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Material Symbols

5 Andy Clark

What is the relation between the material, conventional symbol structures that we

encounter in the spoken and written word, and human thought? A common assumption,
that structures a wide variety of otherwise competing views, is that the way in which

10 these material, conventional symbol-structures do their work is by being translated into
some kind of content-matching inner code. One alternative to this view is the tempting

but thoroughly elusive idea that we somehow think in some natural language (such as
English). In the present treatment I explore a third option, which I shall call the

‘‘complementarity’’ view of language. According to this third view the actual symbol
15 structures of a given language add cognitive value by complementing (without being

replicated by) the more basic modes of operation and representation endemic to the
biological brain. The ‘‘cognitive bonus’’ that language brings is, on this model, not to be
cashed out either via the ultimately mysterious notion of ‘‘thinking in a given natural

language’’ or via some process of exhaustive translation into another inner code. Instead,
20 we should try to think in terms of a kind of coordination dynamics in which the forms

and structures of a language qua material symbol system play a key and irreducible role.
Understanding language as a complementary cognitive resource is, I argue, an important

part of the much larger project (sometimes glossed in terms of the ‘‘extended mind’’)
of understanding human cognition as essentially and multiply hybrid: as involving

25 a complex interplay between internal biological resources and external non-biological
resources.

Keywords: 222

1. Translation Models of Language

30 Jerry Fodor famously holds that ‘‘knowing a natural language is knowing how to pair

its expressions with Mentalese expressions’’ (Fodor, 1998, p. 67). To have a certain
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thought, on this view, is to token a certain mentalese sentence. Language impacts

thought, on such accounts, in virtue of a process of translation that transforms the
public sentence into a content-capturing inner code. This is the prime example of

35 what might be dubbed a ‘‘translation view of language.’’ Encountered language (be it
speech or the written word), if this view is correct, merely serves to activate

complexes of internal states or representations that are the real cognitive workhorses.
It turns up too, though with a radically different twist, in Paul Churchland’s

connectionist-inspired vision of human cognition. For Churchland (1989, p. 18;
40 1996, p. 107) public language offers only what might be dubbed ‘‘thin translations’’

of the much richer meanings made available by vector codings and high-dimensional

state spaces. Public words and sentences, Churchland suggests, offer at best a shallow
or ‘‘one-dimensional’’ (1989, p. 18) echo of the rich and supra-linguistic meanings

encoded using the formidable resources of these high-dimensional state-space
45 encodings. But despite disagreeing over the precise ‘‘fit’’ (excellent versus

disappointingly sparse) between the public structures and the inner realm,
Churchland, like Fodor, retains what is essentially a translation view of how public

language works. It is just that the contents of the internal translations (the contents
proper to the real cognitive workhorses) for Churchland typically exceed, rather than

50 simply replicate, those of the public language structures themselves. Thus insofar as

public language is a useful tool at all, it works, according to Churchland, by activating
one or more suites of rich internal (connectionist) representations—one might dub

them ‘‘neuralese’’ —that then encode the meaning. The actual public language items
are thus once again mere scaffolding to be kicked away once content has, however

55 imperfectly, been transmitted from person to person.
According to the translation picture, then, language works its magic by being

understood, and understanding is in turn conceived as consisting wholly in
something like translation into some other content-matching (or content-exceeding)

format. Such a view depicts language as a kind of high-level code that needs to be
60 compiled or interpreted (in the computer science sense) to do its work. As a result,

the material forms can then be thrown away as the essence—the meanings carried,

conveyed, implied—has been fully extracted and rendered in some alternative
inner format.

Compare now the use of a standard tool. When I use a spade to dig the garden, the
65 spade makes an ongoing and complementary contribution to that made by my

biological body. There is, in such a case, no obvious sense in which I biologically
replicate the essence of the spade’s activity. Instead, the digging power resides in the

larger coupled system.
The alternative to the translation picture, that I wish to pursue here, makes the role

70 of public language more like that of the spade. On the view to be explored, language

(and material symbols more generally) play a double role. On the one hand they do
(crucially, always) activate other kinds of cognitive resource, bits of mentalese or

neuralese as you prefer. But they also play an irreducible role as the material symbols
they are. For part of the role (and the power) of such items (spoken or written words

75 and sentences) is to complement the basic modes of operation and representation
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endemic to the biological brain. Understanding language, if this view is correct,

involves getting to grips with a special kind of coordination dynamics: one in which

the actual material structures of public language (or sometimes their shallow

‘‘imagistic’’ internal representations) play a key and irreducible role. This view, as
80 I shall develop it, is related to, but I think remains distinct from, Dennett’s famous

(1991) account of language as installing a new serial virtual machine in the head. For

whereas Dennett depicts experience with language as essentially transformative,

as changing the fundamental nature of (part of ) the in-head machinery, I shall

attempt to depict public language as a complementary resource that works with the
85 more basic machinery without installing any fundamentally new styles of

representation or processing within that machinery. This view of language, I shall

finally suggest, can usefully be seen as part of the much larger project (sometimes

glossed in terms of the ‘‘extended mind’’ —see Clark, 1997; Clark & Chalmers, 1998)

of understanding human cognition as essentially and multiply hybrid: as involving a
90 complex interplay between internal biological resources and external non-biological

resources. Language, however, occupies a wonderfully ambiguous position on any

hybrid cognitive stage, since it seems to straddle the internal-external borderline

itself, looking one moment like any other piece of the biological equipment, and at

the next like a peculiarly potent piece of external cognitive scaffolding.

