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Doctor of Philosophy

2015





Alles Wissen und alles Vermehren unseres Wissens

endet nicht mit einem Schlusspunkt,

sondern mit einem Fragezeichen.

Hermann Hesse

All knowledge and all growth of our knowledge

does not end with a full stop

but with a question mark.

Hermann Hesse

ii



Lay Summary

Seismic waves are waves of energy generated by seismic sources such as earth-

quakes or explosions. They can propagate through the subsurface over large

distances and down to many kilometers of depth before they are recorded at so-

called seismometers (or simply receivers) at the surface. Seismic wave records can

be analysed to determine the origin of an earthquake, for example, but they also

contain information about the medium the waves have travelled through. Hence,

seismologists can use seismic waves to obtain an image of the Earth’s interior, just

as doctors use ultrasonic waves to examine the interior of a human body.

Conventional seismic tools have recently been complemented by a new set of meth-

ods, commonly referred to as seismic interferometry, which provides a means to

construct synthetic measurements of seismic waves that have not been recorded.

Interferometry uses combinations of other wavefields caused either by active seis-

mic sources or by the ambient seismic noise wavefield, which is continuously

generated, for example by wind, traffic, or the ocean swell. The first and revo-

lutionary application of interferometry was the construction of a seismic signal

propagating between two receivers as if one of them had been a seismic source,

using recordings of ambient noise only.

This thesis focuses on an advanced version of interferometry called source-receiver

interferometry (SRI). It constructs the signal between a source and a receiver

that has not been recorded using wavefields propagating from and to surround-

ing sources and receivers. Using synthetic data generated by a wavefield modeling

code on a computer, I investigate how the method performs in a medium contain-

ing one or more scatterers or reflecting interfaces. A scatterer is a small object

that interacts with the waves and scatters the incoming energy in every direction.

In the context of the Earth, a scatterer can be a small void or a sharp edge of a

geological layer; in medical applications it would correspond to a gall or a kidney

stone, for example. Large objects or layered interfaces, on the other hand, cause

specular reflections. In my thesis I gradually increase the complexity of the nu-

merical models used, starting with a single scatterer experiment, over multiple

scatterers, and finishing with a multiple layer scenario.

iii



I find that SRI provides valuable information about the scattered wavefield in

all three cases even if theoretical requirements of the method cannot be met (for

example if surrounding sources and receivers do not form a closed boundary). For

the single scatterer case I show that under conditions resembling a real seismic

experiment a novel type of energy, called pseudo-physical energy, is constructed,

which emulates the scattered wavefield. This type of energy also comes into play

when predicting the arrival time of multiply scattered waves. Further, it can also

be used to identify multiply reflected waves in a layered medium. These so-called

internal multiples are a known source of error in conventional imaging schemes

and need to be detected and removed from the data in order to to avoid artefacts

in the seismic image. Finally, the internal-multiple equation derived from SRI

provides a direct link to an existing algorithm for internal-multiple prediction;

however, it is computationally much more efficient.

Overall, this thesis contributes to a better understanding of source-receiver inter-

ferometry in a scattering medium, it demonstrates how the method can be used

to analyse multiply scattered wavefields, and how it relates to other methods of

wavefield analysis.
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Abstract

Seismic or wavefield interferometry refers to a set of methods that synthesize

wavefields between pairs of receivers, pairs of sources, or a source and a receiver,

using wavefields propagating from and to surrounding boundaries of sources

and/or receivers. Starting from cross-correlations of ambient seismic noise record-

ings, which provide the signal between two receivers as if one of them had been an

active source, interferometric methods developed rapidly within the last decade,

revolutionizing the way in which seismic, acoustic, elastic, or electromagnetic

waves are used to image and monitor the interior of a medium. Only recently,

an explicit link was found between the methods of source-receiver interferome-

try (SRI) and seismic imaging, a technique widely used in seismic exploration to

map diffractors and reflectors in the subsurface, but also in more academic stud-

ies investigating, for example, deep crustal processes. This link is particularly

interesting because SRI, in contrast to classical imaging schemes, does not rely

on the single-scattering assumption but accounts for all multiple-scattering effects

in the medium. While first non-linear imaging schemes based on SRI have been

proposed, the full potential of the method remains to be explored and a num-

ber of open questions concerning, for example, the role of non-physical energy in

interferometric wavefield estimates, require further investigation.

The aim of this thesis is to gain more insight into the method of source-receiver

interferometry in the context of wavefield construction and analysis in multiply

scattering media, especially when theoretical requirements of the method (such

as complete boundaries of sources and receivers, surrounding the medium of in-

terest) are not met. First I analyse the single diffractor case using partial surface

boundaries only. I find that only two out of eight terms of the SRI equation are

required to construct a robust estimate of the scattered wavefield, and that one

of these two terms is also used in seismic imaging. The other term provides a

pseudo-physical estimate of the scattered wave; this is a new type of non-physical

energy that emulates the kinematics of a physically scattered wave. I then pro-

ceed to a multiple scattering scenario, using the pseudo-physical term to predict

the travel times and exact scattering paths of multiply diffracted waves. The pre-

sented algorithm is purely data-driven and fully automated and, as a by-product,
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provides a new tool to isolate primary diffracted waves from a complex multi-

ply diffracted wavefield. Finally, the concept is expanded to multiply reflecting

media. In reflection seismic data, multiply reflected waves should be removed

prior to migration in order to avoid artefacts in the seismic image. I demonstrate

how internal multiples can be estimated and attenuated using pseudo-physical

energy constructed from SRI. Moreover, an explicit link is derived between the

internal-multiple equation based on SRI and the internal-multiple equation de-

rived from the inverse-scattering series (ISS), currently the most capable algo-

rithm for internal-multiple attenuation. Using the insight provided by the SRI

approach, I suggest an alternative equation that estimates internal multiples more

efficiently compared to the current method.

Overall, this thesis improves our understanding of how physical, non-physical, and

pseudo-physical wavefields are constructed in SRI, how new information about

multiply scattered wavefields can be inferred, and how SRI relates to other meth-

ods of wavefield analysis, in particular seismic imaging and the ISS.
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Chapter 1

Introduction

Seismic wavefields, generated by earthquakes or artificial sources of energy, pro-

vide a means to illuminate the Earth’s interior and create an image of the subsur-

face: just as doctors use ultrasonic waves to examine the interior of the human

body, seismologists analyse seismic waves to examine the Earth’s internal struc-

tures and processes. While serving a general scientific interest in the origin,

history and development of our planet, knowing what the Earth looks like be-

neath our feet also plays a key role in a number of societal issues, ranging from

natural hazard assessment (earthquakes, volcanoes, landslides) through natural

resource exploration and production (water, minerals, ores, oil, gas, geothermal

energy) to subsurface waste storage (nuclear waste, CO2). In all of these cases

information about the subsurface is vital.

Traditional methods of seismic exploration use active, natural or artificial, seismic

sources and one or more receivers (seismometers) to record the energy that propa-

gates from the source through the medium (the subsurface) to the receiver. These

recordings, also called seismograms or seismic traces, provide the displacement,

velocity, or acceleration of the medium caused by a passing wave as a function

of time (Fig. 1.1). The distinct arrivals (packets of energy) on a trace can be

associated with different components of the wavefield (surface waves, body waves,

reflected and diffracted waves) and provide information, for example, about the

seismic velocity of the medium or the location of geological structures.

A relatively novel method called seismic interferometry uses the passive seismic

wavefield, the so-called seismic noise, to infer information about the subsurface.

Seismic noise refers to the permanent vibrations of the ground generated by wind,

rain, traffic, human and industrial activity, and the oceanic microseism, but is

also used for the multiply scattered energy in the seismic coda (the “tail” of the

signal, Fig. 1.1), which until recently has been too complex to use or to interpret.

The origins of seismic or wavefield interferometry can be traced back to Claerbout
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Figure 1.1: Seismogram of an earthquake in Northern Italy recorded on the vertical
component of a broadband seismometer (station ESK) in Scotland. Indicated on the
seismic trace are the ambient noise wavefield proceeding the first arriving body wave
(P-wave), the large amplitude surface waves, and the seismic coda. The data is provided
by the IRIS Data Management Center1.

(1968) who showed that the surface reflection response of a layered medium can be

constructed from the autocorrelation of a transmitted wave emitted by a source

located below the bottom layer. From his findings Claerbout inferred that it

should be possible to construct the wavefield between two receivers as if one

of them had in fact been a source, by cross-correlating the background noise

recorded at the two receiver locations. However, almost three decades passed

before the idea was successfully proven in helioseismology: Duvall et al. (1993)

were able to extract time-distance information from cross-correlations of intensity

fluctuations (“solar noise”) measured on the sun’s surface. The first laboratory

demonstrations followed a few years later (Lobkis and Weaver, 2001; Derode et al.,

2003a; Larose et al., 2005) supported by the mathematical proof for acoustic

(Wapenaar, 2003; Van Manen et al., 2005) and elastic media (Wapenaar, 2004;

Van Manen et al., 2006).

Campillo and Paul (2003) were the first to demonstrate the method in a seis-

mological context using the late seismic coda of local earthquakes to construct

inter-receiver surface waves between all the stations of a seismic network. Sabra

et al. (2005a,b) and Shapiro et al. (2005) constructed inter-receiver surface waves

from ambient seismic noise caused by the oceanic microseisms. The constructed

wavefields were then used in a standard tomographic inversion scheme to produce

the first seismic velocity maps from ambient noise. Since then ambient noise sur-

face wave tomography has become a popular tool to seismologically map regions

with low seismic activity that were previously “invisible” to the seismologists

(e.g. Yang et al., 2007; Bensen et al., 2008; Stehly et al., 2009; Nicolson et al.,

2012).

1Incorporated Research Institutions for Seismology, http://www.iris.edu
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Not only did seismic interferometry revolutionize the field of seismic tomography,

but it transformed the way in which seismologists think about both passive and

active wavefields and how they use them to infer information about the subsur-

face. Over the last decade interferometric methods developed rapidly within the

seismology community and found application, for example, in seismic exploration

(Bakulin and Calvert, 2006; Halliday et al., 2007; Halliday et al., 2010), veloc-

ity analysis (King and Curtis, 2011; King et al., 2011), near-surface geophysics

(Galetti and Curtis, 2012; Harmankaya et al., 2013; Kaslilar et al., 2014), seismic

monitoring (Snieder, 2002; Sens-Schönfelder and Wegler, 2006; Draganov et al.,

2012) and imaging (Vasconcelos, 2008; Sava and Vasconcelos, 2011; Fleury and

Vasconcelos, 2012). Other fields of physics such as electromagnetics (e.g. Slob

and Wapenaar, 2007; Hunziker et al., 2012) or biophysics (Sabra et al., 2007) also

benefitted from the advances in interferometry.

The link between interferometry and seismic imaging was made explicit by Hal-

liday and Curtis (2010) after a new type of interferometry called source-receiver

interferometry (SRI) had been introduced (Curtis and Halliday, 2010). SRI con-

structs the wavefield between a real source and a real receiver using only en-

ergy that has travelled from and to surrounding boundaries of sources and re-

ceivers. The SRI wavefield representation is particularly interesting because, in

contrast to most imaging schemes, it does not rely on the single-scattering Born

approximation and hence accounts for all multiple scattering in the medium. The

term “scattering” generally refers to the interactions of the wavefield with het-

erogeneities inside the medium that influence the wave’s propagation. In general,

one distinguishes between diffracted energy which originates from structures of

small spatial extent compared to the wavelength (e.g. angular boundaries, voids,

faults, or fractures), and reflected energy which originates from structures such

as interstrata interfaces.

This thesis investigates some interesting issues that arise from the theoretical

link between the two domains of interferometry (SRI in particular) and imaging,

and addresses open questions regarding the use of SRI in the construction and

interpretation of scattered wavefields: How is the scattered wave construction

from SRI affected if theoretical requirements of interferometry cannot be met

in practice? What is the role of non-physical energy that is introduced by not

meeting theoretical requirements and how can it either be used or suppressed?

What are the implications for a multiple scattering scenario? Can SRI help to

interpret a complex multiply scattered wavefield? And finally, can the theory
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developed for diffracted waves be extended to the case of reflection data?

In section 1.2, I provide further detail on the theory and current state of SRI, and

give a brief introduction to seismic imaging and the link between the two concepts.

In section 1.3 I summarise how the different chapters of this thesis address the

questions raised above. Thereafter, I briefly describe the programming tools that

I used and provide a list of chapters of this thesis that have been published as

jointly authored papers.

However, first let us begin with an introduction to standard interferometry.

1.1 The principle of interferometry

The term interferometry generally refers to the study of interference phe-

nomena between pairs of signals in order to obtain information from the

differences between them.

(Curtis et al., 2006). Interference phenomena are better known in the field of

optics, with Young’s double slit experiment being the most prominent example

(a demonstration of the principle of wave-particle duality): a beam of light is split

into two waves when passing through a double slit. A screen is located behind

the slit that displays the interference pattern of the two superimposing waves

resulting from constructive and destructive summation of the waves’ crests and

troughs.

Seismic interferometry, as the name suggests, refers to interference phenomena of

seismic waves propagating in the Earth’s interior and along its surface. In fact,

interference in the context of seismic interferometry does not refer to the physical

superposition of waves but rather to a mathematical operation: a wavefield is

recorded at two different locations and the two recordings are combined in a

way that removes what is similar and highlights what is different between them.

The mathematical tool used to do this is an operation called cross-correlation.

Differences in the recordings are due to the different locations of the two receivers

and allow us to infer the wavefield between the two locations.

The canonical geometry of standard interferometry comprises a pair of receivers

surrounded by a closed boundary of sources, which generate the wavefield (Fig.

1.2). The sources could either represent individual active sources (active source in-

terferometry) or ambient noise sources (passive or ambient noise interferometry).
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Figure 1.2: Geometry of a numerical inter-receiver interferometry experiment. Stars
are sources, triangles are receivers. Cross-correlation and summation of the wavefields
recorded at the two receivers provides the homogeneous Green’s function between the
two receiver as if one receiver had been an impulsive source. Arrows indicate raypaths
(direction of wave propagation) between one boundary source and the two receivers.
Travel times of dashed and solid raypaths that run parallel cancel each other in the
cross-correlation process. For the rays shown, this produces a result with the travel
time of the ray between x1 and x2.

Active source interferometry consists of only two steps: (a) the cross-correlation

of signals from each source recorded at the two receivers, and (b) the summation

(integration) of the cross-correlation results from all sources. Note that in pas-

sive interferometry the summation over sources is replaced by temporal stacking

of long recording times since the sources are already (randomly) superposed or

stacked. The following derivations apply to active source interferometry.

Provided a few assumptions are met, which I define later, performing these two

steps gives the signal between the two receivers as if one receiver had in fact been

an impulsive source. Therefore, the method is also referred to as inter-receiver

interferometry. The constructed signal is the homogeneous Green’s function. A

Green’s function denotes the wavefield measured at a receiver if the source is a

delta impulse (a “peak” in space and time). It is also known as the medium’s

response to an impulsive source, as it is entirely defined by the properties of the

medium and independent from the source function. The Green’s function com-

prises all possible wave types propagating between source and receiver (surface

waves, direct wave, scattered waves, etc.) and allows us to derive information

about the medium between the two locations. The homogeneous Green’s func-

tion refers to the superposition of the causal and acausal (time-reversed) Green’s
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functions, which both solve the homogeneous wave equation.

Mathematically, the interferometric construction of a homogeneous Green’s func-

tion G(x2,x1, ω) +G∗(x2,x1, ω) between two receivers at x1 and x2, respectively,

can be expressed in the frequency domain as

G(x2,x1, ω) +G∗(x2,x1, ω) ≈ 2

ρc

∫
S

G∗(x1,x, ω)G(x2,x, ω)d2x (1.1)

(Wapenaar and Fokkema, 2006), where ω is the angular frequency, x denotes the

source locations on boundary S, ρ and c are the density and the velocity of the

medium, respectively. The integration performs summation over source locations

x. G(x1,x, ω) denotes the Green’s function between a source at x and a receiver

at x1 in the frequency domain. The star ∗ denotes complex conjugation, which is

equivalent to time reversal in the time domain. In the frequency domain, cross-

correlation is defined as the product of two functions, one of which has been

complex conjugated, which is exactly what we see in the integrand. Note that

when multiplying a complex conjugated function A∗1e
−iωt with a function A2e

iωt′

the travel times in the phase term are subtracted according to A∗1A2e
iω(t′−t), which

is illustrated in Fig. 1.2 as the subtraction of raypaths. Eq. 1.1 is an approxi-

mation of the actual interferometry equation; it is quite accurate if the boundary

has a very large radius such that all rays travel approximately perpendicular to

the boundary.

To understand how Eq. 1.1 works, let us consider the wavefield generated by

a single source on boundary S located in line with the two receivers at x1 and

x2, respectively (Fig. 1.2). At the first receiver (x1) we record the energy that

has propagated from the source directly to that receiver (dashed arrow). At the

second receiver (x2) we record the energy that has propagated from the source

via the first receiver to the second receiver (solid arrow). Comparing the corre-

sponding raypaths we find that they have a common part, namely the bit from

the source to the first receiver. Cross-correlation cancels the travel time of the

common part in the phase term, leaving the travel time of the bit from the first

receiver to the second receiver intact. After this operation has been integrated

around the boundary the result is as if the raypath originated at the first receiver,

hence, as if the first receiver had actually been a source: the receiver at x1 has

become a virtual source (an imagined source).

If the raypaths between any other boundary source and the two receivers are con-

sidered, it becomes clear that they do not necessarily have a common part, hence
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Figure 1.3: (a) Correlogram showing the contribution of each source on boundary S
(Eq. 1.1, Fig. 1.2) to the interferometric estimate. Each trace in the left diagram
is the result of the cross-correlation of signals generated by one source and recorded
at the two receivers. For clarity, only every second trace is plotted. The plot in the
right-hand side represents the sum of all the traces on the left, i.e. the homogeneous
Green’s function between the two receivers (Eq. 1.1). (b) As in (a), but with fewer
sources on the boundary (hence, fewer traces in the correlogram) so that the Nyquist
criterion is not satisfied. This introduces artefacts in the Green’s function estimate
(right plot) where non-stationary energy has not completely cancelled.

cross-correlation would not have the above effect. Summing over all sources,

however, cancels the contribution from unfavourable source locations and pre-

serves the contribution from the in-line sources. This process is illustrated in a

so-called correlogram (Fig. 1.3), which displays the cross-correlation results from

all sources on the boundary (left-hand plot in both a and b). The trace on the

right is the sum of all traces on the left (the integrand in Eq. 1.1). It turns

out that where the energy in the correlogram is stationary, i.e., where there is a

maximum or minimum, the traces are in phase and sum constructively. All other

traces cancel each other as they are out of phase, i.e., their crests and troughs

sum destructively. For the direct wave, the two stationary points for which the

integrand is stationary with respect to the sources on the boundary are located

on the inter-receiver line: one of them accounts for the construction of the causal

direct wave (as described above), the other for the construction of the acausal di-

rect wave. A mathematical derivation of the stationary points for both direct and

scattered waves in inter-receiver interferometry is given in Snieder (2004a).

From the correlogram it is clear that also the sources in the immediate neigh-

bourhood of the inter-receiver line contribute to the interferometric construction.

This is related to the Fresnel zone of any wave propagating at a finite frequency.

The size of the Fresnel zone depends on the wavelength and thus the frequency
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of the signal. All waves originating from within the Fresnel zone arrive in phase

at the receiver and interfere constructively. What is more, if the medium con-

tains heterogeneities, an enclosing source boundary is required to account for the

construction of scattered waves. The stationary points of scattered waves depend

on the locations of the scatterers and are not known in advance if the medium is

unknown; this is why theory requires the source boundary to completely surround

the medium of interest.

The correlogram also illustrates another requirement of interferometry: for the

non-stationary contributions to cancel out completely, the inter-source spacing

(spatial sampling) along the boundary has to be sufficiently small, otherwise

spurious energy remains in the interferometric estimate (Fig. 1.3b). The spatial

sampling is controlled by the Nyquist criterion, which states that the distance

between two sources should be smaller than or equal to the Nyquist wavelength

λNyq = c
fNyq

, where the Nyquist frequency fNyq is half the sampling frequency,

and c is the velocity of the medium.

In practical applications of interferometry the theoretical requirements discussed

above often cannot be satisfied. Typically, this introduces so-called non-physical

energy into the Green’s function estimate. While this type of energy does not

relate directly to physical wave propagation it can still be used to infer physical

information about the medium (e.g. Mikesell et al., 2009; 2012; Harmankaya

et al., 2013; Meles and Curtis, 2013), provided that we understand the origin of

non-physical energy, and how it relates to physical properties.

Eq. 1.1 is valid given the particular geometry shown in Fig. 1.2, however, with

a few modifications other geometries are possible. Firstly, by invoking the the-

orem of source-receiver reciprocity, which states that the wavefield propagating

between a source at x and a receiver at x1 is identical to the wavefield propagating

between a source at x1 and a receiver at x, source and receiver locations in Fig.

1.2 can be interchanged, so that a pair of sources is surrounded by a boundary of

receivers. Performing the same steps as above (cross-correlation and summation)

provides the Green’s function between the two source locations at x1 and x2;

hence, this second type of interferometry is referred to as inter-source interfero-

metry and turns one source into a virtual receiver. Secondly, if instead of cross-

correlation, convolution or deconvolution is applied to the wavefields then one

receiver could be located outside of the source boundary. Convolution is similar

to cross-correlation, except that both functions are causal (no complex conjuga-

tion), and hence travel times in the phase term are added rather than subtracted.
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Different geometries and the corresponding interferometric equations for a variety

of cases are discussed, for example, in Slob and Wapenaar (2007), Vasconcelos

and Snieder (2008), Wapenaar et al. (2010c) and Galetti et al. (2013).

Reciprocity and geometrical flexibility allow us to derive a third type of inter-

ferometry that is basically a combination of inter-source and inter-receiver in-

terferometry and is referred to as source-receiver interferometry (SRI). While

less understood, SRI further expands the range of applications of interferometric

methods and provide a new perspective on problems in wavefield analysis, as will

be discussed in the following section.

1.2 Source-receiver interferometry

Curtis and Halliday (2010) show that the homogeneous Green’s functionG(x2,x1)+

G∗(x2,x1) between a source at x1 and a receiver at x2 can be represented by a

double surface integral of the form

G(x2,x1)+G∗(x2,x1)

≈ 4

(ρc)2

∫
S

∫
S′
G(x′,x1)G(x2,x)G∗(x′,x)d2x′d2x

(1.2)

where x denotes a source on boundary S and x′ denotes a receiver on boundary

S ′ (Fig. 1.4), ρ and c are the medium’s density and velocity, respectively. All

Green’s functions are in the frequency domain (the dependency on ω has been

dropped for brevity). Eq. 1.2 is the source-receiver interferometry (SRI) equation

in the monopole approximation. That is, it is assumed that the two boundaries

have large radii such that all rays travel perpendicular to the boundaries. While

at first sight the interferometric construction of a Green’s function between a real

source and a real receiver may seem unnecessary, I will show below that the SRI

Green’s function representation offers a new perspective on wavefield construction

and analysis, which has proven useful in a number of different problems.

For example, in SRI the source at x1 and the receiver at x2 do not have to

be deployed at the same time in order to obtain the Green’s function between

them, which makes it possible to retrospectively observe seismograms from old

earthquakes on newly installed sensors (Curtis et al., 2012; Entwistle et al., 2015):

the Green’s function between an earthquake and a receiver deployed in the vicinity

of the earthquake after it has happened is constructed using recordings of the
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Figure 1.4: Conceptual geometry of source-receiver interferometry (SRI). Symbols as
in Fig. 1.2. SRI constructs the Green’s function between the source at x1 and the
receiver at x2 using only energy that has travelled from and to surrounding boundaries
of sources and receivers S and S′, respectively.

earthquake at a backbone array of receivers and long-term recordings of ambient

noise, measured at the new receiver and the backbone array. Comparisons with

real recordings suggest that SRI provides a good estimate of the surface wave

component of the wavefield generated by the earthquake.

Surface wave construction also plays a role in exploration seismology. Halliday

et al. (2007) showed how inter-receiver interferometry provides a means to esti-

mate and remove scattered surface waves, the so-called ground-roll in land seismic

data, provided that a receiver is collocated with each source location. Duguid

et al. (2011) showed that using SRI instead provides an even better estimate of

the ground-roll and that SRI does not require a receiver to be collocated with

the seismic source used in the survey, which could be difficult in practice. In

a recent work, Halliday et al. (2015) showed how the need for an additional

receiver boundary in ground-roll removal by SRI can be circumvented using a

model-driven approach.

Poliannikov (2011) and Poliannikov et al. (2012) use the benefits of SRI for the

construction of body wave reflections between two borehole receivers or between

two earthquakes, respectively. Their technique combines inter-receiver or inter-

source interferometry with SRI and was tested successfully on numerical mod-

els.

The reason why SRI seems to outperform inter-receiver interferometry in practical

applications is explained by Meles and Curtis (2013). In inter-receiver interfe-

rometry, the construction of scattered waves require wavefields to be generated

around specific stationary points on the boundary. In contrast, by applying sta-
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tionary phase analysis to the SRI integral, Meles and Curtis (2013) show that SRI

produces kinematic information about the scattered field using wavefields prop-

agating from and to any point on the boundary. This property is particularly

useful when boundaries are only partially available or sparsely sampled.

The theoretical analysis of scattered wave SRI also provided the explicit link

between SRI and imaging. Korneev and Bakulin (2006) were the first to demon-

strate the equivalence of the virtual-source method (a variety of inter-receiver in-

terferometry used in exploration seismics) and a version of the Kirchhoff-Helmholtz

integral that uses experimentally measured Green’s functions. The Kirchhoff-

Helmholtz integral in the representation of Korneev and Bakulin (2006) reads

IΣ(M) =
1

4π

∫
Σ

(G(S,M)
∂ũ

∂n
(S)− ũ(S)

∂G(S,M)

∂n
)dS (1.3)

where Σ is a closed surface boundary, G(S,M) is the causal Green’s function

between a point S on the surface and an internal point M inside Σ, and ũ is

the Fourier transform of an acoustic field u. It is the fundamental basis for

seismic imaging or migration, a common technique used in exploration geophysics

to map reflecting and diffracting discontinuities in the subsurface (Claerbout,

1985). The basic idea behind seismic imaging methods is the correlation of a

forward propagated and a backpropagated wavefield at a point in the subsurface.

Using a smooth model of the subsurface, the wavefield generated at the source

is forward propagated to a point in the model space, the image point. The

scattered wavefield recorded at a receiver is backpropagated to the same point.

Only if the image point coincides with a true scatterer or reflector is the result

of the correlation of the two wavefields (the imaging condition) non-zero at zero

time.

The relationship between interferometry and imaging was further explored by

Thorbecke and Wapenaar (2007) and Vasconcelos (2008). However, it was not

until the development of SRI (Halliday and Curtis, 2010) that the link between

the two domains was made explicit. Using new representation theorems for scat-

tered waves (Vasconcelos, 2008) they showed that when the central source and the

receiver in the SRI geometry are collocated, an SRI representation for scattered

waves can be derived that is equivalent to the generalized imaging condition given

by Oristaglio (1989). They also showed that while the single-scattering Born ap-

proximation is inherent to Oristaglio’s formula, the interferometric version of the

theory naturally accounts for non-linearities, in this case caused by multiple scat-
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tering in the medium. This insight encouraged further research in the field of SRI

and led to new advances in seismic imaging methods by introducing non-linear

imaging conditions that account for multiply scattered and multiply converted

waves (e.g. Vasconcelos et al., 2010; Fleury and Vasconcelos, 2012; Ravasi and

Curtis, 2013; Ravasi et al., 2014).

A common problem in standard (linear) seismic imaging are surface-related or in-

ternal multiply reflected waves, so-called “multiples”. Similar to Oristaglio’s for-

mula, most standard migration algorithms are linear. The linearity comes about

by assuming that all waves in the data have scattered only once (are so-called “pri-

maries”). The fact that some of the data consists of multiples introduces spurious

reflectors in the seismic image. This is why multiples should be identified and

removed from the data prior to linear migration. Different authors (Wapenaar

et al., 2010c; Behura and Forghani, 2012) have implied a relationship between

interferometry, particularly SRI, and the construction of internal multiples in

seismic reflection data, but so far an explicit link has remained illusive.

1.3 Outline of the thesis

In this thesis the method of SRI and its potential to both construct and analyse

scattered wavefields is tested in increasingly complex scenarios, starting with

the conceptual single-scattering case, through multiply diffracted wavefields to

multiply reflected wavefields.

Chapter 2 evaluates the performance of SRI in a medium containing a single scat-

terer when theoretical requirements are not met. In particular, the robustness of

the method is tested when only sparsely populated surface boundaries of sources

and receivers are available, as typically used in seismic exploration. Separating

the homogeneous Green’s function into an unperturbed and a perturbed (scat-

tered) part expands the SRI equation into the sum of eight terms. Each of these

terms is analysed individually for its stationary points and for its contribution to

the final interferometric wavefield estimate given the limited source and receiver

distribution along the boundaries. I find that only two out of eight terms are

required to obtain a robust estimate of the scattered part of the wavefield, and

show for the first time that one of these terms provides a new type of non-physical

energy that we call pseudo-physical: the energy is non-physical but emulates the

kinematics of a physically scattered wave.
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In chapter 3 an acoustic medium with multiple scatterers is considered and an

automatic algorithm is presented that both identifies singly and twice scattered

waves in the data, and predicts the arrival times and scattering paths of all other

multiply scattered events of any order. The prediction process is based on SRI and

provides a pseudo-physical estimate (as defined in chapter 2) of higher-order scat-

tered waves by cross-correlating and convolving lower-order events. The method

is entirely data driven and works also in media with a heterogeneous background

velocity distribution where the travel-time curves of diffracted waves are not hy-

perbolic. Numerical examples are presented to support the theory.

Chapter 4 tests the applicability of the automatic algorithm introduced in chap-

ter 3 to an acoustic data set obtained from a laboratory experiment. I present

results from different scattering scenarios, considering up to five scatterers in a

homogeneous background medium, and comment on the difficulties arising when

using real data as compared to synthetic data.

In chapter 5 the multiples prediction process presented in chapter 3 is extended to

media with reflecting interfaces in order to identify internal multiples in reflection

data. Internal multiples cause artefacts in seismic imaging and are therefore re-

quired to be removed prior to linear migration. Here, a connection is established

between the internal multiples equation derived from SRI and an existing formula

based on the inverse-scattering series. It is demonstrated that both derivations

rely on pseudo-physical energy of the kind presented in chapter 2 to obtain an

estimate of internal multiples. Moreover, it is shown explicitly how the SRI per-

spective leads to an alternative representation of the same equation that allows

one to compute internal multiples far more efficiently. This is significant in prac-

tical reflection seismology where the computational cost of applying the existing

methods is extremely high, often prohibitively so. Synthetic data examples are

provided to compare the existing and the alternative formula both qualitatively

and quantitatively in terms of computational cost.

1.4 Computer Codes

I used computer codes written in Matlab2 and Python3 to model synthetic scat-

tered wavefields and to analyse these wavefields using interferometric methods.

