

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Analysis of Low-Level Implementations

of Cryptographic Protocols

Andriana Evgenia Gkaniatsou

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2018

Abstract

This thesis examines the vulnerabilities due to low-level implementation deficien-

cies of otherwise secure communication protocols in smart-cards. Smart-cards are con-

sidered to be one of the most secure, tamper-resistant, and trusted devices for imple-

menting confidential operations, such as authentication, key management, encryption

and decryption for financial, communication, security and data management purposes.

The self-containment of smart-cards makes them resistant to attacks as they do not

depend on potentially vulnerable external resources. As such, smart-cards are often

incorporated in formally-verified protocols that require strong security of the crypto-

graphic computations. Such a setting consists of a smart-card which is responsible

for the execution of sensitive operations, and an Application Programming Interface

(API) which implements a particular protocol. For the smart-card to execute any kind

of operation there exists a confidential low-level communication with the API, respon-

sible for carrying out the protocol specifications and requests. This communication is

kept secret on purpose by some vendors, under the assumption that hiding implementa-

tion details enhances the system’s security. The work presented in this thesis analyses

such low-level protocol implementations in smart-cards, especially those whose im-

plementation details are deliberately kept secret. In particular, the thesis consists of

a thorough analysis of the implementation of PKCS#11 and Bitcoin smart-cards with

respect to the low-level communication layer. Our hypothesis is that by focusing on

reverse-engineering the low-level implementation of the communication protocols in

a disciplined and generic way, one can discover new vulnerabilities and open new at-

tack vectors that are not possible when looking at the highest levels of implementation,

thereby compromising the security guarantees of the smart-cards.

We present REPROVE, a system that automatically reverse-engineers the low-level

communication of PKCS#11 smart-cards, deduces the card’s functionalities and trans-

lates PKCS#11 cryptographic functions into communication steps. REPROVE deals

with both standard-conforming and proprietary implementations, and does not require

access to the card. We use REPROVE to reverse-engineer seven commercially avail-

able smart-cards. Moreover, we conduct a security analysis of the obtained models and

expose a set of vulnerabilities which would have otherwise been unknown.

To the best of our knowledge, REPROVE is the first system to address proprietary

implementations and the only system that maps cryptographic functions to communi-

cation steps and on-card operations. To that end, we showcase REPROVE’s usefulness

iii

to a security ecosystem by integrating it with an existing tool to extract meaningful

state-machines of the card’s implementations. To conduct a security analysis of the

results we obtained, we define a threat model that addresses low-level PKCS#11 im-

plementations. Our analysis indicates a series of implementation errors that leave the

cards vulnerable to attacks. To that end, we showcase how the discovered vulnerabili-

ties can be exploited by presenting practical attacks.

The results we obtained from the PKCS#11 smart-card analysis showed that propri-

etary implementations commonly hide erroneous behaviours. To test the assumption

that the same practice is also adopted by other protocols, we further examine the low-

level implementation of the only available smart-card based Bitcoin wallets, LEDGER.

We extract the different protocols that the LEDGER wallets implement and conduct a

through analysis. Our results indicate a set of vulnerabilities that expose the wallets

as well as the processed transactions to multiple threats. To that end, we present how

we successfully mounted attacks on the LEDGER wallets that lead to the loss of the

wallet’s ownership and consequently loss of the funds. We address the lack of well-

defined security properties that Bitcoin wallets should conform to by introducing a

general threat model. We further use that threat model to propose a lightweight fix that

can be adopted by other, not necessarily smart-card-based, wallets.

iv

Acknowledgements

I was was never good at putting my thoughts on paper but I will try to do it now, as

there is a set of people that I should thank for supporting me during my PhD life. Of

course the list is not exhaustive and I should mention that those that I missed are not

forgotten.

I would like to thank my advisors Prof. Alan Bundy and Dr Fiona McNeill for try-

ing their best to understand my work although they come from a completely different

background, their support and help throughout these years. I would also like to thank

Dr. Graham Steel for his helpful insights on my work. Besides my advisors, I am very

grateful to Dr Myrto Arapinis who has helped me, provided fruitful advice, supported

and encouraged me both in my work but also as a friend. Myrto you have been won-

derful, thank you for everything. I would also like to thank Prof. Aggelos Kiayias, the

Dream group and the security group for their useful feedback.

Of course I owe a huge thank you to my parents and especially to my mother.

Despite all the difficulties, she has been giving me her unconditional love and support

all these years. She has always stood by my side and encouraged me. She visited me

in Edinburgh during stressed periods just to keep me sane, despite many obstacles. I

cannot express how much I owe to her. Thank you for everything mum, I could not

have done it without your support.

I would like to express my deepest gratitude to my dearest friends, both in Greece

and in Edinburgh, for keeping me sane all these years, for their love, for their sup-

port, for the great laughs and for all these wonderful moments that made these years

unforgettable. Eirini P., Vasiliki K., Konstantina D., Zisis P., Evangelia P., Mary I.,

Elena T., Gelly A., and Eleni K., thank you for everything. A special thanks to Eleni

Papathomaidou for being my inspiration and making me love Computer Science.

Lastly but most importantly, I owe my deepest gratitude to the person who sup-

ported me the most, my husband Prof. Stratis Viglas. He has been by my side since the

first moment of this journey, advised me, encouraged me and made me see the bright

side of things. He has spent numerous hours listening to my work problems trying to

understand my work and provide fruitful feedback, and even more hours listening to

me complaining. He has been my mentor, my advisor, my friend, my family. Stratis

from the bottom of my heart, thank you for everything. I could not have done this

without you.

Finally, I would like to to thank EPSRC for funding my work.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the chapters that appear in this thesis have been published in the following

papers:

• Gkaniatsou, A., Arapinis, M., and Kiayias, A. (2017) Low-Level Attacks in Bit-

coin Wallets. In International Security Conference, pages: 233-253.

• Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi, R., and Bozzato. C.

(2015) Getting to know your Card: Reverse-Engineering the Smart-Card Appli-

cation Protocol Data Unit. In Annual Computer Security Applications Confer-

ence, pages: 441-450.

(Andriana Evgenia Gkaniatsou)

vi

Table of Contents

1 Motivation 1

2 Preliminaries 11
2.1 Cryptography . 11

2.1.1 Algorithms . 12

2.1.2 Keys . 14

2.2 Smart-Cards . 14

2.3 Security Protocols . 20

2.3.1 Attacks . 22

2.3.2 Smart-Card Attacks . 25

I PKCS#11 Smart-cards 27

3 PKCS#11: Introduction 29

4 Background 35
4.1 The PKCS#11 Standard . 35

4.1.1 Objects and Attributes . 36

4.1.2 Functions . 38

4.1.3 PKCS#11 Attacks . 39

4.2 Prolog . 41

4.3 Related Work . 43

5 REPROVE: Automatically Reverse-engineering the Application Protocol
Data Layer 47
5.1 ISO 7816 Logical Requirements . 48

5.2 Modelling the Application Protocol Data Unit Layer 50

5.2.1 Commands . 50

vii

5.2.2 Card Operations . 54

5.2.3 PKCS#11 Models . 57

5.3 REPROVE Reverse-Engineering Algorithm 58

5.4 REPROVE Evaluation . 62

5.4.1 Evaluation Setting . 62

5.4.2 Results . 64

5.5 Summary . 68

6 Security Analysis on the Reversed-Engineered Smart-cards 69

6.1 PKCS#11: Threat Modelling for PKCS#11 Security Tokens 70

6.1.1 Threat-Modelling Techniques 72

6.1.2 Attack Scenarios . 74

6.2 Manual Analysis of the Reversed-Engineered Models 81

6.3 Automated Extraction of State-Machines 83

6.4 Manual APDU-Layer Attacks . 89

6.5 Summary . 93

II Bitcoin Smart-cards 97

7 Introduction 99

8 Background 103

8.1 Bitcoin Wallets . 108

8.2 Hierarchical Deterministic Wallet 111

8.3 Related Work . 113

9 Extracted Ledger Wallet Protocols 117

9.1 Dongle Alive Protocol . 120

9.2 Login Protocol . 122

9.3 Wallet Setup Protocol . 123

9.4 Payment Protocol . 124

10 Attacks on the Ledger Wallets 127

10.1 General Threat Model for the Bitcoin Wallets 127

10.2 Summary of Attacks . 128

10.2.1 Direct Wallet Attacks . 128

viii

10.2.2 Transaction Attacks . 131

10.2.3 Privacy Attacks . 133

10.3 Technical Details of the Attacks . 133

10.4 Generality of the Attacks . 138

10.5 Proposed Lightweight Fixes of the Protocols 139

10.6 Summary . 141

11 Conclusion 143

A PKCS#11: REPROVE Background Knowledge 147

B PKCS#11: Extracted State-Machines 165
B.1 Cardos V4.3, V4.4, V5 State-Machines 165

B.2 Safesite TCP IS V1 . 170

Bibliography 175

ix

Chapter 1

Motivation

Smart-cards, also called integrated circuit cards (ICC), are cryptographic hardware

with an embedded circuit that offer an hermetic and isolated environment for data stor-

age and management. Due to their physical characteristics they are often considered

to be tamper-resistant: the intended functionality of the hardware and the data that it

manages is protected from malicious use and cannot be tampered with. Smart-cards

enable the generation, storage, transformation, cryptographic manipulation, and pro-

tection of sensitive data. They are therefore primarily used as a proven mechanism to

offer security services by a vast array of applications.

The first integrated circuit cards were patented back in 1968 by Jurgen Dethloff

and Helmut Grotrupp, but it was not until 1974 that the first smart-card was developed

by the French inventor Roland Moreno, also known as ’the Father of the Microchip’.

Since their early development years, smart-cards have been widely adopted and have

been used in many diverse sectors. For instance, in 1987 Turkey launched smart-card

based driver licences; the first electronic prepaid card was introduced in Denmark in

1992; while 1994 marked the first official specification of smart-cards for bank usage

by the consortium of Europay, MasterCard, and Visa, also known as EMV.

Ever since, the design and capabilities of smart-cards have branched and evolved

to offer low-cost solutions for complex scenarios encompassing single- and multi-

application smart-cards. The applications of smart-cards are very diverse and spread

from simple user authentication, to data access protection, to financial processing.

They are increasingly adopted for many commercial applications, such us identifi-

cation cards, telecommunication, access control systems, banking, to name but a few

examples. Indeed, they have become such a tightly integrated part of our everyday

lives as to be considered commodity. All the example applications we listed incorpo-

1

2 Chapter 1. Motivation

rate smart-cards to generate, store, process, and/or perform operations over data of a

sensitive nature.

Nowadays, smart-cards are becoming the de-facto standard of assured security and

their uses range from the highly commercial to the inherently private and user-centric.

For example, CERN, the European Organisation for Nuclear Research, incorporates

smart-cards for securing access to their mission-critical systems; while Facebook users

may employ smart-cards to authenticate their access to the social networking service.

But the use of smart-cards has far exceeded data access and user authentication. The

current emerging trend is to incorporate smart cards into data processing by means of

enabling them to execute sensitive operations. Protocols that offer increased security

coverage are being implemented solely on smart-cards that not only store and provide

access to static data, but also manipulate data in a tamper-proof way.

The increased adoption and adaptability of smart-cards creates the need for specify-

ing universal mechanisms and security requirements that all smart-card should adhere

to. Doing so creates a base-line that all developers can safely assume the existence

of, and thus build their applications without needing to design custom smart-cards.

That way, improvements in smart-card technology can benefit all applications as they

all have a common interface. Creating that base-line, however, is far from a trivial

exercise as smart-cards themselves have unique characteristics, the most important of

which are their limited memory and computing power as well as their reliance on an

external device, the smart-card reader, to ensure their operation. Any application incor-

porating smart-cards has therefore two tiers (the smart-card and its reader) and requires

some careful thinking in order to be efficiently specified and correctly used.

Securing a system from potential threats has long been a central aspect in dealing

with sensitive data. Computational security has emerged as a disciplined way to enable

many mechanisms that can be proven beneficial when designing and implementing a

system managing sensitive data. Work on computational security is very diverse and

includes the development of threat modelling techniques to capture attacks to data;

to reasoners where the particular aspects of a system are abstracted and studied at a

higher level to prove its correctness or identify its vulnerabilities; to standardisations

that define the criteria under which particular protocols are considered secure.

Although such general mechanisms have become common practice and are easily

accessible to the interested parties, it is common for commercial vendors to follow

a "security through obscurity approach": they provide security by eschewing standard

conformance and hiding the underlying implementation details. Such practice provides

3

some levels of security as it requires from the adversary to spend a substantial amount

of time to reverse-engineer and analyse the implementation in order to attack it. How-

ever, such practice has been repeatedly criticised by security experts and researchers

as it cannot not guarantee a secure setting.

A common perception is that by proving the correctness and the security of the

high-level protocol that a smart-card implements is enough of a proof that the same

properties transcend to the application and use-case of the smart-card and indeed the

entire system that makes use of the protocol. In other words, proving that the high-level

code that implements a data exchange protocol between a smart-card and its reader

satisfies certain security constraints, has been traditionally considered equivalent to

proving that all layers below that implementation of the protocol are also secure. The

reasoning is that all lower levels are abstracted by the implementation and are thus

not exposed. This thesis challenges that assumption and shows that by studying the

potential low-level implementations of security protocols in a systematic way by means

of reverse-engineering we can identify new vulnerabilities and open new attack vectors

that cannot be considered by verifying the high-level protocols alone.

Assessing the security of smart-cards in practice. The way smart-cards are de-

signed and intended to be used implies a dependency on the card communicating with

a host device, commonly referred to as a reader. That communication is responsible

for initialising any kind of operation and data transfer to/from the card. Any opera-

tions on the card dictate the communication between card and reader be deliberately

confidential. The central notion of work on smart-card security is ensuring that this

communication remains secure under potential threats. If for any reason this com-

munication is vulnerable and can be compromised the whole purpose of smart-cards

being tamper-resistant environment is defeated. There is a gap in literature when it

comes to having well defined security requirements with regard to the communication

layer. This shortcoming, which results in the inability for one to reason about the se-

curity properties of the smart-card at a higher-level coupled with the common practice

of proprietary implementations often results in flaws that render the implementation

itself and the card by association prone to attacks. Verifying complex implementa-

tions, especially when these are treated as a black box, is a particularly difficult task

as it requires increasing the level of abstraction in order to be able to reason about the

implementation; the development of well-defined models that map to the higher level

of abstraction; a deep understanding of the potential risks involved; and standardised

ways of translating both (a) instances of different implementations to the higher level

4 Chapter 1. Motivation

of abstraction and (b) security risks to verifiable scenarios over the abstraction.

Though smart-cards aim to increase the security of a system by providing an iso-

lated and protected environment, they are also easily recognisable and prominent sys-

tem components, which makes them ideal targets to malicious users. Low-level smart-

card communication was traditionally somewhat overlooked by vendors, which lead

to flaws and vulnerabilities that were soon discovered by security researchers. Cur-

rently, the literature contains a multitude of attacks and vulnerabilities: from tools

that allow ’sniffing’ the communication (i.e., actively observing and intercepting the

communication trace) and on-the-fly manipulating the content of the communication

(e.g., [Choudary, 2010, De Koning Gans and de Ruiter, 2012])); to various low-level

attacks that depend on the kind of smart-card and application domain being targeted

(e.g., [Murdoch et al., 2010b, Barbu et al., 2012]). The way an attack is formulated is

heavily customised to the use-case, e.g., Personal Identification Number (PIN) or au-

thentication data sniffing, requires a different angle of attack than accessing sensitive

keys, or executing unauthorized operations, or cloning the card. At any rate, identify-

ing and materialising potential threats requires a good understanding of the underlying

implementation itself in addition to the high-level protocol being implemented.

Use of Security Application Programming Interfaces. Security Application Pro-

gramming Interfaces (APIs) have the objective of securing access to sensitive resources.

The design of such APIs is critical, as they must ensure the secure creation, deletion,

import and export of a key from the device. Also, they are responsible for permitting

the use of these keys for encryption, decryption, digital signing, and authentication so

that if a device operates in a hostile environment and is exposed to malicious software

the card’s functionality remains secure.

Whenever an API call is made, there is a deliberate communication between the

API and the connected smart-card defined by the Application Data Protocol Unit

(APDU). The API call is translated into smart-card commands which are sent via the

low-level communication layer. Currently, there does not exist a standardised way

for implementing that translation. The design and implementation of that translation

depends entirely on the vendors, along with the semantics of the communication.

In this thesis we tackle the problems that arise when the overlooked low-level API

implementations do not adhere to the security requirements placed by the higher-level

protocol. In particular, we study how security APIs translate high-level protocol spec-

ifications into low-level smart-card communication and the vulnerabilities that such a

translation exposes. As we will show, it is more often than not that this communica-

5

tion opens new attack vectors. To make our work concrete we extract and analyse the

underlying implementations of two currently dominant protocols: the RSA PKCS#11

standard and the Bitcoin protocol.

Targeting real-world applications through the low-level communication. RSA

PKCS#11, defines the API for a wide variety of cryptographic devices such as smart-

cards, is the most commonly used cryptographic standard. It specifies an ANSI C API

that defines mechanisms for accessing sensitive data and implementing cryptographic

functions. It aims to isolate an application from the details of the cryptographic device

and provide interoperability between devices from different manufacturers.

RSA PKCS#11 API-related attacks were first introduced in [D. Longley, 1992] in

the early 1980’s, followed by the exposure of the first RSA PKCS#11 vulnerabilities

in [Clulow, 2003]. Ever since, there has been considerable work on developing for-

mal techniques for analysing and verifying the correctness of the implementation of

RSA PKCS#11. Although the idea of mounting attacks on the security API by exploit-

ing weaknesses on the hardware interface has been introduced since the early 2000’s

[Bond and Anderson, 2001], little attention has been paid to the low-level implemen-

tation of RSA PKCS#11.

Smart-card implementations from different vendors are substantially different and

it is common practice to even define proprietary semantics. To conduct a security anal-

ysis on that layer, however, it is necessary to understand the semantics of the exchanged

messages. To that end, we present a fully automated solution for reverse-engineering

the low-level implementation and, by doing so, gaining a full insight into it. We have

implemented REPROVE, an automated tool that is implementation-independent and

does not require access to the card nor to the API. Given a communication trace, RE-

PROVE infers the semantics of the communication, deduces the card’s functionalities,

and provides a mapping between the communication layer and PKCS#11 functions.

Such tool can be used both by the developers of smart-cards to reason about their

implementation, and also by the clients who wish to discover whether their card is se-

cure. We used REPROVE to reverse-engineer seven commercially available PKCS#11

smart-cards and obtain their abstract models. We then leveraged these models to con-

duct a thorough analysis and identify hidden security flaws that otherwise could not

be detected. Thereby, we showcase how the low-level communication layer can be

exploited to mount PKCS#11 attacks.

Another application of smart-cards that we have looked at is Bitcoin, the most

widely adopted digital currency as of June 2017. Bitcoin is a cryptocurrency and a

6 Chapter 1. Motivation

payment system based on public-key cryptography. The main principles of Bitcoin

are: 1. an account is identified by a public key, and 2. to prove ownership of funds,

a user must digitally sign a payment with the corresponding private key. Therefore, a

salient aspect of Bitcoin is key management: loss of the private keys effectively means

loss of funds; and exposure of the public keys conveys privacy loss.

Even though Bitcoin is a digital currency, it is still a financial protocol with real-

world implications. As such, and similarly to every financial protocol, there has been

a great interest into studying, verifying, attacking, and subsequently proposing solu-

tions for Bitcoin’s underlying protocol. To that end, it is highly recommended that

the user’s keys are stored offline. Currently an emerging trend is incorporating crypto-

graphic hardware due to it’s tamper-resistant nature, for managing the account’s keys

and digitally signing the payments.

While using expensive hardware for the purpose of building a digital wallet is con-

sidered to provide security guarantees, often the low-level implementation introduces

new attack vectors. In this work we bring into attention how the overlooked low-level

protocols that are used to implement supposedly safe hardware wallets can be heavily

exploited to mount attacks on the Bitcoin protocol. Our work addresses the implemen-

tation of the Ledger Wallets, the only wallets that incorporate smart-cards. We conduct

a thorough analysis of the Ledger Wallet communication protocol and show how to

successfully attack it in practice. We address the lack of well-defined security prop-

erties that Bitcoin wallets should conform to by introducing a general threat model.

We further use that threat model to propose a lightweight fix that can be adopted by

different technologies.

Contributions and roadmap. In this thesis we address the security properties of

the low-level implementations of smart-cards. Our work focuses on two scenarios:

PKCS#11 and Bitcoin smart-cards. Apart from the similar nature (i.e., key manage-

ment and execution of sensitive operations), PKCS#11 are quite diverse in comparison

to Bitcoin smart-cards. PKCS#11 smart-cards incorporate all major characteristics de-

fined by the ISO/IEC 7816 standard. For example, apart from executing cryptographic

functions, they also perform storage-related operations e.g., read, write, update etc.. In

contrast, the operations that Bitcoin smart-cards can perform are bound to their appli-

cation and are only the following two: generation of keys and digital signatures using

these keys. Such cards are not designed to manage data objects nor to implement any

other operation. The differences between the two categories are substantial, making it

infeasible to apply the same methods. As such, our work and consequently this thesis

7

is divided accordingly into parts.

In Chapter 2 we present the necessary general and common preliminaries across

the two strands of our work. We introduce the cryptography terminology that we will

use throughout the thesis. We then provide the necessary details on ISO/IEC 7816

and show the discrepancies between the inter-industry and proprietary definitions of

the commands covered by the standard, and how these discrepancies aggravate the

problem of reverse-engineering communication traces. We then further delve into each

specific application scenario.

Part One: PKCS#11 smart-cards. The first part of the thesis presents our work

on the security analysis of PKCS#11 smart-cards. We discuss the implementation of

REPROVE, an automated tool for reverse-engineering smart-cards. Subsequently, we

define a threat model for the APDU layer and use that threat model to guide the security

analysis of the reverse-engineered smart-cards. Finally we show how REPROVE can

be used in concert with other tools that extract state-machines of card implementations

to form a larger ecosystem for detailed and diverse security analysis. In more detail,

the content of each chapter is as follows.

• Chapter 4 provides the necessary context for our work.

• Chapter 5 provides the details of REPROVE’s implementation details and the

chosen modelling techniques. A major challenge of reverse-engineering pro-

prietary implementations is tackling and navigating a potentially huge search

space. We show that REPROVE manages to narrow-down the search space and

extract a meaningful model. We evaluate REPROVE’s accuracy on the following

seven commercially available smart-cards: Aladdin (now Gemalto) eToken Pro,

Athena ASEKey USB, Siemens (now Atos) CardOS V4.3, Atos CardOS V4.4,

Atos CardOS V5, RSA SecurID, Safesite TCP ISV1.

• Chapter 6 presents our security analysis of the reverse-engineered smart-cards.

To do so, we first introduce a threat model for the APDU layer of PKCS#11

smart-cards. We incorporate the STRIDE [Swiderski and Snyder, 2004] tech-

nique to identify potential threat scenarios. We then reduce the attack space

by identifying patterns and commonalities between the attacks. The result is a

set of the vulnerable data that, if compromised, can lead to a series of mount-

able attacks. Using these attacks as a guide, we manually analyse the reverse-

engineered cards and expose a set of threats. To showcase the importance of

8 Chapter 1. Motivation

obtaining the semantics of the communication and REPROVE’s flexibility to co-

operate with other systems, we present an ecosystem for extracting meaningful

state-machines of the cards’ implementations. Finally, and as a case study, we

present the feasibility of mounting attacks through the APDU layer by presenting

practical attacks on the ATOS Cardos V5 smart-card.

Part Two: Bitcoin Smart-cards. Ledger wallets being the only available smart-card

wallets eliminates the need to produce an automated system for reverse-engineering

their implementations: we can afford to come up with a focused study. Our work

targets: the Nano wallet, which is a USB smart-card, and the Nano S wallet, which is a

USB Human Interface Device (HID) smart-card with a screen. We extract and analyse

the Ledger wallets, with respect to their APDU implementations. We define a threat

model for Bitcoin hardware wallets and show how the Ledger wallets are prone to a

series of attacks. We then mount these attacks and prove their feasibility. To rectify

the shortcomings of Ledger wallets we propose a lightweight and easily adoptable fix

to preserve the privacy and ensure the integrity of the transactions. In more detail:

• Chapter 8 provides the necessary background and context of our work. We give

an overview on Bitcoin and its specifications, and present the current state-of-

the-art on Bitcoin hardware wallets and related work. We show how the under-

lying protocol implementation, through hardware-independent in theory, it is is

very similar for most wallets in practice.

• Chapter 9 contains our analysis of the extracted Ledger wallet protocols. The

Ledger APDU implementation suggest a series of vulnerabilities that allow at-

tacks both on the wallet itself, as well on the Bitcoin transactions.

• Chapter 10 is our empirical proof that the Ledger wallets fail to be secure. We

present a series of practical attacks that we have successfully mounted on the

Ledger wallets. Our experiments suggested that the wallets fail to secure wallet

content or the exchanged information in the context of a transaction: we have

managed to tamper with both at will. Moreover, we show how we can success-

fully disable all the security mechanisms that the Ledger wallet incorporates,

through the APDU layer. In doing so, we discover and present serious imple-

mentation flaws that allow malicious access to the account’s master key, and

encryption keys. Based on the threats we have identified, as well as the attacks

9

we have successfully mounted, we suggest a lightweight fix for securing the

wallets.

Finally, Chapter 11 summarises our contributions and provides an outlook on the

problems in the smart-card area that our work identifies.

Chapter 2

Preliminaries

In this chapter we provide the necessary preliminaries of this thesis. Section 2.1 de-

scribes some basic concepts of cryptography with respect to the terminology used

throughout this thesis. Our work investigates contact microprocessor smart-cards,

which are defined by the ISO 7816 standard. Section 2.2 provides the necessary back-

ground on the smart-card communication according to ISO 7816. Section 2.3 discusses

the general principles of security protocols and the known attacks.

2.1 Cryptography

One of the main purposes of smart-cards is the practical use of existing cryptographic

procedures. Cryptographic algorithms are categorised depending on the keys they use

for encryption and decryption, into symmetric-key and asymmetric-key.

Symmetric algorithms use the same confidential key, known as the secret key, for

both encryption and decryption. Symmetric algorithms are commonly used for en-

crypting large volumes of data, as they are in principle designed to be fast. Asym-

metric algorithms, also known as a public-key, use two mathematically related but not

identical keys; a non-confidential key, also known as the public key, and a confiden-

tial key, also known as the private key. Although each public key is related with the

corresponding private key, it is computationally infeasible to calculate the private key

from the public one. Asymmetric algorithms are commonly used for encrypting small

blocks of data as they are slower and require more complex hardware, compared to

symmetric ones. Digital signing is another application of asymmetric algorithms.

The upper bound of security that each algorithm provides depends on the size of

the used key, given that the security of a system is broken if the key is compromised,

11

12 Chapter 2. Preliminaries

as given an n−bits key, the search space of the possible values of that key is 2n. When

defining the security of an algorithm with respect to the size of the key, the complexity

of the algorithm is also taken into consideration. Depending on the algorithm used and

its complexity, different sizes of keys are used for the same level of security.

The three basic objectives of cryptography is to provide confidentiality, integrity

and authenticity of data through different mechanisms. We shall describe some basic

concepts of cryptography based on these four objectives.

2.1.1 Algorithms

Confidentiality. Confidentiality refers to the concept of ensuring that only autho-

rised entities have access to particular data. Confidentiality is achieved through en-

cryption: a plaintext message m is encoded under a pseudo-random key sk to produce

a ciphertext. The process by which the ciphertext is converted back to plaintext, under

the decryption key, is called decryption. This mechanism ensures that only the owner

of the decryption key can access m. We denote encryption as enc(m,sk)→ {m}sk,

where m is the plaintext message, sk is the encryption key and {m}sk is the result-

ing ciphertext, and decryption as dec({m}sk,k)→ m where k is the decryption key

(depending on the scheme, sk and k can be equal).

Symmetric Encryption. A plaintext message m is encoded by mangling it with

the secret key k, enc(m,k)→ {m}k. Decryption of the ciphertext {m}k requires the

knowledge of the secret key, dec({m}k,k)→ m.

Encryption usually takes a fixed size of input and produces a fixed size of output

and is categorised into two schemes, block ciphers and stream ciphers. Block ciphers

encrypt a plaintext in blocks of n-bits and then join the encrypted blocks to make the

ciphertext. Stream ciphers encrypt a single bit of the plaintext at a time by producing a

pseudo-random sequence of bits (keystream) which is then used to encrypt each single

digit of the plaintext with the corresponding digit of the keystream.

Some of the most commonly used symmetric algorithms are the Triple Data En-

cryption Standard (3DES) which uses three individual 56-bit keys, Blowfish which has

a variable key length from 32 to 448 bits, Twofish which uses 128-, 192- or 256-bit

keys, and Advanced Encryption Standard (AES) which uses 128-, 192- or 256-bit keys.

Asymmetric Encryption. A plaintext message m is encoded by mangling it with the

public key pk, enc(m,pk)→{m}pk; the ciphertext {m}pk can only be decrypted by the

owner of the corresponding private key sk, dec({m}pk,sk)→ m.

2.1. Cryptography 13

Some of the most commonly used public-key algorithms are the Rivest-Shamir-

Adleman (RSA) algorithm which can be used for both encryption and digital signa-

tures and uses 1024- to 4096-bit keys; the Diffie-Hellman algorithm which is the most

widely used algorithm for key exchange (discussed in more detail in the following Sec-

tions) and has roughly the same key strength as RSA; the Elliptic Curve Cryptography

algorithms which are believed to be secure with keys twice the length of equivalent

strength symmetric key algorithms.

Integrity and Authenticity. Integrity refers to the concept of ensuring that data is

in its original representation i.e., it is accurate and unchanged. Authenticity refers to

ensuring that data comes from a genuine source. Different cryptographic algorithms

exist that ensure data integrity and authenticity, among them are cryptographic hashes,

Message authentication Codes and digital signatures.

Cryptographic hash function. Cryptographic hashing is an one-way function com-

monly used for integrity checking. Hash functions are not based on cryptographic

secrets, thus they eliminate the need of sharing secret keys. A hash function takes as

input a string of arbitrary length m and outputs a fixed length string, the message digest

or digest. The digest is usually sent along with m to the recipient, who will recompute

the hash of m and compared it to the one he received. The output is deterministic and

it is computationally infeasible to invert the function. A change of the input results

in a change of the output, thus hashes are commonly used in many applications for

integrity checking. Hashes can also be used in conjunction with other similar-purpose

mechanisms such as the Message Authentication Code (MAC) and the digital signa-

tures.

Message Authentication Code (MAC). MACing is based on symmetric-key cryp-

tography. The MAC algorithm takes as input a secret key k and a message m of arbi-

trary length, and outputs a MAC value m′, also known as a tag. Then, m′ is appended

to the m to form the final message mm′, m+m′→mm′. To validate the authenticity of

m, the receiver of mm′ must share the same key sk. The recipient recomputes a MAC

based on m and his own key and compares it with the received one, m′.

Digital signatures. The main principle of digital signatures is to prove ownership

of some data i.e., the data was created by the user that claims to have create it. Dig-

ital signatures are based on asymmetric-key cryptography and incorporate keypairs:

a private key and the corresponding public key. The signature algorithm, in its sim-

plest form, creates a one way hash of the plaintext message, and using a private key

14 Chapter 2. Preliminaries

sk, encrypts that hash. The ciphertext together with the plaintext message compose

the signature. We denote the signature process as sign(m,sk)→ σsk, where m is the

plaintext message, sk the private key and σsk the resulting signature. The validation

of the signature is done using the corresponding public key: the verification algorithm

calculates the hash of the plaintext, decrypts the ciphertext included in the signature

using the public key and compares the two hashes.

2.1.2 Keys

Keys may have different duration on their usage: they can be designated for long-term

usage e.g., a private key for encryption, or short-term usage where the key is destroyed

after a designated period e.g., a private session key. Keys are managed by a dedicated

system which is responsible for their generation, storage, usage, exchange, deletion

and replacement. Such management systems also ensure that keys are used correctly

by assigning them types, depending on the function they are designated to. In principle,

a key should not be used for a different function other than the one of its type. For

example, a key being a private signature key defines that this key should only be used

for signatures and for no other operations. This policy protects the security of the keys

in case that an operation has been compromised. For example, assume a system that

uses the same key for signatures and encryption. If the encryption system is weak and

the adversary is able to extract the key, then the signature system is also compromised.

2.2 Smart-Cards

Smart-cards are categorised into memory cards, which simply store data and micropro-

cessor cards, which can perform operations over the data in their memory. They are

also categorised depending on the type of their interface, into contact and contactless.

Contact smart-cards require physical contact with a reader, while contactless have an

embedded antenna which allows communication without physical contact. The work

presented in this thesis investigates contact microprocessor cards also known as In-

tegrated Circuits Cards (ICC). ICC have an embedded microcontroller with internal

memory or a memory chip alone.

Although smart-cards are mainly intended for performing cryptographic compu-

tations, their applications can be quite diverse. Smart-cards are commonly used for

data storage purposes e.g., health cards and medical insurance cards, for identification

2.2. Smart-Cards 15

Figure 2.1: The contacts of a smart-card: VCC is the power, RST is the reset, CLK is

the clock signal, GND is the ground connector, VPP is the programming voltage and

I/O is the input/output connector.

purposes e.g., passports and national identification cards, for communication purposes

e.g., GSM and UMTS cards, for electronic payments e.g., credit, debit and Bitcoin

cards, and for processing cryptographic computations. Each smart-card has its own

operating system, which is responsible for implementing the standard/protocol of the

corresponding application. Apart from the cards that are instantiated to a specific ap-

plication, there are also programmable smart-cards that allow the user to develop and

load his own applications on the card. There are various development environments

and languages for the programmable smart-cards, with the most commonly used to be

the JavaCard, BasicCard and .NET cards. The fundamental characteristics of smart-

cards are specified in the ISO 7816 standard.

As defined in ISO 7816-2, smart-cards consist of five contacts from which they

communicate with the outside world: i) a contact dedicated to the power supply (VCC),

ii) a contact for resetting the communication (RST), iii) a contact that is used to supply

a clock, iv) a contact for powering the card (GND), v) a contact for providing bidi-

rectional half-duplex communication. A sixth contact, which was originally designed

for providing higher voltage for programming the card’s Electrically Erasable Pro-

grammable Read-only Memory Programming (EEPROM), is no longer used. Figure

2.1 depicts the location of the contacts on the card.

The communication with the smart-card can established through various ways. The

implementation of the communication messages i.e., how data is transmitted, and the

different methods to deal with communication disturbance are defined by the trans-

mission protocols. ISO 7816 defines 15 different transmission protocols, presented as

’T=’ plus a sequential number.

Our work addresses the communication defined by T=0, the most widely used

transmission protocol. T=0 was the first smart-card protocol to be standardised, de-

signed in the early years of smart-card technology. The purpose of this protocol is to

provide simplicity through minimum memory usage. The communication involves the

transmission of bytes and is defined by the Application Protocol Data Unit (APDU).

16 Chapter 2. Preliminaries

smart-cardreader

command

response

application

command response

function call

Figure 2.2: Smart-card communication.

APDU messages (defined by ISO 7816) specify the low-level communication be-

tween a smart-card and a smart-card reader. Whenever an application receives a func-

tion call, it translates that call to low-level communication messages. The messages are

transmitted to the card via the reader, and the card responds appropriately. The com-

munication is always initiated by the software via a command, in which the smart-card

always replies with a response. Figure 2.2 depicts that communication. The spec-

ification of the communication protocol is defined in a very detailed documentation

which comes in 15 parts [Iso.org, 1198, Iso.org, 2007, Iso.org, 2006, Iso.org, 2005f,

Iso.org, 2005g],

[Iso.org, 2005h, Iso.org, 2005i, Iso.org, 2005j, Iso.org, 2005k, Iso.org, 2005a], and

[Iso.org, 2005b, Iso.org, 2005c, Iso.org, 2005d, Iso.org, 2005e]. Each part defines a

differet aspect of the smart-card setting. In our work we address part 4, 8 and 9 which

specify the organisation of the card, security access, the commands for interchange,

and the commands for security operations and card management.

Command. Table 2.1 presents the structure of a command. A command consists of

a 4-byte compulsory header, the Cla, Ins and P1-P2 fields, and an optional variable in

length body, the fields Lc, D and Le.

Cla Ins P1-P2 Lc Data Field Le

Table 2.1: APDU command structure.

In more detail:

• Cla indicates the type of the command, i.e., whether it is inter-industry and com-

plies with ISO 7816, or proprietary.

• Ins indicates the specific command, eg., SELECT FILE.

2.2. Smart-Cards 17

• P1-P2 are the instruction parameters for the command, eg., offset to write into

to file to write data.

• Lc is the number of bytes of the Data Field.

• Data Field contains the data that is sent to the card.

• Le is the number of the expected (if any) response bytes.

ISO 7816 specifies the inter-industry command class (Cla) and Ins codes for all inter-

industry commands.

Response. A response, as shown in Table 2.2, consists of an optional variable in

length body, the field Data, and a compulsory 2-byte trailer, the field SW1-SW2 which

defines the card’s status code of the requested operation stated in the incoming com-

mand. The length of the response depends on the sent command (Le).

Response Data SW1-SW2

Table 2.2: APDU response.

Command-response data exchange. Depending on the initiated operations during

the communication, a command-response pair is categorised based on the exchanged

data:

• No data is transferred at all. That means that the body of the command message

is empty. (Table 2.3).

• Only the response contains data. That means that the body of the command is

the field Le. (Table 2.4).

• Only the command transfers data. That means that the body of the command is

the field and Lc and the Data Field (Table 2.5).

• Both the command and the response transfer data. That means that the command

follows the structure as in Table 2.6.

Cla Ins P1-P2

Table 2.3: No data transfer: APDU command structure.

18 Chapter 2. Preliminaries

Cla Ins P1-P2 Le

Table 2.4: Response data: APDU command structure.

Cla Ins P1-P2 Lc Data Field

Table 2.5: Command data: APDU command structure.

Cla Ins P1-P2 Lc Data Field Le

Table 2.6: Data in both directions: APDU command structure.

Example of inter-industry and proprietary commands. ISO 7816 specifies the inter-

industry command class for the Cla field, the allowable values of the Ins field and the

expected combinations of values for the P1, P2 and SW1, SW2 fields for all inter-industry

commands/responses.

Type Cla Ins P1 P2 Lc Data Le

inter-industry 00 84 00 00 00 00 08

proprietary 80 21 00 00 00 00 08

Table 2.7: Implementations of the get_challenge command.

An APDU implementation is defined according to ISO 7816 and can either be inter-

industry, where the command codings are defined by the standards; or proprietary,

where the developers define their own command codes. Table 2.7 presents an inter-

industry implementation of the get_challenge command and a possible proprietary one.

Each byte of the inter-industry command can be decoded, whereas the semantics of the

proprietary command is unknown. The inter-industry implementation has its Cla field

set to 00 as ISO 7816 defines, so, the remaining fields can be decoded. The proprietary

one has an unknown Cla code, so, it is not possible to determine the semantics of

the command using the ISO-based codings. REPROVE aims to infer such unknown

semantics.

File organisation and reference methods. According to ISO 7816, a smart-card

supports a tree-like file structure:

• Master File (MF) is the the root of the file tree.

• Dedicated Files (DF) host applications, groups of files, and data objects. A DF

2.2. Smart-Cards 19

is usually the parent of other files (immediately under this DF). The data that is

stored in a DF is a sequence of data objects encoded in TLV (tag, length, value).

• Elementary Files (EF) store data and cannot be parents of other files. An EF is

categorised to: (i) Internal EFs which store data used by the card for management

and control purposes. (ii) Working EFs which store data from the outside world

and are not interpreted by the card. The data that is stored in an EF can be

referenced as data units, as records or as data objects encoded in TLV depending

the supported structure: (i) Transparent structure: the file consists of a single

continuous sequence of data units. (ii) Record structure: the file consists of

a single continuous sequence of uniquely identified (via numbering) records.

(iii) TLV structure: the file consists of a set of data objects.

A file (DF, EF) can be referenced by its unique 2-byte identifier, or by also includ-

ing the whole path i.e., the identifiers of the parent files. If the file is EF it can also be

referenced by a short 5-bit identifier. Short identifiers must be referenced individually

as they cannot be included in paths.

