to different users by dynamically modelling

them during the conversation. However, one should also pay attention to the possible

misunderstanding between the partners during such adaptation. For example, patients

and doctors may use the same jargon words but may mean different things. Several

studies have found that patients misunderstand medical terminology (Spiro and Hei-

drich (1983); Thompson and Pledger (1993); Lerner et al. (2000); Koch-Weser et al.

(2009)). Such misunderstanding is also related to ethnicity. For instance, non-native

English speakers have been shown to have low understanding of the term “uncon-

scious” (Cooke et al. (2000)).

Therefore, the use of jargon words cannot be assumed to imply accurate knowl-

edge of concepts. Users may have misconceptions which will affect the task supported

by the dialogue. In this study, the user’s knowledge of jargon expressions is sim-

ply represented using overlay models. However, in future, we will aim to represent

users’ misconceptions as well. Even in this study, users have misconceptions. This is

reflected in their task completion rates. When users misunderstand the jargon expres-

sions, their task completion is less successful. Imagine such scenarios in a system that

provides health advice to patients. We certainly should pay attention to the fact that

sometimes users have misconceptions about the domain entities and that their mere

use of jargon expressions should not be construed as accurate knowledge of domain

entities and concepts. Similarly, it is reported that patients do not question or ask for

clarifications on unknown jargon expressions when doctors use them unintroduced in

their conversation with their patients (Koch-Weser et al. (2009)). In this study, we have

assumed that the user is able to identify the referent when he doesn’t question the use

of a jargon expression. However, in light of these studies in health care, we cannot

always make such assumptions. Therefore user responses and use of jargon should

be carefully observed and the uncertainty in their understanding should be modelled.

Advanced modelling techniques that such as Partially Observable Markov Decision

Processes could be used to model such uncertainties (Lemon et al. (2010)).

9.3 Future research directions

We believe that we have taken a first step in using reinforcement learning to drive user

modelling in dialogue contexts. However, we believe that this framework could be ex-
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tended systematically to address other issues in the development of dialogue systems.

The following are some open questions that can be studied in future:

9.3.1 Levels of adaptation

Can this framework be extended to other levels of adaptation in dialogue systems?

As discussed previously in chapter 1, a truly adaptive system must be able to adapt

to the user’s expertise at different levels of dialogue management and utterance gen-

eration. We believe that this framework can be extended systematically to dialogue

management decisions such as complexity of instructions (Dale (1989a,b)), need for

preparatory propositions (Arts (2004)), repetitions, and to utterance generation deci-

sions like content selection and text structure besides referring expressions (Dethlefs

and Cuayahuitl (2010)).

Such extensions require advanced user modelling of users’ domain knowledge as

against just their domain communication knowledge (Rambow (1990); Kittredge et al.

(1991)). Users’ capabilities of reasoning with domain entities have to be represented

using a richer representation of the user’s domain knowledge like first-order logic

(Boutilier (2001); Kersting and De Raedt (2003); van Otterlo (2004)). User simula-

tion models for such tasks will need additional steps in the pipeline to review the con-

cepts presented by the system. Finally, such extensions require dialogue data that can

be used to train simulation models that can respond to instructions at different levels

of complexity. We hypothesize that parameters like dialogue time would be reduced

greatly if the system adapted at all levels to the expertise of the users. Similarly, user

simulation models could be extended to include retention models for the user’s mem-

ory defining how long users retain new technical information. This would be useful

in longer dialogue tasks where the same technical information needs to be recalled in

different dialogue episodes.

9.3.2 Adapting to other user traits

Can this framework be used to learn adaptive policies to handle other user traits such

as goals, personality, and emotions? As discussed in chapter 2, systems adapt to sev-

eral user traits such as goals, preferences, system skills, and personality in addition

to domain knowledge. The application of our reinforcement learning framework can

be examined in dynamic adaptation to other user traits. This might require extend-

ing the user simulation models to include important features like the user’s frustration,
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certainty in user response, goals, preferences, etc. (Tetreault and Litman (2006)).

9.3.3 Lexical alignment due to priming

Can this framework be extended to include lexical alignment through priming as well

as adaptation? Lexical alignment in dialogue due to priming is the dialogue behaviour

of using the same referring expressions or other lexical items as the interlocutor in the

same or similar contexts (Pickering and Garrod (2004); Brennan (1991); Stenchikova

and Stent (2007); Branigan et al. (2010)). This is also called entrainment (Porzel et al.

