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Abstract 

 

The most widely transfused blood component is red blood cells (RBCs), and voluntary 

donation is the main resource for RBC transfusion. In the UK, 7,000 units of RBCs 

are transfused daily but this life-saving cell therapy is completely dependent on donors 

and there are persistent problems associated with transfusion transmitted infections 

and in blood group compatibility. Furthermore, the quality, safety and efficiency of 

donated RBCs gradually decrease with storage time. A number of novel sources of 

RBCs are being explored including the production of RBCs from adult haematopoietic 

progenitor cells, erythroid progenitor cell lines and induced pluripotent stem cells 

(iPSCs).  The iPSC source could essentially provide a limitless supply and a route to 

producing cells that are matched to the recipient. A number of protocols have been 

described to produce mature RBCs from human pluripotent stem cells but they are 

relatively inefficient and would be difficult to scale up to the levels required for clinical 

translation. 

We tested and evaluated a defined feeder- and serum-free differentiation protocol for 

deriving erythroid cells from hiPSCs.  RBC production was not efficient, the cells that 

were produced did not enucleate efficiently and they expressed embryonic rather than 

adult globin. We hypothesised that the production of RBCs from iPSCs could be 

enhanced by enforced expression of erythroid-specific transcription factors (TFs).  

Previous studies had demonstrated that Krüppel-like factor 1 (KLF1) plays an 

important role in RBC development and maturation so we generated iPSC lines 

expressing a tamoxifen-inducible KLF1-ERT2 fusion protein. Using zinc finger 

nuclease technology, we targeted the expression cassette to the AAVS1 locus to ensure 

consistent expression levels and to avoid integration site specific effects and/or 

silencing.  These iKLF1 iPSCs were applied to our defined RBC differentiation 

protocol and the activity of KLF1 was induced by adding tamoxifen. Activation of 

KLF1 from day 10 accelerated erythroid differentiation and maturation with an 

increase in the proportion of erythroblasts, a higher level of expression of erythroid 
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genes associated with maturation and an apparently more robust morphology. 

However, KLF1 activation had an anti-proliferation effect resulting in significantly 

less cell generated overall and HPLC analysis demonstrated that KLF1-activated cells 

expressed higher levels of embryonic globin compared to control iPSCs-derived cells. 

Many of the effects that were observed when KLF1 was activated from day 10 were 

not observed when activated from day 18. We therefore concluded that activation of 

exogenous KLF1 is able to promote erythroid cell production and maturation in 

progenitors (day 10) but not at the later stage of erythropoiesis (day 18). We 

hypothesised that KLF1 might require a co-factor to regulate RBC maturation and 

adult globin expression at the later stage of erythropoiesis. 

The TF, B-cell lymphoma/leukaemia 11a (BCL11A), plays a key role in the 

suppression of foetal globin expression, thereby completing globin switching to adult 

globin. Preliminary data showed that iPSC-derived erythroid cells were able to express 

adult globin when transduced with a BCL11A-expressing lentiviral-vector. Based on 

that finding we then generated an iPSC line expressing tamoxifen-inducible BCL11A-

ERT2 and KLF1-ERT2 fusion proteins, applied this iBK iPSC line to our differentiation 

protocol. Activation of both TFs from day 18 slightly increased the expression of genes 

associated with RBC maturation and the inclusion of BCL11A appeared to eliminate 

the anti-proliferation effect of KLF1. Most importantly, activation of both BCL11A 

and KLF1 from day 18 of the differentiation protocol increased the production of α-

globin (foetal / adult globin) indicating that some definitive-like erythroid cells might 

be generated by activation of both TFs at the later stage of erythroid differentiation. 

Collectively, these findings demonstrate that enforced expression of erythroid TFs 

could be a useful strategy to enhance RBC maturation from iPSCs. 
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Lay summary 

 

The most widely transfused blood component is red blood cells. However, red blood 

cell transfusion is completely dependent on donors and there are persistent problems 

associated with blood type matching, transfusion-transmitted infections and blood 

storage. The aim of my study was to assess an alternative source to provide a limitless 

supply and replace the voluntary blood donation. My initial results showed that red 

blood cells could be produced in the laboratory using stem cell technology, but the 

maturation of red blood cells was relatively inefficient and this would be difficult to 

apply for clinical translation. The strategy of my thesis was to enhance the production 

and maturation of red blood cells by genetic editing technology. I manipulated the 

expression of two transcription factors, Krüppel-like factor 1 (KLF1) and B-cell 

lymphoma/leukaemia 11a (BCL11A) during the production of red blood cells and 

demonstrated that this type of strategy could indeed enhance the maturation of stem 

cell-derived red blood cells.  
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1.1 Blood storage and transfusion 

Blood transfusion is a common procedure of receiving blood components (including 

whole blood, red blood cells, plasma and platelets) intravenously and it is used 

routinely in surgery, emergency and haematological disorders, such as 

haemoglobinopathies and anaemias. Red blood cells (RBCs) are essential to transport 

oxygen and carbon dioxide in the body and RBC is the most widely transfused blood 

component. A voluntary donation is the main resource for RBC transfusion and in the 

UK, 7000 units of RBCs are needed daily for life giving transfusions 

(http://www.nhsbt.nhs.uk/news-and-media/news-articles/news_2013_05_31.asp). 

Globally, approximately 85 million units of a RBC are transfused annually [1]. 

Although the average life span of RBCs is about 120 days in the circulation, RBCs can 

be stored only up to 42 days using anticoagulant solutions [2]. However, about 0.3% 

of RBCs stored in the presence of standard additive solutions are haemolysed after 5 

weeks of storage. Therefore, the quality, safety and efficiency of RBCs gradually 

decrease with storage time, for example, reducing the capacity to carry oxygen and 

promoting the release of potentially toxic intermediates, such as free haemoglobin that 

can act as a source of reactive oxygen species [2]. To keep blood safe, the World 

Health Organization (WHO) has developed national blood programs in various aspects 

of transfusion medicine, and one of Global Collaboration on Blood Safety is 

performing testing for transfusion-transmissible diseases (including human 

immunodeficiency virus, hepatitis B, hepatitis C and syphilis). These infectious agents 

can survive in blood and infect the person receiving the blood transfusion [3]. In vitro 

production of RBCs might overcome a scarcity of transfusable RBCs for clinical 

application and this source could also tackle the issues of blood storage free of 

infectious viruses. 

1.2 Erythropoiesis in vivo 

Erythropoiesis is the process of red blood cell (RBC) production. Due to the difficulties 

of studying erythropoiesis during human embryonic development, many of the 

molecular processes involved in mammalian erythropoiesis have been discovered 

using the mouse model and this will be described here. Many fundamental insights 

have been provided by mouse studies, including colony-forming assays and functional 
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transplantation for haematopoietic stem cells (HSCs). According to a recent model of 

haematopoietic ontogeny, haematopoiesis consists of HSC-independent 

haematopoiesis and HSC-dependent haematopoiesis [4]. The former provides 

sufficient circulating bloods to sustain the survival of the mouse embryo in the absence 

of HSCs. HSC-independent haematopoiesis consists of two distinct waves: the 

primitive haematopoiesis, which gives rise to primitive erythroid progenitors, 

macrophages and megakaryocytes; and definitive haematopoiesis, which produces 

erythro-myeloid progenitors (EMPs) as well as  B and T lymphoid cells [5]. HSC-

independent haematopoiesis also provides long-lived tissue-resident macrophage 

populations [6], [7] and provides key signals to support the blood system before HSC 

emergence. HSCs that emerge in the aorta-gonad-mesonephros (AGM) region 

generate all blood lineages in the adult body and are clearly defined by their capacity 

to reconstitute the entire haematopoietic system in the long term in vivo following 

transplantation [5]. 

1.2.1 Primitive erythropoiesis 

The first blood cells are derived from “blood islands” emerging within the yolk sac 

and a unique erythroid progenitor was defined as primitive erythroid colony-forming 

cell (EryP-CFC) [8].  This transient wave of EryP-CFC emerges in the yolk sac at 

E7.25 in the mouse embryo but are no longer detectable by E9.0 [8]. Primitive 

erythropoiesis in mammals has many similarities with definitive erythropoiesis, 

including a loss of proliferative capacity, a decrease in cell size, accumulation of 

haemoglobin, and nuclear condensation. Both of them share the same processes of 

lineage-committed progenitors from proerythroblasts (ProE), basophilic erythroblasts 

(BasoE), polychromatophilic erythroblasts (PolyE), and orthochromatic erythroblasts 

(OrthoE). Primitive erythroid cells are also capable of maturing into reticulocytes and 

circulating RBCs [9]. 

Primitive erythrocytes are characterised by the expression of embryonic globin (εy, 

βH1 and ζ in the mouse; ε, γ and ζ in human). Embryonic globin genes are regulated 

within the beta and the alpha globin clusters. From the beta globin cluster, the 

embryonic εy- and βH1-globin genes are expressed in the mouse [10], [11], and the ε- 

and γ-globin genes are expressed in human [12]. From the alpha globin cluster in both 
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mouse and human, primitive cells also express the embryonic ζ-globin genes [10]–

[12]. 

Although many primitive erythroid cells are nucleated, enucleation per se does not 

distinguish primitive and definitive erythrocytes, because chromatin condensation and 

enucleation can be observed in primitive yolk sac derived erythropoiesis [13]. To 

identify the enucleation in primitive erythroid cells using antibodies specific for 

embryonic globin, primitive erythroblasts did enucleate during the gestation period 

from E12.5-E16.5 [9]. Enucleated primitive erythrocytes have been identified in the 

circulation of mice for several days after birth [9], [14]. 

Primitive erythropoiesis is strictly regulated by transcriptional regulators, such as 

GATA1, FOG, LMO2 (also called RBTN2), LDB1 and SCL (also called TAL1). The 

defects in primitive erythroblasts result from targeted disruption of Gata1 [15], Fog 

[16], Lmo2 [17], Ldb1 [18], and Scl [19]. A recent study has indicated that Ldb1 and 

Lmo2 encode nuclear adaptor proteins that form complexes with GATA1, GATA2, 

TAL1 and KLF1 in numerous haematopoietic cell types including stem/progenitor, 

erythroid, and megakaryocyte-erythroid progenitor (MEP) [20]. Additionally, 

although RUNX1 is not essential for the formation of primitive erythrocytes, primitive 

erythrocytes from Runx1 ¯/ ¯ mice display abnormal morphology and reduced 

expression of an erythroid marker TER119. This suggests RUNX1 also plays 

important roles in the maturation of primitive erythroblasts [21]. Another important 

transcriptional regulator of erythropoiesis is the erythroid-specific Krüppel-like factor 

1 (KLF1/EKLF), although KLF1 is not required for yolk sac erythropoiesis [22], [23]. 

KLF1 plays an important role in the maturation of primitive erythroblasts, in part by 

expressing erythroid marker TER119 [24], [25] and regulating cytoskeleton and 

maintaining the membrane stability [26], [27]. Several studies show that KLF1 also 

regulates embryonic globin gene expression in primitive erythrocytes [22], [25], [28], 

[29]. 
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1.2.2 Definitive erythropoiesis 

Definitive EMPs are found in the E8.5 / E9 yolk sac and placenta of the mouse and 

they migrate to the foetal liver on E11.5 to produce the first definitive erythrocytes.  

These erythroid progenitors can be characterised by smaller size, higher mean 

glycophorin A (GPA; TER119 in mouse and CD235a in human) staining and bigger 

faint nucleus than primitive erythroblasts [30], [31]. They form bursting-forming unit 

erythroid (BFU-E) in methylcellulose medium in vitro. Maturation of definitive 

erythroid precursors from ProE to OrthoE is similar to primitive erythropoiesis and 

characterised by limited expansion, decrease in cell size, accumulation of 

haemoglobins and condensation of nuclei and subsequent enucleation [9], [32]. 

Furthermore, definitive erythrocytes express foetal globin (consisting of α- and γ-

globin (α2γ2) in human) but there is no transient form of foetal globin in the mouse. 

Foetal globin genes are also regulated by the beta and the alpha globin clusters. Foetal 

Gγ and Aγ-globin genes are expressed from the beta globin cluster and α-globin gene 

is expressed from the alpha globin cluster in human definitive erythroid cells [12]. 

Definitive erythropoiesis is also regulated by transcriptional regulators, GATA1, 

LMO2, FOG, LDB1 and SCL [4]. Another crucial transcription factor in definitive 

erythropoiesis is KLF1. A study has reported that foetal liver-derived null KLF1 

erythroid cells have an abnormal morphology and most of the cells retain their nucleus 

[23], [33], [34], this suggests KLF1 contributes to membrane normalities and RBC 

maturation in definitive red blood cells.  Of note, a comparative analysis of global gene 

expression in primitive, foetal definitive, and adult definitive erythroid cells has 

reported that Sox6 and Myb are highly expressed in adult definitive erythroid cells [35]. 

SOX6 is an important enhancer of definitive erythropoiesis to stimulate cell survival, 

proliferation, and terminal maturation [36]. SOX6 also mediates the suppression of 

embryonic globin gene expression [37], [38]. Another key role of MYB in definitive 

erythropoiesis is reported in a Myb ¯/ ¯ murine study, their results showed embryonic 

erythropoiesis in yolk sac was not impaired by the Myb alteration, but definitive 

erythropoiesis in the foetal liver was diminished in Myb mutants [39]. Additionally, 

BCL11A (B-cell lymphoma/leukaemia 11a) is not involved in definitive erythroid cell 

maturation, but BCL11A suppresses embryonic globin gene expression [31] and foetal 
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globin gene expression [37]. Therefore, some studies regard SOX6, MYB and 

BCL11A as markers for definitive erythropoiesis [12], [30], [32]. 

Interestingly, hypoxia signalling might be involved in the emergence of definitive 

EMPs. An embryonic developmental study has reported that BFU-E colonies were not 

detected under normoxia condition, but definitive erythroid colonies were observed in 

the low-oxygen culture conditions (5 %). This suggests that low oxygen conditions 

facilitate the detection of BFU-E in early mouse embryos [40].  

1.2.3 HSC-dependent erythropoiesis 

The first HSCs are found in the AGM region at E10.5 and migrate into the foetal liver 

gradually. Around the time of birth (about E19), the site of erythropoiesis switches to 

the bone marrow and the spleen [41]. Repopulating HSCs emerge during midgestation 

through a process termed endothelial-to-haematopoietic transition, and their 

repopulating ability is associated with clusters of round haematopoietic cells budding 

from endothelium [42]. Of note, the emergence of HSCs from endothelium is 

dependent on the transcription factor, Runx1 (previously known as AML1). No 

functional HSCs can be found in Runx1-deficient embryos, including AGM and foetal 

liver at E10, E11 and E12 [43]. Another study has indicated that RUNX1 functions to 

develop and maintain hematogenic precursor cells in the embryonic AGM [44]. These 

data suggest that RUNX1 is required for functional HSCs in the AGM region. GFI1 

and GFI1B are also involved in the haematopoietic commitment with these two 

transcription factors (TFs) controlling the loss of endothelial identity from the 

hemogenic endothelium [45], and thus possibly involved in the emergence of HSCs. 

Interestingly, BCL11A is also involved in the maintenance of HSCs. A Single-

cell RNA-seq result showed that Bcl11a¯/ ¯ HSCs had upregulated cyclin genes and 

down-regulated G2/M markers, also, a higher number of proliferative cells was 

observed in Bcl11a¯/ ¯ HSCs compared with wild type HSCs in BrdU assay. Their 

data suggest that  Bcl11a¯/ ¯ HSCs have abnormal proliferative phenotypes [46]. 

Bcl11a deficiency results in cell-cycle delay in HSCs [47]. These two studies indicate 

loss of Bcl11a in HSCs is defective in self-renewal. 
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In a conventional haematopoietic hierarchy toward erythroid differentiation, HSCs can 

commit to common myeloid progenitors (CMPs) and subsequently megakaryocyte-

erythroid progenitors (MEPs). These progenitors then give rise to the colony-forming 

unit erythroid (CFU-E), which generates nucleated erythroid precursors, including 

ProE, BasoE, PolyE and OrthoE. This maturation process occurs in postnatal bone 

marrow by interacting with the central macrophage within the erythroblastic islands 

[48]. Reticulocytes are then released to bloodstream and become circulating RBCs 

(Figure 1.1). During erythroid differentiation, these cells loose the stem cell marker 

Kit (CD117) with the time of erythroid differentiation (Figure 1.1). Subsequently, 

transferrin receptor protein 1 (TFRC1 in mouse and CD71 in human) is expressed in 

erythroblasts, GPA is expressed in erythroblasts, reticulocytes and erythrocytes [41]. 

Mature RBCs derived from HSCs express adult globin (consisting of α- and β-globin 

(α2β2) in human) [41]. Adult globin genes are also regulated by the beta and the alpha 

globin clusters. From the beta globin cluster, the β1- and β2-globin genes are expressed 

in the mouse [10], [11], and δ- and β-globin genes are expressed in human [12]. From 

the alpha globin cluster in mouse and human, adult erythrocytes express the α-globin 

gene [10]–[12]. Nevertheless, the mechanism of globin switching to adult globin is not 

fully understood. To date, several TFs have been reported to be involved in the 

regulation of adult globin expression, including SOX6 and BCL11A. The 

transcriptional regulator SOX6 acts as a repressor by directly binding to the εy 

promoter and silences embryonic globin gene expression [38]. BCL11A is able to bind 

γ promoter and results in down-regulation of γ-globin [49]. Some reports also indicate 

BCL11A requires co-factors to regulate globin expression.  Strong binding with 

GATA-1 is associated with foetal globin gene suppression [50]. A study of a murine 

erythroleukaemic cell line containing an intact human β-globin locus has indicated that 

double knockdowns of Bcl11a and Dnmt1 (DNA methyltransferase 1) results in an 

induction of γ-globin expression [51]. These two studies demonstrate that BCL11A 

cooperates with GATA1 and DNMT1 to achieve repression of foetal globin genes.



8 
 

 

 

 

 

 

 

 

 

 

Figure 1.1 Erythroid differentiation in the mouse 

The figure indicates the most commonly used surface markers to identify the different 

stages of erythropoiesis. Gray, low expression; black, high expression. HSC, 

haematopoietic stem cell; CMP, common myeloid progenitor; MEP, megakaryocyte-

erythroid progenitor; BFU-e, burst-forming-unit-erythroid; CFU-e, colony-forming-

unit-erythroid. Adapted from Cold Spring Harb Perspect Med 2013 [41]. 
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1.2.4 Enucleation of red blood cells 

In mammals, the end result of RBC maturation is enucleation, which results in the 

formation of reticulocytes and pyrenocytes. Reticulocytes contain cytoplasm, 

haemoglobin and proteins forming a unique cytoskeletal network, including F-actin, 

myosin, spectrin, dematin and so on [52], on the other hand,  pyrenocytes (extruded 

nuclei) contains the condensed nucleus with thin rim of cytoplasm [53]. This quick 

process of enucleation is completed with actin and other cytoskeletal proteins, the 

time-lapse live-cell imaging showed that the erythroblast rapidly extrudes its nucleus 

apposed to the plasma membrane through a bleb-like structure [54]. Enucleation of 

erythroblasts is a complex process that involves multiple changes in morphology and 

structure. To date, recent studies have revealed that enucleation involves (1) histone 

deacetylation, (2) cytokinesis (actin polymerization) / cell cycle, (3) cell-matrix 

interactions, (4) specific microRNAs and (5) vesicle trafficking. 

(1) Histone deacetylation 

The first phenomenon in enucleation is chromatin condensation, deacetylated histones 

stabilise chromatin and are critical for heterochromatin formation during enucleation. 

A study has reported the level of several acetylated histones decreases during erythroid 

differentiation from mouse foetal liver erythroblasts, including H3K9Ac, H4K5Ac, 

H4K12Ac, and H4K8Ac [55]. Similarly, inhibition of histone deacetylase 2 (HDAC2) 

activity blocks chromatin condensation and enucleation in mouse foetal erythroblasts 

[56]. However, it has not been reported whether the deacetylated histones are localised 

in specific genes to regulate the process. 

(2) Cytokinesis (actin polymerization) / cell cycle 

Some studies have revealed that several membrane and cytoskeleton proteins are 

involved in the process of cytokinesis during enucleation. Filamentous actin (F-actin) 

was found concentrated in enucleating erythroblasts, and F-actin inhibitor leads to a 

complete block of enucleation.[57]. A study of yolk sac-derived erythroblasts has 

showed that actin and myosin accumulate at the cell cortex area surrounding the 

extruding nucleus during enucleation [58]. Another study of mouse bone marrow 
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derived erythroblasts has revealed that inhibition of Rac GTPases changes the 

distribution of F-actin and myosin, and then decreases enucleation efficiency [59].  

Furthermore, phosphoinositide 3-kinase (PI3K) inhibition in mouse erythroblasts 

results in impaired cell polarisation and a severe delay in enucleation [60], it suggests 

the establishment of cell polarisation in enucleation is required and regulated by the 

microtubule-dependent PI3K. Additionally, two cell cycle inhibitors, p18 and p27, are 

critical for enucleation during late stages of differentiation, thereby indicating a 

relationship between cell cycle exit and nuclear expulsion [34]. 

(3) Cell-matrix interactions 

The microenvironment in foetal liver and bone marrow supports erythropoiesis, and 

the erythroblastic island (composed of erythroblasts and central macrophage cells) 

plays an important role in the enucleation [48]. Previous evidence suggested that 

erythroblasts co-cultured with macrophages proliferate more than cultured alone by 3 

fold [61], suggesting macrophages act as nursing cells to provide signals of 

proliferation and differentiation for surrounding erythroblasts, and possibly including 

enucleation signals. Among many cell surface proteins relating to erythroblast-

macrophage interaction, erythroblast macrophage protein (Emp) expressed on both 

macrophages and erythroblasts is important for erythroblast enucleation. Evidence 

from a Emp¯/ ¯ mouse study has indicated that Emp is required for erythroblast 

enucleation and macrophage maturation [62]. Their data show no erythroblastic 

islands are observed in the foetal liver, and numerous nucleated and immature 

erythrocytes are retained in the peripheral blood of Emp¯/ ¯ foetuses [62]. Another 

important protein involved in the macrophage-erythroblast interaction is 

retinoblastoma (RB), RB deficiency in the mouse causes failure of enucleation in 

erythroblasts [63]. However, wild-type macrophages can bind Rb-deficient 

erythroblasts and lead them to enucleation [63]. An early study in murine 

erythroleukaemia cells (MELs) has indicated that the enucleation rate is increased 

when culturing cells on fibronectin-coated dishes [64]. Nevertheless, it is not fully 

understood how these above interactions affect enucleation. 
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(4) Specific microRNAs 

A review describes several specific miRNAs are crucial in erythroid lineage 

determination, proliferation, maturation and enucleation [65]. A study of erythroid 

progenitors from mouse has revealed that miR-191 is normally down-regulated during 

erythropoiesis and that overexpression of miR-191 blocks enucleation [66]. This study 

has identified potential targets of miR-191, Riok3 and Mxi1, and demonstrated that 

knocking down the expression of either Riok3 or Mxi1 blocks chromatin condensation 

and enucleation [66]. Furthermore, knockdown of miR-30a in human ES-derived 

erythroblasts increases the enucleation rate and enhances the expression RIOK3. This 

suggests miRNAs might negatively regulate enucleation in erythroid development [67]. 

(5) Vesicle trafficking 

The formation of multiple vesicles is observed in the region between the extruding 

nucleus and incipient reticulocyte [57], [68]. A study of mouse foetal liver derived 

erythroblasts has indicated that endocytic vesicle trafficking plays an important role in 

enucleation [68]. Their results showed that inhibitors of clathrin-dependent vesicle 

trafficking block enucleation, and a small molecule inducing vacuole formation 

enhances the percentage of enucleated cells [68]. 

1.3 Erythropoiesis in vitro 

An increasing number of scientists have been in search of protocols for “in vitro 

erythropoiesis”, and a number of novel sources of RBCs are being explored including 

their production from adult HSCs, adult haematopoietic progenitors (HPCs), 

pluripotent stem cells (PSCs), immortalised erythroid progenitor cells and 

transdifferentiation. All of these strategies have the potential to provide clinical needs 

in transfusion medicine in the future. The PSC source could essentially provide a 

limitless supply and could be a route to producing cells of specific blood groups. 

  



12 
 

1.3.1 CD34+ HPC-derived erythroid lineage cells 

CD34+ HPCs from umbilical cord blood (UCB) have been considered to produce 

RBCs for transfusion medicine. The first in vitro production of RBCs was performed 

by Douay’s group [69]. The group applied cytokines to CD34+ cells isolated from UCB 

to induce erythroid differentiation and co-culture with murine stromal cells to mature 

RBCs. By mimicking the marrow microenvironment, they obtained functional RBCs 

with an enucleation rate of 95 % [69]. To optimise the differentiation protocol for 

expansion, Fujimi et al co-cultured CD34+ cells with human stromal cells to expand 

its population and induce erythroid differentiation with the application of cytokines. 

For the RBC maturation, erythroid lineage cells were then co-cultured with 

macrophages. Their result showed that 1.76x1013 RBCs with 99.4 % of enucleation 

(~8.8 transfusable units) were generated from 1.0 unit of UCB [70]. To overcome the 

drawback of co-culture system posing limits in clinical application, Miharada et al 

generated RBCs with applications of cytokines, but without co-culture. However, the 

production of RBCs is low and the enucleation rate is 77.5 % lower than co-culture 

system [71]. 

Peripheral blood (PB)-derived CD34+ cells also have a potential for the in vitro 

production of RBCs. A study has revealed that PB-derived CD34+ cells are able to 

expand and differentiate to RBCs without co-culture, but the enucleation rate is 

relatively low at only 45 % [72]. To improve the enucleation efficiency of PB CD34+-

derived RBCs, Griffith et al described an in vitro culture system producing functional 

mature RBC with enucleation ranged from 55 % to 95 %  [73]. However, it is 

noteworthy that the quantity of RBCs that can be expanded from PB CD34+ cells is 

lower than that from the UCB CD34+ cells. 

1.3.2 PSCs-derived erythroid lineage cells 

Human blastocyst-derived pluripotent stem cell (PSCs) lines were first generated by 

James Thomson and these embryonic stem cells (ESCs) were able to develop into all 

cell types in vitro [74]. PSC-based technologies hold the potential for a number of 

medical applications and to cure many diseases, such as cardiovascular disease, 

Parkinson's disease, diabetes and leukaemias. However, ESCs are also controversial 
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due to ethical issues relating to their derivation, thereby representing a major obstacle 

to their clinical applications. In 2007, Shinya Yamanaka’s group successfully 

reprogrammed human dermal fibroblasts into ‘induced Pluripotent Stem Cells’ 

(iPSCs) by transduction of four genes Oct4, Sox2, Klf4 and cMyc [75]. Over the past 

one decade, iPSCs have been extensively studied and have become an alternative 

source of PSCs with which to potentially treat a variety of diseases. Due to the fact 

that iPSCs can be derived from patients or individuals with rare blood groups, iPSCs 

provide a good cell resource to study the molecular mechanisms associated with 

erythropoiesis and blood diseases. Therefore, iPSCs offer a valuable tool for the safety 

assessment, ex vivo disease models, cellular therapies, biomaterial production and drug 

screening. 

To generate RBC from PSCs, the protocol varies in technical details and can be divided 

into two main categories. This first one is co-culture PSCs with stromal cells in an 

attempt to recreate the haematopoietic microenvironment, this co-culture system 

induces haematopoietic differentiation in vitro. The most commonly used is OP9 

murine bone marrow cell line, and the erythroid differentiation is followed by selective 

expansion of erythroid cells with erythropoiesis supporting cytokines [76]. However, 

adult globin expression in PSC-derived RBC is lower than the embryonic and foetal 

globins, also, the rate of enucleation is low ranged from 2 % to 10 % [76]. To eliminate 

the xenogenic contamination for clinical application, human mesenchymal cells have 

been used in co-culture system and they are able to support erythroid maturation [69]. 

Co-culturing ESC-derived erythrocytes with FH-B-hTERT (a human foetal liver 

hepatocyte cell line) increases enucleation rate and those erythrocytes express more 

foetal globins than embryonic globins [77]. Another study has demonstrated that the 

conditioned media from primary human foetal liver and foetal bone marrow enables 

ESC-derived erythrocytes to increase the appearance of BFU-E and these ESC-derived 

erythrocytes express foetal and adult globins [78]. 

Another way to produce RBCs from PSCs is embryoid body (EB) formation followed 

by an array of cytokine induction. An advantage of using EB formation is that the 

differentiation protocol can be optimised as in a serum free and defined factor 

condition [79], although heterogeneity of haematopoietic cells may result from limit 
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contacts with cytokines and growth factors [80]. A previous study has indicated that 

haematopoietic cells production by EB formation supplemented with various growth 

factors, and different signalling pathways during different stages are required in the 

culture [81]. Activin / Nodal and Wnt signalling are required for the induction of the 

primitive streak [81], and BMP signalling is an inducer in mesoderm formation [82]. 

The specification of Flk1+ mesoderm to the haematopoietic lineages requires VEGF 

and Wnt, but not BMP or Activin / Nodal signalling [81]. Different from BMP / 

Activin / Wnt signalling pathways, basic fibroblast growth factor (bFGF) regulates 

haematopoietic development in the proliferation instead of inducing its formation [83]. 

Vascular endothelial growth factor (VEGF) is not required for the formation of 

haematopoietic precursors, but the addition of VEGF increases the frequency of these 

precursors [84]. This suggests VEGF is essential for proliferation of haematopoietic 

precursors. Additionally, the presence of VEGF in the culture maintains the expression 

of haematopoietic transcription factors, including Scl, Fli1 and Lmo2 [84]. ESCs and 

iPSCs have been utilised to generate RBCs by the formation of EBs with an array of 

cytokine induction, however, the RBCs produced from ESCs or iPSCs express 

embryonic and foetal globins but not adult globin [85]. Lapillonne et al also noted that 

the low enucleation rate was observed in the result, which is 52 - 66 % in ESC-derived 

RBCs and 4 -10 % in iPSC-derived RBCs [85]. 

To overcome the low enucleation rate, recent evidence suggested that a combined 

strategy of EB formation and co-culture system increases the enucleation efficiency in 

ESC-derived RBCs [86]. Their results showed co-culturing nucleated erythroid cells 

with OP9 cells increased the enucleation rate from 10 % to 30 % [86]. However, these 

ESC-derived RBCs mainly express embryonic and foetal globins in the co-culture 

system [86]. 

To address the issue of globin expression, a study has revealed that infusion of 

nucleated erythroid precursors derived from iPSCs into mice enables the switching 

from foetal to adult globin [87]. This suggests that the process of globin switching 

from foetal to adult globin occurs under the influence of an adult haematopoietic 

microenvironment in vivo.  
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1.3.3 Immortalised Cell lines for RBC production  

Generation of immortalised cell lines could also provide a limitless resource for RBC 

production. A recent study has revealed that human UCB-derived erythroid progenitor 

(HUDEP) cell lines and human iPSC-derived erythroid progenitor (HiDEP) cell lines 

are successfully generated, and both can be maintained in long-term culture and 

differentiate into mature RBCs [88]. However, the efficiency of enucleated RBC 

generation varies with the HUDEP cell lines and HiDEP cell lines, also, the expression 

of adult globin is highly expressed in HUDEP-derived RBCs but non-expression of 

adult globin in HiDEP-derived RBCs [88].  Hirose et al generated immortalised 

erythrocyte progenitor cells (imERYPCs) by transduction of c-MYC and BCL11A into 

HPCs-derived from PSCs, imERYPCs express high expression of BCL11A and present 

a lower fraction of apoptotic cells [89]. RBC differentiated from imERYPCs express 

both foetal and adult globins in vitro, and nearly all of the imERYPC-derived RBCs 

are enucleated when infusing imERYPCs into mice [89]. 

1.3.4 Transdifferentiation 

There have been significant advances in the development of protocols for the 

production of RBCs from PSCs over the last few years (see Section 1.3.2), but the 

optimised protocol is not efficient to produce mature RBC for blood transfusion. This 

suggests that the culture conditions have not created the precise in vivo environment 

resulting in limited erythropoiesis. However, it is possible to use TFs to “programme” 

cells into specific lineages. A recent study has been reported that committed murine 

blood cells are able to be reprogrammed to induced haematopoietic stem cells (iHSCs) 

by defined TFs, RUNX1T1, HLF, LMO2, PRDM5, PBX1, and ZFP37 [90]. This result 

raises the prospect that blood cell reprogramming may be a strategy for the derivation 

of transplantable stem cells for clinical application. 

A previous study has revealed that fibroblasts can be converted into endothelial-like 

precursor cells that subsequently generate haematopoietic stem and progenitor cell 

(HSPC)-like cells by inducing with a simple combination of TFs (GATA2, GFI1B, 

cFOS, and ETV6 [91]. These HSPC-like cells co-express haematopoietic markers, 

endothelial progenitor markers and hemogenic endothelium markers, and global 
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analysis also revealed activation of genes encoding HSC transcriptional regulators, 

including Scl, Fli1, Hhex, Smad6, Lyl1, Lmo2, Runx1, Sox17, Msi2, and Gfi1. This 

suggests the definitive haematopoietic nature of cells specified by the four TFs [91]. 

A similar study has indicated murine embryonic fibroblasts (MEFs) and murine adult 

fibroblasts (MAFs) are reprogrammed to haematopoietic progenitors by the ectopic 

expression of the transcription factors (ERG, GATA2, LMO2, RUNX1c, and SCL), 

which process is going through an intermediate hemogenic endothelial stage [92]. 

These reprogrammed haematopoietic progenitors are expanded on stromal cells and 

able to generate erythroid, megakaryocytic, myeloid, and lymphoid lineages [92]. 

A recent study has revealed that the minimal set of TFs (GATA1, TAL1, LMO2, and 

c-MYC) converts murine and human fibroblasts into induced erythroid progenitors / 

precursors (iEPs) [93]. Addition of KLF1 to the TF cocktail increased the appearance 

of “definitive” single cells expressing adult globin but did not change the expression 

of primitive to definitive specific genes. This indicates iEP clones possess a mixture 

of primitive and definitive erythropoiesis, KLF1 acts as globin switching factors by 

increasing adult globin couples with reduced embryonic globin [93]. However, very 

few “enucleated” iEP-derived erythrocytes were observed in the culture, this suggests 

an inefficient maturation in this strategy. 

