
Numerically Robust
Implementations of Fast
Recursive Least Squares

Adaptive Filters using
Interval Arithmetic

Christopher Peter Callender, B .Sc. AMIEE.

A thesis submitted for the degree of

at the University of Edinburgh.

to the Faculty of Science

1991

-1-

University of Edinburgh

Abstract of Thesis

Name of Candidate Christopher Peter Callender
Address 	
Degree 	 Ph.D. 	Date March 25, 1991
Title of Thesis 	Numerically Robust Implementations of Fast Recursive Least

Squares Adaptive Filters using Interval Arithmetic
Number of words in the main text of Thesis Approximately 28,000

Algorithms have been developed which perform least squares adaptive filtering with
great computational efficiency. Unfortunately, the fast recursive least squares (RLS)
algorithms all exhibit numerical instability due to finite precision computational
errors, resulting in their failure to produce a useful solution after a short number of
iterations.

In this thesis, a new solution to this instability problem is considered, making use of
interval arithmetic. By modifying the algorithm so that upper and lower bounds are
placed on all quantities calculated, it is possible to obtain a measure of confidence
in the solution calculated by a fast RLS algorithm and if it is subject to a high
degree of inaccuracy due to finite precision computational errors, then the algo-
rithm may be rescued, using a reinitialisation procedure.

Simulation results show that the stabilised algorithms offer an accuracy of solution
comparable with the standard recursive least squares algorithm. Both floating and
fixed point implementations of the interval arithmetic method are simulated and
long-term stability is demonstrated in both cases.

A hardware verification of the simulation results is also performed, using a digital
signal processor(DSP). The results from this indicate that, the stabilised fast 'RLS
algorithms are suitable for a number of applications requiring high speed, real time
adaptive filtering.

A design study for a very large scale integration (VLSI) technology coprocessor,
which provides hardware support for interval multiplication, is also considered. This
device would enable the hardware realisation of a fast RLS algorithm to operate at
far greater speed than that obtained by performing interval multiplication using a
DSP.

Finally, the results presented in this thesis are summarised and the achievements
and limitations of the work are identified. Areas for further research are suggested.

Acknowledgements

There are many people who deserve thanks for the assistance and support which

have made the work of this thesis possible. I would like to thank all of the

members of the signal processing group, both past and present, for their helpful dis-

cussions and comments on my work. They have helped to clarify many of my ideas.

Special thanks must go to Professor Cohn Cowan. In his role as my supervisor, he

has contributed greatly to the project and his guidance has been very much appreci-

ated. Similarly, I am most grateful to Dr. Bernie Muigrew for initially being my

second supervisor and for taking over when Professor Cowan left the department.

Thanks must also go to Professor Peter Grant for his encouragement and advice

during my time in the group.

Finally, I would like to make it clear how much I appreciate the support of my

parents during the time spent on this work.

Contents

Chapter 1:Introduction 2

1.1. Adaptive Filters - Structures and Applications 2

1.2. Families of Adaptive Algorithms 5

1.3. Applications of Adaptive Filters 15

1.3.1. Prediction 17

1.3.2. Noise Cancellation 17

1.3.3. System Identification 18

1.3.4. Inverse Modelling 19

1.4. Organisation of Thesis 19

Chapter 2:Least Squares Algorithms for Adaptive Filtering 22

2.1. Introduction 22

2.2. The Least Squares Problem for Linear Transversal
Adaptive Filtering 23

2.3. The Conventional Recursive Least Squares Algorithm
28

2.4. Data Windows 29

2.5. Computational Complexity 31

2.6. The Fast Kalman Algorithm 32

2.7. The Fast A Posteriori Error Sequential Technique 39

2.8. The Fast Transversal Filters Algorithm 41

2.9. Comparison of the Least Squares Algorithms 44

-v -

2.10. Numerical Instability 45

2.10.1. Normalised Algorithms 47

2.10.2. Lattice Algorithms48

2.10.3. Stabilisation by Regular Reinitialisation 49

2.10.4. Error Feedback 50

2.1.1. Conclusions 51

Chapter 3:Interval Arithmetic 53

3.1. Introduction 53

3.2. Interval Numbers 54

3.3. Scalar Interval Arithmetic 54

3.4. Scalar Interval Arithmetic with a Finite Precision Pro-
cessor 	.. 55

3.5. Vector Interval Arithmetic 60

3.6. Application of Interval Arithmetic to the Fast RLS
Algorithms 61

3.7. Choice of Design Parameters for the Interval Fast RLS
Algorithm 63

3.8. Conclusions 65

Chapter 4:Interval Algorithms - 	Software Simulations 67

4.1. Introduction 67

4.2. System Identification 68

4.3. Divergence of the FAEST, Fast Kalman and FTF Algo-
rithms 	... 71

4.4. FTF Algorithm Using Rescue Variable73

4.5. FTF Performance Using Interval Arithmetic 82

- vi -

4.6. Fixed Point Implementation of the FTF Algorithm 86

4.7. Fixed Point Interval FTF Performance 88

4.8. Application of Interval Algorithms to Stationary and
on-Stationary Equalisation 93

4.8.1. Performance for a Stationary Channel 98

4.8.2. Performance for a Fading Channel 98

4.9. Conclusions 100

Chapter 5:Interval Algorithms - Hardware Implementation103

5.1. Introduction 103

5.2. Implementing the Algorithm on a TMS320C25 104

5.2.1. Macros to Perform Interval Arithmetic on a
TMS320C25 105

5.2.2. The FTF Algorithm on a TMS320C25106

5.3. Test Configuration 107

5.3.2. Equaliser Arrangement 110

5.3.3. Measurement of Results 110

5.4. Results 113

5.4.1. Eye Diagrams 113

5.4.2. Filter Error 114

5.5. Speed of Operation 114

5.6. Conclusions 120

Chapter 6:An Interval Arithmetic Coprocessor for the TMS320C25 123

6.1. Introduction 123

6.2. The SARI Toolset 125

6.3. Functions of the Coprocessor 	 128

6.4. Design of the Interval Multiplier129

6.5. Top Level Design of the Coprocessor139

6.6. Feasibility of the Design139

Chapter 7:Conclusions143

7.1. Achievements of the Work143

7.2. Limitations and Areas for Future Work145

References ...147

Appendix A - Publications arising from this work159

Appendix B - Simulation software197

Appendix C - TMS320C25 implementation - assembly language code .. 	301

Appendix D - TMS320C25 implementation - circuit diagrams332

Appendix E - Int&rval arithmetic coprocessor - VHDL behavioural
description ... 343

Abbreviations

ADC Analogue to Digital Converter

ASAP As Soon As Possible

DAC Digital to Analogue Converter

dB deciBel

DSP Digital Signal Processor

EOC End Of Conversion

EVR Eigenvalue Ratio

FAEST Fast A Posteriori Error Sequential Technique

FIR Finite Impulse Response

FK Fast Kalman

FTF Fast Transversal Filters

HF High Frequency

HR Infinite Impulse Response

ISI Intersymbol Interference

LS Least Squares

LMS Least Mean Squares

MLSE Maximum Likelihood Sequence Estimator

RLS Recursive Least Squares

SNR Signal to Noise Ratio

SOC Start Of Conversion

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VSE VHDL Support Environment

Principal Symbols

Forward prediction coefficients for fast RLS algorithms

Backward prediction coefficients for fast RLS algorithms

Kalman gain vector

Extended (N + 1 th order) Kalman gain vector

Alternative Kalman gain vector

Alternative extended (N + 1 th order) Kalman gain vector

k th adaptive filter desired response input

Backward a priori prediction error

Forward a priori prediction error

A priori filter error

j -th coefficient of FIR filter

Vector [h 0(k)h1(k) 	h_1(k)f

Unwindowed least squares cost function

Exponentially windowed least squares cost function

Least squares cost function with initial condition

Time index for sampled data signals

Length of adaptive filter

Autocorrelation matrix for least squares algorithms

Crosscorrelation vector for least squares algorithms

k th input to adaptive filter

Vector [x(k)x(k-1) 	x(k—N+1)]

Vector [x (k)x (k —1) 	x (k —N)]'

Minimum value of backwards prediction least squares cost function

Minimum value of forwards prediction least squares cost function

Backward a posteriori prediction error

Forward a posteriori prediction error

A posteriori filter error

Exponential data window parameter

Maximum tolerable width of interval filter coefficients

Weighting for soft constrained reinitialisation

(k)

k (k)

(k)

'(k)

(k)

d (k)

e b (k)

ef(k)

e (k)

h (k)

LL (k)

J0(k)

J1(k)

J 2(k)

k

N

r(k)

x(k)

(k)

ab(k)

a (k)
Eb(k)

e' (k)

E(k)

X

I,

Mathematical Notation

Vector A

aD Vector A of dimension (order) D

A Matrix A

Hall II Euclidian norm of a
Transpose of A

AT Transpose of A

A 1 Matrix inverse of A

[a' ,a u] Interval number which contains all real

numbers between a' and a"

Partial derivative of f (x) with respect to x
ax

Vi (x ,y ,z...) 	Gradient vector of function J
I 	 iT

(13J8J3J
" 	L ax ayaz

"The subject we have just treated might give rise to several elegant analytical investi-

gations upon which, however, we will not dwell, that we may be too diverted from our

object. For the same reason, we must reserve for another occasion the explanation of

the devices by which the numerical calculations may he rendered more expeditious"

- Karl Friedrich Gauss on least squares estimation techniques in Theoria Mows

Corporum Coelestium t, 1809

t From English translation - Gauss, K.F. 'Theory of Motion of Heavenly Bodies', Dover, New
York, 1963.

-1-

1 Introduction

1. 1. Adaptive Filters - Structures and Applications

Fast, recursive least squares algorithms[1-3] have been developed for performing

transversal least squares adaptive filtering in a highly computationally efficient

manner. Unfortunately, all of these algorithms are numerically unstable, due to the

way that finite precision errors are propagated. The important contribution of this

thesis is to present a new stabilisation procedure which uses interval arithmetic to

perform an error analysis for the algorithm whilst it is operating. The significance of

this is that it enables a guaranteed limit to be placed on the magnitude of numerical

errors, preventing instability and divergence. A hardware demonstration of an adap-

tive filter using the new methods has been developed, showing that interval arith-

metic may be used in a practical application of adaptive filtering.

An adaptive filter[4-7] is a programmable filter, which automatically attempts to

adjust its variable parameters so as to optimise its performance in some way. Figure

1.1 shows the general configuration of an adaptive system. There are two important

elements to the system. The filter structure modifies the input signal in some way

defined by its parameters and generates an output signal. The adaptive algorithm is

responsible for monitoring the performance of this filter structure and adjusting its

parameters, so as to maximise system performance.

-2-

Interestingly, a great number of adaptive systems occur in nature and in living

things. One example of a biological adaptive system is the iris of the eye[8], which

may be thought of as a filter which controls the amount of light which enters the

eye. The filter has one programmable parameter - the radius of the iris. An adap-

tive algorithm in the brain monitors the brightness of the images which it receives

(which is a measure of the performance of the iris filter). If the brightness does not

meet some desired target, then the radius of the iris is adjusted, so as to improve its

performance. In so doing, the eye is capable of good image detection over a much

wider range of light levels than would be possible with a fixed iris radius.

This example illustrates one of the key advantages of adaptive filters over their fixed

filter counterparts. A fixed filter can only give optimum performance in a limited

number of situations, whereas the adaptive filter, with its ability to self-adjust, offers

potentially better performance in a wide range of different circumstances. In some

applications, the optimum filter may not be known a priori, as the conditions which

affect the input signals may not be known exactly. Moreover, in many applications,

the optimum solution varies with time, perhaps due to environmental factors and so

a fixed filter cannot be applied. An adaptive filter, however, has the ability to track

the changing optimum solution. In a large number of cases, the self-adjusting adap-

tive filter, therefore, has the potential for improved performance, as compared with

a fixed filter.

A number of different structures and algorithms for adaptive systems have been pro-

posed. The discussion in this thesis will be restricted to digital filters. These may be

subdivided into linear and non-linear structures. Linear digital filters may be further

subdivided into finite and infinite impulse response structures. For the finite

impulse response filter the transfer function is realised by zeros only, as all of the

poles of the filter are located at the origin. In the case of the infinite impulse

response filter, however, both poles and zeros are used to realise the transfer func-

tion. One example of a finite impulse response filter is the linear transversal

- 3 -

Input 	

Programmable Filter 	I Jerformaii
I 	I Measure

Adaptive Algorithm

Figure 1.1 An adaptive filter. The device consists of two key parts a programmable filter which is controlled by a
number of parameters, and an adaptive algorithm which attempts to adjust these parameters so as to obtain optimum
system performance.

-4-

filter,[9-13] shown in Figure 1.2a. It is also possible to generate lattice filters[14-16]

which have a finite impulse response, such as the structure in Figure 1.2b. An

example of a system which has a transfer function realised with both poles and zeros

is the direct form infinite impulse response (IIR)[4, 6, 17-21] filter shown in Figure

1.3a. The difficulties associated with developing adaptive techniques for the hR

filter are considerable, because the filter is not unconditionally stable, as it has both

poles and zeros in its transfer function. The danger is that the adaptive algorithm

will choose a set of coefficients which place poles outside the unit circle in the z-

plane and so provoke an unstable response. The filter error surface is also non-

quadratic, which makes the task of developing an adaptive algorithm considerably

more difficult.

Various non-linear digital filter structures have also been suggested for adaptive

filtering applications including a range of artificial neural networks[22-27], which

model the filter on a simplified brain-like structure. An example of a neural net-

work is shown in Figure 1.3b. Whilst adaptive neural networks are currently an area

of very active research, the theoretical aspects of non-linear structures are not nearly

as well understood as the linear structures. The work of this thesis is, therefore, con-

cerned with the linear transversal filter structure and the emphasis is on developing

highly efficient algorithms for this well understood and often used structure.

1.2. Families of Adaptive Algorithms

A large number of algorithms for adaptive filters has been proposed. Indeed, adap-

tive filtering is an example of an optimisation problem and optimisation techniques

form an important part of mathematics[28-31]. The additional constraint in adap-

tive filtering is that many of the applications require this optimisation to be per-

formed in real time and so the complexity of the computations required must be

kept to a minimum.

-5-

Figure 1.2a Structure of a linear transversal finite impulse response (FIR) filter.

Input 	 Output - 	 o

KO X 	K 	 2 X

KO X 	K X 	K2 X

I z. 1I 	z 1I 	z 1j

Figure 1.2b Structure of an all zero lattice filter.

-7-

Figure 1.3a Structure of a recursive infinite impulse response (IIR) digital filter.

Hidden
Layer 1

Input Hidden

Layer Layer 2

Output

11
Layer

Output

11

Input

Conection of a number of processing elements

to form a neural network

Inputs
from 1 previous)
layer 	x

Bias

A single neural processing element

Figure 1.3b Structure of the multi-layer perceptron which is one class of neural network.

S

Figure 1.4 shows some of the families of adaptive algorithms which have been sug-

gested. Conceptually, one of the simplest techniques is the random search tech-

nique.[32] A random perturbation is made to the parameters of the programmable

filter and the output is examined to see if this alteration improves the filter perfor-

mance. If the performance is not improved, the perturbation is discarded and a new

perturbation is tried. Random search techniques are interesting, as they have much

in common with the mechanism of evolution suggested by the Darwinian theory of

natural selection[33, 34], which may also be regarded as an example of an optimisa-

tion procedure, in which the performance measure being maximised is the probabil-

ity of survival of life. It must be noted, however, that within the context of adaptive

filtering, random search techniques are very slow to converge to a solution which is•

close to the optimum value and are therefore, of little practical value. This is due to

their reliance on random perturbations to the filter parameters. There is a fairly low

probability that any particular perturbation will change the filter parameters in the

direction of their optimum values.

Before proceeding to discuss other adaptive algorithms, it is necessary to discuss the

performance measure which is often used in adaptive filtering. It is normal to

assume that a desired response signal is available and that the target of the adapta-

tion algorithm is to minimise in some way the filter error, which is the difference

between the filter output and the desired response input. The introduction of a

desired response or reference signal does not seriously limit the usefulness of the

adaptive filter and many important applications in which a desired response signal

may readily be made available to the adaptive filter are presented later in this

chapter. It is helpful when considering adaptive algorithms to imagine the error sur-

face which is generated by measuring the mean value of the square of filter error as

the filter coefficients are varied. Figure 1.5 shows a typical error surface for a

transversal filter with two coefficients denoted by h 0 and h 1. In general, for the

- 10 -

linear transversal structure, the surface will be quadratic, with a single global

minimum. The goal of an adaptation algorithm is to set the filter coefficients so as

to obtain an operating point at this minimum, where the filter gives optimum per-

formance.

One method by which this may be achieved is the stochastic gradient technique,

which has resulted in algorithms such as the least mean squares (LMS) algorithm[4-

6,35,36]. These algorithms operate by estimating the gradient of the error surface

at the current operating point and then moving the coefficients in the direction of

steepest descent of the error surface. By performing this operation repeatedly, the

algorithm seeks out the minimum of the error surface in a number of steps. Ti the

error surface changes in shape and the position of the minimum moves, as would be

the case in a non-stationary environment, then the adaptive algorithm can track the

optimum solution. In the case of the LMS algorithm, a noisy estimate of the gra-

dient of the error surface is made from a single sample of the input data vector and

error signal. This is used to update the filter coefficients and it can be shown that

this procedure is guaranteed to converge close to the optimum solution, provided

that certain restrictions are placed on the step-size[37].

Least squares algorithms[6, 16, 38] rely on a somewhat different technique. Instead

of attempting to minimise the mean square value of the filter error, these algorithms

minimise a cost function, such that the goal is to minimise the total sum of all the

filter errors squared from when the algorithm was started to the current time. The

important difference is that this involves the minimisation of a completely deter-

ministic expression, rather than the statistical quantity of the stochastic gradient

methods. This minimisation may be performed in principle by differentiation. As

the filter is linear and a squared error cost function is used, this differentiation

yields a set of linear simultaneous equations for the filter parameters. Least squares

algorithms for signal processing concentrate on numerically efficient ways of solving

this set of equations. The conventional recursive least squares (RLS) algo-

FIR Adaptive Filter Algorithms

Gradient 	7 ' Least 	 Random Searc

Squares

Least Mean Squares ecursiveLeast Squares 	 Linear Random Search

(LMS) L 	(RLS) 	 (LRS)

Block Exploitation of

Processing shift properties of data

Time Domain Block Fast Recursive Least

Least Mean Squares Squares
(BLMS) (FRLS)

Frequency Block
domain Processing

implementation

Frequency Domain Block Fast
Block Least Mean Squares Recursive Least Squares

Figure 1.4 The main families of algorithms for performing adaptive filtering

Figure 1.5 The quadratic mean square error surface of a linear transversal filter

- 13 -

rithm[5, 6, 16, 39] uses information about the previous solution to the system of

equations, so as to reduce the computation in finding a new solution to the equa-

tions when a new squared error is added to the cost function. Various fast recursive

least squares algorithms[1-3] have been developed which, in addition, exploit the

shifting properties of the input data vector to provide a further saving in computa-

tional complexity.

Least squares techniques and stochastic techniques have a number of differences in

the way that they perform[40]. In general, the time taken for a stochastic gradient

algorithm to converge close to the optimum solution is much longer than for a least

squares algorithm, due to the reliance of the stochastic algorithm on the statistics of

the input data sequence and the need for an averaging process to occur with the

'noisy' gradient estimate. However, the computational complexity of these algo-

rithms is very low and they are, therefore, suitable for high speed real time applica-

tions, where the speed of convergence is not critical. Least squares techniques have

a much higher computational complexity, but their principal advantage over sto-

chastic methods is their much more rapid initial convergence, which is independent

of the statistics of the input signal. They have a higher computational complexity

than the stochastic gradient methods, but in the case of the fast RLS algorithms,

this complexity is of a comparable order of magnitude to the LMS algorithm.

Also of importance in considering the performance of an adaptive system is its abil-

ity to track the optimum solution in applications where the optimum solution varies

with time. The comparison of the tracking performances of the two classes of algo-

rithms is an area of current research[41-43]. Results show that the more rapid ini-

tial convergence of the least squares techniques does not necessarily imply better

tracking performance in a non-stationary environment and that gradient techniques

may offer comparable or even better performance.

Nevertheless, the rapid, data independent convergence of the least squares methods

-14-

makes them attractive for many applications. For example, in data communications,

a known training sequence has to be transmitted until the algorithm has converged,

reducing the throughput of useful data transmitted. The more rapidly the adaptation

algorithm converges, the more useful data can be transmitted in a given time. The

fast RLS algorithms are particularly attractive in this respect, as they are also suited

to higher data rates than the conventional RLS algorithm due to their lower compu-

tational complexity. However, it is well known that these algorithms suffer from

severe numerical instability[44]. Small numerical errors at each iteration of the

algorithm accumulate, until they eventually cause divergence of the algorithm,

resulting in a completely incorrect solution to the optimisation problem. The work

in this thesis is concerned with finding solutions to the divergence phenomenon and

making these potentially very efficient algorithms sufficiently robust to be of practi-

cal value.

1.3. Applications of Adaptive Filters

The versatility of a self-adjusting filter structure is such that the number of applica-

tions for adaptive techniques is very great. Adaptive filtering has found application

in areas such as digital communications[45-49], telecommunications[50], noise can-

cellation[35, 51], speech coding[52, 53] and control systems[54-58]. Much of the

work in this thesis will concentrate on the digital communications application, as

this is probably the most widespread of all of the applications mentioned, but the

new techniques developed could be applied to other adaptive filtering applications.

Four of the main configurations in which adaptive filters are often used are shown

in Figures 1.6a-d. Each of these configurations will now be considered.

Input
	

I 	Programmable Filter

Output

Adantive Processor

Adaptive prediction

Signal + Noise (s+n)
Distorted estimate of

noise ()

+
Programmable Filter

Output
Adaptive Algorithm

Adantive Processor

Adaptive noise cancellation

Inpi

(c) (c) Adaptive system identification (modelling)

Input 	
Delay 	

- 	Programmable Filter 	-

I Output
Adaptive Algorithm

Adaptive Processor

* Required if the channel has an impulse response with zeros outside

the unit circle (non-minimum phase)

(d) Adaptive equalisation (Deconvolution, inverse filtering, inverse modelling)

Figure 1.6 Important configurations for adaptive filtering

- 16 - 6-

1.3.1. Prediction

Figure 1.6a shows an adaptive system configured to perform prediction of a signal,

based upon its previous values. The signal is fed through a delay stage into the

adaptive filter input and it is also input directly to the desired response input. The

goal of the adaptive processor is, as always, to minimise the filter error signal. To

do this, the filter output must approximate the current value of the signal. The only

samples which are available to the filter, however, due to the delay stage, are previ-

ous values of the signal. The current value of the signal has not yet appeared as an

input. It must, therefore, predict the current value based upon previous values of

the signal.

Applications of adaptive predictors include cancellation of periodic interference

from a non-periodic signal[51]. This is possible, since the predictor can predict only

the periodic component of the signal, the non-periodic component usually being

unpredictable. Another application is the efficient encoding of speech sig-

nals[52, 53], which are highly predictable over short time intervals.

1.3.2. Noise Cancellation

In Figure 1.6b, an adaptive processing system is configured to cancel interference.

A signal, s, has been corrupted by some additive noise. n , to give a signal .c +n.

A correlated, but distorted, estimate of this noise, ii is also available. Obviously, if

this estimate was not distorted, it could simply be subtracted from the corrupted sig-

nal s +n, so as to recover the signal s. In this case, however, the noisy signal S +n

is fed into the desired response input of the adaptive processor and the estimate of

the noise, ñ is fed into the filter input. To minimise the filter error in this

- 17 -

configuration corresponds to filtering the estimate of the noise, ii, so as to make it

as close as possible to the actual noise, n. This filter output is then subtracted from

s + n, in order to form a signal which closely resembles s.

Applications are widespread and include cancelling mains hum interference from

medical signals[35 ,60], cancelling donor-heart interference when examining electro-

cardiograms during heart transplant operations [35], and cancelling additive noise

from speech signals [35,61].

1.3.3. System Identification

This configuration is shown in Figure 1.6c. The aim is to find a system with transfer

function, F (z) which closely approximates to the transfer function, H (z), of the

unknown system. A signal, s is fed into the adaptive processor and also into the

unknown system. The output which the unknown system gives in response to this

input is the desired response of the adaptive system and so it is fed into the desired

response input. Therefore, the adaptive system learns to respond like the unknown

system and when it has done this, parameters may be extracted from it, which also

pertain to the unknown system. The output of the unknown system may be cor-

rupted by a small amount of 'plant' noise, so that it cannot be identified exactly.

One important application of the adaptive system identifier is in digital communica-

tions. A maximum likelihood sequence estimator (MLSE)[62] may be used to give

very good performance when attempting to recover a sequence at the receiver which

has been corrupted by intersymbbl interference. The maximum likelihood sequence

estimator requires an estimate of the current impulse response of the transmission

channel, however, so as to calculate which is the most probable transmitted

sequence. Adaptive system identification provides a method for finding the impulse

response of the channel for the sequence estimator.

Another important application in which this configuration is used is adaptive echo

cancellation[50,59] for telecommunication.

- 18 -

1.3.4. Inverse Modelling

In the configuration of Figure 1.6d, a signal has been distorted by an unknown sys-

tem, such as a communications channel, a transducer or some other system. The

adaptive processor attempts to remove this distortion by performing inverse filtering

on the output from the unknown system. This application is similar to system iden-

tification, except that the unknown system is in the filter input path, rather than in

the desired response input path, so that the algorithm converges to find the inverse

to the unknown system.

Applications of adaptive processors being used in this configuration include channel

equalisation for digital radio communications[45, 46, 63, 64] allowing faster data

rates with an acceptably low probability of error.

In this application, the desired response signal is generated locally at the receiver

initially by using a known training sequence. After convergence of the adaptive

algorithm, it is possible to switch to decision directed mode in which the desired

response signal is generated by a threshold device, which makes a decision upon the

output from the equaliser, allowing the filter error to be calculated and adaptive

updating of the equaliser to take place. In practice, a delay may have to be intro-

duced into the desired response path as shown in Figure 1.6d, so as to ensure that

the channel and delay combination is minimum phase and suitable for equalisation

by a linear structure,.

1.4. Organisation of Thesis

As was previously mentioned, the primary aim of the work in this thesis is to study

ways in which the highly computationally efficient fast RLS adaptive algorithms

may be applied to practical applications, without the numerical instability problem

- 19 -

making itself apparent. The goal of this research is to find a method by which the

algorithms may be stabilised and then to demonstrate that this stabilisation pro-

cedure results in algorithms which are of practical value in a number of applica-

tions.

Chapter 2 will begin by presenting much of the background to this work. The con-

cept of least squares estimation as applied to the linear transversal filter will be

developed and a number of algorithms which solve the least squares estimation

problem will be derived. The first algorithm to be presented will be the conventional

recursive least squares (RLS) algorithm, which has a computational complexity pro-

portional to the square of the filter length and is therefore, too numerically intensive

for many applications. The chapter will then proceed to discuss the fast RLS algo-

rithms. A derivation of the fast Kalman algorithm, historically the first of the fast

RLS algorithms to be discovered, will be given and then, two other algorithms for

fast RLS transversal filtering will be examined. The reasons for the instability prob-

lems of the fast RLS algorithms will be looked at in some detail and various solu-

tions, which have already been proposed to solve these problems, will be discussed.

The benefits and limitations of the existing stabilisation schemes will be considered.

The theoretical aspects of a new solution to the numerical divergence problems are

introduced in chapter 3. A scheme of arithmetic known as interval arithmetic is

used. Effectively, this enables an error analysis to be performed in parallel with the

computations of the algorithm, taking into account the effects of finite precision

numerical errors. If the analysis indicates that the results calculated by the algorithm

are being adversely affected by numerical errors, then the algorithm is rescued using

a 'soft-constraint' rescue procedure. A number of new design parameters are intro-

duced into the new interval arithmetic fast RLS algorithms and chapter 3 is con-

cluded by some results relating to the correct choice of these parameters.

Chapter 4 gives simulation results relating to the new interval arithmetic algorithms.

-20-

The central aim of these simulations is to explore many different configurations and

possibilities. To this end, simulations are performed using both floating and fixed

point arithmetic, direct and inverse system modelling is performed and the simula-

tions are applied in both the stationary and non-stationary scenario.

Having demonstrated successfully the performance of the interval fast RLS algo-

rithms in simulations, chapter 5 considers a hardware implementation of the new

algorithms. A digital signal processor is used and the operation of the 16 bit fixed

point interval arithmetic fast RLS algorithm is demonstrated in real time as an

equaliser.

Chapter 6 contains a design and feasibility study for a very large scale integration

(VLSI) technology coprocessor, which would enable interval arithmetic algorithms

to work at greater speed on a digital signal processor. The coprocessor design was

developed using an advanced software package, which can convert from a high level

behavioural description of the algorithm to a low level structural description of the

gates and components required to implement it.

Finally, chapter 7 forms the conclusions to this work. Both the successes and the

limitations of the new interval methods are discussed and areas for further research

are identified.

- 21 -

2 Least Squares Algorithms for
Adaptive Filtering

2.1. Introduction

A least squares adaptive algorithm[6, 16, 38, 65] is one in which some cost function

involving total squared error is minimised by appropriate choice of the parameters

of a filter. The filter structure which will be focussed upon in this chapter will be

the linear transversal filter[9-13], although least squares algorithms for lattice

filters[14-16] will be mentioned.

The principle advantage of a least squares algorithm over the popular stochastic gra-

dient methods[4-6, 35, 36] for adaptive filtering is the greatly improved initial con-

vergence[40, 59]. For the stochastic gradient methods, the initial convergence time

is strongly dependent upon the statistical properties of the input signal[37, 66] and in

the case of an ill-conditioned input, these algorithms will be slow to converge. Least

squares algorithms, however, have convergence properties which are independent of

the data statistics[67 -69] and these algorithms will converge close to the optimum

solution within 2N iterations where N denotes the order or length of the adaptive

filter.

One problem with the application of least squares techniques to high speed real time

systems is the relatively high computational complexity of the algorithms. The con-

ventional recursive least squares[5, 6, 16, 39] (RLS) algorithm has a computational

- 	 -22-

complexity which is proportional to the square of the filter length. This inhibits its

application to systems which require a high filter order, N, as the computational

burden becomes unacceptably large. One such application is that of adaptive echo

cancellation, where filter lengths of 2:1000 taps are typically required. To imple-

ment such a filter using the RLS algorithm would need several million additions and

multiplications per iteration and such an implementation would clearly not be feasi-

ble.

The high complexity of the RLS algorithm may be reduced by exploiting the shift-

ing properties of the input sequence with time. This has resulted in several fast RLS

algorithms such as the fast Kalman (FK) algorithm[1, 70-72], the fast a posteriori

error sequential technique (FAEST)[2, 73-76] and the fast transversal filters (FTF)

algorithm[3, 77, 78], all of which are characterised by a computational complexity.

which is directly proportional to the filter length, N.

Unfortunately all of the highly efficient fast RLS algorithms suffer from severe

numerical instability[44] when implemented using either fixed or floating point digi-

tal arithmetic[79-81]. They are highly sensitive to small numerical errors at each

iteration and will often diverge suddenly from the correct least squares solution. It is

the solution to this problem which is the basis for the work in the remainder of this

thesis.

2.2. The Least Squares Problem for Linear Transversal Adaptive

Filtering

The linear transversal filter operates by convolving a filter input sequence, x (k)

with a set of filter coefficients h (k), to produce an output y (k), given by :-

y(k)tLT (k)(k) 	 [2.1]

where

- 23 -

Figure 2.1 The linear transversal finite impulse response (FIR) filter

-24-

I 	

x(k)

tx(k —N+1)j

and

h 0(k)

L[(k) 	

IhN _l(k)J

N is the length or order of the filter and the structure is shown in Figure 2.1.

In adaptive filtering, a desired response sequence d(k) is introduced and the objec-

tive of the adaptive filtering algorithm is to find the set of coefficients, LI (k), which

produce an output y (k) which is as close as possible to the desired response, d (k).

We therefore define the error at time k by

e'(k)=d(k)—y(k) 	 [2.2]

In least squares filtering, the algorithm finds the coefficients LI (k) which minimise a

cost function J 0(k), which is of the form

[2.3]

As as first stage to obtaining the solution to this minimisation problem, the partial

derivatives of J 0(k) with respect to each of the filter coefficients h 0 , h 1 , h1

hN -,are evaluated

I a le (i) I
-- i=o

- 8h

=)-

=2(i)

('1
=2(i)A4d(i)_LIT(k)X(i)
i=o ah 	 -)

- 25 -

k 	a { 	N-i
=2'(i)— d(i)—h(k)x(i—j)

i-O 	 j=O)

— 2 -2'(i)x(i -1) 	 [2.4]

It is now possible to evaluate the gradient vector, J 0(k) which will enable the

optimum filter coefficients to be found.

aJ 0(k)/3h 0 1
aJ 0(k)/ah

[aJ o(k)/ahN -1]

F x(i)7i 1
k Ix(zl) i) I

=-2
i=O

1x(i —N)'(i)j

(r
x(

1
z)

k 	x(i-1)
=-2j

ioI

	

[x(i_N+1)j 	
j

k(
=-2&(i)e(i)

)

'1
=-211X-(0 [d(i)_ T (i)ll(k)i

I

'1
= —2 	(i)d(i)—X(i)XT (i)ll(k)

= —2 	.&(i)d(i) +2 	&(i) T (i) } 11(k) 	 [2.5]
i =OL)

It is convenient to introduce the matrix

- 26 -

and the vector

k

r(k)= I 2C (i)X T (i) 	 [2.6]
iO

k
[2.7]

j=O

This enables [2.5] to be written as

VJ0(k)= —2 (k)+2r(k)LE (k) 	 [2.8]

and setting VJ O(k)=Q to obtain the optimum solution 1jOP((k) gives

r(k)ll°"(k)=i(k) 	 [2.9]

and therefore

IjOPt(k)=r_l(k) rd. (k) 	 [2.10]

provided that r(k) is non-singular.

In principle, this result could be used to implement an adaptive algorithm, as it

enables the optimum coefficients to be calculated from the filter and desired

response inputs. It should be noted, however, that equation [2.10] requires a matrix

inversion to be performed on the N x N matrix r(k). If this inversion is to be per-

formed by a conventional matrix inversion method such as the Gauss - Jordan tech-

nique[82], then the, number of operations per iteration of the algorithm will be of

order N 3. This is likely to yield an unacceptable computational burden if N is even

moderately large.

If certain assumptions are made, then the matrix r(k) will become Toeplitz in

structure and the Levinson - Durbin algorithm[83, 84] may be used to find the solu-

tion from equation [2.9]. To obtain this structure, both the pre-windowed assump-

tion

x(00, i<0 	 [2.11]

and the post-windowed assumption

x(i)0, i>k—N+1 	 [2.12]

must be invoked. When the pre-windowed and post-windowed assumptions are used

together in this way, this is known as the autocorrelation form. When no assump-

- 27 -

tions are made about values of the data, x(i) outside the range Oik —N +1,

then this is known as the covariance form. If assumptions about the data windowing

cannot be made, then the Levinson - Durbin algorithm cannot be used. Other effi-

cient solutions to the problem have therefore been developed.

2.3. The Conventional Recursive Least Squares Algorithm

In developing this algorithm, the aim is to update the value of the matrix r, 1 (k —1)

which is assumed to be available, so as to obtain r,'(k). In so doing, the need to

perform matrix inversion at every iteration of the algorithm is eliminated and the

computational complexity is reduced.

What is required is to update the values of ii (k —1) and r, 1(k —1) so as to include

the new data which becomes available at time k. This is done by writing

r(k)=r(k _1)+K(k)T(k) 	 [2.13]

and

[2.14]

Substituting for rd (k) in [2.14] using [2.9] gives

r(k)H(k)=r(k-1)Lj(k -1)+d(k)X(k) 	 [2.15]

It is then possible to use [2.13] to substitute for r(k —1), yielding

r(k)H(k)= [r xx(k)_(k) T (k)]ll(k_1)+d(k)(k) 	[2.16]

If we define

XX

	 [2.17]

and [e a priori filter error by

e(k)d(k) —II T (k -1)K(k) 	 [2.18]

then [2.16] may be rearranged as follows

II (k)=IL(k —1)—r;'(k)(k)X T (k)LL (k —1)+r, 1 (k)d(k)X (k)

=H(k —1)--(k) T (k)ll (k —1)+(k)d(k)

=tL(k —1)+(k)e (k) 	 [2.19]

To obtain the recursive update for r.'(k), it is necessary to make use of the Sher-

man Morrison matrix inversion lemma[85, 86]. For all A,B,C and D of compatible

dimensions,

[A+BCDI -'=A-1—A-'B (C+DA-'B)-IDA-1 	 [2.20]

We note that

r'(k)= [r(k —1)+K(k)T(k) 	 [2.21]

so using identity [2.20] with A=r;'(k —1), B =&(k), C =1 and D =&r(k) yields

the update

r,-'(k) = r'(k —1) —r;'(k —1) (k) (l+T (k) XX r'(k —l)X (k) 	[2.22]

T(k)r _l(k 1)
XX

This result may now be used to substitute for r,'(k) in [2.17] to give

c (k) = r;' (k)X (k)

= r;'(k —1) —r;'(k —1)& (k) (1 	(k)r;'(k —1) (k))
1

K T (k)r,'(k —1)K(k)

=r, '(k —1)(k)

1+ T (k)rx;'(k-1)X(k)
\
J K T (k)r;'(k-1)(k)

(
=r,'(k-1)X(k)1+XT(k)r,'(k-1)X(k) 	 [2.23]

)

This completes the derivation of the RLS algorithm, which consists of equations

[2.18], [2.22], [2.23] and [2.19]. It is normal to take initial values as r,'(0)=crI and

ll(0)=Q, where a is a small positive number and I is the identity matrix.

2.4. Data Windows

The cost function J 0(k) defined in [2.3] is inappropriate for use in a time variant

environment, where the optimum solution 110131(k) varies with time. As all errors

are penalised equally, any algorithm which minimises J 0(k) will have a growing

- 29 -

memory and, therefore, cannot track the time-varying solution as required.

To overcome this problem, it is common to introduce a 'forgetting factor', k which

is used to window the terms in the cost function exponentially, so as to give greater

importance to more recent error terms in the sum of squared error cost function.

The cost function is modified to become

J 1(k)=X'e2(i) 	 [2.24]

where X is slightly less than 1.

If this cost function is minimised with respect to L[(k) by differentiation, then a

solution of the same form as [2.10] is obtained, provided that the definition of 	is

modified to be

rxx(k)=Xk _K(i)&T (i) 	 [2.25]

and rd., is defined as

[2.26]

It is then possible to proceed in the same way as in section 2.3 to derive the

exponentially windowed RLS adaptive algorithm. This algorithm is summarised in

Table 2.1

A number of other windowing functions[77] have also been proposed, including the

sliding rectangular window. Using this windowing method, errors occurring more

than a certain time before the current sample are ignored completely. This may give

some improvement in highly non-stationary operation, but the resulting algorithms

are generally more computationally complicated than that which would be obtained

using an exponential window.

- 30 -

Initialisation

ll(0)=Q, r,'(0)= 	(0)=Q where r is a small positive number.

Attime k, do

e (k)=d(k)—X T (k)ll(k —1)

r,-'(k
r'(kX.)= 	

X

(k)= r'(k —1),K(k) (k) [x+XT (k)r'(k —1) (k)]

XX

LL(k)=Li(k —1)+Q(k)e (k)

Table 2.1: Conventional RLS algorithm with exponential windowing

2.5. Computational Complexity

One of the major limitations in the application of the RLS algorithm of Table 2.1 is

its computational complexity. Making use of the symmetry of the matrix r,'(k), it

is possible to implement the algorithm with 2.5N 2+4.5N additions and multiplica-

tions per iteration. As the complexity of the algorithm is dependent upon the square

of the filter order, it will become unacceptably large for use with long adaptive

filters.

It is the high computational complexity, which has motivated the development of the

fast RLS algorithms, which provide a means of calculating the same least squares

solution as the conventional algorithm, but with a computational complexity which

is directly proportional to the filter length. This saving in computation is obtained

by exploiting the shifting properties with time of the data vector X (k), which results

in the matrix r(k) having a near to Toeplitz structure.

- 31 -

2.6. The Fast Kalman Algorithm

The fast Kalman algorithm was presented by Ljung, Morf and Falconer in 1978[1].

The derivation begins by developing some special cases of the least squares problem

of section 2.2 for forward and backward prediction. An N th order linear forward

predictor may be defined by

.if (k)= T (k)&(k -1) 	 [2.27]

where T(k) = [a 0 . 	a] is a set of forward prediction coefficients.

That is to say that an estimate of the current value, x (k) is to be made using a

linear combination of N previous observations of a signal. Similarly, backwards

prediction may be defined by

Ib(k_N)=bT(k)X(k) 	 [2.28]

where k T (k)=[bo 	bN_i] is a set of backwards predictor coefficients.

The optimum predictor coefficients a (k) and Lz (k) may be chosen by least squares

methods. For forwards prediction, the appropriate sum of squared errors cost func-

tion is

J1 (k)= 	(x(i)_ T (k)K(i _1)) 	 [2.29]

and for the backwards coefficients

Jb(k) 	(X (i_N)_T(k)(i))2 	 [2.30]
I =0

These correspond to two special cases of the least squares problem which has

already been solved in section 2.2. The forward prediction case corresponds to a

desired response of x (k) given an input vector K (k —1) for which the solution is

(k)=r;'(k —1)LI(k)

where

rx
= x(i)&(i —1) 	 [2.31]

-32 -

Similarly, backwards prediction corresponds to a least squares adaptive filtering with

a desired response of x (k —N), using the input data vector X (k), for which the

solution may be written as

b(k)=rxx
 (k)r'(k)

where

j=>x(i —N)&(i) 	 [2.32]

It is possible to use the recursive methods of section 2.3 to update the predictors

(k) and (k). The following recursions are obtained

ef(k)=x(k)— T (k —1)X (k —1) 	 [2.33]

a(k)=Q(k-1)+(k-1)e1(k) 	 [2.34]

for forwards prediction and

e"(k)x(k —N)—bT (k —1)&(k) 	 [2.35]

[2.36]

e1 (k) and eL (k) are known as the a priori forward and backward prediction errors

respectively

Note that the gain vector, £(k), used to update i(k) in [2.34] and b (k) in [2.36] is

the same gain vector as that used in the recursion for LE (k) in [2.19]. That is to say

that jc (k) is

xx
	 [2.37]

for all the problems considered.

The values of the cost functions Jf (k) and j' (k) may be evaluated at their minima

to give

cJ(k)=min(J1 (k))

=x 2(i)— T (k)(k)

=,(k) —Li T (k)rf(k)

where r (k)—'YI x 2(i)

[2.38]

- 33 -

and

Ot b(k)= min (Jb(k))

=.>x2(i —N)--T(k)r(k)

=r(k)—kT(k)i(k) 	 [2.39]

where r(k)=x2(i —N)

This completes the preliminary results relating to forwards and backwards predic-

tion. The method used to exploit these results in the main RLS algorithm is to con-

sider a system in which the order has been increased from N to N + 1. All quantities

relating to this increased order system will be denoted by a I symbol to discriminate

them from their N th order counterparts.

We define the N + ith order data vector by

[
x(k)

 i
I 	. 	I 	 [2.40]

[x(k_N)j

and we immediately note that the N + 11th order system data vector can be related to

the Nthorder data vector by

F x(k) 1 	1 L((k) 1
I ---- I and '(k)— I ---- I 	[2.41]
I(k-1)j 	 x(k—n)J

It is these relationships which enable the use of definitions from the forward and

backward predictors developed earlier.

An equivalent to the r matrix for the N + ith order system may be defined by

[2.42]

and we may use the relationships of [2.41] to relate this to the Nth order system by

k I x(i) 1
x(i)

	

I 	—1)x(i)

	

11X(i -1)X(i) I 	r(k-1)
=0

[2.43]

and using the definitions from the work on forward predictors, this is

[r(k) 	 rfT(k)1

	

--------I --------I 	[2.44]

[rf (Ic)

In exactly the same way, using the second part of [2.41] and the backward predictor

definitions,

[r(k) I
r'(k) 	I---------I --------I 	[2.45]

[rT(k) I 	rbo(k)j

The matrix r'(k) may now be inverted, using the Sherman Morrison matrix

identity [85-87] and the inversion rule for partitioned rnatrixes[88, 89], giving

1

I c 1 (k)
	

ctf(k)

k) T kj

L c.f(k)
	

c' (k)

Ir'(k)+ 	LkJ I
I 	a(k)

cP(k)

I 	[2.46]

1 	I.
ctb(k) 	

j

Having derived expressions for the increased order matrix r(k), we may now cal-

culate the increased order gain vectOr '(k) defined by

r'(k)jc '(k)K '(k)
	

[2.47]

Using the forward form of [2.41] and [2.46], along with definition [2.47], the fol-

lowing result is obtained

1 1 	 [2.48]
cf(k) [—a(k)j

where €1(k)=x (k)_c.T(k)K(k —1). ef(k) is known as the a posteriori forward

prediction error.

- 35 -

Similarly, using the backward form of [2.41] and [2.46] along with definition [2.47],

[2.49]
ab(k) I. 1 	J

where b (k)=x (k —N)_kT (k) (k) is the a posteriori backwards prediction error.

Next, the extended gain vector, '(k) is considered to be partitioned as

F d(k) 1
I-- --I 	 [2.50]
((k-) .1

It is clear from [2.49] that

[2.51]
a b (k)

and

[2.52]

Substituting from [2.36] into [2.52],

d(k)(k)-3(k) [(k_1)+Q(k)eb(k)]

=(k)

11_(k)e b (k)] —(k)b(k —1) 	 [2.53]

This readily yields the important fast update for the gain vector, given by

(k)=LkJ±kJ_Lk__ 	 [2.54]
11_(k)eb (k)1

To summarise, the calculation of the new gain vector is as follows.

The extended gain vector, '(k) may be computed from the previous Nth

order gain vector Q(k —1) using [2.48].

The values of d(k) and (k) may be extracted from '(k) by partitioning

as in [2.50].

Using [2.54], a fast update of the gain vector may now be performed

- 36 -

All that remains to complete the algorithm is to derive a recursion for a1 (k), which

is required to perform step (1) above. From definition [2.31], it is clear that r1(k)

can be generated recursively, using

,[(k)i((k —1)+(k —1)x (k) 	 [2.55]

By definition,

r (k_1)+x 2(k)_ [T(k_1)+e1(k)T(k_1)](k)

Using the relationship j.(k)=1[(k —1)+(k —1)x (k), this may be rewritten

a (k)r (k —1)+x2 (k)— (k —1) 	—1)+K(k —1)x(k) e1 (k)

.QT (k —1)r,[(k)

Using d(k) = r(k —1) (k) and a' (k —1)= r (k —1) _T (k —1)1,((k —1)

a1 (k)a" (k _1)+x2(k)_T(k —1)K(k —1)x (k)—e1 (k)T(k —1)

r(k —1) (k)

=cJ (k _1)+x2(k)_T(k —1)&(k —1)x(k)—ef (k)XT (k —1) (k)

af(k _1)+x 2(k)_ i T(k —1)(k —1)x(k)

- {X (k)_T(k_1)(k_1JK Tk_1k

o f (k _1)+x 2(k)_T(k —1)(k —1)x (k) —x (k)T (k —1) (k)

+ T (k —1)(k —1) T (k —1)(k)

=a1(k-1)+ (X(k)_T(k_1)(k_1)] (x(k)_XT(k_1)(k)]

=af(k —1)+e' (k)€' (k)
	

[2.56]

This completes the derivation of the fast Kalman algorithm. The complete algorithm

is listed in Table 2.2.

- 37 -

Initialisation
LL(0)=Q X(0)=Q
a(0)=, j(0)=Q
a! (0) = or, a small positive number

At time k, do
e1(k)=x(k)— T (k —1)(k —1)

c(k)=cj(k —1)+(k —1)e' (k)

€f(k)=x(k) —çj T (k)&(k —1)

Clf(k)=Xw'(k —1)+E(k)e(k)

Ot f (k
'(k)= 	

(k_1)_(k)Otf (k f I
F d(k)1

Partition '(k) as i---- I
6(k) j

e1'(k)x(k —N)—&'(k —1)X(k)

(k_1)+d(k)eb(k)
1_8(k)e L(k)

(k) = d (k) +6 (k)L (k)

This completes the fast update of the gain vector. II (k) is
updated in the same way as the conventional least squares algorithm.

e(k)d(k)—IjT (k — 1)K(k)

Li (k) = II (k —1) + e (k).c (k)

Table 2.2 : The fast Kalman algorithm

2.7. The Fast A Posteriori Error Sequential Technique -

The fast a posteriori error sequential technique (FAEST) is derived in a similar

way to the fast Kalman algorithm presented above. It was proposed by Carayannis,

Manolakis and Kalouptsidis in 1983[2] and is computationally more efficient than

the fast Kalman algorithm.

Inspection of Table 2.2 reveals that the fast Kalman algorithm is more dependent

upon the a priori error formulation than the a posteriori error formulation, requir-

ing the calculation of both forward and backward a priori errors, but only using the

forward a posteriori error, the a priori forward prediction error only being required

to update the predictor coefficients a (k) to enable the a posteriori error to be calcu-

lated. The FAEST algorithm, however, is mainly a posteriori error based and it

also manages to exploit the relationships which exist between a priori errors and a

posteriori errors. An alternative gain vector defined by

oJ(k)
	 [2.57]

is used. A recursive scheme for updating (k) can be developed using an extended

gain vector '(k) in exactly the same way as was done for the fast Kalman algo-

rithm in section 2.6.

The algorithm is presented in Table 2.3.

- 39 -

Initialisation
LL(0)=, X(0)=Q

a(0)=Q, 	(0)Q

a L (0) =a, a small positive number

a f(0) cr XN

Attime k, do

ef(k)=x(k)— T (k—i)(k —1)

€f(k)= 	
ef(k)_

ct(k—i)

af(k)Xa(k —1)+ef(k)e1 (k)

- 	[o 	1__L1_1 1 1 '(k)— 	
(ki)j Xctf(k) 	(k)j

[(k) 	1
- - - - I Partition 	'(k) as
6(k) 	j

e" (k)= —8(k)o.' (k —1)

(k)=cj(k)—(k)k(k —i)

&(k)a(k—i)+ —1 ---ef(k)
Xaf(k —i)

c(k)

ab(k)b(k _i)+€b(k)eb(k)

This completes the fast update of the gain vector. IL (k) is
updated, using the alternative gain vector, (k) as
follows

I e(k)d (k) — II T (k —i)(k)

ll(k)=H(k —i)+e(k)(k)

Table 2.3 The FAEST Algorithm

-40-

2.8. The Fast Transversal Filters Algorithm

The fast transversal filters algorithm was first presented by Cioffi and Kailath in

1984[3]. The most significant feature of this algorithm as compared with the

FAEST algorithm is the availability of a fast exact initialisation procedure.

Solving the least squares problem corresponds to solving the set of N linear simul-

taneous equations described by relationship [2.9]. Unfortunately at time k <N, the

solution to [2.9] is underdetermined, as there are N equations to be solved, but less

than N data points available. This situation corresponds to the matrix r(k) being

singular. It is for this reason that the conventional least squares algorithm has an

initialisation procedure which involves setting r;'(0)=oI and the fast Kalman and

FAEST algorithms set ct!(0)=o', where Cr is a small positive number. These initiali-

sations ensure that the matrix r(k) has an inverse for k <N, but they also result in

a small transient in the solution produced by the algorithm just after it is started.

The FTF algorithm overcomes this as it is simultaneously time and order recursive

for time k <N. This means that at time k =1, a first order filter is generated and

this is updated at time k = 2 to produce a second order filter and so on until the full

Nth order filter is determined. In this way, the number of simultaneous equations

which are being solved by the algorithm never exceeds the number of data points

available to it and the solution is always uniquely determined, avoiding the need for

inexact initialisation.

The exact initialisation procedure for the FTP algorithm is listed in Table 2.4 and

the steady state algorithm is listed in Table 2.5. A rescue procedure for restarting

the FTP algorithm is given in Table 2.6

- 41 -

k= 0: (0)= (0)= 1, (0)= 0(zero dimension)
where the subscript associated with a vector indicates its dimensionality

(0)= y(0) 	cJ =l, (0)=x(0)2

A simultaneous time and order recursive process is now started

1-kSN:

e1(k)ak(k-1) [x(k),...,x(1)1

k +l(k)= lakk-1 —ef(k) iT
x(0) j

e(k)=ef(k)y(k —1)

af(k)=Xct1 (k —1)

-y(k)=-j(k-1)
a 1(k)

IT €f(cJ
k(k —l) (k)= [oA1(k_1)1 	

af(k)

I 	 I
hk + 1(k) L ((0) (k) (k) 	1 	(Only when k = N)

cjb(k)=x (0)2 (k) (Only when k)

e (k) = d (k) 11k (k —1)K(k)

e(k)=e(k) k (k)

—k'
if k<N, iik+l(/c) [Hk (k —l) 	I

if k=N, k+l(k)llk (k1)(k)(k)

Table 2.4:The fast exact initialisation procedure for the FTF algorithm

During the time and order recursive initialisation procedure, subscripts are used to

indicate the order of each of the vectors (k), (k) , (k) and H (k). After initiali-

sation, a (k) and k(k) will be of dimension N+1. (k) and 11(k) will be of order

N. After initialisation, the algorithm is time recursive only and the order subscripts

notation will be dropped to simplify the algorithm and facilitate comparision with

the other fast RLS algorithms.

ef(k)=cj(k-1)X' T (k)

ef(k)=e t (k)'y(k —1)

af(k)=Xaf (k —1)+ef(k)Ef(k)

-y'(k)=
ct1 (k)

[o (k -1)J — Fe1 (k) 1T_1(k 1)(k 1)

F d(k) 1
Partition '(k) as

(k)=(k-1)+€'(k) [o (k_1)]

eb(k)_X&(k_1)3(k)

(k)— {1+eb(k)'(k)(k)j1'(k)

rescue variable t = F1+e'(k)-y'(k)8(k)'

b (k)Xcit(k _1)+eb(k)Eb(k)

{(k) OJ='(k)—(k)(k-1)

k(k)=(k_1)+Eb (k)[(k) o]

e(k)d(k)-1j(k -1)(k)

1L(k)=LL(k-1)+€(k)(k)

Table 2.5:The steady state FI'F algorithm.

t Rescue using reinitialisation procedure of Table 2.6 if rescue variable is negative

- 43 -

Table 2.6:The reinitialisation procedure for the FTF algorithm. p. is a soft con-

straint which determines the influence of the initial solution, LL,, on future solu-

tions.