Security Status. Security Status is the current state of the card after the completion

of:

• Answer to reset and protocol selection, and/or

• A single command or a sequence of commands performing authentication pro-

cedures, and/or

• The completion of a security procedure related to the identification of the in-

volved entities, if any. For example

– by providing the knowledge of a password, eg., verify command

– by providing the knowledge of a key, eg., get_challenge command

– by secure messaging, eg., message authentication.

Security Status is categorised into:

1. Global Security Status. It can be modified by the completion of an MF-related

authentication procedure e.g., entity authentication by a password or by a key

attached to a DF.

20 Chapter 2. Preliminaries

2. File Specific Security. It can be modified by the completion of a DF-related

procedure e.g., entity authentication by a password or by a key attached to a

specific DF.

3. Command Specific Status. This security status exists only during the execution

of a command involving authentication using secure messaging.

Security attributes. ISO 7816 specifies the following security attributes:

1. Entity Authentication With Password: The card compares received data from the

outside world with internal data.

2. Entity Authentication With Key: The entity to be authenticated has to prove

the knowledge of a relevant key on an authentication procedure. For example

a get_challenge command followed by an external_authenticate com-

mand.

3. Data Authentication: Using secret or public internal data, the card checks data

received by the outside world. Another way is for the card to check secret inter-

nal data and compute a data element (cryptographic checksum or digital signa-

ture) and insert it to the data sent to the outside world.

4. Data Encipherment: Using secret internal data, the card enciphers a cryptogram

received in a data field, or using internal data (secret or public) the card computes

a cryptogram and inserts it in a data field, possibly together with other data.

2.3 Security Protocols

A Security Protocol is any protocol, abstract or concrete, that performs security-related

operations, usually by incorporating cryptographic mechanisms. The main purpose of

such protocols is to secure communication in untrusted channels. Security protocols

define how the different algorithms can be used in a secure way. Traditionally, security

protocols should satisfy the CIA triad, Confidentiality, Integrity and Availability:

i) Confidentiality: ensure that the exchanged messages remain secret to unautho-

rised entities; only the intended recipients should be able to access them.

ii) Integrity: ensure that any unauthorised changes to the exchanged messages can

be detected.

iii) Availability: ensure that the system is always available to its users.

2.3. Security Protocols 21

It is common that the CIA triad is extended to include the Authenticity, Non-

repudiation and Privacy properties:

iv) Authenticity: ensure that the identity of a message’s sender is the correct one.

iiv) Non-repudiation: associate actions to a unique individual within a system.

iiiv) Privacy: keep secret an individual’s private data and any part of the communi-

cation that can be associated with that individual.

In general, a security protocol should protect against attacks. Designing and imple-

menting a security protocol requires profiling the attacker i.e., identify the capabilities,

the goals and the strategies of the attacker, with respect to the protocol’s specifica-

tions. This process, named threat modelling, consists of a systematic analysis of the

attacker’s profile with respect to potential threats to the system. To defend against

threats, security protocols incorporate symmetric or asymmetric cryptographic mech-

anisms. As such, a central aspect of security protocols is the secure distribution of the

used keys.

The cryptographic scheme that is used by the protocol defines the need of a secret

key exchange. For example, asymmetric algorithms do not require a secret distribution

as the encryption is done with public key. The communicating parties circulate their

keys publicly and messages are always encrypted with the recipients key. Symmetric

schemes though, require that the communicating entities share the same secret for en-

cryption and decryption. Circulating a secret key among communicating entities in an

insecure channel rises the key exchange problem. In 1976 Whitfield Diffie and Martin

Hellman addressed that problem and proposed the so-called Diffie-Hellman protocol

[Diffie and Hellman, 1976] which is widely used until today. The Diffie-Hellman pro-

tocol defines how two entities can establish a secret shared key without revealing any

information. The protocol between two entities, A and B proceeds as it follows:

• A selects two random prime values g and p and sends them to B.

• B selects a random secret value a, computes ga mod p and sends the result to A.

• A selects a random secret value b, computes gb mod p and sends the result to B.

• B computes (gb mod p)a mod p which will be the value of the key that B pos-

sess.

• A computes (ga mod p)b mod p which will be the value of the key that A pos-

sess.

22 Chapter 2. Preliminaries

After that session both entities will conclude to the same computation value, since (gb

mod p)a mod p = gab and (ga mod p)b mod p = gba.

The protocol on its own however, does not address authentication i.e., there is no

way for the involved entities to prove their identities. A solution to that problem is by

involving the entities’ authentication to the key agreement process. The Password-

authenticated-key-exchange (PAKE) mechanism utilises an entity’s password to the

key generation. The principle idea is that the communicating parties share the same

password and can all compute the same key based on that password and the exchanged

information (as in Diffie-Hellman). This method guarantees that only authorised en-

tities can compute that key, under the assumption that the password is unknown to

the adversary. PAKE is widely adopted in commercial applications, as it allows the

computation of high entropy keys based on weak human memorable passwords.

According to ISO 7816 smart-cards support similar mechanisms, termed secure

messaging. The goal of secure messaging is to ensure the authenticity and the confi-

dentiality of the exchanged messages. Secure messaging is achieved by incorporating

security mechanisms that involve cryptographic algorithms (e.g., encryption, digital

signatures, certificates, MACing etc.) and shared keys between the API and the card.

Secure messaging is optional; the vendor decides whether it will be enforced by the im-

plementation, and how the API and the card establish the shared keys (e.g., hardcoded

from the manufacturer, or via a key exchange protocol).

2.3.1 Attacks

In this section we discuss threats at the protocol layer i.e., the communication between

the involved individuals. We do not tackle possible threats to the underlying cryptog-

raphy nor physical attacks on cryptographic hardware. Our purpose is not to describe

all possible attack scenarios; rather it is to provide an introduction to terms that are

used throughout this thesis.

A general categorisation of the attacks is into passive and active attacks. Passive

attacks do not interfere with a system; they aim at gaining information by observing

its behaviour. Active attacks interfere with the system; they consist of a set of un-

expected actions, or actions that originate from an illegitimate source. Attacks can

be further categorised based on the attack strategy into relay, man-in-the-middle and

replay attacks.

Relay attack. The attack in which the adversary forwards the communication be-

2.3. Security Protocols 23

tween two entities without them noticing it, is called relay. For example, consider

two communicating entities A and B and the adversary M. As presented in Figure 2.3,

the adversary captures the transmitted messages mB and mA, and then forwards them

unchanged to the original recipient respectively. A relay attack can also be active, in

which the adversary initiates the communication between the entities.

A M B

mBmB
mA mA

Figure 2.3: Example: the relay attack.

Man-in-the-Middle attack. When the adversary interferes with the communication

between two entities, the attack is called man-in-the-middle (MitM), and can be passive

or active.

In passive attacks, also called eavesdropping, the adversary only observes the com-

munication (but does not relay it). Such attacks usually aim at getting access to the

transmitted data (possibly private) and/or deducing the protocol’s properties. Figure

2.4 demonstrates an example, in which the adversary M eavesdrops the communica-

tion between the entities A and B.

A M B

mB
mA

Figure 2.4: Example: passive man-in-the-middle attack.

In active MitM attacks the adversary impersonates an involved entity and tampers

with the communication, by altering, blocking or injecting messages. The goal of the

24 Chapter 2. Preliminaries

adversary is to alter the outcome of the communication in a way which will provide

him with access to private data or allow him to control one of the involved entities. For

example, as Figure 2.5 demonstrates, when B sends the message mB to A, the adversary

changes it to mB′ and forwards it to A. The same tactic can be applied to A’s messages.

A M B

mBmB′
mA mA′

Figure 2.5: Example: active man-in-the-middle attack.

Replay attack. An attack in which the adversary resends exchanged messages from

an earlier round between legitimate entities is called replay. The goal of this attack

is to impersonate an entity and/or to cause a protocol error which will allow access

to private data or unauthorised control of an entity. Figure 2.6 demonstrates a replay

attack in which the adversary replays the message mB that B had previously sent to A.

Replay attacks can occur during: i) the same protocol round, i.e., while the com-

munication is still active between two entities, ii) a new protocol round, i.e., during

the execution of the protocol the adversary replays messages that appeared in an ear-

lier round, or initiates a new round by replaying the messages of a previous one, iii) a

different protocol, i.e., the adversary replays parts of a protocol into a different one.

A M B

mB
mA

mB
mA

Figure 2.6: Example: the replay attack.

2.3. Security Protocols 25

2.3.2 Smart-Card Attacks

Different approaches for attacking smart-cards exist, depending on whether physical

access to the card is required. The attacks can be categorised into physical and non-

physical.

Physical. The attacks that by using special equipment target the physical charac-

teristics of the card are called physical. They are categorised into invasive, semi-

invasive and non-invasive. Invasive attacks require the removal of the card’s micro-

processor and involve physically tampering with it. Usually this type of attack is

time-consuming and require expensive equipment. For example, the process may in-

volve the reverse-engineering of secure blocks to extract read only data from the card’s

ROM (Read Only Memory) [Nohl et al., 2008]. Another example would be placing

probes on the communication buses to read the exchanged data with an oscilloscope

[Anderson and Kuhn, 1996].

Semi-invasive attacks involve exposing the surface of the card’s chip but do not

require its modification to compromise its security. Semi-invasive attacks can use

lasers, electromagnetic fields and tools for ionizing radiation such as UV light, X-rays

to observe or inject faults e.g., [Quisquater and Samyde, 2001, Gandolfi et al., 2001,

Skorobogatov, 2005]. Non-invasive attacks target the power consumption of the card

and involve observing the information that can be leaked during the computation of a

function or injecting faults e.g., [Anderson and Kuhn, 1996, Kocher et al., 1999] and

[Mangard et al., 2008, Bar-El et al., 2004].

Non-physical. The attacks that do not target the physical aspects of a smart-card are

called non-physical or logical attacks, and compromise the card’s security by exploit-

ing possible implementation flaws at the software level. Logical attacks are less general

than the physical ones, as they exploit the specific application of the card i.e., the high-

level protocol incorporated by that card, and/or the card’s underlying implementation

protocol. Different attacks and methodologies have been proposed depending on the

capabilities of the card. We categorise the attacks into the ones that target the software

coded on the card and the ones that target the low-level communication.

Attacks on the card’s software are applicable to multi-application cards, i.e., Java

cards. A common practice is to exploit flaws of the loaded applet or the underlying

platform (Java). The attacks are achieved by sending malicious inputs or by loading a

malicious applet to the card, e.g., [Mostowski and Poll, 2008]

[Iguchi-Cartigny and Lanet, 2010, Barbu et al., 2011], or by overflowing the APDU

26 Chapter 2. Preliminaries

buffer e.g., [Barbu et al., 2012].

Attacks on the low-level communication require getting control of the layer that

enables it. This can be achieved by accessing the Personal Computer-Smart Card

(PC/SC) layer. PC/SC is a midleware library that manages the smart-card commu-

nication. There exist dedicated dedicated malware softwares that provide that control

in Linux machines e.g., [Ludovic, 2016]. In our work the experiments were conducted

on a Windows machine. The operating system has a dedicated library, winscard.dll, for

managing the low-level communication. To sniff the exchanged messages we used the

WinSCard APDU View Utility software 1 which interacts with winscard.dll and allows

sniffing and relaying the communication. Apart from software-based solutions, there

also exist hardware specifically designed to allow eavesdropping and tampering with

the communication, e.g., [Choudary, 2010, De Koning Gans and de Ruiter, 2012].

The attacks that target the low-level communication follow the same principles as

in the security protocol attacks (relay, man-in-the-middle, replay). The attack strat-

egy depends on the application of the card and the adversary’s goal. For example,

payment transactions have been proved to be vulnerable to man-in-the-middle attacks

in which the adversary tampers with the card’s response to get an incorrect PIN veri-

fied e.g., [Murdoch et al., 2010a, Anderson et al., 2006]. Another example is exploit-

ing insecure implementations of the communication, which allow unauthenticated ses-

sions to be initiated, and tampering with the data that is stored in the card. For ex-

ample, a set of PKCS#11 smart-cards have been proved vulnerable to such attacks

[Bozzato et al., 2016].

1Available at www.fernandes.org/apduview/ –last time accessed at June 2016.

Part I

PKCS#11 Smart-cards

27

Chapter 3

PKCS#11: Introduction

Analysing, attacking and fixing cryptographic standards used by smart-cards, such as

RSA PKCS#11, is an active area. As defined in PKCS#11 [RSA Security INC, 2004],

cryptography is only one aspect of security and the token is only one component in

a system; one must consider the environment the token operates in as well. Smart-

cards supposedly offer a tamper-resistant environment for protecting sensitive data, but

should also be designed so that this data remains secure. This is delegated to the com-

munication protocols, under the assumption that these protocols are secure. Proprietary

implementations create the sense of security as they hide the card’s code. A smart-card

operates as a black-box: only access to the card’s code may reveal the semantics of the

communication protocol and its internal operations. We propose reverse-engineering

the smart-card communication protocol, with respect to PKCS#11, to determine the

security of that implementation. We present REPROVE, which stands for Reverse En-

gineering of PROtocols for VErification: an automated tool based on first-order logic,

that infers the semantics of the communication, the on-card operations and their inter-

connection with PKCS#11. REPROVE is implementation- and function-independent,

as it deals with both inter-industry and proprietary implementations and does not re-

quire access to the card’s code.

An alternative to REPROVE’s automated reasoning is to manually reverse-engineer

the trace. This is not straightforward and is far from a quick exercise. It requires

access to the card’s library and its internal calls, whereas REPROVE does not. If one

tries to guess the meaning of the trace, without access to the card, then, given the

combinatorial nature of the problem, one will need to test a considerably large number

of combinations (e.g., in some of the cards we tested there are more than 540× 868

possible combinations—see also Chapter 5.4) which will require a long time to decode.

29

30 Chapter 3. PKCS#11: Introduction

PKCS#11

API

Function
call

low-level
communication

Smart-cardAPDU
layer

Figure 3.1: API and smart-card interaction when a PKCS#11 function is called.

REPROVE does this in a matter of milliseconds. An example of the required effort for

manual reverse-engineering is presented in [Bond et al., 2004] where the researchers

spent approximately 7 months to deduce the implementation the Chrysalis− ITS Luna

CA3 PKCS#11 token.

PKCS#11 smart-cards intend to provide additional security to a system by offerring

a secure and tamper-resistant environment for executing cryptographic functions and

managing the corresponding secret data. The whole setting is considered to be secure

under the assumption of a trusted path between the user and the card: by verifying his

credentials (PIN) the user proves his legitimacy, whilst the card is always considered

to be trusted, perform the requested operations and ensure that secret data is never

exposed. The cards are used in addition to a dedicated Application Programming

Interface (API) which allows the user to access the card’s operations. Any API call

(i.e., calling a specific cryptographic function) initiates a low-level communication

that manifests as a communication trace of API requests to the smart-card, as shown

in Figure 3.1.

REPROVE reverse-engineers the low-level implementation of the cryptographic

protocol by automatically aligning the byte-wise decomposition of the communication

trace to the expected PKCS#11 calls for specific types of functionality. This process is

helpful in multiple ways:

• It provides the means to test smart-card implementations and discover their se-

curity vulnerabilities.

• In the absence of detected vulnerabilities, it provides empirical evidence for the

security of the implementation.

• It can be used by the developers of smart-card technologies to test their imple-

mentations.

• It can be used by the clients themselves, to test whether their card is vulnerable

to attack and, therefore, fraud.

31

REPROVE

PKCS#11

ISO 7816

Generic
assumptions

Abstract
Models

on-card operations

Communication Trace

APDU translation

APDU pkcs#11
function

Output

Input

Figure 3.2: High-level overview of our reverse-engineering technique.

A security token, such as a smart-card, implements all the cryptographic opera-

tions internally. The token stores objects (e.g., data and certificates) that can be ac-

cessed via session handles, and performs cryptographic functions. PKCS#11 is the

most widely used cryptographic standard of functions like signing, encryption, decryp-

tion, etc. API-related attacks were first discovered in [D. Longley, 1992], followed

by the exposure of the vulnerability to attacks of PKCS#11 [Bortolozzo et al., 2010,

Clulow, 2003]. Formally analysing security APIs and reasoning about attacks has

been revisited [Youn et al., 2005b, Steel and Bundy, 2005, Courant and Monin, 2006a,

Delaune et al., 2008] through approaches like model checking, theorem proving, cus-

tomized decision procedures, or reverse-engineering for verification e.g.,

[Youn et al., 2005a, Courant and Monin, 2006b, Cortier et al., 2007] and

[Delaune et al., 2008, Bortolozzo et al., 2010]. However, security analysis has mostly

focused on the PKCS#11 itself. There has been less attention given to the implemen-

tations connected to the standard, such as the low-level communication between the

on-card and the off-card applications, defined by the Application Data Protocol Unit

(APDU).

The basic principles of the APDU, e.g., the structure and the contents of the ex-

changed messages, the available inter-industry commands etc, are specified by the

ISO 7816 standard. Precisely following the standard is not compulsory. Many smart-

card manufacturers deviate from the standard under the assumption that a proprietary

APDU implementation is more secure. REPROVE reverse-engineers the APDU im-

plementation and deduces the card’s functionalities, regardless of whether it is inter-

industry, proprietary or a mixture of both.

32 Chapter 3. PKCS#11: Introduction

A high-level description of REPROVE is shown in Figure 3.2. The card com-

municates with the reader and this communication generates a trace that we reverse-

engineer. The analysis module accepts as parameters the trace and abstract models of

the cryptographic protocols; and outputs how the card performs specific cryptographic

functions. It models the low-level communication in first-order logic, and uses reason-

ing and inference over plug-in knowledge bases, which consist of APDU abstractions

based on ISO 7816 and PKCS#11, to automatically reverse-engineer the model. Its al-

gorithm parses a communication trace and uses these abstractions to draw conclusions

about the semantics of the various elements of the trace, narrow-down their possible

implementations and infer the card’s actually executed operations.

To the best of our knowledge, this is the first work for modelling the APDU layer

and formally reverse-engineering it by mapping the low-level communication to the

on-card operations and to the PKCS#11 standard. The abstract models of the back-

ground knowledge do not hard-code the implementation. Instead, they offer a generic

framework to automatically capture different implementations. Specific implementa-

tions are mapped to these abstractions by reasoning about the exact meaning of the

input trace. Our novelty stems from not requiring access to the card’s software and

dealing with both inter-industry and proprietary implementations in a single setting.

Contributions and Roadmap.

The main contributions of this work are:

• Chapter 4 gives an overview of the PKCS#11 standard and its known vulnera-

bilities. A basic overview of Prolog, REPROVE’s implementation language, is

also provided. Finally, the chapter discusses the related work in the field. As this

is the first work to address the analysis of proprietary APDU implementations,

and also the interconnection between the PKCS#11 standard we discuss works

that lye in similar lines as ours.

• Chapter 5 provides the implementation details of REPROVE. Section 5.2 presents

the modeling of the APDU layer and its interconnection to PKCS#11. We only

model a subset of the PKCS#11 functions which we will later use to analyse

the security properties of the tested smart-cards. The set consists of functions

that deal with sensitive and private operations. REPROVE, however, is function

independent as it is possible to plug in different models. Computing all poten-

tial proprietary implementations and testing them for correctness is practically

infeasible, as it is a combinatorial problem. Instead, we produce a model that is

33

based on decomposing the various functionalities of the API into finer-grained

sub-functionalities and analyse how the commands of the standard can be used to

implement these functionalities. We present the reverse-engineering algorithm

to automatically analyse a trace of commands and group them according to their

intended functionality as this has been captured by our model. Section 5.4 eval-

uates the accuracy of REPROVE, after reverse-engineering seven commercially

available smart-cards for nine cryptographic functions.

• Chapter 6 provides the security analysis of the reverse-engineered smart-cards.

Section 6.1 introduces a threat model for PKCS#11 smart-cards. We present

and categorise the potential threat scenarios of PKCS#11 smart-cards. We iden-

tify commonalities between the various attacks and we narrow-down the attack

search space to a set of vulnerable parts. We use this set to to conduct a secu-

rity analysis on the reverse-engineered smart-cards. The analysis is presented in

Section 6.2.

Automatically verifying such implementations is not a trivial task. The imple-

mentations being diverse makes it difficult to define comprehensive formal mod-

els. We present a semi-formal method for discovering vulnerabilities and im-

plementation flaws based on state-machines. We show how REPROVE can co-

operate with other systems toward that goal. Section 6.3 presents an ecosystem

in which REPROVE and smartCardLearner [Ruiter, 2015] coordinate to extract

meaningful state-machines of the smart-cards. Finally we showcase practical

APDU attacks in Section 6.4.

Chapter 4

Background

The first part of this thesis investigates the low-level implementations of PKCS#11

smart-cards. Section 4.1 provides the necessary background on the PKCS#11 standard.

As the standard itself is described in a long documentation [RSA Laboratories, 2009,

OASIS, 2015], we only focus on the aspects that our work addresses. Also, in this sec-

tion we survey the literature of the PKCS#11 vulnerabilities, focusing on the ones we

address. Section 4.2 provides some preliminaries on REPROVE’s underlying imple-

mentation language and the representation that we will use throughout this document.

Automated analysis of APDU implementations is a novel idea, with REPROVE being

the first of its kind, to the best of our knowledge. However, there do exist other works

related to ours, which we discuss in Section 4.3.

4.1 The PKCS#11 Standard

Security APIs are intended to provide access to sensitive resources in a secure way.

The design of such APIs is critical, as they have to ensure the secure creation, dele-

tion, importing and exporting of a key from a device. Also, they are responsible for

permitting the use of these keys for encryption, decryption, signing and authentication

so that even if a device is exposed to malicious software the keys remain secure. The

RSA PKCS#11, also known as the Public-Key Cryptography Standard, specifies an

ANSI C API, called Cryptoki, for hardware devices that can perform cryptographic

functions and store cryptographic-related and encrypted data. It aims to ‘sand-box’ an

application and isolate it from the details of the underlying cryptographic device.

Cryptoki is intended as an interface between applications and a hardware device

that is managed by a single user. It does not have the means of distinguishing multiple

35

36 Chapter 4. Background

Figure 4.1: The general model of Cryptoki.

users. As such, it focuses on keys and the corresponding public certificates of a single

user. The general model of the layers of a system that utilises Cryptoki, as illustrated

in [RSA Security INC, 2004] is presented in Figure 4.1. The model begins with one

or more applications that require the execution of cryptographic operations, and ends

with the cryptographic tokens which are responsible for executing these operations.

Cryptoki aims at providing to the applications a programming interface which abstracts

the details of the cryptographic tokens. Cryptoki may provide a general interface for

more than one cryptographic device which belong to the same system. Each device

connects to Cryptoki via a slot (physical reader) and can perform a set of cryptographic

operations which are required by a higher level application.

When an application connects to a security token it authenticates itself and initiates

a session which is either public or private, defining the kind of objects the application

can access and the types of operations that it can perform on them. Each session is

assigned a unique id by the Cryptoki, the session handle, which aims at preventing

replaying of the the same session. The application can then access the token’s objects

e.g., keys and certificates.

4.1.1 Objects and Attributes

PKCS#11 defines three classes of objects:

1. Data: general purpose data defined by an application.

2. Cryptographic keys: depending on the algorithm used a key object can be a

4.1. The PKCS#11 Standard 37

Attribute Definition

CKA_VALUE the value of the object

CKA_PUBLIC_EXPONENT the public exponent and the modulus of RSA asymmetric keys

CKA_PRIVATE_EXPONENT the private exponent for RSA asymmetric keys

CKA_LABEL the label of the object

CKA_SENSITIVE defines the object as sensitive; the object cannot be wrapped

CKA_EXTRACTABLE defines that the object can be extracted from the device

CKA_PRIVATE defines that the object requires the user authentication

CKA_SIGN defines that the object can be used for digital signatures

CKA_ENCRYPT defines that the object can be used for encryption

CKA_DECRYPT defines that the object can be used for decryption

CKA_WRAP defines that the object can be used for the wrapping of another object

CKA_UNWRAP defines that the object can be used for unwrapping another object

Table 4.1: A sample of the CKA_ attributes as defined in PKCS#11.

secret key, a public key or a private key.

3. Certificates: public-key certificates.

Objects are also categorised depending 1. their availability outside the device i.e.,

whether their value is accessible by the software, 2. the period of their validity, e.g.,

session keys, 3. their access requirements, i.e., whether authentication is required to

access them, and 4. the purpose of the object i.e., the operation that this object can

be used on. These characteristics are specified via attributes (defined by the CKA_

class). An example of attributes specified by the standard is presented in Table 4.1.

An attribute can either be assigned a string, e.g., CKA_LABEL, or a boolean value, e.g.,

CKA_SENSITIVE. An object may be referenced by its handle i.e., a pointer to that ob-

ject.

Attributes also serve as protection mechanisms of the objects; depending on the

class of the object, PKCS#11 defines a set of rules of how attributes are set, for exam-

ple, which attributes must be true if an object is a private key, when an attribute cannot

be changed to FALSE if initially was TRUE etc.. Namely, the set of rules that we will

discuss during this thesis is presented in Table 4.2. These are the attributes that protect

secret and private keys, and changing their value is strictly forbidden by the standard.

38 Chapter 4. Background

Attribute Rule

CKA_SENSITIVE once set to TRUE cannot be set to FALSE; the object cannot be extracted

CKA_PRIVATE once set to TRUE cannot be set to FALSE; limits the object use to the user

CKA_EXTRACTABLE once set to FALSE it cannot be set to TRUE allows the object to be wrapped

CKA_SENSITIVE if TRUE then CKA_EXTRACTABLE must be FALSE

Table 4.2: A sample of the CKA_ attribute rules as defined in PKCS#11.

4.1.2 Functions

PKCS#11 provides a set of functions for managing the hardware device, session man-

agement, object management, encryption, decryption, message digesting, signing and

MACing, verifying signatures and MACs, random number generation, parallel func-

tion management, callback and dual function cryptographic functions. Not all smart-

cards execute the entire function set defined by the standard. However, there is an

overlap between the functions that manage keys and perform operations over sensitive

data. Thus for our work we tested the following subset of PKCS#11 functions:

• C_login authenticates a user. A successful call can initiate a private session and

provide access to the token’s private objects. The function takes as inputs the

session handle, the type of the user (user, or a privileged user termed a security

officer), the location of the user’s PIN and the length of the PIN.

• C_generateKey is called to generate a secret key or a set of domain parameters.

It takes as inputs the session handle, the location of the generation mechanism,

the location of the template for the new key’s attributes, the number of attributes

in the template and the location of the handle of the new key.

• C_sign signs data, with the signature being an appendix to the data. Its inputs

are a session handle, the location of the data, the location of the signature and

the length of the signature.

• C_findObjectsInit is called to initiate a search for token and session objects

that match an input template with attribute values. It takes as inputs the session

handle, the location of the template and the number of attributes in the template.

• C_findObjects is called after C_findObjectsInit and obtains the handles of

the objects that match the given template. It takes as inputs the session handle,

4.1. The PKCS#11 Standard 39

the maximum number of the returned handles, the location of the additional

object handles and the location of the actual number of the returned handles.

• C_getAttributeValue is called to obtain the value of one or more attributes of

an object. It takes as inputs the session handle, the object’s handle, the location

of a template with the attribute values to be obtained and the number of the

template’s attributes.

• C_setAttributeValue is called to modify the value of one or more attributes

of an object. It takes as inputs the session handle, the objects’ handle, the lo-

cation of the template with the attributes, the number of the attributes to change

and the new values of the attributes.

• C_wrapKey is called to encrypt a private or a secret key. It takes as inputs the

session handle, the location of the wrapping mechanism, the handle of the wrap-

ping key, the handle of the key to be wrapped, the location of the wrapped key

and the length of the wrapped key.

• C_encrypt is called to encrypt data. It takes as inputs the session handle, the

data to be encrypted, the location of the encrypted data and the length of the

encrypted data.

• C_unwrapKey is called to decrypt a wrapped key and creates a new private key

or a secret key object. It takes as inputs the session handle, the location of the

unwrapping mechanism, the handle of the unwrapping key, the wrapped key,

the length of the wrapped key, the location of the new key, the location of the

template of the new key, the number of the attributes in the template and the

location of the handle of the new key.

4.1.3 PKCS#11 Attacks

The security of cryptographic APIs has been extensively studied [Delaune et al., 2008,

Delaune et al., 2010, Fröschle and Sommer, 2011, Centenaro et al., 2012, Künnemann, 2015,

Scerri and Stanley-Oakes, 2016] based on Clulow’s pioneer key-separation attacks

[Clulow, 2003]. Clulow suggested that the lack of enforcement of separation between

encryption, authentication and wrapping keys can give conflicting roles to a key. For

example, the same key should never be used for wrapping and decrypting: given

two keys k1 and k2 an attacker can determine the value of k1 by wrapping it with

40 Chapter 4. Background

k2 and then decrypting the resulting ciphertext with k2. A key can be given con-

flicting roles via its attributes. As such, a secure PKCS#11 implementation should

impose some restrictions on how the attributes of a key can be set. According to

[Fröschle and Sommer, 2011] the possible PKCS#11 attacks are categorised based on

the adversary’s goals, to:

• Key conjuring attacks: the adversary obtains a freshly generated key by calling

the C_generateKey or C_generateKeyPair function.

• Trojan Key attacks: the adversary injects his own key ka into the token. This can

be achieved by:

i. calling the C_createObject function, or ii. knowing a symmetric key k with

CKA_ENCRYPT and CKA_UNWRAP set, the attacker wraps ka with k, and then un-

wraps {ka}k with k, or iii. given a key ku with CKA_UNWRAP set, and a key kenc

with CKA_ENCRYPT set, the attacker first encrypts ka with kenc and then unwraps

{ka}kenc with ku.

• Role tampering attacks: the adversary is able to change the attributes of a key by

adding a new attribute to the key which conflicts with the existing ones.

• Downgrade attacks: decrease the security of a key by changing its attributes,

e.g., set CKA_SENSITIVE to FALSE.

• Upgrade attacks: the adversary increases the security of a key to cause denial of

service.

The work described in this thesis lies within the aforementioned attacks. In partic-

ularly the PKCS#11 vulnerabilities that we consider are:

• Faulty Key-management. Misuse of the key attributes, violations on the key-

generation specifications and lack of restrictions lead to faulty key management.

Such behaviour opens back-doors for a series of attacks.

i) Insecure Key Generation. Sensitive keys must always be generated inside the

hardware device and never be exposed in plaintext. API-side key generation

is considered as a bad practice as the software itself does not offer a tamper-

resistant environment. Such behaviour defeats the purpose of cryptographic to-

kens.

4.2. Prolog 41

ii) Conflicting Attribute Allocation. Each key k is specified by an attribute tem-

plate {att1,att2, ..,attn} where each atti specifies the allowed usage of that key.

For example, for a sensitive key sk CKA_SENSITIVE is always set, whereas

CKA_EXTRACTABLE must never be set. Such pairs of attributes are called con-

flicting attributes as they cannot be set true at the same time. If a configuration

allows setting both CKA_SENSITIVE AND CKA_EXTRACTABLE to true, key sk can

be exposed.

iii) Key usage not compliant with the attributes. Depending on the key’s purpose

different attributes are set. A faulty key management does not take into consider-

ation the restrictions defined by the attribute leading to incorrect usage of the key.

An example would be wrapping the key sk whereas CKA_NEVER_EXTRACTABLE

is set.

• Unauthorised Access to the Token. The implementation allows an unauthorised

entity to have access to the token and consequently to PKCS#11 functions.

• Replay of Sessions. Each initiated session between the token and the API should

be assigned a handle. Session handles are unique identifiers whose purpose is to

prevent replaying and ensure authorised access to the cryptographic functions.

One of the most commonly addressed PKCS#11 violations is the lack of ses-

sion handles. Although session handles is not the only measure against replay

attacks, when combining with trivial authentication mechanisms e.g., a simple

PIN verification, such attacks cannot be avoided. Examples of real-world appli-

cations that have been affected by this misconfiguration are the RBS Worldpay

[Cryptosense, 2014] and the DigiNotar [DigiNotar, 2014] incidents.

Moreover, we address vulnerabilities with regards to the data that is handled by

cryptographic functions. In particular data which is not considered as sensitive by the

standard, but it is private for the user. For example, the message to be encrypted, the

decryption result, the message to be signed.

4.2 Prolog

To be able to verify if an APDU implementation fulfils the necessary security require-

ments, only identifying the semantics of the exchanged commands is not sufficient.

The problem boils down to i) inferring the semantics of the command, and possible

42 Chapter 4. Background

relations and dependencies between them; ii) extracting the operations that are per-

formed, with respect to the exchanged commands, iii) identifying the set of operations

that implement a specific PKCS#11 function. This creates the need of identifying ab-

stractions and patterns for the communication and then refining them to the appropriate

commands. During this process, the models need to evolve through a constant rewrit-

ing process. Logic fulfils these requirements. We consider the problem of APDU

analysis to be a semantic interpretation and knowledge reasoning problem. Our ap-

proach is to model the APDU protocol in first-order logic as it is expressive enough to

model the protocol rules, without restricting them. REPROVE is written on Prolog, as

it bridges the gap between completeness and readability.

Prolog is a logic programming language based on First-Order Logic. Being a

declarative language, it considers programs as theories in formal logic and computa-

tions as deductions in that logic space. Prolog is based on Horn clauses, with a built-in

unification algorithm. Any program written in Prolog is a set of models that express

facts and rules with regards to a given domain. Both rules and facts are declaratively

written in the form of clauses. A rule is of the form:

H :−B1,B2, ..,Bn.

which describes that if B1 and B2, and ..., and Bn are TRUE, then H is TRUE. H forms

the head and B1,B2, ..,Bn forms the body of the rule. Facts are clauses with empty

bodies and are of the form: p/n, where p defines the name of the predicate and n its

arity.

Prolog’s execution mechanism is resolution based and has a built-in backward

chaining inference engine which is used to derive conclusions from a given knowl-

edge base. Given an input query, it tries to find a resolution refutation of the negated

query. If a negation is not found, then it follows that the query is a logical consequence

of the program followed by the provided variable binding. One of the most powerful

features that Prolog provides for the APDU analysis is backtracking, also known as

depth-first search.

The operations a smart-card executes and consequently the command-response

pairs that are responsible for initiating them, are quite often dependant to each other.

The effectiveness of a command depends on the satisfiability of a precondition set from

the previous ones. As such, inferring the command itself heavily depends on the pre-

vious ones, and the meaning of that one will affect the next ones, leading to a tree with

different interpretations of the same trace. Back-tracking provides a good solution to

that problem by starting the search from the root and exhaustively proceeding to the

4.3. Related Work 43

last node of the tree. As our knowledge modelling is based on logic, Prolog is a good

fit since it provides an automated mechanism for exhaustive search space exploration

while itself providing a logic-based interface.

4.3 Related Work

Protocol reverse-engineering. Protocol reverse-engineering is a related area to our

work, but works up to this date do not satisfy the requirements of our project, which

addresses a lower-level of abstraction. For example, Polyglot [Caballero et al., 2007] is

a system for automatically extracting the format of the protocol messages. The system

uses dynamic binary analysis during the protocol execution. In more detail, the system

monitors the binary program that implements the protocol while it processes inputs.

Their intuition is that the way a program processes its inputs may reveal information

about the incoming messages. Polyglot focuses only on extracting the format of the

messages rather than the semantics, and requires access to the binary program of the

protocol.

Similarly, Discoverer [Cui et al., 2007] is a system that reverse-engineer the pro-

tocol message format. The system infers protocol idioms commonly seen in message

formats of many application-level protocols, from the application’s network trace. Dis-

coverer groups the messages with similar sequences of text or binary tokens and then

recursively clusters them and aligns the sequences until it produces a more detailed

description of the message formats.

Another similar approach is Prospex [Comparetti et al., 2009], which infers the

protocol format and the corresponding state machines. The system focuses on the

behaviour of the messages: it identifies and clusters messages based on their struc-

ture and on the impact that each message has on the server. Moreover, the system

extracts the protocol’s state-machine based on the sequences of messages the proto-

col permits Prospex uses dynamic taint analysis for monitoring an application while it

processes incoming messages to extract the behaviour of the messages only. A similar

work is presented in [Cho et al., 2010] in which the users suggest inferring protocol

states machines of the messages by incorporating the user’s feedback on the protocol

abstractions.

The aforementioned systems deal with plaintext protocol messages only. ReFor-

mat [Wang et al., 2009] is a system for extracting the format of encrypted messages.

The system first identifies the location of the decrypted message by analysing the run-

44 Chapter 4. Background

time buffers, and then reveals the associated message structure.

All these systems focus on deriving the protocol specifications rather than the se-

mantics of the messages. Although the smart-card low-level communication in other

application areas (e.g., EMV) follows a particular protocol, in PKCS#11 it is more

random. The communication between different cards varies significantly and bares lit-

tle or none similarities. Thus, extracting specification with respect to an implemented

protocol cannot succeed in our project. Moreover, such techniques i) require access to

the API, and/or

ii) assume known message semantics, and/or

iii) derive only the protocol message format without its semantics.

What is central to our work is to make no assumptions about a specific commu-

nication protocol. The only knowledge we can use is what is publicly available, i.e.,

the inter-industry commands of ISO 7816. Using that knowledge, our goal is to infer

proprietary semantics and deduce the card’s operations.

Analysis of APDU implementations. Automated reverse-engineering of the APDU

layer is a novel concept and has not been studied before. However, there exist related

works that address the importance of understanding that layer and note that it is possi-

ble that the card might not have the expected behaviour. A system that aims at inferring

a card’s behaviour with respect to the APDU layer is SmartCardLearner [Ruiter, 2015].

The authors implemented an automated system for inferring state-machines of a card’s

APDU implementation. SmartCardLearner takes as input a set of APDU commands

that are recognisable by the card and by systematically sending all possible commands

combinations to the card, SmartCardLearner extracts a state-machine that shows the

exact sequences of commands that are permitted. The output is useful to understand

the underlying implementation as well as to identify possible flaws. However, the

state-machines are useful only if the semantics of the commands is available.

The work presented in [Bozzato et al., 2016] is the closest to ours. The authors

manually analysed the APDU implementation of a set of PKCS#11 smart-cards. Their

technique was through manual inspection of the API and library calls, API tests and

debugging of the library. REPROVE was able to reverse-engineer a larger collection of

cards than the one presented in [Bozzato et al., 2016]. The authors provided us with the

results of the manual analysis which we used to evaluate REPROVE’s performance.1

1The authors of [Bozzato et al., 2016] are also co-authors of the REPROVE published work

[Gkaniatsou et al., 2015], as they provided us with the implementation details of the smart-cards we

tested on REPROVE. These details were used to evaluate REPROVE’s accuracy. Our work was pub-

4.3. Related Work 45

Namely, the cards are: Aladdin eToken PRO, Athena ASEkey, RSA SecurID, Safesite

Classic TPC V1 and Siemens CardOS V4.3b. Both the work presented in this thesis

and in [Bozzato et al., 2016] address the importance of analysing the APDU layer. A

manual analysis though, requires a deep understanding of the APDU layer, a thorough

study of the extensive documentation of ISO 7816, access to the API and performing

systematic tests. Instead, our solution consists of a fully automated system which

produces results in milliseconds and does not require any effort from the user.

In [Bozzato et al., 2016] the authors also showed that it is possible to tamper with

a key’s CKA_SIGN attribute. In particular, they set the attribute from FALSE to TRUE

which allowed them to use that key for signatures. For completeness we reproduce

that attack to a smart-card that was not studied in [Bozzato et al., 2016]. Moreover,

we present a novel attack that has not been previously discussed (more details can be

found in Section 6.4).

lished in 2015. In 2016 the aforementioned authors also published that manual analysis.

Chapter 5

REPROVE: Automatically

Reverse-engineering the

Application Protocol Data Layer

REPROVE aims to provide insight into the smart-card communication protocol, by

inferring models of the characteristics of the implementation. To do so, our reverse-

engineering approach focuses on both the semantics and the abstractions of the com-

munication to allow for higher-level reasoning, as opposed to focussing only on the

literals exchanged. In that way, by running REPROVE through a trace, the user can

fully understand what is happening without having to go through any extensive docu-

mentation that defines that layer. To provide such a deeper understanding, our reverse-

engineering approach boils down to:

1. Developing a formal model for the communication layer that will be used as

generic background knowledge for REPROVE’s reverse engineering algorithm.

2. Incorporating rules for the logical requirements specified by the standard. These

requirements are extracted by carefully studying the documentation of ISO 7816

to infer semantic links, dependencies and restrictions that, while not formally

defined by the protocol, are necessary for any communication based on it.

