Numerically Robusty
Implementations of Fast
Recursive Least Squares

Adaptive Filters using

Interva[Arithmetic

Christopher Peter Callender, B.Sc. AMIEE.

at the University of Edinburgh.

1991

Univérsity of Edinburgh

Abstract of Thesis

Name of Candidate Christopher Peter Callender

Address
Degree Ph.D. Date March 25, 1991
Title of Thesis Numerically Robust Implementations of Fast Recursive Least

Squares Adaptive Filters using Interval Arithmetic
Number of words in the main text of Thesis Approximately 28,000

Algorithms have been developed which perform least squares adaptive filtering with
great computational efficiency. Unfortunately, the fast recursive least squares (RLS)
algorithms all exhibit numerical instability due to finite precision computational
errors, resulting in their failure to produce a useful solution after a short number of
iterations.

In this thesis, a new solution to this instability problem is considered, making use of
interval arithmetic. By modifying the algorithm so that upper and lower bounds are
placed on all quantities calculated, it is possible to obtain a measure of confidence
in the solution calculated by a fast RLS algorithm and if it is subject to a high -
degree of inaccuracy due to finite precision computational errors, then the algo-
rithm may be rescued, using a reinitialisation procedure.

Simulation results show that the stabilised algorithms offer an accuracy of solution
comparable with the standard recursive least squares algorithm. Both floating and
fixed point 1mplementat10ns of the interval arithmetic method are simulated and
long-term stability is demonstrated in both cases.

A hardware verification of the simulation results is also performed, using a digital
signal processor(DSP). The results from this indicate that the stabilised fast 'RLS '
algorithms are suitable for a number of applications requiring high speed, real time
adaptive filtering.

A design study for a very large scale integration (VLSI) technology coprocessor,
which provides hardware support for interval multiplication, is also considered. This
device would enable the hardware realisation of a fast RLS algorithm to operate at
far greater speed than that obtained by performing interval multiplication using a
DSP.

Finally, the results presented in this thesis are summarised and the achievements
and limitations of the work are identified. Areas for further research are suggested.

i -

Acknowledgements

There are many people who deserve thanks for the assistance and support which
have made the work of this thesis possible. I would like to thank all of the
members of the signal processing group, both past and present, for their helpful dis-

cussions and comments on my work. They have helped to clarify many of my ideas.

Special thanks must go to Professor Colin Cowan. In his role as my supervisor, he
has contributed greatly to the project and his guidance has been very much appreci-
ated. Similarly, I am most grateful to Dr. Bernie Mulgrew for initially being my
second supervisor and for taking over when Professor Cowan left the department.
Thanks must also go to Professor Peter Grant for his encouragement and advice

during my time in the group.

Finally, I would like to make it clear how much I appreciate the support of my

parents during the time spent on this work.

- v -

Contents

Chapterl:lntrodﬁcfion Ceresesseassasenans teseseseasesanes ..
1.1. Adaptive Filters - Structures aﬁd Applications +......

1.2. Families of Adaptive Algorithms cresseann .o

1.3. Applications of Adaptive Filters teesoeen

1.3.1. Prediction .eecoevesns s sessenssernesas

1.3.2. Noise Cancellation ...oeverecocssesscesoes

1.3.3. System Identification «...eveeveesncncesenens

1.3.4. Inverse Modelling «..ceeeeverreressccccene

1.4. Organisation of Thesis «.eceeeenn SRARREEREREREE

Chapter 2:Least Squares Algorithms for Adaptive Filtering '
2.1. Introduction «eeveeeevsecocscsoccosoas reesens

2.2. The Least Squares Problem for Linear Transversal
Adaptive Filtering +...... e secssensseresserns .o

2.3. The Conventional Recursive Least Squares Algorithm

ooo

2.4. Data Windows e setesesser e e e eans
2.5. Computational Complexity ...oeeeescecscsscscss
2.6. The Fast Kalman Algorithm ceeescecnaens
2.7. The Fast A Posteriori Error Sequential Téchnique coe
2.8. The Fast Transversal Filters Algorithmc00000

2.9. Comparison of the Least Squares Algorithms o

15

17

17

18

19

19

22

22

23

28

29

31

32

39

41

44

2.10. Numerical Instability «..coeeveeveess SEREEERE

2.10.1. Normalised Algorithms ...oceeeececcces I. .o

2.10.2. Lattice Algorithms «..evvees Cesesaesenaens

2.10.3. Stabilisation by Regular Reinitialisation

2.10.4. Error Feedback .¢evec.n.. ceeceecrrenns oo

2.11. Conclusions «ecevevesoconccsess reessenens ..

Chapter 3:Interval Arithmetic cereesesessrrananes
3.1. Introduction ce.eeveersracocosess teesereenenn

3.2. Interval NUMbEIS «veevecrosrscnsscons

3.3. Scalar Interval Arithmetic «oeveeeevoenes

3.4. Scalar Interval Arithmetic with a Finite Precision Pro-
CESSOT s oeooevssonevsanse seseseersevens eeeneeens

3.5. Vector Interval ATithmetiC eoveeveorsooonoseosss

36. Applicatiori of Interval Arithmetic to the Fast RLS
Algorithms «vvvvierreereeeneeeeeieerecennnnones

3.7. Choice of Design Parameters for the Interval Fast RLS

Algorithm Ceesecesssacaneases eeenseceeas .
3.8. Conclusions «veeveesocsvenes resseseerserrens
Chapter 4:Interval Algorithms - Software Simulations
4.1, Introduction seeeeeoeoeeroossscsscoocsossss
4.2. System Identification «..eeceeeeeneiieiieenn .

4.3. Divergence of the FAEST, Fast Kalman and FTF Algo- .

rithms «ceveeeeronnseenecarcones S
4.4. FTF Algorithm Using Rescue Variable s

4.5. FTF Performance Using Interval Arithmetic «..co00

- Vi -

45

47

48

49

50

51

53

53

54

54

60

61

63

65

67

67

68

71

73

82

4.6. Fixed Point Implementation of the FTF Algorithm ... - 86
4.7. Fixed Point Interval FTF Performance coee 88

4.8. Application of Interval Algorithms to Stationary and

Non-Stationary Equalisation «..veeeeeccscoecccncons 93

4.8.1. Performance for a Stationary Channelc0... 98

4.8.2. Performance for a Fading Channel 98

4.9. Conclusions «eeeeevoeses teeecsssenaeens ceves 100

Chapter 5:Interval Algorithms - Hardware Implementation 103
S5.1. Introduction «..... cessreseseans covvea eeeaase 103

5.2. Implementing the Algorithm on a TMS320C25 104

5.2.1. Macros to Perform Interval Arithmetic on a

TMS320C25 ceeeesen teessssessecssansss 105
5.2.2. ;l“he FTF Algorithm on a TMS320C25 106
5.3. Test Configurationceeveoeens ceeseenens oo 107
5.3.2. Equaliser Arrangement «....cecccecceccssns 110
5.3.3. Measurement of' Results +soveeeeecenss coesee 110
5.4 ReSUS vaeernnnnnnes e e, . 113
5.4.1. EyeDiag?ams ettt 113
5.4.2. Filter Error «...... Creteenenanans Ceeeeens 114
5.5. Speed of Operation «eeeeeeeessossssoccssoeces 114
5.6. Conclusions ... R 120
Chapter 6:An Interval Arithmetic Coprocéssor for the TMS320C25 ... 123
6.1. Introduction «..eeoeceecas sessevee ceesesoss 123
6.2. The SARI Toolset +eveevsveeenconnnnns 125

- vil -

6.3. Functions of the COProcessor «..eeeceoecsosaocss

6.4. Design of the Interval Multiplier vesee
6.5. Top Level Design of the Coprocessor «eeeeeeeeess .
6.6. Feasibility of t.he Design «.... cesesesresn N
Chapter 7:Conclusions Ceteetiaccssssseseccsssesserne
7.1. Achievements of the Work cesesns cesense
7.2. Limitations and Areas for Future Work
Referencesccceececrcecconns Cheseeccearesescssets s an
Appendix A - Publications arising from this WOTK +teeeevecencnaas cee
Appeﬁdix B - Simulation SOftware +.eeeeeseeccesosssoccvscenseos

Appendix C - TMS320C25 implementation - assembly language code ...

Appendix D - TMS320C25 implementation - circuit diagrams «...ceo e

Appendix E - Interval arithmetic coprocessor - VHDL behavioural

description

ooo

- viii -

128

129

139

139

143

143

145

147

159

197

301

332

343

Abbreviations

ADC Analogue to Digital Converter
ASAP As Soon As Possible
DAC Digital to Analogue Converter
dB deciBel
" DSP Digital Signal Processor
EOC End Of Conversion
EVR Eigenvalue Ratio
FAEST Fast A Posteriori Error Sequential Technique

FIR Finite Impulse Response
FK . Fast Kalman

FTF Fast Transversal Filters
HF High Frequency '
IR Infinite Impulse Response
ISI Intersymbol Interference
LS Least Squares

LMS Least Mean Squares
MLSE Maximum Likelihood Sequence Estimator

RLS Recursive Least Squares
SNR Signal to Noise Ratio
SOC Start Of Conversion

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLSI Very Large Scale Integration

VSE VHDL Support Environment

-ix -

a(k)
b(k)
c(k)
¢'(k)
c(k)
¢'(k)
d(k)
e’ (k)
e/ (k)
e (k)
h; (k)
H (k)
Jo(k)
J1(k)
Jo(k)

I (k)
Lax (k)
x (k)

X (k)
X' (k)
o (k)
of (k)
e’ (k)
e (k)
e(k)

Principal Symbols

Forward prediction coefficients for fast RLS algorithms
Backward prediction coefficients for fast RLS algorithms
Kailman gain vector

Extended (N +1 th order) Kalman gain vector
Alternative Kalman gain vector '

Alternative extended (N +1 th order) Kalman gain vector
k th adaptive filter desired response input

Backward a priori prediction error

Forward a priori prediction error

A priori filter error

j -th coefficient of FIR filter

Vector [ho(k)hq(k) - - - hy (k)]

Unwindowed least squares cost function

Exponentially windowed least squares cost function

Least squares cost function with initial condition

Time index for sampled data signals

Length of adaptive filter

Autocorrelation matrix for least squares algorithms
Crosscorrelation vector for least squares algorithms

k th input to adaptive filter

Vector [x(k)x(k—1) - - - x (k=N +1)]"

Vector [x(k)x(k—1) - - - x(k=N)]"

Minimum value of backwards prediction least squares cost function
Minimum value of forwards prediction least squares cost function
Backward a posteriori prediction error

Forward a posteriori prediction error

A posteriori filter error

Exponential data window parameter ,
Maximum tolerable width of interval filter coefficients

Weighting for soft constrained reinitialisation

4
Hall
AT
AT

[a’,a"]

3f(x).

dx

VIi(x,y,z...

Mathematical Notation

Vector A

Vector A of dimension (order) D
Matrix A

Euclidian norm of A

Transpose of A

Transpose of A

Matrix inverse of A

Interval number which contains all real

numbers between a' and a*
Partial derivative of f (x) with respect to x°

Gradient vector of function J

[07 o I

-xi -

"The subject we have just treated might give rise to several elegant analytical investi-
gations upon which, however, we will not dwell, that we may be too diverted from our
object. For the same reason, we must reserve for another occasion the explanation of

the devices by which the numerical calculations may be rendered more expeditious”

- Karl Friedrich Gauss on least squares estimation techniques in Theoria Motus

Corporum Coelestium 7, 1809

t From English translation - Gauss, K.F. "Theory of Motion of Heavenly Bodies", Dover, New
York, 1963.

1 Introduction

1.1. Adaptive Filters - Strﬁctures and Applications

Fast, recursive least squares algorithms[1-3] have been devéloped for performing
transversal least squares adaptive filtering in a highly computationally efficient
manner. Unfortunately, all of these algorithms are numerically unstable, due to the
way that finite precision errors are propagated. The important contribution of this
thesis is to present a new stabilisation procedure which uses interval arithmetic to
perform an error analysis for the algorithm whilst it is operating. The significance of
this is that it enables a guaranteed limit to be placed on the magnitude of numerical
errors, preventing instability and divergence. A hardware demonstration of an adap-
tive filter using the new methods has been developed, showing that interval arith-

" metic may be used in a practical application of adaptive filtering.

An adaptive filter[4-7] is a programmable filter, whiéh automatically attempts to
adjust its variable parameters so as to optimise its performance in some way. Figure
1.1 shows the general configuration of an adaptive system. There are two important
elements to the system. The filter structure modifies the input signal in some way
defined by its parameters and generates an oﬁtput signal. The adaptive algorithm is
responsible for monitoring the performance of this filter structure and adjusting its

parameters, so as to maximise system performance.

Interestingly, a great number of adaptive systems occur in nature and in living
things. One example of a biological adaptive system is the iris of theveye[8], which
may be thought of as a filter which controls the amount of light which enters the
eye. The filter has one programmable parameter ; the radius of the iris. An adap-
tive algorithm in the brain monitors the brightness of the images which it receives
(which is a measure of the performance of the iris filter). If the brightness does not
meet some desired target, then the radius of the iris is adj-usted, SO as to improve its
performance. In so doing, the eye is capable of good image detection over a much

wider range of light levels than would be possible with a fixed iris radius.

This example illustrates one of the key advantages of adaptive filters over their fixed
filter counterparts. A fixed filter can only give optimum performance in a limited
number of situations, whereas the adapti.ve filter, with its ability to self-adjust, offers
potentially better performance in a wide range of different circumstances. In some
applications, the optimum filter may not be known a priori, as the conditions which
affect the input signals may not be known exactly. Moreover, in many applications,
the optimum solution varies with time, perhaps due to environmental factors and so
a fixed filter cannot be applied. An adaptive filter, however, has the ability to rrack
the changing optimum solution. In a large number of cases, the self-adjusting adap-
tive filter, therefore, has the potential for improved performance, as compared with

a fixed filter.

A ﬁumber of different structures and algorithms for adaptive systems have been pro-
posed. The discussion in this thesis will be restricted to digital filters. These may be
subdivided into linear and non-linear structures. Linear digital filters may be further
subdivided into finite and infinite impulse response structures. For the finite
impulse response filter the transfer function is realised by zeros only, as all of the
poles of the filter are located at the origin. In the case of the infinite impulse
response filter, however, both poles and zeros are used’to realise the transfer func-

tion. One example of a finite impulse response filter is the linear transversal

Output

Input

Programmable Filter

Performance
Measure

L Parameters]

Adaptive Algorithm

Figure 1.1 An adaptive filter. The device consists of two key parts : a programmable filter which is controlled by a
number of parameters, and an adaptive algorithm which attempts to adjust these parameters so as to obtain optimum

system performance.

filter,[9-13] shown in Figure 1.2a. It is also possible to generate lattice filters[14-16]
which have a finite impulse response, such as the structure in Figure 1.2b. An
example of a system which has a transfer function realised with both poles and zeros
is the direct form infinite impulse response (IIR)[4,6,17-21] filter shown in Figure
1.3a. The difficulties associated with developing adaptive techniques for the IIR
filter are considerable, because the filter is not unconditionally stable, as it has both
poles and zeros in its transfer function. The danger is that the adaptive algorithm

will choose a set of coefficients which place poles outside the unit circle in the z-

plane and so provoke an unstable response. The filter error surface is also non-
quadratic, which makes the task of developing an adaptive algorithm considerably

more difficult.

Various non-linear digital filter structures have also been suggested for adaptive
filtering applications including a range of artificial neural networks[22-27], which
model the filter on a simplified brain-like structure. An example of a neural net-
work is shown in Figure 1.3b. Whilst adaptive neural networks are currently an area
of very active research, the theoretical aspects of non-linear structures are not nearly
as well understood as the linear structures. The work of this thesis is, therefore, con-
cerned with the linear transversal filter structure and the emphasis is on developing

highly efficient algorithms for this well understood and often used structure.

1.2. Families of Adaptive Algorithms

A large number of algorithms for adaﬁtive filters has been proposed. Indeed, adap-
tive filtering is an example of an optimisation problem and optimisation techniques
form an important part of mathematics[28-31]. The additional constraint in adap-
tive filtering is that many of the applications require this optimisation to be per-
formed in real time and so the complexity of the computations required must be

kept to a minimum.

Filter

Input

Coefficients

Output

Figure 1.2a Structure of a linear transversal finite iinpulse response (F[R)‘ﬁltcr.

Input WA Output
. z >
%o
o
o z-1

Figure 1.2b Structure of an all zero lattice filter.

Input

Output

Z Z
Feédforwar ><
Coefficients
Feedback
Coefficients

1

\ J

Figure 1.3a Structure of a recursive infinite impulse response (IIR) digital filter.

Figure

Job

B

: ,,Am,fm.,
»

Output

N\

Input
Conection of a number of processing elements
to form a neural network
Inputs X
fro ! {C
m % Z
previous
layer X
Bias

A single neural processing element

1.3b_Structure of the multi-layer perceptron which is one class of neural network.

Figure 1.4 shows some of the families of adaptive algorithms which have been sug-
gested. Conceptually, one of the simplest techniques is the random search tech-
nique.[32] A random perturbation is rﬁade to the parameters of the programmable
filter and the output is examined to see if this alteration improves the filter perfor-
mance. If the performance is not improved, the perturbation is discarded and a new
perturbation is tried. RanFiom search techniques are interesting, as they have much
in common with the mechanism of evolution suggested by the Darwinian theory of
natural selection[33,34], which may also be regarded as an example of an optimisa-
tion procedure, in which the performance measure being maximised is the probabil-
ity of survival of life. It must be noted, however, that within the context of adaptive
filtering, random search techniques are very slow to converge to a solution which is-
close to the optimum value and are therefore, of little practical value. This is due to
their reliance on random perturbations to the filter parameters. There is a fairly low
probability that any particular perturbation will change the filter parameters in the

direction of their optimum values.

Before proceeding to discuss other adaptive algorithms, it is necessary to discuss the
performance measure which is often used in adaptive filtering. It is normal tok
assume that a desired response signal is available and that the target of the adapta-
tion algorithm is to minimise in some way the filter error, which is the difference
between the filter output and the desired response input. The introduction of a
desired response or reference signal does not seriously limit the usefulness of the
adaptive filter and many important applications in which a desired response signal
may readily be made available to the adaptive filter are presented later in this
chapter. It is helpful when considering adaptive algorithms to imagine the error sur-
face which is generated by measuring the mean value of the square of filter error as
the filter coefficients are varied. Figure 1.5 shows a typical error surface for a

transversal filter with two coefficients denoted by h, and h;. In general, for the

-1C -

linear transversal structure, the surface will be quadratic, with a single global
minimum. The goal of an adaptation algorithm is to set the filter coefficients so as
to obtain an operating point at this minimum, where the filter gives optimum per-

formance.

One method by which this may be achieved is the stochastic gradient technique,
which has resulted in algorithms such as the least mean squares (LMS) algorithm{4-
6,35,36]. These algorithms operate by estimating the gradient of the error éurface
at the current operating point and then moving the coefficients in the direction of
steepest descent of the error surface. By performing this operation repeatedly, the
algorithm seeks out the minimum of the error surface in a number of steps. If the
error gurface changes in shape and the position of the minimum moves, as would be
the case in a non-stationary environment, then the adaptive algorithm can track the
optimum solution. In the case of the LMS algorithm, a noisy estimate of the gra-
dient of the error surface is made from a single sample of the input data vector and
error signal. This is used to update the filter coefficients and it can be shown that
this procedure is guaranteed to converge close to the optimum solution, provided

that certain restrictions are placed on the step-size{37].

Least Squares algorithms[6, 16, 38] rely on a somewhat different technique. Instead
of attempting to minimise the mean square value of the filter error, these algorithms
minimise a cost function, such that the goal is to minimise the total sum of all the
filter errors squared from when the algorithm was started to the current time. The
important difference is that this involves fhe minimisation of a completely deter-
ministic expression, rather than the statistical quantity of the stochastic gradient
methods. This minimisation may be performed in principle by differentiation. As
the filter is linear and a squared error cost function is used, this differentiation
yields a set of linear simultaneous equations for the filter parameters. Least squares
algorithms for signal processing concentrate on numerically efficient ways of solving

this set of equations. The conventional recursive least squares (RLS) algo-

211 -

FIR Adaptive Filter Algorithms

Gradient Search Random Search

Recursive 'Least Squares

(RLS)

Least Mean Squdes
(LMS)

Linear Random Search
(LRS)

Block Exploitation of
Processing shift properties of data

A

Time Domain Block

Fast Recursive Least

Least Mean Squares Squares
(BLMS) (FRLS)
Frequency
domain
implementation

Block Fast
.Recursive Least Squares
(BFRLS)

Frequency Domain
Block Least Mean Squares

(FBLMS)

Figure 1.4 The main families of algorithms for performing adaptive filtering

Optimum Solution

Mean Square
Filter Error

Filter Coefficient rb

Figure 1.5 The quadratic mean square error surface of a linear transversal filter

-13 -

rithm[5, 6,16,39] uses information about the previous solution to the system of
equations, so as to reduce the computation in finding a new solution to the equa-
tions when a new squared error is added to the cost function. Various fast recursive
least sﬁuares algorithms[1-3] have been developed which, in addition, exploit the
shifting properties of the input data vector to provide a further saving in computa-

tional complexity.

Least squares techniques and stochastic techniques have a number of differences in
the way that they perform[40]. In general, the time taken for a stochastic gradient
algorithm to converge close to the optimum solution is much longer than for a least
squares algorithm, due to the. reliance of the stochastic algorithm on the statistics of
the input data sequence and the need for an averaging process to occur with the
‘noisy’ gradient estimate. However, the computational complexity of these algo-
rithms is very low and they are, therefore, suitable for high speed real time applica-
tions, where the speed of convergence is not critical. Least squares techniques have
a much higher computational complexity, but their principal advantage over sto-
chastic methods is their much more rapid initial convergence, which is in_dependent
of the statistics of the input signal. They have a higher computational complexity
than the stochastic gradient methods, but in the case of the fast RLS algorithms,

this complexity is of a comparable order of magnitude to the LMS algorithni.

Also of importance in considering the performance of an adaptive system is its abil-
ity to track the optimum solution in applications where the optimum solution varies
with time. The comparison of the tracking performances of the two classes of algo-
rithms is an area of current research[41-43]. Results show that the more rapid ini-
tial convergence of the least squares techniques does not necessarily imply better
tracking performance in a non-stationary environment and that gradient techniques

may offer comparable or even better performance.

Nevertheless, the rapid, data independent convergence of the least squares methods

-14 -

makes thein attractive for many applications. For example, in data communications,
a known training sequence has to be transmitted until the algorithm has converged,
reducing the throughput of useful data transmitted. The more répidly the adaptation
algorithm converges, the more useful data can be transmitted in a given time. The
fast RLS algorithms are particularly attractive in this respect, as they are also suited
to higher data rates than the conventional RLS algorithm due to their lower compu-
tational complexity. However, it is well known that these algorithms suffer from
severe numerical instability{44]. Small numerical errors at each iteration of the
algorithm accumulate, until they eventually cause divergence of the algorithm,
resulting in a completely incorrect solution to the optimisation problem. The work
in this thesis is concerned with finding solutions to the divergence phenomenon and
making these potentially very efficient algorithms sufficiently robust to be of practi-

cal value.

1.3. Applications of Adaptive Filters

The versatility of a self-adjusting filter structure is such that the number of applica-
tions for adaptive techniques is very great. Adaptive filtering has found application
in areas such as digital communications[45-49], telecommunications[50], noise can-
cellation[35, 51], speech coding[52, 53] and control systems[54-58]. Much of the
work in’ this thesis will concentrate on the digital communications application, as
this is probably the most widespread of all of the applications mentioned, but the

new techniques developed could be applied to other adaptive filtering applications.

Four of the main configurations in which adaptive filters are often used are shown

in Figures 1.6a-d. Each of these configurations will now be considered.

{

-15 -

Input L_{ Delay }

: . +
Programmable Filter h:»d:)
- i Qutput -

Adaptive Algorithm J<—
Adaptive Processor

@
A S

(a) Adaptive prediction

Signal + Noise (s+n) @ »

+
Distorted estimate of ¢————0—] Programmable Filter ‘i_’é
noise (1) N .
i Qutput
Adaptive Algorithm J<—

Adaptive Processor

(b) Adaptive noise cancellation
Qutput

[—l Unknown % +
° >l

e

{ Programmable Filter -
Input [r f

®

Adaptive Algorithm
Adaptive Processor

(c) Adaptive system identification (modelling)

v Delay * lre +
Input Channel | o> Programmable Filter J-,—_»é)

1
= = .
[F Adaptive Algorithm e | O

Adaptive Processor

* Required if the channel has an impulse response with zeros outside
the unit circle (non-minimum phase)

(d) Adaptive equalisation (Deconvolution, inverse filtering, inverse modelling)

Figure 1.6 Important configurations for adaptive filtering

-16 -

1.3.1. Prediction

Figure 1.6a shows an adaptive system configured to perform prediction of a signal,
based upon its previous values. The signal is fed through a delay stage into the
adaptive filter input and it is also input directly to the desired response input. The
goal of the adaptive processor is, as always, to minimise the filter error signal. To
do this, the filter output must approximate the current value of the signal. The only
samples which are available to the filter, however, due to the delay stage, are previ-
ous values of the signal. The current value of the signal has ndt yet appeared as an
input. It must, therefore, predict the current value based upon previous values of

the signal.

Applications of adaptive predictors include cancellation of periodic interference
from a non-periodic signal[51]. This is possible, since the predictor can predict only
the periodic component of the signal, the non-periodic component usually being
unpredictable. Another application is the efficient encoding of speech sig-

nals[52, 53], which are highly predictable over short time intervals.

1.3.2. Noise Cancellation

In Figure 1.6b, an adaptive processing system is configured to cancel interference.
A signal, s, has been corrupted by some additive noise, 7, to give a signal s+n.
A correlated, but distorted, estimate of this noise, A is also available. vaiously, if
this estimate was not distorted, it could simply be subtracted from the corrupted sig-
nal s +n, so as to recover the signal s. In this case, however, the noisy signal s +n
is fed into the desired response input of the adaptive processor and the estimate of

the noise, A is fed into the filter input. To minimise the filter error in this

-17 -

Landiini - o e - _——

configuration corresponds to filtering the estimate of the noise, 7, so as to make it
as close as possible to the actual noise, n. This filter output is then subtracted from

s +n, in order to form a signal which closely resembles s .

Applications are widespread and include cancelling mains hum interference from.

medical signals[35,60], cancelling donor-heart interference when examining electro-

cardiograms during heart transplant operations [35], and cancelling additive noise

from speech-signals [35,61].

1.3.3. System Identification

This configuration is shown in Figure 1.6c. The aim is to find a system with transfer
function, H (z) which closely approximates to the transfer function, H(z), of the
unknown system. A signal, s is fed into the adaptive processor and also into the
unknown system. The output which the unknown system gives in response to this
input is the desired response of the adaptive system and so it is fed into the desired
response input. Therefore, the adaptive system learns to respond like the unknown
system and when it has done this, parameters may be extracted from it, which also
pertain to the unknown system. The output of the unknown system may be cor-

rupted by a small amount of ‘plant’ noise, so that it cannot be identified exactly.

One important application of the adaptive system identifier is in digital communica-
tions. A maximum likelihood sequence estimator (MLSE)[62] may be used to give
véry good performance when attempting to recover a sequence at the receiver which
has been corrupted by intersymbol interference. The maximum likelihood sequence
estimator requires an estimate of the current impulse response of the transmission
channel, however, so as to calculate which is the most probable transmitted
sequence. Adaptive system identification provides a method for finding the impulse

response of the channel for the sequence estimator.

Another important application in which this configuration is used is adaptive echo

cancellation[50,59] for telecommunication.

1.3.4. Inverse Modelling

In the configuration of Figure 1.6d, a signal has been distorted by an unknown sys-
tem, such as a communications channel, a transducer or some other system. The
adaptive processor attempts to remove this distortion by performing inverse filtering
on the output from the unknown system. This application is similar to systém iden-
tification, except that the unknown system is in the filter input path, rather than in
the desired response input path, so that the algorithm converges to find the inverse

to the unknown systerh.

Applications of adaptive processors being used in this configuration include channel
equalisation for digital radio communications[45,46, 63,64] allowing faster data

rates with an acceptably low probability of error.

In this application, the desired response signal is generated locally at the receiver
initially by using a known training sequence. After convergence of the adaptive
algorithm, it is possible to switch to decision directed mode in which the desired
response signal is generated by a threshold device, which makes a decision upon the
output from the equaliser, allowing the filter error to be calculated and adaptive
updating of the equaliser to take place. In practice, a delay may have to be intro-

duced into the desired response path as shown in Figure 1.6d, so as to ensure that

the channel and delay combination is minimum phase and suitable for equalisation

! by a linear structure:

1.4. Organisation of Thesis

As was previously mentioned, the primary aim of the work in this thesis is to study
ways in which the highly computationally efficient fast RLS adaptive algorithms

may be applied to practical applications, without the numerical instability problem

-19 -

making itself apparent. The goal of this research is to find a method by which the
algorithms may be stabilised and then to demonstrate that this stabilisation pro-
cedure results in algorithms which are of practical value in a number of applica-

tions.

Chapter 2 will begin by bresenting much of the background to this work. The con-
cept of least squares estimation as applied to the linear transversal filter will be
developed and a number of algorithms which solve the least squares estimation
problem will be derived. The first algbﬁthm to be presented will be the conventional
recursive least squares (RLS) algorithm, which has a computational complexity pro-
portional to the square of the filter length and is therefore, too numerically .intensive
for many applications. The chapter will then proceed to discuss the fast RLS algo-
rithms. A derivation of the fast Kalman algorithm, historically the first of the fast
RLS algorithms to be discovered, will be given and then, two other algorithms for
fast RLS transversal filtering will be examined. The reasons for the instability prot_a-
lems of the fast RLS algorithms will be looked at in some detail and various solu-
tions, which have already been proposed to solve these problems, will be discussed.

The benefits and limitations of the existing stabilisation schemes will be considered.

The theoretical aspects of a new solution to the numericél divgrgence problems are
introduced in chapter 3. A scheme of arithmetic known as .interval arithmetic is
used. Effectively, this enables an error analysis to be performed in parallel with the
computations of the algorithm, taking into account the effects of finite precision
numerical errors. If the analysis indicates that the results calculated by the algorithm
are being adversely affected by numerical errors, then the algorithm is rescued using
a ‘soft-constraint’ rescue procedure. A number of new design parameters are intro-
duced into the new interval arithmetic fast RLS algorithms and chapter 3 is con-

cluded by some results relating to the correct choice of these parameters.

Chapter 4 gives simulation results relating to the new interval arithmetic.algorithms.

=20 -

The central aim of these simulations is to explore many different configurations and
possibilities. To this end, simulations are performed using both floating and fixed
point arithmetic, direct and inverse system modelling is performed and the simula-

tions are applied in both the stationary and non-stationary scenario.

Having demonstrated successfully the performance of the interval fast RLS algo-
rithms in simulations, chapter S considers a- hardware implementation of the new
algorithms. A digital signal processor is used and the operation of the 16 bit fixed
point interval arithmetic fast RLS algorithm is demonstrated in real time as an

equaliser.

Chapter 6 contains a design and feasibility study for a very large scale integration
(VLSI) technology coprocessor, which would enable interval arithmetic algorithms
to work at greater speed on a digital signal processor.. The coprocessor design was
developed using an advanced software package, which can convert from a high level
behavioural description of the algorithm to a low level structural deséription of the

gates and components required to implement it.

Finally, chapter 7 forms the conclusions to this work. Both the successes and the
limitations of the new interval methods are discussed and areas for further research

are identified.

221 -

2 Least Squares’ ‘Algorithms for
“Adaptive Filtering | -

2.1. Introduction

A least squares adaptive algorithm[6, 16, 38, 65] is one in which some cost function
involving total squared error is minimised by appropriate choice of the parameters
of a filter. The filter structure which will be focussed upon in this chapter will be

the linear transversal filter[9-13], although least squares algorithms for lattice

filters[14-16] will be mentioned.

The principle advantage of a least squares algorithm over the popular stochastic gra-
dient methods[4-6, 35, 36] for adaptive filtering is the greatly improved initial con-
vergence[40, 59]. For the stochastic gradient methods, the initial convergence time
is strongly dependent upon the statistical properties of the input signal[37, 66] and in
the case of an ill-conditioned input, these algorithms will be slow to converge. Least
- squares algorithms, however, have convergence properties Which are independent of
the data statistics[67-69] and these algorithms will converge close to the optimum
solution within 2N iterations where N denotes the order or length of the adaptive

filter.

One problem with the application of least squares techniques to high speed real time
systems is the relatively high computational complexity of the algorithms. The con-

ventional recursive least squares[S, 6,16,39] (RLS) algorithm has a computational

complexity which is proportional to the square of the filter length. This inhibits its
application to systems which require a high filter order, N ,V as the computational .
burden becomes unacceptably large. One such application is that of adaptive echo
cancellation, where filter lengths of =1000 taps are typically required. To imple-
" ment such a filter using the RLS algorithm wou-ld need several million additions and
multiplications per iteration and such an implementation would clearly not be feasi-

ble.

The high complexity of the RLS algorithm may be reduced by exploiting the shift-
ing properties of the input sequence with time. This has resulted in seve;al fast RLS
algorithms such as the fést Kalman (FK) algprithm[1,70-72], the fast a posteriori
error sequential technique (FAEST)[2,73-76] and the fast transversal filters (FTF)
algorithm[3, 77, 78], all of which are characterised by a computational complexity.

which is directly proportional to the filter length, N.

Unfortunately all of the highly efficient fast RLS algorithms suffer from sevefe
numerical instability[44] when ilmplemented using either fixed or floating point digi-
tal arithmetic[79-81]. They are highly sensitive to small numerical errors at each
iteration and will often diverge suddenly from the correct least squares solution. It is
the solution to this problem which is the basis for the work in the remainder of this

thesis.

2.2. The Least Squares Problem for Linear Transversal Adaptive

Filtering

The linear transversal filter operates by convolving a filter input sequence, x (k)

with a set of filter coefficients 4; (k), to produce an output y (k); given by :-

y(k)=HT (k)X (k) [2.1]

where

=23 -

x(k)

x(k-1)

x(k-2)

x(k-3)

AR R @ @)

> 00 ¢

x(k-N+3)

A |

x(k-N+2)

2 0 ®

x(k-N+1)

» y(K)

Figure 2.1 The linear transversal finite impulse response (FIR) filter

_24 -

{ ‘l
x(k)=l 1 I
(k=N +1))
and
[hotk) |
HO=| |
v (6 |

N is the length or order of the filter and the structure is shown in Figure 2.1.

In adaptive filtering, a desired response sequence d (k) is introduced and the objec-
tive of the adaptive filtering algorithm is to find the set of coefficients, H (k), which

produce an output y (k) which is as close as possibie to the desired response, d (k).

We therefore define the error at time k by

" E(k)=d (k)—y (k) [2.2]

In least squares filtering, the algorithm finds the coefficients H (k) which minimise a

cost function J o(k), which is of the form

Iok)= SF0) 2.3

As as first stage to obtaining the solution to this minimisation problem, the partial
derivatives of Jo(k) with respect to each of the filter coefficients hy, hy, h; ...

hy _jare evaluated

(&)
" .
aJ (k) B i |Li§0€ (l)}l
dh; - oh;

i=0 ah}
_ koo~ B'ev_(l_)
‘-202 (l) ak]

kK ar, . d (. . ‘
52 (,)5]77{Ld(z)—ﬂf(k))_((l)J}

=0

-25 .

IRV (w2 e (i i 1
"20 e(l)»ﬁj‘-{kd(l)_jgohj()x (i —J))}
- é0—22/(i wi-j) [2.4]

It is now possible to evaluate the gradient vector, VJy(k) which will enable the

optimum filter coefficients to be found.

i .
9T o(k) ah,
37 o(k)/ dh,

ifo(k)=

97 o(k) dhy
. tfz(l)18)5'8) |

< (i QN ¥e'li) JI

e f
2;0{% i)d(i) —X(Z)Xr(z)ﬂ(k)}
2%1&@) (i) }+22 {xo X7 (i) }am 2.5]

It is convenient to introduce the matrix

- 26 -

m@ﬁé}@ﬁﬁ)‘ [2.6]

and the vector

k -
L (k)=23d ()X (@) ' [2.7]
i=0
This enables [2.5] to be written as

. VJo(k)= —2r4 (k)+ 2r(k)H (k) (2.8]
and setting VJo(k)=Q to obtain the optimum solution H (k) gives

(™ (k) =4 (k) [2.9]

and therefore

H" (k)= 1 (k)ra (k) [2.10]

provided that r,,(k) is non-singular.

In principle, this result could be used to implement an adaptive algorithm, as it
enables the optimum coefficients to be calculated from the filter and desired
response inputs. It should be noted, however, that equation [2.10] requires a matrix
inversion to be performed on the N XN matrix r,,(k). If this inversion is to be per-
formed by a conventional matrix inversion method such as the Gauss - Jordan tech-
nique[82],‘ then the number of operations per iteration of the algorithm will be of
order N3. This is likely to yield an unacceptable computational burden if N is even

moderately large.

If certain assumptions are made, then the matrix r, (k) will become Toeplitz in
structure and the Levinson - Durbin algorithm[83, 84] may be used to find the solu-
tion frorh equation [2.9]. To obtain this structure, both the pre—windowed assump-
tion

x(i)=0, i<0 [2.11]

and the post-windowed assumption

x(i)=0, i>k-N+1 [2.12]

must be invoked. When the pre-windowed and post-windowed assumptions are used

‘together in this way, this is known as the autocorrelation form. When no assump-

-27 -

tions are made about values of the data, x(i) outside the range 0si=<k —N +1,
then this is known as the covariance form. If assumptions about the data windowing
cannot be made, then the Levinson - Durbin algorithm cannot be used. Other effi-

cient solutions to the problem have therefore been developed.

2.3. The Conventional Recursive Least Squares Algorithm

In developing this algorithm, the aim is to update the value of the matrix r;'(k —1)
which is assumed to be available, so as to obtain r;!'(k). In so doing, the need to
perform matrix inversion at every iteration of the algorithm is eliminated and the

computational complexity is reduced.

What is required is to update the values of H (k —1) and rg'(k —1) so as to include
the new data which becomes available at time £. This is done by writing
Fa(k) =Tk 1)+ X (k)XT (k) [2.13]

and

Lo (k)=ro (k =1)+d (k)X (k) - [2.14]
- Substituting for r,, (k) in [2.14] using [2.9] gives

It is then possible to use [2.13] to substitute for r,(k —1), vielding

) (6)= [ra6) =X (00X () JL (k-1 +d ()5 (6) [2.16]
If we define .. L
_, o eWEex) [
and [the a priori filter errorby .0 —
e(k)=d(k)—H" (k—1)X (k) [2.18]
then [2.16] may be rearranged as follows
H (k) =H (k =1)=r3! (k)X (k)XT Ce)H (k =1)+ 5! (k)d (k)X (k)
=H (k=1)—c (k)X (k)H (k —1)+c(k)d (k)
=H (k=1)+¢c(k)e (k) [2.19]

-28 -

To obtain the recursive update for rgl(k), it is necessary to make use of the Sher-

man Morrison matrix inversion lemma[85, 86]. For all A,B,C énd D of compatible

dimensions,
-1
{A+ BCD}“1=A‘1—A‘1B [c+ DA-'B) DA"! [2.20]
We note that
0= [rak-Drx@xTE |7 2-21)
so using identity [2.20] with A=r;'(k —=1), B=X(k), C =1 and D =XT(k), yields
the update
e3 () =rat(k —D)—r2(k —DX (k) 1+ X7 (e -DX (0))T [2.22]

X7 (k)rg!(k —1)

Thié result may now be used to substitute for r3'(k) in [2.17] to give
c(k)=ri (k)X (k)
=3 (k=) =3 (k DX (k) (14 X7 (e (kDX (k))

_ X7 (ke (k—1)X (k)
=ra (k=1)X (k)

(- ‘)
{1 (18 D)) W DK) |

1

=r Mk -1)X (k) {[1+Xr(k etk —-1)X (k))}— : [2.23]

This completes the derivation of the RLS algorithm, which consists of equations
[2.18], [2.22], [2.23] and [2.19]. It is normal to take initial values as r;}(0)=ol and

H (0)=Q, where o is a small positive number and I is the identity matrix.

2.4. Data Windows

The cost function Jy(k) defined in [2.3] is inappropriate for use in a time variant
environment, where the optimum solution H° (k) varies with time. As all errors

“are penalised equally, any algorithm which minimises Jq(k) will have a growing

=29 -

‘memory and, therefore, cannot track the time-varying solution as required.

To overcome this problem, it is common to introduce a ‘forgetting factor’, X which
is used to window the terms in the cost function exponentially, so as to give greater
importance to more recent error terms in the sum of squared error cost function.

The cost function is modified to become

Ji(k)= éﬂv-er(i) [2.24]

where X is slightly less than 1.

If this cost function is minimised with respéct to H(k) by differentiation, then a
solution of the same form as [2.10] is obtained, provided that the definition of r,, is

modified to be :-

eolk) = SNX (D)X (0) [2.25]
i=0
and r,. is defined as :-
()= N (X () [2.26]

It is then possible to 'proceed in the same way as in section 2.3 to derive the
exponentially windowed RLS adaptive algorithm. This algorithm is summarised in '

Table 2.1

A number of other windowing functions[77] have also been proposed, including the
sliding rectangular window. Using this windowing method, errors occurring more
than a certain time before the current sample are ignored completely. This may give
some improvement in highly non-stationary operation, but the resulting algorithms
are generally more computationally complicated than that which would be obtained

using an exponential window.

-30 -

e Initialisation v

H(0)=0, rJ(0)= %I, X (0)=0 where ¢ is a small positive number.
® At time k, do

e(k)=d (k)—XT (k)H (k -1)

(e ~D) e (k DX () D &7 (026 DX () |47)re)

-1 =
rxx (k) X

cle)=r3t(k ~DX (k) X7 ()rs kDX ()|

H(k)=H(k=1)+c(k)e (k)

Table 2.1: Conventional RLS algorithm with exponential windowing

2.5. Computational Complexity

One of the major limitations in the application of the RLS algorithm of Table 2.1 is
its computatioﬁal complexity. Making use of the symmetry of the matrix rg'(k), it
is possible to implement the algorithm with 2.5N2+4.5N édditions and multiplica-
tions per iteration. As the complexity of the algorithm is dependent upon the square
of the filter order, it will become unacceptably large for use with long adaptive

filters.

~ It is the high cdmputational complexity which has motivated the development of the
fast RLS algorithms, which brdvide a means of calculating the’r same least squares
solution as the conventional algofithm, but with a computational éomplexity which
is directly proportional to the filter length. This saving in computation is obtained
by exploiting the shifting properties with time of the data vector X (k), which results

in the matrix r(k) having a near to Toeplitz structure.

231 -

2.6.. The Fast Kalman Algorithm

The fast Kalman algorithm was presented by Ljung, Morf and Falconer in 1978[1].
The derivation begins by developing éome special cases of the least squares problem
of section 2.2 for forward and backward prediction. An Nth order linear forward
predictor may be defined by

& (k)=a (k)X (k-1) [2.27]

where a7 (k)=[a, - - - ay_] is a set of forward prediction coefficients.

That is to say that an estimate of the current value, x (k) is to be made using a
linear combination of N previous observations of a signal. Similarly, backwards

prediction may be defined by

2 (k=N)=b" (k)X (k) [2.28]

where b7 (k)=[by - - - by_1] is a set of backwards predictor coefficients.

The optimum predictor coefficients g (k) and b (k) may be chosen by least squares
methods. For forwards prediction, the appropriate sum of squared errors cost func-

tion is

7 (k)= z (x() a7 (0x (-1} [229]

and for the backwards coefficients

7 (/<)=é0 (x(i —N)=bT (k)X (i)}2 [2.30]

These correspond to two special cases of the least squares problem which has
already been solved in section 2.2. The forward prediction case corresponds to a

desired response of x (k) given an input vector X (k —1) for which the solution is

a(k)=r'(k =1)r{(k)

where

= éox(i)x(i ~1) [2.31]

-32.

Similarly, backwards prediction corresponds to a least squares adaptive filtering with
a desired response of x(k—N), using the input data vector X (k), for which the
solution may be written as

b(k)=r3(k)r2(k)

where

x(i =N)X (i) [2.32]

i=0

M~

b—
.=

It is possible to use the recursive methods of section 2.3 to update the predictors
a (k) and b (k). The following recursions are obtained
ef (k)=x(k)—aT (k-1)X (k-1) [2.33]

a(k)=a(k-1)+c(k—1)e/ (k) [2.34]

for forwards prediction and

e (k)=x (k=N)—bT (k —1)X (k) [2.35]
b(k)=b(k=1)+c(k)el (k) (2.36]

ef (k) and e® (k) are known as the a priori forward and backward prediction errors
respectively.
Note that the gain vector, ¢ (k), used to update g (k) in [2.34] and b (k) in [2.36] is
the same gain vector as that used in the recursion for H (k) in [2.19]. That is to say
that ¢ (k) is

c(b)=r3 (k)X (k) [2.37)

" for all the problems considered.

The values of the cost functions J/ (k) and J? (k) may be evaluated at their minima

to give
of (l;)imin(ff (k))
= 3 £%(0) ~a" ()2 6)

=rf (k) —aT (k)L (k) : [2.38]

where rf{ (k)= éxz(i)

-33.

and

ab (k)=min (J? (k))

= E:;ﬁ(i ~N)=b" (k)r2(k)

i=0

=r§(k)—o" (k)r(k) [2.39]

k
where r§ (k)= onz(i -N)

This completes the preliminary results relating to forwards and backwards predic-
tion. The method used to exploit these results in the main RLS algorithm is to con-

sider a system in which the order has been increased from N to N +1. All quantities

’

relating to this increased order system will be denoted by a ' symbol to discriminate

them from their N th order counterparts.

We define the N + 1th order data vector by

l[x (k)
X’(k)=l 1
|x(k—N) |

and we immediately note that the N + 1th order system data vector can be related to

[2.40]

the N th order data vector by -

= = | ana x6) | X&) | [2.41)
X'(k)=]—-~—=1an =|-—- ‘
X(k-1)] Le(k=n) |

It is these relationships which enable the use of definitions from the forward and

backward predictors developed earlier.

An equivalent to the rxx»matrix for the N + 1th order system may be defined by

) 4
ro (k)= X' (D)X (i) [2.42]
i=0
and we may use the relationships of [2.41] to relate this to the N th order system by
e [ox@)] [1
l'“’(k)—_- I - | x(l) XT(I ~1)
Zlga o r :

E

SROHORINIMFGRING

o [——— | [2.43]

SX(-1)x(i) | ro(k—1)
i=0

and using the definitions from the work on forward predictors, this is

vt) | o7k |
rxxl (k) =l--—"" l ________ I [244]
, (££(6) | (k1) |

In exactly the same way, using the second part of [2.41] and the backward predictor

definitions,
508 | 226 |
rxx’(k)': ———————— . | ________ I [245]
|22 7(6) | 8 (k) |

The matrix r,,'(k) may now be inverted, using the Sherman Morrison matrix

identity[85-87] and the inversion rule for partitioned matrixes[88, 89], giving

_1 | —a’(k W
of (k) of (k)
rxx,(k)= _______ I ————————
—a(k “i(p —1)4 alkdaT (k)
o (k) | rRk -1+ o ()
S+ b(k)bT (k) | —b(k)
) (lb (k) a” (k)
il B | - [2.46]
—Q_T_.(_k_) | 1 :
ab (k) a’ (k)

Having derived expressions for the increased order matrix r,,(k), we may now cal-

culate the increased order gain vector ¢ (k) defined by.

(k) (k) =X '(k) [2.47)

Using the forward form of [2.41] and [2.46], along with definition [2.47], the fol-

lowing result is obtained

=l 0 1, g® [1 1 |
¢ lee-1) " o7 ey L-ah)] (2.48]
where ¢ (k)=x(k)—a” (k)X (k—1). €/ (k) is known as the a posteriori forward

prediction error.

=35 .

Similarly, using the backward form of [2.41] and [2.46] along with definition [2.47];

vy le(k)], €(k) [-b(k)]
c'(k)= 4 1T L]

[2.49]

where €? (k)=x(k =N)—bT (k)X (k) is the a posteriori backwards prediction error.

Next, the extended gain vector, ¢'(k) is considered to be partitioned as

, [dk) 1]
c(k)=|-—~=- |
| 3k) |
It is clear from {2.49] that
- €k
2= S)

and

d(k)=c(k)—d(k)k (k)
Substituting from [2.36] into [2.52],

d(6)=c(k)-5(K) [(k =)+ (R)e (k) |
=c(k) {1—8(k)e”(k)]—8(k)b (k—1)
This readily yields the important fast update for the gain vector, given by

d(k)+3(k)b(k—-1)
[1—6(k)eb (k)}

c(k)=

To summarise, the calculation of the new gain vector is as follows.

[2.50]

[2.51]

[2.52]

[2.53]

[2.54]

(1) The extended gain vector, ¢'(k) may be computed from the previous N th

order gain vector ¢ (k —1) using [2.48].

(2) The values of d (k) and 8(k) may be extracted from ¢'(k) by partitioning

as in {2.50].

(3) Using [2.54], a fast update of the gain vector may now be performed

-36 -

All that remains to complete the algorlthm is to derive a recursion for o/ (k), which
is required to perform step (1) above. From def1n1t10n [2.31], it is clear that (k)
can be generated recursively, using

K)=k)+ X (k ~1)x (k) s
By definition, ' ‘

of (k)=rf(k)—a” (k)cl(k)

=k —1)+22(6) - [aT (k=1 + e/ (0T (k=) [k)
Using the relationship rf(k)=rf{(k =1)+X (k —1)x (k), this rﬁay be rewritten

of (k) =r§ (k —1)+x2(k)—a (k =1) [L,f(k 1)+ X (k—1)x (k) } —e/ (k)
o7 (k=1)rl(k)
Using rf(k)=r(k —1)a (k) and of (k —1)=rf (k =1)—a” (k 1)z (k 1)

of (k)=of (k=1)+x*(k)—a” (k —1)X (k —1)x (k) —e/ (k)cT (k —1)

'rxx(k —1)‘—1 (k)

= of (k =1)+x2(k)—a” (k =1)X (k —1)x (k) —e/ (k)XT (k —1)a (k)

=aof (k—1)+x%(k)—a” (k =1)X (k —1)x (k)
~ [0 —am k=X (k=) X7 (ke -Da (k)

=af (k=1)+x*(k)—aT (k—1)X (k —1)x (k) —x (k)X (k -fl)g (k)

+aT(k —1)X (k—D)XT(k-Da(k)
—of (k=1)+ (X(k) —aT (k-1)X (k - 1)‘ (X(k)—XT(k -1)a (k)J

=of (k—1)+e/ (k)& (k) [2.56]

This completes the derivation of the fast Kalman algorithm. The complete algorithm

is listed in Table 2.2.

.37 -

o Initialisation
H(0)=0, X(0)=0
a(0)=0, h(0)=0

of (0)=0, a small positive number

® At time &, do
e/ (k)=x(k)—a™ (k—1)X (k1)

a(k)=a(k—1)+c(k —1)e/ (k)
e (k)=x(k)—a” (k)X (k-1)

of (k)=\af (k =1)+€ (k)el (k)

| € (k |

cw=) T |

I_Q(k —1)—a (k)= f(k) J|
Partition ¢ '(k) as I‘—fi—(—)-}
| 8(k) |

eb (k)=x(k—N)—-b" (k—1)X (k)

_ b(k=1)+d(k)e’ (k)
b k) 1-5(k e’ (k)

c(k)=d(k)+38(k)b(k)

This completes the fast u;ﬁdate of the gain vector. H (k) is
updated in the same way as the conventional least squares algorithm.

e(k)=d(k)—HT (k=1)X (k)

H(k)=H((k-1)+e(k)c(k)

Table 2.2 : The fast Kalman algorithm

-138 -

2.7. The Fast A Posteriori Error Sequential Technique -

The fast a posteriori error sequential technique (FAEST) is derived in a similar
way to the fast Kalman algorithm presented above. It was proposed by Carayannis,
Manolakis and Kalouptsidis in 1983[2] and is computationally more efficient than

the fast Kalman algorithm.

Inspection of Table 2.2 reveals that the fast Kalman algorithm is more dependent
upon the a priori error formulation than the a posteriori error formulation, requir-
ing the calculation of both forward and backward a priori errors, but only using the
forward a posteriori error, the a priori forward prediction error only being required
to update the predictor coefficients g (k) to enable the a posteriori error to be calcu-
lated. The FAEST algorithm, however, is mainly a posteriori error based and it
also manages to exploit the relationships which exist between a priori errors and a

posteriori errors. An alternative gain vector defined by

, c(k)
k)= LM 2.57
clk)=—= D) [2.57]
is used. A recursive scheme for updating ¢ (k) can be developed using an extended

gain vector ¢'(k) in exactly the same way as was done for the fast Kalman algo-

rithm in section 2.6.

The algorithm is presented in Table 2.3.

.39

@ Initialisation

H(0)=0, X(0)=0
a(0)=0, £(0)=0
a®(0)=o, a small positive number

of (0)=a ¥

® At time &, do |
el (k)=x(k)—a” (k—1)X (k1)
e (k)= _eigiL

a(k—1)
a(k)=ag(k—1)+c(k—-1)e (k)

of (k)=\af (k=1)+¢ (k)e/ (k)

el 0 1o 1]
EO= k-1 | "Rt () la o))
L [d(k)]
Partition ¢'(k) as |————|

| 8(k)]
e’ (k)=—8(k)o" (k1)

c(k)=d(k)—3(k)b(k—1)

) =k —1)+ —LK)__,
@/ (k)=alk =)+ Lokl (k)

alk)=a'(k)+38(k)e’ (k)

-5

ab(k)=a’ (k—1)+eb (k)eb (k)
b(k)=b(k=1)+Z(k)e’ (k)

This completes the fast update of the gain vector. H (k) is
updated, using the alternative gain vector, (k) as
follows

e(k)=d(k)-d"(k-1)X (k)

H(k)=H(k-1)+e(k)i(k)

Table 2.3 : The FAEST Algorithm

- 40 -

2.8.. The Fast Transversal Filters Algorithm

The fast transversal filters algorithm was first presented by Cioffi and Kailath in
1984(3]. The most significant feature of this algorithm as compared with the

FAEST algorithm is the availability of a fast exact initialisation procedure.