2.9. Comparison of the Least Squares Algorithms

It is of interest to compare the resource requirements of the various algorithms that

have been presented so far. The algorithms will be compared by considering the

number of additions/subtractions, the number of multiplications and the number of

divisions required per iteration. Often, only the number of multiplications per

iteration is considered, making the assumption that in an implementation multiplica-

tion is considerably more complicated to perform than addition or subtraction. On

most digital signal processors (DSPs)[90-96], however, multiplication can be per-

formed in a single instruction cycle and is not therefore any more time consuming

to perform than addition or subtraction. Division, on the other hand often has to be

implemented using the binary equivalent of a long division process and can there-

fore contribute heavily to the computational load of an algorithm. In deriving Table

2.7, it has been assumed that changing the sign of a number involves a subtraction

- 44 -

operation.

Also of importance in determining the resources required to implement any algo-

rithm on a digital processor are the number of storage cells used by it. A storage

cell is the amount of memory required to store a single quantity used by the algo-

rithm. In the case of a fixed point implementation, it is likely to be a single word of

memory, but in the case of a floating point implementation, a number of words of

memory are likely to be used to store each variable. It should be noted that in the

calculation of the number of storage cells required, it has been assumed that vari-

ables which are no longer needed by the algorithm may be overwritten, so that the

same memory location may store several different intermediate results during the

updating of the algorithm

Algorithm * / + ,- Storage Cells

RLS 2.5N 2+4.5N 1 1.5N2 +2.5N -N2 +3N

Fast Kalman iON +3 2 9N +6 5N +5

FAEST 7N+10 4 7N+8 5N+5

FTF(steady state) 7N + 14 3 7N +7 6N + 11

Table 2.7 : A comparision of recursive least squares algorithms

2.10. Numerical Instability

Unfortunately, all of the fast RLS algorithms are numerically unstable[44, 97] when

implemented using either a fixed or floating point[79-81] digital processor. This

means that small numerical errors which occur due to the finite precision of the

arithmetic at each iteration of the algorithm accumulate until the algorithm diverges

and produces a solution which is completely invalid in a least squares sense. It is for

this reason that few practical adaptive filtering systems have made use of the fast

- 45 -

algorithms.

The cause of the problem may be illustrated as follows[44]. Essentially, all of the

fast RLS algorithms have a core involving the following recursions:

[(k) l 	 (k-1) [2.58] O(k)
 L.° (k-1)]j

[k(k)
[(k) O]j 	

L 	
(k) j
	

[2.59]

The various fast algorithms are associated with slightly different 2 x 2 transforma-

tion matrices 0(k) and 1(k), which apply different time varying scalings to the

filters (k), b(k) and (k). The properties of the transformation and hence the

numerical properties of the algorithm may be determined by an eigenvalue and

eigenvector analysis of the matrices. In particular, eigenvalues with a magnitude of

greater than unity indicate numerical instability, as they indicate that small errors

are magnified by the transformation.

Considering the FTF algorithm, the matrix 0(k) is given by

F 	 1
Ii 	€1(k)I

ef(k) 	 I 	 [2.60]

[Xotf 	j

which has the eigenvalues

[2.61] q(k)-1±j 	
XcxJ

and 1(k) is given by

Fi 	eb(k)1
T?(k)= 	

[2.62]

yielding the eigenvalues

q p(k)1±j€"(k)(k) 	 [2.63]

It should be noted from [2.61] and [2.63] that both transformations always have

eigenvalues which are greater in magnitude than unity. Performing an infinite

-46-

sequence of these transformations is therefore an unstable process.

2.10.1. Normalised Algorithms

Normalised versions of the FTF algorithm have been developed[77, 78] which have

improved numerical precision in finite precision implementations. By transforming

the variables in the algorithm, it is possible to reduce the dynamic range of the

quantities which are to be stored and so they may be represented more accurately.

The disadvantage of the normalised algorithms is their increased computational

requirements. The normalised form requires 0(11N) multiplications per iteration,

as compared with 0 (7N) for the unnormalised form. Furthermore, normalisation

requires a number of square root operations to be performed at each iteration. The

practical difficulties in implementing a fast square root operation may make the use

of the normalised versions impractical.

It should also be noted that the normalised algorithms still have numerical instability

problems, although they will take a larger number of iterations to diverge than the

unnormalised forms. Following the eigenvalue analysis of section 2.10, it can be

shown that the 0(k) matrix defined in equation [2.58] has eigenvalues of ± 1 and

so propagates numerical errors in a stable manner. The matrix c1(k), defined in

[2.5], however, has eigenvalues greater in magnitude than unity and so the associ-

ated 2 x 2 transformation causes numerical errors to be magnified, leading to even-

tual instability and divergence.

- 47 -

2.10.2. Lattice Algorithms

As well as the fast RLS algorithms for transversal filtering which have been dis-

cussed in this chapter, there are also a number of fast least squares algorithms[98-

101] using the lattice filter structure[14]. The main difference between the lattice

algorithms and the transversal algorithms is that whilst the transversal algorithms are

time recursive, the lattice algorithms are time and order recursive. At each time

iteration, k, a recursive process is started, which calculates an m + ith order least

squares solution from the current m -th order solution, until the desired N th order

solution is obtained.

It can be shown that for these algorithms, the transformation required to perform

time updating is an orthogonal rotation, which is well known to be numerically

stable. The order update transformation is a hyperbolic rotation, which is numeri-

cally unstable, having at least one eigenvalue which is greater than unity. For-

tunately, this unstable transformation is only performed in a finite sequence, until

the N th order solution is obtained. For this reason the lattice forms of the fast RLS

algorithms can be made to be numerically stable, unless the filter order N is very

large.

Unfortunately, the computational complexity of the lattice algorithms is at least

double that of their transversal filter counterparts. Moreover, in certain applications

such as adaptive channel identification, it is the transversal filter coefficients which

are of interest. Methods do exist to convert lattice coefficients to yield an equivalent

transversal filter[5], but the conversion requires - [(N —1)(N —2)] multiplications

and subtractions to convert an N th order filter. This complexity is dependent upon

the square of the filter length and so the main advantage of using a fast algorithm is

lost. For these reasons, there are several applications in which the use of a fast RLS

transversal filter algorithm would be highly desirable.

Fast RLS algorithms can also be implemented using OR decomposition

techniques[102-104]. These methods use a transformation known as the Givens

rotation[105], which has good error propagation properties. These implementations

of the fast RLS algorithms are of interest, as the structure which is obtained is a sys-

tolic array, which is suitable for implementation using a parallel processing system,

or a dedicated VLSI architecture.

2.10.3. Stabilisation by Regular Reinitialisation

One way of using the fast RLS transversal algorithms is to reinitialise them before

divergence occurs. The reinitialisation may be performed either periodically in

time[97], or when the internal variables of the algorithm suggest that divergence is

beginning to occur[3, 106, 107].

In either case, the prewindowed assumption that all data is zero before the algo-

rithm starts will clearly not be valid immediately after reinitialisation and hence the

post-windowed or covariance forms of the algorithms must be used.

It would be undesirable for the algorithm to have to reconverge after reinitialisation.

Fortunately, it is possible to circumvent this by means of a 'soft-constrained' initial

solution. This corresponds to modifying the algorithm to minimise the modified

least squares cost function

J3(k) = 	Xk -'e 2(i
) +

1jXk I 111(k) 	11 7 	 [2.64]

The first term of this cost function is the usual sum of errors squared term. The

second term limits the difference between the current solution ii (k) and some ini-

tial solution denoted by Llj,. The factor i. controls the balance between the two

terms and determines how strongly the initial solution will influence the minimisa-

tion. As k --, the first term will dominate the cost function and so the effects of the

- 49 -

initial solution die out as k becomes large.

The principle advantage in using reinitialisation methods to stabilise fast RLS algo-

rithms is that they can be implemented with little or no additional computational

burden, as compared with the unstable forms of the algorithm.

There are two disadvantages in using the reinitialisation methods. Firstly, the track-

ing performance of the algorithm in a non-stationary environment could be signifi-

cantly impaired if i. in [2.64] is chosen to be large, due to the constraining effect of

the initial solution 1j,. Secondly, there is a difficulty in determining how fre-

quently the algorithm must be reinitialised so as to guarantee that divergence will

never occur, or alternatively to provide a sufficient method of monitoring the inter-

nal variables which will always indicate the imminent divergence of the algorithm.

2.10.4. Error Feedback

One promising development in improving the stability of the FTF algorithm has

been the use of error feedback techniques. [108-110]. Whilst the absolute stability of

these techniques is still not guaranteed, a very worthwhile improvement in stability

is obtained, as compared with the unstabilised algorithm. The penalty is that the

computational complexity of the algorithm is somewhat increased by the improve-

ments - for the algorithm of[110] it is increased from 7N multiplications per itera-

tion for the unstable unnormalised algorithm to iON for its stabilised counterpart

and from iON for the unstable normalised algorithm to uN for its stabilised coun-

terpart.

These techniques rely on the ability to compute certain variables in the algorithm in

two different ways. The difference between the two variables should be representa-

tive of the amount of numerical error which has accumulated. By modifying the

least squares cost function to have a joint objective of minimising both the filter

- -50-

error and also the numerical error, a numerical error feedback path is introduced.

The effect of this should be that the fast least squares algorithm seeks not only to

solve the adaptive filtering problem, but that it also attempts to cancel the effects of

its own finite precision errors.

The stabilised algorithms will produce a solution which is slightly sub-optimal in a

least squares sense, due to the combined cost function which involves not only filter

error but also numerical error. Moreover the proof of absolute stability for these

techniques is almost impossible. These methods have been shown in simula-

tion[110], however, to give good performance with a solution which does not differ

significantly from that obtained using the conventional RLS algorithm over of the

order of '/2 million iterations.

2.11. Conclusions

This chapter has introduced 	least squares adaptive filtering. Various algorithms

for performing the least squares updating of the filter coefficients have been

presented, such as the conventional recursive least squares (RLS) algorithm and the

highly computationally efficient fast algorithms - the fast Kalman algorithm, the

FAEST algorithm and the FTP algorithm.

The major problem associated with the transversal forms of the more efficient algo-

rithms is their numerical instability problems. Small truncation errors which occur at

each iteration of the algorithm due to the finite precision of the arithmetic used to

implement it accumulate, until eventually the algorithm must diverge.

Various ways of improving the stability of the algorithm have been considered. Nor-

malisation reduces the dynamic range of the quantities which have to be stored,

improving somewhat the numerical properties of the algorithm. Rescue procedures

are available which may be used either periodically in time, or when some

-51-

\ 	 .

divergence detector indicates that the algorithm has accumulated too much numeri-

cal error. Error feedback has also been considered as a means of stabilising the

FTF algorithm.

In the next chapter, a new method of stabilising the fast RLS algorithms will be

considered. It will use a rescue procedure, reinitialising the algorithm before diver-

gence occurs. To detect that divergence is about to occur, a scheme of arithmetic

known as interval arithmetic is used. The algorithm is modified, so that it not only

calculates the least squares solution to an adaptive filtering problem, but it also cal-

culates upper and lower bounds to that solution, taking into account the numerical

errors which may have occurred. If the difference between the upper and lower

bounds is excessive, the reinitialisation procedure is performed, preventing diver-

gence.

- 52 -

3 Interval Arithmetic

3.1. Introduction

In this chapter, a new solution to the stability problems associated with the fast RLS

algorithms will be introduced. By using a scheme of arithmetic known as interval

arithmetic[111], an error analysis is effectively performed in parallel with the com-

putations of the algorithm[112-114]. The result of this error analysis is a measure of

the confidence which may be placed upon the performance of the algorithm. If the

error analysis indicates that divergence is about to occur, then the algorithm may be

rescued, using the reinitialisation procedures discussed in the previous chapter.

This chapter will begin by defining the interval number system and will then discuss

how interval numbers may be combined to yield results which are also interval

numbers. The arithmetic operations { +, -, x and 	will be defined for interval

numbers and then, the more complicated operations such as the scalar product of

two vectors of interval numbers will be discussed.

Having defined the various operations which are required to perform one iteration

of a fast RLS algorithm, the exact way in which interval arithmetic is applied to

these adaptive algorithms will then be described. A number of design parameters

are introduced into the rescue procedure by the use of interval arithmetic and the

chapter will conclude with a discussion on how these parameters may best be

chosen.

- 53 -

3.2. Interval Numbers

An interval number is a range of real nTumbers. The range is bounded by a lower

endpoint and an upper endpoint. The interval number is the set of all real numbers

which lie between the lower and upper bounds.

The notation used to represent an interval is defined as

(

	

[aI,aM]= x:axa',xER 	 [3.1]

Hence the interval number [a' ,au] consists of the set of all real numbers which lie

between lower bound a' and upper bound a u.

Two further definitions will be useful in the application of interval numbers to the

fast RLS adaptive algorithms. The width of an interval number is defined by

(r
width I Ia' ,a' 	I =a' —a' 	 [3.2]

(L 	J)

and the centre of the interval [a' ,a'] as:

centre I 	j 	2 	
[3.3]

A single real value can be represented by a degenerate interval. Therefore, the sin-

gle real number 4i is represented by the interval number

3.3. Scalar Interval Arithmetic

The operation • where • is one of { +, —, x or — } is defined for interval numbers

by

1'
[3.4]

except if is the division operation and c O and d :~O, which is undefined.

- 54 -

Hence the result of the operation • on two interval numbers is the range which is

obtained when both the intervals being combined take their entire range of values.

An equivalent set of definitions is

[a l ,a]+[bI,bz]=[al+bl,au+b] [3.5]

[a ,au]_[bi ,b'][a1 b" ,au —b'] [3.6]

[a1 ,au]x[b1 ,b]=[min(a lbI,a lbu,aubI,aubu), [3.7]

max(a ibJ,aIbu ,aubI,aubu)]

[a 1 ,au]±[bl ,bu]=[min(aI --b' ,au —.b' ,a 1 ~bu ,au ±bu),
[3.8]

3.4. Scalar Interval Arithmetic with a Finite Precision Processor

There are several practical considerations when implementing functions to perform

the operations defined in equations [3.5] - [3.8] on a finite precision processor[115-

117]. The motivation for using interval arithmetic rather than single valued real

number arithmetic with the fast RLS algorithms is so that the effects of finite preci-

sion numerical errors may be considered. Equations [3.5] - [3.8] assume that there

are operators { +, -•, x and ± } which produce an exact result. However, so that

the interval arithmetic includes the effects of numerical error, it will be assumed

that there are operators { + 1, -, x 1, ± 1, + t, —t, x t and — t } where the symbol

*i is taken to mean the next machine representable number below the infinite preci-

sion result of the operation • and the symbol •t is taken to mean the next machine

representable number above the infinite precision result of the operation •. This is

illustrated on the number lines in Figure 3.1 for fixed and floating point arithmetic.

Using these symbols, the finite precision implementation of the scalar interval arith-

metic operations may be defined by

- 55 -

_-Calculated Result

çy4_
Rounding Required

-A
M" 	

ctual Result

3.1a Fixed Point Rounding

__- Calculated Result

Rounding Required
- Actual Result

3.1b Floating Point Rounding

Figure 3.1 Fixed and floating point arithmetic number lines showing the effects of the rounding operations t and 4

required for interval arithmetic.

- 56 -

[a l ,au]+[LY ,b1]=[a! +bl ,a u 	+tbu] [3.9]

[a' ,a']—[& ,bu] 	[a' 	1 bU ,a u 	—t b'] [3.10]

[a1 ,au]X [b' b '=[min(a' x I b' ,a' X I bu ,a u >< t b' ,a' 	X i b", [3.11]

max(a' Xtb',a' X t bu au X t b' au 	Xtbu)]

[a,au [b' ,bM]=[min(a l bL ,a u 	b',a' ± 	bU ,a" 	bU),
max(a' ±tb',a' 	-i-tb',a' +tbz ,a 	t bz)] [3.12]

The reason for modifying the definitions of the interval operations is to ensure that

the range calculated using finite precision arithmetic covers all of the infinite preci-

sion range. The endpoints are slightly wider apart for the finite precision range than

for the infinite precision range. This represents the additional uncertainty in the

result produced by the finite precision effects of that calculation.

It should be noted that for fixed point addition and subtraction, the result of com-

bining two machine representable numbers is, in general, another machine

representable number, assuming that overflow does not occur and so the operations

+ t and + are both equivalent to the operation + and similarly —t and - are

equivalent to -.

The definitions of equations [3.9] - [3.12] could be used to implement a set of func-

tions to perform interval arithmetic on a finite precision processor, but there are

more efficient ways of performing multiplication and division than that suggested by

[3.11] and [3.12]. By examining the signs of the endpoints a', a u , b' and bU, it is

usually possible to predict which of the four products 	X b', a X b', a' X b or

a' xb' will be the greatest and which will be the smallest. In the case of division, it

is always possible to predict which of the four results 	b', a u — b', a1 — b u or

a u ~ b u will be the largest and which will be the smallest from a knowledge of the

signs of the endpoints. This means that usually only two real multiplications are

required to be performed to implement interval multiplication and that interval divi-

sion may be implemented with two real division operations. The functions required

- 57 -

to perform finite precision scalar interval arithmetic are summarised in Table 3.2.

RANGE_ADD(a,b,c,d)

/*A procedure to calculate the result [e,f]= [a,b] + [c,d] *1

e=a+c;
f= b+ d;

End of procedure.

RANGE SUBTRACT(a,b ,c,d)

/*A procedure to calculate the result [e,f]=[a,b] - [c,d] /

e=a-d;
f=b-c;

End of procedure.

RANGE DIVIDE(a,b ,c,d)

/* A procedure to calculate the result [e,f]=[a,b] I [c,d] I

if (cO and d=-:fO) {
print "Division by zero error"
exit
}

if (c<O) {
if (b>O) e=bld; else e=blc;
if (a>=O) f=alc; else f=ald;
}

else {
if (a<O) e= a/c; else e=a/d;
if (b>O) f=blc; else f=b/c;
}

End of procedure.

-58-

RANGE MULTIPLY(a ,b ,c,d)

/* Procedure to calculate the result [e,f]=[a,b] * [c,d] *1

if(a<O && c>=O) {
temp =a; a=c; c=temp; temp =b; b=d; d=temp;
}

if (a> = 0) {
if (c>=0) {

e= a*c;
f=b*d;

}
else {
e= b*c;
if (d>0) f=b*d; else f= a*d;

}
}
else{

if (b>0) {
if (d>0) {

e= min(a*d,b*c);
f= max(a"c,b'd);
}

else 	{
e= b*c;
f= a*c;

else {
f= a*c;
if (d<=0) e=b*d; else e= a*d;

End of procedure.

Table 3.2 Procedures for performing scalar interval arithmetic.

- 59 -

3.5. Vector Interval Arithmetic

As all of the fast RLS algorithms require vector operations, it is necessary to extend

the definitions for interval arithmetic to include vectors. An N dimensional interval

vector is written in the form 	-

F, 	i

I
[a,a]
[a1 	j a U' I 2 ,2

I [3.13]

[a aul k IV

I. 	I

Vector addition and subtraction may be easily defined using the existing definitions

for scalar interval addition and subtraction. For addition,

I
[aa n I 	[[b,bi ' Ii,

I[a,a2 	2] I 	I[b,bfl I

HI
[a aul NY N 	 N NJ

bUl I

[[ai +b ,a 	fl +bl
I[a2 	2+b,a+bfl I

I[a+b,a+b] I
F 	 I

NN N

and similarly for subtraction which is defined by

1 ,I 	[l bcn ,b a a
I[a,afl I 	I[b,b] I

—I

F 	I F 	I

F 1 	1
I[ai —b,a—b] I
I[a2 	2—b,a —b] I

I a —b ,a —br I
F 	 I

[3.14]

[3.15]

ME

It is also necessary to define the scalar product of two interval vectors. This is

defined by

I [a1 ,a

I[
ul

a,a1 I I[b,b] I

AN -RV
I 	

[3.16]

L

[a,, a} I I[b! bui N' NJ

Nr
= 	I min(a/bf ,a'b/,afb ,ab1') ,max(alb/ ,a7bf ,a/b/ ,a1 b/')

i=1 1

3.6. Application of Interval Arithmetic to the Fast RLS Algorithms

Having defined all of the operations required to perform an iteration of the algo-

rithm using interval arithmetic, it is possible to replace all of the single real valued

variables in the algorithm with interval numbers.

If this is done, then the solution which is calculated by the algorithm will also

become an interval. The difference between the endpoints of this interval, or width

as defined, in equation [3.2], represents the extent to which the solution has been

corrupted by numerical errors. If this difference exceeds some preset limit, then the

algorithm must be reinitialised using a rescue procedure such as the one in Table

2.6, so as to prevent divergence.

It is also necessary to reinitialise the algorithm if a division is attempted of the form

where b'O and bu2:O, as division by an interval of this form can-

not be defined, since zero is a member of the range by which division is being

attempted.

Real valued inputs to the adaptive filter are' represented by degenerate intervals of

the form [p,ii], which is equivalent to the single real value, 	Real valued outputs

may be obtained by using the centre of the interval output, as defined in equation

-61-

[3.3]. Alternatively, either the upper or lower endpoint may be used, assuming that

the difference between them is small.

To summarise, the non-interval version of a fast RLS algorithm is converted to its

interval counterpart as follows

All scalar quantities in the algorithm are converted to interval scalar

numbers, as described in section 3.2

All scalar operations are performed using the interval operations in Table

3.2, noting the rounding directions for the upper and lower endpoints dis-

cussed in section 3.4

All vector quantities are similarly replaced by interval vectors and all vector

operations by their interval counterparts, as described in section 3.5

The solution calculated by the algorithm now becomes an interval, with the

difference between the upper and lower endpoints representing the extent to

which the solution has been corrupted by finite precision errors. Specifically, if

the width of any of the filter coefficients exceeds some predefined limit which

will be denoted by p, then the algorithm should be rescued. To do this, a

reinitialisation is performed using the techniques described in section 2.10.3.

The initial solution, ii, is obtained by taking

[centre [h00 h]

I 	centre[/ I ,1z] 	I
= 	 [3.17]

centre [h. 1 ,h 	i] I
I. 	 I

and weighting the initial solution with a soft-constraint factor .i.. The

choice of p and i. is discussed in section 3.7

-62-

Real valued inputs to the filter and desired response inputs are represented

by degenerate intervals.

Real valued outputs are either obtained by taking the centre of the interval

output, or the upper or lower endpoint of the interval output.

3.7. Choice of Design Parameters for the Interval Fast RLS Algo-

rithm

There are three design parameters associated with the interval versions of the fast

RLS algorithm. The first is the forgetting factor, denoted by X, which is introduced

by the exponential weighting of the input data. This parameter is common to all

exponentially windowed least squares adaptive filtering algorithms and it is well

known that the choice of X controls the effective length of the data window. The

The time constant is approximately 	where X is just less than 1. This factor con-

trols the tracking performance of the algorithm in non-stationary environments and

it will not be discussed further.

The second parameter, p is the threshold for reinitialising the algorithm. If the

difference between the upper and lower endpoints of any of the filter coefficients

exceeds p, then the algorithm will be reinitialised. Asuijalje value for p may be

chosen if the performance level for the adaptive filter is known. p is chosen such

that the noise introduced onto the output by arithmetic errors is insignificant corn-

nared with the noise from other sources: Assuming a uniform distribution, the noise

introduced to the coefficients by arithmetic errors will have a variance 12

where N is the length of the adaptive filter. Hence if 	is chosen to be equal to

the mean square value of the filter error after convergence, which will be

represented by 2, then acceptable performance is usually obtained.

- 63 -

The third design parameter, .t, is introduced by the rescue procedure. It controls

the influence of the initial solution fj 	after the algorithm is reinitialised. If it is

chosen to be too small, the algorithm will have to reconverge after reinitialisation,

resulting in poor performance immediately after each rescue. Too large a value of i.

will result in the solution di, being weighted with too much importance. As tL,

may be incorrect due to numerical errors, this is undesirable. Moreover, too large a

value of p. will impair the tracking performance of the algorithm in a non-stationary

environment. A relationship between the values of p,X,N and thesuitableva1ue for

p. will now be developed. A number of assumptions are invoked in the derivation

but nevertheless, the result obtained usually gives a good starting point in the choice

of p..

The deriation begins by considering the difference between the exact least squares

solution 	and the initial solution, tI,. Since tL, and 	are both vectors of

degenerate intervals, the notation used will be that of single valued real numbers

rather than that of interval arithmetic.

Assuming that each coefficient in fj 1 differs from 	by a random variable drawn

from a uniform distribution between - - and -, it is possible to obtain

E(IIll1-ll1II2) 	 [3.18]
12

Next, consider the expected value of the cost function, J 3(k), given in [2.64] as

k

J 3(k)Xe(i) +
i=O

To evaluate the expected value of the cost function, it is necessary to use the

approximation LL (k) LiLs which is valid except just after reinitialisation,

k

1 	
E(J3(k))E(XIc_ie2(i))+E(p.Xlc I ILLLs—ll, 11 2) 	 [3.19]

12

L: 	
2E(e2(i))

- 64 -

In a stationary environment, a good solution is to keep E (J3(k)) constant before

and after reinitialisation. This corrsponds to the correct balance being maintained

between the initial solution Hi.j, and subsequent solutions 11(k). This is done by set-

ting

	

E(J 3(k))=E(J 3(cc)) 	 [3.20]

for all k. Therefore

	

1ki2+ i2i= 	_ 	 [3.21]
1—X 	12 	1—X

giving

~LxkN P2
	

2Xk+1

12 	1—k

and hence

12 2X
L 	 [3.22]

3.8. Conclusions

In this chapter, a new method for detecting the imminent divergence of a fast RLS

adaptive algorithm has been proposed. A scheme of arithmetic known as interval

arithmetic has been developed. This scheme of arithmetic enables an error analysis

to be performed in real time in parallel with solving the least squares adaptive filter-

ing problem. By reinitialising when the accumulation of finite precision errors on

the solution exceeds a predefined maximum limit, divergence is prevented.

The penalty for using interval arithmetic is its increased computational complexity

compared with single valued real arithmetic. The computational complexity of an

interval algorithm is approximately double that of its non interval counterpart. The

complexity remains, however, directly proportional to the filter length and so great

savings in computation are still obtained compared with the conventional RLS algo-

rithm for moderately long filters. Furthermore, due to the regular structure of the

interval operations, it would be possible to construct a dedicated interval arithmetic

- 65 -

processor from a number of real value arithmetic processors, resulting in a similar

speed of operation to the non interval algorithm. In this case, the penalty is the

increased hardware complexity.

Results will be presented from software simulations in the next chapter, demonstrat-

ing the stability of the interval arithmetic methods, using both fixed and floating

point arithmetic and in chapter 5, the implementation of the fixed point version of

the interval FTF algorithm on a TMS320C25 digital signal processor[90] will be

described.

4 Interval Algorithms - Software
Simulations

4.1. Introduction

In this chapter, simulation results for the interval fast RLS algorithms will be

presented. The aims of these simulations are twofold. Firstly, they will show that the

interval algorithms do not diverge over at least one million iterations, whereas the

non-interval fast RLS algorithms diverge fairly rapidly. Secondly, the results will

demonstrate that the performance of an interval fast RLS adaptive filter is compar-

able to that obtained using less computationally efficient least squares techniques.

Two different adaptive filtering configurations[4] will be simulated. Adaptive sys-

tem identification will be considered as an example of direct system model-

ling[16, 118. 119] and adaptive equalisation will be performed as an example of

inverse system modelling[46, 63, 64].

Both the stationary and non-stationary characteristics of the interval algorithms will

be considered. The results of the non-stationary simulations are of particular impor-

tance, as it is necessary to demonstrate that the tracking capabilities of the interval

algorithms are not significantly impaired by the regular reinitialisations, which must

be performed to prevent the algqrithm from diverging. The example of a non-

stationary system which will be simulated is the fading high frequency (HF)

channel[120-123] for digital communications and it will be shown that the error rate

- 67 -

which may be achieved using an interval fast RLS adaptive equaliser is similar to

that obtained using the conventional RLS algorithm.

Both floating and fixed point arithmetic are simulated. The floating point number

system used was 64 bit floating point arithmetic, with a 56 bit mantissa, a 7 bit

exponent and a sign bit. The fixed point arithmetic system used 16 bit truncation

with the provision of a 32 bit long accumulator, which may be used during the vari-

ous scalar product operations in the algorithm to achieve greater accuracy. This

16/32 bit fixed point arithmetic system is typical of that available on many current

digital signal processors (DSPs)[90-96] and indeed, the fixed point simulations were

used as a starting point for a hardware implementation of one of the fast RLS algo-

rithms, which will be described in detail in the next chapter.

4.2. System Identification

The configuration for adaptive system identification is shown in Figure 4.1. The

input signal to the adaptive filter is generated by passing Gaussian noise through a

prefilter. The purpose of this prefilter is to provide control over the spectral proper-

ties of the adaptive filter input signal. This enables various eigenvalue ratios to be

obtained for the input autocorrelation matrix defined by

E(x(k)x(k)) 	. 	E(x(k)x(k+N -1))1
E (x (k)x (k + 1)) 	. 	E(x(k)x(k+N-2))I
E(x(k)x(k+2))

. 	
• I 	

[4.1]
• 	•

	

E (x (k)x (k —2))
I

• 	•
	

E (x (k)x (k —1)) I

E(x(k)x(k +N —1)) 	• 	. 	E(x(k)x(k)) 	
J

By varying the eigenvalue ratio, the ill conditioning of the adaptive filtering prob-

lem is varied[44]. Table 4.1 shows the two prefilters which were used during simu-

lations and the eigenvalues associated with them for a length 5 adaptive filter.

Rxx =

- 68 -

Input Signal Plant
White Noise) Noise

E refilterI Unknown System F

x()
Transversal Filter

7Ermor H Adaptive Algorithm
Adaptive Filter

Figure 4.1 Configuration for adaptive system identification

Prefilter 	 Eigenvalue ratio t

1 	 1.0+0.865z 1 	 18.7

2 	 1.0+0.600z _1 	 73

t For a length 5 adaptive filter

Table 4.1 : The eigenvalue ratios obtained using different prefilters for the simula-

tion shown in Figure 4.2.

The input signal to the adaptive filter is also passed through an unknown system,

which for all of the system identification simulations in this chapter, was a 5 tap fin-

ite impulse response filter with the 5 coefficients randomly chosen between 4 and

+1. The output from this unknown system is corrupted by a small amount of addi-

tive Gaussian noise. This signal is used as the desired response input for the adap-

tive filter.

If the adaptive filter is operating correctly, then the output signal from the adaptive

filter should be almost equal to the output from the unknown system. If it produces

the same output from the same input signal, then it must have the same transfer

function as the unknown system, enabling the unknown system to be identified.

The performance of this system is measured by how close the coefficients of the

adaptive filter converge to the coefficients of the unknown system. If the coeffi-

cients of the unknown filter are denoted by ii0, then a measure of the perfor-

mance is given by the norm of the vector of coefficient errors defined as

i lll(k)—LL,, 112
lox 	 [4.2] lOx log10 I ' IIll(0)-LL0 ,II 2)

- 70 -

A large negative value of the performance function of equation [4.2] indicates that

the performance of the adaptive filter is good. The level of performance which will

be attained after the adaptive filter converges is dependent upon the signal to noise

ratio introduced by the noise at the desired response input of the adaptive filter. For

simulations, the signal to noise ratio was measured at the desired response input to

the adaptive filter.

Figure 4.2 shows the performance of the conventional RLS algorithm when per-

forming system identification. It is included mainly for comparison with the perfor-

mance of the various fast algorithms in Figures 4.3 - 4.8. The forgetting factor was

set at 0.98, the length of the adaptive filter was 5 and a signal to noise ratio of 30dB

was used.

It can be seen that the performance measure rapidly drops to below the 30dB noise

level at the start of the simulation, as the adaptive filter converges. This rapid initial

convergence is typical of a least squares algorithm and it is one of the principal

advantages of using least squares techniques. After initial convergence, the solution

remains at a low level, as would be expected in a stationary simulation, where the

optimum solution does not vary with time.

4.3. Divergence of the FAEST, Fast Kalman and FTF Algorithms

Figures 4.3 - 4.8 show the instability of the fast RLS algorithms. For each of these

simulations, the signal to noise ratio was set at 30dB and a forgetting factor of 0.98

was used. The arithmetic system was 64 bit floating point arithmetic and the length

of the adaptive filter was 5.

Figures 4.3,4.4 and 4.5 show the numerical instability of the FTF, FAEST and fast

Kalman algorithms with an input autocorrelation matrix eigenvalue ratio of 18.3,

and Figures 4.6, 4.7 and 4.8 show the same algorithms, but the prefilter has been

- 71 -

changed to yield an eigenvalue ratio of 7.3.

For all of the fast algorithms, it can be seen that the convergence and initial solu-

tion are identical to that obtained using the conventional RLS algorithm, but then

that the algorithms suddenly diverge and fail to provide a solution which is valid in

the least squares sense.

The number of iterations that the algorithm is able to perform before it diverges has

been found to vary substantially between different simulation runs, even when using

the same algorithms and parameters. This means that comparisons between the dif-

ferent fast RLS algorithms are not particularly easy to perform, but a number of

important trends have been noticed.

The algorithms take longer to diverge at lower eigenvalue ratios. This is as

would be expected, since the high eigenvalue ratios result in the least squares

filtering problem becoming more ill conditioned, which means that the process

is more susceptible to numerical errors.

The fast Kalman algorithm appears to take longer to diverge than the FTF

and FAEST algorithms. This is believed to be due to the increased computa-

tional complexity of the fast Kalman algorithm. The additional computations

are thought to introduce some redundancy into the algorithm and the errors

generated in these redundant calculations tend to cancel each other out to

some extent, resulting in smaller errors at each iteration and hence a larger

number of iterations can be performed before they accumulate to the extent

that divergence occurs.

The solution after divergence of the fast Kalman algorithm appears to be dif-

ferent from that of the FTF and FAEST algorithms. Although the fast Kalman

algorithm no longer produces a useful solution, the filter coefficients appear to

be bounded, whereas for the FTF and FAEST algorithms, after divergence,

- 72-

the coefficients increase without limit.

All of the algorithms eventually diverge. This is a direct result of the transi-

tion matrix eigenvalue analysis presented in section 2.10.

4.4. FTF Algorithm Using Rescue Variable

In the paper in which the FTF algorithm was presented[3], it was suggested that

numerical stability could be improved by using a rescue variable. This has not been

done in the results of Figures 4.3 and 4.6, so that the results from the various unsta-

bilised algorithms could be compared.

The rescue is performed by reinitialising, using the method described in section

2.10.3. A rescue should be performed if, during any iteration of the algorithm, the

quantity

[1+e"(k)'?'(k)(k)] 	 [4.3]

is negative. This quantity should be positive at all times, since for an infinite preci-

sion implementation,

[1+eb(k)'(k)(k)] 	____1_)_ 	 [4.4]
a (k)

From the'definition of al (k) in equation [2.38], al(k) is the minimum value of a

sum of squares of backwards prediction errors and so it is a positive quantity.

Hence, the ratio in equation [4.4] should be positive at all times.

The results which are obtained using this rescue procedure are shown in Figure 4.9.

The rescue procedure gives a worthwhile improvement in the number of iterations

for which the FTF algorithm produces a useful solution, but divergence of the algo-

rithm still occurs.

- 73 -

-20

-30

-50

Floating Floating Point Standard RLS Algorithm

0 	5000 	10000
Time (Samples)

15000 	20000

Figure 4.2 Performance of the conventional RLS algorithm in performing stationary system identification.

X=0.98, SNR=30dB. input autocorrelation EVR=18.7. After the algorithm converges, it remains at a good

solution for the duration of the simulation.

- 74 - 74 -

Floating Point FTF Algorithm

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

	

I 	 I 	 I 	 I

I 	 I 	 I

I 	 I

	

I 	 I 	 I 	 I

	

I 	 I 	 I

I 	 I 	 I

	

I 	 I 	 I 	 I ----------------------------
I 	 I

I 	 I 	 I

I 	 I 	 I

	

I 	 I 	 I 	 I

I 	 I 	 I

	

I 	 I 	 I 	 I

	

I 	 I 	 I

I 	 I 	-

I 	 I 	 I

I 	 I 	 I

	

I 	 I 	 I 	 I

	

t
- - - - - - - - -

• 	 I 	 I
I

I 	 I

I 	 I

	

I 	 I 	 *

	

I 	 I 	 *

I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I -- - - - - - --

I 	 I 	 I

I 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I

	

I 	 * 	 I

-- - - - - - J -- - - - - - - - - I. - - - - - - - - -

	

I 	 * 	 I

	

I 	 I 	 I 	 I

	

I 	 I 	 I 	 I

	

$ 	 I 	 I

I 	 I

	

I 	 I 	 I 	 I

-- - -

-10

- 	-20

0

-30
(j

0
Z 	-40

-50

0 	1000 	2000 	3000 	4000 	5000
Time (Samples)

Figure 4.3 Divergence of the FTF fast RLS algorithm due to numerical instability. X0.98, SNR3OdB, input

autocorrelation EVR= 18.7.

-75 -

0

04

0 z

Floating Point FAEST Algorithm

I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I

a 	 I 	 I

I 	 I 	 I

I 	 a
I 	 I 	 I 	 I

a 	 I 	 a

a 	 a 	 I

a 	 I 	 a
I—

a 	 I 	 I

I 	 I 	 I

a 	 a 	 a 	 a

a 	 a 	 I

I 	 I 	 a 	 a

a 	 a 	 a 	 a
a 	 a 	 a 	 a

a 	 a 	 I 	 I

a 	 i 	 a 	 I

a 	 I 	 a
I 	 I 	 S 	 I

a 	 $ 	 a
a 	 I 	 I 	 I

a 	 I 	 a
I 	 I 	 I 	 I

a 	 I 	 I

I 	 I 	 I

a 	 a
I 	 I 	 a
I 	 I 	 I

a 	 I 	 $

I 	 a 	 $ 	 $
a 	 I 	 $ 	 $

a 	 I

I 	 I 	 I 	 a
a 	 I 	 I 	 I

$ 	 a 	 a
I 	 I

S 	 $ 	 I

I 	 a

a 	 I

a 	 a

-- 	a 	

-—-—--————-J —————-————L

I 	 I 	 I 	 $

a 	 a 	 $ 	 $
a 	 I 	 I

a 	 $ 	 $ 	 S

a 	 I 	 I 	 I

a 	 a 	 a
I . 	 I 	 I

-50

I,]
0 	1000 	2000 	3000 	4000

	
5000

Time (Samples)

Figure 4.4 Divergence of the FA= fast RLS algorithm due to numerical instability. X 0.98, SNR30dB, in-
put autocorrelation EVR 18.7.

[II

-10

-20

-30

— 76 -

I

-10

-20

0

-30

(j
E-

0
z 	-40

-50

Floating Floating Point Fast Kalman Algorithm

0 	2000 	4000 	6000 	8000 	10000
Time (Samples)

Figure 4.5 Divergence of the fast Kalman fast RLS algorithm due to numerical instability. X0.98,
SNR=3OdB, input autocorrelation EVR= 18.7.

- 77 - 77 -

Floating Point FTF Algorithm

-20

-30

am

-50

a

a 	 a 	 I

a 	 I

I 	 I 	 I

a 	 I 	 I 	 I

1 	 I 	 I 	 I

a 	 I 	 I

a 	 I 	 I

a 	 I

a 	 a 	 •
a 	 I

- ————————--4 -------------------------------

I

I 	

I 	 I 	 I

a 	 I

I 	 I

I 	 I 	 I

I 	 a

I 	 I 	 I

I 	 I 	 I

I' 	 I 	 I

I 	 I 	 I

I 	 • 	 a
I 	 I 	 I

a 	 I 	 a

a 	 a 	 I

I 	 a

I 	 I 	 I 	 I

I 	 a 	 I 	 I

a 	 • 	 a
a 	 •
I 	 I

a 	 a 	 a

I 	 I 	 I

I 	 a 	 I 	 I

I 	 I 	 I

I 	 I 	 I

a 	 I

I 	 I 	 I

I 	 I

I 	 a 	 a

I 	 a

I 	 I 	 I

——-—————.1 ——————————I..
a 	 • 	 a

I 	 I

I 	 I 	 I

I 	 I 	 I 	 I

--

.0
0 	1000 	2000 	300-0 	4000 	5000

Time (Samples)

Figure 4.6 Divergence of the FTF fast RLS algorithm due to numerical instability. X = 0.98, SNR=30dB, input

autocorrelation EVR=7.3.

iI

—10

-20

—30

— 50

_:r

Floating Point FAEST Algorithm

0 	10000 	20000 	30000 	40000
Time (Samples)

Figure 4.7 Divergence of the FAEST fast RLS algorithm due to numerical instability. k = 0.98, SNR=3OdB, in-
put autocorrelation EVR=73. The algorithm first 'locks up' at a solution and then fails with a division by zero er-
ror at around 37,000 iterations.

- 79 -

iJ

-10

- 	-20

0

-30

E
0
z 	-40

-50

Floating Point Fast Kalman Algorithm

0 	10000 	20000 	30000 	40000
Time (Samples)

Figure 4.8 Divergence of the fast Kalman fast RLS algorithm due to numerical instability. X = 0.98, SNR3OdB,

input autocorrelation EVR=7.3.

0

c1
E-

E
0 z

Floating Point FTF Algorithm

I 	 I

I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I 	 I

I 	 I

I 	 I

I 	 I 	 I

I 	 I

I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

$ 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I 	 I

I 	 I

I 	 I

I 	 I

I

-30

I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 I

I 	 I

I

I 	 I

I 	 I

I 	 I

_..L

-50 	 -----------

0 	2000 	4000 	6000 	8000 	10000
Time (Samples)

Figure 4.9 Divergence of the FTF algorithm, using a rescue procedure which involves reinitialising the algorithm if
[1+ eb(k)$(k)(k)}:50 X0.98, p. (reinitialisation soft constraint weight) 	100.0, SNR=30dB,

input autocorrelation EVR= 18.7.

:ii

-10

-20

4.5. FTF Performance Using Interval Arithmetic

Figure 4.10 illustrates the operation of the interval version of the FTF algorithm.

The maximum difference between the upper and lower endpoints of the coefficients

of the adaptive filter, denoted by p has been deliberately set very large so that the

endpoints can differ significantly from each other. The upper and lower endpoints

of the first coefficient have been plotted in Figure 4.10 along with the optimum

solution, which is for this coefficient to equal 0.9.

From the graph, it can be seen that the upper and lower endpoints of the solution

are initially almost identical and both converge close to the optimum solution. As

numerical errors accumulate, the two endpoints start to diverge from each other

until the difference exceeds the threshold p at which a rescue is required. After the

rescue, both the upper and lower endpoints are again moved together and they will

both track the optimum solution until the next rescue is required.

Figures 4.11 and 4.12 show the performance function for the interval FTF algo-

rithm. Figure 4.11 shows the short term performance of the algorithm and may be

compared with Figure 4.2, the performance function for the conventional RLS algo-

rithm. It can be seen that the level of performance which is attained is almost ident-

ical to that of the less computationally efficient algorithm for the duration of the

simulation.

Figure 4.12 illustrates the long term performance of the FTF algorithm over one

million time iterations. During this period, no evidence of divergence is indicated

and the interval arithmetic rescue system performs correctly.

0.95

0.94

0.93

0.92

0.91

0.9

0.89

0.88

0.87

0.86

Floating Point FTF Algorithm

Upper Endpoint

- 	 Il
I'
I'

-_

Lower En po ± t -

Optimum Coefficient value = 0.9

0.85 	I 	 I 	 I 	 I 	 I

5 10 15 20 25 30 35 40 45
Time (Samples)

Figure 4.10 A coefficient of the solution calculated by the interval FTF algorithm. Both the upper and lower end-

points of the coefficient are plotted and the figure shows how these begin to differ from each other as numerical er-

rors accumulate and how they are brought back together again by the rescue procedure. X = 0.98 , = 1.0,
p = 0. 2, input autocorrelation EVR = 18.7, SNR = 30 dB.

EIJ

-10

- 	-20

0
z 	-40

-50

Floating Point Interval FTF Algorithm

0 	5000 	10000 	15000 	20000
Time (Samples)

Figure 4.11 Short term performance of the interval FIT algorithm. The algorithm produces a performance level
similar to that of the conventional RLS algorithm during the simulation. k0.98, j50.0, p0.004,
SNIR=3OdB, input autocorrelation EVR= 18.7.

IMM

[I1

-10

-20

-30

-50

Floating Point Interval FTF Algorithm

0 	250000 	500000 	750000 	le+06
Time (Samples)

Figure 4.12 Long term performance of the interval FTF algorithm. The algorithm produces a performance level
similar to that of the conventional RLS algorithm during the simulation. X0.98, 	p0.004,
SNR=3OdB, input autocorrelation EVR= 18.7.

4.6. Fixed Point Implementation of the FTF Algorithm

When implementing a fixed point version of any algorithm[124], there are a number

of important considerations which will affect the performance obtained. The diffi-

culty in using fixed point arithmetic is the limited dynamic range available. Vari-

ables must be represented in such a way that they can be stored to a reasonable

level of accuracy, but at the same time, care must be taken to ensure that overflows

of the variables are sufficiently unlikely to occur. There is therefore a tradeoff to be

made between the accuracy to which a number is represented and the probability of

overflow errors.

The problem is to determine for each variable where the binary point should be

fixed. The process by which this was done was first to assess the likely range of the

variable, using the floating point simulation. A considerable safety margin must

then be left, as the maximum values for each quantity may differ considerably

between different runs of the same simulation and they are dependent upon the

exact data sequence. Having assessed the likely range of each variable, a fixed point

simulation can then be developed and the fixed point scale factors can then be

further refined.

The ranges and positions of the binary point for each variable in the fixed point

implementation of the FTP algorithm are listed in Table 4.2.

Variable

(k)

K(k)

(k) , '(k)

k(k)

lj(k)

ef(k)

il(k)

CL' (k)

rescue

e' (k)

E' (k)

e (k)

€(k)

Fixed Point Position

10

15

15

15

14

15

15

15

14

15

19

15

15

15

Range

-32 to 31.999023

-1 to 0.999969

-4096 to 4095.875

-1 to 0.999969

-1 to 0.999969

-2 to 1.999938

-1 to 0.999969

-1 to 0.999969

-1 to 0.999969

-2 to 1.999938

-1 to 0.9999690

-0.0625 to 0.062498

-i to 0.999969

-1 to 0.999969

-1 to 0.999969

Precision

0.000997

0.000031

0.125

0.000031

0.000031

0.000061

0.000031

0.000031

0.000031

0.000061

0.000031

1.907x 10-6

0.000031

0.000031

0.000031

Table 4.2:Scaling used for fixed point FTF

The simulation software enabled two different overflow characteristics to be used.

The roll-over characteristic is the simplest, as overflows are simply ignored. This

means that it is likely that if overflow occurs in calculating a result which should be

positive, a negative result will probably be obtained and vice versa. Hence, the

errors which occur using roll-over are very large indeed. The saturation characteris-

tic reduces the errors which occur in the event of overflow. If a result is calculated

which exceeds the largest positive representable number, then the result is replaced

by the largest positive representable number and similarly, negative overflows are

replaced by the largest representable negative number. After the scale factors were

-87-

correctly chosen, the overflow mode which was used was found to make no differ-

ence to system performance, indicating that overflows rarely occurred.

The performance of the fixed point FTF algorithm is shown by Figures 4.13 and

4.14. Figure 4.13 shows the performance without any rescues being performed while

Figure 4.14 shows the performance when the rescue method described in section 4.5

is used.

As would be expected, the 16 bit fixed point implementation has severe problems

with numerical instability. After around 500 time iterations, the algorithm diverges.

Moreover, the rescue method which was used to improve the stability of the floating

point algorithm gives no useful improvement when applied to the fixed point imple-

mentation.

4.7. Fixed Point Interval FTF Performance

Interval methods may be applied to the fixed point implementation of the FTF algo-

rithm in a similar way to the floating point algorithm. The maximum value which

may be used for the parameter p. is limited, however, as the variables of (-1) and

a' (-1) must both be set to the same order of magnitude as p. at reinitialisation.

For the scale factors used, this limits the maximum acceptable value of p. to 1.0.

The results from the short and long term simulations of the fixed point irfterval FTF

algorithm are presented in Figures 4.15 and 4.16. Whilst the performance is not

quite as good as the floating point conventional RLS solution, it is nevertheless

impressive for such a highly limited precision implementation.

Fixed Point FTF Algorithm

-10

-20

-30

CM

-50

a 	 I

I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I

I 	 I

I 	 I 	 I

I 	 I 	 I 	 I

-- - - - - - -

-'

I 	 I

a 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

a 	 I 	 I

I 	 I 	 I

: 	 I
I

I - 	 I 	 I

a 	 a
I 	 I 	 I 	 I

I 	 I 	 I

a 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I

I 	 I 	 •l 	 I

I 	 I 	 I

I 	 I 	 a
I 	 I 	 I 	 I

-
I 	 a 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I 	 I

I

I 	 I 	 I 	 I

I 	 I 	 I

I 	 I

_ 	

I

_________________a. -————————
I 	 $ 	 I

I 	 I

I 	 I 	- 	 I

I 	 I 	 I 	 S

I 	 I 	 I

I 	 I 	 I

a 	 I

--

0 	1000 	2000 	3000 	4000 	5000
Time (Samples)

Figure 4.13 Performance of a 16/32 bit fixed point implementation of the FTF algorithm. X= 0.98 , SNR=30dB,

input autocorrelation EVR 18.7.

11 - 89 -

0

E
0
z

Fixed Point FTF Algorithm
I 	 I 	 I 	 I

S 	 S
I 	 I 	 S
S 	 I 	 I
S 	 I 	 I
S 	 I 	 I
I 	 I 	 $
S 	 I 	 S
I 	 S 	 I
I 	 S 	 S
I 	 I

I 	 I 	 I

-S --
I 	 I 	 a
S 	 I 	 S

S 	 I 	 I 	 S
S 	 S 	 I
I 	 I 	 S
I 	 S 	 S
I 	 I 	 I

I 	 I 	 I

I 	 I 	 S
I 	 I 	 I 	 S

I 	 I 	 I 	 I

S 	 I 	 S

I 	 I

I 	 I 	 S

I 	 I 	 I

I 	 I 	 S 	 I

S 	 I 	 I 	 I

I 	 I 	 I

I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 I

I 	 I 	 I 	 S

I

I 	 I 	 I

I 	 I $
I 	 I 	 S
I 	 I 	 I

$ 	 I 	 I 	 I

———-————-

—————-———— I.
I 	 I 	 I

I 	 I

S 	 I 	 S

I 	
I 	 I 	 I

I 	 I 	 I

I 	 I

I 	 I 	 I

-50

0 	1000 	2000 	3000 	4000
	

5000
Time (Samples)

:ii

-10

-20

-30

Figure 4.14 Performance of a 16/32 bit fixed point implementation of the FIT algorithm using rescue method of
section 4.5 X = 0.98 1 ..t = 0.25, p = 0.04, SNR=30dB, input autocorrelation EVR=18.7.

• I
I II•J

-50

-10

-20

Fixed Point Interval FTF Algorithm

I 	 I

I 	 I

S 	 I 	 I

I 	 S 	 I

I 	 I

I 	 I

.4 --------------------------4 - - - - - - - - - - - - -

I 	 I

I 	 I 	 I

I 	 I

S

I 	 S

I 	 I

I 	 I

I

• I 1L 	i 	. 11L 	III,i 	111d, JlAilll.'l

[II

0

E
0
z

-30

0 	5000 	10000 	15000 	20000
Time (Samples)

Figure 4.15 Short term performance of a 16/32 bit fixed point implementation of the interval FIT algorithm.

X0.98 1j0.25, p=O.04,SNR=3OdB, input autocorrelationEVR=18.7.

Fixed Point Interval FTF Algorithm
:ii

I 	 I

.1
I 	 I

I 	 I 	 I

I 	 I 	 I

I

I 	 I

I 	 I

I 	 I

I 	 I 	 I

-:10
I 	 I

I 	 I

I 	 I

I

I 	 I

I 	 I

I 	 I

I

-20
	

I 	 I

I 	 I

I 	 I 	 I

I

I

I 	 I

I

I 	 I

-30

:"

o 	250000 	500000 	750000 	le+06
Time (Samples)

Figure 4.16 Long term performance of a 16/32 bit fixed point implementation of the interval FTF algorithm.

X= 0.98 , i =0.25, p= 0.04, SNR=30dB, input autocorrelation EVR= 18.7

-50

-92-

4.8. Application of Interval Algorithms to Stationary and Non-

Stationary Equalisation

The aims of the simulations in this section are twofold. Firstly, they are intended to

demonstrate that the operation of the interval methods is not specific to adaptive

system identification and that the interval algorithms may be equally successfully

applied to other adaptive filtering problems. Secondly, the results compare the

tracking performance of the interval algorithms with that of the conventional RLS

algorithm. Some impairment in tracking performance is possible when using the

interval algorithms, due to the regular reinitialisations which are being performed

and one of the aims in this section is to examine how significant the degradation in

tracking performance is.