95 2. Some Trial Cases

It will be helpful to put a range of concrete cases on the table as a kind of (somewhat

hopeful) anchor for the subsequent discussion. The examples that follow may be

familiar, but I ask the reader’s patience. It is not the cases themselves that matter, so

much as the general pattern, displaying some of the interlinked variety of ways that
100 the actual material forms of language may impact cognition. The cases that follow are

arranged in (what seems to me to be) ascending order of cognitive impact.

2.1. First Grade of Cognitive Involvement: Language as a Source of Additional

Targets for Attention and Learning

There are three examples falling into this category. The first, and by far the simplest,
105 is the well-known case of Sheba and the treats, as recounted in Boysen, Bernston,

Hannan and Cacioppo (1996). Sheba (an adult female chimpanzee) has had symbol

and numeral training: she knows about numerals. Sheba sits with Sarah (another

chimp), and two plates of treats are shown. What Sheba points to, Sarah gets. Sheba

points to the greater pile, thus getting less. She visibly hates this result, but (unless the
110 reward matrix is greatly exaggerated) can’t seem to improve. However, when the

treats arrive in containers with a cover bearing numerals on top, the spell is broken

and Sheba points to the lesser number, thus gaining more treats.

What seems to be going on here, according to Boysen et al., is that the material

symbols, by being simple and stripped of most treat-signifying physical cues, allow
115 the chimps to sidestep the capture of their own behavior by ecologically-specific
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fast-and-frugal subroutines. The symbol loosens the bond between agent and world,

and between perception and action, and it does so not in virtue of being the key to

a rich mental representation (though it may be that too) but rather by itself, qua

material symbol, providing a new target for selective attention and a new fulcrum for
120 the control of action.

In much the same way the act of labeling creates a new realm of perceptible objects

upon which to target basic capacities of statistical and associative learning. The act of

labeling thus alters the computational burdens imposed by certain kinds of problem.

I have written quite a bit on this elsewhere, so I’ll keep this brief. My favorite example
125 (Clark, 1998) begins with the use, by otherwise language-naı̈ve chimpanzees, of

concrete tags (simple and distinct plastic shapes) for relations such as sameness and

difference. Thus, a pair such as cup–cup might be associated with a red triangle

(sameness) and cup–shoe with a blue circle (difference). This is not in itself

surprising. What is more interesting is that after this training, the tag-trained chimps
130 (and only tag-trained chimps) prove able to learn about the abstract properties of

higher-order sameness, i.e. they are able to learn to judge of two presented pairs

(such as cup–cup and cup–shoe) that the relation between the relations is one of

higher order difference (or better, lack of higher-order sameness) since the first pair

exhibits the sameness relation and the second pair the difference relation
135 (Thompson, Oden, & Boysen, 1997). The reason the tag-trained chimps can perform

this surprising feat is, so the authors suggest, because by mentally recalling the tags

the chimps can reduce the higher-order problem to a lower-order one: all they have

to do is spot that the relation of difference describes the pairing of the two recalled

tags (red triangle and blue circle). The learning made possible through the initial loop
140 into the world of stable, perceptible plastic tokens has allowed the brain to build

circuits that, perhaps by simply imaging the tokens themselves at appropriate

moments, reduce the higher-order problem to a lower-order one of a kind their

brains are already capable of solving. Experience with external tags and labels thus

enables the brain itself—by shallowly representing those tags and labels—to solve
145 problems whose level of complexity and abstraction would otherwise leave

us baffled.1

A related effect may also be observed (and this is our third and final case in this

category) in recent connectionist work on language learning. Thus in a recent

review, Smith and Gasser (2005) ask a very nice question. Why, given that human
150 beings are such experts at grounded, concrete, sensorimotor driven forms of learning,

do the symbol systems of public language take the special and rather rarified forms

that they do?

One might expect that a multimodal, grounded, sensorimotor sort of learning
would favor a more iconic, pantomime-like language in which symbols were

155 similar to referents. But language is decidedly not like this . . . there is no intrinsic
similarity between the sounds of most words and their referents: the form of the
word dog gives us no hints about the kind of thing to which it refers. And nothing
in the similarity of the forms of dig and dog conveys a similarity in meaning.
(Smith & Gasser, 2005, p. 22)

4 A. Clark



New XML Template (2006) [27.3.2006–8:06pm] [1–17]
{TandF}CPHP/CPHP_A_168956.3d (CPHP) CPHP_A_168956

160 The question, in short, is ‘‘Why in a so profoundly multimodal sensorimotor agent

such as ourselves is language an arbitrary symbol system?’’ (p. 24).

One possible answer, of course, is that language is like that because (biologically

basic) thought is like that, and the forms and structures of language reflect this fact.