Solving the least squares problem corresponds to solving the set of N linear simul-
taneous equations described by relationship [2.9]. Unfortunately at time & <N, the
solution to [2.9] is underdetermined, as there are N equations to be solved, but less
than N data points available. This situation corresponds to the matrix r,(k) being
singular. It is for this reason that the conventional least squares algorithm has an
initialisation procedure which involves setting r;}(0)=c1I and the fast Kalman and
FAEST algorithms set o/ (0)=0, where o is a small positivé number. These initiali-
sations ensure that the matrix r,, (k) has an inverse for k <N, but they also result in

a small transient in the solution produced by the algorithm just after it is started.

The FTF algorithm overcomes this as it is simultaneously time and order recursive
for time k.<N. This means that at time k=1, a first order filter is generated and
this is updated at time & =2 to produce a second order filter and so on until the full
N th order filter is determined. In this way, the number of simultaneous equations
which are being solved by the algorithm never exceeds the number of data points
available to it and the solution is always uniquely determined, avoiding the need for

inexact initialisation.

The exact initialisation procedure for the FTF algorithm is listed in Table 2.4 and
the steady state algorithm is listed in Table 2.5. A rescue procedure for restarting

the FTF algorithm is given in Table 2.6

- 41 -

k=0: a,(0)=5,(0)=1, £,(0)=0(zero dimension)
where the subscript assoc1ated with a vector indicates its dlmensmnahty

H:(0)= S75E ¥(0)=1, o/ (0= (0

A simultaneous time and order recursive process is now started
1=k=N:

o (k)=a, (k1) [x(k),...,xu)}

OE [ak(k ~1), ——((%l

e(k)=e/ (k)y(k-1)
af (k)= (k-1)

af (k)=of (k)+e/ (k)e/ (k)

k) =y(k —1) 2D

N0
G0)= [0 &nt-D) | - Fa k1)

by (k)= rf.c(on(km(k)" 1]| (Only when k=N)
() i

a® (k)=x(0)*y(k) (Only when k=N)
e(k)=d(k)—H, (k =1)X{(k)

e(k)=e (k)vi (k)

. _| —e (k) |
if k<N, Hk«'»l(k)_ {Hk(k —1) _x(O)_JI

if k=N, H, .1(k)=H,(k —1)+e(k)c(k)

Table 2.4:The fast exact initialisation procedure for the FTF algorithm

During the time and order recursive initialisation procedure, subscripts are used to

indicate the order of each of the vectors a (k), b(k) , (k) and H (k). After initiali-

sation, a (k) and b (k) will be of dimension N +1. ¢(k) and H (k) will be of order

N . After initialisation, the algorithm is time recursive only and the order subscripts

notation will be dropped to simplify the algorithm and facilitate comparision with

the other fast RLS algorithms.

-42 -

el (k)=a(k=1)X "7 (k)
e (k)=e/ (k)y(k—1)

of (k)=Naf (k -1)+e/ (k)e (k)

v (k)= 22 E =D

of (k)

&(k)= [o £(k—1)]T ~Ler()or -natk-)

Partition ¢ (k) as [d
é _—
56 |

a(t)=ak-0+& ®) o -

e (k)= —ha’ (k =1)3(k)

¥0)= [1+er (v 08 | v (6)
rescue variable = |1+¢% (€)y'(£)3(k)

e’ (k)=e’(k)y(k)

ab (k)=Na’ (k —1)+e‘;(k)e" (k)
HO) 0]T=g"(k)—8(k)b(k 1)

Q(k)=b_(k—1)+e"(k)[§'(k) o}T

e(k)=d(k)—H (k-1)X (k)
e(k)=e(k)y(k)

H (k)=H (k —1)+e(k)Z (k)

Table 2.5:The steady state FTF algorithm.

+ Rescue using reinitialisation procedure of Table 2.6 if rescue variable is negative

.43 -

a(~1)= [1,0,...,o}r
b(~1)= [o,...,o,1}r
£(=1)= [o,...,o]f
of (~1)=A"p
a’(-1)=p
y(-1)=1

H (_1)=Him‘r

Table 2.6:The reinitialisation procedure for the FTF algorithm. p is a soft con-
straint which determines the influence of the initial solution, H,,, on future solu-

tions.

2.9. Comparison of the Least Squares Algorithms

it is of interest to compare the resource requirements of the various algorithms that
have been presented so far. The algorithms will be compared by considering the
number of additions/subtractions, the number of multiplications and the number of
divisions required };er iteration. Often, only the number of multiplications pef
iteration is considered, making the assumption that in an implementation multiplica-
tion is considerably more complicated to perform than addition or subtraction: On
most digital signal processors (DSPs)[90-96], however, multiplication can be per-
formed in a single instruction cycle and is not therefore any more time consuming
to perform than addition or subtraction. Division, on the other hand often has to be
implemented using the binar‘y equi\‘/alent of a long division prbcess and can there-
fore contribute heavily to the computational load of an algorithm. In deriving Table

2.7, it has been assumed that changing the sign of a number involves a subtraction

- 44 -

operation.

Also of importance in determining the resources required to implement any algo-
rithm on a digital processor are the number of storage cells used by it. A storage
cell is the amount of memory required to store a single quantity used by the algo-
rithm. In the case of a fixed point implementation, it is likely to be a single word of
" memory, but in the case of a floating point implementation, a number of words of
memory are likely to be used to store each variable. It should be noted that in the
calculation of the number of storage cells required, it has been assumed that vari-
ables which are no longer needed by the algorithm may be overwritten, so that the

same memory location may store several different intermediate results during the

updating of the algori'thm‘

Algorithm * / + - Storage Cells
RLS 25N2HASN 1 LSN2425N LN2+3N
Fast Kalman 10N +3 2 9N +6 - SN +5
FAEST 7N +10 4 7N +8 5N.+ 5
FTF(steady state) 7N +14 3 "IN +7 6N +11

Table 2.7 : A comparision of recursive least squares algorithms

2.10. Numerical Instability

Unfortunately, all of the fast RLS algorithms are numerically unstable[44,97] when '
implemented using either a fixed or floating point[79-81] digital processor. This
means that sﬁall numerical errors which occur due to the finite precision of the
 arithmetic at each iteration of the algorithm accumulate until the algorithm diverges
and produces a solution which is completely invalid in a least squares sense. It is for

this reason that few practical adaptive filtering systems have made use of the fast

.45 -

algorithms.

The cause of the problem may be illustrated as follows[44]. Essentially, all of the

fast RLS algorithms have a core involving the following recursions:

o] T]

(k) 1= a(k—1)
() | 7O [0°e (e -1 | 12:58)
o 1]

b(6) |_og) kD

2y 01| q’(")[e'(m] 125

The various fast algorithms are associated with slightly aifferent 2 X 2 transforma-
tion matrices ©(k) and ®(k), which apply different time varying scalings to the
filters a(k), b(k) and ¢(k). The properties of the transformation and hence the
numerical properties of the algorithm may be determined by an eigenvalue and
eigenvector analysis of the matrices. In particular, eigenvalues with a magnitude of
greater than unity indicate numerical instability, as they indicate that small errors

are magnified by the transformation.

Considering the FTF algorithm, the matrix ®(k) is given by

[1
(B(k)—!1 /) 2.60
B |___‘ﬂL_ 1] [2.60]
| Aof(k-1)]
which has the eigenvalues
qo(k)=1%] 5{%2%)— | [2.61]
and ®(k) is given by
[b (k)] :
O (k)= IL_S(") “ iJ] [2.62)
yielding the eigenvalues
go(k)=1%jVeb(k)d(k) [2.63]

It should be noted from [2.61] and [2.63] that both transformations always have

eigenvalues which are greater in magnitude than unity. Performing an infinite

- 46 -

sequence of these transformations is therefore an unstable process.

2.10.1. Normalised Algorithms

Normalised versions of the FTF algorithm have been developed[77,78] which have

.. T T T T « o e Tpd e N « . . - PR o T S ‘
limproved numerical precision in finite precision implementations. By transforming -

the variables in the algorithm, it is possible to reduce the dynamic range of the

quantities which are to be stored and so they may be represented more accurately.

The disadvantage of the.normalised algorithms is their increased computational
requirements. The normalised form requires O(11N) multiplications per iteration,
as compared with O (7N) for the unnormalised form. Furthermore, normalisation
requires a nurpber of square root operations to be performed at each iteration. The
practical difficulties in implementing a fast square root operation may make the use

of the normalised versions impractical.

It should also be noted that the normalised algorithms still have numerical instability
problems, although they will take a larger number of iterations to diverge than the
unnormalised forms. Following the eigenvalue analysis of section 2.10, it can be
shown.that the O(k) matrix defined in equation [2.58] has eigenvalues of = 1 and
so propagates numerical errors in a stable manner. The matrix ®(k), defined in
[2.5], however, has eigenvalues greater in magnitudé than unity and so the associ-
ated 2 X 2 transformadtion causes numerical errors fo be magnified, leading to even-

tual instability and divergence.

- 47 -

2.10.2. Lattice Algorithms

As well as the fast RLS algorithms for transversal filtering which have been dis-
cussed in this chapter, there are also a number of fast least squares algorithms[98-
101] using the lattice filter structure[14]. The main difference between the lattice
algorithms' and the transversal algorithms is that whilst the transversal algorithms are
time recursive, the latt_ice algorithms are time and order recursive. At each time
iteration, k, a recursive process is started, which calculates an m +1th order least
squares solution from the current m-th order solution, until the desired Nth order

solution is obtained.

It can be shown that for these algorithms, the transformation required to perform
time updating is an orthogonal rotation, which is well known to be numerically
stable. The order update transformation is a hyperbolic rotation, which is numeri-
cally unstable, having at least one eigenvalue which is greater than unity. For.-
tunately, this unstable transformation is only performed in a finite sequence, until
the N th order solution is obtained. For this reason the lattice forms of the fast RLS
algorithms can be made to be numerically stable, unless the filter order N is very

large.

Unfortunately, the computational complexity of the lattice algorithms is at least
" double that of their transversal filter counterparts. Moreover, in certain applications
such as adaptive channel identification, it is the transversal filter coefficients which

- are of interest. Methods do exist to convert lattice coefficients to yield an equivalent
transversal filter[S], but the conversion requires —;——[(N -1(N —2)] multiplications

and subtractions to convert an N th order filter. This complexity is dependeﬁt upon
the square‘ of the filter length and so the main advantage of using a fast algorithm is
lost. For these reasons, there are several applications in which the use of a fast RLS

]

transversal filter algorithm would be highly desirable.

- 48 -

Fast RLS algorithms can also be implemented using QR decomposition
techniques[102-104]. These methods use a transformation known as the Givens
rotation[105], which has good error propagation properties. These implementations
of the fast RLS algorithms are of interest, as the structure which is obtained is a sys-
tolic array, which is suitable for implementation using a parallel processing system,

or a dedicated VLSI architecture.

2.10.3. Stabilisation by Regular Reinitialisation

One way of using the fast RLS transversal algorithms is to reinitialise them before
divergence occurs. The reinitialisation may be performed either periodically in
time[97], or when the internal variables of the algorithm suggest that divergence is

beginning to occur{3, 106, 107].

In either case, the prewindowed assumption that all data is zero before the algo-
rithm starts will clearly not be valid immediately after reinitialisation and hence the

post-windowed or covariance forms of the algorithms must be used.

It would be undesirable for the algorithm to have to reconverge after reinitialisation.
Fortunately, it is possible to circumvent this by means of a ‘soft-constrained’ initial
solution. This corresponds to modifying the algorithm to minimise the modified

least squares cost function

Iy(k)= éﬂxk-"ez(i)+ WA || (k) ~H | [2 [2.64]

The first term of this cost function is the usual sum of errors squared term. The
second term limits the difference between the current solution A (k) and some ini-
tial solution denoted by H,,. The factor w controls the balance between the two
terms and determines how strongly the initial solution will influence the minimisa-

tion. As k-, the first term will dominate the cost function and so the effects of the

.49 -

initial solution die out as k£ becomes large.

The principle advantage in using reinitialisation methods to stabilise fast RLS algo-
rithms is that they can be implemented with little or no additional computational

burden, as compared with the unstable forms of the algorithm.

There are two disadvantages in using the reinitialisation methods. Firstly, the track-
ing performance of the algorithm in a non-stationary environment could be signifi-
cantly impaired if w in [2.64] is chosen to be large, due to the constraining effect of
the initial solution H,,. Secondly, there is a difficulty in determining how fre-
quently the algorithm must be reinitialised so as to guarantee that divergence will
never occur, or alternatively to provide a sufficient method of monitoring the inter-

nal variables which will always indicate the imminent divergence of the algorithm.

2. 1(?_.4. Error Feedback

One promising development in improving the stability of the FTF algorithm has
been the use of error feedbéck techniques.[108-110]. Whilst the absolute stability of
these techniques is still not guaranteed, a very worthwhile improvement in stability
is obtained, as compared with the unstabilised algorithm. The penalty is that the
computational complexity of the algorithm is somewhat increased by the improve-
ments - for the algorithm of[110] it is increased from 7N multiplications per itera-
tion for the unstable unnormalised algorithm to 10N for its stabilised counterpart
and from 10N for the unstable normalised algorithm to 11N for its stabilised coun-

terpart.

These techniques rely on the ability to compute certain variables in the algorithm in
two different ways. The difference between the two variables should be representa-
tive of the amount of numerical error which has accumulated. By modifying the

least squares cost function to have a joint objective of minimising both the filter

- -50-

error and also the numerical error, a numerical error feedback path is introduced.
The effect of this should be that the fast least squares algorithm seeks not only to
solve the adaptive filtering problem, but that it also attempts to cancel the effects of

its own finite precision errors.

The stabilised algorithms will produce a solution which is slightly sub-optimal in a
least squares sense, due to the combined cost function which involves not only filter
error but also nurﬁerical error. Moreover the proof of absolute stability for these
techniques is almost impossible. These -methods have been shown in simula-
~ tion[110], however, to give éood performance with a solution which does not differ
significantly from that obtained using the conventional RLS algorithm over of the

order of % million iterations.

2.11. Conclusions

This chaptef has introduced p least squares adaptive filtering. Various algorithms
for performing the least squares updating of the filter coefficients have been
presented, éucl1 as the conventional recursive least squares (RLS) algorithm' and the
highly computationally efficient fast algorithms - the fast Kalman algorithm, the

FAEST algorithm and the FTF algorithm.

The major problem associated with the transversal forms of the more efficient algo-
rithms is their numerical instability problems. Small truncation errors which occur at
each iteration of the algorithm due to the finite precision of the arithmetic used to

implement it accumulate, until eventually the algorithm must diverge.

Various ways of improving the stability of the algorithm have been considered. Nor-
malisation reduces the dynamic range of the quantities which have to be stored,
improving somewhat the numerical properties of the algorithm. Rescue procedures

are available which may be used either periodically in time, or when some

-5] -

divergence detector indicates that the algorithm has accumulated too much numeri-
cal error. Error feedback has also been considered as a means of stabilising the

FTF algorithm.

In the next chapter, a new methodl of stabilising the fast RLS algorithms will be
considered. It will use a rescue procedure, reinitialising the algorithm before diver-
gence occurs. To detect that divergence is about to occur, a scheme of arithmetic
known as interval arithmetic is used. The algorithm is modified, so that it not only
calculates the least squares solution to an adaptive filtering problem, but it also cal-
culates upper and lower bounds to that solution, taking into account the numerical
errors which may have occurred. If the difference between the upper and lower
bounds is excessii/e, the reinitialisation procedure is performed, preventing diver-

gence.

-52 -

3 Interval Arithmetic

3.1. Introduction

In this chapter, a new solution to the stability problems associated with the fast RLS
algorithms will be introduced. By using a scheme of arithmetic known as interval
arithmetic[111], an error analysis is effectively performed in parallel with the com-
putations of the algorithm[112-114]. The result of this error analysis is a measure of
the confidence which may be placed upon the performance of the algorithm. If the
error analysis indicates that divergence is about to occur, then the algorithm may be

rescued, using the reinitialisation procedures discussed in the previous chapter.

This chapter will begin by defining the interval number system and will then discuss
how interval numbers may be combined to yield results which are also interval
numbers. The arithmetic operations { +, —, X and + } will be defined for interval
numbers and then, the more complicated operations such as the scala'r product of

two vectors of interval numbers will be discussed.

Having defined the various operations which are required to pérform one iteration
of a fast RLS algorithm, the exact way in which interval arithmetic is applied to
these adaptive algorithms will then be described. A number of design parameters
are ir‘ltroduced into the rescue procedure by the use of interval arithmetic and the
chapter will conclude with a discussion on how these parameters may best be

chosen.

-53 .

3.2. Interval Numbers

An interval number is a range of real numbers. The range is bounded by a lower
endpoint and an upper endpoint. The interval number is the set of all real numbers

which lie between the lower and upper bounds.

The notation used to represent an interval is defined as

[a',a*]={x:a'=x=a* x€R } [3.1]
Hence the interval number [a‘,a*] consists of the set of all real numbers which lie

between lower bound a' and upper bound a*.

Two further definitions will be useful in the application of interval numbers to the

fast RLS adaptive algorithms. The width of an interval number is defined by

width |{[a‘,a“ H=ﬁ“ —al : [3.2]
_ : {) :
and the centre of the interval [a’,a*] as:
{ |']) al +a¥
centre | {a',a* | |= —=— [3.3]
kL |) 2

A single real value can be represented by a degenerate interval. Therefore, the sin-

gle real number s is represented by the interval number [,].

3.3. Scalar Interval Arithmetic

The operation ® where ® is one of { +, —, X or + } is defined for interval numbers

by

()
[a,bldc,d]= {Lx-y a<x<b,c<y=d,x€R,y ERJ} - [3.4]

except if ® is the division operation and ¢ =0 and 4 =0, which is undefined.

.54 -

)

Hence the result of the operation ® on two interval numbers is the range which is

obtained when both the intervals being combined take their entire range of values.

An equivalent set of definitions is

[a',a*]+[b! b]=[a' +b',a* +b*] ' [3.5]
[a*,a*]-[b" b]=[a’' —=b* ,a* —b'] [3.6]
[a',a*]x[b",b*]=[min(a’b’ ,a'b* ,a"b',a*b"), [3.7]

max(a'b’,a'b* ,a* b’ ,a*b*)]
[a},a*]+[b!,b"])=[min(a’ +b' ,a* +b',a' +b" ,a* +b*),

max(a'+b',a* +b!,al +b* a* +b*)] [3.8]

3.4. Scalar Interval Arithmetic with a Finite Precision Processor

There are several practical considerations when implementing functions to perform
the operations defined in equations [3.5] - [3.8] on a finite precision processor[115-
117]. The motivation for using interval arithmetic rather than single valued real
number arithmetic with the fast RLS algorithms is so that the effects of finite preci-
sion numerical errors may be considered. Equations [3.5] - [3.8] assume that there
are operators { +, —, X and =+ } which produce an exact result. However, so that
the intervzﬂ arithmetic includes the effects of numerical error, it will be assumed
that there are operators { + |, =, X, Ed =t X and + 1t} where the symbol

®! is taken to mean the next machine representable number below the infinite preci-

‘sion result of the operation ® and the symbol @t is taken to mean the next machine

representable number above the infinite precision result of the operation ®. This is

illustrated on the number lines in Figure 3.1 for fixed and floating point arithmetic.

Using these symbols, the finite precision implementation of the scalar interval arith-

metic operations may be defined by

- 55 -

a—Calculated Result
‘/x-kounding Required
<«———— Actual Result

3.1a Fixed Point Rounding

«——Calculated Result
/’/& Rounding Required
«——————— Actual Result

3.1b Floating Point Rounding

Figure 3.1 Fixed and floating point arithmetic number lines showing the effects of the rounding operétions t and 4
" required for interval arithmetic.

- 56 -

[a',a*]+[b' b*]=[a' +1b'a" +1b¥] [3.9]

[a',a*]-[b" b*]=[a’' =1 b*,a* —tb'] [3.10]

[a',a*]x[b' ,b*]=[min(a’ xtb',a’ X1 b*,a* X1 b',a XL b*), [3.11]
max(a’ Xt b',a' xXtb*,a* Xtbla* Xtb*)]

[a!,a*] +[b',b*]=[min(a’ +tb',a* =t b',a’ +1b*,a* +1b"),

max(a' +tb',a* +tb',al +1tb*,a* +1b*)] [3.12]

The reason for modifying the definitions of the interval operations is to ensure that
the range calculated using finite precision arithmetic covers all of the infinite preci-
sion range. The endpoints are slightly wider apart for the finite precision range than
for the infinite precision range. This represents the additional uncertainty in the

result produced by the finite precision effects of that calculation.

It should be noted that for fixed point addition and subtraction, the result of com-
bining two machine representable numbers is, in general, another machine
representable number, assuming that overflow does not‘voccur and so the operations
+1t and +! are both equivalent to the operation + and similarly —t and —! are

equivalent to —.

The definitions of equations [3.9] - [3.12] could be used to implement a set of func-
tions to perform interval arithmetic on a finite precision processor, but there are
more efficient ways of performing multiplication and division .than that suggested by
[3.11] and [3.12]. By examining the signs of the endpoints a’, a*, b* and b*, it is
usually possible to predict which of the four products a‘xb!, a*Xb', a'Xb* or
a* X b* will be the greatest and which will be the smallest. In the case of division, it
is always possible to pfedict which of the four results a‘'+b', a*+b', a' +b* or
a*+b* will be the largest and which will be the smallest from a knowledge of the
signs of the endpoints. This means that usually only two real multiplications are
required to be performed to implement interval mﬁltiplication and that interval divi-

sion may be implemented with two real division operations. The functions required

-57-

to perform finite precision scalar interval arithmetic are summarised in Table 3.2.

RANGE_ADD(a,b,c,d)
/*A procedure to calculate the result [e,f]=[a,b] + [c,d] */

e=a+tc;
f=b+d;

End of procedure.

.

RANGE_SUBTRACT(a,b,c,d)

/*A procedure to calculate the result [e,f]=[a,b] - [c,d] */

e=a-d; .
1 f=b-c;

End of procedure.

RANGE DIVIDE(a,b,c,d)
/* A procedure to calculate the result [e,f]=[a,b] / [c,d] */

if (¢=0 and d=0) {
print "Division by zero error”
exit :
}
if (c<0) {
if (b>0) e=b/d; else e=b/c;
if (a>=0) f=a/c; else f=a/d;

else { .
if (a<0) e=a/c; else e=a/d;
if (b>0) f="b/c; else f=b/c;
} .

End of procedure.

-58 -

RANGE_MULTIPLY(a,b,c,d)

/* Procedure to calculate the result [e,f]=[a,b] *{c,d] */
if (a<0 && c>=0) { '
temp=a; a=c; c=temp; temp=>b; b=d; d=temp;

}
if (a>=0) {
if (¢>=0) {
e=a*c;
f=b*d;
}
else {
e=b*c;
if (d>=0) f=b*d; else f=a*d;

else {
if (6>0) {
if (d>0){
e=min(a*d,b*c);
f=max(a*c,b*d);
) >
else {
e=b*c;
f=a*c;
}
}
else {
f=a*c;

if (d<=0) e=b*d; else e=a*d;

}

End of procedure.

Table 3.2 Procedures for performing scalar interval arithmetic.

-59 .

3.5. Vector Interval Arithmetic

As all of the fast RLS algorithms require vector operations, it is necessary to extend

the definitions for interval arithmetic to include vectors. An N dimensional interval

vector is written in the form

-

[a1,ai]
[a3,a5]

Ay =

[ax,an]

[3.13]

Vector addition and subtraction may be easily defined using the existing definitions

for scalar interval addition and subtraction. For addition,

Ayt+By=

|
+

lax,ax] [bx ,b4]

-

[a1 +b1.af +b1]
[a; +b% a5 +b%]

[ay + by ,ay + by]

and similarly for subtraction which is defined by

,a (b1,b1]
b5]
A‘V —BN = M —
lal,ap]| | [bh.by

[all fblll;alll _bll]
[aIZ —b;,a; _bIZ]

lay —by af —by]

- 60 -

[3.14]

[3.15]

It is also necessary to define the scalar product of two interval vectors. This is

defined by

Ay By= : . : [3.16]

lay,af] | |[bn.bA]

N
=3 {min(ai‘bi‘,a,.“b,-‘,a,-‘b,-“,a,-“b,"‘),max(ai‘bi‘,ai"bi’,a,.‘bi“,a,“‘b,-“) }
=1

i

3.6. Application of Interval Arithmetic to the Fast RLS Algorithms

Having defined all of the operations required to perform an iteration of the algo-
rithm using interval arithmetic, it is possible to replace all of the single real valued

variables in the algorithm with interval numbers.

If this is done, then the solution which is calculated by the algorithm will also
become an interval. The differénce between the endpoints of this interval, or width
as defined. in equation [3.2], repfesents the extent to which the solution has been
corrupted by numerical erroré. If this difference exceeds some preset limit, then the
algorithm must be reinitialised using a rescue procedure such as the one in Table

2.6, so as to prevent divergence.

It is also necessary to reinitialise the algorithm if a division is attempted of the form
[a!,a*]+[b!,b*] where b' =<0 and b* =0, as division by an interval of this form can-
not be defined, since zero is a member of the range by which division is being

attempted.

Real valued inputs to the adaptive filter are represented by degenerate intervals of
the form [¢,§], which is equivalent to the single real value, . Real valued outputs

may be obtained by using the centre of the interval output, as defined in equation

- 61 -

[3.3]. Alternatively, either the upper or lower endpoint may be used, assuming that

the difference between them is small.

To summarise, the non-interval version of a fast RLS algorithm is converted to its

interval counterpart as follows

® All scalar quantities in the algorithm are converted to interval scalar

numbers, as described in section 3.2

® All scalar operations are performed using the interval operations in Table
3.2, noting the rounding directions for the upper and lower endpoints dis-

cussed in section 3.4

® All vector quantities are similarly replaced by interval vectors and all vector

operations by their interval counterparts, as described in section 3.5

® The solution calculated by the algorithm now becomes an interval, with the
difference between the upper and lower endpoints representing the extent to
~ which the solution has been corrupted by finite precision errors. Specifically, if
the width of any of the filter coefficients exceeds some predefined limit which
will be denoted by p, then the algorithm should be rescued. To do this, a
reinitialisation is performed using the techniques described in section 2.10.3.

The initial solution, H,,, is obtained by taking

centre [h{ ,hf)
centre [hY ,hY]
H,. = IR [3.17]

Linit —

centre [h,{, —1,h8 1]

and weighting the initial solution with a soft-constraint factor u. The

choice of p and p is discussed in section 3.7

-62 -

® Real valued inputs to the filter and desired response inputs are represented

by degenerate intervals.

® Real valued outputs are either obtained by taking the centre of the interval

output, or the upper or lower endpoint of the interval output.

3.7. Choice of Design Parameters for the Interval Fast RLS Algo-
rithm

There are three design parameters associated with the interval versions of the fast
RLS algorithm. The first is the forgetting factor, denoted by A, which is introduced
by the exponential weighting of the input data. This parameter is common to all
exponentially windowed least squares adaptive filtering algorithms and it is well

known that the choice of A controls the effective length of the data window. The

The time constant is approximatel 1 where \ is just less than 1. This factor con-

trols the tracking performance of the algorithm in non-stationary environments and

* it will not be discussed further.

The second parameter, p is the threshold for reinitialising the algorithm. If the
difference between the upper and lower endpoints of any of the filter coefficients
exceeds p, then the algorithm will be reinitialised. Af§uifatl)T5;1value for p may be
chosen if the performance level for the adaptive filter is known. p is chosen such

that the noise introduced onto the output by arithmetic errors is insignificant com-

-..mared with the noise from other sources. Assuming a uniform distribution, the noise

i

. - N p?
introduced to the coefficients by arithmetic errors will have a variance _f%_ !

. .2' N -
where N is the length of the adaptive filter. Hence if '1!1%_ is chosen to be equal to

the mean square value of the filter error after convergence, which will be

represented by {2, then acceptable performance is usually obtained.

- 63 -

The third design parameter, p.,-, is introduced by the rescue procedure. It controls
the influence of the initial solution H,,, after the algorithm is reinitialised. If it is
chosen to be too small, the algorithm will have to reconverge after reinitialisation,
resulting in poor performance immediately after each rescue. Too large a value of
will result in the solution H,,, being weighted with too much importance. As Hi
may be incorrect due to numerical errors, this is undesirable. Moreover, too large a
value of p will impair the tracking performance of the algorithm in a non-stationary
gnvironment. A relationship between the values of p,\,N and thé@iéjvalue for
i will now be developed. A number of assumptions are invoked iﬁ the derivation
but nevertheless, the result obtained usually gives a good starting point in the choice

of p.

The derivation begins by considering the difference between the exact least squares 7‘

X |
solution H,¢ and the initial solution, H,,, . Since H,,; and H,s are both vectors of
H

degenerate intervals, the notation used will be that of single valued real numbers

rather than that of interval arithmetic.

Assuming that each coefficient in H,,, differs from ;s by a random variable drawn

{ from a uniform distribution between — %— and %—, it is possible to obtain ‘

Np? |
12

E(||H.s —Hl1)= [3.18]

Next, consider the expected value of the cost function, Ja(k), givén in [2.64] as

R k
Ja(k)= Exk—iez(l‘) + P~)\k I IH(k)—LIim‘t | |2
i=0

To evaluate the expected value of the cost function, it is necessary to use the

. approximation H (k) =H,s, which is valid except just after reinitialisation,

E((k)=E (éov-fez(i»w (b | Hes ~Hi 1 1) 319

1__)\k+1
L : =TI

| ,
where 2=FE(e?(i)).

pAEN p?
12

D —— et - [- R P,

S 64 -

In a stationary environment, a good solution is to keep E (J3(k)) constant before
and after reinitialisation. This corresponds to the correct balance being maintained

between the initial solution H,,, and subsequent solutions A (k). This is done by set-

ting
E (J5(k))=E (J5()) [3.20]
fqr allrk. Therefore
1_)\k+1 2 p,)\"Ngz _ §2 321]
- >t 12 1—\ [
giving B T T T B
}-L)\kNQZ _ §2xk+l
12 1-—-\
and hence
12§2>\
= == 3.22
RN 3.22]

3.8. Conclusions

In this chapter, a new method for detecting the imminent divergence of a fast RLS
adaptive algorithm has been proposed. A scheme of arithmetic known as interval
arithmetic has been developed. This scheme of arithmetic enables an error aﬂalysis
to be performed in real time in parallel with solving the least squares adaptive filter-
ing problem. By reinitialising when the accumulation of finite precision errors on

the solution exceeds a predefined maximum limit, divergence is prevented.

The penalty for using interval arithmetic is its increased computational complexity
compared with single valued real arithmetic. The computational complexity of an
interval algorithm is approximately double that of its non interval counterpart. The
complexity remains, however, directly proportional to the filter length and so great
savings in computation are still obtained compared with the conventional RLS algo-
rithm for moderately long filters. Furthermore, due to the regular structure of the

interval operations, it would be possible to construct a dedicated interval arithmetic

- 65 -

processor from a number of real value arithmetic processors, resulting in a similar
speed of operation to the non interval algorithm. In this case, the penalty is the

increased hardware complexity.

Results will be presented from software simulations in the next chapter, demonstrat-
ing the stability of the interval arithmetic tﬁethods, using both fixed and fldating
point arithmetic and in chapter 5, the implementation of the fixed point version of
the interval FTF algorithm on a TMS320C25 digital signal processor[90] will be

described.

- 66 -

4 Interval Algorithms - Software
Simulations

4.1. Introduction

In this chapter, simulation results for the interval fast RLS algorithms will be
presented. The aims of these simulations are twofold. Firstly, they will show that the
interval algorithms do not diverge over at least one million iterations, whereas the
non-interval fast RLS algorithms diverge fairly rapidly. Secondly, the results will
demonstrate that the performance of an interval fast RLS adaptive filter is compar-

able to that obtained using less computationally efficient least squares techniques.

Two different adaptive filtering configurations[4] will be simulated. Adaptive sys-
tem identification will be considered as an example of direct system model-
ling[16,118,119] and adaptive equalisation will be performed as an example of

inverse system modelling[46, 63, 64].

Both the stationary and non-stationary characteristics of the interval algorithms. will
be considered. The results of the non-stationary simulations are of particular impor-
tance, as it is necessary to demonstrate that the tracking capabilities of the interval
algorithms are not significémtly im’paired by the regular reinitialisations, which must
be performed to prevent the algo‘rithm. from diverging. The example of a non-
stationary system which will be simulated is the fading high frequency | (HF)

channel[120-123] for digital communications aind it will be shown that the error rate

- 67 -

which may be achieved using an interval fast RLS adaptive equaliser is similar to

that obtained using the conventional RLS algorithm.

Both floating and fixed point arithmetic a‘re simulated. The floating point number
system used was 64 bit ﬂoating point arithmetic, with a 56 bit mantissa, a 7 bit
exponent and a sign bit. The fixed point arithmetic system used 16 bit truncation
with the provision of a 32 bit long accumulator, which may be used during the vari-
ous scalar product operations in the algorithm to achieve greater accuracy. This
16/32 bit fixed point arithmetic system is typical of that available on many current
digital signal processors (DSPs)[90-96] and indeed, the fixed point simulations were
used as a starting point for a hardware implementation of one (;f the fast RLS algo-

rithms, which will be described in detail in the next chapter.

4.2. System Identification

The configuration for adaptive system identification is shown in Figure 4.1. The
input signal to the adaptive filter is generated by passing Gaussian noise through a
prefilter. The purpose of this prefilter is to provide control over the spectral proper-
ties of the adaptive filter input signal. This enables various eigenvalue ratios to be

obtained for the input autocorrelation matrix defined by

E (x(k)x(k)) . E(x(k)x(k+N-1))

E»(x(k)x(k+1)) .. E(x(k)x(k+N =2))
E (x(k)x(k+2)) .
R,.= . L. [4.1]

E (x (k)x (k —2))
. E (x(k)x (k1))
LE (x(K)x(k+N-1)) . . E(x(k)x(k))

By varying the eigenvalue ratio, the ill conditioning of the adaptive filtering prob-
lem is varied[44]. Table 4.1 shows the two prefilters which were used during simu-

lations and the eigenvalues associated with them for a length 5 adaptive filter.

- 68 -

Adaptive Filter

Input Signal —
(White Noise) Noios
Frefiler Unknown System —
W : =
—5® Transversal Filter
Adaptive Algorithm —

Figure 4.1 Configuration for adaptive system identification

- 69 -

Prefilter Eigenvalue ratio t

1 1.0+0.865z L 187 -
2 1.040.600z ! 13

+ For a length 5 adaptive filter

Table 4.1 : The eigenvalue ratios obtained using different prefilters for the simula-

tion shown in Figure 4.2.

The input signal to the adaptive filter is also passed through an unknown system,
which for all of the system identification siniulations in this chapter, was a § tap fin-
ite impulse response filter with the 5 coefficients randomly chosen between :1 and
+1. The output from this unknown system is corrupted by a small amount of addi-
tive Gaussian noise. This signal is used as the desired response input for the adap-

tive filter.

If the adaptive filter is operating correctly, then the output signal from the adaptive
filter should be almost equal to the output from the unknown system. If it produces
the same output from the same input signal, then it must have the same transfer

function as the unknown system, enabling the unknown system to be identified.

The performance of this system is measured by how close the coefficients of the
adaptive filter converge to the coefficients of the unknown system. If the coeffi-
cients of the unknown filter are denoted by H,,, then a measure of the perfor-

mance is given by the norm of the vector of coefficient errors defined as

(11H (k) =Hop 112)
10x1 s : 4.2
*logo | 117 @), 117) 142]

in dB.

-70 -

A large negative value of the performance function of equation [4.2] indicates that
the performance of the adaptive filter is good. The level of performance which will
be attained after the adaptive filter converges is dependent updn the signal to noise
ratio introduced by the noise at the desired response input of the adaptive filter. For
simulations, the signal to noise ratio was measured at the desired response input to

the adaptive filter.

Figure 4.2 shows the performance of the conventional RLS algorithm when per-
forming system identification. It is included mainly for comparison with the perfor-
rﬁance of the various fast algorithms in Figures 4.3 - 4.8. The forgetting factor was
set at 0.98, the length of the adaptive filter was 5 and a signal to noise ratio of 30dB

was used.

It can be seen that the performance measure rapidly dropé to below the 30dB noise
level at the start of the simulation, as the adaptive filter converges. This rapid initial
convergence is typical of a least squares algorithm and it is one of the principal
advantages of using least squares techniques. After initial convergence, the solution
remains at a low level, as would be expected in a stationary simulation, where the .

optimum solution does not vary with time.

4.3. Divergence of the FAEST, Fast Kalman and FTF Algorithms

Figures 4.3 - 4.8 show the instability of the fast RLS algdrithms. For each of these
simulations, the signal to noise ratio was set at 30dB and a forgetting factor of 0.98
“was used. The arithmetic system was 64 bit floating point arithmetic and the length

of the adaptive filter was 5.

Figures 4.3,4.4 and 4.5 show the numerical ihstability of the FTF, FAEST and fast
Kalman algorithms with an input autocorrelation matrix eigenvalue ratio of 18.3,

and Figures 4.6, 4.7 and 4.8 show the same algorithms, but the prefiltef has been

-7 -

chahged to yield an eigenvalue ratio of 7.3.

For all of the fast algorithms, it can be seen that the convergence and initial solu-
tion are identical to that obtained using the conventional RLS algorithm, but then
that the algorithms suddenly diverge and fail to provide a solution which is valid in

the least squares sense.

The number of iterations that the algorithm is able to perform before it diverges has
been found to vary substantially between different simulatibn runs, even when using
the same algorithms and parameters. This means that comparisons between the dif-
ferent fast RLS algorithms are not particularly easy to perform, but a number of

important trends have been noticed.

® The algorithms take longer to diverge at lower eigenvalue ratios. This is as
would be expected, since the high eigenvalue ratios result in the least squares
filtering problem becoming more ill conditioned, which means that the process

is more susceptible to numerical errors.

® The fast Kalman algorithm appears to take longer to diverge than the FTF
and FAEST algorithms. This is believed to be due to the increased computa-
‘tional complexity of the fast Kalman algorithm. The additional computations
are thought to introduce some redundancy into the algorithm and the errors
‘generater:d in these redundant calculations tend to cancel each other out to
some extent, resulting in smaller errors at each iteration and hence a larger
number of iterations can be performed before they accumulate to the extent

that divergence occurs.

® The solution after divergence of the fast Kalman algorithm appears to be dif-
ferent from that of the FTF and FAEST algorithms. Although the fast Kalman
algorithm no longer produces a useful solution, the filter coefficients appear to .

 be bounded, whereas for the FTF and FAEST algorithms, after divergence,

72

the coefficients increase without limit.

e All of the algorithms eventually diverge. This is a direct result of the transi-

tion matrix eigenvalue analysis presented in section 2.10.

4.4. FTF Algorithm Using Rescue Variable

In the paper in which the FTF algorithm was presented[3], it was suggested that
numerical stability could be improved by using a rescue variable. This has not been
done in the results of Figures 4.3 and 4.6, so that the results from the various unsta-

bilised algorithms could be compared.

The rescue is performed by reinitialising, using the method described in section
2.10.3. A rescue should be performed if, during any iteration of the algorithm, the
quantity

[1+e® (k)y'(k)d(k)] [4.3]
is negative. This quantity should be positive at all times, since for an infinite preci-

sion implementation,

o h Aot (k-1
[1+e? (k)y' (k)3 (k)] = —a;;(—(;;)‘ [4.4]
From the definition of a®(k) in equation [2.38], a® (k) is the minimum value of a

sum of squares of backwards prediction errors and so it is a positive quantity.

Hence, the ratio in equation [4.4] should be positive at all times.

The results which are obtained using this rescue procedure are shown in Figure 4.9.
The rescue procedure gives a worthwhile improvement in the number of iterations
for which the FTF algorithm produces a useful solution, but divergence of the algo-

rithm still occurs.

-73-

Norm Tap Error (dB)

Floating Point Standard RLS Algorithm

s 5 %
-10 — ------------- ------------ ------------ =
N
b

-50

| |
0 5000 10000 15000 20000
Time (Samples) |

-60

Figure 4.2 Performance of the conventional RLS algorithm in performing stationary system identification.
A=0.98, SNR=30dB. input autocorrelation EVR=18.7. After the algorithm converges, it remains at a good

solution for the duration of the simulation.

-74 -

Floating Point FTF Algorithm

P T N A A A I I A N

e T I R I I I N I R A R

i

B I I A R I R

emmmm e e e e e e e — .-

-10
-20
-30
-40
-50

(gp) z0xxyg deJ wION

-60

1000 2000 3000 4000 5000
Time (Samples)

0

30dB, input

0.98, sNrR=

Figure 4.3 Divergence of the FTF fast RLS algorithm due to numerical instability. A

autocorrelation EVR

=18.7.

-75 -

Floating Point FAEST Algorithm

P e L I

T g U U Qg Y

emdeccqecvsoencscncapannennan -

B A e R R SR R P T

230 fooeens
-40

-50 |---
-60

(dp) aoaxyg deJ, wiopN

5000

4000

2000 3000
Time (Samples)

1000

0

30dB, in-

0.98, sNRr=

Figure 4.4 Divergence of the FAEST fast RLS algorithm due to numerical instability. A\

put autocorrelation EVR

=18.7.

-76 -

iB)
-
N
O
o
—
=M
o
]
E
—
U
X
IS
9]
]
(£3]
P
a
-
0
a¥
o
a
3
in)
™
0
—
(£3]

llllllllllllllllllllllllll

e =« e c e e cm e e e .-

-20 -
-30
-40

(gp) 10133 del WION

-60

6000 8000 10000
(Samples)

4000

Time

2000

0

Figure 4.5 Divergence of the fast Kalman fast RLS algorithm due to numerical instability. A

SNR

0.98,

=18.7.

30dB, input autocorrelation EVR

77 -

- - - - - - - e - e .

J R N T

Floating Point FTF Algorithm

llllllllllllllllllllllll

e ccemccemacdodacneewensesedoeenneeneeekes==eaeo oy

- « s e cccecopmeccncedadqecccceccrccqgencnrcccccepoorn-eoc ooy

~10 |--eeeeee

_20 e e e e c e -ee
-30
~40

(dp) 30xay deJ], wION

-60

4000 5000

3000 -
(Samples)

2000
Time

1000

0

Figure 4.6 Divergence of the FTF fast RLS algorithm due to numerical instability. A

0.98, sSNR=30dB, input

=7.3.

autocorrelation EVR

78 -

Norm Tap Error (dB)

Floating Point FAEST Algorithm

: s z 5
NS W N S
N N S S
N N N
0 10000 20000 3OQOO 40000

Time (Samples)

Figure 4.7 Divergence of the FAEST fast RLS algorithm due to numerical instability. A =0.98, SNR=30dB, in-
put autocorrelation EVR=7.3. The algorithm first ‘locks up’ at a solution and then fails with a division by zero er-
ror at around 37,000 iterations.

=179 -

Norm Tap Error (dB)

Floating Point Fast Kalman Algorithm

i

|
|
!
!
i

B I I

-40

-50

-60
0 10000 20000 30000 40000
Time (Samples)

Figure 4.8 Divergence of the fast Kalman fast RLS algorithm due to numerical instability. A = 0.98, sNR=30dB,
input autocorrelation EVR=7.3.

-80 -

Norm Tap Error (dB)

'Floating Point FTF Algorithm

L T TR T AP -

co i | | ;
0 2000 4000 6000 8000 10000

Time (Samples)

Figure 4.9 Divergence of the FTF algorithm, using a rescue procedure which involves reinitialising the algorithm if
[1+eb(k)y'(k)8(k)]=0 A=0.98, | (reinitialisation soft constraint weight) =100.0, SNR=30dB,
input autocorrelation EVR=18.7.

-81 -

4.5. FTF Performance Using Interval Arithmetic

Figure 4.10 illustrates the operation of the interval version of the FTF algorithm.
The maximum difference between the upper and lower endpoints of the coefficients
of the adaptive filter, denoted by p has been deliberately set very large so that the
endpoints can differ significantly from each other. The upper and lower endpoints
of the first coefficient have been plotted in Figure 4.10 along with the optimum

solution, which is for this coefficient to equal C.9.

From the graph, it can be seen that the upper and lower endpoints of the solution
are initially almost identical and both converge close to the optimum solution. As
numerical errors accumulate, the two endpoints start to diverge from each other
until the difference exceeds the threshold p at which a rescue is required. After the
rescue, both the upper and lower endpoints are again moved together and they will

both track the optimum solution until the next rescue is required.

Figures 4.11 and 4.12 show the performance function for the interval FTF algo-
rithm. Figure 4.11 shows the short term performance of the algorithm and may be
compared with Figure 4.2, the performance function for the conventional RLS algo'-*: |
rithm. It can be seen that the level of performance which is attained is almost ident- |
ical to that of the less computationally efficient algorithm for the‘ duration of the

. simulation.

Figure 4.12 illustrates the long term performance of the FTF algorithm over one
million time iterations. During this period, no evidence of divergence is indicated

and the interval arithmetic rescue system performs correctly.

-82 -

Coefficient Value

Floating Point FTF Algorithm

0.95 T T T T T T T
0.94 K -
0.93 F .
Upper End%oint
0.92 H I -
I\
|\
0.91 [-
0.9 Fme-¥eoomo oo Lower Endpoint _
0.89 -
0.88 Optimum Coefficient value = 0.9 1
0.87 [-
0.86 |- | -
0.85 1 | | 1 A | 1 |

5 10 15 20 25 30 35 40 45
Time (Samples)

Figure 4.10 A coefficient of the solution calculated by the interval FTF algorithm. Both the upper and lower end-
points of the coefficient are plotted and the figure shows how these begin to differ from each other as numerical er-
rors accumulate and how they are brought back together again by the rescue procedure. A=0.98, = 1.0,
p=0.2, input autocorrelation EVR = 18.7, SNR = 30 dB.)

-83 -

Norm Tap Error (dB)

'Floating Point Interval FTF Algorithm

: s

L N W W
T N W S
B N N

-40

=50 {1--}----"§--°--F

T T IS e

- - - e - - .-

-60
0 5000 10000 15000 20000
Time (Samples) .

Figure 4.11 Short term performance of the interval FTF algorithm. The algorithm produces a performance level
similar to that of the conventional RIS algorithm during the simulation. A=0.98, p..=50.0, p=0.004,
SNR=30dB, input autocorrelation EVR=18.7.

-84-

Floating Point Interval FTF Algorithm

e T T T I e e S ey

R I T T L T T I T I I I I I I T

=10

=20
-30

(gp) aoxag deg,

WION

-50
-60

500000 750000 le+06

250000

Time (Samples)

0.98, p=50.0, p=0.004,

Figure 4.12 Long term performance of the interval FTF algorithm. The algorithm produces a performance level

similar to that of the conventional RLS algorithm during the simulation. A\

SNR

=18.7.

30dB, input autocorrelation EVR

-85 -

4.6. Fixed Point Implementation of the FTF Algorithm

When implementing a fixed point version of any algorithm(124], there are a number
of important considerations which will affect the performance obtained. The diffi-
culty in using fixed point arithmetic is the limited dynamic range available. Vari-
ables must be represented in such a way that they can be stored to a reasonable
level of accuracy, but at the safne time, care must be taken to ensure that overflows
of the variables are sufficiently unlikely to occur. There is therefore a tradeoff to be
made between the accuracy to which a number is represented and the probability of

overflow errors.

The problem is to determine for each variable where the binary point should be
fixed. The process by which this was done was first to assess the likely range of the
variable, using the floating point simulation. A considerable safety margin must
then be left, as the maximum values for each quantity may differ considerably
between different runs of the éame simulation and they.are dependent upon the
exact data sequence. Having assessed the likely range of each variable, a fixed point
simulation can then be developed and the fixed point scale factors can then be

further refined.

The ranges and positions of the binary point for each variable in the fixed point

implementation of the FTF algorithm are listed in Table 4.2.

- 86 -

Variable ~ Fixed Point Position Range qL Precision ‘
a (k) 10 - 32 to 31.999023 0000997
X (k) - 15 -1 to 0.999969 0.000031
E(k),g'(k) 3 ' -4096 to 4095.875 0.125
b (k) 15 -1 to 0.999969 0.000031
H (k) 15 | -1 to 0.999969 . 0.000031
ef (k) 14 ' 2 to 1.999938 0.000061
e (k) 15 ‘ -1 to 0.999969 ~0.000031
of (k) - 15 -1 to 0.999969 0.000031
v(k),y' (k) 15 -1 t0 0.999969 0.000031
rescue 14 -2 to 1.999938 0.000061
eb (k) 15 " -1 to 0.9999690 0.000031
e’ (k) 19 -0.0625 to 0.062498 1.907x 1076
af (k) 15 -1 to 0.999969 0.000031
e (k) 5 | -1 to 0.999969 0.000031
(k) 15 -1 to 0.999969 10.000031

Table 4.2:Scaling used for fixed point FTF

The simulation software enabled ¥wo different overflow characteristics to be used.
The roll-over characteristic is the simplest, as overflows are simply ignored. This
means that it is likely that if overflow occurs in calculating a result which should be
positive, a negative result will probabiy be obtained and vice versa. Hence, the
* errors. which occur using roll-over are very large indeed. The saturation char.acteris-
tic reduces the errors which occur in thé event of overflow. If a result is calculated
which exceeds the largest positive representable purhber, then the result is replaced
by the largest positive répresentable number and similarly, negative overflows are

replaced by the largest representable negative number. After the scale factors were

-87 -

correctly chosen, the overflow mode which was used was found to make no differ-

ence to system performance, indicating that overflows rarely occurred.

The performance of the fixed point FTF algorithm is shown by Figures 4.13 and
4.14. Figure 4.13 shows the performance without any rescues being performed while
Figureb4.14 shows the performance when the rescue method described in section 4.5

is used.

As would‘ be expected, the 16 bit fixed point implementation has severe problems
with numerical instability. After around 500 time iterations, the algorithm diverges.
Moreover, the rescue method which was used to improve the stability of the floating
point algorithm gives no u,seful improvement when applied to the fixed point imple-

mentation.

4.7. Fixed Point Interval FTF Performance

Interval methods may be applied to the fixed point implementation of the FTF algo-
rithm in a similar way to the floating i)oint algorjthm. The maximum value which
may be used for the parameter p is limited, however, as the variables o/ (—1) and
ab(—1) must both be set to the same order of magnitude as p at reinitialisation.

For the scale factors used, this limits the maximum acceptable value of p to 1.0.

The results from the short and long term simulations of the fixed point interval FTF
algorithm are presented in Figures 4.15 and 4.16. Whilst the performance is not
‘quite as good as the floating point conventional RLS solution, it is nevertheless

impressive for such a highly limited precision implementation.

-88 -

Fixed Point FTF Algorithm

i] |]]
) 1 L] ’ 1
’) 1))
L] L] 1] 1 L]
L] L] L]))
1) L) L]
L} L] 1] L] 1
)] .) 1
L] L] L L L}
L]) . 1 L]
llllllllllll hllllllllllIU-IIIIIIlllII|P|IIIIIII|IIL|IIIIIlll|ll—nlllll!lllhcll
1 L) 1))
L} 1 L] L})
L] L} . L] L}
1]] 1 1 ‘
) L]] t 1
) ’ L]))
L} L] L L] L
) L} 1] L} 1
1) L]) '
1) 1) L
llllllllllll 4|llllllll|ll-llllllllllll1I|llllIlllll-lllllllllll|1llllll0||l.|
1 L] 1 L] L}
) 1 L] 1)
1] L) 1
L} L] L] 1 L]
1 1 L]] 1
s)] [})
) 1 L] 1]
)) L)]
') L] 1 L)
]] L]])
IIIIIIIIII ﬂllII-Illl-‘I-lllIIIIIIlll—nllllllll'-ll—-'llll|||lII-‘IIlllllllln'
) 1 L] 1 ‘
1) L] t)
L}) L L} 1
L] ’ 1 1 L
1) L] t 1
. 1) 1)]
) 1 L) L)
L} L} L] 1)
4 L} L] L})
e e eecccemcalaccnaennaaas e emcceemoen= Lemcccmaccacdcaaaacanaan- C e meceenaa- -
1 ' L} 1)
1) L]]]
L} L L] L})
)] 1 1)
L} L} L]))
Y v— ' '
L] L} L] 1
] L} L] L]
L] L] .)
i | | |
(@] o (e o o o (@]
— N ™ I N \\e]
| i | | | |

(gp) z0xag del WION

5000

4000

3000
(Samples)

2000
Time

1000

0

Figure 4.13 Performance of a 16/32 bit fixed point implementation of the FTF algorithm. A

input autocorrelation EVR

30dB,

0.98 , sNR

=18.7.

- 89 -

Fixed Point FTF Algorithm

e ¢ e e e e e e -

“weecescceacsderoeencaneeeboneneeee e

R N I AR AR SN

N I T T R I I I IR IR A I N ettt

B i Il T S R

-10

-20
=30
-40

(dp) z0xag deg waoN

=50

-60

2000 3000 4000 5000
Time (Samples)

1000

0

Figure 4.14 Performance of a 16/32 bit fixed point implementation of the FTF algorithm using rescue method of

=18.7.

30dB, input autocorrelation EVR

=0.98, n=0.25, p=0.04, SNrR=

section 4.5 X

-90 -

Norm Tap Error (dB)

Fixed Point Interval FTF Algorithm

0 T) !
10 - REEEEEEES heeeeeeenaas S T EEERE -
-20 — ------------- ------------ -

_30 i

—40i

_50 R T

J e R

vedeosae

i i i
0 5000 10000 15000 20000
Time (Samples)

-60

Figure 4.15 Short term performance of a 16/32 bit fixed point implementation of the interval FTF algorithm.
A=0.98, u=0.25, p=0.04, SNR=30dB, input autocorrelation EVR=18.7.