3. Creating links between the low-level input, the operations and their abstractions.

4. Enabling REPROVE to work at a higher abstraction layer to be able to work

for a larger class of cards in a uniform way and, in the end, better translate the

communication trace to on-card operations.

47

48Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

The background knowledge is modelled in first-order logic and consists of abstract

models which need to be instantiated according to the input trace. These models are

based on ISO 7816 and define: i) the communication language, ii) the properties,

restrictions and requirements of the communication, iii) implementations of the on-

card operations in terms of communication, iv) possible implementations of specific

PKCS#11 functions. Such models do not hard-code the implementation of the card;

they present abstractions of different functionalities that are then refined according

to the input trace. REPROVE will translate the input trace based on the background

knowledge and provide an abstraction of it in terms of on-card operations by applying

the restrictions and specifications defined on its rules. More formally, REPROVE

applies the transformation function g(f (x)) with f : Tn→ In and g : In→ Om, where

Tn is an input trace of n commands, In is a set of n inter-industry commands (1-1

mappings) and Om is a set of m on-card operations.

5.1 ISO 7816 Logical Requirements

Transmission protocol. ISO 7816 defines different transmission protocols, however

all PKCS#11 compliant smart-cards only follow the T=0 transmission protocol: the

communication is always initiated by the interface device, which is the only partic-

ipant that can send requests, while the card can only reply to the reader’s requests.

Thus, we only consider commands whose origin is the interface device, responses that

originate from the smart-card. Moreover, we assume that i) the card always responds

to a command, ii) the card’s response is always related with the incoming command

e.g., if a command requests some binary data, then the response will only contain the

requested data.

Ins codes. As defined in ISO 7816, we consider the values of the instruction codes,

i.e., Ins fields, to be unique. However, according to ISO 7816, the P1 and P2 fields may

indicate different interpretations of the same Ins code. We categorise the commands

that have multiple interpretations; during the analysis of a command, if at least one

mapping falls in this category, then the assumption of uniqueness is dropped. This

does not affect the analysis.

Files and data structures. Commands indicate particular data structures. How-

ever, commands that address different data structures may occur within the same trace.

Based on the above specification we restrict a file1 from having data stored in multiple

1ISO 7816 specifies a single data structure per file rule. The card may handle multiple structures in

5.1. ISO 7816 Logical Requirements 49

transparent file

linear filecyclic file

tlv file

single continuous
sequence of data units

single continuous
sequence of records

data objects

records

read-record,
write-record,

update-
record,..

read-record,
write-record,

update-
record,..

get-data,
put-data

read-binary,
write-binary,

update-
binary,…

select

select

select

select

select

Figure 5.1: The file and data structures as defined by ISO 7816, and the ways to

reference them.

structures and we identify the valid file structures: i) transparent, ii) linear, iii) cyclic,

iv) tlv, whereas, each file structure corresponds to a specific data structure: i) data ob-

ject, ii) data unit, iii) record. We identified the interconnection between the file, the

data structures and the way to reference them, as shown in Figure 5.1, and we consider

it possible to reference different structures if and only if a different file is selected. With

respect to these properties, a group of commands that indicate different data structures

in the same file is considered as invalid. We use the above restrictions to narrow-down

the mapping candidates for each proprietary command.

Command pairs and card operations. A pair defines dependent commands; if a

command appears within the trace, then its paired command should also be. Such

pairs are defined based on the card’s operations. This allows us to eliminate invalid

mappings from the beginning of the analysis. Furthermore, we assume that the card

will execute at least one operation.

different files.

50Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

5.2 Modelling the Application Protocol Data Unit

Layer

REPROVE’s intent, in addition to inferring the semantics of the communication, is

to deduce the card’s functionalities and infer mappings between different PKCS#11

functions and the APDU layer. As such, we perceive different abstractions of that layer.

A bottom-up view of the communication, with respect to REPROVE’s modelling is the

following:

1. Communication: the semantics of exchange communication messages.

2. On-card operation: an operation executed on the card which has been initiated by

the communication messages. The parameters of the operation are also provided

by such messages.

3. PKCS#11 function: a function defined in PKCS#11 which is executed by a set

of on-card operations.

In Figure 5.2 we show a high-level description of our modelling approach, with re-

spect to the APDU abstractions. Each individual card operation (functionality) of the

card, is decomposed into a sequence of steps (sub-functionalities). Each step is then

implemented as a sequence of APDU commands: proprietary, inter-industry, or a mix

of the two. The APDU commands are further characterised depending on their data

exchange properties (shown, for example, as ‘YY’ in the figure to indicate a command

that both sends and receives data) and their role within the sub-functionality in ques-

tion (that we have termed core, additional, or dummy and we will refine further in the

following sections). The same command may have different data exchange properties

and different roles depending on the sub-functionality, e.g., commanda and commandx

in Figure 5.2. The following sections provide details of how each abstraction is mod-

elled.

5.2.1 Commands

REPROVE’s background knowledge consists of 26 commands, as presented in Table

5.1.

In the models, an APDU command is represented as a predicate of arity seven:

command(Cla,Ins,P1,P2,Lc,D,Le) where the variables Cla, Ins, P1, P2, Lc, D,

5.2. Modelling the Application Protocol Data Unit Layer 51

select get_data update_record

read_binary read_record write_binary

update_binary erase_record write_record

activate_file put_data generate_asymmetricKeyPair

get_response perform_security_operation delete_file

append_record create_file deactivate_file

manage_security_environment get_challenge erase_binary

verify external_authenticate mutual_authenticate

general_authenticate internal_authenticate

Table 5.1: REPROVE’s background knowledge: set of commands.

command Ins #interpretations

create_file 1 1

activate_file 1 8

delete_file 1 8

deactivate_file 1 8

select 1 8

read_binary 2 3

write_binary 2 4

update_binary 2 10

erase_binary 2 20

get_data 2 8

put_data 2 10

read_record 2 2

erase_record 1 1

append_record 1 2

write_record 1 6

update_record 2 3

get_response 1 1

get_challenge 1 1

generate_asymmetricKeyPair 2 16

perform_security_operation 1 15

manage_security_environment 1 18

verify 2 6

external_authenticate 1 3

mutual_authenticate 1 3

general_authenticate 2 18

internal_authenticate 1 4

total 187

Table 5.2: Summary of the different command representations and interpretations.

52Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

functionality

sub-functionality1

sub-functionality2

sub-functionality3

commanda

commandb

commandx

commandy

commandz

commanda

commandx NN, dummy

NY, additional

YY, additional

YY, core

YN, additional

YY, core

NY, core

operation steps APDU layer
commands

data exchange and
role properties

characterised
by

implemented
as

decomposed
into

Figure 5.2: A single operation represents a specific functionality and it is modeled

as a sequence of sub-functionalities. Each sub-functionality is further implemented

as a sequence of commands. Commands are characterised by their data exchange

properties and role within some particular sub-functionality.

Le are instantiated according to the specifications defined by ISO 7816. A command

is considered valid if it falls in one of the following categories: i) any inter-industry

command; and ii) any proprietary command that can be mapped to an inter-industry

command if and only if this inter-industry command has not occurred within the same

implementation2, and has all its preconditions satisfied.

According to ISO 7816, a command may be referenced by more than one Ins

code. The interpretation of a command (i.e., the operation requested and the condi-

tions that are true if the command succeeds) depends on the instantiations of the P1,

P2 and D fields. Additionally, a command may have multiple interpretations. For

example, the generate_asymmetricKeyPair command can be referenced either by

the 46 Ins code or by the 47 code. P1 P2 and D specify the different parameters

for the key generation operation e.g., the algorithm that will be used for the genera-

tion, possible information on the generated key pair, access to an existing public key,

2We consider each representation to be unique: the exact same instantiations cannot occur at both

an inter-industry and a proprietary command, within the same trace.

5.2. Modelling the Application Protocol Data Unit Layer 53

whether the card should return the public key, the format of the returned data etc. De-

pending on the command’s instantiations, there are 32 different interpretations for the

generate_asymmetricKeyPair command3.

Table 5.2 presents the number of the different Ins codes and the different interpreta-

tions of each command. The background knowledge consists of 187 rules that specify

the conditions under which a different command interpretation occurs, as defined by

ISO 7816. Each rule defines the action that the command is responsible for, and the

conditions for that action. For example, the rule:

command(00,a4,08,04,Lc,D):-

isa(D, ef),

select(file, D).

states that if the elementary file D is selected, then the command fields are instantiated

as Cla=00, Ins=a4, P1=08, and P2=04.

5.2.1.1 Command Categories

A command is categorised based on: i) its data exchange properties; and ii) the card

operations.

Categorization according to data exchange properties. We have defined rules that

assign each command, depending on the exchanged data, to one of the following cate-

gories:

(i) commandnn(Cla, Ins,P1,P2,Lc,D,Le): no data is sent, no data is expected,

(ii) commandny(Cla, Ins,P1,P2,Lc,D,Le): no data is sent, data is expected,

(iii) commandyy(Cla, Ins,P1,P2,Lc,D,Le): data is sent, data is expected,

(iv) commandyn(Cla, Ins,P1,P2,Lc,D,Le): data is sent, no data is expected.

Variables Lc, D and Le define the category of a command. For instance, the rule:

command_nn(Cla, Ins, P1, P2, Lc, D, Le) :−
command(Cla, Ins, P1, P2, 00, 00, null).

describes that if Lc = 00, D = 00 and Le = null4 then the command does not send or

retrieve any data.

3In our models we include only RSA objects, as our experiments use that algorithm. The models

however can be extended to include other algorithms as well.
4The value null indicates absence of a field.

54Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

Categorization according to card operations. For each operation of the card we

have categorised the commands into:

(i) Core: the basic commands that perform the operation, e.g., to create a new file

create_file is a core command.

(ii) Additional: the commands that add extra properties to the operation, but they do

not change its meaning; the same operation can be implemented without them.

For example, to create a file select is an additional command as it merely adds

information to file creation (e.g., selecting a path to create the file into) but file

creation can proceed without it.

(iii) Dummy: the commands that neither send nor expect any data. They usually

just query, or check, the communication with the card, for example, a verify

command, when it does not send nor expect any data to/from the card. Such

commands may occur at any time during the communication and they do not

change the output of the reverse-engineering.

The role of a command varies depending on the operation.

5.2.1.2 Command preconditions

The preconditions of each command define: i) The types of previously issued com-

mands. For example, a read_binary command is applicable only if the previous

commands have selected an elementary file i.e., select(file,D) and isa(D,ef)

must be true. ii) The data types and file structures of the previous commands should

match, for example, a read_binary command can be applicable after a read_record

command only if they address a different file.

5.2.2 Card Operations

The implementation of an operation varies depending on the data object, the file struc-

ture, the algorithms and the protocols that a smart-card supports. We propose a hier-

archy of abstractions that capture the distinct implementations of the same operation.

We introduce the umbrella term functionality, which represents a high-level view of

an operation, to define the purpose of the operation rather than the implementation

details. A functionality is decomposed into sub-functionalities which represent the

specific steps needed to implement different instantiations of an operation.

Functionalities. Functionalities represent the generic operations that a smart-card

may execute e.g., authentication, data-retrieval, data-storing etc., based on the pur-

5.2. Modelling the Application Protocol Data Unit Layer 55

pose for which the smart-card is used5. With respect to ISO 7816 and the analysed

PKCS#11 functions, we have defined the following functionalities:

(i) read_data: operations for data-retrieval.

(ii) store_data: operations that modify the contents of the card e.g., write, update,

create

(iii) authentication: operations for authentication.

(iv) generate_key : operations for generating a key/key-pair.

(v) sign: digital signature operations.

(vi) verify : operations for verifying a digital signature.

A functionality models the set of sub-functionalities needed for this operation to

be executed, with regards to the underlying implementation mechanism. The mod-

els are defined by core and additional sub-functionalities which capture the various

implementation steps. The core sub-functionalities define the necessary steps for that

operation. The additional sub-functionalities define extra steps that change the char-

acteristics of that operation, but the operation can be implemented without their exe-

cution. In the background knowledge, a functionality is represented by the predicate

functionality(F, S, C, Sen), in which F defines the name of the operation, S the

set of sub-functionalities that correspond to that operation, C the set of the core sub-

functionalities that must be satisfiable and Sen the set of sensitive sub-functionalities,

i.e., the operations that deal with sensitive data, with regards to the analysed PKCS#11

function.

Each functionality may be defined by more than one model; each models describes

a different implementation mechanism. For example, store_data is described by the

following models:

(i) functionality(store_data(L, D, S), [read_data_sub(F,Le, RD),

file_create(L, D)],[file_create(Location, D)], Sen): First the data

RD is retrieved from F. Then a new file D at the location L is created. The core

sub-functionality is file__create while read_data_sub is an additional.6

(ii) functionality(store_data(L, D, S),[read_data_sub(L,Le, RD),

data_write(L, D)],[data_write(L, D)], Sen): First the data RD is re-

trieved from the location L. Then at the same location, L some new data D is

5Different purpose may indicate different capabilities. For example, PKCS#11 smart-cards can

verify a signature while Bitcoin smart-cards cannot.
6The variable Sen will be instantiated by the reverse-engineering algorithm, according to the anal-

ysed PKCS#11 function.

56Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

written. 6

Sub-functionalities. A sub-functionality represents the set of the actions i.e., the

command outcomes, required for the execution of a specific operation. Given an ab-

stract operation, we have defined the following set of of sub-functionalities, according

to the the different implementation mechanisms a smart-card can support (as stated in

ISO 7816):

(i) data_read_sub: the mechanisms for requesting data from the smart-card.

(ii) data_write: the mechanisms for storing/altering data to the card.

(iii) file_create: the mechanisms for creating a new file/directory in the card.

(iv) file_activate: the mechanisms for activating a file/path of the card.

(v) file_delete: the mechanisms for deleting a file/path of the card.

(vi) data_delete: the mechanisms for deleting data that is stored in the card.

(vii) secret_verify : the mechanisms that request the verification of a secret provided

by the API.

(viii) mutual_authenticate: the mechanisms that implement a mutual authentication

between the smart-card and the API based on a shared key.

(ix) external_authenticate: the mechanisms that authenticate the API to the smart-

card, based on a shared key.

(x) internal_authenticate: the mechanisms that authenticate the smart-card to the

API.

(xi) generate: the mechanisms that request the generation of a key/key-pair.

(xii) perform_digital_signature: the mechanisms for requesting from the smart-card

to perform a digital signature.

(xiii) verify_digital_signature: the mechanisms for requesting from the smart-card to

verify a digital signature.

(xiv) hash: the mechanisms for requesting from the smart-card to compute a crypto-

graphic hash.

(xv) encrypt: the mechanisms for providing some data to the smart-card and request-

ing its encryption.

(xvi) decrypt: the mechanisms for providing some encrypted data to the smart-card

and requesting its decryption.

Each sub-functionality is represented by the predicate sub-functionality(S,

C, Cc, Sen), in which S defines the name of the sub-functionality, C the set of the

commands that satisfy that operation, Cc the set of the core commands i.e., the com-

mands that are necessary to implement that particular operation, and Sen the set of

5.2. Modelling the Application Protocol Data Unit Layer 57

sensitive commands, i.e., the commands that deal with sensitive data, with regards to

the analysed PKCS#11 function.

A sub-functionality may have more than one model, each describing the differ-

ent underlying implementations. REPROVE contains in total 43 such models. Each

model consists of a set of core commands, which represent the preconditions of a

sub-functionality. If the set of the core commands is not TRUE, then the model sub-

functionality cannot be TRUE. For example, data_read_sub is defined by the following

models:

(i) subfunctionality(read_data_sub(DF, Le, RD), [[isa(DF, offset),

isa(RD, record), retrieve_data(Le, DF, RD)]],

[retrieve_data(Le, DataType, RD)], Sen): The operation retrieves the

RD records from the DF offset. 6

(ii) subfunctionality(read_data_sub(card, Le, RD), [[isa(F,ef),

select(file, F), isa(RD, binary), retrieve_data(Le, binary,

RD)]], [retrieve_data(Le, binary, RD)]), Sen): The operation selects

the elementary file F and retrieves the RD binary data. 6

Each model describes a different way of retrieving data, according to the different data

structure, file structure and ways of accessing it. In all models the core commands are

the one responsible for retrieving data; the additional commands are the ones respon-

sible for defining the access methods and the data and file characteristics.

In the sub-functionality models, instead of including the representation, commands

are expressed by what we define their interpretation: what is actually achieved by send-

ing this command. For example, instead of command(00,a4,08,04,04,50154400)

the command is represented as (isa(50154400, ef), select(file,50154400))

which defines the action of selecting the elementary file 50154400.

5.2.3 PKCS#11 Models

PKCS#11 models represent assumptions on how each PKCS#11 function is expected

to be implemented. These models aim to capture an abstraction of the expected on-

card operations so they do not impose an implementation, but merely act as a flexible

guide of the implemented functionality. The models are expressed in terms of func-

tionalities and are represented by the predicate pkcs(N,F), where N is the name of the

PKCS#11 function and F the set of functionalities that are responsible for carrying out

that function.

58Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

Each function may be described by more than one model i.e., a different set of func-

tionalities , depending on the assumptions made on the implementation. For example,

C_logIn is described by the following models:

• pkcs(log_in, [authentication(A,B, S)]): an authentication operation is

implemented.

• pkcs(log_in, [read_data(Location, File, RD,S),

authentication(A,B,C)]): first some authentication related data is retrieved

e.g., permitted incorrect PIN attempts, and then the authentication operations is

implemented.

The predicate authentication/3 corresponds to one of the following mecha-

nisms: i) authentication with a PIN: the card compares received data from the outside

world with internal data; ii) authentication with a key: an entity to be authenticated has

to prove the knowledge of a relevant key through the challenge-response procedure;

iii) data authentication: using internal data, secret or public, the card checks data re-

ceived by the outside world. Another way is for the card to check secret internal data

and compute a data element (cryptographic checksum or digital signature) and insert it

to the data sent to the outside world; iv) data encipherment: using secret internal data,

the card enciphers a cryptogram received in a data field, or using internal data (secret

or public) the card computes a cryptogram and inserts it into a data field, possibly

together with other data.

5.3 REPROVE Reverse-Engineering Algorithm

REPROVE’s reverse-engineering algorithm consists of three steps, each addressing

a different abstraction of the implementation: (i) the APDU trace semantics, (ii) the

on-card operations that are executed during communication, and (iii) the APDU im-

plementation given a PKCS#11 function.

Step 1: Semantics of the APDU Trace. Given an input trace Tn of n commands,

we generate a tree in which each path from root to leaf Tn
i
′ is a semantic mapping

of the trace such that Tn 7→ Tn
i
′. As the exchange of the command-response pairs is

sequential so is the analysis of the commands, which implies that the semantics of

an unknown command heavily depends on the previous commands. Each unknown

command is categorised and all corresponding mappings M are identified, which are

5.3. REPROVE Reverse-Engineering Algorithm 59

Step 1. Step 2. Step 3.

Figure 5.3: Reducing the search space.

then narrowed-down to a set P′ based on precondition satisfiability. For each mapping

m ∈ P′, the commands analysed so far are grouped, and sets that fully or partially

satisfy7 any sub-functionality are considered valid. The outcome of this process is a

set of valid8 mappings M′′ of each unknown command such that M′′⊆ P′⊆M, and the

set P which consists of different interpretations of T . More formally, Step 1 performs

the transformation f : f (Tn) = Pn where ∀Tn
i
′ ∈ Pn : Tn 7→ Tn

i
′.

Step 2: On-Card Operations. At this stage, given Pn from the previous step, the

commands at each Tn
i
′ ∈ Pn are grouped in all possible combinations. Each group

is checked to determine whether there exist any sub-functionality(ies) that satisfy its

preconditions. The outcome of this process is a set Sl of sub-functionalities such that

∀Sl
k ∈ Sl∃Tn

i
′ ∈ Pn : Tn

i
′ 7→ Sl

k. Then all sub-functionalities in Sl are grouped and the

set of valid functionalities Om is identified. The sub-functionalities that do not satisfy

Om are discarded along with the corresponding trace mappings. The overall step can

be represented as a function y: y(Pn) = Om with Sl′ 7→ Om, Sl′ ⊆ Sl, and Pn′ 7→ Sl′,
Pn′ ⊆ Pn.

Step 3: PKCS#11 Function. Here, the set of functionalities Om from Step 2

is mapped to the background models of specific PKCS#11 functions, resulting in an

interpretation of the communication in terms of the standard. The outcome is the

APDU mapping to PKCS#11, the set of card operations that are executed during the

communication, Om′ ⊆ Om, and the APDU traces Tn
i
′ ∈ Tn′ that satisfy them.

Figure 5.3 shows how we restrict the search space: grey arrow indicates narrowing-

down and black arrow indicates mapping; each path of a black tree is an individual

7Given a sub-functionality, there exists at least one core command that satisfies its preconditions.
8Valid here indicates that neither the ISO, nor any background model is violated.

60Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

inter-industry mappings
for the same proprietary command

categorization to inter-industry (◯)
 or proprietary commands (●)

potential
sub-functionalities (�)

of the same
inter-industry command

…

valid sub-functionality combinations
after filtering them

by precondition satisfiability

for each sub-functionality combination,
test different groupings of

sub-functionalities into functionalities

Figure 5.4: The transformations of the APDU trace during the reverse-engineering

process.

mapping of the same APDU trace. The nodes appearing at the same depth represent

different mappings of the same command; each path of a grey tree represents a se-

quence of executed card operations (sub-/functionalities). Step 1 generates a tree of all

the command mappings, where each path is a different trace mapping. The mapping

of a command affects the mapping of the subsequent command; thus, not all paths

have a valid depth i.e., the same as the number of commands in the trace. In Step 2

the command paths of valid length are mapped to functionality paths (on-card opera-

5.3. REPROVE Reverse-Engineering Algorithm 61

tions). Finally, Step 3 discards functionality paths that do not match with the PKCS#11

models.

In each reverse-engineering step the low-level input (commands) evolves to ab-

stract models (card operations). A schematic description of the transformations of the

commands during the reverse-engineering process is presented in Figure 5.4. The trace

itself goes through a sequence of transformations: from commands, to inter-industry

mappings, to potential sub-functionalities, to groups of sub-functionalities into higher-

level functionalities. If REPROVE is successful in providing a sequence of functional-

ities that describe a PKCS#11 function, then the trace is effectively reverse-engineered.

This is considered as a drawback of the card as it exposes its implementation and po-

tentially opens attack vectors (as we present in the following chapter).

Reverse-Engineering Algorithm. The overall reverse-engineering process for a

trace of commands is shown in Algorithm 19. The input to the algorithm is a list

T of commands representing the communication trace, and the output is a list P of

potential mappings of T (each mapping is a list itself) and a list O of card functional-

ities. The list P is initialised to [[]] which indicates that the first mapping is the empty

one. Each command c ∈ T is then analysed and depending on its value of Cla it is

classified as proprietary or inter-industry. In the former case (lines 3 to 5) the values

of its Lc, D and Le parameters are checked to categorize its data exchange properties

and obtain a list M of potential mappings. From M we only keep the valid mappings

(lines 5 to 12) and store them in P. The valid mappings are identified based on pre-

condition and sub-functionality satisfiability (lines 6 to 9): for each potential mapping

to an inter-industry command, we check that the preconditions of the inter-industry

command are met by computing the union of the postconditions10 of all commands

that precede it. If the preconditions of an inter-industry command are not met, the er-

roneous mapping is removed from M and the analysis continues to the next candidate

mapping; else, we iterate over the analysed trace so far, and look at the categorization

of commands based on their role. Using this role, we group commands into different

combinations that may form potential sub-functionalities. If such a grouping exists,

the mapping is stored in P. If c is an inter-industry command, there is only one such

mapping n, so M is a singleton list. We search for satisfiable sub-functionalities by

9In Algorithm 1 we only show the conceptual reverse-engineering process to aid the presentation.

The actual implementation of the algorithm is in Prolog and leverages the analysis algorithm of the

language.
10Postconditions represent what is TRUE given the particular interpretation of a command

62Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

this command and store the command in P (lines 13 to 17). At this point P consists

of different mappings of the trace. Then, P is further narrowed-down based on the

sub-functionality and functionality models (lines 18 to 25). For each different map-

ping of the trace, the commands are grouped into sub-functionalities which are then

further grouped into higher-level functionalities that are added to O, all in the context

of our models. If no such grouping is found for a candidate trace, the trace is removed

from P. If a grouping is found, its constituent mappings are annotated accordingly to

denote this. The final step of the algorithm is to further narrow-down P by matching

the resulting functionalities in O with the PKCS#11 models. In the end, P will contain

zero or more traces of candidate mappings. If P is empty, our reverse-engineering has

failed to produce a mapping. If there is only one trace in P we say that the mapping

is unique. If there is more than one candidate trace we need further experiments, for

example a manual analysis, to eliminate the false traces.

5.4 REPROVE Evaluation

5.4.1 Evaluation Setting

We have evaluated REPROVE using seven commercially available smart-cards. Each

smart-card had its own closed-source API implementation, provided by the manufac-

turer. We were not able to test the same PKCS#11 functions for all cards. This is

because in some cases the cryptographic function was executed library-side instead of

token-side (i.e., outside the card instead of on-card), which is violation of the standard

as it allows for sensitive data, e.g., keys, to be transmitted outside of the token. In other

cases, the API did not allow the execution of the function at all e.g., the C_wrapKey

function.

Our purpose was to assess REPROVE along the following dimensions:

• Functional success: the system infers at least one model. If REPROVE is unable

to infer a model then, there are two cases: (i) the system has failed, or (ii) the

communication is encrypted. The latter case is not REPROVE’s failure as it

merely acts as a verification that the implementation is secure.

• Quality of the results: the output captures at least a high-level view of the imple-

mentation i.e., the implemented operations. REPROVE can produce more than

one output models. We consider the following outcomes to be of high quality:

(i) a unique model which matches exactly both with the low- and the high-level

5.4. REPROVE Evaluation 63

Algorithm 1: The reverse-engineering process for a trace of commands.
input : List T of commands to be analysed

output: Potential mappings and operation models P for T

1 P = [[]]; O = [[]];

2 foreach c(Cla, Ins,P1,P2,Lc,D,Le) ∈T do
3 if Ins indicates c is proprietary then
4 use lc,d, le to extract data exchange properties d;

5 M = list of APDU commands c maps to based on d;

6 foreach m ∈M do
7 Z = {z | (k precedes m in p)∧ (z ∈ postconditions(k))};
8 if preconditions of m are not satisfied by Z then
9 remove m and move on to the next;

10 foreach p ∈ P do
11 if a grouping of p to sub-functionalities can be found then
12 s = p⊕ (c 7→ m); P = P⊕ s

13 n = inter-industry command c maps to; M = [n];

14 annotate each command with its sub-functionality;

15 annotate sub-functionalities with functionalities;

16 O = O⊕ functionalities;

17 s = p⊕ (c 7→ n); P = P⊕ s;

18 foreach p ∈ P do
19 foreach (c 7→ m) ∈ p, potential sub-functionality of m do
20 group sub-functionalities into functionalities;

21 if no such grouping can be found then remove p from P;

22 else
23 annotate each command with its sub-functionality;

24 annotate command groups with functionalities;

25 O = O⊕ functionalities;

26 foreach f ∈ O do
27 if f /∈ PKCS#11 models then remove f from O; remove p from P ;

28 return P,O;

views of the implementation, i.e., the exchanged commands and the on-card ex-

ecuted operations, and (ii) two or more models that exactly match the high-level

view of the implementation, i.e., on-card executed operations.

To address these aspects we used the standard precision and recall metrics, as defined

by:

64Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

precision =
True Positives

True Positives+False Positives

recall =
True Postives

True Positives+False Negatives

where (i) True Positive: the outcome model suggests the correct on-card operations

and the exact meaning of the APDU trace, (ii) False Positive: the outcome model

suggests the correct on-card operations, and a partially correct meaning of the APDU

trace (the APDU semantics does not exactly match with the actual implementation),

(iii) False Negative: the outcome model suggest incorrect on-card operations and an

incorrect meaning of the APDU trace.

For each smart-card we used the sniffed APDU trace as the input to REPROVE.

The trace was produced when each PKCS#11 function was called. We were aware

of the implementation of each smart-card from the beginning but we treated them as

unknowns during the reverse-engineering. To evaluate the quality of the results we

compared REPROVE’s output with the actual implementation. The smart-cards that

we tested are: Aladdin eToken Pro by Gemalto (ex Safenet), ASEKey USB by Athena,

CardOS V4.3 by Atos 11, CardOS V4.4 and CardOS V5 offered by Atos, SecurID

offered by RSA, TCP ISV1 offered by Safesite.

5.4.2 Results

Number of inferred models. REPROVE performed well on all cards: it inferred at

least one model for the exchanged commands, one model for the on-card operations

and one model for the analysed cryptographic function. In most cases the inferred

model was unique and matched exactly with the actual implementation of the card.

The results are presented in Table 5.3. For Aladdin eToken Pro, and Athena ASEKey

USB in the case of C_logIn and for Safesite TCP ISV1 in the case of C_sign RE-

PROVE inferred the correct on-card operations but suggested two different implemen-

tation models, hence the 0.5 precision value. In all cases the correct model of the

implementation existed within the suggested ones.

Narrowing-down the search space. The reverse-engineering of proprietary APDUs

is a combinatorial problem and the solution time grows exponentially with the size of

the APDU trace. REPROVE uses search to advance towards the proof, and inference to

block and exclude directions from the search. During the analysis, the search space is

11(The CardOS V4.3 used to be manufactured by Siemens.)

5.4. REPROVE Evaluation 65

Smart-card Function Precision Recall

Aladdin eToken Pro C_logIn 0.5 1

C_wrapKey 1 1

C_sign 1 1

C_findObjects 1 1

C_getAttributeValue 1 1

C_generateKey 1 1

C_getAttribute 1 1

C_encrypt 1 1

Athena ASEKey USB C_logIn 0.5 1

C_sign 1 1

C_findObjects 1 1

C_generateKey 1 1

C_setAttributeValue 1 1

C_encrypt 1 1

Atos CardOS V4.3 C_logIn 1 1

C_sign 1 1

C_findObjects 1 1

C_getAttribute 1 1

C_setAttribuyeValue 1 1

Atos CardOS V4.4 C_logIn 1 1

C_sign 1 1

C_findObjects 1 1

C_getAttribute 1 1

C_setAttribuyeValue 1 1

Atos CardOS V5 C_logIn 1 1

C_sign 1 1

C_findObjects 1 1

C_getAttribute 1 1

C_setAttribuyeValue 1 1

RSA SecurID C_logIn 1 1

C_findObjects 1 1

C_getAttributeValue 1 1

C_sign 1 1

Safesite TCP ISV1 C_logIn 1 1

C_sign 0.5 1

C_setAttributeValue 1 1

Table 5.3: RSA PKCS#11 reverse-engineering evaluation results.

66Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

Smart-card Function #B.CC #R.CC #R.SFC #R.FC #R.Model

Aladdin eToken Pro C_logIn 13932 24 11 3 2

C_wrapKey 20 4 1 1 1

C_sign 20 8 1 1 1

C_findObjects 20 3 1 1 1

C_generateKey 86 9 2 1 1

C_getAttribute 400 6 1 1 1

C_encrypt 200 4 1 1 1

Athena ASEKey USB C_logIn 32000 12 4 2 2

C_sign 20 24 1 1 1

C_findObjects 400 3 1 1 1

C_generateKey 540×868 512 69 8 1

C_setAttributeValue 86 14 3 1 1

C_encrypt 20 3 4 2 1

Atos CardOS V4.3 C_logIn 1 1 1 1 1 1

C_sign 1 1 1 1 1

C_findObjects 1 1 1 1 1

C_getAttribute 1 1 1 1 1

C_setAttribuyeValue 1 1 1 1 1

Atos CardOS V4.4 C_logIn 1 1 1 1 1 1

C_sign 1 1 1 1 1

C_findObjects 1 1 1 1 1

C_getAttribute 1 1 1 1 1

C_setAttribuyeValue 1 1 1 1 1

Atos CardOS V5 C_logIn 1 1 1 1 1 1

C_sign 1 1 1 1 1

C_findObjects 1 1 1 1 1

C_getAttribute 1 1 1 1 1

C_setAttribuyeValue 1 1 1 1 1

RSA SecurID C_logIn 7396 65 39 21 1

C_findObjects 7396 6 1 1 1

C_getAttributeValue 54700816 3 1 1 1

C_sign 86 1 1 1 1

Safesite TCP ISV1 C_logIn 1 1 1 1 1

C_sign 12322 53 7 4 2

C_setAttributeValue 1 1 1 1 1

Table 5.4: Reduction in the number of alternative implementations during the analysis.

5.4. REPROVE Evaluation 67

continuously restricted until the final model is produced. To demonstrate REPROVE’s

effectiveness on narrowing-down, we have implemented a baseline algorithm that gen-

erates a search tree that consists of all possible mappings (including different interpre-

tations of each command) of the APDU trace, based on the category each command

belongs to. Table 5.4 presents the command combinations produced by the baseline

algorithm, termed B.CC. The terms R.CC, R.SBC and R.FC present REPROVE’s to-

tal command, sub-functionality and functionality combinations respectively. Model is

the number of final model(s) suggested by REPROVE for the specific cryptographic

function. At each successive step the number of alternative implementations is pro-

gressively reduced. As Table 5.4 demonstrates there are cases that B.CC is 1. That

happens when either most of the commands or all the commands of the trace are inter-

industry, which suggests an 1-1 mapping. However, in some cases the search space is

prohibitive, eg., in Athena ASEKey USB for the C_generateKey function there are

540×868 total command combinations. Even in such cases REPROVE narrows-down

the combinations to a single mapping.

Discussion.

REPROVE inferred at least a high-level model of the actual implementation for all

tested cards. In some cases the reverse-engineering outcome was more than one model,

each one capturing the same on-card operations but differed at the implementation

level. For example read data from binary files versus read data from records. We do

not consider this as a failure as REPROVE provided at least a high-level view of the

implementation.

However, this shows the variety of the implementation tactics in the different ven-

dors. For example, there does not exist a uniform way for handling key related data

or the particular authentication mechanisms to be used. Each analysed card had its

own unique implementation. The APDU layer offers a general purpose mechanism

for calling on-card operations which can be refined to the particular assumptions and

needs of each vendor. Being able to guarantee 1-1 mappings addresses the necessity

of incorporating feedback techniques to refine the reverse-engineering outcome. Al-

though, if the outcome suggests the same abstraction of different implementations,

manual inspection to identify the correct one is a trivial process.

68Chapter 5. REPROVE: Automatically Reverse-engineering the Application Protocol Data Layer

5.5 Summary

This chapter presented REPROVE, a system for automatically analysing the low-level

communication protocol of a smart-card by reasoning over a formal model of the ISO

7816 standard, regardless of the protocol’s implementation. We have used REPROVE

to successfully extract at least one model from each tested card and have shown that,

although analysing proprietary implementations is a combinatorial problem, it is pos-

sible to leverage background knowledge to effectively reduce the search space. To

the best of our knowledge, REPROVE is the first system that successfully reverse-

engineers proprietary APDU implementations. REPROVE’s results can provide the

necessary evidence to reason about the implementation of the protocol and discover

possible security flaws. Obtaining such evidence is especially crucial, as bad imple-

mentations may lead to fraud and/or disputes between card issuer and client. Detecting

such violations manually is not trivial: it requires either knowledge of the semantics

of the communication trace, access to the PKCS#11 library or/and to the card’s code.

REPROVE does not have such prerequisites.

Reverse-engineering PKCS#11 based APIs and discovering vulnerabilities is not a

new idea, e.g., Tookan [Bortolozzo et al., 2010] reverse-engineers a card’s API and dis-

covers security flaws with respect to the standard. On another perspective, Caml Crush

[Benadjila et al., 2014] acts as an attack filtering tool that sits between the PKCS#11

device and the calling application. Caml Crush considers attacks only at the API level

and not at the low-level communication. Targeting the implementation of PKCS#11 at

the low-level communication is a novel idea and suggests a new way of attacking the

standard by bypassing the API and talking directly to the device, thereby avoiding API-

level restrictions. Such attacks cannot be detected nor filtered by such tools, as they

address strictly the API level. REPROVE addresses PKCS#11 attacks at the APDU

layer. PKCS#11 defines specifications for secure implementations and applies to a

broad range of cards. These specifications have to be addressed at the communication

layer as well, e.g., in session identification.

As we present in the following chapter (Chapter 6) REPROVE’s analysis allowed

us to expose severe violations of the standard’s specifications. Reaching these findings

in the first place would not have been possible without reverse-engineering. We there-

fore believe our approach cuts across all layers of the PKCS#11 implementation and

provides a blueprint that can be applied to other models and protocols as well.

Chapter 6

Security Analysis on the

Reversed-Engineered Smart-cards

In the smart-card setting, establishing security and compliance with a standard is a

difficult task. A common perception is that by incorporating a well-defined and verified

standard the whole smart-card setting becomes secure. Proprietary implementations

that only focus on providing the required functionality in combination with a lack

of means to verify them commonly leads to unwanted behaviour, logical flaws and,

most importantly, to security vulnerabilities; it is common that an implementation that

provides more functionality than the desired one may be open attack to vectors that

exploit that extra feature.

A potential approach to verifying an implementation would be formal verification,

a widely used process of checking whether the desired specifications are met and prov-

ing correctness of the underlying algorithms with respect to the implemented standard.

This approach requires the existence of well-defined formal models that capture the

intended behaviour. By definition, a model is formal if it has unambiguous mathemati-

cally defined syntax and semantics. However, the lack of universally accepted transla-

tion of the PKCS#11 API code to the smart-card communication, results in proprietary

models.

69

70 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

6.1 PKCS#11: Threat Modelling for PKCS#11

Security Tokens

The most well-known modelling technique for verifying cryptographic protocols is the

Dolev-Yao model [Dolev and Yao, 1983] which proposed a way of modelling the pro-

tocols and the attacker to allow automated verification of the protocol’s security. The

original intention of the model was to target public-key protocol analysis against ac-

tive attackers that have complete control over the network and can i) act as a legitimate

user and obtain any message from the network, and/or ii) can initiate the protocol with

any party on the network. Dolev-Yao proposed the algebraic abstraction of the proto-

col by modelling bit strings as terms, cryptographic operations as functions over those

terms and the attacker as deduction rules on the abstract algebra. Although deducing

many details from the protocol leads to un-discoverable or false attacks, the Dolev-Yao

abstract modelling enhances the verification process.

The main goal of PKCS#11, as stated in the standard [RSA Security INC, 2004],

is to provide a secure API for hardware devices in which private objects are protected.

PKCS#11 provides a set of functions for managing private objects, which are charac-

terised by their attributes. The role of an object is described by its attributes, and any

operation on that object must comply with that role. For example, the sensitive and

unextractable attributes denote a protected object. Clulow [Clulow, 2003] was the first

to address security issues in PKCS#11 by introducing a set of attacks according to the

following generic API threats: i) a malicious security officer who abuses the authority

of his position and his access to the device and consequently to the user management

functions; ii) a malicious user who exploits his authorised access to the token; iii) a

malicious third party who gains access to the token through some other means. These

threats describe the capability of an attacker to initiate a PKCS#11 session, relay a

session with the device or have access to the user’s credentials (PIN).

Literature in the security analysis of APIs and particularly of PKCS#11, e.g.,

[Delaune et al., 2008, Bortolozzo et al., 2010, Delaune et al., 2010], uses the Dolev-

Yao modelling process to formally reason about security threats similar to the ones

introduced by Clulow. The attackers’ abilities are extended, from just modifying mes-

sages to also initiating API calls with those messages. In the PKCS#11 setting the

attacker is able to perform any cryptographic operation once he gains access to the

corresponding key [Centenaro et al., 2012]. The attacker can obtain access to that key

through testing different parameters via API calls. Under the Dolev-Yao analysis, the

6.1. PKCS#11: Threat Modelling for PKCS#11 Security Tokens 71

attacker can arbitrarily decompose and recompose messages, under the assumption that

he can only decrypt encrypted messages if he possess the key.

The security requirements of a smart-card based system and the potential threats

have long been an open-ended discussion, where the possible vulnerabilities vary de-

pending the utilised attacker model. [Schneier et al., 1999] is one of the first efforts

to address threat scenarios for smart-card based systems. The authors identify the at-

tacker’s goals based on his role within a system: the attacker is the terminal and targets

the card-holder, the attacker is the card-holder and targets the terminal, the attacker is

the card-holder and targets the data owner, the attacker is the card-holder and targets

the issuer, the attacker is the card-holder and targets the software manufacturer, the

attacker is the terminal and targets the issuer, the attacker is the issuer and targets the

card-holder and finally, the manufacturer is the attacker and targets the data owner. The

attacker may be legitimately given a specific role or he may obtain it with illegitimate

methods.