The adaptive filtering application which is being considered is that of adaptive

equalisation for digital communications. The digital communications channel which

will be simulated is the HF channel[48, 122], a model[120, 121, 123] of which is

shown in Figure 4.17. The channel is represented by a three tap finite impulse

response (FIR) filter, the output of which is subject to interference by Gaussian

noise. The coefficients of the channel are generated from other Gaussian noise

sources, which are passed through low pass filters, so that they have slowly time

varying random values.

The physical process which is being modelled by this channel is that of multi-path

interference[48, 49] illustrated in Figure 4.18. Signals arrive at the receiver by a

number of different paths. As the lengths of the paths are different, the signals are

subject to different time delays between the transmitter and receiver and so interfer-

ence occurs.

- 93 -

Figure 4.19 shows the configuration of an adaptive equaliser. The output from the

channel is passed into the adaptive filter input. It is assumed that the transmitted

signal is available at the receiver and this is passed into the desired response input.

This signal may be generated at the receiver initially by transmitting a known train-

ing sequence and after the adaptive filter has converged, by using the actual output

from the equaliser, which may be passed through a decision device. This mode of

operation is known as decision-directed mode[47-49]. For the purposes of simula-

tion, the effects of decision directed operation were not considered and it was

assumed that the transmitted signal was known exactly at the receiver.

A two level baseband signal was simulated. This signal was generated from a

pseudo-random source and either had the value -1 or 1 with equal probability. A

real communications system would include a modulator at the transmitter and a

demodulator at the receiver, but assuming that the modulation process, the channel

and the demodulation process are all linear, then the results obtained from a simula-

tion of the baseband system are identical.

The performance measure which was used for all simulations was the probability of

error. The output from the adaptive equaliser was passed through a decision process

which gave an output of + 1 for all positive inputs and an output of -1 for all nega-

tive inputs. The number of occasions on which the output from this decision device

differed from the transmitted bit was counted over many iterations of the algorithm.

A 5 tap equaliser was used with a delay of two bits at the desired response input to

enable non-minimum phase channels to be equalised. A 10 bit training period was

assumed to be available and errors were only counted after this training sequence

was completed.

-94-

Transmitted Sequence z(k)

Noise LPF X Noise LPF X Noise LPF X

Channel Output x(k)

Noise

Figure 4.17 Model of a fading HF channel

- 95 -

Ionosphere

Figure 4.18 The time varying multi-path interference which is being modelled by the channel of figure 4.17

Transmitted I
i 	 Channel Sequence 	 I

Transversal Filter

+i
Equaliser

Adaptive Algorithm 	Error 	
Output

Adaptive Filter

Delay* Decision Threshold

Switch to decision directed operation
after training sequence

 Training
Sequence

*
Required if the channel has zeros outside the unit circle (non-minimum phase conditions)

Figure 4.19 Block Diagram of an Adaptive Equaliser

- 97 -

4.8.1. Performance for a Stationary Channel

Figure 4.20 shows the bit error rates which were obtained using the conventional

RLS algorithm and the interval FAEST algorithm as the signal to noise ratio is

varied between 0dB and 10dB. The channel coefficients remained fixed during this

simulation and the channel impulse response was hchan (z)=1.0+0.5z -1.

The bit error rates obtained for the two algorithms are nearly identical, demonstrat-

ing that an interval algorithm can offer similar performance to the conventional

RLS algorithm within the context of equalisation as well as system identification.

The third curve is an optimum lower bound, which is the theoretical probability of

error when no multi-path distortion occurs and the only source of interference is

additive Gaussian noise.

It can be seen that the performance of both the adaptive equalisers falls far short of

the optimum bound. This is due to the limitations of the linear adaptive equaliser,

which can only form a linear decision region in the signal space. A number of other

structures can offer improved performance, but these are not considered here.

4.8.2. Performance for a Fading Channel

In all of the simulations presented so far, the optimum solution has not varied with

time and the tracking performances of the various algorithms have not been com-

pared. In this simulation, a fading channel represented by the model of Figure 4.17

was used. The fade rate was achieved by setting the bandwidth of the low-pass

filters to be 0.00016 X bit frequency, corresponding to a moderately severe fading

channel.

Bit Error Rate' Comparisions - No Fading

"faest"
"optimum" - - -

S.

.5'

N
N

N

\ S.

S. \
S.

S.
\

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

S.

I I

0 	2 	4 	6 	8 	10
SNR (dB)

Figure 4.20 Comparison of probability of error for the conventional RLS adaptive equaliser and the interval FAEST

adaptive equaliser. The channel being equalised had the impulse response 1.0+0. 5z . For the RLS algorithm,

X0.98 For theFAEST algorithm, X0.98 , pO.02 and 	50.0

1

0.1

0.01

0.001

The results for the non-stationary simulation are shown in Figure 4.21. The

optimum solution has been plotted along with the performance of the conventional

RLS algorithm and the performance of the FAEST algorithm for p.=15.0 and

p.50.O.

It is clear from the results that the FAEST algorithm offers comparable performance

to the conventional RLS algorithm with p. set to 15.0, but that there is a slight

degradation in performance when the simulation is performed with p. = 50.0. This is

due to the impairment in tracking caused by setting the reinitialisation soft-

constraint to have too much influence. The results for p. =15.0 indicate, however,

that tracking performance which is as good as that of the RLS algorithm may be

obtained by choosing the reinitialisation parameters correctly.

In this simulation, 100,000 bits were required to provide an accurate estimate of the

bit error rate and so, if there had been any problems due to the numerical instabil-

ity of the FAEST algorithm over this fairly large number of iterations, this would

have resulted in a significantly higher bit error rate. This confirms the numerical

robustness shown in the system identification simulations.

4.9. Conclusions

A number of important results relating to the performance of the fast RLS algo-

rithms have been suggested by computer simulation.

The numerical instability and divergence of the fast Kalman, FAEST and FTF algo-

rithms have been demonstrated experimentally The - number of iterations before the

onset of instability has been demonstrated to depend upon the algorithm being used,

the input autocorrelation eigenvalue ratio and the accuracy of the arithmetic being

- 100-

Bit Error Rate Comparisions - Fading Channel
ii 	I 	 I

"ris"
"faest mu15"
"faestmu50" - - -

"optimum" -----

0.1

0.01

0.001
0 	2 	4 	6 	8 	10

SNR (dB)

Figure 4.21 Comparison of probability of error for the conventional RLS adaptive equaliser and the interval FAEST

adaptive equaliser, for a fading channel. For the RLS algorithm, X = 0.98 For the FAEST algorithm, X = 0.98
p0.02 and .LlS.0 or 50.0

- 101 -

used.

Many of the results 'have related to comparing the interval versions of the fast RLS

algorithms with the performance of the conventional RLS algorithm. In all simula-

tions, the interval fast RLS algorithms have been numerically stable and have not

exhibited the divergence of their non-interval counterparts. The performance of the

stable interval algorithms has been shown to be almost identical to that of less effi-

cient least squares techniques in a number of different simulations involving system

identification and HF channel equalisation. The tracking performance of the inter-

val algorithms is comparable to a least squares algorithm which runs continuously.

The performance of the fixed point interval FTP algorithm is of particular impor-

tance, as the complexity associated with implementing a fixed point algorithm in

hardware is considerably less than that of implementing the same algorithm using

floating point arithmetic. The next chapter will consider the implementation of this

algorithm on a TMS320C25 digital signal processor. An equaliser similar to that of

section 4.8 will be developed, capable of operating at 1200 bits per second. The

implementation of faster equalisers will also be considered.

4.10. Frequency of Reinitialisation

In the simulations of this chapter, the interval arithmetic rescue procedure reinitial-

ises the algorithm after approximately every 100 iterations using 64 bit floating point

arithmetic, .and approximately every 50 iterations using 16 bit fixed- point arith-

metic.. Comparing this with the performance of the unstabilised algorithm (shown in

figure 4.3 and figure 4.13), it is apparent that about 10 rescues are performed by

the stabilised algorithm in the time that the unsabilised algorithm takes to diverge. 	I

-

- 102-

5 Interval Algorithms - Hardware
Implementation

5.1. Introduction

Having demonstrated the stable performance of fixed point versions of the interval

fast RLS algorithms in software simulations, the next step is to attempt to imple-

ment them in a real time hardware system. There are two important reasons for

doing this. Firstly, the hardware implementation may be used to confirm the vali-

dity of the simulations and to check that there are no factors which were not taken

into account during simulations prohibiting the use of the algorithms in practice.

Secondly, the hardware implementation provides important information on the

speed of operation of a real-time system.

The approach has been to implement the algorithms on a digital signal processor

(DSP)[125]. Many of the major semiconductor manufacturers now make DSPs[90-

96] which are suitable for implementing the high speed, numerically intensive

operations often required to perform signal processing in real time. The many dif-

ferent devices which are now available all have different architectures[126] and

instruction sets, but they share a number of common features such as hardware mul-

tipliers, rapid multiply and accumulate instructions and separate program and data

memory spaces, all of which make them more suitable than a general purpose

microprocessor for signal processing applications.

- 103 -

The processor which was chosen for the hardware implementation was the Texas

Instruments TMS320C25[90, 95]. This is a second generation device which

represents the middle of the range in currently available DSP technology. It uses 16

bit fixed point arithmetic with a 32 bit long accumulator and offers a lOOns instruc-

tion cycle time. More sophisticated processors are now available which offer greater

speed, floating point arithmetic and a number of other features, but the system

which was developed seeks to demonstrate an implementation of the algorithm using

the minimum hardware requirements.

The chapter will begin by discussing the implementation of interval arithmetic and

the interval FTF algorithm on the TMS320C25. The configuration and circuitry

used to generate test signals will then be described and results will be presented for

the implementation. The results will show that the TMS320C25 is suitable for

implementing medium length (N = 5) adaptive filters at data rates of up to 1200

bits/s. More rapid implementations would require the use of either a more powerful

processor, or even an array of processors performing parallel computations. Alterna-

tively, a dedicated silicon device could be fabricated which would enable operation

at high speed. This option is considered in more detail in chapter 6.

5.2. Implementing the Algorithm on a TMS320C25

Due to the high organisational complexity of the FTF algorithm, a very structured

approach is required to implement the algorithm successfully using TMS320C25

assembly language. The problem may be subdivided into two areas. The first is to

develop a set of assembler macros which enable interval arithmetic to be performed.

The second area is to develop a program which makes use of the interval macros to

perform the computations of the FTF algorithm and so implement a fixed point

interval arithmetic version.

- 104-

The benefit of this approach is that the interval macros can be tested extensively

before the FTP algorithm is developed, allowing many of the errors in the assembly

language program to be isolated at an early stage.

Figure 5.1 shows a block diagram of the TMS320C25 processor board and associ-

ated hardware. This board was built as a final year honours project[127] in the

Department of Electrical Engineering at the University of Edinburgh. The circuit

diagram for this board appears in Appendix D. Real signals can be passed into the

board using two analogue to digital converters (ADCs), which may be operated at

sampling rates of up to 100kHz. A sample clock input is also available to determine

the exact time at which conversion will begin. Output from the board is performed

by a single digital to analogue converter (DAC). The TMS320C25 board operates

using a 20MHz crystal and one wait state for memory access, which gives an operat-

ing speed of approximately V4 of the maximum available using this processor. Pro-

gram development was done using a personal computer which was connected to the

the TMS320 board by an RS-232 serial link and which provides a number of impor-

tant facilities including a TMS320C25 macro assembler, a TMS320C25 linker, file

format conversion, file storage and a terminal emulator for use when debugging

programs running on the TMS320C25.

5.2.1.. Macros to Perform Interval Arithmetic on a TMS320C25

The macros to implement interval arithmetic are listed in appendix C. They are

divided into three subsections - those for performing scalar interval arithmetic, those

for performing vector interval arithmetic and those for performing system operations

such as reading input values from ADCs, writing outputs to the DAC and syn-

chronising timing.

Table 5.1a and 5.1b give the average execution times for each of the macros in

instruction cycles. For the demonstration system, an instruction cycle takes 400ns,

- 105 -

although the processor may be operated with an instruction cycle time of lOOns.

Macro Function Number of Instruction Cycles

s_add Add two intervals 10

s_sub Subtract two intervals 10

s_neg Change the sign of interval 10

s_mult Multiply two intervals 68.5

s_div Divide two interval 103.5

Table 5.1a : Execution times for scalar interval macros

Macro Function

msc Multiply interval vector by scalar

scprod Calculate scalar product of two intervals

v_add Add two vectors of intervals

v_sub Subtract two vectors of intervals

Number of Instruction Cycles

42.5N+8

93N+27.5

7N+ 5

7N+5

Table 5.1b : Execution times for vector interval macros for a vector length of N.

5.2.2. The FTF Algorithm on a TMS320C25

Having developed macros to perform interval arithmetic, the implementation of the

FT'F algorithm is fairly simple. The scale factors used are the same as for the fixed

point software simulation of the algorithm, described in section 4.6 except for the

vector of filter coefficients, II (k) which is modified to have its binary point in posi-

tion 13, to enable filter coefficients of between -4 and +3.99988 to be represented

N

	

	
without overflow. It is possible that further improvements in the hardware perfor-

mance could be obtained by changing the scaling factors, but the difficulty of

- 106 -

detecting overflow in a hardware implementation would require that a considerable

amount of experimentation was necessary in choosing the optimum scale factors.

The fixed point scaling of any algorithm is a difficult and time consuming task anti

this is particularly true of an algorithm with the organisational complexity of the

FTP algorithm. The use of a floating point DSP could eliminate this requirement.

The TMS320C25 was used in its saturation overflow mode to minimise the effects of

11

	

	

any overflows or underfiows by forcing the accumulator to its largest positive or

negative value as required.

The assembly language program to implement the FTF algorithm is given in appen-

dix C.

5.3. Test Configuration

The application in which the hardware implementation of the interval FTP algo-

rithm was tested was that of adaptive equalisation. A board was developed to gen-

erate baseband signals similar to those which would be encountered in a real digital

communications system. The configuration used is similar to the software simulation

described in section 4.8.

5.3.1. Generation of Test Signals

Figure 5.2 shows a block diagram of the board used to generate test signals for the

hardware adaptive equaliser. A 31 bit shift register is used to generate a pseudo-

random binary sequence[128], which represents the transmitted signal. The final

four stages of the shift register are used to represent the transmitted symbol,

denoted by z (k) and the transmitted symbol delayed by one, two and three sample

periods, z (k —1), z (k —2) and z (k —3).

- 107-

IL
	

]1a 	Development Support
TMS320C25 Macro Assembler

	

1!J 	-TMS320C25 Linker
-Object Code Format Conversion
-Downloading -_-

	 -Terminal Emulator (Debugging)

1.1

RS-232

11.1

ADC #1 I
Filter Input 	 I

TMS320C25

	

Digital Signal 	
'1 	

DAC
Processor 	 Output

P1

ADC #2
Desired Response 	 I

Input

M Proram 	 I Startup I
Lemory I 	 EPROM

Figure 5.1 Block diagram of the TMS320C25 board and associated hardware

The output of the channel is distorted by intersymbol interference (ISI) and is given

by

(k) = hchÜfl z (k)+ hchan 1z (k —1) + hchan Z (k —2) + hh0fl Z (k —3) + noise 	[5.1]

As z(k) is a digital signal, it only has the values 0 or 1 and so, the multiplications in

equation [5.1] can be performed in hardware using simple switches, rather than

expensive analogue multipliers. If a switch is on, this corresponds to the output of

the switch being equal to the input multiplied by 1 and if it is off, this corresponds

to multiplication by zero.

The outputs from all the switches (multipliers) are added, along with some Gaussian

noise, using an analogue summing amplifier, so as to implement the channel

described by equation [5.1].

There are three connections from this board to the TMS320C25 processor board.

The first forms the desired response input to the adaptive filter. It is generated by

passing the pseudo-random binary sequence output, z (k) through some analogue

stages which enable the offset and the amplitude of this signal to be controlled. This

signal is used as the input to one of the ADCs on the TMS320C25 board. The

second ADC is connected to the summing amplifier which gives the channel output

as described by equation [5.1]. The input to this ADC represents the primary input

to the adaptive filter. The third connection frm the test signal generator to the

processor board is a bit clock, which is simply the clock signal used to control the

shift register in the pseudo-random binary sequence generator. This signal is used by

the processor board to trigger the start of conversion (SOC) on the analogue to digi-

tal converters, to ensure that the input signals are sampled at the correct time,

which is at the centre of each bit. The software achieves synchronisation by waiting

for an end of conversion (EOC) to be signalled by both ADCs before attempting to

read inputs from them.

- 109 -

5.3.2. Equaliser Arrangement

A five coefficient equaliser was used in the system and no delay was used in the

desired response input path, so that only minimum phase channels could be equal-

ised. Although the board described in section 5.3.1 can generate intersymbol

interference over four bit periods, only 1ST over three bit periods was actually used

in hardware tests.

5.3.3. Measurement of Results

Two outputs from the adaptive filter were measured in different experiments. The

output from the adaptive filter, denoted by

y(k)—fiT(k-1)(k) 	 [5.2]

was measured. If the adaptive equaliser performs correctly, this signal should closely

approximate to the transmitted signal, z(k). The other output to be measured was

the filter error, denoted by

e(k)=d(k) —llT (k -1)(k) 	 [5.3]

where d (k) is the desired response of the adaptive filter, which in this case is equal

to z(k). After initial convergence, e(k) should remain small, indicating that diver-

gence due to numerical inaccuracies is not occurring.

Both signals were captured using an HP5 183 digital storage oscilloscope. This

enables results to be displayed, plotted on a pen-plotter and stored.

Figure 5.3 shows a block diagram of the whole system including test signal genera-

tion, equalisation and capture of results

- 110-

Figure 5.2 Block diagram of the board used to generate test signals for the hardware adaptive equaliser

TMS320C25
Processor Board

Sync
Test Signal Genrator I:::
Board 	

Prim; 	
DACJ

Channel

 Digitising Oscilloscope

Ir 	:::: • Plotter

Filter Output or
Filter, Error

Figure 5.3 Block diagram of the hardware test system including signal generation, equalisation and measurement

5.4. Results

5.4.1. Eye Diagrams

Figures 5.4, 5.5 and 5.6 show various eye diagrams measured in the equaliser sys-

tem. An eye diagram is simply a trace of all possible values of a signal, formed by

recording the signal over a large number of bits and plotting it. An eye pattern

which is open in the centre indicates that the signal could be used successfully with

a decision device to recover the original binary symbols.

Figure 5.4 shows the eye diagram of the pesudo random binary sequence which

forms the desired response input. As would be expected, there are only two distinct

levels, corresponding to the transmitted symbols 0 and 1 respectively. The eye pat-

tern is wide open in the centre. This eye diagram represents the ideal pattern for an

equaliser which performs perfectly.

Figure 5.5 shows the eye diagram at the output from the channel. Instead of having

two distinct levels, it has eight levels due to the intersymbol interference introduced

by the channel. No noise was used during this test. The eye pattern is almost closed

in the centre, indicating that equalisation is required if the original sequence is to

be recovered.

Figure 5.6 shows the eye diagram measured at the output from the interval FTF

equaliser. The eye pattern has been opened by the equaliser, which has removed

much of the distortion introduced by the channel. The original transmitted sequence

could be recovered from this signal, indicating successful equalisation.

- 113 -

5.4.2. Filter Error

Figures 5.7 and 5.8 show the instantaneous square of the filter error. If the algo-

rithm performs correctly, this error should rapidly become very small as the algo-

rithm converges. After convergence, the error should remain small if the algorithm

is numerically stable.

Figure 5.7 shows the initial convergence of the algorithm. It can be seen that after a

few output samples, the filter error becomes small, once again illustrating the rapid

initial convergence of a least squares algorithm.

Figure 5.8 shows the long term error performance of the hardware equaliser. After

the spike representing initial convergence, the error remains very small, indicating

that the interval arithmetic rescue procedure for the FTF algorithm is working

correctly and preventing divergence due to numerical errors.

5.5. Speed of Operation

The maximum speed of operation for the hardware adaptive filter was found to be

300 bits/s. The TMS320C25 processor was being operated at around 1/4 of its max-

imum speed and so the program could be expected to operate at speeds of up to

1200 bits/s using the same processor. This data rate is fairly low although there are

applications in telecommunications where equalisation is performed using sampling

rates and filter lengths compatible with the performance of this implementation.

Nevertheless, it would be desirable be able to operate the algorithm at much higher

data rates. The low speed is partly due to inefficiencies in the assembly language

program due to the requirement to make it very structured and the use of a set of

general macros. It is believed that a modest performance increase could be obtained

at the expense of making the assembly language code much more difficult to under-

-114-

Figure 5.4 Eye diagram measured at the desired response input to the adaptive filter. The pattern is that of an ideal

two level eye diagram.

- 115 -

Ti

Li
a-
0
U
U)
0
-J
-j

U
(I)
0

z
N

-4

-4

0

M

Ln

Figure 5.5 Eye diagram measured at the output of the channel. It has eight distinct levels due to the three coeffi-

cient channel which introduces intersymbol interference.

- 116 -

uJ
a.
U
0
-J
-J
-4

U
U,
0

z
-4
N
-4

-4

-4

0

U,
0..

Figure 5.6 Eye diagram measured at the output of the adaptive equaliser. It is much closer to the ideal pattern of

Figure 5.4 than the distorted pattern of Figure 5.5, indicating that the interval FIT adaptive equaliser has removed
much of the intersymbol interference. X0.999969, ii0.015258, p0.009155

- 117 -

Adaptive filter starts

Figure 5.7 Graph of filter error squared against time for the interval FTF adaptive equaliser. The graph shows the
rapid initial convergence of the filter error to a sinai! value. X = 0.999969, p = .015258, P=0.009155

This graph is an expanded version of figure 5.8 	- 	- 	- 	--

- 118 -

stand and debug. A more significant and fundamental reason, however, is that the

architecture of the TMS320C25 and other digital signal processors is not particularly

suitable for the implementation of interval arithmetic.

5.6. Conclusions

The results presented in this chapter for the hardware implementation of the inter-

val FTP algorithm are an important confirmation of the validity of the software

simulation results. They demonstrate the feasibility of the interval fast RLS algo-

rithms for application to real time systems

When considering the performance of the hardware implementation, there are two

important aspects - the long term stability of the solution and the short term accu-

racy of it, both of which are influenced by the limited precision of the arithmetic

used. From the results, the long term stability of the algorithm is good. After con-

vergence of the algorithm, the filter error remains at a low level for hundreds of

thousands of samples, indicating that interval arithmetic successfully prevents the

divergence of the algorithm due to numerical errors. The short term accuracy of the

solution is also acceptable, resulting in an eye diagram which shows an 'open' pat-

tern, indicating successful equalisation. It is believed, however, that the accuracy of

the solution could be improved by changing some of the scale factors used in the

fixed point implementation. The choice of an optimum set of scale factors is diffi-

cult, but one of the major successes of this implementation has been to demonstrate

that through the use of interval arithmetic, very limited precision fixed point imple-

mentations of the fast RLS algorithms are possible.

One important result obtained from the hardware implementation which could not

have been obtained by software simulation of the algorithm is the maximum speed

of operation. The maximum speed of operation of around 1200 bits/s for a

TMS320C25 implementation is suitable for some equalisation applications in

- 120-

telecommunications, but higher speeds would be desirable to increase the number of

applications to which the system could be applied and gain the full advantages of

using a fast RLS algorithm.

Two main reasons for the fairly low speed of operation have been identified. Firstly,

the assembly language program has not been optimised for maximum speed of

operation. This is because the joint requirements of producing structured code and

minimising the number of instructions used are, to an extent, incompatible. It is

believed that optimisation of the program could result in speed increases of the

order of up to 50%, but would certainly not provide the large increase in speed

required for many applications.

The second reason for the low speed of operation is that there is a mismatch

between the architecture of the TMS320C25 DSP and the algorithm which is to be

implemented on it. One of the most important instructions on any DSP is the multi-

ply and accumulate instruction. This operation is extremely common in many signal

processing techniques, such as convolution, correlation and recursive and non-

recursive filtering. It is also important in the fast RLS algorithms which rely on

implementing non-recursive filters to calculate forward and backward prediction

errors, as well as to perform the filtering of input data. Unfortunately, as the

TMS320C25 has only a single accumulator, a single cycle multiply and accumulate

instruction cannot be performed using interval arithmetic and a very significant

overhead is incurred in swapping the accumulator to temporary storge in data

memory and performing multiplications and 32 bit long additions as separate

instructions. The interval multiply and accumulate operation, which is performed as

part of the macro "scprod' requires 82 instruction cycles and represents a significant

contribution to the total time required to perform one iteration of the algorithm, as

it is performed from within various loops.

It is of interest to note that this problem is not only relevant to interval arithmetic.

- 121 -

Any application which requires the use of complex numbers will be similarly

affected and so this problem is of considerable importance.

Two solutions to the architectural problem are proposed : the use of a twin proces-

sor system which would make available two accumulators or the use of an interval

coprocessor with a conventional DSP chip to perform the computations. The feasi-

bility of the coprocessor is considered in detail in the next chapter.

a

- 122-

6 An Interval Arithmetic Coprocessor
for the TMS320C25

6.1. Introduction

One way of improving the performance of the DSP implementation of the interval

arithmetic fast RLS algorithm presented in the previous chapter would be to

develop a coprocessor device to provide hardware support for the interval arithmetic

operations. In this chapter, a design for such a device will be examined and the

feasibility of the design and likely performance will be discussed.

The coprocessor chip is designed to connect to the DSP address and data buses and

to appear to the processor like a number of input and output ports. As the copro-

cessor is accessed using the processor's IN and OUT instructions, only one 16 bit

transfer of data either to or from the coprocessor is possible in a single instruction

cycle. For this reason, it is not worthwhile to implement operations such as interval

addition and subtraction on the coprocessor, as they can be performed more rapidly

using the main DSP. The design philosophy has, therefore, been to provide

hardware support for interval multiplication and in particular, to develop a

hardware architecture which provides for the rapid multiply and accumulate opera-

tions using interval arithmetic to implement a fast RLS algorithm.

An advanced software package was used to develop the design for the coprocessor

The package was developed under the Silicon Architectures Research Initiative

- 123-

(SARI) programme[129] at the University of Edinburgh. It enables the designer to

develop rapdily digital very large scale integration (VLSI) technology devices. The

tools allow a designer to proceed automatically from a description of the behaviour

required of a device to a gate level description of the structure required to imple-

ment the device. The tools allow the designer to have a large degree of control over

the translation from behavioural description, which is a high level language descrip-

tion of the functions required of the device to structural layout to enable the design

to be optimised in different ways. Starting with the same behavioural description, it

is possible to use this flexibility to develop a device with the minimum possible

number of gates, or the maximum speed of operation, or with respect to any other

optimum criteria set by the designer. The tools automatically ensure the logical

correctness of the design and carefully check that timing specifications for each

component in the resulting structure are met, eliminating many of the errors which

would be generated by a manual design process. The tools also support hierarchical

designs and a design may be structured in a manner analogous to structured

software programming.

In this chapter, two levels of the design of the coprocessor chip will be considered.

The lower level of the design involves the development of an interval multiplier,

which is simply a component which takes the endpoints of two intervals as inputs

and gives the endpoints of the product of these intervals as its output. The higher

level of the design handles all of the communications with the TMS320C25. It pro-

vides all of the registers and logic required to interface with the DSP address and

data buses, has two accumulator structures and also has, as one of its components,

the interval multiplier, which is synthesised at the lower level.

-124-

6.2. The SARI Toolset

The central aim of the SARI toolset[130] is to enable the designer of a complicated

VLSI system to proceed rapidly from an algorithmic description of the computations

and functionality required to a gate-level structural configuration. In so doing, the

toolset ensures that a logically correct design is produced, assuming that the original

algorithmic description is error-free.

It is clear that for any algorithmic description of a process, there will be a great

number of possible structures, all of which perform the process. The choice of an

optimal structure depends to a large extent upon the particular compromises and

constraints which are necessary. Depending upon the application, a designer may

wish to generate a design which minimises component cost, maximises processing

speed, or which has the lowest possible power consumption. The toolset, therefore,

allows the designer a large amount of freedom in the design process, rather than

attempting to automate it completely. Hence, there is a high degree of interaction

during the task of conversion from an algorithmic to a structural description, in

which many of the creative design decisions have to be made by the designer.

Moreover, the netlist which is finally produced by the tools is technology indepen-

dent. It is simply a description of a digital logic configuration which is one imple-

mentation of the algorithm required. The conversion from this netlist to a physical

silicon layout can be performed by a conventional silicon layout package, allowing

complete freedom in the technology of the actual gates used to realise the netlist

structural description.

The design process begins with the development of an algorithmic description. The

description is written in the VHSIC hardware description language (VHDL)[131]

which was developed as part of the very high speed integrated circuit (VHSIC) pro-

gramme by the United States Department of Defence. The VHDL language sup-

ports both behavioural and structural descriptions of electronic hardware, but for

- 125 -

algorithmic specification, only the behavioural parts of the language need be used.

The VHDL description for the coprocessor is listed in appendix E. Around 200

lines of VHDL source code were developed to describe the coprocessor and interval

multiplication. The benefit of specifying the algorithm in VHDL is that it is possible

to simulate directly from the VHDL program, using the Standard VHDL 1076 Sup-

port Environment (VSE)[132] The correctness of the algorithmic statement of the

problem can, therefore, be checked and the performance of the device can be veri-

fied before the design process proceeds.

After simulation, the next stage to be undertaken when using the SARI toolset is

translation from VHDL to an intermediate SARI language known as Babble. This

intermediate representation lists all of the operations which have to be performed so

as to carry out the computations of the algorithm, as well as the signals that each of

these operations must use as inputs and generate as outputs. The translation from

VHDL to Babble is performed completely automatically. The Babble representation

is understood by the SARI synthesis tool, which is used to perform the rest of the

design process.

The first stage of this process is resource selection, in which each of the operations

in the algorithm is matched to a physical resource such as an adder or multiplier.

The matching may be performed either automatically, or the user may manually

match operations to specific resources, so as to meet the design goals.

Having defined which resource is used for each operation, the next stage is to

schedule the use of the resources. The main tool in doing this is the resource time

(PIT) graph. This is a chart in which the horizontal axis identifies each of the avail-

able resources and the vertical axis represents time. A shaded area on the RIT

graph indicates that a resource is in use at a given time. An important design rule is

that only one operation may be scheduled on a single resource at any one time. The

SARI synthesis tool enforces this and ensures that the scheduling is valid. It. sup-

- 126 -

ports a comprehensive model of time which enables setup, hold and reuse times for

resources to be specified. For pipelined resources, the reuse time may be less than

the execution time. Initially, the resources are allocated so that each operation is

given a different resource and ASAP (as soon as possible) scheduling is used, so

that as soon as all of the signals required to carry out an operation are available, it

will be performed. This allocation generally gives a configuration which will operate

very rapidly, but which would require an unreasonably large area of silicon, as it

uses a very large number of resources. The design process can then proceed by

binding several operations to a single resource. The resource may, therefore, be

reused, resulting in a design which uses fewer resources, but which may not operate

as quickly. When the binding is altered in this way, the design must be rescheduled

to ensure that valid timing is again obtained.

When the designer is satisfied with the resource binding and scheduling, the next

stage is memory synthesis, in which the various storage requirements of the algo-

rithm are created. The memory resources are random access memories (RAM),

which may have multiple ports. A location in a RAM resource must not be reused

until the value stored in it has been read and is no longer required. Moreover, each

data port on the RAM will only support one access (read or write) at any clock

cycle.

Having generated and allocated memory components, the designer proceeds by

communications planning and synthesis. This stage involves connecting the resources

together, using wires, multiplexers and tn-state buffers as required. This process

may be performed automatically by the toolset.

At this stage of the design process, a fully connected data processing network has

been completed, but two design steps remain. The first is address generation, in

which local address generators are designed, so as to ensure that the memory which

has been synthesised has the correct locations accessed at the correct times. The

- 127-

second requirement is that of control synthesis, in which a finite state machine con-

troller is generated, to provide control signals for the various components used in

the design, such as tn-state buffers and multiplexers, as well as more complicated

components, such as arithmetic logic units (ALUs), which may have simple opera-

tions such as additions bound to them. Unfortunately, version 4.2 of the SARI

toolset does not support all of these design steps and they would either have to be

performed manually by the designer, or by a later version of the SARI tools.

6.3. Functions of the Coprocessor

Table 6.1 and Figure 6.1 show the coprocessor as it appears to the DSP. The

coprocessor has a chip select input, CS , which must be high to access the device.

The R/W input to it must be low during read operations and high when writing to

the device. It also has an address bus, used by the coprocessor to determine which

interval register is to be accessed and input and output data buses, "w—data" and

"r_data" respectively. For a practical design, these buses would be combined on to a

single bidirectional data bus, using the R/W signal to determine the direction of

data transfer.

Internally, the coprocessor has a number of registers. By writing to locations 0 to 3,

it is possible to load the 16 bit wide registers 'opi_reg", "op2_reg", 'op3_reg" and

"op4_reg", which contain the endpoints of the interval to be multiplied. The shift

control register, "shift_reg", is located at address 5 and a value may be written to it

to determine the shift which will be applied to the accumulators so as to form the

results. A control register at location 4 enables various functions to be selected on

the coprocessor. Writing the value '1' to the control register zeros both of the accu-

mulators and writing the value '2' to it causes the device to perform an interval mul-

tiplication and add the result to the existing contents of the accumulator. The accu-

mulator contents are then transferred to the result registers "res_Oreg" and

- 128 -

"res_ireg", using a left shift controlled by the contents of the "res_shift"register. The

results can be accessed by reading from the locations 0 and 1, which give the con-

tents of "res_Oreg" and "res_ireg" respectively.

6.4. Design of the Interval Multiplier

Figure 6.2 shows the control flow graph for the interval multiplier. It is very simple,

consisting of a single block of computation which takes four inputs and generates

the interval product of these inputs, giving two outputs. This simplicity in control

flow is because the behavioural description of the procedure does not contain any

conditional statements or loops.

The diagrams in this chapter are produced directly from screen displays which were

generated while using the SARI toolset.

Figure 6.3 shows the structure which is initially associated with the interval multiply

behaviour before synthesis of memory locations, address generators, type converters,

communications and control components. The figure shows the structure as consist-

ing of four multipliers and two components, designated "find—min" and "find—max".

The behavioural code describes interval multiplication, using

[at,aU]x[bt,bU][min(albl,albU,abI,aUb), 	. 	 [6.1]

max(a'b' ,a lbM ,aubl ,a"b")]

directly, the four multipliers being required to calculate the four products

a 1 b' ,a 1 b ,a u b 1 and a U b u, and the two components "find—min" and "find—max"

being required to choose the largest and the smallest of the products respectively.

These components represent lower levels of the design hierarchy, which consist of a

number of comparison operations.

A resource/time graph for the computational block of the interval multiplication

design may also be generated. Figure 6.4 shows the initial allocation of resources for

- 129 -

V
DO

—I

LD

4

iI

Lr:

cn

I

Location 	 Read 	 Write

Register Name Function Register Name Function

0 res_Oreg 	Lower endpoint opi_reg 	operand 1

of result lower endpoint

1 res_lreg 	Upper endpoint op2_reg 	operand 1

of result upper endpoint

2 - 	 - op3_reg 	operand 2

lower endpoint

3 - 	 - op4_reg 	operand 2

upper endpoint

4 - 	 - control 	'1'= zero accumulator

'2'= multiply

& accumulate

'other'= no operation

5 - 	 - res_shift 	left shift for

calculating results

Table 6.1 Operation of the interval arithmetic coprocessor.

- 131 -

Figure 6.2 Control flow graph for the interval multiplication procedure

- 132-

interval-multiply.

(find-max/149)

0

(find-min/136) (i_mull/93)

GO
find-max

0

0

find-min 	
1

i_mull e

0
0

a
a 	? 	 0
6 	 7

b
1
0

(i_mull/93) (i_mull/93) (i_mull/93)

i_mull
1 	

i_mull 	
1
0

0 	 0
9 	 8

i_mull
1
0
1
1

Figure 6.3 Initial structure of the interval multiply component

- 133 -

this block. Four separate multipliers are assumed to be available and the four pro-

ducts required are formed by a parallel process. This may be too costly in terms of

hardware utilisation and so, the four multiplication operations may be scheduled to

occur serially on a single multiplier. Figure 6.5 shows the R/T graph in these cir-

cumstances, noting that the processing operation now takes a considerably longer

time.

Having bound the operations to the resources as required, it is now possible to syn-

thesise the memory components, address generators, type converters, communica-

tions and control circuitry required to complete the structure. Figure 6.6 shows the

structure which is obtained using the four multiplier R/T graph. of Figure 6.4. The

diagram shows the four integer multipliers denoted by the boxes marked "i_multi"

and also the componenets "find—min" and "find—max", which find the minimum and

the maximum of their four inputs. The SARI toolset has added a number of com-

ponents including two registers, which store the result of each interval multiplication

opeartion and a number of type converters, denoted by the boxes marked 'etc" to

enable the various components to be connected together.

Figure 6.7 shows the structure resulting from synthesis of the design with the single

multiplier R/T graph of Figure 6.3. A number of additional registers have been

allocated to the design, so that all four multiplications which are required to be per-

formed can be scheduled onto a single physical multiplier.' The result of each of the

multiplication operations is stored until all four products are available. The com-

ponents "find—min" and "find—max" are then used to compute the interval arithmetic

result, which is then stored by reusing two of the registers.

This completes the structural design of the interval multiplier. This component is

used as part of the higher level design, which includes all of the registers and other

components shown in Figure 6.1.

- 134-

	

iii i 	 i
lit flt tt 	 nt int

-Pa -Pa aa 	 i f i-pa-Pa r r r r 1 1 1 1 nd d rar
in in rrrrrr- r-m - - in in

	

- 	- 	eee 1 eu1 U1 in In. - - rd r e u..J eI eb e11 11 11 a in Wr Wr

'rrrarrarI U U U U U I I

d. cIbIa 	 I i I I I

— — .
	 I I I I

re 	e 	I

- - - - 	 L - L. - L - L. - I
I 	I 	I 	I 	I 	I 	I 	I 	I

r 	
I
I 	I 	I 	I 	I 	I 	I 	I 	I 	I I 	

I 	I 	---

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
3__I_I_I_l

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I

	

I 	I 	I 	I_I_I_I_I

	

I 	I 	I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
5--i--t--r--,*i* * *----

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
6_L L L L L L LL_L_L_L_I

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
I
r 	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I

	

7 	r - r - r I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
8- - 	I 	 I--I--I--I--I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I

n.

	

9 11111 	 I 	I__I_I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
I 	 I 	I

Ix

11 -

--- -- -- ----- - -

	

I 	I

	

I I I I I 	I ki
r r 12-r-rr-r-r-r-r 	rIte e

	

II 	I 	I 	I 	I 	I 	I 	I 	
a 	ain 13_L_L_L_L__L_L_ar ar

-14 	 I I I 	I
rIr

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	 I

I 	I 	I 	I 	I 	I 	IjljI 	I 	I
-L-wr I 	I 	I 	I 	I 	I 	I 	 I 	I 	I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I
3------------------------I

	

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I

4... - L - L - L - L - L - L - L - L - L - L - L - I
I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I

Figure 6.4 Initial resource time graph for the interval multiplier

- 135 -

,P _P 	f.
aaaff tm
rr 	 i LdW
(ara a • - •

d1c b. a .

r3lr~X
41 	— I1I-r -1— i— I - -
5- 5 - 	 + -I-

I ji
7 	I 	I
81r 1 iiTi
9--j-
1,4 — -1I-fl. 14 —I—.I--I-

J_L
i i_i utJij 	I I 	I

12 	I clull 	T
- '- 7 -I-

H -I- + -'-
1J_LJ14

i jJifljJ I
18 	'iii II1 	,
17iri----1--1-
18-I - I- -I-I 	-I- •I- -I-
19Il-4.H pj-i-.i.-1- L _j

vI
21i1 	iy'j

I

I
221 r, tI- T -t-
23"W HftFI- + -I-
AJ_LJ_

I 	I 	JJji
25, 	i 	I

I 	I

26-1 -r, iTi
27"i i— i
2-1-1 	1- -1-

L J 29 J,
I—

LJJ
I I I

3Oiri

_ I

p
31r T

i
I

_

-I-

32 32"t1_LJ_i_
•II 	I I

341 	

i

I

_

33
	
Ma

d4n.̀ -i-
36'f'

;ar 771 - 1 -1 _._ ..

-38 I I I I ii U
11r1ii- r
2"' —r -' -I- :ItteT
3 1 - I--I-I-i- ii-+-I-
A- 	- L J _ii' ,,r,

Figure 6.5 Resource/time graph after rebinding to schedule multiplications to occur sequentially on a single multi-
plier.

- 136 -

Figure 6.6 Structure of the interval multiplier, using 4 integer multipliers.

-137-

Figure 6.7 Structure of the interval multiplier, using 1 integer multiplier.

- 138 -

6.5. Top Level Design of the Coprocessor

The control flow graph for the top level of the coprocessor architecture is shown in

Figure 6.8. It consists of a number of computational blocks corresponding to dif-

ferent conditional instructions in the description of the behaviour of the coprocessor

device, which in turn correspond to the different operations available using the

coprocessor chip, shown in Table 6.1.

Each of the computational blocks has an RJT graph, but due to the large number of

blocks, these graphs are not shown. Most of the blocks consist of a single operation

and therefore, no rescheduling of resources can be performed. The exception to this

is the computational block which adds to the existing values in the accumulator and

which left shifts the new accumulator values, which are then transferred to the result

registers. This computation requires two add and two shift operations, each of

which could either be performed using a single resource sequentially, or by using

two identical resources in parallel. In this implementation, parallel resources were

used for greater speed of operation.

Memory, address, type converter communications and control synthesis may be per-

formed, yielding a structural implementation for the coprocessor device.

6.6. Feasibility of the Design

To yield a worthwhile increase in speed, the coprocessor would have to be capable

of forming an interval product in around 10 instruction cycles. This would

correspond to an increase in speed of around 6-10 times as compared with the

software arithmetic routines 's_mult", "scprod" and "msc" described in the previous

- 139 -

V '\
process

20 	\ \
if statement body

~4 I'K3 1
tateinent bo.ment bo.:ase statement bo.ment

TLTL

T34T\
if statement body

PM
case statement

1 	3P 8 ~,\
if statement bod

process

if statement body

case statement bo.ement bo*

process

Figure 6.8 Control flow graph for the coprocessor chip.

- 140 -

bo.ment

'I
bo.

chapter. If it is assumed that each register transfer to or from the coprocessor

requires one instruction cycle, then four instruction cycles, or 400ns are required to

load the four operand registers prior to performing the interval multiplication. This

leaves a period of 600ns to form the interval product and add it to the contents of

the two accumulators. There would also be an additional overhead of 3 instructions

per scalar product operation, to load the shift control register and to read the two

result registers. Therefore, the total time to perform an N point scalar product

operation would be around iON + 3 instruction cycles

Multipliers are available which can form a product in less than lOOns, such as the

multiplier built in to the TMS320C25 which uses 1.5im CMOS technology and so,

the single multiplier version of the design, shown in the RIT graph of Figure 6.5

would yield the speed necessary. Alternatively, it would be possible to construct the

four multiplier version of the coprocessor, which uses the R/T graph of Figure 6.4.

This device could probably perform an interval multiplication in around 6N + 3

instruction cycles, including data transfers to the coprocessor.

The design could, therefore, yield a very worthwhile increase in speed for the inter-

val FTF algorithm. It seems likely that the maximum data rate would be increased

by a factor of 5-8, making the hardware adaptive filter suitable for a wider range of

applications.

6.7. Conclusions

The feasibility of developing a vector product coprocessor for a digital signal proces-

sor using VLSI technology has been demonstrated. Advanced software tools have

greatly speeded up the design process and have made it easier to proceed from a

description of the behaviOur of the coprocessor to a structural implementation.

Initially, it had been hoped to develop a dedicated device for the entire interval

- 141 -

arithmetic fast RLS algorithm. Unfortunately, the resulting design proved to be very

complicated and although the SARI toolset could have synthesised a structure, it

would probably not have been possible to implement it using current technology.

The coprocessor presented in this chapter gives some hardware support for the inter-

val arithmetic algorithm, but does not go to the extreme of attempting to implement

the interval arithmetic FTP algorithm entirely in hardware. It is, therefore, a sensi-

ble compromise, given the current level of VLSI technology.

- 142-

7 Conclusions

7. 1. Achievements of the Work

The significant and original contribution of the work presented in this thesis has

been the development of a new method by which the fast RLS algorithms may be

stabilised, making use of interval arithmetic. This has complemented the range of

existing stabilisation techniques.

The stabilisation of the fast RLS algorithms is by no means an easy task. Firstly, the

finite precision errors which cause the divergence are the result of a non-linear trun-

cation process. For this reason, even a probabilistic analysis of the output from a

single fixed point multiplier is difficult. The organisational complexity of the fast

RLS algorithms contributes further to the difficulties encountered in developing and

analysing a suitable stabilisation procedure. Due to these difficulties, many existing

stabilisation procedures do not offer any guarantee of absolute stability. Simulation

results for the existing methods will generally demonstrate a very worthwhile

improvement in robustness for particular input signals, but cannot offer proof of sta-

bility. It is partly for this reason that few practical adaptive filtering systems have

been developed which have made use of the fast RLS adaptive algorithms. System

designers are understandably unwilling to make use of any procedure to stabilise the

fast RLS algorithms unless they can be certain about its effectiveness.

- 143 -

The appeal of interval arithmetic is that, due to the endpoint rounding scheme, the

interval calculated will contain the infinite precision result of any calculation. This

means that the interval technique can be guaranteed to give numerically stable per-

formance and provided that the design constants associated with the rescue pro-

cedure are correctly chosen, the algorithms will also give useful performance. This

guarantee is the main advance which has been gained by the use of interval arith-

metic. Most other stabilisation procedures which have been proposed have relied on

simulation results to demonstrate that more stable performance is obtained. Whilst

many of the improvements in stability demonstrated in this way are very

worthwhile, it is by no means certain that divergence will never occur. Using inter-

val arithmetic, however, a guaranteed maximum error limit can be attained.

Simulation results have been presented which have confirmed the stability of the

interval methods and have also demonstrated that there is no significant degradation

in performance when the interval fast RLS solution is compared with the conven-

tional RLS solution, which is assumed to give an exact least squares solution to the

problem. A number of important configurations with practical applications have

been demonstrated, including adaptive system identification and adaptive equalisa-

tion. Both time varying and non time varying problems were considered, so as to

ascertain that both the tracking performance and the steady state accuracy of the

algorithms are not significantly affected by interval arithmetic and the associated

reinitialisation process.

Of particular importance to cost sensitive applications is that the interval FTP algo-

rithm may be implemented using low accuracy fixed point arithmetic and will still

give acceptable performance. While the 16 bit implementations gave good perfor-

mance, it is believed that this is close to the minimum accuracy at which the inter-

val FTP algorithms could be realised. It is likely that a 24 or 32 bit wordlength

would yield excellent performance, with the potential to be even better than 32 bit

floating point arithmetic, provided that the scale factors are appropriately chosen.

-144-

Interestingly, the Motorola DSP 56000 processor offers 24 bit fixed point arithmetic

and so may be better suited to this particular application than the Texas Instruments

TMS320C25 processor used for the hardware realisation. However, the use of fixed

point arithmetic with fast RLS algorithms has not been previously documented and

so the 16 bit implementation is particularly significant.

7.2. Limitations and Areas for Future Work

Perhaps the most serious limitation to the use of interval arithmetic is its increased

computational complexity compared with single valued real number arithmetic.

Interval addition and subtraction require two real number operations to be per-

formed. If the algorithm of[117] is used, then interval multiplication may be per-

formed with an average of 2.4 real number multiplications, but there is an addi-

tional overhead involved in making the decisions for the conditional part of this

algorithm. The penalty for obtaining stable performance using the fast RLS algo-

rithms is, therefore, considerably increased computational complexity. The complex-

ity remains, however, linearly dependent upon the length of the adaptive filter and

so, the advantages of using a fast algorithm are not lost.

Another possible criticism of the interval arithmetic stabilisation method is that it

reinitialises the algorithm on the basis of a pessimistic worst case error analysis. This

means that reinitialisation takes place considerably more frequently than may be

strictly necessary. One alternative which could be considered is to replace the

rounding procedure for the endpoints with a probabilistic one, in which there is a

small probability that an endpoint will actually be rounded in the wrong direction.

This could lead to a more realistic model of the truncation errors, but it also intro-

duces two additional problems. Firstly, the more complicated rounding procedure

adds further to the complexity of the interval algorithm. Secondly, the guarantees

associated with using a worst case analysis are lost and so, it becomes difficult to be

- 145 -

certain of the absolute stability of the algorithm. Furthermore, the simulation results

have demonstrated that there is little degradation in performance caused by the reg-

ular reinitialisation of the existing interval method and so, there would be little to

be gained by this more complicated rounding arrangement.

One area for further work which would be worthwhile would be a comparative

study of the various stabilisation methods. Such a study would have to compare the

complexity of the different methods, the relative accuracy of the solution produced

by each algorithm and quantify how stable the different procedures are. It would

also be of interest to see how suitable each of the stabilisation procedures is for

hardware implementation, particularly when using fixed point arithmetic. Few

results have been published regarding fixed point implementations of the fast RLS

transversal filter algorithms, but this information is necessary so as to develop cost

effective realisations of the algorithms.

Once these comparisons have been made and the characteristics of the different

ways of implementing fast RLS algorithms are better understood, then practical

applications for these highly efficient algorithms should become more widespread.

-146-

References

Ljung, L., Morf, M., and Falconer, D., "Fast calculation of gain matrices for

recursive estimation schemes," mt. J. Control, vol. 27, PP. 1 - 19, 1978.

Carayannis, G., Manolakis, D. G., and Kalouptsidis, N., "A Fast Sequential

Algorithm for Least Squares Filtering and Prediction," IEEE Trans. Acoust,

Speech, Signal Process., vol. ASSP-31, No 6., pp. 1394 - 1402, 1983.

Cioffi, J. M. and Kailath, T., "Fast, Recursive Least Squares Transversal

Filters for Adaptive Filtering," IEEE Trans. Acoust, Speech, Signal Process.,

vol. ASSP-32, No 2., pp. 304 - 337, 1984.

Widrow, B. and Stearns, S., Adaptive Signal Processing, Prentice-Hall, Engle-

wood Cliffs, 1985.

Cowan, C. F.N. and Grant, P. M., Adaptive Filters, Prentice Hall, Englewood

Cliffs, 1985.

Mulgrew, B. and Cowan, C.F.N., Adaptive Filters and Equalisers, Kluwer

Academic Publishers, Norwell, Mass., 1988.

Koford, J.S. and Groner, G.F., "The use of an adaptive threshold element to

design a linear optimal pattern classifier," IEEE Trans. Info. Theory, vol. IT-

12, Pp. 42-50, Jan 1966.

Dillon, L.S., Principles of Animal Biology, pp. 275-278, Macmillan, New

York, 1965.

Zohar, S., "New hardware realisations of non-recursive digital filters," IEEE

Trans. Comput., vol. CT-22, pp. 328-347, April 1973.

Herrman, 0. and Schussler, H.W., "Design of non-recursive digital filters

with minimum phase.," Electron. Lett., vol. 6, pp. 329-330, 1970.

McLellan, J.H. and Parks; T.W., "A unified approach to the design of

optimum FIR linear phase digital filters ," IEEE Trans. Comput., vol. CT-20,

pp. 697-701, Nov 1973.

-147-

Rabiner, ER., "Linear program design of Finite Impulse Response digital

filters," IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 280-288, Oct 1977.

Roberts, R.A. and Mullis, C.T., Digital Signal Processing, Addison Wesley,

Reading, Mass., 1987.

Gray, A.H. and Markel, J.D., "Digital Lattice and Ladder Filter Synthesis,"

IEEE Trans. Audio Electroacoust., vol. AV-21(6), pp. 491-500, 1973.

Friedlander, B., "Lattice filters for adaptive processing," Proc. IEEE., vol. 70,

pp. 829-867, August 1982.

Honig, M.L. and Messerschmitt, D.G., Adaptive Filters:Structures, Algorithms

and Applications, Kluwer Academic Publishers, Norwell, MA., 1984.

Ahmed, N., Solon, D.L., Hummels, D.R., and Parikh, D.D., "Sequential

regression considerations of adaptive filtering," Electron. Lett., vol. 13, pp.

446-447, July 1977..

Parikh, D. and Ahmed, N., "A sequential regression algorithm for recursive

filters," Electron. Lett., vol. 14, pp. 266-268, April 1978.

Johnson, C.J., Larimore, M.G., Treichier, JR., and Anderson, B.D.O,

"SHARP Convergence Properties," IEEE Trans. Circ. Syst., vol. CAS-28, pp.

499-510, June 1981.

Larimore, M.G., Treichler, J.R., and Johnson, C.R., "SHARF:An algorithm

for adapting HR digital filters," IEEE Trans. Audio Speech Signal Process.,

vol. ASSP-28, pp. 1622-1624, Nov 1976.

Feintuch, P.L., "An adaptive recursive LMS filter," Proc. IEEE, vol. 64(3),

pp. 1622-1624, Nov 1976.

Hecht-Nielson, R., Neurocomputing, Addison-Wesley, Reading, Mass., 1990.

Ruck, D., Rogers, S.K., Kabrinsky, M., Oxley, M.E., and Suter, B.W., "The

multilayer perceptron as an approximation to the Bayes optimal discriminant

function," IEEE Trans. Neural Net., vol. 1, pp. 296-298, Dec 1990.

- 148 -

Gallant, S.I., "Preceptron based learning algorithms," IEEE Trans. Neural

Net., vol. 1, PP. 171-191, June 1990.

