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Abstract

Epidemiological evidence suggests that factors within the intra-uterine
environment programme the propensity to high blood pressure, diabetes and
cardiovascular disease in the adult. In this thesis I examine the hypothesis that
exposure to glucocorticoids in utero alters birth weight and might act to determine later
cardiovascular risk.

I present evidence that exposure of the rat fetus to exogenous glucocorticoids in
utero, by means of administration of dexamethasone to female Wistar rats during
pregnancy, results in reduction in birth weight and later rises in blood pressure, when
measured both by direct carotid cannulation and by indirect tail cuffmeasurement at 3
to 17 months of age. I further examine the observation that exposure of the fetus to
maternal glucocorticoid is influenced in normal physiology by the placental
glucocorticoid metabolising enzyme, 11 beta hydroxysteroid dehydrogenase,
presenting evidence that inhibition of this enzyme by carbenoxolone increases fetal
glucocorticoid exposure and also results in changes in birth weight and later changes in
birth weight and blood pressure.

The mechanism of the rise in blood pressure induced by in utero glucocorticoid
exposure is examined by: i) assessment of the plasma-renin-aldosterone axis in vivo in
adult animals both basally and in response to acute and chronic infusion of angiotensin
II, ii) examination of vascular structure and reactivity in vitro in vessels derived from
adult animals and iii) examination of central expression of glucocorticoid receptors in
areas of the brain known to influence the control of blood pressure.

Finally I present evidence that exposure the fetus to glucocorticoids also
influence glucose metabolism in the adult, examining potential mechanisms for this
including alteration in insulin sensitivity, insulin secretion and hepatic glucose output.
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Introduction

In this thesis I present experimental work examining the hypothesis that exposure

of the fetus to glucocorticoids in utero leads to lifelong programming of cardiovascular

risk, in particular high blood pressure and impaired glucose tolerance. The

introduction concerns previous observations which underpin this hypothesis. In the

first part I will review the epidemiological evidence supporting a role of intra-uterine

influences in the later development of cardiovascular risk, work chiefly arising from

the MRC Environmental Epidemiology Unit in Southampton. In the second part I will

discuss the potential mechanisms for this influence, reviewing the known influences on

birth weight and later diabetes mellitus and hypertension, I will also examine the

hypothesis that under nutrition in utero might underlie the observed epidemiological

phenomena. The third part concerns the known effects of glucocorticoids on the fetus

as well as considering the normal physiological control of glucocorticoid exposure of

the fetus, concentrating upon the role of the placental glucocorticoid metabolising

enzyme 11 B-hydroxysteroid dehydrogenase type 2( 11B-OHSD 2).

The prenatal environment and cardiovascular disease

a) The relationship of cardiovascular risk factors in childhood to

cardiovascular risk as an adult

Cardiovascular disease occurs almost exclusively in middle and old age, but it is

clear that the pathogenesis of the disease starts many years earlier. Prospective studies

in adulthood highlight well described risk factors for cardiovascular disease including

diabetes mellitus, impaired glucose tolerance, hypertension, hyperlipidaemia and

smoking1. Such studies, conducted entirely in adult life, necessarily emphasise

associations with current risk factors or current environmental factors but it is apparent

that the origins of cardiovascular disease and of its major risk factors lie well before the

time that the disease is symptomatic.

Autopsy studies of young adults show that, while symptomatic cardiovascular
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disease is rarely present at these ages, there is evidence of the early development of

atherosclerosis from as early as 15 years in a significant percentage of the population2.
Risk factors also seem to be established early. Familial influences on blood pressure

are present in the first decade of life3 and, when ranked in terms of cardiovascular risk

factors, individuals tend to maintain that rank order within a population from early

childhood4"6, the phenomenon known as "tracking". This suggests that while

cardiovascular risk may be influenced by factors in the immediate environment

(smoking, salt intake, caloric intake) there are also longstanding influences from either

genetic or early environmental factors7. Tracking has been observed for blood

pressure 5> 6 as well as other variables such as cholesterol 4' 6, height6 and weight6
and is established early, being observed for blood pressure and cholesterol from as

early as 6 months to 1 year 8-4. In the study of Gillman et al5 the observed tracking

meant that 44% of the individuals with systolic blood pressure at age 10 greater than

the 95th centile had systolic blood pressure greater than the 90th centile at age 20,

leading to the observation that the best predictor of adult blood pressure is blood

pressure level in childhood9. Tracking is often used as evidence of genetic influences

in these risk factors and while such influences may play a part it also raises the

possibility that factors in the early environment might be important.

b) Birth weight and cardiovascular risk

There is now extensive evidence for a relationship between birth weight and later

cardiovascular risk. These studies are detailed below along with possible additional

and confounding factors, in particular whether the changes observed by Barker et al are

explained by factors relating to current and previous social class and whether other

factors such as placental weight or fetal morphology (for example ponderal index, head

circumference or abdominal circumference) are important indicators. The potential

mechanisms for the association between birth weight and later risk will be examined in

the next section.
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The design of most of these studies is similar, involving retrospective data on

gestation length, birth weight, placental weight and newborn morphology which are

compared to current data regarding a variety of cardiovascular risk factors. It should

be noted that data regarding offspring morphology are, in the main, only available for

the studies based in the Sheffield population, while placental weight was available for

the Preston and Sheffield studies only.

i) Cardiovascular mortality and disease

Epidemiological studies from the Southampton group display a graded

relationship between birth weight and later cardiovascular death, in studies of the

population of Hertfordshire10, n, Sheffield 12 and in Mysore in India13, in both men

10,12,11,13 ancj women 11,13 Importantly, the differences predicted by birth weight

are large enough to be biologically important. The larger of the Hertfordshire studies

included 5585 women and 10141 men11 and found a fall in SMR (Standardised

Mortality Ratio) for cardiovascular disease from 80 for birth weight <5.5 lb. to 46 if

birth weight 9-9.5 lb. in women and from 96 to 61 for men in the same weight

categories. A doubling of the risk of non-fatal coronary heart disease across the range

of birth weights has also been suggested from a similar large study in the United

States14.

The studies conducted in the UK usually consider all cardiovascular disease

together taking as their range International Classification of Diseases(ICD) codes 390-

459, including coronary heart disease (ICD codes 410-414) and stroke (ICD codes

431-43 8)11. In considering the underlying factors in the relation of lower birth weight

to cardiovascular risk, it may be interesting to consider whether diagnoses within this

classification behave differently. World-wide, there is a large range in the ratio of

stroke deaths to coronary heart disease deaths in different populations15. This

suggests that either other risk factors are involved or that the classical risk factors vary

in their propensity to cause these conditions. Comparisons of international populations

1 1



suggest the latter, with hyperlipidaemia more important as a risk factor for coronary

heart disease than stroke, and hypertension most closely related to stroke16'17.
In the original studies which displayed the relationship of cardiovascular disease

to lower birth weight12' 1!, similar trends were observed for coronary heart

disease(ICD codes 410-414)11 as all cardiovascular disease, but trends for stroke were

not reported, presumably due to the smaller total number of stroke deaths compared to

coronary heart disease deaths12, u. In populations in India and the United States it is

again comparisons of birth weight with coronary heart disease alone that have been

reported14, 13. More recently however an analysis of the combined Sheffield and

Hertfordshire populations have suggested a very similar inverse relationship between

birth weight and both stroke and coronary heart disease. The populations were divided

into quintiles and SMR for stroke was found to fall by 12% as birth weight rose in

successive quintiles, while SMR for coronary heart disease showed a similar 10% fall

for each quintile18. The similar relationship between birth weight and both stroke and

coronary heart disease death might suggest that factors such as blood pressure and

impaired glucose tolerance are potentially important underlying factors in the genesis of

this risk. The evidence for the influence of birth weight on these various

cardiovascular risk factors is described below.

ii) Hypertension

In 1985 Wadsworth et al reported data from the Medical Research Council

National Study of Health and Development, examining a cohort of subjects aged 36.

In examining blood pressure, multiple regression analysis revealed that as well as a

range of less surprising factors (father's prevalence of cardiovascular disease, current

BMI, smoking in males) systolic blood pressure was also inversely associated with

birth weight in both sexes19. These data were later re analysed by Barker and

Wadsworth, leading to the "fetal origins of adult disease hypothesis"20. Further

studies by this and other groups are summarised in Tables 1 and 2.
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Lower birth weight babies have higher blood pressure in the majority of these

studies (Table 1) with the differences between groups becoming more prominent in

older age groups, both in comparisons of cross sectional studies21 and in longitudinal

studies22. The negative studies in the main involve very low birth weight infants (<1.5

kg 23 or < 10th centile 24) or have rather small numbers 25. Those studies that showed

a very small26 or no 27'24'28 difference in subjects aged from 15-19 may reflect the

known disruption of tracking of blood pressure during the adolescent growth spurt 9.
While the magnitude of such changes may on the face of it appear small, this

should be placed in context with the powerful effect of blood pressure on disease.

Meta-analysis of the available epidemiological studies suggest that a 5 mmHg reduction

in diastolic blood pressure is associated with a 34% reduction in strokes and 21% less

coronary heart disease29. Clearly numerically modest changes in blood pressure when

exerted lifelong may have great importance to later disease.

Few of the studies have examined how much of the variance of adult blood

pressure might be explicable by birth weight. One such study examining blood

pressure in 3332 individuals aged 36 suggested that 4% of the adult variance of blood

pressure was attributable to birth weight, compared to 12% of the variance being

attributed to adult BMI in the same population30. Again, although small, such an effect

across a population might be expected to produce a significant effect upon later disease.

No study has modelled whether the changes observed in cardiovascular disease could

be attributable to this size of change in blood pressure, it seems likely that they are not

and that effects on other risk factors are of importance.
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Table 1: Low birth weight is associated with later raised blood pressure

Population Sex Age n ref

Holland(1993) M+F 3 months
+4 years

476 negative association between
birth weight and BP

31

Salisbury(1991) M+F 4 2.6mmg increase in blood
pressure between birth weight
<3,000 g and birth weight
>3,600 g.

32

9 U.K. towns

(1989)
M+F 5-7 3591 1.83 mmHg fall in BP for each

kg rise in birth weight
33

10 U.K. towns

(1992)
M+F 5-7 3360 2.9mmHg difference SBP

between the highest and lowest
quintiles

34

New

Zealand(1992)
M+F 7 1200 ImmHg rise SBP in growth

retarded infants (birth weight
< 10th centile)

24

Oxford U.K.

(1985)
M+F 7.5 216 negative assoc birth weight and

blood pressure in males
35

Aberdeen (1984) M+F negative assoc. birth weight and
blood pressure

36

Guildford and

Carlisle, U.K.
(1995)

M+F 5-7 and
9-11

1511 birth weight inversely assoc.
with SBP, (-2.8 mmHg.kg-1) and
DBP (-1.4 mmHg.kg-1)

22

Kingston, Jamaica
(1996)

M+F 6-16 2337 SBP inversely related to birth
weight (-2.6 mmHg.kg-1)

37

MRC

national(1989)
M 10 fall SBP 0.38mmHg lowest to

the highest tertile

M 36 SBP fell by 2.57 mmHg (0.98-
4.16)from the lowest to the
highest tertile

MRC national

(1989)
F 10 SBP fell 1.32mmHg from the

lowest to the highest tertile

F 36 SBP fell 1.83 mmHg (0.28-3.39)
from lowest to highest tertile

20

Israel (1991) M 17 19,734 "small effect"

Israel (1991) F 17 12,846 "small effect" 26

Croatia(1988) M 19.9 214 5 mmHg difference SBP between
the highest and the lowest
quartile of blood pressure

Croatia(1988) F 19.6 251 SBP ImmHg difference 38

Sweden (1988) M 28 77 significant increase in
hypertension (DDBP>90) if birth
weight <2.5 kg

39

San Antonio Heart

Study(1994)
M+F 25-39 447 +

135
1kg fall birth weight assoc.
2.1mm increase SBP and 1.7mm
increase DBP

40

England,
Scotland,
Wales(1993)

M+F 36 3332 inverse linear relationship
between birth weight and BP
aged 36

30

Mysore (1996) M +F 38-60 517 significant association birth
weight with hypertension

41

Preston

(1990)

M+F 46-54 449 SBP 11 mmHg rise from birth
weight ^5.5 lb. to >7.5 lb.

42

Sweden M 50 1333 2.2 mmHg reduction in blood
pressure for every lOOOg increase
in birth weight

43

Hertfordshire

(1991)

M 64 468 SBP fell by 11 mmHg from the
group with birth weight ^5.5 lb.
to >9.5 lb.

44

Hertfordshire

(1995)
F 60-

71(64)
297 NS trend SBP fell bv 2.1 mmHs

per lb. increase in birth weight
45
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Table 2: Blood pressure and birth weight: negative studies

Population Sex Age n Ref

Cleveland,
US(1993)

M+F 8 490 very low birth weight
(<1.5 kg) infants

23

Glasgow,U.K.
(1991)

M+F 15 959 maternal recall of birth

weight
27

Wales

(1994)
M+F 15 660 low birth weight <2.5 kg

matched to 3-3.8 kg
infants: no difference in
SBP

28

New
Zealand(1992)

M+F 18 1200 no difference in growth
retarded infants (birth
weight < 10th centile)

24

Tecumseh,
Michigan,
US(1980)

M+F 20 4500 No consistent association
between BP and birth

weight

46

Oxfordshire

(1993)
M+F 43 101 1st degree relatives of

NDDDM

25

iii) Impaired glucose tolerance

In 1991 Hales et al reported the association of lower birth weight with an

increased risk of impaired glucose tolerance and diabetes mellitus44. This has now

been supported by several studies in adult populations examining impaired glucose

tolerance or diabetes47"49, syndrome X 50'51, and in younger populations alterations in

glucose metabolism short of diabetes52' 53(Table 3). Hales and Barker have suggested

the "thrifty phenotype hypothesis" in explanation of these associations, proposing that

under-nutrition in early life might lead to the programming of various metabolic

processes later expressed as hyperglycaemia and hypertension44. The title "thrifty

phenotype" alludes to the previous "thrifty genotype hypothesis" of Neel54, which had

suggested that a genetic make up selected for in circumstances of periodic nutritional

deprivation might be maladaptive in modern circumstances of over nutrition, explaining

the rising prevalence of non insulin-dependent diabetes, most notably in ethnic groups

experiencing relative over nutrition for the first time.
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The studies examining the thrifty phenotype hypothesis have ranged over a

variety of populations and ethnic groups including those in the United Kingdom

(Hertfordshire 44, 50 Preston50' 47 , Southampton 52) as well as the United States 48-

51, Sweden 49and India 53. I have summarised the findings in Table 3 and the

influence of birth weight is striking. In the Preston Study the odds ratio for the risk of

diabetes or impaired glucose tolerance fell from 3.5 for birth weight less than 2.5 lb. to

1.0 for birth weight greater than 3.4 lb. in men, and 12.1 for birth weight less than

2.5 lb. to 1.0 for birth weight greater than 3.4 lb. in women. In the combined data

from the Preston and Hertfordshire studies there is an even more marked effect for

Syndrome X (defined as 2 hr plasma glucose greater than 7.8 mmol.H, fasting

triglycerides greater than 1.4 mmol.l"1 systolic blood pressure greater than 160 mmHg)

with a fall from 22% of the population positive for Syndrome X if birth weight had

been less than 6.5 lb. to under 2% if birth weight had been greater than 9.5 lb..

The only negative study examining birth weight and glucose tolerance is from

Salisbury where children previously studied for blood pressure at the age of 4 years

were examined with a modified oral glucose tolerance test at 7 years 55. The authors

report no influence of birth weight on plasma glucose or insulin either at 0 or 30

minutes (because the subjects were children only a 30 minute oral glucose tolerance test

was performed) .

There are, therefore, several studies supporting an association in populations

between lower birth weight and alteration in glucose tolerance. Perhaps one weakness

of this data is that most of the studies, while differing in populations and age of

participants use a broadly similar study design, perhaps with similar inbuilt bias56. It
is important then that other confirmatory evidence is now appearing. Poulsen et al

have recently examined birth weight in monozygotic and dizygotic twins discordant for

non-insulin dependent diabetes and found that in both sets of twins birth weight was

significantly lower in those with later NIDDM57.
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Table 3: Birth Weight and Later Glucose Tolerance

Population Age n ref
Hertfordshire (1991) 64 (59-

70)
468 men <,2.5 kg 30% IGTT, 10%

DM
>4.3 kg 14% IGTT, 0%
DM

44

Preston(1993) 50(46-
54)

266 men and
women

IGTT or DM , <2.5 kg 27%
>3.41 kg 6%

47

Sweden(1994) 60 1000 relative risk NIDDM 1.4 for

every 1 SD fall in birth
weight

49

Pima Indians(1994) 20-29 1464 <2.5 kg 34% DM
2.5-4.4 kg 15% DM

48

Syndrome X
Hertfordshire +

Preston(1993)
407+266 < 6.5 lb. 22% Syndrome X

>9.5 lb.<2.2% Syndrome X
50

San Antonio Heart

Study(1994)
(25-39) 582 1 kg decrease in birth

weight assoc. 3.7pU/ml
increase in fasting insulin,
increase SBP and DBP

51

Younger
subjects
India(1995) 4 379 no trend for fasting glucose,

30 minute glucose falls as
birth weight rises

53

Southampton(1992) 21 40 men decrease of 1 kg birth
weight assoc. with 1.5 mmol
rise in 30 min pg

52

iv) Birth weight and Insulin

Both B-cell failure and insulin resistance are present when non-insulin dependent

diabetes is clinically apparent58 and have been implicated as early aetiological factors in

non-insulin dependent diabetes59"62 and in the development of obesity63. Influences in

early life might affect either one or both of these factors. The large epidemiological

studies rely upon oral glucose tolerance tests which, while showing rises in both

glucose and insulin in men44'47 and women51'45 at two hours, are difficult to interpret

with regard to insulin resistance or insulinopenia. Some information might be gleaned

from fasting measures of insulin and incompletely processed forms of insulin (pro

insulin and 32-33 split pro insulin) which are shown to correlate with more detailed

measures of insulin resistance in population studies64. The results are inconsistent

however, with a relationship of higher fasting insulin in keeping with insulin resistance

in those of lower birth weight in some51- 45, but not all 47' 51 female populations and

not in male populations44, 47> 51. Fasting pro-insulin shows a relationship in some
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studies47, but not others44' 45 as does fasting split pro-insulin (negative47 and

positive44' 45). The more recent twin study has also been interpreted as favouring a

role of insulin resistance as a consequence of lower birth weight, in this case due to an

inverse relationship between birth weight and 120 minute plasma insulin concentrations

after an oral glucose tolerance test57. More detailed studies ofmuch smaller groups of

non-diabetics have supported an association of low birth weight with insulin resistance

(assessed by intravenous insulin injection) 65. Such detailed metabolic studies in twins

of birth weights are awaited.

Lower birth weight might also act by affecting either B-cell mass or B-cell

function. Some support for this might be inferred form the observation that lower birth

weight and small for gestational age infants have been reported as having an earlier

onset of insulin dependent diabetes mellitus compared to other diabetic children in

retrospective analysis66. In studies examining birth weight in non-diabetic subjects

evidence of impaired insulin secretion has been present in some25, but not all 67

populations.

As yet the evidence of a relationship between lower birth weight and insulin

secretion or resistance are at a rather early stage, some of the evidence is contradictory,

and in addition almost all of the studies use indirect measures of insulin action and

secretion: the interpretation levels of insulin and incompletely processed forms of

insulin during glucose tolerance tests as being indicative of either insulinopenia or

insulin resistance must be dealt with caution.

v) Other factors

Other factors potentially relating to cardiovascular risk have been examined,

raised plasma fibrinogen has been associated with lower birth weight in some42 but not
all studies68, while plasma lipids have shown trends short of significance 69.
Cholesterol has shown a relationship to abdominal circumference69 and length at

birth37.
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c) Placental weight and other morphological factors

Placental weight

In the studies of Barker et al, where such data are available, importance has also

been given to placental weight in determining fetal outcomes. In particular, higher

placental weight has been associated with higher blood pressure in children32 and in

adults42. This is a slightly curious finding, given the data on birth weight, as there is a

linear relationship between placental and fetal weight in human populations and in

terms of perinatal outcome, it is reduced placental size, and a high fetal weight to

placental weight ratio which appears to be detrimental70.
The change in blood pressure that has been related to placental weight is certainly

large enough to be biologically important, however, with a rise in mean systolic

pressure from 148 mmHg in those with placental weight <1.5 lb. to 159 mmHg in

those with placental weight >1.5 lb.42. Data for other outcomes and risk factors are

less clear: no independent association for placental weight has been apparent for

cardiovascular mortality 12 or insulin resistance 65, while placental: birth weight ratio

appears to be predictive of cardiovascular mortality 12 and impaired glucose tolerance4'

(the data for the relationship to placental weight alone are not given).

In the majority of the studies relating low birth weight to hypertension45, diabetes
mellitus44-48 or cardiovascular disease10' U'71 placental weight is not available . The

data on the relation of placental weight to blood pressure are not uniform, however,

with other workers reporting an inverse relationship (i.e. babies with heavier placentae

having lower blood pressure in later life)24'22'37 or no relationship of birth to placental

weight ratio24, 22' 37. In addition, stroke mortality, thought to be strongly related to

high blood pressure, appears to fall with higher placental weight18, making one more

cautious about the interpretation of the positive studies.

Ponderal Index

Other studies have suggested that a number of patterns of fetal morphology might
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be of importance, potentially representing the impact of different intra uterine insults on

growth patterns and later disease. If corroborated, these different patterns might give

important clues as to the factors leading to the growth retardation. Of all of these

patterns, most data are available regarding ponderal index, derived from birth weight

divided by the cube of newborn length. In studies of the Preston population, Barker et

al 72 defined two at risk groups for hypertension:

1) babies with placental weight <1.25 lb., thin (ponderal index <12) , below

average birth weight, below average head circumference babies and

2) if placental weight >1.25 lb. babies with above average birth weight, above

average head circumference, but below average length were at risk. i.e. babies short in

relation to their head size.

While the cause of these different patterns remains uncertain, thinness at birth has

been implicated in a number of other studies where the detailed morphological

information to allow this assessment are available. Low ponderal index appears to be

more strongly related than birth weight to hypertension later in life both in children32
and in adults72, and to impaired glucose tolerance47'65-49 and cardiovascular death 12
in adults. When different causes of cardiovascular death are considered, ponderal

index appears to relate to coronary heart disease mortality but not stroke mortality18,

perhaps a surprising result given the stronger relationship of hypertension to stroke

mortality16' 17. In the majority of studies ponderal index is not examined

(hypertension 42'26'45 diabetes 44>48 cardiovascular mortality/ prevalence 1 f 71) as the
detailed morphological data on newborn length was not available. The association of

lower ponderal index to cardiovascular risk is not universal with some studies showing

no relationship of ponderal index to higher blood pressure24 and to cardiovascular

mortality13.
The relationship of systolic blood pressure to small head circumference relative to

length72 has been observed in other populations 32' 12 and also for diabetes and

cardiovascular mortality12 by the Southampton group. By contrast death from stroke
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has been related to higher head circumference in relation to birth weight18. Other

studies have related length at birth to Haemoglobin A1 in childhood37
The epidemiological studies suggest a variety of associations; with low birth

weight, with thinness, with babies of small head circumference and with babies short

in relation to their weight. Currently the greatest consistency in these results appears

for the relation of birth weight to cardiovascular risk. While some other patterns may

emerge as important in the future it would be reassuring to see them repeated in

different populations in the first instance.