2http://www.mathworks.com
3http://www.python.org
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Synthetic wavefields from scattering media with homogeneous background veloc-

ity structure were obtained from an acoustic wavefield modeling code, which is

an implementation of Foldy’s method (Foldy, 1945; Galetti et al., 2013). Syn-

thetic wavefields from scattering media with heterogeneous background velocity

structure were modeled using an acoustic finite-difference (FD) code provided

by Matteo Ravasi (PhD student, University of Edinburgh). The code is written

using Madagascar4, an open-source software package based on Python.

I modified the Matlab code provided by Galetti et al. (2013) to compute individual

terms of the SRI equation separately (chapter 2) using partial surface boundaries

of sources and receivers. For chapter 3, I wrote a set of Matlab codes to perform

the different steps of the automatic algorithm that analyses multiply diffracted

wavefields. Acoustic experiments performed in the laboratory (chapter 4) were

controlled using a Matlab code by Philippe Roux (ISTerre, University Joseph

Fourier, Grenoble, France). In chapter 5, I used the synthetic wavefields obtained

from a one-dimensional horizontally layered velocity and density model provided

by Total S.A. The wavefields were computed from SISMOS, an analytic wavefield

modeling code for relatively simple layered media, which allows one to compute

the primary wavefield only. The standard and the alternative equation for internal

multiple prediction were solved using a set of Matlab codes partially based on a

code provided by Giovanni A. Meles (University of Edinburgh).

1.5 Publications

This thesis contains three chapters that have been published in or are intended

for submission to peer-reviewed journals.

Chapter 2 is published as

• K. Löer, G.A. Meles, A. Curtis, and I. Vasconcelos. Diffracted and pseudo-

physical waves from spatially limited arrays using source-

receiver interferometry (SRI). Geophysical Journal International, 196(2):

1043–1059, 2014. DOI: 10.1093/gji/ggt435

Chapter 3 is published as

• K. Löer, G.A. Meles, and A. Curtis. Automatic identification of multiply

4http://www.ahay.org
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diffracted waves and their ordered scattering paths. Journal of the Acousti-

cal Society of America, 137(4): 1834–1845, 2015. DOI: 10.1121/1.4906839

Chapter 5 has been submitted as

• K. Löer, G.A. Meles, and A. Curtis. Relating source-receiver interferometry

to the inverse-scattering series provides a new method to estimate internal

multiples. Geophysics.

In addition to these publications I have also contributed to the following publi-

cation:

• G.A. Meles, K. Löer, M. Ravasi, A. Curtis, and C. A. da Costa Filho.

Internal multiple prediction and removal using Marchenko autofocusing and

seismic interferometry. Geophysics, 80(1): A7–A11, 2015.

DOI: 10.1190/GEO2014-0408.1
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Chapter 2

Diffracted and pseudo-physical waves in

source-receiver interferometry

I start the analysis of source-receiver interferometry (SRI) in scattering media

considering the most simple scenario of a single point diffractor embedded in

a homogeneous background medium. Source and receiver boundaries are linear

arrays located above the scatterer resembling the acquisition geometry typically

used in real seismic experiments. I analyse the Green’s function estimate con-

structed from this configuration focusing on the contribution of individual terms

of the SRI equation. Further, I examine the effect of partial boundaries and com-

ment on the origin and the value of non-physical and pseudo-physical energy in

the interferometric estimate. While the scenario considered in this chapter may

not have an immediate application, it sheds light on the physics that underly

scattered wave SRI and provides a sound basis for the analysis of more complex

systems.

This chapter has been published as a jointly-authored paper1. I, as lead au-

thor, have done the writing of the paper, performed the numerical experiments,

and analysed the results. Co-authors gave advice and support on the scope of the

project, provided background knowledge, and helped editing the manuscript.

Abstract

Source-receiver interferometry (SRI) refers to a technique to construct the Green’s

function between a source and a receiver using only energy that has travelled from

and to surrounding boundaries of sources and receivers. If a background medium

1K. Löer, G.A. Meles, A. Curtis, and I. Vasconcelos. Diffracted and pseudo-physical waves
from spatially limited arrays using source–receiver interferometry (SRI). Geophysical Journal
International, 196:1043–1059, 2014. DOI: 10.1093/gji/ggt435.
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is perturbed, the corresponding interferometric equation can be expressed as the

sum of eight terms, which result from the separation of the total wavefield into an

unperturbed background field and the perturbed scattered field. In this chapter,

the contribution of each individual term is identified for singly diffracted waves

using the methods of stationary phase analysis and waveform modelling. When

the data acquisition boundary requirements for seismic interferometry are vio-

lated, non-physical energy is introduced into Green’s function estimates. Our

results show that four terms produce purely non-physical, non-stationary energy

and that these can be suppressed, and that a combination of only two terms can

be used to estimate diffracted wavefields robustly. One of the two terms is pre-

cisely that used in geophysical imaging schemes. A key result is that this term

also produces non-physical energy, except when the integration boundaries are

truncated to span only part of the medium’s free surface: we thus show that in

this sense, partial boundaries can be seen as a positive advantage for migration

or imaging methods. The other term produces non-physical energy which never-

theless emulates physical energy; such energy is therefore called pseudo-physical.

We present for the first time a complete mathematical derivation of this new

category of energy complemented with illustrative examples. Overall, this work

significantly enhances our understanding of how scattered wave SRI works.

2.1 Introduction

Seismic or wavefield interferometry commonly refers to the use of wavefields from

a boundary of sources recorded at two receivers to construct the signal that would

have been obtained at one of the two receivers if the other receiver had instead

been an impulsive source (Lobkis and Weaver, 2001; Campillo and Paul, 2003;

Derode et al., 2003b; Wapenaar, 2004; van Manen et al., 2005, 2006; Wapenaar

et al., 2005). This signal is referred to as the Green’s function of the medium and

is estimated by cross-correlation, convolution, or deconvolution of the wavefields

measured at the two receiver positions. This technique is known as inter-receiver

interferometry since it yields the Green’s function between two receivers, turning

one receiver into a so-called “virtual” (imagined) source. Further types of inter-

ferometry are referred to as either inter-source (Hong and Menke, 2006; Curtis

et al., 2009) or source-receiver interferometry, also referred to as SRI (Curtis and

Halliday, 2010). These construct either the Green’s function between two sources

from the wavefield recorded at an enclosing boundary of receivers, or the Green’s
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Figure 2.1: Three example canonical configurations used in wavefield interferometry
to construct the Green’s function between locations x1 and x2. Triangles indicate
receivers, stars indicate sources, and S and S′ denote a source and a receiver boundary,
respectively. (a) inter-receiver interferometry: the receiver at either x1 or x2 is turned
into a virtual source using the wavefields generated by the surrounding sources on S.
(b) inter-source interferometry: the source at either x1 or x2 is turned into a virtual
receiver using the wavefield response recorded on the receiver boundary S′. (c) Source-
receiver interferometry (SRI): the Green’s function between a real source and a real
receiver can be constructed using the energy travelling from and to the surrounding
boundaries S and S′ of sources and receivers, respectively.

function between a source and a receiver using only the energy that has propa-

gated to surrounding receivers or from surrounding sources. Example canonical

geometries for these three types of interferometry are shown in Fig. 2.1, and

reviews and tutorials on the various methods are given in Curtis et al. (2006),

Wapenaar et al. (2010a,c) and Galetti and Curtis (2012).

Recently, Halliday and Curtis (2010) derived an explicit link between

scattered-wave SRI and seismic imaging or migration, a common technique used

in exploration geophysics to map reflecting and diffracting discontinuities in the

subsurface (Claerbout, 1985; Oristaglio, 1989). As has been shown by Halliday

and Curtis (2010), Vasconcelos et al. (2010), and Ravasi and Curtis (2013), seis-

mic interferometry has the potential to improve current migration schemes since

it can circumvent the need for the single-scattering Born approximation and is

in principle able to account for all possible nonlinearities, such as those due to

multiply scattered waves. Other potential applications of SRI are ground-roll re-

moval (Duguid et al., 2011) or reflection imaging from below or above the reflector

(Poliannikov, 2011; Poliannikov et al., 2012).

Scattering occurs in all regimes of energy propagation (acoustic, elastic, elec-

tromagnetic, etc.) when the propagating wavefield interacts with perturbations

inside the medium. In general, one distinguishes between reflected energy which
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originates from structures such as interstrata interfaces, and diffracted energy

which originates from structures of small spatial extent compared to the wave-

length, such as angular boundaries, voids, faults, or fractures. Although stan-

dard industrial seismic imaging procedures were originally developed based on

diffracted energy (Miller et al., 1987), they are principally designed to image

reflecting interfaces rather than diffracting structures. However, understanding

and imaging diffractions is a topic of ongoing research (Khaidukov et al., 2004;

Berkovitch et al., 2009; Faccipieri et al., 2013), as it helps to interpret recorded

data and to enhance the resolution of seismic images. In this study, we use SRI to

construct the diffracted wavefield associated with a single isotropic point diffrac-

tor, also referred to here as scatterer, in an otherwise homogeneous medium. The

simplicity of this medium allows us to illuminate the internal workings of SRI for

diffracted energy.

The principles of seismic interferometry can be illustrated using the method of sta-

tionary phase (see appendix A). Although mainly applicable for relatively simple

media it provides a means to understand the underlying physics and the genera-

tion of so-called spurious or non-physical energy in estimated Green’s functions

(Snieder et al., 2006, 2008; Halliday and Curtis, 2009; Mikesell et al., 2009; King

and Curtis, 2012). Using stationary phase analysis, Snieder (2004a,b) showed

that the main contribution to the constructed Green’s function in coda-wave

interferometry comes from so-called stationary points (appendix A). Waves ra-

diated from sources in regions near these points interfere constructively, whereas

waves coming from sources in non-stationary regions destructively cancel each

other when summing or integrating over a complete source boundary.

In theory, interferometry requires complete, closed boundaries of sources or re-

ceivers that surround a portion of the medium of interest. In practice, however,

this can seldom be realized (for example, it is usually impossible to place a com-

plete boundary of sources in the interior of solid bodies) so often only partial

boundaries, usually spatially limited arrays on the Earth’s surface, are available.

In addition the spatial sampling density of sources or receivers along the sur-

face may not fulfil the usual Nyquist requirements of wavefield sampling. In

such cases, spurious or non-physical energy appears in the interferometric results

giving errors in the Green’s function estimates due, for example, to incomplete

destructive interference of energy from non-stationary regions or to the omission

of sources or receivers at or around stationary points. These non-physical events

are not per se unfavourable: it has been shown (Mikesell et al., 2009; King and
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Curtis, 2011, 2012; King et al., 2011; Harmankaya et al., 2013; Meles and Curtis,

2013) that non-physical energy can in fact be used to extract physical informa-

tion about the medium. However, our ability to use such energy originates from

our understanding of how it relates to physical properties and recording geome-

tries.

In this work we contribute to a deeper understanding of SRI in a scattering

medium. We expand the kinematic analysis of Meles and Curtis (2013) by con-

sidering also dynamic waveforms of events constructed from SRI, and analyse

the effect of limited integration boundaries represented by linear source and re-

ceiver arrays on one side of the medium. We examine the origin of non-physical

diffracted energy by invoking the method of stationary phase, and focus on a new

category of non-physical energy which emulates physical energy and is there-

fore referred to as pseudo-physical. We present a new mathematical derivation

that explains the origin of pseudo-physical energy, and use a numerical model

to demonstrate the construction of physical, non-physical, and pseudo-physical

energy in the Green’s function estimates. In appendix C, we provide a detailed

parametric study of each term of the interferometric equation in SRI, illustrat-

ing the sensitivity of different terms to changes in the model parameters and

in the data processing, and showing how this can be used to suppress unde-

sired non-physical and non-stationary arrivals. As a result, this paper shows how

non-physical energy can be suppressed, how pseudo-physical energy is related to

physical energy, and how all these types of energy can be used to interrogate the

interior of a solid medium such as the Earth.

2.2 Source-receiver interferometry in a scattering medium

SRI constructs the signal between a source and a receiver using the energy trav-

elling from and to surrounding boundaries of sources and receivers. It can be

thought of as a combination of inter-receiver and inter-source interferometry, per-

formed sequentially. In the following we focus on the specific geometry shown in

2.2, where the outer boundary, S, is the source boundary and the inner boundary,

S ′, is a receiver boundary (these may be interchanged without loss of generality).

The first step of SRI comprises the construction of the so-called homogeneous

Green’s function Gh(x
′,x2) = G(x′,x2) + G∗(x′,x2) between the receiver at x2
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Figure 2.2: Geometry for SRI with complete boundaries. Stars are sources, triangles
are receivers, and the black dot marks the location of an isotropic point scatterer. x
denotes any source on source boundary S, x′ denotes any receiver on receiver boundary
S′.

and any receiver at x′ on boundary S ′ using

G(x′,x2) +G∗(x′,x2) =
−1

iωρ

∫
S′
{G(x2,x)∂iG

∗(x′,x)

− [∂iG(x2,x)]G∗(x′,x)}nid2x

(2.1)

(Wapenaar and Fokkema, 2006) where i =
√
−1 is the imaginary unit, ω de-

notes the angular frequency, ρ denotes the density of the medium (assumed to

be constant herein), G(x′,x) is the Green’s function between a source at x and

a receiver at x′, ni∂iG is a Green’s function’s derivative in direction i, the star

∗ denotes complex conjugation, and the integration is over variable x. The Ein-

stein summation convention applies to repeated indices. Note that the explicit

dependency on frequency in the Green’s functions has been dropped for nota-

tional convenience only, and all expressions herein are in the frequency domain.

For each receiver pair this is equivalent to standard inter-receiver interferome-

try: the wavefields from each source on x recorded at one receiver pair at x′

and x2 are cross-correlated and summed (integrated) over source positions. This

turns one of the receivers, here the central receiver at x2, into a virtual source,

as can be seen in terms G(x′,x2) on the left-hand side. In the second step we

construct the homogeneous Green’s function Gh(x2,x1) = G(x2,x1) +G∗(x2,x1)

between the real source at x1 and the virtual source at x2, using the recorded

wavefields between x1 and points on S ′, and the inter-receiver wavefields between

x2 and points on S ′ obtained in the first step. This corresponds to inter-source
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interferometry and is given by

G(x2,x1) +G∗(x2,x1) =
−1

iωρ

∫
S′
{G∗(x′,x2)∂′iG(x′,x1)

− [∂′iG
∗(x′,x2)]G(x′,x1)}n′id2x′

(2.2)

(Hong and Menke, 2006). The Green’s function G∗(x′,x2) required in 2.2 can

be obtained from the homogeneous Green’s function Gh(x
′,x2) (Eq. 2.1) by

windowing the acausal part of the time-domain signal then transforming back

to the frequency domain. Assuming that the Sommerfeld radiation conditions

(Born and Wolf, 1999) apply, we can write the Green’s functions’ derivatives in

Eqs. 2.1 and 2.2 as ni∂iG = ±i(ω
c
G) , where c is velocity and ‘−’ and ‘+’ indicate

outgoing or incoming waves, respectively (Wapenaar and Fokkema, 2006). This

reduces the integrals to the simpler forms

G(x′,x2) +G∗(x′,x2) ≈ 2

ρc

∫
S

G(x2,x)G∗(x′,x)d2x (2.3)

G(x2,x1) +G∗(x2,x1) ≈ 2

ρc

∫
S′
G(x′,x2)G∗(x′,x1)d2x′ (2.4)

(Curtis et al., 2012).We will refer to Eqs. 2.3 and 2.4 as the ‘monopole approxima-

tion’ because the dipole sources and receivers indicated by the Green’s functions’

derivatives in Eqs. 2.1 and 2.2, are approximated by monopole sources and re-

ceivers in Eqs. 2.3 and 2.4. Sommerfeld’s radiation conditions assume that all

ray paths are normal to the boundaries. Eqs. 2.3 and 2.4 can be combined to a

more applicable form,

G(x2,x1)+G∗(x2,x1)

≈ 4

(ρc)2

∫
S

∫
S′
G(x′,x1)G(x2,x)G∗(x′,x)dS ′d2x

− 2

ρc

∫
S′
G(x′,x1)G(x′,x− 2)d2x′ (2.5a)

≈ 4

(ρc)2

∫
S

∫
S′
G(x′,x1)G(x2,x)G∗(x′,x)d2x′d2x (2.5b)

(Curtis and Halliday, 2010), where the second integral in Eq. 2.5a goes to zero

if the radiation condition applies, that is, if the boundaries are in the far-field

and are perpendicular to the outgoing wavefield. This expression allows a clear

understanding of the problem that is presented in the following. As shown in

Fig. 2.2 we assume a scattering medium and herein we consider only the case

of a single scatterer or diffractor. In this case it is useful to separate the full
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wavefield G into the unperturbed background field G0, which would be obtained

if the scatterer was not present, and the perturbed or scattered field GS defined

according to

G = G0 +GS (2.6)

where G is any Green’s function measured in the perturbed medium. Substituting

Eq. 2.6 for each Green’s function in Eq. 2.5b gives a double-surface integral over

the sum of eight terms:

G(x2,x1) +G∗(x2,x1) = [G0(x2,x1) +GS(x2,x1)]

+ [G0(x2,x1) +GS(x2,x1)]∗

≈ 4

(ρc)2

∫
S

∫
S′

[G0(x′,x1)G0(x2,x)G∗S(x′,x)

+GS(x′,x1)GS(x2,x)G∗S(x′,x)

+G0(x′,x1)GS(x2,x)G∗S(x′,x)

+GS(x′,x1)G0(x2,x)G∗S(x′,x)

+G0(x′,x1)G0(x2,x)G∗0(x′,x)

+GS(x′,x1)GS(x2,x)G∗0(x′,x)

+G0(x′,x1)GS(x2,x)G∗0(x′,x)

+GS(x′,x1)G0(x2,x)G∗0(x′,x)]d2x′d2x

(2.7)

where subscript 0 refers to a direct wave and subscript S refers to a scattered

wave (Vasconcelos et al., 2009). A similar decomposition is presented by Vascon-

celos (2013), which includes all of the gradient terms at both source and receiver

locations similarly to Eqs. 2.1 and 2.2, rather than invoking the monopole ap-

proximation in Eqs. 2.3 and 2.4 as above.

The double integral on the right-hand side of Eq. 2.7 can be evaluated using

stationary phase analysis. This method has been used in standard interferometry

(Snieder et al., 2006; Snieder et al., 2008; Halliday and Curtis, 2009; Snieder and

Fleury, 2010) to analyse interferometric integrals assuming that the main con-

tribution to the integrand comes from so-called stationary points (appendix A).

Recently, Meles and Curtis (2013) have performed stationary phase analysis for

the kinematics of SRI. Due to the double boundary the stationary points of inter-

receiver interferometry become stationary point-pairs (or just pairs) consisting of

a stationary point x on source boundary S and a stationary point x′ on receiver

boundary S ′ (Fig. 2.3, Table 2.1). We invoke this method of analysis below and

in appendix C.
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Figure 2.3: Stationary points (a to f) for source–receiver interferometry in a homoge-
neous medium containing a single point scatterer. Symbol key as in Fig. 2.2. The
source and receiver boundary coincide and are represented by the circular solid line.
A stationary pair consists of a boundary source and receiver at a pair of stationary
points. The combination of stationary points in this pair varies for each term. Points e
and c are projections of points e and c on to a horizontal surface (such as the Earth’s
surface in seismic interferometry in a vertical plane).

Table 2.1: Stationary point pairs for different terms in Eq. 2.7 (see Fig. 2.3; Meles and
Curtis, 2013). x refers to a source and x′ to a receiver location. The events constructed
occur at travel times associated with the causal direct wave (blue), the acausal direct
wave (blue, underlined), the causal scattered wave (green), and the acausal scattered
wave (green, underlined). Events constructed from stationary points marked red do
not relate to physical arrivals.
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2.3 Non-physical and pseudo-physical energy

An event constructed from interferometry is referred to as “non-physical” if it

does not correspond to a physical wave that would propagate between the source

and receiver locations x1 and x2, such as a direct or scattered wave. Fig. 2.4a

illustrates geometrically how one such event is generated as an example. Snieder

et al. (2008) analysed the properties of non-physical events in inter-receiver in-

terferometry in a scattering medium. They showed the contributions from dif-

ferent terms (in their case four terms rather than eight) towards physical and

non-physical energy, and how non-physical energy is cancelled out after the sum-

mation of all terms and integration over a closed boundary. If, however, the

different terms of the integrand are used separately, or if the boundary is not

complete, the non-physical energy does not cancel out but instead gives spurious

contributions to the interferometric estimate.

Geophysical seismic imaging as well requires integration over boundaries. It is

well known that artefacts in the image occur due to limited boundaries: sources

and receivers can usually only be placed on the Earth’s surface and hence can-

not be said to surround any portion of the medium through which the energy

propagates and which we hope to image (the subsurface). From interferometry

we now understand that these artefacts correspond to non-physical energy that

is not cancelled out due to missing sources and receivers in the subsurface.

In SRI, unlike in standard interferometry, we find that some non-physical energy

arrives at exactly the travel time of the expected scattered waves, thus approxi-

mately (or exactly) emulating physical energy. Fig. 2.4b illustrates how such a

pseudo-physical event is constructed from SRI when using diffracted waves GS

only, that is, within the term GSGSG
∗
S. For this term, any source-receiver pair

on the boundaries is stationary and is sufficient to construct the event (Meles and

Curtis, 2013; Fig. 2.3 and Table 2.1). This property makes the term GSGSG
∗
S

particularly useful when boundaries are only partially available or are strongly

decimated, as is often the case in practical experiments. Note that the station-

arity properties of this term only apply to diffracted waves; for reflecting media

the behaviour is substantially different. As has been shown by Meles and Cur-

tis (2013), the travel time of the constructed event equals the travel time of the

causal scattered wave. They point out, however, that the interferometric event

is only proportional to the causal scattered wave: its amplitude also depends on
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Figure 2.4: Generation of non-physical and pseudo-physical energy from different terms
in Eq. 2.7 and Table 2.1; symbol key as in Fig. 2.2. Solid ray paths indicate travel
times that are added to the phase of the result of Eq. 2.7, the dashed line indicates a
travel time that is subtracted from the phase: hence, portions of solid and dashed lines
that span the same path give phase contributions that exactly cancel. (a) G0GSG

∗
S :

the stationary point e on S′ and any point x on S give rise to a stationary, but non-
physical event with a travel time equal to t(x2,xS) − t(x1,xS), where t(x2,xS) is
the travel time from point xS to x2. (b) GSGSG

∗
S : any source-receiver pair on the

boundary is stationary and gives rise to a non-physical event with a travel time equal
to that of the physical diffracted wave. The kinematics of this energy thus emulate
that of physical energy, and hence, the event is called pseudo-physical

a real factor λ. Expanding their analysis, we provide in the following a detailed

mathematical derivation explaining the origin of pseudo-physical energy in SRI

and the properties of λ for 2D and 3D Green’s functions. The derivation be-

low is complemented by an alternative derivation based on the scattered wave

representation theorems of Vasconcelos et al. (2009) given in appendix B.

We start by rewriting the diffracted wavefield as a concatenation of direct waves

according to

GS(x2,x1) = G0(xd,x1)A(k2,−k1)G̃0(x2,xd) (2.8)

(Snieder et al., 2008; Wapenaar et al., 2010b) where xd is the location of a point

diffractor, A(k2,−k1) is the complex-valued scattering matrix, −k1 is the direc-

tion of the incident wavefield, and k2 the direction of the scattered wavefield. In

the far field, the Green’s function G0(xd,x1) in 2D is defined as

G0(xd,x1) = −ρω
4
e−i(k|xd−x1|)

√
2

πk|xd − x1|
(2.9)
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and the volume injection Green’s function G̃0(x2,xd) is given by

G̃0(x2,xd) =
1

ρω
G0(x2,xd)

= −1

4
e−ik|x2−xd|

√
2

πk|x2 − xd|

(2.10)

For isotropic point scatterers the scattering matrix A(k2,−k1) in Eq. 2.8 does not

depend on the direction of the incident wavefield, and an equal amount of energy

is scattered in any direction; hence the scattering matrix can be abbreviated as a

scalar A. Substituting each Green’s function in GSGSG
∗
S for Eq. 2.8, rearranging

the terms, and using Eqs. 2.9 and 2.10 gives

4

(ρc)2

∫
S

∫
S′
GS(x′,x1)GS(x2,x)G∗S(x′,x)dS ′dS

= G0(x2,xd)AG̃0(xd,x1)× AA∗ 4

(ρc)2

∫
S

G0(xd,x)G∗0(xd,x)dS

×
∫
S′
G̃0(x′,xd)G̃

∗
0(x′,xd)dS

′

= GS(x2,x1)× AA∗ 1

(4π)2

∫
S

1

|xd − x|
dS

∫
S′

1

|x′ − xd|
dS ′

(2.11)

Without loss of generality we assume that the scatterer is located at the origin

xd = [0, 0], so that the terms in the integrands simplify to 1
|x| and 1

|x′| , respectively.

In the case of circular boundaries it is convenient to move to a polar coordinate

system, such that |x| = r, |x′| = r′, dS = rdφ and dS ′ = r′dφ′. Integration over

φ and φ′ from 0 to 2π shows that each surface integral reduces to a factor 2π

(note that when the boundaries are only partially available each surface integral

will give a fraction of 2π depending on the portion of the circle included in the

boundaries). From the relationship between real and imaginary parts of the

scattering amplitude (optical theorem) it follows that AA∗ = −4=(A), with 0 ≥
=(A) ≥ −4, where =(A) is the imaginary part of A (Groenenboom and Snieder,

1995; Snieder, 1999; Galetti et al., 2013). Consequently, 2.11 becomes

4

(ρc)2

∫
S

∫
S′
GS(x′,x1)GS(x2,x)G∗S(x′,x)dS ′dS

= GS(x2,x1)× [−=(A)]

(2.12)

Eq. 2.12 shows that the contribution of the term GSGSG
∗
S from complete bound-

aries equals the causal scattered wave GS(x2,x1) multiplied by a real-valued pos-

itive constant that is proportional to the imaginary part of the scattering matrix.
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Figure 2.5: Interferometric result of the cross-term GSGSG
∗
S in Eq. 2.7 (solid line) com-

pared to the modelled causal scattered wave GS(x2,x1) (dashed line) using 2D Green’
functions and complete circular boundaries. Amplitudes have been normalized with
respect to the maximum of the modelled trace. The imaginary part of the scattering
matrix A has been set to −2; hence, according to Eq. 2.12, the interferometric result
equals 2 ·GS(x2,x1).

This causes an amplitude change but no shift in phase or travel time compared to

the modelled arrival GS(x2,x1) 2.5. For partial boundaries the overall amplitude

is reduced according to the portion of the circle included in the boundaries. Thus

we show that although the term GSGSG
∗
S is non-physical, in 2D it provides the

correct travel time and waveform of the causal scattered wave, hence, it is pseudo-

physical. If the scatterer is non-isotropic the scattering matrix A(k2,−k1) cannot

be reduced to the scalar A and the analysis is more complicated. The amplitude

of the pseudo-physical arrival will then be a function of the source and receiver

positions relative to the scatterer. Nevertheless, the kinematic analysis applies

just as well for non-isotropic scatterers, which allows us to estimate the travel

time of the causal scattered wave.

The above results are only valid for the 2D case where the 2D Green’s functions

defined in Eqs. 2.9 and 2.10 are used. Using 3D Green’s functions and the

corresponding relationship AA∗ = − 1
k
=(A) (Wapenaar et al., 2010b) Eq. 2.12

changes to

4

(ρc)2

∫
S

∫
S′
GS(x′,x1)GS(x2,x)G∗S(x′,x)dS ′dS

= GS(x2,x1)× (−4k)[−=(A)]

(2.13)

Since k = ω
c

the result now depends on the frequency content and therefore

distorts the waveform (Fig 2.6a). However, this effect can be removed by dividing

the result by k (in the frequency domain), and thus the correct travel time and

waveform information can also be obtained from the contribution of GSGSG
∗
S in

the 3D case (Fig. 2.6b).
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Figure 2.6: (a) Interferometric result of the term GSGSG
∗
S in Eq. 2.7 (solid line) com-

pared to the modelled causal scattered wave GS(x2,x1) (dashed line) using 3D Green’s
functions and the geometry shown in Fig 2.7. Amplitudes have been normalized with
respect to the maximum of each trace. (b) As in (a) but divided by the wavenumber k
in the frequency domain (Eq. 2.13): the waveforms of the two curves are now identical.

Note that the non-physical energy provided by GSGSG
∗
S would be destructively

cancelled out within an integration over complete boundaries that included the

summation over all terms in Eq. 2.7. Destructive cancellation occurs on account

of other terms that provide non-physical energy at the same travel time but with

different amplitude and phase. Following similar arguments as for GSGSG
∗
S,

it can be shown that this cancelling energy is provided by the terms G0G0G
∗
S,

G0GSG
∗
0, G0GSG

∗
S, GSG0G

∗
S, and GSGSG

∗
0 (cf. Table 2.1). Thus we can also

show that only the term GSG0G
∗
0 constructs the physical causal scattered wave

(see Eqs. B.1 and B.2 in appendix B), given that the integration boundaries

span the stationary point pair associated with that term (x = d,x′ = c in Fig.

2.3).

2.4 Numerical examples

In the numerical examples that follow, the integration boundaries S and S ′ are

reduced to finite linear arrays above the scatterer, as illustrated in Fig. 2.7.

Compared to the ideal geometry in Figs. 2.2 and 2.3, this omits some of the
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Figure 2.7: Geometry used for numerical examples with incomplete boundaries repre-
sented by linear source and receiver arrays; symbol key as in Fig. 2.2. Only every fifth
source and receiver is plotted for clarity.

stationary points: in fact, only two stationary points, e and c, equivalent to e and

c (Table 2.1, Fig. 2.3), are populated by sources and receivers. To model acoustic

wavefields in a scattering medium we use a direct scattering matrix-based scheme

that is a variant of Foldy’s method (Foldy, 1945; Groenenboom and Snieder, 1995;

Galetti et al., 2013). This method yields the full, non-linear scattering response

of multiple isotropic point scatterers embedded in an otherwise homogeneous

medium. In the modelling code of Galetti et al. (2013), inter-receiver and inter-

source interferometry are performed sequentially using Eq. 2.1 and 2.2 for the

full wavefield (monopoles and dipoles), or Eq. 2.3 and 2.4 for the monopole

approximation. The background velocity and density of the model are here taken

to be v = 1000 m/s and ρ = 1000 kg/m3, respectively. The scatterer at xd =

[50 m, 0 m] is a point diffractor, the imaginary part of the scattering amplitude is

chosen to be −2 in accordance with the conditions of the acoustic optical theorem

(Groenenboom and Snieder, 1995). The maximum frequency is fmax = 80 Hz and

the central frequency of the applied Ricker wavelet is fc = 30 Hz. The spatial

sampling, that is, the inter-source and inter-receiver distance within the arrays,

is controlled by the Nyquist wavelength λNyq and is given by multiples of this

value. λNyq describes half the minimum wavelength defined by the velocity v and

the temporal Nyquist frequency fNyq as

λNyq =
v

fNyq
=

v

2fmax
= 6.25 m (2.14)

given the signal’s maximum frequency fmax. The length of the source array is set

to 1000 m and the receiver array is 900 m long, which gives a maximum of 161

sources and 144 receivers, respectively. The receiver array is located 20 m below

the source array and 400 m above the diffractor. The single source is located at
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x1 = [−75 m, 150 m] and the receiver at x2 = [75 m, 150 m]. The interferometric

results are studied in the time domain in a window between −0.8 s and 0.8 s.