1.3.5 Limitations of RBC generation in vitro 

Over the last few years, protocols for the production of erythroid cells from CD34+ 

HPCs have been developed and optimised, and RBCs derived from HPCs expressing 

a higher ratio of adult globin / foetal globin and have a higher enucleation rate 

(comparing to PSC-derived RBCs) [70]. However, the expansion of HPCs in vitro is 

limited, the best yield is 75 transfusable units generated from 1 unit of UCB [94], [95].  

Although ESCs and iPSCs provide a limitless cell source for RBC production, and 

comparing with ESCs, the iPSC source could be a route to producing cells of specific 

blood groups. However, the issue of inefficient production still needs to be tackled. 

The production efficiency of approximately 200,000 erythroid cells per one iPSC has 

been achieved by co-culturing with OP9 cells first and then MS-5 cells [76]. Only 200 
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- 3,500 erythroid cells can be generated from one iPSC via EB formation [85]. 

Furthermore, the enucleation efficiency is 10 % - 30 % without stromal cells and 

represents varied proportion between 30 % - 65% with stromal cells [86]. Most of the 

studies also found that the RBCs from PSCs express high levels of embryonic and 

foetal globins, but the expression level of adult globin is very low [96]. 

RBC production from immortalised Cell lines or transdifferentiation faces the same 

issue of inefficient erythroid maturation. Kurita et al display different efficiencies for 

producing enucleated RBCs from HiDEP and HUDEP cell lines [88], however, their 

previous study showed the efficiency of enucleated RBC production by mouse ESC-

derived erythroid progenitor (MEDEP) cell line improved in vivo after transplantation 

[97]. Capellera-Garcia et al directly convert fibroblasts into RBCs by GATA1, TAL1, 

LMO2, and c-MYC, but they also observe very few enucleated RBCs [93]. Kongtana 

Trakarnsanga et al generated a human immortalised adult erythroid line (Bristol 

Erythroid Line Adult; BEL-A) from early adult erythroblasts, BEL-A cells were able 

to differentiate into mature and functional RBCs. These RBCs expressed adult β-

globin, but the enucleation rate is approximately 30 % [98]. 

Although enucleation can somehow occur in vivo condition [89], [97], the advantage 

is that no risk of tumorigenicity occurs when transfusing enucleated RBCs, also, 

enucleated RBCs can be selected by size (by filtration). Another problem associated 

with the in vitro production of RBCs is the high cost due to the use of expensive 

cytokines and the lengthy differentiation protocol that is required for the high cell 

number needed for blood transfusion. 

1.4 Krüppel-like factor 1 (KLF1) 

1.4.1 The discovery and structure of KLF1 

Krüppel-like factor 1 (Klf1, shows the greatest similarity to the Drosophila 

melanogaster gap gene Krüppel) was firstly identified from a comparison analysis 

between a mouse erythroleukaemia cell line and a mouse monocyte-macrophage cell 

line, their results suggested KLF1 binds to the β-globin promoter and is intimately 

involved in maintaining the erythroid cell phenotype [99]. A subsequent study has 
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showed that the expression of Klf1 is restricted to the primitive erythroid cells in the 

yolk sac and definitive erythroid cells in the foetal liver [100]. 

The KLF1 protein contains 2 domains: a N-terminal proline-rich transactivation 

domain and a C-terminal DNA-binding domain – three C2H2 zinc fingers, which 

recognise and bind the sequence 5’ CCM CRC CCN (where M represents A or C, R 

represents A or G and N represents A or T or C) [101]. This motif is found in the 

regulatory regions of many erythroid genes, including β-globin promoter [99], alpha 

haemoglobin stabilising protein (AHSP) promoter [102], dematin (band 4.9, a RBC 

cytoskeleton protein) promoter [27], aminolevulinic acid synthase 2 (ALAS2; a heme-

synthesis enzyme) promoter [103], KLF3 promoter [104], p18 (a cell cycle inhibitor) 

promoter [105], E2F2 (a S-phase regulator) enhancer [106] and E2F2 promoter [107]. 

1.4.2 KLF1 in erythropoiesis 

Erythroid differentiation is regulated by a complex network of TFs that are involved 

in the development and maturation of blood lineages. One of the most crucial TFs for 

erythropoiesis is KLF1 (also named Erythroid Krüppel-like factor; EKLF), which is 

highly restricted to the erythroid ontogeny [100]. Numerous studies have shown Klf1-

deficient embryos die of anaemia during foetal liver erythropoiesis [23], [33], [108], 

this suggests KLF1 is not required for yolk sac erythropoiesis. However, KLF1-null 

primitive erythroid cells from yolk sac fail to express TER119 and appear to have an 

abnormal morphology [24]–[27], which indicates KLF1 is important in the primitive 

erythroid development. 

Definitive erythrocytes from KLF1-null foetal liver have a defect on the expression of 

TER119 [24], [27], [34], [107] and foetal liver-derived null KLF1 erythroid cells have 

an abnormal morphology, and most of the cells retain their nucleus [23], [33], [34]. 

These studies suggest loss of KLF1 negatively impacts on the development of 

definitive erythropoiesis. Perkins et al demonstrated the KLF1-null definitive 

erythrocytes features of β-globin deficiency (similar to β-thalassaemia in humans), this 

suggests that KLF1 facilitates completion of the switch from foetal-to-adult [23]. 
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A study has revealed that CD41 (a megakaryocyte/platelet marker) is highly expressed 

in KLF1-deficient primitive erythrocytes, and an increase of Fli-1 (a critical TF in 

megakaryopoiesis) transcripts is observed in KLF1-deficient primitive erythrocytes 

[24]. Another gain-of-function study has demonstrated that KLF1 induction negatively 

affects the formation of CD41+ megakaryocytes, on the other hand, it increases the 

proportion of TER119+ erythroid lineage cells [109]. This indicates KLF1 plays a dual 

role in haematopoiesis by promoting erythropoiesis and repressing the megakaryocytic 

program at the same time. 

1.4.3 KLF1 in erythroid maturation 

An analysis of global gene expression has reported that Klf1 is a core erythroid gene 

expressed in primitive, foetal liver definitive, and adult BM definitive erythroid cells 

[35]. KLF1 deficient studies in mouse [26] and in human [110] indicate KLF1 

regulates many genes associated with erythropoiesis. A study of KLF1 ChIP-seq in 

mouse foetal liver erythroid cells has showed its targets are involved in terminal 

erythroid differentiation [101]. These studies suggest KLF1 plays a pivotal role in 

erythroid maturation through (1) cytoskeleton and transmembrane protein (blood 

group antigens), (2) cell cycle / anti-apoptosis / survival and (3) haemoglobin 

production. 

(1) Cytoskeleton and transmembrane protein (blood group antigens) 

Dematin (Epb4.9) is an important cytoskeletal protein required for membrane integrity 

and stability in erythrocytes [111]. Erythrocytes from Klf1¯/ ¯ embryos were described 

as “wrinkled”, “ruffled” and “fragile”, this phenotype was explained by the loss of 

dematin expression [26], [27], [111]. The array data suggested that dematin is highly 

dependent on KLF1 in the foetal liver [27]. These studies might partly explain dematin 

maintains the shape and robust morphology of erythroid cells, because loss of other 

transmembrane proteins or cytoskeleton are likely to contribute to membrane defect. 

A human study has reported that some cytoskeletal genes are lowly expressed in 

KLF1-null erythroid cells, including ANK1 (Ankyrin 1), SLC4A1 (Band 3), SPTB (β-

Spectrin) and SPTA1 (α-Spectrin) [110]. Erythrocytes from Klf1¯/ ¯ embryos were 
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described as “misshapen”, and this phenotype results from loss of ANK1, SLC4A1 and 

SPTB [112]. These studies suggest loss of cytoskeleton contributes to the fragility of 

erythrocytes. 

Transferrin receptor (TFRC1; CD71) contributes to haemoglobinization in 

erythroblasts by uptaking transferrin-bound iron, and it appears to be a KLF1-

dependent gene in foetal liver erythrocytes [27].  

A study of KLF1 null neonates has indicated KLF1 targets encode many blood group 

antigens, such as ERMAP (Scianna Ag), DARC (Duffy Ag), KELL (Kell Ag) and 

ICAM4 (Landsteiner-Wiener Ag) [110]. ICAM4 is down-regulated in Klf1¯/ ¯ mouse 

foetal liver [27] and in KLF1¯/ ¯ patients [110], it is essential for the interaction of 

erythroblastic islands, hence, it is likely to be important for RBC maturation in vivo 

[113]. Mutations in human KLF1 have also been associated with diseases, including 

the In(Lu) rare blood group (amino acid 328 Arginine was replaced by Leucine). The 

phenotype of In(Lu) erythroblasts expresses lower GPA, EPOR (erythropoietin 

receptor), AHSP (Alpha haemoglobin stabilising protein), HBE1 (ε1-haemoglobin) 

and HBB (β-haemoglobin), which suggests that the phenotype is less capable of 

promoting erythroid maturation [114]. 

(2) Cell cycle / anti-apoptosis / survival 

E2F2 is a critical regulator of cell proliferation by regulating S-phase entry and DNA 

synthesis, which is decreased in Klf1¯/ ¯ foetal liver cells [107]. The loss of KLF1 

leads to aberrant entry into S-phase in both primitive and definitive erythrocytes [106]. 

These studies suggest E2F2 regulated by KLF1 is required for cell cycle progression 

during terminal erythroid differentiation. 

KLF1 promotes a cessation in proliferation via directly activating p18INK4c and 

p21WAF1/CIP1, they function as cyclin-dependent kinase inhibitors and act to delay 

progression through G1 into S-phase [105], [115]. A recent study has reported that low 

level expression of p18 and p27 in the late-stage Klf1¯/ ¯ foetal liver cells continue to 

proliferate but not enucleate, however, these two KLF1 target cell cycle inhibitors 

rescue abnormal proliferation and enucleation defects [34]. 
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KLF1 is also involved in the regulation of apoptosis and survival. A study of KLF1 

ChIP-seq in mouse foetal liver erythroid cells has showed that KLF1 regulates genes 

Bcl2l1 (Bcl-X) [101], which has an anti-apoptotic function in primitive and definitive 

erythrocytes [116], [117] and Pim1 [101], which is known as a survival component of 

erythroblasts [118]. 

KLF1 activates both positive and negative regulators of the cell cycle, anti-apoptosis 

and survival to influence the erythropoiesis and these studies suggest that KLF1 has a 

role in the regulation linked to proliferation arrest required for terminal differentiation. 

(3) Haemoglobin production 

KLF1 is able to bind β-globin promoter [99] and is required for adult β-globin gene 

transcription [119]. Also, KLF1 indirectly upregulates adult β-globin expression via 

BCL11A which silences expression of foetal globin [120], [121].  However,  some 

Klf1¯/ ¯ mouse studies have shown that loss of KLF1 diminishes the expression of εy- 

and βH1-globin genes, this suggests KLF1 is required for embryonic globin gene 

expression in primitive erythrocytes [22], [25], [28], [29].  

Alpha haemoglobin stabilising protein (AHSP) is directly activated by KLF1 [102]. 

AHSP is an erythroid-specific protein and acts as a protector by binding cytotoxic free 

α-globin. Interaction with AHSP prevents reactive oxygen species producing from free 

α-globin aggregate and damaging the membrane [102]. 

KLF1 appears to regulate the heme synthesis by ABCG2 (ATP-binding cassette sub-

family G member 2) and ALAS2 (aminolevulinic acid synthase 2). KLF1 regulates the 

Abcg2 gene which encodes a heme transporter protein involved in the final step in the 

assembly of the haemoglobin molecules [101]. ALAS2 is a heme-synthesis enzyme, it 

is reduced in KLF1-null red cells [26], [27]. A gene knockout of Alas2 leads to severe 

anaemia with the accumulation of iron and an arrest erythroid differentiation [122]. 
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1.5 B-cell lymphoma/leukaemia 11a (BCL11A) 

1.5.1 The structure and function of BCL11A 

BCL11A (also called Evi9) has four alternative pre-mRNA splicing transcripts 

predicted to yield protein isoforms designated as eXtra-Long (XL; 5.9 kb / 125 kD), 

Long (L; 3.8 kb / 100 kD), Short (S; 2.4 kb / 35kD) and eXtra-Short (XS; 1.5 kb / 25 

kD). Exon 1 and 2 are common to all isoforms and composed of the invariant C2HC 

zinc finger at the N-terminus, whereas XL, L and S each utilise at least a portion of 

exon 4, which leads to a variable number of C2H2 zinc fingers at the C-terminal region 

[123]. 

BCL11A is expressed in haematopoietic progenitors [124] and is essential for normal 

B and T cell development [125]. It is involved in lymphoid malignancies through 

translocation or amplification [126]. Recent studies have been reported that BCL11A 

plays a key role in the suppression of foetal globin production [120], [121], thereby 

completing globin switching to adult globin. 

1.5.2 BCL11A in haematopoiesis 

BCL11A (also called Evi9 in mouse) is firstly defined as a B cell proto-oncogene [127]. 

A subsequent study reported that B cell development in Bcl11a¯/ ¯ mutant mice is 

blocked at the earliest progenitor B-cell stage [125]. Mice transplanted with Bcl11a-

deficient cells died from T cell leukaemia, and this indicates Bcl11a function as a T 

cell tumour suppressor gene [125]. These data suggest BCL11A is essential for normal 

lymphopoiesis. 

Interestingly, a recent study has reported that BCL11A is also involved in the 

regulation of HSC self-renewal and quiescence [46]. Single-cell RNA-seq results 

showed that Bcl11a deletion in HSCs alters cell cycle progression, suggesting that 

BCL11A deficiency leads to an increased proliferation in the HSCs. Moreover, 

Bcl11a¯/ ¯ HSCs have a lower capacity to generate haematopoietic progenitors, this 

suggests BCL11A-deficient HSCs have defects in long-term self-renewal potential. 

Analysis of lineage gene expression suggested that Bcl11a¯/¯ HSCs are 

myeloerythroid-restricted [46]. A similar study has showed that the loss of BCL11A 
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increases the frequency and number of phenotypic HSCs, but it results in several 

changes, including a decrease in B and T lymphoid development, myeloid lineage 

skewing, poorer HSC repopulation ability, impaired HSC self-renewal capacity and 

cell-cycle alterations. This suggests BCL11A is required for normal HSC function [47]. 

1.5.3 BCL11A in erythropoiesis 

Although BCL11A was originally investigated in the lymphocyte development [125], 

its role in erythropoiesis has also been assessed [128]. Sankaran et al compared 

BCL11A variants in CD71+ / CD235+ erythroblasts between adult bone marrow, foetal 

liver, and circulating primitive cells, and found that foetal liver and primitive 

erythroblasts expressed the shorter BCL11A variant and high level of γ-globin. In 

contrast, adult bone marrow erythroblasts expressed the full-length XL / L isoforms 

(Figure 1.2), indicating that a low level of foetal globin is associated with increased 

full-length BCL11A expression [128]. Immunoprecipitation experiments 

demonstrated that BCL11A associates with GATA-1 and FOG-1 in erythroid cells, 

suggesting that the formation of this complex might be required to regulate gene 

expression [128]. Knockdown of BCL11A by siRNA and shRNA in human CD34+-

derived erythrocytes leads to robust foetal globin expression, suggesting that BCL11A 

regulates foetal γ-globin expression [128]. A subsequent study in K562 cells showed 

that BCL11A is able to bind GGCCGG motif in nucleotide −56 to −51 on the HBG 

proximal promoter and results in down-regulation of γ-globin [49]. Bcl11a¯/ ¯ mice 

were generated to evaluate the function of BCL11A in erythropoiesis. Loss of 

BCL11A has no influences on the expression of CD71 and TER119 suggesting that 

BCL11A does not affect the development of erythroid lineages [31]. 

BCL11A can be activated by KLF1 directly binding to its promoter and regulates the 

globin expression switching from foetal to adult globin [120], [121]. BCL11A is only 

expressed in adult erythrocytes (Figure 1.2), where it suppresses the expression of 

embryonic globin genes [31] and foetal globin gene expression [37]. Because primitive 

erythrocytes lack BCL11A expression (Figure 1.2), several studies regard BCL11A as 

a marker for definitive erythropoiesis [12], [30], [32]. 



24 
 

Some reports indicate BCL11A need to form a complex to regulate globin expression, 

including GATA1 and MYB. Strong GATA-1 binding was found in Bcl11a intron 2 

as being highly associated with foetal globin gene suppression [50], and this suggests 

BCL11A and GATA-1 are co-regulators of globin expression. A study of a murine 

erythroleukemic cell line containing an intact human β-globin locus has indicated that 

double knockdowns of Myb and Dnmt1 (DNA methyltransferase 1) enhances ε-globin 

expression, double knockdowns of Bcl11a and Dnmt1 results in an induction of γ-

globin expression [51]. This demonstrates that MYB and BCL11A cooperate with 

DNMT1 to achieve repression of embryonic and foetal globin genes. 
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Figure 1.2 Developmental stage-specific BCL11A 

The figure indicates BCL11A variants appear in the different stage of erythropoiesis. 

Full length forms (XL / L) of BCL11A are expressed in adult bone marrow 

erythroblasts, and a lower level in foetal liver erythroblasts, but absent in primitive 

erythroblasts. BCL11A shorter variants are expressed in primitive and foetal liver 

erythroblasts, both of which express γ-globin. EryP-CFC, primitive erythroid colony-

forming cell; AGM, aorta-gonad-mesonephros; MEP, megakaryocyte-erythroid 

progenitor; HSC, haematopoietic stem cell; BFU-E, burst-forming-unit-erythroid. 

This figure was modified from Nature. 2009 [31]. 
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1.6 Thesis aims 

1.6.1. Hypothesis 

Enhancing the activity of the erythroid transcription factors, KLF1 and BCL11A in 

human pluripotent stem cells will promote the in vitro differentiation and maturation 

of red blood cells. 

1.6.2. Experiment strategy 

1) Test a defined differentiation protocol for hiPSCs towards erythroid cells 

A PSC differentiation protocol established by our collaborators at the University of 

Glasgow was tested in our lab. The phenotype of erythroid cells will be assessed by 

microscopy, flow cytometry, in vitro colony forming assays. Erythroid gene 

expression was monitored throughout the differentiation time course by quantitative 

RT-PCR. 

2) Generate a tamoxifen-inducible KLF1 system in hiPSCs and validate KLF1 

activation during erythroid differentiation 

Inducible KLF1-ERT2 system was set up in the AAVS1 locus of iPSCs, and this iKLF1 

cell line was then differentiated in the presence and absence of tamoxifen. The effects 

on the production of mature RBCs were be evaluated by microscopy, flow cytometry, 

quantitative RT-PCR and HPLC. 

3) Generate both tamoxifen-inducible BCL11A and tamoxifen-inducible KLF1 

system in hiPSCs and validate the activation of both TFs during erythroid 

differentiation 

Both inducible BCL11A-ERT2 and KLF1-ERT2 system was set up in the AAVS1 locus 

of iPSCs, and the iBK cell line was then differentiated in the presence and absence of 

tamoxifen. The effects on proliferation and maturation of RBCs were be evaluated by 

microscopy, flow cytometry, quantitative RT-PCR and HPLC.  
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2.1 Cell culture techniques 

2.1.1 Production of iPSCs 

Human iPSC lines were generated by Roslin Cells (http://roslincells.com). Briefly, 

fibroblasts were obtained from the skin of a O Rhesus negative individual (R 

Biomedical Ltd, Edinburgh, UK under REC 1/AL/0020 ethical approval) and 

reprogrammed to iPSCs using an episomal strategy with four transcription factors, 

OCT4, KLF4 SOX2 and cMYC [75]. The human iPSC line, SFCi55, was characterised 

by flow cytometry analyses for pluripotent markers (TRA-1-60, SSEA-1, OCT3/4 and 

SSEA-4) and a differentiation marker (SSEA-1) (a published work in Appendix). 

Karyotype analysis revealed a normal female chromosome complement and banding 

pattern and that was then confirmed by single nucleotide polymorphism analysis (data 

not shown). Hematopoietic differentiation of SFCi55 was compared with other human 

iPSC lines (a published work in Appendix) and used in this study. 

2.1.2 Maintenance of iPSCs 

2.1.2.1 Culturing of iPSCs 

SFCi55 cells (a human iPSC line derived from an individual with the O Rhesus 

negative blood group) were maintained in STEMPRO® SFM containing 20 ng/ml 

human basic FGF (PHG0261, Invitrogen) on CTS™ CELLstart™ Substrate (A10142-

01, Invitrogen). STEMPRO® SFM was comprised of 500 ml of DMEM/F-12 with 

Glutamax (10565-018, Invitrogen) supplemented with 40 ml of 25 % BSA (A10008-

01, Invitrogen), 10 ml of STEMPRO® supplement (10006-01, Invitrogen), 1 ml of 50 

mM 2-Mercaptoethanol (31550-010, Thermo Fisher Scientific). To coat CTS™ 

CELLstart™ Substrate on plates, the original stock of CTS™ CELLstart™ was diluted 

with DPBS containing Ca2+ and Mg2+ at 1:50.  

iPSCs were passaged when cells reached 70-80 % confluency. Culture medium was 

exchanged with fresh STEMPRO® SFM and plates were pre-coated with CTS™ 

CELLstart™ 1 hour prior to passage. Cell colonies were then cut into small square 

pieces with STEMPRO® EZPassage™ (23181010, Invitrogen,). Suspended colonies 
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were transferred to new wells with fresh STEMPRO® SFM at 1:4 to 1:6. Fresh 

STEMPRO® SFM was replaced each day. 

2.1.2.2 Cryopreservation of iPSCs 

Cells from a 80 % confluent well (6-well plate) were harvested with STEMPRO® 

EZPassage™ and centrifuged at 200 xg for 5 minutes. Cell colonies were gently 

resuspended in 1 ml of cold CryoStor® cell cryopreservation media (C2874, Sigma-

Aldrich) and divided into two pre-labelled cryovials. Two cryovials were placed in the 

cold Mr. Frosty and kept in -80 °C freezer overnight. For long-term storage, cryovials 

were transferred to -150 °C freezer. 

2.1.2.3 Thawing of iPSCs 

A cryovial of iPSCs was thawed rapidly at 37 °C in a water bath, and cell colonies 

were resuspended in 4 ml of pre-warmed STEMPRO® SFM. Cells were pelleted by 

centrifugation at 200 xg for 5 minutes and resuspended in fresh 1 ml STEMPRO® 

SFM supplemented with 10 μM ROCK inhibitor (Y-27632, MERCK). The cell 

solution was transferred to one CTS™ CELLstart™-coated well in a 6-well plate. 

2.1.3 Differentiation of iPSCs 

Haematopoietic differentiation was carried out in a step-wise, serum- and feeder-free 

protocol, as described [79], [129] (Figure 2.1). 

Day 0 

Briefly, one confluent well of iPSCs was cut with STEMPRO® EZPassage™ and 

transferred to two wells of a 6-well plate with cell repellent surface (657970, Greiner 

Bio-One) and then cultured in 3 ml (per well in a 6-well plate) of Stemline® II 

Hematopoietic Stem Cell Expansion Medium (S0192, Sigma-Aldrich) in the presence 

of 10 ng/ml BMP4 (314-BP-010, R&D), 10 ng/ml VEGF (293-VE010, R&D), 10 

ng/ml Wnt3a (5036-WN010, R&D) and 5 ng/ml Activin A (338-AC010, R&D), and 

2 μM GSK-3β inhibitor VIII (A014418, Merck Millipore). Embryoid bodies (EBs) 

formed spontaneously. 
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Day 2 

The following cytokines were topped up in 0.5 ml (per well in a 6-well plate) of 

Stemline® II Hematopoietic Stem Cell Expansion Medium with 20 ng/ml BMP4, 30 

ng/ml VEGF, 10 ng/ml Wnt3a, 5 ng/ml Activin A, 10 ng/ml FGFa (PHG0014, Thermo 

Fisher Scientific), 20 ng/ml SCF (PHC2111, Thermo Fisher Scientific), 2 μM GSK-

3β inhibitor VIII and 0.4 ng/ml β-estradiol (E2257, Sigma-Aldrich). 

Day 3 to day 9 

EBs were dissociated to single cells with 0.5 ml (per well in a 6-well plate) of 

StemPro® Accutase® Cell Dissociation Reagent (A1110501, Thermo Fisher 

Scientific) for 3 minutes at 37 °C. After centrifugation at 200 xg for 5 minutes, the 

cells were seeded at 2x105 cells per well in 3 ml of Stemline® II Hematopoietic Stem 

Cell Expansion Medium in the presence of 20 ng/ml BMP4, 30 ng/ml VEGF, 10 ng/ml 

FGFa, 30 ng/ml SCF, 10 ng/ml IGF2 (292-G2, R&D), 10 ng/ml TPO (288-TPN-25, 

R&D), 5 μg/ml heparin (H3149, Sigma-Aldrich), 50μM IBMX (I5879, Sigma-Aldrich) 

and 0.4 ng/ml β-estradiol. Fresh cytokines were topped up in 0.5 ml medium per well 

at days 5, 7 and 9. 

Day 10 to day 17 

Differentiating cells were harvested by centrifuging at 200 xg for 5 minutes and 3x105 

cells were seeded in 3 ml (per well in a 6-well plate) of Stemline® II Hematopoietic 

Stem Cell Expansion Medium in the presence of 1 μM hydrocortisone, 50 ng/ml SCF, 

16.7 ng/ml Flt3L (300-19, Peprotech), 6.7 ng/ml BMP4, 6.7 ng/ml IL-3 (213-13, 

Peprotech), 6.7 ng/ml IL-11 (200-11, PeproTech), 3 U/ml EPO (287-TC-500, R&D) 

and 50μM IBMX. Fresh cytokines were topped up in 0.5 ml medium (per well in a 6-

well plate) at days 12, 14 and 16. 

Day 18 to day 24 

From this stage, differentiating cells were cultured in IBIT medium instead of 

Stemline® II Hematopoietic Stem Cell Expansion Medium. The IBIT medium was 

made up by 240 ml of Iscove Basal Medium (FG-0465, Merck Millipore) 
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supplemented by 1% BSA (G10008-01, Thermo Fisher Scientific), 10 μg/ml insulin 

(I9278; Sigma-Aldrich), 0.2 μg/ml transferrin (T0665, Sigma-Aldrich), and 500 μl of 

2-Mercaptoethanol (31550-010, Thermo Fisher Scientific). Cells at day 17 were 

centrifuged at 200 xg for 5 minutes and seeded in 3 ml (per well in a 6-well plate) of 

IBIT medium in the presence of 1 μM hydrocortisone, 20 ng/ml SCF, 20 ng/ml IGF1 

(100-11, Peprotech), 6.7 ng/ml IL-3, 6.7 ng/ml IL-11 and 3 U/ml EPO. Fresh cytokines 

were topped up in 0.5 ml medium (per well in a 6-well plate) at days 20, 22 and 24. 

Day 25 

Differentiating cells were harvested by centrifuging at 200 xg for 5 minutes and 

seeded in 3 ml (per well in a 6-well plate) of IBIT medium in the of 3 U/ml EPO, 6.7 

ng/ml IL-1β (201-LB-005, R&D), 6.7 ng/ml IL-6 (206-1L-010, R&D), 5 % AB 

plasma (H4522, Sigma-Aldrich) and 2 ng/ml Sodium Selenite (S5261, Sigma-

Aldrich). 

Day 27 

Fresh IBIT medium with 5% AB plasma and 2 ng/ml Sodium Selenite were topped up 

in 0.5 ml medium (per well in a 6-well plate) at days 29 and day 31.  
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Figure 2.1 Defined erythroid differentiation protocol from PSCs 

A scheme describes the erythroid differentiation from iPSCs. At day 0, one well of 

PSCs was harvested by EZPassage and transferred to low adherent 6-well plates. 

Differentiating cells were cultured in Stemline II medium with cytokines till day 17, 

and changed to IBIT medium with cytokines from day 18. This scheme was modified 

from Stem Cells Transl Med. 2016 [79]. 
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Day 0 
MixA1 

Day 2 
MixA2 

Day 3
MixB 

Day 10
MixC 

Day 18
MixD 

Day 25 
MixE1 

Day 27 
MixE2 

STEMLINE II medium IBITmedium 

MixA1 
BMP4            10ng/ml 
VEFG            10ng/ml 
Wnt3a            10ng/ml 
ActivinA           5ng/ml 
Inhibitor VIII        2μM 

MixA2 
BMP4           20ng/ml 
VEFG           30ng/ml 
Wnt3a           10ng/ml 
ActivinA          5ng/ml 
FGFa            10ng/ml 
SCF              20ng/ml 
Inhibitor VIII         2μM 
β-estradiol   0.4ng/ml 

MixB
BMP4                            20ng/ml 
VEFG                            30ng/ml 
FGFa                             10ng/ml 
SCF                             30ng/ml 
IGF2                             10ng/ml 
TPO                              10ng/ml 
Heparin                           5μg/ml 
IBMX                                  50μM 
β-estradiol                        0.4ng/ml 

MixC
Hydrocortisone                      1μM 
SCF                             50ng/ml 
Flt3L                          16.7ng/ml 
BMP4                            6.7ng/ml 
IL3                                6.7ng/ml 
IL11                              6.7ng/ml 
EPO                                 3U/ml 
IBMX                                  50μM 

MixD 
Hydrocortisone                              1μM 
SCF                                       20ng/ml 
IGF1                                      20ng/ml 
IL3                                      6.7ng/ml 
IL11                                     6.7ng/ml 
EPO                                       3U/ml 

MixE1 
EPO                                       3U/ml 
IL1β                                       6.7ng/ml 
IL6                                     6.7ng/ml 
AB plasma                                                  5% 
Sodium selenite                                         2ng/ml

MixE2 
AB plasma                                                           5% 
Sodium selenite                                                2ng/ml 
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2.1.4 CFU assay for iPSCs-derived cells  

iPSC-derived cells at day 10 of differentiation were collected for CFU assay using 

MethoCult™ H4435 Enriched (04435, STEMCELL) that favour haematopoietic 

colony formation. Two low attachment 35 mm dishes were set up in parallel at 

densities of 5x103 cells and 1x104 cells in 1.2 ml of MethoCult™. Two dishes were 

incubated in a 37 °C incubator, and colonies were scored after 12 to 15 days. 

2.1.5 Maintenance of COS7 cells 

COS7 cells were maintained in GMEM medium (11710035, Thermo Fisher Scientific) 

supplemented with 10 % foetal calf serum (Lonza), 2 mM sodium pyruvate (11360070, 

Thermo Fisher Scientific), 1 % non-essential amino acids (11140050, Thermo Fisher 

Scientific), and 0.1 mM 2-Mercaptoethanol (31550-010, Thermo Fisher Scientific). 

COS7 cells were passaged when cells reached 80 % confluency in a T25 flask. Cells 

were dissociated with 0.25 %  trypsin solution and harvested by centrifuging at 200 xg 

for 5 minutes. Cell pellets were resuspended in fresh culture medium and seeded back 

to a T25 flask at 1:4 ratio. 

To freeze COS7 cells, cells from a T25 flask were dissociated with 0.25 %  trypsin 

solution and harvested by centrifuging at 200 xg for 5 minutes.  Cell pellets were 

resuspended in 1 ml of culture medium supplemented with 10 % Dimethyl Sulfoxide 

(DMSO) (Sigma-Aldrich). The cell solution was divided into two pre-labelled 

cryovials and then placed in the cold Mr. Frosty in -80 °C freezer overnight. For long-

term storage, cryovials were transferred to -150°C freezer. 

To thaw COS7 cells, a cryovial of COS7 cells was thawed rapidly at 37 °C in a water 

bath, and cell suspensions were transferred in 4 ml of pre-warmed culture medium. 

After centrifuging at 200 xg for 5 minutes, cell pellets were resuspended in fresh 10 

ml of culture medium and transferred to a T25 flask. 

2.1.6 Maintenance of K562 cells 

K562 cells were maintained in DMEM medium (61965-026, Life technologies) 

supplemented with 10 % foetal calf serum (Lonza), 2 mM sodium pyruvate (11360070, 

Thermo Fisher Scientific), 1 % non-essential amino acids (11140050, Thermo Fisher 
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Scientific), and 0.1 mM 2-Mercaptoethanol (31550-010, Thermo Fisher Scientific). 

K562 cells were passaged when cells reached 80 % confluency in a T25 flask, and 

5x105 cells were seeded back to a new T25 flask.  

To freeze K562 cells, cells from a T25 flask were harvested by centrifuging at 200 xg 

for 5 minutes and resuspended in 1 ml of culture medium supplemented with 10 % 

Dimethyl Sulfoxide (DMSO) (Sigma-Aldrich). The cell solution was divided into two 

pre-labelled cryovials and then placed in the cold Mr. Frosty in -80 °C freezer 

overnight. For long-term storage, cryovials were transferred to -150°C freezer. 

To thaw K562 cells, a cryovial of K562 cells was thawed rapidly at 37 °C in a water 

bath, and cell suspensions were transferred in 4 ml of pre-warmed culture medium. 

After centrifuging at 200 xg for 5 minutes, cell pellets were resuspended in fresh 10 

ml of culture medium and transferred to a T25 flask. 

2.1.7 Transfection of cells 

2.1.7.1 Xfect transfection of COS7 cells 

One day prior to the transfection, 2x105 COS7 cells were plated in a 6-well plate. On 

the day of transfection, 5 μg plasmid was added into 100 μl of Xfect Reaction Buffer 

(631317, Clontech). 1.5 μl of Xfect Polymer was added into plasmid solution and 

vortexed. The plasmid-polymer solution was then incubated at room temperature for 

10 minutes. Old medium was replaced by 1 ml of fresh culture medium. The plasmid-

polymer mix was dropped to the well and incubated overnight at 37 °C. Old medium 

was then replaced by fresh culture medium. 

2.1.7.2 Xfect transfection of K562 cells 

One day prior to the transfection, 5x105 K562 cells were seeded in a 6-well plate. On 

the day of transfection, 5 μg plasmid was added into 100 μl of Xfect Reaction Buffer. 