But another answer, and the one I want to pursue, says just the opposite. Language is
165 like that, it might be suggested, because thought (or rather, biologically basic

thought) is not like that. The computational value of a public system of essentially

context-free, arbitrary symbols, lies, according to this opposing view, in the way

such a system can push, pull, tweak, cajole and eventually cooperate with various

non-arbitrary, modality-rich, context-sensitive forms of biologically basic encoding.
170 Consider, to take the main case presented by Gasser and Smith, the development

of one-trial word learning. This powerful capacity may be multiply dependent, Smith

and Gasser suggest, on the presence of a public code comprising arbitrary labels.

Early word learning, they suggest, is all about building up multimodal clusters of

associated properties. But later on, as is well known, children become rapid word
175 learners, adding four to nine new words a day, and generalizing the new words in

ways appropriate to their distinct categories. Such rapid-fire learning looks to require

the deployment of what Smith and Gasser describe as ‘‘second-order, rule-like

generalizations.’’ Such generalizations, they argue, are driven by properties of

arbitrary public symbol systems.
180 For example, a new word for an artifact will probably apply to similarly shaped

things (think of tractors, frying pans, toothbrushes). Whereas a new word for a

substance will apply to other things made of the same material (wooly hats, wooly

jumpers, wooly mittens etc.). Rapid word learning looks to involve just such

abilities of higher-order generalization. Neural network simulations by Eliana
185 Colunga (Colunga & Smith, 2005) suggest that the formation of such second-order

generalizations depends on the arbitrariness and orthogonality of the linguistic labels

provided. Make the labels non-orthogonal, and the second-order knowledge is not

acquired (non-arbitrary labels must tend towards non-orthogonality due to property

overlaps in the objects and events labeled).
190 It is not fully clear why this should be so, but it seems likely that experience with

concrete orthogonal labels helps the system to pull perceptually similar categories

apart, and thus supports new kinds of grouping that make visible deeper

commonalities and differences, yielding the kinds of implicit knowledge

(e.g., concerning the typical kinds of feature that individuate artifacts rather than
195 substances) that underpin rapid-fire learning and that would otherwise be buried

too deep in the search space for basic sensorimotor forms of intelligence like

ourselves.

2.2. Second Grade of Cognitive Involvement: Language as a Resource for Directing
and Maintaining Attention on Complex Conjoined Cues

200 The key case in this category concerns spatial reasoning in infants and adults.

In a famous study by Hermer-Vazquez, Spelke, and Katsnelson (1999), pre-linguistic
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infants were shown the location of a toy or food in a room, then were spun around or

otherwise disoriented and required to try to find the desired item. The location was

uniquely determinable only by remembering conjoined cues concerning the color of
205 the wall and its geometry (the toy might be hidden in the corner between the long wall

and the short blue wall). The rooms were designed so that the geometric or color cues

were individually insufficient, and would yield an unambiguous result only when

combined together. Pre-linguistic infants, though perfectly able to detect and use

both kinds of cue, were shown to exploit only the geometric information, searching
210 randomly in each of the two geometrically indistinguishable sites. Yet adults and older

children were easily capable of combining the geometric and non-geometric cues to

solve the problem. Importantly, success at combining the cues was not predicted by

any measure of the children’s intelligence or developmental stage except for the child’s

use of language. Only children who were able to spontaneously conjoin spatial and
215 (e.g.) color terms in their free speech (who would describe something as, say, to the

right of the long green wall) were able to solve the problem.
Hermer-Vazquez et al. (1999) then probed the role of language in this task

by asking subjects to solve problems requiring the integration of geometric and

non-geometric information while performing one of two other tasks. The first task
220 involved shadowing (repeating back) speech played over headphones. The other

involved shadowing, with their hands, a rhythm played over the headphones.

The working memory demands of the latter task were at least as heavy as those of

the former. Yet subjects engaged in speech shadowing were unable to solve the

integration-demanding problem, while those shadowing rhythm were unaffected.
225 An agent’s linguistic abilities, the researchers concluded, are indeed actively involved

in their ability to solve problems requiring the integration of geometric and

non-geometric information.

There are currently various competing models of just how this involvement is best

unpacked (see especially Carruthers, 2002). But probably the simplest story is that
230 here too linguistic resources provide a convenient fulcrum for the complex

distribution of attention. They enable us better to control the disposition of selective

attention to ever-more complex feature combinations. The shadowing result is then

explained by the idea that active attention to a complex conjoined cue requires the

(possibly unconscious) retrieval of at least some of the relevant lexical items. Laying
235 the emphasis on attentional effects thus allows us to accommodate this case in a way

that dovetails with the earlier ones. In each case, linguistic activity (some kind of

conscious or unconscious access to representations of language-specific lexical items)

helps us to target our attentional resources on complex, conjunctive, or otherwise

elusive, elements of the encountered scene.

240 2.3. Third Grade of Cognitive Involvement: Language as Providing Some of the
Proper Parts of Hybrid Thoughts

At last, then, we arrive at the highest grade of cognitive involvement I want to scout,

and surely the most contentious. This is the idea (to be explained shortly) of language
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as providing some of the proper parts of hybrid thoughts. The key example here
245 concerns the role of number words in mathematical reason.