Shynk, J., "Performance surface of a single layer perceptron," IEEE Trans.

Neural Net., vol. 1, pp. 268-274, Sept 1990.

Watterson, J.W., "An optimal multilayer perceptron neural receiver for signal

detection," J IEEE Trans. Neural Net., vol. 1 , pp. 298-300, Dec 1990.

Barto, A., Sutton, R., and Anderson, C., "Neuron-like adaptive elements that

can solve difficult learning control problems," IEEE Trans. Syst. Man & Cyber-

net., vol. SMC-13, pp. 834-846, 1983.

Leitmann, G., Mathematics in Science and Engineering vol 5: Optimization

Techniques, Academic Press, New York, 1962.

Leitmann, G., Mathematics in Science and Engineering vol 31 : Topics in

Optimization, 31, Academic Press, New York, 1967.

Luenberger, D., Optimization by Vector Space methods, J. Wiley & Sons, New

York, 1969.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishcehenko,

E.F., The mathematical theory of optimal processes (English translation from

Russian), J. Wiley. & Sons., New York, 1962.

Widrow, B. and McCool, J., "A comparison of adaptive algorithms based on

the methods of steepest descent and random search," IEEE. Trans. Ant. Pro-

pag., vol. AP-24, pp. 615-637, Sept. 1976.

Darwin, C., The descent of man and selection in relation to sex, Murray, Lon-

don, 1882.

Darwin, C., On the origin of species, Murray, London, November 1859.

Widrow, B. and et, al, "Adaptive Noise Cancellation:Principles and Applica-

tions," Proc. IEEE, vol. 63, pp. 1692-1716, Dec. 1975.

Clark, G.A., Mitra, S.K., and Parker, S.R., "Block Implementations of adap-

tive digital filters," IEEE Trans. Circ. Syst., vol. CAS-28, pp. 584-592, June

-149-

1981.

Widrow, B. and et, a!, "Stationary and Non-Stationary learning Characteris-

tics of the LMS adaptive Filter," Proc. IEEE, vol. 64, pp. 1151-1162, 1976.

Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice-

Hall, 1974.

Godard, D., "Channel Equalisation using a Kalman Filter for Fast Data

Transmission," IBM J. Res. Develop., vol. 18(3), pp. 267-273, May 1974.

Cowan, C.F.N., "Performance comparison of finite linear adaptive filters,"

lEE Proceedings Part F, vol. 134(3), pp. 211-216, June 1987.

Faden, D., "Tracking properties of adaptive signal processing algorithms,"

IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-29, p. 439, June 1981.

Bershad, N. and Macchi, 0., "Comparison of RLS and LMS algorithms for

tracking a chirped signal," Proc. ICASSP 89, Glasgow, May, 1989.

McLaughlin, S., "Adaptive Estimation and Equalisation of the High Fre-

quency communications channel," Ph.D. Thesis, vol. University of Edinburgh,

1990.

Cioffi, J. M., "Limited Precision Effects in Adaptive Filtering," IEEE Trans.

Circuits Syst., vol. CAS-34 No 7., pp. 821 - 833, 1987.

Lucky, R., "Automatic equalisation for digital communication," Bell Syst.

Tech J., vol. 44, pp. 547-588, April 1965.

Gersho, A., "Adaptive equalisation of highly dispersive channels for data

transmission," Bell Syst. Tech. J., vol. 48, pp. 55-70, Jan 1969.

Proakis, J.G. and Miller, J.H., "An adaptive receiver for digital signaling

through channels with inter-symbol interference," IEEE Trans. Info. Theory,

vol. IT-15, pp. 484-497, June 1967.

Proakis, J.G., Digital Communications, McGraw-Hill, Singapore, 1983.

- 150 -

Stremler, F.G., Introduction to Communications Systems, Addison Wesley,

Reading, Mass., 1982.

Duttweiler, D.L., "A twelve channel digital echo canceller," IEEE Trans.

Comm., vol. COMM-26, pp. 647-653, May 1978.

Glover, J.R., "Adaptive noise cancelling applied to sinusoidal interferences,"

IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-35, pp. 481-491, Dec

1977.

Atal, B.S. and Schroeder, M.R., "Adaptive predictive coding of speech sig-

nals," Bell Syst. Tech J., vol. 49, pp. 1973-1986, Oct 1970.

Atal, B.S. and Schroeder, M.R., "Predictive coding of speech and subjective

error criteria," IEEE Trans Acoust. Speech Signal Process., vol. ASSP-27, pp.

247-254, June 1979.

Asher, R.B., Andrisani, D., and Dorato, P., "Bibliography on Adaptive Con-

trol Systems," Proc. IEEE, vol. 64, p. 1266, August 1976.

Mishkin, E. and Braun, L., Adaptive Control Systems, McGraw-Hill, New

York, 1961.

Belman, R., Adaptive Control Processes:A guided tour, Princeton University

Press, Princeton, NJ, 1961.

Sworder, D., Optimal Adaptive Control Systems, Academic Press, New York,

1966.

Anstorom, K.J. and Wittenmark, B., Adaptive Control, Addison-Wesley,

Reading, Mass., 1989.

Honig, M.L., "Echo cancellation of voiceband data signals using RLS and

stochastic gradient algorithms," IEEE Trans Comm., vol. COMM-33(1), pp.

65-73, Jan 1984.

Hunta, J.C. and Webster, J.G., "60Hz interference in electrocardiography,"

IEEE Trans. Biomed. Eng., vol. BME-20, pp. 91-101, March 1973.

- 151 -

Harrison, W.A., Lim, J.S., and Singer, E., "A new application of adaptive

noise cancellation," IEEE Trans. Acoust Speech Signal Process., vol. ASSP-34,

pp. 21-27, Jan 1986.

Forney, G.R., "Maximum Likelihood Sequence Estimation of digital

sequences in the presence of intersymbol interference," IEEE Trans. Info.

Theory, vol. IT-18, pp. 363-387, May 1972.

Nissen, C.W., "Automatic channel equalisation algorithms," Proc. IEEE, vol.

55, p. 698, May 1967.

Proakis, J.G., "Adaptive digital filters for equalisation of telephone channels,"

IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 195-200, June 1970.

Sorenson, H.W., "Least-squares estimation from Gauss to Kalman," IEEE

Spectrum, vol. 7, pp. 63-68, July, 1970.

Horowitz, L.L. and Senne, K.D., "Performance advantage of complex LMS

for controlling narrow band adaptive arrays," IEEE Trans. Acoust., Speech,

Signal Process., vol. ASSP-29, pp. 722-736, June 1981..

Ljung, L., "Convergence of Recursive Estimators," Proceedings 5th IFAC

Symposium on identification and system parameter identification, Darmstadt,

1979.

Ljung, L., "Analysis of a generalised recursive prediction algorithm," Automa-

tica, vol. 17, pp. 88-99, Jan 1981.

Ljung, L. and Sodstorm, T., Theory and Practice of recursive identification.

Falconer, D.D. and Ljung, L., "Application of Fast Kalman estimation to

adaptive equalisation," IEEE Trans. Comm., vol. COMM-26, pp. 1439-1446,

Oct 1978.

Morf, M., Dickinson, B., Kailaith, T., and Vieira, A., "Efficient Solutions of

Covariance Equations for Linear Prediction," IEEE Trans. Acoust. Speech,

Signal Process., vol. ASSP-25, pp. 429-435, Oct 1977.

Samson, C., "A unified treatment of Fast Kalman algorithms for identifica-

tion," mt. J. Control., vol. 31, pp. 909-934, May, 1982.

- 152 -

Kalouptsidis, N., Carayannis, G., and Manolakis, D., "A Fast Covariance

Algorithm for Sequential Least Squares Filtering and Prediction," IEEE Trans.

Auto. Control, vol. AC-29, pp. 752-755, Aug. 1984.

Kalouptsidis, N., Carayannis, G., and Manolakis, D., "A fast covariance type

algorithm for sequential least squares filtering and prediction," Proc. IEEE

Conf. Decision Contr., San Antonio, 1983.

Carayannis, G., Manolakis, D., and Kalouptsidis, N., "Fast Kalman type

algorithms for sequential signal processing," Proc JCASSP 83, Boston, April

1983.

Carayannis, G., Kalouptsidis, N., and Manolakis, D., "Fast recursive algo-

rithms for a class of linear equations," IEEE Trans Acoust. Speech and Signal

Process., vol. ASSP-20, pp. 227-239, April 1982.

Cioffi, J.M. and Kailath, K., "Windowed Fast Transversal Filter Adaptive

Algorithms with Normalisation," IEEE Trans. Acoust., Speech, Signal Pro-

cess., vol. ASSP-33, pp. 607-625, June 1985.

Cioffi, J.M., "The Block Processing FTP adaptive algorithm," IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-34, pp. 77-90, Feb 1986.

Wilkinson, J.H., Rounding Errors in Algebraic Processes, H.M. Stationary

Office, London, 1963.

Barnes, C.W., Tran, B.N., and Leung, S.H., "On the statistics of fixed point

roundoff error," IEEE Trans Acoust. Speech Signal Process., vol. ASSP-33, pp.

595-606, June 1985.

Mulcahy, L.P., "On fixed point roundoff error analysis," IEEE Trans. Acoust.

Speech Signal Process., vol. ASSP-37, p. 1623, October, 1989

Press, W.H., Flannery, B.P., Teukoisky, S.A., and Vetterling, W.T., Nunieri-

cal Recipes in C - The art of scientific computing, Cambridge University Press,

1988.

Levinson, N., "The Wiener RMS (Root Mean Square) Error Criterion in

Filter Design and Prediction," J. Math. Phys., vol. Vol 25, pp. 261-278, Jan

1947.

- 153 -

Kailaith, T., "A view of three decades of linear filtering theory," IEEE Trans.

Info. Theory., vol. IT-20, pp. 146-181, March 1974.

Broyden, C.G., Basic Matrices, Macmillan Press, London, 1975

Astorom, K.J. and Wittenmark, B., Adaptive Control, Addison Wesley, Read-

ing, Mass., 1989.

Mendel, J.M., Discrete Techniques of parameter estimation, Marcel Dekker,

New York, 1973.

Westlare, J.R., A handbook of numerical matrix inversion and solution of linear

equations, John Wiley, New York, 1968.

Ayres, F., Theory and problems of matrices, McGraw Hill, New York, 1962.

Second Generation TMS320 Users Guide, Texas Instruments, Dallas, Texas,

1988.

Papamichalis, P. and Simar, R., "The TMS320C30 digital signal processor,"

IEEE Micro Magazine, vol. 8, pp. 13-29, Dec 1988.

Fuccio, M.L and et, al, "The DSP32C : AT&T's second generation floating

point digital signal processor," IEEE Micro Magazine, vol. 8, pp. 30-48, Dec

1988.

Sohie, G.R.L. and Klonker, K.L., "A digital signal processor with IEEE

floating point arithmetic," IEEE Micro Magazine, vol. 8 , pp. 49-67, Dec

1988.

Klonker, K.L., "The Motorola DSP56000 digital signal processor," IEEE

Micro Magazine, vol. 6, pp. 29-48, Dec 1986.

Lin, K.S., Frantz, G.A., and Simar, R., "The TMS320 family of digital signal

processors," Proc. IEEE, vol. 75, pp. 1143-1159, September 1987.

TMS320 Family Development Support, Texas Instruments, Dallas, Texas.

Lin, D.W., "On the Digital Implementation of the Fast Kalman Algorithm,"

IEEE. Trans. Acoust. Speech Signal Process., vol. ASSP-32, pp. 998-1005,

- 154 -

HM

Lee, D.T.L, Morf, M., and Friedlander, B., "Recursive Least Squares Ladder

Estimation Algorithms," IEEE Trans. Acoust., Speech, Signal Process., vol.

ASSP-29(3), pp. 627-641, June 1981.

Porat, B., Friedlander, B., and Morl, M., "Square Root Covariance Ladder

Algorithms," IEEE Trans. Automatic Control, vol. AC-27(4), pp. 813-829,

August 1982.

Shensa, M.J., "Recursive Least Squares Lattice Algorithms - a Geometric

Approach," IEEE Trans. Automatic Control, vol. AC-26(3), pp. 675-702, June

1981.

Ling, F., Manolakis, D., and Proakis, J.G., "Numerically Robust Least

Squares Lattice Ladder Algorithms with Direct Updating of the Reflection

Coefficients," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34(4),

pp. 837-845, Aug 1986.

Ling, F. and Proakis, J.G., "A generalised multi-channel LS lattice algorithm

based on sequential processing stages," IEEE Trans. Acoust., Speech, Signal

Process., vol. ASSP-32, pp. 381-389, April 1984.

Cioffi, J.M., "The fast update adaptive rotors RLS algorithm," IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-38, pp. 631-653, April 1990.

Ling, F., "Efficient least squares lattice algorithms based on Givens rotation

with systolic array implementation," Proc. ICASSP'89, Glasgow, May 1989..

Gentleman, W.M., "Least squares computation by Givens transformation

without square roots," J. Inst. Maths. Applications, vol. 12, pp. 329-336, 1973.

Hariharan, S. and Clark, A.P., "HF Channel estimation using a Fast

Transversal Filter Algorithm," IEEE Trans. Acoust., Speech, Signal Process.,

vol. ASSP-38, pp. 1353-1362, Aug 1990.

Kim, D. and Alexander, W.E., "Stability Analysis of the Fast RLS Adapta-

tion Algorithm," Proceedings ICASSP 88, vol. 3, pp. 1361-1364, New York,

April 1988.

- 155 -

Benallal, A. and Gilloire, A., "A New Method to Stabilize Fast RLS Algo-

rithms based on a First Order Model of the Propagation of Numerical Errors,"

Proceedings ICASSP 88, vol. 3, pp. 1373-1376, New York, April 1988.

Slock, D.T. and Kailath, T., "Numerically Stable Fast Recursive Least

Squares Transversal Filters," Proceedings ICASSP 88, vol. 3, pp. 1365-1368,

New York, April 1988.

Botto, J.L. and Moustakides, G.V., "Stabilising the Fast Kalman Algorithm,"

IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-38, pp. 1342-1348,

Sept 1989.

Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

Callender, C.P. and Cowan, C.F.N., "Numerically Robust Implementations of

Fast RLS Adaptive Algorithms using Interval Arithmetic," Proceedings

EUSIPCO 90, pp. 173-176, Barcelona, Sept. 1990.

Callender, C.P. and Cowan, C.F.N., "Numerically Stable Fast Recursive

Least Squares Algorithms for Adaptive Filtering using Interval Arithmetic,"

Proceedings 10th lEE Saraga Colloquium on Digital and Analogue filters and

filtering systems, pp. 5/1 - 5/3, London, May 1990.

Callender, C.P. and Cowan, C.F.N., "Numerically robust implementations of

the Fast RLS adaptive algorithms using Interval Arithmetic," Signal Process-

ing, Submitted Jan 1991.

Knuth, D.E., The Art of Computer Programming, 2:Semiriumerical Algorithms,

p. Chapter 4, Addison Wesley, Reading, Mass, 1969.

Kulish, U.W. and Miranker, W.L., A New Approach to Scientific Computation,

New York Academic Press, New York, 1983.

Gibb, A., "Procedures for Range Arithmetic (Algorithm 61)," Comm. Assoc.

Coiizp. Mach., vol. 4:7, pp. 319 - 320, 1961.

Kailath(ed), T., "Special Issue on system identification and time series

analysis," IEEE Trans. Automat-Contr., vol. AC-19, Dec 1974.

- 156 -

Luders, G. and Narenda, K.S., "Stable adaptive schemes for state estimation

and identification of linear systems," IEEE Trans. Automat. Contr., vol. AC-

19, Dec 1974.

Watterston, C.C. and et, al, "Experimental confirmation of an HF channel

model," IEEE Trans. Communications, vol. COM-18,. pp. 792-803, 1970.

Shaver, and et, al, "Evaluation of a Gaussian HF channel model," IEEE

Trans. Communications, vol. COM-18, pp. 77-88, 1967.

Shepherd, R.A. and Lomax, J.B., "Frequency spread in ionospheric radio

propagation," IEEE Trans. Communications, vol. COM-18, pp. 268-275, 1967.

Ehrman, L., Bates, L.B., Eschle, J.F., and Kates, J.M., "Real time software

simulation of the HF radio channel," IEEE Trans. Communications, vol.

COM-30, pp. 1809-1817, Aug 1980.

Lin(ed.), K.S., Digital signal processing applications with the TMS320 family,

Prentice Hall/Texas Instruments, Englewood Cliffs, N.J., 1987.

Aliphas, A. and Feldman, J.A., "The versatility of digital signal processing

chips," IEEE Spectrum, vol. 24, pp. 40-45, June 1987.

Allen, J., "Computer architecture for digital signal processing," Proc. IEEE,

vol. 73, pp. 852-873, 1986.

Macdonald, A., "Real Time Hardware Simulator based on the TMS320C25

digital signal processor," B.Eng(Hons) Project Report HSP743, May, 1990.

Horowitz, P. and Hill, W., The art of electronics, Cambridge University Press,

Cambridge, 1980.

Grant, P.M., "The DTI-industry sponsored silicon architectures research ini-

tiative," lEE Electronics & Communication Engineering Journal, pp. 102-108,

June 1990.

Sage User Manual, Silicon Architectures Research Initiative, Edinburgh, 1990.

Lipsett, R., Schaefer, C., and Ussery, C., VHDL. Hardware Description and

Design, Kluwer Academic Publishers, Norwell, Mass., 1989.

- 157 -

132. The Standard VHDL 1076 Support Environment (VSE) User's Manual - Version

2.1 (Unix), Intermetrics Inc., IR-MD-124, Feb 1990.

- 158 -

Appendix A

Original Publications

Callender, C.P and Cowan, C.F.N. "Numerically Robust Implementations of

Fast RLS Adaptive Algorithms using Interval Arithmetic" ppl73-176, Proceedings

EUSIPCO 90, Barcelona, 1990.

Callender, C.P. and Cowan C.F.N. "Numerically robust implementations of the

Fast RLS adaptive algorithms using Interval Arithmetic" pp5/1-5/3, Colloquium

Digest, 10th LEE Saraga Colloquium on Digital and Analogue filters and filtering

systems, London, May 1990.

Callender, C.P. and Cowan C.F.N. "Numerically robust implementations of the

Fast RLS adaptive algorithms using Interval Arithmetic', submitted to Signal Pro-

cessing, January 1991.

- 159 -

SIGNAL PROCESSING V. Theories and Applications
L. Torres, E. Masgrau, and M.A. Lagunas (eds.)

Elsevier Science Publishers B. V., 1990

Numerically Robust Implementations of Fast RLS Adaptive
Algorithms using Interval Arithmetic

Christopher P. Callender

Cohn F.N. Cowan

Department of Electrical Engineering,
University of Edinburgh,

Edinburgh EH9 3JL,
Scotland, UK.

Abstract

In this paper, a new approach is presented to the stabilisation of the Fast
Recursive Least Squares adaptive filter algorithms. Using the new method,
the accumulation of numerical errors is monitored by using interval arith-
metic, rather than real number arithmetic to perform all the computations. If
the numerical error is found to be too large, then the algorithm is reinitialised
to prevent divergence. Results demonstrate the stable performance of the Fast
Transversal Filters (FTF) algorithm, using both floating point and fixed point
interval arithmetic.

173

1. Introduction
Fast RLS (Recursive Least Squares) algorithms for
adaptive filtering, such as the FTF algorithm [1],
the FAEST algorithm [2], and the Fast Kalman
Algorithm [3], offer the same rapid initial conver-
gence properties as the standard RLS algorithm
[4], but offer low computational requirements. The
fast algorithms are characterised by requiring
0(N) additions and multiplies per time sample, as
compared with 0(N 2) for standard RLS. Their
low computational load is of the same order as the
popular Least Mean Squares (LMS) algorithm [5].

The reason that they have not achieved the same
widespread application in high speed real time sys-
tems is that they suffer from numerical instability
when implemented on either a fixed or floating
point processor. Small numerical errors accumulate
at every iteration of the algorithm [6] until the
solution diverges, often very rapidly, from that
which is correct.
Attempts to stabilise the algorithms have been pro-
posed with varying degrees of success. Basically,
the stabilisation procedures can be divided into
two categories - those in which the algorithm is
reinitialised [7] and those in which modifications
are made to the algorithm [8].
Reinitialisation involves resetting certain internal
variables, hopefully before divergence occurs. The
solution of the adaptive filter just before reinitiali-
sation is passed forward using a soft constraint, so

that the adaptive algorithm does not need to
reconverge after it is reset. A design constant, nor-
mally denoted by i. controls the balance between
the initial soft-constraint and the least squares
solution. The difficulty is to predict when the
algorithm requires reinitialisation. It is this prob-
lem which is addressed by the new methods intro-
duced

ntro
duced in this paper.
Modifications to the algorithms typically take the
form of introducing 'leakage' factors into the
update equations in order to prevent the otherwise
unconstrained growth of numbers due to limited
precision arithmetic. Problems with this method
are that computational efficiency is reduced, biases
are introduced to the solution, and it is often diffi-
cult to prove that the modifications provide a suffi-
cient condition for stability.
In this paper, a new form of arithmetic is
presented [9], which enables an error analysis to
be performed whilst the algorithm is running. If
the results of this analysis indicate that numerical
problems are becoming significant, the algorithm
automatically reinitialises.

2. Theory

2.1. Interval Arithmetic (Infinite Precision)
An interval number is a range of real numbers,
bounded by lower and upper endpoints. The nota-
tion used is to write an interval in the form [a,b]

-160-

174

which is taken to mean

[ab1={xIa:5xbER} 	(1)

Thus [a,b] means all real numbers which be
between a and b.
Arithmetic operations on intervals are then defined
by:

[a,b]+[c,d]=[a+c,b+d] 	(2a)

[a ,b] + [c ,d] = [a —d ,b —c] 	(2b)

[a ,b 1. [c ,d]= [mm (ac ,ad ,bc ,bd), 	(2c)

max(ac ,ad ,bc ,bd)]t

[a,b]/[c,d] [a,b]. 'L L' (2d) [LL]

unless 0 E [c,d] in which case division is unde-
fined.
t More efficient methods for interval multiplica-
tion exist. The signs of a,b,c and d are examined
and normally only two real multiplies are then per-
formed [10].

2.2. Interval Arithmetic (Finite Precision)
All real variables in the Fast RLS algorithms may
be replaced by intervals in such a way as to ensure
that the interval contains the exact value of the
variable. The way in which this is performed is
processor dependent. Arithmetic is implemented
using equations (2a) - (2d), but care is taken over
the direction of rounding of the endpoints, to
guarantee that the finite precision interval contains
the whole of the infinite precision interval, and
often slightly more.
If this is done, the filter taps will also become
intervals. The difference between the upper and
lower endpoints, or width of the.interval represents
the extent to which finite precision errors have
been accumulated. If any of these widths are too
large the algorithm may be reinitialised. It is also
necessary to reinitialise the algorithm if any divi-
sion is attempted in which the divisor is an interval
which contains zero.

3. Computational Efficiency
It is clear from equation (2) that the computa-
tional requirement for each interval operation is 2
real operations, except for multiplication. The
multiplication algorithm of [10] normally requires
only 2 real multiplies, but in one case 4 are neces-
sary. The computation of lower and upper end-
points may, however, be shared between two pro-
cessors, resulting in the same speed of operation as

for non-interval Fast RLS, but with increased
hardware complexity.

Choice of Design Parameters
The choice of the design parameters, p, the max-
imum difference between the upper and lower
endpoint of each filter coefficient, and , the
parameter for the soft-constrained reinitialisation
of the algorithm may be chosen as:

p2<MMSE 	 (3)

where MMSE is the minimum mean square error
for the adaptive filter, and

MMSE X

	

Np2(1_X) 	
(4)

where X is the RLS forgetting factor, and N is the
filter length.

Results
All simulations involved using the FTF algorithm
to perform system identification (Figure 1). The
'unknown' system was an FIR filter of length 5,
and both it and the adaptive filter were excited by
coloured Gaussian noise (eigenvalue ratio 20).
The output from the 'unknown' system was cor-
rupted by small amounts of additive white Gaus-
sian noise. This signal was the desired response
input to the adaptive system.
In all graphs, the tap weights were found by taking
the mean of the upper and lower endpoints of the
tap intervals. The norm of the tap error vector
was then calculated. This was converted to a dB
scale.

Hsyslem 11o
unknown 	+

ise

fil ter..

Figure 1: System identification

L 	using the FTF adaptive algorithm

Graph la and lb show the performance of the
FTF algorithm, with no form of stabilisation using
64 bit floating point and 16 bit fixed point arith-
metic respectively. The fixed point simulations
used a 32 bit long accumulator for intermediate
results, as is common on many 16 bit DSP chips.

- 161 -

Norm Tap Error (dB) - Floating Point

0 	'

-10-
-20--
-30--
-40

10
-20
-30
-40 	.
-50 	 .
-60
-70

0 1000 2000 3000 4000 5000

Graph la 	
Time(Samples)

No rescues
X=0.98, SNR=45dB, 5,000 iterations.

Norm Tap Error (dB) - Floating Point

-10

-20

-40

-60
-70

0 4000 8000 12000 16000 20000
Graph 2a 	Time(Samples)

Rescued if rescue variable is negative [1].
X=0.98, =1.0, SNR=45dB, 20,000
iterations.

Norm Norm Tap Error (dB) - Floating Point

0
-10
-20
-30
-40
-50
-60
-70

0 4000 8000 12000 16000 20000
Graph 3a 	 Time(Samples)

Interval FTF
p=O.00S, X=0.98, p=1.0, SNR=45dB,
20,000 iterations.

175

Norm Tap Error (dB) - Fixed Point

0
-10
-20
-30
-40
-50
-60
-70

0 1000 2000 3000 4000 5000

Graph lb 	
Time(Samples)

No rescues
X=0.98, SNR=45dB, 5,000 iterations.

Norm Tap Error (dB) - Fixed Point
0
-10
-20
-30
-40
-50
-60
-70 1 .

0 4000 8000 12000 16000 20000

Graph 2b 	
Time(Samples)

Rescued if rescue variable is negative [1].
X0.98, p=0.5, SNR45dB, 20,000
iterations.

Norm Tap Error (dB) - Fixed Point
0
-10
-20
-30
-40
-50
-60
-70

0 4000 8000 12000 16000 20000
Graph 3b 	Time(Samples)

Interval FTF
p=0.005, k=0.98, p.=0.5, SNR45dB,
20,000 iterations.

- 162 - 162-

176

Norm Tap Error (dB) - Floating Point

0
-10
-20
-30
-40
-50
-60
7(1

0 	0.2 	0.4 	0.6 	0.8 	1.0
Graph 4a 	Time(Samples) x10e6

Long term performance of Interval FTF. One
million iterations (every 500th point plotted).
p=0.005, X=0.98, p=1.0, SNR=45dB.

Graphs 2a and 2b demonstrate the use of the res-
cue method outlined[1] to stabilise the algorithm,
again using 64 bit floating point and 16 bit fixed
point numbers. Little improvement is apparent on
the 16 bit results, and even the 64 bit floating
point version eventually diverges.
Graphs 3a and 3b show the interval method,
which was applied by reinitialising if the width of
any of the tap intervals was greater than 0.005.
The performance of the 16 bit fixed point

algorithm and the 64 bit floating point algorithm is
almost identical.
Finally graphs 4a and 4b illustrate the long term
stability of the interval method using both floating
and fixed point arithmetic for one million itera-
tions.
Other simulations have demonstrated the successful
application of interval techniques to the Fast Kal-
man algorithm.

5. Conclusions
Interval arithmetic provides a way to monitor the
accumulation of numerical errors. This may be
used to reinitialise the Fast RLS algorithms before
divergence occurs, yielding numerically stable per-
formance.
The increased computation of the interval methods
is a disadvantage, but the number of operations is
still proportional to the filter length.

References

1. Cioffi, John M. and Kailath, Thomas, "Fast,
Recursive Least Squares Transversal Filters
for Adaptive Filtering," IEEE Trans. Acous,

Norm Tap Error (dB) - Fixed Point
0
-10
-20
-30
-40
-50
-60
-70

0 	0.2 	0.4 	0.6 	0.8 	1.0
Graph 4b 	Time(Samples) x10e6

Long term performance of Interval FTF. One
million iterations (every 500th point plotted).
0.005, X=0.98, p=0.5, SNR=45dB.

Speech, Signal Process., vol. ASSP-32, No 2.,
pp. 304 - 337, 1984.
Carayannis, George, Manolakis, Dimitris G.,
and Kalouptsidis, Nicholas, "A Fast Sequen-
tial Algorithm for Least Squares Filtering and
Prediction," IEEE Trans. Acous, Speech, Sig-
nal Process., vol. ASSP-31, No 6., pp. 1394 -
1402, 1983.
Ljung, Lennart, Morf, Martin, and Falconer,
David, "Fast calculation of gain matrices for
recursive estimation schemes," mt. J. Control,
vol. 27, pp. 1 - 19, 1978.
Cowan, Colin F.N. and Grant, Peter M.,
Adaptive Filters, Prentice Hall, Englewood
Cliffs, 1985.
Widrow, B. and Stearns, S., Adaptive Signal
Processing, Prentice-Hall, Englewood Cliffs,
1985.
Cioffi, John M., "Limited Precision Effects in
Adaptive Filtering," IEEE Trans. Circuits
Syst., vol. CAS-34 No 7., pp. 821 - 833,
1987.
Lin, D.W., "On the Digital Implementation
of the Fast Kalman Algorithm," IEEE. Trans.
Acoust. Speech Signal Process., vol. ASSP-32,
pp. 98-1005, 1984.
Slock, D.T.M. and Kailath, T., "Numerically
Stable Fast Recursive Least Squares Transver-
sal Filters," Proc. ICASSP 88 Conf., vol. 3,
pp. 1365 -1368, 1988.
Moore, Ramon E., Interval Analysis,
Prentice-Hall, Englewood Cliffs, 1966.
Gibb, Allan, "Procedures for Range Arith-
metic (Algorithm 61)," Comm. Assoc. Comp.
Mach., vol. 4:7, pp. 319 - 320, 1961.

- 163 -

Numerically Stable Fast Recursive Least Squares Algorithms for
Adaptive Filtering using Interval Arithmetic

Christopher P. Ca/lender'

Cohn F.N. Cowant

Introduction
Fast Recursive Least Squares algorithms such as the Fast Kalman algorithm[1], the FAEST algo-
rithm[2], and the FTF algorithm[3] perform least squares adaptive filtering with low computational
complexity, which is directly proportional to the filter length. Unfortunately, these highly efficient
algorithms suffer from severe numerical instability when implemented using either fixed or floating
point digital arithmetic. Small numerical errors due to the finite precision of the computations at each
iteration of the algorithm are propagated and accurnulate[4}. Eventually the algorithm diverges from
the correct solution, often very suddenly. In this paper a new approach is used to perform stabilisation.
Interval Arithmetic[51 is used to provide an upper and a lower bound to the solution produced by the
adaptive algorithm, allowing for the possible effects of finite precision arithmetic. If the difference-
between the upper and the lower bounds becomes excessively large, then the Fast RLS algorithm may
be reinitialised[6], preventing divergence.

Interval Numbers and Interval Arithmetic

An interval number is simply a range of real numbers. An interval number may be written in the form
[a,b], which is taken to mean all real numbers between lower endpoint a and upper endpoint b, or

('1

	

la,b]= 4x ja:5x--b ,.r ERJ. 	 (1)

Having defined, what is meant by an interval number, we may now proceed to define the arithmetic
operations +, -. and — for the interval number system.

	

[a,b]+[c,d][a+c,b+d] 	 (2a)

	

[a,b]—[c,d]=[a —d,b —c] 	 (2b)

[a ,b]*[c ,d]=[min (ac ,ad ,bc ,bd),max (ac ,ad ,bc ,bd)] 	.. 	 (2c)

1 11
[a,b]—{c,dJ=[a,b]* -,-j

	
(2d)

unless 0 E [c,d] in which case the results of division are undefined.

These operation may be implemented on a digital processor, provided that care is taken over the
rounding directions of the calculated results[5]. Lower endpoints should be rounded in the direction of
- and upper endpoints in the direction of +o. More efficient methods of interval multiplication and
division exist, which give the same results as equations (2c) and (2d)[7].

Application to the FTF algorithm

To use interval arithmetic with the FTF algorithm[3], every number in the algorithm is converted to an
interval number and every arithmetic operation is converted to an interval operation. When this is
done, the filter coefficients calculated by the FTF algorithm also become intervals, and the difference
between the upper and lower endpoints of each of these coefficients represents the extent to which the
solution has accumulated numerical error. Real valued filter inputs may be represented by degenerate
intervals of the form [a,a] and for the purposes of obtaining real valued outputs, the centre of the
interval given by

	

centre ([a ,b])= -. (a +b) 	 (3)

tDcparent of Electrical Engineering, Univeristy of Edinburgh, Edinburgh EH9 3JL

5/1

- 164-

may be used.
To make the algorithm numerically stable, reinitialisation using a soft constrained initial solution[36]
must be performed if any of the differences between the upper and lower endpoints of the filter coef-
ficients exceeds a design constant denoted by p or if division is attempted by an interval [c,d] such

that 0 E [c,d].

Results

-to illustrate the stability of the interval FTF algorithm, an adaptive system identification experiment
was performed. A noise sequence was input to a FIR filter with unknown coefficients and the
response of this filter used to train the adaptive filter using the FTF algorithm.
The norm of the filter coefficient error vector in deciBels was plotted against time to illustrate the
performance of the adaptive system. In all simulations, 16 bit fixed point arithmetic was used, with
the provision of a 32 bit long accumulator. The signal to noise ratio was 40dB.

Figure 2 illustrates the divergence of the algorithm using non interval arithmetic after only a few
hundred iterations
Figure 3 illustrates the stable performance of the FTF algorithm using interval arithmetic. A good
solution is obtained for the entire duration of the simulation.
Figure 4 illustrates the long term performance of the algorithm. One million iterations were per-
formed, and the error plotted on every 500th iteration. A stable solution is again obtained for the

whole simulation.
Other simulation results have demonstrated that the technique is equally applicable to floating point
digital arithmetic, and to other Fast RLS adaptive algorithms such as the Fast Kalman algorithm[1]..

Conclusions
Interval arithmetic provides a method for monitoring the accurnulaion of numerical error, and deter-
mining whether a Fast RLS adaptive algorithm requires reinitialisation. The interval algorithms have
a computational complexity which is approximately double that of their non-interval counterparts,
but which still remains directly proportional to the filter length.

o 	 Fixed Pint

-lOj

-2OJ

t

L

-50 	 10e3

0 	1 	2 	3 	4 	5

Input 	 Noise
) Unknoxm System -)

) FTP

Figure 1:Simulation configuration for
[_adaptive system identification.

Figure 2:Divergence of FTF algorithm
X0.98, SNR = 40dB

5/2

- 165 -

0 	 Fixed Point 	 0

-10 	 -10

-20

-30 -30

-40 kdA - -40

z
	8

I- 50
	 M"ime Sap1esi

-0 I 	 xlOeJ

0 	2 	4 	6 	8 	10

Fixed Point

e (Samples)

cs

0 	.2 	.4 	.6 	.8 	1

Figure 3:Interval FTF
p=0.002, X=0.98, .=0.25, SNR=4OdB,
10,000 iterations.

Figure 4:Interval FTF
p0.002, X=0.98, p.=0.25, SNR=40dB,

L1,000,000 iterations.

References

Ljung, L., Morf, M., and Falconer, D., "Fast calculation of gain matrices for recursive esti-
mation schemes," mt. J. Control, vol. 27, pp. 1 - 19, 1978.

Carayannis, G., Manolakis, D. G., and Kalouptsidis. N.. "A Fast Sequential Algorithm for
Least Squares Filtering and Prediction," IEEE Trans. Acous, Speech, Signal Process., vol.
ASSP-31, No 6., PP. 1394 - 1402, 1983.

Cioffi, J. M. and Kailath, T., "Fast, Recursive Least Squares Transversal Filters for Adaptive
Filtering," IEEE Trans. Acous, Speech, Signal Process., vol. ASSP-32, No 2., pp 304 - 337,
1984.

Cioffi, J. M., "Limited Precision Effects in Adaptive Filtering," IEEE Trans. Circuits Syst.,
vol. CAS-34 No 7., pp. 821 - 833, 1987.

Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

Lin, D.W., "On the Digital Implementation of the Fast Kalman Algorithm," IEEE. Trans.
Acousr. Speech Signal Process., vol. ASSP-32, pp. 98-1005, 1984.
Gibb, A., "Procedures for Range Arithmetic (Algorithm 61)," Comm. Assoc. Comp. Mach.,
vol. 4:7, PP. 319 - 320, 1961.

5/3

- 166 -

Numerically robust implementations of the
Fast RLS adaptive algorithms using

Interval Arithmetic

Christopher P Callender
Cohn F.N. Cowan

Department of Electrical Engineering,
University of Edinburgh,

Kings Buildings,
Mayfield Road,

Edinburgh EH9 3JL,
Scotland.

Abstract

Fast Recursive Least Squares Algorithms have been developed which perform least

squares adaptive filtering in a computationally efficient manner. Unfortunately,

these algorithms also suffer from severe numerical instability due to the accumula-

tion of finite precision errors. In this paper a new approach to stabilisation is

presented. Upper and lower bounds for all of the quantities involved in the algo-

rithm are calculated in such a way as to guarantee that the infinite precision value is

contained within the range of values. The difference between the upper and lower

bounds represents the extent to which finite precision errors have accumulated. If

these errors are unacceptable, the algorithm may be reinitialised. Results are

presented which demonstrate the stability of the new method applied to the Fast

Transversal Filters (FIFF) Algorithm using both floating and fixed point arithmetic.

Results from a hardware implementation of a communications equaliser are also

presented.

1. Introduction

Several algorithms have been developed which perform Recursive Least Squares

(RLS) adaptive filtering[1,2] in a highly computationally efficient manner. These

algorithms include the Fast Kalman (FK) algorithm [3], the Fast a Posteriori Error

- 167 -

Sequential Technique (FAEST)[4, 5] and the Fast Transversal Filters (FTF)

algorithm[6-8]. Table I compares the computational complexities of these and other

popular algorithms for adaptive Finite Impulse Response (FIR) filters.

Algorithm(Exponentially Windowed, Unnormalised) 	 Complexity

Least Mean Squares 	 2N or 3N

Standard Recursive Least Squares 	 2.5N 2+ 4N

Fast Kalman 	 iON

Fast a-Posteriori Error Sequential Technique 	 7N

Fast Transversal Filters
	

7N

Table I: Comparison of computational complexity of various adaptive algorithms.

The complexity is given as the number of multiplications per iteration required to

implement an adaptive filter of order N.

It can be seen that all of the Fast RLS algorithms are characterised by a complexity

which depends linearly upon the filter order, and which compares favourably with

the popular Least Mean Squares (LMS) algorithm[9, 10]. The principal advantage

of a Least Squares algorithm over the LMS gradient search algorithm is its greatly

improved initial convergence properties, particularly when the spectral conditioning

of the input signal is poor[11]

Unfortunately, all of the Fast RLS adaptive algorithms are numerically unstable.

This means that when they are implemented using limited precision arithmetic[12]

as would be the case with any practical implementation, the small errors[13] at each

iteration of the algorithm accumulate until rapid divergence occurs, and the algo-

rithm no longer provides a valid solution.

It has been shown[12] that this instability is introduced by an unstable transforma-

tion which underlies all of the transversal Fast RLS algorithms. The matrix associ-

ated with this transformation has eigenvalues larger in magnitude than untity. The

effect of this is to amplify any errors which exist in the algorithmic quantities at

time k to produce larger errors at time k+1. The eventual divergence of the algo-

rithm is therefore inevitable, and so it is not possible to use any of these algorithms

continuously without some form of modification.

Various Fast RLS algorithms[14-17] have been discovered for lattice filtering[18]

The algorithm of[17] is numerically stable except in the case of very high filter

order, N. However, all of the Fast RLS lattice algorithms are characterised by con-

siderably increased complexity when compared with their transversal filter counter-

parts. Furthermore, in many applications involving system identification or channel

estimation, it is the filter coefficients which are of interest, and not the filter output.

A complicated transformation[19] is required to convert from lattice coefficients to

transversal coefficients.

Various solutions to the instability problem have been proposed. Generally, they

can be divided into two categories - those in which the algorithm is regularly reini-

tialised to prevent divergence[20-23] and those in which the algorithm runs continu-

ously with certain modifications which are designed to provide stability[24-26].

The reinitialisation methods involve resetting various algorithmic variables, hope-

fully before divergence occurs. Reinitialisation may be performed either periodically

in time as in[20], or when certain conditions are violated[6, 21,22]. In either case, a

soft-constrained initial solution is used so that the algorithm does not have to recon-

verge after reinitialisation. Using reinitialisation to stabilise the algorithms has the

advantage of adding little or nothing to the computational complexity, but obviously

care must be taken to ensure that reinitialisation occurs sufficiently frequently that

divergence does not occur. It is this problem which is addressed by the methods of

- 169 -

this paper.

Other stabilisation procedures, in which modifications are made to the algorithm

will generally have increased computational complexity compared to the unstabilised

algorithm. It is also very difficult to prove the absolute stability of the modified

algorithms, and whilst simulations have demonstrated very worthwhile improve-

ments in performance over their unstabilised counterparts, it is difficult to guarantee

their correct operation in all circumstances.

The stabilisation procedure presented in this paper falls into the first category, in

which the algorithm is reinitialised. A method of monitoring the accumulation of

numerical errors using interval arithmetic is proposed[27]. Lower and upper bounds

on the results of all calculations are evaluated, and if the difference between the

bounds of the solution is excessive, then the algorithm may be reinitialised, resulting

in stable performance.

2. Theory

2.1. Least Squares Adaptive Filtering

A transversal Finite Impulse Response (FIR) filter is one in which the input

sequence,

('1
Xk

I 	I 	 (1)

-N +1 j

is filtered to produce an output given by

(2)

where 11(k) is a vector of N coefficients, known as tap weights.

To make the filter adaptive, an algorithm must be developed, which finds the

- 170-

optimum value for 11(k). This is done by introducing a desired response signal

d (k). The filter error is given by

	

e (k) = d (k) —y (k)
	

(3)

The exponentially windowed least squares solution to this problem is the one which

minimises:

k

	

J 1(k)=E Xk_i e 2(k) 	 (4)
1=0

= 	(d(i)_X(i).11(i)) 2
1=0

X is a forgetting factor, slightly less than 1, used to enable the adaptive algorithm to

track time variant solutions for IL (k).

The solution which minimises (4) is found to be

[k 	 I_1 k

IL (k)= I 	X"(i)r(i) I 	Xc_i&(j)d(j) 	 (5)
J 1=0

r, rXd

In principle a least squares adaptive algorithm could be implemented using (5) to

calculate the optimum filter coefficients. It should be noted, however, that the first

term, r 1 of this expression involves the inversion of an N x N matrix, which

requires order N 3 operations per iteration, using the Gaussian Elimination tech-

nique.

The standard Recursive Least Squares (RLS) algorithm is derived by developing

equations to update r'(k —1), using the new data at time k, so as to give r 1(k).

This requires only order N 2 operations per iteration.

The Fast RLS algorithms depend upon the shifting properties of the input data vec-

tor, X (k) with time. This results in a complexity of only order N. The derivation of

each of the Fast RLS algorithms is complicated, and will not be repeated here. The

- 171 -

FTF algorithm is listed in appendix I.

2.2. Interval Arithmetic

An interval number[28] is a range of real numbers. Intervals are written using the

notation [a,b], which is taken to mean all real numbers between lower endpoint a

and upper endpoint b. In set notation

(
[a,b]=xIa---xb,xER 	 (6)

The arithmetic operator •, where • is one of +, -, , ± may be defined by

('1
[a,b].[c,d]=1x.yIaxb,c:5yd,xER,yER 	 (7)

That is to say that the result of operation • is the range of all possible results when

each of the intervals being operated upon takes all of its possible values. The opera-

tion ± cannot be defined for (c:50 and d ~ 0).

Functions to implement the four operations +, -, , and ± [29] are given in appen-

dix U. When implementing the operations on a limited precision processor, particu-

lar care must be taken over the rounding directions of the endpoints of the results.

If care is taken to ensure that all lower endpoints are rounded in the direction of

—co and all upper endpoints in the direction of +co, then the range of the finite pre-

cision interval is guaranteed to contain all of the infinite precision interval.

If the processor being used implements finite precision arithmetic using truncation

then it will sometimes round in the correct direction and sometimes it will not. The

results must therefore be corrected after calculation.

2.3. Using Interval Arithmetic with the Fast RLS algorithms

Having devised procedures to perform the interval arithmetic operations, it is now a

- 172 -

simple matter to use them with a Fast RLS algorithm. First, all of the scalar vari-

ables in the algorithm are converted to interval quantities and the vectors are con-

verted to vectors of intervals. The interval procedures described in § 2.2 are then

used to perform all of the computations of the algorithm.

If this is done, then the filter coefficients calculated by the algorithm, lj (k), will

also become intervals. The difference between their upper and lower endpoints indi-

cates the extent to which the solution has been corrupted by numerical errors. If the

difference between any of these endpoints exceeds a certain predefined limit, p,

then the algorithm must be reinitialised to prevent divergence, using the reinitialisa-

tion procedure in appendix I.

Reinitialisation is also required if any division operation is about to be preformed

by an interval of the form [c, d] where cO and d~:O, as this cannot be defined.

The filter and desired response inputs to the algorithm may be represented by

degenerate intervals of the form [a,a], which is equivalent to the single real value a.

To obtain non-interval outputs, we may use the centre of the output interval, given

by

centre ([a,b]] 	_(a+b) 	 (8)

Alternatively, to reduce computation either of the endpoints may be used as an

approximation to (8) instead.

2.4. The Reinitialisation Procedure

It is obviously undesirable for the algorithm to have to reconverge every time that it

is reinitialised. To prevent this, the algorithm is given an initial solution be means

of a 'soft constraint'[6, 20]. This corresponds to modifying the algorithm to minim-

ise the cost function

- 173 -

k

J 2(k)= Exc_ie2(k)+p.Xc I ILL (k)—II(0)l 1 2 	 (9)
iO

where the time index, k, is modified so that k= 0 corresponds to the moment of

reinitialisation. H (o) is the initial solution for the filter coefficients and p. is the

soft constraint parameter which controls the balance between the two terms of equa-

tion (9). If it is too small, the initial condition, H (01)
will be ignored, and the algo-

rithm will have to reconverge. If it is too large, the algorithm will remain close to

the possibly incorrect solution Lf (0)) and will not adapt. The choice of a correct

value for p. is therefore of importance in obtaining good performance.

The filter coefficients just before reinitialisation, denoted by H (_i) are used to

obtain the initial solution H (o).

H (o) =centre H (_ifl 	 (10)

where the centre operation (equation 8) is performed on a coefficient by coefficient

basis to the vector II (_i
))

.

The reinitialisation procedure of appendix I table 3 may now be used.

2.5. Choice of the design constants p. and p

The choice of the design constants p., the reinitialisation soft constraint parameter,

and p, the maximum tolerable width of the filter coefficients is clearly of great

importance to the performance of the interval algorithm.

The value for p depends upon the level of noise in the system, and if p is chosen

sufficiently small, then the error in the solution due to arithmetic errors will be of

the same order of magnitude as the error in the solution due to the noise present. p

is therefore chosen to be of the same order as the expected filter error, after the

RLS algorithm has converged.

- 174 -

Having selected p, it is now possible to find the correct value for 	It has already

been noted that .t controls the balance between the initial condition and the normal

RLS solution. If i is chosen too small, the algorithm will have to reconverge after

reinitialisation, and a series of 'spikes' in the solution will be seen at each time that

reinitialisation occurs. Too large a value for p. will result in incorrect initial condi-

tions causing the algorithm to give an incorrect solution for some time after reini-

tialisation occurs.

If we assume that each filter coefficient differs from the infinite precision solution

by a random variable from a uniform distribution between —p and p, just before

reinitialisation, then

E([Norm Tap Error]2)=E(I Ih(i'-h) 	
112)

-mull 	 11

=
:i--

If If we then calculate the expected value of the cost function J 2(K) after the reinitiali-

sation takes place, then

k
12

1=0

where e (i)= d (k) —&'(k)(i)

Hence, using (11) and (12), and expanding the geometric series.

E(J2(k))=p.
XkNP2

 +E(e2(i)) 13
3 	 1—x

For a good balance between initial conditions and subsequent adaptation, assuming

that the system is stationary, we impose the condition that E(J 2(i))=E(J 2(c)) for

all i, that is to say that the expected value of the cost function, which is directly

related to the filter error is constant for all time after the reinitialisation. Imposing

this condition,

p.XkNp2
+E(e2(i)) 1_X

1 - E(e2(i)) 	
14

3 	 1—X 	1—X

- 175 -

from which we obtain

= 	 15
Np2(1—X).

In practice, the initial assumption that the error distribution is uniform between —p

and + p may not be strictly valid, but simulation results have demonstrated that (15)

provides a useful starting point for the choice of and that operation of the interval

algorithm is relatively insensitive to the value chosen for ji.

3. Simulation Results

To illustrate the stability of the new methods, simulations have been performed

using an adaptive filter in the system identification configuration as shown in Figure

1.

The signal y(k) is input to both the adaptive filter and to some unknown system

which is to be identified. The response of the, unknown system is summed with a

small amount of noise and forms the desired response of the adaptive filter. The

adaptive system converges to have a response close to that of the unknown system.

It is then possible to extract the filter coefficients of the FIR adaptive system, which

will give approximately the transfer function of the unknown system.

All graphs were obtained by plotting the Euclidian norm of the tap error vector in

decibels versus time. The availability of a tap error vector as a reliable performance

indicator was the major motivation for using the system identification configuration

for simulations. Norm tap error in decibels is given by:

i ILL0,(k)—ti(k)l 2 1
NTE(k)=101og10 I ----- 	----I 	 16

I 	IIll,(0)II 2 	j

where

Fa 1

1ai1II

jaN
J

- 176 -

and LI01,, (k) is the vector of optimum tap weights at time k. If the unknown system

is actually an FIR filter, then the elements of H,1 (k) are the tap weights of this FIR

filter.

For all simulations, both the adaptive filter and the unknown system were FIR

filters of length 5. The coefficients of the unknown system were

[0.91
I 0.3 I

(k)= 1-0.3
0.7

I_ 0.1 I

The input signal was obtained by filtering white gaussian noise with a FIR filter

with coefficients [1.0,0.865] which gave an eigenvalue ratio of around 18.

All simulations were performed using the unnormalised FTF algorithm as this is the

most computationally efficient RLS algorithm available.

Two arithmetic schemes were tested - 64 bit floating point arithmetic and 16 bit

fixed point arithmetic with the provision of a 32 bit long accumulator for the

storage of intermediate results during scalar product calculations. The fixed point

system is typical of the minimum level of facilities provided by most digital signal

processors.

A. FTF with no Stabilisation

Figures 2a and 2b show the sudden divergence of the FTF algorithm when no stabil-

isation procedure is used. Figure 2a shows the 64 bit floating point implementation

and figure 2b shows the 16/32 bit fixed point implementation The fixed point simu-

lation was always found to produce a division by zero error soon after divergence

occurred.

It is clear from these results that the numerical stability of the FTF algorithm is

unacceptable, unless some form of stabilisation procedure is introduced. The graphs

- 177-

also demonstrate that increasing the accuracy of the arithmetic will only succeed in

delaying the onset of divergence.

Reinitialisation if the FTF rescue variable is negative

In[6], the original paper which introduced the FTF algorithm, a variable was identi-

fied, which should always be positive. If at any stage this variable becomes negative,

then the algorithm should be rescued by reinitialisation.

Figure 3a and 3b show the effects of applying this stabilisation procedure. It can be

seen that the floating point version remains stable for longer but that divergence still

occurs eventually. The stability of the fixed point version is not significantly

improved by this procedure.

The results demonstrate that although it is a necessary condition for the rescue vari-

able to remain positive, it is by no means sufficient if long term stability is required.

Interval FTF

Figure 4a and 4b show the results of applying the new interval methods to the FTF

algorithm. The results show that numerical stability is greatly improved, and that

there is essentially no difference between the fixed and floating point implementa-

tions. Care must be taken over the fixed point scale factors, to ensure that overflows

do not occur.

The results for the fixed point implementation are particularly impressive, indicating

that the interval technique enables the Fast RLS algorithms to be implemented on

low cost fixed point digital signal processors.

Long Term Stability

- 178 -

Figure 5a and 5b show the long term stability of the new methods for both 64 float-

ing point and 16/32 bit fixed point arithmetic. 1 million time iterations are per-

formed and again no divergence of the algorithm is apparent.

4. Hardware Tests

The interval FTF algorithm was implemented on a TMS320C25 digital signal pro-

cessor[30]. A number of assembler macros were developed to perform the interval

operations of § 2.2, as well as a macro for calculating the interval scalar product of

two vectors, taking advantage of the 32 bit long accumulator, and an efficient

macro for multiplying a vector by a scalar using interval arithmetic.

The algorithm was used for adaptive equalisation. Figure 6 shows the configuration.

A pseudo random binary sequence generator produces a signal which is passed

through an FIR channel, producing multi-path interference at the input to the adap-

tive filter. The purpose of the adaptive system is to converge to the inverse of the

FIR channel, removing the multi-path interference. To enable it to do this, the

desired response input to the adaptive equaliser is the original pseudo-random

binary signal. In practice, the system could be switched to decision directed mode

[31] after a training sequence. The principal advantage of using a Least Squares

algorithm is to minimise the length of this training period.

The data rate in the hardware experiments was 300 bits per second (bps), using an

adaptive filter of length 5. The TMS320C25 processor was operating at - of its

maximum speed, so the current implementation could be used at speeds up to

1200bps. For significantly faster operation, it would be necessary either to develop a

multi-processor configuration, or to design a dedicated interval arithmetic co-

processor to operate along with the digital signal processor.