Negative times are referred to as the acausal part (in the frequency domain,

the complex conjugate) of the Green’s function and positive times represent the

causal part.

In the examples shown in Figs. 2.8 and 2.9 a spatial tapering function has been

applied to the cross-correlated traces prior to the summation over sources and

receivers. This means that the contributions associated with sources or receivers

towards the endpoints of the arrays have been down weighted using half-cosine

windowing functions.

The solid trace in Fig. 2.8 gives the interferometric estimate of the Green’s

function between x1 and x2 using the geometry in Fig. 2.7 and the full wavefield

(i.e. all of Eq. 2.7, but with incomplete integration boundaries) and the dashed

trace represents the true Green’s function modelled directly between x1 and x2.

Table 2.2 provides the key to symbols used to denote parameter constellations

employed in Fig. 2.8 and other figures. Since amplitudes of the constructed

trace are expected to be incorrect due to the limited number of sources and

receivers along the boundaries, the maximum amplitude of each trace has been

normalized to one. Note that the normalization does not change the phase or

the waveform shapes and therefore does not affect our analysis. Despite the

incomplete boundaries, it appears that both the causal and the acausal scattered

wave are constructed surprisingly well from SRI. What is not apparent, however,

is that the arrival that looks like the causal scattered wave is in fact a non-

physical arrival, which has a physical travel time, hence, is a pseudo-physical

arrival. Moreover, note that non-physical events appear with differing amplitudes

between zero time and the scattered wave arrivals for both positive and negative

times. The direct wave is not recovered at all.

Fig. 2.9 displays the contribution of each individual term (solid lines) of Eq. 2.7,

compared to the true Green’s function between x1 and x2 (dashed line). The

acausal scattered wave is solely constructed by the term G0G0G
∗
S (Fig. 2.9a) and

the term GSGSG
∗
S contributes the above mentioned pseudo-physical arrival at

the travel time of the causal scattered wave (Fig. 2.9b). As has been demon-

strated in the previous section, the pseudo-physical energy associated with the

term GSGSG
∗
S can be used to estimate the waveforms of arriving physical en-

ergy.
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Figure 2.8: Source–receiver interferometric estimate of the Green’s function between x1

and x2 using the full wavefield and the incomplete boundaries in Fig. 2.7 (solid line),
compared to the true Green’s function (dashed line). Amplitudes of eachwaveformhave
normalized maximum values. For legend key see Table 2.2.

Table 2.2: Key to symbols used to denote parameter constellations employed in each
numerical example. λNyq indicates the spatial wavelength of the Nyquist frequency of
the wavefield.
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Figure 2.9: Interferometric result of integrating each term in Eq. 2.7 separately (solid
lines) compared to the true Green’s function between x1 and x2 (dashed line). The
term used in each case is noted beneath the plot. Model and processing parameters are
defined according to the key symbols (Table 2.2). All maximum amplitudes have been
normalized to one.
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All other terms generate events that cannot be associated with the expected

Green’s function and therefore count as non-physical events. The maximum am-

plitude in each trace has again been normalized to one; this means that the

spurious events from the endpoints of the boundaries have been magnified in Fig.

2.9e–h due to the normalization since they are the largest events on the trace. In

fact, they have very low amplitudes—for example, the event in Fig. 2.9f does not

show up at all in Fig. 2.8 because its amplitude is too small to see compared to

the maximum amplitude in the full trace. In appendix C we show systematically

how different events are effected by variations in the model parameters, and by

variations in the data processing.

To determine the origin of the constructed signals it is useful to display the

so-called correlation gathers (van Manen et al., 2005; Mehta et al., 2008). In

standard inter-receiver interferometry the correlation gather is simply the set of

integrands that are integrated in the interferometric equation. It provides the con-

tribution of each source on the boundary to the interferometric estimate between

two receivers, prior to the summation over sources. Zero-slope areas (i.e. flat

areas) in the correlation gather indicate stationary points: the stationary phase

approach assumes that the contributions from the Fresnel zone around such points

sum constructively, while the contributions from all other source locations cancel

each other out. In inter-source interferometry the correlation gather displays the

contribution for each specific receiver location. In source–receiver interferometry,

however, we must consider both one correlation gather for each receiver pair in

the first step (inter-receiver interferometry), and the correlation gather of the

(virtual) source pair in the second step (inter-source interferometry).

In Fig. 2.10 we show the correlation gather of one specific receiver pair, namely

the receiver at x2 and the leftmost receiver on boundary S ′ (location x′l ), and

the resulting correlation gather of the sources (one virtual, one real) located at

x1 and x2 for each individual term. Some of the inter-source correlation gathers

exhibit zero traces (“gaps”) over a range of receiver locations (e.g. Fig. 2.10j).

These gaps occur when the inter-receiver energy constructed in the first step

(Eq. 2.3) has positive arrival times only. According to Eq. 2.4 only the acausal

component G∗(x′,x2), which corresponds to negative travel times, should be used

in the second step. If this is zero, the cross-correlation G∗(x′,x2)G(x′,x1) (Eq.

2.4) yields a zero trace and thus a gap in the correlation gather.

The correlation gathers reveal that both physical and non-physical events con-

structed from the termsG0G0G
∗
S, GSGSG

∗
S, G0GSG

∗
S, andGSG0G

∗
S (Figs. 2.9a–d)
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Figure 2.10: Correlation gathers for the first four terms of Eq. 2.7 (continues on next
page). The left-hand column displays the inter-receiver interferometry results between
the receiver at x2 and the leftmost receiver x′l on boundary S′ for each source on
boundary S; the right-hand plot in the left-hand column gives the sum over all sources.
The acausal part of this trace G∗IRI(x

′
l,x2) is then cross-correlated with GS(x′l,x1),

which gives the leftmost trace in the gather in the right-hand column. The right-hand
column displays the inter-source interferometry results between the source at x1 and
the virtual source at x2 for each receiver on boundary S′; the right-hand plot in the
right-hand column gives the sum over all receivers showing how results in Fig. 2.9
are constructed. G∗IRI(x

′
l,x2) refers to the result of inter-receiver interferometry (IRI)

carried out in the first step.
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Figure 2.10: Correlation gathers for the last four terms of Eq. 2.7 (continued from
previous page).
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originate from stationary points. Non-stationary contributions from the end-

points of the arrays are down-weighted by a cosine taper. The events constructed

from G0G0G
∗
0, GSGSG

∗
0S, G0GSG

∗
0, and GSG0G

∗
0 (Figs. 2.9e-h) are non-physical

and non-stationary without exception as they all originate from the endpoints of

the arrays. As before, the traces related to the endpoint sources and receivers,

respectively, are down weighted by a taper, however here the summed traces

have been normalized to one, which especially magnifies these non-physical, non-

stationary events.

2.5 Discussion

In interferometry, using incomplete boundaries of sources and receivers, such as

linear arrays, causes non-physical arrivals in Green’s function estimates (Fig. 2.8)

due to both inadequate sampling of stationary points and abrupt truncation of

the boundaries. In appendix C, we analyse the origin of physical, non-physical

and pseudo-physical energy from each term in Eq. 2.7 in detail. In this discussion

we draw together the principal findings from above and from appendix C.

We first distinguish between stationary and non-stationary non-physical

events. Non-stationary events are associated with the contributions from sources

and receivers at the endpoints of the arrays. They occur in every term, except

for GSGSG
∗
S where every source–receiver pair is stationary and gives a pseudo-

physical contribution (appendix B; also Meles and Curtis, 2013). As has been

demonstrated in previous papers (e.g. Snieder et al., 2006) and throughout this

study, the amplitudes of such non-stationary events can all be suppressed by

down-weighting the contributions from the endpoints of surface arrays with a

taper.

We also find that non-physical energy associated with the direct wave (non-

scattered) Green’s function G∗0(x′,x) can be reduced in amplitude by using the

exact interferometric representation (Eqs. 2.1 and 2.2) rather than the monopole

approximation (Eqs. 2.3 and 2.4). This is because G∗0(x′,x) does not fulfil the

far-field assumptions when boundaries S and S ′ are close to one-another (Fig.

2.7): the assumption that all ray paths (including those between the source and

receiver boundaries) are normal to the boundaries is not valid in this case. (Note

that when using G∗S(x′,x) instead of G∗0(x′,x), the assumption is more reasonable

because the energy generated at the source boundary travels towards the scatterer
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Figure 2.11: Source–receiver estimate of the Green’s function between x1 and x2 (solid
line) constructed using the partial boundaries in Fig. 2.7, when G∗0(x′,x) is eliminated
from the data prior to the cross-correlation. The dashed black line represents the true
Green’s function; the dashed red line corresponds to the interferometric trace in Fig.
2.8. Maximum amplitudes in each trace are normalized to one. The non-physical arrival
before the pseudo-physical causal scattered wave in Fig. 2.8 is completely suppressed,
resulting in a good estimate of the scattered wavefield.

first before being recorded at the receiver boundary: provided the boundaries are

far from the scatterer this leads to an ultimate propagation direction that is closer

to the normal to the boundary.) In fact, terms G0G0G
∗
0, GSGSG

∗
0, G0GSG

∗
0, and

GSG0G
∗
0 only contribute non-physical non-stationary energy. Since all of these

terms, and only these terms, contain the direct wave arrival G∗0(x′,x) between

boundaries S and S ′, eliminating this direct wave component altogether from

the interferometry (i.e. setting it to zero prior to cross-correlating wavefields)

reduces the amount of non-physical energy without losing physical information

about the scattered wavefield (Fig. 2.11). In this way, the monopole or far-field

approximation can be used without causing significant negative effects, even if

the boundaries are close together or even if they are collocated.

Stationary but non-physical events are constructed from the terms G0GSG
∗
S and

GSG0G
∗
S on account of the stationary pairs x′ = c,∀x and x = e,∀x′ (Fig.

2.3). Usually these events would be cancelled out by other non-physical events

associated with the stationary points at d and f . Using only partial bound-

aries, however, the linear arrays omit the corresponding stationary points and

thus preserve the non-physical energy in the constructed trace. They are identi-

fied as the first arrivals, with travel times corresponding to t(x2,xd) − t(x1,xd)

and t(x1,xd)− t(x2,xd), respectively, where t(x1,xd) is the travel time from the

diffractor at xd to x1. Although their travel times do not relate to physical ray

paths they still contain information about the medium, especially about the lo-

cation of the scatterer. For example, if the scatterer was located at the midpoint
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Figure 2.12: Pseudo-physical (black lines) and non-physical (red lines) events con-
structed from GSGSG

∗
S and G0GSG

∗
S , respectively, for different horizontal scatterer

positions–moving the scatterer in Fig. 2.7 relative to x1 and x2, while keeping the ver-
tical location at 0 m. For any fixed scatterer position relative to x1 and x2 the position
of the scatterer can be estimated using the combined travel time information from both
events.

between source and receiver the travel times of both events would be zero and

they would coincide at zero lag-time. We can thus use the information from

the travel times of non-physical events to constrain the position of the scatterer.

Combining this information with the travel time of a physical scattered wave,

causal or acausal, given by t(xd,x1) + t(x2,xd) or −[t(xd,x1) + t(x2,xd)], respec-

tively, the position of a scatterer located below the source-receiver pair is uniquely

defined (Fig. 2.12). Non-physical energy from standard interferometry has been

well studied and shown to be useful in velocity analysis (King and Curtis, 2011)

and locating near-surface scatterers (Harmankaya et al., 2013; Kaslilar et al.,

2014). Similar applications appear feasible for non-physical energy constructed

from SRI. Further research could examine the potential of using non-physical

energy to constrain the scattering amplitude.

In appendix C, we provide an analysis of different parameterizations of the nu-

merical model using, for example, a larger spatial sampling interval while the

lateral extents of S and S ′ are held constant. When the sampling interval is in-

creased the contributions from neighbouring traces at non-stationary points may

not cancel out and may thus introduce non-physical energy (see Figs. 2.13 and

2.14). Analysing each term of Eq. 2.7 individually we find that some terms

contribute energy that is relatively robust to changes of the sampling interval:

the terms G0G0G
∗
S and GSGSG

∗
S still provide good estimates of the acausal and

causal scattered wave, respectively, when the sampling interval equals six times

the spatial Nyquist wavelength λNyq (Fig. 2.15), which corresponds to a spacing

of 38 m. This is also true for the stationary non-physical events in G0GSG
∗
S and
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GSG0G
∗
S . Thus, the additional non-physical energy introduced by depopulat-

ing the boundaries appears solely on account of the terms G0G0G
∗
0, GSGSG

∗
0,

G0GSG
∗
0, and GSG0G

∗
0, all of which contain the direct wave arrival between the

two boundaries, G0(x′,x). Again, by eliminating this component prior to the

cross-correlation of wavefields we can therefore reduce the amount of non-physical

energy and apply a coarser source and receiver spacing without loss of resolution

of the scattered waves.

The differing behaviour with respect to the spacing on each boundary can be

understood by considering the correlation gathers: for each term, the maximum

allowable spacing is determined by the slope of the travel time curve in the cor-

relation gather, which depends on the choice of the Green’s functions in the

cross-correlation. When G0(x′,x) is used rather than GS(x′,x) the travel time

curve in the first correlation gather (corresponding to inter-receiver interferome-

try) has a much steeper slope (compare Figs. 2.13 and 2.14, for example) and

therefore causes incomplete cancellations even for a small increase of the sam-

pling interval above the Nyquist wavelength. In general, the travel time slope

depends on the velocity of the medium, the depth of the source–receiver pair,

and the depth of the scatterer (Mehta et al., 2008). Further, the behaviour of

the travel time curves may be different for multiply scattered or reflected waves.

The maximum allowable spacing is thus defined by the geometry and material

properties of the problem at hand.

For the geometry used, only the term G0G0G
∗
S gives the acausal scattered wave

(Figs. 2.9a, 2.10a and b) on account of the stationary pair x = e,x′ = c (Fig.

2.3). This term has also been used by Poliannikov (2011) to recover the re-

flection response of a layered medium using SRI. Moreover, an estimate of the

causal scattered wave is obtained from the pseudo-physical event constructed

from GSGSG
∗
S (Fig. 2.9b), for which every source-receiver pair is stationary (Fig.

2.10c and d). Note that in the geometry used herein, GSGSG
∗
S is the only term

that contains information about the causal scattered wave. If we therefore use

only terms G0G0G
∗
S and GSGSG

∗
S , we obtain a good estimate of the causal

and acausal scattered field (Figs. 2.15a and c) even if the boundary source and

receiver sampling is depleted (Figs. 2.15b and d).

Considering the applicability of these results in an imaging context, when the aim

is to image the scatterer we have to consider the following limitations: compared

to the geometry used in SRI (Fig. 2.7), in a seismic experiment the subsurface

source at x1 and the receiver at x2 are physically not available, so the wavefields
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Figure 2.13: Correlation gathers of G0G0G
∗
S for different parameter constellations (for

symbol key see Table 2.2). Panels (a) and (b) correspond to (a) and (b) in Fig. 2.10
(c) As in (a) but with the source interval equal to 3 · λNyq. (d) As in (b) but with the
receiver interval equal to 3 · λNyq. Figure layout as in Fig. 2.10. In this example the
coarser spatial sampling does not affect the interferometric result.

Figure 2.14: As in Fig. 2.13 but for G0G0G
∗
0. (a) and (b) above correspond to (i)

and (j) in Fig. 2.10. When a coarser spatial sampling is applied (c and d) additional
non-physical energy is introduced in the interferometric estimate.
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Figure 2.15: (Pseudo-)Physical scattered wave energy constructed using the terms
G0G0G

∗
S and GSGSG

∗
S only (solid line) compared to the true scattered wave (dashed

line). The maximum amplitudes have been normalized to one. (a) Source and receiver
spacing is equal to 1 · λNyq. (b) Source and receiver spacing is equal to 6 · λNyq. (c)
and (d) show the same results as (a) and (b), but causal and acausal (positive and neg-
ative time) sides have been normalized independently to better illustrate the quality of
the interferometric result. Despite the strongly depleted boundaries in (b) and (d) the
scattered wavefield is well constructed and no additional spurious energy is introduced.
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G(x′,x1) and G(x2,x) are not recorded. In imaging methods these wavefields are

modelled using a smooth background model, usually obtained from velocity anal-

ysis and waveform inversion (Pratt, 1999; Yilmaz, 2001). Under these conditions

we find that G0G0G
∗
S has a crucial advantage over GSGSG

∗
S: while modelling

of GS(x′,x1) and GS(x2,x) requires information about the scatterer (which is

usually not available from the background model), G0(x′,x1) and G0(x2,x) are

solely defined by the background model. In fact, G0G0G
∗
S can be compared di-

rectly to the imaging condition for a migrated image (Claerbout, 1985) given that

source and receiver coincide on the image point x1, since the explicit link between

imaging and SRI was provided by Halliday and Curtis (2010). They derive the

scattered wave components of SRI from reciprocity relations for perturbed me-

dia, and show that under the Born approximation the scattering potential f at a

point x1 is given by

f(x1) =
−4

jc0

∫ ∞
−∞

dω(−jω)

×
∫
S

[∂iΦ(x1,x)G∗0(x1,x)− Φ(x1,x)∂iG
∗
0(x1,x)]nidS

(2.15)

where Φ(x1,x) represents the back propagated wavefield at x1

Φ(x1,x) =
−1

jωρ

∫
S′

[∂′iGS(x′,x)G∗0(x1,x
′)

−GS(x′,x)∂′iG
∗
0(x1,x

′)]n′idS
′

(2.16)

Note that G0(x1,x) and G0(x1,x
′) are not measured quantities but synthetic

forward-propagating (from sources at x) and backpropagating (from receivers at

x′) Green’s functions, respectively, calculated using the background model. As

Halliday and Curtis (2010) explain, Eq. 2.15 is directly related to the imaging con-

dition that Oristaglio (1989) derived using a double-focusing algorithm. We find

that Eqs. 2.15 and 2.16 show striking similarities to Eq. 2.2 and 2.1, respectively,

assuming that x2 = x1, and setting G(x′,x1) = G0(x′,x1), G(x2,x) = G0(x2,x),

as if using the term G0G0G
∗
S only and invoking source–receiver reciprocity.

Note that Halliday and Curtis (2010) use a complete circular boundary of sources

and receivers. In their derivation they find that not only the scattered wave is

constructed but also its time reverse, as well as two events similar to stationary

but non-physical arrivals in interferometry. This is consistent with the events

expected from the term G0G0G
∗
S by stationary phase analysis when using a full

boundary (Table 2.1). When restricting the boundary to the surface, however,
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only the acausal scattered wave is constructed due to the lack of stationary points

associated with the causal scattered wave and the two stationary, non-physical

events. Hence an imaging condition can be derived from SRI even if the bound-

aries are only partially available on top of the scattering medium. Indeed the

suppression of the two non-physical events when using partial boundaries can

be seen as a positive advantage of using incomplete boundaries, since that non-

physical energy will not disturb the image.

As the interferometric approach does not make use of the Born approximation it

is in principle able to account for non-linearities associated with multiple scat-

terers, which are currently not considered by standard migration schemes. When

an initial estimate of the scattered wavefield is included in the reference wavefield

G0 it also becomes possible to use additional interferometric terms for non-linear

imaging, and some work has already been done in this area (Fleury and Vascon-

celos, 2012; Ravasi and Curtis, 2013; Vasconcelos, 2013). The question of how

our specific results generalize to the case of a multiply scattering medium, and

how this could be used to enhance resolution in seismic images, will be addressed

in future research. An example for pseudo-physical energy constructed in a mul-

tiple scattering case is provided in Fig. 2.17. A full boundary has been used

(Fig. 2.16) to highlight the effect of the scattering amplitude on the amplitude

of the constructed events. For first-order scattering the analysis provided for a

single scatterer applies just as well in the multiple-scattering case: the amplitude

of the constructed event is proportional to the imaginary part of the scattering

amplitude of the corresponding scatterer. Note that the scatterers have differ-

ent scattering amplitudes, which results in different amplitudes of the primary

events on the constructed trace. In principle, scattering events of any order are

constructed using GSGSG
∗
S only. For example, a secondary event can be seen

at around 0.7 s. For a kinematic analysis of higher-order scattering see Meles

and Curtis (2013). How the amplitude (and phase) is affected by the scatter-

ing amplitudes of the individual diffractors has to be clarified in future research.

Moreover, non-physical events are introduced from the correlation of cross-terms

(e.g. at 0.2 s). Note that those may superimpose pseudo-physical arrivals and

affect their amplitudes and waveforms. Nevertheless, this example shows that

the single-scattering analysis presented herein is useful and applicable, at least in

relatively simple multiple-scattering scenarios.
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Figure 2.16: Geometry used in multiple diffractors example. Symbol key as in Fig. 2.2.
The imaginary part of the scattering amplitude of the diffractors located at xA and xB
is set to −1, for the scatterer at xC it is set to −2.

Figure 2.17: Pseudo-physical events (solid line) constructed using GSGSG
∗
S only and the

geometry shown in Fig. 2.16 containing three diffractors. The dashed line represents
the true scattered Green’s function. All first-order scattering events (primaries) are
constructed with the correct travel time and waveform. According to Eq. 2.12 the
primaries around 0.2 s and 0.3 s have exactly the amplitude of the true events, since
the imaginary part of the scattering amplitude of the corresponding scatterers (=(AA)
and =(AB), respectively) equals −1. Analogously, the primary at 0.6 s is constructed
with twice the correct amplitude, since =(AC) = −2. Moreover, good estimates of
higher-order scattering events have been constructed, for example, between 0.4 s and
0.6 s and around 0.8 s. Note, however, that they appear to be shifted in phase. The
small amplitude events before 0.15 s are non-physical.
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2.6 Conlusions

Using synthetic acoustic scattered waves we have illustrated the ability of SRI to

provide information about scatterers embedded in a smooth background medium

using a limited geometry of source and receiver boundaries representing linear ar-

rays used in industrial geophysics. By separating the wavefield into a background

component and a scattered wave component and analysing individual cross-terms

of the interferometric equation using the method of stationary phase, we deter-

mine the origin of both physical and non-physical energy in the resulting Green’s

function estimates. We identify a new category of non-physical energy, referred to

as pseudo-physical energy, which can be used to estimate physical energy directly.

We show that the scattered wave is constructed by only one term of the equation,

referred to as G0G0G
∗
S , which is directly linked to the imaging condition used

in standard seismic migration schemes. We showed that for this term the partial

boundary may be a positive advantage as this suppresses non-physical energy in

resulting images. The term GSGSG
∗
S provides a pseudo-physical event, which is

naturally non-physical but can be used as an estimate of the causal scattered

wave. For the first time a complete mathematical derivation for the genera-

tion of pseudo-physical energy is provided. Two other terms contain stationary

non-physical energy that is not cancelled out when using incomplete boundaries;

however, this energy was shown to provide novel information about the location

of scatterers. Non-stationary, non-physical energy associated with the abrupt

truncation of the boundaries and the monopole approximation can be reduced by

using a spatial taper, the use of dipole sources, or the elimination of the direct

wave component between the boundaries, G0(x′,x), prior to the cross-correlation

of wavefields. Considering source and receiver coverage along the boundaries,

our studies reveal four terms that permit deviations from theoretical sampling

requirements while still providing a reliable estimate of stationary energy, and

fortunately for practical applications, these include the two terms G0G0G
∗
S and

GSGSG
∗
S that construct the (pseudo-)physical scattered waves.
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Chapter 3

Automatic identification of multiply

diffracted waves and their ordered

scattering paths

In the previous chapter, I studied a single point diffractor and determined the

contribution of individual terms of the SRI equation to the scattered wavefield

estimate when source and receiver boundaries are only partially available at the

surface. From this analysis, the term GSGSG
∗
S, which has only scattered wave

arguments, stands out because of its ability to construct a pseudo-physical esti-

mate of the causal scattered wave from any source receiver pair on the boundary

and thus provides useful results even for very limited boundaries.

In this chapter, I consider multiple isotropic point scatterers and focus on the

analysis rather than on the construction of a multiply scattered wavefield GS.

GS consists of singly scattered and multiply scattered waves and I show how

these different components can be distinguished and the exact scattering path of

any event be identified using the term GSGSG
∗
S of the SRI equation. However,

I do not apply full wavefield cross-correlation and convolution as in SRI but

focus on the summation and subtraction of travel times in the phase term, which

is sufficient to determine the arrival times of multiply scattered waves. The

algorithm presented in this chapter is a modified version of a method described

in detail in Meles and Curtis (2014a) and predicts rather than retraces multiply

scattered arrivals. Special emphasis is placed on the automation of the different

steps of the algorithm involving isolation of primaries (singly-scattered waves),

identification of secondaries (twice-scattered waves), and prediction of higher-

order multiples.

This chapter has been published as a jointly-authored paper1. I, as lead author,

1K. Löer, G.A. Meles, and A. Curtis. Automatic identification of multiply diffracted waves
and their ordered scattering paths. Journal of the Acoustical Society of America, 137(4): 1834–
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have done the writing of the paper, performed the numerical experiments, and

analysed the results. Co-authors gave advice and support on the scope of the

project, provided background knowledge, and helped editing the manuscript. For

the construction of synthetic data sets I used an analytic wavefield modeling code

(Foldy, 1945; Galetti et al., 2013) and a finite difference acoustic modeling code

written by Matteo Ravasi (PhD student, University of Edinburgh).

Abstract

An automated algorithm is presented that uses recordings of acoustic energy

across a spatially-distributed array to derive information about multiply scattered

acoustic waves in heterogeneous media. The arrival time and scattering-order of

each recorded diffracted acoustic wave, and the exact sequence of diffractors en-

countered by that wave, are estimated without requiring an explicit model of the

medium through which the wave propagated. Individual diffractors are identified

on the basis of their unique single-scattering relative travel-time curves (move-

outs) across the array, and secondary (twice-scattered) waves are detected using

semblance analysis along temporally offset primary move-outs. This information

is sufficient to estimate travel times and scattering paths of all multiply diffracted

waves of any order using a process based on source-receiver interferometry. These

events can then be identified in recorded data. The algorithm is applied to syn-

thetic acoustic data sets from a variety of media, including different numbers

of point diffractors and a medium with strong heterogeneity and non-hyperbolic

move-outs.

3.1 Introduction

The phenomenon of diffraction describes the interaction of propagating energy

(e.g., acoustic and elastic waves, electromagnetic radiation, or moving particles)

with sub-wavelength heterogeneities within the medium that are generally re-

ferred to as scatterers or diffractors (Born and Wolf, 1999). Diffractions play an

important role in many fields of theoretical and applied acoustics, including in

medical imaging (Insana et al., 1990; Tadayyon et al., 2014), localization and de-

struction of kidney stones using medical ultrasound and lithotripsy (Fink et al.,

1845, 2015. DOI: 10.1121/1.4906839.
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2003), ocean acoustics for the detection of marine organisms (Brekhovskikh and

Lysanov, 2003; Foote, 2008), but also in other fields of physics including quan-

tum mechanics (Friedrich, 2006), non-destructive testing (Prada et al., 2002),

remote sensing (Ferretti et al., 2001), ground-penetrating radar (Papziner and

Nick, 1998), near-surface geophysics (Harmankaya et al., 2013; Kaslilar et al.,

2014), seismic exploration and monitoring (Landa et al., 1987; Khaidukov et al.,

2004; Pacheco and Snieder, 2006; Halliday and Curtis, 2009; Halliday et al., 2010;

Jixiang et al., 2014), and global seismology (Wu and Aki, 1988). In all such cases

being able to predict or interpret diffracted energy is crucial.

Although in most applications the medium of interest contains multiple diffrac-

tors, it is often assumed that significant recorded wave energy has only scattered

once, in order to simplify the wave theory considered. In that case, only energy

that has interacted with a single diffractor is correctly taken into account. Apart

from the fact that this assumption neglects many of the data which contain addi-

tional information about the medium, it may also lead to misinterpretation of the

data and hence to incorrect conclusions. As examples in various fields of ongoing

research show (Stanton, 1982; Gao et al., 1983; Bordier et al., 1991; De Rosny

and Roux, 2001), taking multiple scattering into account often leads to improved

results. Some authors (Larose et al., 2006; Aubry and Derode, 2010) also address

the problem of separating singly from multiply scattered wavefields and analyzing

the information content in different parts of the wavefield separately.

Recently, Meles and Curtis (2014a) presented a new method to identify multiply

diffracted waves in acoustic data gathers. Moreover, it identifies all individual

diffractors involved in the corresponding scattering path, and the sequential order

in which they were encountered. It relies on fingerprinting individual diffractors

in common-source and common-receiver gathers (data subsets) by means of their

unique move-out (travel-time variation across arrays of receivers or sources, re-

spectively). The method has a range of possible applications such as improved lo-

calization of diffractors or estimation of inter-scatterer medium properties, or dis-

criminating physical from non-physical energy in wavefield interferometry (Meles

and Curtis, 2014b); however, until now the method required substantial man-

ual intervention. This is possible, though time-consuming, only in a medium

of low complexity (with very few diffractors) and for data with very low noise

levels.

We present an algorithm that automatically identifies primary and secondary

waves (waves that have diffracted exactly once or twice, respectively), and pre-
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dicts arrival times of higher-order multiply diffracted waves (those that have

diffracted three times or more). The latter multiply diffracted wave arrivals may

then be identified in recorded data, and associated with an exact scattering path,

despite the method requiring no explicit model of the medium or of the diffractor

locations. In this paper we briefly revise the theoretical concept of the method of

Meles and Curtis (2014a) and introduce the new automated algorithm that pre-

dicts the arrival times of multiply scattered events in three steps: (i) automatic

extraction of primary travel-time curves (fingerprints) from common-source and

common-receiver data gathers, (ii) identification of secondaries on the mutual

trace common to both gathers, and (iii) prediction of travel times of all multiples

up to any specified order by summing and subtracting primary and secondary

travel times. We test the algorithm on a range of synthetic data sets involving

different numbers of scatterers, varying noise-to-signal ratios, and non-hyperbolic

move-outs. The results are compared to the true arrival times and scattering

paths computed from the numerical models, and limitations of the method are

addressed in the Discussion.

3.2 Theory: Fingerprinting diffractors

The fingerprint of an individual point diffractor corresponds to a unique travel-

time curve across a common-receiver gather (CRG) or a common-source gather

(CSG) (Meles and Curtis, 2014a). A common-source gather is the set of time se-

ries recorded at an array of receivers when the recorded energy has been generated

by a single (common) source. Similarly, a common-receiver gather is the set of

time series recorded between a single (common) receiver and an array of sources.

Fig. 3.1 shows the 3-diffractors model that was used to generate an example

of a synthetic common-source gather (Fig. 3.2a) and a common-receiver gather

(Fig. 3.2b) using an implementation of Foldy’s method (Foldy, 1945; Galetti

et al., 2013). When both a source array and a receiver array are used, a cube

of recorded data is generated defined by the sources along one axis, the receivers

along another axis, and the recording time along the third axis (Fig. 3.2c). Two

crossing slices within this cube correspond to a common-receiver gather and a

common-source gather, and have a mutual trace which is common to both gath-

ers and is the record of the wavefield generated from the common source recorded

at the common receiver (vertical bold line in Fig. 3.2a, b and c).