-91 -

Norm Tap Error (dB)

Fixed Point Interval FTF Algorithm

: s s @
S S W
-20 — ------------- ------------ -
B O O N
a0 | |
FNLE S s

0 250000 500000 750000 le+06

Time (Samples)

Figure 4.16 Long term performance of a 16/32 bit fixed point implementation of the interval FTF algorithm.
A=0.98 , n=0.25, p=0.04, SNR=30dB, input autocorrelation EVR=18.7

-92 - -

4.8.' Application of Interval Algorithms to Stationary and Non-

Stationary Equalisation

The aims of the simulations in this section are twofold. Firstly, they are intended to
demonstrate that the operation of the interval methods is not specific to adaptive
system identification and that the interval algorithms may be equally successfully
applied to other adaptive filtering problems.' Secondly, the results compare the
tracking performance of the interval algorithms with that of the conventional RLS
algorithm. Some impairment in tracking performance is possible when using the
interval algorithrﬁs, due to the regular reinitialisations which are being performed
and one of the aims in this section is to examine how significant the degradation in

tracking performance is.

The adaptive filtering application which is t‘)eing considered is that of adaptive
equalisation for digital communications. The digital communications éhannel which
will be simulated is the HF channel[48,122], a model{120,121, 123] of which is
shown in Figure 4.17. The channel is represented by a three tap finite impulse
response (FIR) filter, the output of which is subject to interference by Gaussian
noise. The coefficients of the channel are generated from other Gaussian noise

sources, which are passed through low pass filters, so that they have slowly time

varying random values.

The physical process which is being modelled by this channel is that of multi-path
interference[48, 49] illustrated in Figure 4.18. Signals arrive at thé receiver by a
number of different paths. As the lengths of the paths are different, the signals are
subject to different time delays between the transmitter and receiver and so interfer-

ence occurs.

-93 .-

Figure 4.19 shows the configura.tion of an adaptive equaliser. The output from the
channel is passed into the adaptive filter input. It is assumed that the transmitted
signal is available at the receiver and this is passed into the desired response input.
This signal may be generated at the receiver initially by transmitting a known train-
irig sequence and after the adaptive filter has converged, by using the actual output
from the equaliser, which may be passed through a decision device. This mode of
operation is known as decision-directed mode[47-49]. For the purposes of simula-
tion, the effects of decision directed operation were not considered and it was

assumed that the transmitted signal was known exactly at the receiver.

A two level basebaﬁd signal was simulated. This signal was generated from a
p'Seudo-random source and either had the value -1 or 1 with equal probability. A
real communications system would include a modulator at the transmitter and a
demodulator at the receiver, but assuming that the modulation process, the channel
and the demodulation process are all linear, then the results obtained from a simula-

tion of the baseband system are identical.

The performance measure which was used for all simulations was the probability of -
error. The output from the adaptive equaliser was passed through a decision process
which gave an output of +1 for all positive inputs and an output of -1 for all nega-
tive inputs. The number of occasions on which the output from this decision device
differed from the transmitted bit was counted over many iterations of the algofithm.
A 5 tap equaliser was used with a delay of two bits at the desired response input to
enable non-minimum phase channels to be equalised. A 10 bit tfaining period was
assumed to be available and errors were only counted aftef this- fraining sequence

was completed.

-94 -

Transmitted Sequence z(k)

»{ 7!

Noise 4 LPF

Noise

-

| Noise

—»4 LPF

Noise

Channel Output x(k)

Figure 4.17 Model of a fading HF channel

-95 -

Ionosphere

ulti-pat.h interference which

re 4.17

being modelled by the channel of figu

is

time varying m

Figure 4.18 The

- 96 -

Transmitted
e Channel

Switch to decision directed operation
after training sequence

Training
Sequence

* :
Required if the channel has zeros outside the unit circle (non-minimum phase conditions)

Sequence
—— ‘ -
> > Transversal Filter T@
‘ﬁ; Equaliser
. . _ Output
Adaptive Algorithm —
Adaptive Filter :

*

Delay Decision Threshold

o~ = |

Figure>4.l9 Block Diagram of an Adaptive'Equaliser

-97 -

4.8.1. Performance for a Stationary Channel

Figure 4.20 shows the bit error rates which were obtained using the conventional
RLS algorithm and the interval FAEST algorithm as the signal to noise ratio is
varied between 0dB and 10dB. The channel coefficients remained fixed during this

simulation and the channel impulse response was A, (z)=1.0+0.5z 7%,

The bit error rates obtained for the two algorirtihr'ns' é’rein'ea-r’ly identical, demonstrat- ;
""? ing that an interval algorithm can offer similar performance to the conventional,‘
RLS algorithm within the context of equalisation as well as system identification.
The third curve is an optimum lower bound, which is the theoretical probability of

r
\
i

error when no multi-path distortion occurs and the only source of interference _1_st
. v !
additive Gaussian noise.

It can be seen that the performance of both the adaptive equalisers falls far short of
the optimum bound. This is due to the limitations of the linear adaptive equaliser,
which can only form a linear decision region in the signal space. A number of other

structures can offer improved performance, but these are not considered here.

4.8.2. Performance for a Fading Channel

In all of the simulations presented so far, the optimum solution has not varied with
time and the tracking performances of the various algorithms have not been com-
pared. In this simulation, a fading channel represented by the model of Figure 4.17
was used. The fade rate was achieved by setting the bandwidth of the low-pass
filters to be 0.00016 X bit frequency, corresponding to a moderately severe fading

channel.

- 98 -

Bit Error RateJIComparisions - No Fading

1r 1 T T 1]
: wylg" —— :
3 "faest'_' - 1
i "optimum" ---]
o 0.1
9
o
25
Y
o}
S
.
-
—
-
Q
©
Q
o
Y 0.01
0.001 ! ! ! L -
0 2 4 6 8 10

SNR (dB) T

Figure 4.20 Comparison of probability of error for the conventional RLS adaptive equaliser and the interval FAEST
adaptive equaliser. The channel being equalised had the impulse response 1.0+ 0.5z 1. For the RLS algorithm,
A =0.98 For the FAEST algorithm, A=0.98 , p=0.02 and n=50.0

-99 -

The results for the non-stationary simulation are shown in Figure 4.21. The
optimum solution has been plotted along with the performance of the conventional
RLS algorithm and the performance of the FAEST algorithm for w=15.0 and

p=>50.0.

It is clear from the re;sulfs that the FAEST algorithm offers comparable performance
to the conventional RLS algorithm with p set to 15.0, but that there is a slight
degradation in performance wheﬁ the simulation is performed with w =50.0. This is
due to the impﬁirment in tracking caused by setting the reinitialisation soft-
constraint to have too much influence. The results for @ =15.0 indicate, however,
that tracking performance which is as good as that of the RLS algorithm may be

obtained by choosing the reinitialisation parameters correctly.

In this simulation, 100,000 bits were required to provide an accurate estimate of the
bit error rate and so, if there had been any problems due to the numerical instabil-
ity of the‘ FAEST algorithm over this fairly large number of iterations, this would
have resulted in a significantly higher bit error rate. This confirms the numerical

robustness shown in the system identification simulations.

4.9. Conclusions

A number of important results relating to the performance of the fast RLS algo-

rithms have been suggested by computer simulation.

The numerical instability and divergence of the fast Kalman, FAEST and FTF algo-
rithms have been demonstrated experimentally: The number of iterations before the
onset of instability has been demonstrated to depend upon the algorithm being used,

the input autocorrelation eigenvalue ratio and the accuracy of the arithmetic being

- 100 -

Probability of Error

Bit Error

Rate Comparisions - Fading Channel

1

"rls" —

"faest muld" ——-
"faest mu50" ---
"optimum" -----

0.001

2 4 6 8 10
SNR (dB)

Figure 4.21 Comparison of probability of error for the conventional RLS adaptive equaliser and the interval FAEST
adaptive equaliser, for a fading channel. For the RLS algorithm, A = 0.98 For the FAEST algorithm, A =0.98
,p=0.02 and p.= 15.00r 50.0

- 101 -

used.

Many of the results have related to comparing the interval versions of the fast RLS

algorithms with the performance of the conventional RLS algorithm. In all simula-.

tions, the interval fast RLS algorithms have been numerically stable and have not
exhibited the divergence of their non-interval counterparts. The performance of the
stable interval algorithms has been shown to be almost identical to that of less effi-
cient least squares techniques in a number of different simulations involving system
identification and HF channel equalisation. The tracking performance of the inter-

val algorithms is comparable to a least squares algorithm which runs continuously.

The performance of the fixed point interval FTF algorithm is of particular impor-
tance, as the complexity associated with implementing a fixed point algorithm in
hardware is considerably less than that of implementing the same algorithm using
floating point arithmetic. The next chapter will consider the implementation of this
algorithm on a TMS320C2S digital signal processor. An\equaliser similar to that of
section 4.8 will be developed, capable of operating at 1200 bits per second. The

implementation of faster equalisers will also be considered.

'4.10. Frequency of Reinitialisation

In the simulations of this chdpter, the interval arithmetic rescue procedure reinitial-
ises the alg.orithm after apprbximately every 100 iterations using 64 bit floating point
..ari,thmetic, .and approximately every 50 .iterations using 16 bit fixed- point arith-
metic., Comparing this with the performance of t.he unstabilised algorithm (shown in
figure 4.3 and figure 4.13), it is apparent that about 10 rescues are performed by

the stabilised algorithm in the time that.the unstabilised algorithm takes to diverge.v

———

- 102 -

5 Interval Algorithms - Hardware
Implementation

5.1. Introduction

Having demonstrated the stable performance of fixed point versions of the interval
fast RLS algorithms in software éimulations, the next step is to attempt to imple-
ment them in é real time hardware system. There are two important reasons for
doing this. Firstly, the hardware implementation may be used to confirm the vali-
dity of the simulations and to check that there are no factors which were not taken
into account during simulations prohibiting the use of the algorithms in practice.
Secondly, the hardware implementation provides important information on the

speed of operation of a real-time system.

The approach has been to implement the algorithms on a digital signal processor
(DSP)[125]. Many of the major semiconductor manufacturers now make DSPs[90-
96] Which are suitable for implementing the high speed, numerically intensive
operations often required to perform signai processing in real time. The many dif-
ferent devices which are now available all have different architectures[126] and
instruction sets, but they share a nﬁmber of common features such as hardware mul-
tipliers, rapid multiply and accumulate instructions and separate prograﬁl and data
memory spaces, all of which make them more suitable than a genéral purpose

microprocessor for signal processing applications.

-103 -

The processor which was chosen for the hardware implementation was the Texas
Instruments TMS320C25[90,95]. This is a second generation device which
represents the middle of the range in currently available DSP technology. It uses 16
bit fixed point arithmetic with a 32 bit long accumulator and offers a 100ns instruc-
tion cycle time. More sophisticated processors are now available which offer greater
speed, floating point arithmetic and a number of other features, but the system
which was developed seeks to demonstrate an implementation of the algorithm using

the minimum hardware requirements.

The chapter will begin by discussing the implementation of interval arithmetic and
the interval FTF algorithm on the TMS320C25. The configuration and circuitry
used to generate test signals will then be described and results will be presented for
the implementation. The results will show that the TMS320C25 is suitable for
implementing medium length (N =5) adaptive filters at data rates of up to 1200
bits/s. More rapid implementations would require the use of either a more powerful
processor, or even an array of processors performing parallel computations. Alterna-
tively, a dedicated silicon device could be fz;briCated which would enable operation

at high speed. This option is considered in more detail in chapter 6.

5.2. Implementing the Algorithm on a TMS320C25

Due to the high organisational complexity of the FTF algorithm, a very structured
approach is required to implement the algorifhm successfully using TMS320C25
assembly language. The problem may be subdivided into two areas. The first is to
develop a set of assembler macros which enable interval arithmetic to be performed.
The second area is to develop a program which makes use of the interval macros to
perform the computations of the FTF algorithm and so implement a fixed point

interval arithmetic version.

- 104 -

The -benefit of this approach is that the interval macros can be tested extensively
before the FTF algorithm is developed, allowing many of the errors in the assembly

language program to be isolated at an early stage.

Figure 5.1 shows a block diagram of the TMS320C25 prbcessor board and associ-
ated hardware. This board was built as a final year honours project[127] in the
Department of Electrical Engineering at the University of Edinburgh. The circuit
diagram for this board appears in Appendix D. Real signals can be.passed into the
board using two analogue to digital converters (ADCs), which may be operated at
sampling rates of up 'to 100kHz. A sample clock input is also available to determine
the exact time at which conversion will begin. Output from the board is performed
by a single digital to analogue converter (DAC). The TMS320C25 board operates
using a 20MHz crystal and one wait state for memory access, which gives an operat-
ing speed of approximately % of the maximum available using this processor. Pro-
gram development was done using a personal computer which was connected to the
the TMS320 board by an RS-232 serial link and which provides a number of impor-
tant facilities including a TMS320C25 macro assembler, a TMS320C25 linker, file
format conversion; file storage and a terminal emulator for use when debugging

programs running on the TMS320C25.

5.2.1. Macros to Perform Interval Arithmetic on a TMS320C25

The macroé to implement interval‘ arithmetic are listed in appendix C. » They are
divided into three subsections - those for performing scalar interval arithmetic, those
for performing vector interval arithmetic and those for performing system operations
such as reading input values from ADCs, writing outputs to the DAC and syn-

chronising timing.

Table 5.1a and 5.1b give the average execution times for each of the macros in

instruction cycles. For the demonstration system, an instruction cycle takes 400ns,

- 105 -

although the processor may be operated with an instruction cycle time of 100ns.

Macro Function Number of Instruction Cycles
s_add Add two intervals , 10

s_sub Subtract two intervals 10

s_neg Change the sign of interval 10

s_mult Multiply two intervals' 68.5

s_div Divide two interval 103.5

Table 5.1a : Execution times for scalar interval macros

Macro Function Number of Instruction Cycles
msc Multiply interval vector by scalar 42.5N+8

scprod Calculate scalar product of two intervals 93N+27.5

v_add Add two vectors of intervals ; TN+5

v_sub Subtract two vectors of intervals | TN+5

Table 5.1b : Execution times for vector interval macros for a vector length of N.

5.2.2. The FTF Algorithm on a TMS320C25

Having developed macros to perform interval arithmetic, the implementation of the
FTF algorithm is fairly simple. The scale factors used are the same as for the fixed
point software simulation of the algorithm, described in section 4.6 except for the
vector of filter coefficients, H (k) which is modified to haverits binary point in posi-
tion 13, to enable filter coefficients of between -4 and -+ 3.99988 to be represented
without overflow. It is possible that further improvements in the hardware perfor-

mance could be obtained by changing the scaling factors, but the difficulty of

- 106 -

detecting overflow in a hardware implementation would requiré that a considerable
amount of experimentation was necessary in choosing the optimum scale factors.
The fixed point scaling of any algorithm is a difficult and time consuming task and
this is particularly true of an algorithm with the organisational complexity of the
FTF algorithm. The use of a ﬂoating point DSP could eliminate this requirement.
The TMS320C25 was used in its saturation overflow mode to minimise the effects of
any overflows or underflows by forcing the accumulator to its largest positive or

negative value as required.

The assembly language program to implement the FTF algorithm is given in appen-

dix C.

5.3. Test Configuration

The application in which the hardware implementation of the interval FTF algo-
rithfn was tested was that of adaptive equalisation. A board was developed to gen-
erate baseband signals similar to those which would be encountered in a real digital
communications system. The configuration used is similar to the software simulation

described in section 4.8.

5.3.1. Generation of Test Signals

Figure 5.2 shows a block diagram of the board used to generate test signals for the
hardware adaptive equaliser. A 31 bit shift register is used to generate a pseudo-
random binary sequence[128], which represents the transmitted signal. The final
four stages of the shift register are used to represent the transmitted symbol,
“denoted by z(k) and the transmitted symbol delayed by one, two and three sample

periods, z (k —1), z (k—2) and z (k —3).

- 107 -

Filter Input

Desired Response
Input

| ADC#1

ADC#2

RS-232

RAM Program|

emory

Development Support
-TMS320C25 Macro Assembler
-TMS320C25 Linker

-Object Code Format Conversion
-Downloading

S -Terminal Emulator (Debugging)

pac +—O

Qutput

Startup

EPROM

Figure 5.1 Block diagram of the TMS320C25 board and associated hardware

- 108 -

The output of the channel is distorted by intersymbol interference (ISI) and is given
by

X (k)= epan 2 (k)+ Popgn 2 (k =1)+ Popgn,2 (k —2) + hopn 7 (k =3)+ noise [5.1]
As z(k) is a digital signal, it only has the values 0 or 1 and so, the multiplications in
equation [5.1] can be performed in hardware using simple switches, rather than
expensive analogue multipliers. If a switch is on, this corresponds to the output of
the switch being equal to the input multiplied by .1 and if it is off, this corresponds

to multiplication by zero.

The outputs from all the switches (multipliers) are added, along with some Gaussian
noise, using an analogue summing amplifier, so as to implement the channel

described by equation {5.1].

There are three connections from this board to the TMS320C25 processor board.
-The first forms the desired response input to the adaptive filter. It is generated by
passing the pseudo-random binary sequence output, z (k) through some analogue
stages which enable the offset and the amplitude of this signal to be controlled. This
signal is used as the input to one of the ADCs on the TMS320C25 board. The
second ADC is connected to the summing amplifier which gives the channel output
as described by equation [5.1]. The input to this ADC represents the primary input
to the adaptive filter. The third connection from the test signal generator to the
processor board is a bit clock, which is simply the clock signal used to control the
shift register in the pseudo-random binary sequence generator. This signal is used by '
the processor board to trigger the start of conversion (SOC) on the analogue to digi-
tal converters, to-ensure that the input .signals .are sampled at the correct time,
which is at the centre of each bit. The software achieves synchronisation by waiting
for an end of conversion (EOC) to be signalled by both ADCs before attempting to

read inputs from them.

- 109 -

5.3.2. Equaliser Arrangement

A five coefficient equaliser was used in the system and no delay was used in the
desired response input path, so that only minimum phase channels could be equal-
ised. Although the board described in section 5.3.1 can generate intersymbol
interference over four bit periods, only ISI over three bit periods was actually used

in hardware tests.

- 5.3.3. Measurement of Results

Two outputs from the adaptive filter were measured in different experiments. The
| output from the adaptive filter, denoted by
y(k)=HT(k —1)X (k) , (5.2]
was measured. If the adaptive equaliser performs correctly, this signal should closely
approximate to the transmitted signal, z (k). The other output to be measured was
the filter error, denoted by
e(k)=d(k)—HT(k-1)X (k) (53]
where d (k) is the desired response of the adaptive filter, which in this case is equal
to z (k). After initial convergence, e (k) should remain small, indicating that diver-

gence due to numerical inaccuracies is not occurring.

Both signals were captured using an HP5183 digital storage oscilloscope. This

enables results to be displayed, plotted on a pen-plotter and stored.

Figure 5.3 shows a block diagram of the whole system including test signal genera-

tion, equalisation and capture of results

- 110 -

(:(Clock Input

Shift Register FTTT & ° thClock
_
l Offset & Gain
Controt Transmitted
Symbol
y y
T.v+ -
I hcha.no
—_L—'v. Z Channel
Y - Output
h
I t:an1

V.
Ve

I hchan2
V.
Vs

%
chan3 -
V. Noise [nput

Figure 5.2 Block diagram of the board used to generate test signals for the hardware adaptive equaliser .

- 111 -

TMS320C25

Processor Board
Clock Sync »
Test Signal Genrator | Transmirted Bit : N
- Board Reference /P
oise Prim DAC
Channel Output ary UP
Digitising Oscilloscope
~——
. -® _
- e - "
/\M — M—— Filter Output or
= e =o Filter Error

Figure 5.3 Block diagram of the hardware test system including signal generation, equalisation and measurement

- 112 -

5.4. Results

5.4.1. Eye Diagrams

Figures 5.4, 5.5 and 5.6 show various eye diagrams measured in the equaliser sys-
tem. An eye diagram is simply a trace of all possible values of a signal, formed by
recording the signal over a large number of bits and plotting it. An eye pattern
which is open in the centre indicates that the signal could be used successfully with

a decision device to recover the original binary symbols.

Figure 5.4 shows the eye diagram of the pesudo random binary sequence which
forms the desired response input. As would be expected,Athere are only two distinct
levels, correspond‘ing to the transmitted symbols O and 1 respectively. The eye pat-
tern is wide open in the centre. This eye diagram represents the ideal pattern for an

equaliser which performs perfectly.

Figure 5.5 shows the eye diagram at the output from the channel. Instead of having
two distinct levels, it has eight levels due to the intersymbol interference introduced
by the channel. No noise was used during this test. The eye pattern is almost closed
in the centre, indicating that equalisation is required if the original sequence is to

be recovered.

Figure 5.6 shows the eye diagram measured at the output from the interval FTF
equaliser. The eye pattern has been opened by the equaliser, which has removed
much of the distortion introduced by the channel. The original transmitted sequence

could be recovered from this signal, indicating successful equalisation.

- 113 -

5.4.2. Filter Error

Figures 5.7 and 5.8 show the instantaneous square of the filter error. If the algo-
rithm performs correctly, this error should rapidly become very small as the algo-
rithm converges. After convergence, the error should remain small if the algorithm

is numerically stable.

Figure 5.7 shows the initial convergence of the algorithm. It can be seen that after a
few output samples, the filter error becomes small, once again illustrating the rapid

initial convergence of a least squares algorithm.

Figure 5.8 shows the long term error performance of the hardware equaliser. After
the spike representing initial convergence, the error remains very small, indicating
that the interval arithmetic rescue procedure for the FTF algorithm is working

correctly and preventing divergence due to numerical errors.

5.5. Speed of Operation

The maximum speed of operatioﬁ for the hardware adaptive filter was found to be
300 bits/s. The TMS320C25 processor wa; being operated at around % of its max-
imum speed and so the program could be expected to operate at speeds of up to
1200 bits/s using the same processor. This data rate is fairly low although there are -
applications in telecommunications where equalis'ation is performed using sampling
rates and filter lengths compatible with the performance of this implementation.
Nevertheless, it would be desirable bé able to operate the algorithm at much higher
data rates. The low speed is partly due to inefficiencies in the assembly language
program due to the requirement to make it véry structured and the use of a set of
general macros. It is believed that a modest performance increase could be obtained

at the expense of making the assembly language code much more difficult to under-

- 114 -

11:10:24

1990,

6 Nov

Tue,

bt . da

HP 5183U DIGITIZING OSCILLOSCOPE

Figure 5.4 Eye diagram measured at the desired response input to the adaptive filter. The pattern is that of an ideal
two level eye diagram.

-115 -

5 Nov 1990, 15:47:084

Mon,

HP 5183U DIGITIZING OSCILLOSCOPE

§

\
/

Figure 5.5 Eye diagram measured at the output of the channel. It has eight distinct levels due to the three coeffi-

cient channel which introduces intersymbol interference.

- 116 -

180:45: 07

6 Nov 1990,

Tue,

b ¢

HP S183U DIGITIZING OSCILLOSCOPE

Figure 5.6 Eye diagram measured at the output of the adaptive equaliser. It is much closer to the ideal pattern of
Figure 5.4 than the distorted pattern of Figure 5.5, indicating that the interval FTF adaptive equaliser has removed
much of the intersymbol interference. A =0.999969, u.=0.015258, p=0.009155

- 117 -

Zoom : 64

E‘B Positfon : 485
Unite/Otv : 4 . 369E+Q
Qf feet Q.GE*G_
Position (trace 1):

485

Adaptive filter starts »

Figure 5.7 Gmi)h of filter error squared against time for the interval FTF adaptive equaliser. The graph shows the
rapid initial convergence of the filter error to a small value. A =0.999969, n=.015258, p=0.009155

.. This graph is an expanded version of figure 5.8])

- 118 -

stand and debug. A more significant and fundamental reason, however, is that the
architecture of the TMS320C25 and other digital signal processors is not particularly

suitable for the implementation of interval arithmetic.

5.6. Conclusions

The results presented in this chapter for the hardware implementation of the inter-
val FTF algorithm are an important confirmation of the validity of the software
simulation results. They demonstrate the feasibility of the interval fast RLS algo-

rithms for application to real time systems

When considering the performance of the hardware implementation, there are two
important aspects - the long term stability of the solution and the short term accu-
racy of it, both of which are influenced by the limited precision of the arithmetic
used. From the results, the long term stability of the algorithm is good. After con-
vergence of the algorithm, the filter error remains at a low level for hundreds of

thousands of samples, indicating that interval arithmetic successfully prevents the
divergence of the algorithm due to riumericél errors. The short term accuracy of the
solution is also acceptable, resulting in an eye diagram which shows an ‘open’ pat-
tern, indicating successful equalisation. It is believed, however, that the accuracy of
the solution could be improved by changing some of the scale factors used in the
fixed point implementation. The choice of an optimum set of scale factors is diffi-
cult, but one of the major successes of this implementation has been to demonstrate
that through the use of interval arithmetic, very limited precision fixed point imple-

mentations of the fast RLS algorithms are possible.

One important result obtained from the hardware implementation which could not
have been obtained by software simulation of the algorithm is the maximum speed
of operation. The maximum speed of operation of around 1200 bits/s for a

TMS320C25 implementation is suitable for some equalisation applications in

- 120 -

telecommunications, but higher speeds would be desirable to increase the number of
applications to which the system could be applied and gain the full advantages of

using a fast RLS algorithm.

Two main reasons for the fairly low speed of operation have been identified. Firstly,
the assembly language program has not been optimised for maximum speed of
operation. This is because the joint requirements of producing structured code and
minimising the number of instructions used are, to an extent, incompatible. It is
believed that optimisation of the program could result in speed increases of the
order of up to 50%, but would certaiﬁly not provide the large increase in speed

required for many applications.

The second reason for the low speed of operation is that there is a mismatch
between the architecture of the TMS320C25 DSP and the algorithm which is to be
implemented on it. One of the most important instructions on any DSP is the multi-
ply and accumulate instruction. This operatioﬁ is extremely common in many signal
processing techniques, such as convolution, correlation and recursive and non-
recursive filtering. It is also important in the fast RLS algorithms which rely on
implementing non-recursive filters to calculate forward and backward prediction
errors, as well as to perform the filtering of input data. Unfortunately, as the
TMS320C25 has only a single accumulator, a single cycle multiply and accumulate
instruction cannot be performed using interval arithmetic and a very significant
overhead is incurred in swapping the accumulator to temporary storzfge in data
memory and performing multiplications and 32 bit long additions as separate
instructions. The interval multiply and accumulate operation, which is performed as
part of the macro "scprod” requires 82 instruction cycles and represents a significant
contribution to the total time required to perform one iteration of the algorithm, as

it is performed from within various loops.

It is of interest to note that this problem is not only relevant to interval arithmetic.

- 121 -

Any application which requires the use of complex numbers will be similarly

affected and so this problem is of considerable importance.

Two solutions to the architectural problem are proposed : the use of a twin proces-
sor system which would make available two accumulators or the use of an interval
coprocessor with a conventional DSP chip to perform the computations. The feasi-

bility of the coprocessor is considered in detail in the next chapter.

-122 -

6 An Interval Arithmetic Coprocessor
for the TMS320C25

6.1. Introduction

One way of improving the performance of ;he DSP implementation of the interval
arithmetic fast RLS algorithm presented in the previous chapter would be to
develop a coprocessor device to provide hardware support for the interval arithmetic
operations. In this chapter, a design for such a device will be examined and the

feasibility of the design and likely performance will be discussed.

The coprocessor chip is designed to connect to the DSP address and data buses and
to appear to the processor like a number of input and output ports. As the copro-
cessor is accessed using the processor’s IN and OUT instructions, only one 16 bit
transfer of data either to or from the coprocessor is possible in a single instruction
cycle. For this reason, it is not worthwhile to implement operations such as interval
addition and subtraction on the coprocessor, as they can be performed more rapidly
using the main DSP. The design philbsophy has, therefore, been to provide
hardware support for interval multiplication and in particular, to develop a
hardware architecture which provides for the rapid multiply and accumulate opera-

tions using interval arithmetic to implement a fast RLS algorithm.

An advanced software package was used to develop the design for the coprocessor.

The package was developed under the Silicon Architectures Research Initiative

-123 -

(SARI) programme[129] at the University of Edinburgh. It enables the designer to
"develop rapdily digital very large scale integration (VLSI) technology devices. The
tools allow a designer to proceed automatically from a description of the behaviour
required of a device to a gate level description of the structure required to imple-
ment the device. The tools allow the designer to have a large degrée of control over
the translation from behavioural description, which is a high level language descrip-
tion of the functions required of the device to structural layout to enable the design
to be optimised in different ways. Starting with the same behavioural description, it
is possible to use this flexibility to develop a device with the minimum possible
number of gates, or the maximum speed of operation, or with respect to any other
optimum criteria set by the designer. The tools automatically ensure the logical
correctness of the design and carefu‘lly check that timing specifications for each
component in the resulting structure are met, eliminating rriany of the errors which
wduld be g_enerated by a manual design process. The tools also support hierarchical
designs and a design may be structured in a manner analogous to structured

software programming.

In this chapter, two levels of the design of the coprocessor chip will be considered.
The lower level of the design involves the development of an interval multiplier,
which is simply a component which takes the endpoints of two interval§ as inputs
and gives the endpoints of the product of these intervals as its output. The higher
level of the design handles all of the communications with the TMS320C25. It pro-
vides all of the registers and logic required to interface with the DSP address and
- data buses, has two accumulator structures and also has, as one of its components,

the interval multiplier, which is synthesised at the lower level.

124 -

6.2. The SARI Toolset

The central aim of the SARI toolset[130] is to enable the designer of a complicated
VLSI system to proceed rapidly from an algorithmic description of the computations
and functionality required to a gate-level structural configuration. In so doing, the
toolset ensures that a logically correct design is produced, assuming that the original

algorithmic description is error-free.

It is clear that for any algorithmic description of a process, there will be a great
number of possible structures, all of which perform the process. The choice of an
optimal structure depends to a large extent upon the particular compromises and
constraints which are necessary. Depending upon the application, a designer may
wish to generate a design which minimises component cost, maximises processing
speed, or which has the lowest possible power consumption. The toolset, therefore,
allows the designer a large amount of freedom in the design process, rather than
attempting to automate it completely. Hence, there is a high degree of interaction
during the task of conversion from an algorithmic to a structural description, in
which many of the creative design decisions have to be made by the designer.
Moreovér, the netlist which is finally produced by the tools is technology indepen-
dent. It is simply a description of a digital logic configuration which is one imple-
mentation of the algorithm required. The conversion from this netlist to a physical
silicon layout can be performed by a conventional silicon layout package, allowing
complete freedom in the technology of the actual gates used to realise the netlist

structural description.

The design process begins with the development of an algorithmic description. The
description is written in the VHSIC hardware description. language (VHDL)[131]
"~ which was developed as part of the very high speed integrated circuit (VHSIC) pro-
gramme by the United States Department of Defence. The VHDL language sup-

ports both behavioural and structural descriptions of electronic hardware, but for

- 125 -

algorithmic specification, only the behavioural parts of the language need be used;
The VHDL description for the coprocessor is listed in appendix E. Around 200
lines of VHDL source code were developed to describe the coprocessor and interval
multiplication. The benefit of specifying the algorithm in VHDL is that it is possible
to simulate directly from the VHDL program, using the Standard VHDL 1076 Sup-
port Environment (VSE)[132] The correctness of the algorithmic statement of the
problem can, therefore, be checked and the performance of the device can be veri-

fied before the design process proceeds.

After simulation, the next stage to be undertaken whg:n using the SARI toolset is
translation from VHDL to an intermediate SARI language known as Babble. This »
intermediate representation lists all of the operations which have to be performed so
as to carry out the computations of the algorithm, as well as the signals that each of
these operations must use as inputs and generate as outputs. The translation from
VHDL to Babble is performed completely automatically. The Babble representation
is understood byAthe SARI synthesis tool, which is used to perform the rest of the

design process.

The first stage of this process is resource selection, in which each of the operations
in the algorithm is matched to a physical resource such as an adder or multiplier.
The matching may be performed either automatically,‘ or the user may manually

match operations to specific resources, so as to meet the design goals.

Having defined which resource is used for each operation, the next stage is to
schedule the use of the resources. The main tool in doing this is the resource time
(R/T) graph. This is a chart in which the horizontal axis identifies each of the avail-
able resources and the vertical axis represents time. A shaded area on the R/T
graph indicates that a resource is in use at a given time. An important design rule is
that only one operation may be scheduled on a single resource at any one time. The

SARI synthesis tool enforces this and ensures that the scheduling is valid. It sup-

- 126 -

ports a comprehensive model of time which venables setup, hold and reuse timés for
resources to be specified. For pipelined resources, the reuse time may be less than
the execution time. Initially, the resources are allocated so that each operation is
given a different resource and ASAP (as soon as possible) scheduling is used, so
that as soon as all of the signals required to carry out an operation are a\-/ailable, it
will be performed. This allocation generally gives a configuration which will operate
very rapidly, but which would require an unreasonably large area of silicon, as it
uses a very large number of resources. The design prbcess can then proceed by
binding several operations to a single resource. The resource may, therefore, Ee
reused, resulting in a design which uses fewer resources, but which may not operate
as quickly. When the binding is altered in this way, the design must be rescheduled

to ensure that valid timing is again obtained.

When the designer is satisfied with the resource binding and 'scheduling, the next
stage is memory synthesis, in which the various storage requirements of the algo-
rithm are created. The memory resources are random access memories (RAM),’
which may have multiple ports. A location in a RAM resource must not be reused
until the value stored in it has been read and is no longer required. Moreover, each
data port on the RAM will only support one access (read or write) at any clock

cycle. -

Having generated and allocated memory components, the designer proceeds by
communications planning and synthesis. This stage involves connecting the resources
together, using wires, multiplexers and tri-state buffers as required. This process

may be performed automatically by the toolset.

At this stage of the design process, a fully connected data processing network has
been completed, but two design steps remain. The first is address generation, in
which local address generators are designed, so as to ensure that the memory which

has been synthesised has the correct locations accessed at the correct times. The

2127 -

second requirement is that of control synthesis, in which a finite state machine con-
troller is generated, to provide control signals for the various components used in
the design, such as tri-state buffers and multiplexers, as well as more complicated
components, such as arithmetic logic units (ALUs), which may have simple opera-
tions such as additions bound to them. Unfortunately, version 4.2 of the SARI
toolset does not support all of these design steps and they would either have to be

performed manually by the designer, or by a later version of the SARI tools.

6.3. Functions of the Coprocessor

Table 6.1 and Figure 6.1 show the coprocessor as it appears to the DSP. The
coprocessor has a chip select input, CS , which must be high to access the device.
The R/W input to it must be low during read operations and high when Writing to
the device. It also has an address bus, used by the coprocessor to determine which
interval register is to be accessed and input and oﬁtput data buses, "w_data" and
"r_data" respectively. For a practical design, these buses would be combined on to a
single bidirectional data bus, using the R/W signal to determine the direction of

data transfer.

Internally, the coprocessor has a number of registers. By writing to locations 0 to 3,
it is possible to load the 16 bit wide registers "opl_reg", "op2_reg", "op3_reg" and
"op4_reg”, which contain the endpoints of the interval to be multiplied. The shift
control register, "shift_reg", is located at address 5 and a value may be written to it
to determine the shift which will be applied to the accumulatofs so as to form tﬁe
results. A control register at location 4 enables various functions to be selected on
the coprocessor. Writing the value ‘1’ to the control register zeros both of the accu-
mulators and writing the value 2’ to it causes the device to perform an interval mul-
tiplication and add the result to the existing contents of the accumulator. The accu-

mulator contents are then transferred to the result registers "res_Oreg” and

- 128 -

"res_lreg”, using a left shift controlled by the contents of the "res_shift" register. The
- results can be accessed by reading from the locations 0 and 1, which give the con-

tents of “res_Oreg" and "res_lreg" respectively.

6.4. Design of the Interval Multiplier

Figure 6.2 shows the control flow graph for the interval multiplier. It is very simple,
consisting of a single block of computation which takes four inputs and generates
the interval product of these inputs, giving two outputs. This simplicity in control
flow is because the behavioural description of the pfocedure does not contain any

conditional statements or loops.

The diagrams in this chapter are produced directly from screen displays which were

generated while using the SARI toolset.

Figure 6.3 shows the structure which is initially associated with the interval multiply
behaviour before synthesis of memory locations, address generators, type converters,
communications and control -components. The figure» shows the structure as consist-
ing of four Iﬁultipliers and two compone;lts, designated "find_min" and "find_max".
The behavioural code describes interval multiplication, using
[a',a*]x[b!,b*]=[min(a'b! ,a'b* ,a* b ,a*b*), . [6.1]

" max(a'b’,a'b*,a* b’ ,a*b*)]

directly, the four multipliers being required to calculate the four products
a'b',a'b* ,a*b’' and a*b*, and the two components "find_min" and "find_max"
being required to choose the largest and the sma'lllest of the products respectively.
These components represeﬁt lower levels of the design hierarchy, which consist of a

number of comparison operations.

A resource/time graph for the computational block of the interval multiplication

design may also be generated. Figure 6.4 shows the initial allocation of resources for

-129 -

- 0El -

~Joss3001doo 3y Joj yied mop we [°9 aandig

TEp ™M

Saip~do
Fa1] "salle 1Tys : 7 AI_
8a¢~do
Tardning
TeAzu]
¥ » moumlao
82107 saife BGE+ 7
8a11~do]
snq e1ep”I
U
[ssamppe
0
2 e
3 Yo
o)
- &
uIEp M Ai.l A -———___ M
g
r - elepT1

Location Read

Write

Register Name Function

Register Name

Function

0 res_Oreg Lower endpoint

of result

opl_reg

operand 1

lower endpoint

1 res_lreg Upper endpoint

of result

op2_reg

operand 1

upper endpoint

op3_reg

operand 2

lower endpoint

op4_reg

operand 2

upper endpoint

control

‘1’=zero accumulator
2’=multiply
& accumulate

‘other’=no operation

res_shift

left shift for

calculating results

Table 6.1 Operation of the interval arithmetic coprocessor.

- 131 -

interval_multiply

Figure 6.2 Control flow graph for the interval multiplication procedure

-132 -

interval _multiplye

R {find_max/149) {find_min/136) {i_mull/93)
& &
& O
o> & & 5
> O find_max O O find_min S i_mull LS
1 1 1
Ne o & o 9 0
O of O 0 1
6 & 7 3 0
{i_mul1/93) (i_mull1/93) {i_mull/93)
> O & &
> O i_mull > O i_mull S O i_mull 253
& U s U4 !
0 0 0
0 0 1
9 8 1

s

Figure 6.3 Initial structure of the interval multiply component

- 133 -

this block. Four separate multipliers are assumed to be available and the four pro-
ducts required are formed by a parallel process. This may be too costly in terms of
hardware utilisation and so, the four multiplication operations may be scheduled to
occur serially on a single multiplier. Figure 6;5 shows the R/T graph in these cir-
cumstances, noting that the processing operation now takes a considerably longer

time.

Having bound the operations to the resources as required, it is now possible to syn-
thesise the memory components, address generators, type converters, communica-
tions and control circuitry required to complete the structure. Figure 6.6 shows the
structure which is obtained using the four multiplier R/T' graph. of Figure 6.4. The
diagram shows the four integer multipliers denoted by the boxes marked "i_multl”
and also the componenets "find_min" and "find_max", which find the minimum and
the maximum of their four inputs. The SARI toolset has added a number of com-
ponents including two registers, which store the result of each interval multiplication
opeartion and a number of type converters, denoted by the boxes marked "etc" to

enable the various components to be connected together.

Figure 6.7 shows the structure resulting from synthesis of the design with the single
multiplier R/T graph of Figure 6.3. A number of additional registers have been
allocated to the design, so that all four multiplications which are required to be per-
formed can beA scheduled onto a single physical multiplier.’ The result of each of the
multiplication operations is stored until all four products are available. The com-
ponents "find_min" and "find_max" are then used to compute the interval arithmetic

result, which is then stored by reusing two of the registers.

This completes the structural design of the interval multiplier. This component is
used as part of the higher level design, which includes all of the registers and other

components shown in Figure 6.1.

- 134 -

oL &

Lo Jo Lol Lo d
[N T £

[FER W | N I
oo

o _L_J_ L

»
T L - J--C

'

L Ry U (SR N R D R
'
}

ar
m

-p
am
ln ll.lr lnlr

-p
N4 Ta

-]
-m.
X

i i
Ng Ng
fy

n,

1
n4
1

Y1

i

Fl
rTm
l4

4
|

Jl eu
Iei
al' r‘al a]] |] | }]

1
r

4y &
e‘tl

i
ree
+8

[-)
1

i

e
r

ar

m

ar

p ps
3——‘-—‘--‘-—[-

-0p

a
.
t$
n
%
p:
]
|

e
pa

[
1

-p
ra
a,

i
1

]
L s N ot
1

i
Mg Ng
“p
r %a
m
rqr
r

1
Mg
pa pa
am

i
Mg

i

-135 -

Figure 6.4 Initial resource time graph for the interval multiplier

Figure 6.5 Resource/time graph after rebinding to schedule multiplications to occur sequentially on a single multi-

plier.

- 136 -

interval_multipiye ?

T - =—ﬁq . .
(r‘e?mter/ 67> (etc/113|} J(l_muliftﬁ) Li_mull/,l%) (etc/j_.l_lii‘“L
1 }‘egistegﬁ - | etc %"_z.: i_mullg :i_mullg 4 ete %]
8] 3 o 8 1 -
I —
Q e N —t— AY=T¢ £
(wﬂ.} (Mﬂ.) (e_t_qii_]ﬁ!f) (etl_ilzi) (find max/J1_49)
= f
At 4 etc qr b - etc iv— etc é«-- etc i find_max
1 5 g 7 6
_(i;__rgl_.:_ll_/SLZ)_‘ (i_mu11/913) (etc/iOB}) (et_c/_l_ig‘i) (Zone_Contro}ler/o
0 0 0 1 . 4
[3 i_mully 2 imullyr etc g~ etc of—one_Controller o
9 ‘ 1 5 3 8

(etc/iogi) [¢{find_min/? 38)_(etc/113§)—(re ister/ %8?)Zone_tontro} ler/e

1
— 0 1 n . 4
etc g._.[' find_mig etc 3 wegister—Zone_Controller
7 3 7 q | 7 | g

Figure 6.6 Structure of the interval multiplier, using 4 integer multipliers.

-137 -

(etc/1141)—interval _multiplye-(etc,/1159)

—{etc/1135) {i_mull/93)
T etc, }_ etc }_1 { register % etc % i_mull %
3 4 8 6 1
8 4 1 2 1
l—(register/967)—F—=(etc/1153)=(SYNTHESISED_COMMe(f ind_max/143)S(SYNTHESISED_COMM
|
. 1 I == 1 1
T | register of T stc 4[SYNTHESISED ClgMSTy find_max orSYNTHESISED_COMMS]T
8 5 0 8
0 5 6 3
{etc/1147) =r==(etc/1171) {etc/1123) {etc/1165)
1 1 1 1 1
etc 11 1] etc 1 1 etc 14 etc 1h
5 7 3 2 6
0 4 2 6 8
SYNTHESISED_COMMe.reqister/967)=(reqister/967)—H (etc/1116) [T (find_min/136)
| ’ . 1] ' l 1|85) o1
ISYNTHESISED_CGIMS register 0'—'-‘ register o etc ¢ find_min or
2 8 8 2 0
n 7
3 3 2 r/eZone_Controller/s

{Zone_Controll

1]

JF
Zone_Control lier Zone_Controller

7 2
3 Y

Figure 6.7 Structure of the interval multiplier, using 1 integer multiplier.

- 138 -

6.5. Top Level Design of the Coprocessor

The control flow graph for the top level of the coprocessor architecture is shown in
Figure 6.8. It consists of a number of computational blocks corresponding to dif-
ferent conditional instructions in the description-of the behaviour of the coprocessor
device, which in turn correspond to the different operations available using the

coprocessor chip, shown in Table 6.1.

Each of the computational blocks has an R/T graph, but due to the large number of
blocks, these graphs are not shown. Most of the blocks consist of a single operation
and therefore, no rescheduling of resources can be performed. The exception to this
is the computational block which adds to the existing values in the accumulator and
which left shifts the new accumulator values, which are then transferred to the result
registers. This computation requires two add and two shift operations, each of
which could either be performed using a single resource sequentially, or by using
two identical resources in parallel. In this implementation, parallel resources were

used for greater speed of operation.

Memory, address, type converter communications and control synthesis may be per-

formed, yielding a structural implementation for the coprocessor device.

6.6. Feasibility of the Design

To yield a worthwhile increase in speed, the coprocessor would have to be capable
of forming an interval product in around 10 instruction cycles. This would
correspond to an increase in speed of around 6-10 times as compared with the

software arithmetic routines "s_mult”, "scprod" and "msc” described in the previous

- 139 -

198\

process

7
19
process

if statement body

pasSS =+ .l

gtatement boezment boezase statement boesment boeament boe
g SN’ Meagein” N’

A
if statement body

B i
case statement boe : Y

98]
3
if statement body.” ol

4

process

469 o
if statement body

508 i 494 1

case statement boeement boe
S

¥ 0
47
process
N

Figure 6.8 Control flow graph for the coprocessor chip.

- 140 -

chapter. If it is assumed that each regist.er transfer to or from the coprocessor
requires one instructioﬁ cycle, then four instruction cycles, or 400ns are required to
load the four operand registers prior to performing the interval multiplication. This
leaves a period of 600ns to form the interval product and add it to the contents of
the two accumulators. There would also be an additional overhead of 3 instructions
per scalar product operation, to load the shift control register and to read the two
result registers. Therefore, the total time to perform an N point scalar product

operation would be around 10N +3 instruction cycles

Multipliers‘a‘re available which can form a product in less than 100ns, such as the
multiplier built in to the TMS320C25 which uses 1.5um CMOS technology and so,
the single multiplier version of the design, shown in the R/T graph of Figure 6.5
would yield the speed necessary. Alternatively, it would be possible to construct the
fouf multiplier version of the coprocessor, which uses the R/T graph of Figure 6.4.
This device could probably perform an interval multiplication in around 6N +3

instruction cycles, including data transfers to the coprocessor.

The design could, therefore, yield a very worthwhile increase in speed for the inter-
val FTF algorithm. It seems likely that the maximum data rate would be increased
by a factor of 5-8, making the hardware adaptive filter suitable for a wider range of

applications.

6.7. Conclusions

The feasibility of developing a vector product coprocessor for a digital signal proces-
sor using VLSI technology has been demonstrated. Advanced software tools have
greatly speeded up the design process and have made it easier to proceed from a

description of the behaviour of the coprocessor to a structural implementation.

Initially, it had been hoped to devélop a dedicated device for the entire interval

- 141 -

arithmetic fast RLS algorithm. Unfortunately, the resultirig design proved to be very
complicated and although the SARI toolset could have synthesised a structure, it
would probably not have been possible to implement it using current technology.
The coprocessor presented in this éhapter gives some hardware support for the inter-
val arithmetic algorithm, but does not go to the extreme of attempting to implement
the interval arithmetic FTF algorithm entirely in hardware. It is, therefore, a sensi-

ble compromise, given the current level of VLSI technology.

- 142 -

7 Conclusions

7.1. Achievements of the Work

The significant and original contribution of the work presented in this thesis has
been the development of a new method by which the fast RLS algorithms may be
stabilised, making use of interval arithmetic. This has complemented the range of

existing stabilisation techniques.

The stabilisation of the fast RLS algorithms is by no means an easy task. Firstly, the
finite precision errors which cause the divergence are the result of a non-linear trun-
catior; process. For this reason, even a probabilistic analysis of the outputAfrom a
single fixed point multiplier is difficult. The organisational complexity of the fast
RLS algorithms contributes further to the difficulties encountered in developing and
analysing a suitable stabilisation procedu‘re. Due to these difficulties, many existing
stabilisation procedures do not offer any guarantee of absolﬁte stability. Simulation
" results for the existing methods will generally demonstrate a very worthwhile
improvement in robustness for particular input signals, bﬁt canﬁot offer proéf of sta-
bility. It is partly for this reason that few practical adaptive filtering systems have
_-been developed which have made use of the fast RLS adaptive algorithms. System
designers are understandably unwilling to make use of any procedure to stabilise the

fast RLS algorithms unless they can be certain about its effectiveness.

- 143 -

The appeal of interval arithmetic is that, dﬁe to the endpoint rounding scheme, the
interval calculated will contain the infinite precision result of any calculation. This
means that the interval technique can be guaranteed to give numerically stable per-
forma;nce and provided that the design constants associated with the rescue pro- '
cedure are correctly chosen, the algorithms will also give useful performance. This
guarantee is the main advance which has been gained by the use of interval arith-
metic. Most other stabilisation procedures which have been proposed have relied on
simulation results to demonstrate that more stable performance is obtained. Whilst
many of the improvements in stability demonstrated in this way are very
worthwhile, it is by no means certain that divergence will never occur. Using inter-

val arithmetic, however, a guaranteed maximum error limit can be attained.

Simulation results have been presented which have confirmed the stability of the
interval methods and have also demonstrated that there is no significant degradation
in performance when the interval fast RLS solution is compared with the conven-
tional RLS solution, which is assumed to give an exact least squares solution to the
problem. A number of important configurations with practical applications have
been demonstrated, including adaptive system identification and adaptive equalisa-
tion. Both time varying and non time varying problems were considered, so as to
ascertain that both the'tracking performance and the steady state accuracy of the
algorithms are not significantly affected by interval arithmetic and the associated

reinitialisation process.

Of particular importance to cost sensitive-apﬁlications is that the interval FTF algo-
rithm may be implemented using low accuracy fixed point arithmetic and will still
give acceptable performance. While the 16 bit implementations gave good perfor-
mance, it is believed that this is close to the minimum accuracy at which the inter-
val FTF algorithms could be realised. It is likely that a 24 or 32 bit wordlength
would yield excellent performance, with the potential to be even better than 32 bit

floating point arithmetic, provided that the scale factors are appropriately chosen.

- 144 -

Interestingly, the Motorola DSP 56000 processor offers 24 bit fixed point arithmetic
and so may be better suited to fhis particular application than the Texas Instruments
TMS320C25 processor used for the hardware realisation. However, the use of fixed
point arithmetic with fast RLS algorithms has not been previously documented and

so the 16 bit implementation is particularly significant.

7.2. Limitations and Areas for Future Work

Perhaps the most serious limitation to the use of interval arithmetic is its increased
computational complexity compared with single valued real number arithmetic.
Interval addition and subtraction require two real number' operations to be per-
formed. If the algorithm of[117] is used, then interval multiplication may be per-
formed with an average of 2.4 real number multiplications, but there is an addi-
tional overhead involved in making the decisions for the conditional part of this
algorithm. The penalty for obtaining stable performance using the fast RLS algo-
rithms is, therefore, considerably increased computational complexity. The complex-
ity remains, however, _lin'early dependent upon the length of the adaptive filter and

so, the advantages of using a fast algorithm are not lost.

Anothér possible criticism of the interval arithmetic stabilisation method is that it
reinitialises the algorithm on the basis of a pessimistic worst case error analysis. This
means that reinitialisation takes place considerably more frequently than may be
strictly' necessary. One alternative which could be considered is to replace the
rounding procedure for the endpointg with a probabilistic one, in which there is a
small probability that an endpoint will actually be rounded in the wrong direction.
This could lead to a more realistic model of the truncation errors, but it also intro-
auces two additional problems. Firstly, the more complicated rounding procedure

adds further to the complexity of the interval algorithm. Secondly, the guarantees

associated with using a worst case analysis are lost and so, it becomes difficult to be

- 145 -

certain of the absolute stability of the algorithm. Furthermore, the simulation results
have demonstrated that there is little degradation in performance caused by the reg-
ular reinitialisation of the existing interval method and so, there would be little to

be gained by this more complicated rounding arrangement.

One area for further work which would be worthwhile would. be a comparative
study of the various stabilisation methods. Such a study would have to compare the
complexity of the different methods, the relative accuracy of the solution produced
by each algorithm and quantify how stable the different procedures are. It would
also be of interest to see how suitable each of the stabilisation procedures is for
hardware implementation, particularly when using fixed point arithmetic. Few
results have been published regarding fixed point implementations of the fast RLS
transversal filter algorithms, but this information is necessary so as to develop cost

effective realisations of the algorithms.

Once these comparisons have been made and the characteristics of the different
ways of implementing fast RLS algorithms are better 'understood, then practical

applications for these highly efficient algorithms should become more widespread.

- 146 -

References

10.

11.

Ljung, L., Morf, M., and Falconer, D., “Fast calculation of gain matrices for

recursive estimation schemes,” Int. J. Control, vol. 27, pp. 1 - 19, 1978.

Carayannis, G., Manolakis, D. G., and Kalouptsidis, N., “A Fast Sequential
Algorithm for Least Squares Filtering and Prediction,” IEEE Trans. Acoust,
Speech, Signal Process., vol. ASSP-31, No 6., pp. 1394 - 1402, 1983.

Cioffi, J. M. and Kailath, T., “Fast, Recursive Least Squares Transversal
Filters for Adaptive Filtering,”” IEEE Trans. Acoust, Speech, Signal Process.,
vol. ASSP-32, No 2., pp. 304 - 337, 1984.

Widrow, B. and Stearns, S., Adaptive Signal Processing, Prentice-Hall, Engle-
wood Cliffs, 1985.

Cowan, C. F.N. and Grant, P. M., Adaptive Filters, Prentice Hall, Englewood
Cliffs, 1985.

Mulgrew, B. and Cowan, C.F.N., Adaptive Filters and Equalisers, Kluwer
Academic Publishers, Norwell, Mass., 1988.

Koford, J.S. and Groner, G.F., “The use of an adaptive threshold element to
design a linear optimal pattern classifier,” IEEE Trans. Info. Theory, vol. IT-
12, pp. 42-50, Jan 1966.

Dillon, L.S., Principles of Animal Biology, pp. 275-278, Macmillan, New
York, 1965.

Zohar, S., “New hardware realisations of non-recursive digital filters,” IEEE
Trans. Compuzt., vol. CT-22, pp. 328-347, April 1973.

Herrman, O. and Schussler, HW., “Design of non-recursive digital filters

with minimum phase.,” Electron. Lett., vol. 6, pp. 329-330, 1970.

McLellan, J.H. and Parks, T.W., “A unified approach to the design of
optimum' FIR linear phase digital filters ,”” IEEE Trans. Comput., vol. CT-20,
pp. 697-701, Nov 1973.

- 147 -

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Rabiner, L.R., “Linear program design of Finite Impulse Response digital
filters,”” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 280-288, Oct 1977.

Roberts, R.A. and Mullis, C.T., Digital Signal Processing, Addison Wesley,
Reading, Mass., 1987.