1.5 μl of Xfect Polymer was added into plasmid solution and vortexed. The plasmid-

polymer solution was then incubated at room temperature for 10 minutes. Old medium 

was replaced by 1 ml of fresh culture medium. The plasmid-polymer mix was dropped 
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to the well and incubated overnight at 37 °C. Old medium was then replaced by fresh 

culture medium. 

To generate stable cell lines with a transgene, K562 cells were selected by culturing 

with 2 μg/ml puromycin two days post transfection. Untransfected K562 cells died in 

the puromycin selection in few days, whereas transfected cultures contained viable 

cells. 

2.1.7.3 Electroporation of iPSCs 

Human iPSCs were electroporated using Gene Pulser Electroporation Systems (165-

4447, BIO-RAD). 1 hour prior to electroporation, old medium was replaced by fresh 

STEMPRO® SFM supplemented with 10 μM ROCK inhibitor. hiPSC were then 

dissociated to single cells with accutase and resuspended in DPBS without Ca2+ and 

Mg2+. 1x107 cells were prepared in 700 μl of DPBS and transferred into a cuvette for 

electroporation. 50 μg of plasmid DNA (40 μg of pZDonor-AAVS1-puro plasmid, 5 

μg of p622L and 5 μg of p622R) was added to the cuvette and mixed gently. The Gene 

Pulser Electroporation Systems was set up at 320 mV, 250 μF for electroporation. 

After the electroporation, cells were resuspended in fresh STEMPRO® SFM and then 

divided into ten CTS™ CELLstart™-coated 10 cm2 petri dishes with 10 ml of 

STEMPRO® SFM plus 10 μM ROCK inhibitor. Two days post transfection, 

electroporated cells were cultured in STEMPRO® SFM supplemented with 0.3 μg/ml 

puromycin. After one week of puromycin selection, the concentration of puromycin 

was increased to 0.5 μg/ml. Single colonies emerged 14 days post transfection and 

then were transferred to a 24-well plate for expansion. 

2.1.8 Viral transduction 

Differentiating cells were harvested by centrifuging at 200 xg for 5 minutes and 3x105 

cells were seeded in 250 μl (per well in a 12-well plate). Viral particles and polybrene 

(H9268, Sigma-Aldrich; final concentration is 6 μg/ml) were diluted in 250 μl of 

Stemline® II Hematopoietic Stem Cell Expansion Medium and added to the well in a 

dropwise manner. The mixture was incubated at 37°C for one hour. Viral particles 

were removed by centrifuging at 200 xg for 5 minutes and transduced cells were 

reseeded in 3 ml of complete differentiation medium and placed in a 37 °C incubator. 
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A control GFP-lentivirus was used to establish a transduction protocol for iPSC-

derived cells at day 10. The amount of viral particles was added to test multiplicity of 

infection (MOI), including 0, 1, 5, 10, 25, 50, 100 and 200 viral particles per cell. GFP 

fluorescence was evaluated by flow cytometry one day after virus transduction, and 

the  maximum GFP expression was observed at a MOI of 100 (Supplementary Figure 

S3). 

2.1.9 Immunofluorescence (IF) staining 

Transfected COS7 cells and control COS7 cells were fixed in 4 % formaldehyde / PBS 

at room temperature for 15 minutes and permeabilized in 0.5 % Triton-X 100 / PBS. 

Fixed cells were incubated for one hour with PBS containing rabbit anti-human KLF1 

(sc14034, Santa Cruz; in 1:100) or rabbit anti-HA tag (631207, Clontech; in 1:100) or 

mouse anti-BCL11A (ab19489, Abcam; in 1:50) antibodies. After washing by PBS 

three times, cells were successively incubated for one hour with PBS containing goat 

anti–rabbit IgG-FITC (F0382-1ML, Sigma-Aldrich; in 1:1000) or goat anti–mouse 

IgG-FITC (F0257-1ML, Sigma-Aldrich; in 1:1000) antibodies and DAPI (4',6-

Diamidino-2-phenylindole, Sigma-Aldrich). After washing by PBS three times, 

stained cells were analysed using a Zeiss Observer microscope and processed with 

AxioVision and ImageJ software. 

2.1.10 Cytospin and rapid Romanowsky staining 

5x104 erythroid cells were prepared in 0.2 ml PBS and then loaded in cytospin slide 

chamber. After centrifuging at 500 rpm for 10 minutes, the cytospin slide was air-dried 

at room temperature. The Rapid Romanowsky Stain Pack (HS705, TCS biosciences) 

was used to fix and stain the cells. The air-dried slides were first dipped in Fixative 

Solution for 30 seconds, and immediately transferred to Solution B for 30 seconds, 

and then stained in Solution C for 30 seconds. The slides were rinsed in water and air-

dried. 
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2.2 Molecular biology techniques 

2.2.1 Construction of plasmids 

2.2.1.1 Construction of pZDonor-AAVS1-Puromycin-CAG-HA-KLF1-ERT2-PA 

and pZDonor-AAVS1-Puromycin-CAG-HA-Mut KLF1-ERT2-PA 

The CAG promoter was excised from pCAGASIP vector using EcoRV restriction 

enzyme digestion and subcloned into the EcoRV site of pZDonor-AAVS1 puromycin 

vector, and it was cloned in the reverse orientation to the AAVS1 locus (constructed by 

Dr Richard Axton). After I obtained the pZDonor-AAVS1-CAG, the poly A sequence 

was amplified from the PL452 plasmid by polymerase chain reaction (PCR) and 

subcloned into the AgeI site of the pZDonor-AAVS1-CAG (Figure 2.2A). Next, the 

fusion gene HA-KLF1-ERT2 was amplified by PCR from the pCAG-KLF1-ERT2 

(constructed by Rui Ma), and subcloned into the EcoRI site of pZDonor-AAVS1-

CAG-PolyA vector (Figure 2.2A). The same strategy was used to introduce the HA-

Mut-KLF1-ERT2 into pZDonor-AAVS1-CAG-PolyA vector, separately. Both 

constructs, pZDonor-AAVS1-Puromycin-CAG-HA-KLF1-ERT2-PA and pZDonor-

AAVS1-Puromycin-CAG-HA-Mut KLF1-ERT2-PA, were verified by AgeI digestion, 

and the orientation of insertion was distinguished by different sized fragments. In the 

correct orientation (ie same direction of CAG promoter), 321 bp and 1546 bp 

fragments were released from AgeI digestion whereas 321 bp and 542 bp fragments 

were released when construct was in the reverse orientation (Figure 2.2B and C). 

Constructs were sequenced to confirm their identity and aligned to databases (BLAST 

in NCBI). Vectors were generated that carried either the wild type form or a mutant 

form of KLF1. In the wild type (WT-KLF1), amino acid 328 is Arginine (encoded by 

CGC), whereas in the mutant form (Mut-KLF1), amino acid 328 is Leucine (encoded 

by CTG) (Figure 2.2D). This mutation obliterates the DNA binding capacity of KLF1 

and results in a lower expression of HBE1 and HBB in the erythroblasts of In(Lu) rare 

blood group [114]. We therefore took advantage of this mutant and used it as a negative 

control in our experiments. 

PCR primers and sequencing primers used in this project were listed in Appendix 

(Supplementary Table S1).  
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Figure 2.2 Construction of pZDonor-AAVS1-Puromycin-CAG-HA-KLF1-ERT2-
PA and pZDonor-AAVS1-Puromycin-CAG-HA-Mut KLF1-ERT2-PA 

A. A schematic diagram indicates how the pZDonor-AAVS1-CAG-HA-KLF1-ERT2-

PA vector was constructed. AAVS1-LA, AAVS1 left homology arm; SA, splice 

acceptor; 2A, self-cleaving peptide sequence; Puro, puromycin resistance gene; Poly 

A, polyadenylation sequence; HA, HA tag sequence;  AAVS1-RA, AAVS1 right 

homology arm. B. Diagram showing the orientation of gene construct in the pZDonor-

AAVS1-CAG-PolyA vectors. C. The result of AgeI digestion indicates the correct 

insertion in different constructs.  D. The sequencing results of pZDonor-AAVS1-

Puromycin-CAG-HA-KLF1-ERT2-PA construct 7 and pZDonor-AAVS1-Puromycin-

CAG-HA-Mut KLF1-ERT2-PA construct 2.  
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2.2.1.2 Construction of pZDonor-AAVS1-Puromycin-CAG-BCL11A-ERT2-PA 

Due to the GC-rich sequences and repetitive sequences in BCL11A gene, it proved 

difficult to clone the cDNA of K562 cells by PCR. However, we were able to amplify 

BCL11A from lentivirus vector pXLG3-BCL11A XL by PCR, and the ERT2 fragment 

was replicated from pCAG KLF1-ERT2 [130]. Subsequently, the BCL11A-ERT2 

transgene was created by recombinant PCR and transferred into a shuttle vector, 

pGEM T EASY. The BCL11A-ERT2 cassette was then subcloned into the EcoRI site 

of the pZDonor-AAVS1-Puromycin-CAG-PA vector (Figure 2.3A). The pZDonor-

AAVS1-CAG-BCL11A-ERT2-PA construct was verified by AgeI and HindIII 

digestion, with the correctly orientiated version releasing 321 bp and 786 bp fragments 

(Figure 2.3B). Constructs were also validated by PCR using specific primers targeted 

to the Poly A sequence and ERT2 regions (data not shown). In the final confirmation, 

the pZDonor-AAVS1-CAG-BCL11A-ERT2-PA construct 1 was sequenced (BLAST 

in NCBI) (data not shown). 

PCR primers and sequencing primers used in this project were listed in Appendix 

(Supplementary Table S1). 
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Figure 2.3 Construction of pZDonor-AAVS1-Puromycin-CAG-BCL11A-ERT2-
PA 

A. A schematic diagram indicating how the pZDonor-AAVS1-CAG-BCL11A-ERT2-

PolyA was constructed. B. Diagram showing the orientation of gene construct in the 

pZDonor-AAVS1-CAG-PA vectors. AgeI / HindIII double digestion for constructs 

generates 786 bp and 321 bp in correctly orientated vector and 2686 bp and 321 bp 

when orientiated in reverse. 
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2.2.2 Transformation of competent cells 

2 μl from a 10 μ ligation reaction or 50 ng of plasmid DNA was mixed with 50 μl of 

One Shot TOP10 Chemically Competent E. coli (C404003, Invitrogen) and placed on 

ice for 30 minutes. The mixture was heat shocked for 30 seconds at 42 °C in a water 

bath followed by incubation on ice for 2 minutes. After mixing with 250μl room 

temperature Super Optimal broth with Catabolite repression (S.O.C.) medium 

(Invitrogen), the 1.5 ml tube containing the mixture was placed in a shaking incubator 

at 37 °C for 1 hour. Plates were prepared with LB agar with ampicillin (50 μg/ml) or 

kanamycin (50 μg/ml) for selection. 250 μl of the mixture was spread on the plate and 

incubated at 37 °C overnight. 

2.2.3 Plasmid purification 

Plasmid preparation was performed by the QIAprep Spin Miniprep Kit (27106, 

QIAGEN) or QIAGEN Plasmid Midi Kit (12143, QIAGEN). One single colony was 

picked and expanded in 5ml (Miniprep) or 100ml (Midiprep) LB with antibiotics at 

37 °C in a shaking incubator overnight. E.coli. containing plasmids were harvested by 

centrifugation and plasmid DNA was extracted according to the QIAGEN instructions. 

DNA samples were stored at -20 °C. 

2.2.4 RNA extraction 

RNA preparation was performed by RNeasy Mini Kit (74106, QIAGEN) following 

the manufacturer’s instructions. To remove DNA from samples, the RNase-free 

DNAse Set (79254, QIAGEN) was used on-column during RNA extraction. RNA 

samples were stored at -80 °C. 

2.2.5 Complementary DNA (cDNA) synthesis 

1 μg of RNA was reverse transcribed by the High-Capacity cDNA Reverse 

Transcription Kit (4368814, Thermo Fisher Scientific) following the manufacturer’s 

instructions. The 20 μl reaction was carried out at 25 °C for 5 minutes, 37 °C for 2 

hours, and a final incubation of 85 °C for 5 minutes. cDNA samples were stored at -

20 °C. 
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2.2.6 Quantitative RT-PCR analysis 

Quantitative RT-PCR (qRT-PCR) reactions were performed on the ABI 7500 Fast 

Real-Time PCR System (Applied Biosystems) and analysis was done on the SDS 

software Version 1.4 (Applied Biosystems). The TaqMan® Fast Universal PCR 

Master Mix (2x) (4352042, Applied Biosystems) was used with primers which were 

designed on the Universal Probe Library (UPL) System Assay Design Center 

(available on the Roche website). All primers and probes used are listed in Appendix 

(Supplementary Table S2). Each primer set was tested for efficiency beforehand, and 

all reactions were performed in triplicate. The program was set at 95 °C for 3 seconds 

(Enzyme activation), 95 °C for 20 seconds x40 cycles (Denaturation) and 60 °C for 30 

seconds (Annealing, Extension). To normalize cDNA quantity, GAPDH was used as 

reference gene. The ΔΔCt calculation was used for analysing qRT-PCR results. 

2.2.7 Genomic DNA extraction 

MasterPure™ Complete DNA and RNA Purification Kit (MC85200, Epicentre) was 

used for extracting genomic DNA from iPSCs. Briefly, iPSCs from 2 wells (6-well 

plate) were harvested by accutase and pelleted by centrifugation in a 1.5 ml tube. Cell 

pellet was resuspended in 300 μl of Tissue and Cell Lysis Solution supplemented with 

1 μl of Proteinase K. 1.5 ml tubes were incubated at 65 °C for 15 minutes. 1 μl of 

RNAse A was then added in the tube and incubated at 37 °C for 30 minutes. 1.5 ml 

tubes were incubated on ice for 5 minutes. After adding 175 μl of MPC Protein 

Precipitation Solution and vortexing, 1.5 ml tubes were centrifuged at 10,000 rpm, 

4 °C for 10 minutes. The supernatant was transferred to a new 1.5 ml tube with 500 μl 

of isopropanol, the sample was mixed by inverting the tube 25 times. Genomic DNA 

samples was precipitated by centrifuging at 10,000 rpm, 4 °C for 10 minutes. After 

removing isopropanol, genomic DNA pellet was washed by 70 % ethanol two times 

and then resolved in 50 μl nuclease-free water. 

2.2.8 Southern blot 

The Digoxygenin-labelled probes (DIG-labelled probes) were synthesized beforehand 

using the PCR DIG Probe Synthesis Kit (11 636 090 910, Roche) according to 

manufacturer’s instructions. The internal probe and the 3’ external probes were 
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designed to target the regions in the AAVS1-left arm of pZDonor AAVS1 puromycin 

vector and endogenous AAVS1, respectively (Supplementary Figure S1A and C). PCR 

primers used in this project were listed in Appendix (Supplementary Table S1). 

11 μg of genomic DNA was digested by SphI in a 30 μl reaction volume at 37 °C 

overnight. 1 μg of the digested DNA was run on a 0.8 % agarose gel with 1x GelRed 

Nucleic Acid Stain (41003, Biotium) to visualise DNA, on the other hand, 10 μg of 

the digested DNA was run on another 0.8 % agarose gel without GelRed for 

performing the southern blot. The gel electrophoresis was run at 20V in cold room 

overnight. After digested DNA separating, the gel was placed in the Depurination 

Solution (25 ml of HCl in 1,000 ml water) on shaker for 15 minutes and rinsed with 

autoclaved water. The gel was successively placed in Denaturation Solution (88 g 

NaCl and 20 g NaOH in 1,000 ml water) for 30 minutes and Neutralizing Solution 

(176 g NaCl, 6.7 g Tris-base and 70.2 g Tris-HCl in 1,000 ml water) for 20 minutes 

two times. To transfer DNA from gel to a Hybond-N+ Membrane (RPN2020B, GE 

Healthcare Amersham), the “Sandwich” construct was set up for capillary transfer 

using 20x SSC (176 g NaCl and 88 g Trisodium citrate in 1,000 ml water, pH 7) at 

room temperature overnight. The membrane was UV-crosslinked and pre-hybridized 

with DIG Easy Hyb Buffer (11585614910, Roche) for 30 minutes at 43 °C. 1 μl of 

DIG-labelled probe was diluted in 5 μl of DNA dilution buffer (11585614910, Roche) 

and 44 μl of water. The probe mix was denatured at 95 °C for 7 minutes and 

immediately placed on ice for 5 minutes. Denatured probes were then added to 15 ml 

of DIG Easy Hyb Buffer (11585614910, Roche) and applied to the membrane at 43 °C 

overnight. The membrane was washed by Low Stringency Wash Buffer (2x SSC and 

0.1 % SDS in 1,000 ml water) for 5 minutes two times and then washed by High 

Stringency Wash Buffer (0.5x SSC and 0.1 % SDS in 1,000 ml water) at 65 °C for 15 

minutes. The membrane was rinsed in Washing Solution (11585762001, Roche) for 5 

minutes and subsequently incubated in Blocking Solution (11585762001, Roche) for 

30 minutes. Antibody Solution (11585762001, Roche) was applied to the membrane 

and incubated for 30 minutes. Membrane was then washed by Washing Solution for 

15 minutes two times. Detection Buffer (11585762001, Roche) was added on the 

membrane for 2.5 minutes. Membrane was applied with 1 ml of CSPD Solution 

(11585614910, Roche) and incubated at room temperature for 5 minutes. Membrane 
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was then exposed to X-ray film for detection. To re-probe the membrane, the 

membrane was stripped in Stripping Buffer (0.1 % SDS in 0.2 M NaOH) for 30 

minutes at 64 °C, washed by 2x SSC for 15 minutes two times, and then hybridized.  

2.3 Protein analysis 

2.3.1 Protein extraction 

To extract total protein, cells were lysed in 100 μl of RIPA buffer (89900, Thermo 

Fisher Scientific) and centrifuged at 10,000 rpm, 4 °C for 10 minutes. The supernatant 

was transferred to a new 1.5 ml tube and stored at -80 °C. 

For nuclear fractionation, the cell pellet was resuspended in 0.2 ml of Swelling Buffer 

(5 mM PIPES, pH 8.0; 85 mM KCl; 0.5 % NP40; protease inhibitor cocktail) for 20 

minutes on ice.  After centrifuging at 1,500 rpm, 4 °C for 5 minutes, the cytoplasmic 

supernatant was removed. The nuclear pellet was resuspended in 0.3 ml of lysis buffer 

(20 mM Hepes, ph 7.6; 1.5 mM MgCl2; 350mM KCl; 0.2 mM EDTA; 20 % Gycerol; 

0.25 % NP40; 0.5 mM DTT; protease inhibitor cocktail; Benzonase) and gently 

shaken at 4 °C for 1 hour. The nuclear fraction was collected after centrifuging at 

13,000 rpm, 4 °C for 30 minutes and stored at -80 °C. 

2.3.2 Western blot 

Proper amount of protein lysates were electrophoresed on a 4–20 % Ready Gel® Tris-

HCl Gel (1611105, BIO-RAD) in 1x Running Buffer (2.5 mM Tris-base, 19 mM 

Glycine, 0.01% SDS, pH 8.3) at 100 V for about 2 hours. To transfer protein by the 

Bio-Rad Trans-Blot SD Semi Dry Transfer Cell (1703940, BIO-RAD), the gel and a 

nitrocellulose membrane (10402580, WhatmanTM) were placed between Extra Thick 

Blot Filter Papers (1703966, BIO-RAD) soaked in Transfer Buffer (25 mM Tris-base, 

190 mM Glycine, 0.1 % SDS, 20 % Methanol, pH 8.3), the programme was set at 15V 

for 1 hour. Next, the membrane was blocked with 5 % semi-skimmed milk in PBST 

(0.1 % Tween 20 in PBS) at room temperature for 1 hour. The membrane was then 

incubated with PBST containing rabbit anti-HA tag (631207, Clontech; in 1:1000) or 

rabbit anti-human KLF1 (sc14034, Santa Cruz; in 1:200) or mouse anti-BCL11A 

(ab19489, Abcam; in 1:1000) or goat anti-GAPDH (AF5718, R&D; in 1:2000) or 
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rabbit anti-LaminB1 (ab16048, abcam; 1:2000) antibodies in cold room overnight. 

After washing by PBST three times, the membrane was incubated with the appropriate 

horseradish peroxidase–conjugated IgG (rabbit IgG-HRP, HAF008, R&D, 1:1000; 

goat IgG-HRP, sc-2020, SantaCruz, 1:3000; mouse IgG-HRP, A90-116P, BETHYL, 

1:2000) at room temperature for 1 hour. After washing by PBST three times, the 

membrane was applied with the WesternSure™ ECL Substrate (LI-COR) and exposed 

to X-ray film or C-DiGit® Blot Scanner (LI-COR).  

2.3.3 Flow cytometry 

2 x 105 differentiating cells were harvested in PBS containing 1% BSA (PBS/BSA) 

and centrifuged at 200 xg for 5 minutes. Cell pellets were resuspended and mixed with 

the appropriate volume of antibodies, CD34-PE (12-0349-41, eBioscience), CD43-

APC (17-0439-42, eBioscience), CD235a-FITC (11-9987-80, eBioscience) and 

CD71-APC (17-0719-42, eBioscience), to a final volume of 100 μl PBS/BSA 

incubated on ice for 30 minutes. After washing by PBS/BSA, cell pellets were 

resuspended in 200 μl PBS/BSA with 7-AAD Viability Staining Solution (00-6993-

50, eBioscience) and then analysed on a LSR Fortessa (BectonDickinson) using FACS 

Diva. Data was analysed on the FlowJo cell analysis software. 

For enucleation assay, the proportion of enucleated cells present in the culture was 

assessed using CD235a-FITC, CD71-APC antibodies, LIVE/DEAD™ Fixable Near-

IR Stain (L10119, Life Technologies) and Hoechst dye (NucBlue, Life Technologies).  

Live CD235a+ cells were first gated, then anti-CD71 and Hoechst were used to define 

erythroblasts (CD71+/Hoechst+), nucleated RBCs (CD71-/Hoechst+) and enucleated 

RBCs (CD71-/Hoechst-) (Supplementary Figure S2). 

2.3.4 High-performance liquid chromatography (HPLC) 

A published protocol for  HPLC analysis was modified to analyse globin chains [85]. 

Briefly, 1 x 106 differentiating cells were harvested and washed 3 times in PBS. Cell 

lysates were prepared in 50 μl water by three rapid freeze-thaw cycles and centrifuged 

at 13,000 xg at 4 °C for 10 minutes. Globin chain separation was performed by 

injecting 10 μl of the supernatant onto a C4 column (1.0 x 250 mm, Phenomenex, UK) 

with a 42- 56% linear gradient between mixtures of 0.1% TFA in water (Buffer A) and 
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0.1% TFA in acetonitrile (Buffer B) at a flow rate of 0.05 ml/minute for 55 minutes 

on a HPLC Ultimate 3000 system (Dionex, UK).  Samples in columns were analysed 

at 50°C and the UV detector was set at 220 nm. Elution times of peaks generated were 

compared to control samples for identifying β-, Gγ-, α-, Aγ-, ε- and ζ-globins (Figure 

4.4A). The area of each peak was calculated and represented as a percentage of the 

total globin. 

2.4 Statistical analysis 

The statistical analysis was performed using GraphPad Prism 6 software. All data are 

expressed as Mean ± Standard Error of the Mean (SEM). P values less than 0.05 were 

considered statistically significant and a star (*) was labelled in the figure. The 

following statistical analyses were used: 

 To compare two factors across multiple parametric groups – Two-way 

ANOVA followed by Tukey’s multiple comparison test, such as cell 

proliferation and globin expression by HPLC 

 To compare one factor across multiple parametric groups – One-way ANOVA 

followed by Holm-Sidak’s multiple comparison test, such as flow cytometry 

data 

 To compare gene expression data were analyzed using ratio paired t test
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3.1 Introduction 

Dr Joanne Mountford's laboratory at the University of Glasgow developed a defined 

protocol for the production of HPCs and erythroid cells from PSCs [79]. We 

established and tested this protocol in the Forrester lab. There are four main 

differentiation stages in this defined protocol, including mesoderm specification, 

haematopoiesis, erythropoiesis and maturation (see Chapter 2 Figure 2.1). The 

haematopoietic capacity of day 10 differentiating cells has been described in our 

previous study, this suggests multi-lineage HPCs are present within the population of 

cells at day 10 of the differentiation process [131]. 

A human ESC line that expressed a tamoxifen inducible KLF1 fusion protein (KLF1-

ERT2) was generated in Forrester’s laboratory [130].  Experiments using this cell line 

demonstrated that activation of KLF1 at day 10 of the differentiation protocol (when 

HPCs have formed) increased the percentage of erythroid cells. In this case, the KLF1-

ERT2 transgene had been randomly inserted into the genome but this strategy is not 

ideal because random integration can be subjected to silencing and experiments using 

randomly integrated transgenes are difficult to reproduce. In this study, I inserted the 

KLF1-ERT2 transgene into the AAVS1 locus which has been reported as a safer position 

in human genome [132]. This strategy should result in a more consistent and 

reproducible expression. 

  



50 
 

3.2 Aim 

1. To evaluate the production of haematopoietic cell lineages at different time 

points during the defined differentiation protocol 

2. To generate iPSC lines expressing an inducible form of KLF1 

3.3 Approaches 

1. To identify the cell population and gene expression in different stages of 

erythroid differentiation, differentiating cells at defined time points were 

harvested and the production of different haematopoietic cell populations were 

monitored using flow cytometry and gene expression of key haematopoietic 

genes was determined by qRT-PCR. 

2. To obtain consistent and reproducible expression of the KLF1-ERT2 fusion 

protein, the transgene was planned to insert into the AAVS1 locus. The 

pZDonor-AAVS1-CAG-HA-KLF1-ERT2-PA vector was constructed and 

introduced into the iPSCs genome by homologous recombination. The 

transgene KLF1-ERT2 had been confirmed the correct integration in the genome 

by PCR assay and Southern blot. The KLF1-ERT2 fusion protein was expressed 

in targeted clones which were verified by Western blot.  
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3.4 Result 

3.4.1 A defined protocol for the production of erythroid cells from hiPSCs 

3.4.1.1 Cell population during erythroid differentiation 

The SFCi55 iPSC line that was derived from an individual with an O-RhesusD 

negative blood group was assessed in the defined differentiation protocol (see Chapter 

2 Figure 2.1). Differentiating cells were harvested in time course and characterised by 

flow cytometry. The result demonstrated that most cells at day 3 expressed CD34, 

indicating that most cells at this point are associated with the haematopoietic and 

endothelial lineages (Figure 3.1A).  CD34+ / CD43+ cells were detected between day 

7 and day 10, however, this population may appear before day 7. The maximum 

proportion of these double positive cells were detected at day 10 (Figure 3.1A). 

CD43+ haematopoietic lineage cells were observed massively from day 7, and most of 

these cells also co-expressed the erythroid marker CD235a (Glycophorin A) from day 

7 to 10 (Figure 3.1B). We then analysed the appearance of CD235a+ cells during the 

time course (Figure 3.1C), which reached a peak at day 10 at 75 % then dropped and 

then increased gradually again from 40 % at day 17 to 50 % at day 24. These results 

also indicate that there are heterogeneous cell populations derived from this defined 

differentiation protocol. 

The haematopoietic capacity of day 10 differentiating cells was also confirmed in 

methylcellulose medium with recombinant cytokines (MethoCult), and they were able 

to form colony-forming unit-macrophages (CFU-M), colony-forming unit-

granulocyte/macrophage (CFU-GM), colony-forming unit-mixed (CFU-Mix) and 

burst-forming unit-erythroid (BFU-E) (Figure 3.1D). The data suggest the cell 

population at day 10 of the differentiation protocol contained multi-lineage 

haematopoietic progenitor cells (HPCs). 

The data suggest that there are heterogeneous cell populations derived from this 

defined differentiation protocol, and the cell population at day 10 of the differentiation 

protocol contained the maximum number of multi-lineage HPCs. 
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Figure 3.1 Identification of cell populations during erythroid differentiation 

A, B. CD34+ / CD43+ (A) and CD235a+ / CD43+ cell population (B) were monitored 

during the time course of differentiation.  Day 0, 3, 7, 10, 14, 17, 21 and 24 

differentiating cells were analysed by flow cytometry using anti-CD34, anti-CD43 and 

anti-CD235a antibodies. C. The mean percentage of CD235a+ cells from three 

independent experiments presented at different time points during the differentiation 

process. Error bars represent standard error of the mean (SEM). D. The haematopoietic 

potential of day 10 differentiating cell was evaluated in colonies forming assay. A 

CFU-GM colony contains granulocytes and macrophages. A CFU-Mix colony 

contains granulocytes, macrophages, erythrocytes and megakaryocytes. A CFU-M 

colony contains only macrophages. A BFU-E colony contains erythrocytes with high 

proliferation capacity. Data represent 3 independent experiments. Error bars represent 

standard error of the mean (SEM). 
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3.4.1.2 Gene expression during erythroid differentiation 

RNA isolated from iPSC-derived cells at different time course were analysed by qRT-

PCR (Figure 3.2). The key erythroid genes, KLF1, was upregulated from day 7 to 24 

during erythroid differentiation, however, KLF1 failed to activate BCL11A in this 

differentiation protocol. This was apparently in contrast to previous reports in other 

cell lines that showed KLF1 could directly target the promoter of BCL11A and 

regulate expression [120], [121]. cMYB was reported as a marker of the definitive 

erythrocyte lineage [39], but the expression of cMYB in the differentiation protocol 

was relatively low reaching a peak at day 10, suggesting that there might be a small 

population of cell of the definitive wave at this point. GATA1 plays a crucial role in 

the development of megakaryocytic and erythroid lineages [133], the expression 

reached a peak at day 17. SOX6 stimulates erythroid cell survival, proliferation, and 

terminal maturation during definitive murine erythropoiesis [36], the expression of 

SOX6 was observed a small peak at day 5, then increased significantly from day 17 to 

24. GFI1 and GFI1B are involved in the haematopoietic commitment when these two 

TFs control the loss of endothelial identity from the hemogenic endothelium [45]. We 

observed that GFI1 reached peaks at day 5 and day 17, and GFI1B hit the highest 

expression at day 17. 

The data indicate that this defined protocol promotes the expression of TFs associated 

with haematopoiesis and erythropoiesis during the differentiation. 
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Figure 3.2 Gene expression during erythroid differentiation 

Erythroid related genes were evaluated by qRT-PCR in time course.  cDNA samples 

were prepared from day 0, 3, 7, 10, 14, 17, 21 and 24 differentiating cells, and the 

expression of KLF1, BCL11A, cMYB, GATA1, SOX6, GFI1 and GFI1B were 

investigated by specific primers in real time PCR machine. Data represent 3 

independent experiments. Error bars represent standard error of the mean (SEM). 
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3.4.1.3 The phenotype of iPSC-derived cells 

It has been reported that hPSC-derived erythroid cells are more fragile than the 

erythroid cells generated from adult CD34+ progenitors [79]. We therefore assessed 

the phenotype of the iPSC-derived cells from the defined protocol by cytospin and 

rapid Romanowsky staining (Figure 3.3A). A lot of debris and many cells with 

damaged membranes were observed on the slide (shown as blue arrows), this showed 

the membrane stability was poor at the late stage of erythroid differentiation. We also 

noted that it was difficult to find enucleated cells (shown as a red arrow), and this 

supported previous findings that the efficiency of enucleation was low in this defined 

differentiation protocol. 

RNA isolated from iPSC-derived cells at different time course were also analysed by 

qRT-PCR (Figure 3.3B). The expressions of HBE1 (ε1-haemoglobin) and HBB (β-

haemoglobin) were upregulated from day 10 and day 24, respectively, however, the 

expression level of HBB was relatively lower than HBE1. This suggested iPSC-derived 

cells contained more primitive erythroid cells than definitive erythroid cells. 

Taken together these data indicate there are several limitations of current 

differentiation protocol for hPSCs, including poor membrane stability, lower 

enucleation rate and enriched primitive erythroid cells.   

We assessed the expression of KLF1 by Western blot and demonstrated that day 10 

differentiating cell expressed a lower level of expression of KLF1 compared to CD34+-

derived cells (Figure 3.3C). We hypothesised that this could be one of the reasons why 

RBCs generated from PSCs are the lack of membrane stability and maturity in vitro. 

In this chapter, an inducible KLF1-ERT2 system was constructed in iPSCs, and KLF1-

activated cells were evaluated in the same erythroid differentiation protocol. 
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Figure 3.3 The phenotype of iPSC-derived cells from the defined differentiation 
protocol 

A. Cytospins of differentiating cells at day 31 showed the phenotype of iPSC-derived 

cells (x40). The membrane-damaged cells were indicated by blue arrows, and an 

enucleated cell was indicated by a red arrow. B. Globin genes were evaluated by qRT-

PCR in time course.  cDNA samples were prepared from day 0, 3, 7, 10, 14, 17, 21 

and 24 differentiating cells, and the expression of HBE1 and HBB were investigated 

by specific primers in real time PCR machine. Data represent 3 independent 

experiments. Error bars represent standard error of the mean (SEM). C. Western blot 

analyses of nuclear cell lysates from adult CD34+-derived cells, control 

undifferentiated iPSCs and iPSC-derived cells at day 10.  Endogenous KLF1 was 

detected with the anti-KLF1 antibody (αKLF1), and the anti-Lamin B1 (αLaminB1) 

antibody was used to detect nuclear proteins as a loading control. 
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3.4.2 Generation of a tamoxifen-inducible KLF1 system in hiPSC 

We hypothesised that the lower level expression of KLF1 could result in the 

morphological fragility and poor maturity of erythrocytes generated from PSCs in vitro. 

Rui Ma showed that activation of KLF1 at day 10 of the differentiation protocol 

increased the proportion of erythrocytes, but she did not study the effect on RBC 

maturation in detail [130]. Variability between experiments made it difficult to draw 

conclusions on the effect of KLF1 on RBC maturation, because one possible reason 

for variability is that randomly integrated KLF1-ERT transgenes might be silenced and 

unstable. To obtain the stable expression of tamoxifen-inducible KLF1 in iPSCs, we 

chose to insert our gene construct into AAVS1 locus rather than random integration 

[132].  The pZDonor-AAVS1-puromycin vector was used as the back bone vector and 

the CAG promoter was used to drive expression of the transgene, because it is a strong 

synthetic promoter frequently used to drive high levels of gene expression in 

mammalian cells, including ESCs [134]. 