We refer to any distinctly observed arriving packet of energy as an event, and to

50



Figure 3.1: Example geometry for a 3-diffractors model. Stars are sources, triangles are
receivers, and black solid circles denote the locations of point diffractors. For clarity,
only every third source and receiver is plotted. The velocity of the background medium
is 1000 m/s

the recorded time series at a single receiver as a trace. The travel-time variations

of a singly scattered wave (a primary) prescribe a so-called move-out along the

traces of the common-source or common-receiver gather. The move-out gives

the relative time of arrival of the diffracted wave as a function of receiver or

source position respectively, and is solely determined by the properties of the

diffractor and the background medium, and the location of the diffractor with

respect to the receiver array or the source array. Each diffractor can be related to

a unique move-out, its so-called fingerprint. Meles and Curtis (2014a) show that

this uniqueness also holds for inhomogeneous media, other than for pathological

cases.

The number of distinct primary move-outs in the data (the common-source or

common-receiver gathers) corresponds to the number of diffractors in the illumi-

nated part of the medium. Further, multiple occurrences of the same move-out

arriving at different times indicate multiply scattered events. In a common-source

gather, multiply scattered waves can be classified by the last diffractor they have

visited: the move-out curve of any multiply scattered wave with last diffractor L

is equal to that of the primary of L, with an additional constant travel-time shift

that accounts for the longer raypath before visiting diffractor L (Figs. 3.3a and

b). Hence, all events with the same last diffractor have the same move-outs in a

common-source gather. In a common-receiver gather, all events can be classified

similarly according to the first diffractor along the scattering path (Fig. 3.3c and

d). Combining the information from both gathers on any chosen mutual trace

(that is common to both gathers; Fig. 3.3e) we can identify the first and last

diffractor along the scattering path for any event observed on the trace: thus,

every event observed on any chosen trace can be associated with a move-out pair,

namely the fingerprints of the first and last diffractor. This is important because
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Figure 3.2: (a) Synthetic common-source gather (CSG) and (b) common-receiver
gather (CRG) obtained using the 3-diffractors model shown in Fig. 3.1 with
the common source located at [−880 m, 0 m] and the common receiver located at
[−680 m,−50 m], respectively. The noise-to-signal ratio is 0.5, where a ratio of 1 means
that the root-mean square noise is equal to the typical amplitude of a secondary (a
twice-scattered wave). (c) The data-cube showing a CSG and a CRG as two orthogo-
nal (schematic) sections. The vertical bold line in both panels of (a) marks the mutual
trace that is common to both of the gathers, and this is denoted also in the schematic
gathers in (c).

primaries and secondaries can all be identified uniquely as the first events on the

recorded trace associated with a particular move-out pair: for primaries both

move-outs match the fingerprints of the same (single) diffractor, while for secon-

daries the source and receiver move-outs match the fingerprints of different first

and last diffractors.

Meles and Curtis (2014a) then choose an arbitrary event on any trace and anal-

yse the sequential order of diffractors involved in its scattering path. The last

diffractor L in the scattering path is classified according to its move-out as shown

above. The penultimate diffractor, L− 1, is identified by using a particular com-

bination of cross-correlation and convolution of primaries and secondaries (or by

a combination of additions and subtractions of their travel times). By induction,

the diffractors L − 2, L − 3, and so on are identified in the same way until the

full scattering path of any chosen event is recovered.
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Figure 3.3: Schematic construction of multiply diffracted events from primaries and
secondaries. Symbol key as in Fig. 3.1. (a) and (b) CSG: raypaths of the primary
scattered at xB and of the secondary with first diffractor xA and last diffractor xB.
Note that the receiver-side move-outs are the same. (c) and (d) CRG: raypaths of
the primary scattered at xB and of the secondary with first diffractor xB and last
diffractor xC . Note that the source-side move-outs are the same. (e) and (f) Events
on the mutual trace that are used to estimate the travel time of a tertiary scattered
event: two secondaries (grey and bold) are convolved and the result is cross-correlated
with a primary (dashed). Travel times along dashed and solid raypath components that
follow the same paths cancel each other as a result of cross-correlation. This operation
gives the travel time of the tertiary event scattered sequentially at diffractors xA, xB,
and xC .
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The method requires that the move-out of the event can be classified uniquely on

both the common-source and the common-receiver gather. This can be difficult

especially for late arriving waves that undergo higher-order scattering, have low

amplitudes, and are embedded in a complex wavefield where individual move-outs

may not be distinguishable. Nevertheless, the method has been demonstrated suc-

cessfully for scattering events up to fourth order in a noise-free synthetic acoustic

data set; that is, the scattering path of any observed event could be interpreted

provided the energy in that event had not scattered more than four times.

In this work we implement, automate, and demonstrate the reversed process

to that of Meles and Curtis (2014a): rather than analyzing scattering paths of

events observed on the recorded trace, our method predicts travel times of all

multiply diffracted waves (Fig. Fig. 3.3e and f), which can then be identified

in recorded data. In fact, this method was proposed schematically by Meles and

Curtis (2014a), but was neither implemented nor tested.

3.3 The automated scheme

Automation of the new algorithm requires a method to detect move-outs of dif-

ferent diffractors, and repetitions of the same move-out across each gather. It

should be applicable to either simple or complex wavefields where the human eye

may not be able to recognize individual move-outs. We now describe three stages

in an algorithm that achieves this.

3.3.1 Isolating primary move-outs using cross-correlation of

gathers

We first isolate and identify the primary move-outs, which provide the basis for

all further analyses. To do so, we exploit the fact that the shape of a primary

diffracted move-out in a common-source gather is invariant with respect to the

source position apart from a constant shift in time. That is, if we compare a

common-source gather to a second such gather with a different source position,

we will find the same primary move-out curves in the second gather, but each

curve will be shifted by a different amount along the time axis (Figs. 3.4a and

b). This assumption applies equally to common-receiver gathers with respect to

location of the receiver.
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Figure 3.4: (a) Common-source gather with the source located at [−880 m,0 m] and
(b) common-source gather with the source located at [−380 m,0 m] (see Fig. 3.1). The
noise-to-signal ratio is 0.5. Both gathers contain the same three primary move-outs
(fingerprints of each of the three diffractors in Fig. 3.1), but shifted in time (i.e.,
vertically up or down the gather) due to the change in source position. As an example
the dashed lines indicate the shift by 1 s of the rightmost move-out. (c) Result of
cross-correlation (Φ1 in Eq. 3.1) between the two gathers shown in (a) and (b). Time
lag i in Eq. 3.1 has been converted to seconds. The peaks indicate the three time shifts
under which both gathers are most alike with the peak at 1 s corresponding to the shift
of the rightmost move-out in both gathers. These time shifts are used to isolate the
individual move-outs from the left gather in (a).
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The invariance of diffraction move-outs across multiple common-source gathers

allows us to isolate them from the rest of the data and estimate their arrival-time

curves using cross-correlation. Standard cross-correlation allows one to estimate

the time shift between two traces under which they are most alike with respect

to a squared norm. We wish to find similarities between two gathers (A and B1)

rather than two individual traces, so we first perform cross-correlation between

the pair of traces at each receiver in the two gathers, then sum the results over

receivers. This can be written in the time domain for discrete time samples i

as

Φ1(i) =

min(MA,MB)∑
m=1

N∑
n=1

A(m,n)B1(m+ i, n) (3.1)

where Φ1(i) denotes the correlation coefficient at time shift i, MA and MB are the

record lengths in gathers A and B1 respectively, and N is the number of traces

in each gather. In gather A(m,n), for example, m is the time index and n is the

receiver index.

Φ has its maximum recorded amplitude at time shift i = i1 say, for which A

and B1 are most alike. i1 is usually the time by which one of the recorded

primary move-outs (typically the one with the largest amplitude) is shifted due

to the relative shift in source position between gathers A and B1 (Fig. 3.4c). To

identify this particular move-out, gather B1 is shifted in time by i1 and multiplied

element-wise with gather A according to

C1(m,n|i = i1) = A(m,n)|B1(m+ i1, n)| (3.2)

Ideally, the resulting cross-gather C1 has maximum values along the primary

move-out associated with time shift i1: all other elements should have close to

zero amplitudes (Figs. 3.5a, b and c). However, when the data are noisy or

contain many intersecting move-outs, residual energy that is not related to that

move-out remains in the cross-gather and affects the accuracy of the estimated

move-out. To attenuate this energy, the obtained cross-gather is correlated with a

new common-source gather, B2 say. The maximum amplitude of that correlation

function indicates the time-shift between the move-out in the cross-gather and

the equivalent primary move-out in gather B2, and therefore allows one to com-

pute an updated cross-gather. This process is repeated iteratively, each iteration

consisting of three steps:

(i) Cross-correlation of two gathers (one of which is the previously determined
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cross-gather) according to

Φj+1(i) =

min(MA,MB)∑
m=1

N∑
n=1

Cj(m,n|i = ij)Bj+1(m+ i, n) (3.3)

and identification of the time shift ij+1 with the largest correlation coeffi-

cient.

(ii) Element-wise multiplication of the two gathers—one of them shifted by

the time shift ij+1 determined in step (i)—to produce a new cross-gather

according to

Cj+1(m,n|i = ij+1) = Cj(m,n|i = ij)|Bj+1(m+ ij+1, n)| (3.4)

The cross-gather should have maximum values along the primary move-out

associated with time shift ij+1; all other elements should have close to zero

amplitudes.

(iii) The corresponding travel-time curve is estimated as a function of receiver

position by picking the maximum amplitude arrival on each trace of the

cross-gather (Fig. 3.5d, e and f):

tj(n|i = ij) = arg max(|Cj(m,n|i = ij)|) (3.5)

The energy along the primary move-out in the cross-gather in step (ii) should

be amplified by multiple iterations, allowing a better estimate of the primary

travel-time curve. Iterations cease when the extracted travel-time curve does not

exhibit significant changes compared to that in the previous iteration.

So far the algorithm identifies one move-out, namely that which exhibits the

largest correlation coefficient Φ1. To find other diffraction move-outs we use

an additional iterative loop: at the beginning of each iteration recorded energy

with previously detected move-outs is removed from the original common-source

gather (gather A) by muting all traces around the identified arrival-time curves.

The muted gather is then used in the initial correlation step (Eq. 3.1). However,

when computing the first cross-gather using Eq. 3.2, the original (unmuted)

common-source gather is used in order to avoid gaps in the move-out energy due

to muting, which would result in discontinuous arrival-time estimates. Thus we

iteratively find successive move-out curves.
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Figure 3.5: (a), (b) and (c) Cross gathers C for different time lags (Eq. 3.2) each
showing a single move-out isolated from the common-source gather in Fig. 3.4(a). (d),
(e) and (f) Travel time curve as a function of receiver position extracted from the
cross-gathers using Eq. 3.5.
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The search for additional move-outs ceases when the maximum of Φ falls below

a certain threshold, here defined as 0.1 ∗ max(Φ1) ∗ 0.9l, where max(Φ1) is the

maximum of the first correlation coefficient and l is the number of move-outs

already detected and removed from the gather. This dynamic threshold accounts

for the fact that in each iteration the total amount of energy in the gather is

reduced due to the muting. The two variable parameters (0.1 and 0.9) are chosen

empirically and depend on the relative locations and scattering amplitudes of the

diffractors, as well as on the noise level. The influence of this threshold on the

results is explained in more detail in the Discussion.

Note that the initial gather A can be chosen arbitrarily, although certain source

locations may provide a better illumination angle (resulting in fewer intersections

or larger amplitudes of diffracted energy) depending on the distribution of diffrac-

tors in the medium with respect to the source and the receiver array. Nevertheless

the identified move-outs should be identical and the extracted arrival-time curves

only vary in absolute travel times, so that a comparison of the move-outs obtained

from different initial gathers could be used to check the accuracy of results.

The method is in principle able to extract travel-time curves of arbitrary com-

plexity. Below we will show synthetic data examples containing non-hyperbolic

move-outs obtained from a numerical model with a highly heterogeneous back-

ground velocity distribution. Note that the background medium has to be suffi-

ciently smooth in order not to generate diffracted or reflected energy, i.e., velocity

or density variations occur only gradually at length scales larger than the typical

wavelength.

The identification of primaries is carried out on both the common-source and the

common-receiver gather. We then check if any two (or more) primaries arrive

close to simultaneously on the mutual trace that is common to both gathers. If

this is the case, a new trace is picked and the process is repeated until a suitable

trace is found for which all primary arrivals are separated by at least the length of

a wavelet. This reduces ambiguity about which common-receiver and common-

source move-outs correspond to the same event. The mutual trace is chosen quasi

randomly from different sub-sets (“bins”) of the data cube, each containing 25

sources and 25 receivers in the examples herein. By testing traces from different

bins we make sure that a variety of illumination angles are considered, which

accelerates the search for a suitable mutual trace.
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Figure 3.6: Result of semblance analysis (S(tshift) in Eq. 3.6) for a common-source
gather (Fig. 3.4a) using the travel-time curve shown in Fig. 3.5d at different time
shifts. Time shifts are relative to the arrival time of the primary, represented by the
peak at 0 s. The two later peaks indicate arrivals of multiples with the same move-out
and hence the same last scatterer.

3.3.2 Detecting multiples using semblance analysis

The travel-time curves extracted from the cross-gathers are used to detect mul-

tiples with the same fingerprint, hence the same last (first) diffractor, arriving

at later times in the common-source (common-receiver) gather. This is achieved

using semblance analysis, a technique commonly used in seismic velocity anal-

ysis (Thorson and Claerbout, 1985; Sheriff and Geldart, 1995). The semblance

denotes the ratio of the total energy of the stack (sum) of traces along a travel-

time curve to the sum of the energy of the individual traces (Sheriff and Geldart,

1995). In our case the shape of the travel-time curve is already known and the

only unknown parameter is a constant time shift tshift between a primary and a

multiple. The primary travel-time curve t(x) is shifted across the gather by tshift,

and the semblance S along the curve t(x) + tshift is computed according to

S(tshift) =
1

N

∑m
2

∆

tw=−m
2

∆[
∑N

x=1 g(t(x) + tshift + tw;x)]2∑m
2

∆

tw=−m
2

∆

∑N
x=1[g(x) + tshift + tw;x]2

(3.6)

where N is the number of traces, and g(t(x)+ tshift+ tw;x) is the value of trace x

at time t(x)+ tshift+ tw, where tw runs over the temporal length of the semblance

window according to the outer summation in Eq. 3.6. Stacking over a time
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window of width m∆, where m is a positive scalar and ∆ is the inverse of the

temporal sampling rate, accounts for the fact that a coherent arrival on each

trace extends over a finite time interval, namely roughly the length of the source

wavelet. Due to the normalization factor 1/N values for S range between 0 and 1.

When S is close to 1, all amplitudes sum coherently and the proposed travel-time

curve t(x) + tshift fits a move-out that exists in the gather. The time shifts tshift

for which S is large thus provide the arrival times of multiples with the same last

(or first) scatterer as the primary described by the travel-time curve t(x) (i.e., all

arrival times are relative to the corresponding primary arrival). An example is

shown in Fig. 3.6.

In order to increase the amplitudes of weak arrivals (especially secondaries) and

equalize amplitudes across the whole move-out, a temporally adaptive gain was

applied to the data before performing semblance analysis. This maintains the

relative amplitudes of all arrivals in a specified time window (gain window) but

normalizes the maxima of all time windows. If the gain window is sufficiently

small, this process sets all arrivals on a trace to the same amplitude including

primaries and multiples, but also noise. For the semblance analysis, however,

the amplitude of the noise is not important, assuming that it is incoherent in

phase and therefore should not sum constructively. In our examples a gain win-

dow equivalent to the length of the wavelet provided the best results for noisy

data.

Having identified the first diffractor of each event on the common-receiver gather,

and the last diffractor of each event on the common-source gather, we combine

these pieces of information on the mutual trace, which allows us to identify all

secondary events: these are the first arriving events associated with each pair of

different common-source and common-receiver move-out.

3.3.3 Predicting travel times of higher-order multiples

Once all primary and secondary events have been identified they can be used to

construct any tertiary multiply scattered arrival by combining three events:

(1) any primary (e.g. Fig. 3.3a)

(2) a secondary associated with the same last diffractor as the primary (Fig.

3.3b)
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(3) a secondary associated with the same first diffractor as the primary (Fig.

3.3d)

The travel times of the two secondaries are added, and the travel time of the

primary is subtracted, which yields the travel time of a tertiary arrival that

should be able to be observed on the trace. The events that were used in the

construction process also define the scattering path of the tertiary arrival: this

is the concatenation of the scattering paths of the two secondaries (minus one

instance of the common scatterer, Fig. 3.3e and f). We can go through this

example using the vector scattering paths of three events travelling between a

source at x and a receiver at x′ (Fig. 3.3):

(1) a primary scattered at diffractor xB (scattering path xxB + xBx′),

(2) a secondary scattered at diffractors xA and xB (scattering path xxA +

xAxB + xBx′),

(3) and a secondary scattered at diffractors xB and xC (scattering path xxB +

xBxC + xCx′)

Adding and subtracting the travel times as described informally then relates to

adding and subtracting vector scattering path components:

(xxA + xAxB + xBx′) + (xxB + xBxC + xCx′)− (xxB + xBx′)

= xxA + xAxB + xBxC + xCx′
(3.7)

Hence, the predicted tertiary has encountered the three diffractors in the sequen-

tial order xA, xB, and xC .

Subsequently, the travel times of higher-order multiples can be computed by

replacing one of the secondaries with a tertiary in the construction process. This

process allows the travel times of multiply scattered waves of any order to be

predicted, each being verified by direct observation of that multiple’s move-out

in the data. We will show that the time of arrivals can be predicted correctly

even if the arrivals themselves are buried in a complex noise field.

Fig. 3.7 displays the mutual trace of the 3-diffractors example obtained from

the model in Fig. 3.1 with white noise added with a noise-to-signal ratio of

0.5 (where a ratio of 1 means the root-mean square noise is equivalent to the

typical amplitude of a secondary arrival): here, all primary and secondary arrivals

have been identified correctly by the algorithm (see Tables 3.1 and 3.2) and the
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Primary test ttrue |test − ttrue|
1 1.29 s 1.28 s 0.01 s
2 2.05 s 2.05 s 0.00 s
3 2.99 s 2.98 s 0.01 s

Table 3.1: Comparison of estimated (test) and true travel times (ttrue) of primary
arrivals on the mutual trace in the 3-diffractors example (Fig. 3.7). All estimated
travel times lie within the permitted deviation of half the length of a wavelet (0.05 s).

Secondary test ttrue |test − ttrue|
2+1 2.04 s 2.05 s 0.01 s
1+2 2.05 s 2.05 s 0.00 s
1+3 3.28 s 3.27 s 0.00 s
3+1 3.31 s 3.32 s 0.01 s
2+3 3.60 s 3.61 s 0.01 s
3+2 3.66 s 3.66 s 0.00 s

Table 3.2: Comparison of estimated (test) and true travel times (ttrue) of secondary
arrivals on the mutual trace in the 3-diffractors example (Fig. 3.7). All estimated
travel times lie within the permitted deviation of half the length of a wavelet (0.05 s).

resulting prediction for third and fourth order multiples are also marked in the

figure. The computing time required to analyse one such trace in this example

is of the order of one minute on a standard desktop computer, though finding a

suitable mutual trace in the data cube requires additional time (up to one minute

for each trace that is tested). For increasing numbers of primary move-outs (i.e.,

numbers of diffractors in the model) the computing time also increases.
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Figure 3.7: (a) Mutual trace of the common-source and common-receiver gather shown
in Fig. 3.2. The maximum amplitude has been normalized to one. Arrows mark
the arrivals of estimated primary, secondary, third order, and fourth order events. In
this example the algorithm detected all primaries and secondaries correctly (Tables
3.1 and 3.2), i.e., the deviation from the true arrival time was below half the length
of a wavelet (0.05 s); hence, all higher-order events are estimated within permitted
accuracy. Numbers indicate the scattering path of individual events (up to 3.6 s), e.g.,
3 + 1 means a secondary scattered first at diffractor 3 and then diffractor 1. (b) Zoom
on the trace in (a) between 3.85 s and 4.85 s superimposed by the noise-free trace (bold)
amplified by a gain of four to highlight small amplitude third and fourth order scattered
arrivals embedded in the noise but predicted correctly by the algorithm.
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3.4 Numerical examples

We test the automated algorithm on a range of synthetic data sets obtained from

different two-dimensional acoustic models containing multiple isotropic point

scatterers embedded in a homogeneous background medium (density

ρ = 1000 kg/m3, velocity v = 1000 m/s). A variety of Foldy’s method embodied

within a freely available wavefield modelling code (Foldy, 1945; Galetti et al.,

2013) is used to compute the diffracted wavefields including all orders of multiple

scattering. Direct wave arrivals are not modelled since they have no interac-

tions with the diffractors. In our example, source and receiver arrays consist of

101 sources and 101 receivers, respectively, have the same lateral extension and

the same horizontal spacing of 20 m (however, this is not a requirement of the

method).

Our aim is to demonstrate the performance of the algorithm in detecting primary

and secondary arrivals correctly for (i) models containing varying numbers of

diffractors, and (ii) different noise-to-signal ratios. In our algorithm the prediction

of higher-order multiples depends solely on the correct identification of primaries

and secondaries. The number of diffractors in the model (between two and five) is

pre-defined in each example; the locations of the diffractors are chosen randomly

within a box of 2000 m× 1000 m beneath the source array and the receiver array

(roughly the area shown in Fig. 3.1), such that the apexes of all move-outs are

well-defined by the recorded data. The only other constraint is that the distance

between any two diffractors is larger than twice the typical wavelength λ ≈ 33 m

so that each produces identifiable scattered wave energy.

For each set number of diffractors, we test the algorithm on 15 different models,

all containing the same number of diffractors but in different random locations.

For each model we count the number of secondaries detected by the algorithm,

and determine how many of them are predicted correctly (at the correct travel

time on the mutual trace) and how many are incorrect. For comparison we use

the true travel times of primary and secondary waves computed directly from the

model. An event is classified as incorrect if the estimated travel time deviates

by more than half the length of a wavelet from the true travel time. To test the

influence of the choice of the mutual trace, we examine three different such traces

for each model.

Next, we contaminate each data set with increasing noise-to-signal ratios (between
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Figure 3.8: Percentage of (a) primaries and (b) secondaries identified correctly (i.e.,
with the correct travel time, to within an accuracy limit of half of the source wavelet
length) for different numbers of diffractors in the model and varying noise-to-signal
ratios.
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Figure 3.9: (a) Density and (b) velocity distribution in a 3-diffractors model with a het-
erogeneous background structure. Symbol key as in Fig. 3.1. Only every forth receiver
and source is plotted for clarity. Scatterers are modelled as sharp density contrasts in a
homogeneous background, whereas smooth checkerboard-like heterogeneities comprise
the non-diffracting velocity distribution.

0.1 and 5, where a ratio of 1 means that the root-mean square noise is equal to

the typical amplitude of a secondary), and for each we again count the number of

primaries and secondaries detected correctly and those detected incorrectly. This

process is repeated for different numbers of diffractors and the results tabulated.

A summary for primary and secondary events is given in Fig. 3.8, since travel

times of all subsequent multiples depend only on these results as shown above

and in Meles and Curtis (2014a).

To demonstrate that neither the isolation of primaries nor the detection of secon-

daries is restricted to media with homogeneous background velocities and hence

data with hyperbolic move-outs, we include an illustrative example for data

that exhibit clearly non-hyperbolic move-outs. This was created using a finite-

difference modelling code with absorbing boundaries and a Ricker wavelet with

central frequency of 30 Hz. Three randomly placed diffractors are represented as

locations of high density contrast (3000 kg/m3 compared to 1000 kg/m3 in the

background) and the velocity varies according to a smooth checkerboard pattern

between 1500 m/s and 2000 m/s (Fig. 3.9). The acquisition geometry is identi-

cal to that in previous examples and no noise is added to the data. Fig. 3.10

shows a typical common-source gather from this experiment and the identified

primary move-outs. Primary and secondary travel times as determined by our

algorithm (Fig. 3.11) are compared to the true travel times calculated from the

finite-difference model in Tables 3.3 and 3.4.
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Figure 3.10: (a) Common-source gather obtained from the model in Fig. 3.9 with
the common source located at [600 m, 0 m]. The vertical bold line marks the mutual
trace. (b), (c) and (d): Cross-gathers showing primary move-outs extracted from
the common-source gather in (a). Estimated travel-time curves are superimposed as
dashed lines.
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3.5 Discussion

The identification of primaries by cross-correlation of two gathers is successfully

carried out in over 90% of the cases even for several diffractors and relatively

high noise-to-signal ratios (Fig. 3.8a). One point of weakness in the algorithm

is that a suitable detection threshold must be found that discriminates cross-

correlations of primaries from those of multiply diffracted waves, based on the

amplitude of the cross-correlation coefficient (e.g., Φ in Fig. 3.4c). If diffractors

are distributed widely across the medium, the amplitudes of primary diffractions

can vary significantly (the order of a factor of ten in our study). The threshold

needs to be set sufficiently low to enable detection of the weaker primaries. On

the other hand, if diffractors are located close together, multiply diffracted waves

can have relatively large amplitudes, and the threshold needs to be high enough

so as not to mistake them for primaries. However, if the move-out of a multiply

diffracted event is erroneously identified as a primary, it must in fact be identical

to one of the primary move-outs but with a larger absolute arrival time. Compar-

ing the move-outs thus allows one to reject those related to multiply diffracted

waves that are simply later repetitions of other detected earlier-arriving move-

outs. This can therefore be used as a criterion to set the detection threshold

automatically: it should be chosen low enough that setting it to lower values

yields no new and distinct move-outs, and large enough that no multiples are

mistaken for primaries.

To our knowledge, the only other techniques that identify and isolate individual

diffraction move-outs in a multiply scattering medium are methods based on

time-reversal such as those proposed by Prada and Fink (1994) and Montaldo

et al. (2004). These methods, however, require a transducer array (collocated

sources and receivers) that records and, in the interative process described by

Montaldo et al. (2004), also re-injects the scattered wavefield. In our method,

while to predict the full scattering path both a source and a receiver array is

needed (which do not have to be collocated), primary move-outs can in principle

be identified and isolated using only a receiver array that records the response

from two separate sources. More sources can be used to improve the identified

travel-time curves, but a densely sampled source array is not required.

The crucial step in the algorithm is the identification of secondaries. This step

becomes more challenging the more diffractors are involved. The number of

events that have been scattered m times in a medium containing n diffractors
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Primary test ttrue |test − ttrue|
1 0.82 s 0.82 s 0.00 s
2 1.16 s 1.16 s 0.00 s
3 1.63 s 1.62 s 0.01 s

Table 3.3: Comparison of estimated (test) and true travel times (ttrue) of primary ar-
rivals on the mutual trace in the 3-diffractors example with a heterogeneous background
velocity structure (Fig. 3.11). All estimated travel times lie within the permitted de-
viation of half the length of a wavelet (0.072 s).

Secondary test ttrue |test − ttrue|
2+1 1.18 s 1.22 s 0.03 s
1+2 1.20 s 1.24 s 0.04 s
3+1 1.75 s 1.74 s 0.02 s
3+2 1.75 s 1.79 s 0.04 s
1+3 1.78 s 1.82 s 0.04 s
2+3 1.79 s 1.85 s 0.05 s

Table 3.4: Comparison of estimated (test) and true travel times (ttrue) of secondary ar-
rivals on the mutual trace in the 3-diffractors example with a heterogeneous background
velocity structure (Fig. 3.11). All estimated travel times lie within the permitted de-
viation of half the length of a wavelet (0.072 s).

is n · (n − 1)(m−1), hence, we expect n primaries (since m = 1) and n · (n − 1)

secondaries (m = 2). This means that for n = 3, as in the examples shown earlier,

the number of secondaries is only 6, but for n = 5 the number of secondaries is

already 20.

As an aside, note that in an elastic medium, where both compressional (P) waves

and shear (S) waves propagate, waves are converted every time they scatter. In

theory, the assumption of a unique fingerprint for each diffractor still holds, the

difference being that the elastic fingerprint consists of two travel-time curves in

each data gather, one for the P-wave primary and one for the S-wave primary.

Thus, assuming that the source generates only P-waves, the number of primaries

doubles while the number of secondaries becomes four times as large compared

to the acoustic case. We have not tested the elastic case but assume that perfor-

mance would deteriorate.

Fig. 3.8b shows that when the number of diffractors increases, the detected arrival

times of secondaries are indeed increasingly error-prone. The sources of this

error are discussed as follows. A prerequisite for the identification of secondary

move-outs is the correct estimation of primary travel-time curves along which the
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Figure 3.11: Mutual trace of the common-source and common-receiver gather obtained
from the 3-diffractors example with heterogeneous background velocity structure (Figs.
3.9, bold vertical line in 3.10a). The maximum amplitude has been normalized to one.
Arrows and numbers mark the arrivals of estimated primaries (black text) and secon-
daries (grey text). In this example the algorithm detected all primaries and secondaries
correctly (Tables 3.3 and 3.4), i.e., the deviation from the true arrival time was below
half the length of a wavelet (0.072s).

semblance analysis is performed. If the extracted curve deviates from the true

travel-time curve, computed semblance values are lower and may fall below the

threshold for secondary detection. The results for primaries (Fig. 3.8a) suggest

that almost all primaries are identified correctly on the mutual trace. Note,

however, that the estimated travel time was compared to the true travel time

on the mutual trace only, which does not mean that the travel times are correct

everywhere along the estimated curve. Errors in primary travel-time curves can

be produced by an unfortunate combination of gathers, in which the travel-time

shift of a move-out is not unique, i.e., two or more move-outs experience the same

travel-time shift due to the spatial shift of the common source or the common

receiver. This is more likely to happen the more primaries there are in the data,

hence, the more diffractors there are in the medium.

The accuracy with which travel times of tertiaries and higher-order scattered

waves are predicted depends on the errors in the estimated primary and secondary

travel times. Since these errors propagate through the algorithm, travel-time

prediction gets less accurate with increasing scattering order: let Ft(B) be the

absolute error (uncertainty) of the travel time of primary B, Ft(AB) the absolute

error of the travel time of secondary AB, and Ft(BC) the absolute error of the

travel time of secondary BC, then the absolute error of the predicted tertiary

ABC is given by Ft(ABC) = Ft(AB) + Ft(B) + Ft(BC). Equivalently, the errors of

tertiaries contribute to the errors of fourth order scattered events and so one. In

this study the prediction was limited to fourth order scattering where most events
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were still recognizable as individual, distinct arrivals. Just as in the algorithm of

Meles and Curtis (2014a), this means that in principle the propagation of error

could be corrected at each iteration if a clearly identifiable arrival on the trace

can be associated with the predicted higher-order scattering event: the predicted

arrival time may simply be replaced by the observed arrival time. This assumes

that the initial errors in primaries and secondaries are sufficiently small that the

correct higher-order event is identified.

As we move to higher and higher-order scattering, more events become superim-

posed or merged into a continuous coda, and the predicted travel times can no

longer be related to individual arrivals. Also, for most applications (e.g., diffrac-

tion imaging) considering low-order scattering will be sufficient, especially as our

method demonstrates explicitly that theoretically all kinematic information is

contained in primaries and secondaries.