Birth weight vs. weight at 1 year

The studies of Barker have studied both birth weight and weight at 1 year. The

hypothesis that early nutrition is of central importance would allow both influences in

the intrauterine period and in the early postnatal period and therefore both measures

might be related to later cardiovascular disease. At first sight the hypothesis that fetal

glucocorticoid exposure is the underlying mechanism would seem to predict a greater

influence of birth weight than weight at 1 year. Clearly however an adverse

intrauterine milieu might still be reflected in weight at 1 year. The hypothesis would

only be challenged if weight at 1 year were a much stronger predictor than weight at

birth. This does not seem to be the case.

In the studies of cardiovascular mortality both birth weight and weight at 1 year

predicted mortality in men10, n, but only birth weight in women11. Only the study of

the subgroup of 290 individuals assessed for current cardiovascular disease showed a

relationship with weight at 1 year but not birth weight71.
Individual cardiovascular risk factors seem to vary in their association perhaps

reflecting different patterns of early growth 12. Thus blood pressure has been

associated chiefly with low birth weight44, an exception being the study of Kolacek et

al 38, while plasma fibrinogen and factor VII concentrations correlate with weight at 1

year but not birth weight 68.
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Conclusion

The epidemiological studies cited above present good evidence of an association

between birth weight and later cardiovascular risk, high blood pressure and impaired

glucose tolerance. The strength of the data on birth weight is that such associations

now appear in several studies and in different population groups. The data on birth

weight are provocative, leading to a novel and exciting hypothesis in cardiovascular

disease: that influences exerted in utero many years before might alter cardiovascular

risk as an adult. In the next section I review what is known of the control of birth

weight and address those influences which might act in utero both to affect birth weight

and later cardiovascular risk.

In considering the above studies it is also important to note that the presence of a

statistical association does not infer causation, even with a great weight of evidence.

There are many ways in which low birth weight might be linked to later cardiovascular

risk, not all of which involve concepts of metabolic programming, for example a given

factor may lead independently to both lower birth weight and later disease. To this end

I will also consider factors such as social class which might both point to aetiological

links between low birth weight and later cardiovascular disease but might also exert a

confounding influence due to co-associations of poverty with low birth weight and

cardiovascular disease independently.

A role in the prediction of cardiovascular risk has also been suggested for other

factors, including placental weight, ponderal index, newborn length and head

circumference. Such associations, when available, hold out the intriguing possibility

of giving clues as to the potential insult which might be acting in utero to alter

cardiovascular risk later. In the next section I will also discuss the factors which, in

particular, might affect ponderal index. As a note of caution, however it is reasonable

to note that the evidence for these other morphological associations is more sparse and

there are contradictory studies. For this reason I have concentrated upon birth weight

and await further, confirmatory studies with regard to some of the other factors.
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Another relevant question is to the extent of the influence of birth weight upon

later disease or risk factors. Where it attempted, the analysis of how much of the

variance of blood pressure or glucose tolerance is explained by birth weight appears to

be rather small, being 4% for blood pressure30 and 5% for blood glucose

concentrations57. It is important to point out however that much of the importance of

birth weight may be lost in such analyses. The study of Poulsen et al in twins57 shows

that it is not being of low birth weight per se but rather being of a lower weight than

expected that appears to be important. Thus, the co-twins who later developed diabetes

were by no means small, but they were smaller than their fellows who did not later

develop diabetes. It is impossible in the large studies to estimate the degree of

reduction in "expected" birth weight versus later disease and as such the raw

comparison of birth weight to later disease might be expected to underestimate this

potential effect.

Finally in the studies relation birth weight to later mortality, it is observed that

known risk factors do not explain all of the associations13, highlighting the possibility

that influences on birth weight may act via as yet undescribed risk factors.
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2) Earlv influences: potential mechanisms for the association between

birth weight and later cardiovascular risk

a) The control of birth weight

Birth weight has been the subject to extensive epidemiological investigation partly

as it has proven a powerful predictor of perinatal mortality. The weight of the newborn

might be influenced by many factors: both the products of fetal genes and the fetal

environment may be of importance and the latter will in turn be determined by maternal

genotype, phenotype and influences in the maternal environment. One of the features

of the epidemiological data linking birth weight to cardiovascular risk is that it appears

to act in a graded fashion across the population and is not an effect of shorter length of

gestation but lower weight in full term infants. While it remains possible that genetic

factors in the fetus might be the common factor in both the control of birth weight and

later cardiovascular disease, it is the hypothesis of the Southampton group that the link

between birth weight and cardiovascular risk is determined by environmental factors in

utero. In attempting to explain the connection between birth weight and cardiovascular

risk then, it is important to consider the contribution of genetic and environmental

influences upon the variance of birth weight in the normal population. If birth weight

were almost entirely controlled by genetic factors then it would be difficult to interpret

the data of Barker et al as reflecting environmental effects. Further, it is necessary to

look for factors within the fetal environment that might influence birth weight across

the range of the normal population.

If one examines certain specialised situations then both environmental and genetic

factors clearly have some influence. Effects of the fetal environment are seen in pattern

of growth in multiple births. The growth curves of triplets are similar to those of

singleton births until the 32nd week and diverge thereafter. For twin births the

divergence is not until the 36th week73. This difference in birth weight between

multiple and single births is generally attributed to the physical constraint of the uterus

apparent from animal studies74. Effects of fetal genes are seen in the growth

24



inhibiting effects of chromosomal abnormalities75, and of influences of the sex

chromosomes: males are observed to grow faster after the 28th week and are born on

average 150g heavier73.

In part reflecting such effects, examination of the extremes of the distribution

curve for birth weight reveals a number of causes. Intra-uterine growth retardation is

said to affect 3-10% of all pregnancies depending on diagnostic criteria used: arising

secondary to causes such as chronic utero-placental insufficiency, drug exposure,

congenital infection and genetic abnormalities (reviewed in 76). In the UK population,

obstetric studies pick out maternal height, smoking in pregnancy, parity and history of

pre-eclampsia as the most important determinants of birth weight in surveys77. While

some of these factors (smoking, pre-eclampsia, congenital abnormalities) are estimated

to account for up to 60% of the occurrence of very low birth weight (below 2 standard

deviations)78, their influence on weight away from the extreme appears to be less

marked.

For whatever reason there is a strong familial aggregation of birth weight79.
Studies examining the importance of the genetic and environmental influences on birth

weight across the whole population vary widely in their estimation80"86 but in the main

favour a low influence of the fetal genotype80' 84"86 and stress the importance of

environmental factors derived from the mother80'84'86. It should be pointed out that

all such studies are poor at picking out environmental factors which might be shared

across generations from genetic factors83 and as such will tend to underestimate

environmental factors. Further caution is necessary as the relative influences of genetic

and environmental factors may differ depending on the population studied and with

time. There is a large international variation in birth weight with frequency of births

weighing less than 2500g varying between 3 and 43% in different populations87 with
undoubted effects of poverty and under nutrition at the extremes of these figures87.

While bearing these caveats in mind, in Western populations that factors such as

parity, pre-pregnancy weight, weight gain in pregnancy, maternal and paternal birth
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weights, maternal smoking and fetal gender are all associated with birth weight but

account for only 10-20% of the variance83,85, with gestational age accounting for a

further 10%85. Even in those studies which add measures ofmaternal glycaemia, only

30% of the total variance in birth weight is explicable88. The available data then,

would leave much of the variance of birth weight unexplained.

In considering the fetal origins hypothesis, the most important point is the low

influence on birth weight attributed by most studies to the fetal genome. It is of interest

is that much of the variance in birth weight is unexplained, even in populations highly

defined for maternal and paternal factors. It is entirely plausible, if unproven, that

environmental factors not represented in the various measures previously studied

might influence birth weight.

Given the data derived by Barker on aspects of fetal morphology such as

ponderal index, it is worthwhile at this point considering possible influences on this

and other morphological factors. Different pathological causes of intrauterine growth

retardation lead to different patterns of growth retardation. As peak velocity for length

growth occurs in the 20th week and peak velocity for weight growth occurs in the 33rd

week, insults occurring at different times in pregnancy may partly underlie these

different patterns89. In particular, insults late in pregnancy would be expected to have

a greater effect on weight than length, resulting in low ponderal index (weight/ length3)

Malnutrition throughout pregnancy, smoking, alcohol, drugs, pancreatic agenesis,

chromosomal abnormalities and chronic intrauterine infections result in growth retarded

infants of appropriate ponderal index, while insults in the third trimester result in low

ponderal index (disproportional, non-symmetrical or wasted growth retardation)76.
Low ponderal index has been observed in offspring of well nourished mothers with

low weight gain through pregnancy, in association with preeclampsia and in utero¬

placental insufficiency90, 76. Interestingly, follow up of such infants shows that the

appropriate ponderal index group of growth retarded infants continue to grow poorly,
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whereas the low ponderal index group show a rapid catch up growth90- 91. The

influence of nutrition on ponderal index is considered below.

b) Environmental influences on birth weight and cardiovascular risk

factors

In this section I will consider some of the various adverse environmental factors

which might impact upon fetal growth and later cardiovascular risk.

It is possible that the association of lower birth weight and cardiovascular risk is

not cause specific: that any growth restraining insult might result in later risk, perhaps

as has been proposed for high blood pressure, as a result of catch up growth7. This,

however, does not seem to be the case. When one considers twin births, the physical

restraints of the uterus results in a reduction in birth weight73 but this does not seem to

be reflected in a later increase in cardiovascular mortality compared to the singleton

population92. All insults then, do not appear to have the same long term impact on

cardiovascular risk and it is important to consider whether any of the factors currently

known to influence birth weight have been studied with regard to effects on such risk.

i) Hyperglycaemia

Glucose crosses the placenta by a carrier-mediated facilitated diffusion and is an

essential source of fuel for both fetus and placenta, with fetal tissues such as brain,

kidney and the adrenals relying almost entirely upon glucose for their energy needs

(reviewed in 93). Given the important role of glucose as a fuel for fetal growth it has

been proposed that the intra uterine environment of a diabetic pregnancy might have

many long term effects on the fetus94. Further evidence for the potential effects of

diabetic pregnancy on the offspring come from studies of the inheritance of non-

insulin-dependent diabetes. In insulin-dependent diabetes there appears to be a higher

rate of paternal than maternal transmission. Thus, the offspring of insulin dependent

diabetic fathers are two to four times more likely to develop insulin dependent diabetes

27



than the offspring of insulin dependent diabetic mothers95, °6. In non-insulin

dependent diabetes the converse is true, with several studies suggesting a greater

maternal than paternal transmission97"101. While there many potential explanations for

this (effects of mitochondrial DNA102, genomic imprinting and confounding effects of

the long-term diabetogenic effects of pregnancy itself103) this has led to the suggestion

that maternal hyperglycaemia might itself be diabetogenic for the fetus98. Does

maternal hyperglycaemia explain the epidemiological association of lower birth weight

and diabetes?

Maternal diabetes clearly does affect the fetus, with rates of congenital

malformation of between 4 and 12%, spontaneous abortion rates ranging from 9 to

45% (reviewed in 93). Changes in fetal growth are complex; hyperglycaemia has been

proposed to lead to some inhibition of growth early in pregnancy104,105, although this

is disputed106, but clearly promotes growth late in the pregnancy resulting in

macrosomia (defined as birth weight greater than the 90th centile) in 25-42% of

pregnancy in diabetic women (reviewed in 93). In 1954, Pedersen proposed a central

role for maternal hyperglycaemia in promotion of the typical overgrowth and adiposity

seen in the newborn offspring of diabetic mothers: maternal hyperglycaemia leads to

fetal hyperglycaemia and stimulation of the fetal pancreas to produce insulin resulting

in fetal overgrowth (The Pedersen Hypothesis107), later modified to include amino

acids as a co-stimulus to fetal insulin production94. With some exceptions108"110, the

majority of studies in diabetic pregnancy support the relationship of maternal

hyperglycaemia to fetal macrosomia with an emphasis on hyperglycaemia early in the

third trimester111, 112.

Freinkel had proposed a series of potential sequelae for such offspring of diabetic

pregnancies termed 'fuel mediated teratogenesis' by him94. Thus maternal fuels were

proposed to influence the development of the fetus, modifying phenotype especially in

those tissues made up of terminally differentiated cells, with both B cells of the

pancreas and adipose tissue proposed as tissues vulnerable to such manipulations in
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early life94. It had been suggested historically that the offspring of diabetic

pregnancies were more likely to be obese in childhood113, with conflicting data

reflecting various methodological problems (references in 114). Studies in the Pima

Indians, notable for their careful metabolic data on the mothers before, during and after

pregnancy, support a role for maternal hyperglycaemia both in the promotion of

offspring obesity115 and later non-insulin dependent diabetes98' 116. Such studies,

carried out in populations highly prone to non-insulin dependent diabetes, are

interpreted by the authors as showing the diabetogenic effect on the offspring of

maternal hyperglycaemia, but might equally be explained by graded genetic effects

within this population, an argument with any study involving non-insulin dependent

diabetic mothers. Similar effects of offspring obesity117' 118 and teenage impaired

glucose tolerance119 have been reported in the offspring of a mixed population of

mothers with both previous IDDM and gestatational diabetes supporting an

environmental role of maternal hyperglycaemia and, more specifically in these studies,

fetal hyperinsulinaemia in these effects117,119. Again there is a potential confounding

role of genetic influences which predispose to glucose intolerance, leading to

gestational diabetes in the mothers and NIDDM in the offspring. More than half of the

mothers in this population had gestational diabetes and studies of the offspring of

mothers with only insulin-dependent diabetes might serve to clarify this point.

Animal studies have supported a role in maternal hyperglycaemia in the

generation of offspring hyperglycaemia120"125, with effects on both offspring insulin

resistance120, 121> 126, 127, 123 and insulinopenia121, 124> 125 in a variety of models

(streptozozotocin126'127' 123'125 and glucose infusion120'124) and species.

While the relationship of maternal hyperglycaemia to offspring diabetes risk is an

intriguing one, these data clearly do not explain the relationship of low birth weight to

cardiovascular risk. This is perhaps unsurprising. Firstly, due to the high failure rate

and mortality of frankly diabetic pregnancy in the first half of this century, such

pregnancies will have had little if any impact on the populations studied by Barker et al.

2 9



Secondly, since even within the reference range of maternal plasma glucose there

appears to be a positive relationship between glucose and birth weight 88, it seems

unlikely that maternal glycaemia will be part of the interaction between lower birth

weight and cardiovascular risk. It seems likely then, that different mechanisms might

act to lead to the association between low and high birth weight and diabetes. To that

end it is interesting to note that in the highly diabetes prone populations studied by

Pettitt et al there appears to be a U shaped relationship between offspring diabetes risk

and birth weight48, with increased risk both in low and high birth weight infants, a

relationship not present in the populations less prone to diabetes studied by Barker et

al44-47'45. This infers that while low and high birth weight infants may be at risk, the

aetiology of their later diabetes may be very different. This concept is supported by

observations in the offspring of various diabetes prone groups in New Zealand.

Simmons noted that offspring of Indian parents tended to be thinner and have lower

cord insulin levels, in keeping with the low birth weight groups of Barker whereas the

offspring of Polynesian parents tended to be heavier and have higher cord insulin

levels, in keeping with the high birth weight Pima Indian model128. Thus, different

mechanisms may operate in different ethnic groups and different birth weights to create

a U shaped relationship between diabetes risk and birth weight. Such a U-shaped

relationship, with high risk at the extremes of birth weight, has also been suggested for

blood pressure31 but not observed by other workers 129'22.
Overall then, although potentially an important aetiological factor both in the later

development of obesity and non-insulin dependent diabetes, maternal hyperglycaemia

is strongly linked to higher birth weight and as such is a poor explanation for the

observations of Barker et al. In considering other risk factors, maternal

hyperglycaemia has also been linked to offspring high blood pressure both in

neonates130 and children131, but in both cases this effect seems to be explicable by the

influence of offspring obesity131' 13°, and in animal studies, hyperglycaemia of the

dam has been suggested to worsen offspring hypertension in the Spontaneously
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Hypertensive Rat (SHR) model of genetic hypertension in rats132. While of interest,

the application to the human epidemiological studies is again limited.

While it seems less likely that direct effects of maternal hyperglycaemia underpin

the fetal origins hypothesis, the possibility of a more complex relationship with

maternal glucose metabolism exists. An association between maternal

hyperinsulinaemia and low birth weight, independent of maternal glucose has been

reported in a single study88. This is an intriguing observation as it raises that

possibility that maternal insulin resistance itself might change the intra uterine

environment and lead to lower birth weight, a possibility for which other experimental

evidence is not yet available. It is also important as it suggests an alternative

explanation for the connection between birth weight and later cardiovascular risk,

which does not involve metabolic programming. Genetic predisposition to insulin

resistance might be expressed both as cardiovascular risk in adulthood and impaired

growth in fetal life. Transgenic mouse models disrupting insulin receptor substrate-1

(IRS-1), part of the second messenger pathway of insulin action, lead to both fetal

growth retardation and later insulin resistance133. Polymorphisms in this gene are also

associated with insulin resistance134 and later non-insulin dependent diabetes in human

populations135 and insulin resistance has been proposed as an aetiological factor in

cardiovascular disease in human populations136.
Other evidence would appear to argue against this model, however. In human

populations growth retardation is, in general, associated with lower insulin levels in

cord blood137. Moreover, ethnic groups with the conjunction of a high later risk of

NIDDM and lower birth weight, also have lower insulin levels in cord blood128.
While fetal hyperinsulinaemia as measured by raised amniotic fluid insulin levels is

predictive of later obesity117, 118 and impaired glucose tolerance119 in human

populations and insulin infusion predisposes to later diabetes in animal models124,
these situations are again associated with maternal hyperglycaemia and fetal

macrosomia117,118'138. It is difficult, then, to easily support a model of a genetically
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programmed insulin resistance both affecting birth weight and later cardiovascular risk.

Impaired insulin secretion might also be of importance in both lower birth weight

and predisposition to later diabetes mellitus and again this might be under

environmental or genetic control. Knowledge of genes affecting pancreatic

development and limiting insulin secretion is at an early stage, but clearly such a

genetic influence might predispose to both impaired intrauterine growth and later non-

insulin dependent diabetes as a co-association. The PAX4 gene is involved in

determining differentiation of (3 and a cells in the pancreas139. Disruption of this gene

results in both lower fetal size and in the absence of development of mature (3 and a

cells in the murine pancreas139. More subtle abnormalities of pancreatic development

might conceivably underlie the connection of lower birth weight to later non-insulin

dependent diabetes. Some of the evidence cited above, such as the lower birth weight

and lower cord blood insulin levels in ethnic groups with a high later risk ofNIDDM,

would be in keeping with such a mechanism128. That lower birth weight acts in

identical twins discordant for non-insulin dependent diabetes mellitus to predispose to

later diabetes would argue against such a genetic effect, at least in these individuals.

ii) Maternal high blood pressure

Maternal high blood pressure might be associated with an increase in offspring

blood pressure both as a direct aetiological factor or appear because of the shared

genetic inheritance of mother and offspring. Genetic studies of the inheritance of high

blood pressure estimate that 30-60% of variation in blood pressure is accountable by

genetic factors140 but have difficulty in estimating early environmental influences141.
Some familial studies suggest an increased similarity between maternal and

offspring blood pressure than paternal blood pressure142, 143> 32, 131 but this is by no

means a universal finding144. Hypertensive disorders in pregnancy such as eclampsia,

preeclampsia and pregnancy-induced hypertension are clearly associated with preterm

delivery and reduced birth weight 88, 145, 146, but the outcome for the child remains

3 2



controversial with some studies suggesting an increase147,148 and others no effect35

on offspring blood pressure. The study of Ounsted et al35 is of interest as it

demonstrated no effect on offspring blood pressure after treatment of hypertension in

pregnancy. This argues against a simple mechanism of maternal high blood pressure

in pregnancy leading to offspring high blood pressure by influences of maternal high

blood pressure directly on the fetal environment35.
Co-association of raised maternal and offspring blood pressure may also arise

because of shared detrimental genes. The example of preeclampsia is of interest as it

has been associated with mutations of the angiotensinogen gene149 also shown by

linkage analysis to have an association with essential hypertension150. The connection

to essential hypertension is not entirely clear, however, in that, despite this potential for

a shared genetic cause preeclampsia does not predict later hypertension in the

mother151,152. The potential for such observations to explain the data of Barker et al

are further weakened by the rarity of hypertensive conditions of pregnancy. Such

disorders affect a minority of pregnancies (216 of 17,000 pregnancies- 1.3%- in the

study of Himmelman et al148) and therefore may be of limited relevance to the

populations studied with relation to birth weight and high blood pressure.

While the data of Barker et al are unlikely to be explained by the influence of the

specific hypertensive disorders of pregnancy, it remains possible that lesser degrees of

high blood pressure might lead to this association. If maternal blood pressure acted as

an environmental factor to cause lower birth weight, then as offspring blood pressure

might be expected to resemble maternal blood pressure secondary to shared genes,

leading to a non-causal association of lower birth weight and high offspring blood

pressure. Such a mechanism has been proposed following a recent study examining

maternal ambulatory blood pressure and birth weight153. The authors report a negative

association between maternal blood pressure and birth weight, with each 5 mmHg rise

in mean diastolic blood pressure at 36 weeks being associated with a 76g fall in birth

weight153. This is an important potential confounder to the birth weight hypothesis.
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There is, however, an older literature a positive correlation of systolic blood pressure

with birth weight at levels of blood pressure short of hypertensive disorders of

pregnancy154, 155. In these studies birth weight only begins to show a negative

correlation with higher blood pressure than most women exhibit(>80-90mmHg DBP)

or when proteinuria is present154'155. Further, those studies examining mothers with

only mild degrees of high blood pressure have suggested a rather weak association

between maternal and offspring blood pressure156,157. Increases in offspring blood

pressure, given mild degrees of maternal high blood pressure were only described in

males156, 157 or females147 and disappeared after correction for offspring body

mass156, 157. Such data would appear to argue against a significant environmental

effect of moderate degrees of maternal high blood pressure on low birth weight and

subsequent high blood pressure.

iii) Under nutrition

Barker et al have proposed that fetal under nutrition is the link between low birth

weight and later cardiovascular risk. In this section I will consider the evidence for the

effect of maternal under nutrition on birth weight in animal and human populations, the

effects that this might have on morphology and the evidence for an effect on later

cardiovascular risk.

Extreme degrees of under nutrition have been shown both in wartime158"160 and

developing world161 populations to lead to reductions in birth weight, while

supplemental feeding results in an increase in birth weight in such populations161. It is
difficult to assess the full relevance of this to the populations studied by Barker et al

where the degree of under nutrition may have been far more subtle, especially as the

effects of under nutrition on birth weight often appear relatively modest. Famine in

Holland during the Second WorldWar resulted in maternal dietary restriction to 600 to

900 calories per day for six months but only a 240g fall in birth weight162. In

reviewing the available literature in 1991, Susser163 estimated that while nutrition will
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influence birth weight in famine, outside this special situation the influence of maternal

nutrition on birth weight is far less clear. Support for such a threshold effect has come

from more recent studies164. The influence of maternal dietary supplementation is also

only clearly beneficial in the case of famine, and food supplementation even in

deprived parts of the developed world have produced less clear results (reviewed in163
and also165); protein supplementation in one study being associated with a reduction in

birth weight163. Such a degree of fetal under nutrition was calculated to affect 2 to 3%

of newborns in the United States and 8-10% in the developing world in 196787 and

although of vital importance to this minority it is difficult to explain the graded

relationship of birth weight to later cardiovascular risk reported by Barker if only 2%

of the newborn population are affected.

Barker et al detected a series of morphological changes associated with

cardiovascular risk, including increased placental weight42, 32, reduction in ponderal

index32, 72, 12, 47, 65 and relative sparing of the head32, 72, 12. Barker has proposed

that reduction in birth weight to placental weight ratio might reflect under nutrition166,
but both the relation of placental weight to later blood pressure24,22 and the relation of

under nutrition to altered placental: birth weight ratio have been disputed167. Do

patterns of increased placental to birth weight ration and reduced ponderal index relate

to underlying undernutrition and, as such, support the role of nutrition in the fetal

origins hypothesis?