3.4.2.1 Tamoxifen inducible KLF1 in COS7 cells 

Construction of pZDonor-AAVS1-Puromycin-CAG-HA-KLF1-ERT2-PA and 

pZDonor-AAVS1-Puromycin-CAG-HA-Mut KLF1-ERT2-PA was described in 

Chapter 2 (see Chapter 2 Section 2.2.1.1). In order to confirm that the constructs are 

capable of producing the appropriate fusion protein in mammalian cells, the plasmids 

(pCAG GFP, pZDonor-AAVS1-CAG-HA-KLF1-ERT2-PA and pZDonor-AAVS1-

CAG-HA-Mut-KLF1-ERT2-PA) were transfected into COS7 cells (a fibroblast cell 

line derived from monkey kidney tissue) by Xfect reagent, respectively. The efficiency 

of transfection was greater than 90 % as measured in pCAG-GFP-transfected cell one 

day post transfection (Figure 3.4A). Three days post transfection, cell lysates were 

analysed by Western blot using anti-HA tag, anti-KLF1 and anti-GAPDH antibodies. 

The predicted sized fusion proteins were detected as 74 KDa consisting of the HA tag 

(1KDa), KLF1 (38KDa) and ERT2 (35Kda) (Figure 3.4B), and some other smaller 

bands might be degradation products. 

To confirm that the ERT2 fusion proteins could translocate to the nucleus upon 

tamoxifen induction, transfected cells treated with or without tamoxifen for one day 
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were evaluated by Immunofluorescence (IF) staining with the anti-HA antibody. HA-

KLF1-ERT2 and HA-Mut-KLF1-ERT2 were detected in the cytoplasm in the absence 

of tamoxifen and these fusion proteins were detected in the nuclei (DAPI-positive) 

when 200 nM of tamoxifen was added (Figure 3.4C). Comparable results were 

observed using anti-KLF1 antibody in IF staining (Figure 3.4D). It was interesting to 

note that some HA-Mut-KLF1-ERT2 was observed in the cytoplasm in the presence of 

tamoxifen. This is possible because Mut-KLF1 cannot bind to DNA and thus might 

not be retained in the nucleus. This result suggests that KLF1, but not Mut-KLF1 

functions normally in the cells. 

To summarise, COS7 cells are able to express fusion proteins HA-KLF1-ERT2 and 

HA-Mut-KLF1-ERT2 at a detectable level using anti-HA tag and anti-KLF1 antibodies. 

Also, IF staining data suggest that HA-KLF1-ERT2 and HA-Mut-KLF1-ERT2 fusion 

proteins can translocate into the nuclei upon tamoxifen induction.   
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Figure 3.4 The nuclear translocation of tamoxifen inducible KLF1 in COS7 cells 

A. Transfection efficiency in COS7 cells demonstrated by transfection with a pCAG 

GFP vector and observed one day post transfection. Bright field (left) and green 

channel (right) (x20). B. Fusion protein was detected by Western blot. The COS7 cells 

were transfected with constructs (pCAG GFP, pZDonor-AAVS1-CAG-HA-KLF1-

ERT2-PA and pZDonor-AAVS1-CAG-HA-Mut-KLF1-ERT2-PA) and were harvested 

Three days post transfection. Western blot analysis was conducted to detect fusion 

proteins HA-KLF1-ERT2 and HA-Mut-KLF1-ERT2 using anti-HA tag (αHA), anti-

KLF1 (αKLF1) and anti-GAPDH (αGAPDH) antibodies. The predicted protein size is 

approximately 74KDa (arrow). C. Nuclear localisation of fusion protein was observed 

by IF staining. COS7 cells were transfected with constructs (pZDonor-AAVS1-CAG-

HA-KLF1-ERT2-PA and pZDonor-AAVS1-CAG-HA-Mut-KLF1-ERT2-PA) and 

subcellular localisation was evaluated by using an anti-HA tag antibody and DAPI 

nuclei dye. D. Subcellular localisation was also evaluated by using an anti-KLF1 

antibody and DAPI nuclei dye. Scale bar = 10 μm. 
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3.4.2.2 Tamoxifen inducible KLF1 in K562 cells 

To further validate these constructs, we tested them in K562 (a human chronic 

myelogenous leukaemia cell line) to assess whether they are able to activate any of the 

known KLF1 target genes. K562 cells were transfected with pCAG GFP by Xfect 

reagent, but the transfection efficiency of this cell line was relatively low (Figure 3.5A), 

so we decided to generate stable cell lines. 2 μg/ml puromycin was used to select K562 

cells after transfecting with pZDonor-AAVS1-CAG-HA-KLF1-ERT2-PA or pZDonor-

AAVS1-CAG-HA-Mut-KLF1-ERT2-PA. After two weeks of selection, untransfected 

K562 cells died in the puromycin selection, whereas transfected cultures contained 

viable cells. To confirm the function of KLF1 in selected K562 cells, the cells with 

inducible KLF1 or inducible Mut-KLF1 were cultured in the presence and absence of 

tamoxifen for three days. The expression of KLF1 targets, AHSP (Alpha haemoglobin 

stabilising protein) and HBB (β-haemoglobin) were analysed by qRT-PCR. Activation 

of KLF1, but not Mut-KLF1 upregulated AHSP and HBB expression by two and seven 

folds, respectively. (Figure 3.5B). 

Taken together, the data demonstrate that the pZDonor-AAVS1-CAG-HA-KLF1-

ERT2-PA is capable of producing functional HA tagged KLF1-ERT2 that can activate 

target genes in K562 cells. We noted that the level of target gene induction observed 

was not as high as that seen by Rui Ma which could indicate that the HA tag affects 

the activity of KLF1. 
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Figure 3.5 The activation of target genes by tamoxifen inducible KLF1 in K562 
cells 

A. Transfection efficiency in K562 cells. To assess the efficiency of transfection, K562 

cells were transfected by pCAG GFP and observed one day post transfection. Bright 

field (left) and green channel (right) (x20). B. Quantitative RT-PCR analyses of RNA 

isolated from untransfected control cells (K562), K562 cells transfected with 

pZDonor-AAVS1-CAG-HA-KLF1-ERT2-PA (K562 KLF1-ERT2) and K562 cells 

transfected with or pZDonor-AAVS1-CAG-HA-Mut-KLF1-ERT2-PA (K562 Mut 

KLF1-ERT2) in the absence (-) and presence (+) of tamoxifen for 3 days using primers 

to AHSP and HBB. Data represent the mean of 3 independent experiments and error 

bars show standard error of the mean (SEM). A student T test was used to assess the 

effect of KLF1 activation in K562 cells (*, p<0.05). 
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3.4.2.3 Tamoxifen inducible KLF1 targeted in the AAVS1 of hiPSCs 

Human iPSCs were transfected with pZDonor-AAVS1-CAG-HA-KLF1-ERT2-PA, 

p622L and p622R (plasmids which express zinc finger nucleases - ZFNs) by 

electroporation, and cells were selected in puromycin for 2 weeks. 29 colonies were 

selected and expanded in 6 well plates. We designed internal and external primers to 

detect targeting events in the AAVS1 locus of genomic DNA by PCR analysis. These 

primers are able to generate specific PCR products when the KLF1 construct was 

targeted into the expected site in the genome (Figure 3.6A). On the other hand, there 

would be a non-targeted PCR product if there is no integration in AAVS1 locus (Figure 

3.6B). 13 clones had an integration into both AAVS1 alleles (ie homozygous targeted), 

for example, iKLF1.1 and iKLF1.2 cell lines with targeted PCR products. 14 selected 

clones had an integration into one of the AAVS1 alleles (ie heterozygous targeted) as 

demonstrated by the fact that both targeted and non-targeted PCR products were 

detected, for example, iKLF1.19 and iKLF1.25 cell lines. In 2 selected cell lines, 

iKLF1.4 and iKLF1.27, no targeting events were detected and twice as much non-

targeted PCR products were observed. In this experiment, the targeting efficiency was 

93%. 

The targeting results were also confirmed by Southern blot (Supplementary Figure S1). 

We designed the internal probe targeting the regions in the AAVS1-left arm of 

pZDonor AAVS1 puromycin vector. The genomic DNA was digested by SphI and 

detected using DIG-labelled internal probes. An expected band 6.4 Kb was observed 

in parental iPSCs, on the other hand, an expected band 3.9 Kb was detected in iKLF1.1 

and iKLF1.2 (Supplementary Figure S1A and B). On the other hand, the external probe 

was designed to target the regions in the endogenous AAVS1 locus. A band 6.4 Kb was 

observed in parental iPSCs, and an expected band 7.7 Kb was detected in iKLF1.2 

(Supplementary Figure S1C and D). Although iKLF1.1 give rise an expected band 7.7 

Kb, we also noted a band approximately 4 Kb in the result indicating that the iKLF1.1 

cell line also contained a random integration (Supplementary Figure S1C and D). 

The PCR data indicate that iKLF1.1 / iKLF1.2 cell lines (homozygous targeted) and 

iKLF1.19 / iKLF1.25 cell lines (heterozygous targeted) are correctly integrated with 

KLF1-ERT2 in the AAVS1 locus, however, Southern blot data suggest the iKLF1.2 cell 

line is correct clone without random integration.  
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Figure 3.6 Tamoxifen inducible KLF1 targeted in the AAVS1 locus of hiPSCs 

A. Schematic of genomic structure of targeted AAVS1 alleles showing the locations of 

diagnostic internal and external PCR assays. PCR product 1 and 2 were generated by 

internal primers, and PCR product 3 and 4 were generated by external primers. B. The 

non-targeted AAVS1 allele was able to be detected by external primers. (AAVS1-LA, 

AAVS1 left homology arm; SA, splice acceptor; 2A, a self-cleaving peptide sequence; 

Puro, puromycin resistance gene; Poly A, polyadenylation sequence; AAVS1-RA, 

AAVS1 right homology arm.) 
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3.4.2.4 Comparison of iKLF1 cell lines 

Cell lysates of iKLF1.1, iKLF1.2, iKLF1.19 and iKLF1.25 cell lines were collected 

for Western blot to analyse whether the fusion protein HA-KLF1-ERT2 was expressed 

in cells. The result showed that iKLF1.1 / iKLF1.2 / iKLF1.25 expressed the expected 

proteins (approximately 74KDa) (Figure 3.7A). 

Erythroid differentiation of these 4 cell lines was initially assessed in the presence and 

absence of tamoxifen from day 10, and the proportion of CD235a+/CD71+ 

erythroblasts were assessed by flow cytometry at day 15 (Figure 3.7B). Upon 

activation of KLF1 in iKLF1.1 / iKLF1.2 and iKLF1.25, the percentage of erythroid 

lineage cells increased and this increase was not observed in control iPSCs that did not 

harbour the KLF1-ERT2 transgene. In the case of the iKLF1.19 cell line, although the 

KLF1 construct was targeted to AAVS1 locus (as assessed by PCR analysis of genomic 

DNA), these cells did not express detectable levels of the HA-KLF1-ERT2 fusion 

protein (Figure 3.7A) and the percentage of erythroid lineage cells did not increase 

when tamoxifen was added (Figure 3.7B). However, due to time constrains and the 

expense of cytokines in the differentiation medium, this experiment was performed 

only once and would have to be repeated before we can conclusively state that that this 

cell line is non-responsive to tamoxifen due to the low level of expression of the fusion 

protein. 

We compared the levels of expression of the fusion protein and the effects of KLF1 

activation on the production of erythroblasts in the three different iKLF1 cell lines 

(Figure 3.7A, B).  The iKLF1.2 cell line was chosen for all our subsequent experiments 

because it demonstrated a stable fusion protein expression and the highest proportion 

of erythroblast production upon activation (Figure 3.7B).  
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Figure 3.7 KLF1-ERT2 fusion protein is expressed in iKLF1 cell lines and KLF1 
activation increases the erythroid lineage 

A. Western blot analyses of cell lysates from control iPSCs, two homozygous targeted 

cell lines (iKLF1.1 and iKLF1.2) and two heterozygous targeted cell lines (iKLF1.19 

and iKLF1.25) using anti-HA (αHA), anti-KLF1 (αKLF1) and anti-GAPDH 

(αGAPDH) antibodies. The predicted protein size is approximately 74KDa (1KDa of 

HA tag plus 38KDa of KLF1 plus 35KDa of ERT2). B. Comparison of erythroid 

differentiation capacity among parental iPSCs and four iKLF1 cell lines. Control 

iPSCs, iKLF1.1, iKLF1.2, iKLF1.19 and iKLF1.25 were differentiated in the defined 

protocol in the presence (+) and absence (-) of tamoxifen from day 10 to day 15. 

Differentiating cells at day 15 were analysed by flow cytometry using antibodies 

against CD235a and CD71 to mark erythroblasts. 
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3.4.2.5 The expression of KLF1 and KLF1-ERT2 in iKLF1.2 cell line 

We compared the expression of KLF1 in adult CD34+-derived cells, undifferentiated 

iPSC, iPSC-derived cells, undifferentiated iKLF1.2 and iKLF1.2-derived cells by 

qRT-PCR (Figure 3.8A). The result showed there was no KLF1 transcript in 

undifferentiated iPSCs, and lower expression of KLF1 in iPSC-derived cells while 

comparing with adult CD34+-derived cells. Of note, the level expression of KLF1 in 

iKLF1.2-derived cells was comparable to the level of expression in adult CD34+-

derived cells. Meanwhile, we confirmed that ERT2 transcript was only expressed in 

undifferentiated iKLF1.2 and iKLF1.2-derived cells (Figure 3.8B). 

We also confirmed the endogenous KLF1 proteins and KLF1-ERT2 fusion proteins in 

nuclear extracts isolated from adult CD34+-derived cells, undifferentiated iPSC, iPSC-

derived cells, undifferentiated iKLF1.2 and iKLF1.2-derived cells following treatment 

with or without tamoxifen (Figure 3.8C). The expression of endogenous KLF1 

proteins in iPSC-derived cells and iKLF1.2-derived cells were lower than in adult 

CD34+-derived cells which were consistent with the level of KLF1 transcript. Most 

importantly, an addition of tamoxifen resulted in the translocation of KLF1-ERT2 

protein into the nucleus, and KLF1-ERT2 protein in iKLF1.2-derived cells in the 

presence of tamoxifen is comparable to the endogenous KLF1 protein in adult CD34+-

derived cells. Although we noted a low level of KLF1-ERT2 fusion protein in the crude 

nuclear extracts in undifferentiated iKLF1.2 and iKLF1.2-derived cells in the absence 

of tamoxifen, we were uncertain whether this is due to cytoplasmic contamination 

(GAPDH antibodies was used as a cytoplasmic loading control) or leakiness of the 

ERT2 system. 

The data suggest that the physiological level of KLF1-ERT2 protein is expressed in 

iKLF1.2-derived cells in the presence of tamoxifen, therefore, iKLF1.2 was chosen to 

further evaluate erythropoiesis. 
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Figure 3.8 iKLF1.2-derived cells express physiological level of KLF1-ERT2 

A, B. Quantitative RT-PCR analyses of cells (adult CD34+-derived cells that had been 

differentiated for 6 days into erythroid progenitors, control undifferentiated iPSCs and 

iPSC-derived cells at day 10, undifferentiated iKLF1.2 and iKLF1.2-derived cells at 

day 10) were carried out with primers to KLF1 (A) that amplifies both endogenous 

KLF1 and exogenous KLF1-ERT2, and primers to ERT2 (B) that amplify only the 

exogenous transgene KLF1-ERT2. C. Western blot analyses of nuclear cell lysates from 

above cell samples and iKLF1.2 differentiating cells with tamoxifen for 3 hours 

(+Tamoxifen).  Endogenous KLF1 and the expected larger sized KLF1-ERT2 fusion 

protein were detected with the anti-KLF1 antibody (αKLF1). The anti-Lamin B1 

(αLaminB1) and anti-GAPDH (αGAPDH) antibodies were used as a nuclear loading 

control and a cytoplasmic loading control, respectively. 
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3.5 Conclusion 

1) The defined differentiation protocol was capable of generating multipotent 

HPCs and erythroid cells from iPSCs, and erythroid genes were detectable 

during the differentiation. We also noted that poor membrane stability, lower 

enucleation rate and enriched primitive erythroid cells were observed in the 

defined differentiation protocol, and these limitations might result from lower 

level expression of KLF1 in the iPSC-derived cells comparing to CD34+-derived 

cells. 

2) A tamoxifen inducible KLF1-ERT2 transgene was constructed in the pZDonor-

AAVS1 puromycin vector. Nuclear translocation and functional activation of the 

fusion protein was confirmed in COS7 cells and K562 cells. iKLF1 iPSC lines 

were then generated by targeting the KLF1-ERT2 transgene to the AAVS1 locus. 

The cell line iKLF1.2 was confirmed as a correct targeted cell line that expressed 

a physiological level of the KLF1-ERT2 fusion protein.  
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3.6 Discussion 

3.6.1 Limitations of defined erythroid differentiation protocol 

We evaluated the defined differentiation protocol developed by Olivier et al [79], and 

the haematopoietic capacity of day 10 differentiating cells has been confirmed in this 

chapter and in our previous study [131], this suggests multi-lineage HPCs are present 

within the population of cells at day 10 of the differentiation process. Our results also 

indicated that the iPSC could be differentiated into erythroid lineage cells, however, 

this differentiation protocol generated heterogeneous haematopoietic cells. 

Erythroid cells generated from hPSCs have a poor membrane stability [79], [86], [96] 

lower enucleation rate [67], [76], [86] and express embryonic and foetal rather than 

adult globin [76], [85], [96], [135]. Similarly, our results showed many cells with 

damaged membranes and debris were observed during erythroid differentiation, this 

indicates a fragile morphology at the later stage of erythroid differentiation. 

Meanwhile, we observed a poor enucleation efficiency and high level expression of 

embryonic globin. Our result also showed that less KLF1 proteins were detected in 

iPSC-derived erythrocytes than in adult CD34+-derived erythrocytes which we 

hypothesized could be one of the reasons for the phenotype observed. 

3.6.2 Primitive? Definitive? Two waves? 

We assessed the expression of genes associated with definitive erythropoiesis during 

the differentiation, including cMYB [39] and SOX6 [36]. The result showed that a 

stable increase of SOX6 and the transient expression of cMYB during the differentiation, 

which hints that definitive erythropoiesis occurs in this defined differentiation protocol. 

Globin genes, HBB and HBE1, were expressed in iPSC-derived erythrocytes, this also 

indicates both primitive and definitive erythropoiesis occur in the defined 

differentiation protocol. However, the transcripts of HBB was significantly lower than 

HBE1, likely due to the fact that this defined differentiation protocol favours the 

production of primitive erythroid cells. Alternatively, the lower expression of KLF1 

was detected in iPSC-derived cell while comparing with CD34+-derived cells, and the 

level expression of KLF1 might be too low to trigger BCL11A activation, thereby not 

completing globin switching to adult globin [120], [121]. 
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GFI1B has been reported to be highly expressed in megakaryocyte-erythroid 

progenitors (MEPs) and controls erythroid differentiation [136]–[138]. We noted that 

the expression of GFI1 peaked at day 5 and day 17, which indicated there were 

erythroid progenitors appearing at these two time points. Additionally, the percentage 

of CD235a+ cell population was evaluated by flow cytometry during erythroid 

differentiation. The result showed that there were two upward trends from day 3 to 10 

and from day 17 to 24, which also indicates there might be two separate waves of 

erythropoiesis. Collectively, qRT-PCR and flow cytometry results support the idea 

that there are two waves of erythropoiesis in our differentiation protocol, and the first 

window from day 3 to day 10 potentially being primitive erythropoiesis, and the 

second window from day 17 to 24 being the definitive EMP like erythropoiesis. 

3.6.3 The KLF1-ERT2 system in hiPSC (iKLF1 cell lines) 

Trakarnsanga et al reported that the expression of KLF1 and BCL11A is required above 

a threshold level to induce adult globin expression [139]. We further evaluated the 

expression of endogenous KLF1 and transgene KLF1-ERT2 in the iKLF1.2 cell line. 

Western blot showed the expression level of KLF1-ERT2 in differentiating iKLF1.2 is 

comparable to the expression level of endogenous KLF1 in the adult CD34+-derived 

cells, and this indicated that physiological levels of KLF1 are achieved using this 

strategy. 

Additionally, we noted that a low level of KLF1-ERT2 fusion protein in the crude 

nuclear extracts in undifferentiated iKLF1.2 and iKLF1.2-derived cells in the absence 

of tamoxifen, this might be due to cytoplasmic contamination. Although we had a 

cytoplasmic loading control (GAPDH) to show the possibility of cytoplasmic 

contamination, some studies have indicated GAPDH might appear in nucleus because 

of being associated with apoptosis, oxidative stress [140] and some cases, such 

as  histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell 

signalling [141]. Furthermore, a recent study has revealed the leakiness of ERT2 system 

in bone marrow cells [142]. We were uncertain whether leakiness of the ERT2 system 

occurs in the iKLF1.2 cell line. However, it would be difficult to quantify how much 

amount of ERT2 fusion proteins leaks into nuclei without tamoxifen induction. 
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4.1 Introduction 

Due to the fact that human PSCs-derived erythroid cells have a poor membrane 

stability [79], [86], [96] lower enucleation rate [67], [76], [86] and express embryonic 

and foetal rather than adult globin [76], [85], [96], [135]. To ameliorate these issues, 

we considered optimising the erythroid differentiation by enhancing a key erythroid 

gene. We noticed that less KLF1 proteins were detected in iPSC-derived erythrocytes 

than in adult CD34+-derived erythrocytes, this might lead to above limitations (see 

Chapter 3 Section 3.6.1). KLF1 is essential in definitive erythropoiesis, since Klf1-

deficient embryos die of anaemia during foetal liver erythropoiesis [23], [33], [108]. 

KLF1 plays an important role in the maturation of RBC, in part of regulating 

cytoskeleton and maintaining the membrane stability [26], [27]. KLF1 also regulates 

erythroblasts in different aspects, such as enhancing erythroid differentiation coupled 

with reduced proliferation [143], [144], and regulating globin genes directly [22], [25], 

[28], [29], and indirectly [120], [121]. We hypothesised that KLF1 activation during 

erythroid differentiation promotes the production of mature erythrocytes. 

4.2 Aim 

To evaluate the effects of activating KLF1 on the production of erythroid cells 

from iPSCs 

4.3 Approaches 

1. To evaluate the effect of KLF1 activation in progenitor cells, erythroid cells 

were derived from iKLF1.2 cell line in the presence and absence of tamoxifen 

from day 10. The production and maturation of erythroid cells was assessed by 

microscopy, flow cytometry, qRT-PCR and HPLC. 

2. To assess the effect of KLF1 activation in the late stage of erythroid cells, cells 

were derived from iKLF1.2 cell line in the presence and absence of tamoxifen 

from day 18. The production and maturation of erythroid cells was assessed by 

microscopy, flow cytometry, qRT-PCR and HPLC. 
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4.4 Result 

All the data in this chapter was generated using one iPSCs clone (iKLF1.2) and we 

acknowledged that this might be a drawback when interpreting our data. Different 

iKLF1 lines could be subjected to variations of cell proliferation, differentiation 

efficiency and their response to tamoxifen treatment etc. We have controlled for the 

most likely artefactual effects of tamoxifen addition by using the control, parental 

iPSC cells that do not contain the KLF1-ERT2 transgene but a full analyses of additional 

iKLF1 clones would support for our conclusions. 

4.4.1  Evaluation of activated-KLF1 during the differentiation from day 10 

The cell population at day 10 of the differentiation protocol contained the maximum 

number of CD34+ / CD43+ cells, and the capacity of blood differentiation from this 

multi-lineage haematopoietic progenitor cells (HPCs) has been confirmed (see Chapter 

3 Section 3.4.1.1). In order to evaluate the effect of KLF1 in HPCs, we activated KLF1 

using tamoxifen from day 10 of the differentiation protocol. 

4.4.1.1 Assessment of phenotype 

In a comparison of the cultures between parental iPSC and iKLF1.2, there are no 

obvious differences during the maintenance of their stemness and during the period of 

mesoderm specification and haematopoietic induction (Figure 4.1A). After activating 

KLF1 from day 10, there were no obvious differences at day 17 (Figure 4.1A), but by 

day 24 KLF1-activated cells appeared redder, indicating enhanced erythropoiesis 

(Figure 4.1A). 

When harvesting differentiating cells for flow cytometry at day 15, we noted that the 

cell pellet from KLF1-activated cells had a more intense red colour compared to 

parental iPSC-derived cells and non-tamoxifen-treated iKLF1.2-derived cells (Figure 

4.1B). Flow cytometry analysis demonstrated that the percentage of cells expressing 

both CD235a and CD71 increased obviously at days 15 and 24 upon activation of 

KLF1 from day 10 (Figure 4.1C and D). At day 31, the flow cytometry result showed 

that erythroid lineage cells became more mature, because most CD235a+ cells lost 

erythroblasts marker, CD71 (Figure 4.1E). 
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Taken together, activation of KLF1 from day 10 has an effect on the red appearance 

of the cell pellet and more percentage of erythroblasts, the data suggest KLF1 enhances 

erythroid differentiation.  
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Figure 4.1 Activation of KLF1 enhances erythroid differentiation 

A. Diagram showing the activation of KLF1 by adding tamoxifen from day 10 during 

erythroid differentiation. Appearance of cultures of parental iPSCs and iKLF1.2-

derived cells in the absence and presence (+Tam) of tamoxifen were observed in time 

course. B. Cell pellets of day 15 differentiating cells in the absence or presence of 

tamoxifen. C-E. Erythroid marker CD235a and erythroblast marker CD71 were 

assessed using flow cytometry at day 15 (C), day 24 (D) and day 31 (E). 
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4.4.1.2 Assessment of cell proliferation and viability 

Activation of KLF1 enhanced the red appearance of cell pellet, and we also noted that 

tamoxifen-treated cultures generated a smaller cell pellet. To measure cell proliferation, 

3x105 differentiating cells were seeded at day 10 of differentiation then further 

differentiated in the presence or absence of tamoxifen, we confirmed quantitatively by 

cell counting implying that KLF1 had a detrimental effect on cell proliferation (Figure 

4.2A). To address whether the poor cell proliferation is caused by cell death, flow 

cytometry analysed cells using LIVE/DEAD™ Fixable Near-IR Stain for viability, 

however, there was no significant difference in cell viability at days 15, 24 and 31 

upon activating KLF1 from day 10 (Figure 4.2B), therefore, the reduced cell number 

does not result from cell death. 

To investigate the role of KLF1 in proliferation, the expression of KLF1 target genes 

related to cell proliferation, apoptosis and cell cycle was analysed by qRT-PCR at day 

24 (Figure 4.2C). We firstly confirmed that there were no significant effects on 

tamoxifen treatment when analysing iPSC-derived cells in the presence and absence 

of tamoxifen from day 10. The qRT-PCR results demonstrated that activation of KLF1 

significantly upregulated the expression of PIM1 (cell survival), BCLX (Bcl2l1; anti-

apoptosis), p21 and p27 (cell cycle inhibitors), but no impacts on the expression of 

E2F2 (cell proliferation) and p18 (cell cycle inhibitor).  

The data suggest that activation of KLF1 reduces cell proliferation during erythroid 

differentiation, this might result from upregulation of p21 and p27 (cell cycle 

inhibitors). The cell proliferation arrest is not caused by cell death, the qRT-PCR result 

also confirmed that KLF1-activated cells represent higher expression of PIM1 (cell 

survival) and BCLX (anti-apoptosis).   
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Figure 4.2 Activation of KLF1 reduces cell proliferation during erythroid 
differentiation 

A. Cell numbers of erythroid cells derived from parental iPSCs and iKLF1.2 cell line 

during erythroid differentiation in the presence (+Tam) or absence of tamoxife. Data 

represent the mean of 3 independent experiments and error bars show standard error 

of the mean (SEM). P values were calculated using two-way ANOVA followed by 

multiple comparisons test (***, p<0.0005). B. Flow cytometry analysis using live/dead 

staining dye for viability present at days 15, 24 and 31 of the erythroid differentiation 

protocol in the presence (+) and absence (-) of tamoxifen from day 10. Data represent 

3 independent experiments. Error bars represent standard error of the mean (SEM). C. 

Quantitative RT-PCR analyses of RNA isolated from iPSC-derived cells and iKLF1.2-

derived cells at day 24 following treatment with (+) or without (-) tamoxifen from day 

10 using primers to PIM1, E2F2, BCLX, p21, p27 and p18. Data represent the mean 

of 3 independent experiments and error bars show the standard error of the mean 

(SEM). A ratio paired T test was used to assess the effect of KLF1 activation (*, 

p<0.05). 
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4.4.1.3 Assessment of erythroid maturation 

To confirm whether KLF1 activation enhances erythroid differentiation, we analysed 

the percentage of CD235a+ / CD71+ erythroblasts by flow cytometry, the data showed 

that the percentage of erythroblasts at day 15 significantly increased from 30 % to 60 

% once activating KLF1 from day 10 (Figure 4.3A). The proportions of erythroblast 

population at days 24 and 31 stayed at 30 % in 4 experimental groups, this indicated 

KLF1 activation did not maintain the erythroblast phenotype as high percentage at the 

late stage of differentiation (Figure 4.3A). 

When we analysed CD235a+ erythroid lineage cells, the percentages in KLF1-

activated group reached the highest point 70 % at days 15, 24 and 31, however, the 

statistical analysis only indicated the significant difference at day 15 (Figure 4.3B). 

To assess the effect of KLF1 activation on erythropoiesis, RNA isolated from iPSC-

derived cells and iKLF1.2-derived cells at day 15 following treatment with or without 

tamoxifen from day 10 was evaluated by qRT-PCR. Activation of KLF1 significantly 

increased the expression of SOX6 and AHSP (Figure 4.3C). 

The expression of genes involved in RBC maturation was also evaluated at day 24. 

The expression of GYPC (erythroid membrane protein), ANK1 (erythroid cytoskeleton) 

and SLC4A1 (erythroid cytoskeleton) and ABCG2 (heme transport and synthesis) were 

significantly increased, but there were no significant increases in the expression of 

SLC2A4 nor EPB4.9 (Figure 4.3D). Interestingly, the expression of BCL11A, a well-

known target gene of KLF1 was downregulated significantly, this might be the main 

reason of higher embryonic globin expression in HPLC analysis (see below). 

The above data suggest KFL1 activation from day 10 accelerates the erythropoiesis 

and also increases the maturity of erythroid cells, but not change the proportion of 

erythroblast population at the late stage of erythroid differentiation. 
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Figure 4.3 Activation of KLF1 accelerates the erythropoiesis and increases the 
maturity of erythroid cells 

A, B. Quantitation of flow cytometry data for control iPSC and iKLF1.2-derived cells 

at days 15, 24 and 31 of the differentiation protocol in the presence (+) or absence (-) 

of tamoxifen from day 10. Differentiating cells were analysed by flow cytometry using 

antibodies against CD235a and CD71. The percentage of CD235a+ / CD71+ cells (A) 

and the proportion of the percentage of CD235a+ cells (B) were represented in 3 

independent experiments and error bars show standard error of the mean (SEM). P 

values were calculated using one-way ANOVA followed by multiple comparison test 

(**, p<0.005). C, D. Quantitative RT-PCR analyses of RNA isolated from control 

iPSC and iKLF1.2-derived cells in the presence (+) and absence (-) of tamoxifen at 

day 15 (C) and 24 (D). Quantitative RT-PCR analysis was conducted using primers to 

SOX6, AHSP, GYPC, ANK1, SLC4A1, SLC2A4, EPB4.9, ABCG2 and BCL11A. Data 

represent the mean of 3 independent experiments and error bars show the standard 

error of the mean (SEM). A ratio paired T test was used to assess the effect of KLF1 

activation in iKLF1.2 cells (*, p<0.05; **, p<0.005).   
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4.4.1.4 Assessment of globin protein profile 

Cell lysates were sent to our collaborator (Jo Mountford's laboratory in the University 

of Glasgow) to assess the production of globin proteins by high performance liquid 

chromatography (HPLC) analysis (Figure 4.4). β- and α-globins were enriched in adult 

blood, and Gγ-, Aγ- and α-globins were mainly comprised in foetal blood. In the hPSC-

derived blood sample, we were able to observe the peaks of Gγ-, Aγ-, α-, ε- and ζ-

globins, but not β-globin (Figure 4.4A). 

There were similar distributions of peaks in iPSC and iKLF1.2-derived erythroid cells 

(Figure 4.4B), and the amount of ε- and ζ-globins seemed to be higher when activating 

KLF1. Hence, the areas of peaks were calculated and represented as percentages for 

each globins (Figure 4.4C). Activation of KLF1 from day 10 to day 31 significantly 

increased the percentage of the embryonic ε- and ζ-globins and reduced the proportion 

of γ-globin. No adult β-globin was detected in either the parental iPSCs nor iKLF1.2 

samples (Figure 4.4C). 

These data in this context indicate that activation of KLF1 from day 10 of the 

differentiation protocol enhances the production of erythroid cells that express globins 

associated with the primitive wave of haematopoiesis.  
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Figure 4.4 Activation of KLF1 enhances embryonic globins 

A. HPLC globin profiles of three control samples. Adult blood expresses β- and α-

globins, hPSC-derived blood cells contain Gγ-, Aγ-, α-, ε- and ζ-globins and foetal 

blood contains Gγ-, Aγ- and α-globins. B. HPLC results showed the profile of globins 

in iPSC and iKLF1.2-derived erythroid cells at day 31. C. The amount of the different 

globin was calculated as the areas under the peaks and represented as a percentage of 

the total globin. Data represent the mean of 3 independent experiments and error bars 

show standard error of the mean (SEM). P values were calculated using two-way 

ANOVA followed by multiple comparisons test (B). (*, p<0.05). 
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4.4.1.5 Assessment of enucleation 

Enucleation is an important indicator for erythroid maturation. To confirm the 

enucleation, iPSC-derived erythrocytes and iKLF1.2-derived erythrocytes were sorted 

using anti-CD235a beads in MACS beads system, and then they were cytospun on 

slides and conducted with rapid Romanowsky staining. KLF1-activated cells were 

revealed to have a more robust morphology while comparing with iPSC-derived cells 

and iKLF1.2-derived cells without tamoxifen treatment. Additionally, a higher 

frequency of enucleated erythroid cells was observed in cultures where KLF1 was 

activated compared to control cultures (Figure 4.5A). 