(2006); Buschmeier et al. (2010)). For instance, in a conversation, an interlocutor who

uses “chair” to refer to an object following the use of the same word by his partner,

although he himself used the word “deckchair” before for the same referent, is said

to be lexically aligning with his partner due to priming. In this thesis, we do not

study this behaviour. We hypothesize that our framework could be extended to learn

REG policies that could align lexically due to priming. Lexical alignment in dialogue

systems have been studied previously by Isard et al. (2006); Buschmeier et al. (2010).

In addition to adapting to user’s expertise, the system could be trained to also lexically

entrain to the user’s vocabulary in dialogue tasks in which users are more vocal (i.e.,

produce more language) than the one used in this thesis. Entraining capabilities such

as these could affect common ground between interlocutors and therefore affect task

success and user satisfaction. Although we aimed to study entrainment in this work,

the data collected from real users showed that in instruction giving-following tasks,

users are less vocal than they usually are in information seeking tasks. Therefore we

were unable to study entrainment behaviour in the current setup.

9.3.4 Addressing the attribute-selection problem

Can this framework be extended to lower-level decision making in referring expression

generation? Recently, van Deemter (2009b,a); Golland et al. (2010) propose the ap-

plication of ideas from Decision theory and Game theory to the problem of generating

referring expressions in which the choices are made during generation based on their

utility. Our framework presented a new approach to choose referring expressions. We

consider the choice problem that we presented in this thesis as a problem of choosing

type-labels (i.e., categories) in referring expression generation in technical domains

for users with different domain knowledge levels. This, we believe, can be extended to

the attribute selection problem (Dale (1989a); Reiter and Dale (1997)) where attributes
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like color, size and relational attributes are selected in a reward (or utility) driven man-

ner. The choice of attributes dynamically change with the choice of the type label.

Deciding to use specific technical type-labels reduces the number of attributes for dis-

ambiguation of the target entity among its distractors. Therefore it is an interesting

problem to extend the reinforcement learning framework to not only identify the type

label but also the attributes whose relevance is dynamically changing. It would also be

interesting to learn policies that will select fewer attributes for subsequent references

of domain entities compared to those used in the initial references.

9.3.5 Using POMDP models

Can we increase adaptation by considering the user’s domain knowledge as partially

observable rather than fully observable and account for such uncertain observations?

Partially Observable MDPs (POMDP) could be used to model the user’s expertise in

the dialogue state, instead of using completely observable Markov Decision Processes

(MDP) (Young (2006); Williams et al. (2006)). In an MDP environment, the agent

is assumed to be able to accurately observe its environment/user. However, in reality,

such accurate observations are hardly possible due to speech recognition errors, noisy

environments and so on. Hence the agent must maintain a probability distribution

over all possible states based on the observations. Recently, the use of POMDP mod-

els have been studied for the purpose of dialogue management. Williams and Young

(2007) used POMDP models for troubleshooting tasks like fixing a broken broadband

connection. However, POMDPs have not yet been used for learning NLG or user mod-

elling policies. Using POMDPs for learning user modelling policies for NLG will let

the dialogue system work directly with the uncertainty of the knowledge of the user’s

expertise.

9.3.6 Comparison to resource intensive approaches

Would the reinforcement learning approach perform better than resource intensive ap-

proaches such as hand-coded rules and supervised learning methods? In this thesis,

we have specifically addressed the issue of scarcity of resources that are available to

develop adaptive dialogue systems and have therefore not built systems either using

domain expertise to hand-code rules or using supervised learning for comparison. Our

approach bootstraps from dialogues between real users and non-adaptive dialogue sys-

tems that were easy to build. Although we showed that learned policies are better at
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adaptation than some hand-coded policies, we do not claim that the policies learned

using our reinforcement learning framework would adapt better than policies learned

from human experts using supervised learning or rule-based policies hand-coded by

domain and conversational experts. We also found that the Stereotype strategy that uses

user profiles from the data collected was as good as the Jargon-adapt policy. Therefore,

it would be interesting to compare its performance with real users to that of the learned

policies in the future.

Earlier, Rieser (2008) showed that policies learned using reinforcement learning

were better than the ones learned using supervised learning. One should also note that

it is difficult to find domain experts who may also be comfortable adapting to users

with different domain knowledge levels (Hinds (1999)). However to study this in the

context of technical domain conversations, we require either a large corpus of adaptive

dialogues between domain experts and a variety of users or an expert to hand-code

adaptation rules for different configurations of the user model state. Nevertheless, we

believe that our approach (being less resource intensive) is a worthy tool to add to the

“toolkit” for dialogue system development.