What is going on when you think the thought that ‘‘98 is one more than 97’’?

According to the translation-based model, to think that thought is to translate the
English sentence into something else, where that something else might be a sentence

of mentalese (for Fodor) or a point in some exotic high-dimensional state space (for
250 Churchland).

But consider a recent account due to Stanislas Dehaene and colleagues (see
Dehaene, 1997; Dehaene, Spelke, Pinel, Stanescu, & Tviskin, 1999). Dehaene depicts
this kind of precise mathematical thought as emerging at the productive intersection

of three distinct cognitive contributions. The first involves a basic biological capacity
255 to individuate small quantities: 1-ness, 2-ness, 3-ness and more-then-that-ness, to

take the standard set. The second involves another biologically basic capacity, this
time for approximate reasoning concerning magnitudes (discriminating, say, arrays

of 8 dots from arrays of 16, but not more closely matched arrays). The third, not
biologically basic but arguably transformative, is the learnt capacity to use the specific

260 number words of a language, and the eventual appreciation that each such number
word names a distinct quantity. Notice that this is not the same as appreciating, in
at least one important sense, just what that quantity is. Most of us can’t form any

clear image of, e.g., of 98-ness (unlike, say, 2-ness). But we appreciate nonetheless
that the number word ‘98’ names a unique quantity in between 97 and 99.

265 When we add the use of number words to the more basic biological nexus,
Dehaene argues, we acquire an evolutionarily novel capacity to think about an

unlimited set of exact quantities. We gain this capacity not because we now have an
encoding of 98-ness just like our encoding of 2-ness. Rather, the new thoughts

depend directly (but not exhaustively) upon our tokening the numerical expressions
270 themselves, as symbol strings of our own public language. The actual numerical

thought, on this model, is had courtesy of the combination of this tokening (of the
symbol string of a given language) and the appropriate activation of the more
biologically basic resources mentioned earlier.

Here is some evidence for this view, as presented in Dehaene et al. (1999). First,
275 there are the results of studies of Russian-English bilinguals. In these studies,

Russian-English bilinguals were trained (quite extensively) on 12 cases involving
exact and approximate sums of (the same) pairs of two-digit numbers, presented as

words in one or other language. For example, (in English), a subject might be trained
on the question ‘‘Fourþ Five’’ and asked to select their answer from ‘‘Nine’’ and

280 ‘‘Seven’’. This is called the exact condition, as it requires exact reasoning since the
two candidate numbers are close to each other. By contrast, a question like ‘‘ ‘Four þ
Five’, select answer from ‘Eight’ and ‘Three’ ’’ belongs to the approximate condition,

as it requires only rough reasoning as the candidates are now quite far apart.
After extensive training on the pairs, subjects were later tested on the very same

285 sums in either the original or the other (non-trained) language. After training,
performance in the approximation condition was shown to be unaffected by

switching the language, whereas in the exact condition, language switching resulted

Philosophical Psychology 7
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in asymmetric performance, with subjects responding much faster if the test-language

corresponded to the training-language. Crucially, then, there were no switching costs
290 at all for trained approximate sums. Performance was the same regardless of language

switching. Training-based speedup is thus non-language switchable for the exact

sums and fully switchable for the inexact ones. Such studies, Dehaene et al.

concluded, provide:

evidence that the arithmetic knowledge acquired during training with exact
295 problems was stored in a language-specific format . . .. For approximate addition,

in contrast, performance was equivalent in the two languages providing evidence
that the knowledge was stored in a language-independent form. (1999, p. 973)

A second line of evidence draws on lesion studies in which (to take one example) a

patient with severe left-hemisphere damage cannot determine whether 2þ 2 is 3 or 4,
300 but reliably chooses 3 or 4 over 9, indicating a sparing of the approximation system.

Finally, Dehaene et al. (1999) present neuroimaging data from subjects engaged

in exact and approximate numerical tasks. The exact tasks show significant activity

in the speed-related areas of the left frontal lobe, while the approximate tasks recruit

bilateral areas of the parietal lobes implicated in visuo-spatial reasoning. These results
305 are presented as a demonstration ‘‘that exact calculation is language dependent,

whereas approximation relies on nonverbal visuo-spatial cerebral networks’’ (p. 970)

and that ‘‘even within the small domain of elementary arithmetic, multiple mental

representations are used for different tasks’’ (p. 973).
Dehaene (1997) also makes some nice points about the need to somehow establish

310 links between the linguistic labels and our innate sense of simple quantities. At first, it

seems, children learn language-based numerical facts without such appreciation.

According to Dehaene, ‘‘for a whole year, children realize that the word ‘three’ is

a number without knowing the precise value it refers to’’ (1997, p. 107). But once the

label gets attached to the simple innate number line, the door is open to
315 understanding that all numbers refer to precise quantities, even when we lack the

intuitive sense of what the quantity is (e.g. my own intuitive sense of 53-ness is not

distinct from my intuitive sense of 52-ness, though all such results are variable

according to the level of mathematical expertise of the subject).
Typical human mathematical competence, all this suggest, is plausibly seen as a

320 kind of hybrid, whose elements include:

(i) Images or encodings of actual words in a specific language;
(ii) an appreciation of the fact that each distinct number word names a specific and

distinct quantity; and

(iii) a rough appreciation of where that quantity lies on a kind of approximate,
325 analog number line (e.g. 98 is just less than halfway between 1 and 200).