While maternal malnutrition is associated with a reduction in placental weight

(references in70 ), there appears to be a greater decline in placental weight than fetal

weight159. The study of Smith et al159 does, however support effects on ponderal

index. Under nutrition in the third trimester resulted in a reduction in birth weight with

relative sparing of head and brain, and while this is not calculated in this study, one

would expect ponderal index to be reduced159, a finding supported by others89, 164.
In examining growth of the placenta and the fetus, the picture is made more

complicated when one considers the effects not of combined protein and calorie
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malnutrition, however, but isolated deficiencies of one or other of these factors.

Animal models of purely protein malnutrition do support greater effects of fetal than

placental size168, and recent studies from Southampton, examining the effects of

nutrition on placental and fetal size, suggest complex and differing effects of protein,

the type of dietary protein and carbohydrate acting at different times in human

pregnancy169. In this study higher carbohydrate intake in early pregnancy and lower

protein intake in late pregnancy were associated with lower birth and placental

weights169. The effects of protein intake appeared to be confined to late pregnancy,

however, and placental weight to be affected by only dairy protein intake and birth

weight by meat protein intake. Given this degree of complexity, with competing

effects of different nutrients at different times, it is certainly possible to imagine

nutrition leading to the patterns observed by Barker et al but difficult to be certain of

their role without prospective data. If nutrition is key, however, it is likely that it will

be operating at the level of relative protein malnutrition or loss of other micro nutrients.

The data on the extremes of protein and calorie under nutrition do not seem supportive:

both in terms of the effects on placental to birth weight ratios and because the numbers

of mothers at such extremes of under nutrition would seem to be small.

The importance of nutrition to the fetal origins hypothesis can also be examined

by considering whether under nutrition leads to alteration in cardiovascular risk factors

and cardiovascular disease.

Population subjected to under nutrition in utero have also been studied with

regard to later cardiovascular risk. Clearly under nutrition in early life alone may not

increase cardiovascular risk: low birth weight is commoner in Third World populations

where the incidence of cardiovascular disease later is very low 170 and in a similar way

under nutrition would have been commoner in Western Societies in the past at a time

when cardiovascular disease was rare. The combination of under nutrition early with

repletion later has been postulated to increase cardiovascular risk, however, with the
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high degrees of vascular risk in migrant populations to the developed world cited as

evidence of this.

Certain populations subjected to deprivation in early life have been studied with

regard to later cardiovascular risk. Ravelli et al 171 examined the later influence of

under nutrition in utero to later obesity. They found an increase in obesity in those

individuals exposed to famine in the first two trimesters, whereas exposure to famine

in the last trimester and the first 3 to 5 months postnatally resulted in a reduction in the

frequency of obesity. They conclude that factors in early life affect adiposity later in

life, a hypothesis previously proposed, with some experimental evidence, by

C.G.D.Brook172. In examining the relationship of this data to the Barker hypothesis it

is interesting to look at the birth weights of these cohorts. The group exposed to

famine in the first two trimesters in the original study had no reduction in birth weight

but did have an increase in later obesity. In contrast the group with exposure to

famine in the last trimester and the first 3 to 5 months postnatally suffered both a

reduction in birth weight and a reduction in later obesity. Thus the data of Ravelli may

support a effect of maternal under nutrition in programming later obesity in the fetus,

but it is difficult to relate this directly to lower birth weight.

In a large study of the St Petersburg population, no influence of under nutrition

on later diabetes or blood pressure was observed in the groups exposed to famine173.
Increases in levels of pro-insulin and lower levels of insulin in response to an oral

glucose tolerance test in famine-exposed groups have been interpreted as showing

possible evidence of pancreatic beta-cell dysfunction, but given that no overall changes

in glucose tolerance were observed this might be interpreted with caution173. No

information on birth weight was available in these studies and the possibility that the

pregnant mothers in this population may not have been subjected to the same degree of

deprivation as the rest of the population has been raised as a potential confounder and

explanation for the lack of marked differences between the groups.

Lucas and Morley174 investigated the relationship between fetal nutrition and

37



blood pressure at age 7.5-8 years in a cohort of children included in a large multicentre

trial of supplemental feeding to preterm infants. This group have previously

demonstrated the importance of this period of nutrition to developmental status175 and

allergy and atopy 176 but found no differences in later blood pressure in any of the

randomised groups. It could be argued that under nutrition out of utero is not

necessarily the same as under nutrition in utero and that these premature infants were a

selected and unusual cohort to begin with. Finally, one of the effects of maternal under

nutrition might be to promote maternal anaemia, proposed to lead to both changes in

the placental to birth weight ratio177, 32 and of childhood blood pressure32. The

relation of maternal anaemia to both childhood blood pressure178 and placental to birth

weight ratio167 have been disputed by other workers, however.

In animal models of under nutrition, both caloric deprivation and protein

malnutrition during pregnancy result in reduction in birth weight. In addition the

studies of McCance and Widdowson display that caloric deprivation in early life can

produce permanent alterations in body composition at least in terms of relative organ

weights179,18°, with the effects of such under nutrition appearing to be less reversible

the earlier that they occur in life180. Protein malnutrition during pregnancy has been

associated both with reduced birth weight and an increase in blood pressure (15-22

mmHg increase versus controls)181.
There is a wealth of data relating changes in glucose tolerance to under nutrition

in early life. In the 1950s workers in the tropics described tropical or Type J diabetes,

different from the described patterns in the developed world 182. These patients had a

mixture of the features of IDDM and NIDDM: diabetes developed at a young age,

patients were insulin requiring but not insulin dependent, being resistant to

ketoacidosis after insulin withdrawal, and in all cases previous malnutrition was

involved182. Insulin secretory responses were found to be acutely reduced by severe

malnutrition in childhood183 and the study of some populations after severe, childhood

under nutrition support a continued effect on glucose tolerance184 and on the incidence
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of NIDDM185. Ethiopian Jews migrating after famine from Ethiopia to Israel

experienced a 9% rate of diabetes in those under the age of thirty within 4 years of

migration185. Clearly dissecting the effects of under nutrition from pre-existing genetic

risks in a population experiencing a large change in adult environment is difficult.

Animal models suggest both that the pancreas is sensitive to protein malnutrition in

development and that the effects of this under nutrition vary depending on the timing of

restriction. Malnourishment of dams results in lower offspring birth weight186 along

with impaired development of the fetal endocrine pancreas186. Protein malnutrition

during pregnancy alone187 and in the first postnatal weeks of life alone188- 189 have

been shown to result in permanent deficits in insulin secretion in such animal models,

while protein malnutrition during pregnancy and up to weaning has been associated

with evidence of muscle insulin resistance in the absence of insulin secretory

defects190. In recent years the place ofmalnutrition as an aetiological factor in tropical

diabetes has weakened however, with evidence of tropical diabetes in individuals never

exposed to malnutrition and low rates of such diabetes in previously malnourished

African populations191 (reviewed in 192). Malnutrition may, however, play a role as a

contributory factor in some individuals192.
In summary then, the human data from historical studies suggest that only severe

degrees of protein-calorie under nutrition of mothers leads to reduced birth weight of

offspring but this would appear to affect too small a proportion of the population to

explain the epidemiological data. This does not exclude the influence of under nutrition

on birth weight and later blood pressure or diabetes by other mechanisms: micro

nutrients might affect birth weight and blood pressure, with the role of purely protein

under nutrition being stressed in animal studies186, 188' 187, 181, 190. The potential

importance of purely protein under nutrition in late pregnancy is supported by the

results of Godfrey et al in human pregnancy169. As discussed above the results are

complex with differential effects on birth and placental weight by meat and dairy

protein intake respectively, making extrapolation to the epidemiological studies more
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difficult.

Further problems in extracting the potential effects of under nutrition lie in the

potential role of inter-generational effects. Malnourishment of mothers during their

own childhood to impact upon maternal phenotype and therefore offspring birth weight

was proposed in 1956 by Tanner et al, considering the experience of birth weight and

deprivation in pregnancy in Aberdeen193 . These authors suggested that such effects

might be mediated through reduction in maternal size and thus restriction in her babies

birth weight. Some of the animal data examining protein under nutrition in early life

might support such effects. Protein malnutrition in the first three weeks of life of the

dams has been shown to result in hyperinsulinism in the offspring of these animals as

adults, albeit in association with higher dam glucose and offspring macrosomia189,
while perhaps more pertinently Holness et al displayed a persisting impairment of

muscle glucose utilisation without deficits in insulin secretion persisting for two

generations after protein restriction during pregnancy and until weaning of the first

generation and in association with reductions in fetal at least in the second

generation190. A further interesting feature of this study is that the third generation

fetuses also appeared to have reduced glucose utilisation in utero although the

mechanism of this potential insulin resistance of the fetus is unknown.

iv) Social Class

The interaction of social deprivation with vascular disease may occur in several

ways. In terms of the birth weight hypothesis it is first important to consider social

deprivation as a potential simple confounder. Poverty is associated with low birth

weight194, adult cardiovascular death194 and adult risk factors such as non-insulin

dependent diabetes195 and strong correlations exist between previous deprivation and

current deprivation196. While this observation might be due to a causal chain reflecting

the influence of poverty on the ante-natal environment, birth weight and thence adult

disease, it is also possible that it reflects an independent association of poverty with
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low birth weight and some environmental factor in adult life conferring cardiovascular

risk, with the most obvious candidates being smoking or diet. This means that an

apparent association between lower birth weight and adult cardiovascular disease might

arise due to the co-association of social class with low birth weight and adult

cardiovascular disease.

This does not seem to be the full explanation, however, for while the previously

observed association of lower birth weight with lower social class is seen either

significantly71 or as a trend12 in most, but not all 11 studies, the relationship of birth

weight and adult blood pressure42,44, cardiovascular mortality/ prevalence 11>71,
diabetes44 and insulin resistance65 is present within groups subdivided either for

social class at birth or for current social class. In other words, while there may be

effects of social class on birth weight, the risk associated with being a lower birth

weight baby is present in each social class. This would not support the interpretation

that adult high blood pressure and low birth weight are linked simply because of a

shared association with poverty. Similarly, the results also do not seem to be easily

explicable simply because of independent association of social class with lower birth

weight and later risk factors such as smoking. Other smoking related disease have

been examined and show for example no association of low birth weight with later

lung cancer in either men 12>11 or women11.
The role of social class is still of interest: the hypothesis that deprivation in early

life might lead to adult cardiovascular disease has a long history197 and the above

evidence, while not supporting social class as the entire explanation for connections

between birth weight and later cardiovascular death, do leave potential for social class

to impact upon later cardiovascular disease either via effects on birth weight or by other

mechanisms. Recent evidence suggests that paternal social class does influence

ischaemic heart disease risk in later life41. Wannamethee et al produced evidence from

the British Regional Heart Study population to suggest that even after adjustment for

current social class, lower paternal social class is associated with offspring ischaemic
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heart disease and both lower height and increased obesity in adulthood. While other

risk factors were associated with paternal social class these associations seemed

explicable by current social class. This would suggest that deprivation in early life may

well influence later cardiovascular risk, with the mechanism of this unknown. In this

context it is interesting to note that the previously observed negative effect of socio¬

economic grouping on adult blood pressure is observed in childhood populations in

some198' 32, if not all34, 37 studies. This would suggest that some of the negative

influence of lower socio-economic group on blood pressure may be acting from a very

early stage.

Effects of social class do not seem to explain the associations seen in the birth

weight hypothesis, indeed the available evidence supports social class as a marker for

environmental effects which are themselves active in early life to increase

cardiovascular risk.

v) Maternal anaemia, smoking and living at altitude

Barker et al have noted a relationship between increased placental to birth weight

ratio and later cardiovascular risk12, high blood pressure42 and diabetes47. They

propose that such an increased ratio might reflect adaptive changes of the placenta to

increase oxygen extraction from the maternal circulation. Such an increase in placental

weight relative to birth weight, along with an increase in the number of low birth

weight infants is well described in pregnancies at altitude, presumably secondary to the

lower oxygen tension199), but there are no studies to determine the later cardiovascular

implications of this.

Maternal anaemia and smoking might potentially exert similar effects on oxygen

delivery to the fetus. Maternal smoking certainly leads to an increase in the numbers

of low birth weight babies77, 78, 73 and to an increase in the placental to birth weight

ratio177, but there appears to be no effect on offspring blood pressure, at least in

childhood 32>178. Maternal smoking would also seem an unlikely mechanism as it has
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been pointed out that smoking among women was still unusual at the time of birth of

the subjects reported in most of the older studies200. Markers ofmaternal anaemia are

negatively correlated with birth weight and placental weight177-178 but with a larger

effect on placental weight, so that while maternal anaemia is associated with both a

heavier placenta and birth weight, the calculated placental to birth weight ratio is

higher. Maternal anaemia has also been related to a 2.9 mmHg rise in blood pressure

in children at age 4 years32, but this result was not repeated in other studies131'178.

vi) Other Factors

Blood pressure is susceptible to various other environmental factors in adult life

but their relationship to exposure in fetal life is less clear.

Blood pressure shows a positive relationship to salt intake both across201 and

within202 populations and falls with salt restriction203. High salt diet induces the onset

of high blood pressure in genetically susceptible animal populations204. This effect is

more pronounced young animals, with life long influences on blood pressure of salt

diet early in life205. The role of salt diet in humans is less clear, however. Salt

restriction has been shown to have a short term effect on blood pressure, leading to a

2.1 mmHg fall pressure by six months of life206, but differences in salt intake early in

life have not been shown to influence blood pressure into childhood207-208.
In population studies, higher potassium and calcium intake are associated with

lower blood pressure 209 although addition of these agent have a variable effect on

blood pressure210- 21'. Maternal potassium intake during pregnancy has been

inversely related to offspring blood pressure212 and there is limited evidence from

animal models to suggest an influence of low potassium diet in pregnancy and high

sodium intake to influence later blood pressure213.
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Conclusion

Many factors influence birth weight and any or all of these might be connected to

the expression of later cardiovascular risk. I have tried to summarise some of this

information and, as detailed, there is much of the variance of birth weight that is

unexplained and none of the proposed mechanisms explain all of the findings. It is the

hypothesis of this work that another factor might underlie the epidemiological findings:

exposure of the fetus to glucocorticoids. As an introduction to this I now consider

what is known about the physiological exposure of the fetus to glucocorticoids, the

pathological effects of excessive exposure and the role of the steroid metabolising

enzyme llB-hydroxysteroid dehydrogenase (11B-OHSD) in the placenta.
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llbeta-OHSD. Glucocorticoids and the fetus

Introduction

In this section I review the importance of glucocorticoids in the fetus and the

role of 11B-OHSD in metabolism of glucocorticoids in the feto-placental unit. In the

first instance, I review the known biology of 11B-OHSD with regard to the different

isoforms of the enzyme, the function of 11B-OHSD in the kidney in protecting the

mineralocorticoid or type 1 corticosteroid receptor, the role of inhibitors such as

carbenoxolone and glycyrrhetinic acid, and finally the clinical syndromes where

deficiency of 11B-OHSD is of importance (e.g. the Syndromes of Apparent

Mineralocorticoid Excess and liquorice abuse). In the second section, I consider the

normal development of the EPA axis in the fetus, in the human and in the rat, and

review the current evidence for the role of placental 11B-OHSD in modulating access of

glucocorticoids to the fetus. Finally, I consider the developmental role of

glucocorticoids, both normally and the effects of excessive glucocorticoid exposure.

llbeta-Hydroxysteroid dehydrogenase

llB-hydroxysteroid dehydrogenase exists in two known isoforms and catalyses

the oxidation/reduction of steroid hormones in the 11 position (Figure 1). The two

isoforms of the enzyme differ greatly in their tissue localisation, substrate specificity

and indeed in the preferred direction of the enzyme. For both, however, their

biological importance arises because of key differences in the actions of the 11 keto and

llhydroxy glucocorticoids that they interconvert. 11-hydroxy forms (Cortisol in man

and corticosterone in the rat) are biologically active and bind corticosteroid receptors

with far greater affinity than the 11 keto forms. Thus the 1 IB-hydroxysteroid

dehydrogenases, in the interconversion of 11 keto and 11 hydroxy steroids potentially

control the access of active forms of glucocorticoids to receptors and to tissues214.

The type 1 isoform of the enzyme (ll(3-OHSD) has been purified215, cloned216
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and expressed217 and although present to some degree in a variety of tissues is mainly

expressed in the liver218. It is NADP dependent215 and has a low affinity for Cortisol

and corticosterone (Km for corticosterone 1.83± 0.06pM and for Cortisol

17.3±2.24jiM215. Indeed, although bi-directional in homogenised tissues, 11(3-

OHSD appears to mainly act as a reductase in intact hepatocytes, that is catalysing the

conversion of inert cortisone to Cortisol (or 11-dehydrocorticosterone to

corticosterone)219. At the time of the cloning of 11B-OHSD 1, most scientific interest

centred upon the role of 11B-OHSD in controlling access of glucocorticoids to

mineralocorticoid receptors, especially in the distal convoluted tubule of the

kidney220,214. After the cloning of 11B-OHSD 1 it became apparent that this isoform

was not the active isoform in either the distal convoluted tubule or in the placenta and

interest eventually turned to the second isoform. The physiological role of 1 IB- OHSD

1 is as yet unknown, but the enzyme has proposed roles in the supply of glucocorticoid

to the liver221.

The type 2 enzyme (ll(3-OHSD 2) has also been recently cloned; from sheep

kidney222, rat kidney223 and in the human form from placenta224 and kidney225 and is

a member of the short chain alcohol dehydrogenase superfamily226. The rat form

shows an 83% and 77% homology to human and sheep respectively223. This type 2

isoform is only 14% homologous to the type 1 form and is present in classical

mineralocorticoid responsive tissues, being highly expressed in the human colon,

kidney (distal convoluted tubule, cortical collecting duct and medullary collecting

ducts224) and parotids225 as well as being expressed in brain, placenta and human fetal

tissues224. The enzyme is NAD dependent, showing a 10 fold difference in activity

with NAD vj NADP in human225 and rat223 and a 4 fold difference in the sheep222
and has a high affinity for classical glucocorticoids ( Km Cortisol 47 nM, corticosterone

5 nM in225), in keeping with its role in these tissues of protecting mineralocorticoid

receptor. Dexamethasone is metabolised to a far smaller extent (Km 119

dexamethasone) and aldosterone not at all224. The expressed 11B-OHSD 2 isoform
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Figure 1
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Figure 1: Inter conversion of glucocorticoids by 11 B hydroxysteroid dehydrogenase

acts almost entirely in the dehydrogenase direction, with little reductase activity in

either intact cells or homogenates224 and this activity is potently inhibited by

carbenoxolone (IC50 18 nM) and glycyrrhetinic acid (IC50 11 nM)224.

Developmentally, 11B-OHSD 2 enzyme activity is present in the developing human 227
and rat, as is the mRNA encoding for the type 2 enzyme in human228 and rat, but its

functions in normal development are as yet still speculative. While this isoform is key

to the protection of mineralocorticod receptor in the kidney, colon and parotid it is also

present in less clearly mineralocorticoid responsive tissues. For example, 11B-OHSD

2 is highly expressed in the pancreas225 and present in the ovary, testis, prostate225
and brain224. Its function in these tissues remains speculative. This is also the
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isoform present in placenta224 and its role in this tissue is discussed below.

The Syndromes of Apparent Mineralocorticoid Excess :

ll§-hydroxysteroid dehydrogenase and the kidney

Clinically interest in the llB-hydroxysteroid dehydrogenases developed because

of the syndrome of apparent mineralocorticoid excess (SAME), first described in the

late 1970 s by New and Ulick229' 230. Around 20 patients with this syndrome have

been reported221, presenting as a clinical paradox where clinical and biochemical

findings in keeping with mineralocorticoid excess (hypertension, hypokalaemic

alkalosis, kaliuresis and renal sodium retention, suppression of plasma renin activity)

are associated with no elevation of any known mineralocorticoid230'231. Other features
of the syndrome include reversal of the clinical and biochemical features by

administration of dexamethasone; mildly elevated urinary free Cortisol concentrations;

evidence of inhibition of Cortisol dehydrogenation in the kidney with elevation of the

ratio of urinary metabolites of Cortisol versus cortisone (THF+ allo-THF :THE ratio,

see Figure 2) and prolonged half life of (1 la3H)-cortisol; and impaired 5B-reductase

activity( decreased THF: alio THF ratio, see Figure 2)232.

In 1988 it was proposed that apparent mineralocorticoid excess resulted from a

deficiency in the normal action of 11B-OHSD in the kidney220'214. This hypothesis

resulted from a series of observations. Firstly it was known that the mineralocorticoid

receptor, which had been cloned in 1987, had an equal affinity, at least in vitro, for

both classical glucocorticoids (Cortisol, corticosterone) and mineralocorticoids

(aldosterone)233. Since glucocorticoid circulate at a 10^ fold excess over

mineralocorticoids in both man and the rat, this created a paradox. Either the in vitro

results were misleading or other factors in whole tissue were controlling the access of

glucocorticoids to receptors. It was suggested that 11B-OHSD functioning as a

dehydrogenase in the kidney might fulfil this role and this would explain both the lack

48



of any clear excess of known mineralocorticoids in the syndrome and the reversibility

of SAME with other glucocorticoids such as dexamethasone, as these suppressed the

HPA axis and did not bind MR. Following the cloning of the 11B-OHSD 2 gene222,
225,223,224 jt ^as j5een demonstrated that SAME is indeed associated with mutations in

this gene resulting in defects in glucocorticoid metabolism234,235.

Figure 2
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Figure 2: Principal urinary metabolites of Cortisol and cortisone, after Walker

Ulick et al have reported a group of patients with slightly different biochemical

findings(SAME 2)236,237. These patients again have clinical findings in keeping with

SAME (biochemical findings in keeping with mineralocorticoid excess without

elevation of any known mineralocorticoid and reversed by administration of

dexamethasone) but ratios of THF+ allo-TElF :THE ratio are normal236, 237. It has
been proposed that such patients will have a primary abnormality comprising either
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defective A ring reduction237 (see Figure 2) or alternatively a combined defect in both

dehydrogenase and reductase activities in vivo238 (a situation analogous to the

differences in the in vivo actions of glycyrrhizic acid and carbenoxolone, see below)

with observations of reduced half life of oral cortisone to Cortisol and prolonged half

life of (1 la3H)-cortisol favouring the latter interpretation221. Genetic studies on these

patients may help to clarify some of this puzzle, but no mutations in 11B-OHSD 2 in

SAME 2 have yet been demonstrated.