To correctly quantify the proportion of enucleated erythroid cells, Dr  Fidanza in 

Forrester’s lab developed an enucleation assay in flow cytometry. Differentiating cells 

were harvested and stained with CD235a-FITC antibody, CD71-APC antibody, the 

LIVE/DEAD™ Fixable Near-IR Stain and Hoechst dye. Stained cells were analysed 

in flow cytometry by gating live CD235a+ cells, and we expected to observe CD235a+ 

/ CD71+ / Hoechst+ erythroblasts, CD235a+ / CD71¯ / Hoechst+ nucleated RBCs and 

CD235a+ / CD71¯ / Hoechst¯ enucleated RBCs (Supplementary Figure S2). A positive 

control was also used that consisted of human peripheral blood in which all of the 

RBCs were CD235a+ / CD71¯ / Hoechst¯ enucleated RBCs (Supplementary Figure 

S2). 

At day 24, the majority of cells were CD235a+ / CD71+ / Hoechst+ erythroblasts and 

there was no difference in the enucleation rate between non-KLF1-activated cells and 

KLF1-activated cells (Figure 4.5B). Erythrocytes at day 31 of erythroid differentiation 

protocol lost the CD71 erythroblast marker as they became more mature (Figure 4.5C). 

Most importantly, the percentage of enucleated RBCs increased from approximately 2 

% to 6 % when KLF1 was activated (Figure 4.5D), the result of enucleation assay in 

flow cytometry was consistent with cytospin result. 

The data suggest the KLF1 activation leads to a more robust morphology and a higher 

proportion of detectable enucleated erythroid cells.  
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Figure 4.5 Activation of KLF1 enhances the enucleation efficiency 

A. Cytospins of differentiating cells at day 31. Enucleated erythroid cells were 

indicated by arrows (x40). B, C. The evaluation of enucleation rate at day 24 (B) and 

day 31 (C) by flow cytometry. Differentiating cells derived from control iPSCs and 

iKLF1.2 cell line in the presence and absence of tamoxifen were assessed by an 

enucleation assay. C. Quantification of the percentage of enucleated erythroid cells at 

day 24 and day 31 in three independent experiments of control iPSC and iKLF1.2-

derived cells in the presence (+) and absence (-) of tamoxifen from day 10. Data 

represent the mean of 3 independent experiments and error bars show standard error 

of the mean (SEM). P values were calculated using one-way ANOVA followed by 

multiple comparison test (*, p<0.05).  
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4.4.2 Evaluation of activated-KLF1 during the differentiation from day 18 

We have observed that activation of KLF1 from day 10 enhances the erythropoiesis, 

maturation and enucleation efficiency, but KLF1-activated cells expressed embryonic 

globins (ε and ζ). This suggests that the activation of KLF1 from day 10 in our 

differentiation protocol enhances primitive erythropoiesis rather than the definitive 

wave. This might be explained by the fact that the majority of erythroid progenitors at 

day 10 are with a primitive phenotype, and definitive erythroid progenitors appear at 

later stages of the differentiation protocol (see Chapter 3 Section 3.6.2).  Therefore, 

we added tamoxifen to activate KLF1 from day 18 and evaluated the effect at the late 

stage of erythroid differentiation. 

4.4.2.1 Assessment of phenotype 

In order to assess the effects of KLF1 activation at the late stage of erythroid 

differentiation, here, we activated KLF1 adding tamoxifen from day 18 (Figure 4.6A). 

Erythroid cells with red colour appeared from day 21, and there was no obvious 

difference between the KLF1-activated group and control groups (Figure 4.6B).  

Flow cytometry analysis demonstrated that there was no apparent difference in the 

percentage of CD235a+ / CD71+ cells at day 24 when KLF1 was activated from day 

18 (Figure 4.6C), and erythroid lineage cells in 4 groups matured by day 31, with most 

CD235+ cells losing CD71 (Figure 4.6D). 

The data indicate that KLF1 activation at the late stage of erythroid differentiation has 

no effect on the appearance of red cells and phenotype. 
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Figure 4.6 Activation of KLF1 at the late stage has no effect on morphology and 
phenotype 

A. Diagram showing the activation of KLF1 by adding tamoxifen from day 18 during 

erythroid differentiation. B. Appearance of cultures of parental iPSCs and iKLF1.2-

derived cells in the absence and presence (+Tam) of tamoxifen were observed at days 

21, 24 and 31. C, D. Erythroid marker CD235a and erythroblast marker CD71 were 

assessed using flow cytometry at day 24 (C) and day 31 (D). 
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4.4.2.2 Assessment of cell proliferation and viability 

To measure the cell proliferation, 3x105 differentiating cells were seeded at day 10 of 

differentiation then further differentiated in the presence or absence of tamoxifen from 

day 18. The result of counting showed that activation of KLF1 at the later stage of 

erythroid differentiation significantly reduced the cell number at day 31 (Figure 4.7A). 

We then evaluated the viability using live/dead staining in flow cytometry and 

demonstrated that activation of KLF1 from day 18 did not affect the cell viability 

(Figure 4.7B). Hence, the decrease of cell number does not result from cell death. 

To assess the effect of KLF1 on proliferation arrest, the expression of KLF1 target 

genes associated with proliferation was analysed by qRT-PCR at day 24 (Figure 4.7C). 

The qRT-PCR results showed that activation of KLF1 significantly repressed the 

expression of E2F2 (cell proliferation) and p18 (cell cycle inhibitor), but no impacts 

on the expression of PIM1, BCLX, p21 and p27. 

The data suggest that activation of KLF1 at the later stage of erythroid differentiation 

reduces cell proliferation, down-regulation of E2F2 might be one possible pathway 

leading to proliferation arrest.  
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Figure 4.7 Activation of KLF1 at the late stage reduces cell proliferation 

A. Cell numbers of erythroid cells derived from parental iPSCs and iKLF1.2 cell line 

during erythroid differentiation in the presence (+Tam) or absence of tamoxifen from 

day 18. Data represent the mean of 3 independent experiments and error bars show 

standard error of the mean (SEM). P values were calculated using two-way ANOVA 

followed by multiple comparisons test (***, p<0.0005). B. Flow cytometry analysis 

using live/dead staining dye for viability present at days 24 and 31 of the erythroid 

differentiation protocol in the presence (+) and absence (-) of tamoxifen from day 18. 

Data represent 3 independent experiments. Error bars represent standard error of the 

mean (SEM). C. Quantitative RT-PCR analyses of RNA isolated from iPSC-derived 

cells and iKLF1.2-derived cells at day 24 following treatment with (+) or without (-) 

tamoxifen from day 18 using primers to PIM1, E2F2, BCLX, p21, p27 and p18. Data 

represent the mean of 3 independent experiments and error bars show the standard 

error of the mean (SEM). A ratio paired T test was used to assess the effect of KLF1 

activation (*, p<0.05). 
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4.4.2.3 Assessment of erythroid maturation 

When we analysed CD235a+ / CD71+erythroblasts (Figure 4.8A) and CD235a+ 

erythroid cells (Figure 4.8B) by flow cytometry, there were no significant differences 

while comparing the control group and KLF1-activated group at days 24 and 31. 

To assess the effect of KLF1 activation on gene expression, RNA isolated from iPSC-

derived cells and iKLF1.2-derived cells at day 24 following treatment with or without 

tamoxifen from day 18 was evaluated by qRT-PCR. There were no significant 

differences in the expression of most genes associated with erythroid maturation while 

comparing non-KLF1-activated cells and KLF1-activated cells. Interestingly, the 

expression of BCL11A, a well-known target gene of KLF1 was downregulated 

significantly, this might be the reason why embryonic globins were still expressed 

highly in HPLC analysis (see below). 

The above data suggest KFL1 activation at the late stage of erythroid differentiation 

has no significant effect on erythroid maturation.  
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Figure 4.8 Activation of KLF1 at the late stage has no effect on erythroid genes 

A, B. Quantitation of flow cytometry data for control iPSC and iKLF1.2-derived cells 

at day 24 and day 31 of the differentiation protocol in the presence (+) or absence (-) 

of tamoxifen from day 18. Differentiating cells were analysed by flow cytometry using 

antibodies against CD235a and CD71. The percentage of CD235a+ / CD71+ cells (A) 

and the proportion of the percentage of CD235a+ cells (B) were represented in 3 

independent experiments and error bars show standard error of the mean (SEM). C. 

Quantitative RT-PCR analyses of RNA isolated from control iPSC and iKLF1.2-

derived cells in the presence (+) and absence (-) of tamoxifen at day 24. Quantitative 

RT-PCR analysis was conducted using primers to SOX6, AHSP, GYPC, ANK1, 

SLC4A1, SLC2A4, EPB4.9, ABCG2 and BCL11A. Data represent the mean of 3 

independent experiments and error bars show the standard error of the mean (SEM). 

A ratio paired T test was used to assess the effect of KLF1 activation in iKLF1.2 cells 

(*, p<0.05). 
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4.4.2.4 Assessment of globin protein profile 

The HPLC result showed that iPSC-derived erythroid cells and iKLF1.2-derived 

erythroid cells can express Gγ-, Aγ-, α-, ε- and ζ-globins with comparable distribution 

(Figure 4.9A). We calculated areas of peaks from triplicates and found that activation 

of KLF1 from day 18 did not result in any significant differences between the control 

group and KLF1-activated group (Figure 4.9B). 

Therefore, activation of KLF1 at day 18 of the differentiation protocol has no impact 

in the late stage of erythroid cells, furthermore, this does not enhance the population 

of definitive erythroid cells.   
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Figure 4.9 Activation of KLF1 has no effect on globin protein profile 

A. HPLC results showed the profile of globins in iPSC and iKLF1.2-derived erythroid 

cells at day 31 following treatment with (+Tam) or without tamoxifen from day 18. B. 

The amount of the different globin was calculated as the areas under the peaks and 

represented as a percentage of the total globin. Data represent the mean of 3 

independent experiments and error bars show standard error of the mean (SEM). 
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4.4.2.5 Assessment of enucleation 

Differentiating cells at day 24 (Figure 4.10A) and day 31 (Figure 4.10B) were 

evaluated in the enucleation assay by flow cytometry, and we found the enucleation 

rates were as low as the previous results. Differentiating cells at day 31 were more 

mature than the cells at day 24, since most erythroid cells at day 31 were losing the 

erythroblast marker CD71. 

The enucleation assay was repeated for three times, the result showed that the parental 

iPSC-derived erythroid cells in the presence and absence of tamoxifen from day 18 

represented approximately 2 % of enucleation rate at day 24 and day 31 (Figure 

4.10C). However, the enucleation efficiency of non-KLF1-activated cells and KLF1-

activated cells were 6 % with no significant differences (Figure 4.10C). 

Taken together, these data demonstrate that activation of KFL1 from day 18 has no 

impact on the efficiency of enucleation.  
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Figure 4.10 Activation of KLF1 at the late stage has no effect on the enucleation 
efficiency 

A, B. The evaluation of enucleation rate at day 24 (A) and day 31 (B) by flow 

cytometry. Differentiating cells derived from control iPSCs and iKLF1.2 cell line in 

the presence and absence of tamoxifen from day 18 were assessed in an enucleation 

assay. C. Quantification of the percentage of enucleated erythroid cells at day 24 and 

day 31 in three independent experiments of control iPSC and iKLF1.2-derived cells in 

the presence (+) and absence (-) of tamoxifen from day 10. Data represent the mean of 

3 independent experiments and error bars show standard error of the mean (SEM).  

  

iPSC iPSC
+Tamoxifen

iKLF1.2 iKLF1.2 
+Tamoxifen

Hoechst 

C
D

71
 

Hoechst 

iPSC iPSC
+Tamoxifen

iKLF1.2 iKLF1.2 
+Tamoxifen

C
D

71
 

Day 24 Day 31C 

A Day24 

B Day 31 



104 
 

4.5 Conclusion 

1) Activation of KLF1 at the HPC stage (from day 10) accelerated the 

erythropoiesis, enhanced erythroid maturation and enucleation efficiency at the 

expense of cell proliferation. However, activating KLF1 from day 10 promoted 

the primitive erythropoiesis and resulted in higher expression of embryonic 

globin. 

2) There was no obvious impact on erythropoiesis upon the activation of KLF1 at 

the late stage of erythroid differentiation (from day 18), but KLF1 activation 

again reduced cell proliferation. It did not enhance the expression of adult β-

globin and the enucleation efficiency. 
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4.6 Discussion 

4.6.1 KLF1 activation results in proliferation arrest but not cause cell death 

Activation of KLF1 at the HPC stage (from day 10) or the late stage of erythroid 

differentiation (from day 18) leads to reduced proliferation. However, there is no 

difference on cell viability between parental iPSC-derived cells and iKLF1.2-derived 

cells in the presence and absence of tamoxifen, indicating that the reduction in cell 

numbers is not caused by cell death and apoptosis. 

Several studies have reported the role of KLF1 in proliferation, whose target genes are 

associated with cell proliferation, apoptosis and cell cycles, such as PIM1, E2F2, 

BCLX, p21, p27 and p18. PIM1 is a survival component of erythroblasts and affects 

cell proliferation [118]. E2F2 regulated by KLF1 is required for cell cycle progression 

during terminal erythroid differentiation [106], [107]. BCLX has an anti-apoptotic 

function in primitive and definitive erythrocytes and erythroblasts [116], [117]. Three 

cell cycle inhibitors, p18, p21 and p27, are critical during late stages of erythropoiesis, 

thereby indicating a relationship between erythroid differentiation and cell cycle exit 

[34], [105], [115]. Our qRT-PCR result supports the point that activation of KLF1 

from day 10 increased the expression of cell cycle inhibitors (p21 and p27), this reveals 

that cell proliferation is arrested in the cell cycle during erythroid differentiation. The 

enhanced expression of an anti-apoptotic component (BCLX) and a survival 

component (PIM1) was revealed when activating KLF1 at the HPC stage (from day 

10), this indicates activation of KLF1 does not lead to cell death and apoptosis. 

However, the reduced cell proliferation in KLF1 activation from day 18 results from 

decreased expression of E2F2, this suggests that KLF1 regulates the proliferation 

arrest in HPCs and in the late stage of erythroid cells through different pathways. 

4.6.2 KLF1 activation from day 10 accelerates the process of erythropoiesis 

KLF1 regulates erythropoiesis by enhancing erythroid differentiation coupled with 

reduced proliferation [143], [144]. According to our results of a higher percentage of 

CD235a+ / CD71+ erythroblasts, higher expression of erythroid genes, more enucleated 

cells and a decreased cell number upon activating KLF1 from day 10, this indicates 
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that activation of KLF1 at the HPC stage promotes erythroid differentiation at the 

expense of cell proliferation. However, KLF1 activation from day 10 does not maintain 

the erythroblast phenotype as a high percentage at the later stage, this suggests KLF1 

activation at the HPC stage accelerates the process of erythropoiesis instead of 

maintaining in the erythroblast stage. 

4.6.3 KLF1 activation from day 10 results in erythroid cells becoming more 

mature and robust 

Foetal liver-derived null KLF1 erythroid cells have an abnormal morphology, and 

most of the cells retain their nucleus [23], [33], [34], this hints that KLF1 is involved 

in the terminal differentiation of erythropoiesis. Our qRT-PCR result showed that 

KLF1 activation in HPCs upregulates the expression of GYPC (erythroid membrane 

protein) and ABCG2 (heme transport and synthesis), this suggests KLF1-activated 

cells are represented as more mature phenotypes. 

Furthermore, KLF1 is involved in the maturation of RBCs by regulating cytoskeleton 

and maintaining the membrane stability [26], [27]. The target genes include EPB4.9 

(Dematin), ANK1 (Ankyrin 1) and SLC4A1 (Band 3), loss of these transmembrane 

proteins or cytoskeleton contributes to the fragility of erythrocytes [26], [27], [111], 

[112]. Our qRT-PCR result indicated KLF1 activation at the HPC stage increases the 

expression of ANK1 and SLC4A1. This supports that KLF1-activated cells have a more 

mature phenotype and this also explains the fact that more robust morphology in 

cytospin, thereby detecting a higher percentage of enucleated cells in an enucleation 

assay by flow cytometry. 

4.6.4 KLF1 activation from day 10 promotes primitive erythropoiesis 

KLF1 is required for adult β-globin gene transcription [99], [119], but loss of KLF1 

diminishes the expression of  εy- and βH1-globin genes [22], [25], [28], [29]. This 

suggests KLF1 regulates both embryonic globin and adult globin in primitive and 

definitive erythrocytes. HPLC analysis showed that both non-KLF1-activated cells 

and KLF1-activated cells express foetal globin (α-, Gγ- and Aγ-globins) and 

embryonic globin (ε- and ζ-globins), this indicates that a mixed population of primitive 
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and definitive erythroid cells are generated from the defined erythroid differentiation 

protocol, also, our defined differentiation protocol enriches the primitive 

erythropoiesis (see Chapter 3 Section 3.6.2). Therefore, that might be a reason why 

activation of KLF1 from day 10 enhances the production of erythroid cells that express 

globins associated with the primitive wave of haematopoiesis. 

Of note, a well-known target gene of KLF1, BCL11A, silences foetal globin and 

indirectly upregulates adult β-globin expression [120], [121], was downregulated 

significantly upon activating KLF1 from day 10. This might be another reason of 

higher embryonic globin expression but no adult globin expression. 

4.6.5 KLF1 activation from day 18 has no significant effect on erythropoiesis 

We describe there might be two waves of erythropoiesis in the defined differentiation 

protocol (see Chapter 3 Section 3.6.2), so we activated KLF1at the later stage of 

erythroid differentiation and assessed whether this could promote definitive 

erythropoiesis. The results of KLF1 activation at the late stage of erythroid 

differentiation (from day 18) showed limited impact. Cell proliferation was reduced 

by activating KLF1 from day 18, but activation of KLF1 at the late stage of 

differentiation did not enhance erythropoiesis, as assessed by the proportion of 

erythroid lineage cells, KLF1 target gene expression,  globin protein profile and 

enucleation efficiency. This suggests that activation of KLF1 does not affect the late 

stage of erythroid cells. There are several possible reasons for this finding: (1) cells at 

the late stage of erythropoiesis are not competent to respond to KLF1 and/or KLF1 is 

only required at a precise point in the process but not at day 18. A live image study has 

reported that nuclear import of KLF1 occurs during the ProE to BasoE transition [145], 

and this indicates KLF1 is required at the particular stage of erythroid development. 

(2) the ERT2 system is slightly leaky and so it is possible that there is some KLF1 

activation occurring in the cells that are not treated with tamoxifen and at later stages 

the addition of tamoxifen might not exert any additional effect. The fact that the 

enucleation rate at day 31 in the iKLF1.2 cell line was higher than control cells in the 

absence of tamoxifen lends support to this hypothesis. 
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4.6.6 No adult globin is expressed in iPSC-derived cells and KLF1-activated 

erythroid cells 

Trakarnsanga et al reported that the expression of KLF1 and BCL11A is required above 

a threshold level to induce adult globin expression and repress embryonic and foetal 

globins [139]. They also showed that adult globin (β-globin) cannot be activated by 

only KLF1 induction [139]. This is consistent with our result that adult globin is not 

detected in the differentiating cells with neither activating KLF1 from day 10 nor 

activating KLF1 from day 18. We then hypothesised that another TFs might be 

required for the maturation of definitive erythrocytes. Recent studies have reported 

that BCL11A plays a key role in the suppression of foetal globin expression [120], 

[121], and it is regarded as a marker for definitive erythropoiesis [12], [30], [32]. 

Therefore, our next step was to evaluate the effect of both KLF1 and BCL11A during 

erythroid differentiation to assess whether this could result in the production of mature 

RBC expressing adult globin.  
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Chapter 5 

Evaluation of lentivirus-GFP-BCL11A in control and 

iKLF1.2 iPSCs during erythroid differentiation 

 

  



110 
 

5.1 Introduction 

Activation of KLF1 at the HPCs stage of iPSCs differentiation enhanced the 

differentiation and maturation of erythroid cells but did not increase adult globin 

expression indicating that additional factors are required for this process. Trakarnsanga 

et al also showed that an adult level of β-globin was detected in the PSC-derived cells 

that were transfected with KLF1 and BCL11A [139]. In another study, a low level of 

BCL11A-L in hPSC-derived erythroblasts is associated with impaired γ-globin 

silencing, and activation of BCL11A-L effectively down-regulated foetal globin and 

upregulated adult globin [146]. These studies led to the hypothesis that expression of 

BCL11A in iPSC-derived erythroid cells could enhance the expression of β-globin. To 

test this hypothesis, we acquired a lentivirus vector, pXLG3-BCL11A XL, from Dr 

Jan Frayne at the University of Bristol and transduced this into differentiating control 

iPSCs. To assess the effects of both KLF1 and BCL11A on erythroid differentiation 

and β-globin expression, iKLF1.2 were treated with tamoxifen to activate KLF1 and 

transduced with lentivirus-GFP-BCL11A. 

5.2 Aim 

1. To evaluate the effects of overexpression of BCL11A on iPSCs-derived 

erythroid cells  

2. To assess the effects of both KLF1 and BCL11A on iPSCs-derived erythroid 

cells 

5.3 Approaches 

1. To test the lentivirus-GFP-BCL11A in iPSC-derived HPCs, the effects of 

BCL11A transduction on cell proliferation, RBC maturation and the 

expression of β-globin were assessed by cell counts, flow cytometry, qRT-PCR 

and HPLC. 

2. To evaluate the effect of KLF1 activation and lentivirus-GFP-BCL11A 

transduction on the production and maturation of RBCs from iKLF1.2 cell line, 

differentiating cells were assessed by cell counts, flow cytometry and qRT-

PCR.  
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5.4 Result 

One iPSCs clone (iKLF1.2) was analysed in this chapter and we acknowledged that 

this might be a drawback when interpreting our data. Different iKLF1 lines could be 

subjected to variations of transduction efficiency, differentiation efficiency and their 

response to tamoxifen treatment etc. We have controlled for the most likely artefactual 

effects of tamoxifen addition by using the control, parental iPSC cells that do not 

contain the KLF1-ERT2 transgene but a full analyses of additional iKLF1 clones would 

support for our conclusions. 

5.4.1 Lentivirus-GFP-BCL11A transduction in hiPSCs 

5.4.1.1 Cell counts and flow cytometry analysis 

A control GFP-lentivirus was used to establish a transduction protocol for iPSC-

derived HPCs at day 10 (Supplementary Figure S3). GFP fluorescence was evaluated 

by flow cytometry one day after virus transduction, and the percentage of GFP+ cells 

hit the highest point at a multiplicity of infection (MOI) 100 (Supplementary Figure 

S3). 

To evaluate the effect of BCL11A on iPSC-derived cells, day 10 cells were transduced 

with the lentivirus-GFP-BCL11A at MOI 100. Transduction of lentivirus-GFP-

BCL11A did not alter cell morphology (data not shown), nor cell number as assessed 

by cell counts (Figure 5.1A) and the size of the cell pellet at day 15 and 24 (Figure 

5.1B). Flow cytometry analysis demonstrated that the viability was approximately 80 

% at day 15 and approximately 55% at day 24 in both experimental groups (Figure 

5.1C). To assess the efficiency of viral transduction, we analysed the percentage of 

GFP+ cells. 70 % of cells expressed GFP at day 15 and 60 % at day 24 (Figure 5.1D). 

There was no statistical difference in the percentage of CD235a+ cells between control 

iPSC-derived cells and BCL11A-transduced cells at days 15 and 24 (Figure 5.1E). 

Taken together, our data indicate that transduction of BCL11A has no significant effect 

on cell proliferation and erythroid differentiation.   
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Figure 5.1 Lentivirus-GFP-BCL11A does not enhance erythroid differentiation 

Day 10 iPSC-derived cells were transduced with the lentivirus-GFP-BCL11A (LV-

BCL11A) at MOI 100. A. Total cell numbers were counted during the differentiation 

process. Data represent the mean of 3 independent experiments and error bars show 

standard error of the mean (SEM). B. Cell pellets of day 15 and 24 differentiating cells 

in the absence or presence of lentivirus-GFP-BCL11A (LV-BCL11A). C-E. Viability 

(C), transduction efficiency (D) and percentage of CD235a+ cells (E) were analysed 

by flow cytometry at day 15 (D15) and day 24 (D24). Data represent 3 independent 

experiments. Error bars represent standard error of the mean (SEM). P values were 

calculated using one-way ANOVA and multiple comparison test (**, p < 0.005).
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5.4.1.2 Gene expression analyses 

As BCL11A is a key modulator of globin gene expression [120], [121], we sought to 

assess whether BCL11A transduction could increase the expression of adult globin in 

differentiating iPSCs. Day 10 differentiating cells were transduced with lentivirus-

GFP-BCL11A then analysed by qRT-PCR at days 15 and 24.  The expression of 

BCL11A and HBB increased significantly in BCL11A-transduced cells at day 15, but 

there was no effect on the expression of KLF1, SOX6, ASHP, p21, p18 and HBE1 

(Figure 5.2A). Analyses of day 24 cells demonstrated that lentivirus-GFP-BCL11A 

significantly enhanced the expression of BCL11A, SOX6 and HBB and repressed the 

expression of HBE1 and SLC2A4 apparently (Figure 5.2B). 

The data suggest that BCL11A transduction promotes the expression of some 

definitive erythroid genes and represses the expression of embryonic globin. 
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Figure 5.2 Lentivirus-GFP-BCL11A promotes the expression of some definitive 
erythroid genes 

Gene expression was evaluated by qRT-PCR at day 15 (A) and day 24 (B). 

Differentiating cells were harvested from control iPSC-derived cells (-) and BCL11A-

transduced cells (+), and qRT-PCR was conducted using specific primers for genes 

(BCL11A, KLF1, SOX6, AHSP, EPB4.9, p21, p18, HBB, HBE1, ABCG2, GYPC, 

ANK1, SLC4A1, SLC2A4, PIM1, E2F2 and BCLX). Data represent the mean of 3 

independent experiments and error bars show standard error of the mean (SEM). P 

values were calculated using a ratio paired t test (*, p<0.05; **, p<0.005).  

B 
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5.4.1.3 Assessment of globin protein profile 

To assess the effects of lentivirus-GFP-BCL11A transduction on the profile of globin 

proteins, day 24 cell lysates were harvested for HPLC analysis. The result showed that 

iPSC-derived erythroid cells express Gγ-, Aγ-, α-, ε- and ζ-globins (Figure 5.3A), and 

a small proportion of β-globin protein was observed in response to lentivirus-GFP-

BCL11A transduction (Figure 5.3A). Quantification of the HPLC analyses 

demonstrated that transduction of BCL11A increased the proportion of β-, Gγ- and α-

globins and decreased the percentages of ε- and ζ-globins (Figure 5.3B). 

The data indicate that transduction of BCL11A at day 10 increases the production of 

α-, β-, Gγ- and Aγ-globins, thus some of BCL11A-transduced cells are definitive-like 

erythroid cells which expressed higher foetal and adult globins.  
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Figure 5.3 Lentivirus-GFP-BCL11A enhances the expression of adult globin 

A. HPLC results showed the distribution of embryonic, foetal and adult globin proteins 

in control and BCL11A transduced iPSCs at day 24. B. Percentages of different 

globins were calculated by measuring the areas under the peaks. Data represent the 

mean of 3 independent experiments and error bars show standard error of the mean 

(SEM). P values were calculated using one-way ANOVA and multiple comparison 

test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005).  

0.0 10.0 20.0 30.0 40.0 50.0 60.0 75.0
-20

100

200

300

400

500 03-06-15-JUPITERC4-42-56%-50MINS-0-05-50DEGREE TAO #12 UV_VIS_1
mAU

min

1 - 2.860

2 - 4.153

3 - 4.887

4 - 7.693

5 - 9.420

6 - 17.160

7 - 18.760

8 - 21.860

9 - 23.240

10 - 41.080

11 - 42.913

12 - 62.653

13 -

WVL:220 nm

Flow: 0.050 ml/min
%B: 42.0 %

56.0

80.0

42.0

%C: 0.0 %
%D: 0.0 %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 75.0
-20

100

200

300

400

500 03-06-15-JUPITERC4-42-56%-50MINS-0-05-50DEGREE TAO #16 UV_VIS_1
mAU

min

1 - 2.880

2 - 4.147

3 - 5.033

4 - 7.820

5 - 8.633

6 - 17.193

7 - 18.713

8 - 22.073

9 - 23.747

10 - 41.167

11 - 43.273

12 - 62.653

13

WVL:220 nm

Flow: 0.050 ml/min
%B: 42.0 %

56.0

80.0

42.0

%C: 0.0 %
%D: 0.0 %iPSC 

+ LV-BCL11A 

iPSC 

A 

β ζ ε 
Gγ 

α 
Aγ 

B 



117 
 

5.4.2 Lentivirus-GFP-BCL11A transduction in iKLF1.2 cells 

The above results indicated that BCL11A did not promote the production of erythroid 

cells from iPSCs, but did have an effect on globin switching from embryonic to foetal 

and adult globins. We next set out to assess whether the enhanced expression of both 

KLF1 and BCL11A could promote the differentiation of erythroid cells that express 

adult globin. 

5.4.2.1 Cell counts and flow cytometry analysis 

To evaluate the effects of both KLF1 and BCL11A, we transduced differentiating cells 

derived from the iKLF1.2 cell line with the lentivirus-GFP-BCL11A. Cell 

proliferation was analysed by cell counts, the result showed the lentivirus-GFP-

BCL11A transduction caused a massive decrease in cell number while comparing 

untransduced iKLF1.2-derived cells and BCL11A-transduced iKLF1.2-derived cells 

(Figure 5.4A). When we activated KLF1 with tamoxifen and transduced BCL11A by 

lentivirus transduction system, this was detrimental to cell proliferation strictly (Figure 

5.4A). The cell pellets harvested at days 15 and 24 were compared to each other, the 

data showed that lentivirus-GFP-BCL11A lead to a smaller size of cell pellet (Figure 

5.4B). 

To assess viability, cells were analysed by flow cytometry using 7-AAD viability dye. 

There was no apparent difference in viability between control iKLF1.2-derived cells 

and BCL11A-transduced iKLF1.2-derived cells at day 15 of the differentiation process 

with 60 – 80 % viable cells present (Figure 5.4C). Viability at day 24 dropped to 

approximately 40 % in BCL11A-transduced cells with tamoxifen activation from day 

10 (Figure 5.4C). 

The transduction efficiency in iKLF1.2-derived cells was approximately 50 – 60 % as 

assessed by the proportion of GFP+ cells (Figure 5.4D). The percentage of CD235a+ 

cells at day 15 was about 25% in the control group in the absence of KLF1 activation 

and BCL11A transduction, and the proportion of CD235a+ cells increased to 70 % in 

cells that had been transduced with BCL11A and KLF1 had been activated from day 

10 (Figure 5.4E). 
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These data demonstrate that although the presence of both BCL11A and KLF1 has an 

effect on the production of erythroid cells, viral transduction in this context is severely 

detrimental to cell proliferation.   
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Figure 5.4 Lentivirus-GFP-BCL11A transduction in iKLF1.2-derived cells 
reduces cell proliferation 

Day 10 iKLF1.2 differentiating cells were transduced by lentivirus-GFP-BCL11A 

(LV-BCL11A) and in the absence (-) or presence (+) of tamoxifen. A. Total cell 

numbers were counted during the differentiation. Data represent the mean of 3 

independent experiments and error bars show standard error of the mean (SEM). P 

values were calculated using two-way ANOVA and multiple comparison test (***, p 

< 0.0005; ****, p < 0.00005). B. Cell pellets of day 15 and 24 differentiating cells in 

the absence or presence of lentivirus-GFP-BCL11A (LV-BCL11A) and Tamoxifen.  

C-E. Viability (C), the transduction efficiency (D) and the percentages of CD235a+ 

cell population (E) were analysed in flow cytometry at day 15 (D15) and day 24 (D24). 

Data represent 3 independent experiments. Error bars represent standard error of the 

mean (SEM). P values were calculated using one-way ANOVA and multiple 

comparison test (*, p < 0.05; **, p < 0.005). 
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5.4.2.2 Gene expression analysis 

iKLF1.2-derived cells at day 10 were transduced by lentivirus-GFP-BCL11A and 

treated with or without tamoxifen, and day 15 differentiating cells were harvested for 

qRT-PCR to assess the gene expression. The results showed that the expression of 

BCL11A, SOX6 and HBB increased significantly in BCL11A-transduced cells and 

BCL11A-transduced cells plus tamoxifen (Figure 5.5), however, the expression of 

KLF1 targets, AHSP, EPB4.9, p21 and p18 were not upregulated in the BCL11A-

transduced cells in the presence of tamoxifen (Figure 5.5). Because viral transduction 

led to a significant decrease of cell proliferation, there was insufficient cell number for 

the qRT-PCR experiment and HPLC analysis at day 24.  

These data indicate that BCL11A transduction could increase some definitive 

erythroid genes, however, we are not able to observe the effect of KLF1 in the 

BCL11A-transduced iKLF1.2-derived cells. 
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Figure 5.5 Lentivirus-GFP-BCL11A increases the expression of some definitive 
erythroid genes in iKLF1.2-derived cells 

Day 15 differentiating cells were harvested from iKLF1.2-derived cells (LV-BCL11A: 

-) and BCL11A-transduced iKLF1.2-derived cells (LV-BCL11A: +) in the absence 

(Tamoxifen: -) and presence of tamoxifen (Tamoxifen: +) from day 10. Quantitative 

RT-PCR was conducted use specific primers for genes (BCL11A, KLF1, SOX6, AHSP, 

EPB4.9, p21, p18, HBB and HBE1). Data represent 3 independent experiments. Error 

bars represent standard error of the mean (SEM). P values were calculated using a ratio 

paired T test (*, p < 0.05; **, p < 0.005).  
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5.5 Conclusion 

1) The transduction of BCL11A in iPSC-derived cells had no effect on cell 

proliferation and erythroid differentiation, but BCL11A transduction 

significantly enhanced the expression of some definitive erythroid genes and 

repressed the expression of embryonic globin. The HPLC assay also showed that 

some of BCL11A-transduced cells were definitive-like erythroid cells which 

expressed higher proportion of foetal and adult globins.  