In a certain sense then, we rely on the coordinated action of various resources.

On this view, there is (at least) an internal representation of the numeral, of the

word-form, and of the phonetics, along with other resources (such as the analog

number line) to which these become (with learning) roughly keyed via some sense
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330 of relative location. What matters for present purposes (for what I am calling the

third grade of cognitive involvement) is that there may be no need to posit (for the
average agent), in addition to this coordinated medley, any further content-matching

internal representation of, say, 98-ness. Instead, the presence of actual number words
in a public code (and of shallow, imagistic, internal representations of those very

335 public items) is itself part of the coordinated representational medley that constitutes
many kinds of arithmetical knowing.

Thus consider the thought that there are 98 toys on the table. According to the
translation view, to think the thought that there are 98 toys on the table you must
have succeeded in translating the English sentence into a fully content-providing

340 ‘‘something else.’’ The ‘‘something else’’ might be an atom or sentence of mentalese
(for Fodor) or a point in some exotic state space (for Churchland). By contrast,

according to this quite radical alternative, the thought that there are 98 toys on
the table is (for most of us) dependent upon the presence of a hybrid representational

vehicle.2 This is a vehicle that includes, as expected, the activation of a variety of
345 content-relevant internal representations (in neuralese or mentalese, let’s assume).

But it also includes as a co-opted proper part, a token (let’s think of it as an image,
very broadly construed) of a conventional public language encoding (‘‘ninety-eight’’)
appropriately linked to various other resources (such as some rough position on an

analog number line).
350 This half-glimpsed possibility is, I suspect, actually the most important way that

language (and indeed all kinds of cultural props and artifacts) may impact thought:
by actually becoming parts of the thinkings themselves. This is not, as you will have

noticed, the most transparent of ideas, and I doubt I have it even halfway right.
But the scope is satisfyingly large. In the case at hand, the vehicle or process,

355 though arguably genuinely hybrid, is fully internal to the biological agent. But in
other cases, there seems no reason to insist that this matters. Perhaps some of our

representational vehicles and processes (the actual mechanistic underpinnings of our
thinkings no less) may get spread out across biological brains and all sorts of socio-
cultural artifacts, including gestures, diagrams, external text, software applications,

360 and more.
This view of language is a perfect fit with (though not, I suppose, essential for)

a very big picture according to which human cognition gains much of its distinctive
force and power from its (biologically-based) ability to build and maintain new

forms of external representational structure, that are then apt for non-fully-replicated
365 use, in other words for cognitive incorporation.3 That is to say, we make ourselves

into new kinds of cognitive engine by (amongst other things) annexing and
co-opting elements of external cognitive scaffolding as proper parts of hybrid
computational routines. In this context, it is worth observing (though only as a

kind of coda to the main story) that the (putative) ability of material symbols to
370 participate in cognitive processes helps show the way out of a dilemma often urged

upon the friends of extended cognition. For our very best cognitive artifacts, if they
are sometimes to play a role as proper parts of cognitive processes, need to be

assimilated within but not totally swallowed up by the workings of the potent basic

Philosophical Psychology 9
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biological cognitive engine itself. Thus it is very tempting, when confronted with
375 arguments that would give a strong cognitive role to artifacts (or, in this case, to

public, conventional, symbolic codes) to respond with a kind of dilemma. Either the

artifact/public code is not playing a truly cognitive role (it is merely input, not part of

the processing) or (insofar as it seems to be playing such a role) it does so only

because it has been translated into something else, some quite different inner thing,
380 that really is suited to play such a role. Either way, it seems, the benefits that accrue

can be fully explained, at least as far as here and now thinking is concerned, without

continued reference to the features and properties of the artifact/public code.4 (For

some versions of this dilemma in the literature opposing the ‘‘extended mind,’’ see

Adams & Aizawa, 2001; Rupert, 2004).
385 The way around the dilemma should now be clear. By stressing coordination

dynamics and hybrid representational forms, we leave room for genuine

complementarity between the biological and artifactual cognitive contributions.

We thus begin to see how artifactual resources may sometimes be co-opted without

being fully recapitulated by the biological elements. This is what the notion of
390 hybridity was always meant to suggest, and it avoids both horns of the dilemma.

One bad reason why this can seem impossible in the case of language is, of course,

if we still think that understanding ‘‘obviously’’ always requires translation into some

other content-matching (or better) inner code. But it is pretty clear that this cannot

be the case all the way down, on pain (see Fodor, 1975) of an endless regress of such
395 codes. So once the right coordination dynamics are in place, there is no reason

why some hybrid whole could not itself be the physical vehicle, appropriately

poised to control action and choice, of the relevant understanding. Indeed, the whole

of artificial intelligence is surely itself testimony to the power of the idea that

well-poised physically instantiated representations can sometimes constitute under-
400 standing without needing to be (in any further way) understood themselves.