Inhibitors of llbeta-OHSD

While it is only recently that the physiology of 11B-OHSD has begun to be

discovered, use of its inhibitors has a long medical history. Confectionery liquorice is

derived from the root of the plant Glycyrrhiza glabra and use of liquorice or liquorice

root as an agent against mouth and stomach ulcers dates back for two thousand

years239. The principal active constituents of liquorice are the triterpenes

glycyrrhetinic acid and its glycosylated form glycyrrhizic acid240. Both glycyrrhizic

acid and the artificial derivative carbenoxolone have additional groups at C3 allowing

greater water solubility240. Carbenoxolone was used until the 1970 s in the treatment

of peptic ulcer. It was appreciated for some time that the use of liquorice was

associated with both clinical and biochemical features of mineralocorticoid

excess241'242. Known mineralocorticoids are suppressed with use of these agents and

therefore it was proposed that the biological effects were secondary to direct binding to

the mineralocorticoid receptor243'244. The relatively low affinity of glycyrrhetinic acid

for the mineralocorticoid receptor (Kd 2x 10~6 M versus 5x 10~10M for aldosterone)

made this unlikely and this along with the older observations that liquorice was not

associated with mineralocorticoid effects in the absence of circulating

glucocorticoids245'246 led to the proposal that liquorice exerted its mineralocorticoid

actions by inhibition of 11B-OHSD247. Liquorice was shown to lead to an increased

ratio of THF+ allo-THF :THE in urine and lengthened half life of (lla3H)-cortisol in
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vivo 247 and to potently inhibit 11B-OHSD in vitro 248>249.
Both carbenoxolone and glycyrrhetinic acid also inhibit 11B-OHSD in vitro but

their actions in vivo in humans are not absolutely equivalent. While liquorice247,

glycyrrhetinic acid250 and carbenoxolone249 prolong the half life of (1 la3H)-cortisol

in vivo, liquorice247 and glycyrrhetinic acid250 are associated with an increase in

THF+ allo-THF :THE ratio in urine and a fall in plasma cortisone concentration but

carbenoxolone is not249. As well as inhibiting dehydrogenase activity, carbenoxolone

also appears to inhibit reductase activity in vivo 249. Thus, while intra renal

dehydrogenase is inhibited by carbenoxolone resulting in mineralocorticoid effects,

inhibition of hepatic reductase activity results in no overall difference in circulating

levels of Cortisol and cortisone and since A-ring reduction leading to the generation of

the tetra hydro metabolites takes place in the liver and presumably reflects metabolism

of circulating F and E this also accounts for the lack of change in THF+ allo-THF

:THE ratios in urine221. In keeping with this the ratio of urinary free Cortisol to

cortisone, believed to more closely approximate the intra renal concentrations of F and

E, is increased251.

Clearly differential effects of these inhibitors on the different isoforms of 11B-

OHSD might explain these findings and lead to alteration in their actions on different

tissues and in different species. Caution in the interpretation of such results is

necessary as the effects of such inhibitors may be dependent upon the conditions of the

particular assay used: in expressed systems of cloned rat 11B-OHSD 1 glycyrrhetinic

acid inhibits dehydrogenase but not reductase activity in intact cells but inhibits both in

cell lysates217. Further, the inhibition of reductase activity by carbenoxolone in vivo

in man249 is not readily apparent in vitro in rat tissues248 and probably does not occur

in vivo in the rat252.

Liquorice has other actions on glucocorticoid metabolism of less certain

influence on health. Liquorice and its derivative glycyrrhetinic acid inhibits 5B-

reductase activity in vitro in the rat253 and in vivo in humans, reflected in changes in
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the THF: alio THF ratio247. This effect of glycyrrhetinic acid does not seem to be

shared by carbenoxolone which is thought not to inhibit 5B-reductase activity in vivo

in humans249 although again inhibition is observed in vitro in the rat254.

Finally these agents may act via mechanisms independent of inhibition of 11B-

OHSD. This include inhibition of prostaglandin synthesis255, alteration in hepatic

aldosterone metabolism253, direct effects on sodium and potassium transport256,

potentiation of the effects of steroids not subject to 11-OHSD metabolism (aldosterone,

11-deoxycorticosterone and synthetic glucocorticoid agonists)257'258 and direct

activation of mineralocorticoid receptors243' 244. Carbenoxolone has been noted to

enhance vasoconstrictor action in ex vivo preparations and to potentially exert

damaging effects on endothelium in vivo259. The physiological importance of such

observations remains uncertain especially as such actions usually require

concentrations not usually occurring in vitro220, 260. For example, carbenoxolone

inhibits both 15-hydroxyprostaglandin dehydrogenase and 13-prostaglandin reductase

in the micromolar range261.

Figure 3
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Figure 3: Structure of glycyrrhizic acid and carbenoxolone
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llbeta-OHSD in the placenta: the glucocorticoid "barrier"

Cortisol metabolising activity was first demonstrated in the placenta by Osinski

in I960262, while further studies in the 1970s by the group of Beverly Murphy led to

the proposal that Cortisol metabolism in the placenta might be important in protecting

the fetus from circulating maternal glucocorticoids. Much of the interest at this time

arose from analogies of the sheep model, where rises in Cortisol towards the end of

term had been proposed to initiate parturition263. Murphy made several observations

supporting the placenta in the active oxidation of Cortisol, allowing it to act as a

"barrier" to maternal Cortisol. She demonstrated a lower ratio of Cortisol to cortisone at

all times in pregnancy in the fetal compared to maternal compartment. From the earliest

point she measured (8 weeks), F to E ratio was 0.2 rising only to 0.6 after the onset of

labour and suggesting a net conversion of F to E in the fetus or placenta264. Oxidation

of Cortisol to cortisone in vivo in passage across the placenta was also demonstrated:

C14 Cortisol was injected to mothers about to undergo abortion with detection ofmainly

C14 Cortisol in maternal plasma but C14 cortisone in placental tissue and fetal

plasma265. They concluded that in early pregnancy (18 weeks in this study) there was

active conversion of Cortisol to cortisone in the placenta265, later estimating around

80% conversion of circulating Cortisol to cortisone in passage across the placenta,

creating an 8-10 fold gradient266. Murphy concluded a potential for 11B-OHSD in the

placenta to be acting to protect the fetus from maternally derived glucocorticoid 267.
Other workers had also demonstrated a high level of 11B-OHSD activity in human

placenta from the 7th to the 40th week of pregnancy268' 269 and predicted that the

oxidative capacity of the placenta would always exceed the delivery of Cortisol by the

maternal circulation269. While almost exclusively oxidative activity has now been

demonstrated both for whole human placenta270 and for 11B-OHSD 2 cloned from

human placenta224, the ontogeny of enzyme expression and activity in human placenta

remains to be fully demonstrated. Further complexity may exist, as while the in vitro

studies have also demonstrated only oxidative activity in the placenta268, there has been
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evidence of both oxidative and reductive activity in the human chorion271' 268 and

decidua268, giving the potential for regeneration of Cortisol on the fetal side of the

placenta.

11B-OHSD is also present in the rat placenta272 with evidence of a both

dehydrogenase and reductase activity present early and a rise in dehydrogenase activity

towards term273. Activity has been shown to be sensitive to inhibition by

glycyrrhetinic acid274.
The baboon is an extensively studied model of steroid metabolism in

pregnancy, albeit one which appears to have certain key differences form the human

situation. As in the human, higher levels of cortisone (E) than Cortisol (F) are found

throughout pregnancy in the baboon fetus and there are higher concentrations of

Cortisol in the maternal than the fetal circulation2'5. Infusion of F and E into the

maternal compartment, however, suggests more reductive activity ( cortisone to

Cortisol) in the placenta at mid gestation changing to a preponderance of oxidative

activity at term275, possibly under control of rising maternal estrogen levels276' 277.
This creates a situation where production of Cortisol by the fetal adrenal at mid term is

negligible; minimised by negative feedback effects on the fetus of maternal Cortisol

until there is a rise in placental Cortisol oxidising ability, to protect the fetus from the

effects of maternal glucocorticoid275' 278. In keeping with this, treatment with

androstenedione (proposed to act by increasing maternal estrogen levels) leads to an

increase in oxidative activity in the placenta and an increase in fetal adrenal Cortisol

production at mid gestation278.

Clearly parts of this model do not agree with the data of Murphy. Firstly, Pepe

et al favour a predominant reductive capacity of the placenta at mid term whereas the

studies of Murphy favoured oxidation. Secondly, Pepe et al would favour low fetal

Cortisol production at mid gestation278. While these differences may simply reflect true

species differences, equally the studies of Murphy on placental metabolism may be

criticised for not being conducted at steady state and as such might artefactually over-
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represent oxidation. The steady state experiments of Pepe and Albrecht are unlikely to

be performed in human pregnancy, in vitro studies of human placenta have shown that

the type 2 isoform is the only form in placenta mid and late gestation and is

overwhelmingly oxidative227, although there is expression of the type 1 form and

reductive activity in the decidua and chorion279' 227 and this activity has been

associated with high levels of Cortisol in the uterine wall267. Studies of the HPA in

human fetuses are few, but in the main do not support a suppression of the fetal

adrenal by maternal glucocorticoid at mid gestation: fetal ACTH levels are higher at mid

than late gestation280, the fetal adrenal attains its largest size relative to body weight at

mid gestation, peaking at around twenty weeks281 and shows a rapid increase in size in

absolute terms from the twelfth week on282. Clearly these changes may represent a

variety of suppressive and trophic stimuli other than Cortisol, however Cortisol levels

themselves seem to be at a nadir around 18 weeks283 and most studies support

derivation of Cortisol from the fetal rather than maternal circulation unless the mother is

stressed, even at these stages of pregnancy284,285'283.

Finally, 11B-OHSD may not be the only element in the placental glucocorticoid

"barrier". While dexamethasone is not appreciably metabolised in vitro by human286
or rat 287placenta and less well metabolised by 11B-OHSD 2 than Cortisol224,

pharmacokinetic studies in the rat show that after maternal injection of dexamethasone

there is a ratio of dexamethasone in plasma of 8.5 to 1 from maternal to fetal

compartments288. The ratio is maintained by transport by the placenta of

dexamethasone from the fetus to the mother288. The same workers have shown that

there are higher levels of dexamethasone in the fetuses of mothers after protein calorie

malnutrition287, while maternal streptozotocin diabetes resulted in a reduction of fetal

dexamethasone levels289 perhaps reflecting increased clearance of drug by the fetal

kidney into amniotic fluid289. Whether such transport mechanisms are also active for

other glucocorticoids is not known.
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The role of glucocorticoids in the fetus

Glucocorticioids may be active at a variety of levels in the fetus. Firstly, there

are clear toxic effects on both the fetus and the placenta. Secondly, both the regulation

of glucocorticoid exposure of the fetus and the wide number of genes regulated by

glucocorticoids suggest that they may be pivotal in the maturational events in a variety

of tissues. I will first consider the teratogenic and toxic effects observed with

glucocorticoids before considering these more important physiological effects.

i) Toxic effects

Exogenous glucocorticoids are associated with both fetal loss and teratogenic

effects in animals. Dexamethasone has been extensively studied being associated with

reduced fetal weight, placental weight and fetal death in a variety of species 290"292.
All other glucocorticoids are associated with such effects including hydrocortisone293,

although hydrocortisone appears to be a weaker teratogen 293. The effect of

dexamethasone is dose dependent (in the rat at doses greater than 200pg/kg/day294)
and associated with a range of organ malformations, of which cleft palate appears to be

one of the most frequent294. Maternal stress has also been found to reduce birth

weight in animal studies295, while in human populations the role of psychosocial stress

to reduce birth weight remains controversial (reviewed in296). Glucocorticoids in high

doses also exert toxic effects, observable as ultrastructural changes in the

placenta297"299, giving a potential for effects on the fetus secondary to changes in

placental function299.
The teratogenic role of glucocorticoids in human pregnancy are less clear.

Successful pregnancy can occur both after administration of exogenous glucocorticoids

and in Cushing's syndrome, but a high incidence of spontaneous abortion is noted.

Effects of the underlying condition confound analysis as to whether glucocorticoid use

leads to reduced birth weight but it appears that in sufficient dosage both

glucocorticoids300 and Cushing's syndrome301 are at least anecdotally associated with

retarded fetal growth in humans302. Most authors considering the medical uses of
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glucocorticoids in pregnancy report fewer teratogenic complications than might be

expected from the animal studies303' 304 and a very low incidence of adrenocortical

insufficiency in the newborn303'304, while not commenting on effects on birth weight.

Historically, most of the glucocorticoids used in pregnancy were those extensively

metabolised by 1 IB- OHSD, such as Cortisol or prednisolone303,304, and one might

speculate that this might have led fortuitously to fewer side effects on the fetus. By

contrast, in the treatment of congenital adrenal hyperplasia, dexamethasone is used

precisely because it crosses the placenta, to deliver a glucocorticoid dose to the fetus. I

am not aware on longer term studies investigating the effects of such exposure, but

again such studies would be confounded by the underlying genetic condition (e.g.

congenital adrenal hyperplasia).

ii) Development of the HPA axis

In the human, primordial adrenal structures are visible from 4 weeks of

gestation(reviewed in305) with a clearly identified adrenal at 6 weeks282. Hormone

production also begins early in life: there is evidence of Cortisol production from as

early as the 8th week264' 306 and of corticosterone and aldosterone at 16-20 weeks307

although at this age adrenal steroids are derived at least partly from placental

precursors307. Development of basophilic cells in the adenohypophysis is visible at 8

weeks of life(reviewed in305) and ACTH is measurable in human fetal plasma from 12

weeks308. Cultured human fetal adrenal cells show Cortisol and DHEA-S production

in response to ACTH from 10 weeks308. The dynamics of Cortisol levels in the human

fetus remain controversial, but most evidence supports a rise in Cortisol levels through

gestation and towards term309,31°, while there is more limited evidence that the HPA

axis is responsive to stresses such as intrauterine needling from as early as the 23rd

week in utero311.

The human fetal adrenal is relatively large, comprising at its peak at mid

gestation 0.38% of body weight compared to 0.13% of body weight in a 1 year old

5 7



infant and 0.01% of adult weight281. The adrenal in fetal life has a different

morphology form the adult, the cortex being divided into fetal and definitive zones with

the former being 80-88% of total adrenal weight281. The fetal zone produces DHEA-

S, while the definitive zone is Cortisol producing308. The fetal zone involutes in the

first few weeks of extra-uterine life281. The purpose of this large production of

DHEA-S has been speculated to be as a substrate for the production of estrogens by the

placenta305 and this unique pathway has been proposed as a marker for fetal adrenal

activity305.
In the rat vascular connections between the neurohypophysis and

adenohypophysis exist from as early as the 15th day of life312 and there is an upsurge

of glucocorticoid levels in the 2nd to 3rd post-partum313. The circadian rhythm of

corticosterone is absent at birth, but established at between 21 and 32 days of life (refs

in314) and chiefly dependent on feeding pattern rather than the light-dark cycle314. Low
CBG levels in the immediately postnatal period lead to very low total levels of

corticosterone, but measurable responses to stress315 and adult patterns of response to

adrenalectomy and corticosterone replacement316 are observed in pups even in the first

few days of life if sufficiently sensitive assays are used. The amplitude of the response

to stress increases with age in the first few weeks315.

Hi) Physiological effects

Towards term a variety of species show a rise in glucocorticoid levels 317 and

this rise, reflecting maturation of the fetal HPA axis, is pivotal initiating normal

parturition in the sheep317, 318. The role of glucocorticoids in other species remains

less clear: dexamethasone in high doses(500pg/ day) delays the onset of labour in the

rat319. While glucocorticoids appear to rise before parturition in the human320 and

other primates, their place in initiating delivery remains controversial321. The rise in

glucocorticoid levels is implicated, however, in a variety of maturational events,

especially in the foregut and liver, and are proposed, in general, to promote
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competence for extrauterine life317,321.

Maturational effects are best described in the lung where glucocorticoid

exposure leads to expression of surfactant and other changes leading to therapeutic use

in pre term delivery in human pregnancy322. The lungs are not alone in such effects.

Glucocorticoids have well known effects on a range of gluconeogenic enzymes in adult

life323 and are involved in induction of these enzymes either in late gestation in a range

of species (the sheep324, horse325, 326, mouse327 and rat328, 329) or in the first day of

life330. In the pig they are also implicated in increases in pancreatic enzymes 331 and

maturation of gastric function 332. The majority of such studies involve

pharmacological doses of glucocorticoid, but glucocorticoids are also proposed to

promote maturational changes in normal physiology, to allow maturation of gut and

liver related gluconeogenic enzyme activities in the rat both pre-natally and post-

natally333, 334.

Exogenous glucocorticoids have also been associated with maturational effects

in late intrauterine life on the kidney in the rat335, 336and sheep 337. This includes

promotion of tubular function without effect on glomerular filtration rate336, alteration
of responses to beta adrenergic agonists338 and induction of rat renal Na/K ATPase

activity 339. Importantly, such effects occur at doses less than those expected to lead to

teratogenic effects of fetal death (0.05-0.2 mg/kg days 17-19 for effects on tubular

function336) and are dose-dependent338. In the experiments of Bian et al,

dexamethasone 0.2 mg/kg (gestational days 17-19) enhanced the response of the

kidney (cAMP) to a beta agonist (isoproterenol) in young adult life, but larger doses

(0.8 mg/kg) reduced the response to beta agonist. Thus, there may be complex effects

based upon different doses and times of exposure. Similar effects to promote

adrenergic responses in the heart have been reported by the same group 340~342.
Structural changes, with an increase in the prevalence of polycystic kidneys, have also

been reported with large doses of Cortisol in mice343.
The effects of glucocorticoids on brain development have also been studied.
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Again there is a wide range of possible effects with some groups recording evidence of

accelerated maturation of motor ability344, synaptic connections 345 and

catecholaminergic pathways 346. Other groups report evidence of damage in the

primate brain with degenerative changes in the hippocampus in macaques following

dexamethasone exposure, even at doses similar to those used in lung maturation in

human pregnancy347. A variety of groups have recorded the possibility of late effects

on OTA axis reactivity after intrauterine glucocorticoid exposure albeit with conflicting

results348"350.

Conclusion

We hypothesised that glucocorticoid exposure in utero might be involved

in the long term programming of blood pressure and glucose tolerance. It is clear

that glucocorticoid exposure leads to dose dependent reductions in birth weight

and further, that concentrations of glucocorticoids in utero are of importance in

promoting a series of developmental changes especially of the gut, liver and lung.

Alterations in the timing and extent of such maturation could conceivably alter

blood pressure and glucose tolerance in the mature animal. I now discuss

experimental evidence that glucocorticoid exposure in utero does indeed have

such effects.
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Materials

Chemicals

General Drugs and Chemicals

Acetylcholine

Angiotensin II(Hypertensin)

Ascorbic acid

Biorad protein assay

bovine serum albumin

5-bromo-2'-deoxyuridine (BrdUrd)

Calcium Chloride (CaCl2)-

Cocktail T

Corticosterone

11-dehydrocorticosterone

Dexamethasone

Dimethyl sulfoxide

D-Glucose

Halothane(Fluothane)

Heparin

Magnesium Sulphate (MgSC>4)

nicotine adenine dinucleotide(NAD)

Noradrenaline

95% Oxygen:5% C02

Potassium Chloride (KC1)

Potassium Phosphate (KH2PO4)

Sodium Bicarbonate (NaHC03)
Sodium Chloride (NaCl)

Sodium Pentobarbitone(Sagatal)

Sigma Chemical Company, Poole, Dorset, England

Ciba Geigy, Basle, Switzerland

BDH Chemicals Ltd, Poole, England.

Biorad Ltd

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

BDH Chemicals Ltd, Poole, England.

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

BDH Chemicals Ltd, Poole, England.

Zeneca Pharmaceuticals,Macclesfield, England

Leo Laboratories Ltd, U.K.

BDH Chemicals Ltd, Poole, England.

Sigma Chemical Company, Poole, Dorset, England

Sigma Chemical Company, Poole, Dorset, England

British Oxygen Company, Edinburgh, Scotland.

BDH Chemicals Ltd, Poole, England.

BDH Chemicals Ltd, Poole, England.

BDH Chemicals Ltd, Poole, England.

BDH Chemicals Ltd, Poole, England.

RMB Animal Health Ltd, Dagenham,Essex,

England
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TLC plate

tris buffer

Trypsin

BDH Chemicals Ltd, Poole, England.

Sigma Chemical Company, Poole, Dorset, England

ICN Biomedical, Bucks, England

Reagents for Immunocytochemistry

Anti-BrdUrd monoclonal antibody Europath Ltd, Bude, Cornwall, UK

rabbit anti-mouse antibody conjugated to alkaline phosphatase

Dako Ltd, Bucks, UK

Alkaline phosphatase substrate (fast BB salt)

Sigma Chemical Company, Poole, Dorset, England

Radiochemicals

corticosterone Amersham Interational, Bucks, England,

dexamethasone Amersham Interational, Bucks, England.

Equipment

Thin layer chromatography

Merck 20x20cm plate, aluminium sheets, Silica gel 60 F254

BDH Chemicals Ltd, Poole, England.

High performance liquid chromatography

HPLC grade Methanol Rathburn Chemicals, Walkerbum, Scotland

HPLC grade Water Rathburn Chemicals, Walkerburn, Scotland

Liquid scintillant ( Quicksafe Flow 2) Zinsser Analytic UK Ltd

automatic sample injector (Waters 712 WISP)-Millipore, Milford, MA, USA

HPLC pump (Waters 510) Millipore, Milford, MA, USA

Absorbance detector (Waters Model 411) Millipore, Milford, MA, USA

3.9x 300 mm CiB HPLC column

(Waters Bondapak™) Millipore, Milford, MA, USA
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radioactivity monitor (Berthold LB 506 C-l)Berthold Analytical Ltd, Nashua, NH, USA

scintillant pump (Berthold LB 5035) Berthold Analytical Ltd, Nashua, NH, USA

11§-0HSD assay

13- radiation detector (Minaxi, Tri-carb 4000)

Canberra Packard, Pangbourne, Berks, England

Direct Blood pressure measurement

pressure transducer (Gluck 470)

chart recorder(Lectromed Multitrace 2)

Indirect Blood pressure measurement

Incubator (Thermacage)

Air Pump

Mesenteric Perfusions

polythene PP50 tubing

peristaltic pump (Pharmacia Pump P3)

chart recorder (Elcomatic EM 720)

Infusion of3H Corticosterone

Syringe Driver

Image analysis

image analyser

Computing and data analysis

Statview™

Animals

Wistar rats were purchased from Harlan Olac. In all experiments standards

conforming to " The Principles of Animal Care" (NIH publication No.85-23,

revised 1985) were followed.

Lectromed, Letchworth, England

Lectromed, Letchworth, England

Beta Medical and Scientific.,Sale, England

Air Shields UK Ltd., Shoeburyness,

Essex, England.

Portex, Hythe, Kent, England

Pharmacia Ltd., Milton Keynes, England

Elcomatic Ltd., England.

B.Braun-Melsungen, Germany

Seescan Ltd, Cambridge, England.
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Methods

1) Measurement of blood pressure

a) Direct measurement by carotid cannulation

Surgery

Animals were anaesthetised using halothane and an incision made in the

left side of the neck. The carotid artery was isolated by blunt dissection and tied

off ( 2G cotton suture-(Ethilon)) as far cranial as possible. The artery was then

clamped proximal to the suture and a teflon cannula inserted and secured with two

further ties. The free end of the cannula was tunnelled to the back of the neck and

stitched to skin. The cannula had been prepared by flushing with heparin (1,000

units/ml) and after insertion and a further 30jul of heparin was introduced into the

cannula and the cannula sealed with a metal pin. The area was sprayed with

antiseptic and the animals left to recover on a heat pad.

Measurement ofblood pressure

48 to 72 hours after cannulation blood pressure was measured. The

cannula was connected to a 20 cm length of polythene tubing (Portex, Hythe,

Kent) with a 22G steel needle as connector. Pressure was measured by directly

by a pressure transducer (Gluck 470) connected to a chart recorder (Lectromed

Multitrace 2, Letchworth, UK) which converted the signal to mm of mercury.

The recorder was calibrated with an internal standard prior to and once during

recording and with a mercury sphygmomanometer prior to each experiment. For

blood pressure measurement the animals were placed at the level of the pressure

transducer on a towel. Blood pressure was measured on for 10 min on three

consecutive days and recorded as the mean of the 3 readings. The coefficient of

variation for the repeated measures of blood pressure on separate days was 7.0%

for systolic blood pressure and 9.1 % for diastolic blood pressure.