In [De Cock et al., 2005] the authors address the security issues that may arise in

smart-cards for web applications such as electronic identities. They categorise them

depending on the targeted participating party, as each party may provide an attack entry

point. They consider attacks that target the behaviour of the smart-card reader, malware

threats that take advantage of the smart-card driver to gain access to the system, attacks

against the Crypto API or the smart-card API to compromise authentication secrets,

attacks that exploit the user’s privileges on the system and Denial of Service (DoS)

and spoofing attacks against the web servers.

The security of PKCS#11 smart-cards has been only addressed in

[Bozzato et al., 2016], which defines a threat model that addresses the APDU layer.

The model defines the following optional attacker capabilities:

• full access to the application;

• full access to the application except from the authentication mechanism which

is controlled by a separate software/hardware;

• no access at all due to low-level restrictions.

The attack scenarios this model considers are: i) accessing the user PIN, ii) performing

cryptographic operations, iii) gaining access to sensitive keys. The adversary’s goals

and capabilities follow the same line as the ones defined in the PKCS#11 API threat

models; the difference is that the adversary controls the APDU communication instead

of the network communication.

72 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

Abstracting the APDU Threat Model Identifying possible threats at the low-

level communication can be perceived as a more complex procedure compared to

threats at the API or the network layer. As discussed in Chapter 5.2, we consider

each APDU session to be defined by three abstractions:

1. a PKCS#11 function;

2. a set of smart-card operations;

3. a communication session (APDU command).

Based on this abstraction, different vulnerabilities are addressed. For example, a

threat model that considers only PKCS#11 will examine violations of the standard,

faulty key management and exploitable execution of the cryptographic functions. A

threat model that considers the smart-card operations, independently of the higher-

level protocol that is implemented (i.e., PKCS#11), will address issues such as lack of

authentication mechanisms and exposure of protected data and operations. Finally, a

threat model for communication will not consider violations of the higher-level pro-

tocol (i.e., PKCS#11), nor possible exploits on smart-card operations; it will address

issues such as plaintext communication, leakage of secret and private data, and replay

attacks. The threats that are discussed in the following section are goal-driven with

respect to each abstraction of the APDU layer.

A threat model aims at identifying possible implementation exploits. Because of

the proprietary nature of the PKCS#11 APDU implementations, to address the at-

tacks that each smart-card is vulnerable to, requires an individual threat-model for

each smart-card. The goal of this section is to address possible attack scenarios and

patterns, rather than mitigations of the attacks. By doing so, we are able to identify

a set of vulnerable APDU parts that apply to every implementation. We introduce a

goal-oriented threat model that identifies the potential attack scenarios on PKCS#11

smart-cards. Our threat model is based on the attacker’s goals; depending on the goal

a different range of attack scenarios is identified. Finally, we narrow-down the vulner-

able parts to a specific set that can be used to mitigate the identified attack-scenarios.

6.1.1 Threat-Modelling Techniques

Threat-modelling is the process by which potential threats within a system are iden-

tified and assessed. The most commonly used techniques are the STRIDE (Spoofing,

Tampering, Repudiation, Information disclosure, Denial of service, Elevation of inter-

est), the PASTA (Process of Attack Simulation and Threat Analysis), the TRIKE and

6.1. PKCS#11: Threat Modelling for PKCS#11 Security Tokens 73

the VAST (Visual, Agile, and Simple Threat modelling) methodologies.

The STRIDE technique provides a threat classification scheme against the se-

curity properties of a system. The goal is to assess Confidentiality, Integrity and

Availability (CIA) along with Authorisation, Authentication and Non-Repudiation.

STRIDE [Swiderski and Snyder, 2004] modelling follows an attacker goal-driven ap-

proach for identifying the possible threats. PASTA [UcedaVelez and Morana, 2015]

aims at providing a modelling technique which aligns business objectives with tech-

nical requirements. PASTA incorporates business impact analysis with compliance

requirements in an attacker-centric approach to identify potential threats. The TRIKE

[Saitta et al., 2005] technique identifies threats following a risk-management approach.

The process begins with a requirements model, which identifies the parameters that the

system should satisfy, and assigns different levels of risk to each asset of the system.

The VAST technique classifies the threat models into application and operational/in-

frastructure. The application threat models (ATM) address vulnerabilities with regards

to the different features and use cases of an application. The operational threat models

(OTM) assess the security of the different independent, grouped and shared compo-

nents of a system.

To define a threat model for the APDU layer of PKCS#11 smart-cards, PASTA is

the least appropriate technique of the aforementioned as it is business-driven. TRIKE

modelling, being a risk-based approach, requires a well-defined model of the require-

ments that the APDU layer should satisfy. However, the security conditions that the

APDU layer should satisfy are obscure. The VAST technique is used to analyse the

potential threats in larger settings, whereas a system can be decomposed and anal-

ysed individually. To assess the possible vulnerabilities of the APDU layer we chose

the STRIDE threat classification. STRIDE being a goal-driven approach allows us to

identify different attack scenarios with respect to the attacker and the general proper-

ties that the smart-card setting should have: the information flow of the setting should

remain secret to an unauthorised entity; the exchanged messages have not been tam-

pered and come from the original source; the setting is always available and behaves

as expected by a legitimate user.

STRIDE is a popular goal-driven technique used to discover possible vulnerabili-

ties and weaknesses of a system. The STRIDE model is widely used for the security

analysis of software systems and to generate threat scenarios for automated testing. For

example in [Xu and Nygard, 2006] the authors employ the STRIDE categories to iden-

tify threats which they formalise and use for software verification. In [Xu et al., 2012]

74 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

the STRIDE modelling process is used for identifying possible vulnerabilities of the

Magento (a web-based shopping system) and FileZilla (an FTP server implementa-

tion); based on the identified vulnerabilities automated security tests are generated.

6.1.2 Attack Scenarios

The STRIDE model defines the following six categories of attacks:

1. Spoofing: the attacker impersonates a legitimate entity of the system.

2. Tampering with data: the attacker tampers with the data in an unauthorised way,

regardless of whether the data is persistent or changes at each session.

3. Repudiation: a legitimate user denies performing an action that the system ex-

pected by him, but there is no way to prove this denial.

4. Information disclosure: a legitimate user or an attacker gains unauthorised ac-

cess to data.

5. Denial of Service: deny a service to the remaining parties within a system.

6. Elevation of privilege: the attacker gains privileged access to a system which

otherwise needs special authorisation.

Our adversary model assumes perfect cryptography: we do not consider vulnera-

bilities on the implemented cryptographic algorithms, e.g., low-entropy key generation

and timing attacks on private key operations. Such vulnerabilities are out of the scope

of our work; our goal is to identify threats at the communication layer. The setting

we consider consists of the communication between the API and the smart-card, un-

der a single-user configuration. The communicating parties request operations from

each other and exchange data. We categorise the adversary’s goals to i) short-term:

the adversary targets a single session or requires access to the smart-card only once.,

ii) long-term: the adversary targets more than one session, or requires repeated access

to the token. Finally, as the attacks target only the communication between the API

and the smart-card, physical and API attacks are not discussed.

Spoofing The attacker can impersonate i) the API to the token, and/or ii) the token to

the API. The C_logIn function is responsible for validating an entity, based on a shared

secret. Depending on the implemented protocol, either only the API or both the API

6.1. PKCS#11: Threat Modelling for PKCS#11 Security Tokens 75

and the token have to authenticate using the shared secret: i) the API authenticates itself

to the token by proving the knowledge of a PIN; ii) the API and the token mutually

authenticate by proving the knowledge of a shared key. For an attacker to be able to

spoof either the API’s or the token’s identity, he needs access to the shared secret. The

following scenarios identify possible ways to achieve that.

S.1 The API-token authentication is PIN based and the PIN is sent in plaintext. The

token verifies the correctness of the PIN and notifies the API that the session may

continue as usual. i) If the adversary’s goals are short-term, the attacker is not

interested in possessing the PIN but in accessing a specific session. The adver-

sary has now got access to the desired session through the user’s authentication

and may proceed to pursuing his goal. ii) If the adversary’s goals are long-term,

he can replay the authentication protocol and initiate a session with the token.

S.2 The API-token are mutually authenticated based on a session key. i) If the at-

tacker’s goals are short-term, the attacker may proceed to pursue his goals after

the authentication protocol. ii) If the attacker’ goals are long-term he can only

access a session if the API has initiated.

Tampering with Data An attacker may alter, insert, delete or re-order the ex-

changed data. The attack scenarios that we identify are independent on the duration of

the adversary’s goals; the same strategy applies to both short-term and long-term goals.

For the smart-card setting we consider two categories of data that might be vulnerable

to tampering: static and dynamic.

1. Static data: the data that is stored in the smart card: the keys, the key attributes

and handles, the cryptographic algorithms and the certificates.

2. Dynamic data: the data that is transmitted during the communication. Dynamic

data refers to: i) the command, i.e., the message that is sent by the API; ii) the

response, i.e., the message that is sent by the token; iii) the message data, i.e.,

the data part of a command or a response.

T.1 The attacker tampers with the data parts of the commands with respect to the

executed operations:

i) during the C_generateKeyPair function which requests the generation of

the public/private key pair {sks,pks}, (the same applies for the C_generateKey

76 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

function) the adversary substitutes the attributes {att1,att2, ..attn} of the key sks

or ska respectively to {atta1,atta2, ..attan};

ii) during the C_encrypt function which requests the encryption a message m

with a symmetric key sk, the adversary substitutes m with ma;

iii) during the C_sign function which requests the signature of a message m with

the private key sk, the attacker substitutes m with ma;

iv) during the C_setAttributeValue function which requests the modification

of the attributes of a key, att1 7→ att2 the attacker alters att2 to atta so that the

token performs att1 7→ atta.

v) during the C_unwrapKey function which requests the unwrapping of a wrapped

key {sk}k, the attacker substitutes the wrapped key {sk}k with {ska}k.

T.2 The attacker tampers with the token’s responses with respect to the executed

functions:

i) during the C_encrypt function which requests the encryption of a message m

with the symmetric key sk, the adversary returns the computation {m}ska with

his own ska;

ii) during the C_decrypt function which requests the decryption of {m}sk, the

adversary substitutes the response m with ma.

iii) during the C_sign function which requests the signature the signature of the

message m, σsk, with the private key sk, the adversary substitutes the response

σsk 7→ σka where σka is the signature of the the message m with his own key ka.

T.3 The attacker initiates his own session with the token and tampers with the token’s

data. For example, by i) altering the attributes {att1,att2, ..,attn} of the key;

ii) altering the handle of a key; iii) deleting a key; iv) changing the PIN.

Repudiation Except for the key-exchange protocol, the token is the communicating

party that performs operations. If the operation is not supported, or the provided data

is incorrect, then the token will respond with an error code. Repudiation can occur

when the attacker returns the expected response to the API, e.g., the outcome of a

cryptographic function, even if the token has responded with an error.

R.3 Whenever the API requests a key the attacker returns his own key. Also, when-

ever the API requests the computation of a cryptographic function, the attacker

6.1. PKCS#11: Threat Modelling for PKCS#11 Security Tokens 77

returns an output computed with his own keys. For example, for the symmetric

encryption scheme the attacker has provided his own ska to the API. Whenever

the API requests the encryption of a message m with the symmetric key sk, the

attacker responds with {m}ska . Such attacks can occur on a single session (short-

term adversary goals), or in multiple session (long-term adversary goals).

Information Disclosure Information disclosure, or privacy loss, describes situa-

tions in which an adversary gains access to private data. Table 6.1 presents the data

that we have identified as private within the smart-card setting. If data that falls to

this category becomes exposed, it opens an attack vector to the corresponding directly

connected entity. For example, i) exposure of the PIN entails privacy loss for the user;

ii) exposure of the public keys might lead to linkability of encrypted and/or digitally

signed messages; iii) exposure of the private/secret keys poses a threat to the token’s

and consequently to the user’s privacy; iv) the attributes and the handle of a key are

private information about that key and their exposure may open an attack vector for the

key itself; v) the plaintext messages (before their encryption, after their decryption and

before being digitally signed) are private information of the user; vi) digital signatures

may be linked to a single user.

I.1 Information disclosure issues arise whenever an attacker has access to one or

more of the data that appears in Table 6.1, in a single (short-term adversary

goals) or multiple sessions (long-term adversary goals).

Data Entity

PIN user

public keys user

private/secret keys user, token

key attributes user, token

key handles user, token

message to be encrypted user

decrypted message user

message to be signed user

signed message user

Table 6.1: Categorisation of private data with respect to the corresponding entity.

78 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

Denial of Service An attacker may alter parts of the data that is exchanged during a

session, or parts of the data that is already stored in the token, in a way that causes the

token’s failure to execute specific operations or to produce an erroneous for the user

outcome. The data that, if tampered, may cause a Denial of Service (DoS) attack is the

one presented in Table 6.1. For example, given a private key sk1 with the corresponding

handle h1, a change to the key handle such that h1 7→ h2 whereas h2 is an invalid handle,

causes the token’s incapability of using sk1. DoS attacks are caused by tampering with

the data in a faulty way and may occur in a single or multiple sessions. This can be

achieved by:

i) tampering with the message flow: the attacker alters or deletes command/re-

sponses;

ii) tampering with the exchanged data: the attacker alters or deletes parts of the

exchanged data;

iii) tampering with the data stored in the token: the attacker alters or deletes parts

of data that is stored in the token and is essential for performing operations.

DoS attacks target:

i) the user’s ability to use the token: either by making it impossible for the user to

login, or making it impossible for the user to execute cryptographic functions;

ii) the applications that require as input the token’s computations.

We categorise the possible ways that an attacker can mount a DoS attack based

on the signature scenario presented in Example 6.1.1. The same scenarios apply to

simple cases e.g., the user authentication to the token, to more complex ones e.g., the

generation of a key pair.

Example 6.1.1. The user has requested the signature of m with the private key sk.

The key’s handle is handle h, and is assigned to the CKA_SENSITIVE and CKA_SIGN

attributes1. The verification key is pk. The signature is requested by the following se-

quence of commands:

{select(h)→ OK, sign(m)→ σsk },

where select(h) provides the handle of sk, f sign(m) requests the signature of m in

which the token responds with the corresponding signature σsk. The order of the com-

mands is essential for the token to be able to interpret the signature request correctly.

D.1 The adversary relays this communication by withholding all or some commands

to be sent to the token. For instance, in Example 6.1.1, the attacker will cause

1The keys that are used to sign messages must always have this attributes set to TRUE.

6.1. PKCS#11: Threat Modelling for PKCS#11 Security Tokens 79

a DoS attack by not letting select(h) to be sent to the token. Since no private

key has been defined for the signature, the token will abort the process and will

respond with an error code.

D.2 The adversary relays a session and tampers with the data that is exchanged, in a

way that the token cannot interpret. For instance, in Example 6.1.1 the attacker

performs the following substitution in the exchanged commands: h 7→ h′ where

h′ does not correspond to a valid key. Since no private key has been defined for

the signature, the token will abort the process and will respond with an error

code.

D.3 The adversary relays a session and tampers with the data that is exchanged in

a way that will cause the token to produce a faulty outcome. For instance, in

Example 6.1.1 the adversary relays the communication so that σsk is substituted

by σka (a signature with the adversary’s key ka). The attack takes effect when

the verification of σka with pk will fail.

D.4 The adversary has access to the token and changes the parts of the stored data in

a way that makes them inaccessible by specific operations. In Example 6.1.1 an

adversary can mount a DoS attack by setting CKA_SIGN to FALSE, as sk can no

longer be used for signatures.

Elevation of Privilege PKCS#11 defines two categories of users: the normal user

and the Security Officer (SO). The SO user can access only public objects; however, he

can perform privileged functions such as setting the user’s PIN. The SO user is logged-

in only during the initialisation of the token. Although not all tokens support SO users,

in case they do the SO user logs-into the token by using a PIN. The attack scenario

in which an attacker gains access to higher privileges than a normal user is described

in E.1 and only applies if the adversary has access to a particular session (short-term

adversary goals).

E.1 The adversary controls the communication channel during the token’s initialisa-

tion. The API sends the SO PIN in plaintext, which the attacker sniffs.

6.1.2.1 Identifying Attack Patterns

The threat model that we defined identifies the possible attack scenarios based on the

attacker’s capabilities and goals. Each attack may target different parts of the com-

80 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

munication i.e., PKCS#11 functions, token operations, particular parts of the commu-

nication protocol, and/or different categories of data e.g., exchanged during a session

or already stored in the token. Since the PKCS#11 low-level implementations do not

comply with a standard, the mitigation of an attack is dependent on the underlying

implementation of each smart-card. For example, consider an attack in which the ad-

versary extracts the private key sk. Given two tokens from different vendors, token1

with sk1 and token2 with sk2, the adversary extracts sk1 via the wrap-decrypt attack

and sk2 via a select-read attack. This example demonstrates that the adversary’s goal

may be reached through different steps. The attack vectors and their mitigation be-

ing so broad makes it difficult to reason about the security of tokens from different

vendors. Thus, identifying commonalities between the attacks is necessary.

We specify the communication parts that are exploitable to the aforementioned

attacks. We show that this knowledge is reduced to specific parts of the communication

and that vulnerability testing can be achieved without the need of creating individual

attack scenarios for each token. Table 6.2 summarises the attack categories introduced

in Section 6.1 and the communication parts that such attacks target.

PIN sk atti h m→{m}sk {m}sk {m}sk→m m→ σ σ f

S.1 3 7 7 7 7 7 7 7 7 7

S.2 3 7 7 7 7 7 7 7 7 7

T.1 3 3 3 3 3 7 7 3 7 7

T.2 7 7 7 7 3 3 7 3 7 7

T.3 3 3 3 3 7 7 7 7 7 7

R.3 3 3 3 3 7 3 7 7 3 3

I.1 3 3 3 3 3 7 3 3 3 3

D.1 7 7 7 7 7 7 7 7 7 3

D.2 3 7 3 3 7 7 3 7 7 7

D.3 7 7 7 3 3 7 3 3 7 7

D.4 3 7 3 3 7 7 7 7 7 7

E.1 3 7 7 7 7 7 7 7 7 7

Table 6.2: The identified attacks and the data parts they exploit.

As Table 6.2 illustrates, the vulnerable parts of the communication that we identi-

fied are the following: i) PIN: allows access to the token’s functionalities, ii) sensitive

key (private/secret) sk: allows the computation of the PKCS#11 functions outcomes,

6.2. Manual Analysis of the Reversed-Engineered Models 81

iii) key attribute(s) atti: allows the modification of a key, iv) key handle h: allows the

modification of the way a key is accessed, v) message to be encrypted m→{m}sk: al-

lows access to message m, vi) encrypted message {m}sk: allows access to an encrypted

message, vii) decrypted message {m}sk→m: allows access to the decryption result m,

viii) message to be signed m→ σ : allows access to message m, ix) signature σ : allows

access to σ , x) PKCS#11 functions f : allow access to PKCS#11 functions and to the

token’s operations. The set corresponds to the data that is compromised by the dis-

cussed attack scenarios. In the next section we discuss the security of the smart-cards

that we have previously reverse-engineered using REPROVE, with respect to these

communication parts.

6.2 Manual Analysis of the Reversed-Engineered

Models

We consider the threat model presented in Section 6.1 and in particular whether the

APDU implementation of each smart-card allows the data presented in Table 6.2 to

be exploited. We analyse each implementation, as modelled by REPROVE, based on

the three abstractions of the APDU layer: i) PKCS#11, ii) smart-card operations, and

iii) APDU communication. The tested PKCS#11 functions, as presented in Table 5.3,

are a mixture of sensitive and not sensitive operations that deal with private and secret

keys.

Atos CardOS : All three smart-cards share exactly the same implementation. The

authentication mechanism is PIN based and the PIN is sent in plaintext. The commu-

nication proceeds in plaintext as it is not protected by any security mechanism, such as

secure messaging. The inferred models did not suggest faulty management of the keys

such as leakage of the key’s value.

Aladdin eToken Pro : The implemented authentication mechanism follows a

challenge-response protocol based on a session key. The communication proceeds in

plaintext as it is not protected by any security mechanism, such as secure messaging.

The inferred models suggested a faulty key management on secret keys for the

C_generateKey and the C_wrapKey functions. The implementation of the

C_generateKey function suggests that the key is generated API side and then stored in

the card: the inferred executed operation is a single store_data. The implementation

of the C_wrapKey function suggests the value of the key to be wrapped is returned: the

82 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

inferred executed operation is a single read_data operation. Since secure messaging

is not implemented, the values of the keys are sent in plaintext.

Athena ASEKey USB : The implemented authentication mechanism follows a

challenge-response protocol based on a session key. The communication is protected

by the secure messaging protocol only when the C_generateKey and

C_generateKeyPair functions are executed. For the remaining functions the com-

munication proceeds in plaintext. The inferred models did not suggest faulty key man-

agement such as leakage of the key’s values.2

RSA SecurID USB : The implemented authentication mechanism follows a challenge-

response protocol based on a session key. The communication proceeds in plaintext as

it is not protected by any security mechanism, such as secure messaging. The inferred

models did not suggest a faulty key management.

Safesite TCP ISV1 : The implemented authentication mechanism is PIN based,

whereas the PIN is sent in plaintext. The communication proceeds in plaintext as it

is not protected by any security mechanism, such as secure messaging. The inferred

models did not suggest a faulty key management.

We summarise the vulnerabilities suggested by the inferred models, with respect to

the tested PKCS#11 functions and the data that can be exploited.

(i) PIN: The authentication protocol follows a PIN-based verification, whereas the

PIN is sent in plaintext. The implementation allows an attacker to mount the S.1, S.2,

S.3, T.1, T.3, I.1, D.2, D.4, E.1 attacks. The smart-cards that fall in this category are

the Atos CardOS V4.3, Atos CardOS V4.4, Atos CardOS V5 and Safesite TCP ISV1.

(ii) sk: The implementation allows access to a private/secret key and is conse-

quently vulnerable to the S.3, T.1, T.3, I.1 attacks. Aladdin eToken Pro exposes the

value of a secret key at the C_generateKey function and at the C_wrapKey function.

(iii) atti: The location and the values of the attributes of the tested private/secret

keys were exposed. Consequently, the implementation allows an attacker to mount

the S.3, T.1, T.3, I.1, D.2, D.4 attacks. In all smart-cards the file that stores a key’s

attributes are exposed. The attribute values of a key are also revealed.

(iv) h: The handle and where it is stored, of each tested key, were exposed. The

2In [Bozzato et al., 2016] the authors manually reverse-engineered the secure messaging protocol

and discovered the used session key. After decrypting the data parts of the communication, they con-

cluded that the secret key is generated API side and sent to the token. The analysis we present is

purely based on REPROVE’s inferred models. Although reverse-engineering the encrypted parts of

the communication provides a better understanding of the implementation, brute-forcing the different

implemented mechanisms it is not within the scope of our work.

6.3. Automated Extraction of State-Machines 83

implementation is prone to the S.3,T.1, T.3, I.1, D.2, D.3, D.4 attacks. In all smart-cards

the handle and the file that is stored is exposed.

(v) m→ {m}sk: The message to be encrypted is not protected by any security

mechanism. The implementation is prone to the T.1, T.2, I.1, D.3 attacks. All tested

smart-cards are vulnerable to those attacks.

(vi) m→ σ : The message to be signed is not protected by any security mechanism.

The implementation is prone to the T.1, T.2, I.1, D.3 attacks. All tested smart-cards fall

in this category.

(vii) σ : The signature is transmitted without being protected by a security mecha-

nism. The implementation is exposed to the S.3, I.1 attacks. All tested smart-cards fall

in this category.

(viii) f : The sensitive operations are only protected by the user’s PIN. The imple-

mentation allows an attacker to mount the S.3, I.1, D.1 attacks. Atos CardOS V4.3,

Atos CardOS V4.4, Atos CardOS V5 and Safesite TCP ISV1 fall in this category.

6.3 Automated Extraction of State-Machines

We present a semi-formal systematic analysis of the tokens with regards to their in-

ferred implementation, in which we extract the smart-card’s state machines via hard-

ware interaction. The goal is to obtain models that can indicate whether the analysed

implementation introduces exploitable security weaknesses.

Extracting meaningful models requires access to the smart-card as well as famil-

iarity with the communication semantics. Additionally, the analysis of the extracted

models requires knowledge of the on-card operations and how they can be initiated.

REPROVE is designed to provide such insight. We integrated REPROVE with the

SmartCardLearner system [Ruiter, 2015], which uses regular inference, also known as

automata learning, to extract state-machines of different implementations. We created

an ecosystem system that translates and analyses the PKCS#11 implementations at the

APDU layer.

Figure 6.1 presents how the two systems interact. Given a sniffed PKCS#11 func-

tion, REPROVE infers the semantics of the low-level communication, and the on-

card operations. When the reverse-engineering process finishes, REPROVE provides

a translated trace to SmartCardLearner and initiates the analysis. The result is a state

machine of the sniffed session with regards to REPROVE’s output.

84 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

API

low-level
communication

pkcs#11 function
call

REPROVE

SmartCardLearner

function traces

semantics

s2

s4

s1

s5
s3

command

response

Figure 6.1: Reprove and SmartCardLearner interaction.

SmartCardLearner In [Fides Aarts, 2013] the authors presented a technique for us-

ing machine learning in order to extract state machines of EMV smart-cards. Smart-

CardLearner, given a set of valid commands and their appropriate instantiations, sends

all possible combinations of the commands to the card to learn the different states

caused by the commands. The system is based on LearnLib [Raffelt et al., 2005] and

needs to be provided with a list of commands that will be tested against the smart-card.

As such, the exact set of the commands that the smart-card can interpret is needed.

The system concludes a state-machine by testing different sequences of commands

and examining the corresponding responses.

SmartCardLearner Input and Output To use SmartCardLearner an input alpha-

bet of the commands used by the card needs to be provided. The input is automatically

constructed by REPROVE, which also initiates the analysis process. An example input

used while testing the Atos Cardos V4.4 smart-card is presented in Figure 6.2. Each

command is described by a label, for example the label PERFORMSECOP identifies the

perform security operation command. Each command is provided with its exact

instantiations, i.e., the P1, P2, Lc, D, and Le fields. The label of each command must

be unique with regards to specific instantiations, in order to get a more detailed out-

put; if the same command appears with different instantiations, then a different label

is used. For example, as presented in Figure6.2, although SELECTa and SELECTb refer

to the same command (CLA=00, InS=00A4), separate labels are used to distinguish the

different instantiations.

6.3. Automated Extraction of State-Machines 85

SELECTa ; 0 0 A4080C0450154400

READa; 0 0 B20200EA

SELECTb ; 0 0 A4080C08501550724B025502

MANAGESECENVA;00220301

MANAGESECENVB;002201 B803840102

PERFORMSECOP;002 a808681000001f . . . 8 0

Figure 6.2: SmartCardLearner sample input for the Atos CardOS V4.4 smart-card.

The commands that are used for the testing have exactly the same form as they

appear on the sniffed traces. One could argue that the system should test different

instantiations of the commands. However, to identify the instantiations that are ac-

cepted by the card, fuzzing with all possible instantiations and reverse-engineering of

the structure and the meaning of the exchanged data is required. However, this pro-

cess requires manual inspection and interaction with the API as the semantics of each

command would still remain unknown; the only feedback of each instantiation would

either be a positive (9000) or an ERROR response. Such process is time consuming and

requires complex technical skills. An example of such process is discussed in Section

6.4.

SmartCardLearner tests the input commands by exhaustively trying all possible

permutations and outputs the corresponding state-machine. For example, given the

input presented in Table 6.2, SmardCardLearner outputs the state-machine presented

in Figure 6.3. The output consists of all different states that can be reached given the

input commands. A command may alter the state only if the following preconditions

are satisfied: i) the response should not contain an error code, i.e., should be 9000, and

ii) the command is a prerequisite to that state, i.e., it cannot be skipped.

Targeted Functions to Test The purpose of this work is to test whether the data

that appears in Table 6.2 can be exploited, i.e., whether an attacker can gain the nec-

essary knowledge to mount one or more of the attacks discussed in Section 6.1. The

complexity of the extracted state-machines depends on the SmartCardLearner’s input.

Testing all analysed PKCS#11 functions at a single run results in huge diagrams which

are difficult to manually process (an example of such a diagram is presented in Figure

B.1 in Appendix B), making it almost impossible to identify flaws. However, as previ-

ously discussed, to conclude on possible security vulnerabilities we only need to test

a subset of functions which provide an insight on i) the authentication secret, ii) the

86 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

0 PERFORMSECOP / SW:6a88READA / SW:6986MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

1

SELECTB / SW:9000

2

SELECTA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6a88READA / SW:6982MANAGESECENVA / SW:9000

SELECTA / SW:9000 3

MANAGESECENVB / SW:9000

SELECTB / SW:9000

PERFORMSECOP / SW:6a88SELECTA / SW:9000READA / SW:9000,Len:66MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

MANAGESECENVA / SW:9000

SELECTA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6982READA / SW:6982MANAGESECENVB / SW:9000

Figure 6.3: The Cardos 4.4 state-machine given the input presented in Table 6.2.

management of a private/secret key sk, iii) the protection mechanisms of the key at-

tributes att1,att2, ..,attn and handle h, iv) the protection mechanisms of the messages

m to be signed/decrypted/encrypted and the corresponding result, and v) the protection

mechanisms of the PKCS#11 functions f . Given a sniffed trace with known semantics,

the tests that are performed are the following:

• Session Replay test: replay a PKCS#11 session to check whether session han-

dles or other countermeasures are used that prevent replaying even if the user’s

6.3. Automated Extraction of State-Machines 87

credentials have been exposed. If the test succeeds, it proves that an attacker can

have access to the authentication secret and to the token’s functions f . Also, a

successful replay of a session that performs a cryptographic operation over some

message m, implies that m is sent in the clear; if m was encrypted with a session

key then replay would not be possible. Consequently, this test also proves that

the attacker can have access to m and the result of the cryptographic function

over m.

• Lack of Authentication test: replay a PKCS#11 session without including the

authentication part. A successful test proves proves that the PKCS#11 functions

are not protected. Therefore, the attacker can have access to the token’s functions

f (and consequently to m), and he is also considered to posses the necessary

authentication secret3.

• Alteration of Key Attributes test: given a key sk (private/secret) with handle

h and attributes att1,att2, ...,attn, initiate the corresponding PKCS#11 session

which alters attm ∈ att1,att2, ...,attn. If the test succeeds, it proves that the key

attributes and handle4 are not protected and can be randomly changed. Access to

attm ∈ att1,att2, ...,attn and h may ultimately provide access to the correspond-

ing key, sk, through key-separation and redirection attacks.

We only tested the C_logIn, the C_sign and C_setAttributeValue functions,

as they satisfy the aforementioned requirements and replaying them would not result

in a logical error5. We conducted five individual rounds, in the following order:

1. Test the C_logIn function.

2. Test the C_sign function, without authentication. If not successful then,

3. Test the C_sign function, with the C_logIn function.

4. Test the C_setAttributeValue, without authentication. If not successful then,

5. Test the C_setAttributeValue, with the C_logIn function.

Vulnerabilities Found The smart-cards from which we were able to extract mean-

ingful state-machines are Atos CardOS V4.3, Atos CardOS V4.4, Atos CardOS V5,

3An attacker posses the necessary credentials if he is able to perform cryptographic functions.
4A smart-card stores the handle as an attribute.
5For example, replaying the C_generateKey function would result to an error as that specific key

has already be generated.

88 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

Safesite TCP IS V1. Our tests failed for Aladdin eToken Pro because the implemen-

tation requires a successful authentication for the initiation of a new function. The

authentication mechanism being a challenge-response based on an agreed session key

prevents replaying a sniffed session. Finally we were not able to test RSA SecurID and

Athena ASEKey because the SmartCardLearner system cannot handle dongles (USB

smart-cards).

Atos Cardos. The implementation of the Cardos V4.3, Cardos V4.4 and Car-

dos V5 smart-cards is identical. As such, the extracted state-machines and the vul-

nerabilities found are the same for all cards. The extracted state-machines are pre-

sented in Appendix B.1. A higher resolution of the diagrams is available at http:

//bit.ly/2DIvSSo. The results confirm that blind-replay attacks are feasible to these

cards. Moreover, the results confirm that although the signature operation is protected

by the user’s PIN, the same session can be replayed and that the message to be signed,

m, as well as the signature σ are not protected. Finally, the extracted state-machine of

the C_setAttributeValue session indicates that changing a sensitive key’s attribute

can be performed without authentication. This is a new vulnerability that has not been

previously discovered. Table 6.3 summarises the results of our tests.

Function C_logIn Success

C_login PIN

C_sign 7 7

C_sign

C_setAttributeValue 7

Table 6.3: Results obtained from the Cardos V4.3, Cardos V4.4 and Cardos V5 state-

machines.

Safesite TCP IS V1. The extracted diagrams for the Safesite TCP IS V1 smart-

card are presented in Appendix B.2. Both the C_sign and C_setAttributeValue

functions require authentication. However, the implementation uses a trivial authen-

tication mechanism (PIN), which allows eavesdropping and blind replay attacks. Fi-

nally, the message to be signed, m, as well as the signature σ are not protected. It

is worth noting that the PIN verification can be achieved only if the dedicated file

a0000000180a0000016342 has been previously selected. Table 6.4 summarises the

result of the state-machines analysis.

6.4. Manual APDU-Layer Attacks 89

Function C_logIn Success

C_login PIN

C_sign 7 7

C_sign

C_setAttributeValue 7 7

C_setAttributeValue

Table 6.4: Results obtained from the Safesite TCP IS V1 state-machines.

6.4 Manual APDU-Layer Attacks

Automatically testing a smart-card for particular attacks, e.g., setting a sensitive key as

a non-sensitive by modifying the CKA_SENSITIVE attribute, requires the existence of a

unified agreement between the smart-card vendors with regard to the implementation

design. The purpose of the state-machines is to illustrate whether the smart-card is

vulnerable to an umbrella of insecurities which can be then exploited to mount particu-

lar attacks. [Bozzato et al., 2016] demonstrated how it is possible to change particular

attributes of a key although such action is forbidden by the PKCS#11 standard. In this

section we present how we were able to perform the same set of attacks for the Car-

dos 5. Additionally we introduce a novel APDU attack that has not been previously

discovered, the redirection of keys: tampering with the key’s handle so that it points

to another key. For example, assume a key sk1 with the corresponding handle h1; a

redirection attack would be effective if h1 points to sk2, where sk1 6= sk2. Such attack

is particular useful when the attacker already knows, or is able to extract, the value of

sk2. Consequently, whenever the user requests any cryptographic operation with the

key sk1, the operation is performed with sk2 which is controlled by the attacker.

Set of Attacks The attacks that we illustrate address the management of the key

attributes. PKCS#11 [RSA Security INC, 2004] specifies the set of the attributes that

can be set to a key, depending on the usage of the key. Given a sensitive key, our experi-

ments are concerned with the following attribute violations: i) setting the CKA_SENSITIVE

attribute from TRUE to FALSE, ii) setting the CKA_EXTRACTABLE attribute from FALSE

to TRUE, iii) setting the CKA_PRIVATE attribute from TRUE to FALSE iv) altering

the operations that the key can be used to e.g., setting the CKA_SIGN attribute to a

key that was not previously used for signing. Changing a key’s attribute in one of

the aforementioned ways is strictly forbidden by the API. However, as presented in

90 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

[Bozzato et al., 2016], we show that it is possible to change the attributes in that way

through the APDU layer.

In addition to the attribute violation, we introduce the redirection of keys. We

illustrate how an attacker can alter the handle of a sensitive key so that it points to a

different key. The attack scenario which such violation could be helpful is when the

attacker has imported his own key to the device. This can be achieved either from the

API in a legitimate way (by invoking the PKCS#11 function), or in a malicious way

either via the API or via the APDU layer (encrypt/unwrap attack).

Attacks in Practice We illustrate how we were able to perform the aforementioned

attacks in the CardOS V5 smart-card. We chose that particular version as CardOS V4.3

has been studied before in [Bozzato et al., 2016]. We show that the same set of attacks

is applicable to that version, and that the vendors have not fixed the issues discussed in

[Bozzato et al., 2016].

The CardOS smart-cards store the attributes and the handle of a key in a single

elementary file (EF) that consists of a single continuous sequence of records. For ex-

ample, for the sensitive key with label testkey and id 12, the key’s attributes can be

accessed by first selecting the corresponding EF file:

00 a4 08 04 04 50154400.

and then by reading the 12th record of that EF:

00 B2 0C 00 EA

The contents of that record are:

0C 3B 30 39 30 10 0C 07 74 65 73 74 6B 65 79 03 02 06 C0 04 01 01 30

0E 04 01 67 03 02 02 64 03 02 03 B8 02 01 0C A0 02 30 00 A1 11 30 0F

30 06 04 04 50 72 4B 0C 02 02 04 00 02 01 11

The attributes that we are studying are the ones defined by the standard as sticky on

i.e., once set to TRUE they cannot be set to FALSE (more details discussed in Chapter

4). The goal of the defined tests is to check whether the value of such attributes can be

changed at the APDU layer, while it is forbidden by the API. The attribute violations

that we test are:

i) Change the value from TRUE to FALSE of the CKA_SENSITIVE, CKA_ALWAYS_

SENSITIVE, and CKA_PRIVATE attributes, and change the value from FALSE to TRUE

of the CKA_EXTRACTABLE and CKA_NEVER_EXTRACTABLE attributes. According to

PKCS#11, these changes will lead to the exposure of the key’s value.

ii) Change the value from FALSE to TRUE (and vice versa) of the CKA_SIGN and

6.4. Manual APDU-Layer Attacks 91

attribute record
0C3B303930100C07746573746B6579030206C0040101300E

04017703020264030203B802010CA0023000A111300F3006

040450724B0C02020400020111

key count bytes 0C

key label bytes 746573746b6579

function bytes 0264

sensitive bytes 03B8

key handle bytes 50724B0C

Table 6.5: Representation of the testkey attributes.

CKA_DECRYPT attributes. Theoretically, this will enable/disable the usage of the corre-

sponding operations to use that key.

iii) Alter the handle of the key so that it points to a different one.

The representation of the attributes is not standard. To identify the correspondence

between the CKA attributes defined by PKCS#11 and their hexadecimal representation a

manual analysis is necessary: comparison between the representation of different keys

with the same attributes set to FALSE and to TRUE, as altering the attributes via API

calls and tracking the changes in the attribute records. The deduced representation

for the testkey key is presented in Table 6.5. The key count bytes hold the value of

the key generation counter, the key label bytes hold the label of the key, the function

bytes6 specify which functions are permitted with that key, the sensitive bytes7 specify

the sensitive, private and extractable attributes, and the key handle bytes specify the

handle of the key.

The attacks were achieved by

i) selecting the attribute file, e.g., 00A408040450154400EE

ii) updating the attributes record, e.g., 00DC0E00...

Results of the Attacks The conducted attacks indicate that the PKCS#11 attribute

policy is only enforced at the API layer. In all cases mounting the attribute violations

was successful, but it did not always result in a higher-level attack.

• Exposure of the key value. Theoretically, setting CKA_SENSITIVE, CKA_ALWAYS_

6Have to be decoded into binary.
7Have to be decoded into binary.

92 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

SENSITIVE and CKA_PRIVATE to FALSE as well as CKA_EXTRACTABLE and

CKA_NEVER_ EXTRACTABLE to TRUE results in the exposure of the key value.

This behaviour is not allowed by the Cardos API. However, the APDU layer

does not comply with these restrictions, as we were able to change the attributes

successfully. Table 6.6 summarises the attribute value changes (attack value)

with regards to the value that was set by the API (original value).

Although the attack values appear at the API, the attack yields no security threat

for the value of the key as it was not exposed. The attack takes effect on the

security parameters of the key: after setting CKA_PRIVATE to FALSE authenti-

cation was no longer required. Moreover, depending on the combinations of the

attributes, the key could no longer be used for sensitive operations such as the

C_sign function.

attribute original values attack1 attack2

CKA_SENSITIVE TRUE FALSE TRUE

CKA_ALWAYS_SENSITIVE TRUE FALSE TRUE

CKA_EXTRACTABLE FALSE TRUE FALSE

CKA_NEVER_EXTRACTABLE FALSE TRUE FALSE

CKA_PRIVATE TRUE FALSE FALSE

effect

key value 7 7 7

authentication protected 7 7

sensitive operations 7

Table 6.6: SENSITIVE, PRIVATE and EXTRACTABLE attribute value changes at the

APDU layer.