2) Lentivirus-GFP-BCL11A transduction in iKLF1.2-derived cells resulted in a 

poor cell proliferation and upregulated the expression of some definitive 

erythroid genes. However, it was difficult to define the effect of KLF1 activation 

in this viral transduction experiment.  
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5.6 Discussion 

5.6.1 BCL11A transduction in hiPSC-derived erythroid cells increases definitive 

erythropoiesis but does not enhance the maturation 

We first demonstrated that BCL11A-transduced iPSC-derived erythroid cells 

expressed a higher proportion of foetal / adult globin and a lower proportion of 

embryonic globin. This indicates BCL11A promotes the definitive erythropoiesis. The 

small proportion of embryonic globin might result from a primitive cell population 

which was not transduced successfully by lentivirus-GFP-BCL11A. Since the 

transduction efficiency at day 15 is approximately 70 %, and 30 % of non-BCL11A-

transduced cells might stay at the primitive stage. 

The process of globin switching from foetal globin to adult globin requires the 

cooperation of BCL11A, SOX6  GATA1, MYB and DNMT1, [37], [50], [51]. Our 

result showed that BCL11A transduction in iPSC-derived cells upregulated the 

expression of SOX6 and HBB. The possible reason is that BCL11A transduction causes 

a change to the definitive phenotype, and this definitive phenotype might lead to 

positive feedback to recruit more co-factors toward definitive erythropoiesis. 

We did not observe an increase in erythroid cell production/differentiation nor the 

upregulation of most erythroid-related genes when cells were transduced with 

BCL11A. This suggests that enhanced expression of BCL11A does not improve the 

production and maturation of RBCs from iPSCs. These results support the idea that 

BCL11A is a co-factor involved in the process of globin switching [146] but not in the 

production and maturation of erythroid cells [31]. 

5.6.2 No conclusion of the effects on BCL11A transduction in iKLF1.2-derived 

erythroid cells 

It was not possible to make a conclusion of the effects from both KLF1 and BCL11A, 

because of the poor cell proliferation when BCL11A has been transduced by lentivirus-

GFP-BCL11A and KLF1 has been activated by adding tamoxifen. However, we 

discuss a couple of points as below. 
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The expression of SOX6 and HBB increased significantly when comparing iKLF1.2-

derived erythroid cells with and without BCL11A transduction, this suggests the 

lentivirus-GFP-BCL11A has the same effect on iKLF1.2-derived cells and parental 

iPSC-derived cells (see Section 5.6.1). KLF1 has been reported to target β-globin 

promoter and regulate its expression [99], however, activation of KLF1 in BCL11A-

transduced iKLF1.2-derived cells did not result in higher level expression of HBB 

while comparing to BCL11A-transduced iKLF1.2-derived cells. This could either the 

level expression of HBB reached a plateau or activation of KLF1 was not activated 

successfully by adding tamoxifen. 

To compare the viability post lentiviral transfection, the viability of iPSC-derived cells 

was 80 % five days post transfection and 55 % fourteen days post transfection and 

BCL11A-transduced iKLF1.2-derived cells with 60 – 80 % viable cells and 40 – 50 % 

viable cells present, respectively. This suggests lentiviral transfection might cause 

more cell death in the iKLF1.2 cell line. However, this part of experiment did not 

include and empty vector control, therefore, it is not possible to assess whether the 

effect on reduced cell numbers resulted from lentiviral transduction or from the 

addition of BCL11A. 

5.6.3 Leakiness of ERT2 system in iKLF1.2-derived erythroid cells with lentiviral 

transfection 

The lentiviral transfection resulted in a poor cell proliferation in iKLF1.2-derived 

erythroid cells and our previous result showed that the anti-proliferation effect was 

caused by KLF1 activation (see Chapter 4 Section 4.6.1). Therefore, there is a possible 

reason is the leakiness of ERT2 system in iKLF1.2-derived erythroid cells while 

transducing with lentivirus-GFP-BCL11A. 

In addition, BCL11A has not been reported to enhance erythropoiesis, and we did not 

observe the effect of enhancing erythropoiesis when transducing BCL11A in iPSC-

derived cells (see Chapter 5 Section 5.6.1). However, we observed a high percentage 

of erythroid lineage cells in BCL11A-transduced iKLF1.2-derived cells without KLF1 

activation, which level is similar to BCL11A-transduced / KLF1-activated cells 

(Figure 5.4E). This phenomenon supports the point that the leakiness of KLF1-ERT2 
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occurs in this case. However, we do not have enough cell samples to demonstrate qRT-

PCR assay at day 24, so that the effect of enhancing erythroid genes from leakiness of 

KLF1-ERT2 cannot be discussed. 

5.6.4 The transduction of lentivirus-GFP-BCL11A 

Because of random integration of lentivirus, we were uncertain of a consistent 

expression of BCL11A in the cells. The random integration could be subjected to 

silencing and experiments using randomly integrated transgenes are difficult to 

reproduce [147], [148], however, the mechanisms of silencing from lentivirus vectors 

have not been characterised.  

Also, we do not know whether lentivirus-GFP-BCL11A transduction could reflect the 

physiological expression of BCL11A in the adult erythroid cells. All these reasons 

enable us to assess effects of both TFs with difficulties. To overcome these problems, 

we planned to generate an iPSC cell line in which both BCL11A and KLF1 are 

expressed in an inducible and comparable manner.  
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6.1 Introduction 

The activation of KLF1 during erythroid differentiation enhanced erythroid 

differentiation (see Chapter 4 Section 4.6.2 and Section 4.6.3) and transduction of the 

BCL11A lentiviral vector increased adult globin expression (see Chapter 5 Section 

5.6.1). To assess the effects of both transcription factors together using comparable 

strategies we generated an iPSC cell line in which the BCL11A-ERT2 and KLF1-ERT2 

transgenes were integrated into each of the two alleles of the AAVS1 locus. This 

allowed stable and inducible expression of BCL11A and KLF1 in iPSCs during the 

differentiation process. 

Based on our characterisation in Chapter 3, we believe that the defined differentiation 

protocol generates a rather heterogeneous cell population likely consisting of both 

primitive and definitive erythroid cells (see Chapter 3 Section 3.6.1). Analysis of the 

proportion of CD235a+ cells at defined time points revealed two upward trends; the 

first between days 3 to 10 and the second between days 17 to 24. We hypothesised that 

this represented two distinct waves of erythropoiesis (see Chapter 3 Section 3.6.2). 

Activation of KLF1 at the late stage of erythroid differentiation (day 18) had no 

significant effect on the maturation and adult globin expression (see Chapter 4 Section 

4.6.5 and 4.6.6). We hypothesised that KLF1 might require a co-factor, such as 

BCL11A, for maturation and adult globin expression in the late stage of erythroid cells. 

Here, we test that hypothesis by activating BCL11A and KLF1 at the late stage of the 

differentiation process.  
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6.2 Aim 

To assess the effects of activating both BCL11A and KLF1 in iPSCs-derived erythroid 

cells 

6.3 Approaches 

1. To generate consistent and reproducible expression of the BCL11A-ERT2 and 

KLF1-ERT2 fusion proteins in iPSCs, both transgenes were inserted into the 

AAVS1 locus. To verify the iPSC targeted with both BCL11A-ERT2 and KLF1-

ERT2, the targeting events were confirmed by PCR assay and fusion proteins 

were verified by Western blot. 

2. To assess the effects of both BCL11A and KLF1 in the late stage of iPSC-

derived erythroid cells, the production and maturation of RBCs were analysed 

by cell counts, qRT-PCR, flow cytometry and HPLC assay. 
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6.4 Result 

All the data in this chapter was generated using one iPSCs clone (iBK7) and we 

acknowledged that this might be a drawback when interpreting our data. Different iBK 

lines could be subjected to variations of cell proliferation, differentiation efficiency 

and their response to tamoxifen treatment etc. We have controlled for the most likely 

artefactual effects of tamoxifen addition by using the control, parental iPSC cells that 

do not contain both BCL11A-ERT2 and KLF1-ERT2 transgenes but a full analyses of 

additional iBK clones would support for our conclusions. 

6.4.1 Generation of tamoxifen-inducible BCL11A and KLF1 system in hiPSC 

6.4.1.1 Tamoxifen inducible BCL11A in COS7 cells 

Construction of pZDonor-AAVS1-CAG-BCL11A-ERT2-PA was described in Chapter 

2 (Figure 2.3). To confirm that the pZDonor-AAVS1-CAG-BCL11A-ERT2-PA was 

able to generate the correctly sized BCL11A-ERT2 fusion protein in mammalian cells, 

this vector was transfected into COS7 cells. Cell lysates from COS7 cells transfected 

with control GFP vector or pZDonor-AAVS1-CAG-BCL11A-ERT2-PA three days 

post transfection were analysed by Western blotting and the predicted sized fusion 

protein was detected as 130 KDa consisting of BCL11A (95KDa) and ERT2 (35KDa) 

(Figure 6.1A). The smaller bands that were detected by the anti-BCL11A antibody are 

possibly degradation products. 

To assess whether the BCL11A-ERT2 fusion protein could translocate to the nucleus 

upon addition of tamoxifen, COS7 cells were transfected with pZDonor-AAVS1-

CAG-BCL11A-ERT2-PA vector and treated with or without tamoxifen for one day 

then analysed by IF staining. The BCL11A-ERT2 fusion protein was detected by the 

anti-BCL11A antibody in the cytoplasm in the absence of tamoxifen, but after 

tamoxifen addition, it was detected in the nucleus (Figure 6.1B). 

These data demonstrate that the BCL11A-ERT2 fusion protein can be expressed 

efficiently in COS7 cells and that it can translocate into the nuclei upon tamoxifen 

induction.  
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Figure 6.1 The nuclear translocation of tamoxifen inducible BCL11A in COS7 
cells 

A. The BCL11A-ERT2 fusion protein was detected by Western blot using an anti-

BCL11A antibody (αBCL11A), and an anti-GAPDH antibody (αGAPDH) was used 

as a loading control. The predicted fusion protein size is approximately 130KDa 

(arrow). B. Subcellular localisation of the fusion protein was evaluated in transfected 

COS7 cells (COS7-BCL11A) in the absence and presence of tamoxifen by IF staining 

with an anti-BCL11A antibody and DAPI nuclei dye. Scale bar = 10 μm. 
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6.4.1.2 Tamoxifen inducible BCL11A in K562 cells 

To further validate the pZDonor-AAVS1-CAG-BCL11A-ERT2-PA construct, we 

tested it in K562 cells to assess whether the inducible BCL11A-ERT2 fusion protein 

could alter known BCL11A target genes, including HBB (β-haemoglobin), HBE1 (ε1-

haemoglobin) and HBG1 (γ1-haemoglobin). K562 cells were transfected with 

pZDonor-AAVS1-CAG-BCL11A-ERT2-PA and a stable cell line carrying the 

BCL11A-ERT2 transgene was generated by puromycin selection. RNA isolated from 

untransfected K562 cells and selected K562 cells with BCL11A-ERT2 following 

treatment with or without tamoxifen for three days was analysed by qRT-PCR. 

Activation of BCL11A upregulated HBB expression by two fold but no significant 

effect on the expression of HBE1 and HBG1 was observed (Figure 6.2). 

This data indicate that the pZDonor-AAVS1-CAG-BCL11A-ERT2-PA is capable of 

producing a functional BCL11A-ERT2 fusion protein that can activate the expression 

of HBB in K562 cells.  
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Figure 6.2 The activation of target genes by tamoxifen inducible BCL11A in 
K562 cells 

RNA isolated from untransfected K562 cells (K562) and selected K562 cells with 

BCL11A-ERT2 (K562-BCL11A-ERT2) following treatment with (+) or without (-) 

tamoxifen was analysed by qRT-PCR. The expression of genes was evaluated using 

primers to HBB, HBE1 and HBG1. Data represent the mean of 3 independent 

experiments and error bars show the standard error of the mean (SEM). A student T 

test was used to assess the effect of BCL11A activation (*, p<0.05).  

HBB HBE1 HBG1 
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6.4.1.3 Tamoxifen inducible BCL11A and KLF1 targeted in the AAVS1 of 

hiPSCs 

Comparable to that described for the production of the iKLF1 cell lines, iPSCs were 

transfected with pZDonor-AAVS1-CAG-BCL11A-ERT2-PA, pZDonor-AAVS1-

CAG-HA-KLF1-ERT2-PA, p622L and p622R by electroporation. After 2 weeks of 

puromycin selection, 12 selected colonies were expanded in 6 well plates. To analyse 

genomic DNA from selected cells by PCR, designed internal and external primers 

were able to generate specific PCR products when both BCL11A-ERT2 and KLF1-ERT2 

transgenes were targeted into the expected site (Figure 6.3A). The results showed that 

7 cell lines had the integration of BCL11A-ERT2 (Figure 6.3A, PCR 2 (purple)). 8 

selected cell lines had the integration of KLF1-ERT2 (Figure 6.3A, PCR 3 (blue)). 9 

selected cell lines had the correct integration in the AAVS1 alleles (Figure 6.3A, PCR 

4 (red) and PCR 5 (green). In this experiment, 4 selected cell lines were double targeted 

with both BCL11A-ERT2 and KLF1-ERT2 transgenes into each of the AAVS1 alleles, 

which were iBK3, iBK6, iBK7 and iBK10 cell lines (Figure 6.3A). 

For further confirmation of the double targeting event, we tested these 4 iBK cell lines 

by PCR analysis using the external primer recognising genomic AAVS1 region and 

internal primers recognising either  BCL11A or KLF1 (Figure 6.3B). In this PCR assay, 

the correct predicted size of PCR products was generated from genomic DNA samples 

of these 4 selected cell lines, iBK3, iBK6, iBK7 and iBK10. The efficiency of targeting 

both alleles was 33% (Figure 6.3B). 

We also addressed whether these 4 iBK cell lines could express both the BCL11A-ERT2 

and KLF1-ERT2 transgenes. We prepared cDNAs from iBK3, iBK6, iBK7 and iBK10 

cell lines and assessed the gene expression by PCR. The result showed that iBK7 and 

iBK10 expressed BCL11A-ERT2, and iBK3, iBK6 and iBK7 were able to express 

KLF1-ERT2 (Figure 6.3C). 

Cell lysates from iBK3, iBK6, iBK7 and iBK10 cell lines were collected for Western 

blot to analyse whether the fusion proteins BCL11A-ERT2 and HA-KLF1-ERT2 were 

produced. iBK7 and iBK10 cell lines expressed the expected proteins BCL11A-ERT2 

which was approximately 130 KDa (Figure 6.3D).  Consistent with PCR results, the 
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KLF1-ERT2 fusion protein (74 KDa) was detectable in iBK3, iBK6 and iBK7 cell lines 

(Figure 6.3D).  In conclusion, the iBK7 cell line is the only clone that stably expresses 

both BCL11A-ERT2 and HA-KLF1-ERT2 fusion proteins. 

To further validate the targeting result, genomic DNA from the iBK7 clone was 

analysed by Southern blot using an internal probe (Supplementary Figure S1A and B). 

An expected band 3.9 Kb was detected in iBK7 compared to the 6.4 Kb band in 

parental iPSCs. When we analysed genomic DNA using the external probe 

(Supplementary Figure S1C and D), an expected band 9.1 Kb was detected when the 

transgene BCL11A-ERT2 was correctly inserted into AAVS1 locus. However, we did 

not detect the expected band 7.7 Kb band for the correct insertion of the HA-KLF1-

ERT2 transgene (Supplementary Figure S1C and D). This could either result from 

inefficient or failed digestion, genomic rearrangement of the locus during integration 

or from a randomly integrated HA-KLF1-ERT2 transgene.  Given the time constraints 

of this work, we were unable to distinguish unequivocally between these alternative 

explanations. As we had shown that both fusion proteins were expressed in the 

undifferentiated iBK7 iPSCs, we went ahead and used this iBK7 clone to evaluate the 

effects of both BCL11A and KLF1 on erythropoiesis but kept this point in mind in the 

interpretation our results.  
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Figure 6.3 Tamoxifen inducible BCL11A and KLF1 targeted in the AAVS1 of 
hiPSCs 

A. The locations of diagnostic internal and external primers were shown in a schematic 

of AAVS1 targeting site. PCR products 1, 2 and 3 were generated by internal primers, 

and PCR products 4 and 5 were generated by external primers. (AAVS1-LA, AAVS1 

left homology arm; SA, splice acceptor; 2A, a self-cleaving peptide sequence; Puro, 

puromycin resistance gene; Poly A, polyadenylation sequence; AAVS1-RA, AAVS1 

right homology arm). B. iBK3, iBK6, iBK7 and iBK10 cell lines were further 

confirmed by PCR analysis. The PCR products were labelled as Ext B in colour purple 

for BCL11A-ERT2 integration and Ext K in colour blue for KLF1-ERT2 integration. C. 

The expression of BCL11A-ERT2 and KLF1-ERT2 transgenes in iBK3, iBK6, iBK7 and 

iBK10 cell lines. The cDNA samples from 4 iBK cell lines were analysed by PCR 

using particular primers for BCL11A-ERT2 and HA-KLF1-ERT2. D. Western blot of 

control cell lysates (including BCL11A-transfected-COS7 cells, parental iPSC and 

iKLF1.2) and cell lysates from iBK3, iBK6, iBK7 and iBK10. Fusion proteins 

BCL11A-ERT2 and HA-KLF1-ERT2 were detectable by using anti-BCL11A 

(αBCL11A) and anti-HA tag (αHA) antibodies, and anti-GAPDH (αGAPDH) 

antibody was used as a loading control. The predicted protein size was 130 KDa of 

BCL11A-ERT2 and 74 KDa of HA-KLF1-ERT2 (arrows).  
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6.4.2 Evaluation of activated-BCL11A and KLF1 during the differentiation 

from day 18 

Our defined differentiation protocol likely generates both primitive and definitive 

erythroid cells. The appearance of CD235a+ cells occurs in two periods from day 3 to 

10 and from day 17 to 24, which suggests that there are two distinct waves of 

erythropoiesis. We observed no effect of activating KLF1 at the late stage of erythroid 

differentiation (day 18) and hypothesised that KLF1 might require a co-factor, such as 

BCL11A, to regulate maturation and globin expression at the late stage of erythroid 

differentiation. To test this hypothesis, the effects of activating both BCL11A and 

KLF1 in the late stage of iBK7-derived erythroid cells (day 18) was evaluated (Figure 

6.4A). 

6.4.2.1 Assessment of phenotype, cell proliferation and viability 

To evaluate the phenotype, flow cytometry analyses of erythroid marker CD235a and 

erythroblast marker CD71 was performed on cells at day 24 and day 31 following 

treatment with tamoxifen from day 18 of the differentiation protocol. There was no 

obvious effect on the proportion of cells expressing CD235a and CD71 when both TFs 

were activated compared to controls (data not shown). 

3x105 day 10 differentiating cells were seeded and further differentiated in the 

presence or absence of tamoxifen from day 18. Cell proliferation was assessed by 

counting cells over the next 20 days and we noted that activation of BCL11A and 

KLF1 at the late stage had no effect on the proliferation rate (Figure 6.4B).  

Cell Viability at day 24 and 31 was assessed by flow cytometry using LIVE/DEAD™ 

Fixable Near-IR Stain (Figure 6.4C). Viability decreased from 40 % at day 24 to 20 % 

at day 31 in both iPSC-derived cells and iBK7-derived cells, but this was not affected 

by the activation of BCL11A and KLF1. 

RNA isolated from iPSC and iBK7-derived cells at day 24 following treatment with 

or without tamoxifen from day 18 was evaluated by qRT-PCR (Figure 6.4D). We first 

confirmed that there was no significant effect of tamoxifen treatment on control iPSC-

derived cells. In contrast, the expression of PIM1, E2F2, BCLX and p27 was 
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upregulated in iBK7-derived cells upon activation of both BCL11A and KLF1, 

although the increases, although statistically significant, were only 0.2 fold. 

Taken together, activation of BCL11A and KLF1 in the late stage of differentiating 

cells does not change the phenotype, proliferation rate nor viability, but the expression 

of some genes associated with cell proliferation and cell cycling were slightly 

upregulated.  
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Figure 6.4 Activation of BCL11A and KLF1 at the late stage of erythroid 
differentiation does not change cell proliferation rate and viability 

A. Diagram showing the activation of both BCL11A and KLF1 by adding tamoxifen 

from day 18 during erythroid differentiation. B. Cell number of control iPSC-derived 

cells (iPSC) and iBK7-derived cells (iBK7) in the presence (+) and absence (-) of 

tamoxifen. Data represent the mean of 3 independent experiments and error bars show 

standard error of the mean (SEM). C. The viability present at day 24 and 31 of the 

erythroid differentiation protocol. Data represent 3 independent experiments. Error 

bars represent standard error of the mean (SEM). D. Quantitative RT-PCR analyses at 

day 24 using primers to PIM1, E2F2, BCLX, p21, p27 and p18. Data represent the 

mean of 3 independent experiments and error bars show the standard error of the mean 

(SEM). A ratio paired T test was used to assess the effect of both BCL11A and KLF1 

activation (*, p<0.05).  

A 

D 

B C 
Day 24 Day 31

iPSC iBK7 
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6.4.2.2 Assessment of erythroid maturation 

To assess gene expression, RNA isolated from differentiating cells at day 24 following 

treatment with or without tamoxifen was assessed by qRT-PCR (Figure 6.5). We firstly 

confirmed that tamoxifen treatment did not alter the gene expression in control iPSC-

derived cells. Activation of both BCL11A and KLF1 in iBK7-derived cells from day 

18 increased the expression of GYPC, SLC4A1, EPB4.9 and ABCG2, genes that are 

associated with RBC maturity.  

The data indicate that BCL11A / KLF1-activated erythroid cells express more 

transcripts associated with RBC maturation. 

 

6.4.2.3 Assessment of enucleation 

We assessed the enucleation efficiency in these  BCL11A / KLF1-activated erythroid 

cells but no significant effect were observed. The rate of enucleation was 

approximately 3 % both in the presence and absence of activation. (data not shown) 
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Figure 6.5 Activation of BCL11A and KLF1 at the late stage of erythroid 
differentiation increases some erythroid genes 

Quantitative RT-PCR analyses of RNA isolated from control iPSC-derived cells and 

iBK7-derived cells at day 24 in the presence (+) and absence (-) of tamoxifen from 

day 18 using primers to SOX6, AHSP, GYPC, ANK1, SLC4A1, SLC2A4, EPB4.9 and 

ABCG2. Data represent the mean of 3 independent experiments and error bars show 

the standard error of the mean (SEM). A ratio paired T test was used to assess the 

effect of both TFs activation in iBK7 cells (*, p<0.05; **, p<0.005).  

  

iPSC iBK7
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6.4.2.4 Assessment of globin protein profile 

Differentiating cells on day 31 were harvested for HPLC analysis to evaluate globin 

protein profile (Figure 6.6). The result showed that parental iPSC-derived cells and 

iBK7-derived erythroid cells contained β-, Gγ-, Aγ-, α-, ε- and ζ-globins, but β-globin 

protein was represented relatively low. Quantification of the HPLC analyses 

demonstrated that the percentage of α-globin increased significantly in tamoxifen-

treated iBK7-derived erythroid cells, but no difference was observed in the proportion 

of other globins. 

HPLC data indicate that activation of both BCL11A and KLF1 from day 18 increases 

the production of α-globin, thus this indicates the presence of some definitive-like 

erythroid cells might be enhanced by activation of both TFs at the late stage of 

erythroid differentiation.  
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Figure 6.6 Activation of BCL11A and KLF1 from day 18 increases α-globin 

The globin profiles of differentiating cells derived from control iPSC and iBK7 at day 

31 of the differentiation protocol in the presence (+) or absence (-) of tamoxifen from 

day 18. The amount of the different globins (Beta, G gamma, Alpha, A gamma, 

Epsilon and Zeta) was calculated as the areas under the peaks and represented as a 

percentage of the total globin. Data represent the mean of 3 independent experiments 

and error bars show standard error of the mean (SEM). P values were calculated using 

two-way ANOVA followed by multiple comparisons test. (*, p<0.05). 
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6.5 Conclusion 

1) We generated iPSC cell lines with inducible BCL11A and KLF1 double targeted 

to  AAVS1 locus. After the confirmation of PCR analysis and Western blot, iBK7 

cell line was the only one clone expressing both BCL11-ERT2 and KLF1-ERT2 

fusion proteins. Therefore, we decided to use iBK7 cell line to evaluate the 

effects of both BCL11A and KLF1 on erythropoiesis. 

2) Activation of BCL11A and KLF1 from day 18 of the differentiation protocol did 

not change the phenotype, cell proliferation and viability, but some transcripts 

related to RBC maturity were slightly upregulated. Interestingly, HPLC data 

showed that activation of BCL11A and KLF1 at the late stage increased the 

production of α-globin.  
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6.6 Discussion 

6.6.1 Human iPSC with double targeted BCL11A-ERT2 and KLF1-ERT2 in the 

AAVS1 locus 

Erythropoiesis is a complex procedure and involves many TFs. KLF1 plays a pivotal 

role in the RBC maturation [23], [26], [108], [110], [144], and BCL11A is a vital factor 

to complete globin switching from foetal globin to adult globin [37], [49], [50], [149]. 

To set up a stable and inducible expression system where we could enhance the 

expression of both of these TFs in differentiating iPSCs, we generated iPSC with 

double targeted BCL11A-ERT2 and KLF1-ERT2 in the AAVS1 locus. 

It was difficult to obtain an iPSC cell line with double targeted BCL11A-ERT2 and KLF1-ERT2 

in both alleles of AAVS1 locus correctly. Genomic DNA of iBK7 iPSCs was analysed by PCR 

and Southern blot, the PCR result showed that both transgenes were correctly targeted into 

each of the AAVS1 alleles. However, Southern blot indicated that an unexpected band (likely 

11.6 Kb) was observed in iBK7 genomic DNA samples using an internal probe and an external 

probe (Supplementary Figure S1), we deduced that it might be an un-digested fragment from 

KLF1-ERT2 targeted allele. This could result from partial digestion while digesting genomic 

DNA. Since we can see a more intense band in the iBK7 sample than in the iKLF1.2 sample 

(Supplementary Figure S1), this might indicate too much amount of DNA loading while 

preparing digestion reaction. If the restriction enzyme SphI works completely in the genomic 

DNA digestion, an expected band 7.7 Kb might be detected using an external probe. 

Alternatively, genomic rearrangement of the AAVS1 locus might occur during integration, 

we also cannot rule out the possibility of random integration of HA-KLF1-ERT2 transgene. 

However, we believe that KLF1-ERT2 in iBK7 iPSCs was functional but not silenced by above 

considerations, because the same genes upregulated as the iKLF1.2 cell line (see Chapter 4 

Section 4.4.1.2 and Section 4.4.1.3) were observed while activating both BCL11A and KLF1 

from day 18, including PIM1, BCLX, p27, GYPC, SLC4A1 and ABCG2. 

The iBK7 cell line was the only one clone co-expressing BCL11A-ERT2 and KLF1-

ERT2 fusion proteins, so that it was chosen to evaluate the effect of BCL11A and KLF1 

during erythroid differentiation. We further compared the expression level of BCL11A 

and KFL1 among CD34+-derived cells, iPSC-derived cells, iKLF1.2-derived cells and 

iBK7-derived cells by qRT-PCR (Supplementary Figure S4), the level expression of 
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KLF1 in undifferentiated iBK7 and iBK7-derived cells was lower than in 

undifferentiated iKLF1.2 and iKLF1.2-derived cells. This might be due to the fact that 

the iKLF1.2 cell line has two AAVS1 alleles targeted with KLF1-ERT2 transgenes 

whereas the iBK7 cell line only has one allele targeted with this transgene. The lower 

expression of KLF1 in iBK7 iPSCs may account for slight effects of promoting 

erythropoiesis while activating KLF1 from day 10 in iKLF1.2 cell line (see Chapter 4 

Section 4.6.2 and Section 4.6.3). 

6.6.2 BCL11A appears to eliminate anti-proliferation effect of KLF1 

KLF1 enhanced erythroid differentiation and this was coupled with a reduced 

proliferation, because it is involved in erythroid lineage commitment and helps control 

exit from the cell cycle [143], [144]. This proliferation arrest was observed when KLF1 

was activated at the HPC stage (day 10) and at the late stage of erythroid differentiation 

(day 18)( see Chapter 4 Section  4.6.1). Interestingly, we did not observe a reduction 

in proliferation when both BCL11A and KLF1 were activated from day 18, and the 

expression of PIM1 (cell survival), E2F2 (cell proliferation) and BCLX (anti-apoptosis) 

were slightly upregulated. Thus activation of both KLF1 and BCL11A did not cause 

proliferation arrest in the late stage of erythroid cells. A possible explanation for this 

could be related to the fact that BCL11A is known to be involved in the regulation of 

cell cycle [46], [47], [89] and so might overcome the KLF1-associated proliferation 

arrest in the late stage of erythroid cells. 

6.6.3 Effect of BCL11A and KLF1 on RBC maturation 

Activation of both BCL11A and KLF1 at the late stage of erythroid cells (day 18) did 

not change the erythroid phenotype, this was consistent with our result that KLF1 

activation did not alter the phenotype in the late stage of erythroid cells (see Chapter 

4 Section 4.4.2.1). However, activation of both TFs from day 18 slightly increased the 

erythroid transcripts, including of GYPC, SLC4A1, EPB4.9 and ABCG2, this was not 

observed in activation of KLF1 at the late stage (see Chapter 4 Section 4.4.2.3). This 

supports our hypothesis that KLF1 needs a co-factor to regulate gene expression 

associated with RBC maturation. 



147 
 

6.6.4 Effect of BCL11A and KLF1 on globin protein profile 

The regulation of adult globin expression is complex and involves many factors, 

including KLF1 [22], [25], [28], [29], SOX6 [38], BCL11A [31], [37], [49], GATA-1 

[50], MYB and DNMT1 [51]. Our result showed that only KLF1 activation from day 

10 increases embryonic globin and decreases foetal globin (see Chapter 4 Section 

4.4.1.4), but KLF1 activation from day 18 had no significant effect on globin protein 

profile (see Chapter 4 Section 4.4.2.4). Activation of both BCL11A and KLF1 from 

day 18 increased the percentage of α-globin (foetal / adult globin), indicating that 

BCL11A has an impact in the late stage of erythroid cells and enhances some 

definitive-like erythroid cells to expression foetal / adult globin. 

BCL11A is down-regulated during haematopoietic cell differentiation [150], this is 

consistent with our result that the expression of BCL11A was decreased in the 

differentiating iPSC, differentiating iKLF1.2 cells and differentiating iBK7 cells 

(Supplementary Figure S4A). However, adult β-globin was not detected when 

BCL11A and KLF1 were activated in iBK7-derived cells, which could be due to  the 

low level expression of BCL11A and KLF1 in differentiating iBK7 cells 

(Supplementary Figure S4A). Furthermore, BCL11A is regulated strictly during 

erythropoiesis and more co-factors might be required in the regulation of adult globin 

expression, including SOX6 [37], GATA1 [50], MYB and DNMT1 [51]. 

6.6.5 Comparison between iBK7 and iKLF1.2 clones 

The effects of erythroid cell production and maturation in iBK7 cells and iKLF1.2 

cells has been discussed above, however, it proved difficult to directly compare these 

two different clones. A study of cancer cell lines has reported that parental lines and 

some sublines derived from the limiting dilution method are characterised differently 

in plating efficiency, cell population doubling time and cell saturation density [151]. 

Hence, the iBK7 clone and the iKLF1.2 clone might have phenotypically different cell 

proliferations, varied differentiation efficiency, various sensitivities and responses of 

tamoxifen treatment etc. This might lead to a difficulty of evaluating effects due to the 

addition of BCL11A or due to differences between iBK7 clone and iKLF1.2 clone. 
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Chapter 7 

Summary and Perspectives 
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7.1 Summary 

We utilised a defined differentiation protocol for in vitro production of RBCs from 

hiPSCs. The defined differentiation protocol was capable of generating erythroid cells 

from iPSCs, but we noted fragile morphology, poor enucleation rate and enriched 

primitive erythroid cells. We considered that these deficiencies could result from a low 

level expression of KLF1 in the iPSC-derived cells compared to CD34+-derived cells. 

The iKLF1.2 cell line was then generated with KLF1-ERT2 targeted in the AAVS1 locus 

of iPSCs. Activation of KLF1 at the HPC stage (from day 10) enhanced erythroid 

differentiation but we also observed an anti-proliferation effect. Erythroid genes 

associated with RBC maturation were upregulated upon activating KLF1, this might 

explain more robust erythroid cells according to the cell morphology. Those KLF1-

activated erythroid cells with healthier property resulted in a higher level of enucleated 

cell detected in an enucleation assay. However, activating KLF1 from day 10 led to a 

higher level of embryonic globin, which indicated KLF1 promoted the primitive 

erythropoiesis. 

When we activated KLF1 at the later stage of erythroid differentiation (from day 18), 

the effect of proliferation arrest was again observed but the enhancement of 

erythropoiesis was not detected with no significant effect on the proportion of 

erythroid cells, on erythroid gene expression, globin protein expression nor 

enucleation. Collectively, we deduced that KLF1 promoted erythropoiesis at the 

progenitor stage but had no effect on the phenotype of the cells when induced at later 

stages. 

Adult globin was not expressed in iPSC-derived cells and KLF1-activated erythroid 

cells, this might result from low expression of BCL11A, which plays a key role in the 

suppression of foetal globin expression, thereby completing globin switching to adult 

globin. Our preliminary data showed that iPSC-derived erythroid cells were able to 

express adult globin when transduced with a BCL11A-expressing lentiviral-vector. 

Based on that finding, we therefore generated the iBK7 iPSC line that expressed both 

tamoxifen-inducible BCL11A-ERT2 and KLF1-ERT2 fusion proteins, the iBK7 cell 
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line was applied to our differentiation protocol and activated BCL11A and KLF1 by 

adding tamoxifen. 