Blood pressure measurement was successful in around 75% of animals,
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problems mainly being due to eventual blockage of the cannulae. The heparin

regimen maximised the number of animals with patent cannulae, while leading to

no apparent bleeding problems as determined at post mortem.

b) Indirect measurement of blood pressure by tail cuff

Method

Blood pressure was measured as described by Lovenberg 351. Animals

were warmed to 38°C in a converted incubator. Individual animals were then

restrained in a towel and the tail fitted with an inflatable cuff, distal to this a

sensor was fitted to the tail to detect blood flow. The sensor incorporates a light

source and piezo-electic crystal connected to a locally generated software

programme controlling the rate of inflation and deflation and recording the return

of blood flow. On deflation of the cuff, the resulting increase in electrical activity

is represented as a diamond shaped pattern, where systolic blood pressure is

represented by the onset of signal and diastolic from the point where the signal

returns to baseline. Cuff size and the measuring programme had been previously

validated. Daily recordings for each animal represent the mean of 5 distinct

readings for each animal.

2) Mesenteric Perfusions

The mesentery was removed from an anaesthetised rat and perfused using

a protocol very similar to that described by McGregor in 1965352. Animals were

anaesthetised by injection of pentobarbitone and heparinised (heparin: 1000 U.kg"

1). A single midline incision was made and the intestine, aorta and subsequently

superior mesenteric artery exposed using blunt dissection. Cotton sutures were

passed around the aorta and superior mesenteric artery to allow control of the

bleeding and the superior mesenteric artery cannulated using a length of polythene

PP50 tubing (Portex, Hythe, Kent, UK) and perfused continuously oxygenated
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Krebs-Ringer buffer solution ( 123 mM NaCl, 2.65 mM KC1, 1.29 mM CaCl2,

1.2 mM KH2PO4, 1.2 mM MgS04, 24.5 mM NaHCC>3, 11.1 mM glucose and

18pM ascorbic acid continuously oxygenated by bubbling 95%02: 5%C02

through a reservoir )at a rate of 4 ml.mkr1 using a peristaltic pump ( Pharmacia

Pump P3).

The mesentery was dissected, and the gut removed from the duodenum to

end of ileum using surgical scissors. After this dissection, the gut itself was

removed and the isolated superior mesenteric arterial cascade maintained at

between 36°C and 38°C (Solex digital thermometer) on a petri dish heated from

below by a water bath. Tissues were protected from drying out by application of

warm buffer and covering with the petri dish lid.

Pressure within the system was recorded continuously using a pressure

transducer by means of a T-piece attached to the perfusion circuit close to the

inflow to the mesenteric artery, and attached in turn to an chart recorder

(Elcomatic EM 720) calibrated using a mercury sphygmomanometer. After a 30

minute equilibration period, preparations were administered a "wake up" bolus of

30 nmol of noradrenaline, after constriction and relaxation in response to this a

further bolus of 30 nmol noradrenaline and 400 pmol acetylcholine was

administered to assess the integrity of the endothelium dependent vasodilatation.

The preparation was abandoned if it failed to give the expected responses (at least

an 80 mmHg rise in pressure with the noradrenaline dose and a reduction in

response to less than 80% of this with the combined noradrenaline and

acetylcholine doses).

Noradrenaline, prepared in a 0.1 % solution of ascorbic acid in buffer and

diluted to concentrations between 0.2 and 20pM was then perfused in stepped

concentrations (0.2, 0.5, 1, 2, 5, 10 and 20pM) at five minute intervals, with

perfusion of buffer for five minutes between each step. Potassium was prepared

by substitution of KC1 for NaCl in buffer to a final potassium concentration of
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between 25-125 mM and again perfused in a stepwise fashion ( 25, 45, 65, 85,

105, 125 mM).

This system has been extensively used within our department. Repeated

perfusion with noradrenaline seemed to provoke a consistent response over

time(Figure 4).

Figure 4

Repeat NA response curve animal 1

log perfusion cone (pM)

Figure 4: Mesenteric Perfusion. Rise in pressure after administrartion perfusion of noradrenaline

90 minutes apart in two separate preparations.

3) Immunocvtochemistrv

The technique for detecting BrdUrd in nuclei was modified from previously

described methods. Mesenteric tissue was embedded in paraffin wax and cut in

3pm transverse sections which were then dewaxed, hydrated and immersed in 0.7N

HC1 for 1 hour to hydrolyse double stranded DNA. Sections were trypsinised for 2

minutes at 37°C (0.03% trypsin) then washed in tris buffer at pH7.6 and treated

with denatured rabbit serum to block endogenous enzyme activity. Sections were

incubated overnight at 4°C using a primary anti-BrdUrd monoclonal antibody and a

secondary rabbit anti-mouse antibody conjugated to alkaline phosphatase. Alkaline
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phosphatase substrate (fast BB salt) was used to visualise BrdUrd positive nuclei.

4) Oral Glucose tolerance test

Animals were fasted from 1600h the day before and 2 g/kg glucose (as a

0.5g/ml solution) was given by gavage between 0800 and 0900h the next

morning. Blood was taken by tail tipping at 0, 30, 60, 90 and 120 min,

centrifuged immediately and the plasma stored at -70C.

Glucose and insulin area under curves were calculated by the formula 15

a+ 30 b+ 30 c+ 30 d+ 15e where a-e are the values for glucose or insulin at times

0, 30, 60, 90 and 120 minutes respectively.

5) Insulin tolerance test

Insulin (lOOU/ml) was diluted in saline to a concentration of 1U/ ml in

0.9% saline. Insulin was administered in a dose of 0.1-0.75 U/kg by

intraperitoneal injection. Blood glucose was assessed by tail tipping and using an

Exactech meter at times 0, 15, 30, 45, 60 and 75 minutes.

Figure 5
ITT at different doses of insulin

Time

Figure 5: Blood glucose after intraperitoneal injection of insulin at various doses. Time points are

mean ± SEM.
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6) Assays

a) 11 beta hydroxysteroid dehydrogenase activity in vitro

i) Placental activity

The assay of this enzyme was well established in our department353.

Assays were performed with 200pM NAD, 12nM 3H corticosterone, 0.5 mg/1 of

protein (total volume 250pl) , at 37°C for 10-20 minutes. The assay conditions

were such that the concentration of NAD was not rate limiting while that of

protein was rate limiting The time was chosen such that it was within the linear

part of the relationship between time and the appearance of product.

Tissues were dissected and placed on ice immediately. Placentae were

homogenised by hand in Krebs-Ringer bicarbonate buffer (144 mM Na+, 126

mM CI", 3.8 mM K+, 1.2 mM Mg2+, 2.5 mM Ca2+, 25 mM HCO3-, 1.2 mM

H2PO4"", 1.2mMSC>4", pH 7.4). Protein concentration was assessed by a

colorimetric method (Biorad) against standard concentrations of bovine serum

albumin. Assays were performed at 37°C for 10 minutes with 0.5 mg.ml"!
protein, 200 mM nicotine adenine dinucleotide (NAD) and 12 nM

corticosterone in Krebs-Ringer buffer with added 0.2% bovine serum albumin

and glucose.

The reaction was stopped by mixing with 2.5 ml of ethyl acetate at 4°C,

and samples were then centrifuged at 2,000 rpm to allow separation of the ethyl

acetate fraction which was then dried in a sample concentrator at 40°C with

blown air.

Separation was initially by thin layer chromatography. Samples were

resuspended in lOOpl of ethanol and pipetted onto a TLC plate ( Merck 20x20cm

plate, BDH Chemicals Ltd.,England), separation was at room temperature in

chloroform and ether . Steroids were identified by viewing under ultraviolet light

and sample areas scraped from the TLC plates and counted in Cocktail -T using a

B-radiation detector (Minaxi, Tri-carb 4000, Canberra Packard, England).
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Subsequently this separation was by High Performance Liquid Chromatography

in which case dried samples were resuspended in mobile phase (60% methanol

and 40% water). Labelled peaks were detected by an on line radioactivity monitor

(Berthold LB 506 C-l, Berthold Analytical Instruments Ltd, Nashua, USA) after

the addition of liquid scintillant (Quicksafe Flow 2, Zinsser Analytic UK Ltd) and

the identity of labelled peaks confirmed by non labelled standards (Sigma

Chemical Company, England).

Rat placental 11-OHSD activity was shown to fall by 70% after freezing

and therefore all assays were done on fresh tissue.

ii) Kidney libeta OHSD activity

1 IB OHSD activity in the kidney was assayed by a method similar to the

above. In brief, kidneys were dissected and placed on ice immediately. Kidneys

were minced and then homogenised by hand in Krebs-Ringer bicarbonate buffer

(144 mM Na+, 126 mM CI", 3.8 mM K\ 1.2 mM Mg2+, 2.5 mM Ca2+, 25
mM HCO3", 1.2 mM H2PO4", 1.2 mM SO42", pH 7.4). Protein concentration

was assessed by a colorimetric method (Biorad) against standard concentrations

of bovine serum albumin. Assays were performed at 37°C for 10 minutes with

0.1 mg.ml'l protein, 200 mM nicotine adenine dinucleotide (NAD) and 12 nM

2H corticosterone in Krebs-Ringer buffer with added 0.2% bovine serum

albumin and glucose.

Assay conditions were maximised to ensure that the concentration of NAD

was not rate limiting, that of protein was rate limiting and the time was such that

there was still a linear relationship between time and the appearance of product.

b) Measurement of llbeta-OHSD activity in vivo

On days 17-21 of gestation animals (5 control, 3 treated with

carbenoxolone 12.5 mg/day throughout pregnancy) were subjected to halothane

70



anaesthesia and the left carotid and right jugular vein cannulated. Animals were

given a priming dose of corticosterone (3 pCi in 0.6 ml 0.9% NaCl,

Amersham, UK) and followed by a constant infusion of 0.15

pCi/minute/30pl/min for a total of 80 min via the jugular catheter. Samples of

arterial blood (300pl with replacement of volume with 0.9% saline) were obtained

at 20, 40, 60 and 80 min of infusion to ensure steady state and blood pressure

and pulse rate, measured as above (Lectromed Multitrace 2, UK). At 80 min,

placental and fetal tissues were removed and frozen in liquid nitrogen. Steroids

were extracted with ethyl acetate from 3 placentae and matched fetuses from each

animal and separated by thin layer chromatography. Activity of 11B-OHSD-2

was assessed by the increase in 11-dehydrocorticosterone from arterial blood

to placental tissue.

c) Corticosterone Assay

Corticosterone was estimated by radio-immunoassay354 using a locally

generated antibody (gift of C.J. Kenyon). The intra-assay coefficient of variation

was 3.8%.

Samples were diluted in buffer (135 mM sodium borate, 0.5% bovine

serum albumin, 1% methanol, 0.1% ethylene glycol, pH 7.4) and heated to 80°C

to inactivate corticosterone binding globulin. Assessment of samples before and

after heat treatment using the protocol for the CBG assay displayed no

significant corticosterone binding activity in heat treated samples. Antibody

specific to corticosterone (final titre 1:10,000) was added along with ^H-
corticosterone (Amersham International, Bucks., England) and samples incubated

at 4°C overnight. Unbound activity was precipitated by the addition of activated

charcoal and the bound activity estimated in a 8 radiation detector (Minaxi Tricarb

4000, Canberra Packard, Berks., England) after the addition of scintillant

(Picofluoro 40- Canberra Packard, Berks. England). Corticosterone concentration
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was estimated by comparison to cold corticosterone standards (Sigma Chemical

Company, Poole, England).

d) Glucose, and insulin assays

Plasma glucose was determined by an enzymatic (glucose oxidase)

method using a Beckman Synchron CX3 multichannel analyser (Beckman

Instruments Ltd, High Wycombe, UK). The intra-assay and inter-assay

coefficients of variation of variation were <1% and 2.2%, respectively. Plasma

insulin was determined, as previously described 355 using rat insulin standards

(Novo Nordisk, Copenhagen, Denmark) and iodinated insulin (Lifescreen,

Watford, UK). The intra-assay and inter-assay coefficients of variation of this

method are <10% throughout the range.

e) Renin Assay

Plasma renin activity was assessed by measurement of generation of

angiotensin I at 4°C and 37°C. The protocol followed that of Dr B Williams

(Department of Medicine, Western General Hospital, Edinburgh).

Samples were collected in Na EDTA on ice and later separated and plasma

frozen at -80°C. The assay was performed by incubation of plasma with an

excess of angiotensinogen and inhibitors of the conversion of angiotensin I to

angiotensin II. Generation of angiotensin I at 37°C was assessed by

measurement using a specific radio-immunoassay.

25 Jill of sample was incubated with 175jul of reaction mix comprising

45.7% nephrectomised sheep plasma, 47.4% 0.1M phosphate buffer (pH7.4,

with 0.1% Na Azide), 2.3% 270 mM EDTA, 2.3% British anti lewisite

(comprising 1.5% dimercaptopropanol and 3.4% benzyl benzoate in arachis oil)

and 2.3% 8-hydroxyquinilone. Duplicates were incubated either at 37°C or on ice

. A 25pl aliquot of the incubation mixture was then added to lOOjul of antibody to

angiotensin I (final antibody concentration of 1 in 5,000 ) and iodinated
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angiotensin I in buffer( total counts 3-4,000) and incubated overnight at 4°C .

The bound and unbound fractions were separated by addition of activated

charcoal (700pl 0.6% charcoal, 0.06% dextran, 0.05% gelatin at 4°C) and

centrifugation at 3,000rpm for 20 minutes. The supernatant was discarded and the

charcoal pellet counted in a gamma counter. The generation of angiotensin I was

assessed by comparison with cold standards (angiotensin I 0.125-64 ng/ml,

Sigma) as the difference between the concentrations at 4°C and 37°C and

expressed as ng per ml of plasma per time

Initial assessment of antibody concentrations from 1: 1,000 to 1: 32,000

showed that an antibody concentration of 1,5,000 rendered B/ B0 of 40-50% on

repeated curves and that generation of angiotensin I by sample was linear over 3

hours at rates of generation of 400 ng/ml/hour (Figure 6). Samples were therefore

generated for 2 hours. The standard curve proved linear over a for concentrations

between 0.125 ng/ml and 4 ng/ml corresponding to a rate of generation of

between 20 and 640 ng/ml/hour for a standard 2 hour incubation. Concentrations

in the samples incubated at 4°C were consistently below the limit of detection.

The intra-assay coefficient of variation was 4.5%.
Figure 6
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Figure 6: Time course of Angiotensin I generation. AI generated at 400ng/ml/hour.
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f) Corticosteroid receptor mRNA levels

Levels of corticosteroid receptors were measured by Dr N.S.Levitt following the

method outlined below.

GR and MR mRNA levels were determined by in situ hybridisation

histochemistry. Rats were decapitated and brains removed and rapidly frozen on dry

ice. Coronal cryosections (10pm) were cut at the level of the preoptic area/ organ

vasculosum lamina terminalis, sub commisural organ, hippocampus, area postrema and

nucleus tractus solitarius and thaw mounted onto gelatine and poly-l-lysine-subbed

slides. Sections were post-fixed in 4% paraformaldehyde, washed and hybridised

using a 35S UTP-labelled cRNA antisense probe transcribed in vitro from rat cDNA

clones encoding the 3' regions of MR and GR RNAs (513 and 674 bp respectively).

Probes were denatured and added at a final concentration of lOx 106 cpm/ml to

hybridisation buffer. 200-pl aliquots were pipetted onto sections and hybridised

overnight at 50°C. Sections were treated with RNase A (30 mg/ml, 45 minutes at

37°C) and washed to a final stringency of 0.1 SSC at 60°C. Slides were dehydrated,

dipped in photographic emulsion (Kodak, NTB2) and exposed in light tight boxes at

4°C for 21 days before being developed and counterstained with 1% pyronine.

Hybridisation signal within hippocampal subregions was assessed by computer assisted

grain counting using an image analysis system (Seescan pic, Cambridge, UK). Silver

grains were counted, blind to treatment, under brightfield illumination over individual

identified neurons in the hippocampal and other regions (8-12 cells per subfield for each

of three replicate sections from each coronal level for each animal). In the dentate gyrus

it was difficult to determine cell boundaries and therefore grains were counted over a

fixed area approximating neuronal size. Results were calculated as mean grains/ neuron

for each region after subtraction of background (counted over areas of white matter)

subregions.
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Results

Section 1: Administration of dexamethasone and glvcvrrhizic acid in

pregnancy: Effects on birth weight and later offspring blood pressure

Introduction

We hypothesised that exposure of the fetus to maternal glucocorticoid might have

life long effects on offspring blood pressure. Exogenous glucocorticoids in pregnancy

reduce birth weight but are also known in higher doses to reduce litter number and exert

lethal effects on both the fetus and the dam293'290-292. Slotkin et al 340 had highlighted

the threshold for lethal or teratogenic effects on the fetus as greater than 800 pg/kg. We

therefore studied two doses of dexamethasone below this threshold at 10 pg/kg and

lOOpg/kg. Dexamethasone is a synthetic glucocorticoid which is poorly metabolised by

both the human286 and the rat287 placenta in vitro and by purified forms of 11B-OHSD

2 derived from the placenta225'224.
There is little literature on the effects of glycyrrhizic acid in pregnancy. Therefore a

dose of glycyrrhizic acid associated with sodium retention in vivo in animal models was

selected.

Methods

Pregnant female Wistar rats were time mated and treated from the first day of

pregnancy with 10 or 100 pg/kg of dexamethasone (DEX 10 and DEX 100) by

subcutaneous injection, while controls were administered vehicle (4% ethanol, 0.9%

NaCl, CONT). A further group were administered glycyrrhetinic acid orally (a

concentration of 600 mg/1 in the drinking water, GI) and this group was also

administered vehicle injections. Eight pregnant females were entered into each group.

To allow assessment of the glycyrrhetinic acid on enzyme activity, 3 controls and 2 GI

treated animals were killed on day 20 of pregnancy with measurement of fetal and

placental weights and 11B-OHSD activity in placenta and maternal kidney, for

comparison 1 animal in each of the dexamethasone groups was also sacrificed. Enzyme
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activity was assessed with incubation of placenta and of kidney homogenates for 10

minutes.

Effects of treatment on litter size, litter number and birth weight were monitored in

the remaining animals, which were subject to no treatment postnatally and blood

pressure measured by direct carotid cannulation at 5 months of age.

Results

Pregnancy, placental enzyme activity and birth weight

Females tolerated treatment well. A female, in the DEX 100 group, was found not

to be pregnant and excluded. Females were of equivalent weight at the beginning of

pregnancy (CONT 226± 8.9g; DEX 10 228± 3.9 g; DEX 100 227+ 7.8 g; GI 230±

8.4g) and all females had a net gain in weight through pregnancy. Weight gain in the

DEX 10 and DEX 100 groups was significantly lower than control (Figure 7: repeated

measures ANOVA, vs. DEX 10 F=7.2, P<0.04; Vs DEX 100 F=71.9, P<0.01).

Thus, by day 19 the weight of the CONT and GI groups had increased by 35% above

pre-pregnancy weight, while the DEX 100 and the DEX 10 groups had gained 20% and

31% respectively. The number in each litter was not affected by treatment (CONT 9.7±

0.4; GI 8.9± 1.3; DEX 10 8.3± 1.7; DEX 100 9.6± 0.5).

Water intake was increased in the GI treated animals (P=0.02) and led to a intake

of drug of 112.5+9.6 mg/kg/day (range 91-156.3). There was no relationship between

the drug dose and maternal weight gain across this range.

7 animals were sacrificed on day 19 (3 CONT, 2 GI, 1 DEX 10, 1 DEX 100) and

11J3-OHSD activity in placentae and dam kidney were assessed along with fetal and

placental weights. There was no significant differences in fetal (CONT 2.23± 0.10g,

n=30; GI 2.62+0.06g, n= 22; DEX 10 2.91+ 0.05g, n= 10; DEX 100 2.45+ 0.81g,

n=10) or placental weights (CONT 0.52+ 0.08g ; GI 0.51± 0.07g; DEX 10 0.48+

O.Olg; DEX 100 0.43± 0.02g). Importantly we were unable to demonstrate a change in

placental or renal 11B-OHSD activity in vitro after GI treatment in vivo (Figure 8).
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The remaining animals (5 CONT, 6 GI, 7 DEX 10, 6 DEX 100) littered with no

difference in the length of gestation between groups (CONT 22± 0.3 days; GI 22.3±

0.2 days; DEX 10 22.4± 0.2 days; DEX 100 22.5± 0.2 days) or the ratio of males to

females. lOOjig/kg/day dexamethasone treatment resulted in a reduction in birth weight

to 84% of the controls while the DEX 10 and GI groups were not significantly changed

at 100% and 94% of control values, respectively (Figure 9)

Offspring weight gain and blood pressure

After birth, body weights increased such that by week 9 there were no significant

differences between groups, by which time controls were 258± 8. Ig in weight.

At 5 months offspring blood pressure was assessed by means of carotid

cannulation. Systolic blood pressure was higher in the offspring of the DEX 100 dams

by 13 mmHg in males and 8 mmHg in females (Figure 10: F=5.1, P<0.01,) There

were no significant difference in the adult weights of the animals (Table 4).

Figure 7

0 10 , 20
day-

Figure 7: Weight gain (in grammes) of dams through pregnancy. Data are expressed as mean ± SEM.
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Figure 8

Figure 8: 11B-0HSD activity in vitro after glycyrrhizic acid treatment in vivo. Data expressed as

percentage conversion corticosterone (B) to 11 dehydrocorticosterone (A), mean ± SEM. There are

significant differences.
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Figure 9

CON G DEX10 DEX100

Figure 9: Dexamethasone reduces birth weight. Data expressed as mean ± SEM. ANOVA F=23.2, P<0.01

across all groups with significant difference in the DEX 100 group (*) vs control on post hoc testing.
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Table 4: Body weights of treated animals

CONT DEX 10 DEX 100 GI

males

body weight 453± 7.6g 415+ 14.5g 424 ± 9.2g 438 ± 12.8g

heart weight 0.24 ± 0.24+ 0.24 ± 0.24

(as % of body weight) 0.004% 0.005% 0.003% ±0.006%

left ventricle weight 0.21± 0.21+ 0.21+ 0.21

(as % of body weight) 0.004% 0.005% 0.002% ±0.005%

females

body weight 277± 8.3g 268+ 9.8g 254 ± 7.1g 261 ±3.9g

heart weight 0.26 ± 0.24+ 0.26 ± 0.25

(as % of body weight) 0.004% 0.01% 0.009% ±0.004%

left ventricle weight 0.22+ 0.21+ 0.22+ 0.22

(as % of body weight) 0.005% 0.005% 0.008% ±0.004%

Table 4: Body and organ weights of treated animals. All data are expressed as mean ± SEM and groups

compared using ANOVA. There were no significant differences.
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Figure 10
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Figure 10: Systolic and Diastolic blood pressure in the offspring of treated animals. Data expressed as mean

± SEM. Systolic blood pressure higher in males and females in the DEX 100 group (ANOVA across all groups

F-5.1, PcO.Ol). * denotes significant vs control at P<0.05.
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Discussion

We have demonstrated a dose of dexamethasone which, without clear toxic effects

on mother, litter size or litter number, has reduced birth weight to a modest degree

(16%) and led to a rise in adult systolic blood pressure. While glucocorticoids are

known to raise blood pressure in animals356 and in man357, such long lived effects,

months after exposure have not been previously described and would represent the kind

of "programming" effect proposed by Barker et al200. The term programming

encompasses the idea that environmental insults or hormonal signals exerted at certain

stages of development may lead to permanent alteration in the regulation of biological

systems. Critically, such effects extend long after the removal of the programming

influence. Is it feasible that hormones could exert such long lived effects?