Gray, A.H. and Markel, J.D., “Digital Lattice and Ladder Filter Synthesis,”
IEEE Trans. Audio Electroacoust., vol. AV-21(6), pp. 491-500, 1973.

Friedlander, B., ‘“Lattice filters for adaptive processing,” Proc. IEEE., vol. 70,
pp. 829-867, August 1982.

Honig, M.L. and Messerschmitt, D.G., Adaptive Filters:Structures, Algorithms
and Applications, Kluwer Academic Publishers, Norwell, MA., 1984.

Ahmed, N., Solon, D.L., Hummels, D.R., and Parikh, D.D., ‘“Sequential
regression considerations of adaptive filtering,” Electron. Lett., vol. 13, pp.
446-447, July 1977.. '

Parikh, D. and Ahmed, N., “A sequential regression algorithm for recursive
filters,” Electron. Lett., vol. 14, pp. 266-268, April 1978.

Johnson, C.J., Larimore, M.G., Treichler, J.R., and Anderson, B.D.O,
“SHARF Convergence Properties,”” IEEE Trans. Circ. Syst., vol. CAS-28, pp.
499-510, June 1981.

Larimore, M.G., Treichler, J.R., and Johnson, C.R., “SHARF:An algorithm
for adapting IR digital filters,”” IEEE Trans. Audio Speech Signal Process.,
vol. ASSP-28, pp. 1622-1624, Nov 1976.

Feintuch, P.L., “An adaptive recursive LMS filter,”” Proc. IEEE, vol. 64(3),
pp. 1622-1624, Nov 1976. '

Hecht-Nielson, R., Neurocomputing, Addison-Wesley, Reading, Mass., 1990.

Ruck, D., Rogers, S.K., Kabrinsky, M., O'xley, M.E., and Suter, B.W., “The
multilayer perceptron as an approximation to the Bayes optimal discriminant
function,” IEEE Trans. Neural Net., vol. 1, pp. 296-298, Dec 1990.

- 148 -

24.
25.
26.

27.

28.
29.
30.

31.

32.

33.

34.

35.

36.

Gallant, S.I., “Preceptron based learning algorithms,”” IEEE Trans. Neural
Net., vol. 1, pp. 171-191, June 1990.

Shynk, J., “Performance surface of a single layer perceptron,” IEEE Trans.
Neural Net., vol. 1, pp. 268-274, Sept 1990.

Watterson, J.W., “An optimal multilayer perceptron neural receiver for signal
detection,” J IEEE Trans. Neural Net., vol. 1 , pp. 298-300, Dec 1990.

Barto, A., Sutton, R., and Anderson, C., “Neuron-like adaptive elements that
can solve difficult learning control problems,” IEEE Trans. Syst. Man & Cyber-
net., vol. SMC-13, pp. 834-846, 1983.

Leitmann, G., Mathematics in Science and Engineering vol 5: Optimization

- Techniques, Academic Press, New York, 1962.

Leitmann, G., Mathematics in Science and Engineering vol 31 : Topics in

Optimization, 31, Academic Press, New York, 1967.

Luenberger, D., Optimization by Vector Space methods, J. Wiley & Sons, New
York, 1969.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishcehenko,
E.F., The mathematical theory of optimal processes (English translation from

Russian), J. Wiley & Sons., New York, 1962.

Widrow, B. and McCool, J., “A comparison of adaptive algorithms based on
the methods of steepest descent and random search,” [EEE. Trans. Ant. Pro-
pag., vol. AP-24, pp. 615-637, Sept. 1976.

Darwin, C., The descent of man and selection in relation to sex, Murray, Lon-
don, 1882.

Darwin, C., On the origin of species, Murray, London, November 1859.

Widrow, B. and et, al, ‘““Adaptive Noise Cancellation:Principles and Applica-
tions,” Proc. IEEE, vol. 63, pp. 1692-1716, Dec. 1975.

Clark, G.A., Mitra, S.K., and Parker, S.R., “Block Implementations of adap-
tive digital filters,” IEEE Trans. Circ. Syst., vol. CAS-28, pp. 584-592, June

- 149 -

37.

38.

39.

40.

41.

42.

43.

44.

46.

47.

48.

1981.

Widrow, B. and et, al, “Stationary and Non-Stationary learning Characteris-
tics of the LMS adaptive Filter,” Proc. [EEE, vol. 64, pp. 1151-1162, 1976.

Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice-
Hall, 1974.

Godard, D., “Channel Equalisation using a Kalman Filter for Fast Data
Transmission,” IBM J. Res. Develop., vol. 18(3), pp. 267-273, May 1974.

Cowan, C.F.N., “Performance comparison of finite linear adaptive filters,”
IEE Proceedings Part F, vol. 134(3), pp. 211-216, June 1987.

Faden, D., “Tracking properties of adaptive signal processing algorithms,”
IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-29, p. 439, June 1981.

Bershad, N. and Macchi, O., “Comparison of RLS and LMS algorithms for
tracking a chirped signal,” Proc. ICASSP 89, Glasgow, May, 1989.

McLaughlin, S., ‘“‘Adaptive Estimation and Equalisation of the High Fre-
quency communications channel,”” Ph.D. Thesis, vol. University of Edinburgh,
1990.

Cioffi, J. M., “Limited Precision Effects in Adaptive Filtering,”” IEEE Trans.
Circuits Syst., vol. CAS-34 No 7., pp. 821 - 833, 1987.

Lucky, R., “Automatic equalisation for digital communication,” Bell Syst.
Tech J., vol. 44, pp. 547-588, April 1965.

Gersho, A., ‘“Adaptive equalisation of highly dispersive channels for data
transmission,’’ Bell Syst. Tech. J., vol. 48, pp. 55-70, Jan 1969.

Proakis, J.G. and Miller, J.H., “An adaptive receiver for digital signaling
through channels with inter-symbol interference,” IEEE Trans. Info. Theory,
vol. IT-15, pp. 484-497, June 1967.

Proakis, J.G., Digital Communications, McGraw-Hill, Singapore, 1983.

- 150 -

- 49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

59.

60.

Stremler, F.G., Introduction to Communications Systems, Addison Wesley,
Reading, Mass., 1982.

Duttweiler, D.L., “A twelve channel digital echo canceller,” [EEE Trans.
Comm., vol. COMM-26, pp. 647-653, May 1978.

Glover, J R, ‘“‘Adaptive noise cancelling applied to sinusoidal interferences,”
IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-35, pp. 481-491, Dec
1977.

Atal, B.S. and Schroeder, M.R., ‘“Adaptive predictive coding of speech sig-
nals,” Bell Syst. Tech J., vol. 49, pp. 1973-1986, Oct 1970.

Atal, B.S. and Schroeder, M.R., “Predictive coding of speech and subjective
error criteria,” IEEE Trans Acoust. Speech Signal Process., vol. ASSP-27, pp.
247-254, June 1979.

Asher, R.B., Andrisani, D., and Dorato, P., “Bibliography on Adaptive Con-
trol Systems,” Proc. IEEE, vol. 64, p. 1266, August 1976.

Mishkin, E. and Braun, L., Adaptive Control Systems, McGraw-Hill, New
York, 1961.

Belman, R., Adaptive Control Processes:A guided tour, Princeton University
Press, Princeton, NJ, 1961.

Sworder, D., Optimal Adaptive Control Systems, Academic Press, New York,
1966.

Anstorom, K.J. and Wittenmark, B., Adaptive Control, Addison-Wesley,
Reading, Mass., 1989.

Honig, M.L., “Echo cancellation of voiceband data signals using RLS and
stochastic gradient algorithms,” [EEE Trans Comm., vol. COMM-33(1), pp.
65-73, Jan 1984.

Hunta, J.C. and Webster, J.G., “60Hz interference in electrocardiography,”
IEEE Trans. Biomed. Eng., vol. BME-20, pp. 91-101, March 1973.

- 151 -

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Harrison, W.A., Lim, J.S., and Singer, E., “A new application of adaptive
noise cancellation,” IEEE Trans. Acoust Speech Signal Process., vol. ASSP-34,
pp. 21-27, Jan 1986. '

Forney, G.R., “Maximum Likelihood Sequence Estimation of digital
sequences in the presence of intersymbol interference,” [EEE Trans. Info.
Theory, vol. IT-18, pp. 363-387, May 1972.

Nissen, C.W., ‘““Automatic channel equalisation algorithms,”” Proc. IEEE, vol.
55, p. 698, May 1967. '

Proakis, J.G., ‘““Adaptive digital filters for equalisation of telephone channels,”
IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 195-200, June 1970.

Sorenson, H.W., ‘“Least-squares estimation from Gauss to Kalman,” [EEE
Spectrum, vol. 7, pp. 63-68, July, 1970.

Horowitz, L.L. and Senne, K.D., “Performance advantage of complex LMS
for controlling narrow band adaptive arrays,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-29, pp. 722-736, June 1981.. '

Ljung, L., “Convergence of Recursive Estimators,” Proceedings S5th IFAC
Symposium on identification and system parameter identification, Darmstadt,
1979. '

Ljung, L., “Analysis of a generalised recursive prediction algorithm,” Automa-
tica, vol. 17, pp. 88-99, Jan 1981.

Ljung, L. and Sodstorm, T., Theory and Practice of recursive identification.

Falconer, D.D. and Ljung, L., “Application of Fast Kalman estimation to
adaptive equalisation,” I[EEE Trans. Comm., vol. COMM-26, pp. 1439-1446,
Oct 1978. |

Morf, M., Dickinson, B., Kailaith, T., and Vieira, A., “Efficient Solutions of
Covariance Equations for Linear Prediction,” [EEE Trans. Acoust. Speech,
Signal Process., vol. ASSP-25, pp. 429-435, Oct 1977.

Samson, C., “A unified treatment of Fast Kalman algorithms for identifica-
tion,” Int. J. Control., vol. 31, pp. 909-934, May, 1982.

-152 -

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Kalouptsidis, N., Carayannis, G., and Manolakis, D., “A Fast Covariance
Algorithm for Sequential Least Squares Filtering and Prediction,” IEEE Trans.
Auto. Control, vol. AC-29, pp. 752-755, Aug. 1984.

Kalouptsidis, N., Carayannis, G., and Manolakis, D., “A fast covariance type
algorithm for sequential least squares filtering and prediction,” Proc. IEEE
Conf. Decision Contr., San Antonio, 1983.

Carayannis, G., Manolakis, D., and Kalouptsidis, N., “Fast Kalman type .
algorithms for sequential signal processing,” Proc ICASSP 83, Boston, April
1983.

Carayannis, G., Kalouptsidis, N., and Manolakis, D., “‘Fast recursive algo-
rithms for a class of linear equations,” IEEE Trans Acoust. Speech and Signal
Process., vol. ASSP-20, pp. 227-239, April 1982.

Cioffi, .M. and Kailath, K., “Windowed Fast Transversal Filter Adaptive
Algorithms with Normalisation,” [EEE Trans. Acoust., Speech, Signal Pro-
cess., vol. ASSP-33, pp. 607-625, June 1985.

Cioffi, J.M., “The Block Prbcessing FTF adaptive algorithm,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-34, pp. 77-90, Feb 1986.

Wilkinson, J.H., Rounding Errors in Algebraic Processes, H-M. Stationary
Office, London, 1963.

Barnes, C.W., Tran, B.N., and Leung, S.H., “On the statistics of fixed point
roundoff error,” IEEE Trans Acoust. Speech Signal Process., vol. ASSP-33, pp.
595-606, June 1985.

Mulcahy, L.P., “On fixed point roundoff error analysis,” IEEE Trans. Acoust.
Speech Signal Process., vol. ASSP-37, p. 1623, October, 1989:

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numeri-
cal Recipes in C - The art of scientific computing, Cambridge University Press,
1988.

Levinson, N., “The Wiener RMS (Root Mean Square) Error Criterion in
Filter Design and Prediction,” J. Math. Phys., vol. Vol 25, pp. 261-278, Jan
1947.

- 153 -

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

97.

Kailaith, T., “A view of three decades of linear filtering theory,” IEEE Trans.
Info. Theory., vol. IT-20, pp. 146-181, March 1974.

Broyden, C.G., Basic Matrices, Macmillan Press, London, 1975.

Astorom, K.J. and Wittenmark, B., Adaptive Control, Addison Wesley, Read-
ing, Mass., 1989.

Mendel, J.M., Discrete Techniques of parameter estimation, Marcel Dekker,
New York, 1973.

Westlare, J.R., A handbook of numerical matrix inversion and solution of linear
equations, John Wiley, New York, 1968.

Ayres, F., Theory and problems of matrices, McGraw Hill, New York, 1962.

Second Generation TMS320 Users Guide, Texas Instruments, Dallas, Texas,
1988.

Papamichalis, P. and Simar, R., “The TMS320C30 digital signal processor,”

IEEE Micro Magazine, vol. 8, pp. 13-29, Dec 1988.

Fuccio, M.L and et, al, “The DSP32C : AT&T’s second generation floating
point digital signal processor,” IEEE Micro Magazine, vol. 8, pp. 30-48, Dec
1988.

Sohie, G.R.L. and Klonker, K.L., “A digital signal processor with IEEE
floating point arithmetic,” IEEE Micro Magazine, vol. 8 , pp. 49-67, Dec
1988.

Klonker, K.L., “The Motorola DSP56000 digital signal processor,” [EEE
Micro Magazine, vol. 6, pp. 29-48, Dec 1986.

Lin, K.S., Frantz, G.A., and Simar, R., “The TMS320 family of digital signal
proceséors,” Proc. IEEE, vol. 75, pp. 1143-1159, September 1987.

TMS320 Family Development Support, Texas Instruments, Dallas, Texas.

Lin, D.W., “On the Digital Implementation of the Fast Kalman Algorithm,”
IEEE. Trans. Acoust. Speech Signal Process., vol. ASSP-32, pp. 998-1005,

- 154 -

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

1984.

Lee, D.T.L, Morf, M., and Friedlander, B., “Recursive Least Squares Ladder
Estimation Algorithms,”” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-29(3), pp. 627-641, June 1981.

Porat, B., Friedlander, B., and Morf, M., “Square Root Covariance Ladder
Algorithms,” [EEE Trans. Automatic Control, vol. AC-27(4), pp. 813-829,
August 1982.

Shensa, M.J., “Recursive Least Squares Lattice Algorithms - a Geometric
Approach,” IEEE Trans. Automatic Control, vol. AC-26(3), pp. 675-702, June
1981.

Ling, F., Manolakis, D., and Proakis, J.G., “Numerically Robust Least
Squares Lattice Ladder Algorithms with Direct Updating of the Reflection
Coefficients,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34(4),
pp. 837-845, Aug 1986.

Ling, F. and Proakis, J.G., “A generalised multi-channel LS lattice algorithm
based on sequential processing stages,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-32, pp. 381-389, April 1984.

Cioffi, J.M., “The fast update adaptive rotors RLS algorithm,” /EEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-38, pp. 631-653, April 1990.

Ling, F., “Efficient least squares lattice algorithms based on Givens rotation

with systolic array implementation,” Proc. ICASSP’89, Glasgow, May 1989..

Gentleman, W.M., “Least squares computation by Givens transformation

without square roots,”” J. Inst. Maths. Applications, vol. 12, pp. 329-336, 1973.

Hariharan, S. and Clark, A.P., “HF Channel estimation using a Fast
Transversal Filter Algorithm,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-38, pp. 1353-1362, Aug 1990.)

Kim, D. and Alexander, W.E., “Stability Analysis of the Fast RLS Adapta-
tion Algorithm,” Proceedings ICASSP 88, vol. 3, pp. 1361-1364, New York,
April 1988.- C

- 155 -

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

Benallal, A. and Gilloire, A., “A New Method to Stabilize Fast RLS Algo-

-rithms based on a First Order Model of the Propagation of Numerical Errors,”

Proceedings ICASSP 88, vol. 3, pp. 1373-1376, New York, April 1988.

Slock, D.T. and Kailath, T., “Numerically' Stabie Fast Recursive Least
Squares Transversal Filters,” Proceedings ICASSP 88, vol. 3, pp. 1365-1368,
New York, April 1988. '

Botto, J.L. and Moustakides, G.V., “Stabilising the Fast Kalman Algorithm,”
[EEE Trans. Acoust., Speech, Signal Process, vol. ASSP-38, pp. 1342-1348,
Sept 1989. ’

Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

Callender, C.P. and Cowan, C.F.N., “Numerically Robust Implementations of
Fast RLS Adaptive Algorithms using Interval Arithmetic,” Proceedings
EUSIPCO 90, pp. 173-176, Barcelona, Sept. 1990.

Callender, C.P. and Cowan, C.F.N., “Numerically Stable Fast Recursive
Least Squares Algorithms for Adaptive Filtering using Interval Arithmetic,”
Proceedings 10th IEE Saraga Colloquium on Digital and Analogue filters and
filtering systems, pp. 5/1 - 5/3, London, May 1990.

Callender, C.P. and Cowan, C.F.N., “Numerically robust implementations of
the Fast RLS adaptive algorithms using Interval Arithmetic,” Signal Process-
ing, Submitted Jan 1991. -

Knuth, D.E.., The Art of Computer Programming, 2:Seminumerical Algorithms,
p. Chapter 4, Addison Wesley, Reading, Mass, 1969.

Kulish, U.W. and Miranker, W.L., A New Approach to Scientific Computation,
New York Academic Press, New York, 1983.

Gibb, A., “Procedures for Range Arithmetic (Algorithm 61),” Comm. Assoc.
Comp. Mach., vol. 4:7, pp. 319 - 320, 1961.

Kailath(ed), T., “Special Issue on system identification and time series
analysis,” IEEE Trans. Automat. Contr., vol. AC-19, Dec 1974.

- 156 -

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Luders, G. and Narenda, K.S., “Stable adaptive schemes for state estimation
and identification of linear systems,” IEEE Trans. Automat. Contr., vol. AC-
19, Dec 1974.

Watterston, C.C. and et, al,.“Experimental confirmation of an HF channel
model,” IEEE Trans. Communications, vol. COM-18, pp. 792-803, 1970.

Shaver, and et, al, “Evaluation of a Gaussian HF channel model,” IEEE
Trans. Communications, vol. COM-18, pp. 77-88, 1967.

Shepherd, R.A. and Lomax, J.B., “Frequency spread in ionospheric radio
propagation,” IEEE Trans. Communications, vol. COM-18, pp. 268-275, 1967.

Ehrman, L., Bates, L.B., Eschle, J.F., and Kates, J.M., “Real time software
simulation of the HF radio channel,” [EEE Trans. Communications, vol.
COM-30, pp. 1809-1817, Aug 1980.

Lin(ed.), K.S., Digital signal processing applications with the TMS320 family,
Prentice Hall/Texas Instruments, Englewood Cliffs, N.J., 1987.

Aliphas, A. and Feldman, J.A., “The versatility of digital signal processing
chips,” IEEE Spectrum, vol. 24, pp. 40-45, June 1987.

Allen, J., “Computer architecture for digital signal processing,” Proc. IEEE,
vol. 73, pp. 852-873, 1986.

Macdonald, A., “Real Time Hardware Simulator based on the TMS320C25
digital signal processor,”” B.Eng(Hons) Project Report HSP743, May, 1990.

Horowitz, P. and Hill, W., The art of electronics, Cambridge University Press,
Cambridge, 1980.

Grant, P.M., “The DTI-industry sponsored silicon architectures research ini-
tiative,” IEE Electronics & Communication Engineering Journal, pp. 102-108,
June 1990.

Sage User Manual, Silicon Architectures Research Initiative, Edinburgh, 1990.

Lipsett, R., Schaefer, C., and Ussery, C., VHDL: Hardware Description and
Design, Kluwer Academic Publishers, Norwell, Mass., 1989.

- 157 -

132. The Standard VHDL 1076 Support Environment (VSE) User’s Manual - Version
2.1 (Unix), Intermetrics Inc., IR-MD-124, Feb 1990. ‘

- 158 -

Appendix A

Original Publications

N

[1] Callender, C.P and Cowan, C.F.N. "Numerically Robust Implementations of
Fast RLS Adaptive Algorithms using Interval Arithmetic” ppl173-176, Proceedings

EUSIPCO 90, Barcelona, 1990.

[2] Callender, C.P. and Cowan C.F.N. "Numerically robust implementations of the
Fast RLS adaptive algorithms using Interval Arithmetic" pp5/1-5/3, Colloquium
Digest, 10th IEE Saraga Colloquium on Digital and Analogue filters and filtering

systems, London, May 1990.

[3] Callender, C.P. and Cowan C.F.N. "Numerically robust implementations of the
Fast RLS adaptive algorithms using Interval Arithmetic”, submitted to Signal Pro-

cessing, January 1991.

- 159 -

SIGNAL PROCESSING V: Theories and Applications
L. Torres, E. Masgrau, and M.A. Lagunas (eds.)
© Elsevier Science Publishers B.V., 1990

173

Numerically Robust Implementations of Fast RLS Adaptive
’ Algorithms using Interval Arithmetic.

Christopher P. Callender

Colin F.N. Cowan

Department of Electrical Engineering,
University of Edinburgh,
Edinburgh EH9 3JL,
Scotland, UK.

Abstract

In this paper, a new approach is presented to the stabilisation of the Fast
Recursive Least Squares adaptive filter algorithms. Using the new method,
the accumulation of numerical errors is monitored by using interval arith-
metic, rather than real number arithmetic to perform all the computations. If
the numerical error is found to be too large, then the algorithm is reinitialised
to prevent divergence. Results demonstrate the stable performance of the Fast
Transversal Filters (FTF) algorithm, using both floating point and fixed point .

interval arithmetic.

1. Introduction

Fast RLS (Recursive Least Squares) algorithms for
adaptive filtering, such as the FTF algorithm [1],
the FAEST algorithm [2], and the Fast Kalman
Algorithm [3], offer the same rapid initial conver-
gence properties as the standard RLS algorithm
[4], but offer low computational requirements. The
fast algorithms are characterised by requiring
O (N) additions and multiplies per time sample, as

compared with O (N?) for standard RLS. Their .

low computational load is of the same order as the
- popular Least Mean Squares (LMS) algorithm [S].

The reason that they have not achieved the same
widespread application in high speed real time sys-
tems is that they suffer from numerical instability
when implemented on either a fixed or floating
point processor. Small numerical errors accumulate
at every iteration of the algorithm [6] until the
solution diverges, often very rapidly, from that
which is correct. '
Attempts to stabilise the algorithms have been pro-
posed with varying degrees of success. Basically,
the stabilisation procedures can be divided into
two categories - those in which the algorithm is
reinitialised [7] and those in which modifications
are made to the algorithm [8].

Reinitialisation involves resetting certain internal
variables, hopefully before divergence occurs. The
solution of the adaptive filter just before reinitiali-
sation is passed forward using a soft constraint, so

that the adaptive algorithm does not need to
reconverge after it is reset. A design constant, nor-
mally denoted by p controls the balance between
the initial soft-constraint and the least squares
solution, The difficulty is to predict when the
algorithm requires reinitialisation. It is this prob-
lem which is addressed by the new methods intro-
duced in this paper.

. Modifications to the algorithms typically take the

form of introducing ’leakage’ factors into the
update equations in order to prevent the otherwise
unconstrained growth of numbers due to limited
precision arithmetic. Problems with this method -
are that computational efficiency is reduced, biases
are introduced to the solution, and it is often diffi-
cult to prove that the modifications provide a suffi-
cient condition for stability.

In this paper, a new form of arthmetic is
presented [9], which enables an error analysis to
be performed whilst the algorithm is running. If
the results of this analysis indicate that numerical
problems are becoming significant, the algorithm -
automatically reinitialises.

2. Theory

2.1. Interval Arithmetic (Infinite Precision)

An interval number is a range of real numbers,
bounded by lower and upper endpoints. The nota-
tion used is to write an interval in the form [a,b]

- 160 -

174

which is taken to mean
[a,b]= {x|asxsb,x€R} (1)

Thus [a,b] means all real numbers which lie
between a and b.

Arithmetic operations on intervals are then defined
by:
[a,b)+[c.d]=[a+c,b+d] (2a)
[a,b]+[c,d]=[a—d b ~c] (2b)
[a,b].[c ,d]=]min(ac ,ad ,bc ,bd), (2¢)
max (ac ,ad ,bc ,bd)|t

(a,bV[c.d]= [a ,b]. [37 —i—] (2d)

unless 0 € [c,d] in which case division is unde-
fined.

t More efficient methods for interval muitiplica-
tion exist. The signs of a,b,c and d are examined
and normally only two real multiplies are then per-
formed [10].

2.2. Interval Arithmetic (Finite Precision)

All real variables in the Fast RLS algorithms may
be replaced by intervals in such a way as to ensure
that the interval contains the exact value of the
variable. The way in which this is performed is
processor dependent. Arithmetic is implemented
using equations (2a) - (2d), but care is taken over
the direction of rounding of the endpoints, to
guarantee that the finite precision interval contains
the whole of the infinite precision interval, and
- often slightly more.

If this is done, the filter taps will also become
intervals. The difference between the upper and
lower endpoints, or width of the interval represents
the extent to which finite precision errors have
been accumulated. If any of these widths are too
large the algorithm may be reinitialised. It is also
necessary to reinitialise the algorithm if any divi-
sion is attempted in which the divisor is an interval
which contains zero.

3. Computational Efficiency

It is clear from equation (2) that the computa-
tional requirement for each interval operation is 2
real operations, except for multiplication. The
multiplication algorithm of [10] normally requires
only 2 real muitiplies, but in one case 4 are neces-
sary. The computation of lower and upper end-
points may, however, be shared between two pro-
cessors, resulting in the same speed of operation as

for non-interval Fast RLS, but with increased
hardware complexity.

4. Choice of Design Parameters

The choice of the design parameters, p, the max-
imum difference between the upper and lower
endpoint of each filter coefficient, and p, the
parameter for the soft-constrained reinitialisation
of the algorithm may be chosen as:

p2 <MMSE (3)

where MMSE is the minimum mean square error
for the adaptive filter, and

MMSE)\
= 4
Np?(1-\) @
‘where A is the RLS forgetting factor, and N is the
filter length.

5. Results

All simulations involved using the FTF algorithm
to perform system identification (Figure 1). The
‘unknown’ system was an FIR filter of length 5,
and both it and the adaptive filter were excited by
coloured Gaussian noise (eigenvalue ratio - 20).
The output from the ’unknown’ system was cor-
rupted by small amounts of additive white Gaus-
sian’ noise. This signal was the desired response
input to the adaptive system,

In all graphs, the tap weights were found by taking
the mean of the upper and lower endpoints of the
tap intervals. The norm of the tap error vector
was then calculated. This was converted to a dB
scale.

input ~ unknown .
- system ... noise
A
_adaptive | -
- fitter: . o

Figure 1: System identification

using the FTF adaptive algorithm

Graph 1a and 1b show the performance of the
FTF algorithm, with no form of stabilisation using
64 bit floating point and 16 bit fixed point arith-
metic respectively. The fixed point simulations
used a 32 bit long accumulator for intermediate
results, as is common on many 16 bit DSP chips.

- 161 -

Norm Tap Error (dB) - Floating Point

0 1000 2000 3000 4000 5000
Graph 1a Time(Samples)

175

Norm Tap Error (dB) - Fixed Point

0 1000 200(’)1“‘ 322[(3)14000 5000
Graph 1b ime(Samples)

No rescues
A=0.98, SNR=45dB, 5,000 iterations.

- No rescues
A=0.98, SNR=45dB, 5,000 iterations.

Norm Tap Error (dB) - Floating Point

Norm Tap Error (dB) - Fixed Point

0
it -10 1
{ -20
-30 i
-40
-50
1 -60
=70 :
0 4000 8000 12000 16000 20000 0 4000 8000 12000 16000 20000
Graph 2a Time(Samples) Graph 2b Time(Samples)
Rescued if rescue variable is negative [1]. Rescued if rescue variable is negative [1].
A=0.98, u=1.0, SNR=45dB, 20,000 A=0.98, n=0.5, SNR=45dB, 20,000
iterations. iterations.
Norm Tap Error (dB) - Floating Point Norm Tap Error (dB) - Fixed Point
0 : 0 .

0 4000
Graph 3a

8000 12000 16000 20000
Time(Samples)

8000 12000 16000 20000
Time(Samples)

0 4000
Graph 3b

Interval FTF
p=0.005, A=0.98, n.=1.0, SNR=45dB,
20,000 iterations.

Interval FTF
p=0.005, »=0.98, n=0.5, SNR=45dB,
20,000 iterations.

- 162 -

176

Norm Tap Error (dB) - Floating Point

. 0.6 0.8 1.0
Time(Samples) x10e6

0 0.2 0.4

Graph 4a

0
Graph 4b

Norm Tap Error (dB) - Fixed Point

0.4 0.6 0.8 1.0
Time(Samples) x10e6

Long term performance of Interval FTF. One
million iterations (every 500th point plotted).
p=0.005, x\=0.98, n=1.0, SNR=45dB.

Long term performance of Interval FTF. One
million iterations (every 500th point plotted).
0.005, A=0.98, n=0.5, SNR=45dB.

Graphs 2a and 2b demonstrate the use of the res-
cue method outlined[1] to stabilise the algorithm,
again using 64 bit floating point and 16 bit fixed
point numbers. Little improvement is apparent on
the 16 bit results, and even the 64 bit floating
point version eventually diverges.

Graphs 3a and 3b show the interval method,
which was applied by reinitialising if the width of
any of the tap intervals was greater than 0.005.
The performance of the 16 bit fixed point

algorithm and the 64 bit floating point algorithm is
almost identical.

Finally graphs 4a and 4b illustrate the long term
stability of the interval method using both floating
and fixed point arithmetic for one mullion itera-
tions.

Other simulations have demonstrated the successful
application of interval techniques to the Fast Kal-
man algorithm.

5. Conclusions

Interval arithmetic provides a way to monitor the
accumulation of numerical errors. This may be

used to reinitialise the Fast RLS algorithms before

divergence occurs, yielding numerically stable per-
formance.

The increased computation of the interval methods
is a disadvantage, but the number of operations is
still proportional to the filter length.

References

1. Cioffi, John M. and Kailath, Thomas, “Fast,
Recursive Least Squares Transversal Filters
for Adaptive Filtering,” IEEE Trans. Acous,

Speech, Signal Process., vol. ASSP-32, No 2.,
pp. 304 - 337, 1984.

2. Carayannis, George, Manolakis, Dimitris G.,
and Kalouptsidis, Nicholas, “A Fast Sequen-
tial Algorithm for Least Squares Filtering and
Prediction,” IEEE Trans. Acous, Speech, Sig-
nal Process., vol. ASSP-31, No 6., pp. 1394 -
1402, 1983.

3. Ljung, Lennart, Morf, Martin, and Falconer,
David, “Fast calculation of gain matrices for
recursive estimation schemes,” Int. J. Control,
vol. 27, pp. 1 - 19, 1978.

4. Cowan, Colin F.N. and Grant, Peter M,,
Adaptive Filters, Prentice Hall, Englewood
Cliffs, 1985.

5. Widrow, B. and Stearns, S., Adaptive Signal
Processing, Prentice-Hall, Englewood Cliffs,
1985. ‘

6. Cioffi, John M., “Limited Precision Effects in
Adaptive Filtering,” [EEE Trans. Circuits
Syst., vol. CAS-34 No 7., pp. 821 - 833,
1987.

7. Lin, D.W., “On the Digital Implementation
of the Fast Kalman Algorithm,” IEEE. Trans.
Acoust. Speech Signal Process., vol. ASSP-32,
pp- 98-1005, 1984. :

8. Slock, D.T.M. and Kailath, T., “Numerically
Stable Fast Recursive Least Squares Transver-
sal Filters,” Proc. ICASSP 88 Conf., vol. 3,
pp- 1365 -1368, 1988.

9. Moore, Ramon E., Interval Analysis,
Prentice-Hall, Englewood Cliffs, 1966.

10. Gibb, Allan, “Procedures for Range Arith-
metic (Algorithm 61),” Comm. Assoc. Comp.
Mach., vol. 4.7, pp. 319 - 320, 1961.

- 163 -

Numerically Stable Fast Recursive Least Squares Algorithms for
Adaptive Filtering using Interval Arithmetic

Christopher P. CallenderT

Colin F.N. Cowan'

Introduction

Fast Recursive Least Squares algorithms such as the Fast Kalman algorithm{1], the FAEST algo-
rithm(2], and the FTF algorithm{3] perform least squares adaptive filtering with low computational
complexity, which is directly proportional to the filter length. Unfortunately, these highly efficient
algorithms suffer from severe numerical instability when implemented using either fixed or floating
point digital arithmetic. Small numerical errors due to the finite precision of the computations at each
iteration of the algorithm are propagated and accumulate[4]. Eventually the algorithm diverges from
the correct solution, often very suddenly. In this paper a new approach is used to perform stabilisation.
Interval Arithmetic{5] is used to provide an upper and a lower bound to the solution produced by the
adaptive algorithm, allowing for the possible effects of finite precision arithmetic. If the difference
between the upper and the lower bounds becomes excessively large, then the Fast RLS algorithm may
be reinitialised[6], preventing divergence.

Interval Numbers and Interval Arithmetic

An interval number is simply a range of real numbers. An interval number may be written in the form
[a,b], which is taken to mean all real numbers berween lower endpoint a and upper endpoint b, or

[a,b]={[x[a$.r_<_b X ER} (1)
Having defined. what is meant by an interval number, we may now proceed to define the arithmetic
operations +, —, * and + for the interval number system.
la,b]+(c.d)=[a+c,b+d] (2a)
{a,b]-[c.d]={a —d,b—c] _ ' (2b)
(a ,b)*[c .d)=[min(ac ad bc ,bd),max(ac ,ad bc,bd)] . (2¢)
(a.b]+[c.d]=[a b]* [1— i (2d)
’ T ’ d’c¢

unless 0 € [c,d] in which case the results of division are undefined.

These operation may be implemented on a digital processor, provided that care is taken over the
rounding directions of the calculated results(5]. Lower endpoints should be rounded in the direction of
—~x and upper endpoints in the direction of +=. More efficient methods of interval multiplication and
division exist, which give the same results as equations (2c¢) and (2d)({7]. S

Application to the FTF algorithm

To use interval arithmetic with the FTF algorithm(3], every number in the algorithm is converted to an
interval number and every arithmetic operation is converted to an interval operation. When this is
done, the filter coefficients calculated by the FTF algorithm also become intervals, and the difference
berween the upper and lower endpoints of each of these coefficients represents the extent to which the
solution has accumulated numerical error. Real valued filter inputs may be represented by degenerate
intervals of the form [a,a] and for the purposes of obtaining real valued outputs, the centre of the
interval given by :

centre([a,b])= é— (a +b] (3)

1-.Dq-::artmcm of Electrical Engineering, Univeristy of Edinburgh, Edinburgh EH9 3JL.

s/1

- 164 -

may be used. '
To make the algorithm numerically stable, reinitialisation using a soft constrained initial solution[36]
must be performed if any of the differences between the upper and lower endpoints of the filter coef-
ficients exceeds a design constant denoted by p or if division is attempted by an interval [c,d] such
that 0 € [c,d].

Results

To illustrate the stability of the interval FTF algorithm, an adaptive system identification experiment
was performed. A noise sequence was input to a FIR filter with unknown coefficients and the
response of this filter used to train the adaptive filter using the FTF algorithm.

The norm of the filter coefficient error vector in deciBels was plotted against time to illustrate the
performance of the adaptive system. In all simulations, 16 bit fixed point arithmetic was used, with
the provision of a 32 bit long accumulator. The signal to noise ratio was 40dB.

Figure 2 illustrates the divergence of the algorithm using non interval arithmetic after only a few
hundred iterations

Figure 3 illustrates the stable performance of the FTF algorithm using interval arithmetic. A good
solution is obtained for the entire duration of the simulation. ‘

Figure 4 illustrates the long term performance of the algorithm. One million iterations were per-
formed, and the error plotted on every 500th iteration. A stable solution is again obtained for the
whole simulation.

Other simulation results have demonstrated that the technique is equally applicable to floating point
digital arithmetic, and to other Fast RLS adaptive algorithms such as the Fast Kalman algorithm(1)..

Conclusions

Interval arithmetic provides a method for monitoring the accumulaion of numerical error, and deter-
mining whether a Fast RLS adaptive algorithm requires reinitialisation. The interval algorithms have
a computational complexity which is approximately double that of their non-interval counterparts,
but which still remains directly proportional to the filter length.

¢ Fited Point
-10 |
= -]
Input - . = Noise %
Urnknown Sysizm —)p > — g 0
i : ' S T4
[! =
| | "9
i Ve ; e -4 _H
| =) K i
— S Y z ol
: R E _50‘] !
N 3 ! Tize (Samples)
56 L 14063

Figure 1:Simulation configuration for Figure 2:Divergence of FTF algorithm
adaptive system identification. : A=0.98, SNR = 40dB

5/2

- 165 -

0 Fixed Point 0 - Fixed Point
-10 | -0}

@ -0 = -l

A A

§-, -3 § =304

S a

g n g

g : g

= -850 i c -5 R

2 Tine (Samples] 2 ine [Samples)
-50 Xi0e3 -gd xiCes

-0 2 4 & 8 f0

0 2 4 8 8

Figure 3:Interval FTF

10,000 iterations.

p=0.002, A=0.98, p=0.25, SNR=40dB,

Figure 4:Interval FTF
p=0.002, A=0.98, p=0.25, SNR=40dB,

1,000,000 iterations.

References

1. Ljung, L., Morf, M., and Falconer, D., “Fast calculation of gain matrices for recursive esti-
mation schemes,” Int. J. Control, vol. 27, pp. 1 - 19, 1978,

2. Carayannis, G., Manolakis, D. G., and Kalouptsidis, N., “A Fast Sequential Algorithm for
Least Squares Filtering and Prediction,” [EEE Trans. Acous, Speech, Signal Process., vol.
ASSP-31, No 6., pp. 1394 - 1402, 1983. .

3. Cioffi, J. M. and Kailath, T., ““Fast, Recursive Least Squares Transversal Filters for Adaptive
Filtering,” [EEE Trans. Acous, Speech, Signal Process., vol. ASSP-32, No 2., pp.-304 - 337,
1984.

4. Cioffi, J. M., “Limited Precision Effects in Adaptive Fxltenng,” IEEE Trans. Circuits Syst.,

» vol. CAS-34 No7 pp. 821 - 833, 1987.

5. Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Clszs 1966. _

6 Lin, D.W., “On the Digital Implementation of the Fast Kalman Algorithm,” [EEE. Trans.
Acoust. Speech Signal Process., vol. ASSP-32, pp. 98-1005, 1984.

7. Gibb, A., “Procedures for Range Arithmetic (Algorithm 61),” Comm. Assoc. Comp. Mach.,

vol. 4:7, pp. 319 - 320, 1961.

5/3

- 166 -

Numerically robust implementations of the
Fast RLS adaptive algorithms using
Interval Arithmetic

Christopher P Callender
Colin F.N. Cowan

Department of Electrical Engineering,
University of Edinburgh,
Kings Buildings,
Mayfield Road,
Edinburgh EH9 3JL,
Scotland.

Abstract

Fast ﬁecursive Least Squares Algorithms have been developed which perform least
squares adaptive filtering in a computationélly efficient manner. Unfortunately,
these algorithms also suffer from severe numerical instability due to the accumula-
tion of finite precision errors. In this paper a new approach to stabilisation is
presented. Upper and lower bounds for all of the quantities involved in the algo-
rithm are calculated in such a way as to guarantee that the infinite precision value is
contained within the range of values. The difference between the upper and lower
bounds represents the extent to which finite precision errors have accumulated. If
these errors are unacceptable, the algorithm may be reinitialised. Results are
presented which demonstrate the stability of the new method applied to the Fast
Transversal Filters (FTF) Algorithm using both floating and fixed point arithmetic.
Results from a hardware implementation of a communications equaliser are also

presented.

1. Introduction

Several algorithms have been developed which perform Recufsive Least Squares

(RLS) adaptive filtering[1,2] in a highly computationally efficient manner. These

algorithms include the Fast Kalman (FK) algorithm [3], the Fast a Posteriori Error

- 167 -

Sequential Technique (FAEST)[4,5] and the Fast Transversal Filters (FTF)
algorithm([6-8]. Table I compares the computational complexities of these and other

popular algorithms for adaptive Finite Impulse Response (FIR) filters.

Algorithm(Exponentially Windowed, Unnormalised) Complexity
Least Mean Squares 2N or 3N
Standard Recursive Least Squares 2.5N*+4N
Fast Kalman 10N

Fast a-Posteriori Error Sequential Technique . | 7N

Fast Transversal Filters 7N

Table I: Comparison of computational complexity of various adaptive algorithms.
The complexity is given as the number of multiplications per iteration required to

implement an adaptive filter of order N.

It can be seen that all of the Fast RLS algorithms are characterised by a complexity
which depends linearly upon the filter order, and which compares favourably with
the popular Least Meaﬁ Squares (LMS) algorithm{9, 10]. The principal advantage
of a Least Squares algorithm over the LMS gradient search algorithm is its greatly
improved initial convergence properties, particularly when the spectral conditioning

of the input signal is poor[11]

Unfortunately, all of the Fast RLS adaptive algorithms are numerically unstable.
This means that when they are implemented using limited precision arithmetic[12]
as would be ther—case with any practical implementation, the small err0r§[13] at each
iteration of the algorithm accumulate until rapid divergence occurs, and the algo-

rithm no longer provides a valid solution.

- 168 -

It has been shown[12] that this instability is introdhced by an unstable transforma-
tion which underlies ali of the transversal Fast RLS algorithms. The matrix associ-
ated with this transformation has eigenvalues larger invmagnitude than untity. The
effect of this is to amplify any errors which exist in the algorithmic quantities at
time k to produce larger errors at time k+1. The eventual divergence of the algo-
rithm is therefore inevitable, and so it is not possible to use any of these algorithms

continuously without some form of modification.

Various Fast RLS algorithms{14-17] have been discovered for lattice filtering[18]
The algorithm of{17] is numerically stable except in the case of very high filter
order, N. However, all of the Fast RLS lattice algorithms are characterised by con-
siderably increased complexity when compared with their transversal filter counter-
parts. Furthermore; in many applications involving system identification or channel
estimation, it is the filter coefficients which are of interest, and not the filter output.
A complicated transformation[19] is required to convert from lattice coefficients to

transversal coefficients.

Various solutions to the instability problem have been proposed. Generally, they
can be divided into two categories - those in which the algorithm is regularly reini-
tialised to prevent divergence[20-23] and those in which the algorithm runs continu-

ously with certain modifications which are designed to provide stability[24-26].

The reinitialisation methods involve resetting various algorith‘mic- variables, hope-
fully before divergence occurs. Reinitialisatibﬁ may be performed either periodically
" in time as in[20], or when certain conditions are Violated[6,‘21, 22]. In either case, a
soft-constrained initial solution is used so that the algorithm does not have to recon-
verge after reinitialisation. Using reinitialisation to stabilise the algorithms has the
advantage of adding little or nothing to the computational complexity, but obviously
care must be taken to ensure that reinitialisation occurs sufficiently frequently that

divergence does not occur. It is this problem which is addressed by the methods of

- 169 -

this paper.

Other stabilisation procedures, in which modifications are made to the algorithm
will generally have increased computational complexity compared to the unstabilised
algorithm. It -is also very difficult to prove the absolute stability of the modified
algorithms, and whilst simulations have demonstrated very worthwhile improve-

ments in performance over their unstabilised counterparts, it is difficult to guarantee

their correct operation in all circumstances.

The stabilisation procedure presented in this paper falls into the first category, in
which the algorithm is reinitialised. A method of monitoring the accumulation of
numerical errors using interval arithmetic is proposed[27]. Lower and upper bounds
on the results of all calculations are evaluated, and if the difference between the
bounds of the solution is excessive, then the algorithm may be reinitialised, resulting

in stable performance.
2. Theory

2.1. Least Squares Adaptive Filtering

»

A transversal Finite Impulse Response (FIR) filter is one in which the input

sequence,
()
X(k)y=1 - | (1)
{xk =N +1 J
is filtered to produce-an output given by
y(k)=X(k).H" (k) (2)

where H (k) is a vector of N coefficients, known as tap weights.

To make the fiiter adaptive, an algorithm must be developed, which finds the

- 170 -

optirnurn. value for H (k). This is done by introducing a desired response signal

d (k). The filter error is given by

e (k)=d (k)= (k) | 3)

The exponentially windowed least squares solution to this problem is the one which

minimises:

Ii)= SN elh))

= Sa a()-x () EO))
i=0

A is a forgetting factor, slightly less than 1, used to enable the adaptive algorithm to

track time variant solutions for H (k).

The solution which minimises (4) is found to be

[« 1-1 & |
H(k)= ILEOX""X(I')XT(I')JIV gok"“x(i)d(i) (5)

In principle a least squares adaptive algorithm could be implemented using (5) to
calculate the optimum filter coefficients. It should be noted, however, that the first

term, r;!

of this expression involves the inversion of an N x N matrix, which
requires order N*® operations per iteration, using the Gaussian Elimination tech-

nique.

The standard Recursive Least Squares (RLS) algorithm 'is derived by developing
equations to update r= " (k —1), using the new data at time k, so as to give r;'(k).

This requires only order N? operations per iteration.

The Fast RLS algorithms depend upon the shifting properties of the input data vec-
tor, X (k) with time. This results in a complexit)} of only order N. The derivation of

each of the Fast RLS algorithms is complicated; and will not be repeated here. The

-171 -

FTF algorithm is listed in appendix I.

2.2. Interval Arithmetic

An interval number[28] is a range of real numbers. Intervals are written using the
notation [a,b], which is taken to mean all real numbers between lower endpoint a

and upper endpoint b. In set notation

()
[a.b]={x|lasx=b,x€R} (6)
{)
The arithmetic operator ®, where ® is one of +, —, , + may be defined by
(]
[a,b])c,d]= JLx-yla <x<b,c<y<=d,x€R.y ERJ} @)

That is to say that the result of operation ® is the range of all possible results when
each of the intervals being operated upon takes all of its possible values. The opera-

tion <+ cannot be defined for (¢ =0 and 4 =0).

Functions to implement the four operations +, —, , and +[29] are given in appen-
dix II. When implerhenting the operations on a limited precision processor, particu-
lar care must be taken over the rounding directions of the endpoints of the results.
If care is taken to ensure that all lower endpoints are rounded in the direction of
— and all upper endpoints in the direction of‘ +co, then the range of the finite pre-

cision interval is guaranteed to contain all of the infinite precision interval.

If the processor being used implements finite precision arithmetic using truncation -
then it will sometimes round in the correct direction and sometimes it will not. The

results must therefore be corrected after calculation.

2.3. Using Interval Arithmetic with the Fast RLS algorithms

‘Having devised procedures to perform the interval arithmetic operations, it is now a

-172 -

simple matter to use them with a Fast RLS algorithm. First, all of the scalar vari-
ables in the algorithm are converted to interval quantities and the Vect(_)rs are con-
verted to vectors of intervals. The interval procedures described in § 2.2 are then

used to perform all of the computations of the algorithm.

If this is done, then the filter coefficients calculated by the algorithm, H (k), will
also become intervals. The difference between their upper and lower endpoints indi-
cates the extent to which the solution has been corrupted by numerical errors. If the
difference between any of these endpoints exceeds a certain predefined limit, p,
then the algorithm must be reinitialised to prevent divergence, using the reinitialisa-

tion procedure in appendix I.

Reinitialisation is also required if any division operation is about to be preformed

by an interval of the form [c,d] where ¢ =0 and d =0, as this cannot be defined.

The filter and desired response inputs to the algorithm may be represented by

degenerate intervals of the form [a,a], which is equivalent to the single real value a.

To obtain non-interval outputs, we may use the centre of the output interval, given

by

a+b

(8)

s sd
| —
Il
[\] —
—~—
| —

centre { [a b

Alternatively, to reduce computation either of the endpoints may be used as an

approximation to (8) instead.

2.4. The Reinitialisation Procedure

It is obviously undesirable for the algorithm to have to reconverge every time that it
is reinitialised. To prevent this, the algorithm is given an initial solution be means
of a ‘soft constraint’[6,20]. This corresponds to modifying the algorithm to minim-

ise the cost function

-173 -

SN+ IH) -HO) P ©)

i=0

Jo(k)=

where the time index, k, is modified so that k¥0 corresponds to the moment of

reinitialisation. H {O} is the initial solution for the filter coefficients and w is the

soft constraint parameter which controls the balance between the two terms of equa-

tion (9). If it is too small, the initial condition, H (O} will be ignored, and the algo-

rithm will have to reconverge. If it is too large, the algorithm will remain close to
[

the possibly incorrect solution H (O} and will not adapt. The choice of a correct

value for p is therefore of importance in obtaining good performance.

The filter coefficients just before reinitialisation, denoted by H {—1} are used to

obtain the initial solution H {O}
H {0} =centre {H {—1} } (10)

where the centre operation (equation 8) is performed on a coefficient by coefficient

basis to the vector H (—1 J:

The reinitialisation procedure of appendix I table 3 may now be used.

2.5. Choice of the design constants p. and p

The choice of the design constants ., the reinitialisation soft constraint parameter,
and p, the maximum tolerable width of the filter coefficients is clearly of great

importance to the performance of the interval algorithm.

The value for p depends upon the level of noise in the system, and if p is chosen
sufficiently small, then the error in the solution due to arithmetic errors will be of ‘
the same order of magnitude as the error in the solution due to the noise present. p
is therefore chosen to be of the same order as the expected filter error, after the

RLS algorithm has converged.

-174 -

Having selected p, ii is now possible to find the correct value for . It has already
" been noted that p controls the balance between the initial condition and the normal
RLS solution. If w is chosen too small, the algorithm will have to reconverge after
reinitialisation, and a series of ‘spikes’ in the solution will be seen at each time that
reinitialisation occurs. Too large a value for p will result in incorrect initial condi-
tions causing the algorithm to give an incorrect solution for some time after reini-

tialisation occurs.

If we assume that each filter coefficient differs from the infinite precision solution
by a random variable from a uniform distribution between —p and p, just before
reinitialisation, then

E ([Norm Tap Error)=E (| |2 (i) —hp | |? 11
_Np?
3

If we then calculate the expected value of the cost function J,(K) after the reinitiali-

sation takes place, then

E(2()=E (N 1(1) ~hi)+ E (S e2(0)) 12

i=0

where e (i)=d (k)—h'(k)x(i)

Hence, using (11) and (12), and expanding the geometric series.

k 2 _Zk+1
E(a ()= 2 B (e2)) 122 13

For a good balance between initial conditions and subsequent adaptation, assuming
that the system is stationary, we impose the ‘condition that E (J,(i))=E (J,()) for
all i, that is to say that the expected value of the cost function, which is directly
related to the filter error is constant for all time after the reinitialisation. Imposing

this condition,

UAFN p? ar 1=A*T E (e2())
3 +E (e*(i)) N TN ‘ » 14

- 175 -

from which we obtain

2(;°
LGN 5
Np*(1-)).
In practice, the initial assumption that the error distribution is uniform between —p
and +p may not be strictly valid, but simulation results have demonstrated that (15)
provides a useful starting point for the choice of p and that operation of the interval

algorithm is relatively insensitive to the value chosen for .

3. Simulation Results

To illustrate the stability of the new methods, simulations have been performed
using an adaptive filter in the system identification configuration as shown in Figure

1.

The signal y(k) is input to both the adaptive filter and to some unknown system
which is to be identified. The response of the unknown system is summed with a
small amount of noise and forms the desired response of the adaptive filter. The
adaptive system converges to have a response close to that of the unknown system.
It is then possible to extract the filter coefficients of the FIR adapfive system, which

. will give approximately the transfer function of the unknown system.

All graphs were obtained by plotting the Euclidian norm of the tap error vector in
decibels versus time. The availability of a tap error vector as a reliable performance
indicator was the major motivation for using the system identification configuration

for simulations. Norm tap error in decibels is given by:

[1 EL, (k) —H (k)]12]

NTE (k)=10logy, | 16
o O
where
[,]
la, |
I . } ’=\/a02+a12+ c ta?
lay |
L]

- 176 -

and H

opt (k) is the vector of optimum tap weights at time k. If the unknown system.

is actually an FIR filter, then the elements of H,, (k) are the tap weights of this FIR

filter.

For all simulations, both the adaptive filter and the unknown system were FIR

filters of length 5. The coefficients of the unknown system were

9
3
0.3
0.7

‘|
Hop (k)= |
i

ol loo

[
|
l

The input signal was obtained by filtering white gaussian noise with a FIR filter

with coefficiénts [1.0,0.865] which gave an eigenvalue ratio of around 18.

All simulations were performed using the unnormalised FTF algorithm as this is the

most computationally efficient RLS algorithm available.

Two arithmetic schemes were tested - 64 bit floating point arithmetic and 16 bit
fixed point arithmetic with the provisién of a 32 bit long accumulator for the
storage of intermediate results during scalar product calculations. The fixed point
system is typical of the minimum level of facilities provided by most digital signal

Pprocessors.

A. FTF with no Stabilisation

Figures 2a and 2b show the sudden divergence of the FTF algorithm when no stabil-
Aisation procedure is used. Figure 2a shows the 64 bit floating point implementation
and figure 2b shows the 16/32 bit fixed point implementation The fixed point simu-
lation was always found to produce a division by zero error soon aftgr divergence

occurred.

It is clear from these results that the numerical stability of the FTF algorithm is

unacceptable, unless some form of stabilisation procedure is introduced. The graphs

-177 -

also demonstrate that increasing the accuracy of the arithmetic will only succeed in

delaying the onéet of divergence.

B. Reinitialisation if the FTF rescue variable is negative

In[6], the original paper which introduced the FTF algorithm, a variable was identi-
fied, which should always be positive. If at any stage this variable becomes negative,

then the algorithm should be rescued by reinitialisation.

Figure 3a and 3b show the effects of applying this stabilisation procedure. It can be
seen that the floating point version remains stable for longer but that divergence still
occurs eventually. The stability of the fixed point version is not significantly

improved by this procedure.

The results demonstrate that although it is a necessary condition for the rescue vari-

able to remain positive, it is by no means sufficient if long term stability is required.

C. Interval FTF

Figure 4a and 4b show the results of applying the new interval methods to the FTF
algdrithm. The results show that numerical stability is greatly improved, and that
there is essentially no difference between the fixed and floating point implementa-
tions. Care must be taken over the fixed point scale factors, to ensure that overflows

do not occur.

The results for the fixed point implementation are particularly impressive, indicating
that the interval technique enables the Fast RLS algorithms to be implemented on

low cost fixed point digital signal processors.