3. Hybrid Thoughts?

The idea on offer then is that the symbolic environment (very broadly construed) can

sometimes impact thought and learning not by some process of full-translation, in

which the meanings of symbolic objects are exhaustively translated into an inner
405 code, a mentalese, or even a Churchland-style neuralese, but by something closer

to coordination. On the coordination model, the symbolic environment impacts

thought both by activating such other resources (the usual suspects) and by using

either the symbolic objects themselves (or inner image-like internal representations

of the objects) as additional fulcrums of attention, memory and control. In the
410 maximum strength version, these symbolic objects quite literally appear as elements

in representationally hybrid thoughts.5

Now for a confession. For quite a few years, I thought this was a radical idea that

fans of (to take the most extreme example) the language of thought (LOT) hypothesis

would surely reject out of hand. Their idea, after all, was that words mean what they
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415 do in virtue of being paired with expressively parallel snippets of mentalese. Imagine

my surprise then, when I found this little snippet hidden away in that 1998 review of

Carruthers by Jerry Fodor:

I don’t think that there are decisive arguments for the theory that all thought is in
Mentalese. In fact, I don’t think it’s even true, in any detail . . . . I wouldn’t be in the

420 least surprised, for example, if it turned out that some arithmetic thinking is carried
out by executing previously memorized algorithms that are defined over public
language symbols for numbers (‘‘now carry the ‘2’ ’’and so forth). It’s quite likely
that Mentalese co-opts bits of natural language in all sorts of ways; quite likely
the story about how it does so will be very complicated indeed by the time that the

425 psychologists get finished telling it. (1998, p. 72, italics in original)

Fodor here gestures, it seems to me, at an incredibly potent mechanism of

cognitive expansion. Pretty clearly though, Fodor himself attaches little importance

to the concession, quickly adding that ‘‘For all our philosophical purposes (e.g. for

purposes of understanding what thought content is, and what concept possession is,
430 and so forth) nothing essential is lost if you assume that all thought is in Mentalese’’

(1998, p. 72, italics added).
By contrast, I am inclined to see the potential for representational hybridity as

massively important to understanding the nature and power of much distinctively

human cognition. One obvious reason for this difference in assessment is that Fodor
435 has the LOT already in place. So the basic biological engine, on his account, comes

factory-primed with innovations favoring structure, integration, generality and

compositionality. If, however, your vision of the basic biological engine is not one

that so closely echoes the properties and features of sentences and propositional

attitudes (if, for example, it is closer to Churchland’s vision of a complex but
440 thoroughly connectionist device, or to Barsalou’s, 1999, vision of a ‘‘perceptual

symbol system’’) then the potential cognitive impact of a little hybridity and

co-opting may be much greater than Fodor concedes. It may be essential to such

a system’s ability to think rather a wide variety of thoughts that the inner goings-on

involve, as genuinely constitutive elements, something like images or traces of the
445 public language symbols (words) themselves. Words and sentences, on this view,

may be potent structures many of whose features and properties (arbitrary amodal

nature, extreme compactness and abstraction, compositional structure, and so on)

deeply complement the contributions of basic biological cognition. In such a case,

it would hardly be right to treat the co-opting strategies as marginal for the
450 understanding of thought and concepts.6

This vision of mind-expansion by the use of hybrid representational forms

remains visibly close to that of Dennett (1991, 1996). But Dennett, as mentioned

earlier, places most of his bets on the radically transformative power of our

encounters with language, and thus ends up with a story that seems more
455 developmental than genuinely hybrid. Admittedly, drawing these lines is a delicate

task (Densmore & Dennett, 1999). But where Dennett depicts exposure to language

as installing a new virtual serial machine via affecting ‘‘myriad microsettings in the

plasticity of the brain’’ (1991, p. 219), on the hybrid model words and sentences
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remain potent real-world structures encountered and used by a basically (though this
460 is obviously too crude) pattern-completing brain. Of course, even on this account the

brain sometimes represents (shallowly, imagistically) these structures. But language

need not profoundly reorganize7 the shape and texture of the neural coding routines

themselves.8

4. Working Models?

465 The idea of truly hybrid, bio-artifactually distributed cognition is, I hope to have

shown, at least intelligible. Moreover, the examples arrayed in x2 are meant to suggest

that it is also actual. But how, in detail, might the whole thing work? Do we have even

a single existence proof, in the form of an up and running simulation, that shows

how such hybridity might be mechanically implemented?
470 The nearest I have so far found is a small but suggestive set of simulations reported

in Clowes & Morse (2005). The simulations investigate ways in which the internal

re-use of a public symbol system might aid cognition. Internal re-use was enabled

by the provision, in some agents, of a dedicated re-entrant loop able to recycle

‘‘heard’’ linguistic inputs during processing. In the simulations, simple agents were
475 evolved to find and move geometric figures in response to commands couched in a

‘‘public’’ code. The commands tell the agent’s (simple recurrent neural nets with

‘‘visual’’ and ‘‘word’’ inputs) which of four tasks to perform on objects in an

on-screen arena. The tasks are to move the objects to the top (‘‘up’’), to move the

objects to the bottom (‘‘down’’), to move the objects to the right (‘‘right’’) or to
480 move the objects to the left (‘‘left’’).