There is an extensive literature on the role of androgen exposure in early life to

alter neural development. It has been known since the 1960s that there is a "window"

in the first ten days of life in which exposure of a newborn female rat to a single pulse

of testosterone leads to reduced fertility in adult life358. This arises because androgen

exposure or non-exposure at this stage of development permanently alters hypothalamic

responses to a male or female pattern respectively358, 359, a phenomenon the authors

called "imprinting", borrowing the term from behavioural psychology360. Subsequent

work has suggested that such phenomena arise from organisational effects on neural

pathways by estrogens formed by aromatisation of injected or endogenous testosterone.

Such sensitive time windows extend into late intrauterine life in the rat and may also

exist in mid gestation in the human (reviewed in 361).
Non steroid hormones have also been proposed to exert such effects. Towards

the end of the 1970s Csaba, working in Budapest, described effects of exposure to a

single injection of insulin362 or vasopressin363 in the first day of life to affect hormonal

responses in adult life: increasing the hypoglycaemic response to injected insulin and

increasing vasoconstriction to vasopressin in isolated aortic strips respectively, in

animals at least two months after the initial treatment. Such effects were termed
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"hormonal imprinting" and it was hypothesised that receptor number and response

would be permanently altered by exposure in early life364. More recently, evidence has

been forwarded for similar effects on the pituitary-thyroid axis, whereby exposure of

dams to triiodothyronine(T3) late in pregnancy led to permanent alterations in the ratio

of T3 to thyroid stimulating hormone365.
The stress axis may also be subject to such programming effects. It is known that

exposure of neonatal rats to handling early in life leads to permanent alterations in the

pattern of response of the hypothalamic-pituitary-adrenal axis366. The mechanism is

uncertain but shows features in keeping with programming: if exerted at the key time in

early life, handling appears to alter the "hard-wiring" of the developing HPA axis with

measurable differences both in the peripheral corticosterone response to stress and in the

central expression of glucocorticoid receptors367 and in subsequent propensity to

disease368.

The programming effects we have observed might be exerted by a variety of

mechanisms. Firstly, the later rise in blood pressure might be inherent secondary to

catch up growth and therefore a feature of any growth retarding insult early in life,

perhaps mediated by the effects of such growth on vascular structure7. Alternatively,

glucocorticoids might exert a number of more specific effects by altered expression of

glucocorticoid regulated genes, changes in the levels of growth factors or by effects on

organ growth and development.

Glucocorticoids are known to exert many influences in development and there are

several ways in which glucocorticoids in utero might be expected to affect later blood

pressure. Glucocorticoids infused in utero lead to rises in blood pressure, at least in the

sheep fetus369' 337 and dexamethasone given to preterm infants is also associated with

raised blood pressure in the short term370 . It is known in the adult that any primary

cause of high blood pressure exerted for long enough will result in permanent rises in

blood pressure even if the initial cause is removed with such effects having been

attributed to alteration resistance vessels (reviewed in 7). It may be then, that rises in
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blood pressure early in life lead to structural alterations in the vasculature promoting

higher blood pressure life long.

Secondly, glucocorticoids might exert programming effects on hormonal systems;

we have discussed the influences of glucocorticoids on aspects of the developing

sympathetic nervous system in the rat340-346 as well as known influences on the renin-

angiotensin system371' 372 and developing HPA axis348"350. Permanent alteration in

the response of these hormonal axes would be expected to alter blood pressure life long.

Finally, blood pressure may changed by long term alteration in organ function, most

notably the kidney. Reductions in glomerular filtration area arising from fetal life have

been proposed as an aetiological factor in the connection between low birth weight and

later high blood pressure373. In the next section we begin to consider such potential

mechanisms.
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Section 2: Effect of dexamethasone in utero on vascular reactivity

Introduction

Data from human studies suggested that the differences in blood pressure

associated with lower birth weight become more pronounced in older individuals21'22.
In addition changes in glucose tolerance had been observed in the older populations44.

None of the human data suggested the aetiology of raised blood pressure in lower

birth weight individuals. Essential hypertension is characterised by increases in

peripheral vascular resistance374, sympathetic tone375 and eventually with structural

changes in small vessels376, and these changes are also found in animal models of

hypertension377. In addition, but less consistently, several studies have suggested an

increase in peripheral response to noradrenaline both in man378"380 and animal

models381' 382.

Glucocorticoids raise blood pressure in both animals356 and man357 and are in

turn associated with potentiation of responses to catecholamines (reviewed in383).
Glucocorticoids had previously been shown to have a permissive role in allowing

vasoconstriction to noradrenergic stimuli384' 385 and in excess, to potentiate

vasoconstriction in response to noradrenaline in whole animals384 and in isolated

mesenteric arterial beds386. Further, glucocorticoids are intimately involved in the

development of noradrenergic and adrenergic systems in various organs in the

developing fetus, including the brain346, heart342 and kidney341. Such effects are

complex and dose related: doses as low as 0.05 mg.kg-1 being associated with

reductions in noradrenaline levels342, enhanced cellular responses to B-adrenergic

stimuli342 and increases in cellular adenylate cyclase340, while higher doses (0.8

mg.kg*1) are associated with promotion of noradrenergic activity in the brain346.

Importantly, the in utero influences of glucocorticoids have also been postulated to lead

to changes in adult function387 with some evidence for permanent alteration in brain

noradrenergic pathways346.

Using animals from our initial cohort we decided to examine glucose tolerance,
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blood pressure and vascular reactivity in isolated mesenteric beds.

Methods

Male animals from the cohort described in the previous section were examined at

17 months of age. In brief, pregnant female Wistar rats were time mated and treated

from the first day of pregnancy with 10 or 100 pg/kg of dexamethasone (DEX 10 and

DEX 100) by subcutaneous injection, while controls were administered vehicle (4%

ethanol, 0.9% NaCl, CONT ). A further group were administered glycyrrhetinic acid

orally (a concentration of 600 mg/1 in the drinking water, GI) and this group was also

administered vehicle injections. Eight pregnant females were entered into each group.

At 17 months, male animals were subjected to an oral glucose tolerance test with 2

g/kg glucose (as a 0.5g/ml solution) given by gavage tube to animals fasted from 1600

the day before. Animals were left for 1 week to recover and then anaesthetised, the

carotid artery cannulated and blood pressures measured directly at least two days after

recovery from anaesthesia as previously described. Finally, the mesenteric bed was

dissected and reactivity to noradrenaline and potassium examined as detailed in the

methods section and the weights of a variety of organs recorded.

Results

Body weights, blood pressure and vascular reactivity

At seventeen months there were no significant differences in body weight or in

organ weights (Table 5). Mean arterial pressure was 11 mmHg higher in the animals

treated with DEX 100 in utero (CONT 112± 1.6, DEX 10 115± 3.7, DEX 100 123±

1.7, GI 110+ 4.1: F=4.73, P<0.05)

Mesenteric perfusions displayed no difference in reactivity to noradrenaline

(Figure 11) or to potassium (Figure 12). Preparations showing evidence of hypoxic

damage with inadequate constrictor response to noradrenaline or dilator response to

acetylcholine were excluded and the final numbers were CONT 3, DEX 10 4, DEX 100
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6 and GI 5.

Offspring glucose tolerance

There were no significant differences on repeated measures ANOVA between

groups. The error bars in the DEX 10 group are larger than the other groups due to a

single outlier with fasting glucose of 7.7 and all subsequent glucoses greater than 11.5.

There were no differences in fasting glucose (CONT, 5± 0.2 mmol.l"1; DEX 10 6.2±

0.7 mmol.l"1; DEX 100 5.6± 0.4 mmol.l"1; GI 5.2± 0.4 mmol.l"1: Figure 13) or insulin

(CONT, 36.7± 4.4 mU.l"1; DEX 10 49.9± 13 mU.l"1; DEX 100 26.7± 1.05 mU.T1;

GI 47± 10.6 mU.l"1). The integrated area under the curve for insulin after the oral

glucose tolerance test was significantly higher in the GI group at 162% of controls

(Figure 14).
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Table 5

CONT DEX 10 DEX 100 GI

n 6 4 6 5

weight 528
+ 33

548
± 30.6

503
± 31.4

546
± 23.4

cardiac weight
(as % body weight)

0.28
± 0.006

0.27
± 0.03

0.30
± 0.03

0.29
± 0.01

adrenal weight
(as % body weight)

0.017
± 0.004 %

0.014
±0.01 %

0.017
± 0.002 %

0.012
± 0.001 %

spleen weight
(as % body weight)

0.32
± 0.05 %

0.25
± 0.09 %

0.28
± 0.03 %

0.33
± 0.03 %

brain weight
(as % body weight)

0.39
± 0.03 %

0.39
± 0.03 %

0.40
±0.01 %

0.39
± 0.02 %

thymus weight
(as % body weight)

0.08
± 0.012 %

0.07
± 0.03 %

0.09
± 0.02 %

0.08
±0.01 5

Table 5: Body and organ weights in male offspring at 17 months. Offspring of dams treated with either

dexamethasone or glycyrrhizic acid. Data expressed as mean ± SEM and groups compared with ANOVA. No

significant differences were observed.
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Figure 11

Figure 11: Dose response of mesenteric artery perfusion pressure to stepped exposure to noradrenaline. CONT

n=3; DEX 10, n=4; DEX 100, n=6; GI, n=5. Data are expressed as mean ± SEM, no significant differences

were observed.
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Figure 12

CONT
DEX10

~i—'—r

60 80 100

[KCI]

a— CONT
dexioo

r

60 80 100

[KCI]

T

120 140

120

CONT
GI

20 40 60 80 100 120 140

[KCI]

Figure 12: Dose response of mesenteric artery perfusion pressure to stepped exposure to potassium chloride

CONT n=3; DEX 10, n=4; DEX 100, n=6; GI, n=5. Data expressed as mean +SEM. No significant differences

were observed.
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Figure 13
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Figure 13: Effect of treatment on glucose tolerance at 17 months. Plasma glucose after OGTT in the male

offspring of dams treated with dexamethasone or glycyrrhizic acid. Data expressed as mean ±SEM. No

significant differences between groups CONT, n=6, DEX 10, n=4, DEX 100, n=6, GI, n=5.
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Figure 14: Area under glucose and insulin curves after oral glucose tolerance test. The area under the insulin

curve for GI (*) is significantly higher compared to control (ANOVA, F=3.4, P=0.05; Newman Keuls' test)
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Discussion

I have again demonstrated a modest increase in blood pressure in animals treated

in utero with dexamethasone. The perfused mesenteric bed has been extensively used

to model the responses of the peripheral vasculature in the whole animal. In the

Spontaneously Hypertensive Rat (SHR) increased responses to a variety of stimuli have

been observed including noradrenaline381, endothelin-1381, potassium388 and

angiotensin II388, the abnormal response becoming more marked in older age

groups388. Such effects may arise because of increased sensitivity to specific stimuli or

non-specifically secondary to the changes in the structure of small vessels proposed in

hypertension376. The lack of difference in dexamethasone treated animals renders

unlikely a long lived effect on noradrenaline sensitivity and would also argue against

structural changes in the vasculature, at least as assessed by this technique.

We had observed no significant changes in the oral glucose tolerance of the

dexamethasone treated animals. There was however a trend to higher fasting glucose

levels and with small numbers it is possible that we were missing an effect due to a type

2 error. The higher insulin response of the GI treated animals was also intriguing,

raising the possibility of the development of insulin resistance in these animals. This

possibility is pursued more completely in the offspring of the carbenoxolone treated

dams (Section 5).
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Section 3: Effect of Dexamethasone in utero on vascular structure and

the PRA axis

Introduction

The renin angiotensin system is an important regulator of blood pressure and

fluid and electrolyte homeostasis in fetal, newborn and adult life, in addition angiotensin

II influences cellular growth and differentiation in the fetus. Inhibition of the renin-

angiotensin system by angiotensin converting enzyme inhibitors in early postnatal life

acts to exert life long influences on blood pressure in animal models, even after

withdrawal of the drug389'390. Thus, early modulation of the renin-angiotensin system

may exert the kind programming effects on blood pressure suggested by

epidemiological studies in humans.

We have previously observed that dexamethasone exposure in utero leads to life

long increases in blood pressure in the rat. Glucocorticoids may influence several

aspects of the renin-angiotensin system; angiotensinogen is induced by glucocorticoids

in vivo, the rat angiotensin gene containing a glucocorticoid response element391 and

prenatal treatment with dexamethasone leads to increases in hepatic angiotensinogen

levels in both fetus and dam371; glucocorticoids do not appear to exert direct effects on

renin and prorenin expression392 but renin expression is induced by renal sympathetic

innervation in early life393 and renal sympathetic influences are in turn enhanced in the

long term by dexamethasone treatment in utero340. Effects of glucocorticoids in utero

have been extensively studied in the sheep where Cortisol infusion is active to increase

fetal blood pressure369, 337 and to alter ATI receptor RNA expression in a tissue

specific manner372. Higher plasma angiotensinogen levels have been observed in

relation to lower fetal weight at 18 weeks supporting a potential role for glucocorticoid

exposure in the lower birth weight infants394.
A further potential mechanism for the effect of dexamethasone lies in the alteration

of renal function. Reductions in glomerular filtration area arising from fetal life have

been postulated as of importance in the connection between low birth weight and later
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high blood pressure373, the hypothesis being that the total glomerular number is largely

fixed in early life and this will in turn influence the propensity to renal disease and to

high blood pressure. Part of this hypothesis rests upon the observation that there is a

wide variation in weight, cortical volume and nephron number in the normal

population395. That this biological variation is of potential importance to high blood

pressure is supported by both animal models and human studies396 where lower

glomerular numbers have been related to higher blood pressure and, in particular, salt

sensitive hypertension in adult life. Further, nephrotoxic insults in fetal life have been

shown to reduce glomerular number in adult animals397 but blood pressure has not yet

been examined in these studies.

Glucocorticoids have been shown to hasten the earlier maturation of renal

function335"337 and angiotensin II to promote renal growth and differentiation via the

renal ATI receptor398 in turn increased by glucocorticoid treatment in utero372. Intra

uterine exposure to glucocorticoid might therefore act to increase blood pressure

promoting premature maturation of the kidney and perhaps, by reducing glomerular

number.

We therefore decided to examine the PRA axis in animals treated with

dexamethasone in utero measuring the response of blood pressure and aldosterone to

infusion of angiotensin II as well as examining vascular structure in detail in the

mesenteric bed and glomerular number in the kidney.

Methods

Treatment ofDams

Female Wistar rats (200-250 g) were maintained under conditions of controlled

lighting (lights on 07.00-19.00 h) and temperature (22°C) and allowed free access to

food (standard rat chow; 56.3% carbohydrate, 18.3% protein, NaCl 0.7%; B.S.&S

Scotland Ltd. Edinburgh) and tap water. The rats were time-mated and then given

either dexamethasone (DEX: lOOpg/kg/day in 4% ethanol-saline, 0.1 ml, s.c.) or
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vehicle alone (CON) throughout pregnancy. No further treatment was given (to

mothers or pups) after delivery and all offspring were weighed at three days of age.

Chronic effects ofAngiotensin II

At twelve weeks, female offspring were habituated to measurement of blood

pressure by application of a tail cuff (see Methods). The technique is non-invasive and

used in conscious animals. Animals had blood pressure measured on a twice weekly

basis and each measure was taken as the mean of five readings.

After three baseline measurements animals were subjected to a short halothane

anaesthaesia allowing insertion of two mini pumps (Alzet model 2002, Palo Alto,

California, US): the first mini-osmotic pump containing 5-bromo-2'-deoxyuridine

(BrdUrd; Sigma Chemical Company, Poole, Dorset, UK) dissolved in a l:l(v/v)

mixture of dimethyl sulfoxide and 0.154 M NaCl, and the second containing

angiotensin II (Hypertensin; Ciba Geigy, Basle, Switzerland, 6 mg/ml delivered at 200

ng.kg.min~1) or vehicle.

Animals were killed by decapitation and trunk blood collected for measurement

of renin, corticosterone and aldosterone. Tissues were fixed by infusion of formalin

into the inferior vena cava and tissues then dissected and stored in formalin.

Mesenteric tissues were prepared as in the Methods section, in brief cut into 3pm

transverse sections serially incubated with a primary anti-BrdUrd monoclonal antibody

and a secondary rabbit anti-mouse antibody conjugated to alkaline phosphatase and

subsequently visualised using alkaline phosphatase substrate.

After staining vascular structure was assessed by measurement of medial area,

number of nuclei, and number of BrdUrd positive nuclei using an image analysis

system, in coded sections with the observer blinded to treatments. Between 42 and 68

vessels were measured in each treatment group ranging in size of medial area from 60 to

20,000 p2 The BrdUrd index was defined as the number of BrdUrd positive nuclei in

relation to the total number of nuclei.
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Adrenal slices were prepared identically and cellular area and BrdUrd index

identified under image analysis.

Acute effects ofAngiotensin II

Animals were subjected to a short halothane anaesthaesia and the left carotid and

right jugular vein cannulated using a teflon cannulae. 48 hours after cannulation blood

pressure was measured directly as described in the Methods. Baseline blood pressure

was measured in conscious unrestrained animals prior to the infusion of ANGII via the

venous cannula at a continuous rate of 75ng.kg.~lmin.-1 in 0.9% saline. Blood

pressure was recorded throughout and mean blood pressure before and after infusion

taken as the mean of 8-10 readings throughout the record.

Statistics

Data was analysed either by unpaired t-tests (for two groups) or ANOVA (for

four groups) followed by Newman-Keuls' post-hoc multiple comparisons test, as

appropriate. The response of blood pressure to acute and chronic ANG II was analysed

by repeated measures ANOVA. All data are expressed as mean ± SEM.

Results

Effect ofDexamethasone treatment on pregnancy and offspring weight

Dams administered dexamethasone gained weight through pregnancy to a lesser

extent than controls ( CON 116± 5.9g, n=5; DEX 71± 6.0g, n=4; P<0.01). Treatment

did not affect litter size( CON 9.8+ 0.12g, n=5; DEX 11.8+ 0.6g, n=4) or the length

of gestation( CON 22.2± 0.5 days, n=5; DEX 21.8+ 0.6 days, n=4), but did result in

an 18% reduction in weight in offspring at 3 days ( CON 9.06± 0.19g, n=49; DEX

7.44± 0.10g, n=47; P<0.01).
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Effect ofdexamethasone treatment on blood pressure and the PRA axis

At the onset of blood pressure measurement there was no significant difference

in body weight ( CON 249± 2.2g, n=16, DEX 246± 3.2g, n=16). Both

dexamethasone treatment in utero and ANG II treatment in adulthood led to higher

blood pressures (Figure 15) with data analysed either with repeated measures ANOVA

across all readings (effect of dexamethasone in utero; F=4.8, P<0.05: and effect of

ANG II in adulthood;F=18.0, P<0.01), or when a mean of the last three blood pressure

readings were taken from the end of the study period (CON 120±3.5 mmHg, n=8;

DEX 126±2.2 mmHg; CON/ ANG II 134±4.2 mmHg, n=8; DEX/ ANG II 145+3.6

mmHg, n=8: effect of dexamethasone in utero; F=5.9, P<0.05: and effect of ANG II

in adulthood;F=23.1, P<0.01).

Hormonal measurements at sacrifice revealed an expected fall in plasma renin

activity in ANG II treated animals (plasma renin activity: CON 0.54± 0.06; CON/

ANG II 0.24+ 0.07; DEX 0.64± 0.07; DEX/ ANG II 0.12± 0.6: two way ANOVA

effect of ANG II F=10, P<0.01) while aldosterone levels were higher in the animals

treated with dexamethasone in utero, but not those treated with ANG II in adult life

(aldosterone levels: CON 990± 127; CON/ ANG II 800± 101; DEX 1171± 82; DEX/

ANG II 1348± 252: two way ANOVA effect of dexamethasone in utero F=5, P<0.05).

Corticosterone levels were not different in any group at sacrifice (CON 590± 77; CON/

ANG II 496+ 102; DEX 660± 71; DEX/ ANG II 624± 56).

Effect ofdexamethasone treatment in utero on adrenals and vasculature

Neither dexamethasone treatment in utero nor ANG II treatment in adult life led

to any change in organ weights (adrenal, kidney, liver, heart, thymus; data not shown).

Analysis of mesenteric vessels stained for 5-bromo-2'deoxyuridine displayed evidence

of vascular hyperplasia in response to ANG II (BrdUrd Index CON 1.1+1.4%; CON/

ANG II 9.25+1.69%; DEX 2.04±1.33%; DEX/ ANG II 7.3± 1.69%: effect of ANG II

P<0.05) without evidence of vascular hypertrophy, as assessed by the medial area of
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vessels divided by the number of nuclei( CON 240±31 ju2; CON/ ANG II 223+30 fj.2;

DEX 206±15 jii2; DEX/ ANG II 215± 29 p2). There was no additional effect of

dexamethasone treatment in utero on any measure in these vessels. Adrenal slices

appeared morphologically identical. Measurement of cells in the zona glomerulosa

identified no evidence of either cellular hypertrophy( CON 60+3.1 p2; CON/ ANG II

61.4±1.3 p2; DEX 61.8±3.0 p2; DEX/ ANG II 67.2± 3.6 p2) or hyperplasia as

assessed by the BrdUrd index(BrdUrd Index CON 0.05±0.02%; CON/ ANG II

0.03±0.01%; DEX 0.06±0.03%; DEX/ ANG II 0.03± 0.01%).

Effect ofacute angiotensin treatment on bloodpressure

Blood pressure was measured in animals with indwelling carotid cannulae before

and after infusion of ANG II. ANG II infusion resulted in an acute rise in blood

pressure evident a few seconds after the onset of the infusion (Figure 16: repeated

measures ANIOVA F=23.9, P<0.01), while there was a trend to higher basal blood

pressure in the animals treated with dexamethasone in utero there was no difference in

the incremental rise in blood pressure (incremental rise CON 23.7+ 8.7 mmHg, DEX

17.9+ 2.5 mmHg).
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Figure 15
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Figure 15: Serial blood pressures before and after treatment with ANG II in adulthood in animals treated with

dexamethasone in utero. Repeated measures ANOVA displays a significantly higher blood pressure in animals

treated with dexamethasone in utero (F=4.8, P<0.05).
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Figure 16

Figure 16: Acute effects of ANG II. Rise in blood pressure in the offspring of dams treated either with

dexamethasone or vehicle in utero and a ten minutes after infusion of ANG II in adulthood. No significant

differences were observed.
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Discussion

In this study we have confirmed that dexamethasone in a low pharmacological

dose, which does not influence fetal viability, leads to permanent increases in blood

pressure. We have not demonstrated structural alterations in arterioles, at least in the

mesenteric bed, which might account for this change in blood pressure, and the gross

weight of organs including the kidney were not altered. Blood pressure was increased

by ANG II infusion both acutely and chronically but, while starting from a higher

baseline, the effect of ANG II did not seem to be potentiated by dexamethasone

treatment in utero. Aldosterone levels do however appear to be higher in the

dexamethasone treated animals and to be more reactive to ANG II. Plasma renin

activity was not reciprocally suppressed as might be expected with short term excess of

mineralocorticoid. While chronic exogenous administration of large amounts of

exogenous aldosterone in animal models and endogenous mineralocorticoid in human

disease is associated with suppression of plasma renin activity, more modest doses, still

associated with hypertension may be associated with low normal plasma renin

concentrations. As such, the lack of reciprocal suppression of plasma renin activity in

this experiment does not preclude chronically raised aldosterone levels from being the

mechanism of the long term programming of blood pressure in these animals.