D. Long Term Stability

-178 -

Figure 5a and 5b show the long term stability of the new methods for both 64 float-
ing point and 16/32 bit fixed point arithmetic. 1 million time iterations are per-

formed and again no divergence of the algorithm is apparent.

4. Hardware Tests

The interval FTF algorithm was implemented on a TMS320C25 digital signal pro-
cessor{30]. A number of assembler macros were developed to perform the interval
operations of § 2.2, as well as a macro for calculating the interval scalar product of
twb vectors, taking advantage of the 32 bit long accumulator, and an efficient

macro for multiplying a vector by a scalar using interval arithmetic.

The algorithm was used for adaptive equalisation. Figure 6 shows the configuration.
A pseudo random binary sequence generator produces a signal which is passed
through an FIR channel, producing multi-path interference at the input to the adap-
tive filter. The purpose of the adaptive system is to converge to the inverse of the
FIR channel, removing the multi-path interference. To enable it to do this, the
desired response input to the adaptive equaliser is the original pseudo-random
binary signal. In practice, the system could be switched to decision directed mode
[31] after a training sequence. The principal advantage of using a Least Squares

algorithm is to minimise the length of this training period.

The data rate in the hardware experiments was 300 bits per secoﬁd (bps), using an
adaptive filter of length 5. The TMS320C25 processor was operating at }1— of its
maximum spee_d, so the current implementation could be used at speeds up-to
1200bps. For significantly faster operation, it would be necessary either to develop a

multi-processor configuration, or to design a dedicated interval arithmetic co-

processor to operate along with the digital signal processor.

Figure 7 shows the various eye diagrams measured using the system. Figure 7a was

measured at the output from the channel, and shows the eight different signal levels

- 179 -

introduced by the three tap channel. The eye pattern is not widely open, sugges;ing
that in the presence of noise the bit error rate would be high if this signal was used
as the input to a decision device. Figure 7b is the eye diagram after equalisation. It
shows two distinct levels, and is widely open, indicating that this signal could be

received with a much lower error than the one at the input to the equalisef.

Figure 8 is a trace of filter error squared against time and it shows the stability of
the interval arithmetic algorithm. After the spike at the left hand side of the trace,
corresponding to the initial convergence, it can be seen that the square of the error
remains small for the iemainder of the experiment. This confirms the numerical sta-

bility of the algorithm in the hardware implementation.

5. Conclusions

The rapid, data independent initial convergence of the RLS algorithms makes them
well suited to applications such as echo cancellation for modems, and to channel
equalisation for digital radio and telephone communications as they enable a shorter
training sequences to be used. The lower computational complexity of the fast algo-
rithms makes them well suited to applications in which a high data rate is also

required.

The new interval algorithms operate using interval quantities which are guaranteed
to contain the infinite precision solution and the problems of finite precision error
are circumvented. An error analysis of the algorithm is performed in real time by
the new methods and numerical errors within the algorithm are strictly limited. If
the limits are exceeded, then the algorithm is reinitialised, resulting in numerical
stability. The stability is independent of the precision of arithmetic which is being
used and it has been shown that performance using 16/32 bit fixed point arithmetic
is very similar to that obtained using the much more accurate 64 bit floating point

arithmetic scheme.

- 180 -

The only disadvantage of the interval methods is their increased computational com-
plexity. The complexity, however, remains directly proportional to filter length, and
so for long adaptive filters, a considerable saving in complexity over the standard

RLS algorithm will still be obtained.

References

1. Godard, D., “Channel Equalisation using a Kalman Filter for Fast Data

Transmission,”” IBM J. Res. Develop., vol. 18(3), pp. 267-273, May 1974.

2. Honig, M.L. and Messerschmitt, D.G., Adaptive Filters:Structures, Algorithms

and Applications, Kluwer Academic Publishers, Norwell, MA., 1984.

3. Ljung, L., Morf, M., and Falconer, D., “Fast calculation of gain matrices for

recursive estimation schemes,” Int. J. Control, vol. 27, pp. 1 - 19, 1978.

4. Carayannis, G., Manolakis, D. G., and Kalouptsidis, N., ““A Fast Sequential
Algorithm for Least Squares Filtering and Prediction,” [EEE Trans. Acoust,

Speech, Signal Process.; vol. ASSP-31, No 6., pp. 1394 - 1402, 1983.

5. Kalouptsidis, N., Carayannis, G., and Manolakis, D., “A Fast Covariance
Algorithm for Sequential Least Squares Filtering and Prediction,” [EEE Trans.

Auto. Control, vol. AC-29, pp. 752-755, Aug. 1984.

6. Cioffi, J. M. and Kailath, T., ‘‘Fast, Recursive Least Squares Transversal
Filters for Adaptive Filtering,” IEEE Trans. Acoust, Speech, Signal Process.,

vol. ASSP-32, No 2., pp. 304 - 337, 1984.

7. Cioffi, J.M. and Kailath, K., “Windowed Fast Transversal Filter Adaptive

- 181 -

10.

11.

12.

13.

14.

15.

16.

Algorithms with Normalisation,” IEEE Trans. Acoust., Speech, Signal Pro-

cess., vol. ASSP-33, pp. 607-625, June 1985.

Cioffi, J.M., “The Block Processing FTF adaptive algorithm,” IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-34, pp. 77-90, Feb 1986.

Widrow, B. and et, al, ‘“Stationary and Non-Stationary learning Characteris-

tics of the LMS adaptive Filter,” Proc. IEEE, vol. 64, pp. 1151-1162, 1976.

Widrow, B. and Stearns, S., Adaptive Signal Processing, Prentice-Hall, Engle-

wood Cliffs, 1985.

Mulgrew, B. and Cowan, C.F.N., Adaptive Filters and Equalisers, Kluwer

Academic Publishers, Norwell, Mass., 1988.

Cioffi, J. M., “Limited Precision Effects in Adaptive Filtering,”” IEEE Trans.

Circuits Syst., vol. CAS-34 No 7., pp. 821 - 833, 1987.

Wilkinson; J.H., Rounding Errors in Algebraic Processes, H.M. Stationary

Office, London, 1963.

Lee, D.T.L, Morf, M., and Friedlander, B., ““‘Recursive Least Squares Ladder
Estimation Algorithms,” IEEE Trans. Acoust., Speech, Signal Process., vol.

ASSP-29(3), pp. 627-641, June 1981.

Porat, B., Friedlander, B., and Morf, M., “Square Root Covariance Ladder
Algorifhrns,” IEEE Trans. Automatic Control, vol. AIC-27(4), pp.'813-829,

August 1982,

Shensa, M.J., “Recursive Least Squares Lattice Algorithms - a Geometric

Approach,” IEEE Trans. Automatic Control, vol. AC-26(3), pp. 675-702, June

- 182 -

17.

18.

19.

20.

21.

22,

23.

24.

1981.

Ling, F., Manolakis, D., and Proakis, J.G., “Numerically Robust Least
Squares Lattice Ladder Algorithms with Direct Updating of the Reflection
Coefficients,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34(4),

pp. 837-845, Aug 1986.

Gray, A.H. and Markel, J.D., “Digital Lattice and Ladder Filter Synthesis,”

IEEE Trans. Audio Electroacoust., vol. AV-21(6), pp. 491-500, 1973.

Cowan, C. F.N. and Grant, P. M., Adaptive Filters, Prentice Hall, Englewood

Cliffs, 1985.

Lin, D.W., “On the Digital Implementation of the Fast Kalman Algorithm,”
IEEE. Trans. Acoust. Speech Signal Process., vol. ASSP-32, pp. 998-1005,

1984.

Hariharan, S. and Clark, A.P., “HF Channel estimation using a Fast
Transversal Filter Algorithm,” IEEE Trans. Acoust., Speech, Signal Process.,

vol. ASSP-38, pp. 1353-1362, Aug 1990.

Kim, D. and Alexander, W.E., “Stability Analysis of the Fast RLS Adapta-
tion Algorithm,” Proceedings ICASSP 88, vol. 3, pp. 1361-1364, New York,

April 1988.

Elefteriou, E. and Falconer, D., ‘“‘Restart Methods for.Stabilising FRLS
Adaptive Equaliser Filters in Digital HF Transmission,” Globecom, Atlanta,

Dec 1984.

Benallal, A. and Gilloire, A., “A New Method to Stabilize Fast RLS Algo-

rithms based on a First Order Model of the Propagation of Numerical Errors,”

- 183 -

25.

26.

27.

28.

29.

30.

31.

Proceedings ICASSP 88, vol. 3, pp- 1373-1376, New York, April 1988.

Slock, D.T. and Kailath, T., ‘“Numerically Stable Fast Recursive Least
Squares Transversal Filters,” Proceedings ICASSP 88, vol. 3, pp. 1365-1368,

New York, April 1988.

Botto, J.1.. and M0ustakides, G.V., “Stabilising the Fast Kalman Algorithm,”
IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-38, pp. 1342-1348,

Sept 1989.

Callender, C.P. and Cowan, C.F.N., “Numerically Robust Implementations of
Fast RLS Adaptive Algorithms using Interval Arithmetic,” Proceedings

EUSIPCO 90, pp. 173-176, Barcelona, Sept. 1990.
Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

Gibb, A., “Procedures for Range Arithmetic (Algorithm 61),” Comm. Assoc.

Comp. Mach., vol. 4.7, pp. 319 - 320, 1961.

Second Generation TMS320 Users Guide, Texas Instruments, Dallas, Texas,

1988.

Stremler, F.G., Introduction to Communications Systems, Addison Wesley,

Reading, Mass., 1982.

- 184 -

Appendix I:The unnormalised FTF Algorithm

Fast Exact Initialisation

T=0:Agp=B¢o=1, Coo=0(zero dimension)

= —4(0) - -y
Hl,O y(O) ’ ‘YO(O) 1) (10(0) Y (0)2

1=T=N:
F o (T)=Araz s [y D)y (O]

—ef . (T) }
y(©) |
er(T)=ef_y (T)yr (T -1)
ar(T)=Nar (T -1)
ar (T)=ar(T)+ef (T)ero(T)

Yr(T)=v7r (T -1) a(:-if(%)-)-

- - er_(T)
Crr= [O CT—l,T—l]—;TI(—T)AT—l,T—l

T — T-1,T-1
AT,T— |A ’

Br = { {y O)vr (T)C:T,T] 1} (Only when T=N)

Brr=Yy (0)*y7(T) (Only when T=N)
EF(T)=d(T)+HT,T—1YT(T)
er(T)=ef(T)y (T)

i T=N, Hy r=Hrr 1+ (T)ér,r

Table I:The Fast Exact Initialisation Procedure for the FTF algorithm

- 185 -

Unnormalised FTF Algorithm

10
11

12

13
14
15

eﬁ(T)=AN,T—1YN ~(T)
ey (T)=ef(T)yn (T —1)
ay (T)=Noy (T —1)+ef (T)ey(T)

yr()= 22 -

= oo V-l oy i(T -
C‘N-f-l,T'_ I_O CN,T—lJ x ﬁ(T) N (T 1)IQN,T—l
AN,T=AN,T—1+eN(T) {0 éN,T—l}
rR(T)=—ABw (T =1)Ch.1r
W (T)= [T+ @ vy eaTICar | Hwen(T)
rescue variable t = {1+ r,',’(T)yNH(T)C"/}’H,T]
r (T)=rf(T)yy (T) |
By (T)=NBy (T —1)+rf(T)ry(T)
[~ 1_¢ _CN
I_CN,T OJ_CN+1,T C‘N-f-l,TBN,T—l
_ [~ 1
BN,T'—BN,T—1+rN(T) [CN,T OJ
€ﬁ(T)=d(T)+HN,T—1YN(T)

en (T)=ef(T)yw (T)
Hyr=Hyr_1tey (T)éN,T

t Rescue if rescue variable is negative (see table IIT).

Table II: The steady state FTF algorithm.

- 186 -

FTF Reinitialisation

Ay 4= [1,0,...,0}
By 1= [0,...,0,1}
Cy = [o,...,o}
ay(—1)=A"n
By (-1)=p
w(-1)=1

WN,—1=W0

Table IN:The rescue procedure, for the FTF algorithm. p is a soft constraint which
determines the influence of the solution before the reinitialisation, W, on future
solutions.

- 187 -

Appendix II:Efficient interval arithmetic procedures.

RANGE_ADD(a,b,c,d)
/*A procedure to calculate the result [e,f]=[a,b] + [c,d] */

e=a+tc;
f=b+d;

End of procedure.

RANGE_SUBTRACT(a,b,c,d)
/*A procedure to calculate the result [e,f]=[a,b] - [c,d] */

e=a-d;
f=b-c;

End of procedure.

RANGE_DIVIDE(a,b,c,d)
/* A procedure to calculate the result {e,f]=[a,b] / [c,d] */

if (¢=0 and d=0) {
' print "Division by zero error”
exit
}
if (c<0) {
if (b>0) e=b/d; else e=b/c;
if (a>=0) f=a/c; else f=a/d;
}
else {
if (a<0) e=a/c; else e=a/d;
if (b>0) f=b/c; else f=b/c;
}

End of procedure. -

- 188 -

RANGE_MULTIPLY(a,b,c¢,d)

/* Procedure to calculate the result [e,f]=[a,b] * [c,d] */

if (a<0 && c>=0) {
temp=a;
a=c;
c=temp;
temp=b;
b=d;
d=temp;
}
if (a>=0) {
if (c>=0) {
e=a*c;
f=b*d;
}
else {
e=b*c;
if (d>=0) f=b*d; else f=a*d;
}

}
else {
if (b>0) {
if (d>0) {
e=min(a*d,b*c);
f=max(a*c,b*d);
}
else {
e=b*c;
f=a*c;
}
}
else {
f=a*c;
if (d<=0) e=b*d; else e=a*d;
}
End of procedure.

- 189 -

Captions

Figure 1

Configuration used for all computer simulations. Adaptive system identification is performed by con-
necting the output of an unknown system to the desired response input of an adaptive filter. The adap-
tive system converges to produce the same response as the unknown system, and if the unknown system
is an FIR filter, the adaptive system will then have the same coefficients.

Figure 2a

Performance of FTF adaptive algorithm with no stabilisation using 64 bit floating point arithmetic.
A=0.98
Signal to Noise Ratio=40dB

Figure 2b

Performance of FTF adaptive algorithm with no stabilisation using 16/32 bit fixed point arithmetic.
A=0.98 :
Signal to Noise Ratio=40dB

Figure 3a

Performance of FTF adaptive algorithm, reinitialising if rescue variable is negative using 64 bit float-
ing point arithmetic.

A=0.98

pn=1.0

Signal to Noise Ratio=40dB

Figure 3b

Performance of FTF adaptive algorithm, reinitialising if rescue variable is negative using 16/32 bit
fixed point arithmetic.

A=0.98

p=1.0

Signal to Noise Ratio=40dB

Figure 4a

Performance of the Interval FTF algorithm, using 64 bit floating point arithmetic.
A=0.98

p=627.2

p=0.00225

Signal to Noise Ratio=40dB

-190 -

Figure 4b

Performance of the Interval FTF algorithm, using 16/32 bit fixed point arithmetic.
A=0.98

w=0.5

p=0.00225

Signal to Noise Ratio=40dB

Figure 5a

Long term performance of the Interval FTF algorithm, using 64 bit floating point arithmetic.
A=0.98

p=627.2

p=0.00225

Signal to Noise Ratio=40dB

Figure 5b

Long term performance of the Interval FIF algorithm, using 16/32 bit fixed point arithmetic.
A=0.98 '

p=0.5

p=0.00225

Signal to Noise Ratio=40dB

Figure 6

Hardware configuration for performing adaptive equalisation. A pseudo-random sequence representing
the transmitted signal is generated, and input to a FIR filter which represents the transmission channel.
The output from the channel is the input to an adaptive filter, which is given the transmitted sequence
as its desired response. It therefore converges to the inverse of the FIR channel, allowing the original
transmitted signal to be recovered.

Figure 7a

Eye diagram measured at the input to the adaptive equaliser. It shows the eight distinct levels intro-
duced by the three tap FIR channel. The narrow, partially closed ‘eye’ indicates that the signal is not
suitable for use without equalisation in the presence of high levels of noise.

Figure 7b .

Eye diagram measured at the output from the adaptive equaliser. It shows that two distinct levels have
been almost recovered, and that the signal is suitable for use as the input to a decision device.

Figure 8

Graph of squared filter error against time for the hardware system. After the spike representing initial
convergence, it can be seen that the error remains small, confirming the numerical stability of the

-191 -

interval arithmetic algorithm.

-10

=20

O]
i
-

Input x(k)

Unknown System

ad

Output y(k)

Fast RLS Adaptive Filter

Error e(k)

Figure.1

Graph 2a

................... R A S
.. e e e
_______________ e

t 1 L I !

1060

1500 2009 2500 3000 3500 4000
Time (Iterations)

Graph 2b

1000

1500 2000 2500 3000 3500 4000
Time (Iteratidns) '

-192 -

-40

-50

-50

w—

10000 15000

Time {Iterations)
Grapn 3b

=

5000 . 10000 15000 20000 25000
Time (Iterations)
Graoch 4a
T T T

Il . { I 1

10000 15000 20000 25000

Time (lterations)

9] 5600

-193 -

30000

-4G

i SptahNYE
; : ')
—c) NaIN l () d
: lj{ ; I :
N S R RETE BN e [EEE TR TR SEERREEE TAIEET ;
O T = P, -
I] I 1

10000

Time

15000

Graph §a

(Iterations)

20000

25000

30000

-49

200000

400000
Time

600000

(Iterations)

800000

1

200000

400000
Time

600000

(Iterations)

-194 -

800000

HP 5183U DIGITIZING OSCILLOSCOPE Mon, S NovIISSB. 15:47:84

i ! 1 1 | | | |

Figure 7a

HP 5183U DIGITIZING OSCILLOSCOPE Tue, 6 Nov 1990, 18:45:07

S EU ! 1 ! ! I

Figure 7b

- 195 -

Desired

FIR channcl

1

Pseudo Randons
L Sequence L

e

1
| FTF Equaliser

Figure 6

HP 5183U DIGITIZING OSCILLOSCOPE Mon, 7. Jan 1881, ©9:06:39

| 1 1 1 H i 1 1

Figure 8

- 196 -

Appendix B

Simulation Software

2197 -

Matrix function library for C

#include <stdio.h>

void msc();
double radd% ;
double rmul();
double rdiv();
void cadd% ;
void crmul();
void cinv();
void error();

struct SPVAR {

int rsize;

int csize;

double *element;
double *m_realloc(ptr sz)

double *ptr;
int sz;

{
if (ptr==0) ptr=(double *) malloc(sz);
else ptr=(double *)realloc(ptr,sz);

return(ptr);

void dbx_ disp(ime)
struct SPVAR me;

{
1nt 1, ke
double *adr;
r=me.rsize;
c=Ime.csize;
adr=me. element
for (j = 0;) = 1 j++4) {
for (k = 0; k != ¢; k++) {
£ (Hadr + 1) < 0)
printf{*%8.2e — %8.2¢j ', *adr,
(—Xadr + 1))); :
else
printf(*%8.2e + %8.2¢j ™, *adr,
, Hadr + 1)); :
adr4—+;
) adr++;
printf("\n");
}
- printf("\n");
}
displaymatrix(adr, r, cfp) displaymatri:z:
int r, C;

198 -

FILE *p;
double *adr;
{

int 1,k »
for j = 0;) '=1; j+4) {
for (k = 0; k != ¢; k+4) {
if (adr + 1) < 0)

fprintf(fp,"%8.2 — %8.2¢] ", *adr,
(—Hadr + 1)));

else
fprintf(fp,"%8.2e + %8.2¢ , *adr,
Hadr + 1)
adr++;
adr++;
}
fprintf{fp,"\n");

}
fprintf(fp,"\n");

void addmatrix(adrl, adr2, adr3, rl, cl, r2, c2, r3, c3)
it rl, cl, r2, c2, r3, ¢3;
double *adrl, *adr2, *adr3;

int 1, k;
if (r1 !'= r2)

error("Unable to add matrices of different sizes");
if (cl '= ¢2)

error("Unable to add matrices of different sizes");
if (r1 '=13)

error("Result matrix of incorrect size in add");
if (cl !'= ¢3)

error("Result matrix of incorrect size in add");
for (j = 0;j !=rl; j++) {

for (k = 0; k != cl; k++) {
cadd(*adrl, *(adrl + 1), *adr2, *(adr2 +

1), adr3);
adrl = adrl + 2;
adr2 = adr2 + 2;
adrd3 = adrd + 2;

}
void iden(adr, 1, ¢)
double *adr;

it r, ¢

{ . .
mt Ik
if (r!=¢)
“error(""Non square matrix cannot be set to identity");
for j = 0;] =1 j+4) {
for (k = 0; k != ¢; k++) {

if (G ==k) {

adr = 1;

adr + 1) = 0;
o
if 1= k) {

- 199 -

*adr = 0;
*adr + 1)

I
=2

}
adr = adr + 2;

}

void zer(adr, r, ¢)

double *adr;
int I, ¢
{ . .
int I, k;
for j = 0;] !'=r;j++) {

for (k = 0; k '= ¢; k++) {
*adr = 0;
*adr + 1) = 0;
adr = adr + 2;

}

void setel(adr, 1, ¢, x, vy, vr, vi)
double vr, vi;
double *adr;

int r, ¢, X,

{

Y5

if (v > ¢) .
error("Setelement out of bounds");

if (x > 1)

error("Setelement out of bounds");
if (y < 1)

error("Setelement out of bounds");
if (x < 1)

: error("Setelement out of bounds");

X——;
y==;
*§adr+ c*x * +y *2) =
Hadr + (¢ *x *2) +y *2 + 1) = vi;

}

void mult(adrl, adr2, adr3, rl, cl, r2, c2, r3, c3)

double *adrl, *adr2, *adr3;

int rl, cl, r2, ¢2, r3, c¢3;

{ int L kL

double total[2], ar, al, br, bi, t[2];

double *temp;

if (1l == 1 && cl == 1) {
msc(adr2,adr3,r2,c2,r3,c3, *adrl, ¥adrl+1));
oto SKIP;

if (12 ==1&& 2 ==1) {
msc(adrl,adr3,rl,cl,r3,c3, *adr2, {adr2+1));
" goto SKIP;

if (12 '= ¢l)
error("Unable to multiply matrices — dimensions incorrect™);
if (c2 1= ¢3)
error("Result matrix of incorrect size in multiply");

- 200 -

SKIP: ;
}

number_of _rows(rl,cl,r2,c2)

if (r1 '= 13)

error("Result matrix of incorrect size in multiply");
temp = (double *)malloc(sizeof(double)*3 * c3 * 2);
if (temp == 0)

error("Out of Memory Error");
for j = 0;] !'= r3; j++) {

for (k = 0; k '= ¢3; k++) {
total(0] = 0;
total(l] = 0;
for (1 = 0; 1 = cl; 14++) {

ar:qg;(adrlﬁ-(cl*j *2) + 1

ai = (Hadrl + (c1 *j *2) + 1
2+ 1))

br = (*adr2 + (2 *1 *2) + k

~ *2;

bi_()adr2-+-(c2*l *2) + k
2+)

cmul(ar, ai, br, bi, t);

cadd(t[d], t{1], total[Oi total(l],

total);

L

temp + (¢3 *j *2) + k *2) = total[0];
(

Htemp + (¢3 *j *2) + k *2 + 1) = total(l];

) }
for G = 0; j = 13; j++) {
for (k = 0; k '= ¢3; k++) {

ar = (f(temp + (¢3 *j *2) + k *2));
al = (*temp + (¢3 *) *2) + k *2 + 1))
Hadr3 + (3 *] *2) + k *2) = an
adt3 + (3 *) *2) + k *2 + 1) = ai
} .
free(temp);

int rl,clr2,c?;

{
if (rl==1 && cl==1) return(r2);

return(rl);

}

number_of _columns(rl,cl,r2,c2)

int ri.clr2,c?;

{
if (r2==1 && c2==1) return(cl);
return(c?);

void getel(adr, 1, ¢, X, ¥, V)

double
double
int

{

;
*adr;

rl c) x’ y;

- 201 -

number_of rows

number_of columns

if (y > ¢)

error("Getelement out of bounds");
if (x > 1)

error("'Getelement out of bounds");
if (y < 1)

error("Getelement out of bounds');
if (x < 1)

error("Getelernent out of bounds");
X—
Y=
W) = (Madr + (¢ *x *2) 4+ y *2))
v+)= (Mad + (c Fx *2) +y "2+ 1))

}

void submatrix(adrl,

adr2, adr3, rl, cl, 12, c2, r3, ¢3)

int rl, cl, r2, c2, r3, c3;
double “*adrl, *adr2, *adr3;
it I, k;
double a, b, d
if (r1 != r2)
) error("Unable to subtract matrices of different sizes");
if (cl 1= ¢2)
error("Unable to subtract matrices of different sizes");
if (r1 != r3)
error("Result matrix of incorrect size in subtract');
if (cl !'= ¢3)
error("Result matrix of incorrect size in.subtract”);
for (j = 0; j !=rl; j+4) {

for (k = 0; k != cl; k++) {

cadd(*adrl, *(adrl + 1), —(*adr2), —(*adr2
+ 1)), adr3);
adrl = adrl + 2;
adr2 = adr2 + 2;
adrd = adr3 + 2;
| }
}
void trans(adrl, adr2, rl, cl, r2, c2)
double *adrl, *adr2;
int rl, cl, r2, c2;
{
double ar, ai;
double *temp;
it I k;
if (rl != ¢2)
error("Result matrix of incorrect size in transpose);
if (cl !'= r2)

error("Result matrix of incorrect size in transpose");

temp = (double M malloc(sizeof(double) %2 * ¢2 * 2)
if (temp == 0)

for (j

error("Out of mémory error');

= 0;j =1L j+4) {

for (k = 0; k = cl; l\-l—+-){
ar = (Madel + (j * ¢l *2) + k *2))
al:%*(adrl-{-j cl *2) + k *2 +
1
(temp-{- k *rl *2) + 5 *2) = ar
*temp + (k *rl *2 *2 4+ 1) = ai

- 202 -

for (j = 0;j !'=r2; j++) {

for (k = 0; k '= c2; k++) {
v ar = (*(temp + (c2 *j *2) + k * 2));
ai = (ftemp + (c2 *J *2) + k *2 + 1));
*adr2 + (c2 *j *2) + k *2) = ar;
Hadr2 + (c2 *j) *2) +k *2 + 1) = aj
}
free(temp);
}
void transp(adrl, adr2, rl, cl, r2, c2)
double *adrl, *adr2;
int rl, cl r2, c2
double ar, ai;
double *temp;
int bk
if (rl = ¢2) »
error("Result matrix of incorrect size in transpose');
if (cl !'= r2)
error("Result matrix of incorrect size in transpose);
temp = (double *)malloc(sizeof(double)*2 * c2 * 2);
if (temp == 0)
error("Out of memory error");
for j = 0;j !=rl; j++) {
for (k = 0; k !'= cl; k++) {
ar:(*(adr1+(*c1*)+k 2));
ai = (—(Hadrl + (j *cl ¥2) +k *2 +
1)));
*temp + (k *rl *2) +] *2) = ar;
Htemp + (k *rl *2) +] *2 4+ 1) =
}
for (j = 0;j = r2; j++4) {
for (k = 0; k '= ¢2; k++) {
ar = (*(temp + (2 *j *2) + k *2)); -
al = (*temp + (c2 *j *2) + k *2 1));
Hadr2 + (c2 *j *2) + k *2) = ar;
Hadi2 + (¢2 *) *2) + k *2 + 1) = aj;
}
free(temp);
}
void msc(adrl, adr2, rl, cl, r2, c2; vr, vi)
double *adrl, *adr2;
double vr, vi;
int rl, cl, r2, c2;
{ : .
int i K
double ar, ai;
if (rl != r2)
error("Result matrix of incorrect size in multscal");
if (cl != ¢2)
error("Result matrix of incorrect size in multscal);
for (j = 0;j '=r1; j++) {

for (k =

0; k '= cl; k++) {

- 203 -

ar = (*adrl);
al = (Hadrl + 1));
cemul(ar, ai, vr, vi, adr2);

adrl
adr2

}

void cpy(adrl, adr2, rl, cl, r2, ¢2)

=adrl+2
:adr2+2,

double *adrl, *adr2;

int rl, cl, r2, c2;

{ . .
nt 5, k;
double ar, ai;
if (rl1 = 12)

}

void ups(adr, r, ¢)

double
int

{

}

void dos(adr, 1, c)

double
int

{

error("Result .matrix of incorrect size in copy");

if (el 1= ¢2)
error("Result matrix of incorrect size in copy");
for (j = 0;) !=11; j++) {
ar = (*adrl)
ai = ((adrl + 1))
ad1'2
(adr2 -+ 1) = ai;
adrl = adrl + 2
adr? = adr2 + 2
}
}
*adr;
I, ¢
int i ks
double ' ar, aj;
if (,1' =1 &&cl=1
error("Unable to upshift a matrix");
if (r == 1 && ¢ == 1)
error("Una.ble to upshift a scalar");
if (1‘ == 1)
= ¢
=1
for (k =) — 1; k I= 0; k—) {
ar = (*adr + k *2 - 2));
s = (fadr + k *2 - 1))
*adr + k * 2) = ar
adr + k * 2 + 1) = ai
}
*adr = O’
*(adr -+ 1) = 0;
*adr;
T,
int j, k;
double ar, ai;

- 204 -

error("Unable to downshift a matrix");
if (r ==1&&c==1)
error("Unable to downshift a scalar");

if (r == 1)
] =9
if (c == 1)
j=r
for (k = 0; k '=j — 1; k++) {
ar = (fadr + k * 2 + 2));
ai = (fadr + k * 2 + 3));
adr + k * 2) = ar;
) Hadr + k *2 + 1) = ai;
*adr + j) = 0;

Hadr +j + 1) = 0;
}

void inv(adrl, adr2, rl, cl, r2, c2)
double *adrl, *adr2;
int rl, 2, cl, c2;

int n, m, j,il 1 piv;
double factor(2], af2], t[2];
double *temp,big,mod,tmp;

if (r1 != cl)

error("Cannot invert a non—square matrix");
if (r2 !'=rl)

error("Result matrix of incorrect size in inverse");
if (c2 !'=.cl)

error("Result matrix of incorrect size in inverse");
if (cl == 1 && rl==1)
cinv(adrl{0],adr1[1],adr2);

return;

}
temp =.(double *)malloc(sizeof(double)*1 * ¢l * 2);
if (temp == 0)

error("Out of Memory Error);
for (n = 0; n !'=rl; nt++) {

for (m = 0; m !'= cl; m++) {
Htemp + (rl *m *2) + n * 2) = (*adrl

+ (r1 *m *2) + n *2))
*(temp + (rl *m *2) + n *2 4 1% = (*(adrl
+ 1))

+ (1 *m *2)+n *2
} _

}
iden(adr2, r2, c2);
for (n = 0; n '=rl; nt++) {

/*Find a partial pivot*/
big=0.0;

for(l=n;l'=r1;l++) {
mod=*temp+
1*%12)+n*2) * (*(temp + (17r1%2)+n*2));
mod+=*(temp+ ' '
1%1%2)+n*2+1) * (Htemp + (1%71%2)+n"2+1));
if (mod>big) {
big=mod;
piv=l;

- 205 -

if (big::O.}O) {

error("Singular
y . free(temp);

Matrix Error");

/*Now we need to swap rows n and piv of the mairiz*/

if (pivi=n) {

for(l=0;l'=cL;1++) {

tmp=*temp+(piv *t1*2)+11*2);
Etemp+gplv *172)+1 2)=(*temp+(n *1*2)+11%2));

temp—+

*(temp+(n*1%2)+1 %2+1)=tmp;

n *1%2)+l #2)=tmp;
tmp=*temp-+(piv *1"2)+l
*(temp—+(plv *1%2)+1l 2+1)=

l*2—+-1).;

*temp+(n*rl 2)+172+1));

tmp=¥adr2+(piv *r1*2)+l*2);
*Eadr2—+-gp1v %1 %2)-H122)=(Hadr2+(n *172)+11*2));

adr2+

n*172)12

=tmp;

tmp= {adr2-+(piv 1 *2)+ll*2+1);
*(adr2+(piv 1 %2)+l12+1)=

(H(adr2-+(n*1%2)+11%2+1));

*(adr2+(n*r1 *2)+1"2+1)=tmp;

cinv(*temp
cl

2 +

*
for G = 0; 3!

cmul(factor[0], factor(1],

el ¥2) 4+ *2),

Ul

cmul(faétor[O], factor[1],

c'2*2)+'
+7 *2 4+
2);

L j++) {

2 4+ 1), temp + (n *

(n *cl *2) +n *2), *temp + (n
*

1), factor);

*(t:emp + (n *

e fn tl e D)
c J

*(adr2 + (n *

*2), Hadr2 + (n

*c2 *2)
+ 1), adr2 + (n

¥e2 *2) 4+ *

for (m = 0; m '= rl; m++4) {

if (m !=n) {

factor[0] = (*(temp + (m * cl *

2)
factor[1]
2)
for (j

n * 2));
(*temp + (m * cl *

+
-:n*2—+-1));

=0;j!=cl; j++) {

al0] =

factor(1], t);
cadd(*(temp + (m *cl *
2) +]_*2), *temp + (m
%1 %2) +] * 2+ 1), —t[0],

b

—t{1], temp + (m * cl *

- 206 -

,—
—
=
-
)
(e}
&
o
=]
—
=

factor[l], t);
cadd(*(adr? +, (m *c2 *
2) +j *2), *(adr? + (m
*2 < 2) +j *2 4 1), —t[0],

—t[1], adr2 + (m * ¢2 *

))+ * 2)
}
}
free(temp);
void input(filename, ptr)
char *filename(];
double "ptr;
static char fname[10][20];
static FILE *fopen(), *pointer(10];
float ¢, d;
int a, f =0,b = 10;
if (stremp(filename, "close") == 0) {
for (a = 0; a != 10; a++) {
if (fnamefa][0] '= 0) {
fclose(fpointer(a));
fnamel[al[0] = O;
}
}
return;
}
for (a = 9; a != —-1; a——) { _
: if (stremp(filename, fnamefa]) == 0) {
f =
b = a;
} else {
if (fnamefa][0] == 0)
b = a;
) }
if (b == 10)
error("Too many files open (maxdmum of 10)");
if (f == 0) {

‘'strepy(fname(b), filename);
fpointer[b] = fopen(fnamefb], "r");
if (fpointer[b] == 0)

error("Unable to open file for input");

}
fscanf(fpointer(b], "%f %f*, &c, &d);

*ptr = ¢;

*ptr + 1) = d;
}
void output(filename, ptr)
- char *filenamef[];

double *ptr;
static char onare[10](20];
static FILE *open(), *opointer[10];
int a, f =0, b = 10;
if (stremp(filename, "close) == 0) {
for (a = 0; a != 10; a++) {
if (oname[a][0] '= 0) {

fclose(opomter[a])
oname(a](0] = 0;
}
return;
} .
for (a = 9; 2 = -1, a——)
if (strcmp(ﬁlena.me onamefa]) == 0) {
f =
} else { b =
if (oname[a)[0] == 0)
b = a;
}
}
if (b == 10)
error("Too many files open (Maximum of 10)");
if (f ==0) {

strcpy(onamefb], filename);
opointer[b] = fopen(oname[b] "w');
if (opointer[b] == 0)

error("Unable to open file for output™);

}
fprintf(opointer[b], "%f %f\n", (*ptr), (*(ptr + 1)));

return,

void error(message)
char ﬁnessage[]

{ :
int *t;
t=0;
fprintf{stderr, "***DSPSIM Runtime Error***\n");
fprintf(stderr, "%s\n\n", message);

- 208 -

exit(0);

void cadd(a, b, ¢, d, €)
double a, b, ¢, d, *;
{
*¢) = radd(a, c);
*e + 1)) = radd(b, d);
}

void cmul(a, b, ¢, d, €)
double a, b, ¢, d, *e
{

(= radd(rmul(a, ¢), —rmul(b, d));
(*(e + 1)) = radd(rmul(b, ¢}, rmul(d, a));

void cinv(a, b, c)
double a, b, *;
{
*¢) = rdiv(a, radd(rmul(a, a), rmul(b, b)));
*c + 1)) = rdiv(-b, radd(rmul(a, a), rmul(b, b)));

double radd(a, b)
double a, b;

double result;
result = a + b;
return (result);

double rmul(a, b)
double a, b;

double result;
result = a * b;
return (result);

}

double rdiv(a, b)
double a, b;

{
double result;

result = a /- b;
return (result);

- 209 -

Preprocessor for matrix operations

*

* A pre—preprocessor for ‘C* which converts matriz ezpressions into

* /*splools.h code

*/

#include <ctypeh>
#include <stdio.h>
#define TRUE 1
#define FALSE 0

void error();

void lerror();

void process();

void extract();

void strip();

void mul();

int line_number = 0;
int floating_flag = 1;
nt level;

main(arge, argv)

chay *argv(];
int arge;
{
chay out_name(40];
chay linebuffer{256], ch;
nt Ik
" FILE *fopen(), *p_in, *p_out;

if (arge '= 2)

error("ppr usage incorrect ... use ppr filename");

fp_in = fopen(argv[l], "r");
if {fp_in == 0)

error("file does not exist");

strepy(out_namme, argv[l]);
k =0;

while (*out_name + k) !'= 0)
k++;

k——:
if ((out name + k) '=

error("File to be processed must be a .p file");

*(out_name + k) = ‘¢’
fp_out = fopen(out_name, "w");
if (fp_out == 0)

error("Unable to open a .c file for output");

k = 0;
while (!feof(fp_in))

fscanf(fp n, , &ch);
f (ch != An*) {

- 210 -

/*

main

linebuffer(k] = ch;
k++;

} else {
linebuffer(k] = "\0";

line_number—++;
if (Iinebuffer[0] = "$°) {

fprintf(fp_out, "%s\n", linebuffer);
if (contains(linebuffer, "#include") && contains(linebuffer, "tools.h")) {
fprintf(fp_out, "spvar TEMP0, TEMP10,TEMP20;\n");

fprintf(fp_out, "spvar TEMP1,TEMP11, TEMP21;\n"
fprintf(fp_out, "spvar TEMP2,TEMP12, TEMP22;\n"
fprintf(fp _out, "spvar TEMP3,TEMP13, TEMP23;\n"
fprintf(fp_out, "spvar TEMP4,TEMP14 TEMP24;\n"
fprintf(fp_out, "spvar TEMP5,TEMP15 TEMP25;\n"
fprintf(fp_out, "spvar TEMP6,TEMP16, TEMP26;\n"
fprintf(fp _out, “spvar TEMP7,TEMP17, TEMP27;\n"
fprintf(fp_out, "spvar TEMP8 TEMP18,TEMP28;\n"
fprintf{fp_out, "spvar TEMP9,TEMP19, TEMP29;\n"

1}f (contains(linebuffer, "#define")
&d&e contains(linebuffer, "FIXED"))
floating_flag = 0;

} else {
linebuffer[k] = "\0";

strip(linebuffer);
process(linebuffer, strlen(linebuffer), fp_out);

k = 0
}
}
fclose(fp_in);
fclose(fp_out);
}
void
error(mesg) : error
char *mesg(];
fprintf(stderr, "%s\n", mesg);
exit(0);
}
void :
lerror(imesg) lerror
char *mesg]];
fprintf(stderr, "%s at line %d\n", mesg, line number);
exit(0);
}
void
process(strptr, length, fp) process
char *strptr;
int length;
FILE *p;
{
int res_start = —1, res_finish = —1; .
char ~ result[256], ev([256];

- 211 -

int k;

(*smptr + k) 1= =) {
if (*(strptr + k) 1= © 7 && res_start == -1)
res_start = k;
f (*(strptr + k) = ° && res_start != —1)
res_finish = k;
++k;
if (k == length)

lerror("No equals sign in expression");

if (res_start == —1 || res_finish == —1)
lerror(*No result variable in expression");
res_finish4++;
if (T(isvarch(*(strptr + res_finish + 1))
Il *(strptr + res_finish + 1) == "())
lerror("Bad expression");

e‘{tractgstlptr result, res_start, res_finish);

extract(strptr, ev, res_finish + 1, length);
level = —1;
eval(ev, f)
fprintf(fp, "/*%d*/ copy (%s,%s);\n", line_number, ev, result);
}
void ‘
extract(strptrl, strptr2, start, finish) extract
char *strptrl *strptr2;
int start, finish;
vt
it k;
if (start < 0)
start = 0;
if (finish < 0)
finish = 0;
if (finish > strlen(strptrl))
finish = strlen(strptrl);
for (k = 0; k != finish — start; k++) {
*(strptr2 + k) = *(strptrl + k + start);
*(strptr2 + finish — start) = "\0%;
}
void .
strip(strptr) St?"lp
‘ char *strptr;
char stripped[256];
int g L
k = 0
1 = 0;

while (*(strptr + k) '= "\0") {
if (lisspace((strptr + k))) {
stripped[l] = *(strptr + k);
+++;

k++;

- 212 -

stripped[l] = "\0";

strepy(strptr, stripped);

eval(strptr, fp) : eval
char *strptr;
FILE *p;
{
char local _copy[256], temp[256], templ[256], temp2([256];
nt 1, 11,7k0, k1, k2, k3, k4, k5, k6, brac_count;

étrcpy(local_copy, strptr);
SEARCH_LOOP:k! = search(local _copy, (", 0);

k2 = search(local _copy, “\"", 0);

k0 = search(local _copy, """, 0);

k3 = search(local _copy, “#7, 0);

k4 = search(local_copy, "*", 0);

k5 = search(local_copy, "+, 0);

k6 = search(local_copy, =", 0);

if (level == 30)

error("Expression too complicated");

if (k0 == -1 && k1 == -1 && k2 == -1 &&
k3 == —1 && k4 == -1 && k6 == -1 && k6 == 1) {
- if (search(local_copy,), 0) '= —1)
lerror(**Unbalanced brackets");
else {
strepy(strptr, local _copy);
return (0);
}
}
if (kl = ——1) {
brac_count = 1;
l =kt + 1
while (brac_count !'= 0 && local_copyfl] = "\0") {
if (local copy[l] == (")
brac_count++;
if (local_copy[l] == "))

brac_count——;
1++;

if (brac_count != 0)

lerror(""Unbalanced brackets');
extract(local _copy, temp, k1 + 1, 1 — 1);
eval(temp, fp); " /* The recursive bit to deal with brackets! */
extract(local _copy, templ, 0, kl);

extract(local_copy, temp2, 1, 1 + strlen(local _copy));
strcat(temp, temp2);
strcatEtempl, temp;;
strepy(local _copy, templ);
goto SEARCH_LOOP;

- 213 -

}

if

(k2 = -1 {

level++;
sprintf(templ, "TEMP%d\0", level);

1l =%k2 - 1;

while (I != —1 && isvarch(local _copy(l]))
l——;

éxtract(local_copy, temp, | + 1, k2);

if (strlen(temp) == 0)

lelrbl("Bad expression");

“if (floating_flag

fprintf{fp, ’)'/*%d*/ resize(%s,%s.csize,%s.rsize);\n"
: Jline number, templ, temp, temp),
if ('ﬂoatmg flag)
fprintf(fp, " /*%d*/ resize(%s,%s.csize, %s rsize, %s.format);\n"
lme number, templ, temp, temp, temp)
fprintf(fp, "/*%El*/ transpconj(%s %s);\n", line_number, temp, templ);
extract(local _copy, temp2, 0, | + 1);

strcat(temp2, templ);

extract(local _copy, templ, k2 + 1, 1 + strlen(local _copy));
strcat(temp2, templ);

strepy(local _copy, temp‘Z);

goto SEARCH_ LOOP;

i}f (k0 1= —1) {

level++;
sprintf(templ, "TEMP%d\0", level);

:kO—l;

while (1 !'= —1 && isvarch(local _copy{l]))
l——; .
extract(local_copy, temp, 1 + 1, kO0);

if (strlen(temp) == 0)

lerror(*Bad expression”);
f (floating_flag)
fprintf(fp, " /*%d*/ resize(%s,%s.csize,%s.rsize);\n"
Jine _number, templ, temp, temp)
('ﬂoatmg flag) :
fprintf(fp, "'/*%d*/ resize(%s,%s.csize,%s. rsize,%s.format);\n"
Jline number, templ, temp, temp, temp)
fprintf(fp, "/*%a*/ transpose(%s %s);\n", line_number, temp, templ);
extract(local _copy, temp2, 0, | + 1);

strcat(temp2, templ);
extract(local _copy, templ, k0 + 1, 1 + strlen(local_copy));

strcat(temp2, templ);
strepy(local . copy, temp2);
goto SEARCH_LOOP;

i}f (k3 1= —1) {

level4++;
sprintf(templ, "TEMP%d\0", level);

1l = k3 - 1;

while (I '= -1 && isvarch(local _copy[l]))
|——:

extract(local _Copy, Lemp, I + 1, k3);

if (strlen(temp) =

- 214 -

. lerror(*Bad expression");
if (strcmp(temp, templ) == 0)

sprintf(temp, "TEMP1_%d\0", level);

if (floating_flag)

fprintf(fp, “/*%d*/ resize(%s,%s.rsize,%s.csize);\n"

Jine number, templ, temp, temp, temp),
('ﬂoatmg flag)
printf(fp, " /*%d*/ resize(%s,%s.rsize,%s.csize,%s format);\n"
Jine number, templ, temp, temp, temp);

fprintf(fp, "/*%d*/ 1nverse(%s %s) \n", line_number, temp, templ);
extract(local_copy, temp2, 0, | + 1);

strcat(temp2, templ);

extract(local _copy, templ, k3 + 1, 1 + strlen(local _copy));
strcat(temp2, templ);

strcpy(local _copy, temp2);

goto SEARCH_LOOP;

}
if (k4 1= -1) {
level4+;
spuntf(temp2 "TEMP%d\O" level);
1l = k4 — 1;
11 = k4 + 1;
while (1 1.: —1 && (isvarch(local _copyll]) || local_copy(l] == ".))
|——
while (ocal copy[l1] '= “\0" && (isvarch(local _copyf(l1})

|| local copy[ll] == ".7))
114+
extract(local _copy, temp, | + 1, k4);
e\tract(local copy, templ kd + 1, ll)
if (strlen(temp) == 0 || strlen(templ) = 0)

. lerror("Bad expression");
if (test number(temp) || test number(templ)
goto scalar_multiply;
if (floating_flag)
fprintf(fp, " /*%d*/ resize(%s,number_of rows(%s rsize, %s.csize, %s 1size, %s.c
size), number _of _columns(%s.rsize,%s.csize,%s.rsize, %s.csize));\n", line_ number
temp2, temp, temp, templ, templ, temp, temp, templ, templ)
if (!floating_flag
fprintf{fp, “/*%d*/ resize(%s,number _of _rows(%s rsize,%s.csize, %s rsize, %s.c
* size),number_of _columns(%s rsize,%s.csize, %s.rsize, %s.csize), %s.format); \n" li
ne number, Ttemp2, temp, temp, templ, templ, temp, temp, templ, templ, templ);
fprintf(fp, */*%d*/ multiply(%s,%s,%s);\n", line_number, temp, templ, temp2);

extract(local _copy, templ, 0, 1 + 1);

strcat(templ, temp2);

extract(local_copy, temp2, 11, 1 + strlen(local _copy));
streat(templ, temp?2);

strepy(local _copy, templ);

goto SEARCH_ LOOP;

scalar_multiply:
if (test_number(temp) && test_number(templ)) {
mul(temp, templ, temp2);
extract(local _copy, templ, 0, 1 + 1);

strcat(templ, temp2);

extract(local copy, temp2, 11, 1 + strlen(local_copy));
strcat(templ, temp2);

strepy(local _copy, templ);

goto SEARCH_LOOP;

- 215 -

}f (test_number(temp)) {
if (floating_flag)
fprintf(fp, " /*%d*/ resize(%s,%s rsize %s.csize);\n", line_number, temp2, t
empl, templ);
if (floating_flag)
fprintf{fp, **/*%d*/ resize(%s,%s.rsize, %s.csize,%s.format);\n", line_number
, temp2, templ, templ, templ&
fprintf(fp, **/*%d*/ multscal(%s,%s,0.0,%s);\n", line_number, templ, temp, te
mp2);

if (test_number(templ)) {
if (floating _flag)
fprintf{fp, "/*%d*/ resize(%s,%s.rsize,%s.csize);\n", line_number, temp2, t
emp, temp);
if (Mloating_flag)
fprint{(Tp, "/*%d*/ resize(%s, %s 1size, %s.csize, %s.format);\n", line_number
, temp2, temp, temp, temp);
fprintf(fp, "/*%d*/ multscal(%s,%s,0.0,%s);\n", line_number, temp, templ, te

mp2);

extract(local _copy, templ, 0, I);

strcat(templ, temp2);

extract(local _copy, temp2, 11, 1 + strlen(local _copy));

strcat(templ, temp2);

strepy(local _copy, templ);

) goto SEARCH_LOOP;
if (1\0 1= "—1) {

level++;

>p11ncf(temp2 CTEMP%A\0", level);

1 = k5 — 1;

I1 = k5 :

while (1 = 0 && isvarch(local _copy(l]))
l——:

while (local copy[l]] '= “\0* && isvarch(local _copy(l1]))
114+

extract{local copy, temp, 1, k5);

extract(local _copy, templ ks + 1, 11);

if (strlen(temp) == 0 || strlen(templ))
lerror("Bad expression);

if (floating_flag)
fprintf(fp, " /*%d*/ resize(%s,%s.rsize,%s.csize);\n", line_number, temp2, te

mp, temp);

if ('floating_flag) v
fprintf{fp, ”/*%d*/ resize(%s,%s.rsize,%s.csize, %s.format);\n", line_number,
temp2, temp, temp, temp
fpriutf(fp, "/*%d*/ add(%s,%s,%s); \n" line_number, temp, templ, temp2);
extract(local _copy, templ, 0, 1);

strcat(templ, temp2);

extract(local _copy, temp2, 11, 1 + strlen(local _copy));
strcat(templ, temp?2);

strepy(local _copy, templ);

goto SEARCH_LOOP;

} :
if (1\6 I_ -) {
level++;
spuntf(tempZ "TEMP%d\O" level);

l:kﬁ—l;

- 216 -

11 = k6 + 1; ‘
while (1 '= 0 && isvarch(local_copy(l]))

. .
while (loca.l copy[l]] '= “\0* && isvarch(local_copy(l1}))

114+;
extract(local _copy, temp, 1, k6);
extract(local _copy, templ k6 4 1, 11);
if (strlen(temp) == 0 || strlen(templ) = 0)

lerror(**Bad expression");
if (floating_flag)
fprintf{fp, "/*%d*/ resize(%s,%s. rsize,%s.csize);\n", line_number, temp2, te
mp, temp); _
if ('floating_flag)
. fprintf{ip, "/*%d*/ resize(%s,%s.rsize, %s.csize,%s format);\n", line_number,
temp?2, temp, temp, temp
fprintf(fp, "/*%d*/ subtract(%s,%s,%s);\n", line_number, temp, templ, temp2);

extract(local _copy, templ, 0, 1);

strcat(templ, temp2);

extract(local _copy, temp2, 11, 1 + strlen(local _copy));
strcat(templ, temp?2);

strepy(local _copy, templ);

goto SEARCH_LOOP;

}
}
int
search(strptr, ch, k) . search
char *strptr, ch;
int k;
.
it 1;
1 = -1,
while (*(strptr + k) "\0’) {
if (1 == -1 && *(strptr + k) == ch)
I =K
k++;
return (1);
}
contains(strptrl, strptr2) ' contains
char *strptrl, *strptr2;
{ .
int " p, flag = 0;
if (strlen(strptr2) > strlen(strptrl))
_ retmn (flag);
for (p = 0; p != 1 + strlen(strptrl) — strlen(strptr2); p++)
if (strncmp(strptrl + p, strptr2, strlen(strptr)) ==-0)
flag = 1;
return (flag);
} |
test _number(strptr) . test number
char : *strptr; -
{ .
int k, flag = 1;

for (k = 0; k I= strlen(strp r); k++)

- 217 -

if (I(isdigit(¥(strptr + k)) || *(strptr + k) == ".7))

flag = 0;
return (flag);
}
void
mul(strptrl, strptr2, strptr3) _ ' mul
char *strptrl, *strptr2, *strptr3;
{
double X, Y; -
sscanf(strptrl, "%lf", &x);
sscanf(strptr2, "%lf", &y);
sprintf(strptrd, "%IN0", x * y);
}
isvarch(ch) : isvarch
char ch;
{
if (isalnum(ch))
return (1);
if (ch == *_~
return (1);
else
retwn (0);
}

- 218 -

Conventional RLS simulation

/*RLS Algorithm*/

#define FLOATING

#define MANTISSA LENGTH 56

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include < /ud /call flib /COMPLEX _src /sptools.h>

#define MAXRND 2147483647.0

#define UNKNOWN _LENGTH 5

double calcnte();

double rnum();

double gauss();

double 1np,desired,;

double XW[UNKNOWN LENGTH];

double Weights[UNKNOWN _ LENGTH] {0 9,0.3,—0.3,0.7,0.1};
double FEED_FORWARD[2]={1.0,0. 865}

double XK[2};

float NOISE;
int N=0;

#define sigma 0.01

main()

{
spvar LAM,X,P,WKDE;
struct complex cn;

FILE *open(),*p;
double nte,gain_factor=0.0, *average;

float lambda=0.0,SNR=-1;
int n,s,p_10,p,ensemble=—1ens;

char clear screen=12;

char up_line=11;

char *command, *argl *arg2, *arg3, *argd;
char o_file[20];

/*Initialisation® /

fp=fopen(""NORMTAPERROR.DAT" "w");

srandom(1);