• Change of the key’s function role. The attributes of a key define the functions

that are allowed to operate with it. Although these attributes are not sticky on, the

standard suggests that the role of a key shall not change after its generation. The

CardOs APIs do enforce that policy by treating the CKA_SIGN and CKA_DECRYPT

attributes as sticky on. However, this restriction is not applied at the APDU

layer. Our attack changed these attributes and we successfully performed the

corresponding function. Table 6.7 summarises the results of the attacks.

6.5. Summary 93

attribute original template attack1 attack2 attack3

CKA_SIGN FALSE TRUE FALSE TRUE

CKA_DECRYPT FALSE TRUE TRUE FALSE

effect

C_sign 7 7

C_decrypt 7 7

Table 6.7: CKA_SIGN and CKA_DECRYPT attribute value changes at the APDU Layer.

• Redirection of keys. A key is referenced by its handle. According to the PKCS#11

standard, when a key is generated it is assigned a unique handle which must

never change until the key is destroyed. Also, the private key handles must only

be accessed if the user has previously logged-in. In the smart-card implemen-

tation, a key handle is implemented as a file path which points to the location

of that key, and is stored as a key attribute. At the APDU layer, accessing the

handle of the key is the same as accessing the key attributes. The CardOS smart-

cards keep a counter c which tracks the number of the generated keys. For each

freshly generated key, the card creates a new EF file. The path of that file is

formed by c and serves as the key handle. For example the sensitive key sk1,

which was the first to be generated, has c = 01 and is stored at 50724B01. The

sensitive key sk2, which was the second to be generated, has c = 2 and is stored

at at 50724B02 etc. Given any two sensitive keys, sk1 and sk2, stored in the card,

we have successfully changed the handle of sk1 to point to sk2. To evaluate the

success of the attack we compared the signatures of the same message, σ1 and

σ2, which were identical.

6.5 Summary

The APDU layer being complex and proprietary, in combination with the lack of well

defined security requirements, makes reasoning about the underlying implementation

a difficult task. The goal of this chapter is to provide a framework for addressing

security, independently of the implementation.

We presented the first documented attempt towards a goal-driven threat model for

the APDU layer with respect to PKCS#11. We addressed the security of that layer

considering three abstractions: 1. the PKCS#11 standard, in which we consider vul-

94 Chapter 6. Security Analysis on the Reversed-Engineered Smart-cards

nerabilities on the PKCS#11 specification as well as attacks that target the functions

and objects defined by the standard, 2. the token operations, in which we address at-

tacks that target the executed operations and the objects that are handled by the token,

regardless of the higher-level standard that is implemented, and 3. the communica-

tion, in which we identify attacks that target the communication itself regardless of the

nature of the participating parties (i.e., smart-card, API) and the higher-level standard

that is implemented. Not all attacks that target each abstraction overlap; by considering

each abstraction individually we are able to capture attacks that otherwise would have

been missed. We incorporated the STRIDE approach to model the potential threats as

it addresses the basic security principles, CIA, and provides a goal oriented modelling

technique. We narrowed-down the vulnerability search-space by identifying the core

parts of the system communication that the identified attack scenarios exploit.

Using as a guide the set of possible vulnerabilities, we manually analysed the un-

derlying security of the seven commercially available smart-cards that we had previ-

ously reverse-engineered with REPROVE. Additionally, we presented an ecosystem

in which REPROVE interacts with SmartCardLearner to automatically extract mean-

ingful state-machines of the APDU implementations. The extracted state-machines

suggested both new and previously identified vulnerabilities. Finally, we showcased

how it is possible to mount APDU attacks on the Atos CardOS smart-cards.

This chapter showed that proprietary implementations that are intentionally kept

secret usually hide flaws and threats. Without extracting the implementation mod-

els such threats would have otherwise been unknown. One of the most surprising

findings was to discover that even a respected smart-card vendor such as Gemalto8,

who is advertised for offering secure solutions, chose quick and cheap implementa-

tions over secure ones i.e., computing cryptographic operation on the API instead on

the card, and allowing secret key values to be exposed. Smart-card vendors adver-

tise tamper-resistant products, capable of performing fast and efficiently the intended

cryptographic operations. By not providing any implementation details, they request

from their customers to blindly trust them. But as we presented, an analysis on such

implementations indeed exposes major security issues. Execution of the intended cryp-

tography on the API defeats the whole purpose of cryptographic smart-cards.

In general, a smart-card should offer the guarantees of producing the expected

8The analysed smart-card was initially offered by Aladdin. When Aladdin was acquired by Gemalto

all products were offered by the later company. However as we show, Gemalto did not make any changes

on the smart-card implementations.

6.5. Summary 95

outcomes. Even if the key values are not exposed, an adversary can still control the

cryptographic computation outcome by tampering with the inputs and outputs. There-

fore, security boils down to not only protecting the keys but also the computational

mechanisms. To overcome such a problem, an implementation should:

1. Use an authentication mechanism that does not allow replaying; a PIN-only

authentication cannot provide such a property. Incorporating a session key-agreement

to the authentication can be one way around this.

2. Ensure that the transmitted data looks random to an adversary, to protect against

eavesdroping and tampering. This property can be provided through secure messaging

as specified in ISO 7816. Secure messaging allows different cryptographic operations

over the whole command/response or part of it e.g., encryption, MACing, hashes, dig-

ital signatures etc.

3. Enforce the PKCS#11 policies on the smart-cards; a secure PKCS#11 setting

should ensure that not only the the API but also the smart-card adhere to the standard’s

specifications. This can be achieved by hard-coding the policies to the card’s imple-

mentation. For example, to ensure that sensitive/secret keys are never exposed, the files

that contain such keys must not provide read permissions; to avoid tampering a key’s

attributes in a malicious way, an update operation on the binaries/records that contain

the corresponding attributes must not be permitted; to ensure that sensitive operations

are initiated by legit users the file path of the operations must require authenticationt

etc.

Part II

Bitcoin Smart-cards

97

Chapter 7

Introduction

Bitcoin is considered to be the most successful cryptocurrency to date, with its esti-

mated average daily transaction value (30th November 2017) over US$2,9 million. As

Bitcoin is becoming the most widely adopted digital currency and its number of users

rapidly grows, many businesses choose Bitcoin for their transactions in order to reap

the benefits of a larger user base. As more companies move into this space, each with

its own solution, there is substantial resource and research investment into the security

of the Bitcoin protocol and its transactions. Bitcoin is based on public key cryptog-

raphy, which requires users to digitally sign their payments. Each account is defined

by a private/public key pair, which is responsible for receiving and transferring funds.

Payments are made into addresses that correspond to a hash of the public key of the

recipient. Therefore, a salient aspect of Bitcoin is key management, as loss of the pri-

vate keys effectively means loss of the funds. Keys are managed by the user’s wallet,

with two primary types of wallet existing in practice: online and offline wallets. Online

wallets are the most accessible type of wallets and typically store the account’s keys on

a remote server. Remote storage, however, introduces trust and accessibility issues as

the keys are no longer under the account holder’s sole control and are only accessible

if the server storing them is accessible. As a result, offline wallets have emerged as

the strongest alternative of the two, at least for users that emphasise security. Even

the strongest offline wallets, however, have their own shortcomings. In this part of the

thesis we show how one can attack hardware-based offline wallets through reverse-

engineering their low-level communication protocol. At the same time, we suggest

ways to improve the said communication protocol to guard against such attacks.

Key Management and Bitcoin Wallets. The simplest approach to key management

is to store the keys on a local disk, a solution proven to be vulnerable to dedicated

99

100 Chapter 7. Introduction

malware [Litke and Stewart, 2014]. As a result, more generic methods have been in-

troduced. Online-hosted wallets attract a large number of Bitcoin users, as they are

offered as a service that is faster and safer than running the Bitcoin client locally. User

accounts are hosted in remote servers and accessed through third-party Web services;

wallets either store the keys also in remote servers, or locally in the user’s web client

(typically a web browser). The user accesses his wallet through web-based authenti-

cation mechanisms and all cryptographic operations take place server-side, typically

in the Cloud. Although this approach is popular among Bitcoin users, certain secu-

rity issues arise as the user’s private keys can be exploited by the host. For instance,

in 2013 the StrongCoin web-hosted wallet transferred an amount of bitcoins stored

in their servers back to a different service, OzCoin, as it was claimed to be stolen

[Bitcoinmagazine, 2013]. This transfer was done without any user consent. Online

wallets are also common targets for Distributed Denial of Service (DDoS) attacks, e.g.,

BitGo and blockchain.info in June 2016. Such examples raised concerns about the

reliability of such wallets and fueled the trend for cold storage, and in particular cryp-

tographic tokens. These devices not only store the keys securely, but also compute

cryptographic operations in a tamper-resistant environment. Thus, most major compa-

nies have integrated their software wallets with hardware devices.

Hardware wallets aim to offer a secure environment to store sensitive keys and sign

transactions. Hardware wallets typically implement their own API to communicate

with Bitcoin. When a user requests a payment, the wallet’s API creates the corre-

sponding raw Bitcoin transaction and sends it to the hardware to be signed. The hard-

ware signs the transaction and returns the signature and the corresponding public key

to the API, which will then push it to the network. The Bitcoin wallets currently on the

market incorporate either microcontrollers or smart-cards. As of February 2017, the

hardware wallet options suggested by bitcoin.org are the LEDGER wallets, which

are based on smart-cards, or the Trezor, Digital Bitbox and Keepkey wallets, which are

based on microcontrollers. All wallets offer two versions: (a) a plain USB dongle,

or (b) a USB device with an embedded screen for the user to verify the transaction.

Regardless of the version, the hardware device is responsible for managing all keys

and for signing the transactions. The trade-off between versions is in terms of security,

price and usability. While devices with an embedded screen provide more guarantees

that the transactions are not tampered with, they also delay transactions as they require

constant user interaction to verify every step; additionally, they are more expensive. As

of February 2016, the LEDGER HW1 wallet, a plain USB dongle, costs around US$20.

101

The Trezor wallet, which has a secure screen, costs around US$119.

Offering a tamper-resilient cryptographic memory is not enough on its own to guar-

antee against transaction attacks. Unauthorised access to the signing oracle of the wal-

let is not very different from plain access to the keys themselves, as both allow the

funds to be stolen. Processing a Bitcoin request involves communication between the

hardware wallet and third-party systems. The lack of a general threat model for the

Bitcoin wallets and well-defined specifications of that communication leads to propri-

etary implementations. As previous studies on different protocols have shown (e.g.,

[Bozzato et al., 2016, Gkaniatsou et al., 2015, De Koning Gans and de Ruiter, 2012]),

such practice often results in insecure low-level implementations that are prone to Man-

in-the-Middle (MitM) attacks.

In this part of the thesis we stress the importance of securing the low-level com-

munication of Bitcoin hardware wallets. We show that by taking advantage of that

communication layer it is possible to propagate the attacks directly to the underly-

ing Bitcoin transactions. The attacks we address are general and target any low-level

communication with hardware wallets. Applying them in practice is a matter of adapt-

ing them to the corresponding hardware implementation. The security of microcon-

trollers has been extensively examined, and a number of fault and side-channel attacks

have been found, e.g., [Kocher, 1996, Kocher et al., 1999, Biham and Shamir, 1997,

Genkin et al., 2014]. Therefore, we focus on smart-card based wallets, which provide

guarantees against physical and interdiction attacks and have traditionally been used

for key management and cryptographic operations. As of April 2017, LEDGER is the

only company offering smart-card solutions. The LEDGER wallets are EAL5+ certi-

fied and are advertised as the most secure, tamper-proof and trustworthy devices for

managing Bitcoin transactions.1 All LEDGER wallets implement key derivation based

on the Bitcoin Improvement Proposal 32 (BIP32) [Wuille, 2017]. LEDGER wallets are

either plain USB dongles or have an embedded screen. In both cases they communi-

cation with the API via the APDU layer.

We only consider client-side security rather than security in the Bitcoin network,

although a single wallet attack may escalate. General attacks on Bitcoin wallets that

could be applied to several users simultaneously are a cheap, easy and efficient way

to gain access to multiple accounts. The LEDGER wallet API is open-source2 and can

1See http://bit.ly/2rcBsuw, http://bit.ly/2B4Cg4f, http://bit.ly/2DmWKKG.
2https://github.com/LedgerHQ/ledger-wallet-chrome

102 Chapter 7. Introduction

be downloaded from Chrome Web Store3. As such, massively attacking the LEDGER

wallets can be achieved by a possible malware download from Chrome Web Store.

Contributions and Roadmap. To the best of our knowledge our work is the first to:

(i) stress the importance of securing Bitcoin transactions and preserving the account’s

privacy at the wallet level, (ii) consider a minimal threat model for hardware Bitcoin

wallets, and (iii) address the security issues originating in low-level communication of

Bitcoin devices, by showcasing practical attacks.

• Chapter 8 provides the background and the context of our work. We provide an

overview of the Bitcoin protocol and its specifications. We review the current

state-of-the-art at Bitcoin hardware wallets and show that the undeline protocol

they implement is the same. The idea of attacking Bitcoin hardware wallets is

novel and there does not exist in the literature work close to ours. However, we

discuss the major Bitcoin vulnerabilities that have been discovered.

• As, the LEDGER protocols are not publicly available, we reverse-engineered the

communication protocol and abstracted its implementations. Chapter 9 presents

the LEDGER protocols.

• In Chapter 10 we articulate a general purpose threat model for Bitcoin wallets

and show how we have successfully mounted the identified attacks on LEDGER

wallets. To that end, in Chapter 10 we propose a lightweight and easily adaptable

fix that requires minimal changes.

3https://chrome.google.com/webstore/detail/ledger-wallet-bitcoin/kkdpmhnladdopljabkgpacgpliggeeaf

Chapter 8

Background

Bitcoin is a Peer-to-Peer (P2P) payment system that utilises public-key cryptography

and consists of addresses, transactions and blocks. Transactions define the operations

that combine the transferred funds and blocks keep records of the validated transac-

tions. Transactions are publicly available as they are broadcast through the network to

all Bitcoin nodes. A node is any computer that connects to the Bitcoin network. When

a transaction is sent to the network, it will be put into a block to be verified by the

miners. The miners are individuals who are responsible for processing the transactions

by computing a proof of work (POW), which consists of solving a hard cryptographic

problem, to be able to add a new valid block to the public ledger. Once a transaction is

successfully verified it is hashed1 and stored in a public ledger, the block chain. Then,

the funds that this transaction transfers can be spent on a new transaction, creating a

link between them.

Transactions: An account is defined by one or more public/private key ECDSA

keypairs. The 160-bit hash of each public key corresponds to a unique address in

which the account may accept funds. For an account to spend a specific amount of

Bitcoins the addresses belonging to that account must have at least an equal amount of

funds. In each transaction the available funds, represented by inputs, and the payment

details, represented by outputs, are specified. Each transaction is uniquely identified

by txid, a unique id. txid is the double-SHA256 hash of the entire transaction block.

A transaction may have multiple inputs and outputs. The input funds belonging to a

public key can only be spent by a proof of ownership: the transaction must be signed

with the corresponding private key. The signature and the public key are then sent to

the network for verification. Upon successful validation the funds are transferred to

1That hash corresponds to a unique transactions identifier (txid).

103

104 Chapter 8. Background

IN OUT

ScriptSig

Transaction

scriptPubKey
amount

previous txid

IN OUT

ScriptSig

Transaction

scriptPubKey
amount

previous txid
scriptPubKey

amount

hash2562(Transaction)hash2562(Transaction) hash2562(Transaction)hash2562(Transaction)

Figure 8.1: Transactions on the public ledger: the outputs of a past transaction are

the inputs of a future one. A transactions is referenced by the corresponding txid

which is the double SHA256 hash of the whole transaction block. The output of a

transaction can be spent only by the owner of the keypair whose public key is defined

at the ScriptPubKey field. The spender proves the ownership by signing a payment

using the corresponding private key and including the payment to the ScripSig field.

the destination addresses specified at the outputs.

More formally, let Bob be a user with a private/public key pair (skb,pkb) and xb

be the address of that user, where xb = hash(pkb); let yx = hash(tx) be the hash of

transaction tx that transferred x funds to the xb address (inputs). The transaction that

transfers x funds to Alice’s address za (outputs) is the signature σskb of yb, x and za

using private key skb: sign(yb,x,za)skb → σskb .

Once a transaction is formed, it is broadcast to the network along with the corre-

sponding public key where it will be validated by the miners and then added to the

public ledger. The public ledger, also known as block chain, consists of chains of

blocks that describe past transactions. The purpose of the block chain is to confirm

transactions that have taken place, to the rest of the network, and to offer a way for

distinguishing legitimate transactions. A transaction is added to the block chain if:

(a) the outputs of the transaction do not exceed the inputs, and (b) the verification of

the signature, is successful. The miners that are responsible for that process are paid

a fee for each transaction processing: the amount remaining when the output value

is subtracted from the input constitutes the transaction fees. By default Bitcoin uses

floating fees and depends on the transaction size.

Bitcoin Transactions in Practice Transactions in Bitcoin are expressed in a stack-

based language known as the Bitcoin raw protocol or the Script language, which de-

fines the conditions of the inputs and the outputs. The language has 80 different single-

byte opcodes and includes operators to express operations such as arithmetic, bitwise,

105

string conditionals and stack manipulation. It also includes cryptographic operations

such as SHA256 for hashing and CHECKSIG for verifying the signature of a message

with a public key. According to [The Bitcoin Wiki, 2014b], a transaction is defined in

blocks of bytes, in which the inputs and the outputs are defined. In each block the in-

puts of that transaction and the corresponding outputs are defined following a specific

structure. Table 8.1 presents the specific structure of a transaction block and the abbre-

viations that we will use in the next chapters. Apart from the more technical fields that

a transaction block should define e.g., the block format version or the block lock time

bt, the core of the block consists of 1. txid which defines from which transaction the

input funds come from, 2. scriptSig which is the signature of the current payment with

txid and consequently proof of ownership, and 3. addrp which defines the destination

of the outputs.

The way the transaction blocks are structured presents how the transactions are

connected in the public ledger, as shown in Figure 8.1. Including the txid of the input

funds imposes a chronological order of the transaction. The outputs of a transaction

will be the inputs of another transaction which has ownership over scriptPubKey and

proves that ownership with scriptSig.

Transactions including Segregated Witness: The standard structure of a transaction

block, as presented in Table 8.1, does not include the amount of the input funds; only

the txid of the previous transaction is provided and the signature with the key which

unlocks the outputs of txid. When the new transaction is sent to the network for confir-

mation, the miners will unlock all funds in txid that belong to the signature verification

regardless of what is currently spent. If a payment only uses part of these funds, then

the wallet creates a new public key in which the remaining balance minus the trans-

action fees are sent. Thereby, it is essential for the wallet to have access to the inputs

amount even if it is not declared within a transaction block.

The limitation of storage capabilities in hardware wallets makes it impossible for

them to save data about previous transactions and, consequently, keep track of the

funds flow. Attacks on the input funds are limited, as the miners check the amount that

it is unlocked from the previous blocks. However, lack of knowledge of the amount

of the input funds creates space for the already known Attack 1 in which the attacker

decreases the declared amount of the input funds.2

Attack 1. Given a previous transaction txidi which transfers amountp to addrp, the

2http://bit.ly/2C0T1hJ

106 Chapter 8. Background

v: version 4 bytes

inputs ic: input count 1 byte

txidi: previous transaction id (hash) variable length

pc: previous output index 4 bytes

sigL: script signature length 1 byte

scriptSig: script signature variable length

s: sequence 4 bytes

outputs oc: output count 1 byte

amountt: value 8 bytes

l: script length 1 byte

addrp: scriptPubKey variable length

bt: block lock time 4 bytes

Table 8.1: The structure of a transaction block. v is a fixed constant that defines the

block format version. ic is a counter for the inputs. txidi is the reference to the previous

transaction whose outputs will fund the current transaction. pc is a reference to the

outputs of txidi that will be used. sigL is the length of the signature. scriptSig is the

signature of the current transaction with the private key that correspond to the previous

transaction outputs. s is a fixed constant that defines the end of the inputs declaration.

oc is a counter for the outputs of the current transaction. amountt corresponds to the

amount to be spent and l to the length of the destination public key. addrp is the public

key in which amountt will be sent.

owner of addrp proceeds to a payment amount′p with fees f . The wallet calculates

the remaining balance = amountp− (amount′p+ f) and transfers balance to a new key

belonging to that account. By changing the original input funds to amounta so that

amountp > amounta the wallet will calculate the wrong balance, balancea according

to amounta. When that transaction is received by a miner for validation, the original

funds, amountp from txid will be unlocked and the miner will check the outputs based

on amountp. The difference will then be kept by the miner leading to an inflated fee.

One way for hardware wallets to overcome this issue would be to recalculate the

previous transaction’s hash txid, by receiving the entire transaction block, and then

compare it with the one sent to be included during the construction of the current

transaction. If the input funds are tampered, then the transaction hash will not be the

same and the hardware will abort the process. Although this approach seems to offer a

107

good solution, it is not optimal when the hardware has to deal with a large number of

inputs, as it will cause great delays to the payment process.

Segregated Witness [Bitcoin, 2016] (SegWit) solves this problem and is currently

the approach adopted by all hardware wallets as it allows hardware wallets to avoid

that time consuming verification. With SegWit the hardware no longer requires to

process the whole previous block, as transactions now include an extra field in which

the amount of the inputs is specified. The hardware wallets first hash the inputs and

then sign that hash. As the amount is now included in the signature, Attack 1 is not

possible.

LEDGER incorporates a proprietary SegWit by enforcing the API to send a detailed

description of the inputs before the payment processing: the API forms a pseudo trans-

action block which only has the inputs, and sends it to the dongle, through a set of

trusted_input commands. The dongle parses the block (bytewise concatenation ⊕)

and returns its signature Sigi. When the API creates the actual transaction each Sigi

defines the corresponding input.

Importance of Privacy in Bitcoin. As in all payment systems, practical privacy is an

important aspect in Bitcoin [Nakamoto, 2008]. Bitcoin is a transparent payment sys-

tem that enforces all transactions to be permanently posted on a shared public ledger,

on which the entire Bitcoin network relies. Blockchain offers a decentralised ledger

making it possible to facilitate transactions without the need of trusted third parties. In

such a system, strong privacy is difficult to preserve; the transactions and the balance

of any address are publicly available. However, using pseudonyms to determine the ac-

count details is one of the ways that Bitcoin may provide unlinkability. Additionally,

Bitcoin Core claims3 to provide strong privacy for the sent transactions by relaying all

transactions that are sent to the network. As such, tracking the transactions becomes

extremely hard. Perfect privacy for received transactions is another aspect that Bitcoin

Core addresses, claiming to give information theoretic (perfect) privacy4.

Apart from the privacy preserving protection actions taken in Bitcoin Core, the

final outcome boils down to the wallet implementation. Avoiding reuse of the same

address for different transactions has been suggested as a good policy for keeping the

account unlinkable5. Even if an attacker knows a set of addresses and their balance,

he cannot link them to the same account. Such a tactic has been adopted by almost all

3www.bitcoin.org/en/bitcoin-core/features/privacy
4The privacy cannot be broken even if the attacker has unlimited computing power
5https://bitcoin.org/en/protect-your-privacy

108 Chapter 8. Background

available wallets. Each time the account needs a receive address, the wallet generates

a fresh public key pki and obtains the address xi = hash(pki).

To conclude, although Bitcoin is a transparent system, privacy preserving measures

are taken both at the network and at the wallet layers. The core idea for keeping an

account unlinkable is using distinct addresses for each transaction, implying that the

account’s public keys should remain private. As such, the wallet must not leak any

information regarding the public keys it manages.

8.1 Bitcoin Wallets

Hardware wallets aim at eliminating the API access to the wallet’s keys and offer an

isolated environment for the cryptographic operations. The main responsibilities of

such devices are the wallet’s key management and the transaction signatures. Cur-

rently, hardware wallets do not have access to the network; thus, the transactions are

pushed by their APIs. When a device is requested to sign a transaction, in addition

to the outputs it also requires access to the available inputs. Based on the Bitcoin

protocol the inputs are specified according to the previous transactions whose outputs

transferred funds to the keys that belong to the wallet. However, hardware wallets can-

not save them internally due to memory limitations. Thus, a communication with the

API is required each time the hardware wallet is requested to process a transaction in

which the inputs, outputs and the transaction signature are exchanged. Currently, apart

from the Digital BitBox wallet, none of the wallets use an encrypted channel for that

communication.6

A generic protocol that captures the process of a payment processing in hardware

wallets is depicted in Figure 8.2. The API broadcasts the input funds to the device

(tx_input) and the payment details (tx_output) and requests the transaction signa-

ture (sign_tx). Then, if the device supports a second factor verification mechanism

for the payment, the device will sign the transaction only after the user’s approval. If

the device does not support such a mechanism, it will sign it immediately.

Although not all devices include a verification of the payment by the user, those

that do adopt a different mechanism depending on the hardware specifications. The

plain USB stick wallets that do offer a second factor verification usually incorporate

a security card that is used to verify the payment address, or require pairing with a

mobile application from which the user approves the payment. The wallets with an

6As stated on each wallet’s website.

8.1. Bitcoin Wallets 109

seed,skp ,pinuser

Hardware Wallet API

request new transaction()

tx input

tx output

sign tx

user: payment verification

IF success Sigtx 7→
sing({tx input, tx ouput},skp)
RES 7→ Sigtx
ELSE abort

RES

Figure 8.2: General payment protocol for hardware wallets

embedded screen usually present the payment data to the user and expect the user to

verify it directly to the device e.g., by pressing a button.

As of February 2017, the hardware wallet options suggested by bitcoin.org are

the three LEDGER wallets, which are based on smart-cards; or Trezor, Digital Bitbox

and Keepkey, which are based on microcontrollers. All wallets offer two versions:

(a) a plain USB dongle, or (b) a USB Human Interface Device (HID) with an em-

bedded screen for the user to verify and confirm the transaction. All these are USB

devices that implement a Hierarchical Deterministic Wallet. Table 8.2 summarises the

characteristics of each wallet. Depending on the secure element a wallet incorporates,

it follows a different communication protocol. Currently, apart from Digital BitBox,

none of the wallets uses a secure communication channel.

wallet secure element HID payment verification channel encrypted channel

LEDGER HW.1 smart card × × APDU ×
LEDGER Nano smart card × APDU ×

LEDGER Nano S smart card APDU ×
Trezor microcontroller protocol buffer ×
KeepKey microcontroller protocol buffer ×

Digital BitBox microcontroller × HID Api

Table 8.2: Bitcoin hardware wallets characteristics

110 Chapter 8. Background

USB HID microcontroller Wallets. USB Human Interface Devices (USB HID class)

are USB wallets with interfaces, such as a screen and buttons, to allow the user inter-

action directly with the device. These devices have an embedded microcontroller that

performs the wallet operations. The companies that offer such wallets are Trezor,

Keepkey and Digital BitBox. The API-dongle communication is bidirectional, and

is achieved via the protocol buffers [Google,] mechanism which aims at serialising

structured data. The Trezor wallets use a binary message format consisting of a header

followed by a detailed section. For example, the API will send the input details by

sending the message:

{ Message:TxAck

tx_=" "

bin_outputs_count: " "

inputs_count:" "

prev_hash: " "

prev_index: " "

script_type: " "

script_sig: " "

outputs_cnt: " "

outputs_count: " "

lock_time: " "

version: " " }

following the structure as presented in Table 8.1. The low-level payment protocol for

the Trezor and KeepKey devices is depicted in Figure 8.3 and proceeds in an unen-

crypted channel while the communication in Digital BitBox is encrypted. All three

devices require the user’s confirmation to proceed to the signature.

Smart-Card Wallets. Smart-card wallets are plain USB or USB HID (Human In-

terface Devices) devices that have an embedded microprocessor. Currently, the only

smart-card wallets are the Ledger HW1 and Ledger Nano which are plain USB and

Ledger Nano S which is USB HID. The API-dongle communication is achieved through

the APDU layer and consists of command-response pairs. For example, the API will

send the outputs of a transaction, with the following command:

Cla Ins P1 P2 Lc Data

e0 46 02 00 48 address, ammount, fees

A response consists of an optional body, the response data, and a compulsory 2-byte

trailer of bytes SW1 and SW2 encoding the expected status of the card after processing

8.2. Hierarchical Deterministic Wallet 111

seed,skp

Hardware Wallet API

sign tx

request input

tx input

inputHash 7→ hash(tx input)

request output

tx output

outputHash 7→ hash(tx input)

user: payment verification

IF success Sigtx 7→
sing({tx input, tx ouput},skp)
RES 7→ Sigtx
ELSE abort

RES

Figure 8.3: Payment protocol for trezor and KeepKey

the command).

8.2 Hierarchical Deterministic Wallet

Bitcoin does not follow a specific protocol to derive keys. There are different ap-

proaches, with the simplest one being each account holding a single {sk,pk} pair

and consequently a single receive address. Such practice is not strongly advised as

reusing the same address causes account linkability problems. Other practices involve

a password-based key derivation, e.g., [RSA Laboratories, 2012] proposes using the

PBKDF2 function to derive a single keypair; a new password has to be used for an-

other pair to be generated. Currently all hardware wallets implement a Hierarchical

Deterministic (HD) wallet of BIP32, which generates a new key-pair for each address

request [Wuille, 2017].

HD wallets derive fresh private keys from a common master key. Such a feature

makes it easier to back up the wallet as the user only needs the master private key. For

the creation of a new wallet a 128- to 512-bit seed s, a sequence of random numbers,

is generated. Then, a checksum of that sequence is created by taking the first bits of its

112 Chapter 8. Background

SHA256 hash and adding it to the end of the random sequence. The result is divided

into sections of 11 bits which will be the indexes of a 2048 predefined dictionary of

words, and a mnemonic phrase of 12 to 24 words is generated. All keys that will

be generated later will be derived from s, making that seed or the mnemonic phrase

enough for a user to restore the wallet. The master private key skm is generated by a

function skm = g(hash(s)) where g is a function that splits hash(s) into two 32-byte

sequences: L being the master private key skm and R being the master chain node.

Given a master key pair (skm,pkm), an HD wallet generates and maintains a se-

quence of child private ski,sk2, ... and public pk1,pk2, .. keys from the master private

key skm. A key ski is derived by the functions

ski = skm +hash(i,pkm) (mod N),

pki = pkm +hash(i,pkm)N or equally skiN

where i denotes the index of the key, and hash is the HMAC-SHA512 function. Child

public keys pki can be derived only by knowing the master public key pkm and the

index i.

Apart from generating fresh keys for each receive and change address, HD wallets

are particularly attractive to large organisations due to the hierarchy of keys offered:

each department can have its own key-pair, which is the child of a single root.

Limitations of HD Wallets. HD wallets allow the generation of child keys from their

parent keys: a set of child public keys pki+1,pki+2, .. can be generated by their parent

key pki, a set of child sensitive keys ski+1,ski+2, .. can be generated by their parent ski.

Although this approach is practical for minimising access to the account’s sensitive

keys, or the management of different pairs by different wallets, the key dependence

can cause security implications.

Access to the parent key implies access to all child keys. Having access to pki

enables the generation of all child keys and consequently the ability to track the flow

of the funds of a given account. The same vulnerability applies to the sensitive keys,

as knowledge of the parent key ski enables the generation of the whole sub-tree of

sensitive keys.

A more sophisticated, but known (also stated in [Wuille, 2017]) vulnerability of

HD wallets is the extraction of a parent private key ski. If an attacker has access to the

index of that key i, the corresponding public key pki and a random child private key skj,

where i < j, the parent private key can be retrieved by applying ski = skj−hash(j,pki)

(mode n). Thus, leakage of any of the child private keys also compromises the master

private key.

8.3. Related Work 113

Limitations of HD Hardware wallets. Whether or not a hardware wallet is vulnera-

ble to the aforementioned limitations of HD wallets, boils down to the security of their

key management. Although none of the devices exposes directly a private key, almost

all the devices expose their public keys. Table 8.3 presents how hardware wallets with

known specifications,7 manage their public keys. Although in all cases pkm is gener-

ated on the device, it is then sent to the API in plaintext. In all wallets the receiving

keys pki are generated API-side.

Transmission of pkm in the clear makes the wallets vulnerable to eavesdropping

and thereby to privacy loss. Such behaviour is vulnerable to sniffing attacks, exposing

the wallet vulnerable to privacy loss and linkability issues: possession of pkm entitles

possession of all public keys that belong to a wallet, making all the wallet’s trans-

actions traceable and linkable to that specific wallet. Furthermore, the public keys

that correspond to the receiving address are generated in all wallets API-side meaning

that the devices only manage the corresponding private keys. Although this behaviour

seems reasonable, APIs do not offer a tamper resistant environment, making the wal-

lets vulnerable to an injection attack: the attacker imports his own public keys so that

any future receiving funds are sent to his account.

wallet pkm generation pkm sent to API pki generation

LEDGER HW.1 on-device plaintex API

LEDGER Nano on-device plaintex API

LEDGER Nano S on-device plaintex API

Trezor on-device plaintex API

KeepKey on-device plaintex API

Table 8.3: Public-key management in hardware wallets.

8.3 Related Work

Previous work on attacking Bitcoin has exposed malleability attacks, where the the

adversary forces the victims to generate a transaction to an address controlled by him.

When a victim broadcasts the transaction to the network, the adversary obtains a copy

of that transaction that he modifies by tampering the signature without invalidating

it. That modification results in a different transaction identifier (hash). The adversary

7We only show the devices that we reverse-engineered along with the ones whose specifications are

known. The specifications of DigitalBitbox are not publicly available.

114 Chapter 8. Background

then broadcasts the tampered transaction to the network, resulting in the same trans-

action being in the network under two different hashes. As a single transaction can

only be confirmed once, only one of these two transactions will be included in a block

and the other will be ignored. The attack is successful if the attacker’s modified ver-

sion is accepted. Although this attack is not new, it was given great attention after

the malleability attack in MtGox [Decker and Wattenhofer, 2014], the first and one of

the largest Bitcoin exchanges, in 2014. Since then different malleability attacks and

solutions have been proposed, e.g., [Wuille, 2014, Decker and Wattenhofer, 2014].

Double spending is a class of attacks on Bitcoin transactions, where the user spends

the same coin twice. The feasibility of double spending attacks by using hashrate-

based attack models was studied in [Nakamoto, 2008, Rosenfeld, 2014]. It was shown

that the attack is successful whenever the number of confirmations of a dishonest trans-

action is greater than the number of confirmations of the honest one. The work pre-

sented in [Karame et al., 2012] proposes the exploitation of non-confirmed transac-

tions to implement double spending attacks on fast payments, and [Rosenfeld, 2014]

shows how such attacks coupled with high computational resources can have a higher

success rate.

Bitcoin provides a limited form of unlinkability as users can generate new ad-

dresses at any time. Though privacy is a concern of the original specification

[Nakamoto, 2008] the public nature of Bitcoin renders strong privacy difficult to achieve.

For instance, by tracing the flow of coins it is possible to identify their owner

[Herrera-Joancomartí, 2014]. Likewise, in [Androulaki et al., 2013] the authors study

how transaction behaviour can be linked with a single account.

The aforementioned attacks target the network layer and assume that the wallets

processing the transactions are trustworthy. As many malware attacks have gained pub-

licity e.g., [Tribbleagency.com, 2012, Poulsen, 2011, Huang et al., 2014] or the mal-

ware attack on the Bitstamp wallet that costed US$5M [Higgins, 2015], the importance

of protecting Bitcoin wallets has been repeatedly stressed [The Bitcoin Wiki, 2014a].

In [Barber et al., 2012] the authors propose as a solution to malware a super-wallet

in which the funds are split across multiple devices using cryptographic threshold

techniques. The importance of ensuring that a wallet is secure is also presented in

[Turuani et al., 2016] where the authors formally analyse the authentication proper-

ties of the Electrum wallet. The authors of [Lim et al., 2014] and [Bamert et al., 2014]

argue that Bitcoin wallets be tamper-resistant and propose cryptographic tokens as a

countermeasure to malware attacks. Our work exploits Bitcoin transactions at the wal-

8.3. Related Work 115

let level. Instead of attacking the Bitcoin raw protocol directly, we show the importance

of the protocols connected to the Bitcoin implementations. Attacking such protocols

overrides any security restrictions that expensive hardware additions may add, and can

be equally harmful to attacking the Bitcoin raw protocol itself.

Chapter 9

Extracted Ledger Wallet

Protocols

The low-level communication layer of LEDGER wallets, defined by the APDU layer, is

crafted to implement the Bitcoin raw protocol. The communication consists of a series

of raw hexadecimal command-response pairs between the API and the hardware: the

API retrieves data or requests the hardware to execute a specific operation via APDU

commands; whereas the hardware responds to that request via APDU responses. For

example, in the following sequence:

command e04800001f058000002c8000000080000000000000000000000c04040606020000

000001

response 3044022033128d0d576487e2e0c5892c0915564a6a5f119e698c033262d6605279

43a16d022009caa037703d9a3dbf7eec4cecca08bf33b3b9a18ef929a810f8faf6

ab0f1c7a01

command retrieves the signature (response) over some transaction data.

The LEDGER communication protocols are closed-source and there does not exist

any public information on how the Bitcoin specifications are translated into the APDU

layer. A large part of our work has been to reverse-engineer the APDU layer and ex-

tract the implemented protocol. This was achieved by creating a man-in-the-middle

sniffer sitting on top of the Ledger API, capable of recording and interfering with the

communication during any active sessions with the dongle. To abstract the protocol

from the actual implementation and to infer the dongle’s operations we ran a series

of sessions on three different Nano dongles and one Nano S1, compared the APDU

command-response pairs, analysed the exchanged data and mapped it to the Bitcoin

1The protocol of Nano S is very similar to that of Nano, thus it was not necessary to test it on a

different dongle.

117

118 Chapter 9. Extracted Ledger Wallet Protocols

raw protocol. We concluded that during an active session four protocols may be exe-

cuted:

(a) Dongle Alive: the initial communication when the dongle is plugged-in.

(b) Setup: wallet configuration and generation of the master keypair {skm,pkm}.

(c) Login: user authentication to the dongle, and vice versa.

(d) Payment: processing of a payment transaction.

The Dongle Alive and Login protocols run once each time the dongle is connected to

an active API. The Payment protocol repeats each time the user requests a payment. To

proceed to a payment the user is not required to re-authenticate. The Setup protocol is

executed once for initialising the wallet and each time an account restore is required;

user authentication is its prerequisite. The dongle communicates with the API only

when one of the four protocols are executed or when a firmware update is requested.

Commands used during the communication. The wallet communication consists

of hexadedimal messages between the API and the dongle. To make the analysis read-

able we present the command-response messages in the form of c(pi,pi+1, . . . ,pn)→
r1,r2, . . . ,rm, which denotes that the API sends the command c with parameters

pi,pi+1, . . . ,pn, i≥ n, n≥ 0, to the dongle; and the dongle responds with

r1,r2, . . . ,rm,m ≥ 0. If m = 0 the dongle either replies with OK (success) or error

(failure). Table 9.1 lists the communication primitives used to describe the protocols.

Keys that appear during the communication. Our analysis showed that LEDGER

wallets manage the following key types:

(i) {skatt,pkatt}: predefined attestation keys, used for the dongle’s firmware authenti-

cation and for setting up third-party hardware,

(ii) {skm,pkm}: the master keypair from which all keys are derived,

(iii) {ski,pki} pairs: transaction related keys, i.e., keys{skr,pkr} for receiving funds

and {skc,pkc} for transferring the change of a transaction. All keys, besides pkr, are

generated and stored dongle-side.