Dexamethasone in early life can alter expression of aldosterone synthase-3" and further
studies will examine whether this enzyme has been permanently programmed by

dexamethasone in utero.
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Section 4: Prenatal dexamethasone treatment in the last week of

pregnancy attenuates hippocampal glucocorticoid receptor gene

expression and elevates blood pressure in adult offspring

Introduction

Low birth weight is associated with a some of abnormalities comprising

Syndrome X. Abnormalities of glucocorticoid metabolism have been associated with

both android obesity400 and hypertension401, although the clinical evidence of this is,

as yet, often conflicting. Such abnormalities could potentially act either in a causative

role in the metabolic syndrome, or as an additional cardiovascular risk factor402' 403.
Two studies have now suggested that lower birth weight may also be associated with

alterations in the HPA axis404'405. Phillips et al have found that morning Cortisol levels

are increased in adults of lower birth weight405, while Clark et al have detected an

inverse correlation between birth weight and urinary excretion of both adrenal

androgens and glucocorticoids in children aged 9404. These studies suggest that those

of lower birth weight might have a higher adrenal secretion of both adrenal androgens

and glucocorticoids. These data support a possible link both between the metabolic

syndrome and abnormal glucocorticoid secretion or metabolism, and between lower

birth weight and alteration in the HPA axis. Could changes in the central control of

glucocorticoid secretion underlie the changes in blood pressure observed in

dexamethasone treated fetuses?

There are established paradigms of programming by steroids in early life, and

these favour central mechanisms in such imprinting effects. The two best described

examples are of imprinting by androgen exposure and of alteration in the hypothalamic-

pituitary adrenal axis by handling in early life.

It is observed that exposure of newborn rats in the first ten days of life

permanently alter the pulsatility of hypothalamus to male or female patterns358' 359.
This effect is functionally important as the changes engendered by testosterone exposure

in early life in female animals may lead to permanent alterations in fertility358. It is
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proposed that such phenomena arise from organisational effects on neural pathways of

estrogens formed by aromatisation of injected or endogenous testosterone and that such

sensitive time windows extend into late intrauterine life in the rat and may also exist in

mid gestation in the human (reviewed in 361).
The stress axis is also be subject to programming effects. It is known that

exposure of neonatal rats to handling early in life leads to permanent alterations in the

pattern of response of the hypothalamic-pituitary -adrenal(HPA) axis366. The

mechanism is uncertain but shows features in keeping with programming: if exerted at

the key time in early life, handling appears to alter the "hard-wiring" of the developing

HPA axis with measurable differences both in the peripheral corticosterone response to

stress and in the central expression of glucocorticoid receptors367. An increase in the

expression of hippocampal mineralocorticoid receptor (MR or type 1 corticosteroid

receptor) is observed which is believed to be of importance in sensitivity to

glucocorticoid feedback leading to a reduced duration of corticosterone pulse after stress

in the adult animals. Again such effects have functional correlations with such animals

displaying a reduced propensity to subsequent neurodegenerative disease, itself

potentiated by long term glucocorticoid exposure368.
In such experiments the environmental change occurs in early life. Can similar

effects be exerted in utero? In animal studies maternal exposure to stress has been

associated with a number of sequelae such as reduced birth weight, increased perinatal

mortality 295, and changes in behaviour and motor development in offspring 406, 407.
Furthermore, alterations, albeit inconsistent, have been reported in the HPA axis in

newborn and adult offspring. These include: normal basal corticosterone concentrations

and prolonged elevation of corticosterone after exposure to novelty stress408, and
elevated mean weekly corticosterone concentrations, but diminished corticosterone

responses to short, but not long-term foot shock stress295. The mechanism whereby

these changes occur is unclear. Maternal glucocorticoids secreted during stress could

play a decisive role in this phenomenon. Generally the fetus is protected from exposure
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to maternal glucocorticoids by placental 11B-OHSD and, as previously discussed, at

least theoretically the extent of available enzyme activity should be sufficient to convert

most maternal Cortisol to cortisone268. The biological variability of enzyme activity is

unknown in normal populations, however, and passage of maternal glucocorticoids is

observed in some circumstances in animal models 409.

The altered HPA axis response in the offspring of rats exposed to stress during

gestation, was associated with a reduction in hippocampal glucocorticoid and

mineralocorticoid receptor numbers408. Further, there are considerable data supporting

a role of corticosteroid receptors in the central nervous system in the development of

mineralocorticoid induced hypertension and in the regulation of blood pressure 410"412.
The developmental window for the action of dexamethasone on blood pressure and

any association of prenatal exposure to dexamethasone with later HPA axis

responsiveness, is also unknown. The aim of this study was to investigate the effect of

late prenatal exposure to dexamethasone on corticosterone responses to restraint stress

and glucocorticoid and mineralocorticoid receptor gene expression in areas of the brain

postulated to mediate the central effects of corticosteroids on HPA axis suppression and

blood pressure.

Methods

Female Wistar rats (200 - 250 gms) were maintained under conditions of controlled

lighting (lights on 7 a.m. to 7 p.m.) and temperature (22°C) and allowed free access to

food (standard rat chart); 56.3% carbohydrate, 18.3% protein, 0.7% NaCl; BS&S

Scotland Ltd, Edinburgh) into tap water. The rats were time mated and given either

dexamethasone (100 pg/kg/day) or vehicle subcutaneously on days 15 to 20 of

gestation. The offspring were studied at 16 weeks of age as follows

Blood pressure measurement.

Blood pressure was measured directly after carotid cannulation in conscious
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unrestrained animals (DEX n=7, CONT n=7) using a pressure transducer for 10

minutes on three consecutive days and recorded as the mean of the three readings as

previously described.

Hypothalamic-pituitary-adrenal axis

Plasma corticosteroid concentrations were measured basally and in response to 30

minutes of restraint stress.

Corticosteroid receptor mRNA expression.

Glucocorticoid and mineralocorticoid receptor mRNA expression was examined by

in situ hybridisation. Freshly dissected brains were frozen on dry ice and the following

regions were sectioned: hippocampus, area postrema, organosum vascularum laminae

terminalis, subcommisural organ and nucleus tractus solitarius. The detailed methods

for in situ hybridisation are described in the methods section.

Plasma corticosterone concentrations were measured by radio immunoassay using

previously described methods (the intra assay coefficient of variation was 3.8%).

Statistics

All results are expressed as mean ± SEM. ANOVA was used to evaluate the

significance of the differences which were accepted at a P < 0.05 level.

Results

Pregnancy

Treatment with 100 pg/kg.day-1 dexamethasone during the last week of rat

pregnancy did not alter gestation length ( CONT 21.7± 0.3 days: DEX 22.3+ 0.3 days)

or offspring number ( CONT 9.7± 0.9: DEX 10+2) or viability. Maternal weight gain

was similar in the two groups for the first 15 days of gestation (before treatment CONT
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gained 38+ 4g: DEX 41+ 4g) but thereafter the dexamethasone treated dams gained less

weight ( days 15-21 weight gain CONT 55±7g: DEX 21±5g; P< 0.05).

Blood pressure and Hypothalamic-Pituitary adrenal axis in adult animals

At 16 weeks of age there were no significant differences in offspring weight (CONT

410± 10.7g, DEX 432± 9.2g). The mean systolic and diastolic blood pressures

(Figure 17) were significantly higher in the offspring of the dexamethasone treated rats

compared to the offspring of the control rats by 11 mmHg for systolic and 13 mmHg

for diastolic blood pressures, respectively.

Mean basal plasma corticosterone concentration was 154.5 ± 28.6 nmol/L in the

offspring of the dexamethasone treated rats and 79.3 + 14.8 nmol/L in the offspring of

the control rats (P = 0.03). The responses to restraint stress were similar in the two

groups (Table 6).

In Situ Hybridization

In the offspring of control pregnancies, GR mRNA expression was higher in the

dentate gyrus and CA1 regions of the hippocampus compared with the CA2 and CA3

regions. MR mRNA showed significantly higher expression in CA2 than other

subfields. In the offspring of the dexamethasone treated rats there was a significant

reduction in the GR mRNA gene expression in the dentate gyrus (21% fall) and CA1

region (15% fall: both P < 0.01) compared to the offspring of the control rats. MR

mRNA expression was lower in the CA1 (24% less, P<0.05) and CA2 (25% less,

P<0.05) areas of the hippocampus in the dexamethasone treated rats compared to the

control rats.

There was low but detectable expression of MR mRNA in the sub-commisural

organ, area postrema, nucleus tractus solitarius and OVLT and much higher expression

in the motor IX nucleus. No differences in MR gene expression were noted in these
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regions between rats exposed to dexamethasone and controls. GR mRNA was clearly

expressed in the subcommisural organ, area postrema, OVLT and nucleus tractus

solitarius, albeit at lower levels than in the hippocampus. There were also no

differences in GR mRNA expression in these areas between the two groups.
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Figure 17
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Figure 17: Blood pressure at 16 weeks in animals treated with dexamethasone in the third week in utero:

CONT systolic BP 133± 2.7/ 112± 2.8 versus DEX 144± 2.1/ 125+ 2.0: P<0.01 for both systolic and

diastolic blood pressures).

Table 6

CONT DEX

Basal 79.3 ± 14.8 nmol/1 154.5 ± 28.6 nmol/1 *

30 minutes 2066+ 161 nmol/1 2381± 518 nmol/1

60 minutes 1126+ 264 nmol/1 1269+ 397 nmol/1

Table 6: Corticosterone levels before and after restraint stress. Basal cortricosterone levels in the DEX group

were significantly higher (*, P<0.05).
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Discussion

Despite the administration of dexamethasone solely in the last week of pregnancy

in this study, there was a similar elevation of blood pressure in the adult offspring to

that observed in previous studies with administered of a similar dose throughout

gestation. Thus, the developmental window for the effects of glucocorticoid exposure

on the offspring includes at least the last trimester.

This study investigated the hypothesis that prenatal glucocorticoid exposure could

permanently induce altered expression of corticosteroid receptors in areas of the brain

postulated to play a role in the central regulation of blood pressure and in

mineralocorticoid-induced hypertension and thus induce hypertension in the adult

offspring. There is a large body of data indicating that mineralocorticoids act centrally

as well as peripherally in inducing hypertension. Firstly, mineralocorticoid receptors

are present in areas of the brain known to be important in the regulation of body fluid

homeostasis and maintenance of blood pressure413, 4I4. Secondly,

intracerebroventricular (ICV) infusion of a specific MR antagonist has been shown to

attenuate or block the development of deoxycorticosterone acetate (DOCA) salt-

hypertension or that induced by ICV administration of aldosterone 410"412. Thirdly,

lesions of the anterior part of the third ventricle (AV3V), area postrema (AP), septal area

of the limbic system and paraventricular nucleus abolished or reduced the increase in

blood pressure in the mineralocorticoid induced hypertension model 415.

Notwithstanding these data we found low levels ofMR mRNA expression in the

OVLT, AP, NTS and SCO and did not demonstrate any changes in the expression of

either GR or MR nRNA to explain the elevated blood pressures. This would argue

against both a specific central mineralocorticoid component and altered expression of

corticosteroid receptors in the brain in the pathogenesis of the observed elevation in

blood pressure.

In this study the adult offspring of the dexamethasone treated rats had elevated

mean basal corticosterone concentrations, but normal corticosterone responses to
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restraint stress, together with a significant reduction in GR mRNA expression in the

dentate gyrus and CA1 region of the hippocampus and a reduction in MR mRNA

expression in the CA1 and CA2 areas of the hippocampus. This data indicates that

prenatal exposure to excessive glucocorticoids does program altered central

corticosteroid receptor expression, but in a selective fashion. In a number of

experimental animal models, elevated corticosterone concentrations are consistently

associated with decreases in hippocampal corticosteroid receptor concentrations as well

as prolonged or heightened adrenocortical responses to stress. This implies that a loss

of hippocampal receptors results in reduced sensitivity to corticosterone feedback 416.
It is recognised that under basal conditions, glucocorticoids bind primarily to

hippocampal MR and under circumstances of stress or at a diurnal peak hippocampal

GR are largely occupied by glucocorticoids417. In this context it might be hypothesised

that the offspring of the dexamethasone treated mothers would demonstrate prolonged

corticosteroid responses to restraint stress in the presence of elevated basal

corticosteroid concentrations. We have not shown this, probably reflecting that the time

points chosen were too short to demonstrate this effect as it may take over 90 minutes

for corticosterone levels to return to basal. Equally the expected reduced sensitivity to

corticosteroid feedback may be situation or stressor-specific. In prenatally stressed

adult offspring a reduction in hippocampal MR and GR receptor densities and

prolonged responses to restraint stress were demonstrated, indicating that prenatal stress

has long and short-term effects on HPA activity of the offspring408. These

observations, together with those of the present study, suggest that maternal

corticosterone secreted during stress and crossing the placenta could play an important

role in this phenomenon 408. A more detailed evaluation of the HPA axis, such as the

diurnal rhythm and responsiveness to other forms of stress in relation to hippocampal

corticosteroid receptor expression would enhance our understanding of the effects of

hormone imprinting.
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Section 5: Effect of inhibition of llbeta-OHSD on birth weight and

blood pressure.

Introduction

Access of maternal glucocorticoids to the fetal compartment is normally limited by

the placental glucocorticoid metabolising enzyme 11B-OHSD. It was not known

whether a reduction in placental 11B-OHSD would result in changes in birth weight and

further whether the effects on blood pressure we had observed with dexamethasone

would also be present with enzyme inhibition. Exposure of the fetus to exogenous

glucocorticoids remains an unusual occurrence in normal pregnancy and if the

influences of dexamethasone on later blood pressure were to be of more general,

physiological importance then it was of importance to consider whether exposure of the

fetus to a greater than normal amount of endogenous, maternal glucocorticoid might

exert the same effects.

Previous work had already demonstrated that there was a relationship between

placental 11B-OHSD activity and birth weight in the rat418 and subsequently it was

shown that activity of 11B-OHSD in human placenta at term was also correlated with

birth weight419,228, while both the syndrome of apparent mineralocorticoid excess420
and the human mutations of 11B-OHSD 2234 have now also been associated with

reduced birth weight.

We set out to examine the influence of inhibition of 11B-OHSD by carbenoxolone

on birth weight and later blood pressure and glucose tolerance.

Methods

Carbenoxolone treatment in adrenal intact animals

Female Wistar rats (200-250 g) were maintained under conditions of controlled

lighting (lights on 07.00-19.00 h) and temperature (22°C) and allowed free access to

food (standard rat chow; 56.3% carbohydrate, 18.3% protein, NaCl 0.7%; B.S.&S

Scotland Ltd. Edinburgh) and tap water. The rats were time-mated and then given either
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carbenoxolone (CBX; 12.5 mg/day in 4% ethanol-saline, 0.1 ml, s.c.) or vehicle alone

(CON) throughout pregnancy. At birth, the offspring were weighed and then no further

treatment was given (to mothers or pups). A separate cohort of pregnant rats underwent

identical treatment, but were subjected to carotid cannulation under brief halothane

anaesthesia on day 15 of pregnancy, to permit subsequent measurement of maternal

blood pressure and blood sampling.

Carbenoxolone treatment in adrenalectomised animals

Non-pregnant female rats underwent adrenalectomy by the dorsal approach

under halothane anaesthesia. Controls were sham-operated (SHAM). Blood (for plasma

corticosterone estimation) was subsequently taken at 09.00 h by tail tipping to assess

the completeness of adrenalectomy. Adrenalectomised rats were additionally given

saline to drink. Adrenalectomised animals were mated 8-15 days after surgery and

treated throughout pregnancy with carbenoxolone (ADX+ CBX: 12.5 mg/day in saline,

s.c.) or saline alone(ADX). Sham-adrenalectomised controls received saline.

Measurement ofPlacental 11§-0HSD activity

On days 17-21 of gestation animals (5 control, 3 treated with carbenoxolone

12.5 mg/day throughout pregnancy) a separate cohort of animals were subjected to

halothane anaesthesia and the left carotid and right jugular vein cannulated to allow

measurement of placental 11B-OHSD-2 activity by infusion of -^H corticosterone to

achieve steady state and subsequent extraction of corticosterone and 11-

dehydrocorticosterone from the blood of the dams, fetal tissues and placenta as

described in the methods.

Oral Glucose Tolerance Test (OGTT) and Blood pressure measurement

At six months of age male offspring underwent an oral glucose load test as

described in methods. Animals were fasted from 1600h the day before and 2 g/kg
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glucose (as a 0.5g/ml solution) was given by gavage between 0800 and 0900h the next

morning. Blood was taken by tail tipping at 0, 30, 60, 90 and 120 min, centrifuged

immediately and the plasma stored at -10C.

After a two week gap animals were subjected to carotid cannulation to allow

assessment of blood pressure. Male offspring were studied at 6 and female offspring at

8 months. A total of 60 animals (CON 13, CBX 10, SHAM 14, ADX 10, ADX+CBX

13) were initially studied, but only those surviving surgery and with patent cannulae

have been included (CON 11, CBX 9, SHAM 8, ADX 10, ADX+CBX 11). The

coefficient of variation for the repeated measures of blood pressure was 6.9% for mean

arterial pressure.

Statistics

All data are expressed as mean ± SEM. Data were assessed for multiple

comparisons by one or two way ANOVA, as detailed, with post hoc testing using the

Student-Newmann Keuls' test. Students t -test was used for two group comparisons.

Data were reported as significant when P<0.05.

Results

Effect ofcarbenoxolone on adrenal-intactpregnant rats and their litters

Carbenoxolone treatment of pregnant rats significantly reduced birth weight

(CBX 4.54±0.08g, n=35; CON 5.68±0.07g, n=39; P<0.0001; mean 20% decrease:

Figure 18). However, carbenoxolone administration did not alter litter size (CON

9.7±1.1, n=4; CBX 8.7±1.7, n=4) or the length of gestation (CON 22.2±0.2 days,

n=4; CBX 22±0.1 days, n=4). Maternal weight gain through pregnancy was

significantly reduced by carbenoxolone administration (CON 72+5 g, n=4; CBX 50+5

g n=4; P<0.05). In the separate cohort of pregnant animals with chronic carotid

cannulae, treatment with carbenoxolone had no significant effect on maternal blood

pressure on days 18-20 of pregnancy (CON systolic 117±2 mmHg and diastolic 86±5
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mmHg, n=4; CBX systolic 119±3 mmHg and diastolic 77+4 mmHg, n=3), maternal

plasma glucose (CON 5.3±0.3 mmol/1, n=4; CBX 6.4±0.3 mmol/1, n=4) or 09.00h

plasma corticosterone levels (CON 692±172 nmol/1, CBX 647±101 nmol/1).

Effect ofcarbenoxolone in adrenalectomised pregnant rats

Plasma corticosterone levels were <60 nmol/1 in adrenalectomised rats and

898+103 nmol/1 in the sham-operated animals. Maternal adrenalectomy was associated

with a reduction in offspring birth weight (SHAM ADX 5.34±0.15g n=36; ADX

4.86±0.06g, n=24; P<0.05), but there was no additional effect of carbenoxolone in

adrenalectomised animals (ADX + CBX 5.02±0.11g, n=22). Adrenalectomy with or

without carbenoxolone did not affect litter size (SHAM ADX 7.2+1.3, n=5; ADX 8+0,

n=4; ADX + CBX 7.3±2.7, n=3) or the length of gestation (SHAM ADX 22.2±0.4

days; ADX 22±0 days; ADX + CBX 21.7±0.9 days). Adrenalectomised and sham-

operated rats showed similar weight gains through pregnancy (SHAM ADX 84±7g;

ADX 83+15g; ADX + CBX 66+18g).

Effect ofcarbenoxolone on placental 11§-0HSD in vivo

Maternal blood concentrations of corticosterone and 11-

dehydrocorticosterone were similar in control and carbenoxolone groups at 20,40,60

and 80 min (two way ANOVA), indicative of isotopic steady state. Carbenoxolone did

not alter the metabolic clearance rate for corticosterone (CON 11.8+ 0.9 ml/min, n= 5;

CBX 11.0± 1.3 ml/min, n=3) and infused pregnant animals had similar blood pressures

(mean arterial pressure CON 77.2± 4.5 mmHg; CBX 82+ 5.3). There was no

difference with treatment in the percentage of total steroids as corticosterone in

maternal blood at steady state (CON 90.8±2.1% ; CBX 89.5±3.4% ).

Carbenoxolone treatment reduced placental 11B-OHSD activity (activity as

percentage of matched control: CON 100+ 9.4% ; CBX 63.5± 8.6%; P<0.05) and led

to an increase in corticosterone as a percentage of total ^H -steroids in fetal tissues
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(CON 65.6+ 1.6% ; CBX 74.2+2.0%; P<0.05).

Effect of treatment on offspring in adulthood

Carbenoxolone treatment during pregnancy led to rises in offspring mean arterial

pressure both in males, studied at 6 months, (CON 127± 1.4 mmHg, n=ll;

carbenoxolone-treated 136± 2.1 mmHg, n=9; Figure 19, Table 7) and in females,

studied at 8 months (CON 113 ± 2.0, n=ll; CBX 120 ±1.8 mmHg, n=8). Prenatal

carbenoxolone treatment did not result in any persisting changes in body or organ

weights. In particular, male offspring of saline-treated controls and carbenoxolone-

treated pregnant rats were of similar weight (CON 491±6.3g, n=ll; CBX 461±13g,

n=9), while female offspring showed slightly higher body weight (CON 270 +5g,

n=ll; CBX 298+ 7g, n=7; P<0.01). There were no significant differences in organ

weights (spleen, heart, kidney, data not shown) in either males or females.

The male offspring of females subjected to adrenalectomy before pregnancy

were studied at 6 months. By contrast to the offspring of adrenal intact females, there

was no significant change in blood pressure in the adult offspring of adrenalectomised

females treated either vehicle ( SHAM ADX 127± 2.3 mmHg , ADX 125± 3.1

mmHg) or with carbenoxolone (ADX + CBX 129+ 3.2 mmHg, n=10; Figure 19, Table

7). The offspring of the sham and adrenalectomised mothers were lighter than the

original controls but there were no differences between groups ( SHAM ADX 409+ 7g,

n=8; ADX 415± 6.1g, n=ll; ADX + CBX 419 ± 10.5g, n=10 ) .

Results for all 6 month male offspring were combined to consider the effects of

adrenalectomy and carbenoxolone. Two way ANOVA revealed a significantly higher

blood pressure in the offspring of carbenoxolone treated (F=7.6) but not

adrenalectomised females. Post hoc testing revealed an effect of carbenoxolone in the

offspring of adrenal intact females(CBX) both versus controls(CON) and the ADX +

CBX group (Student-Newmann-Keuls', P<0.05), suggesting that carbenoxolone

treatment only resulted in higher blood pressure in the offspring of adrenal intact
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females.

Adult offspring response to an oral glucose load

At six months of age, the male offspring of adrenal intact rats treated with

carbenoxolone during pregnancy displayed higher fasting plasma glucose levels (CONT

4.8±0.2 mmol/1; CBX 6.0± 0.3 mmol/1; P< 0.01). The plasma glucose response to an

oral glucose load was also higher in the offspring of carbenoxolone-treated pregnancies

(CONT vs. CBX repeated measures ANOVA, F=5.93, P=0.02, Figure 20). The area

under the curve for glucose across the OGTT was significantly (10%) higher for the

offspring of carbenoxolone treated pregnancies and the response of insulin in this group

was also significantly (38%) greater (Figure 21). Body weights were similar at 6

months in all groups.

Maternal adrenalectomy prevented the effect of carbenoxolone on offspring

glucose tolerance. There was no difference in glucose tolerance in the offspring of the

adrenalectomised pregnant females with or without carbenoxolone in terms of either

basal glucose or the response of plasma glucose or insulin.
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Figure 18

CONT CBX SHAM ADX ADX ADX+CBX

Figure 18: The effect of carbenoxolone on birth weight of litters of adrenalectomised and adrenal intact

mothers. Birth weight in grams (g) of offspring of control (CONT) , carbenoxolone (CBX), sham

adrenalectomy (SHAM ADX), adrenalectomised (ADX) and adrenalectomy and carbenoxolone (ADX+CBX)

treated mothers. * denotes significance at 95%.
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Figure 19

Treatment

Figure 19- The effect of carbenoxolone treatment in pregnancy on male mean arterial pressure.