Figure 7 shows the various eye diagrams measured using the system. Figure 7a was

measured at the output from the channel, and shows the eight different signal levels

- 179 -

introduced by. the three tap channel. The eye pattern is not widely open, suggesting

that in the presence of noise the bit error rate would be high if this signal was used

as the input to a decision device. Figure 7b is the eye diagram after equalisation. It

shows two distinct levels, and is widely open, indicating that this signal could be

received with a much lower error than the one at the input to the equaliser.

Figure 8 is a trace of filter error squared against time and it shows the stability of

the interval arithmetic algorithm. After the spike at the left hand side of the trace,

corresponding to the initial convergence, it can be seen that the square of the error

remains small for the remainder of the experiment. This confirms the numerical sta-

bility of the algorithm in the hardware implementation.

5. Conclusions

The rapid, data independent initial convergence of the RLS algorithms makes them

well suited to applications such as echo cancellation for modems, and to channel

equalisation for digital radio and telephone communications as they enable a shorter

training sequences to be used. The lower computational complexity of the fast algo-

rithms makes them well suited to applications in which a high data rate is also

required.

The new interval algorithms operate using interval quantities which are guaranteed

to contain the infinite precision solution and the problems of finite precision error

are circumvented. An error analysis of the algorithm is performed in real time by

the new methods and numerical errors within the algorithm are strictly limited. If

the limits are exceeded, then the algorithm is reinitialised, resulting in numerical

stability. The stability is independent of the precision of arithmetic which is being

used and it has been shown that performance using 16/32 bit fixed point arithmetic

is very similar to that obtained using the much more accurate 64 bit floating point

arithmetic scheme.

MUM

The only disadvantage of the interval methods is their increased computational com-

plexity. The complexity, however, remains directly proportional to filter length, and

so for long adaptive filters, a considerable saving in complexity over the standard

RLS algorithm will still be obtained.

References

Godard, D., "Channel Equalisation using a Kalman Filter for Fast Data

Transmission," IBM J. Res. Develop., vol. 18(3), pp. 267-273, May 1974.

Honig, M.L. and Messerschmitt, D.G., Adaptive Filters:Structures, Algorithms

and Applications, Kluwer Academic Publishers, Norwell, MA., 1984.

Ljung, L., Morf, M., and Falconer, D., "Fast calculation of gain matrices for

recursive estimation schemes," mt. J. Control, vol. 27, pp. 1 - 19, 1978.

Carayannis, G., Manolakis, D. G., and Kalouptsidis, N., "A Fast Sequential

Algorithm for Least Squares Filtering and Prediction," IEEE Trans. Acoust,

Speech, Signal Process.; vol. ASSP-31, No 6., pp. 1394 - 1402, 1983.

Kalouptsidis, N., Carayannis, G., and Manolakis, D., "A Fast Covariance

Algorithm for Sequential Least Squares Filtering and Prediction," IEEE Trans

Auto. Control, vol. AC-29, pp. 752-755, Aug. 1984.

Cioffi, J. M. and Kailath, T., "Fast, Recursive Least Squares Transversal

Filters for Adaptive Filtering," IEEE Trans. Acoust, Speech, Signal Process.,

vol. ASSP-32, No 2., pp. 304 - 337, 1984.

Cioffi, J.M. and Kailath, K., "Windowed Fast Transversal Filter Adaptive

- 181 -

Algorithms with Normalisation," IEEE Trans. Acoust., Speech, Signal Pro-

cess., vol. ASSP-33, pp. 607-625, June 1985.

Cioffi, J.M., "The Block Processing FTF adaptive algorithm," IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-34, pp. 77-90, Feb 1986.

Widrow, B. and et, al, "Stationary and Non-Stationary learning Characteris-

tics of the LMS adaptive Filter," Proc. IEEE, vol. 64, pp. 1151-1162, 1976.

Widrow, B. and Stearns, S., Adaptive Signal Processing, Prentice-Hall, Engle-

wood Cliffs, 1985.

Muigrew, B. and Cowan, C.F.N., Adaptive Filters and Equalisers, Kluwer

Academic Publishers, Norwell, Mass., 1988.

Cioffi, J. M., "Limited Precision Effects in Adaptive Filtering," IEEE Trans.

Circuits Syst., vol. CAS-34 No 7., pp. 821 - 833, 1987.

Wilkinson, J.H., Rounding Errors in Algebraic Processes, H.M. Stationary

Office, London, 1963.

Lee, D.T.L, Morf, M., and Friedlander, B., "Recursive Least Squares Ladder

Estimation Algorithms," IEEE Trans. Acoust., Speech, Signal Process., vol.

ASSP-29(3), pp. 627-641, June 1981.

Porat, B., Friedlander, B., and Morf, M., "Square Root Covariance Ladder

Algorithms," IEEE Trans. Automatic Control, vol. AC-27(4), pp. 813-829,

August 1982.

Shensa, M.J., "Recursive Least Squares Lattice Algorithms - a Geometric

Approach," IEEE Trans. Automatic Control, vol. AC-26(3), pp. 675-702, June

- 182 -

1981.

Ling, F., Manolakis, D., and Proakis, J.G., "Numerically Robust Least

Squares Lattice Ladder Algorithms with Direct Updating of the Reflection

Coefficients," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34(4),

pp. 837-845, Aug 1986.

Gray, A.H. and Markel, J.D., "Digital Lattice and Ladder Filter Synthesis,"

IEEE Trans. Audio Electroacoust., vol. AV-21(6), pp. 491-500, 1973.

Cowan, C. F.N. and Grant, P. M., Adaptive Filters, Prentice Hall, Englewood

Cliffs, 1985.

Lin, D.W., "On the Digital Implementation of the Fast Kalman Algorithm,"

IEEE. Trans. Acoust. Speech Signal Process., vol. ASSP-32, pp. 998-1005,

1984.

Hariharan, S. and Clark, A.P., "HF Channel estimation using a Fast

Transversal Filter Algorithm," IEEE Trans. Acoust., Speech, Signal Process.,

vol. ASSP-38, pp. 1353-1362, Aug 1990.

Kim, D. and Alexander, W.E., "Stability Analysis of the Fast RLS Adapta-

tion Algorithm," Proceedings ICASSP 88, vol. 3, pp. 1361-1364, New York,

April 1988.

Elefteriou, E. and Falconer, D., "Restart Methods for Stabilising FRLS

Adaptive Equaliser Filters in Digital HF Transmission," Globecom, Atlanta,

Dec 1984.

Benallal, A. and Gilloire, A., "A New Method to Stabilize Fast RLS Algo-

rithms based on a First Order Model of the Propagation of Numerical Errors,"

- 183 -

Proceedings ICASSP 88, vol. 3, pp. 1373-1376, New York, April 1988.

Slock, D.T. and Kailath, T., "Numerically Stable Fast Recursive Least

Squares Transversal Filters," Proceedings ICASSP 88, vol. 3, pp. 1365-1368,

New York, April 1988.

Botto, J.L. and Moustakides, G.V., "Stabilising the Fast Kalman Algorithm,"

IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-38, pp. 1342-1348,

Sept 1989.

Callender, C.P. and Cowan, C.F.N., "Numerically Robust Implementations of

Fast RLS Adaptive Algorithms using Interval Arithmetic," Proceedings

EUSIPCO 90, pp. 173-176, Barcelona, Sept. 1990.

Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

Gibb, A., "Procedures for Range Arithmetic (Algorithm 61)," Comm. Assoc.

Comp. Mach., vol. 4:7, pp. 319 - 320, 1961.

Second Generation TM5320 Users Guide, Texas Instruments, Dallas, Texas,

Stremler, F.G., Introduction to Communications Systems, Addison Wesley,

Reading, Mass., 1982.

- 184 -

Appendix I:The unnormalised FTF Algorithm

I 	 Fast Exact Initialisation 	 I

T= 0: A 0,0=B0,0= 1, C0,0 = 0(zero dimension)

H 10= Lq) y(0)=1, 0t0(0)=y(0)2
Y (o)

1f:-TN:

e_l (T)=AT _l,T _l

'1 —ej(T)
A7t 	T T _ ,r = IA_l

	

I 	' 	Y(°) 	j

e_1(T)—e_1 (T)y_1(T —1)

a(T)—Xctr _i(T —1)

ct_i(T)=or(T)+e_i (T)eT _l(T)

r (T)
(T)=-'7'_1(T —1)

	

eT,T -[o a 	1 - eT_l(T)
- 	T_1.T_1] 	aT(T) AT_iT_I

F
(1 y(o) T (T)OT,T) 1 (Only when T=N) BT,T= I

IT,TY(0) -YT (T) (Only when T=N)

€ç(T) = d (T) +HT ,T _1YT (T)

T (T) = €(T)YT (T)

	

F 	—€(T) 1
ifT<N,HT+1T = [H1

T?öYH
if T=N, HN ,T =HT ,T _l+ ET (T)CT ,T

Table I:The Fast Exact Initialisation Procedure for the FTF algorithm

- 185 -

Unnormalised FTF Algorithm 	 I

1 	 e(T)AN,T _lYN+l(T)

2 	 eN (T)=e/(T)y N (T-1)

3 	 cLN (T)=XaN (T-1)+e!(T)eN (T)

N(T — l)
4 	 '/N+l(T) — — /N(T -1)

5 	 CN + 1,T = [o 	CN,T -11- -e 	(T)a 1 (T —l)AN,r -1

6 	 = 	, + e (T) [o CN,T -1 }

7 	 r(T) 	XI3N (T —1)C +1,

8 	 N(T) ll+rk(T)-Y N+ ,(T) +eN l,T } 1N+l (T)

rescue variable t = [1+r(T)-YN+l (T) +lT }

9 	 rN (T)=r(T)yN (T)

10 	 13N (T)—kI3N (T -1)+r(T)rN (T)

11 	
[ÔN,T 0I=CN+1,T_C+1,TBN,T_1

12 	 BN,T=BN,T_1+rN(T) [N,T 01
13

14 	 € N (T)E/(T)'/N (T)

15

t Rescue if rescue variable is negative (see table III).

Table][[:The steady state FTP algorithm.

FTF Reinitialisation

Table 1II:The rescue procedures for the FI'F algorithm. L is a soft constraint which
determines the influence of the solution before the reinitialisation, W 0, on future

solutions.

- 187 -

Appendix II:Efficient interval arithmetic procedures.

RANGE ADD(a,b,c,d)

I*A procedure to calculate the result [e,f] = [a,b] + [c,d] *1

e=a+c;

f=b+d;

End of procedure.

RANGE SUBTRACT(a,b,c,d)

ISA procedure to calculate the result [e,fl = [a,b] - [c,d] *1

e=a-d;

f=b-c;

End of procedure.

RANGE DIVIDE(a,b,c,d)

/5 A procedure to calculate the result [e,f] = [a,b] / [c,d] *1

if(cSO and d=-::O) {

print Division by zero error"

exit

if(c<O) {

if (b>O) e=b/d; else e=b/c;

if (a>=O) f=alc; else f=a/d;

else

if (a< 0) e= a/c; else e=a/d;

if (b>O) f=b/c; else f=b/c;

End of procedure.

-188-

RANGE MIJLTIPLY(a,b,c,d)

f* Procedure to calculate the result [e,f] = [a,b] * [c,d] *1

if (a<O && c>=0) {

temp= a;
a=c;

c= temp;
temp = b;

b= d;
d= temp;

if (a> =0) {
if(c>=0) {

e= a*c;
f=b*d;

else {
e=b*c;

if (d>0) f=b*d; else f=a*d;

else {
if (b>0){

if (d>0) {
e= min(a*d,b*c);

f= max(ac,bd);

else {
e=b*c;

1= a*c;

else {
f= a*c;

if (d<=0) e=b*d; else e=a*d;

End of procedure.

-189-

Captions

Figure 1

Configuration used for all computer simulations. Adaptive system identification is performed by con-

necting the output of an unknown system to the desired response input of an adaptive filter. The adap-

tive system converges to produce the same response as the unknown system, and if the unknown system

is an FIR filter, the adaptive system will then have the same coefficients.

Figure 2a

Performance of FTF adaptive algorithm with no stabilisation using 64 bit floating point arithmetic.

X=O.98

Signal to Noise Ratio=4OdB

Figure 2b

Performance of FTF adaptive algorithm with no stabilisation using 16/32 bit fixed point arithmetic.

X=O.98

Signal to Noise Ratio=4OdB

Figure 3a

Performance of FIT adaptive algorithm, reinitialising if rescue variable is negative using 64 bit float-

ing point arithmetic.

X=O.98

l.L1.O

Signal to Noise Ratio=4OdB

Figure 3b

Performance of FTF adaptive algorithm, reinitialising if rescue variable is negative using 16/32 bit

fixed point arithmetic.

X=O.98

Ll.O

Signal to Noise Ratio=4OdB

Figure 4a

Performance of the Interval FTP algorithm, using 64 bit floating point arithmetic.

X=O.98

p=O.00225

Signal to Noise Ratio=4OdB

- 190-

Figure 4b

Performance of the Interval FTP algorithm, using 16/32 bit fixed point arithmetic.

X=O.98

p=O.00225
Signal to Noise Ratio=4OdB

Figure 5a

Long term performance of the Interval FTP algorithm, using 64 bit floating point arithmetic.

X=O.98
627.2

p=O.00225
Signal to Noise Ratio=4OdB

Figure Sb

Long term performance of the Interval FTF algorithm, using 16/32 bit fixed point arithmetic.

X=O.98

p = 0.00225
Signal to Noise Ratio=4OdB

Figure 6

Hardware configuration for performing adaptive equalisation. A pseudo-random sequence representing

the transmitted signal is generated, and input to a FIR filter which represents the transmission channel.

The output from the channel is the input to an adaptive filter, which is given the transmitted sequence

as its desired response. It therefore converges to the inverse of the FIR channel, allowing the original

transmitted signal to be recovered.

Figure 7a

Eye diagram measured at the input to the adaptive equaliser. It shows the eight distinct levels intro-

duced by the three tap FIR channel. The narrow, partially closed 'eye' indicates that the signal is not

suitable for use without equalisation in the presence of high levels of noise.

Figure 7b

Eye diagram measured at the output from the adaptive equaliser. It shows that two distinct levels have

been almost recovered, and that the signal is suitable for use as the input to a decision device.

Figure 8

Graph of squared filter error against time for the hardware system. After the spike representing initial

convergence, it can be seen that the error remains small, confirming the numerical stability of the

-191-

interval arithmetic algorithm.

Noise
4 Unknown System .1-•K +

1+

	

Input x(k) F 	
I

Output y(k)

	

I 	Fast RLS Adaptive Filter 	 (E)

Error e(k)

Figurel

Graph 2a

Ttrne (trerations)

Graph 2b

0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000
Time (Iterations)

-192-

0 	 5000 	 10000 	11,000 	20000
Time (LtermtiOfls)

- 193 -

25000 	30000

-30

-40

-50

-60

5000 	10000 	15000 	20000 	25000 	30000
Time (Iterations)

Graph 3b

5000 	10000 	15000 	20000 	25000 	30000
Time (Iterations)

Groh 4.a

5000 	10000 	15000 	20000 	25000 	30000
Time (Iterations)

Graph ,a

200000 	 400000 	 600000 	 800000 	 1e06
lIme (Iterations)

Craoh A b

-30

-40

-50

- - --------------------- ------------ ---------------- ---------
--:

300000 	 400000 	 600000 	 800000 	 le+06
Time (Iterations)

-194-

HP 5I83U DIGITIZING OSCILLOSCOPE 	 Man, 5 Nov ISSL I5:47:4

Figure 7a

NP 5183U DIGITIZING OSCILLOSCOPE 	 Tue. 6 Nov 1990. I0:4507

Figure 7b

- 195 -

Figure 6

HP -$P 5183U DIGITIZING OSCILLOSCOPE 	 Mon 	7 Jan 11

Figure 8

- 196 - 196-

Appendix B

Simulation Software

- 197 -

}
priritf("\n);

printf(\n");
}

displaymatrix(adr, r, c,fp)
jut 	r, C;

displaymatrix

Matrix function library for C

#include <stdio.h>

void mscQ;
double raddQ;
double rmulQ;
double rdivO;
void cadcI;
void cmulO;
void cinvQ;
void error();

struct SPVAR •{
mtrsize;
mt csize;
double *e1eflflt;
};

double *m realloc(ptr ,sz)
double *ptr;
mt sz;

if (ptr==O) ptr=(double *) malloc(sz);

else ptr=(double *)realloc(ptr,sz);
return(ptr);

void d bxdisp(me)
struct SP\AR me;
{

hit 	j, k,r.c;
double *a ;

r=nle.rsize;
c=rne.csize;
adr=rne.e!ernent;

for (j = 0; j 	r; i++) {

for (k = 0; k !=c; k++) {

f (*(Jj + 1) < 0)

printf(%8.2e - %8.2ej
(—(adr + 1)));

else
printf("%8.2e + %8.2ej

*(adr + 1));
adr-H-;
adr-f-+;

*adr,

*adr,

- 198 -

FILE *fp;
double *adr;

{
mt j, 	k;
for (j = 0; j 	!= r; j++) {

for (k = 0; k !=c; k-{-+){

if (*(+ 1) < 0)

fpriritf(fp,"%8.2e - %8.2ej
(—adr + 1)));

else
fprintf(fp,"91c8.2e + %8.2ej

*(adr + 1));
adr++;
adr-H-;

printf(fp,"\n");

fprintf(fp,"\n");

void addrnatrix(adri, adr2, adr3, ri, ci, r2, c2, r3, c3)
jut 	ri 	ci, r2, 	c2, 	r3, 	c3;
double 	*adr 1, *ath.2 	*ac1I 3;

{
jut j, 	k;
if (ri r2)

error('Unable to add matrices of different sizes);
if (ci != c2)

error('Unable to add matrices of different sizes);
if (ri j=r3)

error(" Result matrix of incorrect size in add");
if (ci = c3)

error(Result matrix of incorrect size in add');
for (j = 0; j 	!= ri; j++) {

for (k = 0; k != ci; k++) {
cadd(*adr l, 	*(athi + 1), 	*adr2, *(adr2 +

1), 	adr3);
adri = adri + 2;
adr2 = adr2 + 2;
adr3 = adr3 + 2;

}
}

void iden(adr, r, c)

double adr:
jut 	r, c;
{

jut 	j, k i
if (r 	c)

error(Non square matrix cannot be set to identity");
for (j = 0; j 	r; j++) {

for (k = 0; k = c; k++) {

if (j == k) {
*adr = i;

1)0

if (j 	k) {

- 199 -

*adr =O;

*(adr + 1) = 0;

}
adr = adr + 2;

}
}

}

void zer(adr, r, c)

double *adr;
mt 	r, C;

{

	

mt 	j, k;
for (j =0;j '=r;j++) {

for (k = 0; k !=c; k++){

*adr = 0;

*(r + 1) = 0;

adr = adr + 2;
}

void setel(adr, r, c, x, y, yr, vi)
double yr, vi;
double *adr;
mt 	r, C, X, y;

if (V > c)
error('Setelement out of bounds');

if (x > r)
error(''Setelement out of hounds');

if (y < 1)
erroi("Setelernent out of hounds");

if (x < 1)
error("Setelenient out of bounds");

*(ath + (c * 	*2 + y *2) = vr;
*(adr + (c * 	*2 +y *2 + 1) = vi;

void rnult(adrl, adr2, adr3, ri, ci, r2, c2, r3, c3)
double 	adri, *adr2, *ads3;
mt 	ri, ci, r2, c2, r3, c3;
{

mt 	j, k, 1;
double total[2], ar, al, br, bi, t[2];
double *temp;
if (ri == 1 && ci == 1) {

msc(adr2,adr3,r2,c2,r3,c3, *adri, adr1+i));
rto SKIP;

if (r2 == 1 && c2 == 1) {
msc(adri ,adr3,ri ,ci,r3,c3, *adr2, adr2+1));
goto SKIP;
}

if (r2 	ci)
error(" Unable to multiply matrices - dirrnsions incorrect");

if (c2 	c3)
erroi("Result matrix of incorrect size in multiply");

- 200 -

if (ri != r3)
error(Result matrix of incorrect size in multiply);

temp = (double * maJloc(siz f(double) *r3 * c3 * 2);
if (temp == 0)

error("Out of Memory Error");
for(j = 0; j != r3; j++) {

for (k=0;k !=c3;k-4---l-){

total[0] = 0;

total[i] = 0;

for (1= 0; 1?= ci; 1++) {

ar = (*(adri + (ci 	* 	* 2) ± 1

ai = (*(adri + (ci 	* 	* 2) + 1
2 + 	1));

br = (*(&fr2 + (c2 	* 1 	* 2) + k
*2));

bi = (*(adj.2 + (c2 * 1* 2) + k
*2 +i));

cmul(ar, ai, br, bi, 	t);
cadd(t[0], 	t[1], 	total[0], 	total[i],

total);
}
*/ten p + (c3 * j * 2) + k * 2) = total[0];

*(temp + (c3 	i * 2) +k * 2 + 1) = total[1];

} 	
}

for (j = 0; j 	r3; j++) {

for (k=0;k!c3;k++){

ar 	(*(temp + (c3 * 	* 2) + k * 2));
ai = (*(temp + (c3 * j * 2) + k * 2 + 1));
*(r3 +(c3 * j * 2' + k * 2) = ar;
*(r3 + (c3 * j * 25 + k * 2 + i) = ai;

} 	
}

free(temp);
SKIP:
}

nun±erofrows(rl ,c 1,r2,c2)
mt rl,c1,r2,c2;
{
if (rl==l && cl==1) returu(r2);
return(r 1);

number of colwiins(rl ,cl ,r2,c2)
mt rl.c1r2,c2;

if (r2==1 && c2==1) return(cl);
return(c2);
}

void getel(adr, r, c, x, y, v)
double *V;

double *j;
mt 	r, c, x, y;
{

number of rows

number of columns

- 201 -

if (y > c)
error('Getelement out of bounds');

if (x > r)
error('Getelernent out of bounds);

if (y < 1)
error(Getelement out of bounds);

if (x < 1)
error('Getelement out of bounds);

X--;

y--;
(*v) = (*(+ (c * x * 2) + y * 2));
(*(v + 1)) = (*(+ (c * x * 2) + y * 2 + 1));

void subrnatrix(adri, adr2, adr3, ri, ci, r2, c2, r3, c3)
mt 	ri, ci, r2, c2, r3, c3;
double *adri, *adr2, *a&3;

{
int 	j, k;
double a, b, d;
if (ri != r2)

error("Unable to subtract matrices of different sizes');
if (ci 	c2)

error("Unable to subtract matrices of different sizes");
if (ri j= r3)

error('Result matrix of incorrect size in subtract');
if (ci != c3)

error(Result matrix of incorrect size in subtract');
for (j = 0; j != ri; j++) {

for (k = 0; k != ci; k++) {

cacld(*adr l, *(ad.l + 1), _(*adr2), _(*(adr2
+ 1)), adr3);

add = adri + 2;
adr2 = adr2 + 2;
adr3 = adr3 + 2;

}
)

}

void trans(adri, adr2, ri, ci, r2, c2)
double *adr 1,
mt 	ri, ci, r2, c2;
{

double ar, ai;
double *temp;
mt 	j, k;
if (ri != c2)

error('Result matrix of incorrect size in transpose");
if (ci != r2)

error("Hesult matrix of incorrect size in transpose");
temp = (double *)niailoc(sizeof(double) *r2 * c2 * 2);
if (temp == 0)

error(Out of memory error");
for (j = 0; j 	ri; j++) {

for (k = 0; k 	ci; k-H-) {

ar = (*(adrl +(j • ci * 2) + k * 2));
ai = ((adrl + (j 	ci * 2) + k * 2 +

*(temp + k * r * 2 + j * 2) = ar;
*(temp+ k *ri 	2 +j *2 + i)

- 202 -

for (j = 0; j != r2; j++) {

for (k = 0; k != c2; k++) {

ar = (*(temp + (c2 * j 	* 2) + k * 2));
ai = (*(temp + (c2 * i 	* 2) + k * 2 + 1));
* adr2 + 	c2 * 	* 2) + k * 2) = ar;
*j 	+ 	c2 * 	* 2) +k * 2 + 1) = ai;

}
free(temp);

void transp(adrl, adr2, ri, ci, r2, c2)
double *adr l, 	*adr2;
mt ri, 	ci, 	r2, 	c2;
{

double 	ar, ai;
double 	*temp;
jut 	j, 	k;
if (ri 	!= c2)

error("Result matrix of incorrect size in transpose);
if (ci 	!= r2)

error("Result matrix of incorrect size in transpose");
temp = (double *)malloc(sizeof(double)2 * c2 * 2);
if (temp == 0)

error(0ut of memory error");
for (j = 0; j ri; j++) {

for (k=0;k!=cl;k++){

ar = (*(1 + (j 	* ci * 2) + k * 2));
ai=(_(*(adrl+(j 	* c1*2)+k *2+

1)));
*(terrqD + (k 	* ri 	2) + j * 2) ar;
*(tenlp + (k 	* r i 	*2) +j *2 + 1) = ai;

for (j 	= 0; j 	!= r2; j++) 	{

for (k = 0; k 	è2; k++) {

ar 	(*(temp + (c2 * * 2) + k * 2));
ai = (*(te1p + (c2 	* * 2) + k * 2 + 1));
*(r2 + (c2 * 	* 2) + k * 2) = ar;
*(r2 + (c2 	* j 	* 2) + k * 2 + 1) = ai;

free(ternp);

void rnsc(adri, adr2, ri, ci, r2, c2, vr, vi)
double *adrl, *adr2;
double yr, vi;
mt 	ri, ci, r2, c2;
{

mt 	j, k;
double ar, ai;
if (ri != r2)

error("Result matrix of incorrect size in multscal");
if (ci != c2)

error("Result matrix of incorrect size in multscal');
for (j 	0; j != ri; j++) {

for (k = 0; k != ci; k++) {

- 203 -

ar = (* ri);
ai = (*(adr l + 1));
cmul(ar, ai, vr, vi, adr2);
adri = adri + 2;
adr2 = adr2 + 2;

}

void cpy(adri, adr2, ri, ci, r2, c2)
double 	*r 1, *adr2;
mt 	ri, 	ci, 	r2, c2;
{

jut j, 	k;
double ar, 	ai;
if (ri r2)

error(" Result. matrix of incorrect size in copy");
if (ci 	!= c2)

error("Result matrix of incorrect size in copy");
for (j = 0; j 	ri; j++) 	{

for (k = 0; k 1= ci; k-I--F) {

ar =
ai= (*(i + 1));
*adr2 = ar;
*(adr2 + 1) = ai;
adri = adri + 2;
adr2 = adr2 + 2;

}
}

}

void ups(adr, r, c)
double *adr;
mt 	r, C;

mt 	j, k;
double ar, ai;
if (I. 	1 && c != 1)

error('Unable to upshift a. matrix');
if (r == 1 & c == 1)

error("Unable to upshift a scalar");
if (r == 1)

j =
if (c == 1)

= r;
for (k=j - i;k =0;k--) {

ar = (*(r + k * 2 - 2));
ai = (*(&fr + k * 2 - i));
*(&fr + k * 2) = ar;
*(arfr + k * 2 + 1) = ai;

*adr = 0;

*(adr + 1) = 0;

}

void dos(adr, r, c)
double *adr;
mt 	r, c;

hit 	j, k;
double ar, ai;
if (r != 1 && c 	1)

- 204 -

error(Unable to downshift a matrix);
if (r == 1 && c == 1)

error('TJnable to downshift a scalar");
if (r 	1)

= c;
if (c == 1)

j = r;
for (k = 0; k !=j - 1; k++) {

ar = (*(&fr + k * 2 + 2)';
ai=(*(adr+k *2+3)$;
*(+ k * 2) = ar;
*(+ k * 2 + 1) = ai;

(adr + j) = 0;

*(adr + j + 1) = 0;

Pi
void inv(adri, adr2, ri ci, r2, c2)
double *adr 1,
mt 	ri r2, ci, c2;

mt 	n, m, j ,1!,!,piv;
double factor[2], a[2] t[2];
double *temp,big,nDd,tmp;
if (ri 	ci)

error('Canriot invert a non—square matrix");
if (r2 != ri)

error('Result matrix of incorrect size in inverse');
if (c2 != ci)

error("Result matrix of incorrect size in inverse');
if (ci == 1 && ri==i) {

cinv(adr1[0] ,adrl[i],arlr2);

return;
}

temp = (double *) malloc(sizeof(double) i * ci * 2);
if (temp == 0)

error(Out of Memory Error');
for (n = 0; ii != ri; n++) {

for (in = 0; ni 	ci; m++) {

*(temp + (ri * m * 2) + n * 2) = (*(r1
+ (ri * m * 2) + n * 2));

*(temp + (ri * m * 2) + n * 2 + 1) = (*(ri
+ (ri * m * 2) + n

iden(adr2, r2, c2);
for (n = 0; n 	ri; n+-f) {

/*Find a partial pzvol*/
big=0.0;

for(1=n;l!=r1;1-H-) {
mod= *(tenlp+

l*r142)+n2) * (*(temp + (1M2)+n2));
mod+= *(temp+

l*r12)+n+1) * (*(temp + (1*ri2)+n2+1));
if (mod>big) {

big=md;
piv=l;

- 205 -

I
if (big==OO) {

error("Singular Matrix Error');
free(temp);

/ *Now we need to swap rows n and piv of the ma */

if (piv!=n) {

for(ll=O;ll!=cl;ll-f+) {

tmp= *(temp+(piv*i1 *2)+11 *2);
*temp+(piv *rl *2)+ll 2)=(temp+(n *rl *2)+11 *2));
* ternp (n*ri)+112)=tmp;
tmp= ¶emp+(piv *rl 2)-1-11 *2+1);
*(temp+(piv*r l *2)+111,2+1)=

*(temp+(ii*ri *2)+11 *2+1));
*(temp+(n i *2)+11 *2+1)tmp;
tmp= *(adr2+(piv*1 *2)+!1 *2);
*(r2+(piv *rl *2)+11 *2)=(adr2+(n *r l '2)+112));
*(r2+(nM*2)+ll*2)=tmp;
tmp= *(adr2+(piv *rl *2)+11'2+1);
*(r2+(piv 1 *2)+11 *2+1)=

(*(&1r2+(n *r l *2)+11*2+1));
*(&1r2+(n*d *2)+ll*2+1)=tmp;

cinv(temp + (n * ci * 2) + n * 2), *(temp + (n
ci * 2) + n * 2 + 1), factor);

for (j = 0; j != ci; j++) {

cmul(factor[0], factor[1], *(temp + (n *

ci * 2) + i * 2), *(ten + (n * ci * 2)
+j *2 + i), temp + (n * ci *2) +j *

2);
cmul (factor [0], factor[1], *(r2 ± (n *

c2 * 2) + j * 2), *(ath2 + (n * c2 * 2)
+j *2 + 1), adr2 + (n * c2 *2) +j *

2);
}

for (rn = 0; rn != rl; m++) {

if (iii != ii) {
factor[0] = (*(temp + (i-ri * ci *

2) + ii * 2));
factor[1] = (*(ter 	+ (m * ci *

2) + n * 2 + i));
for (j = 0; j != ci; j++) {

a[0] = (*(temp + (n * ci

*2) + i * 2));
a[1] = (*(tel.pp + (n * c

*2) + j * 2 + i));
cmul(a[0], a[l], factor[0],

factor[1}, t);
cadd(temp + (m * ci *

2) + j * 2), *(temp + (m
*cl * 2) + j * 2 -+ 1), —t[0],

—t[i], temp + (m * ci *

- 206 -

2) + i 	* 2);
a[0J = (*(&r2 + (n * c2

*2) + i 	* 2));
a[1] = (*(&r2 + (n * c2

*2) + j 	* 2 + 	1));
cmul(a[0], 	a[1], factor[0},

factor[1], 	t);
cadd(*(adr2 + (m * c2 *

2) + i 	* 2), *(r2 + (m
*c2 * 2) + j * 2 + 	1), —t[0],

—t[1], adr2 + (m * c2 *
2) + i 	* 2);

}
}

free(temp);

void inpLlt(filenarne, ptr)
char 	*filenarneU;
double *ptr;

static char 	fnan[10][20];

static FILE *fopen, *fpoiriter[10];

float 	c, d;
mt 	a,f=0,b = 10;

if (strcmp(filename, "close") == 0) {

for (a=0;a!=10;a+-f-){

if (fnarne[a][0] 	0) {

fclose(fpointer [a]');
fname[a][0] = 0;

} 	
}

return;
}

for (a = 9; a != —1; a--) {
if (strcrnp(filenarr, fnarne[a]) == 0) {

f = 1;

else { if
(fnan[a][0]== 0)

if (b == 10)

error("Too many files open (maximum of 10)");

if (f == 0) {

strcpy(fname[b], filename);
fpoiriter[b] = fopen(fnarne{b], "r");
if (fpointer[b] == 0)

- 207 -

error("Unable to open file for input");

fscanf(fpointer[b], "%f %f', &c, &d);
*ptr = C;
*(ptr + 1) = d;

}

void output (filename, ptr)
char 	*filenarnel];
double *ptr -,

static char 	oname[10][20];

static FILE *fopen, *opoinr[10];

mt 	a,f= 0,b = 10;

if (strcmp(fllename, "close") == 0) {

for (a= 0; a =10; a-H-){

if (onan[a][0] != 0) {

fclose(opointer[a]);
oname[a][0] = 0;

} 	
}

return;
}

for (a=9;a!=-1;a--){
if (strcmp(Iilenarrie, onarne[a]) == 0) {

f = 1;
b=a;

} else {
if (oname[a][0] == 0)

b = a:
}

}
if (b == 10)

error("Too many files open (Ma'cimum of 10)");

if (f == 0) {

strcpy(onarr[b], filename);
opointer[b] = fopen(oname[b], "w");
if (opointer[b] == 0)

error("Unable to open file for output");

printf(opointer], "%f %n", (*ptr), (*(ptr + 1)));
return;

}

void error(message)
char 	*message;

mt *t;
t=0;

fprintf(stderr, ***DSPSIM Runtime Error***\ n);
fprintf(stderr, ' 9s\n\n", message);

- 208 -

exit(0);

I

void cad(i(a, b, c, d, e)
double a, b, c, d, *e;

(*) = radd(a, c);
(*(e + 1)) = radd(b, d);

void cmul(a, b, c, d, e)
double a, b, c, d, *e;

(*) = radd(rmul(a, c), —rmul(b, d));
(*(e + 1)) = racld(rmul(b, c), rmul(d, a));

}

void cinv(a, b, c)
double a, b,

(*C) = rdiv(a, radd(rmul(a, a), rmul(b, b)));
(*(c + 1)) = rdiv(—b, radd(rmul(a, a), rmul(b, b)));

double radd(a, b)
double a, 	b;
{

double 	result;
result = a + b;
return (result);

double rmul(a, b)
double a, I):
{

double 	result;
result = a *

}
return (result);

double rdiv(a, 	b)
double a, 	b;
{

double 	result;
result = a / b;
return (result);

- 209 -

Preprocessor for matrix operations

/*
* A pre—preprocessor for 'C' which converts mairzv epresszons into /*
* /*spiools li code

#include <ctype.h>
#include <stdio.h>
#dene TRUE 1
#define FALSE 0

void errorO;
void lerrorO;
void process();
void extractO;
void stripO;
void mulO;
mt line number = 0;

mt floating 	flag = 1;
mt level;

rnain(argc, argv) 	 main
(thW
mt 	 argc;

char 	 out name[40];

char 	 Iinebuffer[256], ch;
mt
FILE 	 fopenO, fpin, *fp out;
if (argc != 2)

error('ppr usage incorrect 	use ppr filename");
fp in = fopen(argv[1], "r");
iffpin == 0)

error("file does not exist");
strcpy(outnarne, argv11]);
k = 0;

while (*(out name + k) != 0)

k --;
if (*(ft name + k) != 'p')

error("File to be processed must be a .p file");
*(outnjy, + k) = c
fpout = fopen(out name,
if (fp out == 0)

error("Unable to open a .c file for output");
k = 0;

while (!feof(fp in)) {
fscanf(fpin, "%c', &ch);
if (Ch 	\n) {

- 210 -

linebuffer[k] = ch;

} else {
linebuffer[k]

line nurnber++;
if (linebuffer[O] 	•) {

fprintf(fp_out, "9s\n11 , linebuffer);
if (contains(linebuffer, "#include') && contains(linebuffer, "tools.h')) {

fprintf(fp_out, "spvar TEMPO,TEMP10,TEMP20;\n");

fprintf fp out, "spvar TEMP1,TEMP11,TEMP21;\n"
fprintf fp_out, "spvar TEIVIP2,TEMP12,TEIVIP22;\n"
fprintf fp_out, "spvar TEMP3,TEMP13,TEMP23;\n"
fprintf, fp_out, "spvar TEMP4,TEMP14,TEMP24;\n"
fprintf fp_out, "spvar TEMP5,TEMP15,TEMP25;\n"
fprintffp out, "spvar TEMP6,TEMP16,TEMP26;\n"
fprintf fp_out, "spvar TEMP7,TEMP17,TEMP27;\n"
fprintf fp_out, "spvar TEMP8,TEMP18,TEMP28;\n"
fprintf fp_out, "spvar TEMP9,TEMP19,TEMP29;\n'

if (contains(linebuffer, "#define")
&& contains(linebuffer, 'FIXED"))
floating flag = 0;

} else {
Iinehuffer[k] =

strip(linebuffer);
p rocess(linebuffer, strlen(linebuffer), fp_out);

k = 0;

}
}
fclose(fpin);
fclose(fp 	out);

void
error(mesg) error

char

fprintf(stderr, 	'%\n', mesg);
exit(0);

}

void
lerror(mesg) lerror

char *n15g0;

fprintf(stderr, 	'%s at line %d\n", mesg, line 	number);
exit(0);

}

void
process(strptr, length, fp) process

char *strptr;
mt length;
FILE *fp;

{
mt res 	start = —1, res finish = —1;
char result[256], ev[256];

- 211 -

hit 	 k;
k=1;
while (*(strptr + k)

if (*(strptr + k) != 	res start
res start = k;

if (*(strptr + k) 	 res start
res finish = k;

++k;
if (k == length)

lerror(No equals sign in expression");

if (res start == —1 11 res _finish == —1)
lerror("No result variable in expression);

res finish-H-;
if (T(isvarch((strptr + res finish + 1))

*(p + res finish + 1) ==
lerror('Bad expression");

extract(strptr, result, res start, res finish);
extract(strptr, ev, res finish + 1, lngth);
level = —1;
eval(ev, fp);
fprintf(fp, /*%d*/ copy (%s,9s);\n", linenumber, ev, result);

void
extract(strptrl, strptr2, start, finish)

chat 	 *strptrl, *strptr2;
mt 	 start, finish;

{
hit 	 k;
if (start < 0)

extract

start = 0;

if (finish < 0)

finish = 0;

if (finish > strlen(strptrl))
Finish = strlen(strptrl);

for (k = 0; k != finish - start; k++) {

*(strptr2 + k) = *(strptrl + k + start);

*(strptr2 + finish - start) =

I
void
strip(strptr) 	 strip

cIaj 	 *strptr;

{
char 	 stripped[256];
hit 	 k, 1;
k = 0;

1 = 0;

while (*(strptr + k) != '\O') {

if (!isspace(*(strptr + k))) {
stripped[l] = *(strptr + k);
l++;

}

I

- 212 -

stripped[l] =

strcpy(strptr, stripped);
I

eval(strptr, fp)
char 	 *strptr;
FILE 	 *fp;

char 	 local copy[256], temp[256], templ[256], temp2[256];
mt 	 I, li,k0, ki, k2, k3, k4, k5, k6, brac_count;

strcpy(local_copy, strptr);

SEARCH_LOOP:kl = search(local_copy, (0);

k2 = search(local copy, 	, 0);

kO = search (local_ copy, 	, 0);

k3 = search(local copy, 	0);

k4 = search (local copy, 	' 0);

k5 = search(local copy, 	0);

k6 = search (local_ copy, - 0);

if (level == 30)

error(" Expression too complicated");
if (kO == —1 && ki == —1 && k2 == —1 &&

k3 == —1 && k4 == —1 && k5 == —1 && k6 == —1) {

	

if (search(local copy, j)', 0) 	—1)

lerror('Unbalanced brackets');
else {

strcpy(strptr, local —copy);
return (0);

if (ki 	—1) {
brac count = 1;
l=id+1;
while (brac count 	0 && local copy[l] ! 	\0) {

if (local copy[l] == ()
hraccount++;

if (local copy[l] ==
brac count--;

if (brac count != 0)

lerror("Unbalanced brackets");
extract(local copy, temp, ki + 1, 1 - 1);
eval(temp, f); 	/* The recursive bit to deal with brackets! */
extract(local copy, ternpl, 0, ki);

extract(local copy, temp2, 1, 1 + st Hen (local _copy));
strcat temp temp2
strcat tempi, temp
strcpy(local copy, tempi);
goto SEARCH—LOOP;

eval

- 213 -

if (k2 	—1) {
level++;
sprintf(templ, "TEMP%d\O" level);

1 = k2 - 1;
while (1 = —1 && isvarch(localcopy[l]))

êxtract(local_copy, temp, 1 + 1, k2);
if (strlen(temp) == 0)

lerror("Bad expression);
if (floating flag)

fprintf(fp, /%d'/ resize(cs,%s.csize,9'cs.rsize) ;\n
line number, tempi, temp, temp);

if (!floating flag)
fprintf(fp, /"%d'/ resize('cs, s.csize,9srsize,91c.format) ;\n

,line number, tempi, temp, temp, temp);
fprintf(fp, s/**/ transpconj(%s,91cs);\n", line_number, temp, tempi);
extract (local copy, temp2, 0, 1 + 1);

strcat(temp2, tempi);
extract(local copy, tempi, k2 + 1, 1 + strlen(local copy));
strcat(temp2, tempi);
strcpy(local copy, temp2);
goto SEARCH—LOOP;

if (kO 	—1) {

level++;
sprintf(templ, "TEMP%d\O", level);

= kO - 1;

while (1 != —4 && isvarch(localcopy[l]))

extract(local copy, temp, 1 + 1, kO);

if (strlen(temp) == 0)

lerror("Bad expression");
if (floating flag)

fprintf(fp, /%d/ resize(s,%s.csize ,.rsize) ;\n"
line number, tempi, temp temp);

if (!floating flag)
fprintf(fp, /*%d*/ resize(s,s.csize,%s.rsize,s.forrnat);\n"

,line number, tempi, temp, temp, temp);
fprintf(fp, "/"9'/ transpose(9'c6,°7cs) ;\n", line number, temp, tempi);
extract(local copy, temp2, 0, 1 + 1);

strcat(temp2, tempi);
extract(local copy, tempi, kO + 1, 1 + strlen(local copy));

strcat(temp2, tempi);
strcpy(local copy, temp2);
goto SEARCH_LOOP;

I
f (k3

level-H-;
sprintf(templ, "TEMP%d\O", level);

= k3 - 1;
while (1 != —1 && isvarch(localcopy[1]))

ex tract (local copy, temp, 1 + 1, k3);
if (strlen(temp) == 0)

- 214 -

lerror("Bad expression);
if (strcmp(temp, tempi) == 0)

sprintf(temp, "TEMPI %d\0", level);

if (floating flag)
fprintf(fp, u,/*%d*/ resize(9s,%s.rsize,'cs.csize) ;\n'

, line _number, tempi, temp, temp, temp);
if (!floating _flag)

priritf(fp, /''%d'/ resize(s,cs.rsize,9'cs.csize,9s.format) ;\n'
,line—number, tempi, temp, temp, temp);

fprintf(fp, "/'"/cd'/ inverse(9'cs,0/os) ;\n", line_number, temp, tempi);
extract (local _copy, temp2, 0, 1 + 1);

strcat(temp2, tempi);
extract(local copy, tempi, k3 + 1, 1 + strlen(local copy));
strcat(temp2, temp 1);
strcpy(local_copy, temp2);
goto SEARCH_LOOP;

& (k4 I= —1) {
level-F+;
sprintf(temp2, 'TEMP%d\O", level);

1 = k4 - 1;
Ii = k4 + 1;
while (I = —1 && (isvarch(local _copy [1]) 11 local copy[l] ==

while (local copy[l1] != \0 	(isvarch(localcopy[11])

H local_copy[11] ==
11++;

extract (local copy, temp, 1 + 1, k4);
extract (local copy, tempi, k4 + 1, 11);
if (strlen(ternp) == 0 H strlen(templ) == 0)

lerror("Bad expression');
if (test nuniber(temp) 11 test nurnber(templ))

goto scalar multiply;
if (floating flag)

fprintf(fp, /*%d*/ resize(,nurnberofrows(9c.rsize,91os.csize,%s .rsize,%s.c
size) ,number of colurnns(°2s.rsize, 	.csize,9'cs.rsize,91c8.csize)) ;\n", line number,

temp2, temp, temp, tempi, tempi, temp, temp, tempi, tempi);
if (!floating flag)

fprintf(fp, hI/%d*/ resize(°A,numberofrows(9s.rsize,%s.csize,9.rsize,%s.c
size) ,nuniber of coluns(.rsize, 	.csize,cs.rsize,9s.csize) ,s.format) ;\n", li
nenumber, temp2, temp, temp, tempi, tempi, temp, temp, tempi, tempi, tempi);

fprintf(fp,/*9'cd*/ multiply(9'c8,91cs,9s);\n", linenumber, temp tempi, temp2);

extract (local copy, tempi, 0, 1 + 1);

strcat(templ, ternp2);
extract(local copy, temp2, 11, 1 + strlen(Iocal copy));
strcat(templ, temp2);
strcpy(local copy, tempi);
goto SEARCH_LOOP;

scalar iiultiply:
if (test nun±er(temp) &c& test nurnber(temp 1)) {

mul(temp, tempi, temp2);
extract (local copy, tempi, 0, 1 + 1);

strcat(templ, temp2);
extract(local copy, temp2, 11, 1 + strlen(local copy));
strcat(templ, temp2);
strcpy(local copy, tempi);
goto SEARCH—LOOP;

- 215 -

if (test nurnber(temp)) {
iffloating_flag)

fprintf(fp, "/'%d/ resize(9 ,9s.rsize,9s.csize);\n', line number, temp2, t
enipi, tempi);

if (!floating _flag)
fpriiitf(fp, "/'%d"/ resize(91cs,s .rsize,9'cs.csize,9s.format) ;\n", line_number

temp2, tempi, tempi, tempi);
fprintf(fp, /*%d*/ rnultscal(9'cs,9'cs,0.0,%s);\n", line_number, tempi, temp, te

mp2);

if (test nurnber(templ)) {
iffloating flag)

fprintf(fp, /"%d"/ rese(7s,s.rsize,'cs.csize) ;\n, line_number, temp2, t
emp, temp);

if (!floating flag)
fprintf(Fp, "/"%d''/ resize(,cs.rsize,9Es.csize,cs.format) ;\n", line number

temp2, temp temp, temp);
fprintf(fp, /*%d*/ mu1tsca1(9'cs,9's,0.0,%s);\n", line_number, temp, tempi, te

rnp2);
}
extract (local _copy, tempi, 0, 1);

strcat(templ, temp2);
extract (local copy, temp2, 11, 1 + strlen(local_copy));
strcat(templ, temp2);
strcpy(local copy, tempi);
goto SEARCH LOOP;

}
if (16 f= —.1) {

level++;
sprintf(temp2, "TEMP%d\O, level);

= k5 - 1;
11 = k5 + 1;
while (1 != 0 && isvarch(localcopy[l]))

while (local copy[ll] != \0 && isvarch(loca1copy[l1))

11++;
ex tract (local copy, temp, 1, k5);
extract(local copy, tempi, k5 + 1, 11);
if (strlen(temp) == 0 U strlen(templ) == 0)

lerror(Bad expression");

if (floating flag)
fprintf(fp, 1./*%d*/ resize(9s,%s.rsize,91cs.csize) ;\n', line_number, temp2, te

mp, temp);
if (!floating flag)

fprintf(?p, "/"?7cAI'/ resize(s,%s.rsize,91cs.csize,cs.forrnat) ;\n', line_number,
temp2, temp, temp, temp);

fprintf(fp, /*%d*/ add(9'cs,97cs,9'cs);\n', line_number, temp, tempi, temp2);
extract (local copy, tempi, 0, 1);

strcat(templ, temp2);
extract (local copy, temp2, 11, 1 + strlen(local copy));
strcat(templ, temp2);
strcpy(local copy, tempi);
goto SEARCH—LOOP;

if (k6
level++;
sprintf(temp2, 'TEMP%d\O", level);

= k6 - 1;

- 216 -

11 = k6 + 1;
while (1 != 0 && isvarch(local _copy PD)

1--;
while (local copy[l1] 	\0 && isvarch(locaJcopy[11]))

11+H-;
extract(local_copy, temp, 1, k6);
extract(local_copy, ternpl, k6 + 1, 11);
if (strlen(temp) == 0 11 strlen(ternpl) == 0)

lerror("Bad expression");
if (floating flag)

fprintfp, /"%d/ resze(3tcs,7os.rsize,7cs.csize) ;\n, line_number, temp2, te
mp, temp);

if (!floating flag)
fprintf(Tp, /*%d*/ resize(%s,%s.rsize,91cs.csize,9cs.format);\n", line number,

temp2, temp, temp, temp);
fprintf(fp, "/%d"/ subtract(91cs,9's,97cs) ;\n, line number, temp, tempi, temp2);

extract(Iocal_copy, tempi, 0, 1);

strcat(templ, temp2);
extract(local copy, temp2, 11, 1 + strlen(local copy));
strcat(templ, temp2);
strcpy(local copy, tempi);
goto SEARCH LOOP;

} 	
}

mt
search(strptr, cli, k) 	 search

char 	 *strptr, ch;
mt

{
jut
1=—i;
while (*(strptr + k) 	\0') {

if (1 == —1 && *(strptr + k) == ch)
=

k++;

return (1);

contains(strptr 1, strptr2) 	 contains
char 	 *strptr l, *strptr2;

{
mt 	 p, flag =0;

if (strlen(strptr2) > strlen(strptrl))
return (flag);

for (p = 0; p != 1 + strlen(strptrl) - strlen(strptr2); p++)

if (strncmp(strptrl + p strptr2, strlen(strptr2)) 	0)

flag = 1;
return (flag);

}

test —number(strptr) 	 test number
I

char
	

*strptr; -

mt 	 k, flag = 1;
for (k = 0; k != strlen(strptr); k++)

- 217 -

if (!(isdigit((strptr + k)) II *(strptr + k) ==
flag = 0;

return (flag);
}

void
mul(strptrl, strptr2, strptr3)

char 	 *strptr l, *strptr2, *strptr3;

{
double 	 x, y;
sscanf strptrl, "%lf, &x
sscanf strptr2, "%1P, &y
spriritf(strptr3, %lf\0', x * y);

}

isvarch(ch) 	
c; char 	 h

{ 	
if (isnum(ch))

return (1;
if (ch==

return (I

else return (0);

}

mul

isv arch

- 218

Conventional RLS simulation

/*RLS Algorithrn*/

#define FLOATING
#define MANTISSA LENGTH 56
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include </u4 /call /lib /COMPLEX src /sptools.h>

#define MAXRND 2147483647.0

#defme UNKNOWN—LENGTH 5

double calcnteO;
double rnumQ;
double gauss(;
double inp,desired;
double XW[UNKNOWN LENGTH];
double Weights[UNKNOWN_LENGTH]10.9,0.3,-0.3,0.7,0. 1};

double FEED FORWARD[2]={1.0,0.865};

double XK[2];
float NOISE;
mt N=O;

#defne sigma 0.01

main(

pvar LAM,X,P,W,K,D,E;
struct complex cn;

FILE *fopenQ,fp;
double ritegain factor=0.0, *average;

float lanibda=0.0,SNR-1;

mt n,s,p10,p,ensemble-1,ens;

char clear screen=12;
char up line=11;
char * 	innd *argl, * g2, *arg3, * jg4;
char ofile[20];

/*Initialisatioii */

fp=fopen(NORMTAPERROR.DAT, "w');

m az Ti

sranclon(1);

- 219 -

printf "91oc" clear screen);
printf "Simulation of Standard RLS Algorithm\n\n");
printf "by Chris Callender, 1 989\n\n\n\n");

printf("Floating Point Mantissa Length = %d\n\n',MANTISSA_LENGTH);
while(N<1) {

printf('Filter Length:");
scanf('%d",&N);

cvector(X,N);
matrix(F,N,N);
cvector(K,N);
cvector(W,N);
scalarD);
scalar E);
scalar LAM);

printf'\n\n");
while (lambda<0.8 II lanibda>1.0)

{
printf("Please enter a value for lambda between 0.8 and 1.0:

scanf("%?' ,&lambda);

setscalai(LAM,lambda,0.0);

while (SNR<0 H SNR>120) {

printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 120db):);

scanf("%P' ,&SNR);

while (ensernb!e<1) {
printf('\n\nllow many runs to make ensemble average:
scanf('%d ,&ensemble);

for(n=0;n!=N;n++) gain_factor=gain_factor+Wèights[n] vVeights[n];

gain_factor=gain_factor+FEEDFORWARD[0] FEED_FORWARD[0]+FEED_FORWARD[1] ¶EED_FO
RWARD[1];
gain factor=sqrt(gain factor);

NOISE=gain factor /explo(SNR/20.0);

printf("\n\nHow many data samples per run:
scanf('9&s);
fprintf(fp,'%d\n\n" ,$);
aver age=(double *) malloc(sizeof(double) (s+1));
if (average==0) {

fprintf(stderr,'RLS Runtime error ...out of merrry");
exit(1);
}

printf(7ccR.LS Simulation Running\n\n\n' clear screen);
plO=s/lO;

for (ens=1;ens!=ensemble+1;ens++) {

for(n=0;nt=N;n++) XW[n]=0.0;

for(n=0;&=2;n++) XK[n]=0.0;