Groups of agents were evolved under three conditions:

1. A control condition, with no dedicated word re-entrance loop. In this condition

the agent ‘‘hears’’ words as commands and must act on that basis alone (but the

architecture is still that of a simple recurrent neural net (SRNN), so there is
485 memory available as the output layer cycles back to the input layer alongside new

inputs at the next time step).
2. Permanent Word Re-entrance: In this condition, the ‘‘heard’’ command words

are cycled back via a dedicated part of a recurrent loop while problem solving

continues.
490 3. Self-controlled Re-entrance: This is as (2) except the net has an additional output

unit that can gate the dedicated word re-entrance loop on and off. ‘‘Heard’’

words can thus be recycled during processing at the agent’s discretion.

Clowes and Morse found that under the control condition (no dedicated word

re-entrance) the agents take longer to learn to succeed at any of the tasks, and seem
495 unable to learn to succeed at all four. This is because improvements in one task

seemed to always result in impairment to performance on one or more of the others.

The nets with permanent word re-entrance (condition 2) fared better. Good

performance was quite rapidly evolved, and typically displayed in at least three
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and often all four tasks. Most impressive of all, however, were the (condition 3) nets
500 with self-gateable word re-entrance. These agents produced the best performance, on

all tasks, and with the least evolutionary costs (in terms of numbers of generations

required for competence). Overall, the authors conclude, ‘‘[the] results clearly

demonstrate a qualitative difference between the control group and the [word

re-entrant] conditions, despite the internal re-entrance of SRNN architectures
505 present in all three conditions’’ (Clowes & Morse, 2005, p. 104).

Underlying this result, I would finally conjecture, may be something quite

fundamental. Perhaps (but beware: this is now pure speculation) the role of

re-presentations (imagistic recyclings) of words here can be understood as an

example of the power of loosely coupled distinct processes. This is an effect already
510 observed in work on so-called GasNets in which the combination of (a simulation

of ) freely diffusing gaseous neurotransmitters and of a more standard ‘‘electrical’’

artificial neural network learning resource likewise improves performance and speeds

evolvability. To explain this result, Philipides, Husbands, Smith, and O’Shea (2005)

suggest that when an organism must accommodate conflicting pressures (just as in
515 the four ‘‘contradictory’’ tasks confronting the Clowes-Morse net) the presence of

distinct but loosely coupled processes ‘‘allows the possibility of tuning one process

against the other without destructive interference’’ (p. 154). Perhaps then part of the

role of rehearsed words in aiding cognition, even on the very short time-scales of

ongoing episodes of thinking, might one day be seen as another instance of the more
520 general power of loose couplings between dynamically distinct processes. Perhaps,

that is to say, words are just an especially potent resource able to enter into loosely

coupled forms of online activity, allowing the system to find valuable trajectories

through search space that might otherwise be blocked by destructive interference

between superficially conflicting current ideas, goals, or contexts. For this to occur,
525 ongoing control over the current degree of coupling, as in the ‘‘gated’’ self-cueing

net, may well be crucial (again, see Philippides, Husbands, Smith, O’Shea, 2005,

p. 158). All this is, to repeat, pure speculation. But I do suspect that these very general

kinds of consideration, concerning search, dynamics and complex systems, will

eventually prove very germane to the general project of trying to understand the
530 advantages conferred by various forms of hybrid cognition.

5. Conclusions: Leaps and Boundaries

So what is the ‘‘cognitive bonus’’ that language brings? In this treatment, I have

begun to explore one of the less-visited regions of this surprisingly mysterious

landscape: the region in which the material structures of language play a cognitive
535 role that in some way actually depends on, and exploits, that very materiality. To

even glimpse this region we need to look beyond a seemingly inescapable model of

how language must do its work, the model according to which encountered linguistic

tokens act solely in virtue of a process of exhaustive translation into some other

content-matching (or exceeding) internal representational format. This was what
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540 we dubbed the ‘‘translation view’’ of language. On a pure translation view, it is hard

to see how our linguistic encounters can do anything more than inculcate a kind of

useful shorthand for ideas whose very thinkability requires only on the more

fundamental tokenings (in mentalese or neuralese) with which they have come to be

associated. The alternative on offer is a ‘‘hybrid model’’ according to which some of
545 the cognitive benefits that language brings depend on the complementary action of

actual material symbols (and image-like inner encodings of such symbols) and more

biologically basic modes of internal representation.

Effects tentatively explored under this umbrella included the ideas that:

1. Otherwise inacessible contents can be learnt and grasped by agents skilled in
550 the use of perceptually simple tokens that reify complex ideas.

2. The presence of material symbols (or images thereof ) can productively alter the

fulcrums of attention, perception and action.

And most contentiously of all:

3. Material symbols (or their shallow imagistic encodings) can coordinate with
555 more basic representational resources to yield new forms of hybrid thought.