9.4 Summary

To summarize, in this thesis, we have addressed the problem of dynamic user mod-

elling at the level of referring expression generation in the context of technical support

dialogues in resource scarce conditions. We formulated the user modelling problem as

a Markov Decision Process and presented a reinforcement learning framework to learn

user modelling policies for adaptive referring expression generation. We presented a

data collection framework which we used to collect dialogue data and other essential

information from real users. We designed and trained novel user simulation models

that simulate the dialogue and physical behaviour of real users in situated technical

tasks such as setting up a broadband Internet connection. Our novel design allowed us

to train the user simulation using non-adaptive dialogues and then use those models in

adaptive dialogues. We showed how to train a user modelling policy using data-driven

user simulation models and test the learned policy with simulated users. We also eval-

uated the learned policy with real users and showed that learned policies performed

better than some hand-coded adaptive policies. Our study also shows that by adapt-

ing to users’ domain knowledge by choosing appropriate referring expressions, it is

possible to increase task completion rate and decrease dialogue duration.
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We believe that this novel approach can be applied for learning adaptive policies

at many levels including dialogue management, text structuring, and attribute selec-

tion. We also hope that it would be applied to adapt to other user traits such as goals,

preferences, and emotions in addition to user’s domain knowledge levels in the fu-

ture. Although we are not sure if our approach produces better adaptive strategies than

supervised or hand-coded strategies by domain experts, we believe that our approach

to developing adaptive REG modules in particular and adaptive dialogue systems in

general is a welcome addition to the domain of dialogue systems development.



Appendix A

Instructions for setting up home

broadband connection

The instructions for setting up home broadband connection as given by the dialogue

system to users is divided into three episodes. These instructions are modified from

the original version on the Orange (France Telecom) website.

1. Welcome/introduction

2. Check for necessary domain objects

3. Setting up instructions

In the following instructions, all domain objects are referred to using jargon ex-

pressions. However, they were modified according to the NLG/REG strategy used by

the system.

A.1 Welcome message

First, the system introduces itself to the user. The following message is sent (in audio)

to the user.

“Hello. Welcome to the technical support system. I am going to help you to set up

your broadband connection. Please feel free to ask questions if you are not sure. Are

you ready?”

155
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A.2 Check for domain objects

The following 5 steps are sent to the users to check if they have all the domain objects

required to carry out the instructions in the following episode.

1. Do you have a Livebox in the package?

2. Do you have a broadband cable in the package?

3. Do you have an ethernet cable in the package?

4. Do you have a power adaptor in the package?

5. Do you have a broadband filter in the package?

A.3 Setting up instructions

In the last episode, the system gives the users instructions to set up the connections.

Some of these instructions request users to observe the status of the domain objects.

Instead of presenting them as declarative statements they were posed as questions. For

example, instead of stating “Now, the broadband light will turn on”, we ask “What is

the status of the broadband light” to make the conversation more interactive.

1. Disconnect the phone from the phone socket on the wall.

2. Take the power adaptor.

3. Plug the power adaptor into the two-pin mains power socket.

4. Connect the cable of the power adaptor firmly into the power socket of the Live-

box. Observe the lights on the front panel of the Livebox.

5. Did all the lights on the front panel of the Livebox turn on and go off after a few

seconds?

6. Place the Livebox with the Orange label facing up. What is the status of the

power light on the Livebox?

7. Please plug one end of the broadband cable into the ADSL socket on the Live-

box.

8. Take the broadband filter.
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9. Plug the other end of the broadband cable into the broadband filter.

10. Plug the broadband filter into the phone socket on the wall.

11. What is the status of the broadband light on the Livebox?

12. Plug one end of the ethernet cable into the ethernet socket on the Livebox.

13. Connect the other end of the ethernet cable into the ethernet socket on the back

panel of your computer.

14. What is the status of the ethernet light on the Livebox?

15. Connect the phone cable into the broadband filter that you plugged into the phone

socket on the wall.

16. We have now finished setting up your broadband Internet connection.

A.4 Comments

Please note that since we did not have a live phone-line based Internet connection to

further extend the task, the dialogue task was limited to the physical task of setting up

connections between the various components.

Please also note that the above instructions were very simple (activity-wise) and

that all users can easily carry them out when provided the appropriate referring expres-

sions. However, some users might be able to understand more complex instructions.