- 220 -

zero W);
zero X);
identity(P);
multscal(P, 1.0 /sigrna,0.0,P);

P=P-10;

nte=calcnte(W.element);
*average *average+nte /ensemble;

f6r(n=1;n!+1;n++) {

if (n==p) {
priritf("9cRun #%d:Status %d%%\n",up line,ens,(p *10) /p_lO);

p=p+p_lO;

}
/*jf (n==s/2) {

Weighs[OJ=O. 3;

Weighls[1]=O. 7,'

Weig/ils[2]=— 0.6,

Weig/tisI3J=0. 2;

Weg/i1s[.]=— 1.2,'
} */

upshift(X);
makedata;
setcvector(X, 1,inp,0.0);

setscalar(D, desired, 0. 0);

E=D _X*W
K=P*X*((]AM+X P X)#)
P=(P - J(*Y*p)*LAjf#

S W=W+K*E

* (average+n)*(average+n)+ca1cnte(W.element) /ensernble;

p•rintf(\n);

for(1I=0;1I!=s+1 ;ii++) {

fprintf(fp, "%20. lGe\n *(average+n));

}

fc1ce(fp);
makedB(s,average);

fp=fopen(gplottext.tmp ,"w");
fprintf(fp,F1. Point\n");
fprintf(fp,"%d bits\n\n',MANTISSA LENGTH);
fprintf fp, Fil Len=9'od\n ,N); 	-
fprintf(fp, lam=%3.2t\n',lanibda);
fprintf(fp,SNR=%4.2f\n',SNR);
fprintf(fp,%d runs\n',ensemble);
fc1ce(fp);

- 221 -

ti
0

double calcnte(ptr)
double *ptr;
{
mt k;
double nte;
struct complex Weight;

for (k=O;k!=N;k++) {

Weight.real=((*ptr));
ptr++;
Weight.imaginary((*ptr));
ptr+-i-; nte=nte (Weight.real_Weights[k])*(Weight.real_Weights[k]);

return(nte);

makedata()

mt j;

XK[1]XK[O];

XK[O]=gaussQ;

inp=XK[O]*FEEDFORWARD[O]+XK[1]*FEEDFORWARD[1];

for (j =UNKNOWN LENGTH—i j !=0j - -) {

XWU]=X\'VU — l];

XW[O=inp;

desired=O.O;

for (j =Oj !=UNKNOWN_LENGTHj ++) desired=desired+XW[j] *Vejghts];

desjred=desired (gauss)*NOiSE;

double rnurn)

return ((random/MAXRND));

double gauss()

double a,b;
double result;
a=rnumQ;
b =rnumO;
resu1t=sqrt(_2*1og(a))*cc (2*3. 14i592654*b);
return(result);

makedB(s,data)
ints;
double *data;

FILE *fopenO,*fp2;

- 222 -

float Se;
float mit;
double p;
mt k;

fp2=f6pen("ERRdB.DAT' ,"wj;

for (k=O;k!=s+1;k++) {

se=*(data+k);
if (k==O) init=se;

p=dO*loglO(se/init);

fpiintf(fp2,%f\n',p);

fcic€e(fp2);

- 223 -

Fast Transversal Filters simulation

/*FVfF Algorithm*/

#define FLOATING
#define MANTISSA LENGTH 56
#include </u4/call/lib/COMPLEX/sptools.h>
#include <math.h>
#include <stdio.h>

#define MAXRND 2147483647.0

mt 	N;
double calcnteO;
double rnurn();
double gaussO;
void change weights;
double inp,dsired;
double X[16];
double Weights[16];
double FEED FORWARD[3]={1.0,0.600};

double XK[3];
float NOISE;

main (argc, argv)
mt argc;
char *ar crv[];

spvar A ,rcue,y0,alpham1 ,eNp,eN,gamniaN,garnrnaNp 1 ,epsilon,epsionp;

spvar ternpscal1,tempscal2,rN,rNp,beta,Y,YNp1,C,ex,B,tempN,W,alpha,CNPl;
struct complex cn;
FILE *fopei O,*fp;
double nte.gam n_factor=0.0,*average,temp,MU_l.O;

float Ianibda=0.0,SNR=-1;

jut k ,n,s,p 10,p,enserrible=-1,ens,r 	flag;

char clear —screen= 12;
char up11ne=11;

/*itiaIisation*/
if (argc!=2) res_flag = 1;
else {

if (strcmp(argv[1],"—on)0) res_flag=1;

if (strcmp(argv[1],'—ON')zz0) res_flag=1;

if (strcmp(argv[1] "—off)==0) resflag=0;

if (strcmp(argv[1],"—OFF")0) resflag=0;

}

- 224 -

printf("91cc ,clear screen);
printf "Simulation of FTF Algorithm\n\n"
printf "by Chris Callender, 1989\n\n\n\n'
if (res flag) printf("\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n",M
ANTISSA LENGTH);
if (!res flag) printf(\n\nflescue=OFF Floating Point Mantissa Length = %d\n\n',
MANTISSA LENGTH);
printf("Filter Length:');
scanf("%d" ,&N);
for (k=0;k!=N;k++) Weights[k]=rnum0*2.0_1 .0;

if (N<16) for (k=N;k!=16;k++) Weights[k]=0.O;

rvector(A,(N+1));
scalar rescue);
scalar(yO);

scalar(aiphami);
scalar eNp);
scalar eN);
scalar gammaN);
scalar gammaNpl);
scalar alpha);
scalar epsilon);
scalar epsionp);
scalar ternpscall
scalar tempscal2
scalar rN);
scalar rNp);
scalar(beta);
cvector(Y,N);
cvector(YNp1,(N+1));
rvector(C,N);
rvector Cex,(N+1));
rvector CNp1,(N+1));
rvector(B,(N+1));
rvector(tempN,N);
rvector(W,N);

fp=fopen(" NORMTAPER.ROR.DAT', w);

srandom(time(0));

while (lambda<0.8 II lambda>1.0)

printf("\n\nPlease enter a value for lambda between 0.8 and 1.0:

scan1(%f,&lambda);

while(MU<0 && res flag) {

printf(\n\nPlease enter a value for soft constraint parameter MU:');
scanf(%lf",&l\'IU);
}

while (SNR<0 11 SNR120) {

printf('\n\nPlease enter SIGNAL/NOISE ratio in dB (0 	120db):);

scanf(%P' ,&SNR);

while (ensemble<1) {

- 225 -

printf('\n\nHow many runs to make ensemble average:
scanf("%d',&ensemble);
}

for(n=0;n!=N;n++) gain_factor=gain_factor+Weights[n]*Weights[n];

gain factor=gain factor*(FEED FORWARD[0]*FEED FORWARD[0]+FEED - FORWARD[1]*FEED -F
0 RWARD[1]+FED_FORWART5f2}*FEED_F0RWARl5[2]);
gairi_factorqrt (gain _factor);

N OISE=gain_factor/expl0(SNR/20.0);

printf("\n\nllow many data samples per run:
scanf("%d',&s);
fprintf(fp, "%d\n\n' ,$); average=(double *)yJloc(sjzeofouble)*(s+1));
if (average==0) {

fprintf(stderr,'FI'F Runtime error. ..out of memory");
exit(1);

printf(FTF Simulation Runng\n\n\n' clear_screen);
plO=s/lO;

for (ens=1 ;ens!=ensemble+1 ;ens---f-) {
for(n=0;n!=N;n++) X[n]=0.0;

for(n=0;n!=3;n++) XK[n]=0.0;

setrvector(A, 1,1.0,0.0);

setrvector(13, 1,1.0,0.0);

zero(C);
zero(W);
nte=calcnte(\'V.element);
* average=*average+rite/ensemble;
makedataQ;
setscalar(yO,inp,0.0);

copy(yO,tempscall);

setscalar(tempscal2, —desired, 0. 0);

copy(ternpscal 1 alpha);
multiply(alpha,alpha,alpha);
copy(alpha,alpharnl);
inverse(tempscall ,tempscall);.
multiply(tempscall ,tempscal2,tempscall);
getscalar(tempscal 1 ,cn);
setrvector(\V, 1,cn real ,cn.irnaginary);
setscalar(gammaN, 1.0,0.0);

P=P-10;

for(n=1;n!=N+1;n++) {
nte=calcnte(\'V.elernent);
* (average+n) =" (average+n) +nte/erisemble;
makedata);
upshift Y);
upshift YNpl);
setcvector(Y, 1 ,inp,0.0);

226 -

setcvector(YNp 1,1 ,inp,O.0);

multiply(A,YNp1 ,eNp);

for(k=1;k!=N-F1;k++) {
getrvector(A,k,cn);
setrvector(tempN,k,cn.real ,cn.imaginary);

inverse(yO,tempscal 1);

multiply(eNp,tempscall ,tempscall);
getscalar(tempscall ,cn);
setrvector(A,n+1, —cn. real, —cn.imaginary);

multiply(eNp,gammaN,eN);

multscal(alpha,lambda,O.O,alpha);

multiply(eNp,eN,tempscall);
add(alpha,tempscall ,alphaml);

inverse(alphaml ,tempscall);
multiply(tempscall,alpha,tempscall);
multiply(gamrnaN,tempscall ,garnrnaN);

upshift(C);
inv(rse(aipha,tempscall);
multiply(tempscal 1,eNp,ternpscal 1);
getscalar(tempscall,cn);
multscal(tempN,cn.real,cn.imaginary,tempN);
subtract(C,tempN,C);

if (ri==N) {
copy(C,tempN);
getscalar(yO,cii);

multscal(tempN,cn real ,cn. imaginary,tempN);
getscalar(gamrnaN cu);
rrtsca!(tempN,cn.real cu. imaginary, temp N);
for(k=1;k!=N+1;k++) {

getrvector(tempN,k,cn);
setrvector(B,k,cn.real,cn.imaginary);
}

setrvector(B,N+1,1.0,0.0);

copy(gamniaN,beta);
multiply(beta,yO,beta);

multiply(beta,yO,beta);

setscalar(tempscal 1 ,dired,O.0);

multiply(W,Y,tempscai2);
add(ternpscal 1,tempscal2,epsilonp);

multiply (epsilonp ,gammaN,epsilon);

if (n<N) {
iriverse(yO,tempscall);

multiply(tempscall ,epsiloiip,tempscall);

- 227 -

getscalar(tempscall ,cn).;
setrvector(W,n+1 —cn.reaj,—cn.imaginary);

(n2=N) {
getscalar(epsilon,cn);
multscal(C,cn.real,cn.imaginary,tempN);
add(W,tempN,W);

for(n=1;n!=s+1;n++) {

RE START:
if (ii==p) {

printf("%cRiin #%d:Status %d%%\n" ,up_line,ens,(p*1O)/p_1O);

p=p+p_lO;

makedataO;
upshift(Y);
upshift(YNp1);
setcvector(Y, 1 ,inp 0.0);

setcvector(YNp1,1 ,inp,0.0);

/* #1
multiply(A,YNp1 ,eNp);

/* #2
multiply(eNp,gammaN,eN);

/ 	#3
copy(alpha,tempscal2);
multiply (eNp,eN,tempscall);
multscal(alpha,larribda,0.0,alpha);

add(alpha,tempscall alpha);

/ 	#4
inverse(alpha,ternpscall);
multiplygammaN,ternpscall,gammaNpl);
rntiltiply

~.aarrimaNpl,laii-bda,O.O,gamniaNpl);
gammaNpi tempscal2,garnmaNpl);

multscai

/* #5
for (k=1;k!=N+1;k++) {

getrvector(Ck,cn);
setrvector(Cex,k+1 ,cn.real,cn.imaginary);

setrvector(Cei,1 0.0,0.0);

inverse(tempscal2,tempscal2);
multiply(tempscal2,eNp,tempscaJ2);
multscal(tempscal2, 1/larnbda,0.0,tempscal2);

getscalar(tempscal2,cn);
multscal(A, —cn.real,—cn.imaginary)CNp1);
add(CNp1,Cex,CNp1);

- 228 -

/ 	#6
getscalar(eN,cn);
multscaJCex,cn.real,cn.imaginary,Cex);
add(Cex,A,A);

/ 	#7
getrvector(CNp1 ,N+1,cn);
setscalar(rNp,—cn.reaJ,—cn.imaginary);
multiply(rNp,beta,rNp);
multscal(rNp,lambda,0.0,rNp);

/* #8
getrvector(CNp 1 ,N+1 ,cn);
setscalartempscall,cn.real,cn.imaginary);
multiply tempscall,garnrnaNpl,tempscall);
multiply tempscall,rNp,tempscall);
setscalar tempscal2,1.0,0.0);

add(tempscal 1 ,tempscal2,ternpscall);
copy(tempscall ,rescue);
inverse(ternpscall,tempscall);
multiply(tempscall,gamrriaNpl,gammaN);

getscalar(rescue,cn);
if (cn.real.<0.0 && res flag=1) {

zero(A);
setrvector(A, 1,1.0,0.0);

zero(B);
setrvector(B,N+1 1.0,0.0);

zero(C);
temp=pow(larnbda,(double) N)*MU;
setscalar(alpha,temp,0.0);

temp=ivIU;
setscalar(beta, temp,0.0);

setscalar(gammaN,1 .0,0.0);

goto RE_START;
}

/ 	#9 	*1.
multiply(rNp,gamma.N,rN);

/ 	#10 	/

multscal(beta,lambda,0.0,beta);

multiply(rNp,rN,tempscall);
add(tempscal 1 ,beta,beta);

1* #11 /
getrvector(CNp 1 ,N+1 ,cn);
multscal(B,—cn.real,—cn.imaginary,Cex);
add(CNp1,Cex,Cex);

for(k=1;k!=N+1;k++) {
getrvector(Cex,k,cn);
setrvector(C,k,cn. real, cn.imaginary);
}

- 229 -

setrvector(Cex,N+1,0.0,0.0);

/* 	#12 	/
getscalar(rN,cn);
multscal(Cex,cn.real,cñ.imaginary,Cex);
add(Cex,B,B);

1* 	#13 	*1
setscalar(tempscall ,desired,O.0);

mu1tip1y(W,Y,temca12);
add(temca11,tempscal2,epsi1onp);

1* 	#14 	*1
multiply(epsilonp,gamrnaN,epsilon);

1* 	#15 	/
getscalar(epsilon,cn);
multscal(C,cn.real,cn.imaginary,tempN);
add(W,tempN,W);
nte=calcnte(W.element);
* (average+n)=*(average+n)+nte/ensemble;

for(n=O;n!s+1;ri++) {

fprintf(fp,%20.16e\n' ,*(average+i));

fcice(fp);
rnakedB(s,average);

}

double calcnte(ptr)
double *ptr;

{
mt k;
double nte=O;

struct complex Weight;

for (k=O;k!=N;k-H-) {

Weight.real=((*ptr));
ptr++;
Weight.imaginary =((*ptr));
ptr++;
nte=nte+(Weight.real+Weights[k])*(Weight.real+Weights[kJ);

return(nte);
}

inakecla.ta()
{
mt j;

XK2=XK 1;
XK1=XKO;

XK[O]=gaussO;

inp=XK[O]*FEEDFORWARD[O]+XK[1] *FEEDFORWj[1I+MK[2]*FEEDFORWA[2J;

- 230 -

for (j=N-1j!=O--) {

X[O]=inp;

desired=O.O;

for (j =0j !=Nj++) desired=desired+X[j] *Wejghts];

desired=desired+(gaussQ)*NOISE;
I

double rnurn()

return ((random)/MAXRND));

double gauss()

double a,b;
double result;
a=rnumQ;
b=rnumO;
result =sqrt(_2*log(a) *cos 	141592654*b);
return(result);

rnakedB(s,data)
jut s;
double *data;

FILE *fopenO ,*fp2;
float Se;
float mit;
double avlevel=O;

double p;
mt k:

fp2=fopen(ERRdB.DAT",w);

for (k=O;k!=s-i-1;k++) {

se=*(data+k);
if (k==O) inite;

p=10*log10(se/init);

if (k>4*N) avlevel+=p;
fprintf(fp2,"%f\n',p);
}

printf("Average performance level=%lf\n ,av level! (s_4*N));
fcice(fp2);

void change weights(t,file ptr)
FILE *file ptr;
mt t;

}

- 231 -

Fast Kalman simulation

/* Simulation of the Fast Kalman Algorithm *1
#define FLOATING
#define. MANTISSA LENGTH 56
#include </u4/call/lib/COMPLEX_src/sptools.h> /*tools.h*/
#include <math.h>
#include <stdio.h>

#define MAXRND 2147483647.0

jut 	N;
double calcnteO;
double rnumQ;
double gaussQ;
void change weightsQ;
double inp,desired;
double X[5];
double Weights[5]={0.9,0.3,-0.3,0.7,0.1};

double FEED FORWARD[2]={1.0,0.600};

double XK[2};
float NOISE;

rnain(argc,argv) 	-
mt argc;
char *argv[] ;

All of the spvar definitions should go in here*/
spvar Xnrnl ,enml ,a,c,en,epsi1on,cex,rn1 rriu,r,b,w,err,m,dn,forget ,temp,ternpl,y;
struct complex cnl,cn2;
FILE *fopei ()*fp;
double delta=— 1 .0,nte,gain factor=0.0, *average;

float lambda=0.0,SNR=-1;

jut k,n,s,p 10,p,ensenihle=-1,ens,r 	flag;

char clear screen=12;
char upline=11;

/*IflltiaAisation*/
if (argc!=2) resfiag = 1;
else {

if (strcmp(argv[1],"—on')==0) resflag=1;

if (strcmp(argv[1] —ON')==O) res_flag=1;

if (strcmp(argv[1] "—off)==0) resflag=0;

if (strcmp(argv[1] "—OFF") ==O) resflag=0;

- 232 -

priritf '91cc" ,clear screen);
printf "Simulation of Fast Kalman Algorithm\n\nj;
pr" by Chris Callender, 1989 \n\n\n\n);
if (res flag) printf\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n',M
A NTISSA_ LENGTH);
if (!res flag) printf(\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n',
MANTISSA LENGTH);
printf("Filter Length:");
scanf('%d,&N);

temp.rsize=1; temp.csize=1; ternp.e1errnt=(double *)maJloc(siz f(double)*2); if
(temp.element==0) error("Out of Memory");

rvector(Xnrnl ,N);
scalar(temp);
cvector(templ,N);
scalar forget);
scalarxn);
scalar dn);
scalar enmi);
scalar en);
cvector(aN);
cvectorb,N);
cvector c,N);
cvector w,N);
scalar err);
scalar r);
scalar mu);
cvector(m,N);
cvector(Cex,(N+1));
scalarepsilon);
scalar y);

fp=fopen(NORMTAPERROR.DAT", 'w');

srandom(1);

while (lanibda<0.8 11 lamhda>1.0)

{
printf("Please enter a value for lambda between 0.8 and 1.0:

scanf('%f',&1ambda);

while (delta<0.0)

{
printf("Please enter a small positive value for delta:);
scanf('%lP,&delta);
}

while (SNR<0 11 SNR>120) {

printf(\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 120db):

scanf(%P,&SNR);

while (ensernble<1) {
printf("\n\nHow many runs to make ensemble average:
scanf('%d" ,&ensemble);

- 233 -

for(n=0;n!=N;n++) gain factor=gain_factor+Weights[n]*Weights[n];

gain_factor=gain_factor*(FEED_FORWARD[0]*FEED_FORWARD[0]+FEED_FORWA-RD[1]*FEEDJ
ORWARD[1]);
gain_factor=sqrt (gain _factor);

NOISE=gain_factor/explO(SNR/20.0);

printf("\n\nllow many data samples per run:
scarif('%d",&s);
fprintf(fp,'%d\n\n" ,$);
average=(double *)moc(sizeof(doubIe)*(s+1));
if (average==0) {

fprintf(stderr,FK Runtime error ...out of merrry);
exit(1);

p rintf(%cFK Simulation Ruriniiig\n\n\n clear screen);
P=P-10=S/10;

zero(w);
nte=calcnte(w.element);
average= average+nte/ense n-ble;
zeroa);
zero b);
zero c);
setscalar(epsilon, delta, 0.0);

setscalar(forget,lambda,0.0);

for (ens=1;ens!=ensemble+1;ens++) {

for~n==p)
n=1;n!=s+1;n++) {

if 	{
printf('9'ocRun #%d:Status %d%7o\ n , up1ine,ens,(p*10)/p_10);

p=p+p_lO;

}
/*T1-je algorithm goes in here!*/

rnakedata);
setscalar(xn,inp,0.0);

setscalar(dn, desired, 0.0);

$ 	enml=xn_(Xnrnl)*a

/*(J(2)*/

$ a=a+c*enml

/*(J<3)*/

$ en=xn_(Xnml)*a

/*(j(4)*/
$ 	epsion=forget*epsilon+en*enrnl

/*(J(5)*/

- 234 -

$ 	temp=en * (epsilon#)
getscalar(temp,cnl);
setrvector(Cex, 1, on 1. real, on 1. imaginary);

S 	templ=c - a * temp
for(k2;k!=N+2;k++) {

getcvector(templ ,k— 1 ,cnl);
setcvector(Cex,k,cnl .real,cnl.imaginary);

/*(K6)*/
getcvector(Cex,N+1 ,cnl);
setscalar(mu,cnl .real,cnl imaginary);

for(k=1;k!=N+1;k++) {
getcvector(Cex,k,cnl);
setcvector(m,k,cnl .real,cnl imaginary);

/*(J(7)*/

getrvector(Xnml ,N,cnl);
se tscalar(temp ,cn 1. real, on 1. imaginary)

upshift(Xnml);
setrvector(Xnm1,1 ,inp,O.0);

$ 	r=temp - Xnml * b

/ *(K8)*/
setscalar(temp,1.0,0.0);

$ 	b=(b ± m * r) * ((temp_mu*r)#)

S 	c=m ±b* mu

$ 	v=Xnml * w
S 	err=dn - y
$ 	w=w + C * err

nte=ca1cnte(v.e!enent);
* (average+n)*(average+n)+nte/ensernble;

for(nO;n!=s+1 ;n++) {

fprintf(fp, '%20. 16e\n" ,*(average+n));

}
fc1ce(fp);
makedB(s,average);

}

double calcnte(ptr)
double *ptr;
{
mt k;
double nte;
struct complex Weight;

nte=O.O;

for (k=O;k!=N;k++) {

- 235 -

Weight.real=((*ptr));
ptr++;
Weight imagjnary=((*ptr));

nte=nte+(Weight.real_Weights[k])*(Weight.real_Weights[k]);

returnnte);

rnakedata()

intj;

XK[1]XK[O];

XK[O]=gaussQ;

i np=XK[O]*FEED_FORWARD[O]+XK[1] *FEEDFoRwAF1D[1];

for (j=4j!=0j--) {

X [O]=inp;

desired=O.O;

for (j =Oj '=Nj++) desired=desired+X[j] *\Veights[j];

desired=desired+(gauss())*NOIsE;

double rnurn()

return ((randomO/MAXRND));

double gauss()

double a,b;
double result;
a=rnumO;
b=rnumQ;
result=sqrt(_2*log(a))*cc€(2*3. 141592654*b);
return(result);
}

makedB(s,data)
hit s;
double *data;
{
FILE *fopei () ,*fp2;
float se;
float mit;
double p;
mt k;

fp2=f6pen("ERRdB.DAT","w");

for (k=O;k!=s+1;k+-f-) {

se=*(data+k);
if (k==O) init=se;

- 236 -

p=10*log1O(se/init);

fprintf(fp2,%f\n,p);
}

fcic6e(fp2);
}

void change_weights(t, file_ ptr)
FILE *file ptr;
intt;

- 237 -

FAEST simulation

/*Floating point simulation of FAEST algorithrn*/

#define FLOATING
#define MANTISSA LENGTH 56
#include </u4/call/iTb/COMPLEX/sptools.h>
#include <stdio.h>
#include <math.h>

#deflrie MAXRND 2147483647.0

mt 	N;
double calcnteQ;
double rnumO;
double gauss;
void change veights;
double inp,dsired;
double X[5];
double Weights[5]={0.9,0.3,-0.3,0.7,0. 1};

double FEED—FORWARD[2]={1.0,0.6001;

double XK[2];
float NOISE;

in ain(argc, argv)
lilt argc;
char *aro(].

/* All of the spvar definitions should go in here*/
spvar X N,v,wmp1 ,templrnp1,temp2mpl ,a,b,zog,alphaf,alphafold,alphab,alpha;
spvar c ,xn,z ,ef,eb,e,epsion,epsilonf,epsilonb,delta,d,aold,forget;
struct complex cn;
FILE *fopenO,*fp;
double sigma=_1.0,nte,gain_factor=0.0,*average,temp;

double 1anibda=0.0;

float SNR-1;
mt k,n,s,p 10,p,ensemble=-1,ens,r 	flag;

char clear screen=12;
char up_line=11;

/*Ir jtjjsat jon*/

if (argc!=2) res flag = 1;
else {

if (strcmp(argv[1],"—onj==0) resflag=1;

if (strcmp(argv[1],'—ON")==0) resflag=1;

if (strcnlp(argv[1] ,"—off)==O) resflag=0;

if (strcmp(argv[1] ,—OFF)==0) resflag=0;

- 238 -

}
printf"%c",clear screen);
printf Simulation of FAEST Algorithm\n\n');
p rintf "by Chris Callender, 1 989\n\n\n\n);
if (res flag) printf('\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n,M
ANTISSA LENGTH);
if (!res flag) priritf(\n\nRescue=OFF Floating Point Mantissa Length 	%d\n\n",
MANTISSA —LENGTH);
printf(Filter Length:");
scanf(%l',&N);
/*All dimensions of matrices should be set here /

rvector XN,N);
cvector w,N);
cvectorwrnpl,N+1);
cvector tempimpi,(N+1);
cvector temp2mpl,(N+1);
cvector aN);
cvector aold,N);
cvector b,N);
scalarzog);
scalar aiphaf);
scalar aiphafold);
scalar(alphab);
scalar alpha);
cvector(c,N);
scalar xi);
scalar z);
scalar ef);
scalar eb);
scalar e);
scalar epsilon);
scalar epsilonf);
scalar epsilonb);
scalar delta);
scalar(forget);
cvector(d.N);

fp=fopen(" NORMTAPERROR.DAT ,

srandom(1);

while (larnbda<0.8 11 Iambda>1.0)

{
printf(Please enter a value for lambda between 0.8 and 1.0

scanf(%lf ,&dambda);

setscalar(forget,lambda,0.0);

while (sigma < 0.0)

{
printf('Please enter a small positive value for sigma:);
scanf(%1P,&ulgrna);

while (SNR<0 11 SNR>120) {

printf('\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 120db):

scanf("%f" ,&SNR);

- 239 -

}

while (ensemble<1) {
printf("\n\nHow many runs to make ensemble average:
scanf('l ,&erisenible);
}
for(n=0;n!=N;n++) gain factor=gain_factor+Weights[n]*Weights[n];

gjjactor=gajn_factor*(FEED_FQRWARD[0*FEED_FORWARD[0]+FEED_FORWAED[1]*FEED_F

ORWARD[1]);
ganjactorqrt(gain_factor);

NOISE=gain_factor/explO(SNR/20.0);

printf(\n\nHow many data samples per run:
scaril(%d",&s);
fprintf(fp,%d\n\n" ,$);
average=(double *)malloc(sizeof(double)*(s+1));
if (average==0) {

fprintf(stderr,"FAEST Runtime error ... out of memory");
exit(1);

printf(FST Simulation Running\n\n\n" clear screen);
p - 10=s/10;

for (ens=1;ens!=ensemble+1;ens++) {
p=plO;

for(n=0;n!=N;n++) X[n]=0.0;

for(n=0;n!=2;n++) XK[n]=0.0;

zerozog);
zero(XN);
zero(a); 	-
zero(h);
zero c);
zero w);
zero wmpl);

nte=calcnte(c.element);
* average=*average+nte/ensenlble;
tempigma*pow((double)lambda,(double)N);
setscalar(aJphaf,temp,0.0);

setscalar(aiphab,sigrna,0.0);

setscalar(alpha, 1.0,0.0);

for~11==P)
n=1;n!=s+1;n++) {

if 	{
printf('%cRun #%d:Status %d%7o\n,upline,ens,(p*10)/p_10);

p=p+p_lO;

/ *TlIe algorithm goes in here!*/

makedata;
setscalar(xn,inp,0.0);

- 240 -

setscalar(z, desired, 0.0);

$ 	ef= m +XN* a

$ 	epsionf=ef * (alpha#)

copy(a,aold);
$ 	a=a+w * epsionf

$ 	alphafold=forget * aiphaf
$ 	alphaf=a1phafold+efepsionf

for(k=1;k!=N+1;k.+-i-) {
getcvector(w,k,cn);
setcvector(temp lrnpl,k+1 ,cn.real ,cn.imaginary);
getcvector(aold,k,cn);
setcvector(temp2mp1,k+1 ,cn.real,cn.imaginary);

setcvector(temp Imp l 1,0.0,0.0);

setcvector(temp2rnpl,1 ,1 .0,0.0);

$ 	wmpl=templmpl - (ef * (a!phafold#)) * ternp2mpl

/ *Partjtjofljflcf*/

for(l=d;k'=N+1;k+--) {
getcvector(wrnpl ,k,cn);
set cvector(d,k,cn. real, cn.irnaginary);

getcvector(wrnpl,(N+1) ,cn);
setscalar(delta,cn. real, cn.irnaginary);

$ 	eb=zog—delta * aiphab * forget

$ 	w=d - delta * b

S 	alpha = alpha + (ef * aiphafold #) * ef + delta * eb

$ 	epsilonb = eb * (alpha #)

S 	aiphab = forget * aiphab + eb * epsilonb

$ 	b=b+v * epsilonb

u pshift(XN);
setrvector(XN, 1 ,inp 0.0);

/* Time update the LS FIR Filter /

S. e=z +XN* c

$ 	epsilon = e * (alpha)

$ 	c=c + w * epsilon

nte=calcnte(c.elernent);
* (average+n)=*(average+n)+nte/ensemble;

for(n=0;n!=s+1;n+--) {

fprintf(fp, %20. 16e\n" ,*(average+n));

- 241 -

fc1ce(fp);
makedB(s,average);

}

double calcnte(ptr)
double *ptr;

{
mt k;
double nte=O.O;

struct complex Weight;

for (k=O;k!=N;k++) {

Weight .real=((*ptr));
ptr++;
Weight .irnaginary=((*ptr));
ptr++;
nte=nte+(Weight.real+Weights[k])*(Weight.real+Weights[k]);

return(nte);

maledataO
{
irit j;

XK[1]=XK[O];

XK[O]=gauss;

inp=XK[O]*FEEDFORWARD[O]+XK[1] *FEEDFORVJSJW[1];

for (j=4j!=Oj--) {

X{j]=X[j-1];

X[O]=inp;

desired=O.O;

for (j =0j !Nj++) desired=desired+X[j] *\jghts];

desired=desired+(gauss)*NOISE;

double rnum()

return ((randornQ/MAXRND));

double gauss()
{
double a,i);
double result;
a=rnurnQ;
b =rnumO;
result qrt(_2*log(a)) *cos (2*3. 141592654*b);
return(result);

- 242 -

makedB(s,data)
mt s;
double *data;

hLE *f6penO,*fp2;
float Se;
float mit;
double p;
mt k;

fp2=fopen("ERRdB.DAT ,"w");

for (k=U;k!=s+1;k-+---i-) {

se =*(data+lc);
if (k==O) init=se;

p=10*log1O(se/i1U't);

fprintf(fp2,%f\n",p);

fcIce(fp2);

void change weights(t,fiJe ptr)
FILE *file ptr;
mt t;

- 243 -

Fixed point FTF simulation

/*Fixed point simulation of FTF algoritbm*/

#deflne MAXRND 2147483647.0

v/include <math.h>
#include <stdio.h>
typedef short mt VAR;
double X[5
double XK 2];
double FEED FORWARD[2]={0.15,0.12975};

double Weights[5]={0.9,0.3,-0.3,-0.7,0. 1};

double calc'nteO;
double gaussO;
VAR divO;
mt mulO;
VAR addQ;
VAR scalarproduct;
mt N;
double NOISE=0.001;

VAR inp,des,sat flag;

main(argc,argv)
mt argc;
char *arg IJ;

double nte,d lambda=0.0,d MU=-1.0,SNR=-1 .0,gain_factor,*average;

jilt s,seedens,ensemble=0;

lilt long accumulator;
VAR *A.*Y *yNpl * *Cex *CNp1 *B *\.v;
VAR index,t,lambda,mu;
VAR rescue,yO,alphaml ,eNp,eN ,garnmaN,alpha,alphaold,epsilon;

VAR gammaNp 1 ,epsilonp,rN,rNp, beta;
FILE *fopenO,*fp;

if (argc!=2) sat flag = 0

else {
if (strcmp(argv[1],"—sat")==0) sat_flag=1;

if (strcmp(argv[1],"—SAT)==0) sat flag=1;

fp=fopen(NORMTAPERROR.DAT

printf("Simulation of FTF Algorithm\n\n);
p rintf"by Chris Caiiender, 1 989\n\n\n\n");
printf '\n\n16 Bit Fixed Point\n\n');
printf "Filter Length:");
scanf(%d",&N);

- 244 -

while (d lanibda<0.8 H dlanibda>1.0)

{
printf(' Please enter a value for lambda between 0.8 and 1.0:

scanf('%lf" ,Szd lambda);

vh1le(dMU<0) {

printf("\n\nPlease enter a value for soft constraint parameter MU:\n
printf("or MU=0.0 to disable rescues\n');

scanf("%lf',&d_MU);

while (SNR<0 11 SNR>220) {

printf(\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 220db):

scanf('%lf" ,&SNR);

while (ensemble<1) {
printf(\n\nHow many runs to make ensemble average:);
scanf("%d" ,&ensenible);

for(t=0 ;t !=N;t++) gain_factor=gain_factor+Weights[t] *\/Veights[t];

gain factor=gain factor*(FEED_FORWARD[0]*FEEDFORWARD[0]+FEED_FORWARD[1] *FEEDF
ORWARD[1]);
gain factor=sqrt (gain _factor);

N OISE=gainfactor/expl0(SNR/20.0

printf(\n\nHow many data samples per run:
scanf(%d' ,&s);
average=(double *) malloc(sizeof(douhle)*(s+1));
if (average==0) {

fprintf(stderr,FTF Runtime error ...out of memory");
exit(');

/ *First, allocate memory for vectors*/

A=(VAR *)ma11oc(sizeof(VJJt)*(N+1)); /*Scale factor will be 1024*!

Y=(VAR *)malloc(si zeof(vjU{)*N); /*Scaie Factor will be 32768/
YNp1=(VAR *)iy1oc(sjf(VjJ)*(N+1)); /*Scale factor will be 32768*/
C=(VAR *)l(sizeof(vAR)*N); /*Scaie Factor will be 8*!
CNp1=(VAR *)n loc(siz f(vAR)*(N+1)); /*Scale Factor will be 8*!
B=(VAR *)n l1oc(sjzjf(vJ\Jt)*(N+1)); /*Scale Factor will be 32768*/
W=(VAR *)m J1oc(siz f(V\J)*N); /*Scale Factor will be 32768*!

seed=time(0);

Sr andom(seed);
printf(\n\n);
larnbda=32768*d lambda;
mu=32768*dM19;

for (ens=1 ens =ensemble+ 1 ;ens++) {
for(t=0;t!=N;t++) X[t]=0.0;

- 245 -

for(t=0;t!=2;t++) XK[t]=0.0;

/* First the Fast Exact Initialisation Routine*/
A[O]=1024;

B [0]=32767;

for (index=1;index!=N+1;index++) {
A [index] =0;

B [index] =0;

for (index=0;index!=N;index++) {

C [index] =;

W[index]=0;

Y [index] =0;

for (index=0;index!=N+1 ;index++) YNp1[index] =0;

nte=calcnte(W);
fprintf(fp,"%20. 16e\n" ,nte);

inp=0;

while (abs(ip)<9000) makedata(0);

yO=inp;

alpha=mul(yO,yO, 15);

alphaml=aipha;
W [0]=—div(des,yO, 15);

garnmaN=32767;

for(t=1;t!=N-i-1;t++) {
nte=calcnte(\\T);

fprintf(fp, '%20. 16e\n ,nte);

rnakedatat);
for(index=N+1;index!=0;index--) {

YNp1[index]=YNp1 [index— 1];
if (index!=N+1) Y[index]=Y[index-1];

YNp1[0]=inp;

Y[0]=inp;

eNpca1arproduct(A,YNp1 ,N+i,1i);

A[t]=—div(eNp,yO,1 1);

eN=mul(eNp,gammaN, 14);

alpha=mul(larnbda,alpha, 15);

- 246 -

alphami.=add(alpha,mul(eNp,eN, 14));

garnmaN=rnul(gammaN,dliv(alpha,alpharnl, 15), 15);

for(index=t;index!=O;index--) {

C [index] =C[index— 1];

C[O]=O;

for(index=O;index!=t;index++) {

C [index] =add(C[index] ,—div(mul(eNp,A[index],10) ,alpha,4));

}

if (t==N) {
for(index=O;index! =N;index+-4-) {

B [index] =mul(mul(yO,gammaN, 15) ,C[index] 3)

B[N]=32767;,

beta=mul(mu!(yO,yO, 15) ,gammaN,9);

}

epsilonp=add(scalar_product(Y,\'V,N, 15) des);

epsilon=mul(epsilonp,gammaN, 15);

if (t<N) W[t]=—div(epsilonp,yO,15);

if (t==N) {
for(index=O;index!=N;index-4-+) {

W [index] =add(W[index] ,mul(epsilon,C[index] ,4));

/ Now the FTF Algorithm proper

for (t=N+1;t!=s+1;t++) {
makedata(t);
for(index=N+1;index!=O;index--) {

YNp1 [index]=YTp1 (index— 1];
if (index!=N+1) Y indexj=Y[index-1];

YNp1[O]=inp;

Y[O]=nip;

RE START:

eNp = scalarproduct(A,YNp1,N+1,11);

/*#2*/

eN=mul(eNp,gammaN, 14);

/*#3*/
alphaold=aipha;

- 247 -

alpha=add(mul(lambda,alpha, 15) ,mul(eNp,eN, 14));

/*#4*/
gammaNpi = mul(mul(lambda,div(alphaold,alpha,10) , 15),gammaN,10);

/*#5*/
CNp1 [0]=—mul(div(eNp,mul(alphaold,larnbda, 15)5) ,A[0] 11);

for (index=1;index!=N+1;index++) {
CNp1 [index] add(C[index-1] —mul(div(eNp,mul(alphaold,lambda, 15)5) ,A[index, 1

1));

/*#6/
for (index=1;index!=N+1;index++)

A [index]=add(A[index],mul(eN,C[index— 11,8));

/*#71/
rNp=mul(mul(—lambda,beta,15) ,CNp1 [N] ,1 1);

rescue=add(16384,mul(mul(rNp,gamrnaNpl,15) ,CNp 1[N] ,4));
if (rescue<0 && d MTJ1=O.0) {

for (index=O;index=N+1 index-H-) {

A [index] =0;

B [index] =0;

if (index!=N) C[index]=0;

}
A[0]=1024;

B [N] =32767;
alpha=mu;
for (index=1 ;index=N;index++) alpha=mul(alpha,lambda, 15);
beta;:--mu << 3;
0'amrnaN=32767;
goto RE_STARI';

/*#8*/
gamrnaN=div(gamrnaNpl rescue, 14);

rN=mul(rNp,ganimaN,11)

/*#10*/

beta=add(mul(beta,larnbda, 15) ,mul(rNp,rN, 11));

/*#11*/
for(index=0;index!=N+1 ;index++) {

C [index]=add(CNp 1[index] ,—mul(CNp1[N] ,B[index] 15));

/#12*/
for(index=0;index!=N+1;index++) {

B [index] =add(B[index] ,mul(rN,C[index] ,7));

epsilonp=add(scalarproduct(Y,W, N, 15) ,des);

- 248 -

/*#14*/
epsilon = mul(epsionp,garrirnaN,15);

/*#15*/

for(index=O;index!=N-l-1 ;index++) {

W[index]=add(W[index} ,mul(epsilon,C[index] ,3));

nte=calcnte(W);
fpiintf(fp, 7o20.16e\n' ,nte);

fcic6e(fp);

double calcnte(ptr)
VAR *ptr;
{
mt k;
double nte,W;

nte=O.O;

for (k=O;k!=N;k++) {

W=((*ptr)/32768.0);

ptr++;
nte=nte+(W+Weights[k])*(W+Weights[k]);
}

return(rte);
}

nakedata.(t)
mt t;
{
double minpindes;
tnt j;

XK[1]=XK[0];

if (t==O) XK[O]=-4.O;

else XK[O]=gaussO;

minp=XK[O]*FEEDFORWARD[O]+XK[1]*FEED_FORWARD[1];

for (j=4:j!=0j--) {

X[j]=XU-11;

X[O]=minp;

mdes=O.O;

for (j =Oj !=Nj++) mdes=md+X[j]*Weights[j];

m des=m des+(gauss)*NOiSE;
/*Jo ADCs saturate so..."/
if (m inp>1.0) rninp=0.99969482;

if (rn des>1.0) mdes=0.99969482;

- 249 -

des=m des*32768;
inp=m inp*32768;

}

double rnum()

return ((random/MAXRND));

double gauss()

double a,b;
double result;
a=rnumQ;
b=rnurnO;
result=sqrt(_2*log(a))*cc (2*3. 141592654*b);
return(result);
}

VAR div(a,b,res shift)
irit a,b,r 	shift;
{
jot C;

ca;
c=c << res—shift;
if (b==O) {

fprintf(stderr,Algorithm fails.. division by zero');
exit(1);

c=c/b;
/* A good idea to saturate division, in case 1/1 is calculated, q15*/
if c>32767) c=32767;
if c<-32768) c=-32768;
a=c;
return(a);

jot mul(a.b,res shift)
VAR a,l),reS shift;

lilt C;

c=a * b;
if (resshift >=O) c=c >> res shift;

if (resshift <0) c=c << —res—shift;

#ifdef DEBUG
if (c<-32768 11 c>32767) {

fprintf(stderr,' Overflow Warning\n');

#endif
if (sat flag!=0) {

if c>32767) c=32767;
if c<-32768) c32768;

returnc);

VAR add(a,b)
VAR a,b;
{
mt c;
c=a+b;

- 250 -

#ifdef DEBUG c>32767)
{ if (c<-32768 I

fprintf(stdeft, Overflow W 	g\n");
}

#endif
if (sat_flag!=O) {

if (c>32767) c=32767;
if (c<-32768) c=32768;

return(c);

VAR scalarproduct(a,b,len,res_shift)
VAR *a,*b;
mt len;
VAR res shift;

VAR index;
mt long_accumulator;
long_accumulator=O;

for(index=O;index!=len;index++) {

long_accumulator 	long_accumulator + (*a) *

a+H-;
b++;
}

long accumulator = long_accumulator >> res_shift;
#ifdef DEBUG
if (long_accumulator<-32768 11 long accumulator>32767) {

fprintf(stderr, Overflow Warnin\nj;

#enclif
if (sat_flag!=O) {

if ~Iong_accumulator>32767) long accumulator=32767;
if long accumulator<-32768) long_accumulator=32768;

returnong accumulator);
}

- 251 -

Floating point interval arithmetic functions

1* #include file intools.h

Version 2.2

Written by Chris Callender, January 1989
Last Update:27/6/89*/

#include <stdio.h>
#include <math.h>
struct interval {

double 	lower endpoint;
double 	upper_endpoint;

id 	imultO;
void 	iaddO;
void 	idivO;

/ *&gin by defining the structures assocaited with scalars, column
vectors, row vectors, and matrices. They are all basically matrices, but
a scalar has one row and one column, a column vector has one column and a
row vector has one row*/

#define spvar 	static struct SPVAR

struct 	SPVAR {
mt rsize;
mt csize;
struct interval *element;

# define scalar(name) 	 name.rsize= 1;\
name. csize= 1;\
namne.elenient=(struct interval *)malloc(sizeof(struct interval))

#define cvector(namne,row) 	 name.rsize=row;\
name.csize=1;\
name.element=(struct interval *)malloc(sizeof(struct intervai)*row)

# define r vector (name,column) 	 name.rsize= 1;\
n ame.csizecolumn;\
name.elernent=(struct interval)malloc(sizeof(struct interval)*colurnn)

# define matrix(namne, row,column) 	n arne.rsize=row;\
name.csizecolumn;\
n arne.element=(struct interval *) malloc(sizeof(struct interval)*colurnn*row);

\
if (name.element==O) error("Out of Memory")

# define resize(narm,r,c) 	 name.rsize=r; \
name.csize=c; \
free(narne.elennt);\
n ame.e1errnt=m realloc(name element ,sizeof(struct interval)*r*c) ; \
if (name.element==O) error('Out of Memory")

- 252 -

struct interval *mrealloc(ptr,sz)
struct interval *ptr;
mt sz;

if (ptr==O) ptr=(struct interval *) malloc(sz);

else ptr=(struct interval *)realloc(ptr,sz);
return(ptr);

/*A display function prints the matrix on standard output. It will
work with scalars, row and column vectors, and matrices. Use

display(MATRIXNAME);
in the program to display the current value of MATRIXNAME*/

#define display(name) displaymatrix(narne.element,name.rsize,narne.csize)

displaymatrix(adr, r, c)
mt 	r, C;

double 	*adr:

irit j, k;
for (j = O;j !=r;j++) {

for (k= 0; k !=c; k++) {

printf('[%lf,%lf] ,* ,*(fr1));
adr++;
adr+H-;

printf("\n");

printf("\n');
return(0);

}

/ *Matrix addition routine. Works automatically with scalars, vectors and
matrices. Use the command:—

add(MATRIX1 ,MATRIX2,RESULT);
to make the matrix RESULT equal to MATRIX1+MATR.1X2
matrices. */

define acld(name 1 ,name2,name3) addmnatrix(narnel element ,name2elernent,\
name3.elenient name 1. rsize,namel .csizename2.rsize,name2.csize,name3. rsize,\
nan3.csize)

void addmatrix(adrl, adr2, adr3, ri, ci, r2, c2, r3, c3)

mt 	ri, ci, r2, c2, r3, c3;
double 	*adrl * r2, *fr3;

{
mt j, k;
if (ri != r2)

error("Unable to add matrices of different sizes');
if (ci 	c2)

error("Unable to add matrices of different sizes");
if (ri != r3)

error(Result matrix of incorrect size in add");
if (ci 	c3)

error('Result matrix of incorrect size in add');
for (j = 0; j != ri; j++) {

for (k=0;k !=ci;k++) {

cadd(*adrl, *(arfri + i), *acfr2 *(fr2 +

- 253 -

1), adr3);
add = adri + 2;
adr2 = adr2 + 2;
adr3 = adr3 + 2;

}

/*Identity sets a matrix, vector or scalar to the multiplication identity.
It is useful in the initialisation of matrices. Correct syntax is:

identity(MATRIXNAIvIE);*/

define identity(name) iden(narne.element ,narr.rsize,narr.csize)

void iden(adr, r, c)

double 	*adr;
mt 	r, .c;
{

mt j, k;
if (r != c)

error('Non square matrix cannot be set to identity");
for (j = 0; j 	r; j++) {

for (k = 0; k != C; k++) {

if (j == k)
*adr = 1.0;

*(adr + 1) = 1.0;

if (j != k) {
*adr = 0.0;

*(r + 1) = 0.0;

}
adr = adr + 2;

}
}

}

,I*Simjlar to identity, this sets a matrix, vector or scalar to the
addition identity element (zero)*/

define zero(narne) zer(name.element,narne.rsize, name. csize)

void zer(adr, r, c)

double 	*adr;
jut 	r, C;

{
jut j, k;
for (j = 0; j != r; j++) {

for (k = 0; k != c; k++) {

= 0;

*(arfr + 1) = 0;

adr = adr + 2;

- 254 -

11

/ *Setmatrix is used to set one element of a matrix to a specified
value—it takes the form:

setmatrix(MATRIXNAME,colurnrmurnber,rownumber,value) to set
the element{columnnumber}[rownurnber] of MATRIXNAME to the value
value ./

define setrnatrix(name,x,y,rvalue,irnvalue) setel(name.element , name.rsize,\
name. csize ,x,y,rvalue,imvalue)

/ *These help with the setting of column and row vectors and scalars*/
define setcvector(name,x,rvalue,imvalue) setmatrix(name,x, 1 ,rvalue,imvalue)

define setrvector(name,y,rvalue,imvalue) setmatrix(name, 1 ,y,rvalue,imvalue)
define setscalar(narr,rvalue,imvalue) setrnatrix(name, 1,1 ,rvalue,imvalue)

void setel(adr, r, c, x, y, vr, vi)
double 	yr, vi;
double 	*adr;
mt 	r, c, x, y;

if(y>c)
error("Setelement out of bounds");

if (x > r)
error("Setelement out of bounds");

if(y<1)
error("Setelement out of bounds");

if (x < 1)
error("Setelement out of bounds');

x--;
y
*(&k+(c * x *2 +y*2)=vr;
*(a&+(c * x *2 +y*2+i)= vi;

/ *Matrix multiplication routine. Will work with vectors, scalars and
matrices. Use the usual:

mul tip ly(MATRIX1 ,MATRIX2,RESULT);
to make the matrix RESULT equal to MATRIX1 multiplied by MATRIX2*/

define multiply(namei ,name2,name3) mult(narnel element ,name2.element,\
name3 element name 1 rsize,narnel .csize,name2.rsize,narne2.csize,\
name3.rsize,nanie3.csize)

void mult(adrl, adr2, adr3, ri, ci, r2, c2, r3, c3)
double 	*adrl, * r2, *adr3;
mt 	ri, ci, r2, c2, r3, c3;
{

mt j, k, 1;
double 	total[2], ar, ai, br, bi, t[2];
double *temp;
if (ri = 1 && ci == 1) {

msc(adr2,adr3,r2,c2,r3,c3,*adri,*(adrl+1));
goto SKIP;

if (r2 == 1 	c2 == 1) {
msc(adri,adr3,ri,cl ,r3,c3,*adr2,*(adr2+i));
goto SKIP;

if (r2 	ci)
error("Unable to multiply matrices - dimensions incorrect");

if (c2 	c3)
error("Result matrix of incorrect size in multiply");

if (ml 	r3)
error("Result matrix of incorrect size in multiply");

- 255 -

temp = (double *)Irialloc(sizeof(double)*r3 * c3 * 2);
if (temp == 0)

error("Out of Memory Error);
for (j = 0; j != r3; j++) {

for (k = 0; k != c3; k-f--f) {

total[0] = 0;

total[l] = 0;

for (1 = 0; 1 	ci; 1++) {

(*(+ (ci * j * 2) + 1
*2));

ai = (*(&lr i + (ci * 	* 2) + 1
*2 + 1));

br = (*(ack2 + (c2 * 1 * 21) + k
*2));

bi = (*(adr2 + (c2 * 1 * 2) + k
*2 + 1));

cmul(ar, ai, br, bi, t);
cadd(t[0], t[i], total[0], total[1],

total);

(temp + (c3 * 	* 2) + k * 2) = total[0];

*(temp + (c3 * j * 2) + k * 2 + 1) = total[i];

} 	
}

for (j = 0; j != r3; j++) {

for (k = 0; k 	c3; k++) {

ar= (*(terrp+ (c3*j * 2)+k*2));
ai = (*(temp + (c3*j * 2) + k * 2 + 1));
*(adr3 + çc3 * i * 2) + k * 2) = ar;
*(adr3 + c3 j * 2) + k * 2 + 1) = ai;

} 	
}

free(temp)
SKIP:
}

inimberofrows(ri ci ,r2,c2)
mt rl,cl,r2,c2;
I
f (rl==1 && cl==i) return(r2);
return(rl);

number of colurnns(rl ,cl,r2,c2)
mt ri,ci,r2,c2;
{
if (r2==1 && c2==i) return(ci);
return(c2);

/*Tlie opposite of setmatrix, getmatrix returns the value of an element of
a matrix */

#define getmatrLx(name,x,y,var) getel(riame.element ,namersize,\
name. csize,x,y,&var)

/ *Opposites of setcvector,setscalar and setrvector*/
define getcvector(narne,x,var) getmatrix(narne,x,1 var)

- 256 -

define getrvector(narne,y,var) getmatrix(name, 1 ,y,var)
clefme getscaiar(name,var) getmatrix(name, 1,1 var)

void getel(adr, r, c, x) y, v)
double 	*v;
double 	*ath;
mt 	r, C, x, y;

if(y>c)
error("Getelennt out of bounds");

if (x > r)
error("Getelement out of bounds");

if (y < 1)
error("Gete1ennt out of bounds");

if(x<1)
error('Getelement out of bounds");

x--;

v) = ((adr 	(c*x * 2) 	* 2));
(v + 1)) = ((adr 	(c * x 	2) +y * 2 + 1));

}

/*Use subtract exactly as add, but result is MATR.IX1_MATRIX2*/
define subtract(rarr 1 ,nan2,narr3) submatrix(namei .e1ennt,narr2.elennt,\

name3 element ,namnel.rsize,namei .csize,name2.rsize,name2.csize,namne3.rsize,\
name3 .csize)

void suhmatrLx(adrl, adr2, adr3, ri, ci, r2, c2, r3, c3)

mt 	ml, ci, r2, c2, r3, c3;
double 	*adri, *adr2, *adr3;

{
mt j, k;
double 	a, b, d;
if (ri 	r2)

error("Unable to subtract matrices of different sizes");
if (ci 	c2)

error(Unable to subtract matrices of different sizes");
if (ml != r3)

error(Result matrix of incorrect size in subtract");
if (ci != c3)

error("Result matrix of incorrect size in subtract);
for (j = 0; j != ri; j++) {

for (k = 0; k 	ci; k++) {

cadd(*adrl, *(adri + 1), _(*(adr2+ 1)),_(*(adr2)), adr3);
adrl.= adri + 2;
adr2 = adr2 + 2;
adr3 = adr3 + 2-

/*Transpose calculates the transpose of a matrix. Use
transpose(MATRIX,RESULT); to set RESULT equal to the transpose of MATRIX*/

define transpose(namne i,nan2) transp(namei.e1ement,narr2.element, name i .rsize,\

namei .csize,name2.rsize,narr2.csize)

transp(adri, adr2, ml, ci, r2, c2)
double 	*acfrl, *adr2;
mt 	ri, ci, r2, c2;
0
I!