- 219 -

main

printf("%c" clear _screen);
printf “Sirmulation of Standard RLS Algorithm\n\n");
printf("by Cluris Callender, 1989\n\n\n\n");

printf("Floating Point Mantissa Length = %d\n\n",MANTISSA_LENGTH);
while(N<1) {

printf("Filter Length:");

scanf("%d" &N);

cvector(X,N);
matrix(P,N,N);
cvector(K,N);
cvector(W,N);
scalar(D);
scalar(E);
scalar(LAM);

printf("\n\n");

while (lambda<0.8 || lambda>1.0)

printf(*"Please enter a value for lambda between 0.8 and 1.0: ");
scanf("%f",&lambda);

setscalar(LAM,lambda,0.0);

while (SNR<0 || SNR>120) {
printf(**\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 120db): ");
scanf("%f" &SNR);
}
while (ensemble<1) {
pnntf(" n\nHow many runs to make ensemble average: ");
sca.nf(od" &,ensemble)
for(n=0;n'=N;n++) gain_factor=gain_factor+Weights[n] *Weights[n];
gain_factor=gain_factor+FEED_FORWARD((] *FEED_FORWARD[0]+FEED_FORWARD[1]*FEED _FO
RWARD[1};
gain_factor=sqrt(gain_factor);
NOISE=gain_ factor /expl0(SNR. /20.0);
printf("\n\nHow many data samples per run: ");
scanf("%d" &s);
fprintf(fp,"%d\n\n" s);
average= (double *)malloc(sizeof{ double) *{s+1));
if (average==0) {
fprintf(stderr,"RLS Runtime error.. out of memory");
exit(1);
printf("%cRLS Sinwlation Running\n\n\n",clear _screen);
p_10=s /10;
for (ens=1;ens!=ensemble+1;ens++) {
for(n=0;n!=N;n++) XW][n}=0.0;

for(n=0;n!=2;n4++) XK[n]=0.0;

- 220 -

zero(W);
zero(X);
identity(P); ‘
multscal(P,1.0 /igma,0.0,P);
p=p_10;

nﬁe:calcnte(W.element);
*average=*average-+nte /ensemble;

for(n=1;n!=s+1n++) {

if (n==p) '
pr'mtf{"%cRun #%d:Status %d%%\n",up_line,ens,(p *10) /p_10);

p=p+p_10;
}

*f (n==s/2
a q/Veight{[(;]:{O‘B;

Weights[1]=0.7;
Weights[2]=—0.6;
Weights[3]=0.2;
Weights[{]=—1.2;
¥/

upshift(X);

makedata();
setcvector(X,1,inp,0.0);

setscalar(D,desired,0.0);

E=D - X" * W
K=P*X*((LAM+X " *P *X)#)
P=(P - K*X'*P)*LAM#
W=W + K * E

RPN

(average+n)=(average+n)+calcnte(W.element) /ensemble;
printf(*\n");
for(11:0;p!:s+1;n++) {

fprintf{fp,"%20.16e\n" *(average+n));

}

fclose(fp);
makedB(s,average);

fp=fopen("gplottext.tmp","w");

fprintf{fp,"Fl. Point\n");

fprintf(fp,"%d bits\n\n",MANTISSA LENGTH);
fprintf{fp,"Fil Len=%d\n" N);
fprintf{fp,"lam=%3.2f\n" lambda);
fprintf(fp,"SNR=%4.2{\n" SNR);

fprintf(fp,"%d runs\n",ensemble);

fclose(fp);

- 221 -

}

double calente(ptr)
double *ptr;

int k;
double nte;
struct complex Weight;

for (k=0:k!=N;k++) {

Weight.real=((*ptr));

ptr++;

Weight.imaginary=((*ptr));

ptr++;
nte=nte+(Weight.real—Weights[k])*(Weight.real—Weights(k]);

return(nte);

}
makedata()
{
mt j;

XK[1)=XK]0];

XK[0]=gauss();

inp=XK[0]*FEED FORWARD{0]+XK[1]*FEED_FORWARD(1];

for (j=UNKNOWN_LENGTH-1;'=0j—-) {

XWE=XW[-1);

X W(0]=inp;

desired=0.0; |

for (j=0;j'=UNKNOWN _LENGTH;j++) desired=desired+XW[jJ*Weights[j];
) desired=desired+(gauss())*NOISE; '

| c{iouble rnum()
Ijeturn ((ra.ndqm() /MAXRND));

double gauss()

{

double a,b;

double result;

a=rmum();

b=rnum();

result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return(result); :

makedB(s,data)
int s; -
double *data,;

{
FILE *fopen(),*fp2;

- 222 -

float se;

float init;
double p;
int k;

fp2:fopen("ERRdB.DAT","W");

se=*(data+k);
if (k==0) init=se;

p=10*log10(se/init);
ﬁprintf(fpl“%f\n",P)§

felose(fp2);

- 223

Fast Transversal Filtei‘s

/*FTF Algorithm™*/

#define FLOATING

#define MANTISSA LENGTH 56

#include < /ud/call/ltb/COMPLEX/sptools.h>
#include <math.h>

#include <stdio.h>

#define MAXRND 2147483647.0

int N;

double calcnte()

double ruum();

double gauss();

void change weights();

double inp,desired;

double X{16];

double Weights[16];

double FEED_FORWARD(3]={1.0,0.600};

double XK{3];
float NOISE;

main(argc,argv)
mt arge;
char *argv[);

{

simulation

spvar A rescue,y0,alphaml,eNp,eN,gammaN,gammaNpl epsilon,epsilonp;

spvar tempscall,tempscal2,rN,rNp,beta,Y,YNp1,C,Cex,B,tempN,W,alpha,CNp1;

struct complex cn;

FILE *fopen(), fp,

-double nte.gan_factor=0.0 *a\«erage temp,MU=-1.0;
float lambda=0.0,SNR=-1;

int k,ns,p_10,p,ensemble=—1.ens res_flag;

char clear screen=12;
char up_lne=11;

/*Initialisation*/
if (arge!l=2) res_flag = 1;
else {
if (stremp(argv(l],"—on")==0) res_flag=1;

if

(|

if (strcmp(argv(l],"—ON")==0) res_flag=1;
(stremp(argv(1]," —off"")==0) res_flag=0;
(

if (strcmp(argv{l],"—OFF")==0) res_flag=0;
}

- 224 -

printf("%c" clear _screen);

printf("Simulation ‘of FTF Algorithm\n\n");
printf("*by Chris Callender, 1989\n\n\n\n");
if (res flag) printf(*\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n",M
ANTISSA _LENGTH);

if ('res_flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA LENGTH); :
printf("Filter Length:");

scanf("%d" &N);

for (k=0;k!=N;k++) Weights(k]=rnum()*2.0-1.0;

if (N<16) for (k=N;kl=16;k++) Weights[k]=0.0;

rvector(A,(N-+1));
scalar(rescue); -
scalar(y0);

scalar(alphaml);
scalar(eNp);
scalar(eN);
scalar(gammaN);
scalar(gammaNpl);
scalar(alpha);
scalar(epsilon);
scalar(epsilonp);
scalar(tempscall);
scalar(tempscal2
scalar(rN);
scalar(rNp);
scalar(beta);
cvector(Y,N);
cvector(YNpL,(N+1));
rvector(C,N);
rvector(Cex,(N+1));
rvector(CNpl,(N+1));
rvector(B,(N+1));
rvector(tenpN,N);
rvector(W,N);

3

fp=fopen("NORMTAPERROR.DAT","w");

srandom(time(0));

while (lambda<0.8 || lambda>1.0)

printf(*\n\nPlease enter a value for lambda between 0.8 and 1.0; "Y;
scanf(" % &lambda);
}

while(MU<0 && res_flag) {

printf("\n\nPlease enter a value for soft constraint parameter MU:");
scanf("%lf" &MU);

while (SNR<O || SNR>120) {
printf(*'\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 120db): ");
scanf("%f" &SNR);

while (ensemble<1) {

printf("\n\nHow many runs to make ensemble average: ");
scanf("%d" ,&ensemble);

}
for(n=0;n!=N;n++) gain_factor=gain_ factor+Weights[n]*Weights[n];

gain_factor=gain _factor*(FEED_FORWARD[0]*FEED_FORWARD(0]+FEED _ FORWARD[PFFEED_F
ORWARD[14+FEED _ FORWARD[2*FEED FORWAR]j[Q]
gain_factor=sqrt(gain_factor);

NOISE=gain_factor /expl0(SNR/20.0);

printf(*\n\nHow many data samples per run: ");
scanf(" Od" &CS)

fprmtf(fp,"%d\n\n" S);

average=(double)malloc(sxzeof(double) (s+1));

if (average==0)

fprintf(stderr,"FTF Runtime error...out of memory");
exit(1);

printf("%cFTF Simulation Runmng\n\n\n" clear_screen);
p_10=s/10;

for (ens=1;ens!=ensemble+1;ens++) {
for(n=0;n'=N;n++) X[n]=0.0;

for(n=0;n!=3;n++) XKn]=0.0;

setrvector(A,1,1.0,0.0);
setrvector(B,1,1.0,0.0);

zero(C);

zero(W);

nte=calcnte(W.element);
*average=*average+nte/ensermble;
makedatal();

setscalar(y0,inp,0.0);

copy(y0,tempscall);
setscalar(tempscal2,—desired,0.0);

copy(tempscall,alpha);
multiply(alpha,alpha,alpha);
copy(alpha,alphaml);

inverse(tempscall tempscall);.
multiply(tempscall, tempscal2,tempscall);
getscalar(tempscall,cn);
setrvector(W,1,cn.real cn.imaginary);
setscalar(garmmaN,1.0,0.0);

p=p_10;

for(n=1;n!=N+1;n++) {
nte=calcnte(W.element);
(average+n)=(average+n)-+nte /ensemble;
makedata();
upshift(Y);
upshift(YNpl);
setevector(Y,1,inp,0.0);

-.226‘

setevector(YNpl,1,inp,0.0);

multiply(A,YNpl,eNp);

for(k=L;k'=N+1k++) {
- getrvector(A k,cn); -
setrvector(tempN k,cn.real cn.imaginary);

inverse(y0,tempscall);

multiply(eNp,tempscall tempscall);
getscalar(tempscall cn);
setrvector(A,n+1,—cn.real,—cn.imaginary);

multiply(eNp,gammaN,eN);
multscal(alpha,lambda,0.0,alpha);

multiply(eNp,eN,tempscall);
add(alpha,tempscall,alphaml);

inverse(alphaml tempscall);
multiply(tempscall,alpha,tempscall);
multiply(gammaN,tempscall,gammaN);
upshift(C);
inverse(alpha,tempscall);
multiply(tempscall,eNp,tempscall);
getscalar(tempscall,cr;}; .
multscal (tempN, cn.real ,cn.imaginary,tempN);
subtract(C,tempN,C);
if (n==N) {
copy(C,tempN);
getscalar(y0,cn);
multscal(tempN,cn.real ,cn.imaginary,tempN);
getscalar(gammaN cn);
multscal(tempN,cn.real cn.imaginary,tempN);
for(k=1;k'=N+Lk++) {
getrvector(tempN k,cn);
setrvector(B,k,cn.real,cn.imaginary);

}
setrvector(B,N+1,1.0,0.0);
copy(gammaN,beta);
multiply(beta,y0,beta);

multiply(beta,y0,beta);

}

setscalar(tempscall,desired,0.0);

multiply(W,Y tempscal2);
add(tempscall,tempscal2,epsilonp);

multiply(epsilonp,gammaN epsilon);

if (n<N) {
inverse(y0,tempscall);

multiply(tempsca,ll,eps.ilonp,tempscall);

- 227 -

getscalar(tempscall,cn);
setrvector(W,n+1,—cn.real,—cn.imaginary);

getscalar(epsilon,cn);
multscal(C,cn.real,cn.imaginary,tempN);
add(W,tempN,W);

}

for(n=1;n!=s+1n++) {

if (n==p) { ,
printf("%cRun #%d:Status %d%%\n",up_line,ens,(p*10)/p__10);

p=p+p_10;

}

makedata();
upshift(Y);
upshift(YNpl);
setcvector(Y,1,inp,0.0);

setevector(YNpl,1,inp,0.0);

* 1 *
multiply(A, YNpl,eNp);

* #2 *
multiply(eNp,gammaN eN);
/¥ #3 */
copy(alpha,tempscal?);

multiply(eNp,eN,tempscall);
multscal(alpha,lambda,0.0,alpha);

add(alpha,tempscall,alpha);

/o #4 */
inverse(alpha,tempscall);

multiply(gammaN tempscall,gammalNpl);
multiply(gammaNpl,tempscal2,gammaNpl);
multscal(gammaNpl,lambda,0.0,gammaNpl);

/* 5 *
for (k=Lk!'=N+1k++) {
getrvector(C, k,cn);

setrvector(Cex,k+1,cn.real cn.imaginary);
}
setrvector(Cex,1,0.0,0.0);

inverse(tempscal2,tempscal2);
multiply(tempscal2,eNp,tempscal2);
multscal(tempscal2,1/lambda,0.0,tempscal2);

getscalar(tempscal2,cn);

multscal(A,—cn.real,—cn.imaginary,CNpl);
add(CNp1,Cex,CNpl);

. 228 -

/* #6 ¥/

getscalar(eN,cn);
multscal(Cex,cn.real,cn.imaginary,Cex);
add(Cex,A,A);

/* #T */
getrvector(CNpl,N+1,cn);
setscalar(rNp,—cn.real,—cn.imaginary);
multiply(rNp,beta,rNp);
multscal(rNp,lambda,0.0,:Np);

* 8 * /
getrvector(CNpl,N+1,cn);
setscalar(tempscall,cn.real,cn.imaginary);
multiply(tempscall,gammalNpl, tempscall);
multiply(tempscall,rNp,tempscall);
setscalar{tempscal2,1.0,0.0);

add(tempscall,tempscal2,tempscal 1);
copy(tempscall rescue);

inverse(tempscall tempscall);
multiply(tempscall,gammaNp1,gammaN);

getscalar(rescue,cn);
if (cn.real<0.0 && res_flag==1) {

zero(A);
setrvector(A,1,1.0,0.0);

zero(B);
setrvector(B,N+1,1.0,0.0);

* zero(C); A 7
temp=pow(lambda,(double)N)*MU;
setscalar(alpha,temp,0.0);

temp=MU;
setscalar(beta,temp,0.0);

setscalar(garrumN,l.0,0.0)';
goto RE_START;
}
/¥ #9 */
multiply(rNp,gammal,rN);
/¥ #10 */

111ult$cal(beta,lambda,0.0,beta);

multiply(rNp,rN tempscall);
add(tempscall,beta,beta);

/o #11 */
getrvector(CNpl,N+1,cn); :
multscal(B,~cn.real,—cn.imaginary,Cex); -
add(CNp1,Cex,Cex);

for(k=Lk!=N+1k++) {
getrvector(Cex,k,cn);
setrvector(C,k,cn.real,cn.imaginary);

; :

- 229 -

setrvector(Cex,N+1,0.0,0.0);

/* #12 %/

getscalar(rN,cn);
multscal(Cex,cn.real,cn.imaginary,Cex);
add(Cex,B,B);

/* #13 */
setscalar(tempscall,desired,0.0);

multiply(W,Y tempscal2);
add(tempscall,tempscal2 epsilonp);

/* o #l4 - */

multiply(epsilonp,gammaN epsilon);

/* #15 */

getscalar(epsilon,cn);

multscal(C,cn.real ,cn.imaginary,tempN);
add(W tempN,W);
nte=calcnte(W.element);
(average+n)="(average-+n)-nte/ensemble;

for(n=0;n!=s+1;n++) {
fprintf(fp,"%20.16e\n" *(average+n));

}

fclose(fp);
makedB(s,average);

}

double calcnte(ptr)
double *ptr;

int k;
double nte=0;

struct complex Weight;

for (k=0k!=N:k++) {

Weight.real=((*ptr));

ptr++; .

Weight.imaginary=((*ptr));

ptr++; .
nte=nte-+(Weight.real+Weights[k]) *(Weight.real+Weights[k]);

return(nte);

makedata()
int J;

XK

XK[1}J=XK

'2] =XK

1} :
0h;
XK[0]=gauss();

inp=XK[0]*FEED _FORWARDI0]+XK[1]*FEED_FORWARD[1]-+XK[2]*FEED _FORWARD[2];

- 230 -

for (j=N-1j'=0§—-) {
X[j]=X[-1};
X [0]=1np;
desired=0.0;
for (j=0yj!=Nyj++) desired=desired+X[j]*Weights[j];
desired=desired+(gauss()) *NOISE;

double rnum()

{
aeturn ((random()/MAXRND));

double gauss()

double a,b;

double result;

a=rnum();

b=rnum);
result=sqrt(—2*log{a))*cos(2*3.141592654*b);
return(result);

makedB(s,data)

int s;

double *data;
I{:‘ILE *fopen(),*fp2;
float se;

float init;

double av_level=0;

double p;
int k;

fp2=fopen("ERRAB.DAT" "w");

for (k=0;k!=s+1k++) {

se=*(data+k);
-~ if (k==0) init=se;

p=10*logl0(se/init);

if (k>4*N) -av_level4+=p;
oo A0

printf(** Average performance level=%lf\n" av_level/(s—4*N));
felose(fp2); .

void change_weights(t,file_ptr)
FILE *file_ptr;

int t;

{

}

- 231 -

Fast Kalman simulation

/* Simulation of the Fast Kalman Algorithm */

#define FLOATING

#define MANTISSA LENGTH 56

#include </ud/call/ib/COMPLEX _src/sptools.h> /*tools.h*/
#include <math.h>

#include <stdio.h>

#define MAXRND 2147483647.0

int N:

bl

double calente();
double rnum();
double gauss();

void change weights();

double inp,desired;

double X[5];

double Weights[5]={0.9,0.3,~0.3,0.7,0.1};

double FEED FORWARD[2]={1.0,0.600};

double XX[2];
float NOISE;

main(a.rgc,ai‘gv)

mnt arge;

char *argv[];

* All of the spvar definitions should go in here*/

spvar Xnml enml,a,c,en,epsilon,Cex,m,mu,r,b,w err,xn,dn forget,temp,templ,y;
struct complex cnl,cn2; -

FILE *fopen(),*fp;

double delta=—1.0,nte,gain _factor=0.0,*average;

float lambda=0.0 SNR=-1,

int k,n,s,p_10,p,ensemble=—1.ens res _flag;

char clear_screen=12;
char up_line=11; ’

~ /*Initialisation*/

if (arge!=2) res_flag = 1;

else {
if (stremp(argv{l],"—on")==0) res_flag=1;
if (stremp(argv(1],"—ON")==0) res_flag=1;
if (stremp(argv(l],"—off"")==0) res_flag=0;

if (stremp(argv(l],"—OFF")==0) res_flag=0;

- 232 -

printf("%c" clear _screen);

printf("Simulation of Fast Kalman Algorithm\n\n");

printf("*by Chris Callender, 1989\n\n\n\n");

if (res_flag) printf("\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n",M
ANTISSA LENGTH);

if (‘res_flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA_LENGTH); .

printf("Filter Length:");

scanf("%d" &N);

temp.rsize=1; temp.csize=1; temp.element=(double *)malloc(sizeof(double)*2); if
(temp.element==0) error(*Out of Memory");

rvector(Xnml,N);
scalar(temp);
cvector(templ,N);
scalar(forget);
scalar(xn);
scalar(dn);
scalar(enml);
scalar(en);
cvector(a,N);
cvector(b,N);
cvector(c,N);
cvector{w,N);
scalar(err);
scalar(r);
scalar{muy);
cvector%m,N);
cvector(Cex,(N+1));
scalar%epsilon);
scalar(y);

fp=fopen("NORMTAPERROR.DAT","w");
srandom(1);

while (lambda<0.8 || lambda>1.0)

{
printf("'Please enter a value for lambda between 0.8 and 1.0: ");
s}canf("%i“,&la.mbda);

while (delta<0.0)

printf(*Please enter a small positive value for delta: ");
scanf("%lf",&delta); :

}

while (SNR<O0 || SNR>120) {

printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 120db): "});
scanf(" %" ,&SNR);

| .

while (ensemble<1) {

printf("\n\nHow many runs to make ensemble average: ");
scanf("%d" ,&ensemble);

- 233 -

for(n=0;n!=N;n++) gain_factor=gain_ factor+Weights[n]*Weights[n];

gain_factor=gain_factor*(FEED_FORWARD[JJ*FEED_FORWARD(0]+FEED_FORWARD(1J*FEED_F
ORWARD(1});
gain_factor=sqrt(gain_ factor);

NOQISE=gain_factor/expl0(SNR/20.0);

printf(*\n\nHow many data samples per run: ");
Sca.l'lf(" Od",(gls);

fprintf(fp,"%d\n\n" s);

average=(double *)malloc(sizeof(double)*(s+1));

if (average==0) {

fprintf(stderr,"FK Runtime error...out of memory");
exit(1);

printf("%cFK Simulation Running\n\n\n",clear_screen);
p=p_10=s/10;

zero(w);

nte=calcnte(w.element);
*average=*average+nte/ensemble;
zero(a);

zero(b);

zero(c);
setscalar(epsilon,delta,0.0);

setscalar(forget,lambda,0.0);

for (ens=1;ens!=ensemble+1;ens++) {

for(n=1;nl=s+1n++) {

if (n==p) {

print{("%cRun #%d:Status %d%%\n",up_line,ens,(p*10)/p_10);

p=p+p_10;
/*The algorithm goes in herel*/

/HKL*/

makedata();
setscalar(xn,inp,0.0);

setscalar(dn,desired,0.0);
3 enml=xn—(Xnml)*a

/*(K2)*/

$ a=a+c*enml
/*(K3)*/

$ en=xn—(Xnml)*a
/*(K4)*/

3 epsilon=forget *epsilon+en*enml

JXKB)*/

- 234 -

temp=en * (epsilon#)

getscalar(temp,cnl);

setrvector(Cex,1,cnl.real,cnl.imaginary);

templ=c — a * temp

for(k=2;k!=N+2;k++) {
getevector(templ,k—1,cnl);
setcvector(Cex,k,cnl real ,cnl.imaginary);

/*(K6)*/
getevector(Cex,N+1,cnl);
setscalar(mu,cnl.real cnl.imaginary);

for(k=1;k'=N+1;k++) {
getcvector(Cex,k,cnl);
setcvector(m,k,enl.real,cnl.imaginary);

/H(KT)*/
getrvector(Xnml,N,enl);
setscalar(temp,cnl.real,cnl.imaginary);

upshift(Xnml);
setrvector(Xnml,1,inp,0.0);

r=temp — Xnml * b

J*(K8)*/
setscalar(temp,1.0,0.0);

b=(b + m * 1) * ((temp—rmu*r)#)
/9
c=m + b * mu

y=Xnml * w

err=dn — v

w=w + ¢ * err
nte=calcnte(w.element);

(average+n)=(average+n)+nte/ensemble;

for(n=0;n'=s+1;n++) {

fprintf(fp,"%20.16e\n" *(average+n));

}
fclose(fp);
makedB(s,average);

}

double calente(ptr)
double *ptr;

int k;

double nte;
struct complex Weight;

nte=0.0;

for (k=0;k!=N;k++) {

- 235 -

Weight.real=((*ptr));

ptr++; .

Weight imaginary=((*ptr));

ptr++; C-
nte=nte+(Weight.real—Weights[k]) *(Weight.real—Weights([k]);

return{nte);

makedata()
t
nt J;
XK[1J=XK[0];
XK[0]=gauss();
 inp=XK[0]*FEED_FORWARDI[0]+XK{1]*FEED_FORWARD(1];
for (j=4!=04—-) {
X[]=X[-1];
X[0]=%np;
desired=0.0;
for (j=0j!=Nj++) desired=desired+X[j]*Weights]j];
desired=desired+(gauss())*NOISE;

double rnum()

{ .
r}eturn ((random()/MAXRND));

double gauss()

double a,b;

double result;

a=rnum();

b=rnum();
result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return(result);

makedB(s,data)

nt s;

c{iouble *data;
FILE *fopen(),*{p2;
float se;

float init;

double p;

int k;

fp2=fopen("ERRdB.DAT","w");
for (k=0;k!=s+1;k++) {

se=*(data+k);
if (k==0) init=se;

- 236 -

p=10*logl0(se/init);
fprintf(fp2,"%f\n",p);
}

fclose(fp2);
}

void change weights(t,file_ptr)
FILE *file_ptr;
int t;

{
}

- 237 -

FAEST simulation

/*Floating point simulation of FAEST algorithm*/

#define FLOATING

#define MANTISSA LENGTH 56

#include </ud/call/lib/COMPLEX /sptools.h>
#include <stdio.h>

#include <math.h>

#define MAXRND 2147483647.0

int N,

double calente();

double rnum();

double gaussg

void change_weights();

double inp,desired; _

double X[5];

double Weights[5]:{0.9,0.3,—0.3,0.7,0.1};

double FEED _FORWARD[2]={1.0,0.600};

double XK[2;
float NOISE;

main{arge,argv)
int arge;

ar Farovi]-
char *argvl];

/* All of the spvar definitions should go in here*/

spvar XN,w,wmp]l,templmpltemp2mpl,a,b,zog alphaf alphafold,alphab,alpha;
spvar c,xn,z,ef eb,e,epsilon,epsilonf,epsilonb,delta,d,aold,forget;

struct complex cn;

FILE *fopen(),*fp;

double sigma=-1.0,nte,gain_factor=0.0,*average, temp;

double lambda=0.0;

float SNR=-1;
int k,ns,p 10,p,ensemble=—1ensres flag;

char clear screen=12;
char up_line=11,
/*Initialisation*/
f (argel=2) res_flag = 1;
else {
if (stremp(argv{l],"—on')==0) res_flag=1;

if (stremp(argv[l],"—ON")==0) res_flag=1;

[
[
if (stremp(argv(l],"—off")==0) res_flag=0;

if (stremp(argv[l],"—OFF")==0) res_flag=0;

- 238 -

]

printf("%c" clear_screen);

printf("Simulation of FAEST Algorithm\n\n");

printf(**by Chris Callender, 1989\n\un\n\n");

if (res_flag) printf(*\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n",M
'ANTISSA_LENGTH);

if (‘res_flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA_LENGTH);

printf("Filter Length:");

scanf("%d" ,&N);

/*All dimensions of matrices should be set here */

rvector(XN,N);
cvector(w,N);
cvector(wmpl,N+1);
cvector(templmpl,(N+1));
cvector(temp2mpl,(N+1
cvector(a,N);
cvector{aold,N);
cvector(b,N);
scalar(zog);
scalar(alphaf);
scalar(alphafold);
scalar{alphab);
scalaréalpha);
cvector(c,N);
scalar(xn);

scalar(z);

scalar(ef);

scalar(eb);

scalar(e);
scalar(epsilon);
scalar{epsilonf);
scalar(epsilonb);
scalar{delta);
scalar(forget);
cvector(d,N);

b

fp=fopen("NORMTAPERROR.DAT",""w");
srandom(1);
while (lambda<0.8 || lambda>1.0)

printf("'Please enter a value for lambda between 0.8 and 1.0: ");
scanf("%lIf" &lambda);
setscalar(forget,lambda,0.0);

while (sigma < 0.0)

printf("*Please enter a small positive value for sigma: ");
3canf("‘701f“,&,sigma.); :

while (SNR<0 || SNR>120) {

“printf(*\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 120db): ");
scanf("%f" &SNR);

- 239 -

}

while (ensemble<1) {
printf("(>n\nHow many runs to make ensemble average: ");
scanf("%d" &ensemble);

}
for(n=0;n'=N;n++) gain_factor=gain_ factor+Weights[n]*Weights[n];

gain_factor=gain_factor*(FEED_FORWARD{0J*FEED_FORWARD[0]+FEED_FORWARD(1]*FEED_F
ORWARD[1]);

gain_factor=sqrt(gain_factor);

NOISE=gain_ factor/expl0(SNR/20.0);

printf("\n\nHow many data samples per run: ");
scanf("%d" &s);

fprintf(fp,"%d\n\n" s); ~
average=(double *)malloc(sizeof(double)*(s+1));

if (average==0) {

fprintf(stderr,"FAEST Runtime error...out of memory");
exit(1);

}
printf("%cFAEST Simulation Running\n\n\n"clear_screen);
p_10=s/10;

for (ens=1;ens!=ensemble+1;ens++) {
p=p_10;

for(n=0;n'=N;n++) X[n]=0.0;

for(n=0;n!=2;n++) XXK[n]=0.0;

zerogzog);
zero(XN);
zero(a%;
zero(b);
zero(c);
zero(w);

zero(wmpl);

nte=calente(c.element);
*average=*average+nte/ensemble;
temp=sigma*pow((double)lambda,(double)N);
setscalar(alphaf,temp,0.0);

setscalar(alphab,sigma,0.0);
setscalar(alpha,1.0,0.0);
for(n={;n!=s+1;n++) {
if (n==p) {
printf("%cRun #%d:Status %d%%\n",up_line,ens,(p*10)/p_10);

p=p+p_10;
/*The algorithm goes in here!*/

makedata();
setscalar(xn,inp,0.0);

- 240 -

setscalar(z,desired,0.0);

3 ef=xn + XN * a
3 epsilonf=ef * (alpha#)

copy(a,aold);
$ a=a+w * epsilonf

3 alphafold=forget * alphaf
$ alphaf=alphafold+ef*epsilonf

for(k=1;k!=N+1;k++) {
getcvector(w,k,cn);
setcvector(templmpl,k+1,cn.real cn.imaginary);
getcvector(aold k,cn); '
setcvector(temp2mpl,k+1,cn.real cn.imaginary);
setcvector(templmpl,1,0.0,0.0);
setcvector(temp2mpl,1,1.0,0.0);
3 wmpl=templmpl — (ef * (alphafold#)) * temp2mpl
/*Partitioning*/
for(k=1k!=N+Lk++) {
getevector(wmpl k,cn);

setcvector(d,k,cn.real,cn.imaginary);

getcvector(wmpl,(N+1),cn);
setscalar(delta,cn.real,cn.imaginary);

eb=zog—delta * alphab * forget

w=d — delta * b

alpha = alpha + (ef * alphafold #) * ef + delta * eb
epsilonb = eb * (alpha #)

alphab = forget * alphab + eb * epsilonb

A ¥H L L L AR

b=b+w * epsilonb

upshift(XN);

setrvector(XN,1,inp,0.0);

/* Time update the LS FIR Filter */
$. e=z 4+ XN * ¢

$ epsilon = e * (alpha#)

$ c=c + w * epsilon

nte=calcnte(c.element);
(average+n)=(average+n)+nte/ensemble;

for(n=0;n!=s+1;n++) {
fprintf(fp, "%20.16e\n",*(average+h));

- 241 -

}
fclose(fp);
makedB(s,average);

}

double calente(ptr)
double *ptr;

int k;
double nte=0.0;

struct complex Weight;

for (k=0;k!=N;k++) {
Weight .real=((*ptr));
ptr+4+;
Weight.imaginary=((*ptr));
ptr++; '
1}1te:nte+(Weight.rea.l-}—Weights[k])*(Weight.rea.l—}—Weights[k]);

return(nte);

makedata()
it J;
XK[1]=XK[0];
XXK[0]=gauss();
inp=XK[0]*FEED_FORWARD[0]+XK[1J*FEED_FORWARD[L];
for (j=4i!=03—-) {
X[j]=X[-1};
X[O]an;
desired=0.0;
for (j=03!=Nyj4+) desired=desired+X[jj*Weights[j);
desired=desired-+(gauss())*NOISE;

double rnumy)

return ((random()/ MAXRND)) ;

double gauss()

jouble a,b;

double result;

a=rnum();

b=rnum(); :
result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return{result);

- 242 -

makedB(s,data)

int s;

double *data;
%‘ILE *fopen(),*fp2;
float se; .
float init;

double p;

int k;

fp2=fopen("ERRAB.DAT","w"),

for (k=0;k!=s+1;k++) {

se=*(data+k);
if (k==0) imt=se;

p=10*logl 0(se/init);
fiprintf(fp?,"%f\n",Px

f}close(fp?);

void change weights(t,file_ptr)
FILE *file_ptr;
int t;

{
}

- 243

Fixed point FTF simulation

/*Fixed point simulation of FTF algorithm*/
#define MAXRND 2147483647.0

#include <math.h>

#include <stdio.h>

typedef short int VAR;

double X([5];

double XK[2];

double FEED FORWARD(2]={0.15,0.12975};

double Weights[5]={0.9,0.3,—0.3,—0.7,0.1};

double calcnte();
double gauss();

VAR div();

int mul();

VAR add(); :
VAR, scalar_product();
int N;

double NOISE=0.001;

VAR inp,dessat_flag;

main(argc,argv)

int arg;

char *argv]];

double nte,d lambda=0.0,d_MU=-1.0,SNR=-1.0.gain_factor,*average;
it s,seed,ens,ensemble=0;

int long accumulator;

VAR *A Y FYNpL, *C *Cex, *C\Jpl *B,*W,;

VAR mde\ t,lambda,mu;

VAR rescue,yO,alphaml,eNp,eN,galmmN ,alpha,alphaold,epsilon;
VAR gammaNpl,épsilonp,rN,er,beta;

FILE *fopen(),*fp;

if (arge!=2) sat_flag = 0;

else {
if (stremp(argv[l],"—sat")==0) sat_flag=1;

if (stremp(argv(l],"—SAT")==0) sat_flag=1,

} :
fp=fopen("NORMTAPERROR.DAT","w");

printf(*Simulation of FTF Algorithm\n\n");
printf(*by Chiis Callender, 1989\r1\r1\n\n";;
printf("\n\n16 Bit Fixed Point\n\n");
printf("Filter Length:");

scanf(""%d" &N);

- 244 -

while (d_lambda<0.8 || d_lambda>1.0)

printf("Please enter a value for lambda between 0.8 and 1.0: ");

scanf("%lf",&d_lambda);
}

while(d_MU<0) {

printf("\n\nPlease enter a value for soft constraint parameter MU:\n ");
printf(*or MU=0.0 to disable rescues\n");

s}canf("%lf-,&d_MU);

while (SNR<0 || SNR>220) {
printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 220db): ");
s}canf("%lf",&SNR);

while.(ensemble<1) {
printf(’*\n\nHow many runs to make ensemble average: ™);

s}ca.rlf("%d" &ensemble);

for(t=0;t!=N;t++) gain_factor=gain_factor+Weights[t]*Weights]t];

gain_factor=gain_factor*(FEED_FORWARD(0]*FEED_FORWARDI[0]+FEED_FORWARD[1*FEED_F
ORWARD(1]);
gain_factor=sqrt(gain_ factor);

NOISE=gain_factor/expl0(SNR/20.0);

printf(*"\n\nHow many data samples per run: ");
scanf("%d" &s);

average=(double *)malloc(sizeof(double)*(s+1));

if (average==0) {

fprintf(stderr,"FTF Runtime error...out of memory");
exit(1);

/*First, allocate memory for vectors*/
A=(VAR *)malloc(sizeof(VAR)*(N+1)); /*Scale factor will be 1024*/

Y=(VAR *)malloc(sizeof(VAR)*N); /*Scale Factor will be 32768*/
YNpl=(VAR *)malloc(sizeof(VAR)*(N+1)); /*Scale factor will be 32768*/
C=(VAR *)malloc(sizeof(VAR)*N); /*Scale Factor will be 8*/
CNpl=(VAR *)malloc(sizeof(VAR)*(N+1)); /*Scale Factor will be 8*/
B=(VAR *)malloc(sizeof(VAR)*(N+1)); /*Scale Factor will be 32768*/
W=(VAR *)malloc(sizeof(VAR)*N); /*Scale Factor will be 32768*/

seed=time(0);

. srandom(seed);
printf("\n\n");
lambda=32768*d _lambda;
mu=32768*d_MU;

for (ens=1;ens'=ensemble+1ens++) {
for(t=0;t!=N;t++) X[t]=0.0;

for(t=0;t!=2;t++) XKI[t]=0.0;
/* First the Fast Exact Initialisation Routine*/
Al0)=1024;
B[0]=32767;

for (index=1;index!=N+1;index++) {
A [index}=0;

Blindex]=0;

for (in%lex:O;index!.—_N;index++) {
Clindex]=0;
Wiindex]=0;
Y [index]=0;

: }
for (index=0;index!=N+1;index++) YNpl[index]=0;

nte=calcnte(W); ‘
fprintf(fp,"%20.16e\n" nte);

inp=0;

| while (abs(inp)<9000) makedata(0);
y0=inp;

alpha=mul(y0,y0,15);

‘alphaml=alpha;
WI0]=—div(des,y0,15);

gammalN=32767,;

for(t=1;t!'=N+1;t++) {
nte=calcnte(W);
fprintf(fp,"%20.16e\n" nte);

makedata(t);
for(index=N+1;index!=0;index—-) {

YNpl[index]=YNpl[index—1];
if (index!=N+1) Y[index]=Y[index—1];

Y Npl[0]=inp;

Y[0)=inp;

eNp=scalar _product(A,YNp1,N+1,11);
Alt]=—div(eNp,y0,11);

eN:mul(eNp,gammaN, 14);

alpha=mul(lambda,alpha,15);

- 246

alphaml=add(alpha,mul(eNp,eN,14));

gammaN=mul(gammaN,div(alpha,alphaml,15),15);

for(index:t;indexA!:O;index-———) {
C[index]=C[index—1};

C[0}=0;

for(index=0;index!=t;index++) {

Clindex]=add(C{index],—div(rmul(eNp,A[index],10) ,alpha,4));

}

if (t==N) {
for(index=0;index!=N;index++) {

B[index]=mul(mul(y0,gammaN, 15),Clindex],3) ;

-
B[N]=32767;
beta=nwl(nul(y0,y0,15),gammaN,9);
}
epsilonp=add(scalar _product(Y,W,N,15),des);
epsilon=mul(epsilonp,gammaN,15);
if (t<N) W[t]=—div(epsilonp,y0,15);
if (t==N) {
for(index=0;index!=N;index++) {
W [index]=add(W/[index],mul(epsilon,C[index],4));
} : ,
) }
/* Now the FTF Algorithm proper */
for (t=N+1Ltl=s+1;t++) {
makedata(t);
for(index=N+1;index!=0;index——) {

YNpl[index]=YNpl[index—1];
if (index!=N+1) Y/[index]=Y{index—1};

Y Np1[0]=inp;

Y {0]=inp;

RE_START:

/*#1¥/

eNp = scalar_product(A,YNpl,N+1,11);
ey |
eN=rmul(eNp,gammaN, 14);

#3

alphaold=alpha;

- 247 -

alpha=add(mul(lambda,alpha, 15),mul(eNp,eN,14));

[*#4*/
gammaNpl = mul(rmul(lambda,div(alphaold,alpha,10),15),gammmaN, 10);

* *
CNp1[0]=—rmu(div(eNp,rmul(alphaold,lambda,15),5),A[0],11) ;

for (index=1;index!=N+1;index++) {
CNpl[index]=add(C[index—1],—mul(div(eNp,mul(alphaold,lambda, 15),5),A[index],1

/ *#6.”1/ o .
for (index=1;index!=N+1;index++)
A[index|=add(A[index],mul(eN,Clindex—1},8));

*HT

rNp=mul(rmul(—lambda,beta,15), CNp1[N],11);

rescue=add(16384,mul(rmul(rNp,gammaNp1,15),CNp1[N],4));
if (rescue<0 && d_MU!=0.0) {

for (index=0;index!=N+1l;index++) {
Alindex]=0;
Blindex]=0;
if (index!=N) Clindex]=0;

}

A[0]=1024;

B[N]=3276T;

alpha=mu;

for (index=1;index!=N;index++) alpha=mul(alpha,lambda,15);
beta=mu << 3;

gammaN=32767;
goto RE_START;

/*#8*/

gammaN=div(gammaNpl,rescue,14);

* *
rN=mul(rNp,gammaN,11) :

[*#10%/
beta=add(mul(beta,lambda, 15),mul(rNp,rN,11));

[*#11%/
for(index=0;index!=N+1;index++) {

Clindex]=add(CNp1[index],—mul(CNp1[N],B[index],15));
[*#12%/
for(index=0;index!=N+1;index++) {
Blindex]=add(B[index],mul(rN,C[index],7));
} .
[*#13*%/ ' .
epsilonp=add(scalar _product(Y,W,N,15),des);

- 248 -

[*#14/
epsilon = mul(epsilonp,gammaN, 15);

[*#15%/
for(index=0;index!=N+1;index++) {
W (index]=add(W[index],mul(epsilon,Clindex],3));

nte=calcnte(W);
fprintf(fp,"%?20.16e\n" nte);

}

felose(fp);
}

double calcnte(ptr)
VAR *ptr;

int k;

double nte,W;

nte=0.0;

for (k=0;k!=N;k++) {
W=((*ptr)/32768.0);

ptr++;
nte=nte+(W+Weights[k])*(W+Weights[k]);

return(nte);

makedata(t)
int t;

double m_inp,m_des;
int j;

XK[1J=XK[0];
if (t==0) XK[0]=—4.0;
else XK[0]=gauss();
m_ inp=XK[0]*FEED_FORWARD|0]+XK[1]*FEED_FORWARD/1];
for (j=4j!=05--) {
X{)=X[-1];
X{0]=m_inp;
m_ des=0.0;
for (j=0y!=Nj++) m_des=m_des+X[j]*Weights[j];
m_des=m_ des+(gauss())*NOISE;
/*Most ADCs saturate so..*/
if (m_inp>1.0) m_inp=0.99969482;

if (m_des>1.0) m_des=0.99969482;

_ 249 -

des=m_ des*32768;
inp=m_ inp*32768,;

double rnum()

r}etum ((random()/MAXRND));

double gauss()

{

double a,b;
double result;
a=rnum| ;;
b=rnum();
result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return(result);

VAR div(a,b,res_shift)
int a,b,res_shift;

int c;

c=a;

¢=c << res_shift;

if (b==0) {

fprintf(stderr," Algorithm fails...division by zero");
exit(1); '

c=c/b;

/* 1/& good idea to saturate division, in case 1/1 is calculated, q15*/
if (¢>32767) ¢=32767,

if (c<—32768) c=-32768,;

a=c;

return(a);

int mul(a,b,res_shift)

VAR a,bres_shift;

{

It ¢;

c=a * b;

if (res_shift >=0) c=c >> res_shift;

if (res_shift <0) ¢=c << —res_shift;

#ifdef DEBUG
if (c<—32768 || ¢>32767) {
fprintf(stderr,"Overflow Warning\n");

#Hendif

if (sat_flag!=0) {

if (¢>32767) c=32767,
if (c<—32768) c=32768;

return(c);

VAR add(a,b)
VAR a,b;

{

mt c;
c=a-+b;

- 250 -

#ifdef DEBUG
if (c<—32768 || ¢>32767) {
fprintf(stderr,"Overflow Warning\n");

#endif
if (sat_flag!=0) {

if (c>32767) c=32767;
if (c<—32768) c=32768;

return(c);

VAR scalar_product(a,b,len,res_shift)
VAR *a*b;

int len;

VAR res_shift;

{

VAR index;

int long_accumulator;
long_accunwlator=0;

for(index=0;index'=len;index++) {

long_accumulator = long_accumulator + (*a) * (*b);
at+t
b4+

long_accumulator = long_accumulator >> res_shift;

#ifdef DEBUG

if (long_accumulator<—32768 || long_accurmulator>32767) {
fprintf(stderr,"Overflow Warning\n");

FHendif
if (sat_flag!=0) {

if (long_accumulator>32767) long_accumulator=32767;
if (long_accurmulator<—32768) long_accumulator=32768;

retum&ong_accumulator);

- 251 -

Floating point interval arithmetic functions

/* #tinclude file intools.h
Version 2.2

Written by Chris Callender, January 1989
Last Update:27/6/89*/

#include <stdio.h>

#include <math.h>

struct interval {
double lower__endpoint;
double upper _endpoint;

b

void imult();
void 1add();
void idiv();

/*Begin by defining the structures assocaited with scalars, column

vectors, row vectors, and matrices. They are all basically matrices, but

a scalar has one row and one column, a column vector has one column and a
row vector has one row*/ '

#define spvar static struct SPVAR

struct SPVAR {
int rsize;
Int csize;
struct interval *element;

I

#define scalar(name) name.rsize=1;\
name.csize=1;\ ‘
name.element=(struct interval *)malloc(sizeof(struct interval))

#define cvector(naime,row) name.rsize=row;\
name.csize=1;\
name.element=(struct interval *)malloc(sizeof(struct interval)*row)

#define rvector(name,column) name.rsize=1;\

name.csize=column;\
name.element=(struct interval *)malloc(sizeof(struct interval)*column)

#define matrix(name,row,column) name.rsize=row;\
name.csize=column;\
name.element=(struct interval *)malloc(sizeof(struct interval)*column*row);

if (name.element==0) error("Out of Memory")

#define resize(name,rc) name.rsize=r; \
: narme.csize=c; \
free(name. element);\
name.element=m_realloc(narme.element sizeof(struct interval)*r*c);\
if (name.element==0) error("Out of Memory")

- 252 -

struct interval *m_realloc(ptr,sz)
struct interval *ptr;
int sz;

{
if (ptr==0) ptr=(struct interval *) malloc(sz);

else ptr=(struct interval *)realloc(ptr,sz);
return(ptr); .

/*A display function prints the matrix on standard output. It will
work with scalars, row and column vectors, and matrices. Use
display(MATRIXNAME);
in the program to display the current value of MATRIXNAME*/

#define display(name) displaymatrix(name.element,name.rsize,name.csize)

displaymatrix(adr, r, ¢)
mt r, c;
double *adr;

nt j, k; . i
for 0 = 0;j !'=r1; j++) {

for (k = 0; k 1= ¢; k++) {

printf("[%lf, %lf] *, *adr,*(adr+1));
adr++;
adr++;

printf(*"\n");

printf(*"\n");
return(0);

}

/*Matrix addition routine. Works automatically with scalars, vectors and
matrices. Use the command:— :
add(MATRIX1,MATRIX2, RESULT);
to make the matrix RESULT equal to MATRIX1+MATRIX2
matrices. */

#define add(namel,name2name3d) addmatrix(namel.element,name2.element,\
name3.element namel.rsize,namel .csize;name2.rsize, name?2.csize,name3.size,\
name3.csize)

void addmétri_\'(adrl, adr2, adr3, rl, cl, r2, c2, r3, c3)

int rl, cl, r2, ¢2, r3, ¢3;
({1ouble *z_idrl, *adr2, *adr3;

it J, k;
if (r1 != r2)

error("Unable to add matrices of different sizes");
if (cl !'= ¢2)

error("Unable to add matrices of different sizes");
if (rl !'= 13)

“error("Result matrix of incorrect size in add");
if (c1 != ¢3)

error("Result matrix of incorrect size in add");
for j = 0;j '=rl; j++) {

for (k = 0; k != cl; k++) {
cadd(*adrl, *(adrl + 1), *adr2, *(adr2 +

1), adr3);
adrl = adrl + 2;
adr2 = adr2 + 2;
adrd = adrd3 + 2;

/*Identity sets a matrix, vector or scalar to the multiplication identity.
It is useful in the initialisation of matrices. Correct syntax is:
identity(MATRIXNAME);*/

#define identity(name) iden(name.element,name rsize,name.csize)
void iden(adr, r, c)

double *adr;
it

t
int J, k;
if (r!=¢)
error("Non square matrix cannot be set to identity");
for 5 = 0;) =1 j+4) {
for (k = 0; k != ¢; k++) {

if G == k) {
*adr = 1.0;

*(adr + 1) = 1.0
if (j I=k) {

*adr = 0.0;

*(adr + 1) = 0.0;

}
adr = adr + 2;

}

/*Similar to identity, this sets a matrix, vector or scalar to the
addition identity element (zero)*/

#define zero(name) zer(name.element name.rsize,name.csize)
void zer(adr, r, c)
double *adr;

mt r, c;

« .
int J, k;
for) = 0;j =1 j++) {

for (k = 0; k = ¢; k++) {

*adr = 0;
*(adr + 1) = 0;
adr = adr + 2;

- 254 -

/*Setmatrix is used to set one element of a matrix to a specified
value—it takes the form:
setmatrix(MATRIXNAME,columnnumber,rownumber,value) to set
the elf;nent[columnnumber][rownumber] of MATRIXNAME -to the value
value.

#define setmatrix(name,x,y,rvalue,imvalue) setel(name.element,name.rsize,\
name.csize x,y,rvalue, imvalue

/*These help with the setting of column and row vectors and scalars*/
#define setcvector(name,x,rvalue,imvalue) setmatrix(name,x,1 rvalue,imvalue)
#define setrvector(name,y,rvalue,imvalue) setmatrix(name,1,y,rvalue,imvalue)
#define setscalar(name,rvalue,imvalue) setmatrix(name,1,1,rvalue,imvalue)

void setel(adr, r, ¢, x, y, vr, vi)
double vr, vi;

double *adr;

int 1, ¢ X,y

if (y > ¢)

error("Setelement out of bounds);
if (x > 1)

error("Setelement out of bounds");
if (y < 1) ‘

error("Setelemment out of bounds");
if (x < 1)

error("Setelement out of bounds");
X——;
y——;
*adr + (c * x * 2) +y *2) = v
*adr + (c * x * 2) +y * 2 + 1) = vj;

/*Matrix multiplication routine. Will work with vectors, scalars and
matrices. Use the usual:
multiply(MATRIX1,MATRIX2,RESULT);
to make the matrix RESULT equal to MATRIX1 multiplied by MATRIX2*/

#define multiply(namel,name2,name3) mult(namel .element, name2.element,\
name3 element ,namel.rsize namel .csize,name2.1size,name2.csize,\
name3.rsize,naine3.csize)

void mult(adrl, adr2, adre3, rl, cl, r2, ¢2, 13, c3)
double = *adrl, *adr2, *adr3;
int” rl, cl, r2, c2, r3, c3;

mt j, k, L;
double totalf2], ar, ai, br, bi, t[2];
double *temp;

if (rl ==1 && cl ==1) {
msc(adr2,adr3,r2,c2,r3,c3,*adr1,*(adr1+1));
goto SKIP;

}

if (12 ==1&& c2 ==1) {
msc(adrl,aded,rl,cl,r3,c3,*adr2,*(adr2+1));
goto SKIP;

if (r2 = cl)

error("Unable to multiply matrices — dimensions incorrect");
if (c2 '= ¢3)

error("Result matrix of incorrect size in multiply");
if (r1 '= r3)

error("Result matrix of incorrect size in multiply");

- 255 -

temp = (double *)malloc(sizeof(double)*r3 * ¢3 * 2);
if (temp == 0)

error("Out of Memory Error");
for G = 05 !=13; j++) {

for (k = 0; k != ¢3; k++4) {
total[0] = 0;
totall] = 0;

for (1 = 0; 1 = cl; 14++4) {

ar = (*(adrl + (c1 *) *2) + 1

*) :

al = (*(adrl + (c¢1 *j *2) +1
*2 4+ 1)) »

br = (*(adr2 + (¢2 * 1 * 2) + k
*2);

bi = (*(adr2 + (c2 * 1 * 2) + k
*2 + 1))

cmul(ar, at, br, bi, t);
cadd(t[0], t{1], total[0], totalfl],

total);
(temp + (c3 * j * 2) + k * 2) = total{0];
*(temp + (¢3 * j * 2) + k * 2 + 1) = total(l];

}

} .
Cfor (§j =055 1= 13; j+4) {
for (k = 0; k != ¢3; k++) {

ar = (*(ttemp + (c3 * j * 2) + k * 2));
al = (¥(temp + (3 * 7 *2) + k*2+ 1))
*adr3+gc3*j*2 + k * 2) = ar;
*(adrd + (3 * 7 *2)+ k *2 + 1) = ai
}
-
free(tenp);
SKIP: ;
}

number_of rows(rl,cl,r2,c2)

mt rl,clr2,.c2;

{

if (rl==1 && cl==1) return(r2);
return(rl);

number _of _columns(rl,c1,r2,c2)
int rl,cl,r2,c2; ’

{
if (r2==1 && c2==1) return(cl);
return(c2);

/*The opposite of -setmatrix, getmatrix returns the value of an element of
a matrix*/

#define getmatrix(name,x,y,var) getel(name.element,name.rsize,\

name.csize x,y,&var

/*Opposites of setcvector setscalar and setrvector*/
#define getcvector{name,x,var) getmatrix(narme,x,1,var)

- 256 -

#define getrvector(name,y,var) getmatrix(name,l,y,var)
#define getscalar(name,var) getmatrix(name,l,1,var)

void getel(adr, r, ¢, X, y, V)
double *v;

double *adr;
int 1, c, X Y;

if (y > ¢)
error("Getelement out of bounds");

if (x > 1)

error("Getelement out of bounds");

if (y < 1)

. error("Getelement out of bounds");

if (x < 1) '

error("Getelement out of bounds™);

X——;

Y==

) = (Kadr + (c * x * 2) + y * 2));

v + 1) = (¥adr + (¢ * x *2) +y * 2 + 1))

/*Use subtract exactly as add, but result is MATRIXI-MATRIX2*/
#define subtract(namel,name2 name3) submatrix(namel.element,name2.element,\
name3.element, namel.rsize,namel .csize,name?2.rsize ,name2.csize,name3.1size, \
namme3.csize)

void submatrix(adrl, adr2, adrd, rl, cl, r2, c2, r3, c3)

int rl, cl, r2, ¢2, r3, ¢3;
double *adrl, *adr2, *adr3;

{

int 3, k;
double a, b, d;
if (r1 = r2)
error("Unable to subtract matrices of different sizes™);
if (cl !'= ¢2) :
error("Unable to subtract matrices of different sizes");
if (rl '= r3)
error("Result matrix of incorrect size in subtract");
if (¢l = ¢3)

error("Result matrix of incorrect size in subtract”);
for G = 0;j !=rl; j++) {

for (k = 0; k = cl; k++) {
cadd(*adrl, *(adrl + 1), —(*(adr2+ 1)),—(*(adr2)), adr3);
adrl .= adrl + 2;

adr2 = adr2 + 2;
adrd = adr3 + 2;

} .