Activation of BCL11A and KLF1 from day 18 did not promote erythropoiesis as 

assessed by the phenotype and proportion of erythroid lineage cells, but it slightly 

increased the expression of some genes associated with erythroid maturation. Of note, 

the inclusion of BCL11A appeared to eliminate the anti-proliferation effect of KLF1 

(see Chapter 6 Section 6.6.2). HPLC data showed that activation of both TFs at the 

late stage increased the production of α-globin (foetal / adult globin). This suggested 

BCL11A had an effect in the late stage of erythroid cells to promote definitive 

erythropoiesis.  
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7.2 Perspectives 

7.2.1 Enrichment of definitive erythroid cells 

We believe that our defined differentiation protocol likely gives rise to a rather 

heterogeneous cell population containing both primitive and definitive erythroid cells, 

making it difficult to evaluate the impact specifically on primitive and/or definitive 

erythroid cells. Keller’s group has reported that CD235a is a marker for primitive 

haematopoietic progenitors at early time points in  differentiating human PSC, and the 

cells from KDR+ CD235a¯ mesoderm can go through definitive haematopoiesis [152]. 

This suggests sorting out CD235a¯ cells at the early stage of erythroid differentiation 

might enrich definitive erythroid progenitors. We performed a pilot experiment where 

CD235a+ and CD235a¯ cells were sorted from iBK7-derived cells at day 10, and the 

resultant day 31 differentiated cells from these two cell populations were assessed by 

HPLC. We observed that the cells from CD235a+ sorted cells expressed lower 

proportion of Gγ-globin (foetal globin) and higher proportion of ε-globin (embryonic 

globin) (data not shown). Further experiments are in progress. 

Due to the fact that perhaps our defined differentiation protocol does not generate 

definitive erythroid progenitors and adult-like progenitors, that might be the reason 

why we did not see the obvious effect of KLF1 in definitive erythropoiesis. An 

important TF in adult haematopoiesis, RUNX1, has been revealed that it is required 

for functional HSCs in the AGM region [43], [44]. Some studies regard SOX6 and 

MYB as markers for definitive erythropoiesis [12], [30], [32]. We may optimise the 

culture condition to enrich definitive erythroid progenitors and adult-like progenitors 

by monitoring the level expression of RUNX1, SOX6 and MYB. 

7.2.2 Inducing definitive erythropoiesis using other TFs 

The activation of KLF1 from day 18 has no effect on globin expression and activation 

of both BCL11A and KLF1 in the late stage of erythroid cells increased the percentage 

of α-globin (foetal / adult globin), indicating that co-factor has an impact on the 

expression of foetal / adult globin (definitive erythropoiesis).  Sox6 and Myb are 

expressed in definitive erythropoiesis but not in primitive erythropoiesis [12], [30], 

[32], and both of them have been reported to repress embryonic globin [37], [38], [51]. 
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Additionally, SOX6 is an important enhancer of definitive erythropoiesis to stimulate 

cell survival, proliferation, and terminal maturation [36]. Moreover, a recent study has 

been reported that committed murine blood cells are able to be reprogrammed to 

induced haematopoietic stem cells (iHSCs) by defined TFs, RUNX1T1, HLF, LMO2, 

PRDM5, PBX1, and ZFP37 [90]. Another study has indicated that the TF cocktail 

(GATA1, TAL1, LMO2, c-MYC, and KLF1 /or MYB) converts murine and human 

fibroblasts into iEPs and results in iEPs-derived cells expressing more adult globin 

[93]. This result raises a possible prospect of blood cell repogramming for clinical 

application. Therefore, it might be worthwhile inducing SOX6 and MYB during 

erythroid differentiation and evaluating the definitive erythroid development. 

7.2.3 Identify the stage of erythroid development in the defined differentiation 

protocol 

There are four main differentiation stages in this defined protocol, including mesoderm 

specification, haematopoiesis, erythropoiesis and maturation (Figure 2.1), however, 

we have not yet identified the stage of erythrocytes during the differentiation. So that 

activation of TFs from day 18 might not be the critical time point to enhance the 

production and maturation of RBCs. A live image study has reported that nuclear 

import of KLF1 occurs during the ProE to BasoE transition [145], and this suggests 

KLF1 target genes are activated for RBC maturation during this period. Also, the 

nuclear import in the specific developmental stage might be associated with adult 

globin expression. Therefore, the developmental stage should be determined using 

morphological analysis in our defined differentiation protocol, activation of KLF1 in 

the ProE stage might result in significant effects of promoting definitive erythropoiesis. 

7.2.4 TFs work in different time points 

From data acquired in this thesis, we deduce that KLF1 activation promotes 

erythropoiesis at the HPC stage (day 10) but not at the late stage of erythroid 

differentiation (day 18). Moreover, activation of BCL11A and KLF1 has an effect of 

increasing α-globin (foetal / adult globin) in the late stage of erythroid cells (day 18). 

This indicates different erythroid TFs work in particular stages, but it is impossible to 

activate BCL11A and KLF1 in different time point by the same tamoxifen inducible 
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system. Therefore, various inducible systems may be considered, for example 

combination of tamoxifen inducible system and doxycycline inducible system, 

however, it has been reported to reveal leakiness of both systems [142], [153]. Another 

strategy is activating endogenous gene, a recent study has revealed that CRISPR-based 

synergistic activation mediator (SAM) is a useful tool to investigate genetic regulation 

of stem cell differentiation through CRISPR-mediated activation of endogenous genes 

[154]. The later strategy might be a better strategy to induce endogenous gene 

expression without genome editing. 

7.2.5 Mimic microenvironment for erythroid maturation - erythroblastic island 

in vitro 

KLF1 activation from day 10 enhanced erythropoiesis and increased erythroid 

maturation (see Chapter 4 Section 4.6.2 and Section 4.6.3), but it is possible that effects 

result from activation of KLF1 in other cells that provide an extrinsic effect. Given the 

heterogeneity from our differentiation protocol, macrophages appeared in the 

differentiating culture (Figure 3.3A and Figure 4.5A). Macrophages recently have 

been reported to promote erythropoiesis [48]. Co-culture with macrophages decreased 

transit time in the G0/G1 phase of erythroblasts, thereby enhancing erythroblast 

proliferation [61]. CD169+ / CD163+ / VCAM1+ macrophages in erythroblastic island 

are identified to promote late erythroid maturation [155]. Therefore, erythroblastic 

islands provide a unique microenvironment for the proliferation and maturation of 

RBCs. Furthermore, a recent report has revealed that KLF1 has an extrinsic role in 

erythroid maturation via expression of KLF1 in erythroblastic island associated 

macrophages [113], their data indicate that KLF1 activates the expression of Vcam1 

in macrophages and this might promote erythropoiesis through the interaction with 

erythrocytes [113]. Additionally, KLF1 induces the expression of DNase2a in 

macrophages, and DNase2a encodes a nuclease which digests pyrenocytes at the 

conclusion of erythroid maturation [156]. Current work in the Forrester lab is aimed 

at assessing the effects of KLF1 in the macrophage microenvironment during the in 

vitro differentiation of iPSC-derived erythroid cells.  
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Figure S1 Southern blot confirmed the correct targeting in the AAVS1 locus 

A. A figure indicates the positions of SphI digestion site and DIG-internal probe 

targeting site on the genomic AAVS locus. B. Southern blot analyse genomic DNA 

samples from iPSCs, iKLF1.1, iKLF1.2 and iBK7 cell lines. For the correct targeting 

of KLF1-ERT2 and BCL11A-ERT2 constructs, 3.9 Kb of DNA fragments were detected 

using DIG-internal probe. The non-targeted iPSC gave 6.4 Kb of DNA fragments. C. 

A figure indicates the positions of SphI digestion site and DIG-3’ probe targeting site 

on the genomic AAVS locus. D. Southern blot analyse genomic DNA samples from 

iPSCs, iKLF1.1, iKLF1.2 and iBK7 cell liness. For the correct targeting of KLF1-ERT2 

and BCL11A-ERT2 constructs, 7.7 Kb and 9.1 Kb of DNA fragments were detected 

using DIG-3’ probe, respectively. The non-targeted iPSC gave 6.4 Kb of DNA 

fragments. 
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Figure S2 The gating strategy for the enucleation assay in flow cytometry 

Differentiating cells were stained with anti-CD235a, anti-CD71 antibodies, Hoechst 

and the LIVE/DEAD™ Fixable Near-IR Stain then analysed by flow cytometry. The 

single cells population was gated in FSC-A and FSC-H panel, and then live cells were 

identified by the R780_60 filter. The gating thresholds for CD235a was set using the 

appropriate FMO minus CD235a antibody, and live CD235a positive cells were then 

assessed in the enucleation assay. Next, the gating thresholds for CD71 and Hoechst 

were also set using the appropriate FMOs. CD235a+ / CD71¯ / Hoechst¯ enucleated 

RBCs were expected to appear in Q4 quadrant. Control human peripheral blood was a 

positive control which indicates the enucleated RBCs in the panel of Hoechst and 

CD71. 
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Figure S3 The transduction efficiency of control GFP-lentivirus at day 10 
differentiating cells 

Day 10 differentiating cells were transduced by GFP-lentivirus with MOI 0 to 200 and 

analysed by flow cytometry one day after viral transduction. Transfection efficiency 

was measure by the percentage of GFP+ cells detected as a proportion of the live cells 

present. 
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Figure S4 The expression of KLF1 and BCL11A among CD34+-derived cells, 
iKLF1.2-derived cells and iBK7-derived cells  

Cell samples were harvested from adult CD34+ cells that had been differentiated for 6 

days into erythroid progenitors, control undifferentiated iPSCs and day 10 

differentiated iPSCs, undifferentiated iKLF1.2 and day 10 differentiated iKLF1.2, 

undifferentiated iBK7 and day 10 differentiated iBK7. A, B. RNAs isolated from cell 

samples were analysed by QRT-PCR using carried primers to KLF1 (A), BCL11A (B). 

C. cDNAs prepared from cell samples were assessed by PCR analysis using particular 

primers for KLF1-ERT2 and BCL11A-ERT2 transgenes. The forward primer targets to 

KLF1 or BCL11A, and the reverse primer targets to ERT2. 
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Table S1 A list of PCR primers used in this project 
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Table S2 A list of qRT-PCR primers and probes used in this project 
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ABSTRACT

Blood transfusion is widely used in the clinic but the source of red blood cells (RBCs) is dependent
on donors, procedures are susceptible to transfusion-transmitted infections and complications can
arise from immunological incompatibility. Clinically-compatible and scalable protocols that allow the
production of RBCs from human embryonic stem cells (hESCs) and induced pluripotent stem cells
(iPSCs) have been described but progress to translation has been hampered by poor maturation
and fragility of the resultant cells. Genetic programming using transcription factors has been used
to drive lineage determination and differentiation so we used this approach to assess whether
exogenous expression of the Erythroid Kr€uppel-like factor 1 (EKLF/KLF1) could augment the differen-
tiation and stability of iPSC-derived RBCs. To activate KLF1 at defined time points during later stages
of the differentiation process and to avoid transgene silencing that is commonly observed in differ-
entiating pluripotent stem cells, we targeted a tamoxifen-inducible KLF1-ERT2 expression cassette
into the AAVS1 locus. Activation of KLF1 at day 10 of the differentiation process when hematopoiet-
ic progenitor cells were present, enhanced erythroid commitment and differentiation. Continued
culture resulted the appearance of more enucleated cells when KLF1 was activated which is possibly
due to their more robust morphology. Globin profiling indicated that these conditions produced
embryonic-like erythroid cells. This study demonstrates the successful use of an inducible genetic
programing strategy that could be applied to the production of many other cell lineages from
human induced pluripotent stem cells with the integration of programming factors into the AAVS1

locus providing a safer and more reproducible route to the clinic. STEM CELLS 2017;35:886–897

SIGNIFICANCE STATEMENT

Production of red blood cells from human pluripotent stem cells in the laboratory could solve
many of the problems associated with blood transfusion but clinical trials have been hampered by
the poor maturation status and fragility of differentiated cells. Here, we demonstrate the success-
ful use of an inducible transcription factor programing strategy that results in the enhanced differ-
entiation and maturation of red blood cells. This strategy could be applied to the production of
many other cell lineages from pluripotent stem cells with the integration of programming factors
into a safer harbor locus providing a safer and more reproducible route to the clinic.

INTRODUCTION

The generation of an unlimited supply of red
blood cells (RBCs) from human pluripotent
stem cells (hPSCs) such as human embryonic
stem cells (hESCs) or induced pluripotent stem
cells (iPSCs), could alleviate many of the cur-
rent problems facing the blood transfusion
services such as transfusion transmitted infec-
tion, donor supply and immune compatibility.
Scalable, clinically compatible protocols to pro-
duce erythroid cells from hPSCs have been

developed but progress to translation has
been hampered by the lack of terminal matu-
ration of the resultant cell. In contrast to RBCs
generated in vitro from adult bone marrow or
mobilised peripheral blood CD341 progenitors
cells, erythroid cells produced from both hESCs
and iPSCs have a fragile morphology, a poor
enucleation rates and express embryonic and
foetal rather than adult globin [1–7].

Transcription factors are arguably the most
important route to controlling cell type
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identity as they drive lineage-specific genes associated with
their functional properties [8]. Transcription factor program-
ming has been used to direct hESC/iPSC differentiation into
distinct cell types such as cardiomyocytes and neurons [9, 10].
Enhanced expression of transcription factors known to be
involved in the development and maintenance of the hemato-
poietic system such as SCL/TAL1, RUNX1, HOXA9, or HOXB4
have been used to increase the production of hematopoietic
stem/progenitor cells from hESCs/iPSCs [11–16] and four tran-
scription factors (GATA1, LMO2, SCL/TAL1, and cMYC) directly
converted fibroblast into primitive erythroid progenitors [17].

Erythroid Kruppel-like factor 1 (EKLF/KLF1) is a zinc finger
DNA binding protein that plays a critical role in regulating the
expression of genes involved in erythroid cell identity and
function including those involved in heme biosynthesis, red
cell membrane stability and adult globin [18, 19]. Coassocia-
tions of KLF1-regulated genes at specialized nuclear hotspots
is thought to optimize the coordinated transcriptional control
[20]

Detailed analyses of mouse mutants demonstrated that Klf1

deficiency results in defects in hemoglobin metabolism and
membrane stability and that KLF1-null erythroid cells in the fetal
liver have an abnormal morphology with many retaining their
nuclei [21–25]. Deficiencies in KLF1 have also been associated
with human disease [26, 27]. For example, a missense mutation
in KLF1 results in a dominant-negative congenital dyserythro-
poietic anemia [28]. Reduced activity of KLF1 has been associat-
ed with the rare blood group In (Lu) phenotype with amino acid
substitutions within zinc finger domains predicted to abolish
the interactions of KLF1 with downstream targets [29–31].
Genomic sequencing has uncovered the fact that a broad range
human red cell disorders are caused by variants in KLF1 [32].

We noted that KLF1 was expressed at a lower level in ery-
throid cells derived from hESCs compared to adult CD341-
derived cells and, given its importance in erythroid maturation,
we hypothesized this low level of expression of KLF1 might be
one reason for their lack of maturity. We first assessed the
effects of constitutive expression of KLF1 and noted a significant
reduction in the proliferative capacity of differentiating hESCs
and a high variability in expression and stability of the trans-
gene. We, therefore, developed a strategy where we could
induce activity of KLF1 at later time-points during the differenti-
ation process after hematopoietic progenitor cells (HPCs) had
formed by generating and testing a human KLF1-ERT2 fusion
protein. To achieve a consistent and physiological level of
expression and to avoid transgene silencing, we employed the
“safe harbor” approach by integrating the inducible KLF1-ERT2

transgene into the AAVS1 locus [33–35].
We show for the first time that the inducible activation of

KLF1 at a defined time point during the differentiation of both
hESC and iPSCs enhanced erythroid commitment and differentia-
tion. Continued culture of KLF1-activated cells resulted in a more
robust morphology and a higher proportion of detectable enu-
cleated cells. Globin profiling indicated that erythroid cells pro-
duced under these conditions had an embryonic-like phenotype.

MATERIALS AND METHODS

Plasmid Construction

cDNAs encoding human wild type KLF1 or mutant R328L KLF1
[31] were amplified by polymerase chain reaction (PCR) and

cloned into the EcoRI-digested pCAG-IRES-puro plasmid
(pCAG-SIP). Tamoxifen inducible KLF1-ERT2 and R328L-ERT2

fusion cassettes were generated by recombineering (Support-
ing Information Fig. S1B, S1D, S1E). CAG-HA-KLF1-ERT2-PolyA
was cloned into the multiple cloning site of the pZDonor-
AAVS1 Puromycin vector (PZD0020, Sigma-Aldrich, Gillingham,
UK, http://www.sigmaaldrich.com/).

Production of iPSCS from ORhesus Negative
Individuals

Dermal fibroblasts were obtained from blood group O Rhe-
sus negative individuals by R Biomedical Ltd, Edinburgh, UK,
(http://www.rbiomedical.com) under REC 1/AL/0020 ethical
approval. Fibroblasts were reprogrammed to iPSCs using an
episomal strategy with the transcription factors, OCT4, KLF2

SOX2, and cMYC [8] (http://roslincells.com). Characterization
of the SFCi55 cell line used in this study included flow
cytometry for key pluripotency and differentiation markers
(Supporting Information Fig. S2A, S2B). Chromosomal
spreads revealed a normal 46XX karyotype that was then
confirmed by SNP analysis (data not shown). Hematopoietic
differentiation of SFCi55 compared favorably to H1 hESCs
(data not shown) and other published iPSC lines (Supporting
Information Fig. S2C).

Maintenance and Differentiation of hESC and iPSCs

hESC and iPSCs were maintained in STEMPRO hESC SFM
(Thermo Fisher Scientific Life Sciences, Waltham, MA, http://
www.thermofisher.com) containing 20 ng/ml bFGF (FGF2)
(R&D Systems, Abingdon, U.K., https://www.rndsystems.com)
on CTS CELLstart Substrate (Thermo Fisher Scientific Life Sci-
ences) and passaged (1:4) when 70%-80% confluent using
STEMPRO EZPassage (Thermo Fisher Scientific Life Sciences,
Waltham, MA, http://www.thermofisher.com). Hematopoietic
differentiation was carried out in a step-wise, serum-, and
feeder-free protocol as described in detail previously [15, 36]

Transfection of hESC and iPSCs

H1 hESC or iPSCs were fed with STEMPRO hESC SFM contain-
ing 20 ng/ml bFGF, and 10 lM Rock inhibitor (Y-27632, Cal-
biochem, Darmstadt, Germany. http://www.merckmillipore.
com) was added at least 1 hour prior to electroporation as
described previously [11, 37]. Single cell suspensions were
generated using Accutase (Thermo Fisher Scientific Life Scien-
ces), washed and resuspended (107 cells per 0.5 ml) in Dul-
becco’s phosphate-buffered saline without Ca21 and Mg21

(DPBS) and electroporated with 30 lg of linearized vector
(BioRad Hemel Hempstead, UK http://www.bio-rad.com, Gene
pulser; 320V 250 lF). Cells were plated on CTS CELLstart sub-
strate in STEMPRO hESC SFM containing 20 ng/ml bFGF and
10 lM Rock inhibitor and 0.6 lg/ml puromycin for 10 days
then resistant colonies were picked, expanded, and screened
by PCR and Western blotting.

K562 Cell Maintenance and Electroporation

K562 cells were seeded at 105/ml in DMEM medium (Thermo
Fisher Scientific Life Sciences) supplemented with 10% fetal
calf serum, 2 mM sodium pyruvate (Thermo Fisher Scientific
Life Sciences), 1% nonessential amino acids (Thermo Fisher
Scientific Life Sciences), and 0.1 mM b-mercaptoethanol
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(Thermo Fisher Scientific Life Sciences) and passaged every 2-
3 days. K562 cells (107 cells in 700 ll DPBS) were electropo-
rated (BioRad, Gene pulser; 320 V, 500 lF), then pools of cells
were selected in 2.0 lg/ml puromycin (Sigma Aldrich) 2 days
later. Hemin (50 lM) (Sigma Aldrich) was added to the cul-
tures to induce differentiation then cells were harvested and
analyzed after 4 days.

COS7 Cell Maintenance and Transfection

COS7 cells were maintained in GMEM medium (Thermo Fisher
Scientific Life Sciences) supplemented with 10% fetal calf
serum, 2 mM sodium pyruvate (Thermo Fisher Scientific Life
Sciences), 1% nonessential amino acids (Thermo Fisher Scien-
tific Life Sciences), and 0.1 mM b-mercaptoethanol (Thermo
Fisher Scientific Life Sciences) and passaged at 1:5 ratio. Cells
were seeded at 5 3 104/well in a 6-well-plate and transfected
with 2.5 lg of DNA plasmid using the Xfect Transfection
Reagent (Clontech, Saint-Germain-en-Laye, France. http://
www.clontech.com).

Quantitative Reverse-Transcriptase Polymerase Chain
Reaction

RNA was extracted using RNeasy Mini Kit (QIAGEN), and
reverse transcription was performed by High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific Life Scien-
ces) following the manufacturer’s instructions. To normalize
cDNA quantity, GAPDH was used as reference gene. PCR reac-
tions were carried out in triplicate using Applied Biosystems
7500 Fast Real-Time PCR System and data was analyzed on
SDS v1.4 software (Thermo Fisher Scientific Life Sciences).

Protein Extraction and Western Blotting

Cells were lysed in RIPA buffer (Thermo Fisher Scientific Life
Sciences) for total protein extraction. For nuclear fraction-
ation, the cell pellet was resuspended in 0.2 ml of Swelling
Buffer (5 mM PIPES, pH 8.0; 85 mM KCL; 0.5% NP40; prote-
ase inhibitor cocktail) for 20 minutes on ice. After spinning
at 1,500 rpm at 48C, the cytoplasmic supernatant was
removed. The nuclear pellet was resuspended in 0.3 ml of
lysis buffer (20 mM Hepes, pH 7.6; 1.5 mM MgCl2; 350 mM
KCl; 0.2 mM EDTA; 20% Gycerol; 0.25% NP40; 0.5 mM DTT;
protease inhibitor cocktail; Benzonase) and gently shaken at
48C for 1 hour. The nuclear fraction was collected after cen-
trifuged at 13,000 rpm, 48C, for 30 minutes and stored at
2808C. Proper amount of protein lysates were electrophor-
esed on 4%-20% Ready Gel (BioRad), transferred to nitrocel-
lulose membranes (10402580, Whatman, Sigma Aldrich) and
probed with anti-HA tag (631207; Clontech), anti-KLF1
(sc14034, Santa Cruz, CA USA www.scbt.com), anti-GAPDH
(AF5718, R&D) antibodies or LaminB1 (ab16048, abcam,
Cambridge, UK, http://www.abcam.com). Antibody binding
was detected using the appropriate horseradish peroxidase-
conjugated IgG (HAF008, R&D Systems, Abingdon, U.K.,
https://www.rndsystems.com; sc-2020, SantaCruz) visualized
by the WesternSure ECL Substrate (LI-COR, Cambridge, UK,
https://www.licor.com).

CFU-C Assay

Day 10 differentiating cells (5 3 103 or 104) were plated into
1.5 ml of MethoCult (04435, Stem Cell Technologies, Cam-
bridge, UK, https://www.stemcell.com) in 35 mm low

attachment dishes (Greiner, Stonehouse, UK, https://www.
gbo.com), incubated at 378C in a humid chamber then scored
for hematopoietic colony formation 12-15 days later.

Flow Cytometry

105 differentiating cells were harvested in phosphate-buffered
saline (PBS) containing 1% bovine serum albumin (BSA) (PBS/
BSA) and centrifuged at 200 g for 5 minutes. Cell pellets were
resuspended and mixed with the appropriate volume of anti-
body, CD34-PE (12-0349-41, eBioscience, eBioscience Ltd., Hat-
field, UK, http://www.ebioscience.com/), CD43-APC (17-0439-
42, eBioscience), CD235a-FITC (11-9987-80, eBioscience), and
CD71-APC (17-0719-42, eBioscience), to a final volume of 100
ll PBS/BSA, incubated for 30 minutes then analyzed on a LSR
Fortessa (BD Biosciences, Oxford, UK, http://www.bdbioscien-
ces.com/) using FACS Diva. The proportion of enucleated cells
present in the culture was assessed using CD235a-FITC, CD71-
APC antibodies, LIVE/DEAD Fixable Near-IR Stain (L10119,
Thermo Fisher Scientific) and Hoechst dye (NucBlue, Thermo
Fisher Scientific). Live CD235a1 cells were first gated, then
anti-CD71 and Hoeschst were used to define erythroblasts
(CD711/Hoechst1), nucleated RBCs (CD712/Hoechst1) and
enucleated RBCs (CD712/Hoechst2) (Supporting Information
Fig. S7).

Immunofluorescence Staining

COS7 cells were fixed in 4% formaldehyde/PBS for 15 minutes
and permeabilized in 0.5% Triton-X 100/PBS (PBST) and suc-
cessively incubated for 1 hour with rabbit anti-human KLF1
(sc14034, Santa Cruz), goat anti–rabbit IgG-FITC (F0382-1ML,
SIGMA-ALDRICH) antibodies, and DAPI (4’,6-Diamidino-2-phe-
nylindole; SIGMA-ALDRICH). Stained cells were analyzed using
a Zeiss Observer microscope and processed with AxioVision
and ImageJ software.

Morphological Analysis

5 3 104 erythroid cells were resuspended in 0.2 ml PBS, load-
ed in cytospin slide chamber, and centrifuged at 500 rpm for
10 minutes. Rapid Romanowksy staining of air-dried slides
was performed according to manufacturer’s instructions
(HS705, TCS biosciences, Buckinghamshire, UK, http://www.
tcsbiosciences.co.uk).

High-Performance Liquid Chromatography

High-performance liquid chromatography (HPLC) globin
chain separation was performed using a protocol modified
from Lapillonne et al. [38]. Briefly, cells were washed three
times in PBS, lysed in 50 ll water by three rapid freeze-
thaw cycles and centrifuged at 13,000 g at 48C for 10
minutes. Globin chain separation was performed by inject-
ing 10 ll of the supernatant onto a 1.0 3 250 mm C4
column (Phenomenex, Macclesfield, U.K., http://www.phe-
nomenex.com/) with a 42%-56% linear gradient between
mixtures of 0.1% TFA in water (Buffer A) and 0.1% TFA in
acetonitrile (Buffer B) at flow rate of 0.05 ml/min for 55
minutes on a HPLC Ultimate 3000 system (Dionex, Thermo
Fisher Scientific Life Sciences). The column temperature was
fixed at 508C during analysis and the UV detector was set at
220 nm. Elution times of peaks generated were compared
to control samples (e.g., adult and foetal blood) for
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identification and the area under the curve was used to cal-
culate the proportion of each globin peak as a percentage
of the total.

Statistical Analysis

The statistical analysis was performed using GraphPad
Prism 6 software. For cell proliferation (Figs. 1A, 4A) and

globin expression by HPLC (Fig. 6), data were analyzed
using two-way ANOVA followed by Tukey’s multiple
comparisons test. CFU-C (Fig. 1B) and flow cytometry
data (Figs. 1D, 3D, 7C) were analyzed using one-way
ANOVA followed by Holm-Sidak’s multiple comparison test.
Gene expression data were analyzed using ratio paired t

test.

Figure 1. Constitutive KLF1 expression in human embryonic stem cells (hESCs) results in reduced proliferation and hematopoietic pro-
genitor cell production. (A): Cell counts throughout the erythroid differentiation protocol of control H1 hESCs (H1) and H1 hESCs trans-
fected with a vector containing either wild type KLF1 (H1-KLF1) or the mutant form of KLF1 (H1-R328L). (B): Total number of CFU-Cs
generated from differentiating H1, H1-KLF1, and H1-R328L hESCs at day 10 of the differentiation protocol. (C): Flow cytometry analysis
of differentiating H1, H1-EKLF, and H1-R328L hESC at day 10 of the differentiation protocol using antibodies against CD34 and CD43 to
mark hematopoietic progenitor cells (HPCs). (D): Quantification flow cytometry data showing the %CD341/CD431 HPCs at day 10 of the
differentiation protocol. All data represents the mean of at least three independent experiments with error bars representing SEM. p
values were calculated using two-way ANOVA followed by Tukey’s multiple comparisons test (A) or one-way ANOVA followed by Holm-
Sidak’s multiple comparison test (B and D) (*p< .05).
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RESULTS

Constitutive Overexpression of KLF1 in Differentiating
hESCs Leads to Reduced Cell Proliferation and
Hematopoietic Progenitor Cell Production

KLF1 was expressed at a lower level in erythroid progenitors
derived from hESC compared to those derived from adult
peripheral blood CD341 progenitors (Supporting Information
Fig. S1A) and we hypothesized that this could be one of the
reasons for their lack of maturity. H1 hESCs were transfected
with vectors carrying either wild type KLF1 or mutant (R328L)
KLF1 cDNA under the control of the constitutive CAG promot-
er followed by an intraribosomal entry site and the puromycin
resistance gene (Supporting Information Fig. S1B). The R328L
mutant protein had an arginine (R) to leucine (L) substitution
in the second zinc finger domain at position 328 that abol-
ishes activity in a transactivation assay (Supporting Informa-
tion Fig. S1C) [29], but does not interfere with the activity of
WT KLF1. There was no significant difference in the morpholo-
gy of control H1, H1-KLF1, and H1-R328L hESC lines and all
cell lines were maintained as undifferentiated hESCs in com-
parable conditions (data not shown). The morphology of
transfected hESCs during the initial days of our erythroid dif-
ferentiation protocol [15, 36] was comparable to parental H1

hESCs but the proliferation rate at later stages of the differen-
tiation protocol was significantly lower in H1-KLF1 cells (Fig.
1A). There was a significant reduction in the total number of
CFU-C colonies detected in H1-KLF1 cells compared to control
H1 cells and H1-R328L cells (Fig. 1B). Flow cytometry con-
firmed the reduction in HPCs with fewer CD341 CD431 dou-
ble positive cells generated in the H1-KLF1 hESC line (Fig. 1C,
1D). Thus, constitutive expression of KLF1 resulted in a signifi-
cant reduction in the proliferative capacity and an associated
reduction in the production of HPCs hampering our ability to
assess the specific effects of KLF1 on erythroid differentiation
and maturation.

KLF1-ERT2 Fusion Protein Can Translocate to the
Nucleus and Can Activate KLF1 Target Genes upon
Induction

We established an inducible strategy where we could activate
KLF at specific time points during differentiation to assess the
effects of this transcription factor on later erythroid cell pro-
duction and maturation. We fused the human KLF1 and the
mutant KLF1 (R328L) to the mutated form of the oestrogen
receptor (ERT2) (Supporting Information Fig. S1D, S1E) and
created the expected sized fusion protein of 74 kD (Fig. 2A,
2B). Before investing resources on assessing this strategy on

Figure 2. Functional assessment of KLF1-ERT2 and R328L-ERT2 fusion proteins. (A, B): Western blot analyses of cell lysates isolated
from untransfected COS7 cells (lane 1), COS7 cells transfected with pCAG-KLF1 (lane 3); pCAG-R328L (lane 4); pCAG-KLF1-ERT2 (lane 5);
pCAG-R328L-ERT2 (lane 6) and the murine CAG- KLF1-ERT2 (lane 7) using an anti-KLF1 antibody (A) and GAPDH as a loading control (B).
Lane 2 is blank. (C, D): Immunofluorescence staining of COS7 cells transfected with either the CAG-KLF1-ERT2 (A) or CAG-R328L-ERT2 (B)
constructs then stained with anti-KLF1 antibodies (green) and the DAPI nuclear dye (blue) in the presence and absence of tamoxifen as
indicated. (Scale bar 10 lm). (E): Quantitative reverse-transcriptase polymerase chain reaction analyses of RNA isolated from control
and hemin and/or tamoxifen-treated K562 cells and K562 cells transfected with either CAG-KLF1-ERT2 or CAG-R328L-ERT2 vectors using
primers for the KLF1 target gene, AHSP. Data represent three independent experiments and error bars represent SEM. p values were cal-
culated using using one-way ANOVA followed Tukey’s multiple comparisons test. (*p< .05).
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hiPSCs, we first tested the functionality of the KLF1 inducible
strategy on simpler well-established cell systems. We used
transiently transfected COS7 cells where high levels of trans-
gene expression enable the subcellular location of fusion pro-
teins to be assessed by immunofluorescence staining. This
demonstrated that wild type KLF1-ERT2 and mutant R328L-
ERT2 fusion proteins are sequestered in the cytoplasm and,
upon tamoxifen treatment, they are released and can translo-
cate to the nucleus (Fig. 2C, 2D).

To assess whether the KLF1-ERT2 fusion protein could acti-
vate the expression of KLF1 target genes within a hematopoi-
etic context, we used the K562 human leukemia cell line that
could be induced to differentiate into the erythroid cells.
Pools of puromycin-resistant K562 cells were generated then

RNA was isolated after culturing in the presence or absence
of tamoxifen. Functionality of the KLF1-ERT2 fusion protein
was confirmed by demonstrating that the addition of tamoxi-
fen enhanced the expression level of a known KLF1 target
gene, Alpha Hemoglobin Stabilizing Protein (AHSP) (Fig. 2E).
No significant increase in AHSP expression was observed after
tamoxifen treatment of cells transfected with the CAG-R328L-
ERT2 construct confirming the lack of transcriptional activity of
the mutant form that had been predicted previously from
luciferase assays (Supporting Information Fig. S1C). Compara-
ble levels of KLF1-ERT2 and CAG-R328L-ERT2 protein were pro-
duced, excluding the possibility that that the lack of activity
of the mutant R328L-ERT2 was due to a lower level of expres-
sion (Fig. 2A).