In models with three or more diffractors the superposition of primaries and sec-

ondaries on the mutual trace can lead to ambiguity and hence misinterpreta-

tion. When, for example, primary A coincides with secondary B + C, two dif-

ferent move-outs intersect in each gather: move-outs A and B in the common-

receiver gather (fingerprints of the first diffractors), and move-outs A and C in

the common-source gather (fingerprints of the last diffractors). After the algo-

rithm has detected all move-outs, it then identifies four possible combinations of

first and last fingerprints: A+A, which corresponds to primary A; B+C, which

corresponds to the true secondary; and two false events, namely the secondaries

A + C and B + A. This ambiguity is more likely to occur the more diffractors

there are in the model, and hence the more fingerprints overlap in the data gath-

ers. Note that the superposition of primary arrivals, which is another potential

source of misinterpretation, is avoided automatically by the algorithm through

the appropriate selection of the gathers to be analysed.

Fig. 3.8b also shows that, as we would expect, the secondary detection in general

deteriorates when the noise-to-signal ratio is increased. A considerable drop is

observed for noise-to-signal ratios of 3 and higher, which means that the aver-

age noise amplitude is at least three times as large as the typical amplitude of a

secondary arrival. We interpret this as the point where the coherency of the mul-

tiply scattered arrivals is completely extinguished by the incoherent noise field.

Before this point, larger noise levels may affect the accuracy of the extracted pri-

mary travel-time curves, which results in minor errors in the semblance analysis.

Also, the threshold used to distinguish multiply scattered waves from background
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noise (defined as the mean of the semblance vector) may not be suitable for all

noise-to-signal ratios.

Fig. 3.8 implies that in some cases the algorithm returns better results when the

noise level is higher. This unexpected pattern of performance (improvement with

noisier data) can be explained by a problem that mainly affects low noise data,

where move-outs of higher-order multiples may also be observed in the data with

similar amplitudes to secondaries. Superposition of these arrivals with primary

or secondary arrivals on the mutual trace causes similar ambiguities as described

above. For noisier data these higher-order multiples are not detected due to their

relatively small amplitudes compared to the noise level and the source of error is

avoided, which results in more accurate detection of secondaries.

Inherent ambiguities due to the simultaneous arrival of different events cannot be

solved on the basis of a single trace. However, we have the option to consult new

(perhaps neighboring) mutual traces in the data cube, analyse the correspond-

ing common-receiver and common-source gather, and compare the results. In

this case source-receiver interferometry (SRI) operations can be used to redatum

the estimated arrival times to the old source and receiver positions (Curtis and

Halliday, 2010; Halliday and Curtis, 2010; Curtis et al., 2012) and thus to com-

pare arrivals on two different traces directly. If the results are inconsistent, more

traces must be analysed in order to decide between them on a statistical basis.

Experimental results suggest that the choice of the trace has a considerable im-

pact on results, which can in fact be more significant than the effect of the noise

level.

The problems described above occur especially for larger numbers of diffractors

since with increasing complexity of the wavefield the identification of secondaries

becomes more difficult. Nevertheless, for a small number of strong diffractors

we have demonstrated that a development of the method by Meles and Curtis

(2014a) can be automated, and have successfully applied it to synthetic acoustic

noisy data. Future research should test its applicability to real data sets, for

example from an acoustic laboratory experiment or field data. The method could

eventually find application in improved diffractor localization by using multiples,

or to provide new information about inter-diffractor paths. One important trans-

ferable learning that both Meles and Curtis (2014a) and this work demonstrate

is that in theory all travel time information in the multiply diffracted wavefield

is in fact included in only the primary and secondary arrivals. This implies, for

example, that since the travel times of higher order scattered waves are explicitly
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related to order one and two waves, observations of higher order travel times

might be used to improve estimates of lower order travel times.

Moreover, the identification and isolation of primary events by computing cross

gathers and evaluating the energy distribution in these gathers could be a useful

method on its own right. Since it is entirely non-parametric (and can therefore

identify entirely non-hyperbolic move-outs) it can also be applied to more gener-

ally heterogeneous velocity structures, as demonstrated in Fig. 3.10. This may be

of interest for a variety of data processing operations, for example in travel-time

tomography or event-based filtering.

Finally, while all of our tests have been in 2D models, there is an obvious extension

of the method to 3D using planes rather than lines of receivers by simply allowing

parameter n in the above equations to index over the plane rather than only a line.

In fact, this may improve rather than diminish performance for any particular

number of diffractors, because there would usually then be far more data to

discriminate between different move-outs, and because planes of receivers allow

move-outs to be discriminated in two spatial directions rather than only one.

Thus the method might be usefully applied in applications where one can only

access one side of a 3D medium.
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Chapter 4

Automatic identification of diffracted

waves in acoustic laboratory data

Chapter 3 introduced an automatic algorithm that isolates primary move-outs

from a multiply diffracted wavefield and predicts travel times of higher-order mul-

tiply diffracted waves. It was demonstrated that this algorithm is applicable to a

range of different synthetic data sets including different numbers of point diffrac-

tors, different noise-to-signal ratios and different (heterogeneous) background me-

dia. In this chapter, I test the algorithm on real data sets obtained from an

acoustic laboratory experiment, which I conducted at Joseph Fourier University

in Grenoble, France, in cooperation with Philippe Roux. I describe the numeri-

cal simulations performed prior to designing the laboratory experiment, provide

details on the experimental setup and the data acquisition, comment on artefacts

in the data and interpret the results provided by the automatic algorithm.

4.1 Acoustic finite-difference modeling tests

Before designing the final experiment in the laboratory, we run numerical simu-

lations of different experimental configurations using a two-dimensional acoustic

finite-difference (FD) modeling code (provided by Matteo Ravasi, PhD student,

University of Edinburgh). In the numerical model, we vary the size and the

properties (velocity and density) of the scatterers in order to simulate different

materials, and evaluate the diffraction properties for the different cases. This

allows us to define the type of scatterers suitable for the real experiment, which

should be more or less isotropic and should not produce internal scattering or

ringing that interferes with or superimposes multiply scattered waves in the data.

Internal ringing refers to the reverberation of waves within the scatterer. This

generates a ringing coda after the first arriving scattered wave. Anisotropy in

the context of scattering means that the scattering amplitude depends on the
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Figure 4.1: Example geometry for the velocity model (left) and the density model
(right) used in an acoustic finite-difference modeling code with a scatterer of diameter
d = 6 mm, velocity vscattS = 3100 m/s and density ρscatt = 2700 kg/m3 (values of vscattS

and ρscatt correspond to aluminium). We chose to use the S-wave velocity of aluminium
to better capture the effects of converted waves in the acoustic model. Velocity and
density of the background correspond to water (v0

P = 1500 m/s and ρ0 = 1000 kg/m3,
respectively).

Figure 4.2: Results from the single scattering modeling experiment testing scatterers
with different diameters and with different velocities and densities corresponding to
aluminium (valuS = 3100 m/s and ρalu = 2700 m/s) and plexiglass (vplexiS = 1100 m/s
and ρplexi = 1150 kg/m3).
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Material ρ vP vS
Aluminium 2700 kg/m3 6300 m/s 3100 m/s
Plexiglass 1150 kg/m3 2700 m/s 1100 m/s

Teflon 2150 kg/m3 1400 m/s -
Neoprene 1300 kg/m3 1600 m/s -

Glass 3600 kg/m3 5300 m/s 3000 m/s

Table 4.1: Velocities vP and vS and densities ρ of materials tested in numerical scat-
tering experiments. Where applicable, we use the S-wave velocities to better capture
the effects of converted waves in the acoustic model.

direction of incoming and outgoing energy at the scatterer. This property has

a negative influence when estimating primaries by cross-correlation and will be

discussed in more detail later in this section and in section 4.5.

The numerical model is scaled in the order of the geometry envisaged for the

real experiment with a modeling space of 0.1 m × 0.1 m (Fig. 4.1). The back-

ground medium has velocity vwaterS = 1500 m/s and density ρwater = 1000 kg/m3,

as corresponding to water. We model the scatterers as discretized circles from

elements of size 0.25 mm× 0.25 mm and test different combinations of velocities

and densities corresponding to different materials listed in Table 4.1. Note that,

where applicable, we use S-wave velocities of scatterers to better capture the

effects of converted waves (P-S and S-P) in the acoustic model. The central fre-

quency of the excited wavefield is fc = 500 kHz, which gives a typical wavelength

of λ = 3 mm in water. We test scatterers with diameter λ < 6 mm, λ ≈ 3 mm

and λ > 1 mm.

We start with an experiment that contains a single scatterer and compare the

diffraction curves produced by different parameter combinations. Some examples

are shown in Fig. 4.2. Comparing the results from the 6 mm-scatterer for alu-

minium and plexiglass (left column in Fig. 4.2), it becomes clear that different

materials generate different anisotropy patterns. For the case of plexiglass, one

can clearly distinguish the reflection from the top and the bottom of the scat-

terer, while for aluminium these two events almost superimpose. Further, the

amplitude of the top reflection appears much stronger for the aluminium rod.

In both cases one can see a low amplitude ringing, which originates from waves

being reflected multiple times between the bottom and the top of the scatterer.

These features are weaker but still present when using a 3 mm-scatterer (central

column). However, when reducing the diameter of the scatterer to 1 mm (right

column), which is smaller than the typical wavelength of the signal, both cases
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produce an isotropic diffraction curve and the internal ringing is eliminated. In

fact, for a 1 mm-scatterer all materials tested (Table 4.1) produce an isotropic

diffraction curve and no internal ringing. Fig. 4.2 shows that the amplitudes of

the scattered wave differ for different materials. Note, however, that these ampli-

tudes are likely to be incorrect since we did not consider the P-wave velocities of

aluminium and plexiglass in the modeling. Nevertheless the results suggest that

materials with strong velocity and density contrasts to the background medium

(such as aluminium or glass) produce stronger amplitudes, which is crucial when

multiply scattered waves are supposed to be generated.

Next, we model three circular scatterers with a diameter of 1 mm and the proper-

ties of aluminium, generate a synthetic data cube and apply the algorithm intro-

duced in chapter 3 to estimate primary diffraction curves and identify secondary

scattered waves in the data. Fig. 4.4 shows a common-source gather (CSG) and

a common-receiver gather (CRG) from the data cube. Fig. 4.5 shows the esti-

mated primary move-outs and Fig. 4.6 shows the mutual trace that is common

to both gathers in Fig. 4.4 with true and estimated travel times of primaries and

secondaries indicated by arrows. Both Fig. 4.5 and Fig. 4.4 confirm that primary

travel times and diffraction curves are estimated correctly and that most secon-

daries are identified. Table 4.2 compares the estimated secondary travel times to

the true travel times on the mutual trace, which have been computed from the

(known) scatterer locations and the background velocity.

We repeat the numerical experiment using larger scatterers (diameter d = 6 mm)

to examine the influence of anisotropy and internal ringing on the performance of

the algorithm (Figs. 4.7 and 4.8). Using the same CSG and CRG and the same

parameters in the algorithm as before (namely the number of cross-correlations,

nc, and the threshold for primary detection, see chapter 3), only one out of three

primaries is detected in the CSG and multiple spurious primaries are detected in

the CRG. As a result, secondaries cannot be identified correctly and higher-order

multiples cannot be predicted. We attribute these problems to the anisotropy

of the diffraction curves and the presence of internal ringing that generates ad-

ditional arrivals interfering with primary and secondary scattered waves. The

method used to estimate primary move-outs (see section 3.3.1) compares these

move-outs in different CSGs (or CRGs) using cross-correlation. It is based on

the assumption that changing the position of the common source (or the com-

mon receiver) only affects the absolute travel times of primaries, so that identi-

cal diffraction curves can be found at different travel times in different gathers.
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Figure 4.3: Velocity model (left) and density model (right) used in the 3-scatterers
case with scatterers of diameter d = 1 mm, velocity vscattS = 3100 m/s and density
ρscatt = 2700 kg/m3 (values of vscattS and ρscatt correspond to aluminium). Velocity and
density of the background correspond to water (v0

P = 1500 m/s and ρ0 = 1000 kg/m3,
respectively).

Figure 4.4: (a) Synthetic common-source gather (CSG) and (b) common-receiver
gather (CRG) generated from the 3-scatterers model shown in Fig. 4.3.

79



Figure 4.5: Left, central and right plots show estimated primaries (a) from the CSG in
Fig. 4.3a and (b) from the CRG in Fig. 4.3b.
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Figure 4.6: Estimated primaries and secondaries (black and grey arrows, respectively)
on the mutual trace compared to the true arrivals (white arrows). All primaries and
four out of six secondaries have been predicted correctly (see true and estimated travel
times in Table 4.2).

Secondary test ttrue |test − ttrue|
3+1 81.7µs 81.7µs 0µs
1+3 82.2µs 82.6µs 0.4µs
1+2 89.2µs 89.6µs 0.4µs
2+1 94.5µs 96.6µs 2.1µs
3+2 103.5µs 199.7µs 16.2µs
2+3 109.5µs 109.6µs 0.1µs

Table 4.2: Comparison of estimated (test) and true travel times (ttrue) of secondary
arrivals on the mutual trace (Fig. 4.6). Most estimated travel times lie within the
permitted deviation of half a wavelet (2µs), only secondaries 2 + 1 and 3 + 2 have not
been identified correctly.
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Figure 4.7: Velocity model (left) and a density model (right) used in the 3-scatterers
case with scatterers of diameter d = 6 mm, velocity vscattS = 3100 m/s and density
ρscatt = 2700 kg/m3 (values of vscattS and ρscatt correspond to aluminium). Velocity and
density of the background correspond to water (v0

P = 1500 m/s and ρ0 = 1000 kg/m3,
respectively).

Figure 4.8: (a) Synthetic common-source gather (CSG) and (b) common-receiver
gather (CRG) generated from the 3-scatterers model shown in Fig. 4.7.
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Cross-correlating two different gathers provides the time shifts between identical

diffraction curves that can be used to isolate individual move-outs from the to-

tal wavefield. If a scatterer is anisotropic, however, changing the location of the

source (the receiver) not only affects the absolute travel times but also changes

the wavelets of the primary arrivals on each trace (because the scattering ampli-

tude depends on the angles of incoming and outgoing energy at the scatterer).

The cross-correlation of two different CSGs (CRGs) will thus have lower ampli-

tudes compared to the isotropic case and the time shifts between two primary

move-outs are more difficult to detect. What is more, spurious correlations of ad-

ditional arrivals introduced by internal ringing generate noise in the correlation

result and make it even more difficult to detect the correlation of actual pri-

maries. Also the detection of secondaries using semblance analysis deteriorates

for anisotropic diffraction curves, since the wavelets along the move-out in this

case do not necessarily sum constructively.

Based on the numerical simulations, we choose rods with a diameter of d = 1 mm

as point scatterers in our real experiment. We used rods made from stainless steel

as they where readily available at the correct diameter. Unfortunately, the acous-

tic code we use to simulate scattered wavefields becomes unstable for high density

contrasts (|ρsteel − ρwater| ≈ 6800 kg/m3), so we could not simulate the diffrac-

tion behaviour for the case of steel rods. However, the numerical experiments

performed for different material parameters suggest that if the scatterers are

small enough (smaller than the wavelength) any material would produce a mostly

isotropic scattered wavefield without internal ringing. Further, the high density

and velocities of steel (vP ≈ 5800 m/s, vS ≈ 3100 m/s, and ρsteel = 7800 kg/m3)

should produce a large enough scattering amplitude to generate multiply scat-

tered waves.

4.2 Geometry and acquisition of the laboratory experiment

A multiply scattered wavefield is excited and recorded by a transducer array

located at one side of a homogeneous background medium containing multiple

point scatterers. The background medium is a gel made from polyvinyl alcohol

(PVA) with P-wave velocity vP ≈ 1500 m/s and S-wave velcocity vS ≈ 4 m/s.

Because of the low S-wave velocity, shear waves are not relevant within the time

scale of the experiment (in the range of µs) and thus the medium can be considered

to be acoustic. Steel rods of diameter d = 1 mm, length l ≈ 11 cm and velocities
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Figure 4.9: Plan view of acquisition set up for an acoustic multiple scattering experiment
in a PVA gel. Five vertically oriented steel rods with diameter d = 1 mm are used as
point scatterers. Scatterer number 1 is used in the single-scattering case, all other
scatterers are added one after the other according to the numbers given in the picture.
The transducer array is attached to the front side of the gel with channel number 1 on
the right-hand side and channel number 64 on the left-hand side.

vP ≈ 5800 m/s and vS ≈ 3100 m/s that can be stuck into the gel are used as

point scatterers (Fig. 4.9).

The transducer array consists of 64 channels evenly spaced at intervals of 0.75 mm.

Each channel can both emit and receive a signal, hence we can think of one

channel as a collocated source-receiver pair and the recorded data set corresponds

to a data cube of intersecting CSGs and CRGs. A Gaussian pulse, designed

in the controlling computer, is sent into the medium via a digital-to-analogue

converter. The wavelet has a central frequency of f0 = 0.5 MHz, a peak amplitude

of A = 50 V and a total length of T = 8.1µs. Given the P-wave velocity of

the gel and the central frequency of the signal, the typical wavelength of the

signal is λ = vP/f0 = 3 mm, hence, three times as large as the diameter of the

scatterers. Each source is fired separately 100 times with a temporal delay of

approximately 2 ms between two subsequent shots. The corresponding wavefields

are recorded at the receiver array and an average is computed for each source.

Recording starts 20µs after each shot in order to minimize the effect of surface

wave energy at shorter travel times, and ends after 85µs just before the waves

reflected off the boundaries of the gel arrive. The sampling rate at the receivers

is fs = 10 MHz.

The gel is installed in a plexiglass frame that is open on the top and the front sides,

and the transducer is firmly attached to the front side of the gel. If desired, the

whole system can be placed in a water tank, the advantages of which are discussed

below. When everything is set up, it is recommended to wait for about 1 h for the
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Measured Computed Difference
x y x y x y

28 mm 24 mm 22.5 mm 22.6 mm 5.5 mm 1.4 mm
35 mm 35 mm 30.7 mm 37.2 mm 4.3 mm 2.3 mm
17 mm 45 mm 15.0 mm 45.8 mm 2.0 mm 0.8 mm
44 mm 46 mm 39.8 mm 47.4 mm 4.2 mm 1.4 mm
38 mm 19 mm 35.3 mm 19.1 mm 2.7 mm 0.1 mm

Table 4.3: Comparison of measured and computed scatterer locations. x-values are with
respect to channel number 1 on the right-hand side of the transducer (measured in the
leftward direction) and y-values are with respect to the transducer-gel boundary (Fig.
4.9). Deviations are likely to occur due to scatterers not being exactly vertical in the
gel, hence their true position at the transducer level differs from the location measured
at the surface. Computed values are infered from the apices of primary move-outs using
a background velocity of vP = 1475 m/s.

system to stabilize before adding the first scatterer to the system. During this

time the gel adjusts to the frame, deforming due to the pressure caused by the

attached transducers. To evaluate the end of the stabilization process, monitoring

acquisitions are carried out at regular intervals. If the difference between the

wavefields of two subsequent acquisitions becomes negligible (below 1 %) the gel

is stable enough for the experiment to start. After adding new scatterers to the

gel we allow the system to stabilize for approximately 10 min before making the

next measurement. This is to ensure that the wavefield does not change between

two acquisitions due to changes of the background medium, and that all changes

observed are solely related to the additional scatterers.

Scatterer positions are measured manually with a scale at the surface of the gel

(see Table 4.3). x-values are with respect to the location of channel 1 of the

transducer array and y-values are with respect to the interface between gel and

transducer. The locations are required in order to compute theoretical travel

times of scattered waves and to compare them to the travel times estimated by

the algorithm. However, we notice significant deviations between the theoretical

travel times and real arrivals in the data, which are likely to be due to inaccurate

measurements of scatterer locations: note that while scatterer positions where

determined at the surface of the gel, the transducer was located about 2 cm below

the surface. If the scattering rods have not been oriented exactly vertical, the

position of the scatterers at the level of the transducer might deviate from the

surface position. We refine the locations using the spatial and temporal apex of

the diffraction curves and a background velocity of vP = 1475 m/s, which provides

the best fit for most primary travel-time curves. Table 4.3 lists the measured and
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computed scatterer locations and the differences between the two.

4.3 Analysis of raw data and interpretation of artefacts

For a first quality check of the data, we consider the singly-scattered wavefield

obtained after sticking the first rod into the gel. In this case we expect to see

only the direct wave (surface wave) and the primary scattered wave associated

with scatterer 1. We find that the data are dominated by high amplitude surface

waves propagating between the transducer array and the surface of the gel with

a velocity of approximately 1000 m/s. Due to their high energy and low velocity

surface waves are likely to superimpose low amplitude scattered waves. In order to

avoid this effect, a reference field is recorded using only the background medium

without any scatterers. The reference wavefield contains only surface waves;

subtracting these recordings from any scattered wavefield removes only the surface

wave component. For this procedure to work, it is important that the gel has

stabilized before the reference field is recorded, otherwise the surface waves will

not subtract perfectly from the scattered wavefields and surface wave energy will

remain in the data. Note that the reference field needs to be recorded before

the first rod is put into the gel, as each rod leaves a hole in the medium when

removed, which also acts as a scatterer. From hereon all data will be shown post

surface wave removed.

At the outermost channels we observe spurious linear arrivals that seem to be

travelling backwards along the array (Fig. 4.10, solid arrow). Because these waves

travel with the velocity of surface waves but arrive only after the scattered wave,

we assume that these waves are secondary surface waves excited by scattered

waves that have propgated back to the surface. In particular, these waves seem

to start at the end points of the transducer array, hence we assume that the end

points of the array act as scatterers that transform the backscattered body waves

into surface waves.

Another spurious event arriving just after the scattered wave has the same move-

out as the scattered wave itself (Figs. 4.10, dashed arrow, and 4.11). Again, this

artefact can be attributed to the end points of the transducer array acting as

spurious scatterers; in fact, here we observe the reverse process to that described

above: at the end points of the transducer, surface waves propagating along the

array are scattered into the medium where they scatter again at the steel rods
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Figure 4.10: Linear converted body/surface wave (solid arrow) and scattered body wave
(dashed arrow) spurious events in the single-scattering data. Encircled are remnants
of primary surface wave energy that did not cancel out completely after subtraction of
the reference field.

before being recorded at the receivers. The raypath of such an event is thus

given by the path from the source to the end of the transducer, from there to

the scatterer and from the scatterer back to the receiver array. Because this

path is slightly longer compared to that of the primary scattered waves due to

the additional surface wave part, the spurious wave reaches the receivers slightly

later than the actual scattered wave, hence a constant time shift is observed

between the two arrivals. This explanation is confirmed by the fact that the

travel time difference of the spurious event in two neighbouring CSGs is equal

to the travel time of a surface wave propagating between two channels (≈ 0.8µs,

see Fig. 4.11). Also, the time shift between spurious and actual arrival decreases

when the source moves towards one of the end points of the array, since the part

of the raypath travelled as surface wave becomes smaller.

In order to avoid spurious scattering at the transducer’s end points, we lowered the

central frequency of the signal and used different wavelets, testing both broader

and narrower bandwidths. Lower frequency waves have larger wavelengths and

are thus less sensitive to small scale scatterers. However, if the frequency is too

low, the wavefield is not sensitive for the real scatterers in the medium anymore.

By changing the bandwidth we might be able to filter out the frequencies par-

ticularly sensitive to end point scattering. Unfortunately, we did not succeed in

finding a suitable trade-off that allows us to reduce the spurious scattering while
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Figure 4.11: Spurious scattered wave observed at three CSGs (source numbers 61, 62
and 63). The difference in travel time of the spurious arrival between two neighbour-
ing gathers (≈ 0.8µs) corresponds to the travel time of a surface wave between two
neighbouring channels.

preserving the “real” scattering. By moving the whole experimental setup into a

water tank, we tried to reduce the contrast between the gel, the transducer and

the surrounding medium (air) in order to reduce the amplitude of the scattered

surface waves. Finally, we used different types of transducer arrays with differ-

ent coupling properties to see whether any type would create lower amplitude

artefacts. However, none of these approaches noticeably reduced the amount of

spurious energy.

Linear spurious events are unlikely to affect the performance of the automated

algorithm; hence, they can remain in the data. Scattered spurious events, on the

other hand, are more likely to distort the results since their arrival times, move-

outs and amplitudes resemble secondary arrivals. Note, however, that unlike a

true secondary, they have the same move-out in both a common-source and a

common-receiver gather, since they originate from only one scatterer. In this

sense they are more similar to primaries, however their amplitudes are much

lower. Nevertheless, we will show below that despite these problems we observe

relatively few errors directly related to spurious scattered events, which might be

due to these unique properties.
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4.4 Automatic identification of primaries and secondaries

Before running the automatic algorithm, the following parameters need to be

specified: the number of cross-correlations that provide the final cross-gather

(nc) and the thresholds that control the detection of primaries and multiples. We

expect the values of these parameters to differ from those used in numerical tests,

since they depend on the amount of noise in the data as well as on the distribution

and the scattering amplitude of the scatterers. For two and three scatterers we

obtain best results for ng = 12, a primary threshold of 0.2 ∗ max(Φ1) ∗ 0.9n

(where max(Φ1) is the maximum of the first cross-correlation and n the number

of primaries already detected), and a multiple threshold of half the mean of the

semblance (for details see chapter 3, section 3.3.1). For four and five scatterers we

need to amend the primary threshold to 0.1∗max(Φ1)∗0.9n, because the scatterers

are more widely distributed and as a result the difference in amplitude between

the strongest and the weakest primary is more pronounced due to geometrical

spreading.

Other than in numerical tests we use muted gathers (where detected primaries

have been subtracted) not only in the cross-correlation of two gathers, but also

when computing cross-gathers. This avoids errors caused by non-unique time

shifts of primaries between two gathers, which play a larger role in real data due

to the presence of spurious events, and is possible without dimishing the quality

of the estimated travel-time curves when few move-outs are crossing.

Figs. 4.12 to 4.19 show the results for two to five scatterers on one mutual

trace each and the corresponding CSGs and CRGs. Displayed are the estimated

primary and secondary travel times on the mutual trace compared to the “true”

arrival times computed from the measured scatterer locations (e.g. Fig. 4.12c),

and the primary move-outs estimated from both the CSG and the CRG (e.g. Fig

4.13). In each case the mutual trace was picked randomly from the data cube.

The algorithm verifies if the number of move-outs detected in the corresponding

CSG and the CRG are equal, and if this is not the case a new mutual trace is

evaluated. The examples shown represent cases in which the correct number of

move-outs has been detected in both gathers.

For up to four scatterers the estimated primary move-outs are in good agreement

with the data, and the few errors that occur can be attributed to the presence

of spurious scattered waves (e.g. primary number 2 in Fig. 4.17a). For the 3-
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Figure 4.12: Data example for the 2-scatterers case. (a) Common-source gather (CSG)
from source number 32 and (b) common-receiver gather (CRG) from receiver number
62. The solid black line marks the mutual trace that is common to both gathers.
(c) Estimated primaries and secondaries (black and grey arrows, respectively) on the
mutual trace compared to the true arrivals (white arrows).
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Figure 4.13: Left and right plots show estimated primaries (a) from the CSG in Fig.
4.12a and (b) from the CRG in Fig. 4.12b.
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Figure 4.14: Data example for the 3-scatterers case. (a) CSG from source number 29
and (b) CRG from receiver number 25. The solid black line marks the mutual trace
that is common to both gathers. (c) Estimated primaries and secondaries (black and
grey arrows, respectively) on the mutual trace compared to the true arrivals (white
arrows).
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Figure 4.15: Left, central and right plots show estimated primaries (a) from the CSG
in Fig. 4.14a and (b) from the CRG in Fig. 4.14b.
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Figure 4.16: Data example for the 4-scatterers case. (a) CSG from source number 24
and (b) CRG from receiver number 17. The solid black line marks the mutual trace
that is common to both gather. (c) Estimated primaries and secondaries (black and
grey arrows, respectivly) on the mutual trace compared to the true arrivals (white
arrows).
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Figure 4.17: Plots across show estimated primaries (a) from the CSG in Fig. 4.16a and
(b) from the CRG in Fig. 4.16b. Primary number 2 in (a) is strongly distorted by the
spurious arrival after the first primary.
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Figure 4.18: Data example for the 5-scatterers case. (a) CSG from source number 49
and (b) CRG from receiver number 48. The solid black line marks the mutual trace
that is common to both gathers. (c) Estimated primaries and secondaries (black and
grey arrows, respectively) on the mutual trace compared to the true arrivals (white
arrows). The circle indicates an erroneously estimated primary arrival.
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Figure 4.19: Plots across show estimated primaries (a) from the CSG in Fig. 4.18a
and (b) from the CRG in Fig. 4.18b. Primary number 3 is not a real primary but a
spurious event. The very last event in both gathers in Fig. 4.18 is not detected.
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Primary test ttrue |test − ttrue|
1 31.3µs 31.0µs 0.3µs
2 52.5µs 52.9µs 0.4µs
3 61.3µs 62.4µs 1.1µs

Table 4.4: Comparison of estimated (test) and true travel times (ttrue) of primary
arrivals on the mutual trace in the 3-diffractors example (Fig. 4.14c). All estimated
travel times lie within the permitted deviation of 6.1µs.

Secondary test ttrue |test − ttrue|
2+1 51.5µs 53.2µs 1.7µs
1+2 51.6µs 53.5µs 1.9µs
1+3 53.6µs 63.0µs 9.7µs
3+1 61.3µs 63.5µs 2.2µs
2+3 69.7µs 69.4µs 0.3µs
3+2 78.5µs 70.1µs 8.4µs

Table 4.5: Comparison of estimated (test) and true travel times (ttrue) of secondary
arrivals on the mutual trace in the 3-diffractors example (Fig. 4.14c). Most estimated
travel times lie within the permitted deviation of 7.1µs, only secondaries 1 + 3 and
3 + 2 are not identified correctly.

scatterers case the true and estimated primary travel times on the mutual trace

are compared in Table 4.4. We need to take into account that also the “true”

travel times are errorprone, since the locations of the scatterers could only be

determined at the surface of the gel, and a comparison with locations estimated

from the data (using the apex and curvature of the respective diffraction move-

out) suggests that the uncertainty of the locations is about 3.7 mm in the x-

direction and 1.2 mm in the y-direction on average (see Table 4.3). According

to the propagation of uncertainties, this results in a travel time uncertainty of

about 2µs for primaries. Adding this to the usual threshold for primary detection

of half a wavelet yields a permitted deviation of 6.1µs; hence, according to this

threshold, all primaries in table 4.4 are estimated correctly. For “true” travel

times of secondaries, the estimated uncertainty is 3µs on average, which gives

a permitted deviation of 7.1µs. In most cases, the algorithm identifies only few

secondaries correctly, rather it does not detect them at all. Both errors are

likely to be related to the occurance of spurious events that mask secondary

arrivals.

Table 4.5 gives an example in which the difference between the estimated and

the true secondary travel time is smaller than 7.1µs for most secondaries. Using
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only these correct secondaries (and primaries) we predict related tertiaries and

demonstrate that these are also visible in the data (Fig. 4.20). Note that due

to the propagation of travel time errors when summing and subtracting primary

and secondary travel times, predicted tertiary travel times may deviate by more

than the above thresholds from the true arrival.