For example, a complex instruction like “Connect the Livebox to the computer using

the ethernet cable.” has been simplified into two steps (steps 12 and 13). The choice

between using a simple and complex instruction is a dialogue management problem

and has not been explored in this thesis. However, such a task would also require user

modelling and adaptation techniques like the ones used in this thesis.
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Data Collection Questionnaire

B.1 Instructions

You have applied for a broadband connection and have just received a package from

the Internet company. Your task is to talk to the automated computer system designed

to help the customers to setup the broadband Internet connection using the package.

The computer will give you instructions to setup the connection. Please follow them

carefully.

IMPORTANT: Please do not dismantle the setup after the conversation.

NOTE: Please speak naturally as you would normally speak to a human operator

1. Wear the headset in front of you.

2. Say Im ready when you are ready.

The computer will greet you with a welcome message when you are ready. If you have

any questions, please ask the experimenter now.

B.2 Questionnaire - User background

Profession:

Department/School :

Course:

Gender: Male / Female

Age group (please tick):

(a)below 20 (b)21-30 (c)31-40 (d)41-50 (e)above 50 years

1. How long do you use computers per day? hours
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2. I use the Internet (Tick all that apply)

(a) At work (b) At home (c) At Internet cafes (d) not at all

3. My estimated daily usage of the Internet is

(a) less than 1 hr (b) 1 hr to 3 hrs (c) 3 hrs and more (d) none

Please tick:

4 a. Have you set-up an internet connection at home on your own? Yes / No

4 b. If yes, is it from Orange? Yes / No

4 c. If yes, have you ever called technical support on the phone for help? Yes / No

5 a. Have you ever talked to automated customer support systems (with computers

instead of humans operators) Yes / No

5 b. If yes, did you find the conversation easy? Yes / No

5 c. If yes, did you fix your problem using the automated system? Yes / No

B.3 Questionnaire - User feedback

In the following statements, we want you to rate the different features of the software.

Please circle the one reaction that best describes the extent to which you agree or

disagree with each statement.

1. I am confident that I have completed the task successfully.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

2. The quality of the computer’s voice was very good.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

3. It was very easy to identify the objects the computer was referring to.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

4. I learned useful new technical terms during the conversation

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

5. The information in the instructions was neither simple nor complex and just about
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right.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

6. The whole conversation was of the right length.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

7. Overall, the conversation was very easy.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

8. I would definitely use a similar speech system (for different tasks) again in future.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

B.4 Recognition test

IMPORTANT: To be filled by the experimenter

Call out each of the following referring expressions to the participant. Mark if he cor-

rectly or incorrectly recognises the domain object.

a. Livebox [ ] Correct [ ] Incorrect

b. Power adaptor [ ] Correct [ ] Incorrect

c. Phone socket Correct [ ] Correct [ ] Incorrect

d. Broadband filter [ ] Correct [ ] Incorrect

e. Broadband cable [ ] Correct [ ] Incorrect

f. Ethernet cable [ ] Correct [ ] Incorrect

g. Livebox power socket [ ] Correct [ ] Incorrect

h. Livebox Ethernet socket [ ] Correct [ ] Incorrect

i. Livebox ADSL socket [ ] Correct [ ] Incorrect

j. Livebox power light [ ] Correct [ ] Incorrect

k. Livebox broadband light [ ] Correct [ ] Incorrect

l. Livebox Ethernet light [ ] Correct [ ] Incorrect

m. PC Ethernet socket [ ] Correct [ ] Incorrect
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B.5 Task Completion Chart

IMPORTANT: To be filled by the experimenter

Observe the broadband setup made by the participant and record if he/she has done the

following.

1. Phone cable unplugged from the phone socket (yes / no)

2. Power adaptor plugged in to mains (yes / no)

3. Power adaptor cable plugged in to Livebox power socket (yes / no)

4. Broadband cable plugged in to the Livebox ADSL socket (yes / no)

5. Broadband cable plugged in to the filter in the phone socket (yes / no)

6. Broadband filter plugged in to the phone socket (yes / no)

7. Ethernet cable plugged in to the Livebox Ethernet Socket (yes / no)

8. Ethernet cable plugged in to the PC Ethernet Socket (yes / no)

9. Phone cable plugged in to the filter in the phone socket (yes / no)

10. Other filter unused (yes / no)



Appendix C

Evaluation Questionnaire

C.1 Instructions

You have applied for a broadband connection and have just received a package from

the Internet company. Your task is to talk to the automated computer system designed

to help the customers to setup the broadband Internet connection using the package.

The computer will give you instructions to setup the connection. Please follow them

carefully.