(iv) pkkp: a symmetric key for the encryption/decryption of the wallet’s key-pool. As

most Bitcoin wallets do, LEDGER software maintains a key-pool of 100 randomly

generated addresses: each time the wallet requires a new address it picks one from the

key-pool which is then refilled. Based on the original Bitcoin client (i.e., the Satoshi

client) the key-pool gets encrypted (AES-256-CBC) with an entirely random master

key [The Bitcoin Wiki, 2014c]. This master key is encrypted with AES-256-CBC with

another key derived from a SHA-512-hashed passphrase. In the original implementa-

119

command meaning

get_firmware_version()→ fV returns the dongle’s firmware version fv

get_wallet_public_key(bipDeri,

findexi, lindexi)→ pki

given the number of bip derivations bipDeri, the first index findexi, the last

index lindexi, returns the public key pki

get_device_attestation(blob)

→ {Sigatt ,attId, attDer, frwVer,

modes, currentMode}

returns the signature Sigatt of blob which is the concatenated byte-string of

firmware version frmwVer, with the private key skatt the verification key

parameters attId,attDer, the operation modes modes, the current mode

currentMode and frmwVer

verify(pin)→ OK sends the user’s pin to the dongle; if correct, the dongle replies OK

set_operation_mode(secFac,

opMode)→ OK

sets the second factor authentication secFac to true/false and the wallet

operation mode opMode to standard/relax/developer

sign(bipDeri, findexi, lindexi, m)

→ OK

initialises the signature of the message m with the private key ski that

corresponds to (bipDeri, findexi, lindexi)

sign(pin)→ Sigm returns the signature Sigm of message m with key the private key ski if the

pin it provides is correct

setup(pin,seed,genKey)→ OK sets up a new user’s pin, stores a new seed and requests from the dongle to

generate, genKey, a new 3DES2 key

set_keyboard(chars, typeConf)→ OK sets up the keymap characters chars and the typing behaviour typeConf

get_trusted_input(X)

→ {Sigt , oi, amountt}

given X, where X is the raw structure (Table 8.1) for each previous output,

returns the signature of each previous output Sigt , the output index oi and

amountt of the previous transaction t

untrusted_hash_transaction_

input_start(Sigt ,oi, amount)→ OK

streams the inputs, Sigt , oi and amountt to the dongle using the raw

structure (Table 8.1)

untrusted_hash_transaction_

input_finalize(addrp, amountp,

feesp, bipDerc, findexc, lindexc)

→ {c, addrp, amountp, feesp,

pkc, secFC}

streams the outputs, payment address addrp, payment amount amountp,

feesp, and selects the key pkc to which the change will be sent based

according to its BIP32 parameters bipDerc,findexc,lindexc. The command

returns the change c, the change key pkc, dongle’s confirmation of addp,

amountp, feesp, and the characters of the address secFC to be

authenticated by the user

untrusted_hash_sign (bipDeri,

findexi, lindexi, secFR)→ Sigp

returns the signature Sigp of the transaction p with key ski given its BIP32

parameters bipDeri, findexi, lindexi, iff secFR is correct

Table 9.1: The LEDGER commands and their meaning.

tion, the user provides that passphrase when generating that key and each time he

wishes to proceed to a transaction. LEDGER wallets use pkkp as a passphrase to gener-

ate that encryption key.

(v) {skauth,pkauth}: signature/verification keypair for the dongle-API authentication.

LEDGER dongles do not follow the common smart-card file structure: according

to ISO 7816 smart-cards support dedicated and elementary files in which they can

store private related data e.g., keys. Instead of supporting files and storing the keys,

the LEDGER dongles generate on the fly private keys whenever they are requested

for signatures, following a tree-like structure in which the master key-pair is the root.

The keys are referenced according to their corresponding BIP32 derivation parameters:

(1) the number of derivations bipDer, (2) the first derivation index findex and (3) the

120 Chapter 9. Extracted Ledger Wallet Protocols

last derivation index, lindex.

LEDGER operation modes. The LEDGER wallets support a set of different opera-

tion modes which describe the allowed functionality of the dongle with regards to the

selected security environment that the dongle operates in. The supported modes are:

(i) Standard mode, which allows standard Bitcoin scripts (addresses staring with

1) or P2PSH scripts (addresses staring with 3) and a single change address. At the

beginning of the transaction the user is shown the amount to pay, the change, and any

fees. This is the default mode of the LEDGER wallets.

(ii) Relaxed mode, which allows arbitrary outputs to be authorised. At the begin-

ning of a transaction the user is shown the amount to pay.

(iii) Server mode, which allows arbitrary outputs to be authorised but the transac-

tions are controlled by a number of parameters, e.g., maximum total of transactions.

(iv) Developer mode, which allows arbitrary data to be signed. This mode is used

for testing and if enabled then the wallet cannot process regular transactions. The keys

that are used when operating at a developer mode are specific ones and they cannot be

used for transaction purposes .

Second-factor authentication. Both Ledger Nano and Nano S incorporate a second

factor authentication mechanism to ensure that transactions are not tampered. Be-

fore signing the transaction, the wallet requests the user’s confirmation of the payment

address. In Ledger Nano the second factor authentication is of the form of a challenge-

response, based on a 58-character-pairs security card the user is provided with. Each

time the dongle is requested to process a payment, it presents the user with a chal-

lenge secFC consisting of four indexes of the payment address. The user responds to

that challenge with the corresponding characters from the security card, secFR. Only

if secFR is correct will the dongle continue processing the transaction. Nano S also

requires user interaction to process a transaction: before signing the transaction it dis-

plays part of the payment address, the payment amount and the fees on its screen. Only

if the user confirms the transaction data by pressing the OK button will the dongle sign

the signature.

9.1 Dongle Alive Protocol

The protocol consists of four message requests with which the API checks the integrity

of the dongle’s firmware through an attestation check: the API requests the dongle to

sign a random blob concatenated with the firmware version frmwVer under a manu-

9.1. Dongle Alive Protocol 121

seed,skatt ,pinuser

Dongle

pkatt ,pkm

API

get firmware version()

RES 7→ frmwVer
RES

get wallet public key(bipDeratt1, findexatt1, lindexatt1)

IF (bipDerpkatt1
,findexpkatt1

,

lindexpkatt1
)

RES 7→ pkatt1
RES

new blob
get device attestation(blob)

Sigatt 7→ sign((blob, frmwVer),skatt)
RES 7→ {Sigatt,attId,attDer

frmwVer,modes,currentMode}
RES

get firmware version()

RES 7→ frmwVer

RES

verify(Sigatt , pkatt)
check(firmwVer)

Figure 9.1: The Nano Dongle Alive protocol.

facturer key skatt. The exact steps are: (a) The API retrieves the dongle’s firmware

version frmwVer. (b) The API retrieves pkatt. (c) The API sends blob to the dongle and

retrieves the signature Sigatt of the blob concatenated to the firmware version frmwVer,

the the attestation key parameters attId and attDer, frmwVer and the operation modes

and currentMode. (d) The API retrieves again frmwVer and verifies Sigatt. The state

transition diagram of the protocol can be found in Figure 9.1.

Ledger Nano S. The API retrieves pkatt, the dongle’s firmware version frmwVer in

plaintext, sets the currency and retrieves the keys pkauth, pkkp. The Nano S protocol

does not include the attestation authentication.

122 Chapter 9. Extracted Ledger Wallet Protocols

9.2 Login Protocol

seed,skatt ,pinuser

Dongle

pkatt ,pkm ,pin

API

verify(pin)

IF pinuser = pin RES 7→ OK

RES

set operation mode(secFac, opMode)

IF secFac = 00 enable 7→ False

else enable 7→ True

IF opMode = 01 currentMode 7→ standard

else currentmode 7→ relaxed

RES 7→ OK
RES

new m

sign(bipDerauth , findexauth ,lindexauth , m)

RES 7→ OK

RES

sign(pin)

IF pinuser = pin
Sigauth 7→ sign(m,skauth)
RES 7→ Sigauth

RES

get wallet public key(bipDerauth , findexauth ,lindexauth)

IF (bipDerpkauth
, findexpkauth

, lindexpkauth
)

RES 7→ pkauth

RES

verify(Sigauth, pkauth)

get wallet public key(bipDerkp , findexkp ,lindexkp)

IF (bipDerpkkp
, findexpkkp

, lindexpkkp
)

RES 7→ pku

RES

Figure 9.2: The Nano Login protocol.

9.3. Wallet Setup Protocol 123

Ledger Nano. The Login Protocol (Figure 9.2) establishes an authenticated session

by which the user gains access to the dongle and, consequently, to the wallet. In

contrast to Nano S in which no communication is involved (the user authenticates

directly from the device’s surface), the protocol consists of six messages, with the

main operations being: (a) user pin verification, (b) dongle authenticity verification

via a signature check, and (c) retrieval of wallet-related keys. The API also enables

or disables a second-factor authentication for payments and configures the wallet’s

operation modes.

The steps of the protocol are: (a) The API sends the user’s pin to the dongle.

(b) Upon pin verification the API sets the second factor authentication (SecFac) and

wallet operation (opMode) modes. (c) The API requests the dongle to sign a random

message m with key skauth and retrieves Sigauth by sending pin. (d) The API retrieves

pkauth and verifies Sigauth. (e) The API retrieves pkkp.

Ledger Nano S. The user gains access to the dongle by verifying her PIN through the

dongle’s interface. There is no need for the dongle to be connected to an active API,

nor for the user to re-authenticate when the dongle is plugged in.

9.3 Wallet Setup Protocol

Ledger Nano. The setup process begins API-side. After selecting a PIN, the user is

given a 24-word passphrase which corresponds to the wallet’s seed. After the user has

confirmed the correct passphrase by providing the words that the API has requested,

API-side initialisation is done. Then, the dongle-side setup begins. The main opera-

tions of the Setup protocol (to avoid cluttering Figure 9.3 presents only the exchanged

messages that are exploited by our attacks), are: user pin and seed initialisation, and

the keyboard and operations mode setup. During initialisation, the API also retrieves

the master public key pkm, and the first derived public key pk1. The message flow is

the following: (a) The API sets up a new pin and seed and requests the generation of

{skm,pkm}. (b) The API requests from the dongle to sign frmwVer concatenated to a

random blob using the key skatt. (c) The API verifies the pin. (d) The API retrieves

pk1. (e) The Dongle Alive Protocol takes place. (f) The Login Protocol takes place.

(g) The API retrieves pkm and some extra unidentified key ku.

Ledger Nano S. Nano S is initialised offline: the user selects her own PIN and ob-

tains the 24-word mnemonic by communicating directly with the dongle through its

interface. After initialisation, when the dongle connects for the first time to an active

124 Chapter 9. Extracted Ledger Wallet Protocols

API a Dongle Alive session takes place, followed by the authentication of the dongle

via its signature. Finally, the API retrieves pkm.

9.4 Payment Protocol

LEDGER implements a proprietary Segregated Witness by enforcing the API to send

a detailed description of the inputs before the payment processing: the API forms a

pseudo transaction block which has only the inputs, and sends it to the dongle, through

a set of trusted_input commands. The dongle parses the block (bytewise concate-

nation) and returns its signature Sigi. When the API creates the actual transaction, it

will use Sigi to define the corresponding input.

Ledger Nano. The protocol, shown in Figure 9.4, is as follows: (a) The API sends

to the dongle the available funds through sets of get_trusted_input commands.

The inputs are sent in the form of pseudo transactions (following the specification in

Table 8.1): one for each input. The number of get_trusted_input command sets is

equal to the addresses (ti, i≥ 1) with available funds. When the dongle has successfully

received block t for a given input, it signs it and returns the signature Sigt, the output

index and the amount. (b) The API retrieves pkt for input t. (c) The API creates the

actual transaction block (Table 8.1), requested by the user, by sending the inputs Sigt

through sets of untrusted_hash_transaction_input_start commands, each set

corresponding to a single input. Then, outputs, i.e., the payment address addrp, the

payment amount amountp, the fees feesp and the change key pkc parameters (bipDerc,

findexc, lindexc), are sent via a untrusted_hash_transaction_input_finalize

command. (d) The dongle calculates the remaining balance c, selects the authentication

bytes secFC sends back to the API a confirmation of the payment details, c, pkc and

secFC. (e) The API requests from the dongle to sign the transaction with skt by sending

the user’s validation code, secFR. (f) The dongle checks secFR against secFC and

addrp and, if it is correct, it computes and returns the transaction signature Sigt.

Nano S. The Payment proceeds as presented in Figure 9.4 with a few differences:

(a) The API starts the transaction by retrieving the balance address, pkc, with a

get_wallet_public_key command. (b) The API sends pkc back to the dongle with

the

untrusted_hash_transaction_input_finalize command. (c) There is no sec-

ond factor authentication asked by the dongle, or sent by the API.

9.4. Payment Protocol 125

skatt

Dongle

pkatt

API

new seed, pin
setup(pin, seed, genKey)

pinuser 7→ pin
IF genKey

skm 7→ g(h(seed))
RES 7→ OK

RES

set keyboard(chars, typeConf)

OK

new blob
get device attestation(blob)

Sigatt 7→ sign((blob1, frmwVer),skatt)
RES 7→ {Sigatt,attId,attDer,

frmwVer,modes,currentMode}

RES

verify(Sigatt , pkatt)
set operation mode(secFac, opMode)

IF secFac = 00 enable 7→ False

else enable 7→ True

IF opMode = 01 currentMode 7→ standard

else currentMode 7→ relaxed

RES 7→ OK

RES

verify(pin)

IF pinuser = pin RES 7→ OK

RES

get wallet public key(bipDer1, findex1,lindex1)

IF (bipDerpk1
,findexpk1

, lindexpk1
)

RES 7→ pk1c
RES

alive protocol

login protocol

get wallet public key(bipDerm, findexm,lindexm)

IF (bipDerpkm ,findexpkm , lindexpkm)
RES 7→ pkm

RES

get wallet public key(bipDeru , findexu , lindexu)

IF (bipDerpku ,findexpku , lindexpku)
RES 7→ pku

RES

Figure 9.3: The Nano Setup protocol.

126 Chapter 9. Extracted Ledger Wallet Protocols

seed,skatt ,pinuser

Dongle

pkatt ,pkm ,pin

API

get trusted input(v, ic)

T1 7→ {v, ic}
RES 7→ OK

RES

get trusted input(txidi , pci , sigLi)

T2 7→ (T1 ∪{txidi,pci ,sigLi})
RES 7→ OK

RES

get trusted input(scriptSigi, s)

T3 7→ (T2 ∪{scriptSigi,s})
RES 7→ OK

RES

get trusted input(oc, amountt , l)

T4 7→ (T3 ∪{oc, iamountt, l})
RES 7→ OK

RES

get trusted input(bt)

T5 7→ (T4 ∪ bt)
Sigt 7→ sign(T5,skt)
RES 7→ {Sigt ,oc,amountt}

RES

get wallet public key(bipDert , findext ,lindext)

IF (bipDerpkt , findexpkt ,lindexpkt)
RES 7→ pkt

RES

untrusted hash transaction input start(v, ic)

P1 7→ (v, ic)
RES 7→ OK

RES

untrusted hash transaction input start(Sigt , oc, amountt)

P2 7→ (P1 ∪{Sigt,oc,amount})
RES 7→ OK

RES

untrusted hash transaction input start(s)

P3 7→ (P2 ∪ s)
RES 7→ OK

RES

untrusted hash transaction input finalize(
addrp , amountp ,feesp , bipDerc , findexc , lindexc)

P4 7→ (P3 ∪{addrp,amountp , feesp})
c 7→ amountt – (amountp + feesp)
IF (bipDerpkc ,findexpkc , lindexpkc)

new secFC
RES 7→ {c,addrp ,amountp , feesp ,

pkc ,secFC}
RES

new secFR

untrusted hash sign(bipDert , findext , lindext , secFR)

IF (bipDerskt ,findexskt , lindexskt)
IF a(addrp ,secFC) = secFR
Sigp 7→ sign(hash(P4),skt)
RES 7→ Sigp

RES

Figure 9.4: The Nano Payment protocol.

Chapter 10

Attacks on the Ledger Wallets

10.1 General Threat Model for the Bitcoin Wal-

lets

A Bitcoin wallet should provide high levels of security and privacy for the user, while

also being easy to use. We therefore consider a wallet to be secure when it provides:

(a) guarantees against tampering, (b) a secure environment for transaction processing,

and (c) account privacy.

Our threat model assumes perfect cryptography i.e., we do not look into possible

vulnerabilities at the underline cryptographic algorithms. We consider the wallet’s

code running on the smart card as well as the code running in the API to be trusted.

We assume these pieces of code not to be malicious, and trust them not to steal sensitive

data such as pins or keys. The adversary has full control of the communication layer

between the dongle and the API (he can eavesdrop and tamper the communication by

deleting, inserting and altering the messages) and targets the user’s account having one

or both of the following goals:

(i) Access to the the user’s funds. This entails getting the ownership of the account

(i.e., possession of the master private key), impersonating the user (i.e., possession of

the user’s PIN), by changing the wallet’s security parameters, and/ or tampering the

transactions while the wallet process them.

(ii) Track the account’s transactions. This entails access to the public keys of the

wallet, either by possessing the master public key and/or by eavesdropping the pro-

cessed transactions. Based on the adversary’s goals, we categorise the possible threats

of Bitcoin wallets to Direct wallet, Transaction and Account privacy, to define differ-

127

128 Chapter 10. Attacks on the Ledger Wallets

ent attack scenarios. Table 10.1 presents the attacks that belong to each category. As

we show now, the LEDGER wallets are subject to all such attacks.

a. Direct wallet attacks
a.1 access to the master

private key skm;

a.2 access to the key

pool encryption key;

a.3 unauthorised access

to the wallet;

a.4 alter the wallet

security properties.

b. Transaction attacks
b.1 tamper the payment

amount;

b.2 tamper the payment

address;

b.3 denial of service.

c. Account privacy attacks
c.1 account traceability.

Table 10.1: Attack categories.

10.2 Summary of Attacks

This Section presents the instantiation of the attacks discussed in section 10.1, on

LEDGER wallets. We show how we were able to perform attacks from the APDU

layer, by bypassing the restrictions of the API. Some attacks are passive, i.e., they only

require observing the communication channel; while others are active i.e., they involve

relaying and altering the exchanged messages.

10.2.1 Direct Wallet Attacks

LEDGER dongles aim to provide a fully isolated and secure environment for all cryp-

tographic and Bitcoin transaction operations. They specifically incorporate the smart-

card technology, as they intend to manage and store keys internally. Our experiments

show how these wallets can be compromised without tampering the hardware.

a.1: Accessing the account’s master private key skm. Access to the wallet’s seed s

is synonymous to having access to skm. During the Setup protocol execution we were

able to sniff s which was sent in plaintext from the API to the dongle. By using the

BIP32 derivation function we regenerated skm and all children keys. The API having

access to s and transmission of s in plaintext defeats the purpose of cold storage. The

10.2. Summary of Attacks 129

attacker may gain access to the Setup protocol, and consequently to s, by forcing the

dongle’s reinitialisation.

Mounting the Attack a.1 Given the user’s pin p, a replay of the session

{verify(p′)→ ERROR, verify(p′)→ ERROR, verify(p′)→ ERROR} in which an

incorrect pin p′ is sent to the dongle three consecutive times, has as a result the dongle

to enter a lock state. In the lock state the dongle is inaccessible and produces a request

for initialisation.

a.1.1: Importing the attacker’s master private key ska. Knowledge of the Setup

protocol allows a key-injection attack; the adversary access a legitimate Setup session

by mounting the Attack a.1 and then imports his own key by mounting the Attack a.1.1.

After that, the user will use the attacker’s keys and the corresponding addresses instead

of his own. Such an attack is more likely when the receiving money is usually greater

than the spending (e.g., stores).

Mounting the Attack a.1.1 Given a session of the Setup protocol {setup(p,s)→
OK, set_keyboard(c, tc)→OK . . .get_wallet_public_key(pk_params)→ pk}

as presented in Figure 9.3, the attacker locks the dongle with Attack a.1 and replays

that session by applying the substitution (7→): setup(p, s 7→ sa) where sa is the

attacker’s seed. At the end of the session, the dongle will generate the master keypair

{ska,pka}m according to sa, and consequently, all keys after the Setup session will be

derived from the attacker’s seed.

a.2: Accessing the key-pool. Unauthorized access to the key-pool implies loss of

privacy and account tracability as the adversary gains insight on the addresses that the

account uses/has used. During the Login protocol, we sniffed the passprase that is used

to create the key-pool key. This passphrase is the public key pkkp and is retrieved in

plaintex after a get_wallet_public_key command.

a.3: Unauthorised access to the wallet. A general requirement in Bitcoin wallets is

to be used only by users that have the credentials, e.g., the pin. The Login protocol that

we extracted indicates that each time the user connects to the dongle (though only in the

LEDGER Nano case) the pin is sent in plaintext to the dongle via a verify command.

As such the wallet is vulnerable to eavesdropping attacks of the user’s credentials and

consequently unauthorised access to it and to the account.

a.4.1: Tampering the wallet security properties. Each transaction is secured by

a second factor authentication, where the user has to verify specific characters of the

payment address. The verification is done through challenge-response: the dongle re-

quests the characters to be verified by providing their indexes within the address secFC,

130 Chapter 10. Attacks on the Ledger Wallets

and the user provides the corresponding characters of the security card secFR. The

set_operation command enables/disables the second factor authentication mecha-

nism for future transactions. Although this command appears in every Login session,

it is only during the Setup protocol that it has a direct effect on the dongle. An attacker

can access the Setup protocol by mounting the Attack a.1 which locks the dongle and

forces reinitialisation.

Mounting the Attack a.4.1 Given a legitimate session of the Setup protocol,

{setup(p,s)→ OK, . . . , set_operation_mode(enable, standard)→ OK, . . . } as

presented in Figure 9.3, replay that session by applying the substitution (7→):

set_operation_mode(enable 7→ disable, standard 7→ relaxed). After that session,

the dongle is not requesting for the user’s validation of the payment address. In each

session of the Login protocol (as presented in Figure 9.2), relay the communication and

perform the following substitution set_operation(enable 7→ disable, standard 7→
relaxed). In each session of the Payment session (as presented in Figure 9.4), relay the

communication by applying the following substitutions (7→):

i) untrusted_transaction_input_hash_finalize:

response(c,addrp,amountp, pkc, no 7→ secFC) where no is the card’s response that

no second authentication is required, and secFC are four random characters of the

payment address addrp.

ii) untrusted_has_sign(sk_params, secFR 7→ no) where secFR is the user’s input

according to secFC and no defines that no secondary authentication took place.

That attack changes the security parameters of the dongle so that during a trans-

action processing the user’s validation of the address is no longer required. To suc-

cessfully apply a payment address attack there is some further command tampering

(explained in detail in Section 10.3) that needs to be mounted.

a.4.2: Learning the security card. Another way to successfully attack the payment

destinations is to gain access to the security card that is used by the user to validate the

payment address. The security card consists of 58 hexadecimal characters that encode

the letters A-W, a-w and the numbers 0-9. Eavesdropping a Payment session reveals

at least four security card mappings. Our experiments indicated that the dongle always

request at least a new index in each Payment session until all keycard characters have

been requested at least once. So, in the worst-case scenario, an adversary may learn

a single new character in each round of the Payment protocol, so, after 58 legitimate

rounds he knows all characters of the security card. In the best-case scenario, each

time four new characters will be asked so the attacker will need 15 legitimate Payment

10.2. Summary of Attacks 131

sessions without relaying the communication at all. This can be enforced by tampering

the communication so that the user provides input for mappings that are still unknown.

i) the adversary alters secFC 7→ secFC′ in favour of the character mappings he

does not know, ii) the adversary returns to the dongle the correct secFR according to

the original challenge secFC.

Mounting the Attack a.4.2 Given a legitimate session of the Payment protocol

{get_trusted_input(v, ic)→ OK, . . . , untrusted_hash_transaction

_finalize(addrp, . . .) →(c, . . . , secFC), untrusted_hash_sign(skparams, secFR)

→OK} an attacker knows the characters of the payment address, paddp, the characters

of the address to be validated, secFC, the user’s input based on the keycard, secFR, and

whether the secFR is correct (the dongle responds with OK to the untrusted_hash

_sign command). If the pair secFC/secFR is already known from a previous session,

the attacker can learn a new pair secFC′/secFR′ by relaying the communication and

applying the following substitutions (7→): { get_trusted_input(v, ic)→ OK, . . . ,

untrusted_hash_transaction_finalize(addrp, . . .)→(c, . . . , secFC 7→ secFC′),
untrusted_hash_sign(skparams, secFR′ 7→ secFR)→ OK}.

10.2.2 Transaction Attacks

b.1-b.2: Tampering the Bitcoin transactions. The processing of the payment data

is achieved through the untrusted_hash_

transaction_input_finalize command-response pair, as shown in Table 10.2.

The API sends to the dongle the payment address addrp, the payment amount amountp,

the fees of the transaction feesp and the BIP 32 parameters of the public key from

which the change address will be derived pkc parameters. When the dongle receives

the command, it processes the data and returns to the API the remaining balance1 of

the account (change) c, a confirmation of addrp and amountp, the public key of the

change pkc, and the indexes of the address’s characters secFC that the user needs to

validate.

Given a Payment session an adversary can (a) redirect the payment destination:

addrp and (b) tamper the payment amount: amountp by altering the exchanged mes-

sages. For an adversary to successfully mount a payment redirection, he needs to have

access to the mappings on the security card. In that case, the communication tampering

is bidirectional: i) when the API sends the payment data to the dongle the adversary

1c 7→ (balance− (paymentp + feesp).

132 Chapter 10. Attacks on the Ledger Wallets

APDU traces

command untrusted_transaction_input_hash_finalize(addrp, amountp,feesp, pkc

parameters)

response (c, addrp, amountp, pkc, secFC)

Table 10.2: Abstraction of the untrusted_hash_transaction_input_finalize

command-response pair.

substitutes the payment address with the one he desires, ii) when the dongle responds

with the payment data, the adversary changes the payment address to the original one.

The consequence is the API requesting from the user the validation of four characters

of the original payment address. When the API requests the signature of the payment it

sends together the four mappings of the characters that the user verified. The adversary

then relays again the communication and substitutes these four mappings with the ones

that correspond to the tampered address.

Mounting the Attack b.1-b.2 Depending on the payment data of interest, by relaying

a Payment session, the following attacks can be mounted:

i) to redirect the payment destination apply the following substitutions (7→):

untrusted_transaction_input_hash_finalize(addrp 7→ addr′p, amountp,feesp,

pkc parameters) → response(c, addra 7→ addrp, amountp, pkc, secFC). In the

command data the original payment address addrp is substituted by the attacker’s

address add′p. The response is also relayed so that it contains the original address.

untrusted_hash_sign(bipDert,findext, lindext,secFR 7→ secFR′) The adversary sub-

stitutes the user’s input which is according to paymentp with the corresponding map-

pings of payment′p
ii) to tamper the payment amount apply the following substitutions (7→):

untrusted_transaction_input_hash_finalize(addrp, amountp 7→ amount′p,

feesp, pkc parameters) → response(c′ 7→ c, addra 7→ addrp, amount′p 7→ amountp,

pkc, secFC). In the command data the original payment amount amountp is substituted

by the attacker’s amount amount′p whereas in the response data amount′p is changed

back to amountp and the remaining funds c′ is changed to the amount that would result

after the original payment amount.

The attack can also be mounted without tampering the untrusted_hash_sign

command if i) the second factor authentication is disabled (Attack a.4), or ii) by letting

the user know the tampered address and expect the user to validate it due to human

error factors.

10.3. Technical Details of the Attacks 133

b.3: Denial of service. DoS attacks that target specific Bitcoin Wallet users have

become viral e.g., the DoS attacks on the BitGo wallets, leaving many users unable to

use their funds. Such attacks target the wallet’s server and usually consist of sending a

huge amount of requests. Although this is out of the scope of our practical experiments,

in the LEDGER wallet side of things, DoS attacks could also be mounted from the

APDU layer by tampering the transaction data in a way that either the dongle cannot

interpret it, or that the transaction cannot be verified in the network (e.g., by tampering

the verification key).

10.2.3 Privacy Attacks

c.1 Account traceability. Although Bitcoin’s core intent is not privacy, it is associ-

ated with anonymity and is often used by users who want their actions to be unlinkable.

HD wallets like LEDGER allow the creation of a sequence pk1,pk2, ..,pkn of child pub-

lic keys directly from the master public key pkm with the formula pki = f (hash(i,pkm))

where i is the child key index and f the generator function. As such, all receiving and

balance addresses are derived from pkm. Leakage of pkm entails loss of privacy, as

access to pkm is equal to having access to all addresses generated by the wallet.

Mounting the Attack c.1 During a legitimate session of the Setup protocol,

{setup(p,s)→ OK, set_keyboard(c, tC)→ OK . . . ,

get_wallet_public_key(pkm_params)→ pkm} as presented in Figure 9.3, pkm is

transmitted in plaintext.

10.3 Technical Details of the Attacks

This Section provides a detailed description of the active APDU middle attacks. Pas-

sive attacks are not described in detail as the only prerequisite is to sniff a legitimate

session and analyse the traces according to Chapter 9. All the attacks, apart from those

that require replaying a Setup session, are automated and can be applied through the

man-in-the-middle tool we developed.

Disabling the second factor authentication for LEDGER Nano. A second fac-

tor authentication based on the user’s input is utilised when the dongle processes a

transaction. LEDGER uses this mechanism in the Nano dongles as a measure against

payment address tampering. The assumption is that by asking the user to validate

those characters, he will be able to identify possible alterations to the address. The

134 Chapter 10. Attacks on the Ledger Wallets

2nd authentication command bytes

e04800001f058000002c80000000800000000000000000000001

040c060006 0000000001

× e04800001f058000002c80000000800000000000000000000001 00
0000000001

Table 10.3: The untrusted_hash_sign command. The bytes in bold indicate the

authentication parameters.

goal of the attack explained in this section is to successfully disable that authentication

mechanism so that the user will not be able to identify the payment address tampering.

After receiving the available funds, the dongle receives the payment details (ad-

dress, amount etc.) through an untrusted_hash_transaction_input_finalize.

Then, the dongle chooses four characters from the address that require validation,

and includes their indexes to its response: the last five bytes of the dongle’s response

to an untrusted_hash_transaction_input_finalize are of the form 02 xx xx

xx xx where 02 denotes that a second factor authentication is required and xx xx

xx xx denote the indexes of the chosen characters within the address, secFC. Table

10.5 presents an example of the structure of that response with respect to secFC. The

API then requests the user’s input secFR, according to secFC and provides it to the

dongle together with the signature request via an untrusted_hash_sign command.

Table 10.3 presents the difference in an untrusted_hash_sign command when the

second factor is enabled and disabled.

The command that enables/disables the authentication parameters of the LEDGER

dongles is the set_operation command. Although during the Login protocol the API

sends this command, our experiments showed that this command effectively changes

the dongle’s authentication parameters only when it is sent during the Setup protocol.

Also, for the disable-the-second-factor-authentication command to be successful the

dongle’s operation mode must be switched from standard to relaxed2 . Table 10.4

shows a comparison between the original set_operation and the one used for the at-

tack. In the original command the P1 byte is 01 which specifies that the authentication

is enabled, P2 is 01 is a dummy code i.e., changing it to any value does not affect the

command, and Data is 01 which specifies that the standard wallet mode is selected. In

the command we used we altered these bytes so that P1 is equal to 00 which specifies

that the authentication is disabled, P2 equal to 00 as defined by the LEDGER standard

2The standard mode always requires the user’s validation of the payment address; The relaxed

mode does not require the user’s validation of the payment address.

10.3. Technical Details of the Attacks 135

command Cla Ins P1 P2 Lc Data

original e0 26 01 01 01 01

attack e0 26 00 00 01 02

Table 10.4: The set_operation command.

2nd authentication response bytes

450203b10000000000001976a914f1253f0463e5877c5e8bb3

f34e7abfb335023ee188ac05530000000000001976a914e6e4

4d66125327341d6abb71e0702a4ea053743788ac 024040f050

× 450203b10000000000001976a914f1253f0463e5877c5e8bb3

f34e7abfb335023ee188ac05530000000000001976a914e6e4

4d66125327341d6abb71e0702a4ea053743788ac 00

Table 10.5: The dongle’s response to a untrusted_hash_transaction_input_finalize

command. The bytes in bold indicate the authentication parameters.

and Data equal to 02 which specifies that the relaxed wallet mode is selected.

We tested this command by sending it while no protocol was executed and also

during the execution of the Login protocol3. In both cases, the dongle accepted the

command but the second factor authentication was not successfully disabled. How-

ever, the attack was successful when we replayed a session of the Setup protocol and

injected the altered command. A Setup session can be initialised only if the dongle

is locked and the user cannot access it. A sample trace of a successful attack, up to

the point in which the modes are set, is shown in Table 10.6. In particular the steps

that are required to successfully disable the second factor authentication of the don-

gle are the following: i) block the dongle by sending three consecutive PINs: we sent

three verify commands with an altered PIN: p 7→ p′ ii) replay a Setup session: we

replayed the commands that were sent in a legitimate session to the dongle apart from

the set_operation command which we altered as shown in Table 10.4. After the re-

play of the Setup session the dongle no longer requires a second factor authentication

for the transactions.

After disabling the second factor authentication, during a session of the Payment

protocol the dongle’s response to an untrusted_hash_transaction_input

_finalize is different; instead of including the five byte-code 02 xx xx xx xx, it in-

cludes the single byte 00 which denotes that no further authentication is needed. How-

ever, the API’s implementation always considers the user’s authentication of the pay-

ment address to be obligatory, regardless of the dongle’s response. Thus, when the API

3The command appears in each session of the Login protocol

136 Chapter 10. Attacks on the Ledger Wallets

steps APDU traces

block the dongle verify(p′): 02200000433333333 verify(p′): 02200000433333333

verify(p′): 02200000433333333

replay a Setup session setup(p,s): e02000004c020a000504313432340040

8c3937fafb22e5f4979e90afe0b912cc05d92b9910c622887f6

1b30d9814f714df2dd5ada8cc5cd663e998dec1cc55915377352

cf6949a20ba444039219efd6900 set_keyboard:

e028000077000000000000000000000000760f 00d4ffffffc70000007

82c1e3420212224342627252e362d3738271e1f202122232425263

333362e37381f0405060708090a0b0c0d0e0f10111213141516171

8191a1b1c1d2f3130232d350405060708090a0b0c0d0e0f1011

12131415161718191a1b1c1d2f313035 get_device_attestation:

e0c200000861255ccee7f8c72d set_operation: e02600000102 ...

Table 10.6: Attack traces: disabling the second factor authentication during a Setup

session.

receives the 00 code the transaction freezes. Another complication of the described at-

tack is that each time a Login session takes place, the API sends a set_operation

command that activates the second factor authentication, leading to an error code re-

sponse by the dongle. Thus, the attack is further complemented by the following steps:

• in each session of the Login protocol, alter the set_operation command as

presented in Table 10.4,

• alter the part of the dongle’s response to the

untrusted_hash_transaction_input_finalize command which specifies

the second factor authentication: 00 7→ 02 xx xx xx xx where xx xx xx xx

are four random indexes of the address (as shown in Table 10.5),

• alter the part of the untrusted_has_sign command that provides the user’s

input secFR: 04 yy yy yy yy 7→ 00 (as shown in Table 10.3).

Attacks on Bitcoin transactions. A transaction is processed by the dongle, as dis-

cussed in Chapter 9, via a series of consecutive APDU commands: the API sends the

transaction related data (i.e., input funds, payment details) and requests the dongle

to sign the payment using the corresponding sk of the input funds that will be con-

sumed. A payment attack does not require altering all parts of this communication

but only the parts that send the payment details to the dongle. Thus, tampering the

10.3. Technical Details of the Attacks 137

APDU traces

command e046020048

22314e3371757233596565334b664e74436a4677756e346f

366f4c324478686747796f00000000000053050000000000

001d60058000002c80000000800000000000000100000002

response 450203b10000000000001976a914f1253f0463e5877c5e8bb3attack

f34e7abfb335023ee188ac05530000000000001976a914e6e4

4d66125327341d6abb71e0702a4ea053743788ac024040f050

Table 10.7: untrusted_hash_transaction_input_finalize command-response

trace.

untrusted_hash_transaction_input_finalize command-response data is suffi-

cient. Table 10.7 presents a trace of the untrusted_hash_transaction_input

_finalize command-response pair. The structure of the command is the following:

Cla Ins P1 P2 Lc Data

e0 46 02 00 48 addrp, amountp, feesp, pkc parameters

The Data part consists of i) the addrp bytes which denote the recipient of the

payment amount. i) the amountp bytes which denote the payment amount. i) the

feesp bytes which denote the fees amount for that particular transaction. i) the pkc

parameters bytes which denote the BIP32 parameters of the public key whose hash

will be the address to which the remaining balance (if any) of the account will be sent.4

If the command is successful, the dongle’s response has the following structure:

SW1 SW2

amountp, hash160(addrp), c, hash160(addrc), secFC OK

The data part of the command, SW1, consists of: i) the amountp bytes which

are the same bytes as the ones in the command, and serve as a confirmation to the

API. i) the hash160(addressp) bytes which denote the hash160 of the payment address

addressp. i) the c bytes: denote the remaining balance of the account (change). i) the

hash160(addrc) bytes which denote the hash160 of the change address addrc. i) the

secFC bytes which denote the indexes of the addressp characters that the user needs to

verify. If the second factor authentication mechanism is disabled then these bytes are

absent.

4The API always requests the generation of a new pkc even if the remaining balance equals to zero.

138 Chapter 10. Attacks on the Ledger Wallets

10.4 Generality of the Attacks

The purpose of our work is to show that it is possible to attack Bitcoin hardware wallets

via the low-level communication. The threat model we present is hardware/software

independent and applicable to all available Bitcoin wallets. The attacks on the LEDGER

wallets aim to prove that Bitcoin transactions are vulnerable, even if tamper-resistant

hardware such as smart-cards are incorporated. Our work showcases how the API re-

strictions can be bypassed by relaying the hardware communication. The same attacks,

adapted to meet the criteria of each hardware, can be potentially applied to every wal-

let that does not use a secure communication channel i.e., Trezor and Keepkey. All

hardware wallets follow the same abstraction of the Payment protocol; any plaintext

communication is prone to attacks b.1-b.2. Currently all Bitcoin wallets base their en-

tire security on a trusted path between the dongle and the user, by requesting the user

to verify the payment data. This trusted path cannot be tampered and the success of

our attacks boils down to the user’s capability to identify the tampered data. However,

previous studies have shown that a significant average of 15% of such verification is

usually erroneous. Although most Bitcoin wallets claim to secure the transactions by

enforcing the user’s validation of the payment data, the success rate of transaction at-

tacks is proportional to the user error rate. The validation/comparison of hashes by the

user is a common techniques e.g., device pairing, self-signed certificates with HTTPS

etc.. The usability aspects of hash comparison in security protocols and the effects of

human errors have been studied before. For example, in [Uzun et al., 2007] the authors

conclude that the compare-and-confirm method (the user has to confirm a checksum

presented on the device’s screen) for a 4-digit string has 20% failure rate, whereas the

work in [Hsiao et al., 2009] concludes that comparison of the Base325 hashes has an

average 14% failure rate. Although such studies focus on low entropy hashes, they

conclude that, on its own, such a technique cannot provide strong security guarantees

given the human error. As such, a transaction attack on an HID wallet depends on

whether the user’s ability to identify the tampered data.

The privacy issues we address for the LEDGER wallets is an aspect that applies

to all BIP32 wallets, especially to those that do not communicate in a secure way.

Currently, all hardware wallets6 transmit the public keys (including the master public

5Base32 hashes are a total of 25 bit entropy and consist of five characters with 32 possible character

mappings. A Bitcoin address has 160 bit entropy.
6Apart from Digital BitBox whose specifications are not available publicly.

10.5. Proposed Lightweight Fixes of the Protocols 139

data a.1 a.2 a.3 a.4 b.1 b.2 b.3 c.1

s

pin × × × × × × ×
secFC,secFR × × × × ×

opMode × × × × ×
addrp, amountp,feesp,c,pkc × × × ×

pk_{m,m+1..,m+n} × × × × × ×

Table 10.8: Vulnerable data in LEDGER wallets and the corresponding attacks.

key) in the clear: eavesdropping a single session reveals at least two public keys, the

address with available funds and the address that the remaining balance will be sent

to. Also, whenever the hardware connects to a fresh API, the master public key pkm is

sent in the clear. Access to that key implies access to all children public keys, which

makes eavesdropping that single session sufficient to track the account’s transactions.

In any case, whether the adversary has access to pkm or to its children pki the flow of

the funds of the given account is linkable.

10.5 Proposed Lightweight Fixes of the Proto-

cols

The LEDGER wallets, as with all other hardware wallets not using a secure communi-

cation channel, fail to prevent MitM attacks. All transaction data is sent in the clear,

making the wallet vulnerable to attacks and account linkability. Encrypting the entire

communication would be an obvious solution to that. However, such a strategy requires

computational power, and possible changes to the security architecture of the current

wallets. Additional delays to the transaction processing would be another trade-off.

Instead we propose the symmetric encryption of specific communication parts: those

that are prone to attacks with respect to our threat model. Table 10.8 summarises what

LEDGER wallet data needs to be protected to defend against which attacks. Our fix

consists of three components: 1. the secure pre-setup phase, 2. the authentication and

session key establishment protocol, 3. encryption of sensitive parts.