In the 5-scatterers example not all primary move-outs are estimated correctly.

While in the example shown in Fig. 4.19 the estimated number of different pri-

maries is correct, one detected primary is in fact a spurious event and the very

last primary in the data (Fig. 4.18) is not identified at all. Testing different mu-

tual traces and varying parameter nc and the primary threshold in the algorithm

did not enhance the results. We assume that the cross-correlation coefficient as-

sociated with the last primary is too small to be detected, because this primary,

which has a low amplitude anyway, is partially removed when the previous, cross-

ing move-out is muted. This example underlines one of the major problems in

primary detection when the number of scatterers increases and multiple move-

outs are crossing, and encourages the search for alternative procedures to remove

individual primary energy withouht affecting other waves, as such procedures

would complement the current method. Note that the other steps of the algo-

rithm are independent of the method used for move-out estimation and energy

removal.

4.5 Discussion

Compared to the synthetic data sets analysed in chapter 3, we observe that mul-

tiples have much lower amplitudes and are more difficult to distinguish because

of spurious scattered energy in the data. It is likely that this problem is further

enhanced by the fact that the steel rods used to emulate two-dimensional scat-

terers were not placed exactly vertically and thus allowed the scattered energy to

radiate in three dimensions, which significantly reduces their amplitudes. Also,

the setup of the experiment did not allow us to record the later part of the wave-

field, which contains most of the multiply scattered energy, without interfering

with reflected waves from the boundaries of the gel. These problems could be

addressed by repeating the experiment using, for example, a larger block of gel

with boundaries further away from the scatterers, a different background medium

(e.g. water) that grants better control over the orientation of scatterers, and a

transducer array that causes less scattering at its end points.
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Figure 4.20: Mutual trace for the 3-scatterers case in Fig. 4.14. Black and grey arrows
indicate correctly estimated travel times of primaries, secondaries and tertiaries; white
arrows indicate the true travel times for comparison. For primaries and secondaries,
travel times count as “correct” when they differ by less than 6.1µs or 7.1µs, respectively,
from the true travel times (see Tables 4.4 and 4.5). Tertiaries may deviate by more
than that due to the propagation of errors when summing and subtracting primary and
secondary travel times.

We tried to attenuate spurious energy in the post-processing by deconvolving

the data with an average wavelet that comprises both the scattered wave arrival

and the spurious arrival. For the single-scatterer case one can define an average

wavelet for each CSG, since the arrival time of the spurious wave with respect

to the true scattered wave depends only on the scatterer position and the source

position, but is constant along the receiver array. Deconvolving each trace in

the CSG with the average wavelet removes the spurious arrival and sharpens the

scattered wave arrival. However, this approach does not work with multiple scat-

terers in the medium, since the travel time difference between true and spurious

arrival is different for each scatterer, hence the average wavelet computed from

the single-scatterer case does not fit for other scatterers. In that case, deconvo-

lution can produce even more spurious energy due to an unfavourable choice of

wavelet.

The method used to estimate individual primary move-outs in a multiply diffracted

wavefield relies on the invariance of primary move-outs in different common-source

or common-receiver gathers. Further, it requires the waveforms along two equiva-

lent move-outs to be similar in order to detect them. This assumption, however, is

only valid for isotropic point diffractors that scatter the incoming energy equally

in all directions. Testing different rod sizes and materials in numerical experi-
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ments we noticed that anisotropic and internal scattering negatively affects the

performance of the algorithm.

Anisotropy in the context of scattering means that the scattering amplitude A is

directionally dependent. That is, A is not a constant but a function of the angle of

incoming and outgoing energy, A(k1,k2), where k1 and k2 are the wave vectors

of the incoming and outgoing waves, respectively. This is the case when the

diameter of the rod is similar to or larger than the typical wavelength. Moreover,

not only amplitudes but also waveforms can be affected by this phenomenon. The

angle of incoming energy at the scatterer is determined by the source location

with respect to the scatterer location. This means that a diffraction move-out

associated with a particular scatterer observed in different common-source gathers

will have different amplitude and phase properties due to the difference in source

location.

Our numerical simulations show that anisotropic behaviour changes the require-

ments and the performance of the automated algorithm and particularly affects

the methods of primary and secondary detection, which look for identical wave-

forms in different gathers or at different travel times, respectively. Further,

it raises the question about the definition of a move-out curve in media with

anisotropic scatterers: by considering only kinematic information, i.e., the travel-

time curves, a lot of information about the properties of the scatterers is neglected

and the scattered wavefield is not sufficiently described. It remains the subject of

future research to show how the algorithm described here or other interferomet-

ric methods can be used to extract and interpret information about anisotropic

properties from scatterered wavefields.

The method used for tertiary and higher-order multiple prediction implies that, in

theory, all kinematic information about a multiply scattered wavefield is contained

in its primary and secondary components. Dynamic information, however, is not

preserved by our method, since the prediction of multiples is based on a term

from the SRI equation that provides pseudo-physical energy with correct travel

times but erroneous amplitude and phase information (see Eq. 2.12 in chapter

2). (Note that in this study we use a simplified version of SRI that does not

perform convolution and cross-corrletion of actual waveforms but simply sums

and subtracts travel times; Meles and Curtis (2013) show examples where also

the waveforms of multiples are reconstructed). For anisotropic scattering this

problem is complicated by the fact that amplitudes and waveforms of diffracted

waves depend on the direction of incoming and outgoing energy with respect
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to the scatterer. Whether this information is preserved in cross-correlation and

convolution processes performed in SRI could be a topic of future research.

4.6 Conclusions

In this section, we demonstrated that the automatic algorithm that estimates

primary move-outs and predicts higher order multiples, is in principle applicable

to data sets obtained from laboratory experiments in acoustic media containing

multiple point scatterers. For up to four scatterers primary move-outs were es-

timated reliably and some secondaries were identified correctly. In most cases

only few secondaries were identified incorrectly, i.e., with travel times estimated

outside of a half-wavelet limit of the true travel time. Rather the algorithm did

not find a secondary at all. The performance was negatively influenced by spu-

rious energy in the data that resembled scattered wave energy and could not be

sufficiently attenuated by changing the experimental setup or post-precessing the

data. It would be desirable to repeat the experiments with an improved setup to

reduce the amount of spurious energy in the data and to further investigate the

shortcomings of the method in real data applications.
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Chapter 5

Computationally efficient internal

multiple prediction based on

source-receiver interferometry

In previous chapters I demonstrated that the term GSGSG
∗
S of the SRI equa-

tion provides pseudo-physical scattered energy that can be used to predict arrival

times of multiply diffracted waves and their ordered scattering paths in multiply

diffracted wavefields. I now consider a scattering medium that contains reflecting

interfaces rather than individual point scatterers. Using the kinematic connec-

tion between multiply diffracted waves and multiply reflected waves I show that

the term GSGSG
∗
S can also be used to estimate internal multiples in reflection

seismic data. Internal multiples cause artefacts in seismic imaging and are there-

fore required to be removed prior to linear migration. I demonstrate that the

internal multiples equation derived from SRI is equivalent to an existing equa-

tion derived from the inverse-scattering series (ISS) and yields an explicit link

between the two concepts of SRI and the ISS. Further, I show that from the SRI

perspective an alternative representation can be inferred that is based on cross-

correlation and convolution—two operations that are computationally cheap and

routinely used and therefore well understood in interferometric methods. The

alternative representation therefore provides an efficient way to estimate and at-

tenuate internal multiples, which can present a crucial advantage particularly in

3D applications.

This chapter has been submitted as a jointly-authored publication1. I, as lead

author, have done the writing of the manuscript, performed the mathematical

derivations and provided major contributions to the writing of the programming

codes. Co-authors gave advice and support on the scope of the project, pro-

1K. Löer, G.A. Meles, and A. Curtis. Relating source-receiver interferometry to the inverse-
scattering series provides a new method to estimate internal multiples. Geophysics.
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vided background knowledge and draft computer codes, and helped editing the

manuscript.

Abstract

An explicit relationship between the representations of internal multiples by

source-receiver interferometry (SRI) and the inverse-scattering series (ISS) is pre-

sented. This provides new insight into the role of pseudo-physical energy in mul-

tiply reflected wavefield estimates and leads to an alternative, computationally

more efficient way to predict internal multiples.

5.1 Introduction

Interferometry refers to a set of methods that allow us to synthesize Green’s func-

tions between pairs of receivers (inter-receiver interferometry—

Wapenaar, 2004; van Manen et al., 2005, 2006; Wapenaar and Fokkema, 2006),

pairs of sources (inter-source interferometry—Hong and Menke, 2006; Curtis

et al., 2009), or a source and a receiver (source-receiver interferometry or SRI—

Curtis and Halliday, 2010) by means of cross-correlation, convolution or deconvo-

lution (e.g. Vasconcelos and Snieder, 2008) of wavefields. The latter of the three

methods, SRI, has been subject to increasing interest due to its close relationship

to seismic imaging methods (Halliday and Curtis, 2010) and the new perspective

it provides on non-linear imaging schemes and so-called extended images (Vascon-

celos et al., 2010; Fleury and Vasconcelos, 2012; Ravasi and Curtis, 2013; Ravasi

et al., 2014). Other applications of SRI include ground-roll removal in land-based

exploration seismology (Duguid et al., 2011), construction of underside reflections

from borehole recordings (Poliannikov, 2011), retrospectively observing seismo-

grams from old earthquakes in seismology (Curtis et al., 2012; Entwistle et al.,

2015), suppression of non-physical reflections in standard interferometry (King

and Curtis, 2012), and prediction of multiply diffracted events and identification

of scattering paths (Meles and Curtis, 2014a; Löer et al., 2015). We focus on

this last application and show that by considering multiply reflected scattering

paths a new method is obtained to predict internal multiples in reflection seismic

data.

While surface-related multiples cause major problems in marine seismic data,
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internal multiples (i.e., interbed multiples generated between subsurface stratal

interfaces) affect both marine and land data in the presence of strong reflectors,

such as the water bottom, and the top and bottom of salt or basalt layers. Though

there have been attempts to use multiply scattered waves in seismic imaging (e.g.,

Jiang et al., 2007; Malcolm et al., 2009; Fleury, 2013), most migration schemes

rely on a single-scattering assumption and therefore require both surface-related

and internal multiples to be removed from the data prior to migration.

Suppression of surface-related multiples has been addressed successfully by a

number of methods (for a review see Verschuur, 2013), whereas relatively few

methods exist that identify and attenuate internal multiples. Methods that rely

on move-out discrimination, for example in the radon domain (Hampson, 1986),

tend to fail for internal multiples as their move-out velocities are often similar

to those of primaries. Berkhout and Verschuur (1997) propose a layer-related

internal multiple elimination scheme (based on surface-related multiple elimina-

tion, SRME; Verschuur et al., 1992) that downward extrapolates shot records to a

virtual acquisition surface and eliminates all multiples generated by that surface.

This method, however, requires a velocity model to create the redatumed data.

Jakubowicz (1998) suggests a data-driven approach based on the work of Keydar

et al. (1997) that combines three primary reflections to predict a first order mul-

tiple. However, the primary reflection from the interface generating the interbed

multiple needs to be identified and isolated from the recorded data, which can

be difficult. Other schemes based on the same idea were proposed by Hung and

Wang (2012) and Behura and Forghani (2012). Recently, Meles et al. (2014) pro-

posed a scheme to estimate internal multiples based on Marchenko imaging and

interferometry that requires autofocusing of wavefields, a relatively novel tech-

nique in seismics. The method has been applied successfully to synthetic data

sets but still needs to be tested on real data. Another data-driven algorithm

that predicts all internal multiples at once was first presented in Araújo et al.

(1994) and is described in detail in Weglein et al. (1997, 2003). Travel times

of internal multiples are predicted using a sub-series of the inverse-scattering se-

ries (ISS), which is derived from the Lippmann-Schwinger equation (Lippmann

and Schwinger, 1950). This method is promising but has the downside that it is

computationally expensive.

In this paper we show explicitly for wave propagation in a 1D medium (a medium

that varies only in one dimension) and a collocated source and receiver that the

SRI equation to estimate internal multiples is in fact equivalent to the internal-
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multiple attenuation formula derived from the ISS (Weglein et al., 1997). We

provide a concise derivation of both equations and demonstrate their equivalence

by making use of a representation of Weglein’s formula provided by Ten Kroode

(2002). Finally, an alternative representation of the same equation based on cross-

correlation and convolution is presented, which provides a more efficient way to

compute travel times of internal multiples and which decreases computational

cost by many orders of magnitude.

5.2 An equation for internal multiples derived from the inverse-

scattering series

We begin by deriving the internal-multiple equation based on the ISS (Weglein

et al., 1997), starting with an introduction to (forward) scattering theory.

5.2.1 Forward scattering theory

In a scattering medium, the response to an impulsive source, the so-called Green’s

function G, can be written as the sum of an unperturbed component G0 that

propagates in a background or reference medium, and a perturbed component

GS that interacts with added scattering perturbations to the medium:

G = G0 + GS (5.1)

where the Green‘s functions G, G0 and GS are matrices in which the first two

indices represent different spatial coordinates and the last index represents dif-

ferent temporal frequencies. Their elements are G(xj,xi, ω), G0(xj,xi, ω) and

GS(xj,xi, ω), respectively, where G(xj,xi, ω) propagates from xi to xj. Wave

propagation between a source at xs and a receiver at xr in the actual and the

reference medium is described by the differential equations

LG = −δ(xr − xs)

L0G0 = −δ(xr − xs)
(5.2)

with the differential operators L = ω2

κ(x)
+∇·( 1

ρ(x)
∇) and L0 = ω2

κ0(x)
+∇·( 1

ρ0(x)
∇),

where κ and κ0 as well as ρ and ρ0 are the actual and the reference bulk modulus

and density of the medium, respectively. The perturbed component GS is called
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the scattered field and is the part that carries information about the perturbations

to the medium which can be diffractors or reflectors in general. The three Green’s

functions in Eq. 5.1 are related by the Lippmann-Schwinger equation, which in

the frequency domain is

GS = G0VG (5.3)

Here V is the perturbation operator defined as the difference between the two

differential operators, i.e., V = L − L0. When the problem is discretized, V

is a diagonal matrix in which the diagonal entries are non-zero if κ(x) 6= κ0(x)

and/or ρ(x) 6= ρ0(x). Substituting Eq. 5.1 into Eq. 5.3, and Eq. 5.3 into itself

repeatedly, the Lippmann-Schwinger equation can be expanded into an infinite

series of terms of increasing scattering order according to

D = G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ...

= D1 + D2 + D3 + ...
(5.4)

where Di is the ith term in the scattering series. In Eq. 5.4, the scattered field

GS on the left-hand side has been replaced by the data D, which (after source

signature deconvolution and subtraction of the reference field G0) we assume is

equivalent to the scattered field at the measurement surface. The first term on

the right-hand side of Eq. 5.4 accounts for first-order scattering and is also known

as the single-scattering or Born approximation (Born and Wolf, 1999) and is also

referred to as the primary wavefield. Our goal is to predict internal multiples, so

we focus on the third term that describes third-order scattering as depicted in

Fig. 5.1a for a medium with individual point scatterers. Fig. 5.1a shows a special

case of third-order scattering, which was chosen deliberately as it resembles the

geometry of a typical internal multiple in a horizontally layered reflecting medium

(Fig. 5.1b). It satisfies the so-called “lower-higher-lower (LHL) condition” that

ensures that the first scatterer (x1,z1) and the last scatterer (x3,z3) are located

below the second scatterer (x2,z2), expressed as

z1 > z2

z3 > z2

(5.5)

Under the LHL condition the third-order scattering term G0VG0VG0VG0 is

the first-order internal-multiple generator in the forward scattering series. For

a fixed source at xs and a fixed receiver at xr Ten Kroode (2002) shows that
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Figure 5.1: Example geometry for a third-order scattering event satisfying the lower-
higher-lower condition in a medium with (a) individual point scatterers and (b) hor-
izontal reflectors. The star indicates the source location and the inverted triangle
indicates the receiver location; the background medium is water. The event in (b)
represents an internal multiple of the kind we aim to predict.

G0VG0VG0VG0 can be written in the integral form

dIM3 ≈
∫
z1>z2
z3>z2

G0(x1,xs)V (x1)G0(x2,x1)V (x2)G0(x3,x2)

× V (x3)G0(xr,x3)dx1dx2dx3

(5.6)

where dIM3 denotes the set of all first-order internal multiples recorded at re-

ceiver xr originating from a source at xs (dependency on frequency ω has been

omitted on the right-hand side for conciseness). Unfortunately in geophysical

applications Eq. 5.6 cannot usually be computed directly as it requires a-priori

information about the perturbation operator V, also known as the reflectivity,

at points throughout the volume spanned by the integral, which is not available

(the reference Green’s function G0 may be computed as the reference model is

generally known). Hence, we need to solve the inverse problem of Eq. 5.4 first to

obtain V as a function of the data D.

5.2.2 Inverse scattering and the internal multiples generator

Eq. 5.4 states that the data D can be expanded into an infinite series D =
∑

i Di,

where Di is the portion of the data that is ith order in V. Invoking the properties

of the geometric series, Weglein et al. (1997) argue that in the inverse series the

reflectivity V can be expanded equivalently into V =
∑

i Vi, where Vi is the

portion of V that is ith order in the data. Substituting V =
∑

i Vi into Eq. 5.4
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they find that

D = G0(V1 + V2 + ...)G0

+ G0(V1 + V2 + ...)G0(V1 + V2 + ...)G0 + ...
(5.7)

= G0V1G0 (5.8)

since all higher-order terms cancel each other, for example

0 = G0V2G0 + G0V1G0V1G0 (5.9)

0 = G0V3G0 + G0V1G0V2G0 + G0V2G0V1G0

+ G0V1G0V1G0V1G0

(5.10)

Eq. 5.8 allows us to infer the subseries V1 directly from the data D. In theory,

all the other subseries could now be obtained sequentially: V2 from V1 using Eq.

5.9, V3 from V1 and V2 using Eq. 5.10 and so on. The sum of all subseries then

provides the true reflectivity V, which is the missing component in the internal-

multiple generator (Eq. 5.6). Weglein et al. (1997), however, approximate V with

its first subseries V1, which has the advantage that it can be directly computed

from Eq. 5.8. The new multiples generator is thus G0V1G0V1G0V1G0. Note

that this term is in fact cancelled by other terms (see Eq. 5.10) and therefore

does not contribute physically to the internal multiples in the data D. We will

elaborate on this topic in the discussion and explain why it is still reasonable to

infer information about internal multiples from this term.

5.2.3 A migration-demigration process

Following a more heuristic argument, Ten Kroode (2002) states that V1 simply

represents the common-shot migrated data, which can be used as an approxima-

tion for the unknown reflectivity function V in Eq. 5.6. He points out that for

fixed shots xs and under certain assumptions (for details see Ten Kroode, 2002) a

function F(xs) exists that maps the reflectivity onto the primaries D1 = F(xs)V.

The inverse of this function is known as the common-shot migration and provides

the reflectivity V given the primaries D1:

V = F(xs)
−1 ·D1 (5.11)
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The problem with Eq. 5.11 is that D1 is typically not available (otherwise there

was no need to eliminate the multiples). If we replace D1 by the full recorded

data D including multiples we obtain

V1 = F(xs)
−1 ·D (5.12)

(which is the inverse of Eq. 5.8) where V1 is the common-shot migrated data

containing erroneously imaged multiples. Hence, using V1 instead of V in Eq.

5.6 will introduce errors; Ten Kroode (2002) argues that these will be smaller in

amplitude than the internal multiples we aim to construct.

In summary, the migration process (Eq. 5.12) provides an estimate of the re-

flectivity, given the data D. The migrated data (or the reflectivity estimate)

V1 can then be used in the internal-multiple generator (Eq. 5.6) to replace

the true reflectivity V. The internal-multiple generator itself can be regarded

as a demigration process that generates (part of) the data, given the reflectiv-

ity; Verschuur (2013) thus refers to Weglein’s multiple estimation technique as

a “migration-demigration process”. This also makes clear that the parameters

used in the migration (e.g., the velocity of the reference medium) do not play an

important role as errors committed in migration will be balanced by the inverse

process (demigration). The internal multiples can therefore be estimated from

the recorded data alone.

5.2.4 An equation for internal multiples derived from the ISS

The final internal-multiple equation emerges from Eq. 5.6 after just one further

modification: the second and third Green’s function on the right-hand side of Eq.

5.6 are rewritten such that each of them could have been emitted or recorded at

the measurement surface:

G0(x2,x1) ≈
∫
G0(xr′ ,x1)G∗0(xr′ ,x2)dxr′

G0(x3,x2) ≈
∫
G0(x3,xs′)G

∗
0(x2,xs′)dxs′

(5.13)

where xr′ is an additional receiver location at the surface, xs′ is an additional

source location, and ∗ indicates complex conjugation. The term in the integrand

of Eq. 5.13 is a cross-correlation, which subtracts travel times in the phase term.

Since xr′ and xs′ are not known in advance, integration over a source and a
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receiver boundary at the surface (z = 0) is required that provides contributions

at the correct travel times following stationary phase arguments (Ten Kroode,

2002). Using Eq. 5.13 and substituting V for V1, Eq. 5.6 can be rearranged

to

dIM3 (xr,xs) ≈
∫
z1>z2
z3>z2

[G0(x1,xs)V1(x1)G0(xr′ ,x1)]

× [G0(x2,xs)V1(x2)G0(xr′ ,x2)]

× [G0(x3,xs)V1(x3)G0(xr′ ,x3)]dx1dx2dx3dxr′xs′

(5.14)

Each term in brackets now stands for a primary wave reflected at x1,x2, and x3,

respectively. Finally, Ten Kroode (2002) expresses Eq. 5.14 in terms of the data

D recorded at times t for the 1.5D case (2D wave propagation in a medium that

varies only in one dimension) as

dIM3 (xr,xs, ω) = (−iω)2

∫
t1>t2
t3>t2

A(xs,xs′ ,xr,xr′ , t1, t2, t3)eiω(t1−t2+t3)

×D(xs,xr′ , t1)

×D(xs′ ,xr′ , t2)

×D(xs′ ,xr, t3)dt1dt2dt3dxr′dxs′

(5.15)

For details about the amplitude factor A(xs,xs′ ,xr,xr′ , t1, t2, t3) the reader is

referred to Ten Kroode (2002). However, even without any knowledge of A,

correct kinematic information about first-order internal multiples can be inferred

from Eq. 5.15. Note that for a constant background velocity c0 and a collocated

source and receiver (xr = xs), A reduces to ( 2
c0

)2. For this case, the stationary

points xs′ and xr′ coincide with the source-receiver pair (xs = xr = xs′ = xr′)

and integration over source and receiver boundaries can be omitted. Thus, Eq.

5.15 becomes

dIM3 (ω) =

(
−2iω

c0(0)

)2 ∫
t1>t2
t3>t2

D(t1)D(t2)D(t3)eiω(t1−t2+t3)dt1dt2dt3 (5.16)

In Eqs. 5.15 and 5.16 the LHL condition (Eq. 5.5) has been transferred from

depth to time, which is valid under the assumption of travel-time monotonicity

z1 > z2 ⇔ τ(xs;α, z1) > τ(xs;α, z2) (5.17)
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where τ(xs;α, zi) is the travel time of a ray starting at xs under angle α, reflecting

at depths zi and travelling back to the surface. This condition tends to hold in

media without strong lateral velocity variations, down to the maximum depth at

which a ray with take-off angle α reflects.

Although Eq. 5.15 is derived from the first-order internal-multiple scattering

term, the transformation of the LHL condition from depth to time makes it clear

why also higher-order multiples are automatically generated by this equation:

since the data D contain both primaries and multiples, an event arriving at travel

time t3 > t2 could either be a primary that has a longer travel time due to a deeper

reflection point, or an internal multiple that has a longer travel time due to a

longer (multiply reflected) propagation path. In the latter case, the combination

of two primaries (D(t1) and D(t2)) and a first order multiple (D(t3)) according

to Eq. 5.15 results in an estimate of a second-order internal multiple. It should

be noticed that there can be unfavourable combinations of primaries and internal

multiples that, although consistent with the LHL criterion, may result in artefacts

in the internal-multiple estimate, as discussed in Liang et al. (2013) and Ma and

Weglein (2014).

Eq. 5.15 is also valid in 2D cases under the assumptions of travel-time mono-

tonicity and conormal reflectivity (Ten Kroode, 2002), which means that the

reflectivity V(x) is singular in the direction n(x) only, where x → n(x) is a

smooth map from R2 to the unit circle. This is generally the case if the subsur-

face has a predominantly layered structure without point scatterers or angular

boundaries.

Ten Kroode (2002) shows that the internal-multiple generator provided in Eq.

5.16 is equivalent to the 1D formula provided by Weglein et al. (1997, 2003)

b3(k) =

∫ ∞
−∞

dz1e
ikz1b(z1)

∫ z1

−∞
dz2e

−ikz2b(z2)

∫ ∞
z2

dz3e
ikz3b(z3) (5.18)

where k denotes the vertical wavenumber and b(zi) is data with primaries and

internal multiples in the so-called pseudo-depth domain, i.e., after migration with

the reference velocity of water.

In the following, the time domain representation (Eq. 5.16) by Ten Kroode (2002)

will be the basis for the comparison with the internal-multiple generator derived

from SRI.
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5.3 An equation for internal multiples derived from

source-receiver interferometry

We will now derive the internal-multiple generator from source-receiver interfe-

rometry (SRI) starting with a brief revision of the key equation and the main

assumptions in SRI.

5.3.1 Introduction to SRI

The standard SRI equation in the monopole approximation gives an estimate of

the homogeneous Green’s function between a source at xs and a receiver at xr

according to

G(xr,xs, ω) +G∗(xr,xs, ω)

≈ 4

(cρ)2

∫
S

∫
S′
G(xr′ ,xs, ω)G∗(xr′ ,xs′ , ω)G(xr,xs′ , ω)dxr′dxs′

(5.19)

(Curtis and Halliday, 2010). The double integral is over two closed surface bound-

aries (S over sources xs′ and S ′ over receivers xr′). The integrand comprises

the product of three Green’s functions representing the wavefields propagating

between the central source (xs) and the boundary receivers (xr′), between the

boundary sources (xs′) and the boundary receivers (xr′), and between the bound-

ary sources (xs′) and the central receiver (xr), respectively (Fig. 5.2a). The sym-

bol ∗ denotes complex conjugation. Eq. 5.19 is an approximation to an exact

equation given in (Curtis and Halliday, 2010). This holds if the boundaries S

and S ′ are located in the far-field of each other and of the central source-receiver

pair, such that all raypaths can be assumed to be perpendicular to the bound-

aries. Though in theory the boundaries are required to completely surround the

central source-receiver pair (xs,xr), Snieder (2004a) showed for inter-receiver in-

terferometry that the main contributions to the integral come from the parts

of the boundary where the integrand has approximately stationary phase, and

contributions from elsewhere on the boundary cancel each other destructively.

The same argument holds for SRI, which can be regarded as a concatenation of

inter-receiver interferometry and inter-source interferometry (Curtis and Halli-

day, 2010; Curtis et al., 2012). Moreover, it has been shown (Löer et al., 2014)

that linear surface boundaries (Fig. 5.2b), as typically used in seismic explo-

ration, span the stationary points needed to construct pseudo-physical scattered
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Figure 5.2: Conceptual geometry for source-receiver interferometry with (a) complete
boundaries and (b) partial surface boundaries. Stars are sources, triangles are receivers.
xs and xr denote the central source-receiver pair. Open symbols deonte missing sources
and receivers.

wave energy from SRI, assuming that the scattering part of the medium is located

below the source-receiver pair. The term pseudo-physical denotes the fact that

although travel times of the physical scattered wave energy are obtained correctly,

amplitude and phase information of the wavefield constructed by Eq. 5.19 can

be incorrect. Also if full boundaries were used, the pseudo-physical parts would

cancel with contributions from other terms and not contribute to the final phys-

ical result. To obtain the physical scattered wavefield, stationary points that lie

in the subsurface would have to be spanned by boundary sources and receivers,

which is not practical in most experiments. It is therefore convenient to use

pseudo-physical energy as an estimate of the physical scattered wavefield.

By separating the direct arrival G0 from the scattered field GS using G = G0 +GS

(Eq. 5.1 assuming that the reference field contains no scattering heterogeneities)

the SRI equation can be written as the sum of eight terms, in each of which

different combinations of perturbed (scattered) and unperturbed fields are cross-

correlated and convolved. Löer et al. (2014) show for a single scatterer that the

causal pseudo-physical scattered wavefield can be constructed using only one of

the eight terms, namely the term that involves only scattered fields GS. This

also applies for media containing multiple scatterers or reflecting interfaces, the

only drawback being that additional non-physical energy is introduced in these

cases. The latter notwithstanding, SRI therefore constructs the pseudo-physical

scattered wavefield between xs and xr from only the scattered components of

the recorded wavefield and using only partial surface boundaries, and Eq. 5.19
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Figure 5.3: (a) Raypaths of primaries used in the multiple condition (Eq. 5.21 and
5.22). Portions of dashed and solid raypaths that run parallel cancel each other in SRI.
(b) Raypath of the internal multiple with travel time tM that can be calculated from
the travel times of the primaries in (a). Symbol key as in Fig. 5.2.

becomes

Φ(xr,xs, ω)

≈ 4

(cρ)2

∫
Stop

∫
S′top

GS(xr′ ,xs, ω)G∗S(xr′ ,xs′ , ω)GS(xr,xs′ , ω)dxr′dxs′
(5.20)

where Stop and S ′top denote the partial surface boundaries of sources and receivers

as shown in Fig. 5.2b. The scattered wavefields GS on the right-hand side corre-

spond to the data D recorded at the measurement surface comprising primaries

and internal multiples (the direct wave arrival and all surface related multiples

are assumed to have been removed). On the left-hand side, Φ(xr,xs, ω) denotes

the constructed wavefield consisting of pseudo-physical primaries and internal

multiples, and some non-physical energy.

5.3.2 The multiple condition

To estimate internal multiples only (thus not primaries or non-physical events),

parts of the scattered Green’s functions GS are used that satisfy a “multiple

condition”. If three primary events have been recorded as depicted in Fig. 5.3

with travel times

t1 > t2

t3 > t2
(5.21)
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Keydar et al. (1997) show that their travel times can be added and subtracted

according to

tM = t1 − t2 + t3 (5.22)

to yield the travel time of an internal multiple, tM . The primaries are reflected

at different depths and each primary is associated with a different source-receiver

pair. Note that the first primary and the second primary (with travel times t1

and t2, respectively) arrive at the same receiver location (xr′) and that the second

primary and the third primary (with travel times t2 and t3, respectively) start at

the same source location (xs′). These locations must be chosen such that parts

of the raypaths of the first and the second primary, as well as of the second and

the third primary, run parallel so that the corresponding travel times exactly

cancel each other (see dashed and solid lines in Fig. 5.3). In SRI these locations

correspond to the stationary points of the surface integrals, some of which are

included automatically if we integrate over Stop and S ′top. This is also true if

the central source-receiver pair is not separated from the boundary, as in Fig.

5.3, and notice that if travel-time monotonicity (Eq. 5.17) holds, Eq. 5.21 is

equivalent to the LHL condition in Eq. 5.5.