IMPORTANT: Please do not dismantle the setup after the conversation.

NOTE: Please speak naturally as you would normally speak to a human operator

1. Wear the headset in front of you.

2. Say Im ready when you are ready.

The computer will greet you with a welcome message when you are ready. If you have

any questions, please ask the experimenter now.

C.2 Questionnaire - User background

Profession:

Department/School :

Course:

Gender: Male / Female

Age group (please tick):

(a)below 20 (b)21-30 (c)31-40 (d)41-50 (e)above 50 years

1. How long do you use computers per day? hours
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2. I use the Internet (Tick all that apply)

(a) At work (b) At home (c) At Internet cafes (d) not at all

3. My estimated daily usage of the Internet is

(a) less than 1 hr (b) 1 hr to 3 hrs (c) 3 hrs and more (d) none

Please tick:

4 a. Have you set-up an internet connection at home on your own? Yes / No

4 b. If yes, is it from Orange? Yes / No

4 c. If yes, have you ever called technical support on the phone for help? Yes / No

5 a. Have you ever talked to automated customer support systems (with computers

instead of humans operators) Yes / No

5 b. If yes, did you find the conversation easy? Yes / No

5 c. If yes, did you fix your problem using the automated system? Yes / No

C.3 Questionnaire - User feedback

In the following statements, we want you to rate the different features of the software.

Please circle the one reaction that best describes the extent to which you agree or

disagree with each statement.

1. The quality of the computer’s voice was very good.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

2. I had to ask too many questions because I did not understand the words used by the

system to refer to the different objects.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

3. The computer adapted very well to my knowledge and used the right words to help

me identify the objects.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

4. It was very easy to identify the objects the computer was referring to.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree
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5. The conversation took the right amount of time.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

6. I learned useful new technical terms during the conversation

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

7. Overall, the conversation was very easy.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

8. I would definitely use a similar speech system (for different tasks) again in future.

[ ]Strongly disagree [ ]Disagree [ ]Agree [ ]Strongly Agree

C.4 Recognition test

IMPORTANT: To be filled by the experimenter

Call out each of the following referring expressions to the participant. Mark if he cor-

rectly or incorrectly recognises the domain object.

a. Livebox [ ] Correct [ ] Incorrect

b. Power adaptor [ ] Correct [ ] Incorrect

c. Phone socket Correct [ ] Correct [ ] Incorrect

d. Broadband filter [ ] Correct [ ] Incorrect

e. Broadband cable [ ] Correct [ ] Incorrect

f. Ethernet cable [ ] Correct [ ] Incorrect

g. Livebox power socket [ ] Correct [ ] Incorrect

h. Livebox Ethernet socket [ ] Correct [ ] Incorrect

i. Livebox ADSL socket [ ] Correct [ ] Incorrect

j. Livebox power light [ ] Correct [ ] Incorrect

k. Livebox broadband light [ ] Correct [ ] Incorrect

l. Livebox Ethernet light [ ] Correct [ ] Incorrect

m. PC Ethernet socket [ ] Correct [ ] Incorrect
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C.5 Task Completion Chart

IMPORTANT: To be filled by the experimenter

Observe the broadband setup made by the participant and record if he/she has done the

following.

1. Phone cable unplugged from the phone socket (yes / no)

2. Power adaptor plugged in to mains (yes / no)

3. Power adaptor cable plugged in to Livebox power socket (yes / no)

4. Broadband cable plugged in to the Livebox ADSL socket (yes / no)

5. Broadband cable plugged in to the filter in the phone socket (yes / no)

6. Broadband filter plugged in to the phone socket (yes / no)

7. Ethernet cable plugged in to the Livebox Ethernet Socket (yes / no)

8. Ethernet cable plugged in to the PC Ethernet Socket (yes / no)

9. Phone cable plugged in to the filter in the phone socket (yes / no)

10. Other filter unused (yes / no)
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Example dialogues

D.1 Example dialogue between the system using Learned-

DS policy and a real user

Sys: Are you ready?

Usr: Yes.

Sys: Do you have a livebox in the package?

Usr: Yes.

Sys: Do you have a broadband cable in the package?

Usr: Which one is the broadband cable?

Sys: The broadband cable is the thin black cable with colourless plastic ends.

Usr: Yes.

Sys: Do you have an ethernet cable in the package?

Usr: Yes.

Sys: Do you have a power adaptor in the package?

Usr: Yes.

Sys: Do you have a broadband filter in the package?