Secure environment for the PIN exchange. The PIN needs to be entered in the

hardware before the initialisation of the wallet as the PIN is then used to derive the

140 Chapter 10. Attacks on the Ledger Wallets

cryptographic keys to protect the interactions between the dongle and the API. This

process must occur in a secure offline environment. This can be achieved either by

entering the PIN directly on the trusted user interface of the device (if it is an HID

wallet), or by setting up the PIN on an air-gapped machine, e.g. using a live OS on

a USB stick which will ensure that the OS has and will never be connected to the

Internet.

Authentication and session key establishment. This protocol gets executed ev-

ery time the API establishes a new session with the dongle. It is responsible for the

API/hardware authentication and the establishment of a fresh session key. A new ses-

sion is established whenever the hardware connects to an active API. For the key es-

tablishment we propose a Password Authenticated Key Exchange by Juggling protocol

(j-PAKE) [Hao and Ryan, 2010] which allows bootstrapping high-entropy keys from

the low-entropy user’s PIN. In that way, we avoid storing secret data API side, ensure

that fresh keys are used in each session and guaranteeing the user’s presence at that ses-

sion. In addition, the j-PAKE protocol allows zero knowledge proof of the PIN which

satisfies the authentication prerequisites of the session. Finally j-PAKE provides guar-

antees against off-line and on-line dictionary attacks and it satisfies the forward secrecy

and known-key security requirements. J-PAKE, like the Diffie-Hellman key exchange,

uses ephemeral values but proceeds in an additional round which combines them with

the user’s PIN and makes certain randomisation vectors vanish.

Encryption of sensitive data. Once the session key is established, slightly modi-

fied versions of the four LEDGER protocols (Alive, Login, Setup, and Payment) can

be executed. The four new protocols are derived from the original Ledger protocols

as follows. First a session identifier is established for each execution of each of these

protocols. This will be generated dongle side, and transmitted to the API in plaintext.

The session identifier does not need to be confidential, but will need to be fresh and

generated by the dongle to avoid replay attacks. Then the dongle and API execute the

original protocol but encrypting under the current session key the sensitive data identi-

fied previously (Table 10.8). The computed ciphertexts will all include the established

session identifier. A Message Authentication Code (MAC) is further computed and

concatenated to the chiphertext. The other party will then be able to decrypt and verify

the encrypted parts.

10.6. Summary 141

10.6 Summary

Although the security of financial related hardware in other areas has always attracted a

lot of attention, eg., the Chip and PIN systems [Murdoch et al., 2010b], Bitcoin-related

hardware has not been studied before. Relying on the high levels of security that the

Bitcoin protocol offers is not enough to guarantee safe transactions. Lack of a standard

that defines the properties of the Bitcoin wallets leads to security misconceptions and

ad-hoc implementations that hide vulnerabilities. The work presented, to the best of

our knowledge, is the first to address security aspects of Bitcoin wallets and stress the

importance of securing the implementations of low-level communications. We chose

to analyse smart-card based wallets as they are perceived to be the most secure and

tamper resilient means for key management. However, the core idea of the attacks is

general and applies to other hardware wallets of different technology.

In this work we extract and analyse the protocols that are hidden behind the LEDGER

wallets, the only available smart-card based solutions. Our work includes the analysis

of both standard and HID dongles. To that end, we identify and categorise possible vul-

nerabilities for Bitcoin wallets and we introduce a general threat model. We then use

that model to analyse the LEDGER protocols. Our experimental work concluded that

the LEDGER implementations are vulnerable to a set of attacks that target the wallet

itself as well as the Bitcoin transactions. Finally, we propose a lightweight fix, based

on the j-PAKE protocol, which can easily be adapted to any wallet and efficiently pre-

vents any active or passive attack. Modelling and evaluating the suggested fix is not

within the scope of this thesis; we leave it to future work to address the effectiveness

of the suggested fix through formal analysis of the protocol i.e., modelling the com-

munication protocol with the suggested fix and proving the attacks to be impossible.

Attacking the LEDGER wallets is just an example, as the same methodology can

be easily adopted in other technologies. The work presented in the Bitcoin Chapters

does not aim at proving the specific wallets insecure, but rather to showcase the im-

portance of ensuring a secure low-level implementation even if the higher levels bring

guarantees.

Responsible Disclosure with Ledger On May 2017 we contacted the Ledger’s

security team to inform them about our findings. We exchanged a series of emails in

which we described our attacks and suggested our aforementioned fix. The Ledger

team aknowledged the attacks and stated that they were planning to fix their imple-

142 Chapter 10. Attacks on the Ledger Wallets

mentation. Our communication ended on the 9th of May 2017. On June 2017 Ledger

paused all sales of both Nano and Nano S until the end of August, stating on their

website that it was due to high demand. On late August, Ledger re-introduced in the

market only Nano S and released a new firmware which encrypts the low-level com-

munication. Although Ledger has provided a fix, all devices running the old firmware

are still vulnerable, as the update is not automatic.7

7On December 2017 we tested our devices to check whether the update is enforced automatically.

Our findings showed that no automatic firmware update occurs.

Chapter 11

Conclusion

The purpose of this thesis is to shed light on the vulnerabilities of the low-level im-

plementations of cryptographic protocols. We studied the communication layer of

smart-cards with respect to the high-level protocol they implement. In particular, we

analysed the implementations on PKCS#11 and Bitcoin smart-cards. The goal of such

cards is to provide guarantees against tampering and to offer an isolated environment

for executing sensitive operations. Our work has proven that by focussing on the low-

level communication layer one can mount attacks that are not possible at higher layers,

rendering smart-cards vulnerable, and, thereby defeating the purpose of using them as

tamper-resistant environments.

Summary of contributions. A common practice among PKCS#11 smart-cards ven-

dors is to define their own proprietary implementations and intentionally hide all de-

tails. Manually analysing and testing such cards is a time consuming process that

requires complex technical skills and a very deep understanding of the communication

standards. To that end, we provide a solution for automatically extracting the imple-

mentation details of the communication layer. REPROVE can infer the semantics of

the exchanged commands as well as the on-card operations in a matter of milliseconds.

We used REPROVE to reverse-engineer the implementation of seven commercially

available smart-cards. The output of REPROVE is generally useful to identify devia-

tions from the standard and implementation flaws. But it is primarily useful because

it allows us to identify security vulnerabilities and threats in the implementation of the

low-level communication protocol.

To analyse the security of the extracted models we defined a threat model for

PKCS#11 smart-cards with respect to the communication layer. The purpose is to

identify as many as possible attack scenarios with respect to a malicious adversary’s

143

144 Chapter 11. Conclusion

goal. Since the mitigation of each attack is dependent on the exact implementation,

it requires refinement to each card’s characteristics. Instead of specifying individual

attack strategies for each card, we identified patterns between the attacks to navigate

the threat search space. We converged to a general set of implementation-independent

vulnerabilities. We used that set as a guide to analyse the extracted models of the

smart-cards. As REPROVE’s extracted models suggested, most of the cards do not

enforce a secure channel; the authentication is stateless and the communication is in

plaintext. Consequently, such implementations are prone to a set of attacks. Among

other findings, the most significant one was the API-side execution of cryptographic

functions after a plaintext key transmission. This is a major vulnerability that defeats

the purpose of incorporating cryptographic hardware into a system. Another surprising

finding was that user private data was not protected; the messages to be signed and en-

crypted, and the output of the decryption, were sent in plaintext, which enabled replay

and tampering attacks. These are just sample of the discovered vulnerabilities, which

are all intentionally hidden behind the proprietary implementations that the vendors

define. REPROVE’s outputs can be conducive for understanding the card’s behaviour.

Although there exist other systems that aim at extracting patterns of a card’s im-

plementations, they do require the semantics of the implementation to be known be-

forehand. We show how REPROVE can be integrated with such systems and provide

useful input. We presented an ecosystem for extracting meaningful state-machines

of a card’s implementation. The results provide a deeper understanding of the card’s

behaviour under unexpected input and present command sequences that lead to vulner-

abilities. To that end we demonstrated practical attacks on one of the tested cards. We

show that the keys’ attributes are not protected. This allowed us to tamper with these

attributes and change the roles of a key with respect to the cryptographic functions that

use it. Moreover, we demonstrated how keys can be redirected by changing the handle

of the key. Such attacks could be prevented if accessing this data was protected by a

stateful authentication mechanism or if the PKCS#11 policies were hardcoded on the

card.

Securing the low-level communication is not only a matter of PKCS#11 smart-

cards. Other applications that incorporate smart-cards may be prone to similar threats.

To test that assumption, we analysed the Bitcoin smart-card wallets that are available

on the market. Bitcoin is particularly popular amongst users that seek to perform fast,

secure and private transactions. Opting for a hardware wallet such as smart-cards to

enhance the security of the transactions has become a common practice. We show that

145

even an expensive smart-card wallet that promises a secure and isolated environment

for the management of the account is prone to low-level attacks.

We extracted and analysed the low-level protocols that the LEDGER wallets im-

plement. The LEDGER protocols are customised to the Bitcoin specifications and do

not allow the execution of irrelevant operations. The communication throughout an

active session proceeds in plaintext and is not protected by any mechanism e.g., ses-

sion keys, session counter, mutual authentication between the hardware and the API

etc. This allowed us to identify a series of vulnerabilities that ultimately led to loss

of the account’s ownership. To our surprise, we discovered a plaintext transmission of

the master secret key. In Bitcoin, this can easily escalate to possession of the entire

wallet and consequently of the account. Other exploits that we discovered include the

plaintext transmission of encryption keys and the lack of protection of the transaction

data. To that end, we demonstrated practical attacks that take advantage of such vul-

nerabilities. Our attacks range from eavesdropping sensitive information, to disabling

the security mechanisms of the wallet and tampering with the processed transactions.

Finally, we proposed possible fixes which include interaction with the user, to prevent

such attacks.

Outlook. The purpose of offering a secure implementation should not only focus on

the protection of the cryptographic key values but also on the computational outcome

of the cryptographic operations. As we presented in this thesis it is possible to tamper

with that outcome without knowledge of the key’s value. Another aspect, heavily

overlooked, is the user’s privacy. As in all security protocols, the APDU layer should

protect all transmitted private data as well as data that can expose the user’s identity.

This property is particularly important not only for the Bitcoin, but for the PKCS#11

smart-cards as well. Protection mechanisms that provide solutions to such problems

exist; ISO 7816 specifies mechanisms for secure messaging, which can randomise

parts of or whole commands. Unfortunately, such mechanisms are not enforced by

the vendors. One reason for that might be that they prefer speed over security, as

adding extra cryptographic operations may bring delays to the system. The lack of well

defined threat models definitely contributes to bad implementation decisions which can

be exploited.

As security is seen as the measure against an adversary gaining access to sensitive

components of a system, isolating these components is considered to be best practice.

Hardware technology has evolved and offers dedicated devices specifically designed

to fulfil this criterion and it is more than common for systems to incorporate such hard-

146 Chapter 11. Conclusion

ware for operations over sensitive data. In the meantime, hardware security has grown

into an active research area, offering methods for ensuring physical security spanning

from verification tools to countermeasures against attacks. Most importantly, hardware

can be certified on its security levels by dedicated laboratories. Such certification oc-

curs after testing the hardware for vulnerabilities; if no attacks can be mounted then

the hardware passes the tests. The guarantees that hardware may bring into a sys-

tem have made them a popular solution for adding extra security. However, security

is commonly evaluated mainly by focussing on cryptography, overlooking logical at-

tacks that can occur either on the hardware’s software or interacting protocols. The

work presented in this thesis focuses on how protocols interact with the hardware.

Combining a provably secure protocol with certified tamper-resistant hardware de-

vices is considered enough to guarantee the security of a system. However, isolation

of the sensitive components is not enough on its own. The devices being distinctive

features of a system can make them a direct target. Systems that are advertised to

be secure, are in practice vulnerable because of logical flaws and false assumptions

hidden behind secret, error-prone implementations.

Security through obscurity is a common practice among smart-card vendors. The

overall message of this thesis is that although hiding the implementation details may

provide some levels of security, it can certainly not guarantee it. Security should be

considered on the whole system, not only on idividual layers. Adding secure com-

ponents without carefully designing their interaction ultimately opens unpredictable

attack vectors. All these can be prevented if there existed well-defined and verified

standards and specifications that the vendors could based their implementations (in-

terindustry or proprietary) on. Currently there is a gap between low-level implementa-

tions and security, not only in smart-cards but in cryptographic hardware in general. As

the technology evolves, the different threats evolve as well. Static, secret, unverified

implementations cannot cope with that evolution. A good practice would be making

the specifications open to the public to allow discussions and feedback from the re-

search community. We hope this thesis is helpful to the discussion of the need for open

and verifiable standards and implementations for end-to-end security provisioning.

Appendix A

PKCS#11: REPROVE

Background Knowledge

Commands.

command(_INS, ’e0’, _P1, P2, _Lc, D, _Le, List, NewList, _Response):- add(isa(P2, offset), List, NList),

add(create_file(D), NList, NewList).

command(_INS,’e4’, 0, _P2, _Lc, D, _Le, List, NewList, _Response):- add(isa(D, df),List, A),

add(delete(file, D), A, NewList).

command(_INS,’e4’, 4, _P2, _Lc, D, _Le, List, NewList, _Response):- add(isa(D, df),List, A),

add(delete(file, D), A, NewList).

command(_INS,’e4’, 2, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, ef), List, A),

add(delete(file, D), A, NewList).

command(_INS,’e4’, 8, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df), List, A),

add(delete(file, D), A, NewList).

command(_INS,’e4’, 9,_P2, _Lc, D, _Le, List, NewList, _Response):-

add(delete(path, D), A, NewList).

command(_INS,’e4’, _P1, 09,_Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df), List, A),

add(delete(path, D), A , NewList).

command(_INS,’e4’, P1,_P2, _Lc, D, _Le, List, NewList, _Response):-

between(128,160,P1),

add(isa(D, ef), List, A),

add(delete(file, D), A, NewList).

command(_INS,’e4’, _, _,0,0,null, List, NewList, _Response):-

add(dummy(null), List, NewList).

command(_,’22’,1, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,17, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,33, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

147

148 Appendix A. PKCS#11: REPROVE Background Knowledge

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,49, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,97, _P2, Lc, D,_Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,113, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,225, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,241, _P2, Lc, D, _Le, List, NewList, Response):-

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,P1, _P2, Lc, D, _Le, List, NewList, Response):-

between(32, 47, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(set, D, Response), AL, NewList).

command(_,’22’,P1, _P2, _Lc, D, null, List, NewList, _Response):-

between(16, 31, P1),

add(isa(D, secureMes), List, AL),

add(manage_security_environment(secureMessaging, D, noResponse), AL, NewList).

command(_,’22’,P1, _P2, _Lc, D, _Le, List, NewList, Response):-

between(48, 63, P1),

add(isa(D, secureMes), List, AL),

add(isa(Response, secureMes), AL, AL),

add(manage_security_environment(secureMessaging, D, Response), AL, NewList).

command(_,’22’,P1, _P2, _Lc, D, null, List, NewList, _Response):-

between(80, 127, P1),

add(isa(D, secureMes), List, AL),

add(manage_security_environment(internalCardCryptoOperation, D, noResponse), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(160, 175, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(externalCardCryptoOperation, noD, Response), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(144, 159, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(externalCardCryptoOperation, noD, Response), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(224, 241, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(externalCardCryptoOperation, noD, Response), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(244, 255, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(externalCardCryptoOperation, noD, Response), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(242, 243, P1),

add(isa(Response, secureMes), List, AL),

add(isa(Response, key), AL, AL),

149

add(manage_security_environment(storeOperationKey, noD, Response), AL, NewList).

command(_,’22’,P1, _P2, 0, 0, _Le, List, NewList, Response):-

between(242, 243, P1),

add(isa(Response, secureMes), List, AL),

add(manage_security_environment(internalCardOperation, noD, Response), AL, NewList).

command(_, ’42’,255 ,255, Lc, D, Le, List, NewList, Response):-

add(isa(D, rfu), List, AL),

add(tag(D,rfu), AL, AL),

add(isa(Response, rfu),AL, AAL),

add(tag(Response, rfu), AAL, AAAL),

add(security_operation(D, Response), AAAL, NewList).

command(_, ’42’,142 ,80, Lc, D, Le, List, NewList, Response):-

add(isa(D, originalData), List, AL),

add(isa(Response, checksum),AL, AL),

add(crypto_checksum(D, Response), AL, NewList).

command(_, ’42’,158 ,154, Lc, D, null, List, NewList, _Response):-

add(isa(D, dataToSign), List, AL),

add(isa(D, data),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, null), AAL, NewList).

command(_, ’42’,158 ,172, Lc, D, null, List, NewList, _Response):-

add(isa(D, valuesToSign), List, AL),

add(isa(D, dataObjects),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, null), AAL, NewList).

command(_, ’42’,158 ,179, Lc, D, _Le, List, NewList, Response):-

add(isa(D, dataToSign), List, AL),

add(isa(D, dataObjects),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, null), AAL, NewList).

command(_, ’42’,158 ,154, Lc, D, Le, List, NewList, Response):-

add(isa(D, dataToSign), List, AL),

add(isa(D, data),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, Response), AAL, NewList).

command(_,’42’ ,158 ,172, Lc, D, Le, List, NewList, Response):-

add(isa(D, valuesToSign), List, AL),

add(isa(D, dataObjects),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, Response), AAL, NewList).

command(_, ’42’,158 ,188, Lc, D, Le, List, NewList, Response):-

add(isa(D, dataToSign), List, AL),

add(isa(D, dataObjects),AL, AL),

add(isa(Response, digitalSignature), AL, AAL),

add(digital_signature(D, Response), AAL, NewList).

command(_, ’42’,00 ,168, Lc, D, Le, List, NewList, Response):-

add(isa(D, signature), List, AL),

add(verify_signature(D), AL, NewList).

command(_, ’42’,255 ,P2, Lc, D, Le, List, NewList, Response):-

add(isa(rfu, tag), List, AL),

add(tag(D, rfu), AL, AL),

add(isa(P2, tag),AL, AAL),

add(tag(Response, P2), AAL, AAAL),

150 Appendix A. PKCS#11: REPROVE Background Knowledge

add(security_operation(D, Response), AAAL, NewList).

command(_, ’42’,00 ,P2, 00, 00, Le, List, NewList, Response):-

add(isa(null, tag), List, AL),

add(tag(D,null), AL, AL),

add(isa(P2, tag),AL, AAL),

add(tag(Response, P2), AAL, AAAL),

add(security_operation(null, Response), AAAL, NewList).

command(_, ’42’,P1 ,255, Lc, D, Le, List, NewList, Response):-

add(isa(P1, tag), List, AL),

add(tag(D,P1), AL, AL),

add(isa(rfu, tag),AL, AAL),

add(tag(Response, rfu), AAL, AAAAL),

add(security_operation(D, Response), AAAL, NewList).

command(_, ’42’,P1 ,00, Lc, D, null, List, NewList, _Response):-

add(isa(P1,tag), List, AL),

add(tag(D,P1), AL, AL),

add(isa(null, tag),AL, AAL),

add(tag(Response, null), AAL, AAAAL),

add(security_operation(D, Response), AAAAL, NewList).

command(_, ’42’,P1 ,P2, Lc, D, null, List, NewList, Response):-

add(isa(P1, tag), List, AL),

add(tag(D, P1), AL, AL),

add(isa(P2, tag),AL, AAL),

add(tag(noResponse, P2), AAL, AAAL),

add(security_operation(D, noResponse), AAAL, NewList).

command(_, ’42’,P1 ,P2, Lc, D, Le, List, NewList, Response):-

add(isa(P1, tag), List, AL),

add(tag(D, P1), AL, AL),

add(isa(P2, tag),AL, AAL),

add(tag(Response, P2), AAL, AAAL),

add(security_operation(D, Response), AAAL, NewList).

command(_INS,’a4’, _, _,0,0,null, List, NewList, _Response):-

add(dummy(null), List, NewList).

command(_INS,’a4’, 0, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df),List, A),

add(select(file, D), A, NewList).

command(_INS,’a4’, 4, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df),List, A),

add(select(file, D), A, NewList).

command(_INS,’a4’, 2, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, ef), List, A),

add(select(file, D), A, NewList).

command(_INS,’a4’, 8, _P2, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df), List, A),

add(select(file, D), A, NewList).

command(_INS,’a4’, 9,_P2, _Lc, D, _Le, List, NewList, _Response):-

add(select(path, D), A, NewList).

command(_INS,’a4’, _P1, 09,_Lc, D, _Le, List, NewList, _Response):-

add(isa(D, df), List, A),

add(select(path, D), A , NewList).

command(_INS,’a4’, P1,_P2, _Lc, D, _Le, List, NewList, _Response):-

between(128,160,P1),

add(isa(D, ef), List, A),

151

add(select(file, D), A, NewList).

command(_, ’44’, 0,0,0,0,null, List, NewList,_Response):-

add(active(current), List, A),

add(activate(Type, F), A, NewList).

command(_, ’44’, 0, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df),List, A),

add(activate(D), A,B),

add(activate(file, D), B, NewList).

command(_, ’44’, 4, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(active(D), A, B),

add(activate(file, D), B, NewList).

command(_, ’44’, 2, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, ef), List, A),

add(active(D), A, B),

add(activate(file, D), B, NewList).

command(_,’44’, 8, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(active(D), A, B),

add(activate(path, D), B, NewList).

command(_,’44’, 9, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(active(D), A, B),

add(activate(path, D), B, NewList).

command(_,’44’, _P1, 09,_Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(active(D), A, B),

add(activate(path, D), B, NewList).

command(_,’44’,P1, _P2, _Lc, D, null, List, NewList, _Response):-

between(128,160,P1),

add(isa(D, ef), List, A),

add(active(D), A, B),

add(activate(file, D), B, NewList).

command(_INS, ’ca’, 01, 0, 0, 0, Le, List, NewNewList, Response):-

add(isa(Response, cardByteString), List, NewList),

add(retrieve_get_data(Le, cardByteString, Response), NewList, NewNewList).

command(_INS, ’ca’, 255, 255, 0, 0, Le, List, NewList, Response):-

add(isa(Response, simple_tlv), List, A),

add(retrieve_get_data(Le, simple_tlv, Response), A, NewList).

command(_INS, ’ca’, 02, 0, 0, 0, Le, List, NewList, Response):-

add(isa(Response, rfu), List, A),

add(retrieve_get_data(Le, rfu, Response), A, NewList).

command(_INS, ’ca’, 0, P2, 0, 0, Le, List, NewList, Response):-

between(40,255, P2),

add(isa(Response, ber_tlv), List, A),

add(retrieve_get_data(Le, ber_tlv, Response), A, NewList).

command(_INS, ’ca’, 02, P2, 0, 0, Le, List, NewList, Response):-

between(0,255, P2),

add(isa(Response, simple_tlv), List, A),

add(retrieve_get_data(Le, simple_tlv, Response), A, NewList).

command(_INS, ’ca’, P1,P2, 0, 0, Le, List, NewList, Response):-

between(40, 255, P1),

between(0,255, P2),

152 Appendix A. PKCS#11: REPROVE Background Knowledge

add(isa(Response, rfu), List, A),

add(retrieve_get_data(Le, rfu, Response), A, NewList).

command(_INS, ’cb’, 255, 255, _Lc, _D, Le, List, ANewList, Response):-

add(isa(Response, dataObjectlist), List, NewList),

add(retrieve_get_data(Le, list, Response), NewList, ANewList).

command(_INS, ’dd’, 00, 55, _Lc,D, _Le, List, NewList, _Response):-

add(isa, (D, record), List, AL),

add(isa(D, offset), AL, BList),

add(write_data(D, D), BList, NewList).

command(_INS, ’dc’, P1, P2, _Lc,D, _Le, List, NewList, _Response):-

between(274, 512, P2),

add(isa(P2, ef), List, AL),

add(select(file, P2), AL, BList),

add(isa(D, record), [], CList),

add(isa(P1, offset), CList, DList),

add(write_data(D, P1), DList, NewDList),

add(BList, [], A),

add(NewDList, A, NewList).

command(_INS, ’dc’, P1, _P2, _Lc,D, _Le, List, NewList, _Response):-

add(isa(D,record), List, AL),

add(isa(P1, offset), AL, BList),

add(write_data(D, P1), BList, NewList).

command(_INS, ’b0’, P1, P2, 0, 0, Le, List, NewList, Response):-

between(128, 160, P1),

add(isa(P1, ef), List, A),

add(select(file, P1), A, LA),

add(isa(P2, offset), [], L),

add(isa(Response, binary), L, LL),

add(retrieve_data(Le, binary, Response), LL, LLL),

add(LA, [], NewLA),

add(LLL, NewLA, NewList).

command(_INS, ’b0’, P1, P2, 0, 0, Le, List, NewList, Response):-

between(0, 128, P1),

add(isa([P1,P2], offset), List, NList),

add(isa(Response, binary), NList, NNList),

add(retrieve_data(Le, binary, Response), NNList, NewList).

command(_INS, ’b1’, P1, P2, _Lc, _D, Le, List, NewList, Response):-

add(isa([P1,P2], ef), List, A),

add(select(file, [P1,P2]), A, LA),

add(isa(P2, offset), [], L),

add(isa(Response, binary), L, LL),

add(retrieve_data(Le, binary, Response), LL, LLL),

add(LA, [], NewLA),

add(LLL, NewLA, NewList).

command(_INS, ’b2’, P1, _P2,0, 0, Le, List, NewList, Response):-

add(isa(P1, offset), List, AL),

add(isa(Response, record), AL, A),

add(retrieve_data(Le, data, Response), A, NewList).

command(_INS, ’b3’, _P1, _P2, _Lc, D, Le, List, NewList, Response):-

add(isa(D, offset), List, NList),

add(isa(Response, record), NList, NNList),

add(retrieve_data(Le, data, Response), NNList, NewList).

command(_INS, ’db’, 0, P2, _Lc, D, null, List, NewList, _Response):-

153

between(40,255, P2),

add(isa(D, ber_tlv), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’db’, 0, P2, _Lc, D, null, List, NewList, _Response):-

between(0,63, P2),

add(isa(D, rfu), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’db’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,255, P2),

between(40,255, P1),

add(isa(D, ber_tlv), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’da’, 0, P2, _Lc, D, null, List, NewList, _Response):-

between(40,255, P2),

add(isa(D, ber_tlv), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’db’, 0, P2, _Lc, D, null, List, NewList, _Response):-

between(0,63, P2),

add(isa(D, rfu), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’db’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,255, P2),

between(40,255, P1),

add(isa(D, ber_tlv), List, A),

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’d0’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128, 160, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d0’,P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0, 127,P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d1’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128, 160, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d1’,P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0, 127,P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d6’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d6’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

154 Appendix A. PKCS#11: REPROVE Background Knowledge

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d6’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d6’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d6’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(write_data(D, D), NList, NewList).

command(_INS, ’d7’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d7’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d7’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(write_data(D, P2), A, NewList).

command(_INS, ’d7’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(write_data(D, P1/¶2), A, NewList).

command(_INS, ’d7’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(write_data(D, D), NList, NewList).

command(_INS, ’0c’, 00, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa, (D, record), List, AL),

add(isa(D, offset), AL, BList),

add(erase_data(D, D), BList, NewList).

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, null):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

add(isa(op, keyPair), List, AL),

add(isa(null, noResponse), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, null):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

155

add(isa(op, keyPair), List, AL),

add(isa(null, noResponse), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, null):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

add(isa(op, publicKey), List, AL),

add(isa(null, noResponse), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, null):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

add(isa(op, publicKey), List, AL),

add(isa(null, noResponse), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’46’, 00, 00, _Lc, D, null, List, NewList, Response):-

add(isa(op,unknown), List, AL),

add(isa(Response, unknown), AL, AL),

add(generate_asymmetricKeyPair, AL, NewList).

command(_INS, ’47’, 00, 00, _Lc, D, null, List, NewList, Response):-

add(isa(op,unknown), List, AL),

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

add(isa(op, keyPair), List, AL),

add(isa(Response, pk), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList)

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

add(isa(op, keyPair), List, AL),

add(isa(Response, pk), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList)

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

add(isa(op, publicKey), List, AL),

add(isa(Response, pk), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

add(isa(op, publicKey), List, AL),

add(isa(Response, pk), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’46’,P1, 00, _Lc, D, null, List, NewList, Response):-

add(isa(op,unknown), List, AL),

add(isa(Response, unknown), AL, AL),

add(generate_asymmetricKeyPair, AL, NewList).

command(_INS, ’47’, 00, 00, _Lc, D, null, List, NewList, Response):-

add(isa(op,unknown), List, AL),

156 Appendix A. PKCS#11: REPROVE Background Knowledge

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

generateList([12], RangeListA, 8, 256,1), \+member(P1, RangeListA),

add(isa(op, keyPair), List, AL),

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList)

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([0], RangeList, 2, 256,1),

member(P1, RangeList),

generateList([12], RangeListA, 8, 256,1), \+member(P1, RangeListA),

add(isa(op, keyPair), List, AL),

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList)

command(_INS, ’46’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

generateList([12], RangeListA, 8, 256,1), \+member(P1, RangeListA),

add(isa(op, publicKey), List, AL),

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’47’, P1, 00, _Lc, D, null, List, NewList, Response):-

generateList([1], RangeList, 2, 253,1),

member(P1, RangeList),

generateList([12], RangeListA, 8, 256,1), \+member(P1, RangeListA),

add(isa(op, publicKey), List, AL),

add(isa(Response, unknown), AL, AAL),

add(generate_asymmetricKeyPair, AAL, NewList).

command(_INS, ’e2’, 00, 00, _Lc, D, null, List, NewList, _Response):-

add(active(current), List, AL),

add(isa(D, record), AL, BList),

add(append_data(D, D), BList, NewList).

command(_INS, ’e2’, 00, P2, _Lc, D, null, List, NewList, _Response):-

add(active(P2), List, AL),

add(isa(D, record), AL, BList),

add(append_data(D, D), BList, NewList).

add(write_data(card, D, FiLe), A, NewList).

command(_INS, ’d2’, 0, P2, _Lc, D, null, List, NewList, _Response):-

between(40,255, P2),

add(isa(D, record), List,AL),

add(isa(currentOffset, offSet), AL, A),

add(write_data(D, currentOffset), A, NewList).

command(_INS, ’d2’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,7, P2),

add(isa(D, record), List, AL),

add(isa(currentOffset, offset), AL, A),

add(write_data(D, currentOffset), A, NewList).

command(_INS, ’d2’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

generateList([0], RangeList, 8, 248, 1),

member(P2, RangeList),

add(isa(D, record), List, A),

157

add(isa(firstOffset, offset), A, AL),

add(write_data(D, firstOffset), AL, NewList).

command(_INS, ’d2’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

generateList([2], RangeList, 8, 250,1),

member(P2, RangeList),

add(isa(D, record), List, A),

add(isa(nextOffset, offset), A, AL),

add(write_data(D, nextOffset), AL, NewList).

command(_INS, ’d2’, P1, P2, _Lc, D, 0,List, NewList, _Response):-

generateList([4], RangeList, 8, 252,1),

member(P2, RangeList),

add(isa(D, record), List, A),

add(isa(P1, offset), A, AL),

add(write_data(D, P1), AL,NewList).

command(_, ’e4’, 0,0,0,0,null, List, NewList,_Response):-

add(deactive(current), List, A),

add(deactivate(Type, F), A, NewList).

command(_, ’e4’, 0, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df),List, A),

add(deactivate(D), A,B),

add(deactivate(file, D), B, NewList).

command(_, ’e4’, 4, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(deactive(D), A, B),

add(deactivate(file, D), B, NewList).

command(_, ’e4’, 2, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, ef), List, A),

add(deactive(D), A, B),

add(deactivate(file, D), B, NewList).

command(_,’e4’, 8, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(deactive(D), A, B),

add(deactivate(path, D), B, NewList).

command(_,’e4’, 9, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(deactive(D), A, B),

add(deactivate(path, D), B, NewList).

command(_,’e4’, _P1, 09,_Lc, D, null, List, NewList, _Response):-

add(isa(D, df), List, A),

add(deactive(D), A, B),

add(deactivate(path, D), B, NewList).

command(_,’e4’,P1, _P2, _Lc, D, null, List, NewList, _Response):-

between(128,160,P1),

add(isa(D, ef), List, A),

add(deactive(D), A, B),

add(deactivate(file, D), B, NewList).

command(_INS, ’c0’, 0, 0, 0, 0, Le, List, NewList, Response):-

add(get_response(Le,Response), List, NewList).

command(_INS, ’84’, 0, 0, 0, 0, Le, List, NewList, Response):-

add(get_challenge(Le, Response), List, NewList).

command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

158 Appendix A. PKCS#11: REPROVE Background Knowledge

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0e’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0e’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(erase_data(D, D), NList, NewList). command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0e’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0e’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0e’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(erase_data(D, D), NList, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0f’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

159

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0f’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(erase_data(D, D), NList, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(64,127, P1),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0f’, 00, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

member(P1, [1,3,19,17,33,35,49,51,65,67,81,85,97,99,113,115,129,131,154,147,161,163,177,179,193,195,209,211,225,227,241,243]),

add(isa(D, string), List, AL),

add(isa(P2, offset), AL, A),

add(erase_data(D, P2), A, NewList).

command(_INS, ’0f’, P1, P2, _Lc, D, null, List, NewList, _Response):-

between(192,256, P1),

add(isa(D, string), List, AL),

add(isa(P1/¶2, offset), AL, A),

add(erase_data(D, P1/¶2), A, NewList).

command(_INS, ’0f’, 01, _P2, _Lc, D, null, List, NewList, _Response):-

add(isa(D, data), List, AL),

add(isa(D, offset), AL, NList),

add(erase_data(D, D), NList, NewList).

command(_INS, ’20’, 0, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List, A),

add(verify(D), A,NewList).

command(_INS, ’20’, 0, P2, _Lc, D, _Le, List, NewList, _Response):-

between(0,127, P2),

add(isa(D, global), List, N),

add(verify(D), N, NewList).

command(_INS, ’20’, 0, P2, _Lc, D, _Le, List, NewList, _Response):-

between(128,256, P2),

add(isa(D, specific), List, A),

add(verify(D), A, NewList).

command(_INS, ’21’, 0, P2, _Lc, D, _Le, List, NewList, _Response):-

between(128,256, P2),

add(isa(D, specific), List, L),

160 Appendix A. PKCS#11: REPROVE Background Knowledge

add(verify(D), L, NewList).

command(_INS, ’21’, 0, P2, _Lc, D, _Le, List, NewList, _Response):-

between(0,127, P2),

add(isa(D, global), List, L),

add(verify(D), L, NewList).

command(_INS, ’21’, 0, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List,A),

add(verify(D), A, NewList).

command(_INS, ’82’, _P1, 0, _Lc, D, null, List, NewList, _Response):-

add(isa(D, unknown), List, A),

add(external_authenticate(D), A,NewList).

command(_INS, ’82’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’82’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, 86, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List,A),

add(external_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List,A),

add(internal_authenticate(D),A, NewList).

command(_INS, ’86’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List,A),

add(internal_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List, A),

add(internal_authenticate(D), A, NewList).

command(_INS, ’87’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

161

add(isa(D, unknown), List, A),

add(internal_authenticate(D),A, NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List, A),

add(internal_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific),List,A),

add(internal_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List, A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List, A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’86’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List,A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown), List,A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global),List, A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’87’, _P1, P2, _Lc, D, null, List, NewList, _Response):-

between(128,256,P2),

add(isa(D, specific), List, A),

add(mutual_authenticate(D), A,NewList).

command(_INS, ’88’, _P1, 0, _Lc, D, _Le, List, NewList, _Response):-

add(isa(D, unknown),List, A),

add(internal_authenticate(D), A,NewList).

command(_INS, ’88’, _P1, P2, _Lc, D, _Le, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List, A),

add(internal_authenticate(D), A, NewList).

command(_INS, ’88’, _P1, P2, _Lc, D, _Le, List, NewList, _Response):-

between(128,256,P2),

(isa(D, specific), List, A),

add(internal_authenticate(D), A,NewList).

command(_INS, ’88’, _P1, P2, _Lc, D, _Le, List, NewList, _Response):-

between(0,127,P2),

add(isa(D, global), List,A),

add(internal_authenticate(D), A,NewList).

Functionalities.

functionality(authentication(TypeA, TypeB, Sensitivity), [secret_verify(TypeA, TypeB)],

[secret_verify(TypeA, TypeB)], Sensitivity).

162 Appendix A. PKCS#11: REPROVE Background Knowledge

functionality(authentication(Challenge, Response, Sensitivity), [challenge_sent(Le, Challenge),

external_authenticate(Response,TypeOfResponse)], [challenge_sent(Le, Challenge),

external_authenticate(Response,TypeOfResponse)], Sensitivity).

functionality(authentication(Challenge, Response, Sensitivity), [read_data_sub(card, Le, Challenge),

external_authenticate(Response, TypeOfResponse)], [read_data_sub(card, Le, Challenge),

external_authenticate(Response, TypeOfResponse)], Sensitivity).

functionality(authentication(TypeA, TypeB), [internal_authenticate(TypeA, TypeB)], _).

functionality(authentication(TypeA, TypeB), [mutual_authenticate(TypeA, TypeB)], _).

functionality(store_data(Location, D, Sensitivity), [file_create(Location, D)],

[file_create(Location, D)], Sensitivity).

functionality(store_data(Location, D, Sensitivity), [data_write(Location, D)],

[data_write(Location, D)], Sensitivity).

functionality(read_data(Location, Le, RD, Sensitivity), [read_data_sub(Location,Le, RD)],

[read_data_sub(Location,Le, RD)], Sensitivity).

functionality(sign(Data, Response, Sensitivity), [perform_digital_signature(Data, Response)],

[perform_digital_signature(Data, Response)],Sensitivity).

functionality(sign(Data, Response, Sensitivity), [isa(EF, ef),select(file, EF),

perform_digital_signature(Data, Response)], [perform_digital_

signature(Data, Response)], Sensitivity).

functionality(sign(Data, Response, Sensitivity), [read_data_sub(EF, Le, Key),

perform_digital_signature(Data, Response)], [read_data_sub(EF, Le, Key),

perform_digital_signature(Data, Response)], Sensitivity).

functionality(sign(Data, Response, Sensitivity), [isa(EF, ef), select(file, EF),

perform_digital_signature(Data, null), read_data_sub(card, Le, Response)],

[perform_digital_signature(Data, null), read_data_sub(card, Le, Response)], Sensitivity).

functionality(sign(C,RD, Sensitivity),[security_environment(Operation, D1, D2),

perform_operation(C,B), read_data(Location, Le, RD)],

[perform_operation(C,B), read_data(Location, Le, RD)], Sensitivity).

functionality(sign(Data, Response, Sensitivity), [isa(EF, ef), select(file, EF),

security_environment(Operation, D1,D2), perform_digital_signature(Data, Response)],

[perform_digital_signature(Data, Response)], Sensitivity).

functionality(sign(Data, Response, Sensitivity),[read_data_sub(EF, Le, Key),

security_environment(Operation, D1,D2), perform_digital_signature(Data, Response)],

[perform_digital_signature(Data, Response)], Sensitivity).

functionality(sign(Data, Response, Sensitivity), [isa(EF, ef), select(file, EF),

security_environment(Operation, D1,D2), perform_digital_signature(Data, null),

read_data_sub(card, Le, Response)], [read_data_sub(EF, Le, Key),

perform_digital_signature(Data, null), read_data_sub(card, Le, Response)], Sensitivity).

functionality(verify(ResponseSignature, RD), [verify_digital_signature(ResponseSignature, RD)], _,_).

functionality(generateKey(Response), [generate(keyPair,Response), _,_].

Sub-functionalities.

subfunctionality(read_data_sub(EF, Le, RD), [[isa(EF, ef),select(file, EF)], [isa(O,offset), isa(RD,

DataType),retrieve_data(Le, Data, RD)]], [retrieve_data(Le, Data, RD)]).

subfunctionality(read_data_sub(DF, Le, RD), [[isa(DF, df),select(file, DF)], [isa(RD,

DataType),retrieve_get_data(Le, Data, RD)]], [retrieve_get_data(Le, Data, RD)]).

subfunctionality(read_data_sub(DF, Le, RD), [[isa(DF, df),select(file, DF)], [isa(N, offset),

isa(RD, DataType),retrieve_data(Le, Data, RD)]], [retrieve_data(Le, Data, RD)]).

subfunctionality(read_data_sub(DF, Le, RD), [[isa(RD, DataType),retrieve_get_

data(Le, Data, RD)]], [retrieve_data(Le, DataType, RD)]).