If this kind of story is even halfway correct, then minds like ours are indeed

transformed by the web of material symbols and epistemic artifacts. But that

transformation may neither require nor result in the installation of brand new

internal representational forms. Instead, there may be much under-explored merit
560 in the canny use of the external forms (and internal images of those very forms)

themselves. Such forms may help sculpt and modify processes of selective attention,

and act as elements within hybrid representational wholes.

One immediate merit of such a view is a more nuanced attitude to the

vexed question of evolutionary cognitive continuity. Jesse Prinz (2004) makes the
565 point well:

Researchers who presume that we think in amodal symbols face a dilemma. If they
argue that nonhuman animals lack such amodal symbols, they must postulate
a radical leap in evolution. If they suppose that animals have amodal thoughts,
they must explain why human thought is so much more powerful. Empiricism

570 [Prinz’s favorite, though not obligatory in the present context!] when
coupled with the assumption that we can think in public language, explains the
discrepancy in cognitive capacities without postulating a major discontinuity in
evolution. (p. 427)

Needless to say, much remains to be done. It would be good to have a clear
575 account of just what attention, that crucial variable that linguistic scaffolding seems

so potently to adjust, actually is. It would be good to have much more in the way of

genuine, implementable, fully mechanistic models of the various ways that

internalized language might enhance thought. And it would be good to know just

what it is about human brains and/or human history that has enabled structured
580 public language to get such a comprehensive grip on minds like ours. But shortfalls

aside, I hope to have at least brought the artifact model into clearer view, and to have
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shown why it might be attractive to anyone who thinks that language makes a truly

deep contribution to human thought and reason.

Acknowledgements

585 This paper grew out of material produced for the workshops on Memory, Mind

and Media organized by John Sutton at Macquarie University, Sydney, Australia in

December 2004. Thanks to John Sutton, Rob Wilson, Mark Rowlands, and all the

speakers and participants at those meetings for their invaluable input and criticism.

Thanks also to two anonymous referees for important and thought-provoking
590 comments. This project was completed thanks to teaching relief provided by

Edinburgh University and by matching leave provided under the AHRC Research

Leave Scheme.

Notes

[1] Note that the suggestion here is not that processes of abstraction always or even typically
595 require the loop through public tokens or symbols. Rather it is that such loops, when

present, can play a distinctive cognition enhancing role. For some important explorations of
the nature, scope and possible limits of such roles, see Schwartz and Black (1996), and

Schyns, Goldstone, and Thibaut (1998).
[2] A possible worry (thanks to an anonymous referee for raising this issue) is that the kinds of

600 rich interaction between different resources posited by hybrid accounts may first require the

translation of the various different elements into a ‘‘common code,’’ thus undermining any
claim of genuine hybridity. A possible analogy here is with cases of intermodal interaction,
also sometimes said to require the existence of a common code. But in both cases a possible

response, it seems to me, is simply to deny the requirement. Potent coordinated interaction
605 need not require a common code. Consider the case of coding in the dorsal and ventral

visual streams. The two streams (see Milner & Goodale, 1995) look to trade in highly distinct

representational forms, yet in daily life (in uncompromised subjects) they work together
seamlessly in the service of goal directed behaviour.

[3] See work on ‘‘tools for thought,’’ the ‘‘extended mind,’’ ‘‘wide computation,’’ ‘‘vehicle
610 externalism’’: Clark (1997, 2003); Clark & Chalmers (1998); Dennett (1991, 1996); Hurley

(1998); Rowlands (1999); Wilson (1994, 2004).
[4] Perhaps there are effects on learning trajectories (see the grade one examples) that resist the

dilemma but for here and now thinking (so the argument goes) the options are as stated.
[5] From this point on, whenever I speak of ‘hybrid representational forms’ I shall mean forms

615 that include both standard kinds of internal representation (mentalese, neuralese, perceptual
symbol systems, . . .) and, as proper parts of a kind of distributed encoding, either the
material symbols of some public language, or shallow imagistic encodings of those very

forms.
[6] A second reason (for Fodor’s downplaying the power of hybridity) flows from his

620 (in)famous views concerning concept learning. For given those views, the meaning of hybrid

representational forms could not be learnt unless the learner already had the resources to
represent that very meaning using more biologically basic (indeed, innate) resources.
This, however, is not the time or place to engage in this important discussion (for some

countervailing thoughts, see Prinz & Clark, 2004).
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625 [7] It is a moot point exactly what constitutes ‘‘profound’’ reorganization. But in essence, the
most radical version of the view I am defending holds that although the brain must learn to
deal with the special class of linguistic structures, in so it need not reorganize its neural
coding routines in any way that is deeper or more profound than might occur, say, when
we first learn to swim, or to play volleyball.

630 [8] A further question is exactly how the hybrid view defended in this paper relates to that of
Carruthers (2002). The relation here is hard to determine, as the starting points of the two
accounts are very different. Carruthers buys into large-scale mental modularity and sees
natural language as cognition enhancing in virtue of being the sole medium of all module-
integrating thoughts. The notion of hybrid cognitive vehicles defended here seems to me to

635 be attractively weaker than this. It is indifferent to the truth or falsity of modularity.
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