- 257 -

double 	ar, ai;
double 	*temp;
mt j, k;
if (ri 	c2)

error(Result matrix of incorrect size in transpose");
if (ci 	r2)

error(&sult matrix of incorrect size in transpose");
temp = (double *)irJloc(sizeof(doub1e)*r2 * c2 * 2);
if (temp == 0)

error('Out of memory error");
for (j = 0; j != ri; j++) {

for (k = 0; k != ci; k+H-) {

ar = (*(r1 +'(j * c * 2) + k * 2));
ai=~*(adrl +(j*ci*2)+k*2+

);
*temp +(k*rl*2 +j*2)=ar;
*temp +(k*rl*2 +j*2+1)=ai;

for (j = 0; j 	r2; j++) {

for (k = 0; k 	c2; k++) {

ar = (*(temnp+ (c2 * j * 2) + k * 2));
ai=(*(temp+(c2*j*2)+k*2+1));
*(r2 + (c2 * * 2) + k * 2) = ar;
*(&fr2 + (c2 * j * 2) + k * 2 + 1) = ai;

ree(temp);
}

/ *Multiply a matrix by a scalar. Use the command:
multscal(MATRIX,k real, kiinaginary,RESULT);
to make RESULT equal to k*MATRIX*/

define III ultscal (name l ,vreal ,vimag.name2) msc(namel .elernent,name2.element,\
n amel .rsize, name I .csize,name2. rsize, nañe2.csize,vreal, vimag)

msc(adrl, adr2, r1, ci, r2, c2, yr , vi)
double 	*adrl, * r2;
double 	vr, vi;
mt 	ri ci, r2, c2;
{

mt j, k;
double 	ar, ai;
if (ri != r2)

error("Result matrix of incorrect size in muItcal);
if (ci 	c2)

error("Result matrix of incorrect size in multscal);
for (j = 0; j != ri; j++) {

for (k = 0; k != ci; k++) {

ar = ~*adrl);
ai = *(&fri + 1));
cmul(ar, ai, vr, vi, adr2);
adri = adri + 2;
adr2 = adr2 + 2;

} 	
} 	

}

- 258 -

/
/ *GDpy one matrix to another. Syntax is:
copy(MATRIX,RESULT); which makes RESULT equal to MATRIX. Equivalent to
multscal(TATRIX,1,RESULT); but clearer, faster and more readable.*/

define copy(namel,narne2) cpy(namei.element,name2.element,\
namel .rsize,narne 1 .csize,name2.rsize,name2.csize)

cpy(adri, adr2, ri, ci, r2, c2)
double 	*adri, *adr2;
mt 	ri, ci, r2, c2;
{

mt j, k;
double 	ar, ai;
if (ri 	r2)

error(Result matrix of incorrect size in copy");
if (ci 	c2)

error("Result matrix of incorrect size in copy");
for (j= 0; j 	ri; j++) {

for (k = 0; k 	ci; k++) {

ar = (*arfrl);
ai = (*(arfrl + 1));
*adr2 = ar;
*(adr2 + 1) = ai;
adri = adri + 2;
adr2 = adr2 + 2;

/ *upshift only applies to vectors, and shifts each element up one place in
the vector. Will work automatically with either column or row vectors.
Use:
upshift(VECTORNAME) ;*/

define u pshift(narr) u ps(name.element,narne.rsize,narne.csize)

ups(adr, r, c)
double 	*adr;
mt 	r, c;
{

mt j, k;
double 	ar, ai;
if (r 	1 &k c != 1)

error(Unable to upshift a matrix);
if (r == 1 &,& c == 1)

error(Unable to upshift ascalar");
if(r==1)

j=c;
if (c == 1)

= r;
for (k =j —1; k =0; k---) {

ar = (*(adr + k * 2 - 2));
ai= (*(ack+k* 2— 1));
* adr + k * 2) = ar;

} 	
*adr +k*2+1)ai;

adr= 0;

*(a& + 1) = 0;

}

- 259 -

define downshift (name) dos(name.element ,name.rsize, narne.csize)

dos(adr, r, c)
double 	*a fr;
mt 	r, C;

{
mt j, k;
double 	ar, ai;
if (r != 1 && c != 1)

error(Unable to downshift a matrix");
if (r == 1 && c == 1)

error("Unable to downshift a scalar");
if (r 	1)

= C;

if (c == 1)
= r;

for (k = 0; k !=j - 1; k++) {

ar 	(*(&fr + k * 2 + 2));
ai = (*(adr + k * 2 + 3));
*(a& + k * 2) = ar;
*(lr + k * 2 + 1) = ai;

}
*(ar + j) = 0;

*(ach. + j + 1) = 0;

define inverse(nani,name2) inv(namei.element,name2.element,narnei .rsize,\
namel .csize,name2.rsize,nan2.csize)

inv(adri, adr2, ri, ci, r2, c2)
double 	*adrl *arfr2;
mt 	ri, r2, ci, c2;
{

mt 	n, in, j;
double 	factor[2], a[2], t[2];
double 	*temp;
if (ri 	ci)

error("Cannot invert a non—square matrix");
if (r2 != ri)

error(Resült matrix of incorrect size in inverse");
if (c2 	ci)

error(Result matrix of incorrect size in inverse);
temp = (double *)nJ1oc(sizeof(double)*r1 * ci * 2);
if (temp == 0)

error("Out of Memory Error);
for (n = 0; n != ri; n++) {

for (m = 0; in != ci; m++) {

(teinp+(r1 i *2)+ n *2)(*(ac1ri
+ (ri * in * 2) + n * 2));

*(temp + (ri * in * 2) + n * 2 + 1) =
+(ri* m *2)+ n *2+1));

iden(adr2, r2, c2);
for (n = 0; n 	ri; n++) {

iinv(*ternp + (n * ci * 2) + n * 2), *(temp + (n
ci * 2) +n * 2 + 1), factor);

for (j = 0; j != ci; j++) {

- 260 -

cmul(factor[O], factor[l], *(temp + (n *

cl*2)+j*2),*(temp± (ii *cl*2)
+j * 2.+ 1), temp + (n * ci * 2) +j *

2);
cmul(factor[O], factor[l], *(adr2 + (n *

c2 * 2) +j * 2), *(&h.2+ (n * c2 * 2)
+j * 2 + l), adr2 + (n * c2 * 2) +j *

2);

or (m = 0; rn 	ri; rn-H-) {

if (m != n) {
factor[O] = (*(temp + (m ci *

2)+ n *2)); 	V
factor[1] = (*erpp + (m * ci *

2)+n 	2+ 1));
for (j = 0; j != ci; j++) {

a[0] = (*(temp + (n * ci

*2) + i * 2));
a[1] = (*(temp + (n * ci

*2) 	* 2 + fl);
crnul(a[0], a[1], factor[O],

factor[1], t);
cadd(*(temp + (m * ci *

2) + j * 2), *(temp + (m
*cl * 2) + j * 2 + 1), —t[O],

—t[l], temp + (m * ci *
2)+j*2);

a[0] = (*(&x2 + (n * c2

*2) + j * 2));
a[1] = (*(&fr2 + (n * c2

*2) + j * 2 + 1));
crnul(a[0], a[1], factor[0],

factor{l], t);
cadd(*(adr2 + (m * c2 *

2) + j * 2), *(adr2 + (m
*c2 * 2) + j * 2 + 1), —t[O],

—t[i], adr2 + (m * c2 *
2) + 	* 2);

} 	

}

free(temp);
}

void input(filename, ptr)
char 	*filenaI];
double 	*ptr;

static char 	fnan[10][20];

static FILE *fopenO, *fpointer[10];

float 	c, d;
mt a,f=0,b = 10;

- 261 -

if (strcmp(fileriame, "close") == 0) {

for (a = 0; a 	10; a++) {

if (fnarne[a][0] 	0) {

fclose(fpointer[a]);
fname[a][0] = 0;

} 	
}

return;
}

for (a= 9; a ! —1; a--) {
if (strcmp(filename, fname[a]) == 0) {

f = 1;
b = a;

} else {
if (fname[a][0] == 0)

b = a;

if (b == 10)

error(Too many files open (maximum of 10)");

if (f == 0) {

strcpy(fname[b], filename);
fpointer[h] = fopen(fnaine[b], "r);
if (fpointer[b] == 0)

error("Unahle to open file for input');

fscanf(fpointer[b], ',%f %f", • &c, &d);
*ptr = c;
*(ptr + 1) = d;

void output(fi1enan, ptr)
char 	*flIenneg;
double 	*ptr;

static char 	onan[10] [20];

static FILE *fopenQ, *opointer[10];

mt a,f=0,b= 10;

if (strcmp(filenarne, "close") == 0) {

for (a = 0; a != 10; a++) {

if (onan1e[a][0] 	0) {

fclose(opointer[a]);
onarne[a][0] = 0;

} 	
}

return;
}

- 262 -

for (a = 9; a 	—1; a--) {
if (strcmp(fllename, onarne[a]) == 0) {

f = 1;
b = a;

} else {
if (oname[a][0] == 0)

b = a;

} 	
}

if (b == 10)

error("Too many files open (Maximum of 10)");

if (f == 0) {

strcpy(oname[b], filename);
opointer[b] = fopen(oname[b], "w);
if (opointer[b] == 0)

error('Unable to open file for output");

!printf(opointer], 10 7of %n", (*ptr), (*(ptr ± 1)));
return;

I

error(message)
char 	*i.flessae;

{ mt *t;
t=0;

fprintf(stderr, ***DSPSIM Runtime Error***\ n);
fprintf(stderr, ' 91cs\n\n, message);
exit(0);

PI

cadd(a, b, c,d, e)
double 	a, b, c, d, *e;

{
struct interval templ,temp2;
temp 1 lower endpoint=a;
tempi upper endpoint=b;
temp2.lowerendpoint=c;
ternp2.upperendpoint=d;
iadd(&templ ,&temp2,e);

cmul(a, h, c, d, e)
double 	a, b, c, d, *e;

{
struct interval tempi ,temp2;
tempi lower endpoint=a;
temp 1 upper endpoint=b;
terrip2 lower endpoint=c;
temp2.upperendpoint=d;
irnult(&temp 1 ,&temnp2,e);

iinv(a,b,c)

- 263 -

double a,b,*c;

{
struct interval templ,temp2;
temp 1 lower endpoint=1.0;

ternpl .upper_endpoint=1 .0;

temp2.lower_endpoint=a;
temp2.upper endpoint=b;
idiv(&temp 1 temp2,c);

void iadd(interl,inter2,interres)
struct interval *inter l ,*inter2,*interr;

{
double upper,lower;
lower=(inter 1 —>lowerendpoint)+(inter2—>lower_endpoint);
upper=(interl—>upper_endpoint)+(inter2—>upper_endpoint);

if (lower<0) lower=nextafter(lower, —(infinity));

if (upper>0) upper=nextafter(upper,infinity);

if (upper<lower) error('Upper less than lower

interres—>lowerendpoint=lower;
interr—>upperendpoint=upper;
}

void isub(interl,inter2,interres)
struct interval *inter l ,*inter2,*interres;

double upper,lower;
lower= (inter 1—>lower endpoint) — (inter 2—>upper endpoint);
upper=(interl —>upper endpoint)—(inter2—>lower endpoint);

if (upper>0) upper =nextafter(upper,infinity);

if (lower<0) lower=nextafter(lower, —(infinityO));

if (upper<lower) error("Upper less than lower);
interres—>lowerendpoint=lower;
interres—>upperendpoint=upper;
}

void iniult(interl ,inter2,interres)
struct interval * interl ,*inter2 *interr;

double r[4];
double rnin,Iriax;
mt 	k;

r[0]=(inter 1>1ower 	endpoint)*(inter2_>lower endpoint);

r 1 =(inter 1_>lowerendpoint)*(inter2_>upper_endpoint);
r 2 =(inter1>upper endpoint)* inter2—>lower endpoint);
r 3 =(inter1.>upper endpoint)*(inter2—>upper_endpoint);

max=r[0];

rnin=r[0];

- 264 -

for(k1;k!=4;k++) {
if (r k >rnax) rnax=r[k];
if (r k <nih) rnin=r[k];

if (min<O) min=nextafter(min,—(infinityO));

if (max>O) max=nextafter(rnax,infinityQ);

if (max<rnin) error("Upper less than lower);
interr—>1ower_endpoint=niin;
interr—>upper _endpoint=niax;
}

void idiv (inter 1, inter 2,interr)
struct interval *inter 1*fr r2*interr ;

struct interval temp;
if (inter2—>upper_endpoint>O && inter2—>lowerendpoint<0)

error("Divison by zero error.\n");
ternp.lower endpoint=1/(inter2—>upper endpoint);
temp.upper endpoint=1/(inter2—>Iower endpoint);
i rnult(inter 1 ,&ternp,interres);

- 265 -

Interval arithmetic FTF algorithm

/*flF Algorithm*/

#define FLOATING
#define MANTISSA LENGTH 56
#include </u4/call/lib/INTERVALANALYSIS_src/intools.h>
#include <math.h>

#define MAXRND 2147483647.0

mt 	N;
double calcnteQ;
double rnurn);
double gauss;
double inp,desired;
double X[5];
double Weights[51{0.9,0.3,-0.3,-0.7,0. 1};

double FEED—FORWARD[2]11.0,0.865};

double XK[21;
float NOISE;

main (argc,argv)
mt argc;
char *argv;

spval

spvar ternpscall ,tempscal2,rN,rNp,beta,Y,YNp1 ,C,Cex,B,ternpN,W,alpha,CNp1;
struct interval cn;
FILE *f6pen,*fp,*fp1,*fdiag1;

double nte,gain factor=0.0,*average,temp,MU;

double absolute error=-1.0,mean,width;

float lambda=0.0,SNR=-1000.0;

mt i ,k,n,s,p 10,p,ensernble=-1 ,ens,resflag,l=0;

char clear —screen= 12;
char upline=11;
char * cornmand,*argl ,*arg2,*arg3,*arg4;
arg4='graph;

/*InitiajiSatiOn*/
if (argc!=2) res flag = 1;
else {

if (strcrnp(argv[1],'—on")==0) resflag=1;

if (strcrnp(argv[1],"—ON")==0) resflag=1;

if (strcrnp(argv[1]," —off") ==O) res_flag=0;

- 266 -

if (strcmp(argv[1] '—OFF') ==0) resflag=0;

printf %c..,clear screen);
printf Simulation of FTF Algorithm\n\n");
printf "by Chris Callender, 1989\n\n\n\n");
if (res flag) printf("\n\nllescue=ON, Floating Point Mantissa Length = %d\n\n",M
AN SSA LENGTH);
if (!res flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA LENGTH)
printf("Filter Length:");
scanf("%d" ,&N);
rvector(A,(N+1));
scalar rescue);
scalar(yO);

scalaralphaml);
scalar eNp);
scalar eN);
scalar garnrnaN);
scalar gammaNpi);
scaJar alpha);
scalar (epsilon);
scalar(epsilonp);
scalar(tempscall);
scalar ternpscal2);
scalar(rN);
scalar(rNp);
scalar(beta);
cvector(Y,N);
cvector(YNp1,(N+1));
rvector(C,N);
rvector Cex,(N+1));
rvector(CNp1,(N+1));
rvector(B,(N+1));
rvector(tempN,N);
rvector(W,N);

fp=fopen("NORMTAPEPROR.DAT", 'wj;
fdiagl=fopen(DIAGNOSTIC.DAT", "w");
fp 1=fopen("FTF_RESCUE_STATS", 'w');

conirnand='/bin/csh";
argl="/u4/call/shellscripts/plotshell";
arg3='IFTF ALgoritrhm";
arg2="gplottext.tmp;

srandom(0);

while (1 ambda<0.8 II lambda> 1.0)

{
printf("Please enter a value for lambda between 0.8 and 1.0:

scanf("%f" ,&danibda);

while (SNR<-120 11 SNR>120) {

printf('\n\nPlease enter SIGNAL/NOISE ratio in dB (-120 - 120db): ');

scanf('%P' ,&SNR);

- 267 -

while (ensemble<1) {
printf('\n\nHow many runs to make ensemble average:);
scanf('%d" ,&ensernble);
}
for(n=0;n!=N;n++) gain_factor=gain_factor+Weights[n]*Weights[n];

gain_factor=gain_factor+FEED_FORWARD[0] *FEED FORWAPD[O] +FEED_FORWARD[1]*FEED_FO
RWARD[1];
gamjactor=sqrt (gain _factor);

NOISE=gain_factor/explo(SNR/20.0);

absolute error=0. 125*NOISE;

MU=(NOISE*NOISE*larnbda)/(N*absoluteerror*absolute_error*(1—lambda));

p rintf('Enter value for MU: [%lf]\n' MU);
scanf('%IP' ,MU);

printf("Enter value for absolute error rho: [%lf] \n' ,absolute error);
scanf("%1f ,&absolute error);

printf('\n\nllow many data samples per run:
scanf('%d',&s);
fprintf(fp,"%d\n\n" ,$);
average=(double *)malloc(sizeof(double)*(s+1));
if (average==0) {

fprintf(stderr,FI'F Runtime error ... out of memory);
exit(1);

printf(%cFTF Simulation Running\n\n\n' ,clear screen)

plO=s/lO;

for (ens=1 ens !=ensenible+1;eiis++) {

for(n=0;n!=N;n+-i-) X[n]=0.O;

for(n=0;n!=2; n++) XK[n] =0.0;

ME
setrvector(A, 1,1.0,1.0);

setrvector(B, 1,1.0,1.0);

zero(C);
zero(\'V);
nte=calcnte(W.element);
* average=*average+nte/ensernble;
makedataQ;
setscalar(yO,inp,inp);

copy(yO,tempscall);

setscalar(tempscal2, —desired, —desired);
copy(tempscal 1 alpha);
multiply(alpha,alpha,alpha);
copy(alpha,alpharnl);
inverse(tempscall ,tempscall);
multiply(ternpscall ,tempscal2,tempscall);
getscalar(tempscall,cn);
setrvector(W, 1,cn.upper endpoint,cn.lower endpoint);

- 268 -

setscalar(garnrnaN, 1.0,1.0);

p=p-10;

for(n=1;n!=N+1;n++) {
nte=calcnte(W.element);
* (average+n)=*(average+n)+nte/ensernble;
makedataQ;
upshift Y);
upshift YNpi);
setcvector(Y, 1,inp,inp);
setcvectoL(YNp1 ,1 ,inp,inp);

multiply(A,YNp1 ,eNp);

foi(k=1;k!=N+1;k++) {
etrvector(A,k,cn);

set rvector(tempN ,k,cn.upper_endpoint,cn.lower_endpoint);

inverse(yO,tempscall);

multiply(eNp,tempscall ,tempscal 1);
getscalar(tempscall ,cn);
setrvector(A,n+1, —cn.lowerendpoint,—cn.upper_endpoint);

multiply(eNp,gammaN,eN);

multscal(alpha,Iambda,larnbda,alpha);

multiply(eNp,eN,tempscall);
add(alpha,tempscall ,alphaml);

inverse(alpharnl,tempscall);
multiply(tempscali,alpha,tempscall);
multiply(ganimaN,tempscallganimaN);

upshift(C);
inveise(alpha,tenpscal 1);
inultiply(tempscal 1 ,eNp ,teinpscal 1);
getscala.r(tempscall cu);
rnultscal(ternpN,cn.lower_endpoint,cn.upper_endpoint ,ternpN);
suhtract(C,tempN,C);

if (n==N) {
copy(C,tempN);
getscalar(yO,cn);

multscal(tempN,cn.lowerendpoint,cn.upper_endpoint,tempN);
getscalar(gammaN,cn);
multscal(tempN,cn.lower endpoint ,cn.upperendpoint,ternpN);
for(k=1;k!=N+1;k++) 1

getrvector(ternpN,k,cn);
setrvector(B,k,cn.lowerendpoint,cn.upper_endpoint);

setrvector(B,N+1 1.0,1.0);

copy(garnrnaN,beta);
multiply(beta,yO,beta);

multiply(beta,yO,beta);

- 269 -

setscalar(tempscall,desired,desired);
maltiply(W,Y,ternpscal2);
add(tempscall,tempscal2,epsilonp);

multiply(epsilonp,garnmaN,epsilon);

if (n<N) {
inverse(yO,tempscall);

multiply(tempscall ,epsionp,tempscall);
getscalar(tempscall,cn);
setrvector(W,n+ 1, —cn. upper endpoint, —cii.lower endpoint);

if (n==N) {
getscalar(epsilon,cn);
rnultscal(C,cn.lowerendpoint,cn.upperendpoint,tempN);
add(temp

/ *fpriiitf(fdiagl ,'%20. 161f %20. 161f\n" ,W.e1ement{O]. upper endpoint,W.element[O
lower endpoint)

}

for(n=N+1;n!=s+1;n++) {

RE START:
f (j) {

printf(%cRun #7&l:Status %d%%\ n ,up1ine,ens,(p*10)/p10);

p=p+p_lO;

makedataO;
upshift Y);
upshift YNpi);
setcvector(Y, 1 ,inp,inp);
setcvector('YNpl, 1 ,inp,inp);

1* 	#1
multi ply(A,YNp1 ,eNp);

1* #2
multiply(eNp,gammaiN,eN);

/ 	#3
copy(alpha,tempscal2);
multiply(eNp,eN,ternpscall);
multscal(alpha,lambda, lambda, alpha);
add(alpha,tempscall alpha);

/ #4
inverse(alpha,tempscall);
multiplyganimaN,tempscall ,garnrnaNpl);
multiply garnmaNpl ,tempscal2,garnrnaNpl);
multscal gammaNpi ,larnbda,larnbda,garnrnaNpl);

/* #5
for (k=1;k!=N+1;k++) {

getrvector(C,k,cn);
setrvector(Cex,k+1,cn.lower endpoint,cn.upper endpoint);
}

- 270 -

setrvector(Cex,1,0.0,0.0);

inverse(tempscal2,tempscal2);
multiply(tempscal2,eNp,tempscal2);
multscal(tempscal2, 1/lambda,1/larnbda,tempscal2);
getscalar(tempscal2,cn);
multscal(A, —cn.upper_endpoint, —cn.lower endpoint,CNp 1);
add(CNp1 ,Cex,CNp1);

/ 	#6
getscalar(eN,cn);
multscal(Cex,cn.lower_endpoint,cn.upper_endpoint,Cex);
add(Cex,A,A);

/* #7
getrvector(CNp1 ,N+1 ,cn);
setscalar(rNp, —cn.upper_endpoint, —cn.lower endpoint);
multiply(rNp,beta,rNp);
multscal(rNp,larnbda,larnbda,rNp);

/ #8
getrvector(CNp 1 ,N+1 ,cn);
setscalar(tempscall,cn.lowerendpoint,cn.upper_endpoint);
multiply(tempscai.1,garnmaNpl,tempscall);
multiply(tempscaJl,rNp,tempscall);
setscalar(tempscal2,1.0,1.0);

add(ternpscal 1 ,tempscal2,tempscal 1);
copy(tempscall rescue);
getscalar(rescue,cn);
if (cn.lower endpoint<0.0 && res flag) {

/ *fprintf(fpi ,"Division by zero problem at t=%d\n' ,n) ;*/
zero(A);
setrvector(A,i, 1.0,1.0);

zero(B);
setrvector(B,N+1 1.0,1.0);

zero(C);
temp=pow(lambda,(double)N)*MU;
setscalar(aipha,ternp, temp);
temp=MU;
setscalarbeta,ternp,temp);
setscaJar gainmaN,1.0,1.0);

for(k=1;k!=N+1;k+-f-) {
setrvector(W,k, (W.element [k—i] lower endpoint+W.element[k-1] .upper endpoint)

/2 .0,(W.element [k—i] lower endpoint+W.element[k-1] .upperendpoint)/2.0);

}
1=0;

goto RE—START;

inverse(tempscall ,tempscall);
multi ply(ternpsc all, garnmaNp I, gan-ii-iiaN);

/ #9
multiply(rNp,gammaN,rN);

multscal(beta,lambda,larnbda,beta);
rnultiply(rNp,rN,tempscall);

- 271 -

add(tempscal l,beta,beta);

getrvector(CNp1 ,N+1 ,cn);
multscal(B,—cn.upper_endpoint,—cn.lower_endpoint,Cex);
add(CNp1,Cex,Cex);

for(k=1;k!=N+1 ;k-H-) {
getrvector(Cex,k,cn);
setrvector(C,k,cn.lower_endpoint ,cn.upper_endpoint);

setrvector(Cex,N+1,0.0,0.0);

/* 	#12 	*/
getscalar(rN,cn);
multscal(Cex,cnjower_endpohit,cn.upper_endpoirit,Cex);
add(Cex,B,B);

1* 	#13 	/
setscalar(ternpscall ,desired,dired);
multiply(W,Y,tempscal2);
getscalar(ternpscal2,cn);
adcl(tempscall ,ternpscal2,epsilonp);

/* 	#14 	/
multiply(epsilonp,garnrnaN,epsilon);

/* 	#15 	*/
getscalar(epsilon,cn);
multscal(C,cn.lower endpoint ,cn.upper endpoint ,tempN);
add(W,tempN,W);
for (k=1;k!=N+1;k++) {
getrvector('iV,k,cn);
if ((cn .upper_endpoint—cn. lower endpoint) >absolute error)

/ *fprintf(fpl, Output too wide at t=(Yod\n ,n)/
zero(A);
setrvector(A, 1, 1.0, 1.0);

zero(B);
setrvector(B,N+1, 1.0,1.0);

zero(C);
temp=pow(lambda,(double)N)*MU;
setscalar(alpha,temp,temp);
temp=MU;
setscalar(beta, temp,temp);
setscalar(gamrnaN, 1.0,1.0);

for(k=1;k!=N+1;k+-1-) {
setrvector(\/V,k, (\'V.element [k—i] lower endpoint+W.element[k— 1]. upper_endpoint)

/ 2.0,(W.element[k— 1] lower endpoint+W.elernent[k— 1] upper endpoint)/2.0);

}
1=0;

goto RE_STARF;

/ *fprintf(fdiagl ,"%20. l6lf %20. 1611\n" ,W.element[0] .upperendpoint,W.elernent[0
.lowerendpoint);*/

nte=ca1cnte('vV.e1ernent);
* (average+n) =*(average+n) +nte/ensemble;

l++;
}

- 272 -

for(n=O;n!=s+1;n++) {

fprintf(fp, "%20. 16e\n' ,*(average+n));

}

fcicsefp);
fcic$e fpl);
fcicse fdiagl);

makedB(s,average);

fp=fopengp1ottext.trnp" ,"w");
fprintf fp,'Floating Point\n");
fprintf fp, "Mantissa Length 970d bits\n\n" MANTISSA LENGTH);
fpuintf(fp,"Filter Length='cd\n ,N);
fprintf(fp,"MTJ=%lf\n ,MU);
fprintf fp,"larnbda=%f\n" lambda);
fprintf fp,'rho=%lf' absolute error);
fprintf fp,"SNR=%f\n",SNR);
fprintf fp,Ensemble of %d runs\n,ensemble);
fcice(fp);

}

double calcnte(ptr)
double *ptr;

{
intk;
double nte=O.O,mean;

struct interval Weight;

for (k=O;k!=N;k++) {

Weight lower endpoint=((*ptr));
ptr++;
Weight upper endpoint=((*ptr)) ;
ptr++;
rnean=(VVeight lower endpoint+Weight upper endpoint)/2;
nte=nte+(Weights[k]+mean)*(Veights[k]+rnean);

return(nte);
}

makedata()

mt j;

XK[1]=XK[O];

XK[O]=gauss;

inp=XK[O]*FEEDFORWARD[O]+XK[1] *FEEDFQR\VjU[1];

for (j=43!=Oj--) {

X[O]=inp;

desired=O.O;

for (j =O:j !=Nj++) desireddesired+X[jJ*Weights[jJ ;

- 2'13 -

desired=desired+(gauss)*NOISE;

}

double rnum()

return ((random/MAXRND));

double gauss()

double a,b;
double result;
a=rnum;
b=rnum;
result =sqrt(_2*1og(a)) *cos (2*3. 141592654*b);
return(result);

rnakedB(s,data)
mt s;
double *data;
{
FILE *fopenO*fp2;
float Se;
float mit;
double avlevel=O;

double p;
mt k;

fp2=fopen(ERRdB.DAT ,w");

for (k=O;k!=s+1;k++) {

se=*(data+k);
if (k==O) init=se;

p=10*log1O(se/mnit);

if (k>4*N) avlevel+=p;
fprintf(fp2,"%f\n',p);
}

printf("Average performance level%lf'\n ,av level/(s_4*N))
fcice(fp2);
}

- 274 -

Interval arithmetic fast Kalman algorithm

/* Simulation of the Fast Kalman Algorithm /
#defme FLOATING
#define MANTISSA LENGTH 56
#include </u4/call/lib/INTERVALAINALYSIS_src/intools.h>
#include <math.h>
#include <stdio.h>

#define MAXRND 2147483647.0

mt 	N;
double calcnteO;
double rnumO;
double gaussO;
void change_weights;
double inp,desired;
double X[5];
double Weights [5]={O.9,O.3,—O.3,O.7,O.1};

double FEED FORWARD[2]={1.O,O.865};

double XK[2];
float NOISE;

main (argc, argv)
mt argc;
char

All of the spvar definitions should go in here*/
spvar Xnnii ,enml ,a,c,en,epsilon ,Cex,m,mu,r,b ,w,err,xn,dn,forget ,temp, temp 1,y;
spvar f,kappa,d,one,xl ,W,garrima;
struct interval ciii;
FILE *fope,*fp;

double delta=-1 .O,nte,gain factor=O.O, *average;

float larnbda=O.O,SNR=-1;

mt k ,n,s,p 1O,p,ensemble=— 1 ,ens,rflag,rescue_flagO;

char clear screen=12;
char up11ne=11;

/*ImtiajisatiOfl*/

if (a c!=2) res_flag = 1;
else{

if (strcmp(argv[1],—on")=0) res_flagl;

if (strcmp(argv[1],"—ON)==0) resflag=1;

if (strcmp(argv[1],'—off")==O) resflag=O;

if (strcmp(argv[1] ,"—OFF')==O) resflag=O;

- 275 -

printf "(7oc' clear screen);
printf 'Simulation of Covariance Fast Kalman Algorithm\n\n");
pr" by Chris Callender, 1 989\n\n\n\n");
if (res_flag) printf("\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n',M
ANTISSA_LENGTH);
if (!res flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA LENGTH);
printf("Filter Length:");
scanf("%d",&N);

rvector(Xnml,N);
rvector(xl,N);
scalar(temp);
cvector(templ,N);
scalar forget);
scalarxn);
scalar dn);
scalar enml);
scalar en);
cvector(a,N);
cvec tor, N);
cvector c,N);
cvector w,N);
scalar(err);
scalar(r);
scalar(mu);
cvector(m,N);
cvector(Cex,(N+1));
scalar epsilon);
scalar(y);
cvector(f,N);
scalar(kappa);
scalar(gamma);
scalar(one);
cvector('d,N);
matrix(W,N,N);

fp=fopen(" NORMTAPERROR.DAT" ,1.

srandoin(1);

while (lanibda<0.8 11 lanibda>1.0)

{
printf("Please enter a value for lambda between 0.8 and 1.0:

scanf("%f" ,&larnbda);

while (delta<0.0)

{
printf("Please enter a small positive value for delta:
scanf("%lP' 4delta);

while (SNR<0 11 SNR>120) {

printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 120db):

scanf("%f",&SNR);

while (ensemble<1) {

- 276 -

printf('\n\nHow many runs to make ensemble average: ');
scanf("%d ,&ensemble);

for(n=0;n!=N;n++) gain_factor=gain_factor+Weights[n]*Weights[n];

gain_factor=gain_factor*(FEED_FORWARD[0]*FEED_FORWARD[O]+FEED_FORWARD[1]*FEED_F
0 RWARD[1]);
gairi_factorqrt(gainjactor);

NOISE=gain_factor/explO(SNR/20.0);

printf("\n\nHow many data samples per run:
scanl("%d" ,&s);
fprintf(fp,"91cd\n\n" ,$);
average=(double *).r,jloc(sjzeof(doub1e)*(s+1));
if (average==0) {

fpriritf(stderr, ' FK Runtime error ..out of memory");
exit(1);

p rintf("%cFK Simulation Running\n\n\n' clear screen);
p=p_10=s/10;

zero(Xnml);
zero xl);
zero
nte=calcnte(w.element);
* average=*average+nte/ensemble;
zero(a
zero(h
setscalar(one, 1.0,1.0);

setscalar epsilon,delta*larnbda,delta*lambda);
setscalar gamma,delta,delta);
setscalar(forget,lambda,larnbda);
zero(W);
for(n=1 ;n!=N+1;n++) setmatrix(W,n,n,pow((double)lanibda,(double)(1—n)) ,pow((doub
le)larnbda,(douhle)(1—n)));
S 	c=((gamrna + xl * W#
copy(c,d);

for (ens= 1 ;ens!=ensern)le+1;ens++) {

for(n=1;n!=s+1;n++) {
if (n=p) {

printf("%cRun #%d:Status %d97o%\ n , upline,ens,(p*10)/p10);

p=p+p_lO;

/*The algorithm goes in here!*/

RE START:
if (scue flag==1) {

copy(Xnml,xl);
zero (a);
zero(b);
setscalar(epsilon, 10.0*lambda,1O.0*lambda);

setscalar(gamrna, 10.0,10.0);

c((gamma + xl * W# *x1)#*W#*x1)
copy(c,d);

- 277 -

for(k=l;k!=N+l;k++) {
set cvector(w,k,(w.elerrntk—l] lower endpoint+w.e1ennt

[k-1] .upper endpoint)/2.O,(w.elementk— 1] lower endpoint+w.element[k—l] .uppere
ndpoint)/2.O3;

I
rescue_flag=O;

rintf("Rescued at t=%d\n\ri",n);

/*(K1)*/

makedata();
setscalar(xn,irip,inp);
setscal ar(dn, desired, desired);

$ 	enml=xn_(Xnml)*a

/*(K2)*/

$ 	a=a 4 c*enrn1

/*(I.3)*/

$ en=xn_(Xnml)*a

$ 	epsilon=forget*epsi1orH en*enml

/*(I(5)*/
if (epsilon.elernent—>lower_endpoint<O.O & epsilon.element—>upper_endpoint>O.O

){
rescue flag=l;
goto RE—START;
I

.5 	temp=en * (epsilon#)
getscalar(ternp,cnl);
setrvector(Cex, 1 .cnl.lower endpoint,cnl upper endpoint);

$ 	templ=c - a * temp
for(k=2;k!=N-F2;k++) {

getcvector(templ,k-1,cnl);
setcvector(Cex,k,cnl lower endpoint ,cnl.upper endpoint);

/*(J6)*/
getcvector(ex,N+l ca 1);
setscalar(mu,cnl lower endpoint ,cnl. upper endpoint);

for(k=l;k!=iN+l;k+-i-) {
getcvector(ex,k,cnl);
setcvectorOn, k,cn 1 lower _endpoint, cn 1. upper endpoint);

/*(I7)*/

getrvector(Xiirnl ,N,cnl);
setscalar(temp,cnl.lowerendpoint,cnl upper endpoint);

upshift(Xriml);
setrvector(Xnml; l,inp,inp);

.5 	r=temp .- Xnrnl * b

/*(1K8)*/

- 278

S 	ternp=one_rnu*r
if (temp.eIerrnt—>lower_endpoint<O.O && temp.element—>upper_endpoint>O.0) {

rescue _flag 1;
goto RE_START;
}

S 	b=(b + m * r) * (temp#)

$ f=m +b* mu

$ 	temp=one - Xnml *f * Xnml *d
if (temp.element—>lower_endpoint<O.O && temp.elernent—>upper_endpoint>O.0) {

rescue_flag=1;
oto RESTART;

S 	kappa(one - Xnrnl * f *(p1 *d)#
if (kappa.elernent—>lower_endpoint<O.O && kappa. element—>upper _endpoint >O.0) {

rescue _flag= 1;
goto RE_START;
}

$ 	d=kappa#*(d - NXnml*d))

$ 	c=f - d*(xl*f)

$ y=Xnml* w
S 	err=di - y
$ 	w=w+c*err

for(k=1;k!=(N+1);k++) {
getcvector(w,k,cnl);
if ((cnl.upper_endpoint—cnl lower endpoint) >O.5*NOISE) {

rescue_flag 1;
oto RE—START;

nte=calcnte(w.element);
* (average+n) =*(average±n)+nte/ensemble;

for(n=O;n!=s+1;n++) {

fprintf(fp, %20. 16e\n ,*(average+n));

}
fcice(fp);
rnakedB(s average);

PI
double calcnte(ptr)
double *ptr;
{
mt k;
double nte,rneari;

nte=O.O;

for (k=O;k!N;k++) {

- 279 -

mean=0.5*((*ptr)+(*(ptr+1)));

ptr+=2;
nte=nte+(Weights[k]_mea.n)*(Weights[k] —mean);

return(nte);
}

rnakedata()

intj;

XK[1]=X1K[0];

XK[O]=gaussQ;

jnp ([0]*FEEDFORWJ\J[O]+)(J([1] *FEEDFORWARD[1];

for (j=4j!=0j--) {

X[j]=XLj-11;

X [O]=irip;

desired=O.O;

for (j =OU !=Nj++) desired=desired+X[j] *Weiglits[j];

desired=desired+(gaussQ)*NOISE;

double rnumQ

return ((randomO/MAXRND));

double gauss()

double a,b;
double result;
a=rnumQ;
b =rnurn;
result=sqrt(_2*log(a))*cc6(2*3. 141592654*b);
return(result);

makedB(s,data)
111 5;

double *data;

FILE *fopeii()*fp2;
float Se;
float mit;
double p;
mt k;

fp2=foperi(ERRdB.DAT ,w");

for (kO;k!=s+1;k++) {

se=*(data+k);
if (k==O) inite;

- 280 -

p= 1O*loglO(se/init);

fprintf(fp2,%f\n' ,p);

fc1ce(fp2);
}

void change weights(t,file_ptr)
FILE *file ptr;
mt t;

- 281 -

Interval arithmetic FAEST algorithm

/*Simjation of FAEST algorithm using floating point interval arithn tic*/

#define FLOATING
#define MANTISSA LENGTH 56
#include </u4/call/lib/INT.ERVAL_AINALYSIS_src/intools.h>
#include <stdio.h>
#include <rnath.h>

#clefine MAXRND 2147483647.0

mt 	N;
double calcnteQ;
double rnurnQ;
double gaussO;
void change _weights;
double inp,desired;
double X[5];
double Weights[5]={0.9,0.3,-0.3,0.7,0. 11;

double F EED FORWARD[2] ={ 1 .0,0.865};

double XK[2];
float NOISE;

rnain(argc,argv)
mt argc;
char *aro;

All of the spvar definitions shod go in here*/
spvar XN,w,wrnpl,temp Imp l,temp2mpl ,a,b,zog,alphaf,alphafold,alphab,alpha;
spvar c .xn,z ,ef,eb,e ,epsilon,epsilonf,epsilonh delta, d,aold,forget;
struct interval cn;
FILE *fopeiiO,*fp;
double sigma=_1. 0,nte,gam n_factor=0.0,*average,temp;

double lambda=0.0,mean;

float SNR=-1;
mt k,n,s,p10,p,ensernhle=-1,ens,r_flag,res_rqd0;

char clear screen=12;
char uplirie=11;

/ *Initialisation*/
if (a c!=2) res flag = 1;
else{

if (strcrnp(argv[1],—on)0) resflag=1;

if (strcmp(argv[1],—ON")==0) resflag=1;

if (strcmp(argv[1],'—off)0) resflag=0;

if (strcmp(argv[1] , —OFF") ==O) reflag=0;

- 282 -

print'::%(c" clear screen);
printf "Simulation of FAEST Algorithm\n\n");
printf 'by Chris Callender, 1989\n\n\n\n");
if (res flag) printf("\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n',M
ANTISSA_LENGTH);
if (Ires flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA LENGTH);
printf("Filter Length:");
scanf('%d",&N);
/ 4'All dimensions of matrices should be set here /

rvector XN,N);
cvector w,N);
cvectorwmp1,N+1);
cvector templmpl,(N+1)
cvector temp2mpl,(N+1)
cvector aN);
cvector aold,N);
cvector b,N);
scalar zog);
scalar alphaf);
scalar alphafold);-
scalar aiphab);
scalar alpha);
cvector(c,N);
scalar(xn);
scalar(z);
scalar(ef);
scalar eb);
scalar e);
scalar epsilon);
scalar epsilonf);
scalar epsilonb);
scalar delta);
scalar(forget);
cvector(d,N);

fp=fopen("NORMTAPERROR.DAT"

srandorn(1);

while (larnbda<0.8 11 lambda>1.0)

printf("Please enter a value for lambda between 0.8 and 1.0:

scanf("%lf" ,lambda);

setscalar(forget ,lambda,larnbda);
while (sigma < 0.0)

{
printf("Please enter a small positive value for sigma:
scanf("%lf' ,&sigrna);

while (SNR<0 11 SNR>120) {

printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 120db): ");

scanf("9'&' ,&SNR);

- 283 -

while (erisemble<1) {
printf('\n\nHow many runs to make ensemble average:
scanf('%d" ,&ensemble);
}

for(n=0;n!=N;n++) gain factor=gain_factor+Weights[n] *\fveights[n];

gainjactor=gairl_factor*(FEED_FORWARD[0]*FEED_FORWARD[0]+FEED_FORWARD[1]*FEED_F
ORWABD[1]);
gaiii_factorqrt (gain _factor);

NOISE=gain_factor/expl0(SNR/20.0);

printf('\n\nHow many data samples per run:
scanf('%d'
fprintf(fp,d\n\n' ,$);
average=(double *)rraj1oc(sjz f(doub1e)*(s+1));
if (average==0) {

fprintf(stderr,'FAEST Runtime error...out of memory");
exit(');

printf('%cFAEST Simulation Running\n\n\n" clear screen);
plO=s/1O;

for (ens=1;ens!=ensernble+1;ens++) {
pplO;

for(n=0;n!=N;n++) X[n]=0.0;

for(n=0;n!=2;n++) XK[n]=0.0;

zero(zog);
zero XN);
zero a
zero(h
zero c);
zero(w);
zero(wmpl);

nte=calcnte(c.element);
* aTerage=*average+nte/ensemble;
temp=sigma*pow((double)lambda,(double)N);
setscalar(alphaf,temp,temp);
setscalar(alphabsigma,sigma);
setscalar alpha,1.0,1.0);

for(n=1;n!=s+1;n++) {
RE START:
if (res rqd) {

res_rqd=0;

fprintf(stderr, 'Rescued at %d\n\n" ,n);
zeroa);
zero b);
zero
temp=100.0*pow((double)lambda,(double)N);

setscalar(alphaf,temp,temp);
setscalar(alphab,100.0, 100.0);

setscalar(alpha,1.0, 1.0);

- 284 -

for(k=0;k!=N;k++) {

mean=0.5*(c.element[k] .lower endpoint+c.element[k} upper_endpoint);

fprintf(stderr, %lf\n 'mean);
setcvector(c,k+1 ,rnean,niean);

if (n==p) {
printf('%cRun #%d:Status %d%%\n" ,upline,ens,(p*10)/p_10);

p=p+p_lO;

/*The algorithm goes in here!*/

makedata);
setscalar(xn,inp,inp);
setsca1ar(z, desired, desired);

$ 	ef=xn+XN*a

if (a1pha.elerrnt—>1ower_endpoint<0.0 && alpha.element—>upper_endpoint>0.0) {

resrqdl;
goto RE—START:

S 	epsilonf=ef * (alpha#)

copy(a,ao!d);
S 	a=a+w * epsilonf

$ 	al phafold= forget * aiphaf
S 	alphaf=alphafold+ef*epsilonf

for(!=1;k!=N+1;k+-+-) {
getcvector(w,k,cn);
setcvector (temp Imp l ,k+1,cn.lower endpoint ,cn.upper endpoint);
getcvector(aold,k,cn);
setcvector(temp2mp 1 ,k+ 1 ,cn.lower endpoint ,cn.upper_endpoint);

setcvector(templmpl,1 0.0,0.0);

setcvector(temp2mpl,1 ,1.0,1 .0);

if (alphafold.elerrient—>lower_endpoint<0.0 && alphafold.element—>upper_endpoint
>0.0) {

resrqd=1;
oto RE —START;

S 	wmpl=templmpl - (ef * (alphafold#)) * temp2mpl

/ *Partitioning*/

for(k=1;k!=N+1;k++) {
getcvector(wrnpl ,k,cn);
setcvector(d,k,cn.lowerendpoint,cn.upper_endpoint);

getcvtor(mp1 ,(N+1) ,cn);
setscalar(delta,cn. lower endpoint,cn. upper _endpoint);

- 285 -

$ 	eb=zog—delta * aiphab * forget

$ 	w=d— delta* b

$ 	alpha = alpha + (ef * aiphafold #) * ef + delta * eb

if (alpha.element—>lower_endpomt<O.O && alpha.element—>upper_endpoint>O.0) {

res_rqd=1;
oto RE—START;

$ 	epsilonb = eb * (alpha #)

$ 	aiphab = forget ' aiphab + eb * epsilonb

$ 	b=b+w * epsilonb

upshift(XN);
setrvector(XN,1,inp,inp);

/ Time update the LS FIR Filter /

$ e=z +XN*c

$ 	epsilon = e * (alpha#)

$ 	c=c + w * epsilon

nte=calcnte(c.elerrient);
* (average+n)*(average+n)+nte/ensemble;

for(n=O;n!=s+1 ;n++) {

fprintf(fp,%20. 16e\n' ,*(average+n));

}
fcic6e(fp);
makedB(s,average);

}
double calcnte(ptr)
double *ptr;
{
mt k;
double nte=O.O;

double mean;

for (k=O;k!=N;k++) {

mean=0.5*((*ptr)4(*(ptr+1)));

ptr+=2;
nte=nte+(rnean+Weights[k])*(meari+Weights[k]);

return(nte);

rnakedata()

mt j;

XK[1]=XK[0];

- 286 -

XK[O]=gauss;

inp=XK[O]*FEEDFORWABD[O]+XK[1] *FEEDFOR AAJ[1];

for (j=4j!=0j--) {

X [O]inp;

desired=O.O;

for (j =O bNj++) desired=desired+X[j]*vVeights[j];

desired=desired+(gaussQ)*NOISE;
}

double rnurn()

return ((raiidornO/MAXRND));

double gauss()

double ab;
double result;
a=rnumQ;
b=rnumO;
result=sqrt(_2*log(a))*c (2*3 141592654*b);
return(result);
}

makedB(s,data)
mt s;
double *data;

FILE *fopellO,*fp2;
float Se;
float mit;
double p;
jilt k:

fp2=f6pen('ERRdB.DAT' "w');

for (k=O;k!=s+1;k+-l-) {

se*(data+k);
if (k==O) initse;

p= 1O*loglO(se/init);

fprintf(fp2, %f\n" ,p);

fc1ce(fp2);

void change weights(t,file_ptr)
FILE *file ptr;
mt t;

- 287 -

Fixed point interval arithmetic routines

/ Rountines for 16 bit interval multiplication, addition, and division /

/* See Gibb, A., "Algorithm 61 - Procedures for range arithmetic", Comm. ACM,
Vol 4:7, July 1961*1

/ * First define the structure for an interval number*/

struct INTERVAL {
short mt lower_ep; /*16 bit lower endpoint */
short mt upper_ep; /*16 bit upper endpoint */

#define interval struct INTERVAL

void add(rangea,range_b,range_res)
interval *range a,*i.ange b,*rallgeres;

mt e,f;
if (range —a. -> lower_ep > range_a -> upper_ep range_b -> lower_ep > range_b
-> upper_ep) {

fprintf(stderr, "Range endpoint error");
exit(');

e=(rangea -> lower ep) + (range b -> lower_ep);
f=(rangea -> upper ep) + (range h -> upper_ep);
/* No need to correct as fixed point addition is exact */
if (e>32767) e=32767;
if (f>32767) f=32767;
if (e<-32768) e=-32768;
if (f<-32768) f=-32768;
range_res > lower ep=e;
range res > upper_ep=f;
}

void neg(rarige)
interval *range;
{
short mt a;
if (range -> lower_ep > range -> upper_ep) {

fprintf(stderr,"Rarige endpoint error");
exit;
}

a=range -> upper_ep;
range -> upper_ep =—(range -> lower_ep);
range > lower_ep =—a;

short mt div(range a,range b,range res,res shift)
interval *rangea,*range b, rangeres;

mt e,f;
mt a,b,c,d;
if(range a > lower_ep > range_a -> upper_ep II range_b > lower_ep > range_b

> upper_ep) {
fprintf(stderr,'Range endpoint error");
exit(1);
}

a=(range_a -> lower_ep) << res shift;
b=(rmge_a -> upper_ep) << res shift;
c=range_b —> lowerep;
d=range_b -> upper_ep;

if (c<=O && d>=O) return(1);

if (c<O) {

if (b>O) e=b/d; else e=b/c;

if (a>=O) f=a/c; else f=a/d;

else {
if (a<O) e=a/c; else e=a/d;

if (b>O) f=b/c; else f=b/d;

}
— —e;
++f;
if e>32767) e=32767;
if f>32767) f=32767;
if e<-32768) e=-32768;
if f<-32768) f=-32768;
range_res —> lower ep = e;
range res -> upper_ep = f;
return(0);

}

mt min(nl,n2)
mt nl,n2;

if~n2<nl)
nl<=n2) return(nl);

if 	return(n2);

mt max(nl,n2)
mt nl,n2;

if ~nl>=n2) return(nl);
if n2>nl) return(n2);

void mul(rarmgea,rangeb,rangeres,r_shift)
intervai *rangea,*rge b,*rger;
short mt res shift;
{
mt e,f,mask,error;
short mt a,b,c,d,ternp;

if (range_a -> lower ep > range _a -> upper_ep II range_b -> lower ep > range_b
-> upper_ep) {

fprintf(stderr, "Range endpoint error);
exit(1);
I

a=range_a —> lowerep;
b=rarige_a —> upper_ep;
c=range_b —> lower_ep;
d=range_b — > upper_ep;

if (a<O && c>=O) {

- 289 -

ternp=a
a=c;
c=temp;
temp=b;
b=d;
d=temp;

if (a>O)

if (c>=O) {

e=a*c;
f=b*d;

else
e=b*c;
if (d>=O) f=b*d; else f=a*d;

} 	
}

else {
if (b>O) {

if (d>O) {

e=rnin(a*cl,b*c);
f=rnax(a*c,b*d);

else 	{
e=b*c;
f=a*c;

else {
f= a*c;
if (d<=O) e=b*d; else e=a*d;

} 	
}

mask=(1 << resshift)-1;
error=e & mask;
if (error!=O && e<=O) e=(e >> resshift)-1;

else e=e >> res shift;
error=f & mask;
if (error!=O && f>=O) f=(f >> resshift)+1;

else f=f >> res shift;

if (e>32767) e=32767;
if f>32767) f=32767;
if e<-32768) e=-32768;
if f<-32768) f=-32768;
range res —> lower ep =
range res —> upper ep — f;

scalar 	 _res,length,res
interval *range a,*rJigeb, *ran ger;
short mt length,r 	shift;
{
short mt a,b,c,d,temp;
mt index;
mt lower_long_accumulator ,upper_longaccumulator ,mask,error;

lower long_accumulator=O;

-290-

upper long accumulator=0;

for (index=0;index!=length;index++) {

a=range_a —> lowerep;
b=range_a —> upper_ep;
c=range_b —> lower_ep;
d=range b —> upper_ep;

if (a>b II c>d {
fprintf(stderr,"Rarige endpoint error's);
exit(1);

if (a<0 &r& c>=0) {

temp=a;
a=c;
c=temp;
temp=b;
b=d;
d=temp;

if (a>=0) {

if (c>=0) {

lower long_accumulatorlower _long_ accumulator+a*c;
upper long accumulator=upper long_accumulator+b*d;

else
lower long _accumulator =lower l ngaccumu1ator+b*c;
if (ci >=0) upper Iong_accumiitator=upper_long_accumulator+b*d; else upper_long_a

ccumulator=upper_long_accumulator+a*d;

}
else {

if (b>0) {

if (d>0) {
lower long accurnulator=lower_long_accumulator+min(a*d,b*C)
upper long accumulator=upper_long_accurnulator+rnax(a*c,b*d);

else
lower long accumulator=lower_long_accumulator+b*c;
upper long accumulator=upper_long_accumulator+a*c;

else {
upper long accumulator=upper_long_accumulator+a*c;
if (d <=0) lower long accumulator=lower_long_accumulator+b*d; else lower 	long

accumulator=lower_long_accumulator+a*d;

+ +range_a;
++range_b;

mask=(1 << resshift)-1;
error=lower long accumulator Sz mask;
if (error =0 && lower long accurnulator<=0) lover long accumulator=(lower long _a
ccumulator >> ressFft)-1;
else lower_longaccumulatorlower_long_accunTlulator >> res_shift;
error=upper long accumulator & mask;
if (error!=0 i& upper long accumulator>O) upper long accumulator=(upper_long_a
curnulator >> resshift)+1;

else upper long accumulator=upper long_accumulator >> res shift;

- 291 -

if 	lower 1on accumulator>32767) lower _long _accumulator=32767;
if upper_long_accumulator>32767) upper_long_accumulator=32767;
if 	lower _long _accumulator <-32768) lower —long accumulator=-32768;
if 	upper_long accumulator<-32768) upper _long _accumulator=-32768;
range_res —> Tower_ep = lower_long_accumulator;
range_res —> upper_ep = upper_long_accumulator;
I

- 292 -

Fixed point interval FTF simulation

/Fixed point simulation of FTF algorithm*/

#define MAXRND 2147483647.0

#include <math.h>
#include <stdio.h>
include 'oldrangeroutines.h'
double X{5;
double XK2];
double FEED—FORWARD[2]=10.15,0.129751;

double Weights[5]={0.9,0.3,-0.3,-0.7,0.2);

double calcnteO;
double gauss;
void reinitO;
mt N;
double NOISE=0.001;

short mt inp,des,sat flag;

main(argc,argv)
mt argc;
char *argvg;

double nte,dlambda=0.0,dMU=_1.0,SNR=_1.0,gain factor,*average,width;

mt s,seed,ens,ensemble=0;

mt long accumulator;
interval A,*Y,*YNp1,*C,*cex,*CNp1,*B,*w;
short mt index,t,i width;
interval larnbda,mu;
interval rescue ,yO, alphaml ,eNp,eN,garnmaN,alpha,alphaold,epsilon;

interval gat maNp 1 ,epsilonp rN ,rNp,beta,temp.templ;
FILE *fopen()*fp;

if (argc'=2) sat_flag = 0;

else{
if (strcmp(argv[1] ,"--sat')==O) sat flag=1;

if (strcmp(argv[1] , -SAT") ==O) sat flag=1;

}
fp=fopen(NORMTAPERROR. DAT", w i);

printf("Simulation of FTF Algorithrn\n\n");
printf

::by Chris Callender, 1989\n\n\n\n");

printf "\n\n16 Bit Fixed Point\n\n");
printf "Filter Length:");
scanf("%d",&N);
while (d lambda<0.8 11 dlambda>1.0)

- 293 -

priritf('Please enter a value for lambda between 0.8 and 1.0:

scanf("%lf' ,&dlambda);

while(dMU<0) {

printf\n\nPlease enter a value for soft constraint parameter MU:");
scanf("%lf" ,&dMU);

printf("\n\nPlease enter m&'dmum width of taps:");
scanf("%lf" ,&width);
i 	width =width*32768;

while (SNR<0 11 SNR>220) {

printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 - 220db):);

scanf('%lf',&SNR);

while (ensemble<1) {
printf\n\nHow many runs to make ensemble average:
scanf("97cd" ,&ensenible);

for(t=0;t!=N;t++) gain factor=gainfactor+Weights[t]*Weights[t];

gain_factor=gain_ factor* (FEED_FORWARD[0]*FEED_FORWARD[0]+FEEDYORWA-RD{1]*FEEDY
ORWARD[1]);
gain factor=sqrt(gain actor);

NOISE=gain_factor/explO(SNR/20.0);

printf('\n\nHow many data samples per run:
scanf(%d&s);
average=(double *) malloc(sizeof(double)*(s+1));
if (average0) {

fprintf(stderr,FTF Runtime error ...out of menry');
exit(1);

/ *First, allocate memory for vectos*/

A=(interval *)malloc(s f(interval)*(N+1)); /*Scale factor will be 1024*!