163

subfunctionality(read_data_sub(DF, Le, RD),[[isa(DF, offset), isa(RD, record), retrieve_

data(Le, DataType, RD)]], [retrieve_data(Le, DataType, RD)]).

subfunctionality(read_data_sub(card, Le, RD), [[get_response(Le, RD)]], [get_

response(Le, RD)], get_response(Le, RD)).

subfunctionality(data_write(Location, D), [[isa(Location, ef),select(file, Location)], [isa(D,

DataType), isa(Offset, offset), write_data(D, Offset)]], [write_data(D, Offset)]).

subfunctionality(data_write(Location, D), [[isa(Location, df),select(file, Location)], [isa(Offset,

offset), write_data(D, Offset)]], [write_data(D, Offset)]).

subfunctionality(data_write(card, Location, D), [[isa(Location, df),select(path, Location)],

[isa(D, DataType), write_data(D, Location)]], [write_data(D, Location)]).

subfunctionality(data_write(card, Location, D), [[isa(Location, ef),select(file, Location)],

[isa(D, DataType), write_data(D, Location)]], [write_data(D, Location)],_).

subfunctionality(data_write(card, Location, D), [[isa(File, ef),select(file, Location)], [isa(D,

DataType), write_data(card, D, Location)]], [write_data(card,D,Location)],_).

subfunctionality(data_write(Offset, D), [[isa(D, DataType), isa(Offset, offset), write_

data(D, Offset)]], _, [write_data(D, Offset)]).

subfunctionality(data_write(Offset, D), [[isa(Offset, offset), write_data(D, Offset)]],

[write_data(D, Offset)],_).

subfunctionality(data_write(card, null, D), [[isa(D, DataType), write_data(D, Location)]],

[write_data(D, Location)],_).

subfunctionality(data_write(Location, D), [[write_data(D, null), _]],[write_data(D, null)],_).

subfunctionality(file_create(DF, D), [[isa(DF, df), select(path,DF)], [isa(O,offset),create_file(D)]],

[create_file(D)],_).

subfunctionality(file_create(DF, D), [[isa(DF, df), select(file,DF)],[isa(O,offset), create_file(D)]],

[create_file(D)],_).

subfunctionality(file_delete(DF, D), [[isa(D, df), select(path,DF)], [isa(D, df),delete_file(file, D)]],

[delete_file(_,D)]).

subfunctionality(file_delete(DF, D), [[isa(D, ef), select(file,DF)], [isa(D, ef),delete_file(file, D)]],

[delete_file(_,D)]).

subfunctionality(file_delete(DF, D), [[isa(D, df), select(path,DF)], [isa(D, df),delete_file(path, D)]],

[delete_file(_,D)]).

subfunctionality(file_create(DF, D), [[isa(DF, df), select(file,DF)],[isa(O,offset), delete_file(D)]],

[delete_file(D)],_).

subfunctionality(file_activate(Type, File), [[isa(File, Type), select(FP, File)], [active(current),

activate(FP, File)]], [activate(FP, File)],_).

subfunctionality(file_activate(Type, File), [[isa(File, Type)], [active(File), activate(FP, File)]],

[activate(FP, File)],_).

subfunctionality(generate(Op,Response), [[isa(op, OP), isa(Response, Type), generate_asymmetricKeyPair],

[generate_asymmetricKeyPair]]).

subfunctionality(challenge_sent(Le, Challenge), [[get_challenge(Le, Challenge)]],

[get_challenge(Le, Challenge)],_).

subfunctionality(challenge_sent(Le, Challenge), [[isa(File, Type),select(Kind, File)],

[get_challenge(Le, Challenge)]], [get_challenge(Le, Challenge)],_).

subfunctionality(secret_verify(pin, D), [[isa(D, TypeOfPasscode), verify(D)]], _, verify(D)).

subfunctionality(secret_verify(pin, D), [[isa(EF, ef),select(file, EF)], [isa(D, TypeOfPasscode),

verify(D)]], _, [verify(D)]).

subfunctionality(secret_verify(pin, D), [[isa(DF, df),select(file, DF)], [isa(D, TypeOfPasscode),

verify(D)]], _, [verify(D)]).

subfunctionality(secret_verify(pin, D), [[isa(DF, df),select(path, DF)], [isa(D, TypeOfPasscode),

verify(D)]], _, [verify(D)]).

subfunctionality(external_authenticate(Response, TypeOfResponse),[[isa(Response,

TypeOfResponse),external_authenticate(Response)]] ,_, [external_authenticate(Response)]).

164 Appendix A. PKCS#11: REPROVE Background Knowledge

subfunctionality(external_authenticate(Response, TypeOfResponse),[[isa(File, Type),

select(Kind, File)], [isa(Response, TypeOfResponse),external_authenticate(Response)]] ,_, [external_authenticate(Response)]).

subfunctionality(internal_authenticate(Response, TypeOfResponse),[[isa(Response,

TypeOfResponse),internal_authenticate(Response)]] ,_, [internal_authenticate(Response)]).

subfunctionality(internal_authenticate(Response, TypeOfResponse),[[isa(File, Type),

select(Kind, File)], [isa(Response, TypeOfResponse),internal_authenticate(Response)]] ,_,

[internal_authenticate(Response)]).

subfunctionality(perform_digital_signature(Data, Response),[[isa(Data, dataToSign),

isa(Data, Type), isa(Response, digitalSignature), digital_signature(Data, Response)]],

[digital_signature(Data, Response)],_).

subfunctionality(perform_digital_signature(Data, Response),[[isa(P, tag), tag(Data, P),

isa(RTag, tag), tag(Response, RTag), security_operation(Data, Response)]],[security_

operation(Data, Response)],_).

subfunctionality(verify_digital_signature(Data), [[verify_signature(Data)]], _,_).

subfunctionality(verify_digital_signature(Data, Response), [[isa(P, tag), tag(Data, P),

isa(RTag, tag), tag(Response, RTag), security_operation(Data, Response)]],

[security_operation(Data, Response)],_).

subfunctionality(hash(C,B),[[security_operation_hash(B,C)]],[security_operation_

hash(B,C)],_).

subfunctionality(decrypt(C,B),[[security_operation_decrypt(B,C)]],[security_operation_

decrypt(B,C)],_).

subfunctionality(encrypt(C,B),[[security_operation_encrypt(B,C)]],[security_operation_

encrypt(B,C)],_).

subfunctionality(security_environment(Operation, D1, D2), [[isa(D2, Meaning2), manage_security_environment(Operation,

D1, D2)]],[manage_security_

environment(Operation, D1, D2)],_).

subfunctionality(security_environment(Operation, D1, D2), [[isa(D1, Meaning1), isa(D2, Meaning2),

manage_security_environment(Operation, D1, D2)]],[manage_security_

environment(Operation, D1, D2)],_).

subfunctionality(security_environment(Operation, D1, D2), [[isa(D1, Meaning1), manage_security_environment(Operation,

D1, D2)]],[manage_security_

environment(Operation, D1, D2)],_).

PKCS#11 Models.

pkcs(log_in, [authentication(A,B, _directSensitive)]).

pkcs(log_in, [read_data(Location, File, RD, _indirectSensitive), authentication(A,B,_directSensitive)]).

pkcs(generate_key, [generateKey(Response)]).

pkcs(generate_key,[store_data(Location, D,S),generateKey(Response)]).

pkcs(generate_key, [authentication(A,B, _directSensitive),generateKey(Response)]).

pkcs(generate_key,[authentication(A,B, _directSensitive), store_data(Location, D,S),generateKey(Response)]).

pkcs(sign, [part_sign(D, Rd, S)]).

pkcs(find_objects, [read_data(Location, Le, RD,S)]).

pkcs(get_attributeValue, [read_data(Location, Le, RD, S)]).

pkcs(get_attributeValue, [read_data(Location, Le, RD, S), store_data(Location, D,S)]).

pkcs(set_attributeValue,[store_data(Location, D, S)]).

pkcs(set_attributeValue,[store_data(File, FileData,S), store_data(File, D, S)]).

pkcs(set_attributeValue,[read_data(Location, Le, RD,S), store_data(Location, D, S)]).

pkcs(wrap_key,[read_data(Location, Le,RD, S)]).

pkcs(wrap_key,[encrypt(C,B]).

pkcs(encrypt,[encrypt(C,B)]).

Appendix B

PKCS#11: Extracted

State-Machines

B.1 Cardos V4.3, V4.4, V5 State-Machines

Although Cardos V4.3 was produced by a different vendor (Siemens) from V4.4 and

V5 (Atos), all tested smart-cards have the exact same implementation. The state-

machines are presented in Figure B.2, Figure B.3, Figure B.4, and Figure ??.

165

166 Appendix B. PKCS#11: Extracted State-Machines

0 VERIFY / SW:9000WRITE Attr / SW:6986SELECTa / SW:9000SELECTf / SW:6a81READO / SW:6986PERFORM_SECURITY / SW:6a88READa / SW:6986MANAGE ECURITYb / SW:9000READe / SW:6986READd / SW:6986READc / SW:6986READb / SW:6986READi / SW:6986READh / SW:6986READg / SW:6986READf / SW:6986READm / SW:6986READl / SW:6986READk / SW:6986READn / SW:6986MANAGE SECURITYa / SW:9000

1

SELECTb / SW:9000

2

SELECTc / SW:9000

3

SELECTg / SW:9000

4

SELECTd / SW:9000 SELECTe / SW:9000

SELECTa / SW:9000

VERIFY / SW:9000WRITE Attr / SW:9000SELECTb / SW:9000SELECTf / SW:6a81READO / SW:9000,Len:63PERFORM_SECURITY / SW:6a88READa / SW:9000,Len:66MANAGE ECURITYb / SW:9000READe / SW:9000,Len:2READd / SW:9000,Len:2READc / SW:9000,Len:2READb / SW:9000,Len:2READi / SW:9000,Len:2READh / SW:9000,Len:2READg / SW:9000,Len:2READf / SW:9000,Len:2READm / SW:9000,Len:2READl / SW:9000,Len:2READk / SW:9000,Len:2READn / SW:6a83MANAGE SECURITYa / SW:9000

SELECTc / SW:9000

SELECTg / SW:9000

SELECTd / SW:9000SELECTe / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

VERIFY / SW:9000WRITE Attr / SW:9000SELECTc / SW:9000SELECTf / SW:6a81READO / SW:9000,Len:55PERFORM_SECURITY / SW:6a88READa / SW:9000,Len:66MANAGE ECURITYb / SW:9000READe / SW:9000,Len:2READd / SW:9000,Len:2READc / SW:9000,Len:2READb / SW:9000,Len:2READi / SW:9000,Len:2READh / SW:9000,Len:2READg / SW:9000,Len:2READf / SW:9000,Len:2READm / SW:6a83READl / SW:6a83READk / SW:6a83READn / SW:6a83MANAGE SECURITYa / SW:9000

SELECTg / SW:9000

SELECTd / SW:9000 SELECTe / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTc / SW:9000

WRITE Attr / SW:6982SELECTf / SW:6a81SELECTg / SW:9000READO / SW:6982PERFORM_SECURITY / SW:6a88READa / SW:6982READe / SW:6982READd / SW:6982READc / SW:6982READb / SW:6982READi / SW:6982READh / SW:6982READg / SW:6982READf / SW:6982READm / SW:6982READl / SW:6982READk / SW:6982READn / SW:6982MANAGE SECURITYa / SW:9000

SELECTd / SW:9000 SELECTe / SW:9000

5

VERIFY / SW:9000

6

MANAGE ECURITYb / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTc / SW:9000

SELECTg / SW:9000

VERIFY / SW:9000WRITE Attr / SW:6a83SELECTf / SW:6a81SELECTd / SW:9000READO / SW:6a83SELECTe / SW:9000PERFORM_SECURITY / SW:6a88READa / SW:6a83MANAGE ECURITYb / SW:9000READe / SW:6a83READd / SW:6a83READc / SW:6a83READb / SW:6a83READi / SW:6a83READh / SW:6a83READg / SW:6a83READf / SW:6a83READm / SW:6a83READl / SW:6a83READk / SW:6a83READn / SW:6a83MANAGE SECURITYa / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTc / SW:9000

SELECTd / SW:9000 SELECTe / SW:9000

VERIFY / SW:9000WRITE Attr / SW:6982SELECTf / SW:6a81SELECTg / SW:9000READO / SW:6a83PERFORM_SECURITY / SW:6a88READa / SW:6a83READe / SW:6a83READd / SW:6a83READc / SW:6a83READb / SW:9000,Len:2READi / SW:6a83READh / SW:6a83READg / SW:6a83READf / SW:6a83READm / SW:6a83READl / SW:6a83READk / SW:6a83READn / SW:6a83MANAGE SECURITYa / SW:9000

7

MANAGE ECURITYb / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTc / SW:9000

MANAGE SECURITYa / SW:9000

SELECTd / SW:9000 SELECTe / SW:9000

WRITE Attr / SW:6982SELECTf / SW:6a81SELECTg / SW:9000READO / SW:6982PERFORM_SECURITY / SW:6982READa / SW:6982MANAGE ECURITYb / SW:9000READe / SW:6982READd / SW:6982READc / SW:6982READb / SW:6982READi / SW:6982READh / SW:6982READg / SW:6982READf / SW:6982READm / SW:6982READl / SW:6982READk / SW:6982READn / SW:6982

VERIFY / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTc / SW:9000

SELECTd / SW:9000SELECTe / SW:9000

MANAGE SECURITYa / SW:9000

VERIFY / SW:9000WRITE Attr / SW:6982SELECTf / SW:6a81SELECTg / SW:9000READO / SW:6a83PERFORM_SECURITY / SW:6700READa / SW:6a83MANAGE ECURITYb / SW:9000READe / SW:6a83READd / SW:6a83READc / SW:6a83READb / SW:9000,Len:2READi / SW:6a83READh / SW:6a83READg / SW:6a83READf / SW:6a83READm / SW:6a83READl / SW:6a83READk / SW:6a83READn / SW:6a83

Figure B.1: The extracted state machine of the Cardos V4.4 for the functions C_logIn,

C_getAttributeValue, C_setAttributeValue, C_sign and C_findObjects func-

tions.

B.1. Cardos V4.3, V4.4, V5 State-Machines 167

0 SELECTC / SW:9000VERIFY / SW:9000

Figure B.2: The extracted state-machine of the C_logIn function for the Cardos

smart-cards.

168 Appendix B. PKCS#11: Extracted State-Machines

0 PERFORMSECOP / SW:6a88READA / SW:6986MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

1

SELECTB / SW:9000

2

SELECTA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6a88READA / SW:6982MANAGESECENVA / SW:9000

SELECTA / SW:9000 3

MANAGESECENVB / SW:9000

SELECTB / SW:9000

PERFORMSECOP / SW:6a88SELECTA / SW:9000READA / SW:9000,Len:66MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

MANAGESECENVA / SW:9000

SELECTA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6982READA / SW:6982MANAGESECENVB / SW:9000

Figure B.3: The extracted state-machine of the C_sign function, without authentica-

tion, for the Cardos smart-cards.

B.1. Cardos V4.3, V4.4, V5 State-Machines 169

0 SELECTC / SW:9000PERFORMSECOP / SW:6a88READA / SW:6986MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

1

SELECTB / SW:9000

2

SELECTA / SW:9000

7

VERIFY / SW:9000

SELECTC / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6a88READA / SW:6982MANAGESECENVA / SW:9000

SELECTA / SW:90003

MANAGESECENVB / SW:9000

4

VERIFY / SW:9000 SELECTC / SW:9000

SELECTB / SW:9000

PERFORMSECOP / SW:6a88SELECTA / SW:9000READA / SW:9000,Len:66MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000

6

VERIFY / SW:9000

SELECTC / SW:9000

MANAGESECENVA / SW:9000

SELECTA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6982READA / SW:6982MANAGESECENVB / SW:9000

5

VERIFY / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:6a88READA / SW:6a83MANAGESECENVA / SW:9000VERIFY / SW:9000

MANAGESECENVB / SW:9000

SELECTA / SW:9000

SELECTC / SW:9000

MANAGESECENVA / SW:9000

SELECTB / SW:9000PERFORMSECOP / SW:9000,Len:128READA / SW:6a83MANAGESECENVB / SW:9000VERIFY / SW:9000

SELECTA / SW:9000

SELECTC / SW:9000 SELECTB / SW:9000

PERFORMSECOP / SW:6a88SELECTA / SW:9000READA / SW:9000,Len:66MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000VERIFY / SW:9000

SELECTC / SW:9000

SELECTB / SW:9000

SELECTA / SW:9000

SELECTC / SW:9000PERFORMSECOP / SW:6a88READA / SW:6986MANAGESECENVA / SW:9000MANAGESECENVB / SW:9000VERIFY / SW:9000

Figure B.4: The extracted state-machine of the C_sign function including authentica-

tion, for the Cardos smart-cards

170 Appendix B. PKCS#11: Extracted State-Machines

0 VERIFY / SW:6d00

1

SELECT / SW:9000

VERIFY / SW:9000SELECT / SW:9000

Figure B.6: The extracted state-machine of the C_login function for the Safesite

smart-card.

B.2 Safesite TCP IS V1

The extracted state-machines for the Safesite TCP IS V1 smart-card are presented in

Figure B.6, Figure B.7, Figure B.8, Figure B.9 and Figure B.10.

B.2. Safesite TCP IS V1 171

0 READ / SW:6d00MANAGESECENV / SW:6d00PERFORMSECOP / SW:6d00

Figure B.7: The extracted state-machine of the C_sign function without authentica-

tion, for the Safesite smart-card.

172 Appendix B. PKCS#11: Extracted State-Machines

0 READ / SW:6d00MANAGESECENV / SW:6d00PERFORMSECOP / SW:6d00VERIFY / SW:6d00

1

SELECT / SW:9000

READ / SW:6d00PERFORMSECOP / SW:6985SELECT / SW:9000

2

MANAGESECENV / SW:9000

4

VERIFY / SW:9000

SELECT / SW:9000

READ / SW:6d00MANAGESECENV / SW:9000PERFORMSECOP / SW:6982

3

VERIFY / SW:9000 PERFORMSECOP / SW:9000,Len:128

READ / SW:6d00MANAGESECENV / SW:9000VERIFY / SW:9000

SELECT / SW:9000 MANAGESECENV / SW:9000

READ / SW:6d00PERFORMSECOP / SW:6985VERIFY / SW:9000SELECT / SW:9000

Figure B.8: The extracted state-machine of the C_sign function including authentica-

tion, for the Safesite smart-card.

B.2. Safesite TCP IS V1 173

0 SELECTb / SW:6700SELECTa / SW:6700WRITEb / SW:6d00WRITEa / SW:6d00

Figure B.9: The C_setAttributeValue, without authentication, state-machine of

the Safesite smart-card

174 Appendix B. PKCS#11: Extracted State-Machines

0 SELECTb / SW:6700SELECTa / SW:6700WRITEb / SW:6d00WRITEa / SW:6d00VERIFY / SW:6d00

1

SELECTver / SW:9000

SELECTver / SW:9000WRITEb / SW:6986WRITEa / SW:6986

2

SELECTb / SW:9000

3

SELECTa / SW:9000

5

VERIFY / SW:9000

SELECTver / SW:9000

SELECTb / SW:9000WRITEb / SW:6982WRITEa / SW:6982

SELECTa / SW:9000

4

VERIFY / SW:9000

SELECTver / SW:9000

SELECTb / SW:9000

SELECTa / SW:9000WRITEb / SW:6282WRITEa / SW:9000

6

VERIFY / SW:9000

SELECTb / SW:9000WRITEb / SW:9000WRITEa / SW:9000VERIFY / SW:9000

SELECTver / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTver / SW:9000WRITEb / SW:6986WRITEa / SW:6986VERIFY / SW:9000

SELECTa / SW:9000

SELECTb / SW:9000

SELECTver / SW:9000

SELECTa / SW:9000WRITEb / SW:6282WRITEa / SW:9000VERIFY / SW:9000

Figure B.10: The C_setAttributeValue state-machine, including authentication,

for the Safesite smart-card

Bibliography

[Anderson et al., 2006] Anderson, R., Bond, M., and Murdoch, S. J. (2006). Chip and

spin. Computer Security Journal, 22(2):1–6.

[Anderson and Kuhn, 1996] Anderson, R. and Kuhn, M. (1996). Tamper resistance-a

cautionary note. In USENIX Workshop on Electronic Commerce, volume 2, pages

1–11.

[Androulaki et al., 2013] Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., and

Capkun, S. (2013). Evaluating user privacy in bitcoin. In Financial Cryptography

and Data Security International Conference, Revised Selected Papers, pages 34–51.

[Bamert et al., 2014] Bamert, T., Decker, C., Wattenhofer, R., and Welten, S. (2014).

Bluewallet: The secure bitcoin wallet. In International Workshop Security and

Trust, pages 65–80.

[Bar-El et al., 2004] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whe-

lan, C. (2004). The sorcerer’s apprentice guide to fault attacks. Cryptology ePrint

Archive.

[Barber et al., 2012] Barber, S., Boyen, X., Shi, E., and Uzun, E. (2012). Bitter to

better - how to make bitcoin a better currency. In Financial Cryptography and Data

Security International Conference, Revised Selected Papers, pages 399–414.

[Barbu et al., 2011] Barbu, G., Duc, G., and Hoogvorst, P. (2011). Java card operand

stack: Fault attacks, combined attacks and countermeasures. In Smart Card Re-

search and Advanced Application Conference, pages 297–313.

[Barbu et al., 2012] Barbu, G., Giraud, C., and Guerin, V. (2012). Embedded eaves-

dropping on java card. In Information Security and Privacy Research, pages 37–48.

175

176 Bibliography

[Benadjila et al., 2014] Benadjila, R., Calderon, T., and Daubignard, M. (2014). Caml

crush: A PKCS#11 filtering proxy. In Smart Card Research and Advanced Appli-

cations, pages 173–192. Springer.

[Biham and Shamir, 1997] Biham, E. and Shamir, A. (1997). Differential fault anal-

ysis of secret key cryptosystems. In Annual International Cryptology Conference,

pages 513–525.

[Bitcoin, 2016] Bitcoin (2016). Segregated Witness:The Next Steps.

[Bitcoinmagazine, 2013] Bitcoinmagazine (2013). Ozcoin stolen funds. https: //

goo. gl/ WmcG2n .

[Bond and Anderson, 2001] Bond, M. and Anderson, R. (2001). Api-level attacks on

embedded systems. Computer, 34(10):67–75.

[Bond et al., 2004] Bond, M., Cvrček, D., and Murdoch, S. J. (2004). Unwrapping the

Chrysalis. Technical Report UCAM-CL-TR-592, University of Cambridge, Com-

puter Laboratory.

[Bortolozzo et al., 2010] Bortolozzo, M., Centenaro, M., Focardi, R., and Steel, G.

(2010). Attacking and fixing PKCS#11 security tokens. In ACM Conference on

Computer and Communications Security, pages 260–269.

[Bozzato et al., 2016] Bozzato, C., Focardi, R., Palmarini, F., and Steel, G. (2016).

APDU-level attacks in PKCS# 11 devices. In International Symposium on Research

in Attacks, Intrusions, and Defenses, pages 97–117.

[Caballero et al., 2007] Caballero, J., Yin, H., Liang, Z., and Song, D. (2007). Poly-

glot: Automatic extraction of protocol message format using dynamic binary anal-

ysis. In ACM Conference on Computer and Communications Security, pages 317–

329.

[Centenaro et al., 2012] Centenaro, M., Focardi, R., and Luccio, F. L. (2012). Type-

based analysis of PKCS# 11 key management. In International Conference on

Principles of Security and Trust, pages 349–368. Springer.

[Cho et al., 2010] Cho, C. Y., Babi ć, D., Shin, E. C. R., and Song, D. (2010). Infer-

ence and analysis of formal models of botnet command and control protocols. In

ACM Conference on Computer and Communications Security, pages 426–439.

Bibliography 177

[Choudary, 2010] Choudary, O. (2010). The Smart Card Detective: a hand-held

emv interceptor, University of Cambridge, Computer Laboratory, Darwin College,

MPhil thesis.

[Clulow, 2003] Clulow, J. (2003). On the Security of PKCS#11. In International

Workshop on Cryptographic Hardware and Embedded Systems, pages 411–425.

[Comparetti et al., 2009] Comparetti, P. M., Wondracek, G., Kruegel, C., and Kirda,

E. (2009). Prospex: Protocol specification extraction. In IEEE Symposium on Se-

curity and Privacy, pages 110–125.

[Cortier et al., 2007] Cortier, V., Keighren, G., and Steel, G. (2007). Automatic analy-

sis of the security of xor-based key management schemes. In International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, pages

538–552.

[Courant and Monin, 2006a] Courant, J. and Monin, J.-F. (2006a). Defending the

Bank with a Proof assistant. In International Workshop on Issues in the Theory

of Security, pages 87–98.

[Courant and Monin, 2006b] Courant, J. and Monin, J.-F. (2006b). Defending the

bank with a proof assistant. In International Workshop on Issues in the Theory

of Security.

[Cryptosense, 2014] Cryptosense (2014). Grand jury indictment of pleschuck.

goo.gl/YkfFrQ.

[Cui et al., 2007] Cui, W., Kannan, J., and Wang, H. J. (2007). Discoverer: Automatic

protocol reverse engineering from network traces. In USENIX Security Symposium.

[D. Longley, 1992] D. Longley, S. R. (1992). An automatic search for security flaws

in key management schemes. Computers and Security, 11(1).

[De Cock et al., 2005] De Cock, D., Wouters, K., Schellekens, D., Singelee, D., and

Preneel, B. (2005). Threat modelling for security tokens in web applications. In

Communications and Multimedia Security, pages 183–193. Springer.

[De Koning Gans and de Ruiter, 2012] De Koning Gans, G. and de Ruiter, J. (2012).

The SmartLogic Tool: Analysing and testing smart card protocols. In IEEE Interna-

tional Conference on Software Testing, Verification and Validation, pages 864–871.

178 Bibliography

[Decker and Wattenhofer, 2014] Decker, C. and Wattenhofer, R. (2014). Bitcoin trans-

action malleability and mtgox. In European Symposium on Research in Computer

Security, pages 313–326. Springer.

[Delaune et al., 2008] Delaune, S., Kremer, S., and Steel, G. (2008). Formal analysis

of PKCS#11. In Computer Security Foundations, pages 331–344.

[Delaune et al., 2010] Delaune, S., Kremer, S., and Steel, G. (2010). Formal security

analysis of PKCS# 11 and proprietary extensions. Journal of Computer Security,

18(6):1211–1245.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. (1976). New directions in

cryptography. IEEE Transactions on Information Theory, 22(6):644–654.

[DigiNotar, 2014] DigiNotar (2014). Black Tulip Report. cryptosense. com/

wp-content/ uploads/ 2014/ 11/ black-tulip-update. pdf .

[Dolev and Yao, 1983] Dolev, D. and Yao, A. (1983). On the security of public key

protocols. IEEE Transactions on information theory, 29(2):198–208.

[Fides Aarts, 2013] Fides Aarts, Joeri de Ruiter, E. P. (2013). Formal models of bank

cards for free. In IEEE International Conference on Software Testing Verification

and Validation Workshop, volume 0, pages 461–468.

[Fröschle and Sommer, 2011] Fröschle, S. and Sommer, N. (2011). Concepts and

proofs for configuring PKCS#11. In International Workshop on Formal Aspects

in Security and Trust, pages 131–147. Springer.

[Gandolfi et al., 2001] Gandolfi, K., Mourtel, C., and Olivier, F. (2001). Electromag-

netic analysis: Concrete results. In International Workshop on Cryptographic Hard-

ware and Embedded Systems, pages 251–261. Springer.

[Genkin et al., 2014] Genkin, D., Shamir, A., and Tromer, E. (2014). RSA key extrac-

tion via low-bandwidth acoustic cryptanalysis. In International Cryptology Confer-

ence, pages 444–461.

[Gkaniatsou et al., 2015] Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi,

R., and Bozzato, C. (2015). Getting to know your card: reverse-engineering the

smart-card application protocol data unit. In ACM Annual Computer Security Ap-

plications Conference, pages 441–450.

Bibliography 179

[Google,] Google. Protocol Buffers. developers. google. com/

protocol-buffers .

[Hao and Ryan, 2010] Hao, F. and Ryan, P. (2010). J-PAKE: Authenticated Key Ex-

change without PKI, pages 192–206. Springer.

[Herrera-Joancomartí, 2014] Herrera-Joancomartí, J. (2014). Research and challenges

on bitcoin anonymity. In Data Privacy Management, Autonomous Spontaneous Se-

curity, and Security Assurance - 9th International Workshop, DPM 2014, 7th In-

ternational Workshop, SETOP 2014, and 3rd International Workshop, QASA 2014.

Revised Selected Papers, pages 3–16.

[Higgins, 2015] Higgins, S. (2015). Bitstamp bitcoin echange. www. coindesk. com/

unconfirmed-report-5-million-bitstamp-bitcoin-exchange .

[Hsiao et al., 2009] Hsiao, H.-C., Lin, Y.-H., Studer, A., Studer, C., Wang, K.-H.,

Kikuchi, H., Perrig, A., Sun, H.-M., and Yang, B.-Y. (2009). A study of user-

friendly hash comparison schemes. In ACM Annual Computer Security Applica-

tions Conference, pages 105–114.

[Huang et al., 2014] Huang, D. Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier,

C., McCoy, D., Savage, S., Weaver, N., Snoeren, A. C., and Levchenko, K. (2014).

Botcoin: Monetizing stolen cycles. In Annual Network and Distributed System

Security Symposium.

[Iguchi-Cartigny and Lanet, 2010] Iguchi-Cartigny, J. and Lanet, J.-L. (2010). Devel-

oping a trojan applet in a smart card. Journal in computer virology, 6(4):343–351.

[Iso.org, 1198] Iso.org (1198). ISO/IEC 7816-1:1998 Identification cards - Integrated

circuit(s) cards with contacts Part 1: Physical characteristics.

[Iso.org, 2005a] Iso.org (2005a). ISO/IEC 7816-10:1999 Identification cards - Inte-

grated circuit(s) cards with contacts Part 10: Electronic signals and answer to reset

for synchronous cards.

[Iso.org, 2005b] Iso.org (2005b). ISO/IEC 7816-11:2004 Identification cards - Inte-

grated circuit cards Part 11: Personal verification through biometric methods.

[Iso.org, 2005c] Iso.org (2005c). ISO/IEC 7816-12:2005 Identification cards - Inte-

grated circuit cards Part 12: Cards with contacts USB electrical interface and oper-

ating procedures.

180 Bibliography

[Iso.org, 2005d] Iso.org (2005d). ISO/IEC 7816-13:2007 Identification cards - Inte-

grated circuit cards Part 13: Commands for application management in a multi-

application environment.

[Iso.org, 2005e] Iso.org (2005e). ISO/IEC 7816-15:2004 Identification cards - Inte-

grated circuit cards Part 15: Cryptographic information application.

[Iso.org, 2005f] Iso.org (2005f). ISO/IEC 7816-4:2005 Identification cards - Inte-

grated circuit cards Part 4: Organization, security and commands for interchange.

[Iso.org, 2005g] Iso.org (2005g). ISO/IEC 7816-5:2004 Identification cards - Inte-

grated circuit cards Part 5: Registration of application providers.

[Iso.org, 2005h] Iso.org (2005h). ISO/IEC 7816-6:2004 Identification cards - Inte-

grated circuit cards Part 6: Interindustry data elements for interchange.

[Iso.org, 2005i] Iso.org (2005i). ISO/IEC 7816-7:1999 Identification cards - Inte-

grated circuit(s) cards with contacts Part 7: Interindustry commands for Structured

Card Query Language (SCQL).

[Iso.org, 2005j] Iso.org (2005j). ISO/IEC 7816-8:2004 Identification cards - Inte-

grated circuit cards Part 8: Commands for security operations.

[Iso.org, 2005k] Iso.org (2005k). ISO/IEC 7816-9:2004 Identification cards - Inte-

grated circuit cards Part 9: Commands for card management.

[Iso.org, 2006] Iso.org (2006). ISO/IEC 7816-3:2006 Identification cards - Integrated

circuit cards Part 3: Cards with contacts Electrical interface and transmission pro-

tocols.

[Iso.org, 2007] Iso.org (2007). ISO/IEC 7816-2:2007 Identification cards - Integrated

circuit cards Part 2: Cards with contacts Dimensions and location of the contacts.

[Karame et al., 2012] Karame, G. O., Androulaki, E., and Capkun, S. (2012). Double-

spending fast payments in bitcoin. In ACM Conference on Computer and Commu-

nications Security, pages 906–917.

[Kocher et al., 1999] Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power anal-

ysis. In Advances in cryptology, Crypto 1999, pages 789–789. Springer.

Bibliography 181

[Kocher, 1996] Kocher, P. C. (1996). Timing attacks on implementations of Diffie-

Hellman, RSA, DSS, and other systems. In Annual International Cryptology Con-

ference, pages 104–113.

[Künnemann, 2015] Künnemann, R. (2015). Automated backward analysis of

PKCS#11 v2. 20. In International Conference on Principles of Security and Trust,

pages 219–238.

[Lim et al., 2014] Lim, I.-K., Kim, Y.-H., Lee, J.-G., Lee, J.-P., Nam-Gung, H., and

Lee, J.-K. (2014). The analysis and countermeasures on security breach of bitcoin.

In International Conference in Computational Science and Its Applications, pages

720–732.

[Litke and Stewart, 2014] Litke, P. and Stewart, J. (2014). Cryptocurrency-stealing

malware landscape. technical report. Dell SecureWorks Counter Threat Unit.

[Ludovic, 2016] Ludovic, R. (2016). PCSC-lite, (accessed october 1, 2016). pc-

sclite.alioth.debian.org/.

[Mangard et al., 2008] Mangard, S., Oswald, E., and Popp, T. (2008). Power analysis

attacks: Revealing the secrets of smart cards, volume 31. Springer Science &

Business Media.

[Mostowski and Poll, 2008] Mostowski, W. and Poll, E. (2008). Malicious code on

java card smartcards: Attacks and countermeasures. Smart Card Research and

Advanced Applications, pages 1–16.

[Murdoch et al., 2010a] Murdoch, S. J., Drimer, S., Anderson, R., and Bond, M.

(2010a). Chip and pin is broken. In IEEE Symposium on Security and Privacy,

pages 433–446. IEEE Computer Society.

[Murdoch et al., 2010b] Murdoch, S. J., Drimer, S., Anderson, R. J., and Bond, M.

(2010b). Chip and PIN is broken. In IEEE Symposium on Security and Privacy,

pages 433–446.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash sys-

tem. bitcoin. org/ bitcoin. pdf .

[Nohl et al., 2008] Nohl, K., Evans, D., Starbug, S., and Plötz, H. (2008). Reverse-

engineering a cryptographic rfid tag. In USENIX Security Symposium, volume 28.

182 Bibliography

[OASIS, 2015] OASIS (2015). PKCS#11 cryptographic token interface base specifi-

cation version 2.40.

[Poulsen, 2011] Poulsen, K. (2011). New malware steals your bitcoin. www. wired.

com/ 2011/ 06/ bitcoin-malware .

[Quisquater and Samyde, 2001] Quisquater, J.-J. and Samyde, D. (2001). Electromag-

netic analysis (ema): Measures and counter-measures for smart cards. Smart Card

Programming and Security, pages 200–210.

[Raffelt et al., 2005] Raffelt, H., Steffen, B., and Berg, T. (2005). Learnlib: A library

for automata learning and experimentation. In International Workshop on Formal

Methods for Industrial Critical Systems.

[Rosenfeld, 2014] Rosenfeld, M. (2014). Analysis of hashrate-based double spending.

CoRR, abs/1402.2009.

[RSA Laboratories, 2009] RSA Laboratories (2009). PKCS#11 v2.30: Cryptographic

token interface standard.

[RSA Laboratories, 2012] RSA Laboratories (2012). PKCS#5 v 2.1: PBKDF2 Pass-

word Based Key Derivation Function 2. https://www.emc.com/collateral/white-

papers/h11302-pkcs5v2-1-password-based-cryptography-standard-wp.pdf.

[RSA Security INC, 2004] RSA Security INC (2004). v2.20. PKCS#11: Crypto-

graphic Token Interface Standard.

[Ruiter, 2015] Ruiter, J. D. (2015). Lessons learned in the analysis of the EMV and

TLS security protocols. PhD thesis, Radboud University Nijmegen.

[Saitta et al., 2005] Saitta, P., Larcom, B., and Eddington, M. (2005). Trike

v.1 methodology document [draft]. dymaxion. org/ trike/ Trike\ _v1\

_Methodology\ _Documentdraft. pdf .

[Scerri and Stanley-Oakes, 2016] Scerri, G. and Stanley-Oakes, R. (2016). Analysis

of key wrapping apis: generic policies, computational security. In Computer Secu-

rity Foundations Symposium, pages 281–295. IEEE.

[Schneier et al., 1999] Schneier, B., Shostack, A., et al. (1999). Breaking up is hard to

do: modeling security threats for smart cards. In USENIX Workshop on Smart Card

Technology.

Bibliography 183

[Skorobogatov, 2005] Skorobogatov, S. P. (2005). Semi-invasive attacks: A new ap-

proach to hardware security analysis. PhD thesis, University of Cambridge.

[Steel and Bundy, 2005] Steel, G. and Bundy, A. (2005). Deduction with xor con-

straints in security api modelling. In International Conference on Automated De-

duction, pages 322–336.

[Swiderski and Snyder, 2004] Swiderski, F. and Snyder, W. (2004). Threat modeling.

Microsoft Press.

[The Bitcoin Wiki, 2014a] The Bitcoin Wiki (2014a). en. bitcoin. it/ wiki .

[The Bitcoin Wiki, 2014b] The Bitcoin Wiki (2014b). Bitcoin protocol specification.

en. bitcoin. it/ wiki/ Protocol% 5Fdocumentation .

[The Bitcoin Wiki, 2014c] The Bitcoin Wiki (2014c). Wallet encryption. en.

bitcoin. it/ wiki/ Wallet% 5Fencryption .

[Tribbleagency.com, 2012] Tribbleagency.com (2012). Bitcoin ewallet vanishes from

internet. www. tribbleagency. com/ ?p= 8133 .

[Turuani et al., 2016] Turuani, M., Voegtlin, T., and Rusinowitch, M. (2016). Auto-

mated verification of electrum wallet. In Financial Cryptography and Data Security

International Workshops, BITCOIN, VOTING, and WAHC, pages 27–42.

[UcedaVelez and Morana, 2015] UcedaVelez, T. and Morana, M. M. (2015). Risk

Centric Threat Modeling: Process for Attack Simulation and Threat Analysis. John

Wiley & Sons.

[Uzun et al., 2007] Uzun, E., Karvonen, K., and Asokan, N. (2007). Usability analysis

of secure pairing methods. In International Conference on Financial Cryptography

and Data Security, pages 307–324. Springer.

[Wang et al., 2009] Wang, Z., Jiang, X., Cui, W., Wang, X., and Grace, M. (2009).

Reformat: Automatic reverse engineering of encrypted messages. In European

Conference on Research in Computer Security, pages 200–215.

[Wuille, 2014] Wuille, P. (2014). Dealing with maellability. Online specification for

BIP62.

184 Bibliography

[Wuille, 2017] Wuille, P. (2017). Hierarchical deterministic wallets. Online specifi-

cation for BIP32.

[Xu and Nygard, 2006] Xu, D. and Nygard, K. E. (2006). Threat-driven modeling and

verification of secure software using aspect-oriented petri nets. IEEE Transactions

on Software Engineering, 32(4):265–278.

[Xu et al., 2012] Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D., and Xu,

W. (2012). Automated security test generation with formal threat models. IEEE

Transactions on Dependable and Secure Computing, 9(4):526–540.

[Youn et al., 2005a] Youn, P., Adida, B., Bond, M., Clulow, J., Herzog, J., Lin, A.,

Rivest, R., and Anderson, R. (2005a). Robbing the bank with a theorem prover.

Technical Report UCAM-CL-TR-644, University of Cambridge.

[Youn et al., 2005b] Youn, P., Adida, B., Bond, M., Clulow, J., Herzog, J., Lin, A.,

Rivest, R. L., and Anderson, R. (2005b). Robbing the bank with a theorem prover.

Technical report, Univerisity of Cambridge.

	cover sheet
	thesis_Gkaniatsou