5.3.3 The equation for internal multiples from SRI

The following example shows how the LHL condition in Eq. 5.21 can be imple-

mented inside the SRI equation to construct internal multiples only. Further, it

helps to establish a clear link between SRI and the internal-multiple equation

derived from the ISS.

Let us consider the 1.5D case (2D wave propagation in a medium that varies

only in one dimension) and a collocated source and receiver (xs = xr). For

this case, the stationary points xs′ and xr′ coincide with the source-receiver pair

(xs = xr = xs′ = xr′) and integration over source and receiver boundaries can

be omitted (in the infinite frequency approximation when the Fresnel zone is

infinitesimal). Thus, Eq. 5.20 reduces to

Φ(ω) =
4

(cρ)2
D(ω)D∗(ω)D(ω) (5.23)

Here, the scattered wavefield GS has been replaced by the data D, which equals

GS at the measurement surface. Eq. 5.23 reproduces all primaries and multiples

at frequency ω between a collocated source and receiver, plus some non-physical
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artefacts. Next, we express Eq. 5.23 as the Fourier transform of the time domain

Green’s functions:

Φ(ω) =
4

(cρ)2

∫ ∞
−∞

dt1e
iωt1D(t1)

∫ ∞
−∞

dt2e
−iωt2D(t2)

×
∫ ∞
−∞

dt3e
iωt3D(t3)

(5.24)

This time domain representation allows us to implement the multiple condition

by modifying the integration boundaries of the second and the third integral such

that t1 > t2 and t3 > t2:

ΦIM(ω) =
4

(cρ)2

∫ ∞
−∞

dt1e
iωt1D(t1)

∫ t1−ε1

−∞
dt2e

−iωt2D(t2)

×
∫ ∞
t2+ε2

dt3e
iωt3D(t3)

(5.25)

where ε1 and ε2 are small positive numbers and ΦIM(ω) denotes the internal

multiples. Eq. 5.25 is the internal-multiple generator for the 1.5D case with

a collocated source and receiver as derived from the SRI equation. As for the

internal-multiple generator derived from the ISS, Eq. 5.25 can also predict higher-

order multiples due to the presence of multiples in the data D and the ambiguity

inherent in the LHL condition in the time domain.

It is easy to show that Eq. 5.25 is equivalent to Eq. 5.16 given by Ten Kroode

(2002), which can be rearranged to

ΦIM(ω) =

(
−2iω

c0(0)

)2 ∫ ∞
−∞

dt1e
iωt1D(t1)

∫ t1−ε1

−∞
dt2e

−iωt2D(t2)

×
∫ ∞
t2+ε2

dt3e
iωt3D(t3)

(5.26)

The different pre-factors in ours and Ten Kroode’s formula 4
(cρ)2

and (−2iω
c0(0)

)2,

respectively) are due to different source types (volume injection rate in ours ver-

sus volume injection in Ten Kroode’s derivation—for details see Wapenaar and

Fokkema, 2006) and the fact that Ten Kroode assumes a medium with constant

density from the beginning and therefore does not include ρ in his wave equation

(Eq. 1 in Ten Kroode, 2002).

Due to the pseudo-physical nature of the single SRI term that was used in Eq.

5.20, Eq. 5.25 provides the correct travel times of internal-multiple energy but

amplitude and phase information of each multiple can be erroneous. Similarly,
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Weglein et al. (2003) argue that amplitudes of internal multiples estimated from

the ISS are wrong because only a subseries of the inverse-scattering series is

considered that estimates internal multiples to first order only. Indeed, either

by considering stationary points within SRI integral representations, or by using

only subseries of the ISS, respectively Löer et al. (2014) and Weglein et al. (2003)

showed that the terms included in Eqs. 5.25 and 5.26 would in fact be cancelled if

the full theory was used in each case. Thus in neither method is the final equation

used the one that represents how multiples are actually constructed by SRI or

the ISS, explaining from two quite different points of view why Eqs. 5.25 and

5.26 do not produce exactly correct physical results. Nevertheless we show next

that the insights gained from linking the ISS to SRI allow a significantly different

and computationally far more efficient representation for multiple prediction in

both the ISS and the SRI frameworks.

5.4 Alternative representation

The SRI equation (Eq. 5.20 or 5.23) is a combination of correlation-type inter-

receiver interferometry and convolution-type inter-source interferometry. Cross-

correlation and convolution in the frequency domain are simply vector multipli-

cations that are fast and cheap to compute. It would therefore be favourable if

we could rewrite the internal-multiple equation (Eq. 5.25), which is based on

the SRI equation, in a way that allows us to carry out these two operations sep-

arately, one after the other, in the frequency domain to reduce computational

cost. In this chapter a new representation is derived that achieves this by using

an alternative implementation of the multiple condition.

5.4.1 Correlation- and convolution-type representation of internal

multiples

We start by identifying the correlational and convolutional operations in Eq. 5.23

and the derived internal-multiple equation (Eq. 5.25). In the frequency domain,

a cross-correlation C(ω) corresponds to a simple multiplication of two functions

f(ω) and g(ω), where one of the two functions has been complex conjugated:

C(ω) = f(ω)g∗(ω) (5.27)
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In the time domain, cross-correlation of two functions f(t) and g(t) is given

by

C(τ) =

∫ ∞
−∞

f(t)g(t+ τ)dt (5.28)

where τ is a time shift parameter. In Eq. 5.23 the correlational part is given by

the multiplication of the term D∗(ω) with either of the other two terms D(ω);

without loss of generality we will take the rightmost term. The corresponding

time domain integrals in Eq. 5.25 can be rewritten by analogy with Eq. 5.28 by

introducing a time shift parameter τ and substituting the integration variable t3

for t2 + τ . Interchanging the order of integration, the rightmost two integrals can

be written ∫ t1−ε1

−∞
dt2e

−iωt2D(t2)

∫ ∞
t2+ε2

dt3e
iωt3D(t3)

=

∫ ∞
ε2

eiωτ

[∫ t1−ε1

−∞
D(t2)D(t2 + τ)dt2

]
dτ

(5.29)

The term in square brackets on the right-hand side of Eq. 5.29 resembles a cross-

correlation at time shift τ . However, the upper integration boundary is set to

t1− ε1 rather than to∞. This is an important point that will be addressed later.

Similarly, the outer integral over τ resembles a Fourier transform but again one

integration boundary, here the lower one, is incorrect.

The purpose of the restricted lower boundary is to ensure that when the cor-

relation results for different time shifts τ are summed, only positive time shifts

τ ≥ ε2 (or τ > 0) are considered. With t3 = t2 + τ , this condition is equivalent

to the part of the multiple condition stating that t3 > t2. An alternative way to

implement this condition is to invoke the Heaviside step-function H(τ) that takes

value one for positive (causal) values of τ , and zero for negative (acausal) values

of τ . Hence, the restriction of the lower integration boundary becomes obsolete

and the cross-correlation part can be written as∫ ∞
−∞

eiωτΓcausal(τ)dτ =

∫ ∞
−∞

eiωτ

[
H(τ)

∫ t1−ε1

−∞
D(t2)D(t2 + τ)dt2

]
dτ (5.30)

where the function Γcausal(τ) represents the causal part of the correlation-type

integral over t2 that is zero for negative values of τ . The left-hand side of Eq.

5.30 is used to replace the latter two terms in the internal-multiple equation, Eq.
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5.25, which yields

ΦIM(ω) =
4

(cρ)2

∫ ∞
−∞

eiωt1D(t1)

∫ ∞
−∞

eiωτΓcausal(τ)dτdt1 (5.31)

Thus we have expressed part of the internal-multiple equation by the correlation-

type function Γcausal(τ). Next, we show that Eq. 5.31 is equivalent to a convolution-

type function. Convolution in the time domain is defined as

C ′(τ ′) =

∫ ∞
−∞

f(t)g(τ ′ − t)dt (5.32)

As before, we change the integration variable of the inner integral in Eq. 5.31

by introducing a new time shift parameter τ = τ ′ − t1. Rearranging the terms

yields

ΦIM(ω) =
4

(cρ)2

∫ ∞
−∞

eiωτ ′
∫ ∞
−∞

D(t1)Γcausal(τ
′ − t1)dt1dτ ′ (5.33)

The inner integral is equivalent to a convolution in the time domain, whereas

the outer integral is a standard Fourier transformation from time to frequency

domain.

5.4.1.1 Cross-correlation and convolution uncoupled

Thus far we have shown explicitly how the formula that estimates internal mul-

tiples (Eq. 5.25) can be written as a concatenation of a correlation-type function

(Eq. 5.30) and a convolution-type function (Eq. 5.33). However, in the current

form of Eq. 5.33 the two are coupled through the argument of the correlation-

type function Γ, which depends on the integration variable of the convolution-type

function, t1. We now show how the two operations can be uncoupled and per-

formed independently in the frequency domain in order to save computational

cost.

Firstly, we substitute the correlation-type function Γcausal in Eq. 5.33 for the

corresponding integral expression (right-hand side of Eq. 5.30):

ΦIM(ω) =
4

(cρ)2

∫ ∞
−∞

eiωτ ′
∫ ∞
−∞

D(t1)

×H(τ ′ − t1)

∫ t1−ε

−∞
D(t2)D(t2 + (τ ′ − t1))dt2dt1dτ ′

(5.34)
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The coupling of convolution and cross-correlation is implicit in the upper bound-

ary of the innermost integral, which depends on the integration variable of the

surrounding integral (t1). With a few modifications, however, this can be changed:

due to the Heaviside function H the contribution to the outermost integral is zero

if τ ′ − t1 < 0, hence for all t1 > τ ′. We can thus cut the first data vector D(t1)

at t1 = τ ′ and keep only the part of D with t1 < τ ′ (reducing the length of the

data also saves computation time). As t2 < t1 (restricted by the upper boundary

of the innermost integral) and consequently t2 < τ ′ we can remove the part of

the second data vector D for which t2 ≥ τ ′. The argument of the third D is

t3 = t2 + τ ′ − t1. From t2 < t1 it follows that t3 < τ ′ and again we can remove

the part of D for which t3 ≥ τ ′. The restricted integration boundaries are now

obsolete and we can write

ΦIM(ω) =
4

(cρ)2

∫ ∞
−∞

eiωτ ′
∫ ∞
−∞

Dm(τ ′)(t1)

×H(τ ′ − t1)

∫ ∞
−∞

Dm(τ ′)(t2)Dm(τ ′)(t2 + (τ ′ − t1))dt2dt1dτ ′
(5.35)

where notation Dm(τ ′)(ti) means that the vector D is muted for times ti ≥ τ ′.

For each τ ′ the correlational integral (over t2) and the convolutional integral

(over t1) can now be evaluated separately, one after the other. This allows us

to perform these operations in the frequency domain where they correspond to

simple vector-multiplications that are fast and cheap to compute.

The Fourier integral over τ ′ can be interpreted as an integral over possible multiple

travel times tM : only if τ ′ = tM is the multiple condition tM = t1 − t2 + t3

fulfilled and the contribution of the integral is non-zero. Note that the multiple

condition (Eq. 5.22) can be found explicitly in the argument of the third D:

t2 + (tM − t1) = t3 ⇔ tM = t1 − t2 + t3 .

The additional constraints described by the LHL condition, t1 > t2 and t3 > t2,

are also implicit by allowing only t < τ ′ because

t3 < τ ′ ∧ t3 = t2 + (τ ′ − t1)⇒ t1 > t2 (5.36)

and by considering only the causal part of the cross-correlation

τ ′ − t1 > 0 ∧ t3 = t2 + (τ ′ − t1)⇒ t3 > t2 (5.37)

In summary, for a collocated source and receiver the internal multiple arriving at
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time τ ′ can be computed by performing the following steps:

• Cut the data D(t) at t = τ ′ to obtain D(t < τ ′).

• Transform D(t < τ ′) to the frequency domain to obtain D(ω), then multiply

D(ω) with its complex conjugate D∗(ω) (corresponds to an auto-correlation

in the time domain), the result of which is Γ(ω).

• Transform Γ(ω) to the time domain to obtain Γ(τ). Keep only the causal

part Γcausal(τ) by setting Γ(τ < 0) to zero.

• Transform Γcausal(τ) to the frequency domain and multiply Γcausal(ω) with

D(ω) (corresponds to a convolution in the time domain).

• Integrate the result of step 4 over all τ ′ to obtain an estimate of all internal

multiples.

When considering a common-shot gather we need to reassign the geometrical

parameters (source and receiver positions) to the data and integrate over source

and receiver boundaries S and S ′, respectively, as shown by SRI in Eqs. 5.19 and

5.20. This yields

ΦIM(xr,xs, ω) =
4

(cρ)2

∫
S

dxs′

∫
S′

dxr′

∫ ∞
−∞

dτ ′eiωτ ′

×
∫ ∞
−∞

dt1Dm(τ ′)(xr′ ,xs, t1)

×H(τ ′ − t1)

∫ ∞
−∞

dt2Dm(τ ′)(xr′ ,xs′ , t2)

×Dm(τ ′)(xr,xs′ , t2 + (τ ′ − t1))

(5.38)

Note that in this case instead of performing an auto-correlation in the 2nd step we

need to cross-correlate the correct portions of the data, namely Dm(τ ′)(xr′ ,xs′ , t)

and Dm(τ ′)(xr,xs′ , t). In the 3D case the integration boundaries over xs′ and xr′

span 2D surfaces rather than 1D lines.

5.5 Examples from a synthetic data set

We estimate internal multiples for the 1.5D case following a) Weglein’s formula-

tion from the ISS-version, (Eqs. 5.16 and 5.15) and b) the new representation

from SRI (Eqs. 5.35 and 5.38) using a set of Matlab codes. We use a synthetic

data set based on an acoustic 10-layers model (Fig. 5.4) provided by Total S.A.
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Figure 5.4: (a) Velocity profile and (b) density profile of the acoustic model used to
generate synthetic data sets.

to compare the ISS and the SRI results both qualitatively in terms of the results

and quantitatively in terms of computational cost.

Fig. 5.5 and Fig. 5.6 show the results for a collocated source and receiver using the

ISS (Eq. 5.16) and SRI (Eq. 5.35), respectively. Displayed are in (a) the modeled

scattered wavefield GS (grey) in the time window between 0 s and 2 s. Surface-

related multiples have not been modeled. Superimposed is the internal-multiple

estimate (black). The amplitude factors in both equations have been ignored;

instead the first arriving multiple was normalized with respect to the amplitude of

the original trace at the same arrival time. This underlines the similarity between

true and estimated multiples regardless of errors in the absolute amplitude. In (b)

the internal-multiple estimate has been subtracted from the scattered wavefield

and the result (black) is compared to the directly modeled primary wavefield

(grey).

Fig. 5.7 shows internal-multiple estimates for a common-shot gather in the time

window between 0 s and 1 s from a source at z = 5 m and x = 12.5 m recorded at

9 receivers located at the same depth between x = 12.5 m and x = 212.5 m with

inter-receiver spacing of 25 m, where x is the horizontal coordinate axis. Boundary

sources and receivers were distributed as linear arrays at depth z = 5 m between

x = 0 m and x = 237.5 m with a spacing of 12.5 m. The same velocity-density

model has been used (Fig. 5.4). Figs. 5.7a and b show the full scattered wavefield

(grey) superimposed by the internal multiples estimated using the ISS (Eq. 5.15)
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Figure 5.5: Internal multiples estimated from the ISS (Eq. 5.16) for a collocated source
and receiver. (a) Estimate of internal multiples (black) compared to the full scat-
tered wavefield (grey) (b) Demultipled scattered field (black) compared to the primary
wavefield (grey).
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Figure 5.6: Internal multiples estimated from SRI (Eq. 5.35) for a collocated source
and receiver. (a) Estimate of internal multiples (black) compared to the full scattered
wavefield (grey). (b) Demultipled scattered field (black) compared to the primary
wavefield (grey).
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and SRI (Eq. 5.38), respectively. Fig. 5.7c compares the internal multiples from

the two different equations directly. The few small differences are likely to be

due to the finite number of frequencies computed using the ISS, which affects

the Fourier transformation to the time domain. Fig. 5.8 shows the demultipled

common-shot gathers compared to the directly modeled primary wavefield using

the ISS-equation (a) and the SRI-equation (b).

5.6 Computational cost

We calculated the computational cost (number of operations) and time for both

methods. For a single trace (the case of a collocated source and receiver) with

256 time samples (or 256 frequencies), the number of operations performed by

the ISS equation is of the order of 109, whereas the SRI equation requires of the

order of 105 operations. For the ISS-version, this results in a computing time of

about 245 s (≈ 4 min) on a standard desktop computer without parallelization

(about 75 s when parallelized over 4 workers), whereas the SRI-version provides

the same result in 0.25 s unparallelized. These differences in computation time

or operation count become more important when the source and the receiver are

not collocated. To compute the internal multiples between a source at xs and

a receiver at xr 6= xs both methods require integration over a source boundary

and a receiver boundary to cover the additional source receiver pair (xs′ ,xr′)

that is involved in the corresponding equations. The computation time for a

single source-receiver pair is multiplied by the product of the number of sources

Ns′ and the number of receivers Nr′ on the boundaries. Hence, for Ns′ = 30

boundary sources and Nr′ = 30 boundary receivers the computation time is

Ns′ · Nr′ = 900 times as long in both SRI and ISS as in the single-trace case.

Moreover, to compute multiples in a common-shot gather rather than for a single

trace, the computation time is multiplied by the number of traces Nr in the

gather. Since both methods are multiplied by the same factor Ns′ ·Nr′ ·Nr, the

relative computational cost remains costISS

costSRI
≈ 109

105
= 104, while the cost in absolute

number of operations taken for a gather is ≈ 104 · Ns′ · Nr′ · Nr, which for the

case above with Ns′ = Nr′ = 30 and for a gather of only Nr = 20 traces results

in a saving of 104 · 30 · 30 · 20 ≈ 108 operations per gather using SRI compared

to the ISS. In the 3D case the factors Ns′ , Nr′ and Nr would usually increase

by an order of magnitude each, leading to another saving of 103 operations per

gather.
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Figure 5.7: Estimate of internal multiples for a common-shot gather. Details on the
geometry are described in the main text. (a) Full scattered wavefield (grey) versus
internal multiples estimated from the ISS equation (black). (b) Full scattered wavefield
(grey) versus internal multiples estimated from the SRI equation (dashed black). (c)
Internal multiples from the ISS (solid) versus internal multiples from SRI (dashed).

Figure 5.8: Demultipled scattered wavefield (black) for a common-shot gather as de-
scribed in the main text using (a) the ISS-equation, and (b) the SRI-equation compared
to the directly modeled primary wavefield. (c) Demultipled data from the ISS (solid)
versus demultipled data from SRI (dashed).

127



5.7 Discussion

Forward scattering theory as described by the Lippmann-Schwinger equation,

provides an estimate of the data given the reflectivity of the medium. The equa-

tion can be expanded into an infinite series, and Weglein et al. (1997) take one

term out of this series, namely the third-order scattering term, as the basis for

internal-multiple prediction. However, the third-order scattering term provides

only a first-order estimate to first-order internal scattering; higher-order contribu-

tions come from the fifth, the seventh, etc. order terms. The fifth-order term has

been analysed by Ramı̀rez and Weglein (2005) who showed that indeed amplitude

estimates can be improved by taking such higher-order terms into account.

Further, we highlighted that the term used to estimate internal multiples by

Weglein et al. (1997) does not contribute physically to the internal multiples in

the data. We now discuss why the term still contains information about multiples

and how this provides another link to interferometry.

In the forward series (Eq. 5.4), each component (D1,D2, · · · ) of the data D can

be related to a different order of scattering. For example, the first term in Eq.

5.4, D1 = G0VG0, constructs primaries only (first-order scattering). When we

replace V by the sum of its components (V1,V2. · · · ) in the primaries-only term

we obtain

D1 = G0V1G0 + G0V2G0 + G0V3G0 + · · · (5.39)

The first term on the right-hand side, G0V1G0, gives the full data including the

multiples (see Eq. 5.8); thus, to obtain primaries only, all of the other terms

(G0V2G0 + G0V3G0 + · · · ) must cancel the multiples in G0V1G0. Considering

that

G0V3G0 = −(G0V1G0V2G0 + G0V2G0V1G0

+ G0V1G0V1G0V1G0)
(5.40)

(see Eq. 5.10) and by appealing to the similarity between the third-order scat-

tering term in Eq. 5.40 (G0V1G0V1G0V1G0) and the multiple generator in

the forward series (G0VG0VG0VG0; Eq. 5.6), it seems reasonable to infer that

the term G0V1G0V1G0V1G0 provides a contribution that at least partly cancels

first-order internal multiples in Eq. 5.39. If this term is evaluated on its own as in

Eqs. 5.15 and 5.16 it provides an estimate of the internal-multiple energy.

Similarly, in interferometry so-called pseudo-physical energy (Löer et al., 2014)
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can be used as an estimate for physically scattered waves. Pseudo-physical en-

ergy, which has the same kinematics as physical energy but the wrong amplitude

and phase, does not contribute to the construction of a physical wavefield but

is required in order to obtain correct amplitudes. We mentioned above that the

SRI equation can be written as the sum of eight terms, in which different combi-

nations of perturbed and unperturbed (scattered) fields are cross-correlated and

convolved. Meles and Curtis (2013) and Löer et al. (2014) investigate the differ-

ent contributions from each term to the final result for a single scatterer case.

They show, for example, that the term that provides the physical scattered wave

also gives rise to a non-physical contribution from a different stationary point

pair on the source and receiver boundaries. The non-physical part is cancelled by

contributions from other terms and in fact there is a second term that provides

the physical scattered wave. Summing the two physical contributions would,

however, result in incorrect (double) amplitudes. The physical contribution from

the second term must be cancelled by pseudo-physical contributions from other

terms. Thus, while pseudo-physical energy arrives at the same time as physi-

cal energy, an individual pseudo-physical term does not necessarily provide the

correct (physical) amplitude and phase—it is the sum of all pseudo-physical con-

tributions that cancels exactly with the extra, redundant physical energy.

If not all of the terms are used, or not all stationary point pairs are spanned

by the portions of boundaries included in SRI, pseudo-physical energy may not

cancel out and will then remain in the interferometric wavefield estimate, while

physical energy may not be constructed at all. This is exactly what happens

when SRI is used to estimate internal multiples herein: only one out of eight

terms is considered, and boundaries are available only at the surface. Under

these conditions only pseudo-physical energy can be obtained, which emulates

the kinematics of a physical scattered wavefield but does not provide the correct

amplitude and phase information.

Thus, in both the SRI and the ISS approach internal multiples are estimated

from pseudo-physical energy and hence cannot be used to estimate and eliminate

the internal multiples in the data directly. An adaptive subtraction algorithm is

required to find the best fit between estimated and true multiples and eventually

attenuate the multiples in the data.

Finally, notice the similarities between the pseudo-physical parts of SRI and the

ISS in the numerical examples presented above. This implies that there might

be further links between the two representations of scattered fields, for example
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an implicit relationship between the other terms in SRI and higher-order contri-

butions in the ISS. Part of our future research will explore this relationship, in

the hope that we may gain new insight into each of the two methods by taking

information from the other.

5.8 Conclusions

We summarize the derivation of the ISS equation for estimating internal mul-

tiples and present a second derivation of the same equation starting from SRI.

For the first time this provides an explicit relationship between the two domains

of inverse scattering and interferometry. The use of pseudo-physical energy for

internal-multiple estimation in both methods is highlighted and compared. Us-

ing the interferometric perspective, we propose an alternative representation for

internal-multiple prediction that takes advantage of convolution and correlation

operations in the frequency domain. It allows us to compute internal multi-

ples more efficiently, which is confirmed by a comparison of both representa-

tions applied to a synthetic single-trace example and a synthetic common-shot

gather.
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Chapter 6

Discussion

This chapter reflects on open issues in the fields of pseudo-physical energy, multi-

ple scattering and internal multiple prediction in the context of SRI. I expand on

topics such as anisotropy, non-physical energy and alternative forms of SRI, es-

tablish connections to seismic imaging methods, and suggest potential directions

of future research with the aim to shed new light on different aspects in wavefield

theory and interpretation using the results from this thesis.

6.1 Cancellation of pseduo-physical energy in SRI and the

optical theorem

One of the major outcomes of chapter 2 was that SRI generates so-called pseudo-

physical energy in the Green’s function estimate when boundaries are incomplete.

The derivation was shown explicitly for one term of the SRI equation (Eq. 2.7),

namely for GSGSG
∗
S, which is also used in the prediction of multiply diffracted

waves and internal multiple reflections in chapters 3, 4 and 5. We argued that if

complete boundaries were used, this energy would be cancelled out by (pseudo-

physical) contributions from other scattered terms, but did not provide evidence

for this. We will now show that, similar to the cancellation of non-physical energy

in standard interferometry, the sum of all these contributions provides excatly

the causal scattered wave arrival with scattering amplitude A on account of the

optical theorem.

Table 6.1 shows the travel times and amplitudes of the events generated by the

seven scattered terms in Eq. 2.7. They were derived using the following 3D

Green’s function definition, representing particle velocity resulting from a volume

injection rate source and assuming that the diffractor is isotropic and located at
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Terms in the integrand of Eq. 2.7 Travel time Amplitude
G0GSG

∗
0 t(xs,x1) + t(x2,xs) A

−t(xs,x1) + t(x2,xs) A
GSG0G

∗
0 t(xs,x1) + t(x2,xs) A

t(xs,x1)− t(x2,xs) A
GSGSG

∗
0 t(xs,x1) + t(x2,xs) (2ik)AA

G0G0G
∗
S t(xs,x1) + t(x2,xs) −A∗

t(xs,x1)− t(x2,xs) −A∗
−t(xs,x1) + t(x2,xs) −A∗
−t(xs,x1)− t(x2,xs) −A∗

G0GSG
∗
S t(xs,x1) + t(x2,xs) (2ik)AA∗

−t(xs,x1) + t(x2,xs) (2ik)AA∗

GSG0G
∗
S t(xs,x1) + t(x2,xs) (2ik)AA∗

t(xs,x1)− t(x2,xs) (2ik)AA∗

GSGSG
∗
S t(xs,x1) + t(x2,xs) (2ik)2AAA∗

Table 6.1: Travel times and amplitudes of physical, non-physical and pseudo-physical
events provided by the seven scattered terms in Eq. 2.7 using complete bound-
aries. Non-physical events have non-physical travel times −t(xs,x1) + t(x2,xs) and
t(xs,x1)−t(x2,xs); pseudo-physical events have physical travel time t(xs,x1)+t(x2,xs)
but non-physical amplitudes. Amplitudes of non-physical and pseudo-physical waves
are supposed to cancel each other when all terms are summed.

the origin xd = 0:

G(x2,x) = G0(x2,x) +GS(x2,x)

=
iωρ

4π

eiωk|x2−x|

|x2 − x|
+

iωρ

4π

eiωk|x|
|x|

A
eiωk|x2|
|x2|

(6.1)

The amplitudes in Table 6.1 apply when complete boundaries are used. If partial

boundaries are used, different events are affected differently depending on the

coverage of stationary points; some may not be constructed at all, as was shown

in chapter 2. Summing the amplitudes of all terms with travel time t(xs,x1) +

t(x2,xs), i.e., the travel time of the causal scattered wave, gives

A+ A− A∗ + (2ik)AA∗ − (2ik)AA+ (2ik)AA∗ − (2ik)2AAA∗

= A+ [A− A∗ + (2ik)AA∗]− (2ik)A[A− A∗ + (2ik)AA∗]
(6.2)

where k = ω
c

the wavenumber. For the pseudo-physical energy to cancel, the
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expressions in square brackets must equate to zero, hence

A− A∗ = −(2jk)AA∗

− 1

2i
[A− A∗] = k|A|2

−={A} = k|A|2

(6.3)

Eq. 6.3 is the optical theorem for isotropic scattering (e.g. Wapenaar et al.,

2010b). The optical theorem was derived in quantum physics (Heisenberg, 1943;

Glauber and Schomaker, 1953) and in acoustics (Marston, 2001) and describes

the conservation of energy in scattering processes. It links the forward scattering

amplitude A of an object to the total scattered energy (the so-called scattering

cross section).

Note that Wapenaar et al. (2010b) use a different Green’s function definition

(representing particle displacement u rather than particle velocity v) when deriv-

ing the optical theorem from the cancellation of non-physical energy in standard

inter-receiver interferometry. This leads to a representation of the imaginary part

of the Green’s function (=(Gu) = 1
2i

(Gu − G∗u)) in the interferometric equation

rather than the real part (<(Gv) = 1
2
(Gv+G∗v)). The two Green’s function defini-

tions are mutually related via Gv = iωGu (Wapenaar and Fokkema, 2006).

When scattering is not isotropic the scattering amplitude A depends on the wave

vectors k0 and k of incoming and outgoing energy, respectively, and in this case

the optical theorem reads

−={A(k0,k0)} =
k

4π

∫
|A(k,k0)|2dΩ (6.4)

In theory, interferometry also works for anisotropic media; that is, it should

construct scattered waves with correct amplitudes regardless of the scattering

angle and the degree of anisotropy. However, most applications in interferometry

focus on travel time analysis disregarding the information contained in amplitudes

and phases of retrieved Green’s functions.

Our study of pseudo-physical waves implies that these waves contribute more

information on medium parameters and scattering properties than is contained

in just the travel times. Moreover, while our analysis focuses on one particular

term, other terms may be more useful in other geometries. This potential has not

been fully explored yet but could eventually provide novel, valuable information,

for example on scattering amplitudes and anisotropic behaviour, not only for
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point scatterers but also reflectors in stratified media.

The laboratory data sets used in section 4 might provide a good basis for test-

ing SRI, and in particular the term GSGSG
∗
S, on an anisotropic medium. We

showed for the single-scatterer case that using larger rod sizes (or different ma-

terials) results in anisotropic diffraction move-outs. Using these data it could

be investigated whether the anisotropic features of a single diffraction move-out

are reconstructed in the interferometric estimate provided by the pseudo-physical

term GSGSG
∗
S, and if the amplitude estimate can be used to infer information

about the forward scattering amplitude of the scatterer. However, for a first

test, it would be ideal if the medium was surrounded completely by sources and

receivers to eliminate the amplitude reduction caused by partial boundaries.

6.2 Alternative forms of SRI

When Halliday and Curtis (2010) derived the link between Oristaglio’s imaging

condition and SRI, they used a complex conjugated form of Eq. 2.7. In particular,

they use the term G∗0G
∗
0GS, which is the complex conjugate of the term G0G0G

∗
S.

As shown in Table 6.1, the term G0G0G
∗
S provides a physical estimate of the

acausal scattered wave, a pseudo-physical estimate of the causal scattered wave,

and two non-physical contributions. Halliday and Curtis (2010) show that its

conjugated version provides a physical estimate of the causal scattered wave, a

pseudo-physical estimate of the acausal scattered wave, and two non-physical

contributions.

Similarly, the contributions from all other terms differ in the conjugated form,

however, the final SRI result, i.e., the sum of all terms, is identical in both forms.

This can be understood by considering the left-hand side of Eq. 2.7, which is

a superposition of the causal Green’s function and its conjugate, the acausal

Green’s function. Since complex conjugation is an associative operation, which

acts on both the normal and the conjugated function, it simply reverses the order

of the two functions. The superposition of both functions still provides the sum of

the causal and the acausal part, hence, the homogeneous Green’s function.