Y=(interval *)malloc(sj of(interval)*N); /*Scale Factor will be 32768*!
YNp1=(interval *)m floc(seof(interval)*(N+1)); /*Scale factor will be 32768*!

C=(interval *)malloc(sizeof(interval)*N); /*Scale Factor will be 8*!
CNp1=(interval *)majloc(sizeof(interval)*(N+1)); /*Scale Factor will be 8*!
B=(interval *,mJjoc(sizeof(interval)*(N+1)) /*Scale Factor will be 32768*!
W=(intervai)malloc(sizeof(interval)*N); /*Scale Factor will be 32768*/

seed=tirne(0);

srandom(seed);
printf(\n\n");
lambda.lowerep=lambda.upperep=32768*dlambda;
mu.1owerep=mu.upperep32768*dMU;

for (ens=1;ens!=enser7ble+1;ens++) {
for(t=0;t!=N;t++) X[t]=0.0;

- 294 -

for(t=0;t!=2;t+-l-) XK[t]=0.0;

/* First the Fast Exact Initialisation Routine*/
A[0] lower ep=A[0].upper ep= 1024;

B [0] lower ep=B[0] .upperep=16384;

for (index= 1; index! =N+ 1;index++) {
A[index] .lower_ep=A[index] .upper_ep=0;

B[index].lowerep=B[index} .upper_ep=0;

for (index=0;index!=N;index+±) {

C [index] .lower ep=CindexI .uppr_ep0;

W[index] .lower ep=W[index] upper ep=0;

Y[mdex] .lower_ep=Y[index] .upperep=0;

for (index=0;index!=N+1;index++) YNp1[hdex] lower epYNp1[index] upper ep=0;

nte=caldnte(W);
average= average+nte/e nse mble;
rnakeclata(0);

y 0 lower ep=yO.upper ep=inp;

mul(&y0,&y0,&alpha,15);

alpharnl.lower_ep=alpha.lower_ep;
alpharni. upper_ep=alpha.upper_ep;
temp.Iowerep=temp. upper ep=des;
if (div(&temp,&yO,&temp, 15)1) {

fprintf(stderr,' Algorithm failed during initialisation);
exit(1);

neo(&temp);
WJ] lower ep=temp.lowerep;

W[0] upper ep=temp.upperep;

gammaN.lowerep=gamrnaN.upper_ep=32767;

YNp1 [0] lower ep=Y[0] lower ep=yO.lower_ep;

YNp1 [0] upper ep=Y0] .upperep=yO.upper_ep;

for(t=1;t!=N+1;t++) {
nte=calcnte(\V);
(avel.age+t)(average+t)+nte/ensemble;
makedatat);

- 	for(index=N+1 ;index!=0;index----) {

YNp1 index lower ep=YNp1[index-1] .lowerep;
YNp1 index .upper ep=YNp 1 [index—i] .upper_ep;
if (index!=N+i) f

Y index lower ep=Y[index-1] .lowerep;
Y index .upper ep=Y[index-1] .upperep;

- 295 -

YNp1[0] lower ep=YNp1[0] .upperep=mp;

Y[0] .lower_ep=Y[0] upper ep=inp;

scalarproduct(A,YNp1,&eNp,N+1,1 1);

if (div(&eNp,&yO,&temp,11)==1) {

fprintf(stderr, 'Algorithm failed during initialisation");
exit(');

neg(&ctemp);
A t i.lower_ep=temp.lower_ep;
A t .upper_ep=temp.upper_ep;

mul(&eNp,&gamrnaN,&eN, 14);

mul(&lambda,&alpha,&alpha, 15);

mu1(&eNp,&eN,&temp,14);
add(&alpha,&temp,&alphaml);

if (div(&alpha,&alphaml,&temp,15)==1) {
fprintf(stderr, "Algorithm failed during initialisation");
exit(1);

mu1(&ternp,&garnmaN,gamrnaN,15);

for(indext;index!=0;index--) {

C [index] =C[index-1];

C [0] lower ep=C[0] upper ep=0;

for(index=0;index!=t;index++) {

mul(&eNp,(A+index) ,&temp, 10);

if (div(&temp,&alpha,&temp ,4)==1) {
fprintf(stderr, 'AJgorithrn failed during initialisation);
exit(');

neg(&temp);
add((C+index) ,&temp,(C+index));

if (t==N) {
for(index=0;index!=N;index-l--4-) {

mul(&yO,&gamrnaN,&temp,15);

mul(&ternp ,C+index,B+index,4);

B [N] lower ep=B[N] upper ep=16384;

mul(&yO,&yO,&temp,15);

mul(&temp,&gammaN,&beta,9);

epsionp .lower_ep=epsilonp.upper_ep=des;
scalar product(Y,W,&temp,N, 15);
add(&temp,&epsilonp,&epsilonp);

mul(&epsilonp,&gammaN,&epsion, 15);

- 296 -

if (t<N) {
if (div(&epsilonp,&y0,&temp, 15)==l) {

fprintf(stderr,Algorithm failed during initialisation);
exit(1);
}

neg &temp);
W t .lower_ep=temp.lower_ep;
W t .upper_ep=ternp.upper_ep;

if (t==N) {
for(index=0;index!=N;index-i-+) {

mul (&epsion,C+index,&temp,4);
add(W+index,&temp,W+index);

1*
/ Now the FTF Algorithm proper

for (t=N+1;t!=s+1;t++) {
makedata(t);
for(index=N-f-1;index!=0;index--) {

YNp 1 index lower ep=YNp 1[index-1] lowerep;
YNp 1 index upper ep=YNp1 [index—i] .upperep;
if (index!=N+1) [index lower ep1T[index_1] .!owerep;
if (index!=N+1) Y[index].upperep=Y[index-1].upperep;

YNp10] .lower ep\p1[O] upper ep=inp;

Y[0] lower ep=Y[0] upper ep=inp;

RE START:
/**/

scalarproduct(A,YNp1 ,eNp,N+1,1 1);

/*#2*/

mul(&eNp,&gammaN,&eN, 14);

/*#3*/
alphaold.lowerep=alpha.lowerep;
alphaold.upperep=alpha.upperep;
mul&lambda,&a1pha,&temp,15);
mul eNp,&eN,&temp1,14);
add &temp,&templ,&alpha);

/*#4*/
if (div(alphaold,&alpha,temp,10)==i) {

reinit(A,B,C, W,&aJpha,&beta,&gammaN,rnu,&lambda);
goto RE—START:

rnul(&lan)bda,&temp,&Ltemp, 15);
rnul(&temp,&gammaN ,&gamniaNp 1,10);

/ * #5*!
mul(&alphaold,larnbda,&ternp, 15);
if (div(&eNp,&temp,&temp,5)==1) {

reiriit(A,B,C,W,&alpha,beta,&gammaN,&mu,&lambda);
goto RE_START;

- 297 -

mul(&temp,A,CNp 1,11);
neg(CNp1);
for (index=1;index!=N+1;index+--) {

rnu1(aIphao1d,&1ambda,&temp,15);
if (div(&eNp,&temp,&temp,5)==1) {

reinit(A,B,C,W,&a1pha,&beta,&gammaN,&mu,&1anibda);
oto RE—START;

mu1(temp,A+index,&temp, 11);
neg(&temp);
add(&temp,C+index-1 ,CNp1+index);

for (index=1;index!=N+1;index++) {
mul(&eN,C+index-1,&temp,8);
add(A+index,&temp,A+index);

/*#7/
temp.lower_ep=larnbda.lower_ep;
temp.upper_ep=lanibda.upper_ep;
neg(&temp);
mul(&temp,&beta,&temp, 15);
mul(&temp,CNp1+N,&rNp, 11);

mu1(&rNp,gaminaN,&temp, 15);
rnu1(&ternp,CNp 1+N,temp4);
temp 1.lower ep=templ upper ep= 16384;
ac1d(&temp1 ,&temp,rescue);

/*5*/
if (div(&gammaNpl ,&rescue,&gammaN, 14)==1) {

reinit(A,B ,C,W,&a1pha,&beta,&gammaN,&mu,&1ambda);
goto RE_START;
}

mu1(&rNp,garnmaN,&rN,11)

/*#1o*/

mu1(beta,&1ambda,&temp, 15);
mul(&rNp,&aN,&templ, 11);
add(&temp,&ctempl ,&beta);

for(index=O;index!=N+1 ;index-H-) {

mul(CNp1+N,B+index,&temp, 14);
neg(&temp);
add(CNp1+index,temp,C+index);

/*#12*/
for(index=O;index!=N+1;index++) {

mul(&rN,C-i-1ndex,&temp,8);
add(B+index,&ternp,B+index);
}

/*#13*/
epsilonp .lower ep=epsilonp upper ep=des;
scalarproduct(Y,W,&temp,N, 15);
if ((temp.upper ep 	temp.lower ep)>i width) {

reinitA,B,C,W,&a1pha,beta,gammaN,&mu,1anibda);
goto RESTART;

- 298 -

}

add(&ternp,&eionp,&epsi1onp);

/*#14*/
mul(&epsi1onp,gammaN,epsion, 15);

/*#15*/

for(index=0;index!=N+1 ;index++) {

mul(&epsilon,C+index,&temp,3);
add(W+index,&temp,W+index);

nte=calcnte(W);
* (average+t)*(average+t)+nte/ensemble;

for(t=0;t!=s+1;t++) {

fprintf(fp, "%20. lGe\n" ,*(average+t));

}

}

double calcnte(ptr)
interval *ptr;
{
mt k;
double nte,W;

nte=0.0;

for (k=0;k!=N;k++) {

W=((ptr —> lower ep)/32768.0)+((ptr -> upper ep)/32768.0);

vV=W/2 .0;

ptr++;
nte=nte+(W+Weights[k])*(W+Weights[k]);

return(nte);

makedata(t)
mt t;

double m_inp,m_des;
mt j;

XK[1]=XK[0];

if (t==0) XK[0]=-2.0;

else XK[0]=gaussQ;

m inp=XK[0J*FEEDFORWARD[0]+XK[1]*FEED_FORWARD[1];

for (j=40!=0j--) {

X[j]=X[j-1];

- 299 -

X[0]=m_inp;

md=0.0;

for (j =0j !=Nj++) rndes=mdes+X[j]*Weights[j];

m_d=m_des+(gw.JssQ)*NOISE;
/*M(t ADCs saturate so.../
if (m_inp>1.0) m_inp=0.99969482;

if (md>1.0) mdes=0.99969482;

des=m des*32768;
inp=m inp*32768;

double rnum()

return ((randomO/MAXRND));

double gauss()

double a,h;
double result;
a=rnurn);
b=rnurnO;
result =sqrt(_2*1og(a))*cc(2*3.141592654* b);
ret urn (result)

void reinit(A,B,C,W,alpha,beta,gammaN,rnu,lanibda)
interval *A,*B,*c,*w,*alpha,*beta,*ga1 N,*I ,*lazpbda;

short mt index,mean;
for (index=0; index! =N+1 ;index++) {

A [index] lower ep=A[index] upper ep=0;

B [index] lower ep=B[index] .upper_ep=0;

if (index!=N{
C[index lower ep=C[index] upper ep=0;

mean=(Windex1 .lower ep+W[index].upper ep) >> 1;
W[index] lower ep=Wffndex upper ep=rran;

A[0] .lower ep=A[0] .upper_ep= 1024;

B [N] .lower_ep=B[N] upper ep=16384;
alpha —> lower ep=mu —> lowerep;
alpha —> upper ep=mu —> upperep;
for (index= 1;index!=N+1 ;index++) rnul(alpha,lambda,alpha, 15);
beta —> lower ep=mu —> lowerep;
beta -> upper ep=mu -> upperep;
amrnaN —> lower ep=gammaN —> upper_ep=32767;

- 300 -

Appendix C

TMS320C25 Assembly Language Software

- 301 -

crossv2.5.1.asm

TMS320C25 processor board initialisation and RS232 comms
idt 	'cross v2.51'
b 	start
flop

flop

flOe

flOp

flOg

flop

flop

flop

flop

flop

flop

flop

flop

flop

flop

flop
flop

flop

fiO

flOg

flOg

flOg

flOg

flOe

flOg

flop

flop

flop

b dumpstate
start: 	call boardinit

call mernorycheck
call loaddata
b 4096

-302-

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

boardinit:
cnfd
ldpk 0
lack OOh
sac! 4 	;Mask out all interrupts

lack 255
sac! 60h
out 	60h,4 ;ACJA Master RESET
lack 55h
sac! 60h
out 	60h,4 ; Set 8 bit, odd parity, no stop bits
rsxm
ret

memorycheck:
zac
sac! 64h
lack 1
sac! 60h
lack 170 	;Checkerboard bit pattern
sacl 61h
lalk 4096 ;First program memory location

memloop:tblr 62h
tb!w 61h
tblr 63h
tblw 62h
add 60h
push
lac 63h
sub 61h
bz 	locok ;If equal to zero memory location is OK
lack 255
sacl 64h 	;This sets the memory faulty flag

locok: pop
bnz memloop
lac 64h
bz 	memok ;If it is zero, memory is good
call print
.string "Memory Fault"
.word Odh,00
idle

memok: call print
.string 'TMS320C25 Processor Board"
.word Odh
.string "64k Program M e m o r y"
.word Odh,Odh,0
ret

- 303 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

loaddata:
call 	print
.string "C R 0 S S

	
v 2 5 1"

.word Odh

.string '(c) Chris Callender, 1990"

.word Odh,Odh,Odh,0
lack 1
sacl 65h
lalk 4095

loadloop:
add 65h
push
call gethex
sacl 61h
lac 7th
bnz cleanup

POP
tblw 61h
bnz loadloop
call print
.string Out of memory error"
.word Odh,00
idle

cleanup:
POP
ret

getchar:
lack 15h
sacl 70h
out 70h,4
in 70h,4
lac 70h
andk 1
bz getchar
lack 55h
sacl 70h
out 70h,4
in 71h,5
zals 71h
andk 7th
ret

putchar:
sac! 71h

-304-

crossv2.5. 1 .asm
TMS320C25 processor board initialisation and RS232 coinins

PI: 	in 70h,4
lac 70h
andk 2
bz pl
out 71h,5
zals 71h
ret

gethex:
zac
sacl 7th
lark 0,3
lark 1,60h
larp 1

hex loop:
call getchar
call putchar
call asciitohex
larp 1
sad
larp 0
banz hexloop,*
zac
add 60h,12
add 61h,8
add 62h,4
add 63h,0
ret

puthex:
sacl 60h
andk 61440
sacl 61h
lac 61h,4
sach 61h
zals 61h
call hextoascii
call putchar
zals 60h
andk OfOOh
sacl 61h
lac 61h,8
sach 61h
zals 61h
call hextoascii
call putchar
zals 60h
andk OOfOh

- 305 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 cornrns

sacl 61h
lac 61h,12
sach 61h
zals 61h
call hextoascii
call putchar
zals 60h
andk 000th
call hextoascii
call putchar
ret

asciitohex:
andk 7th
sacl 7ch
sblk 48
blz invalid
sblk 9
blez digit
lac 7ch
sblk 65
blz invalid
lac 7ch
sblk 71
bgez invalid
lac 7ch
sblk 55
ret

digit: 	adlk 9
ret

invalid:
lack 255
sacl 7th
zac
ret

hex toascii:
andk 0th
sar 0,7ch
sar 1,7dh
adik 48
sac! 7eh
lar 1,7eh
lark 0,57
larp 1
cmpr 2
bbz finished
adik 7

finished:

- 306 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 co,nms

lar 	O,7ch
lar 	1,7dh
ret

print:
lack 1
sacl 60h

stringloop:
POP
tblr 61h
add 60h
push
lac 61h
bz fprint
call putchar
b stringloop

fprint:
ret

dumpstate:

;First store processor state
;locations x'60,x'61,x'70,x'71 will be corrupted, so do not use them.

sst 62h
ldpk 0
sstl 63h
sach 64h
sac! 65h
spm 0
pac
sach 66h
sac! 67h
mpyk 1
pac
sac! 68h
popd 69h
popd 6ah
popd 6bh
popd 6ch
popd 6dh
popd 6eh

;Store status registers

;Store 32 bit accumulator

;Store P register

;Store T register

-307-

crossv2.5.1.asm
TMS32 0C25 processor board initialisation and RS232 comms

popd 6th
popd 721i 	;Save the stack
sar 0,73h 	;Finally save the aux. registers
sar 1,74h
sar 2,75h
sar 3,76h
sar 4,77h
sar 5,78h
sar 6,79h
sar 7,7ah

;Now print ACC=accumval, P=pval, T=tval, PC=pcoldval

call print
.word Odh,Odh
.string A C C
.word 0
zals 64h
call puthex
zals 65h
call puthex

call print
string P =
.word 0
zals 66h
call puthex
zals 67h
call puthex

call print
.string , 	T ="
.word 0
zals 68h
call puthex

call print
.string , 	PC
.word 0
zals 69h
sblk 1
call puthex

call print
.word Odh,Odh
.string "Stack[0]="
.word 0
zals 69h
call puthex

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 coinins

call print
.string ' 	Stack [1 1 ="
.word 0
zals 6ah
call puthex

call print
.string ' 	Stack[2]="
.word 0
zals 6bh
call puthex

call print
.string " 	Stack[3]="
.word 0
zals 6ch
call puthex

call print
.word Odh
.string 'Stack [4] ="
.word 0
zals 6dh
call puthex

call print
.string ' 	Stack[5]="
.word 0
zals 6eh
call puthex

call print
string ' 	Stack[6]='

.word 0
zals 6th
call puthex

call print
.string " 	Stack[7]="
.word 0
zals 72h
call puthex

call print
.word Odh,Odh
.string "SSTO 	"
.word 0
zals 62h
call puthex

- 309 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

call print
.string S S T 1 ="
.word 0
zals 63h
call puthex

call print
.word Odh,Odh
.string A R [0] =
.word 0
zals 73h
call puthex

call print
.string A R [1] ="
word 0

zals 74h
call puthex

call print
.string A R [2 1 ="
.word 0
zals 75h
call puthex

call print
.string A R [3] ="
.word 0
zals 76h
call puthex

call print
.word Odh
.string AR [4] ='
.word 0
zals 77h
call puthex

call print
.string AR [5] ="
.word 0
zals 78h
call puthex

call print
.string AR [61 ="
.word 0
zals 79h
call puthex

call 	print

- 310 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comm.r

.string 	A R [7

.word 	0
zals 	7ah
call 	puthex

call
.word
.string
.word
call
subk
bnz
call

print
Odh,Odh,Odh

"Press any key to continue"
0

getchar
20h
dumpfin

ddump ;Dump data memory

dumpfin:
zals
addh
It
mpyk
It
lph
pshd
pshd
pshd
pshd
pshd
pshd
pshd
pshd
lar
lar
lar
lar
lar
lar
lar
lar

65h
64h

67h
1

68h
66h
7211
6th
6eh
6d h
6ch
6bh
6ah
69h

0,73h
1,74h
2,75h
3,76h
4,77h
5,78h
6,79h
7,7ah

;Load 32 bit accumulator

;Finally save the aux. registers

1st
	

62h
Isti
	

63h
	

;Load status registers
ret

ddump: lack 	Odh
call putchar
call print
.string 	E n t e r
.word 0000h
call gethex
sacl 68h
lar 0,68h
lack Odh
call putchar

Start Address:

- 311 -

crossv2.5.1.asrn
TMS320C25 processor board initialisation and RS232 conuns

call

lark
loop: lark

sar
zals
call
lack
call

loop1: larp
zals
call
lack
call
larp
banz
lack
call
larp
banz
zals
bz
ret
flop
flop

putchar

2,15
1,7

O,60h
60h
puthex
58

putchar
0

puthex
20h
putchar
1
loopl,*-

Odh
putchar
2
loop,

7th
ddump

- 312 -

scalars. lib

Assembler macros for scalar interval operations
DIV $MACRO NAR,DAR,QAR,TEMSGN,SHIFT

LARP :NAR:
PSHD *,:DAR:
PSHD * :NAR:
LT *,:DAR:
MPY *:DAR:
PAC
SACH :TEMSGN:
LAC *O:DAR:
ABS
SACL *O:NAR:
LAC *:SHIfT::DAR:
ABS
RPTK 15
SUBC *:DAR:
LARP :QAR:
SACL * ,O,:QAR:
LAC :TEMSGN:
BGEZ DONE?,* ,:QAR:
ZAC
SUB *O.QAR:
SACL *

DONE?
LARP :DAR:
POPD *:NAR:
POPD *

$ENDM

S_ADD $MACRO srcl,src2,res

LRLK O,:srcl:
LRLK 1,:src2:
LRLK 2,:res:

LARP 0

AL? 	LAC
ADD *+02
SACL +00
LAC '+,0,1
ADD *+02
SACL +0
$ENDM

;Macro to perfrom res= srcl*2**shift/src2 where srcl,src2,res are
;Intervals

- 313 -

scalars. lib
Assembler macros for scalar interval operations

S_DIV 	$MACRO srci ,src2 ,res,scratch,shift
LRLK 0,:srci:
LRLK i,:srci:+i
LRLK 2,:src2:
LRLK 3,:src2:+1
LRLK 4,:res:
LRLK 5,:res:+1

LARP 2
LAC *

BGZ S5?
BZ ERROR?
LARP 3
LAC *

BLZ Si?

ERROR? STC
B 	END?

Si? LARP 1
LAC *
BLEZ S2?
DIV 	i3,4,:scratch:,:shift:
B 	S3?
DIV 	1,2,4,:scratch:,:shift:
LARP 0

LAC *
BLZ S4?
DIV 	0,2,5,:scratch:,:shift:
B 	S9?
DIV 	0,3,5,:scratch:,:shift:

B 	S9?
LARP 0

LAC *
BGEZ S6?
DIV 	0,2,4, :scratch:,:shift:
B 	S7?
DIV 	0,3,4,:scratch:,:shift:
LARP 1

LAC
BLEZ S8?
DIV 	i,2,5,:scratch:,:shift:
B 	S9?
DIV 	1,3,5,:scratch:,:shift:

SEPCOR 4,5
RTC

END?
$ENDM

-314-

scalars.Iib
Assembler macros for scalar interval operations

S_MULT $MACRO srcl ,src2,res,temp,res_shift

LRLK 0,2
LRLK 1,:srcl:
LRLK 2,:srcl:+1
LRLK 3,:src2:
LRLK 4,:src2:+1
LRLK 5,:res:
LRLK 6,:res:+1

MCLOOP? SSMULT 1,3, :temp: , :res_shift:
SSMULT 1,4, :temp: + 1, :res_shift:
SSMULT 2,3, :temp: + 2, :res_shift:
SSMULT 2,4,:temp:+ 3,:res_shift:

SSMIN_4 :temp:
LARP 5
SACL *06
SSMAX_4 :temp:
SACL *05
SEPCOR 5,6
$ENDM

S_SUB $MACRO src1,src2,res

LRLK 0,:srcl:
LRLK 1,:src2:
LRLK 2,:res:

LARP 0

SL? 	LAC *Q

SUB *+02
SACL +00
LAC +01
SUB *+02
SACL +0
$ENDM

SEPCOR $MACRO arpl,arp2
LARP :arpl:
LAC *0:arpl:
BGZ okl?,* ,:arp2:
SUBK 1
LARP :arpl:
SACL *,0,:arp2:

ok 1?
LAC 	*0:arp2:
BLZ ok2?
ADDK 1
SACL *0:arp2:

- 315 -

scalars .lib
Assembler macros for scalar interval operations

ok2?
$ENDM

SSMAX2 SMACRO addr
LAC 	:addr:
SUB 	:addr:+1
BGEZ MX?
LAC 	:addr:+ 1
B END?

MX? LAC :addr:
END?

$ENDM

SSMAX4 $MACRO addr
SSMAX_2 :addr:
SACL :addr:+4
SSMAX2 :addr:+2
SACL :addr:+5
SSMAX_2 :addr:+4
$ENDM

SSMIN2 $MACRO addr
LAC :addr:
SUB :addr:+1
BGEZ MN?
LAC 	:addr: ;The one at (addr) is smaller.
B END?

MN? 	LAC :addr:+1 ;The one at (addr+1) is smaller.
END?

$ENDM

SSMULT $MACRO arpl,arp2,res,res_shift
LARP :arpl:
LT 	*:arp2:
MPY *
PAC

TEST? SET :res_shift:>8
$IF TEST?
SACH :res:,16-:res_shift:
$ELSE
RPTK 8- :res_shift:
SFL
SACH :res:,7
$ENDIF
$ENDM

S_NEG $MACRO addr

LRLK O,:addr:
LARP 0
LAC *çj
PUSH

- 316 -

scalars.lib
Assembter macros for scalar interval operations

LAC
NEG
SACL *+OO
Pop
NEG
SACL ,O,O
$ENDM

- 317 -

vectors. lib

Assembler macros for vector interval operations
;16 bit multiplication macro. Multiplies arpl * arp 2 and stores result
;at res

SMULT $MACRO arpi ,arp2,res,res_shift
LARP :arpl:
LT 	*:arp2:
MPY *
PAC

TEST? .set :res_shift:>8
$IF TEST?
SACH :res:,16-:res_shift:
$ELSE
RPTK 8- :res_shift:
SFL
SACH :res:,7
$ENDIF
$ENDM

;Minimum of 2 numbers. Looks at the 16 bit numbers at
;(addr) and (addr+ 1) and sets the accumulator
;to the smaller of them.

SMIN_2 $MACRO addr
LAC :addr:
SUB 	:addr:+ 1
BGEZ MN?
LAC 	:addr: ;The one at (addr) is smaller.
B 	END?

MN? 	LAG :addr:+1 ;The one at (addr+ 1) is smaller.
END?

$ENDM

SMAX2 $MACRO addr
LAG :addr:
SUB :addr:+1
BGEZ MX?
LAG :addr:+1
B END?

MX? LAG :addr:
END?

$ENDM

;Macro to find the smallest of (addr), (addr+ 1)
;(addr+ 2), (addr+ 3). Uses addr+ 4,addr+ 5
;as temporary storage.

SMIN_4 $MACRO addr
SMIN_2 :addr:
SAGL :addr:+4
SMIN_2 :addr:+2

- 318 -

vectors.lib
Assembler macros for vector interval operations

SACL :addr:+5
SMIN_2 :addr:+4 	

4

$ENDM

SMAX4 $MACRO addr
SMAX_2 :addr:
SACL :addr:+4
SMAX_2 :addr:+2
SACL :addr:+5
SMAX_2 :addr:+4
$ENDM

MSC 	$MACRO srcl ,src2 ,res,size,temp,res_shift

LRLK 0,2
LRLK 1,:srcl:
LRLK 2,:srcl:+1
LRLK 3,:src2:
LRLK 4,:src2:+1
LRLK 5,:res:
LRLK 6,:res:+1
LRLK 7,:size:-1

MCLOOP? SMULT 1,3, :temp: ; :res_shift:
SMULT 1,4,:temp:+ 1,:res_shift:
SMULT 2,3,:temp:+ 2,:res_shift:
SMULT 2,4,:temp:+3,:res_shift:

SMIN4 :temp:
LARP 5
SACL *06
SMAX_4 :ternp:
SACL

VEPCOR 5,6
LARP 1
MAR *+1
MAR *+2
MAR *+2
MAR *5

MAR *5

MAR *+6
MAR *+6
MAR *+7
BANZ MCLOOP?,*

$ENDM

;32 bit multiplication macro. Multiplies arpi * arp 2 and stores result
;at res

- 319 -

vectors.lib
Assembler macros for vector interval operations

LMULT 	$MACRO arpl,arp2,res
LARP :arpl:
LT 	*:arp2.
MPY *

PAC
SACL :res:
SACH :res:+1
$ENDM

V_SHIFT $MACRO src,size

WORDS? .set (:size:)*2

LRLK O,:src:+ WORDS?-2
LARP 0
RPTK WORDS?-2
DMOV
LRLK 0,:src:+ WORDS?-2
RPTK WORDS?-3
DMOV
$ENDM

;Minimum of 2 numbers. Looks at the 32 bit numbers at
;(addr,addr+1) and (addr+2,addr+3) and sets the accumulator
;to the smaller of them.

LMIN2 $MACRO addr
ZALS :addr:
ADDH :addr:+1
SUBS :addr:+2
SUBH :addr:+3
BGEZ MN?
ZALS :addr:
ADDH :addr:+1 ;The one at (addr,addr+1) is smaller.
B 	END?

MN? 	ZALS :addr:+2
ADDH :addr:+3 ;The one at (addr+2,addr+3) is smaller.

END?
$ENDM

;Macro to find the smallest of (addr,addr+1), (addr+2,addr+3)
;(addr+ 4,addr+ 5), (addr+ 6,addr+ 7). Uses addr+ 8,addr+ 9,addr+ 10,addr+ 11
;as temporary storage.

LMIN4 $MACRO addr
LMIN_2 :addr:
SACL :addr:+8
SACH :addr:+9
LMIN_2 :addr:+4
SACL :addr:+10
SACH :addr:+11
LMIN_2 :addr:+8

- 320 -

vectors.lib
Assembler macros for vector interval operations

$ENDM

LMAX4 $MACRO addr
LMAX_2 :addr:
SACL :addr:+8
SACH :addr:+9
LMAX_2 :addr:+4
SACL :addr:+ 10
SACH :addr:+ 11
LMAX_2 :addr:+8
$ENDM

SCPROD $MACRO srcl ,src2,res, size, temp, res....shift

LRLK 0,2
LRLK 1,:srcl:
LRLK 2,:srcl:+1
LRLK 3,:src2:
LRLK 4,:src2:+1
LRLK 5,:res:
LRLK 6,:res:+1
LRLK 7,:size:-1

ZAC
SACL :temp:
SACL : temp: +1
SACL :temp:+2
SACL :temp:+3

SPLOOP? LMULT 1,3,:temp:+4
LMULT 1,4,:temp:+6
LMULT 2,3,:temp:+8
LMULT 2,4,:temp:+ 10

LMIN_4 :temp:+4
ADDS :temp:
ADDH :temp:+1
SACL :temp:
SACH :temp:+1
LMAX_4 :temp:+4
ADDS :temp:+2
ADDH :temp:+3
SACL :temp:+2
SACH :temp:+3

RC
LARP 1
MAR *+1
MAR *+2
MAR *+2
MAR *3
MAR *3

- 321-

vectors. lib
Assembler macros for vector interval operations

MAR *+4
MAR *4

MAR *7

BANZ SPLOOP?,*
ZALS :temp:
ADDH :temp:+ 1
LARP 5
SACH *16:resshift:,6
ZALS :temp:+2
ADDH :temp:+3
SACH *16:resshift: 5
VEPCOR 5,6
$ENDM

VEPCOR $MACRO arpl,arp2
LARP :arpl:
LAC *O:arpl:
BGZ okl?,*,:arp2:
SUBK 1
LARP :arpl:
SACL *O:arp2:

oki?
LAC 	*O:arp2:
BLZ ok2?
ADDK 1
SACL *O :arp2:

ok2?
$ENDM

V_ADD $MACRO srcl,src2,res,size

LRLK O,:srcl:
LRLK 1,:src2:
LRLK 2,:res:
LRLK 3, :size:-1

LARP 0

AL? 	LAC
ADD *+02
SACL +00
LAC +01
ADD *+02
SACL *+03
BANZ AL?,* ,0
$ENDM

V_SUB SMACRO srcl,src2,res,size

LRLK 0,:srcl:
LRLK 1,:src2:+1
LRLK 2,:res:

- 322 -

vectors.lib
Assembler macros for vector interval operations

LRLK 3,:size:-1

LARP 0

SL? 	LAC +01
SUB *o2
SACL +00
LAC +,0,1
SUB *+01
MAR +,1
MAR *+2
SACL *+03
BANZ SL?, *,0
$ENDM

- 323 -

system. lib

Assembler macros for input/output
INADC1 $MACRO addr

in 	 O:addr:
$ENDM

INADC2 $MACRO addr
in 	 l,:addr:

$ENDM

OUTDAC $MACRO addr
out 	2,:addr:

$ENDM

TRIGSYNC $MACRO
WAIT?bioz WAIT?

$ENDM

-324-

ftf.asm

Assembler program for 16 bit fixed point interval FTF adaptive filter
.mlib b
.mlib b
.mlib b ; Link in appropriate macros
mnolist

;Design Constants

lambda_v .set 	32767
mu _v 	•set 500
rho_v 	.sët 300
N 	•set 5
startmu •set 100
startal •set 100
reinal 	•set 500

;lambda* 32768
;mu*32768
;rho* 32768

;Filter length
;Initialisation mu

;startmu * IamndaN
;mu*lamnda N

;Data memory assignments
* ** **** ****************

;System

INBUF •set 60h
DESBUF •set 61h
OUTBUF •set 62h
SCRATCH •set 60h

;Scalars

lambda set 200h
mu .set 202h
rescue set 204h
YO set 206h
alphaml set 208h
eNp set 20ah
eN set 20ch
gammaN set 	20eh
alpha .set 210h
alphaold set 212h
epsilon .set 214h
gammaNpl set 	216h
epsilonp set 218h
rN set 21ah
rNp set 21ch
beta set 21eh
t set 220h

- 325 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

;Vectors

A .set 	224h
B .set 	A+(2*(N+1))
Y .set 	B+(2*(N+1))
C .set 	Y±(2*(N+1))
CNp1 .set 	C+2*N
W .set 	CNp1+(2*(N+1))
TEMP .set 	W+2*N
TEMP1 .set 	TEMP+2*N+2

;Initialisation of values

flop
ssxm
sovm
ldpk 0

lalk lambda_v
ink 0,iambda
larp 0
sad
sad * ,0,0 ;Set lambda= [lambda_v,lambda_v]

lalk mu_v
ink 0,mu
sad *Q ;Set mu=[mu_v,mu_v]
sac! 00

lalk 1024
Ink 0,A
sac! *+oO
sac! ;Set A[0]=[1.0,1.0]

lalk 16384
Ink 0,B+2*N
sad ±00
sad * ;Set B[N]=[1.0,1.0}

Ink 0,2*N1
lr!k 1,A+2
!rik 2,B
!rik 3,C
ink 4,W

zac
iarp

LP1 	sad 	*+02 	;Set A[1 ... N+1]=[0,0]

- 326 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

sad 	*+03 	;Set B[0 ... N]=[0,0]
sac! 	*+04 	;Set C[0 ... N][0,0]
sad 	 ;Set W[0 ... N]=[0,0]
banz LP1,*,1

ink 0,2*N+1
Ir!k 1,Y
larp 1

LP2 	sac! 	 ;Set Y[0 ... N+1]=[0,0]
banz LP2,*,1

!rlk 0,gammaN 	;Set gammaN = 1.0
lalk 32767
larp 0
sac!
sac *

!rlk 0,alpha 	;Set alpha= startal
lalk startal
larp 0
sac! :k+,O,O

sac *

!r!k 0,beta
lalk startmu
larp 0
sac!
sac! *

lr!k 0,t
lack N
larp 0
sac *

mainloop
v_shift Y,(N+ 1)
trigsync
inadcl INBUF
inadc2 DESBUF
lrlk 0,Y
ink 	1 ,INBUF
larp 1
!ac
sac! *+Q
sad 	00
!r!k 0,epsilonp
ink 	1 ,DESBUF
larp 1
!ac
sac!
sac!

- 327 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

restart

;Eql
scprod A,Y,eNp,N+1,SCRATCH,11

;Eq 2
s_mult eNp,gammaN,eN,SCRATCH,14

;Eq 3
ink 0,alpha
ink 	1,aiphaold
larp 0
lac 	+01
sad
lac
sad 	00
s_mult lambda, alpha, temp, SCRATCH, 15
s_mult eNp,eN,temp+ 2, SCRATCH, 14
s_add temp,temp+ 2,alpha

;Eq4
s_div alphaold ,alpha,temp,SCRATCH, 10
larp 0
ink 0,t
lac 	*

bgz okeq4
bbnz remit

okeq4 s_mu it lambda, temp, temp+ 2, SCRATCH, 15
s_mult temp +2.gammaN,gammaNpl. SCRATCH, 10

;Eq5
s_mult alphaold,lambda, temp, SCRATCH, 15
s_div eNp ,temp,temp+ 2, SCRATCH ,5
larp 0
ink 0,t
lac *

bgz okeqs
bbnz remit

okeq5 	s_mult temp+ 2,A,CNp1 ,SCRATCH,11
s_neg CNp1
msc A+ 2,temp+ 2,templ,N,SCRATCH,11
v_sub C,templ,CNp1+2,N

;Eq 6

msc C,eN,temp+2,N,SCRATCH,8
zac
ink 0,temp
larp 0
sad *+oO

- 328 -

ftf.asm
Assembler vro grain for 16 bit fixed point interval FTF adaptive filter

sac! 	00
v_add A,temp,A,N+1

Eq7
ink 	1 ,temp
lr!k 0,!ambda
larp 0
lac
sac!
!ac
sac! *00
s_neg temp
s_mult temp, beta, temp + 2, SCRATCH, 15
s_muit temp+2,CNp1+2*N rNp,SCRATCH,11

;Eq 8
s_mult rNp,gammaN ,temp SCRATCH, 15
s_mutt temp,CNp1 + 2*N,temp+ 2,SCRATCH,4
lalk 16384
ink 0,templ
tarp 0
sac! 	+00
sad 	00
s_add 	temp+ 2,templ ,rescue

;Eq 8
s_div gammaNpi ,rescue,gammaN,SCRATCH,14
ink 0,t
tarp 0
lac 	*

bgz okeq8
bbnz remit

okeq8

;Eq 9
s_mult rNp,gammaN,rN, SCRATCH, 11

;Eq 10
s_muIt beta,lambda, temp, SCRATCH, 15
s_mult rNp,rN,templ, SCRATCH, 11
s_add temp,templ ,beta

;Eq 11
msc 	B,CNp1 + 2*N,temp,N,SCRATCH,14
v_sub CNp1,temp,C,N

;Eq 12
msc 	C,rN,temp,N, SCRATCH, 8
v_add B,temp,B,N

- 329 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

;Joint process extension

;Eq 13
scprod Y,W,temp,N,SCRATCH,12
ink 	0,temp+ 1
larp 0
lac
sub 	*00
subk rho_v
blz okeql3
ink 0,t
lac 	*

bz 	remit
okeq13 ink 0,temp

larp 0
lac
add
sfr
sacl OUTBUF
outdac OUTBUF

s_add epsilonp,temp,epsilonp

;Eq 14
s_muit epsiionp,gammaN, epsilon, SCRATCH, 15

;Eq 15
msc C ,epsilon ,temp ,N ,SCRATCH , 6
v_add W,temp,W,N

ink 0,t
tarp 0
lac *

bz mainloop
subk 1
sad *

b mainloop

remit
larp 0
lalk 1024
ink 0,A
sad 	+00
sad 	00 	;Set A[0]=[1.0,1.0]

talk 16384
ink 0,B+2*N
sad +00
sad 01

- 330 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

ink O,2*N1
ink 1,A+2
ink 2,B
Ink 3,C

zac
RLP1 sad *+ ,0,2

sad *+03

sac!
banz RLP1,*,1

ink O,gammaN
laIk 32767
larp 0
sac! +00
sad 00

ink O,alpha
ialk reinal
sac!
sad 	0,0

ink 0,beta
lalk mu_v
sac!
sac! 	00

ink 0,W
ink 1,W
ink 2,(N-1)

MEANLP !ac 	-+ ,0 1,0
add *Q

sir
sad +01
sac! *+02
banz MEANLP,*,0

b 	restart

- 331 -

Appendix D

Circuit Diagrams

- 332 -

Processor Board

The Processor Board circuits are included on the following pages. 	IC numbers

and part descriptions are listed below.

IC Part Description

1 TMS321OC25GBL DSP Microprocessor

2,3,4,5 MS62256L 32K x 8 bit RAM

6,7 TMS2732A 4Kx8EPROM

8 74LS114AN Dual J-K Flip Flop

9 74ALS20AN 	. Dual 4-input NAND

10 74ALS30N 8-input NAND

11,12 74ALS138N 3 x 8 Line Decoder

13 74S00N Quad 2-input NAND

14 74LS30N 8-input NAND

15 74LS32N Quad 2-input OR

16 741LS041\1 Hex 	Inverter

17,18 74LS373N D-Type Octal Transparent Latch

19 MC6850P Asynchronous Communications

Interface 	Adaptor

20 74LS74 D-type 	+ve 	edge 	Triggered 	Flip

Flop

21 74ALS161 4-bit 	Binary 	Counter

22 COM8116P Clock Generator

23 74LS04 Hex 	Inverter

24 DS1489 Line Receiver

25 DS1488 Line 	Driver

26 74LS32 Quad 2-input OR

- 333 -

pg

I

I
° N

N I
:3- 	Q

-Is
Iz

N I

tAt

j(+ Icz N 41z 	C3

:
____ K 	 K 'I' N

N / I -
L7 	'f all

VA-rA 605
7E

APPRESc
rtO 	N 	A)f BUS

-
At N31

LPIE M)Y
	
1i' 	 8 	t 	- ICSI

N 	 ____ C 	'z 	—. iZz
zo 	 I— It 	I -

Cl-KIP 	 I 	
- 	 "3 _____ ?4Ij - I - ho

—1A 0 - 6-1 	,'+ 	- KG IMS 32 oczs 	 Kc —1A -
't 	C4 - fcr - 	 oJ.— - — ,- - 	___________ sto

i,Jr 1c
I 14—T 0 - IL 114-

- Alf 2: - 1Ir Alf
- -CLKOVTI

IWE
- g

c 	IT - 	 N A 	Yo PS 	 - - -
Vt —

- 	'I - C 	 CA—IT, I c 12 	

cl'

C- OLO

g 	-'
d 62A 	/6 It 	IN 1(0 	I

C2 IS 	"7 IN -
I _1ii

Lcls 	 5b/I 44- 	I - .2L 	I - I Jç 	I 	N 4j3 	I

-

RAM 2 - 	17 -
Lcir

I

::. 	:::
0 	£#fLi) 	 1'ROCE50k

ç. oo p4i

SERIAL PORT CiRcvll PiAC-RAP-4

Ac-(AO

Rs

IA1A
SOS

(Lk0t112.

KOJ

Rs

.e V

Reset Debounce Circuit Diagram

F

GWD

2t41

47tT
AT 	 PiZccseiz

cotJhJEcrO,zs 	vppy 	 At -'P OFEAeH
p11'6g '-''e

Processor Board Power Supply

-336 -

Analogue Board

The Analogue Board circuits are included on the following pages. IC numbers

and part descriptions are listed below.

IC 	Part 	Description

1,2 	AD7870 	12-bit Analogue To Digital Converter

3 	AD667 	12-bit Digital To Analogue Converter

4,5,6 	LS324 	Quad Op-Amp

- 337 -

0

4:
4:

\(Uj
I z . uj

te

lL L,
1

N 14 -
.4

10
U

'

	

I 	II I 	i 	 4

i t 	t —

	

øi 	 u
,.ItJi I
CA
4:L(J4i

<0.

- 338 -

sIZVo- 	- MC781-0 I

-12.V° 	H MC?qag I—i

O

Analogue Board Power Supply

- 339 -

'ii'-

- 340 -

I 11.7 Khz14.7 }Qiz17.7 1QzI 10 KhzI12 Khz 116 Iz 120 }Qiz I

I 	A I 	2.588 	I
-4-- 	-1-

2.588 I 2.588 	I
I

2.588 I 2.588 I 2.588 I 2.588 I

I 	B 	'
-1----

I 	.280 	I .101 	I .0617 	I .0475 I .0396 I
I-

.0297 	I .0238 I

IC
t
I1.29411.29411.29411.29411.29411.294I1.2941

I 1-

I 	D I 	2.588 	I
-I- 	 -4-

2.588 	I
-I-

2.588 I
-4-

2.588 	I
-4--

2.588 	I 2.588 1'2.588
-4-
I

I 	E
-I-

I 	.009361
-4- 	-I- -

.003391
-I-

.002071
-I-

.001601
I

-I- -4-- 	-4-
.001331.0009951.0007961

- I-
IF
-4- -4- Ii

17.07117.07117.07117.07117.07117.07117,071I

I 	G I 	.0375 	I
-I-

.0136 	I
-I-

.008271
-t

.006371
-I-

.005311 .003981 .003181

I 	H 	" I 	3.536 	I 3.536 	I 3.536 	I 3.536 	I 3.536 	I 3.536 	I 3.536 	I

II 1 	7.071 7.071 7.071 7.071 7.071 7.071 7.0711
I-

I 	J 	-
1-

I 	.009361
F 	i

.003391
i 1-

.002071 .001601
I

.001331.0009951.0007961

I K I 	9.659 	I
4-

9.659 I
I

9.659 	I
I

9.659 	I 9.659 I
I

ii
9.659 I -+ 9.659 I

4-
I 	L I 	.0201 	I

1-
.007261

i
.004431

i
.003411

I-
.002841 .002131 .001711

I 	i 14.83014.830I4.83014.83014.8301
I-

4.83014.8301 +-
+-
IN
-+---

4- 	-4-
9.659

I 	-t

1-
9.659

1-
9.659 9.659 	1

4------

-I------
9.659 	1

-4---
9.659 	1

+_-+
9.659 	1

I 	0
1-

I 	.009361
-4-

.003391 .002071 .001601
-4-

I 	 -4-
.001331.0009951.0007961

-4--

Alternative Filter Filter Component Values

Note: The unit for resistance is K 0gtts.
The unit for capacitor is Micro Farads.
The above values are not industry standard values.
On-board filters are initially configured for t.7 Kflz.

-341-

1—o)TX Sequence 	I

4
15
14 A 	

+5EV
Eu 11

C'
A

10 _ 	 12
- 	

g
8 13

5 t3
9 	16

-- 	hchan Q_-__ 1 	14 -=

4
A chan 	

A
8 	6 hch)___ 	12 -

C' 	
C' 13=

A
hchanO

3
7 	13 	 •7.5V- 	

[EEi

3.3k

2-

A
33k

CA

C'
A

-iSV

+7.5V

Noise

Channel Output
	

Input

- 342 -

Appendix E

VHDL source code for coprocessor design

- 343 -

multiply.vhdl

VHDL behavioral source code for interval multiplication
package mult_types is

type miong is range -2147483648 to 2147483647;
subtype mshort is miong range -32768 to 32767;
subtype bitpos is mshort range 0 to 31;

end mult_types;

use work. mult_types.all;

package mult_functions is

procedure interval_multiply(a : in mshort; 	
b : in mshort;
c : in mshort;
d : in mshort;
ri : out miong;
ru out miong);

function find_min(xl : in miong;
x2 : in miong;
0 : in miong;
x4 in miong) return miong;

function find_max(xl : in miong;
x2 : in miong;
x3 : in miong;
x4 : in miong) return miong;

function shift(x: in miong;
s: in bitpos) return mshort;

end mult_functions;

package body mult_functions is

procedure interval_multiply(a in mshort;
b in mshort;
c in mshort;
d : in mshort;
ri : out miong;
ru out miong)

is
variable pl,p2,p3,p4:mlong:0;

begin
pl:= a*c;
p2:= a*d;
P3:= b*c;
P4:= b*d;

- 344 -

multiply.vhdl
VHDL behavioral source code for interval multiplication

ri: = find_min(pl ,p2,p3 ,p4);
ru: = find_max(pl ,p2,p3 ,p4);

end interval-multiply;

function find_min(xl : in mlong;
x2 : in mlong;
0 : in mlong;
x4 : in mlong) return mlong is

variable ml,m2:mlong:= 0;

begin

if (xl<x2) then ml:=xl; else ml:=x2; end if;
if (x3<x4) then m2:=x3; else m2:=x4; end if;
if (ml<m2) then return(ml); else return(m2); end if;

end find-min;

function find_max(xl : in mlong;
x2 : in mlong;
x3 : in mlong;
x4 : in mlong) return mlong is

variable ml,m2:rnlong:=0;

begin

if (xl>x2) then ml:=xl; else ml:=x2; end if;
if (x3>x4) then m2:=x3; else m2:=x4; end if;.
if (ml>m2) then return(ml); else return(m2); end if;

end find-max;

function shift(x: in mlong; 	
s: in bitpos) return mshort is

variable pow2:mlong:= 1;
begin

pow2:=1;
powip:
for i in 1 to s loop

pow2:=2*pow2;
end loop powip;
return(x/pow2);

end shift;

end mult_functions;

- 345 -

multiply.vhdl
VHDL behavioral source code for interval multiplication

- 346 -

coprocessor. vhdl

VHDL behavioral descrition of coprocessor chip
use work. mult_functions.all;
use work. mult_types.all;

entity coprocessor is
port(address_bus: in mshort;

rdata_bus:in mshort;
wdata_bus:out mshort;
r_w : in bit;
cs : in bit;

CLOCK: in bit);
end coprocessor;

architecture chip of coprocessor is
begin

process
variable op_ireg : mshort:=O;
variable op_2reg : mshort:=O;
variable op_3reg : mshort:=O;
variable op_4reg : mshort:=O;
variable i_reg : mshort:=O;
variable res_shift : bitpos:0;
variable res_Oreg : mshort:=O;
variable res_ireg : mshort:=O;
variable outbuf : mshort:=O;
variable inbuf : mshort:=O;
variable adbuf : mshort:=O;
variable low—accumulator: mlong: 0;
variable high—accumulator: mlong:= 0;
variable h: mlong:=0;
variable 1: mlong:=0;

begin

inbuf:= rdata_bus;
adbuf:= address—bus;

if (r_w='l' and cs='l') then 	--This part for read operations
case adbuf is

when O=>
op_lreg:= inbuf;

when 1 =>
op_2reg:= inbuf;

when 2 =>
op_3reg:= inbuf;

when 3 =>
op_4reg: = inbuf;

when 4 =>
if (inbuf = 1) then

-347-

coprocessor.vhdl
VHDL behavioral descrition of coprocessor chip

low_accumulator 0;
high—accumulator: 0;

end if;
if (inbuf2) then

interval_multiply(op_lreg , op_2reg ,op_3reg, op_4reg , 1, h);
low_accumulator: = low_accumulator+ 1;
high—accumulator: = high—accumulator + h;
res_Oreg: = shift(low_accumulator,reS_Shift)
res_ireg: = shift(high_accumulatOr, res_shift);

end if;
when 5=>

res_shift: = inbuf;
when others=>

end case;
end if;

if (r_w'O' and cs='l') then
case adbuf is

when 0 =>
outbuf: = res_Oreg;

when 1 =>
outbuf:= res_ireg;

when others=>

end case;
end if;

wdata_bus< = outbuf;

end process;

end chip;

- 348 -