/*Transpose calculates the transpose of a matrix. Use
transpose(MATRIX,RESULT); to set RESULT equal to the transpose of MATRIX*/

#define transpose(namel,name?) transp(namel.element,name2.element,namel.rsize,\
namel .csize,name2.rsize,name2.csize)

transp(adrl, adr2, rl, cl, r2, c2)

double *adrl, *adr2;

it rl, cl, r2, c2;

{

- 257 -

double ar, ai;
double *temp;
int j, k;
if (rl 1= ¢2)
error(*'Result matrix of incorrect size in transpose")
if (cl !'= r2)
errorS‘Result matrix of incorrect size in transpose");
temp = (double *)malloc(sizeof(double)*r2 * c2 * 2);
if (temp == 0)

error("Out of memory error");
for j = 0;j !'=rl; j++) {

for (k = 0; k != cl; k++) {

ar = ((adrtl +°(j * ¢l * 2) + k * 2));
al = ((adrl + () * ¢l * 2 + k * 2
1)); :

*(temp + (k * r1 * 2) +) * 2) = ar;
*(temp + (k * rl * 2] ¥ 2 + 1) = ai;

I : .

for j = 0;j =125 j++) {

for (k = 0; k '= ¢2; k++) {

r:((temp+(c2*j*2)+k*2)),
al = temp+(c2*'*2)+k*2 1));
ad c2’*2+k*2)=ar;
*(adr2 c2*3*2)+k*2 + 1) = ai

free(temp);

/*Multiply a matrix by a scalar. Use the command:

multscal(MATRIX kreal kimaginary, RESULT);

to make RESULT equal to k*MATRIX*/
#define multscal(namel,vreal ,vimag,name2). msc(namel.element,naime2.element,\
namel .rsize,namel .csize,name?2.1size,narhe2.csize, vreal, vimag)

msc(adrl, adr, rl, cl, r2, ¢2, vr, vi)
double *adrl, *adr2;
double vr, Vi,
int rl, cl, r2, c2;
t
int j, k;
- double ar, al;
if (r1 '=12)
error("Result matrix of incorrect size in multscal");
if (cl '= ¢2)
error("Result matrix of incorrect size in n‘1ultsc.’:1l")~
for j = 0;] '= rl; j++) {

for (k = 0; k = cl; k++) {

ar = *adrl)

ai = *(adrl + 1));
cmul(ar, ai, vr, vi, adr2);
adrl = adrl + 2;

adr?2 = adr2 + 2;

- 238 -

/
/*Copy one matrix to another. Syntax is:

copy(MATRIX,RESULT); which makes RESULT equal to MATRIX. Equivalent to '
multscal(l\/[ATRlX,l,RESULT) but clearer, faster and more readable.*/

#define copy(namel,name2) cpy(namel.element,name2.element A\
namel .rsize,namel.csize,name2.rsize,name2.csize)

cpy(adrl, adr2, rl, cl, r2, c2)
double adrl *a.dr2
int rl, cl, r2, c2;

int j, k;
double ar, ai;
if (r1 '= r2)

error("Result matrix of incorrect size in copy');
if (cl != ¢2)

error("Result matrix of incorrect size in copy");
for j = 0;j !'=rl; j++) {

for (k = 0; k !'= cl; k++) {

ar = (*adrl);

al = (*(adrl + 1));

*adr2 = ar;

Sadr‘Z + 1) = aj;
= adrl + 2

adr2 = adr2 + 2

/*Upshift only applies to vectors, and shifts each element up one place in
the vector. Will work automatlcallv with either column or row vectors.
Use:
upshift(VECTORNAME);*/

#define upshift(name) ups(name element,name.rsize,nane.csize)

ups(adr, r, ¢)
double *adr;
int 1, c;
t

int j, k;

double ar, al;

if r!l=1 &&c!=1)

error("Unable to upshift a matrix");

if (r ==1&& ¢ == 1)
erlor("Unable to upshift a scalar");
j = ¢

if (c == 1)
j =1

for (k =j — 1; k '= 0; k—=) {

(*(adr + k * 2 = 2));
(*(adr +k*2 - 1)
adr + k * 2) = ar
*adr + k * 2 + 1) = ai;

}
*adr = 0;

*(adr + 1) = 0;

- 259 -

#define downshift(name) dos(name.element,name.rsize,name.csize)

dos(adr, r, ¢)
double *adr;
int r, c;
t

int j, k;

double ar, al;

f(rl=1&&c!=1)

error("Unable to downshift a matrix");

if (r == 1 && ¢ ==
error("Unable to downshift a scalar");
if r ==1) ‘
] =g
if (¢ == 1)
) = 1
for (k =0,k '=j — 1; k++) {
ar = (*(adr + k * 2 + 2));
ai = (*(adr + k * 2 4 3));
*(adr + k * 2) = ar;
*adr + k * 2 4+ 1) = ai;
*adr + j) = 0;

¥ade +] + 1) = 0

#define inverse(namel,name?) inv(namel.element name?.element,namel rsize,\
namel .csize,name?2.rsize,name2.csize)

inv(adrl, adr2, rl, cl, r2, c2)
double *adrl, *adr2;
int rl, r2, cl, c2;
t .
mt n, m, J;
double factor[2], a[2], t[2];
double *temp;
if (r1 '= cl)
error("Cannot invert a non—square matrix");
if (r2 1=1l)
error("Result matrix of ‘incorrect size in inverse");
if (c2 = cl)
error("Result matrix of incorrect size in inverse");
temp = (double *)malloc(sizeof(double)*rl * ¢l * 2);
if (temp == 0) '

error("Out of Memory Error");
for (n = 0; n !=rl; n++) {

for (m = 0; m '= cl; m++) {

*(temp + (rl *m * 2) + n * 2) = (¥adrl
+ (1 *m*2)+n*2) .

*temp + (11 * m * 2) + n * 2 + 1) =.(*(adrl
+ (1l *m*2)+n*2+ 1)

}

1den(adr2,.12, c2);
for (n = 0; n !=rl; n+4) {

iinv(*(temp + (n * ¢l * 2) + n * 2), *(temp + (n

cl *2) + n *2 4+ 1), factor);
for j = 0;j !=cl; j++) {

- 260 -

cmul(factor[0], factor(l], *(temp + (n *

c1*2)+j*2) *(temp+(n*cl*2)
) 2+1)temp+(*cl*2) *
2

cmul(factor[0], factor(l], *(adr2 + (n *

2% 2) +j*2) *(ad2 + (n *c2*2)
+j 2+1)adr2+(c2 *2) +

2);
for (m = 0; m != rl; m++) {
if (m!=n
(factor[g)] {:: (*(temp + (m * o] *

2 n* 2 .

factor[l)] t (* terrz;)) 4+ (m* cl*
24024+ 1)

for (j = 0; Cl;_J++) {

a[0] = (*(temp + (n * cl

)+ *2
all] = (*(terjnp +))(* ¢l
*2) +3j*2 4+ 1)),
cmul(a[0], a[l], factor[0],

factor[l], t); -

cadd(*(temp + (m * cl *
2) +j *2), *(temp + (m
¥l *2) + 3 %2+ 1), —t[0],

—t[1], temp + (m *cl *
2) +j *2);
al0] = (*(adI2 + (0 * c2

) 45 % 2),
a[l] = (*(adr2 + (n * c2

*2) 4+ * 2+ 1)
cmul(af0], a[l], factor[0],

factor(l], t);
cadd(*(adr2 + (m * 2 *

2) +] *2), (adr2+(

2 ¥ 2) +) 2+ 1), —t[0],

—t[1], adi2 + (m * c2 *
2) +3*2)

free(temp);

void input(filename, ptr)

char *ﬁlename[]

double *ptr;
static char fname(10](20];
static FILE *fopen(), *fpointer[10];

float ¢, d;
int af_-O b-lO

- 261 -

if (stremp(filename, “close') == 0) {
for (a = 0; a != 10; a++) {
if (fnamefa)[0] '= 0) {

fclose(fpointer|a));
Conel0] = 0,
}
}
return;
for (a=9;al!l= -1 a——) {
if (stremp(filenarne, -fnamefal) == 0) {
f =1
}else {
if (fnamefal(0] == 0)
) b = a;
b b == 10

error("Too many files open (maximum of 10)");
if (f ==0) {

strepy(fnamelb], filename);

fpointer[b] = fopen(fnameb], *r'");

if (fpointer(b] == 0)

error("Unable to open file for input");

}
fscanf(fpointer(b], "%f %f", &c, &d);

*ptr = ¢;
*(ptr + 1) = d;

void output(filename, ptr)
char *filename(];
double *ptr;

{ static char onarne[10][20];
static FILE *fopen(), *opointer[10];
mt a, f =0 b =10
if (stremp(filenare, "close) == 0) {
for (a = 0; a != 10; a++) {
“if (onamela][0] '= 0) {
fclose(opointer{a));

oname[a][0] = 0;

}
}

return;

- 262 -

for (a = 9;a!=-1; a—) {

if (stremp(filename, onamela]) == 0) {
f=1;
b = a;

} else
if{(ona.me[a][O] == 0)

b = a;

)
error("Too many files open (Maximum of 10)");
if (== O) {
strcpy(oname(b], filename);
opointer[b] = fopen(oname[b], "w");
if (opointer(b] ==

error("Unable to open file for output");

f}printf(opointer[b], "% %f\n", (*ptr), (*(ptr + 1)));

return;
error(message)
char - *message[};
int *t:
t=0;

fprintf(stderr, "***DSPSIM Runtime Error***\n");

fprintf(stderr, "%s\n\n", message);

exit(0);

cadd(a, b, ¢, d, e)
double a, b, ¢, d, *e;

struct interval templ,temp2;
templ.lower endpoint=a;
templ.upper_endpoint=b;
temp2.lower _endpoint=c;
temp2.upper _endpoint=d;
iadd(&templ &temp?2,e);

cmul(a, b, ¢, d, e
double a, b, ¢, d, *e

struct interval templ,temp?2;
templ.lower endpoint=a;
templ.upper _endpoint=b;
temp?2.lower _endpoint=c;
temp2.upper_endpoint=d,
inult(&templ,&temp?2,e);

iinv(a,b,c)

263 -

double a,b,*c;

struct interval templ,temp?2;
templ.Jower _endpoint=1.0;

templ.upper _endpoint=1.0;
temp2.lower _endpoint=a;

temp2.upper __endpoint=b;
idiv(&temp1,&temp2,c);

void iadd(interl,inter2,interres)
struct interval *interl,*inter2,*interres;

double upper,lower;
lower=(inter1—>lower _endpoint)+(inter2—>lower _endpoint);
upper=(interl—>upper _endpoint)+(inter2—>upper _endpoint);

if (lower<0) lower=nextafter(lower,—(infinity()));

if (upper>0) upper=nextafter(upper,infinity());

if (upper<lower) error("Upper less than lower");

interres—>lower _endpoint=lower;
interres—>upper__endpoint=upper;

void isub(interl,inter2,interres)
struct interval *interl *inter2,*interres;

double upper,lower;
lower=(inter1—>lower _endpoint)—(inter2—>upper_endpoint);
u}gper:(interl—->upper_endpoint)—(inter‘2->iower_endpoint ;

if (upper>0) upper=nextafter(upper,infinity());

if (lower<0) lower=nextafter(lower,—(infinity()));

if (upper<lower) error(*Upper less than lower");
- interres—>lower_endpoint=lower;
interres—>upper _endpoint=upper;

}

void imult(interl,inter2,interres)
struct interval *interl,*inter2,*interres;

{

double r[4];
double min,max;
int k;

r[0)=(inter1—>lower _endpoint)*(inter2—>lower _endpoint);

1
2
3

r
r
r

=(inter1—>lower _endpoint)*(inter2—>upper _endpoint);
interl—>upper_endpoint%*%inter?—ﬂower_endpoint ;

inter1—>upper_endpoint)*(inter2—>upper _endpoint);

max=r[0];

min=r{0};

- 264 -

for(k=1;kl=4k++) { .
if (r[k]>max) max=r[k];
if (r[k]<min) min=r[k];
}

if (min<0) min=nextafter(min,—(infinity()));

if (max>0) m&x:nexta.fter(ma.x,inﬁnity());

if (max<rmn) error("Upper less than lower");
interres—>lower _endpoint=min,;
1nterr$—>upper endpoint=max;

void idiv(interl,inter2,interres)
struct interval *interl,*inter2 *interres;

struct interval temp;
if (inter2—>upper_ endpomt>0 && inter2—>lower _endpoint <0)

error("Divison by zero error.\n");
temp.lower _endpoint=1/(inter2—>upper_endpoint);
temp.upper_ endpoint=1/(inter2—>lower_endpoint);
imult(inter1,&temp,interres);

Interval arithmetic FTF algorithm‘

/*FTF Algorithm®*/

#define FLOATING

#define MANTISSA LENGTH 56

#include </ud/call/fib/INTERVAL _ANALYSIS_ src/intools.h>
#include <math.h>

4#define MAXRND 2147483647.0

int N,

double calente();

double rnum();

double gauss();

double inp,desired;

double X[3];

double Weights[5]={0.9,0.3,~0.3,-0.7,0.1};

double FEED FORWARD[2]={1.0,0.865};

double XK[2};
float NOISE;

main(arge,argv)
int arge;

char *argv(]; .

——

spvar A rescue,y0,alphaml eNp,eN, gammaN, gammaNpl epsilon,epsilonp;

spvar tempscall tempscal2,rN,rNp,beta,Y,YNpl,C,Cex,B,tempN, W, alpha,CNp1;
struct nterval cn; »

FILE *fopen(),*fp,*fpl,*{diagl;

double nte,gain_factor=0.0,*average,temp,MU;

double absolute error=-1.0,mean,width;

float lambda=0.0,SNR=-1000.0;

int 1,k,n,s,p_10,p,ensemble=—1ens,res_flag |=0;

char clear _screen=12;
char up_line=11;

char *command,*argl,*arg?,*argB,*aréﬁl;
argd="graph";

/*Initialisation®/

if (arge!=2) res_flag = 1;

else {

if (stremp(argv(l],"—on")==0) res_flag=1;
if (stremp(argv(l],"~ON")==0) res_flag=1,

if (stremp(argv(l),"—off"")==0) res_flag=0;

- 266 -

if (stremp(argv(l],"—OFF")==0) res_flag=0;

printf("%c" clear _screen);

printf “Simulation of FTF Algorithm\n\n");

printf(*by Chris Callender, 1989\n\n\n\n");

if (res_flag) prmtf("\n\nRescue_OV Floatlng Point Mantissa Length = %d\n\n",.M
ANTISSA _LENGTH);

if ('res_flag) prmtf("\n\nRescue—OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA_LENGTH);

printf("Filter Length:");

scanf("%d" &N);

rvector(A,(N+1));

scalar(rescue);

scalar(y0);

scalar(alphaml);
scalar(eNp);
scalar(eN);
scalar(gammaN);
scalar(gammaNpl);
scalar(alpha);

scalar (epsﬂon
scalaigepsﬂonp
scalar(termpscall);
scalar(tempscal2);
scalar(rN);
scalar(rNp);
scalar(beta);
cvector(Y,N);
cvector(YNpL,(N+1));
rvector(C,N);
rvector(Cex,(N+1));
rvector(CNpl,(N+1));
rvector(B,(N+1));
rvector(tempN,N);
rvectorEW,N);

fp=fopen("NORMTAPERROR.DAT" "w");
fdiagl=fopen("DIAGNOSTIC DAT","w");
fpl=fopen("FTF_RESCUE_STATS","w");
command="/bin/csh";
argl="/ud/call/shellscripts/plotshell";
arg3="IFTF ALgoritrhm";
arg2="'gplottext.tmp";

srandom(0);

while {lambda<(0.8 {| lambda>1.0)
printf(*Please enter a value for lambda between 0.8 and 1.0: ");

s}ca.nf("%f" &lambda);

while (SNR<~120 || SNR>120) {
printf(""\n\nPlease enter SIGNAL/NOISE ratio in dB (—120° — 120db): ");
scanf("%f", &SNR); .

- 267 -

while (ensemble<1) {
printf("\n\nHow many runs to make ensemble average: ");

s}ca.nf(" od" ,&ensemble);

for(n=0;n'=N;n++) gain_factor=gain_factor+Weights[n]*Weights[n];

gain_ facto]r—gam factor+FEED FORWARD[O]*FEED FORWARD[O]+FEED FORWARD[l]*FEED FO
RWARD[L

gain . factor=sqrt(gain_factor);

NOISE=gain_factor/exp10(SNR/20.0);

absolute _error=0.125*NOISE;
MU=(NOISE*NOISE*lambda)/(N*absolute _error*absolute_error*(1—lambda));

printf("Enter value for MU:["%lf]\n" MU);
scanf("%lf*,&MU);

printf(“Enter value for absolute error rho:[%lf]\n",absolute_error);
scanf("%lf" &absolute_error);

printf("\n\nHow many data samples per run: ");
S(',a-nf(” Od" AgZS)

fprintf(fp, "%d\n\n" S);

average=(double *)ma.lloc(51zeof(double)*(s+1))

if (average==0) {

fprintf(stderr,"FTF Runtime error...out of memory");
exit(1);

printf("%cFTF Simulation Running\n\n\n",clear_screen);
p_10=s/10;

for (ens=l;ens'=ensemble+1;ens++) {
for(n=0;n!=N;n++) X[n]:0,0;

for(n=0;n!=2;n++) XXK[n|=0.0;

1=0;
setrvector(4,1,1.0,1.0);
setrvector(B,1,1.0,1.0);

zero(C);
zero(W);

nte=calcnte(W.element);
*average=*average+nte/ensemble;
makedata();

setscalar(y0,inp,inp);

copy(y0,tempscall);

setscalar(tempscal2,—desired, —desired);
copy(tempscall,alpha);

multiply(alpha,alpha,alpha);

copy(alpha,alphaml);

inverse(tempscall tempscall);

multlply(tempscall tempscal2,tempscall);
getscalar(tempscall,cn);

setrvector(W,1,cn.upper _endpoint,cnlower _endpoint);

- 268 -

setscalar(gammaN,1.0,1.0);

p=p_10;

for(n=1;n'=N+1;n++) {
nte=calcnte(W. element)
*(averagedn)= (average+n) +nte/ensemble;
makedata();
upshifth);
upshift(YNpl);
setcvector(Y,1,inp,inp);
setcvector(YNpl,1,inp,inp);

multiply(A,YNpl,eNp);

for(k=1;k!'=N+Lk++) {
detlvector(A k,cn);
setrvector(tempN k,cn.upper _endpoint,cn.lower _endpoint);

}
inverse(y0,tempscall);

multiply(eNp,tempscall,tempscal1);
getscalar(tempscall, cn%
setrvector(A,n+1,—cn.lower _endpoint,—cn.upper _endpoint);

‘multiply(eNp,gammaN,eN);
multscal(alpha,lambda,lambda,al pha);

multiply(eNp,eN,tempscall);
add(alpha,tempscallalphaml);

inverse(alphaml tempscall);
multiply(tempscal1,alpha,tempscall);
multiply(gammaN, tempscall,gammaN);

upshift(C);

inverse(alpha,tempscall);

multiply(tempscall,eNp,tempscal1);

getscalar(tempscall cn);

multscal(tempN,cn.lower endpomt cn.upper__endpoint,tempN);
subtract(C,tempN,C);

if (n==N) {
copy(C,tempN);
getscalar(y0,cn);

multscal(tempN,cn.lower _endpoint,cn.upper__endpoint,tempN);
getscalar(gammaN cn);
multscal(tempN,cn. lower _endpoint,cn. upper endpoint,tempN);
for(k=L;k!=N+Lk++) {

getrvector(temmpN k,cn);

setrvector(B,k,cn.lower _endpoint,cn.upper _endpoint);

}
setrvector(B,N+1,1.0,1.0);
copy{gammaN beta);
multiply(beta,y0,beta);

multiply(beta,y0,beta);

- 269 -

setscalar(tempscall,desired,desired);
multiply(W,Y tempscal2);
add(tempscall,tempscal2 ,epsilonp);

multiply(epsilonp,gammaN epsilon);

if (n<N) {
inverse(y0,tempscall);

multiply(tempscall epsilonp,tempscall);
getscalar(tempscall,cn);
setrvector(W,n+1,~cn.upper_endpoint,—cn.lower_endpoint);

if (11:-]:=N) {
getscalar(epsilon,cn);
multscal(C,cn.lower _endpoint,cn.upper_endpoint,tempN);
add(W,tempN,W);

/*printf(fdiagl, %20.161f %20.161f\n",W.element[0].upper_endpoint, W element{0
].lower _endpoint);* f
4++;

for(n=N+1;n!=s+1n++) {
RE_START:

if (a==p) {

printf("%cRun #%d:Status %d%%\n",up_line,ens,(p*10)/p_10);
p=p+p_10;

}

makedata();
upshift(Y);
upshift(YNpl);
setcvectorgY ,1,inp,inp);
setcvector(YNpl,1,inp,inp);

* 1 *
multiply(A,YNpl,eNp);

* 9 *
multiply(eNp,gammaN,eN);

/* #3 */
copy(alpha,tempscal2);
multiply(eNp,eN,tempscall);

multscal (alpha,lambda, lambda,alpha);
add(alpha,tempscall,alpha);

/*#4 */

inverse(alpha,tempscal1);
multiply(gammaN,tempscall,gammaNpl);
multiply(gammaNp1,tempscal2,gammaNpl);
multscal(gammaNp1,lambda,lambda,gammaNp1);

/* 5 *
for (k:l;k!:N-i—l ;k++) {
getrvector(C k,cn);
setrvector(Cex,k+1,cn.lower _endpoint,cn.upper _endpoint);
}

setrvector(Cex,1,0.0,0.0);

inverse(tempscal2,tempscal2);
multiply(tempscal2,eNp,tempscal2); '
multscal(tempscal2,1/lambda,1/lambda, tempscal?)
getscalar(tempscal2,cn);

multscal(A,—cn. upper_endpomt,—cn.lower_endpomt,CNpl);
add(CNp1,Cex,CNpl);

* #6 *
getscalar(eN,cn);

multscal(Ce‘(cn.lower _endpoint,cn.upper _endpoint,Cex);
add(Cex,AA);

/* 7 */ -
getrvector(CNpl,N+1,cn);
setscalar(rNp,—cn.upper _endpoint,—cn.lower _endpoint);

multiply(rNp,beta,rNp);
multscal(rNp lambda,lambda,rNp);

/* #8 *
getrvector(CNp1,N+1,cn);

setscalar(tempscall cn.Jower _endpoint,cn.upper_endpoint);
multiply(tempscall,gammaNp1,tempscall);

multiply(tempscall,rNp,tempscall);
setscalar(tempscal2,1.0,1.0);

add(tempscall,tempscal2,tempscal1);
copy(temnpscall rescue);

getscalar(rescue,cn);

if (cn.lower _endpoint<0.0 && res_flag) {

/*fprintf(fp1,"Division by zero problem at t=%d\n"n);*/
zero(A);
setrvector(A,1,1.0,1.0);

zero(B);
setrvector(B,N+1,1.0,1.0);

zero(C);

temp=pow(lambda,(double)N)*MU;
setscalar(alpha,tenp,temp);
temp=MU;

setscalar(beta, temp,temp);
setscalar(gammaN,1.0,1.0);

for(k=1;K'=N+1;k++) {

setrvector(VV k,(W.element[k—1].lower _endpoint+W.element[k—1].upper_endpoint)
/2.0,(W.element[k—1]. lower__endpomt—}-W element{k—1].upper_endpoint})/2.0);

}
1=0;

goto RE_START;

inverse(tempscall tempscall);
multiply(tempscall,gammaNp1,gammaN);

* 49 *
multiply(rNp,gammaN,rN);

/¥ #1000 ¥/

multscal(beta,lambda,lambda, beta);
multiply(rNp,rN,tempscall);

- 271 -

add(tempscall,beta,beta);

/¥ #1 */

getrvector(CNpl,N+1,cn);
multscal(B,~cn.upper_endpoint,—cn.lower _endpoint,Cex);
add(CNp1,Cex,Cex);

for(k=L;k'=N+1k++) {
getrvector(Cexk,cn);
setrvector(C,k,cn.lower_endpoint,cn.upper_endpoint);

setrvector(Cex,N+1,0.0,0.0);

/* o #12 */

getscalar(rN,cn); _

multscal(Cex,cn.lower _endpoint,cn.upper _endpoint,Cex);
add(Cex,B,B);

/* #13 ¥/
setscalar(tempscall,desired,desired);
multiply(W,Y tempscal2);
getscalar(tempscal2,cn);
add(tempscall,tempscal2,epsilonp);

/¥ #14F/
multiply (epsilonp,gammaN epsilon);
/* o #15

getscalar(epsilon,cn); :

multscal(C,cn.lower _endpoint,cn.upper _endpoint tempN);

add(W tempN,W);

for (k=Lk=N+1k++) {

getrvector(W k,cn);

if ((cn.upper_endpoint—cn.lower _endpoint)>absolute_error) {
/*fprintf{fpl,"Output too wide at t=%d\n",n);*/
zero(A); C
setrvector(A,1,1.0,1.0);

zero(B)

setrvect’or(B,N+1,l.0, 1.0);

zero(C);

temp=pow(lambda,(double)N)*MU;
setscalar(alpha,temp,temp);
temp=MU;
setscalar(beta,temp,temp);
setscalar(gammaN,1.0,1.0);

for(k=1;k!=N+1;k++) {

setrvector(W k,(W.element[k—1].lower _endpoint+W.element[k—1].upper_endpoint)

- /2.0,(W.element [k—1].lower _endpoint+W.element[k—1].upper_endpoint)/2.0);

}
1=0;
goto -RE_START;

/*fprintf(fdiagl,"%20.161f %20.161f\n",W.element[0].upper _endpoint,W.
].lower _endpoint);*/ - :
nte=calcnte(W.element); -
* (average+n)="*(average+n)-+nte/ensemble;
Sl

elemment(0

y oo
for(n=0;n!=s+1;n++) {
| fprintf(fp,"%20.16e\n" *(average+n));

}

fclose(fp);

fclose(fpl);

fclose(fdiagl);

makedB(s,average);
fp=fopen("'gplottext.tmp","w");
fprintf(fp,"Floating Point\n"g/;
fprintf(fp,"Mantissa Length %d bits\n\n",MANTISSA LENGTH);
fprintf(fp,"Filter Length=%d\n",N);
fprintf{fp,"MU=%If\n" ,MU);
fprintf(fp,"lambda=%f\n" lambda);
fprintf{fp,"rho=%If",absolute _error);
fprintf(fp,"SNR=%f\n",SNR);
fprintf(fp,"Ensemble of %d runs\n" ensemble);
fclose(fp);

}

double calente(ptr)
double *ptr;

int k;
double nte=0.0,mean;

struct interval Weight,;

for (k=0;k'=N;k++) {
Weight.lower _endpomt=((*ptr));
ptr++; o
Weight.upper_endpoint=((*ptr));
ptr++; .)
mean=(Weight.lower _endpoint+Weight.upper_endpoint)/2;
nte=nte-(Weights[k]+mean)*(Weights[k]+mean);
return(nte);
}
makedata()
int J;
XK[1]=XK[0];
XK([0]=gauss();
inp=XK[0]*FEED _FORWARDI0]4+XK[1]*FEED_FORWARD(1];
for (j=4;j'=0—) {
X[l=Xp-1];
X[0)=10p;
desired=0.0;
for (j=0j'=Nj++) desired=desired+X[j]*Weights[j];

- 273 -

desired=desired+(gauss())*NOISE;

({iouble rnum()
Seturn ((random()/MAXRND));

double gauss()

double a,b;
double result;

a=rnum();

b=rn‘1111r11—:8;
result=sqrt(—2*log(a))*cos(2*3.141592654*D);
return(result);

makedB(s,data)
int s;
double *data,

{ .
FILE *fopen(),*fp2;
“float se;

float init;

double av_level=0;

double p;
int k;

fp2=fopen("ERRdB.DAT","w");

for (k=0;k'=s+1;k++) {

se=*(data+k);
if (k==0) init=se;

p=10*logl0(se/init);
if (k>4*N) av_level+=p;
f}princf(fp:z,"%t\n“,p);

printf("*Average performance level=%lf\n",av_level/(s—4*N));
fclose(fp2);
}

- 274 -

Interval arithmetic fast Kalman algorithm

/* Simulation of the Fast Kalman Algorithm */

#define FLOATING

#define MANTISSA LENGTH 56

#include </ud/call/lib/INTERVAL_ANALYSIS_src/intools.h>
#include <math.h>

#include <stdio.h>

#define MAXRND 2147483647.0

int N;

double calente();
double rnum();
double gauss();

void change weights();

double inp,desired,;

double X[5]; . :

double Weights[5]={0.9,0.3,-0.3,0.7,0.1};

double FEED FORWARD[2]={1.0,0.865};

double XK[2];
float NOISE;

main(arge,argv)

it argg;

char *argv[];

* All of the spvar definitions should go in here*/

spvar Xnml,enml,a,c.en,epsilon,Cex,m,mu,r,b,w.err,xn,dn,forget,temp,templ,y;
spvar f kappa,d,onexl,W gamma;

struct interval cnl;

FILE *fopen(),*fp;

double delta=—1.0,nte,gain_factor=0.0,*average;

float lambda=0.0,SNR=-1;
int k,n,s,p_10,p,ensemble=—1,ens,res_flag rescue_flag=0;

char clear_screen=12;
char up_line=11;

/*Initialisation*/

if (arge!=2) res_flag = 1;

else
if (strcmp(argv[l],"—on")::O) res_flag=1,
if (stremp(argv(1],"—ON")==0) res_flag=1;
if (stremp(argv(l],"—off"*)==0) res_flag=0;

if (stremp(argv(l],"~OFF")==0) res_flag=0;

. 275 -

printf("Simulation of Covariance Fast Kalman Algorithm\n\n");

printf(*by Chris Callender, 1989\n\n\n\n"); :

if (ves_flag) printf("*\n\nRescue=ON, Floating Point Mantissa Length = %d\n\n",M
ANTISSA _LENGTH);

if ('res_flag) printf("\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA_LENGTH);

printf("Filter Length:");

scanf("%d" &N);

rvector(Xnml,N);
rvector(x1,N);
scalar(temp);
cvector(templ,N);
scalar(forget);
scalar(xn);
scalar(dn);
scalar(enml);
scalar(en);
cvector(a,N);
cvector(b,N);
cvector(c,N);
cvector(w,N);
scalar(err);
scalar(r);
scalar(imu);
cvector(m,N);
cvector(Cex,(N+1));
sca.la.rEepsilon);
scalar(y);
cvector(f,N);
scalar(kappa);
scalar{gamma);
scalaxéone);
cvector(d,N);
matrix{ W,N)N);

printfg”‘?'oc",clear screen);

fp=fopen("NORMTAPERROR.DAT","w");

srandom(1);

while (lambda<0.8 || lambda>1.0)

{ '

printf("Please enter a value for lambda between 0.8 and 1.0: ");
scanf(" %" &lambda);
b

while (delta<0.0)

printf(*Please enter a small positive value for delta: "); .
scanf("%lf" &delta); '
}

while (SNR<O0 || SNR>120) {
printf(’"\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 120db): ");
s}canf("%f",&SNR); -

while (ensermble<1) {

- 276 -

printf("\n\nHow many runs to make ensemble average: ");

scanf("%d" &ensemble);
}

for(n=0;n!=N;n++) gain_factor=gain_factor+Weights[n]*Weights[n];

gain_ factor—gam factor*(FEED_F ORWARD[O]*FEED FORWARD[0]+FEED_FORWARD(1]*FEED_F
ORWARD(1]);
gam_factor:sqrt(gain_factor);

NOISE=gain_factor/exp10(SNR/20.0);

printf("*\n\nHow many data samples per run: ");
Sca.nf(" (,(l" SCS)

fprint{(fp, "%d\n\n" s);

average=(double *)malloc(sizeof(double)*(s+1));

if (average==0) {

fprintf(stderr,"FK Runtime error...out of‘memory");
exit(1);

printf(*%cFK Simulation Running\n\n\n" clear_screen);
p=p_10=s/10;

zero(x1);

zero(w);

nte=calcnte(w.element);
*average=*average+nte/ensemble;
zero(a);

zero(b);

setscalar(one,1.0,1.0);

zeroéXnml); v

epsilon,delta*lambda,delta*lambda);
gamma,delta,delta);
forget,lambda,lambda);

setscalar
setscalar
setscalar
zero(W);
for(n=1;n!=N+1;n++) setmatrL\(Wnn,pow((double)lambda (double)(1—n)),pow((doub
Ie)lambda double)(l —n)));

3 =((gamma + x1 * W# *x17)#*W#*x1")

copy(c, d) .

for (ens=l;ens!'=ensemble+1;ens++) {
for(n=L;n'=s+1n++) {
if (n==p) {
printf("%cRun #%d:Status %d%%\n" up_line,ens (p*lO)/p 10);

p=p+p_10;

/*The algorithm goes in here!*/

RE_START:

if (rescue_flag==1) {
copy(Xnml,xI);
zero(a);
zero(b ;

setscalar(epsilon,10.0¥lambda,10.0*lambda);
setscalar(gamma,10.0,10.0);

$ ' c=((gamma + x1 * W# *x1")#*W#*x1")
copy(¢,d);

- 277 -

for(k=1; l\' N+1Lk++) {
setevector(w,k,(w. elernent[l ~1].lower endpomt—i-w element

[k—1].upper_endpoint)/2.0,(w. element[k— 1}.lower _endpoint-+w.element[k—1].upper_e
ndpoint)/2.0);

}

rescue_flag=0;

Trintf("Rscued at t=%d\n\n",n);

/HKL*/

makedata();

setscalar(xn,inp,inp);

se tsca.la.rgdn,desired,d%ired) ;
8 enml=xn—(Xnml)*a

/*(K2)*/

$ a=a+c*enml
/*(K3)*/

$ en=xn—(Xnml)*a
/*(K4)*/

3 epsilon=forget*epsilori+en*enml

/X(K5)*/

if (epsilon.element—>lower_endpoint<0.0 && epsilon.element—>upper _endpoint>0.0

) |

rescue_flag=1;
goto RE_START;

3 temp=en * (epsilon#)
getscalar(temp,cnl);
setrvector(Cex,1,cnl.lower _endpoint,cnl.upper _endpoint);
$ templ=c — a * temp
for(k=2;k!=N-+2;k++) {
getcvector(templ k—1,cnl);
setcvector(Cex,k,cnl.lower _endpoint,cnl.upper endpomt)

/*(K6)*/
getevector(Cex,N+1,cnl);
setscalar(mu,cnl.lower _endpoint,cnl.upper_endpoint);

for(k=1;k!=N+1;k++) {
getevector(Cex,k,cnl);
setcvector(m,k,cnl.lower _endpoint,cnl.upper _endpoint);

= })
JH(RT)¥/

getrvector(Xnml,N,cnl);
setscalar(temp,cnl.lower _endpoint,cnl.upper_endpoint);

upshift(Xnml);
setrvector(Xnml,1,inp,inp);
3 r=temp — Xnml *

JH(K8)*/

- 278 -

&R N A &n

temp=one—mu*r
if (temp.element—>lower_endpoint<0.0 && temp.element—>upper _endpoint>0.0) {

rescue_flag=1,

goto RE_START;
b=(b + m * r) * (temp#)
f=m + b * mu

temp=one — Xnml *f * Xnml *d :
if (temp.element—>lower _endpoint<0.0 && temp.element—>upper_endpoint>0.0) {

rescue_flag=1;

ioto RE_START;

kappa=(one — Xnml * f *Xnml *d)#
if (kappa.element—>lower_endpoint<0.0 && kappa.element—>upper_endpoint>0.0) {

rescue_flag=1;
goto RE_START;

d=kappa#*(d — f*(Xnml*d))

c=f — d*(x1*)

y=Xnml * w
err=dn — y
w=w + ¢ * err
for(k=1;k!=(N+1);k++) {
getcvector(w k,cnl);
if ((cnl.upper_endpoint—cnl.lower _endpoint)>0.5*NOISE) {

rescue_flag=1;
§oto RE_START;

nte=calcnte(w.element);
(average+n)="(average+n)-+nte/ensemble;

} .
for(n=0;n'=s+1;n++) {

fprintf(fp,"%20.16e\n" *(average-+n));

}
felose(fp);
makedB(s,average);

}

double calente(ptr)
double *ptr;

int k;

double nte,mean;

nte=0.0;

for (k=0;k!=N;k++) {

mean=0.5*((*ptr)+(*(ptr+1)));

ptr+=2;
nte=nte+(Weights[k]—mean)*(Weights[k] —mean);

return(nte);

makedata()
{
nt j;
XK([1]=XXK[0];
XK(0}=gauss(); |
inp=XK[0]*FEED_FORWARD(0]+XK[1]*FEED_FORWARD(1];
for (j=4j'=0§—-) {
X{]=X[-1];
X{[0)=mp;
desired=0.0;
for (j=0j!=N;j++) desired=desired+X[j]*Weights[j];
desired=desired+(gauss())*NOISE;

double rnum()

r}eturn ((random()/MAXRND));

double gauss()

c{iouble a,b:
double result;

a=rnum();
. b:rnum8;
result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return(result);

makedB(s,data)

it s;

c{iouble *data; .
FILE *fopen(),*fp2;
float se;

float 1nit;

double p;

int k;

fp2=fopen("ERRdAB.DAT" "w");
for (k=Ojkl=s+1k++) {

se=*(data+k);
if (k==0) init=se;

- 280 -

p=10*log10(se/init);
fprintf(fp2," %f\n",p);
}

fclose(fp2);

void change weights(t,file_ptr)
FILE *file_ptr;
int t;

{
}

- 281 -

Interval arithmetic FAEST algorithm

/*Simulation of FAEST algorithm using floating point interval arithmetic*/

#define FLOATING

#define MANTISSA LENGTH 56 : _
#include </u4/call/ib/INTERVAL_ANALYSIS_src/intools.h>
#include <stdio.h>

#include <math.h>

#define MAXRND 2147483647.0 '

int N;
double calente();
double rnum();
double gauss();

void change weights();’

double inp,desired;

double X([5];

double Weights[5]={0.9,0.3,-0.3,0.7,0.1};

double FEED FORWARD([2]={1.0,0.865};

double XK[2];
float NOISE;

main(arge,argv)
mnt arge;
char *argv(];

* All of the spvar definitions should go in here*/

spvar XN,w,wmp]1,templmpl,temp2mpl,a,b,zog,alphaf,alphafold alphab,alpha;
spvar c,xn,zef,eb.e epsilon epsilonf,epsilonb,delta,d,acld,forget;

struct interval cn;

FILE *fopen(),*{p;

double sigma=-1.0,nte,gain_factor=0.0,*average,temp;

double lambda=0.0,mean;

float SNR=-1; :
int k,n,s,p_lO,p,ensemble:—Lens,r%_ﬂag,res__rqd:O;

char clear _screen=12;
char up_line=11;

/*Initialisation*/

if (arge!=2) res_flag = 1;

else {
if (stremp(argv(l],"—on")==0) res_flag=1;
if (stremp(argv(l],"—ON")==0) res_flag=1;
if (strcrﬁp(argv[l],“—off"):::O) res_ flag=0;

if (stremp(argv(l],"—OFF")==0) res_flag=0;

- 282 -

printf("%c" clear _screen);

printf “Simulation of FAEST Algorithm\n\n");

printf("by Chris Callender, 1989\n\n\n\n");

if (res_flag) rmtf("\n\nRescue_ON Floating Point Mantissa Length = %d\n\n" M
ANTISSA "LENGTH):

if ('res_flag) printf(*\n\nRescue=OFF Floating Point Mantissa Length = %d\n\n",
MANTISSA_ LENGTH);

printf("Filter Length:");

scanf("%d" &N);

/*All dimensions of matrices should be set here */

rvector(XN,N);
cvector(w,N);
cvector(wmpl,N+1);
cvector templmpl,EN+1 ;
cvector(temp2mpl,(N-+1));
cvector(a,N);
cvector(aold,N);
cvector(b,N);
scalar(zog);
scalar(alphaf);
scalar(alphafold);-
scalar(alphab);
scalar(alpha);
cvector(c,N);
scalar(xn);
scalar(z);

scalar(ef);
scalar(eb);

scalar(e);
scalar(epsilon);
scalar(epsilonf);
scalar(epsilonb);
scalar(delta);
scalar(forget);
cvector(d,N);

fp=fopen("NORMTAPERROR.DAT","w");
srandom(1);
while (lambda<0.8 || lambda>1.0)

{ :
printf("Please enter a value for lambda between 0.8 and 1.0: ");
scanf("%lf" &lambda);

}

setscalar(forget,Jambda,lambda);

while (sigma < 0.0)

printf(**Please enter a small positive value for sigma: ™);
icanf("%l[" Ssignia);

while (SNR<0 || SNR>120) {
printf("\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — I?Odb): ");

s}canf("%f' &SNR);

- 283 -

while (ensemble<1) {
printf("\n\nHow many runs to make ensemble average: ");

scanf("%d" &ensemble);
}

for(n=0;n!=N;n++) gain_factor=gain_factor+Weights{n]*Weights(n];

gain_factor=gain_factor*(FEED_FORWARD([0]*FEED_FORWARD(0]+FEED_FORWARD[1]*FEED_F
ORWARDIL);
gain_factor=sqrt(gain _factor);

NOISE=gain_factor/expl0(SNR/20.0);

prmtf(':>n\nHow many data samples per run: "),
Scanf(" Od" &s)'

fprintf(fp, "%d\n\n“ S);

average_.(double)malloc(smeof(double)*(s-}-l))

if (average==

fprintf(stderr,"FAEST Runtime error...out of memory™);
exit(1);

printf("%cFAEST Simulation Running\n\n\n",clear _screen);
p_10=s/10;

for (ens=1;ens!=ensemble+1;ens++) {
p=p_10;

for(n=0;n!=N;n++) X[n]=0.0;
for(n=0;n!=2;n++) XK[n]=0.0;

€10
z€ero
zero ag,
zero(b);
zeroEc);
zero(w);
zeroéwmpl);

208);
XN);

nte=calcnte(c.element);
*average=*average+nte/ensemble; -
temp=sigma*pow((double)lambda,(double)N);
setscalar(alphaf,temp,temp);

setscalar(alphab sigma,sigma);
setscalar(alpha,1.0,1.0);

for(n=L;n!=s+1;n++) {

RE_START:

if (res_rqd) {
res_rqd=0;

fprintf(stderr,"Rescued at %cl\n\n" n);
zero(a);
zero(b);
zero(w);

temp=100.0*pow((double)lambda,(double)N);

setscalar(alphaf,temp,temp);
setscalar(alphab,100.0,100.0);

setscalar(alpha,1.0,1.0);

- 284 -

for(k=0;k!=N;k++) {
mean=0.5*(c.element[k] lower _endpoint+c.element[k].upper _endpoint);

fprintf(stderr,"%lf\n" mean);
setevector(c,k+1,mean, mean);

if (n==p) { '
printf("%cRun #%d:Status %d%%\n",up_line,ens,(p*10)/p_10);

p=p+p_10;

}
/*The algorithm goes in herel*/
makedata();
setscalar(xn,inp,inp);
setscalar(z,desired,desired);

$ ef=xn + XN * a

if (alpha.element—>lower_endpoint<0.0 && alpha.element—>upper_endpoint>0.0) {

res_rqd=l;
goto RE_START;

}
$ epsilonf=ef * (alpha#)

copy(a,aold);
3 a=a+w * epsilonf

alphafold=forget * alphaf ’
alphaf=alphafold+ef*epsilonf

o N

for(k=1;k!'=N+1k++) {
getevector(w,k,cn); .
setcvector(templmpl,k+1,cn.lower _endpoint,cn.upper _endpoint);
getevector(aold k,cn);
setcvector(temp2mpl,k+1,cn.lower _endpoint,cn.upper _endpoint);
setcvector(templmpl,1,0.0,0.0);
setcvector(temp2mpl,1,1.0,1.0);
if (alphafold.element—>lower _endpoint<0.0 &§ alphafold.element—>upper_endpoint
>0.0) { :

res_rqgd=1;
oto RE_START;

3 wmpl=templmpl — (ef * (alphafold#)) * temp2mpl
/*Partitioning™/
for(k=Lk!'=N+Lk++) {
getevector(wmpl k,cn);

setcvector(d,k,cn lower _endpoint,cn.upper_endpoint);

getcvector(wmpl,(N+1),cn);
setscalar(delta,cn.lower _endpoint,cn.upper _endpoint);

- 285 -

3 eb=zog—delta * alphab * forget
$ w=d — delta * b

$ alpha = alpha + (ef * alphafold #) * ef + delta * eb '

if (alpha.element—>lower _endpoint<0.0 && alpha.element—>upper_ endpoint>0.0) {

res_rqd=l;
oto RE_START;

$ epsilonb = eb * (alpha #)
3 alphab = forget * alphab + eb * epsilonb
3 b=b+4w * epsilonb

upshift(XN);
setrvector(XN,1,inp,inp);

/* Time update the LS FIR Filter */
3 e=z + XN * ¢
$ epsilon = e * (alpha#)

*

3 c=c + w * epsilon

nte=calcnte(c.element);
* (average+n)=*(average-+n)+nte/ensemble;
}
for(n=0;n!=s+1;n++) {
fprintf(fp,"%20.16e\n" *(average+n));
}
fclose(fp);
makedB(s,average);

}

double calente(ptr)
double *ptr;

int k;
double nte=0.0;

double mean;
for (k=0k!=N;k++) {
mea.n:O.S*((*ptr)+(*(Ptr+1)))§ :

ptr+=2; :
nte=nte+(mean+Weights[k]) *(mean+Weights[k]);

return(nte);

}

makedata()
int J;
XK[1]=XK[0];

- 286 -

XK[o}=gauss();
inp=XK[0J*FEED_FORWARDI0]+XK{IJ*FEED_FORWARD]1];
for (j=47!=0j—) {

X[J=X[-1];
X([0]=inp;
desired=0.0;
for (j=0j'=N;j++) desired=desired+X[j}*Weights[j];
desired=desired+(gauss())*NOISE;

double rnum()

Ljeturn ((random()/MAXRND));

double gauss()

double a,b;

double result;

a:rnum%);

b=rnum();
result=sqrt(—2*log(a))*cos(2*3.141592654*b);
return(result); ,

makedB(s,data)

int s;

({iouble *data;
FILE *fopen(),*fp2;
float se;

" float init;

double p;

int k;

fp2=fopen("ERRAB.DAT""w");

for (k=0;kl=s+1;k++) {

se=*(data+k);
if (k==0) init=se;

p=10*logl10(se/init);
f}printf(pr,"%f\ll"yP)§

ticlose(fp?);

void change weights(t,file ptr)
FILE *file_ptr;
int t;

{
}

- 287 -

Fixed point interval arithmetic routines

/* Rountines for 16 bit interval multiplication, addition, and division */

/* See Gibb, A., "Algorithm 61 — Procedures for range arithmetic", Comm. ACM,
Vol 4:7, July 1961.*/

/*First define the structure for an interval number*/

struct INTERVAL {
short int lower_ep; /*16 bit lower endpoint */
short int upper_ep; /*16 bit upper endpoint */

bl

#define interval struct INTERVAL

void add(range _a,range_b,range_res)
interval *range a,*range_b,*range_res;

it e,f;
if (range_a —> lower_ep > range_a —> upper_ep || range_b —> lower_ep > range_b
~> upper_ep) {

_ fprintf(stderr,"Range endpoint error");

exit(1);

e=(range_a —> lower_ep) + (range_b —> lower_ep);
f=(range _a —> upper_ep) + (range_b —> upper_ep);
/* No need to correct as fixed point addition 1s exact */
if (e>32767) e=3270T;

if (£>32767) f=32767;

if (e<—32768) e=-32768;

if (f<—32768) f=-32768;

range_res —> lower_ep=e;

range_res —> upper_ep=f;

}

void neg(range)
interval *range;

short int a;
if (range —> lower_ep > range —> upper_ep) {
fprintf(stderr,"Range endpoint error");

exit(1);
a=range —> Uupper_ep, .
range —> upper_ep =—(range —> lower_ep);
range —> lower ep =-—a;

}

short int div(range arange_b,range res,res_shift)
interval *range a,*range b,*range_res;

int e,f;
int a,b,c,d;
if (range_a —> lower_ep > range_a —> upper_ep || range_b —> lower_ep > range_b
—> upper_ep) { : '
fprintf(stderr,"Range endpoint error);
exit(1);

- 288 -

a=(range_a —> lower_ep) << res_shift;
b:Erange_a —> upper_ep) << res_shift;
c=range_b —> lower_ep;
d=range b —> upper_ep;

if (c<=0 && d>=0) return(l);

if (c<0) {
if (b>0) e=b/d; else e=b/c;
if (a>=0) f=a/c; else f=a/d;

else {
if (a<0) e=a/c; else e=a/d;

if (b>0) f=b/c; else f=b/d;
}

++f;

if (e>32767) e=32767;

if (£>32767) f=32767;

if (e<—32768) e=—32768;

if (f<—32768) f=—32768;
range res —> lower_ep = e¢;
range_res —> upper_ep = f;
return(0);

}

int min(nl,n2)
~int nl,n2;

{ .
if (nl<=n2) return(nl);
if (n2<nl) return(n2);

int max(nl,n2)
int nln2;

{
if (n1>=n2) return(nl);
i}f n2>nl) return(n2);

void mul(range_ arange_b,range _res,res_shift)
interval *range a*range b,*range_res;
_short int res_shift;

int e,fmask,error;
short int a,b,c,d,temp;

if (range_a —> lower_ep > range_a —> upper_ep || range_b —> lower_ep > range_b
—> upper_ep) { :

fprintf(stderr,"Range endpoint error");

exit(1);

a=range. a —> lower_ep;
b=range_a —> upper_ep;
c=range_b —> lower_ep;
d=range_b —> upper_ep;

if (a<0 && ¢>=0) {

- 289 -

temp=a,
a=c;
c=temp;
temp=Db;
b=d;
d=temp;

if (a>’}—‘0) {
if (e>=0) {

e=a*c;

f=b*d;

if (d>=0) f=b*d; else f=a*d;

else {
‘ if (b>0) {
if (d>0) {
e=min(a*d,b*c);
f=max{a*c,b*d);
}
else {
e=b*c;
‘ f=a*c;
}
else {

f=a*c;

if (d<=0) e=b*d; else e=a*d;
}

mask=(l << res_shift)—1;
error=e & mask; ‘
if (error!=0 && e<=0) e=(e >> res_shift)—1;

else e=e >> res_shift;
error=f & mask;
if (error!=0 && f>=0) f=(f >> res_shift)+1;

else f=f >> res_shift;

if (e>32767) e=3276T,
if (f>32767) f=32767,
if (e<—32768) e=—32768;
if (f<—32768) f=-32768;
range_res —> lower_ep
range_res —> upper_ep

}

scalar _product(range_a,range _b,range_res length,res_shift)
" interval *range a,*range b,*range _res;
short int length,res_shift;

= g
= f;

short int a,b,c,d,temp;
int index;
int lower long_accurmulator,upper_long_accumulator,mask,error;

lower_long_accumulator=0;

- 290 -

upper__long__accumulatoi‘:O;

for (index=0;index!=length;index++) {

a=range_a —> lower_ep;
b=range a —> upper_ep;
c=range_b —> lower_ep;
d=range b —> upper_ep;

if (a>b || ¢>d) { .
fprintf(stderr,"Range endpoint error");
exit(1);

if (a<(}) && c>=0) {

temp=a,
a=c;
c=temp;
temp=b;
b=d;
d=temp;

if (a>l0) {
if (e>=0) {

lower _long_accumulator=lower_long_accumulator4a*c;
upper_long_ accumulator=upper _long_accumulator+b*d;

else :

lower long _accumulator=lower _long_accumulator+b*c;

if (d>=0) upper_long_accumulator=upper _long_accumulator+b*d; else upper_long_a
ccurmulator=upper _long_accumulator+a*d;

}

else {
if (b>0) {

if (d>0) {

lower _long_accurmlator=lower _long_ accurnulator+min(a*d,b*c);
upper_ long_ accumulator=upper_long_ accumulator+max(a*c,b*d);

else
lower_long_accumulator=lower _long_accumulator+b*c;
upper_ long_ accurmulator=upper_long_accumulator+a*c;

else {
upper_long_accumulator:upper_long_accumtllator+a*c;
if (d<=0) lower_long_accurnulator=Ilower _long_accumulator+b*d; else lower_long_
accumulator=lower _long_accumulator+a*d; :

++range_a;
~+-+range_b;

}

mask=(1 << res_shift)-1;

error=lower_long _accumulator & mask;

if (error'=0 && lower_long_accumulator<=0) lower_long_accumulator=(lower_long_a
ccurnulator >> res_shift)-1; :

else lower long. accumulator=lower _long_accurmulator >> res_shift;
error=upper_long_accurmulator & mask;

if (errori=0 && upper_long_accumulator>=0) upper_long_accumulator=(upper_long_a
ccumulator >> res_shift)+1; ‘

else upper_long_accumulator=upper_long_accumulator >> res_shift;

- 291 -

if (lower _long_accurnulator>32767) lower _long_accumulator=32767;

if (upper_long_accumulator>32767) upper_ long_ accumula.tor_32767

if (lower _long _accurmulator<—32768) lower_long_ a.ccumula.tor——32768
if (upper_long_ accumulator<—32768) upper_long_ accumulat01:—32768
range_rtes —> lower_ep = lower_long_accumulator;

range_Tes —> Upper_ep = upper_long_ accumulator,

- 292 -

Fixed point interval FTF simulation

/*Fixed point simulation of FTF algorithm*/
#define NIAXRND 2147483647.0

#include <math.h>

#include <stdio.h>

#include "oldrangeroutines.h”

double X[5];

double XK[2];

double FEED _FORWARD[2]={0.15,0.12975};

double Weights[5]={0.9,0.3,—0.3,-0.7,0.2};

double calcnte();
double’ gauss();

void reinit();

it N;

double NOISE=0.001;

short int inp,des,sat_flag;

main(argc,argv)
int argc;
char *argv(];

double nte,dJambda:0.0,d__MU:—l.O,SNR:—'l.0,gain_factor,*average,width;
int s,seed,ens,ensemble=0; »

int long accumulator;

interval YA ' *Y\Ipl *C,*¥Cex,*CNpl,*B*W;

short int mde\t t,1_width;

interval lambda,mu;

interval rescue,y0,alphaml,eNp,eN,gammaN,alpha,alphaold,epsilon;

interval gammal\lpl epsilonp,rN,rNp,beta,temp, templ
FILE *fopen(),*fp;

if (arge!=2) sat_flag = 0;

else { o
if (stremp(argv{l],"—sat")==0) sat_flag=1,

if (stremp(argv(l],"—SAT")==0) sat_flag=1;

} .
fp=fopen("NORMTAPERROR.DAT","w");

printf("Simulation of FTF Algorithm\n\n");
printf("by Chris Callender, 1989\n\n\n\n");
printf(*\n\n16 Bit Fixed Point\n\n");
printf("Filter Length:");

scanf("%d" &N); '

while (d_lambda<0.8 || d_lambda>1.0)