Usr: Which one is the broadband filter?

Sys: The broadband filter is the small white box that has two sockets

and an phone plug.

Usr: Yes.

Sys: Good. We seem to have everything we need. Now follow

my instructions to set up the connections. Tell me when you are ready.

Usr: I am ready.
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Sys: Please disconnect the phone from the phone socket on the wall.

Usr: Done.

Sys: Please take the power adaptor.

Usr: Yes.

Sys: Please plug the power adaptor into the two-pin mains power socket.

Usr: Yes.

Sys: Please connect the cable of the power adaptor firmly into the power socket
of the livebox. Observe the lights on the front panel of the livebox.

Usr: Yes.

Sys: Did all the lights on the front panel of the livebox turn on and go off

after a few seconds.

Usr: Yes.

Sys: Place the livebox with the Orange label facing up. What is the status

of the power light on the livebox?

Usr: Its flashing red.

Sys: Please plug one end of the thin black cable with colourless plastic ends
into the ADSL socket on the livebox.

Usr: Yes.

Sys: Take the small white box that has two sockets and a phone plug.

Usr: Yes.

Sys: Please plug the other end of the thin black cable with colourless
plastic ends into the small white box that has two sockets and a phone plug.

Usr: Yes.

Sys: Please plug the small white box that has two sockets and a phone plug
into the phone socket on the wall.

Usr: Yes.

Sys: What is the status of the second light from the left on the livebox?

Usr: Its flashing red.

Sys: Please plug one end of the ethernet cable into the square socket
with red stripe on the livebox.

Usr: Yes.

Sys: Please connect the other end of the ethernet cable into the

ethernet socket on the back panel of your computer.

Usr: Yes.

Sys: What is the status of the fourth light from the left on the livebox?
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Usr: Its red.

Sys: Please connect the phone cable into the small white box that has two sockets
and a phone plug that you plugged into the phone socket on the wall.

Usr: Ok.

Sys: Good. We have now finished setting up your broadband Internet connection.

D.2 Example dialogue between the system using Jargon-

adapt policy and a real user

Sys: Are you ready?

Usr: Yes.

Sys: Do you have a livebox in the package?

Usr: Yes.

Sys: Do you have a broadband cable in the package?

Usr: Which one is the broadband cable?

Sys: The broadband cable is the thin black cable with colourless plastic ends.

Usr: Yes.

Sys: Do you have an ethernet cable in the package?

Usr: Yes.

Sys: Do you have a power adaptor in the package?

Usr: Yes.

Sys: Do you have a broadband filter in the package?

Usr: Which one is the broadband filter?

Sys: The broadband filter is the small white box that

has two sockets and an phone plug.

Usr: Yes.

Sys: Good. We seem to have everything we need. Now follow

my instructions to set up the connections. Tell me when you are ready.

Usr: I am ready.

Sys: Please disconnect the phone from the phone socket on the wall.

Usr: Done.

Sys: Please take the power adaptor.

Usr: Yes.
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Sys: Please plug the power adaptor into the two-pin mains power socket.

Usr: Yes.

Sys: Please connect the cable of the power adaptor firmly into the power socket
of the livebox. Observe the lights on the front panel of the livebox.

Usr: Yes.

Sys: Did all the lights on the front panel of the livebox turn on and go off

after a few seconds.

Usr: Yes.

Sys: Place the livebox with the Orange label facing up. What is the status

of the power light on the livebox?

Usr: Its flashing red.

Sys: Please plug one end of the thin black cable with colourless plastic ends
into the ADSL socket on the livebox.

Usr: Yes.

Sys: Take the small white box that has two sockets and a phone plug.

Usr: Yes.

Sys: Please plug the other end of the thin black cable with colourless
plastic ends into the small white box that has two sockets and a phone plug.

Usr: Yes.

Sys: Please plug the small white box that has two sockets and a phone plug
into the phone socket on the wall.

Usr: Yes.

Sys: What is the status of the broadband light on the livebox?

Usr: Its flashing red.

Sys: Please plug one end of the ethernet cable into the ethernet socket
on the livebox.

Usr: Yes.

Sys: Please connect the other end of the ethernet cable into the

ethernet socket on the back panel of your computer.

Usr: Yes.

Sys: What is the status of the ethernet light on the livebox?

Usr: Its red.

Sys: Please connect the phone cable into the small white box that has two sockets
and a phone plug that you plugged into the phone socket on the wall.

Usr: Ok.
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Sys: Good. We have now finished setting up your broadband Internet connection.
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