Using conjugated forms of the SRI equation we can thus vary the contributions of

individual terms while preserving the total result. Of course, this also applies to

inter-receiver and inter-source interferometry (e.g. Eqs. 2.3 and 2.4, respectively).

Since SRI is a two-step procedure combining inter-source and inter-receiver in-
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Complex conjugated forms of SRI
G(x′,x1)G(x2,x)G∗(x′,x)
G(x′,x1)G∗(x2,x)G(x′,x)
G∗(x′,x1)G(x2,x)G∗(x′,x)
G∗(x′,x1)G∗(x2,x)G(x′,x)

Table 6.2: Overview of complex conjugated forms of the SRI equation in short-
hand notation. G∗(x′,x1)G∗(x2,x)G(x′,x), for example, stands for the integral

4
(ρc)2

∫
S′

∫
S G
∗(x′,x1)G∗(x2,x)G(x′,x)dSdS′. When theoretical requirements of SRI

are met, all of them provide approximations to the homogeneous Green’s function
G(x2,x1) +G∗(x2,x1).

terferometry, one could apply complex conjugation in just one of the two steps,

which provides two more versions of the SRI equation (Table 6.2). Different ver-

sions of SRI might be useful in different scenarios of boundary conditions and

geometries and it could be the subject of future research to explore the contri-

butions of individual terms and the location of stationary points for physical,

non-physical and pseudo-physical energy in conjugated forms of SRI.

6.3 SRI and Marchenko autofocusing

Besides its explicit relationship to standard imaging techniques based on the work

by Oristaglio (1989), SRI also has a connection to a rather new imaging method

called Marchenko imaging, which provides a new perspective on the multiple

scattering problem in migration. It is based on single-sided autofocusing (Rose,

2002; Broggini et al., 2011; Wapenaar et al., 2011), a method that allows one to

focus a wavefield emitted and recorded on a surface, at any focusing point in the

subsurface.

Assuming that after focusing the wavefield propagates outwards again, the focal

point becomes a virtual source located inside the medium. The wavefield obtained

from the virtual source contains all internal and surface related multiples and

provides separate estimates of up- and down-going wavefield components, which

are used to define a new imaging condition. The method, described in detail for

example in Wapenaar et al. (2014), uses operations similar to interferometry but

claims to go beyond interferometry as it provides a virtual source at a location in

the subsurface without the necessity of a receiver at that location.

Marchenko imaging involves multi-dimensional deconvolution (MDD) of up- and

down-going so-called focusing functions (f− and f+, respectively), obtained from
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background Green’s functions, and the reflection response of the medium mea-

sured at the surface. Wapenaar et al. (2014) show that approximating MDD by

cross-correlating the initial estimates of up- and down-going focusing functions

yields

R(xj,x
′
j, t) ≈ C(xj,x

′
j, t)

=

∫
∂D0

f+
2,0(xj,x

′′
0, t)f

−
2,0(xj,x

′′
0,−t)dx0

= −
∫
∂D0

∫
∂D0

Gd(x′′0,x
′
j, t)R(x′′0,x0,−t)Gd(x0,xj, t)dx0dx′′0

(6.5)

The authors point out that the resulting double integral is a form of SRI. In fact,

from the analysis in chapter 2 we know that here the term G0G0G
∗
S of the SRI

equation is used, since Gd = G0 represents the direct or reference Green’s function

and R = GS is the scattered wavefield or the reflection response measured at the

surface. For the geometry considered throughout chapter 2 (boundaries at the

surface, scatterer below the source-receiver pair), the term G0G0G
∗
S provides the

acausal scattered wavefield. However, in the geometry of Wapenaar et al. (2014)

the scatterer is located above the (virtual) source-receiver pair and thus Eq.

6.5 provides an estimate of the causal scattered field. Moreover, the amplitude

analysis of the SRI term (Table 6.1) suggests that the scattered field constructed

from Eq. 6.5 has a pseudo-physical amplitude, similarly to the event constructed

from G0G0G
∗
S.

Insights from SRI could provide a new perspective on amplitude estimation in

imaging techniques and help to interpret erroneous amplitudes. Further, the link

between SRI and Marchenko imaging by MDD suggests that a deconvolutional

version of SRI exists, as also discussed in Entwistle et al. (2015). Convolutional

and deconvolutional techniques have successfully been used in inter-source and

inter-receiver interferometry (e.g. Slob and Wapenaar, 2007; Vasconcelos and

Snieder, 2008), however, they have not been analysed and tested in detail for

SRI. Deconvolutional interferometry works better in dissipative media, where

cross-correlational methods often show deficiencies; hence, using deconvolution

could be advantageous for SRI when used in highly dissipative environments or

over large distances.
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6.4 Primary move-out estimation and interferometry

The method used for primary move-out estimation from multiply diffracted wave-

fields presented in chapter 3, section 3.3.1, is in fact a demonstration of how

physical information about a scatterer can be obtained from non-physical en-

ergy generated in interferometry. Non-physical energy from the cross terms of

diffracted, refracted and reflected waves has been used in previous studies to es-

timate scatterer locations (Harmankaya et al., 2013; Kaslilar et al., 2014) and

analyse velocities (Mikesell et al., 2009; King and Curtis, 2011). Here, we use

travel times of non-physical events to discriminate individual primary diffraction

curves from a mulitply scattered wavefield. The method described is based on

cross-correlation of two common-source gathers or two common-receiver gathers

and resembles standard interferometry methods: taking the case of two CSGs,

the data in each gather represents the scattered wavefield emitted by one source

recorded at a surface boundary of receivers. Cross-correlating the two wave-

fields and summing over receiver positions corresponds exactly to the two steps

in inter-source interferometry. For the case of two CRGs the method is equivalent

to inter-receiver interferometry.

Notice, however, that when only the scattered components of the wavefields (GS)

are considered, non-physical energy is generated in inter-source or inter-receiver

interferometry (Snieder et al., 2008). The non-physical event arrives at travel

time t(xd,x1) − t(xd,x2), where x1 and x2 are the locations of the two sources

and xd is the location of a diffractor. Given that x1 and x2 do not change,

the travel time depends solely on the location of the diffractor and hence each

diffractor in the medium provides one non-physical event. The arrival times of

non-physical events are equivalent to the time shifts under which the two gathers

are most alike, i.e., the time shifts for which one move-out arrives at the same

time in both gathers. This information is used by the automated algorithm to

isolate individual move-outs associated with different time-shifts from the CSG

or CRG. Note that stationary, non-physical events also occur when a primary is

cross-correlated with a multiple that has the same last scatterer, i.e., the same

fingerprint in the CSG. These events, however, have much lower amplitudes and

are atomatically filtered out by the algorithm presented in chapter 3.

The geometry considered in chapter 3 differs from the geometry typically used in

interferometry since the two sources are not spatially separated from the receiver

boundary. This violates the assumption made in the monopole approximation
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that all raypaths are perpendicular to the boundary, which is typically the case if

the receiver boundary is in the far-field of the central pair of sources. However, as

we have demonstrated in chapter 2, for scattered energy this requirement is less

strict, because scattered waves travel from the source to the scatterer first before

reaching the receiver boundary; thus the angle of incoming energy at the boundary

depends on the scatterer location rather than on the source location.

6.5 Open issues in internal multiple prediction from SRI

The proposed equation to predict internal multiples more efficiently has not been

implemented yet in a code that can operate on more than four worker processors

simultaneously in order to deal with large quantities of data in a reasonable time.

Thus the method remains to be tested on real data sets with larger offsets and

longer recording times. Also, we have not tested the performance of the algorithm

on more complex models comprising dipping layers or synclines. However, since

we could demonstrate its equivalence to the ISS scheme, we assume that it will

perform equally well in different scenarios at lower computational cost.

Both methods still suffer from the fact that amplitudes of internal multiples are

not predicted perfectly (although quite accurately, for example in the scheme

by Ramı̀rez and Weglein, 2005), because the generated multiples are in fact

pseudo-physical events. In general, the relationship between the amplitude of

a pseudo-physical wave and the scattering amplitude of an object discussed in

section 2.3 and above could be of interest for “true amplitude” internal multi-

ple prediction. Note, however, that the analysis in section 2.3 does not account

for a mulitple scattering scenario: multiple scatterers generate multiple (multi-

ply scattered) non-physical and pseudo-physical events and the interpretation of

the corresponding amplitudes becomes more complicated. Also, limited source

and receiver boundaries affect the amplitudes and need to be taken into account.

Nevertheless, further investigation of this topic would enhance our understanding

of how amplitudes of predicted multiples can be improved and of how they are

related to parameters of the medium.
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Chapter 7

Conclusions

This thesis investigated the ability of source-receiver interferometry (SRI) to con-

struct and analyse multiply scattered wavefields in increasingly complex scenarios

when source and receiver boundaries are only partially available, as in most prac-

tical applications.

For the case of a single point diffractor, I examined each of the eight terms of the

SRI equation individually, both kinematically and dynamically, with respect to

their contribution of physical and non-physical energy to the final interferometric

estimate. I discovered that one term of the SRI equation generates a new type of

non-physical energy called pseudo-physical energy, which emulates the kinematics

but not the dynamics of a physically scattered wave. The integrand of this term

is stationary for any source-receiver pair on the boundary and provides a robust

pseudo-physical estimate of the causal scattered wave even when very limited

source and receiver boundaries are used. When complete boundaries are used,

pseudo-physical energy is produced by several terms of the SRI equation and

I demonstrated that these pseudo-physical contributions cancel each other on

account of the optical theorem. Vice versa, the cancellation of pseudo-physical

energy in SRI proves the optical theorem. I identified one term of the SRI equation

that is also used in seismic imaging and that constructs the physical acausal

scattered field. I showed that for this term partial boundaries are in fact a

positive advantage, since they omit the stationary points of non-physical events

and thus suppress non-physical events in the constructed wavefield. Using only

these two terms, a robust estimate of the causal and acausal scattered field was

obtained, even if boundaries were limited to linear surface arrays and only sparsely

populated by sources and receivers.

The results from the single-scatterer case were applied in a multiple scattering

scenario, where the pseudo-physical term was used to predict travel times and

scattering paths of multiply diffracted waves. I developed a fully automated,
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purely data-driven algorithm that estimates primary diffraction move-outs, iden-

tifies secondary waves and uses these events in the pseudo-physical term to pre-

dict higher-order multiply diffracted waves. The method to estimate individual

primary move-outs, which emerged as a by-product of this algorithm, relies on

cross-correlation of data gathers. Unlike other schemes that use, for example,

semblance analysis of travel time curves, the new method does not require a

model of the background medium and works also for heterogeneous background

media. The algorithm was successfully tested on synthetic data sets obtained

from numerical models containing multiple isotropic point scatterers, contami-

nated with different noise-to-signal ratios.

Finite-difference modeling experiments showed the deficiencies of the method

when finite-sized or anisotropic scatterers were used. The modeling results helped

to design a laboratory scattering experiment and to obtain a real data set to

test the automatic algorithm on. In the laboratory experiment steel rods with

sub-wavelength diameter were used as isotropic scatterers in a homogeneous,

quasi-acoustic gel. Despite the presence of spurious scattered energy in the data,

introduced by the experimental setup itself, the algorithm estimated primary

move-outs quite reliably for up to four scatterers, and I also presented examples

of correctly identified secondary and tertiary arrivals.

The construction of high-order multiply diffracted waves from low-order diffracted

waves naturally lead to an expansion to reflecting media. Using the same pseudo-

physical term of the SRI equation as in the multiply diffracted wavefield I derived

an equation that predicts internal multiples in reflection seismic data. In linear

migration schemes internal multiples typically cause problems since they intro-

duce false reflectors in the seismic image. Hence, they need to be identified and

removed from the data prior to migration. I showed that the internal multi-

ple equation based on SRI is equivalent to an existing internal multiple equation

based on the inverse-scattering series (ISS). This provided an explicit link between

the two quite different concepts of SRI and the ISS. From the insight gained from

SRI I inferred that amplitudes of estimated multiples derived from both SRI and

the ISS must be incorrect because they are in fact pseudo-physical. The equa-

tion also has the downside that it is computationally expensive, which can be

a limiting factor especially in three-dimensional applications. Again, using the

SRI perspective I derived an alternative representation of the internal multiple

equation that computes internal multiples more efficiently using computationally

cheap cross-correlation and convolution, just as in interferometry.
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Following up the results of this thesis, future work could explore whether anisotropic

features are preserved in non-physical or pseudo-physical interferometric esti-

mates and how this would complement the predominantly kinematic wavefield

analysis of most interferometric methods. This could also provide insight into how

the automatic algorithm for diffracted wave identification could be made appli-

cable to anisotropic wavefields and finite-sized scatterers. Finally, both standard

linear migration schemes, which depend on multiple removal, and novel non-linear

imaging techniques, which integrate internal multiples into the migration scheme,

could benefit from a deeper analysis of the link between SRI and the ISS in the

context of internal multiple prediction.
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Appendix A

The method of stationary phase

The method of stationary phase is a procedure that provides an approximate

evaluation of integrals of the form

I =

∫ ∞
−∞

F (x)e−iϕ(x)dx (A.1)

where the function F (x) varies slowly with x compared to the phase term ϕ(x)

(Snieder, 2004a; Schuster, 2009). As the exponential term is rapidly oscillating

over most of the range of integration it can be shown that its contribution to the

integral will be zero apart from the so-called points of stationary phase xs, where

ϕ′(xs) = 0. The Taylor series expansion for ϕ(x) around the stationary point xs

up to second order is given by

ϕ(x) ≈ ϕ(xs) + ϕ′′(xs)
(x− xs)2

2
(A.2)

Note that because ϕ′(xs) = 0 it is omitted in Eq. A.2. Because the function F (x)

is slowly varying with x, close to each stationary phase point it can be replaced

by its value at the stationary point, F (xs), and taken outside of the integral.

Substituting the Taylor expansion into Eq. A.1 this yields

I ≈ F (xs)e
−iϕ(xs)

∫ ∞
−∞

e−iϕ′′(xs)
(x−xs)

2

2 dx

≈ F (xs)e
−iϕ(xs)

√
2π

iϕ′′(xs)

(A.3)

There will be one such approximation for each stationary point xs, and the set of

such approximations may be summed. Eq. A.3 shows that the main contribution

to the integral in Eq. A.1 comes from the points xs where the phase is stationary,

in short, the stationary points.
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Appendix B

Pseudo-physical energy

In this study we show that the term GSGSG
∗
S constructs an event that arrives at

the traveltime of the causal scattered wave GS(x2,x1) and–after normalization

of amplitudes–perfectly matches the waveform of the causal part of the modelled

scattered Green’s function (e.g. Figs. 2.15c and d). This appendix provides

an alternative mathematical development that explains why, despite its physical

appearance, the event constructed from GSGSG
∗
S is in fact nonphysical, and

moreover why it can still be used as an estimate of a physical event.

The derivation is based on representations for scattered fields introduced by Vas-

concelos et al. (2009), for performing intersource and thereafter inter-receiver

interferometry. Halliday and Curtis (2009) and Vasconcelos et al. (2009) show

that in inter-source interferometry the causal scattered wave is provided by sta-

tionary point contributions from the top boundary of receivers (S ′t) according

to

GS(x2,x1) =
2

ρc

∫
S′t

GS(x′,x1)G0(x′,x2)dS ′t (B.1)

A sketch of the corresponding ray paths is given in Fig. B.1. We now assume

that, as before, x2 is a receiver location; hence, G∗0(x′,x2) is not available and

needs to be constructed from interreceiver interferometry using

G∗0(x′,x2) =
2

ρc

∫
Sb

G0(x2,x)G∗0(x′,x)dSb (B.2)

where Sb denotes a bottom boundary of sources, as shown in Fig. B.2. However,

if Sb is not available because the source locations are restricted to the surface,

G∗0(x′,x2) cannot be constructed and GS(x2,x1) in Eq. B.1 is not retrieved.

Note that when substituting Eq. B.2 into Eq. B.1 we obtain a double surface

integral corresponding to the term GSG0G
∗
0. According to Fig. 2.3 and Table

2.1 this term accounts for the construction of the causal scattered wave; however,
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Figure B.1: Sketch of ray paths constructingGS(x2,x1) from inter-source interferometry
according to Eq. B.1. Ray paths shown are (1) GS(x′,x1) and (2) G∗0(x′,x2). Symbol
key as in Fig. 2.2. The dashed line indicates complex conjugation, that is, solid and
dashed lines that run parallel cancel each other in phase. Since x2 is in fact a receiver
location, G∗0(x′,x2) needs to be constructed from inter-receiver interferometry (see Fig.
B.2 or B.3), which turns the receiver at x2 into a virtual source.

as the associated stationary point pair (x = d,x′ = c in Fig. Fig. 2.3) is not

included in the surface boundaries this wave is not retrieved in our examples (Fig.

2.9h). In this case we can still construct an event that looks like the required direct

wave by cross-correlating scattered fields according to

Ĝ∗0(x′,x2) =
2

ρc

∫
St

GS(x2,x)G∗S(x′,x)dSt (B.3)

Fig. B.3 shows a sketch of the corresponding ray paths. However, the Green’s

functions on the right-hand side of Eq. B.3 interact with the scatterer and hence

carry information about the scattering matrix. Therefore the left-hand side of Eq.

B.3 is not equal to a direct wave since it must also contain information about the

scatterer. Snieder et al. (2006) apply a similar argument for waves reflected at an

interface: the apparent direct wave constructed from crosscorrelation of reflected

wavefields contains a factor proportional to the reflection coefficient. Inserting

Eq. B.3 into Eq. B.1 gives the double surface integral representing the term

GSGSG
∗
S .
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Figure B.2: Sketch of ray paths constructing G∗0(x′,x2) from interreceiver interferometry
according to Eq. B.2. Ray paths shown are (1) G0(x2,x) and (2) G∗0(x′,x). Symbol
key as in Fig. B.1.

Figure B.3: Sketch of ray paths constructing Ĝ∗0(x′,x2) from interreceiver interferometry
according to Eq. B.3. Ray paths shown are 1: GS(x2,x) and 2: G∗S(x′,x). Symbol key
as in Fig. B.1
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Appendix C

Supporting Information

The following sections analyse interferometric estimates of source-receiver Green’s

functions between x1 and x2 with boundary sources and receivers confined to

linear surface arrays, as shown in Fig. 2.7. Each estimate is constructed using

only the single term in the integrand of Eq. 2.7 that is shown in the section title

(i.e., the estimate is constructed by ignoring all other terms). Thus we illustrate

the contribution and properties of each term individually. The only exception

is the first section below which analyses the case where all terms are considered

(i.e., where the full Eq. 2.7 is used).

GGG∗: No wavefield separation

The solid line in Fig. C.1 shows the interferometric estimate using all of Eq.

2.7, with the boundaries and constrained to the surface as in Fig. 2.7. Both

the causal and acausal wave between and appear to be constructed; however, we

show in Appendix B that what looks like the causal scattered wave is in fact a

pseudo-physical arrival. The direct wave is missing since stationary points and

are not sampled in this geometry. Instead a number of non-physical events occur

that are not predicted by the directly modelled Green’s function (dashed line).

These events can be stationary or non-stationary and occur due to the lack of

boundary sources and receivers in the subsurface. The origin of the different types

of non-physical arrivals will be investigated in detail by the following numerical

examples. Some non-physical events can be suppressed by tapering the contri-

butions from the end points of the boundaries (Fig. C.1b). Fig. C.1c displays

the interferometric estimate using both monopole and dipole sources (i.e., using

Eqs. 2.1 and 2.2 instead of the approximate Eqs. 2.3 and 2.4). This reduces the

amplitudes of non-physical arrivals (e.g. at 0.25 s) relative to the amplitudes of

physical arrivals. Using a sparser source and receiver coverage along the bound-
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Figure C.1: Interferometric result of the full integral GGG∗ of Eq. 2.7 (solid line)
compared to the true Green’s function between x1 and x2 (dashed line) for different
parameter constellations (see Table 2.2). Maximum amplitudes have been normalized
to one.

aries evokes additional non-physical events (e.g., at 0.5 s, Fig. C.1d). As the

following examples will show, each of these events can be attributed to particular

terms of Eq. 2.7.

G0G0G
∗
S

Table 2.1 shows that the term G0G0G
∗
S accounts for the construction of four

events related to different stationary pairs. In the geometry used (Fig. C.2),

however, only the stationary points c and e are spanned by sources and receivers,

hence only the acausal scattered wave is constructed (Fig. C.3). Besides this

physical arrival, non-physical events are observed at approx. (1) −0.05 s, (2)

−0.15 s, and (3) −0.25 s. Events (2) and (3) originate from the end points of the

receiver boundary where the contributions of non-stationary boundary points are

not cancelled due to the abrupt truncation of the summation—see Fig. 2.10b.

Similarly, event (1) originates from the end points of the source boundary: Fig.

2.10a shows that it is generated in the first step and then contributes to the

second step. All such non-physical arrivals can be significantly suppressed by a

spatial taper (Fig. C.3b). Moreover, the non-physical events are non-stationary
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Figure C.2: Example set of raypaths used in G0G0G
∗
S , symbol key as in Fig. 2.2. The

dashed line represents the ray of the complex conjugated term. Faded symbols are used
to make raypaths visible. Rays shown are 1: G0(x′,x1), 2: G0(x2,x), 3: G∗S(x′,x).

Figure C.3: Interferometric result of the cross term G0G0G
∗
S in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x2 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a). Number labels are referred to in the text.
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and will vary in travel time when, for example, the lengths of the boundaries are

changed. Therefore they can easily be discriminated from the stationary scattered

wave arrival. Using dipole sources enhances the ratio of physical to non-physical

energy (Fig. C.3c). Increasing the inter-source and inter-receiver distance along

the boundaries still retrieves a good estimate of the acausal scattered wave (Fig.

C.3d). In the presented example the decimation of the boundary points by up to

a factor of six did not create additional non-physical events, but this depends on

the slope of the travel time curve in the correlation gather (Mehta et al., 2008;

also compare Figs. 2.13c and 2.14c).

GSGSG
∗
S

Stationary phase analysis predicts that the term GSGSG
∗
S constructs an event

with the same travel time as the causal scattered wave, and that any source-

receiver pair is stationary and contributes energy to the constructed arrival (Table

2.1). This is confirmed in the numerical examples (Fig. C.5): a single event

appears on the trace where the causal wave is expected, and unlike in other

terms, no spurious events associated with the boundaries’ end points are observed

regardless of the parameter constellation. This can be understood in terms of

the correlation gathers (Fig. 2.10c and d): in inter-receiver interferometry as

well as inter-source interferometry the travel time curve in the correlation gather

is a constant, i.e., the travel time of each individual event constructed from a

single source or receiver, respectively, is independent of the source or receiver

position along the boundaries. The stationary points are actually stationary

planes, and all events sum up constructively to give a single arrival. However,

the constructed event is not the causal scattered wave but in fact a non-physical

event that arrives at the same travel time, as we discuss in detail in Appendix

B. Moreover, we show that in 2D it matches also the waveform of the physical

arrival, and that its amplitude differs by a factor proportional to the imaginary

part of the scattering matrix. Hence, the pseudo-physical event constructed from

GSGSG
∗
S gives a good estimate of the causal scattered wave even when using only

a partial integration boundary. In fact, a single source-receiver pair on the surface

is sufficient to construct the pseudo-physical wave, and varying the parameters

does not affect the quality of the constructed wave, nor does it introduce spurious

energy (compare Figs. C.5a to d).
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Figure C.4: Example set of raypaths used in GSGSG
∗
S , symbol key as in Fig. C.2. Rays

shown are 1: GS(x′,x1), 2: GS(x2,x), 3: G∗S(x′,x).

Figure C.5: Interferometric result of the cross term GSGSG
∗
S in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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G0GSG
∗
S

The receiver array in the geometry used (Fig. 2.7) samples the stationary point

x′ = e (Fig. 2.3), which for the term G0GSG
∗
S combined with any source on S

provides a stationary non-physical arrival at ≈ −0.05 s (Table 2.1, Fig. C.8). The

second event around 0.2 s is non-stationary and non-physical as it originates from

the abrupt truncation of the summation over receivers. Fig. C.6 shows that only

the acausal event is stationary under changing boundary conditions. Although

this stationary event is termed non-physical its travel time has a useful physical

interpretation: while the travel time of a (physical) scattered wave between x1

and x2 (e.g. from term G0G0G
∗
S) is given by the sum of the travel times from x1 to

xs and from xs to x2, the travel time of the non-physical event corresponds to the

difference of the travel times from xs to x2 and from x1 to xs. The combination

of both, the sum and the difference, can be solved for the travel times of each

part (from x1 to xs and from xs to x2, respectively) and uniquely defines the

location of a scatterer located below x1 and x2.

Figure C.6: G0GSG
∗
S for different apertures (length ls) of both source (ls) and receiver

(ls−100) boundary showing a stationary (−0.05 s) and a non-stationary (between 0.1 s
and 0.2 s) non-physical arrival.

GSG0G
∗
S

The term GSG0G
∗
S can be interpreted analogously to term G0GSG

∗
S: only the

stationary points that account for the construction of the non-physical event

(∀x′,x = c , Fig. 2.3) are spanned by the source and receiver arrays and provide

a stationary event at approximately 0.05 s (Table 2.1, Fig. C.10). The travel

time of this event corresponds to the difference between the travel times from x1

to xs and from xs to x2. The second event at approximately 0.15 s is also non-

physical but is non-stationary as it is an artefact from the abrupt truncation of the
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Figure C.7: Example set of raypaths used in G0GSG
∗
S , symbol key as in Fig. C.2. Rays

shown are 1: G0(x′,x1), 2: GS(x2,x), 3: G∗S(x′,x).

Figure C.8: Interferometric result of the cross term G0GSG
∗
S in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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Figure C.9: Example set of raypaths used in GSG0G
∗
S , symbol key as in Fig. C.2. Rays

shown are 1: GS(x′,x1), 2: G0(x2,x), 3: G∗S(x′,x).

Figure C.10: Interferometric result of the cross term GSG0G
∗
S in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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source boundary (see correlation gather in Fig. 2.10g). Its travel time therefore

changes with varying aperture of the source array, which makes it distinguishable

from the stationary event (see also Fig. C.6), and its amplitude can be reduced

by tapering on the boundary (Fig. C.10b) and by using dipole sources (Fig.

C.10c). Decimating the source and receiver boundary by a factor of three does

not introduce additional non-physical energy (Fig. C.10d).

G0G0G
∗
0

Because the stationary points associated with G0G0G
∗
0 (a and b in Fig. 2.3)

are not spanned by the surface boundaries the signal that is constructed (Fig.

C.13) does not match the direct wave but consists of (at least two) non-physical

arrivals. As can be seen in Fig. C.11 these events are not stationary but move

out with increasing depth in Fig. C.12. For smaller depths the event converges

towards the true direct arrivals at 0.15 s and −0.15 s, respectively, whereas for

larger depths an asymmetric move out towards positive travel times is observed.

The cross-correlation gather (Fig. 2.10j) reveals that the non-physical energy

originates from the contribution of non-stationary points at the edges of the

boundaries. The events’ amplitudes are significantly reduced by tapering the end

point sources and receivers (Fig. C.13b), and are further reduced by including

dipole sources (Fig. C.13c). Increasing the inter-source and inter-receiver spacing

along the boundaries S and S ′, respectively, introduces further spurious events

on the causal side (Fig. C.13d), which occur due to the incomplete cancellation

of non-stationary events in the inter-receiver step when the spacing on boundary

S is too large (compare Figs. 2.14a and c).

Figure C.11: G0G0G
∗
0 for different depths d2 showing the move-out of non-stationary

events.
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Figure C.12: Example set of raypaths used in G0G0G
∗
0, symbol key as in Fig. C.2. Rays

shown are 1: G0(x′,x1), 2: G0(x2,x), 3: G∗0(x′,x).

Figure C.13: Interferometric result of the cross term G0G0G
∗
0 in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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GSGSG
∗
0

Meles and Curtis (2013) showed that for the term GSGSG
∗
0 any pair of a boundary

source x and a boundary receiver x′ connected by a straight line passing through

the scatterer is stationary and provides a stationary arrival at the travel time of

the causal scattered wave (Table 2.1). This configuration cannot, however, be

realised when using surface boundaries only: both x and x′ are always located

on the same side of, namely above, the scatter. Therefore no stationary event

is constructed, and as before the incomplete boundaries generate non-physical

arrivals due to incomplete destructive interference of non-stationary events (Fig.

C.15a). Applying a taper (Fig.C.15b) and using dipole sources (Fig. C.15c)

suppresses the amplitude of the signal almost completely. A sparse source and

receiver coverage along the boundaries (Fig. C.15d) generates further spurious

events; however, they are not observed in the given time window.

G0GSG
∗
0

As before, the linear source and receiver arrays do not span the stationary points

required to create the events associated with the term G0GSG
∗
0 (Table 2.1);

instead non-physical arrivals occur due to the incomplete cancellation of non-

stationary signals. This can be proved following previous arguments by looking

at the cross-correlation gathers and the behaviour of the constructed signals un-

der varying source/receiver boundary conditions. The traces in Fig. C.17 show

the effect of different parameter constellations. Most noticeable is the strong am-

plitude reduction by down weighting the contribution of end point sources and

receivers with a taper (Fig. C.17b), and the additional reduction by using dipole

sources (Fig. C.17c). Increasing the inter-source and inter-receiver distance on

boundaries S and S ′, respectively, produces new spurious events, which, however,

lie outside the considered time window (Fig. C.17d).
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Figure C.14: Example set of raypaths used in GSGSG
∗
0, symbol key as in Fig. C.2.

Rays shown are 1: GS(x′,x1), 2: GS(x2,x), 3: G∗0(x′,x).

Figure C.15: Interferometric result of the cross term GSGSG
∗
0 in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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Figure C.16: Example set of raypaths used in G0GSG
∗
0, symbol key as in Fig. C.2. Rays

shown are 1: G0(x′,x1), 2: GS(x2,x), 3: G∗0(x′,x).

Figure C.17: Interferometric result of the cross term G0GSG
∗
0 in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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GSG0G
∗
0

The stationary points for GSG0G
∗
0 are c and d in Fig. 2.3, which account for

the construction of the causal scattered wave and a non-physical, but stationary

event (Table 2.1). Using surface boundaries only, point d is not spanned and

the expected signals are not constructed. The arrivals shown in Fig. C.19 are

non-physical and non-stationary and originate from incomplete cancellations in

the summation of non-stationary events. As before, this can be shown from the

cross-correlation gathers. The amplitude can noticeably be reduced by applying

a spatial taper (Fig. C.19b) and by using dipole sources (Fig. C.19c). A coarser

source and receiver coverage along the boundaries introduces new spurious ar-

rivals at large travel times (Fig. C.19d). See previous sections for a detailed

analysis of the generation of non-stationary events.
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Figure C.18: Example set of raypaths used in GSG0G
∗
0, symbol key as in Fig. C.2. Rays

shown are 1: GS(x′,x1), 2: G0(x2,x), 3: G∗0(x′,x).

Figure C.19: Interferometric result of the cross term GSG0G
∗
0 in Eq. 2.7 (solid line)

compared to the true Green’s function between x1 and x1 (dashed line) for different
parameter constellations (see Table 2.2). Traces have amplitudes that are normalized
relative to case (a).
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