Mean arterial pressure in the offspring of control(n=l 1), carbenoxolone ( CBX, n=9), sham adrenalectomised

(SHAM ADX, n=8), adrenalectomised (ADX, n= 11) or adrenalectomised + carbenoxolone ( ADX+ CBX, n=10)

treated females. * denotes significance at P< 0.05 vj control.
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Table 7

Adult offspring of adrenal intact females

CBX CONTROL

Male weight(g) 461± 13 491± 6

mean arterial

pressure

(mmHg)

136± 2.1 * 127±1.4

Female weight(g) 298+7 270± 5

mean arterial

pressure

(mmHg)

120± 1.8 * 113± 2.0

Adult offspring of adrenalectomised females

CBX+ADX ADX SHAM

male weight(g) 419± 10 415± 6 409± 7

mean arterial

pressure(mm

Hg)

129± 3.2 125± 3.1 127± 2.3

Table 7: Weight and blood pressure of offspring of carbenoxolone treated females. * denotes significance at

P< 0.05.
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Figure 20
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Figure 20: Plasma glucose response to an oral glucose load in offspring at 6 months. Pregnant rats received

vehicle (CON, n=18) or carbenoxolone (CBX, n=14). Treatment was only during pregnancy. Repeated

measures ANOVA, F=5.93, P<0.05. For individual time points ** indicates P<0.01, * P< 0.05, unpaired t

-test vs. control.
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Figure 21
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CON CBX SHAM ADX ADX+CBX

Figure 21: Glucose and insulin responses to an oral glucose load in offspring of carbenoxolone treated rats:

Area under curve for glucose and insulin in 6 month old offspring of rats treated in pregnancy with vehicle

control (CON, n=18), carbenoxolone (CBX, n=14), sham adrenalectomy and vehicle (SHAM. n=8),

adrenalectomy and vehicle (ADX, n=8) and adrenalectomy with carbenoxolone(ADX+ CBX, n=8). * p<0.05

compared with control.
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Discussion

Carbenoxolone acts in vitro as an inhibitor of placental 11B-OHSD 2 224. Here

we demonstrate that administration of carbenoxolone inhibits 11B-OHSD 2 activity in

vivo and allows increased passage of maternal corticosterone to the fetus, at least

within the last week of pregnancy, in keeping with the proposed role of the placental

11B-OHSD-2 in maintaining the lower glucocorticoid environment of the fetus 265,268.

Carbenoxolone treatment reduced birth weight, an effect similar to that previously

observed with dexamethasone and led to elevated blood pressure and raised fasting

glucose in the adult offspring, supporting both a role for placental 11B-OHSD in fetal

exposure to glucocorticoids and the hypothesis 421'422 that this exposure in excess may

explain the epidemiological link between low birth weight and subsequent

cardiovascular risk in humans200.

In principle the effects of carbenoxolone on birth weight might be mediated by

actions upon the mother, placenta and/or the fetus. However, some clues as to the site

of action are provided by these experiments. Carbenoxolone raises blood pressure in

animals models by inhibition of renal 11B-OHSD. Elevation of maternal blood pressure

might be anticipated to alter feto-placental function and perhaps growth 88. However,
no change in maternal blood pressure at the end of pregnancy was observed. This was

perhaps unexpected, but might reflect the reduced efficacy of carbenoxolone in pregnant

rats or a lack of hypertensive actions by a sodium and water retaining mechanism in the

already volume-expanded state of pregnancy. In any event, maternal hypertensive

effects per se appear unlikely to explain fetal growth retardation and subsequent blood

pressure elevation in the offspring. The design of these studies did not allow exclusion

of persisting effects of carbenoxolone treatment on maternal behaviour after birth but

prior to weaning. However, since maternal treatment stopped at birth, this possibility

is less likely.

Placental 11B-OHSD is an efficient, but probably incomplete barrier to maternal

glucocorticoids and a minor proportion of fetal corticosteroids normally derive from the
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maternal compartment 285, Although, within a certain tolerance, reduced fetal adrenal

secretion of glucocorticoids may adjust for increased transplacental glucocorticoid

passage, eventually elevated maternal glucocorticoids may overcome fetal adjustments

or even flood the metabolic capacity of the enzyme, though the latter is unlikely 423. It

might be predicted that inhibition of 11B-OHSD, which is an important pathway of

glucocorticoid metabolism, would increase maternal plasma glucocorticoid levels,

perhaps exceeding the limits of placental 11B-OHSD. However, this does not appear to

be the case, as maternal corticosterone levels were similar in carbenoxolone-treated and

control animals. Indeed, whatever the status of glucocorticoid metabolism,

corticosterone negative feedback control of hypothalamic-pituitary-adrenal axis activity

will presumably ensure that plasma glucocorticoid levels are tightly controlled.

However, two additional caveats concerning glucocorticoid levels and carbenoxolone

bear mention. Firstly, total glucocorticoid levels do not necessarily reflect 'free'

hormone concentrations, and it is conceivable that the treatments alter corticosterone-

binding globulin levels, although this is perhaps unlikely to be of significance given the

very similar total corticosterone values. Secondly, we have only examined

glucocorticoids during the diurnal nadir. Although this pertains for the majority of the

day, the diurnal peak (evening) values might be higher in carbenoxolone-treated rats.

Nevertheless, there is no reason to assume this occurs and the data presented here do

not support maternal glucocorticoid excess per se as causal of the fetal growth

retardation.

With regard to the hypothesis that catch up growth per se would result in higher

blood pressure7 It is of note that while adrenalectomy reduced birth weight (although

not as potently as carbenoxolone) it had little, if any, effect on adult blood pressure.

There are a variety of mechanisms whereby carbenoxolone might effect birth

weight or fetal development apart from inhibition of 11B-OHSD. As detailed in the

introduction carbenoxolone has several cellular effects other than inhibition of 11B-

OHSD including inhibition of prostaglandin synthesis255, alteration in hepatic
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aldosterone metabolism253, direct effects on sodium and potassium transport256,

potentiation of the effects of steroids not subject to 11B-OHSD metabolism (

aldosterone, 11-deoxycortisterone and synthetic glucocorticoid agonists)257-258 and

direct activation of mineralocorticoid receptors243'244. Carbenoxolone has been noted

to enhance vasoconstrictor action in ex vivo preparations and to potentially exert

damaging effects on endothelium in vivo259. The effects on prostaglandin synthesis

might be considered ofmost potential importance in utero: in the sheep prostaglandin E2

levels rise towards the end of pregnancy424 and are in turn associated with induction of

ACTH in the fetal pituitary425. Prostaglandin synthesis, however, is only inhibited by

micromolar concentrations of carbenoxolone261 and far higher than those expected to

occur in vivo 220' 260.

The likelihood that this effect is mediated by inhibition of 11B-OHSD is

increased by the observation that carbenoxolone was not active in the absence of

maternal adrenal products. The importance of 11B-OHSD 2 in limiting fetal exposure to

maternal glucocorticoid is supported both by the effect of carbenoxolone to increase

corticosterone access to the fetal circulation and the observation that the effects on both

birth weight and offspring glucose tolerance are dependent on the presence of intact

maternal adrenal glands. This suggests that carbenoxolone is not having direct effects

on the dam, but acts via increased exposure of the feto-placental unit to maternal

glucocorticoids.

Carbenoxolone may also have effects on the fetus itself. Fetal animals 353- 426
and humans express 11B-OHSD 227 at some developmental stages. The function of the

enzyme is unclear but it is potentially involved in protection of both mineralocorticoid

and glucocorticoid receptors, as in the adult. It is possible therefore, that some of the

effects we have observed may be mediated by carbenoxolone passing the placenta and

inhibiting 11B-OHSD in the fetus and this direct mechanism might be supported by the

non-significant trend upward of blood pressure with carbenoxolone treatment in the

absence of a maternal adrenal. Larger numbers would be neccesary to demonstrate
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whether this is a real effect. Against this, given that we have demonstrated a larger

effect of carbenoxolone on later offspring blood pressure in the presence of maternal

adrenals and that similar effects are observed with maternally-administered

dexamethasone (which is a poor substrate for the enzyme), the more likely explanation

remains that the major effect is exerted by greater exposure of the fetus to maternal

glucocorticoid.

Carbenoxolone could potentially alter the fetal environment in other ways. In

terms of programming later glucose intolerance, the most important of these would be if

maternal blood glucose had altered, given the extensive evidence for effects of maternal

blood glucose on later offspring diabetes both in human populations94'97"99 and animal

models120' 121,126' 125. It is important to note, therefore, that in our model there was

no increase in maternal blood glucose, rendering this potential mechanism unlikely.

Glucocorticoids might act in a number of ways in the developing animal to

provoke later glucose intolerance. Glucocorticoids inhibit insulin release 427 and islet

beta cell replication in vitro 428> 429. Thus increased exposure to maternal

glucocorticoids may permanently reduce beta cell mass, later expressed as impaired

glucose tolerance. Equally glucocorticoids may act to programme hormonal responses

or metabolic pathways. Glucocorticoids exert important maturational effects on a variety

of key metabolic enzymes 334>324. These include phosphoenolpyruvate carboxykinase,

the rate-limiting enzyme in gluconeogenesis, which is directly and potently regulated by

glucocorticoids at the level of transcription 430. Early exposure to glucocorticoids might

programme these systems to alter permanently carbohydrate metabolism. Alternatively,

prenatal and immediate postnatal stress (and glucocorticoids) are well-documented to

programme increased hypothalamic-pituitary-adrenal axis activity producing

glucocorticoid hypersecretion throughout life 366'408. Such an effect is indeed observed

after prenatal dexamethasone exposure431 and might of course contribute to

hyperglycaemia. Finally, it is possible that glucocorticoids act indirectly by influencing

fetal or placental expression of key growth factors. In this regard, glucocorticoids
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regulate the synthesis of insulin-like growth factors 1 and 2, many of their binding

proteins and both receptor subtypes in the fetus and placenta 432>433.
In the next section we consider further whether such effects are mediated by

insulinopenia or insulin resistance and whether dexamethasone will exert similar effects

on glucose tolerance.
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Section 6: Effect of carbenoxolone and dexamethasone in utero on

insulin sensitivity

Introduction

Previous work had shown evidence of higher fasting plasma glucose and insulin

resistance in the offspring of animals treated with carbenoxolone during pregnancy.

This experiment was set up to assess whether treatment with dexamethasone in utero

resulted in glucose tolerance and to further define whether such treatment resulted in

insulin resistance or insulinopenia. Animals were assessed by oral glucose tolerance

both before and after fat feeding, an intervention previously shown in vivo to be

associated with the induction of insulin resistance434.

Methods

Female Wistar rats (200-250 g) were maintained under conditions of controlled

lighting (lights on 07.00-19.00 h) and temperature (22°C) and allowed free access to

food (standard rat chow; 56.3% carbohydrate, 18.3% protein, NaCl 0.7%; B.S.&S

Scotland Ltd. Edinburgh) and tap water as per previous protocols. The rats were time-

mated and then given either carbenoxolone (CBX; 12.5 mg/day in 4% ethanol-saline,

0.1 ml, s.c.) dexamethasone in one of two doses (DEX 100: dexamethasone 100

pg/kg/day as a 0.1 ml injection in vehicle, or DEX 250: dexamethasone 250 pg/kg/day

as a 0.1 ml injection in vehicle) or vehicle alone (CONT) throughout pregnancy. No

further treatment was given (to mothers or pups) after birth and to minimise disturbance

to the mothers offspring were weighed at three days.

At 6 months of age animals were subjected to:

i) an assessment of insulin sensitivity: animals received an intraperitoneal insulin

challenge with measurement of tail tip glucose every 15 minutes for 75 minutes.

ii) After a two week gap animals were fasted from 4 pm on the night before and given a

2g/kg oral glucose tolerance test, as previously described. Following this all animals

were subjected to a 30% fat diet (commercial margarine was added to our standard rat
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chow resulting in a diet of 30% fat; 39.4% carbohydrate, 12.8% protein, NaCl 0.5%)

and animals weighed on a once weekly basis. Animals were housed in treatment

specific groups of 8 and food intake assessed per cage per week.

Results

Effect of treatment on dams and litters

Of twenty animals timed mated 17 littered successfully ( 5 CONT, 4 DEX 100, 3

DEX 250, 3 CBX). In these animals there were no significant effects on litter size(

CONT 9.8± 0.12; DEX 100 11.8± 0.6; DEX 250 8.7± 2.4; CBX 9± 2.1) or length of

gestation (CONT 22.2± 0.5; DEX 100 21.8±0.6; DEX 250 22.7± 0.3; CBX 22.3±

0.9). There were no differences in maternal weights at baseline, but treated dams

gained weight significantly less well through pregnancy in both dexamethasone treated

groups ( repeated measures ANOVA P<0.05) and showed a trend to lower weight gain

with carbenoxolone treatment ( P=0.07, Figure 22). Weight on day 3 was significantly

lower in all treatment groups ( DEX 100 18% lower, DEX 250 22.5% lower and CBX

18% lower) compared to control weight of 9.06 ± 0.18g (Figure 23).

Basal offspring glucose tolerance and insulin sensitivity

Insulin injection revealed no difference in the fall in glucose between groups (Figure

24). Basal glucose tolerance tests displayed higher fasting levels in the CBX animals

but repeated ANOVA across the whole of the oral glucose tolerance test did not display

a significant difference in either carbenoxolone (Figure 25) or dexamethasone treatment

(Figure 26).

In response to fat feeding animals showed a significant increase in weight over a

six week period (Figure 27). Fasting glucose showed a trend upward in all animals and

a significant difference in fasting glucose in animals treated with carbenoxolone in utero

(Figure 28). There was no difference from control values in the dexamethasone treated

groups for fasting glucose (Figure 29) and the glucose area under the curve did not alter
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for any of the groups (Figure 30) .

Insulin levels were assessed during the first oral glucose tolerance test. There

were no differences in the ratio of insulin to glucose in the fasting state (CONT 1.9±

0.7, CBX 2.8+ 1.0, DEX 100 1.2± 0.31, DEX 250 1.5+ 0.02) or in the ratio of the

rise in insulin to the rise of glucose between 0 and 30 minutes (CONT 3+ 1.2, CBX

4.7+ 0.9, DEX 100 4± 1.8, DEX 250 2.0± 2.6). Overall the area under the curve for

glucose (CONT 889± 30, CBX 971± 28, DEX 100 904± 20, DEX 250 916± 28) and

insulin -(CONT 2162+ 191, CBX 2959± 549, DEX 100 2583+ 459, DEX 250 1465±

243) were not significantly different.

Figure 22
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Figure 22: Dam weight gain through pregnancy in control (CONT, n=5) and dexamethasone ( DEX 100, n=4,

DEX 250, n=3) or carbenoxolone (CBX, n=3) treated pregnancy. Data analysed by repeated measures ANOVA

with significant trend for DEX 100, DEX 250(P<0.05).
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Figure 23

Figure 23: Offspring weight reduced by treatment. Weight at 3 days of offspring of dams treated with vehicle

(n==49), dexamethasone (100,ug/kg dose, n=47; 250pg/kg dose, n=27) or carbenoxoxone n=27. All

treatments ANOVA F =30.8, P<0.01 with post hoc Newman Keuls' test compared to control.
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Figure 24
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Figure 24: Effect of insulin injection on blood glucose in offspring after treatment. The offspring of dams

treated with vehicle, dexamethasone or carbenoxolone during pregnancy (n=8 in each) examined with an

intraperitoneal insulin injection. There were no significant differences in any group.
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Figure 25
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Figure 25: Basal glucose tolerance in the offspring of animals treated with carbenoxolone. Rise in glucose

after an oral glucose load. There were no significant differences between groups(repeated ANOVA).
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Figure 26: Basal glucose tolerance in animals treated with dexamethasone. Rise in glucose after an oral

glucose load. There were no significant differences between groups(repeated ANOVA).
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Figure 27
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Figure 27: Weight gain with fat feeding. Rise in body weight in the offspring of dams treated in pregnancy.

DEX 200 and CBX animals were lighter at baseline (ANOVA F=4.0, P<0.05). All groups showed a significant

increase in weight across fat feeding( repeated measures ANOVA test for trend P<0.01).
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Figure 28
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Figure 28: Change in fasting glucose after fat feeding. Offspring of dams treated eeither with vehicle or

carvbenoxolone in pregnancy. Repeated measures ANOVA P<0.05 for difference between groups.

Figure 29

9-1

? 81
E
E

V
C/3
O
u
2
"cjo

7-

6-

5-

Q— CONT
♦ DEX100

DEX200

-i-

2

—i

3
week

"T-

4

-T"

5 6

Figure 29: Fasting glucose in the offspring of animals treated with dexamethasone in pregnancy. Significant

trend upward with treatment (P<0.05), no difference between the groups.
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Figure 30

week

Figure 30: Effect of fat feeding on glucose area under curve. No significant differences between groups.
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Discussion

We have again demonstrated the potential for carbenoxolone administered during

pregnancy to reduce birth weight and raise fasting blood sugar. In non-insulin

dependent diabetes there is evidence of reduced insulin secretion, peripheral insulin

resistance and increased hepatic glucose output with various interrelationships between

these states. Insulin resistance would be suggested by raised fasting insulin to glucose

ratios and greater sensitivity to injected insulin and neither of these factors are apparent

in these experiments. The oral glucose tolerance test is an imperfect way to assess

insulin secretion, the closest correlations coming from the ratio of the incremental rise of

insulin and glucose in the first thirty minutes after the oral glucose test. This measure is

found in human populations to correlate with gold standard measures such as the

intravenous glucose tolerance test. Again in this experiment there is no clear difference

between groups to suggest a deficit in insulin secretion. This leaves the hypothesis that

exposure to carbenoxolone might result in changes in hepatic glucose output. A variety

of the key enzymes involved in glucoconeogenesis are expressed in response to

glucocorticoids430 and expression of gluconeogenic enzymes such as glucose-6-

phosphatase, fructose diphosphatase, phosphoenolpyruvate carboxykinase and

aspartate transaminase appear to be developmentally regulated by

glucocorticoids435'324. In this context we have preliminary data to suggest an increase

in PEPCK activity in the offspring of carbenoxolone treated dams at least at 21 days

(M.Desai personal communication).

Dexamethasone while reducing birth weight to a similar extent as previous

experiments and as carbenoxolone in this experiment has resulted in no change in

glucose tolerance. Clearly this raises the possibility that the effects of carbenoxolone

are not glucocorticoid mediated. This would not be supported by lack of effect of

carbenoxolone in the presence of maternal adrenalectomy observed in the previous

section and there are other explanations. Firstly little is known of the effects of

changing expression of rat placental 11B-OHSD 2. Changes in both activity273 and
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expression436 are recorded through pregnancy. It is possible then that the effects of

carbenoxolone are different at different stages of pregnancy and that fetal glucocorticoid

exposure is mainly in the third week in the presence of carbenoxolone, but throughout

pregnancy in the presence of dexamethasone. Experiments assessing the effects of

dexamethasone in different weeks of pregnancy might address this. It is of note that the

effects of dexamethasone on sympathetic systems are mainly expressed in the last week

of pregnancy.

A second area of possible difference is that the effects of carbenoxolone leading

to corticosterone overexposure may be different to those of dexamethasone as

corticosterone and dexamethasone may exert different cellular effects. Dexamethasone

exerts cellular effects by binding to glucocorticoid receptors(GR), whereas

corticosterone bind to both mineralocorticoid(MR) and glucocorticoid receptors. Since

carbenoxolone might be expected to increase access of corticosterone to the fetus,

cellular effects may be exerted by both MR and GR. In addition, access to MR

receptors and possibly GR is, in the adult, controlled by 11B-OHSD 2. The extent to

which receptors are protected in the fetus is as yet unknown, 11B-OHSD 2 is more

extensively expressed in the fetus than the adult436 and it is possible that the extent of

inhibition by carbenoxolone may be different in different tissues. Thus carbenoxolone

may lead to a subtly different pattern of glucocorticoid exposure than dexamethasone.

Such effects may be difficult to model in vivo .

Such differential effects may be most important in the brain. Both MR and GR

receptors are expressed in the brain and are present in the rat in low numbers in fetal

life437. Expression of the MR increases to adult levels by the end of the first week of

life and of the GR by the third week of life437. It is postulated at least in this tissue that

most glucocorticoid effects will be mediated by the MR437, making greater effects of

corticosterone than dexamethasone possible.
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Conclusions

In this thesis I have presented evidence that, in animal models, exposure of the

fetus to glucocorticoids results in increases in blood pressure. Further, evidence is

presented that at least part of the physiological control of glucocorticoid access to the

fetus is dependent upon the placental glucocorticoid metabolising enzyme 11B-

hydroxysteroid dehydrogenase and that inhibition of this enzyme leads to both reduction

in birth weight and later alterations in blood pressure and glucose tolerance.

I have taken as my starting point the epidemiological associations of lower birth

weight to later cardiovascular risk and the overall theme of this work would be to relate

placental 11B-OHSD to cardiovascular risk in humans. The work I have presented

suggests a potential for similar effects to occur in human populations, but much more

work would be necessary to support such an assertion. As detailed in the introduction,

it is an important feature of the work of Barker et al that the risk associated with lower

birth weight extends in a graded fashion across the range of birth weight, not being

restricted to the very low birth weight infant. This would indicate that whatever

pathological insult or physiological process is working it must similarly act across the

range of birth weight. As yet our knowledge of the influence of 11B-OHSD on birth

weight is limited. Correlations with placental 11B-OHSD activity at term to birth weight

have been shown by our group419 and others228 but the correlation coefficients appear

modest and it would appear that at least in these studies the power of 11B-OHSD

activity to predict birth weight would be limited. The existing studies are limited

however, since they take a single measure of enzyme activity at term to represent

activity throughout the whole of pregnancy and by inference the glucocorticoid milieu of

the fetus. This, of course may not be the case. There are obvious problems in relating

a single measure of enzyme activity in vitro to the overall metabolising effect of that

tissue228, some of difficulties of which are answered by the approach of Benediktsson

in measuring activity of the perfused whole tissue419. Nevertheless other variables are

not accounted for including the supply of glucocorticoid to the tissue, which will be
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dependent upon, among other factors, placental blood supply. In addition such

experiments assume that 11B-OHSD activity will be relatively stable throughout

pregnancy so that measurement of lower activity at term infers lower activity throughout

the pregnancy. The data regarding 11B-OHSD activity through pregnancy is limited,

suggesting a reduction in oxidative activity towards term268 and does not tell us whether

the level of activity is stable for an individual within a population. While it is likely that

the cloning of 11B-OHSD 2 will begin to allow these problems to be addressed our

information as yet is limited. The observation that both the syndrome of apparent

mineralocorticoid excess420 and the human mutations of 11B-OHSD 2234 are associated

with reduced birth weight are encouraging in this regard but will not explain variation

within normal populations. The full blown forms of these conditions remain

vanishingly rare221 and as such even if associated with reduction in birth weight, these

mutations would be expected to have little influence on birth weight in the majority.

The further study of the potential importance of 11B-OHSD 2 to human birth

weight is likely to depend on greater knowledge of 11B-OHSD in the normal

population. Firstly, whether heterozygotes for the known mutations also have lower

birth weight and whether placental 11B-OHSD activity is reduced. Secondly whether

other mutations exist which might impact upon placental function but, perhaps be

clinically silent in the kidney in adulthood. In addition to examine the importance of

11B-OHSD 2 or mutations of human 1IB-OHSD-2 to human birth weight it will be

necessary to gain some measure of exposure of the fetus to glucocorticoids in vivo.

This is clearly difficult both technically and ethically, but without evidence in the

human situation of a relationship between fetal glucocorticoid exposure and birth

weight it will be difficult to establish unequivocally the physiological role of 11B-

OHSD 2 in the human situation.
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