- 203 -

{
printf("Please enter a value for lambda between 0.8 and 1.0: ");
s}canf("%lf',&d_lambda);

while(d_MU<0) {

printf(*\n\nPlease enter a value for soft constraint parameter MU:");
scanf("%lf",&d_MU);

printf(*\n\nPlease enter maximum width of taps:");
scanf("%lf" &width); :
i width=width*32768;

while (SNR<O0 || SNR>220) {
printf("*\n\nPlease enter SIGNAL/NOISE ratio in dB (0 — 220db): ");
s}canf("%lf",&SNR); '

while (ensemble<1) {
printf(*\n\nHow many runs to make ensemble average: ");
scanf(%d" ,&ensemble);

}
for(t=0;t'=N;t++) gain_factor=gain_factor+Weights[t]* Weights[t];

gain_factor=gain_factor*(FEED_FORWARD[0]*FEED_FORWARD[0]4+FEED_FORWARD[I]*FEED_F
ORWARD(1}); '
gain_factor=sqrt(gain_factor);

NOISE=gain_ factor/expl0(SNR/20.0);

printf(’"\n\nHow many data samples per run: ");
scanf("%d" &s);

average=(double *)malloc(sizeof(double)*(s+1));

if (average==0) {

fprintf(stderr,”FTF Runtime error...out of memory");
exit(1);

/*First, allocate memory for vectois*/
A=(interval *)malloc(sizeof(interval)*(N+1)); /*Scale factor will be 1024*/

Y=(interval *)malloc(sizeof(interval)*N); /*Scale Factor will be 32768*/
YNpl=(interval *)malloc(sizeof(interval)*(N+1)); /*Scale factor will be 32768*/

C=(interval *)malloc(sizeof(interval)*N); /*Scale Factor will be 8*/
CNpl=(interval *)malloc(sizeof(interval)*(N+1)); /*Scale Factor will be 8*/
B=(interval * malloc(sizeofginterva.l)*(N+1)); /*Scale Factor will be 32768*%/
W=(interval *)malloc(sizeof(interval)*N); /*Scale Factor will be 32768*/

seed=time(0);
srandom(seed);
printf(*\n\n");

lambda.lower _ep=lambda.upper_ep=32768*d _lambda;
mu.lower _ep=nw.upper_ep=32768*d_MU;

for (ens=1;ens!=ensemble+1l:ens++) {
for(t=0;t!=N;t++) X[t]=0.0;

- 294 -

for(t=0;t!=2;t++) XK[t]=0.0;
/* First the Fast Exact Initialisation Routine*/
A[0].lower _ep=A[0].upper _ep=1024;
BJ[0].lower _ep=B[0].upper_ep=16384;

for (index=1;index!=N+1;index++) {
A[index].lower _ep=A(index].upper_ep=0;

Blindex].lower _ep=B[index].upper_ep=0;

}

for (index=0;index!=N;index++) {
Clindex].lower _ep=Clindex].upper_ep=0;
W(index].lower _ep=W([index].upper_ep=0;

Y [index].lower_ep=Y/(index].upper_ep=0;

} .
for (index=0;index!=N+1;index++) YNpl[index] lower _ep=YNpl[index].upper _ep=0;

nte=calcnte(W);
*average=*average—+nte /ensemble;
makedata(0);

v0.lower _ep=y0.upper_ep=inp;
mul(&y0,&y0,&alpha,15);

alphaml.lower _ep=alpha.lower_ep;

alphaml.upper_ep=alpha.upper _ep;
temp.lower _ep=temp.upper_ep=des;
if (div(&temp,&y0,&temp,15)==1) {

fprint{(stderr,” Algorithm failed during initialisation");
exit(1);

nef;(&temp);

W(0] lower _ep=temp.lower _ep;

W(0].upper _ep=temp.upper _ep;

gammaN lower _ep=gammaN .ul:;per_ep=32767;
YNp1[0].lower _ep=Y[0].lower _ep=y0.lower _ep;

YNp1[0].upper _ep=Y[0].upper_ep=y0.upper_ep;

for(t=1;t!=N+1;t++) {
nte=calcnte(W);
(average+t)=(average+t)+nte/ensemble;
makedata(t);
for(index=N+1;index!=0;index~—) {

Y Npl[index].lower ep=YNpl[index—1].lower_ep;
YNpllindex].upper _ep=YNpl[index—1].upper_ep;
if (indext=N+1) {

Y [index].lower _ep=Y(index—1].lower_ep;
¥ index].upper_ ep=Y|[index—1].upper_ep;

- 295 -

YNpl1[0].lower _ep=YNp1[0] :upper_ep:inp;

Y[0].lower _ep=Y{[0].upper_ep=inp;

scalar _product(A,YNpl,&eNp,N+1,11);
if (div(&eNp,&y0,&temp,11)==1) {

fprintf(stderr," Algorithm failed durmg initialisation');
exit(1);

neg(&temp);
Alt]lower _ep=temp.lower _ep;
Alt].upper ep=temp.upper_ep;

mul(&eNp,&gammaN,&eN,14);

mul(&lambda,&alpha,&alpha,15);

mul(&eNp,&eN, &temp,14);
add(&alpha,&temp,&alphaml);

if (div(&alpha,&alphaml,&temp,15)==1) {

fprmtf(stderr *Algorithm failed during initialisation");

exit(1);

}
mul(&temp,&gammalN, &gammaN,15);
for(i.ndex:t;index.’:O;index———) {

Clindex]=C[index—1];
C[0].lower _ep=C[0].upper_ep=0;
for(index=0;index!=t;index++) {
mul(&eNp,(A+index),&temp,10);
if (div(&temp,&alpha,&temp,4)==1) {
fprintf(stderr," Algorithm failed durlng initialisation");
exit(1);
neg(&temp);
?dd((C+index),&temp,(C+index));
if (t==N)
for(index=0;index'=N;index++) {
mul(&y0,&gammaN,&temp,15);
mul(&temp,C+index,B+index,4);
B[N] .lower_ep:B[N].upper_ep:16384;
mul(&y0,&y0,&temp,15);
inul(&temp,&gammaN Sebeta,9);
epsilonp.lower _ep=epsilonp.upper_ep=des;
scalar _product(Y,W,&temp,N,15);
add(&temp,&epsilonp, &epsxlonp)

mul(&epsilonp,&gammaN,&epsilon,15); '

- 296 -

if (t<N) { |
if (div(&epsilonp,&y0,&temp,15)==1) {

fprintf(stderr," Algorithm failed during initialisation");
exit(1);

t

neg(&temp);

Wi Jower _ep=temp.lower _ep;
W

}

t].upper__ep=temp.upper_ep;

if (t==N) {
for(index=0;index!=N;index++) {

mul(&epsilon,C+index,&temp,4);
add(W+index,&temp, W+index);

.)
/* Now the FTF Algorithm proper */

for (t=N+1;t!'=s+1t++) {
makedata(t);
for(index=N+1;index!=0;index——) {

Y Npl[index].lower ep=YNpl[index—1].lower_ep;
YNpl[index].upper_ep=YNpl[index—1].upper_ep;

if (index!=N+1) Ylindex].lower ep=Y[index—1].lower _ep;
if (index!=N+1) Y/[index].upper_ep=Y[index—1].upper_ep;

YNpl{0].lower_ep=YNp1{0].upper_ep=inp; 4

Y[0].lower _ep=Y[0].upper_ep=inp;

RE_START:
/*#1*/

scalar_product(A,YNpl,&eNp,N+1,11);
/*#2%/
mul(&eNp,&gammaN, &eN,14);

* Lk

alphaold.lower _ep=alpha.lower _ep;
alphaold.upper _ep=alpha.upper_ep;
mul(&lambda,&alpha,&temp,15);
mul(&eNp,&eN,&templ,14);
add(&temp,&templ,&zalpha);

v

LA

if (div(&alphaold,&alpha,&temp,10)==1) {

reinit(A,B,C,W,&alpha,&beta,&garmnaN Samu,&lambda);
goto RE_START; :

}
mul(&lambda,&temp,&etemp,15); -
mul(&temp,&gammal,&gammaNp1,10);

#5 -

mul(&alphaold,&lambda,&temp,15);

if (div(&eNp,&temp,&temp,5)==1) {
reinit(A,B,C,W,&alpha,&beta,&gammaN,&mu,&lambda);
goto RE_START;

- 297 -

mul(&?temp,A,CNpl,ll);
neg(CNpl);
for (index=1;index!=N+1;index++) {
mul(&alphaold,&lambda,&temp,15);
if (div(&eNp,&temp,&temp,5)==1) {
reinit(A,B,C, W &alpha,&beta,&gammaN,&mu,&lambda);
oto RE_START;

mul(&temp,A+index,&temp‘,11);
neg(&temp);
add(&temp,C+index—1,CNpl+index);

*

for (index=1;index!=N+1;index++) {
mul(&eN,C+index—1,&temp,8);
add(A-+index,&temp,A+index);

/ *#7‘1/

temp.lower ep-—la.mbda lower _ep;
temp.upper _ep=lambda.upper_ep;
neg(&ctemp);
mul(&temp,&cbeta,&temp,15);
mul(&temp,CNp1+N,&rNp,11);

mul(&rNp,&egammaN &temp,15);
. mul(&temp,CNpl+N,&temp 4);
templ.lower ep=templ.upper_ep=16384;
add(&templ &ctemp,&erescue);)

#8 ‘

if (div(§&gammaNpl &rescue,&gammaN,14)==1) {
reinit(A,B,C,W,&alpha,&beta,&gammalN,&mu,&lambda);
goto RE_START;
}

* 4O
mul(&rNp,&gammaN &rN,11) ;
[*#10%/

mul(&beta,&lambda,&temp, 15);

mul(&rNp &N, &templ,11);
add(&temp,dztempl &beta);

[*H#1L¥/
for(index=0;index!=N+1;index++) {

mul(CNp1+N,B+index,&temp, 14);
neg(&temp);
add(CNpl+index,&temp,C+index);

[*#12%/
for(index=0;index!=N-+1;index++) {

mul(&rN,C+index,&temp,8);
add(B+index,&temp, B+index);
}

[*#13*%/

epsilonp.lower _ep=epsilonp.upper_ep=des;

scalar _product(Y,W,&temp,N,15); ’

if ((temp.upper_ep — temp. lower ep)>1_width) {
reinit(A,B,C,W &alpha,&beta,&gammaN,&mu &lambda);
goto RE START

- 298 -

}
add(&ctemp, &epsilonp,&epsilonp);

[*#14%/
mul(&epsilonp,&gammaN, &epsilon, 15);

/*F#15%/
for(index=0;index!=N+1;index++) {

mul(&epsilon,C+index,&temp,3);
add(W-+index, &temp, W+index);

nte=calcnte(W);
*(average+t)="(average+t)+nte/ensemble;
}
}
for(t=0;t!=s+1;t++) {
fprintf(fp,"%20.16e\n" *(average+t));
}

double calente(ptr)
interval *ptr;

int k;

double nte,W;

nte=0.0;

for (k=0;k'=N;k++) {
W=((ptr —> lower_ep)/32768.0)+((ptr —> upper_ep)/32768.0);
W=W/2.0;

ptr++;
nte=nte+(W+Weights[k])*(W+Weights(k]);

return{nte);

}

makedata(t)
int t;

double m_inp,m_des;
int J;

XK[1)=XK[0];
if (t==0) XK[0]=—-2.0;
else XK[0]=gauss();
m_inp=XK[0]*FEED_FORWARD{0]+-XK{1]*FEED_FORWARDI1];
for (=4j!=0;i—-) {

3}<U]=XU-1];

- 299 -

X[0]=m_inp;
m_des=0.0;
for (3=0;!'=Nj++) m_des=m_des+X[j]*Weights[j];

m_des=m_ des+(gauss())*NOISE;
/*Most ADCs saturate so..*/
if (m_inp>1.0) m_inp=0.99969482;

if (m_des>1.0) m_des=0.99969482;

des=m_ des*32768;
inp=m_inp*32768;

double rnum()
return ((random()/MAXRND));

double gauss()

double a,b;

double result;

, a=rnum();

b=rnum();
result=sqrt(—2*log(a))*cos(2*3.141592654*b); -
return(result);

void ‘reinit(A,B,C,W,alpha,beta,gammaN,mu,lambda)
interval *A *B*C *W *alpha,*beta,*gammaN,*mu,*lambda;

short int index,mean;
for (index=0;index!=N+1;index++) {

Afindex].lower_ep=Alindex].upper_ep=0;
B(index].lower _ep=B[index].upper _ep=0;

if (index!=N) {
Clindex].lower _ep=Cindex].upper_ep=0;

mean=(W(index].lower ep+W/[index].upper_ep) >> 1;
W/index].lower _ep=W[index].upper _ep=mean;

}
A[0].lower_ep=A[0].upper _ep=1024;

B[N].lower _ep=B[N].upper_ _ep=16384;

alpha —> lower _ep=mu —> lower_ep;

alpha —> upper_ep=mu —> upper_ep; -

for (index=1;index!=N+1;index++) mul(alpha,lambda,alpha,15);
beta —> lower ep=mu —> lower_ep;

beta —> upper_ep=mu —> upper_ep;

%ammaN —> lower ep=gammaN —> upper_ep=32767;

- 300 -

Appendix C
TMS320C25 Assembly Language Software

- 301 -

crossv2.5.1.asm

TMS320C25 processor board initialisation and RS232 comms
idt ’cross v2.51°
b start
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
b dumpstate

start: call boardinit
call memorycheck
call loaddata
b 4096

- 302 -

crossv2.5.1.asm -

TMS320C25 processor board initialisation and RS232 comms

boardinit:
cnfd
Idpk . 0
lack 00h
sacl 4 ;Mask out all interrupts
lack 255
sacl 60h
out 60h,4 ;ACIA Master RESET
lack 55h
sacl 60h
out 60h,4 ; Set 8 bit, odd parity, no stop bits
rsxm
ret
memorycheck:
zac
sacl 64h
lack 1
sacl 60h
lack 170 ;Checkerboard bit pattern
sacl 61h
lalk 4096 ;First program memory location
memloop:tblr 62h '
tblw 61h
tblr 63h
tblw 62h
add 60h
push
lac 63h
sub 61h
bz locok ;If equal to zero memory location is OK
lack 255
sacl 64h. -;This sets the memory faulty flag
locok: pop
bnz memloop
"lac 64h
bz memok ;If it is zero, memory is good
call print
string"Memory Fault”
.word 0dh,00
idle

memok: call print
string" TMS320C25 Processor
.word Odh
string"64k Program Memory”
.word 0dh,0dh,0
ret

Board"

- 303 -

TMS320C25 processor board initialisation and RS232 comms

loaddata:
call print
string”"C R O S S
.word Odh
string"(c) Chris
.word 0dh,0dh,0dh,0

lack 1
sacl 65h
lalk 4095
loadloop:
add 65h
push
call gethex
sacl 61h
lac 7th
bnz cleanup
pop
tblw 61h
bnz loadloop
call print
string"Out of me
.word 0dh,00
idle
cleanup:
pop
ret
getchar:
lack 15h
sacl 70h
out 70h,4
in 70h,4
lac ~ 70h
andk 1
bz getchar
lack S55h
sacl 70h
out 70h,4
in 71h,5
zals 71h
andk 7th
ret
putchar:
sacl 71h

-crossv2.5.1.asm

v2.51"

Callender, 1990"

mory error"

- 304 -

crossv2.5.1.asm _
TMS320C25 processor board initialisation and RS232 comms

pl: in 70h,4

lac 70h
andk 2
bz pl
out 71h,5
zals 71h
ret
gethex:

zac
sacl 7fh
lark 0,3
lark 1,60h
larp 1

_hexloop:

call getchar
call putchar
call asciitohex

larp 1
sacl *+,0,0
larp 0
banz hexloop,*-
zac
add 60h,12
add 61h,8
add 62h,4
add 63h,0
ret

puthex:
sacl 60h
andk 61440
sacl 61h
lac 61h,4
sach 61h
zals 61h

call hextoascii
call putchar

zals 60h

andk 0f00Oh

sacl 61h ‘
lac 61h,8
sach 61h

zals 61h

call hextoascii
call putchar
zals 60h

andk 00fOh

- 305 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

sacl 61h

lac 61h,12
sach 61h

zals 61h

call hextoascii
call putchar
zals 60h

andk 000fh
call hextoascii
call putchar

ret

asciitohex:
andk 7fh
sacl 7ch
sblk 48
blz invalid
sblk 9
blez digit
lac ©~ 7ch
sbik 65
blz invalid
lac 7ch
sblk 71
bgez invalid
lac 7ch
sbik 55
ret

digit: adlk 9
ret

invalid:
lack 255
sacl 7th
zac
ret

hextoascii:
andk Ofh
sar 0,7ch
sar 1,7dh
adlk 48
sacl 7eh
lar 1,7eh
lark 0,57
larp 1
cmpr 2
bbz finished
adlk 7

finished:

- 306 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

lar 0,7ch
lar 1,7dh
ret
print:
lack 1
sacl 60h
stringloop:
pop
tblr 61h
add 60h
push
lac 61h
bz fprint

call putchar

b stringloop
tprint:

ret

dumpstate: ‘ .

;First store processor state
;locations x’60,x’61,x’70,x’71 will be corrupted, so do not use them.

sst 62h

ldpk 0

sstl 63h ;Store status registers
sach 64h

sacl . 65h :Store 32 bit accumulator .
spm 0

pac

sach 66h ;Store P register
sacl 67h '

mpyk 1

pac

sacl 68h ;Store T register
popd 69h

popd 6ah

popd 6bh

popd 6¢ch

popd 6dh

popd 6eh

-307 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

popd 6th

popd 72h ;Save the stack

sar 0,73h ;Finally save the aux. registers
sar 1,74h

sar . 2,75h

sar 3,76h

sar 4,77h

sar 5,78h

sar 6,79h

sar 7,7ah

:Now print ACC=accumval, P=pval, T=tval, PC=pcoldval

call print
.word 0dh,0dh
.string "TACC="
.word 0
zals 64h
call puthex
zals 65h
call puthex
call print
.string ", P="
.word 0
zals 66h
call puthex
zals 67h
call puthex
call print
.string ", T="
.word -0
zals 68h
call puthex
call print
.string ", PC="
.word 0
zals 69h

. sblk 1
call puthex
call print
.word 0dh,0dh
.string "Stack[O0]="
.word 0
zals 69h
call puthex

- 308 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

call print
.string " Stack[1l]="
.word 0
zals 6ah
call puthex
call print
.string " Stack[2]="
.word 0 ‘
zals 6bh
call puthex
call print
.string “. Stack[3]="
.word 0
zals 6ch
call puthex
call print
.word Odh
string ~ "Stack[4]="
.word 0
zals 6dh
call puthex
call print
.string " Stack[5]="
.word -0
zals 6eh
call puthex
call print
.string " Stack[6]="
.word 0
zals 6fh
~call | puthex
call print ,
.string " Stack[7]="
.word 0 :
zals 72h
call puthex
call print
.word 0dh,0dh
.string "SSTO =" ‘ '
.word 0 '
zals 62h
call puthex

- 309 -

: crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

call print

.string " SST1="
.word 0 .

zals 63h

call puthex

call print

.word 0dh,0dh

.string "AR[O] ="
.word 0

zals 73h

call puthex

call print

.string " AR[1]="
.word 0

zals 74h

call puthex

call print

.string " AR[2]="
.word 0

zals 75h

call puthex

call print

.string " AR[3]="
.word 0

zals 76h

call puthex

call print

.word 0dh

.string "AR[4]="
.word 0

zals 77h

call puthex

call print

.String " AR[53]="
.word 0

zals 78h

call puthex

call print

.string " ARJ[6]="
.word 0

zals 7%h

call puthex

call print

- 310 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

.string " AR[7]="

.word 0

zals 7ah

call puthex

call print

.word 0dh,0dh,0dh

.string "Press any key to continue”

.word 0 -

call getchar

subk 20h -

bnz dumpfin

call ddump ;Dump data memory
dumpfin:

zals 65h

addh 64h :Load 32 bit accumulator

It 67h

mpyk 1

It 68h

Ilph 66h

pshd 72h

pshd 6th

pshd 6eh

pshd 6dh

pshd 6¢ch

pshd 6bh

pshd 6ah

pshd 69h

lar 0,73h ;Finally save the aux. registers

lar 1,74h

lar 2,75h

lar 3,76h

lar 4,77h

lar 5,78h

lar 6,7%h

lar 7,7ah

Ist 62h

Istl 63h :Load status registers

ret

ddump: lack 0dh
call putchar

call print

string"Enter Start Address:”
.word 0000h

call gethex

sacl 68h

lar 0,68h

lack 0dh

call putchar

- 311 -

crossv2.5.1.asm
TMS320C25 processor board initialisation and RS232 comms

call putchar

lark 2,15
loop: lark 1,7
sar 0,60h
zals 60h
call puthex
lack 58

call putchar
loopl: larp O

zals *+

call puthex
lack 20h

call putchar
larp 1

banz loopl,*-
lack 0Odh

call putchar
larp 2

banz loop,*-
zals 7fh

bz ddump
ret

nop

nop

-312 -

scalars.lib

Assembler macros for scalar interval operations
DIV $MACRO NAR,DAR,QAR,TEMSGN,SHIFT

LARP :NAR:
PSHD *,.DAR:
PSHD *,:NAR:

LT *:DAR:
MPY *,.DAR:
PAC

SACH TEMSGN:
LAC *,0,.DAR:

ABS

SACL *,0,:NAR:
LAC *,.SHIFT:,:DAR:

ABS

RPTK 15
SUBC *,.DAR:
LARP :QAR:

SACL *,0,:QAR:
LAC ‘TEMSGN:
BGEZ DONE?*,:QAR:
ZAC
SUB *,0,;QAR:
SACL *

DONE?
LARP :DAR:
POPD *,:NAR:
POPD *
$ENDM

S_ADD $MACRO srcl,src2,res

LRLK 0,:srcl:
LRLK 1,:src2:
LRLK 2,res:

LARP 0

. AL? LAC *+,0,1
ADD *+,0,2
SACL *+,0,0
LAC *+,0,1
ADD *+.0,2
SACL *+,0
$ENDM

;Macro to perfrom res=src1*2**shift/src2 where srcl,src2,res are
;Intervals

-313 -

scalars.lib

Assembler macros for scalar interval operations

S_ DIV S$MACRO srcl,src2,res,scratch,shift

LRLK 0,:srcl:
LRLK 1,srcl:+1
LRLK 2,:src2:
LRLK 3,:src2:+1
LRLK 4,:res:
LRLK 5,res:+1
LARP 2
LAC *
BGZ S5?
BZ ERROR?
LARP 3
LAC *
BLZ S1?
ERROR? STC
B END?
S1?7 LARP 1
LAC *
BLEZ S27
DIV 1,3,4,:scratch:,:shift:
B S3?
S2? D1V 1,2,4,:scratch:,:shift:
S3? LARP O
LAC *
BLZ S§47 .
DIV 0,2.5,:scratch:, :shift:
B S9?
S47 DIV 0,3,5,:scratch:,:shift:
B S9?
S5?7 LARP O
LAC *
BGEZ S6?
DIV 0,2,4,:scratch:,:shift:
B S7?
S6? DIV 0,3,4,:scratch:,:shift:
S77 LARP 1
LAC *
BLEZ S8? .
DIV 1.2,5,:scratch:, :shift:
. B S97?7
S8? DIV 1,3,5,:scratch:,:shift:
S9?
SEPCOR 4,5
RTC
END?
$ENDM

314 -

scalars.lib

Assembler macros for scalar interval operations

S_MULT $MACRO srcl,src2,res,temp,res_shift

LRLK 0,2
LRLK 1,:rcl:
LRLK 2,srcl:+1
LRLK 3,:src2:
LRLK 4,:ssrc2:+1
LRLK 5,res:
LRLK 6,rres:+1

MCLOOP? SSMULT 1,3,:temp:,:res_shift:

SSMULT 1,4,:temp:+ 1,:res_shift:
SSMULT 2,3,:temp:+ 2,:res_shift:
SSMULT 2,4,:temp:+ 3,:res_shift:

SSMIN_4 :temp:
LARP 5
SACL *,0,6
SSMAX_4 :temp:
SACL *,0,5
SEPCOR 5,6
$ENDM

S_.SUB $MACRO srcl,src2,res

SL?

LRLK 0,:srcl:
LRLK 1,:rc2:
LRLK 2,:res:
LARP 0

LAC *+,0,1
SUB *+,0,2
SACL *+,0,0
LAC *+,0,1
SUB *+.,0,2
SACL *+,0
$ENDM

SEPCOR $MACRO arpl,arp2

okl1?

LARP :arpl:

LAC *,0,:arpl:
BGZ okl?,* :arp2:
SUBK 1

LARP :arpl:
SACL *,0,:arp2:

LAC *,0,:arp2:
BLZ ok2?
ADDK 1

SACL *,0,:arp2:

- 315 -

scalars.lib
Assembler macros for scalar interval operations

ok2?
$ENDM

SSMAX_2 $SMACRO addr
LAC :addr:
SUB :addr:+1
BGEZ MX?
LAC :addr:+1
B END?
MX? LAC :addr:
END?
$ENDM

SSMAX_4 SMACRO addr
SSMAX_2 :addr:
SACL :addr:+4
SSMAX_2 :addr:+2 -
SACL :addr:+5
SSMAX_2 :addr:+4

$ENDM
SSMIN_2 $SMACRO addr
LAC :addr:
SUB :addr:+1
BGEZ MN?
LAC :addr: ;The one at (addr) is smaller.
B END?

MN? LAC :addr:+1 ;The one at (addr+1) is smaller.
END?
$ENDM

SSMULT $MACRO arpl.arp2,res,res_shift
LARP :arpl:
LT *,:arp2:
MPY *
PAC

TEST? .SET :res_shift:>8&
$IF TEST?
SACH :res:,16-:res_shift:
$ELSE
RPTK 8-:res_shift:
SFL
SACH :res:7
$ENDIF
$ENDM

S_NEG $MACRO addr

LRLK 0,:addr:

LARP 0
LAC *+,0,0
PUSH

- 316 -

: scalars.lib
ji . .
Assembler macros for scalar interval operations

LAC *-,0,0
NEG

. SACL *+,0,0
POP

NEG

SACL *,0,0
$ENDM

- 317 -

vectors.lib

Assembler macros for vector interval operations
:16 bit multiplication macro. Multiplies arpl * arp 2 and stores result
;at res

SMULT $MACRO arpl,arp2,res,res_shift

LARP :arpl:

LT * arp2:

MPY *

PAC _
TEST? .set :res_shift:>8 -

$IF TEST?

SACH res:,16-:res_shift:

$ELSE

RPTK 8-:res_shift:

SFL

SACH res:7

$ENDIF

$ENDM

‘Minimum of 2 numbers. Looks at the 16 bit numbers at
;(addr) and (addr+1) and sets the accumulator
:to the smaller of them.

SMIN_2 $MACRO addr

LAC :addr:

SUB :addr:+1

BGEZ MN?

LAC :addr: ;The one at (addr) is smaller.

B END?
MN? LAC :addr:+1 ;The one at (addr+ 1) is smaller.
END?

$ENDM

SMAX_2 $MACRO addr
LAC :addr:
SUB :addr:+1
BGEZ MX?
LAC :addr:+1
B END?
MX? LAC :addr:
END?
$SENDM

:Macro to find the smallest of (addr), (addr+1)
;(addr+2), (addr+3). Uses addr+4,addr+5
;as temporary storage. :

SMIN_4 $MACRO addr
SMIN_2 :addr:
SACL :addr:+4
SMIN_2 :addr:+2

- 318 -

vectors.lib
Assembler macros for vector interval operations

SACL " :addr:+5
SMIN_2 :addr:+4
$ENDM

SMAX_4 $MACRO addr
SMAX_2 :addr:
SACL :addr:+4
SMAX_ 2 :addr:+2
SACL :addr:+5
SMAX_2 :addr:+4
$ENDM

MSC $MACRO srcl,src2,res,size,temp,res_shift

LRLK 0,2
LRLK 1,:rcl:
LRLK 2,srcl:+1
LRLK 3,:rc2:
LRLK 4,:src2:+1
LRLK 5,:res:
LRLK 6,res:+1
LRLK 7,size:-1

MCLOOP? SMULT 1,3,:temp:;,:res_shift:
SMULT 1,4,:temp:+1,:res_shift:
SMULT 2,3,:temp:+ 2,:res_shift:

- SMULT 2,4,:temp:+ 3,:res_shift:

SMIN_4 :temp:
LARP 5
SACL *.0,6
SMAX_4 :temp:
SACL *.0.1
VEPCOR 5,6
LARP 1
MAR *+.1
MAR . *+2
MAR *+2
MAR *+ 5
MAR *+.5
MAR *+.6
MAR *+.,6
MAR *+ 7

BANZ MCLOOP?,*-
$ENDM

;32 bit'multiplication macro. Multiplies-arpl * arp 2 and stores result
;at res o

- 319 -

vectors.lib
Assembler macros for vector interval operations

LMULT $MACRO arpl,arp2,res

LARP :arpl:
LT *,:arp2:
MPY *

PAC

SACL res:
SACH res:+1
$ENDM

V_SHIFT $MACRO src,size
WORDS? .set (isize:)*2

LRLK 0,:src:+ WORDS?-2
LARP O

RPTK WORDS?-2

DMOV *-0

LRLK 0,:src:+ WORDS?-2
RPTK WORDS?-3

DMOV *-0

$ENDM

:‘Minimum of 2 numbers. Looks at the 32 bit numbers at
;(addr,addr+1) and (addr+2 addr+3) and sets the accumulator
;to the smaller of them.

LMIN_2 $MACRO addr
ZALS :addr:
ADDH :addr:+1
SUBS :addr:+2
SUBH :addr:+3
BGEZ MN?
ZALS :addr:
ADDH :addr:+1 ;The one at (addr,addr+1) is smaller.
B END?
MN? ZALS addr:+2 .
ADDH :addr:+3 ;The one at (addr+2,addr+ 3) is smaller.
END?
$ENDM

;Macro to find the smallest of (addr,addr+1), (addr+2,addr+ 3)
;(addr+4,addr+5), (addr+6,addr+7). Uses addr+8,addr+9,addr+ 10,addr+11
;as temporary storage.

LMIN_4 $MACRO addr
LMIN_2 :addr:
SACL :addr:+8
SACH :addr:+9
LMIN_2 :addr:+4
SACL :addr:+10
SACH :addr:+11
LMIN_2 :addr:+8

- 320 -

vectors.lib
Assembler macros for vector interval operations

$ENDM

LMAX_4 $MACRO addr
LMAX_2 :addr:
SACL :addr:+8
SACH :addr:+9
LMAX_2 :addr:+4
SACL :addr:+10
SACH :addr:+11
LMAX_2 :addr:+8
$ENDM

SCPROD $MACRO srcl,src2,res,size,temp,res_shift

LRLK 0,2
LRLK 1,:srcl:
LRLK 2,:ssrcl:+1
LRLK 3,:src2:
LRLK 4, src2:+1
LRLK 5,:res:
LRLK 6,res:+1
LRLK 7,:size:-1

ZAC

SACL :temp:
SACL :temp:+1
SACL :temp:+2
SACL :temp:+3

SPLOOP? LMULT 1,3,:temp:+4
LMULT 1,4,:temp:+6
LMULT 2,3,:temp:+8
LMULT 2,4,:temp:+10

IMIN_4 :temp:+4

ADDS :temp:
ADDH :temp:+1
SACL :temp:

SACH :temp:+1
LMAX_4 :temp:+4
ADDS :temp:+2
ADDH :temp:+3
SACL :temp:+2
SACH :temp:+3

RC

LARP 1
MAR *+.1
MAR *+.2
MAR *+,2
MAR *+3
MAR *+3

- 321 -

“vectors.lib

Assembler macros for vector interval operations

MAR *+.4

MAR *+,4

MAR *+,7

BANZ SPLOOP?,*-
ZALS :temp:
ADDH :temp:+1
LARP 5

SACH *,16-:res_shift:,6
ZALS :temp:+2
ADDH :temp:+3
SACH *,16-:res_shift:,5
VEPCOR 5,6

$ENDM

VEPCOR $MACRO arpl,arp2

okl?

ok2?

LARP :arpl:

LAC *,0,:arpl:
BGZ ok1?,*,:arp2:
SUBK 1

LARP :arpl:
SACL *,0,:arp2:

LAC *,0,:arp2:
BLZ ok2?
ADDK 1

SACL *,0,:arp2:

$ENDM

V_ADD $MACRO srcl,src2,res,size

- AL?

LRLK 0,:rcl:
LRLK 1,:src2:
LRLK 2,:res:
LRLK 3,:size:-1
LARP O

LAC *+,0,1

ADD *+.,0,2
SACL *+,0,0
LAC *+,0,1
ADD *+,0,2
SACL *+,0,3
BANZ AL?%*-0
$ENDM

V_SUB $MACRO srcl,src2,res,size

LRLK. 0,:srcl:
LRLK 1,:src2:+1
LRLK 2,:res:

- 322 -

vectors.lib
Assembler macros for vector interval operations

LRLK 3,:ize:-1

LARP 0
SL? LAC *+,0,1
SUB *-,0,2
SACL *+,0,0
LAC *+,0,1
SUB *+,0,1
MAR *+,1
MAR *+2

SACL *+,0,3
BANZ SL?,*-0
$ENDM

-323 -

system.lib

, Assembler macros for input/output
INADC1 $MACRO addr

in 0:addr:
$ENDM
INADC2 $MACRO addr
in 1,:addr:
$SENDM
OUTDAC $MACRO addr
out 2,:addr:
$ENDM

TRIGSYNC - $MACRO
WAIT?7bioz WAIT?
$ENDM

- 324 -

ftf.asm

Assembler program for 16 bit fixed point interval FTF adaptive filter
.mlib b :
.mlib b
.mlib b ; Link in appropriate macros
.mnolist

;Design Constants

REEEEEEEEEEEEEESE]
b

lambda_v .set 32767 :lambda*32768
mu_v .set 500 ;mu*32768
rtho_v .set 300 ;Tho*32768

N .set S ;Filter length
startmu .set 100 : ;Initialisation mu
startal .set 100 startmu*lamnda™
reinal .set 500 ;mu*lamnda“N

;Data memory assignments

%K K 2k sk ok ok ok sk oK gk ok ok ok ok ok ok K ok Xk %k Xk Xk X
2

;System

INBUF .set 60h

DESBUF .set 61h
OUTBUF .set 62h
SCRATCH .set 60h

;Scalars
lambda .set 200h
mu .set 202h
rescue .set 204h
y0 .set 206h
alpham1l .set = 208h
eNp .set 20ah
eN .set 20ch

. gammaN .set 20eh
alpha .set 210h
alphaold .set 212h
epsilon .set 214h
gammaNpl .set 216h
epsilonp .set 218h
N .set 2lah
Np .set 2lch
beta ’ .set 2leh

t ' .set 220h

- 325 -

Assembler program for 16 bit fixed point interval FTF adaptive filter

ftf.asm

;Vectors

A .set 224h

B set A+ (2*(N+1))

Y set B+ (2*(N+1))

C set Y+ (2*(N+1))
CNpl set C+2*N

w : .set CNpl+(2*(N+1))
TEMP set W+2*N
TEMP1 .set TEMP+2*N+2

:Initialisation of values

LP1

nop
SSXm
sovim -
ldpk 0

lalk lambda_v
Irlkk 0,lambda

larp O

sacl *+,0,0

sacl *,0,0 ;Set lambda=[lambda_v,lambda_v]
lalk mu_v

Irlk 0,mu

sacl *+,0,0 :Set mu=[mu_v,mu_v]
sacl *,0,0

lalk 1024

Irlk 0,A

sacl *+,0,0 .

sacl *,0,0 :Set A[0]=[1.0,1.0]

lalk 16384

Irlk 0,B+2*N

sacl *+.,0,0

sacl * ;Set B[N]=[1.0,1.0]

Irlk 0,2*N-1

Irlk 1,A+2
Irlkk 2,B
Irlk 3,C
Irlkk 4,W
zac

larp 1

sacl *+,0,2 Set A[1...N+1]=[0,0]

- 326 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

sacl *+,0,3 ;Set B[0...N]={0,0]
sacl *+,0,4 ;Set C[0...N]=[0,0]
sacl *+,0,0 :Set W[0...N]={0,0]
banz LP1,*

Irlk 0,2*N+1

Irlk 1,
larp 1
LP2 sacl *+,0,0 ;Set Y[0...N+1]=[0,0]
banz LP2,*-,1
Irlk 0,gammaN ;Set gammaN = 1.0
lalk 32767
larp O
sacl *+,0,0
sacl *
Irlk 0O,alpha ;Set alpha=startal
lalk startal
larp O
sacl *+,0,0
sacl *
Irlk 0,beta
lalk = startmu
larp 0
sacl *+,0,0
sacl *
Irlk 0,t
lack N
larp O
sacl *
mainloop
v_shift Y,(N+1)
trigsync

inadcl INBUF
inadc2 DESBUF

Irlkk 0,Y

Irlk = 1,INBUF
larp 1

lac *,0,0

sacl *+,0,0
sacl *.,0,0

Irlk 0,epsilonp
Irlk 1,DESBUF

“larp 1
lac *0,0
sacl *+,0,0
sacl *,0,0

. 327 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

‘ restart

;Eq 1 ,
scprod A,Y,eNp,N+1,SCRATCH,11

;Eq 2
s_mult eNp,gammaN,eN,SCRATCH,14

;Eq 3
Irlk 0,alpha
Irlk 1,alphaold

larp 0O

lac *+.0,1
sacl *+,0,0
lac *0,1
sac] *,0,0

s_mult lambda,alpha,temp,SCRATCH,15
s_mult eNp,eN,temp+2,SCRATCH,14
s_add temp,temp+2,alpha

;Eq 4 .

s_div alphaold,alpha,temp,SCRATCH,10
larp 0

Irlk O,t

lac *

bgz okeq4

bbnz reinit
okeq4 s_mult lambda,temp,temp+2,SCRATCH,15
s_mult temp+2,gammaN gammaNpl SCRATCH,10

;Eq S
s_mult alphaold,lambda,temp,SCRATCH,15
s_div eNp,temp,temp+2,SCRATCH,5

larp 0
Irlk O,t
lac *
. bgz okeq5s

bbnz reinit

okeqS s_mult temp+2,A,CNpl,SCRATCH,11
s_neg CNpl
msc A+2,temp+2,templ,N,SCRATCH,11
~v_sub C,templ,CNpl+2,N

;Eq 6

msc C,eN,temp+2,N,SCRATCH,8
zac

Irlk O,temp

larp 0

- sacl *+.,0,0

- 328 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

sacl *,0,0
v_add A,temp,A,N+1

;Eq 7

Irlk 1,temp
Irlkk 0,lambda
larp O

lac *+.0,1
sacl *+,0,0
lac *,0,1
sacl *,0,0

- s_neg temp . .
s_mult temp,betatemp+2,SCRATCH,15
s_mult temp+2,CNpl+2*N,rNp,SCRATCH,11

;Eq 8

s_mult rNp,gammaN,temp,SCRATCH,15 -
s_mult temp,CNpl+2*N, temp+2,SCRATCH 4
lalk 16384

Irlkk O,templ

larp O
sacl *+,0,0
sacl *,0,0

s_add temp+2,templ,rescue

;Eq 8 :

s_div gammaNpl,rescue,gammaN,SCRATCH,14
Irlkk O,t

larp 0

lac *

bgz okeq8

bbnz reinit

;Eq 9 ‘
s_mult rNp,gammaN,rN,SCRATCH,11

;Eq 10

s_mult beta,lambda,temp,SCRATCH,15
s_mult rNp,rN,templ,SCRATCH,11
s_add temp,templ,beta ’

;Eq 11 _
msc B,CNpl+2*N,temp,N,SCRATCH,14
v_sub CNpl,temp,C,N

;EQ 12

msc C,rN,temp,N,SCRATCH,§
v_add B,temp,B,N

-329 -

ftf.asm
Assembler program for 16 bit fixed point interval FTF adaptive filter

;Joint process extension

;Eq 13
scprod Y,W,temp,N,SCRATCH,12
Irlk O,temp+1

larp O

lac *-,0,0

sub *,0,0

subk rho_v

blz okeql3

Irlk O,

lac *

bz reinit
okeql3 Irlk O,temp

larp O

lac *+,0,0

add *.,0,0

sfr

sacc OUTBUF
outdac OUTBUF

s_add epsilonp,temp,epsilonp

;Eq 14
s_mult epsilonp,gammaN,epsilon,SCRATCH,15

;Eq 15
msc C,epsilon,temp,N SCRATCH 6
v_add W,temp,W N

Irlk 0,t
larp 0O
lac *
bz mainloop
subk 1
sacl = *
b mainloop
reinit
larp O
lalk 1024
Irlkk 0,A
sacl *+ ,0,0 v
sacl * OVO ;Set A[0]=[1.0,1.0]

lalk 16384
Irlk 0,B+2*N
sacl *+,0,0
sacl *,0,1

- 330 -

ftf.asm
‘Assembler program for 16 bit fixed point interval FTF adaptive filter

Irlk 0,2*N-1

Irlk 1,A+2
Irlk 2,B
Irikk 3,C
zac

RLP1 sacl *+,0,2
sacl *+,0,3
sacl *+,0,0

banz RLP1,*-,1

Irlk 0,gammaN
lalk 32767 -

larp O
saci *+,0,0
sacl *,0,0

Irlk 0,alpha
lalk reinal
sacl *+,0,0
sacl *,0,0

Irlkk O,beta
lalk mu_v
sacl *+,0,0

sacl *,0,0
Irlkk 0,W
Irlk 1,W

Irlk 2,(N-1)
MEANLP lac *+.0,0

add *+.0,1

sfr

sacl *+,0,1

sacl *+,0,2

banz MEANLP,*-,0

b restart

- 331 -

Appendix D

Circuit Diagrams

-332 -

Processor Board

The Processor Board circuits are included on the following pages.

and part descriptions are listed below.

IC Part

1 TMS320C25GBL
2,3,4,5 MS62256L
6,7 TMS2732A
8 . 74LS114AN
9 74ALS20AN
10 74ALS30N
11,12 74ALS138N
13 74S00N

14 74LS30N
15 74LS32N
16 74LS04N
17,18 74LS373N
19 MC6850P
20 741574

21 74ALS161
22 COM8116P
23 741504

24 DS1489

25 DS1488

26 741832

IC numbers

Description

DSP Microprocessor
32K x 8 bit RAM
4K x 8 EPROM

Dual J-K Flip Flop
Dual 4-input NAND
8-input NAND

3 x 8 Line Decoder
Quad 2-input NAND
8-input N.AND
Quad 2-input OR

Hex Inverter

‘D-Type Octal Transparent Latch

Asynchronous Communic‘ations
Interface Adaptor

D-type +ve edge Triggered Flip
Flop |

4-bit Binary Counter

Clock Generator

Hex Inverter

Line Receiver

Line Drive_r

Quad 2-input OR

- 333 -

- pee -

sV SV
1
1 1l
Y- -J ‘ I l
leq PRE 1ca PRE i A 010 (:g A0 N 4 A8 f:-s ‘D'\
B _
§ T aft T a + % § ; j“: | E
] =
s L ree] 1cio gps § [A AUl N
: I D g fcz2 Q 'Adll TC3 Q
{k @ LK) 1 48 N 48 S
PEL N\ B N
cun e | [O« A R
DATA BUS : | [o _we OE e
- T T . 3
(””ﬁfﬁf””r .| AperESS o |
do 43 i',i —1 BUs a, ™~ A vo icso
RE ADY I s icst | 1
20 p ™~ ¢ vz Tcs2 {42 Cs da\ 48 Cs ao%
MHz > CLKIN [el yyfe—o g "f; N f}fo §
' i) — Vo A 74 CtAo d -]
wrer | Ny, TMS3ZOC25 | e i ew Hozea | P zes |N
171 '
iNTO : “3 78 : ds S [do S
. e $] die “§
ot —1 [.7 atfy [Hdis alt
RESET 1 OE WE OE WE
i | — e Frecs == ==
CI1RCusT STRE < pe T ' . =
W STRB - : A e
R/W bs Ps Ts Py
l » I yr i e
T DT =
sv Q_'__ ys i | tc 16] ““D CE “D§ 1 48 CE ‘o§
R =Rt 0= T8 Hae ™ 1R
—o G28 rrjp - A3 § g ',;(l‘l’ §
| e Swi : d¢ 1€6 S : diz XEL S
S e AN PR TR
RA™M 2 | j‘ ™ A A1t)
s ‘L/ o ’ d ol
I Ep s OF OE
teté

§Z W“l“ Jh‘fLJ
X | wart states

}h'e fo £V (f not wsed
1 0 wait statfes

Processor Boaro Cirwvit Dincrar

- Sge -

S-o0680 MHa

[_—‘]
XTAL XTA

CFRa Ta[=
sv—Rg Ts|sSVv
SVARSE A SV
S—V—‘RD 'rp -—S‘V
. Ce fe Fr
ACIAC e PRE
ActAo
| YAT Y. D—P |
1c20 v
. ez e 73 feze -
cLkovt — Reeek Traa ——+L-—l>—* 3
g< C
RS 1 cso Rx p<]r - |2
DATA ic¢
BUS MCé6850
[~]
(clq —te 7
ic2¢
<7 cTs ‘<]J o |20
E lce €
UKOUT2 o— {>¢ P Qf RTS ——————Do____. g
’ tezs FPO & |
§1Plczr
rz Q@ SERIAL
sv—4P3 @ PORT
— ! w560
PE n-_—[>o— Lcze

tc2l

SeriAL Port CircviT DiIAGRAM

sv
%-“"L rci3

"
R

i’m TCI3
sV

Reset Debounce Circuit Diagram

5V o T
2UpFZZ AT OdpF T FOF
GND o— B
AT PROCESSoR S———
CONNECTORS SUPPLY AT END OF EACH

PowER LivE

Processor Board Power Supply

--336 -

Analogue Board

The Analogue Board circuits are included on the following pages. IC numbers

and part descriptions are listed below.

I1C Part Description

1,2 AD7870 12-bit Analogue To Digital Converter
3 AD667 12-bit Digital To Analogue Converter
4,586 LS324 Quad Op-Amp "

- 337 -

20,F

2]
S <«
Iy 3
5 <
3 X
& o
P
. 3¢
\3 W
Voo Iy
i : 3
- Qv
Qd
Y

Convs
WT |—wf
i~

K le

Vi
V2 fifex Y

cLk
I

Q

~
o
~
o

3
ARANANANRNNNY

<
n

P8l

<

From AnvTi-ALtLAS

FILTER |

N
= &
:—p < +
S 2
" N 0 = N ™ (Nt 3 N
¥ 3 3 s s $ 2 3 |8 T N
- Q |2 Iy X S e
o o ¥ ° - 5
v - ~ 9
= < 2°€. o =
g\u* : 2

ITTITI7T B \\RARNNRNA

ANALOGUE PoARD CircviT DiacrAM

P.tc i3

™~
N

ANVANARNUR FATRRRRA ;w

A Picté

n U

<
™ {— q
[

P.ITC {7

™M
w

()

~
) Ny .
~ ~ wor™

T

Rp
C

L CoONVST o

DATA
BUS

- 338 -

BOoARD

DIGITAL CROUND

PROCE S s R

tl2V o

L

Toqz,uF

MC78L0OS

-lZVe

1

-[0'33’4?

MC79L05

| —
f
[

11
]

% -5V

Analogue Board Power Supply

- 339 -

dadiLno
dI3L721A

unono 19114 pieog anbojeuy

- 340 -

95'4'>T

J

L1ndNI1
d ¥3.1714

!1 7 Khz|4 7 xhz|7 7 Khzl 10 xhzllz Khz |16 Khz lza Khz

o

+

4
v

I

+

jA 1,2'588 | 2.588 | 2.588 | 2.588 | 2.s588 | 2.588 i 2.588 |
ja ¢ j.zsa j 101 1.0617 17.0475 i 8396 I .0297 i .0238 i
ikc fgj¥1.29441 1.294 i 1.294 j, 294 j 1.294 | 1.294 | 1.294 |
iDrl26%126%i25%1 swizsmizsmlzéwi
| E ° | .09936] .ze339j 20207 | .zamai m133i em995| m79ei
i F i 7.871 i 7.071 i 7.871 i 7.971 I 7.871 I 7.871 I 7.871 I
i_§ j 8375 j .0136 j .zesz7j ,aae37| acs31| eeseal 00318|
jH "] 3.536 | 3.536 | 3.536 | 3.536 l 3.536 I 3.536 | 3.536 I
LI i?ﬂﬂ.i?ﬁﬂ.L%ﬂn | 7.671 | |7en.!7en I7en¢
j J j.eogaej .ees39j.egzz7j.zelsel.ea1331.000995|.zae79el
| K | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 |
L | .0201 | zz7zei 08443 | .ag341j .20284| .00213| .00171]
M | 4.830 | 4.830 | 4.838 | 4.830 | 4.838 | 4.830 | 4.838 |
i‘g | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 | 9.659 |
lo | .ze936| .20339] .00207] .00168| 08133 .000995 | .00079|

b b
+

e .
T A2 T

T T

Alternative Filter Component Values

Note: The unit for resistance is K Chms.
The unit for capacitor is Micro Farads.

The above values are not industry standard values.
On~board filters are initially configured for t.7 KHz.

- 341 -

—@TX Sequence =

EETS) T 2| [w
7413 3 2
H :
lat]
= Yo 9 gie=
- s foR
1 wn +5.0V 2.9
0.1yF p— 8 -~
T 2 2
- g
™~ 1 9
L ,,,_/r : o
CC ¢ 4, 0n 8 16
—1— ’ —t— sy
Clock In -
i

=
[e]
3
O?
5

N hehan O—:
5‘, h IO S 12
h v2
- chan) = &
S
”‘}B 7 13
L
N
~
S
-
W
o
&
_“}B 13
— Channel Output - Input

- 342 -

Appendix E

VHDL source code for coprocessor design

- 343 .

multiply.vhdl

(I?‘
VHDL behavioral source code for interval multiplication
package mult_types is :

type mlong is range -2147483648 to 2147483647,
subtype mshort is mlong range -32768 to 32767,
subtype bitpos is mshort range 0 to 31;

end mult_types;

use work.mult_types.all;
package mult_functions is

procedure interval_multiply(a : in mshort;

b : in mshort;

¢ : in mshort;

d : in mshort;
1 : out mlong;
ru : out mlong);

-t

function find_min(x1 : in mlong;
x2 : in mlong;
x3 : in mlong;
x4 : in mlong) return mlong;

function find_max(x1 : in mlong; A
: x2 :in mlong;
x3 : in mlong;
: x4 : in mlong) return mlong;
function shift(x: in mlong;
s: in bitpos) return mshort;
end mult_functions; -

package body mult_functions is

procedure interval_multiply(a : in mshort;
: . b : in mshort;

¢ : in mshort;

d : in mshort;

rl : out mlong;

ru : out mlong)

is
variable p1,p2,p3,p4:mlong:=0;

begin
' pl:=a*c;
p2:=a*d;
p3:=b*c;
p4:=b*d;

- 344 -

multiply.vhdl
VHDL behavioral source code for interval multiplication

rl:=find_min(p1,p2,p3,p4);
ru:=find_max(p1,p2,p3,p4);
end interval_multiply;

function find_min(x1 : in mlong;
x2 : in mlong;

x3 : in mlong;

x4 : in mlong) return mlong is

variable m1,m2:mlong:=0;
begin

if (x1<x2) then m1:=x1; else m1:=x2; end if;
if (x3<x4) then m2:=x3; else m2:=x4; end if;
if (m1<m?2) then return(ml); else return(m2); end if;

end find_min;

function find_max(x1 : in mlong;
x2 : in mlong;

x3 : in mlong;

x4 : in mlong) return mlong is

variable ml,m2:mlong:=0;
begin

if (x1§x2) then ml:=x1; else ml:=x2; end if;
if (x3>x4) then m2:=x3; else m2:=x4; end if;
if (m1>m2) then return(m1l); else return(m2); end if;

end find_max;

function shift(x: in mlong;
: s: in bitpos) return mshort is

variable pow2:mlong:=1;
begin '

pow2:=1;

powlp:

foriin 1 to s loop

pow2:=2*pow2;

end loop powlp;

return(x/pow2);
end shift;

end mult_functions;

- 345 -

multiply.vhdl _ ,
VHDL behavioral source code for interval multiplication

- 346 -

coprocessor.vhdl

- VHDL behavioral descrition of coprocessor chip
.use work.mult_functions.all;
use work.mult_types.all;

entity cOprocessor is
port(address_bus: in mshort;
rdata_bus:in mshort;
wdata_bus:out mshort;
r_w :in bit;
¢s : in bit;
CLOCK: in bit);
end coprocessor;,

architecture chip of coprocessor is

begin
process
variable op_lreg : mshort:=0;
variable op_2reg : mshort:=0;
variable op_3reg : mshort:=0;
variable op_4reg : mshort:=0;
variable i_reg : mshort:=0;
variable res_shift : bitpos:=0;
variable res_Oreg : mshort:=0;
variable res_lreg : mshort:=0;
variable outbuf : mshort:=0;
variable inbuf : mshort:=0;
variable adbuf : mshort:=0;
variable low_accumulator: mlong:=0;
variable high_accumulator: mlong:=0;
variable h: mlong:=0;
variable 1: mlong:=0;

begin
inbuf:=rdata_bus;
adbutf:=address_bus;
if (r_w="1" and cs=’1") then --This part for read operations
case adbuf is '
when 0 =>
- op_lreg:=inbuf;
when 1 =>
op_2reg:=inbuf;
when 2 => :
op_3reg:=inbuf;
when 3 =>
op_dreg:=inbuf;
when 4 =>

if (inbuf=1) then

- 347 -

coprocessor.vhdl
VHDL behavioral descrition of coprocessor chip

low_accumulator:=0;
high_accumulator:= 0;
end if;
if (inbuf=2) then
interval_multiply(op_lreg,op_2reg,op_3reg,op_dreg,! ,h);
low_accumulator:=low_accumulator + 1;
high_accumulator:= high_accumulator+ h;
res_Oreg:= shift(low_accumulator,res_shift);
res_1reg:= shift(high_accumulator,res_shift);
end if;
when 5=>
res_shift: = inbuf;
when others=>

end case;
end if;

if (r_w="0" and cs="1") then
case adbuf is
when 0 =>
outbuf:=res_Oreg;
when 1 =>
outbuf:=res_lreg;
when others=>

end case;
end if;
wdata_bus< = outbuf;

end process;

end chip;

348 -