Figure 3. Activation of KLF1 at day 10 of differentiation results in enhanced erythroid differentiation of hiPSCs. (A): Schematic of the
pZDonor-AAVS1 Puro-CAG-HA-KLF1-ERT2-PA construct. (B): Western blot analyses of nuclear cell lysates from adult CD341 cells that had
been differentiated for 6 days into erythroid progenitors, control undifferentiated and differentiated (day 10) induced pluripotent stem
cells (iPSCs), undifferentiated iKLF1.2 iPSCs and iKLF1.2 iPSC that had been differentiated for 10 days then treated with tamoxifen for 3
hours. Endogenous KLF1 and the expected larger sized KLF1-ERT2 fusion protein was detected with the anti-KLF1 antibody and the anti-
Lamin B1 antibody was used to detect nuclear proteins as a loading control. (C): Flow cytometry analysis using antibodies against
CD235a and CD71 of cells present at day 15 of the erythroid differentiation protocol in control iPSCs and iKLF1.2 iPSC cell lines in the
presence (1) and absence (2) of tamoxifen from day 10. (D): Quantitation of flow cytometry data representing three independent
experiments. Error bars represent SEM. p values were calculated using one-way ANOVA followed by Holm-Sidak’s multiple comparison
test (*p< .05). (E): Image showing the cell pellets from one representative experiment demonstrating a smaller but more intense red
pellet in the tamoxifen-treated iKLF1.2 cell line. Abbreviation: iPSCs, induced pluripotent stem cells.
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Activation of KLF1 Promoted Erythroid Differentiation
of hESC and iPSCs

We then tested the effects of KLF1 activation on the produc-
tion and maturation of erythroid cells during hESC and iPSC
differentiation. Pilot experiments where pCAG-KLF1-ERT2 and
pCAG-R382R-ERT2 constructs were randomly integrated into
the genome of the H1 hESCs indicated that activation of KLF1
promoted the differentiation of erythroid cells as assessed by
an increase in the proportion of CD235a1 CD711 expressing
cells and an increase in the level of CD235a expression (Sup-
porting Information Fig. S3). However, given the known silenc-
ing issues associated with random integration of transgenes
and the potential detrimental effects of insertion mutagene-
sis, we adopted a ‘safe harbor’ approach and targeted the
CAG-HA-KLF1-ERT2 transgene to the AAVS1 locus (Fig. 3A)
[34]. We generated the AAVS1-HA-KLF1-ERT2 targeting vector
(Fig. 3A) and electroporated this together with the AAVS1 zinc
finger nuclease (ZFN) plasmids (a gift from Dr C.J. Chang,
Icahn School of Medicine at Mount Sinai, New York) [33, 35]
into the human iPSC line, SFCi55 (Supporting Information Fig.
S2). Puromycin-resistant colonies were screened by genomic
PCR (Supporting Information Fig. S4). 93% (27/29) of iPSC
clones were correctly targeted with both AAVS1 alleles tar-
geted in 13 clones (Supporting Information Fig. S4A-4G).
Western blot analyses using the a2HA antibody detected the
fusion protein in targeted iPSC clones (herein referred to as
iKLF1.1 and iKLF1.2) (Supporting Information Fig. S5A). We
confirmed the presence of the predicted sized KLF1-ERT2

fusion protein in nuclear extracts isolated from undifferentiat-
ed and differentiated (day 10) iKLF1.2 iPSCs and noted that
the level of expression of KLF1 protein in day 10 differentiat-
ing iPSCs was significantly lower than in adult CD341 cells
(Fig. 3B) as was the level of KLF1 transcript (Supporting Infor-
mation Fig. S5C) as previously demonstrated (Supporting
Information Fig. S1). We noted the presence of a low level of
KLF1-ERT2 fusion protein in our crude nuclear extracts in the
absence of tamoxifen but it is unclear whether this is due to
cytoplasmic contamination or leakiness of the ERT2 system
(Fig. 3B). Addition of tamoxifen for 3 hours resulted in the
translocation of KLF1-ERT2 protein into the nucleus (Fig. 3B).
The level KLF1 protein expression in differentiating iKLF1.2
iPSCs is comparable to the level of expression of endogenous
KLF1 in differentiating adult CD341 cells indicating that, unlike
lentiviral expression strategies that result in very high, non-
physiological levels of transgene expression, this strategy
results in physiological levels of KLF1 (Fig. 3B, Supporting
Information Fig. S5C).

The clonal iKLF1.2 iPSC line was differentiated using the
erythroid differentiation protocol [36] and we assessed the
production of erythroid cells at day 15 in the presence and
absence of tamoxifen (from day 10). Upon activation of KLF1,
the percentage of CD235a1 CD711 double positive erythroid
cells increased in the iKLF1.2 iPSC lines, but not in control
iPSCs (Fig. 3C, 3D). This increase was also observed in the
independently derived iKLF1.1 cell line (Supporting Informa-
tion Fig. S5B) and was consistent with the results using ran-
domly inserted constructs in hESCs (Supporting Information

Figure 4. Activation of KLF1 enhances erythroid differentiation at the expense of cell proliferation. (A): Cell numbers of control and
iKLF1.2 induced pluripotent stem cells (iPSCs) during erythroid differentiation. 3 3 105 cells were seeded at day 10 of differentiation
then further differentiated in the presence or absence of tamoxifen. Data represent the mean of three independent experiments and
error bars represents SEM. p values were calculated using two-way ANOVA followed by Tukey’s multiple comparisons test (*p< .05).
(B): Flow cytometry analysis using LIVE/DEAD Fixable Near-IR Stain of viable cells present at day 15, 24, and 31 of the erythroid differen-
tiation protocol in control iPSCs and iKLF1.2 iPSC cell lines in the presence (1) and absence (2) of tamoxifen from day 10. (C): Quanti-
tative reverse-transcriptase polymerase chain reaction analyses of RNA isolated from control (iPSC) and iKLF1 iPSC (iKLF1.2) at day 24
following treatment with (1) or without (2) tamoxifen from day 10 using primers to BCLX, PIM1 and E2F2, p21, p27, and p18. Data
represent the mean of three independent experiments and error bars show the SEM. For each gene, the expression level of control
iPSCs in the absence of tamoxifen was used as the calibrator and set at 1 and the expression of all other samples expressed as fold
change. A ratio paired t test was used to assess the effect of KLF1 activation in iKLF1.2 cells (*p< .05 **p< .005). Abbreviation: iPSCs,
induced pluripotent stem cells.
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Fig. S3A). These data indicate that activation of KLF1
enhanced erythroid differentiation, visually evident by the
enhanced red appearance of the cell pellet (Fig. 3E). We also
noted that tamoxifen treated cultures generated a smaller cell
pellet and a significantly lower number of cells (Fig. 4A).
There was no significant difference in cell viability at days 15,
24, and 31 when KLF1 was activated at day 10 indicating that
the reduced cell number was not the result of increased apo-
ptosis or cell death. (Fig. 4B). Furthermore, quantitative
reverse-transcriptase polymerase chain reaction analyses of
differentiating cells (day 24) demonstrated that activation of
KLF1 resulted in a significant upregulation of the cell cycle
inhibitors P21 and P27, the anti-apoptotic gene, BCLX and
PIM1 that regulates cell proliferation and survival (Fig. 4C).
Interestingly KLF1 activation did not result in the upregulation
of P18 which has been shown to mediate the effects of KLF1
effect on cell cycle exit in the murine system [39]. Taken
together, our data suggest that activation of KLF1 promotes
erythroid differentiation at the expense of cell proliferation.

Activation of KLF1 Enhanced the Expression of Genes
Associated with Erythropoiesis

To investigate the impact of KLF1 activation on genes associat-
ed with erythropoiesis, we conducted real-time PCR on RNA
isolated from differentiating control hiPSCs and iKLF1.2 at day
15 in the presence or absence of tamoxifen from day 10
(Fig. 5A, Supporting Information Fig. S6A). Activation of KLF1
significantly increased the expression of the erythroid tran-
scription factor-encoding gene, SOX6 consistent with the
higher proportion of erythroid cells. Consistent with our find-
ings in K562 cells, expression of the known KLF1 target gene
AHSP was significantly upregulated upon KLF1 activation.
Interestingly the expression of BCL11A, a known target gene

of KLF1 was not enhanced in this assay but this is possibly
explained by the fact that these cells have a “primitive”-like
signature (see below). The expression of KLF1 target genes
associated with RBC maturation was also analyzed at a later
stage in the differentiation process (day 24) (Fig. 5B, Support-
ing Information Fig. S6B). At this time point, expression of
genes associated with cell membrane and cytoskeleton,
including ANK1, GYPC, and SLC4A1 were significantly increased
upon KLF1 activation but there was no significant increase in
the expression of SLC2A4 nor EPB4.9. The expression of
ABCG2 that is involved in transport and heme synthesis was
also upregulated by KLF1 activation. The above results suggest
KLF1 activation from day 10 increased the maturity of ery-
throid cells and accelerated the process of erythropoiesis.

KLF1-Activated Erythroid Cells Express Embryonic
Globins

HPLC analyses of protein isolated from cells at day 31 of the
differentiation protocol showed that activation of KLF1 in
iKLF1.2-derived erythroid cells significantly enhanced the pro-
portion of the embryonic e- and f-globin and reduced the
proportion of g-globin protein. No adult b-globin protein was
detected in any of the samples (Fig. 6). Taken together these
data suggests that, in this differentiation system, activation of
KLF1 at day 10 of the differentiation protocol enhances the
production and maturation of primitive erythroid cells.

KLF1 Activation Increases the Proportion of Enucleated
Erythroid Cells

Given previous reports that KLF1 null mice had more nucleated
RBCs [25], we hypothesized that activation of exogenous KLF1
might enhance the efficiency of maturation and/or their stabili-
ty. Differentiating KLF1-ERT2-expressing cells were treated with

Figure 5. A subset of KLF1 target genes are upregulated upon activation of KLF1 during erythroid differentiation. Quantitative reverse-
transcriptase polymerase chain reaction analyses of RNA isolated from control induced pluripotent stem cell (iPSC) and iKLF1 iPSC
(iKLF1.2) at day 15 (A) and day 24 (B) following treatment with (1) or without (2) tamoxifen from day 10 using primers to SOX6, AHSP,
BCL11A, ANK1, GYPC, SLC4A1, SLC2A4, EPB4.9, and ABCG2. Data represent the mean of three independent experiments and error bars
show the SEM. For each gene, the expression level of control iPSCs in the absence of tamoxifen was used as the calibrator and set at 1
and the expression of all other samples expressed as fold change. A ratio paired t test was used to assess the effect of KLF1 activation
in iKLF1.2 cells (*p< .05). Abbreviation: iPSCs, induced pluripotent stem cells.
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tamoxifen then the presence of enucleate cells assessed by flow
cytometry. Live CD235a1 cells were gated and CD235a1/
CD711/Hoechst1 erythroblasts, CD235a1/CD712/Hoechst1

nucleated RBCs and CD235a1/CD712/Hoechst2 enucleated

RBCs were identified (Supporting Information Fig. S7). Human
peripheral blood was used as a positive control for the identifi-
cation of live, CD235a1/CD712/Hoechst- enucleated RBCs. The
majority of differentiating cells at day 24 were nucleated

Figure 6. Activation of KLF1 enhances the production erythroid cells expressing embryonic globins. Results of HPLC analysis of globin
proteins in cell lysates isolated from control induced pluripotent stem cells and iKLF1.2 cells at day 31 of the differentiation protocol in
the presence (1) or absence (2) of tamoxifen from day 10. Data represent the mean of three independent experiments and error bars
represents SEM. p values were calculated using two-way ANOVA followed by Tukey’s multiple comparisons test. (*p< .05). Abbreviation:
iPSCs, induced pluripotent stem cells.

Figure 7. KLF1 activation increases the proportion of detectable enucleated cells. (A, B): CD71 and Hoechst staining of live, CD235a
gated cells at day 24 (A) and day 31 (B) derived from control induced pluripotent stem cell (iPSC) and KLF1-ERT2-expressing (iKLF1.2)
cells in the presence and absence of tamoxifen. Control enucleated cells derived from adult peripheral blood is shown. (see Supporting
Information Fig. S7 for gating strategy) (C) Quantification of the proportion of enucleated cells at day 31 of control iPSCs and iKLF1.2
cells in the presence and absence of tamoxifen. Data represent the mean of three independent experiments and error bars represents
SEM. p values were calculated using one-way ANOVA followed by Holm-Sidak’s multiple comparison test (*p< .05). (D): Cytospins of
day 31 cells demonstrating the more robust phenotype of iKLF1 cells after tamoxifen treatment and the presence of some enucleated
cells (arrows) (Magnification x40). Abbreviation: iPSCs, induced pluripotent stem cells.
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CD235a1/CD711/Hoechst1 erythroblasts (Fig. 7A). By day
31 CD235a1 cells began to lose the CD71 marker, indicating
that they represented a more mature erythroid population (Fig.
7B). Activation of KLF1 in differentiating iPSCs reproducibly
increased the proportion of enucleated RBCs that were detected
in this assay (Fig. 7B, 7C). Morphological analyses indicated that
that KLF1-activated cells had a more robust morphology which
could explain the fact that more enucleated cells were detected
(Fig. 7D).

DISCUSSION

Current protocols to produce RBCs from hPSC have limitations
because they generate a relatively low proportion of enucleated
cells and express embryonic/foetal but not adult globin [6]. For-
ward programming using lineage specific transcription factors
has been used to enhance the production of a number cell
types from hPSCs including hematopoietic lineages [16, 17, 40].
Here we describe the first application of an inducible program-
ming strategy to modify the production and maturation of RBCs
from hPSCs. We used the transcription factor KLF1 because it
was expressed at low levels in hPSC-derived erythroid cells com-
pared adult-derived cells and it plays a pivotal role in the final
steps of definitive erythropoiesis [19]. Genes that are regulated
by KLF1 include many of the key genes associated with ery-
throid development and maturation [19, 25, 41, 42].

We established an inducible activation strategy whereby
the exogenous KLF-ERT2 fusion protein is tethered in the cyto-
plasm but upon addition of tamoxifen it can translocate to
the nucleus and activate the expression of target genes. The
level expression of KLF1 in differentiating iKLF1.2 iPSCs is
comparable to the level of expression in differentiating adult
CD341 cells indicating that physiological levels of expression
are achieved using this strategy.

Activation of KLF1 at day 10 after HPC formation resulted
in an increase in the proportion of erythroid cells but the
overall number of cells was lower than controls. The fact that
we observed no effect on the viability of cells suggests that
activation of KLF1 is driving HPCs to differentiate at the
expense of proliferation [43]. It is well documented that ery-
throid terminal differentiation requires proliferation arrest and
exit from the cell cycle with a balance between proliferation
and maturation being fine-tuned at later stages of erythropoi-
esis [24, 44]. The antiproliferative effect of KLF1 during eryth-
ropoiesis is thought to be via its interactions with cell cycle
related genes including PIM1, E2F2, p27, p21, p18 [19, 39,
45]. We demonstrate that activation of KLF1 significantly
altered the expression levels of p27, p21, and PIM1 but not
p18 suggesting that some, but not all, of these interactions
are conserved between mouse and human. Our results are
consistent with a study using a similar KLF1-ERT2 strategy in
murine ESCs where activation of KLF1 resulted in reduced
proliferation coupled with enhanced differentiation [46].
Another study using a tetracycline-inducible KLF1 strategy in
murine ESCs expression reported that KLF1 promoted the
expression of erythroid lineage genes while repressing the
onset of megakaryopoiesis [43]. We detected an increase in
expression of KLF1 target genes associated with heme synthe-
sis and transport including ABCG2 and AHSP, supporting the

notion that KLF1-activation enhanced the erythroid matura-
tion and differentiation process.

Activation of exogenous KLF1 resulted in an increase in
the proportion of detectable enucleated erythroid cells. It has
been proposed that hPSC-derived erythroid cells may be more
fragile than their counterparts generated from adult CD34
progenitors [36] and so it is possible that the effect of KLF1 is
due to enhanced membrane stability rather than a direct
effect on the enucleation process per se. The final stages of
RBC maturation are associated with cell membrane and cyto-
skeleton remodelling and a number of KLF1 target genes have
been associated with these processes [19, 21, 26, 47]. Fur-
thermore, the phenotype of KLF1 deficient mice has been
associated with decreased membrane stability [21]. Activation
of KLF1 in our system enhanced the expression of some of
these KLF1 targets including ANK1, GYPC, SLC4A1, and ABCG2

which supports our hypothesis that activation of KLF1 results
in the production of more robust erythroid cells.

The mechanisms of enucleation is known to involve multi-
ple molecular and cellular pathways including histone deace-
tylation, actin polymerization, cytokinesis, cell-matrix
interactions, specific microRNAs, and vesicle trafficking [48].
Enucleation efficiency of iPSC-derived erythroid cells was
improved with stromal cell culture and when cells were
derived from cultures involving prolonged three-dimensional
culture [1, 5]. More recently KLF1 has been shown to have an
extrinsic role in erythroid maturation via expression of KLF1 in
erythroid-island associated macrophages [49, 50] so KLF1 may
be playing an extrinsic role during the differentiation process.
It is also possible that KLF1 activation is altering the expres-
sion of miRNAs or long noncoding RNAs that have been iden-
tified as key players in erythroid development and maturation
[1, 51].

The majority of hPSC differentiation protocols generate
RBCs that express embryonic e-globins and/or foetal g-
globins, but little or no adult b-globin [6, 7]. We show that
KLF1 enhanced the expression of embryonic e- and f-globin
proteins, but no adult b-globin was detected in any of the
conditions suggesting that this strategy is enhancing the pro-
duction of embryonic erythroid cells and that KLF1 alone is
not sufficient to enhance the expression of adult b-globin. A
low level of expression of KLF1 and BCL11A in K562 cell and
cord blood derived erythroid cells was shown to be associated
with fetal globlin expression and transduction of KLF1 and
BCL11A lentiviral vectors resulted in adult levels of b2globin
in these cells [52]. Interestingly that study also demonstrated
that lentiviral transduction of BCL11A alone was sufficient to
induce the expression of b2globin in the immortalized iPSC-
derived HiDEP-1 cell line because that cell lines had adult-like
levels of KLF1 [52]. A recent study that added KLF1 to iEP
cells showed adult-like globin [17]. The erythroid cells derived
from the SFCi55 iPSC cell line used in this study have lower
levels of KLF1 compared to differentiated adult CD341 cells
(Fig. 3B, Supporting Information Fig. S5C) and, although
BCL11A has been reported as a KLF1 target gene, we did not
see a significant alteration in the level of expression of
BCL11A upon KLF1 activation in our system. Activation of
KLF1 target genes will rely on the presence of specific cofac-
tors which will be cell context dependent. More recent stud-
ies highlight the complexity of interaction between KLF1 and
its regulated genes and specialized transcription factories in
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nuclear hotspots have been identified that are likely where
coregulated genes cooperate for optimal efficiency and coor-
dinated transcriptional control [20]. Our ongoing studies are
assessing the effects of exogenous expression of both KLF1

and BCL11A on the expression of the different globin proteins
in differentiating iPSCs.

Flow cytometry analyses of erythroid markers throughout
the differentiation protocol indicates that there are two waves
of erythropoiesis in our culture system [36] and our data sug-
gest that activation of KLF1 at day 10 is enhancing the primi-
tive rather than the definitive wave.

This study is the first to demonstrate enhanced erythropoie-
sis from hPSCs using a forward programming approach by acti-
vation of a single transcription factor, KLF1 at levels that are
comparable to physiological level. However, the successful pro-
duction of adult-like erythroid cells in sufficient quantities from
iPSCs will undoubtedly require the use of multiple transcription
factors in a combinatorial forward programming approach as
recently described for the production of platelets form hPSCs
[40] and primitive erythroid cells from fibroblasts [17]. The key
to this strategy is to define the complex cocktail of transcription
factors that define the development and maintenance of adult
erythroid cells and to induce their expression at defined time-
points in a reproducible manner. Integration of inducible tran-
scription factors into the AAVS1 locus could provide a safer and
more reproducible strategy for clinical translation.

This study assessed the effects of KLF1 on the production
and maturation of erythroid cells from differentiating human
pluripotent stem cells. We generated a human iPSC line carrying
a tamoxifen-inducible form of KLF1 in the AAVS1 locus. Activa-
tion of KLF1 alone promoted erythroid differentiation,
enhanced the expression of key erythroid genes and generated
a slightly higher proportion of mature enucleated cells.

However, activation of KLF1 promoted the differentiation of
primitive, not definitive erythroid cells as defined by an increase
in embryonic globins. The enhanced erythroid differentiation is
associated with a proliferation arrest and the upregulation of
the cell cycle inhibitors P21 and P27 resulting in a significant
reduction in the overall number of cells generated.

ACKNOWLEDGMENTS

This work was carried out as part of the Novosang consor-
tium (www.novosang.co.uk) with funding from Wellcome
Trust and Scottish Funding Council. CTY received a Global
Scholarship from University of Edinburgh College of Medicine
and Veterinary Medicine). We thank Dr CJ Cheng (Icahn
School of Medicine, at Mount Sinai, New York) for reagents
used to target the AAVS1 locus, Dr Belinda Singleton for
human KLF1 cDNAs and Prof David Anstee for valuable dis-
cussions. R.M. is currently affiliated with Peking University
Institute of Hematology, Peking University People’s Hospital,
Beijing100044, China.

AUTHOR CONTRIBUTIONS

C.-T.Y.: Performed research, analysed data and wrote paper;
R.M.: Performed research and analysed data; R.A.A.: Performed
research; M.J.: performed research; A.H.T.: Performed research;
A.F.: Performed research and analysed data; L.M.: Performed
research; J.F., J.C.M.: Designed research and analysed data;
L.M.F.: Designed research, analysed data and wrote paper.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

REFERENCES

1 Rouzbeh S, Kobari L, Cambot M et al.
Molecular signature of erythroblast enucle-
ation in human embryonic stem cells. STEM
CELLS 2015;33:2431–2441.

2 Yang CT, French A, Goh PA et al. Human
induced pluripotent stem cell derived eryth-
roblasts can undergo definitive erythropoiesis
and co-express gamma and beta globins. Br J
Haematol 2014;166:435–448.

3 Mountford J, Olivier E, Turner M. Pros-
pects for the manufacture of red cells for
transfusion. Br J Haematol 2010;149:22–34.

4 Giarratana MC, Rouard H, Dumont A
et al. Proof of principle for transfusion of in
vitro-generated red blood cells. Blood 2011;
118:5071–5079.

5 Lu SJ, Feng Q, Park JS et al. Biologic
properties and enucleation of red blood cells
from human embryonic stem cells. Blood
2008;112:4475–4484.

6 Chang KH, Bonig H, Papayannopoulou T.
Generation and characterization of erythroid
cells from human embryonic stem cells and
induced pluripotent stem cells: An overview.
STEM CELLS INT 2011;2011:791604.

7 Cerdan C, Rouleau A, Bhatia M. VEGF-
A165 augments erythropoietic development
from human embryonic stem cells. Blood
2004;103:2504–2512.

8 Takahashi K, Yamanaka S. Induction of
pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined fac-
tors. Cell 2006;126:663–676.

9 Yang N, Ng YH, Pang ZP et al. Induced
neuronal cells: How to make and define a
neuron. Cell Stem Cell 2011;9:517–525.
10 Miki K, Yoshida Y, Yamanaka S. Making
steady progress on direct cardiac reprogram-
ming toward clinical application. Circ Res
2013;113:13–15.
11 Jackson M, Axton RA, Taylor AH et al.
HOXB4 can enhance the differentiation of
embryonic stem cells by modulating the
hematopoietic niche. STEM CELLS 2012;30:150–
160.
12 Ramos-Mejia V, Navarro-Montero O,
Ayllon V et al. HOXA9 promotes hematopoi-
etic commitment of human embryonic stem
cells. Blood 2014;124:3065–3075.
13 Ran D, Shia WJ, Lo MC et al. RUNX1a
enhances hematopoietic lineage commitment
from human embryonic stem cells and induc-
ible pluripotent stem cells. Blood 2013;121:
2882–2890.
14 Real PJ, Ligero G, Ayllon V et al. SCL/
TAL1 regulates hematopoietic specification
from human embryonic stem cells. Mol Ther
2012;20:1443–1453.
15 Jackson M, Ma R, Taylor AH et al.
Enforced expression of HOXB4 in human

embryonic stem cells enhances the produc-
tion of hematopoietic progenitors but has no
effect on the maturation of red blood cells.
STEM CELLS TRANSL MED 2016;8:981–990.
16 Easterbrook J, Fidanza A, Forrester LM.
Concise review: Programming human pluripo-
tent stem cells into blood. Br J Haematol
2016;173:671–679.
17 Capellera-Garcia S, Pulecio J, Dhulipala K
et al. Defining the minimal factors required
for erythropoiesis through direct lineage con-
version. Cell Rep 2016;15:2550–2562.
18 Yien YY, Bieker JJ. EKLF/KLF1, a tissue-
restricted integrator of transcriptional con-
trol, chromatin remodeling, and lineage
determination. Mol Cell Biol 2013;33:4–13.
19 Tallack MR, Perkins AC. KLF1 directly
coordinates almost all aspects of terminal
erythroid differentiation. IUBMB Life 2010;
62:886–890.
20 Schoenfelder S, Sexton T, Chakalova L et al.
Preferential associations between co-regulated
genes reveal a transcriptional interactome in
erythroid cells. Nat Genet 2010;42:53–61.
21 Drissen R, von Lindern M, Kolbus A
et al. The erythroid phenotype of EKLF-null
mice: Defects in hemoglobin metabolism and
membrane stability. Mol Cell Biol 2005;25:
5205–5214.
22 Nilson DG, Sabatino DE, Bodine DM
et al. Major erythrocyte membrane protein

896 KLF1 in Erythroid Differentiation of Human Pluripotent Stem Cells

VC 2016 The Authors STEM CELLS published by STEM CELLS

Wiley Periodicals, Inc. on behalf of AlphaMed Press

http://www.novosang.co.uk


genes in EKLF-deficient mice. Exp Hematol
2006;34:705–712.
23 Hodge D, Coghill E, Keys J et al. A global
role for EKLF in definitive and primitive
erythropoiesis. Blood 2006;107:3359–3370.
24 Siatecka M, Sahr KE, Andersen SG et al.
Severe anemia in the Nan mutant mouse
caused by sequence-selective disruption of
erythroid Kruppel-like factor. Proc Natl Acad
Sci USA 2010;107:15151–15156.
25 Perkins AC, Peterson KR,
Stamatoyannopoulos G et al. Fetal expression
of a human Agamma globin transgene rescues
globin chain imbalance but not hemolysis in
EKLF null mouse embryos. Blood 2000;95:
1827–1833.
26 Magor GW, Tallack MR, Gillinder KR
et al. KLF1-null neonates display hydrops
fetalis and a deranged erythroid transcrip-
tome. Blood 2015;125:2405–2417.
27 Huang J, Zhang X, Liu D et al. Com-
pound heterozygosity for KLF1 mutations is
associated with microcytic hypochromic ane-
mia and increased fetal hemoglobin. Eur J
Hum Genet 2015;10:1341–1348.
28 Arnaud L, Saison C, Helias V et al. A
dominant mutation in the gene encoding the
erythroid transcription factor KLF1 causes a
congenital dyserythropoietic anemia. Am J
Hum Genet 2010;87:721–727.
29 Singleton BK, Burton NM, Green C et al.
Mutations in EKLF/KLF1 form the molecular
basis of the rare blood group In(Lu) pheno-
type. Blood 2008;112:2081–2088.
30 Singleton BK, Frayne J, Anstee DJ. Blood
group phenotypes resulting from mutations
in erythroid transcription factors. Curr Opin
Hematol 2012;19:486–493.
31 Singleton BK, Lau W, Fairweather VS
et al. Mutations in the second zinc finger of
human EKLF reduce promoter affinity but
give rise to benign and disease phenotypes.
Blood 2011;118:3137–3145.
32 Perkins A, Xu X, Higgs DR et al.
“Kruppeling” erythropoiesis: An unexpected
broad spectrum of human red blood cell

disorders due to KLF1 variants unveiled by
genomic sequencing. Blood 2016;127:1856–
1862.
33 DeKelver RC, Choi VM, Moehle EA et al.
Functional genomics, proteomics, and regula-
tory DNA analysis in isogenic settings using
zinc finger nuclease-driven transgenesis into
a safe harbor locus in the human genome.
Genome Res 2010;20:1133–1142.
34 Sadelain M, Papapetrou EP, Bushman
FD. Safe harbours for the integration of new
DNA in the human genome. Nat Rev Cancer
2012;12:51–58.
35 Hockemeyer D, Soldner F, Beard C et al.
Efficient targeting of expressed and silent genes
in human ESCs and iPSCs using zinc-finger nucle-
ases. Nat Biotechnol 2009;27:851–857.
36 Olivier EN, Marenah L, McCahill A et al.
High-efficiency serum-free feeder-free ery-
throid differentiation of human pluripotent
stem cells using small molecules. STEM CELLS
TRANSL MED 2016;10:1394–1405.
37 Zwaka TP, Thomson JA. Homologous
recombination in human embryonic stem
cells. Nat Biotechnol 2003;21:319–321.
38 Lapillonne H, Kobari L, Mazurier C et al.
Red blood cell generation from human
induced pluripotent stem cells: Perspectives
for transfusion medicine. Haematologica
2010;95:1651–1659.
39 Gnanapragasam MN, McGrath KE,
Catherman S et al. EKLF/KLF1-regulated cell
cycle exit is essential for erythroblast enucle-
ation. Blood 2016;128:1631–1641.
40 Moreau T, Evans AL, Vasquez L et al.
Large-scale production of megakaryocytes
from human pluripotent stem cells by chemi-
cally defined forward programming. Nat
Commun 2016;7:11208.
41 Nuez B, Michalovich D, Bygrave A et al.
Defective haematopoiesis in fetal liver result-
ing from inactivation of the EKLF gene.
Nature 1995;375:316–318.
42 Siatecka M, Bieker JJ. The multifunction-
al role of EKLF/KLF1 during erythropoiesis.
Blood 2011;118:2044–2054.

43 Frontelo P, Manwani D, Galdass M
et al. Novel role for EKLF in megakaryocyte
lineage commitment. Blood 2007;110:3871–
3880.
44 Tallack MR, Keys JR, Perkins AC. Ery-
throid Kruppel-like factor regulates the G1
cyclin dependent kinase inhibitor p18INK4c.
J Mol Biol 2007;369:313–321.
45 Zhao Y, Hu J, Buckingham B et al. Pim-1
kinase cooperates with serum signals sup-
porting mesenchymal stem cell propagation.
Cells Tissues Organs 2014;199:140–149.
46 Coghill E, Eccleston S, Fox V et al. Ery-
throid Kruppel-like factor (EKLF) coordinates
erythroid cell proliferation and hemoglobini-
zation in cell lines derived from EKLF null
mice. Blood 2001;97:1861–1868.
47 Tallack MR, Whitington T, Yuen WS et al.
A global role for KLF1 in erythropoiesis
revealed by ChIP-seq in primary erythroid
cells. Genome Res 2010;20:1052–1063.
48 Ji P, Murata-Hori M, Lodish HF. Forma-
tion of mammalian erythrocytes: Chromatin
condensation and enucleation. Trends Cell
Biol 2011;21:409–415.
49 Porcu S, Manchinu MF, Marongiu MF
et al. Klf1 affects DNase II-alpha expression
in the central macrophage of a fetal liver
erythroblastic island: A non-cell-autonomous
role in definitive erythropoiesis. Mol Cell Biol
2011;31:4144–4154.
50 Xue L, Galdass M, Gnanapragasam MN
et al. Extrinsic and intrinsic control by EKLF
(KLF1) within a specialized erythroid niche.
Development 2014;141:2245–2254.
51 Alvarez-Dominguez JR, Hu W, Yuan B
et al. Global discovery of erythroid long
noncoding RNAs reveals novel regulators of
red cell maturation. Blood 2014;123:570–
581.
52 Trakarnsanga K, Wilson MC, Lau W et al.
Induction of adult levels of beta-globin in
human erythroid cells that intrinsically
express embryonic or fetal globin by trans-
duction with KLF1 and BCL11A-XL. Haemato-
logica 2014;99:1677–1685.

See www.StemCellsTM.com for supporting information available online.

Yang, Ma, Axton et al. 897

www.StemCells.com VC 2016 The Authors STEM CELLS published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press



Yang et al. Supplementary Figures. 

 

 

 

Supplementary Figure S1.   

A. Relative expression of KLF1 extracted from microarray data of erythroid cells derived either from hESCs 

(RC9 and H1) and adult peripheral blood (adult).  P values were calculated using one-way ANOVA followed 

by Dunn’s multiple comparison test. (*, p<0.05). Microarray data was confirmed by qRT-PCR (data not 

shown). 

B. Schematic of vectors used to express constitutive wild type KLF1 / mutant R328L cDNAs under the 

control of the CAG promoter linked to puromycin resistance gene by intra-ribosomal entry site (IRES). 

C. The R328L KLF1 mutant is nonfunctional in a -globin promoter-fluc assay and does not interfere 

with activity of wild type KLF1. 

 Relative promoter activity in K562 cell extracts 24 hours after transient co-transfection with -globin 

promoter-fluc construct, pRL CMV and 5mg of either empty vector (EV) or constructs expressing wild type 

(WT) or R328L mutant EKLF (R328L). Relative promoter activity is expressed as the firefly luciferase activity 

normalised for transfection efficiency using renilla luciferase activity. Results are shown as means +/- SD 

(n=3).  

D. Schematic of vectors used to express the inducible wild type KLF1-ERT2 / mutant R328L-ERT2 cassettes 

under the control of the CAG promoter linked to puromycin resistance gene by intra-ribosomal entry site 

(IRES). 

The ERT2 domain was first amplified using Primers 1 and 3 then this PCR product was mixed with KLF1 

cDNA and primers 2 and 3 and the KLF1-ERT2 was amplified using FailSafe PCR (Epicentre) with the 

premix J solution (FS99100) according to manufacturer’s instructions. 

Primer 1: primer with an KLF1 sequence at the 5’end of the ERT2 sequence.  

Primer 2: primer with an EcoRI site at the 5’end of the KLF1 sequence.  

Primer 3: primer with an EcoRI site at the 3’end of the ERT2 sequence.  
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Supplementary Figure S2. Characterisation of O RhesusD negative iPSCs. 

A/B. Flow cytometry analyses of SFCi55 iPSC line of pluripotency markers (TRA1-60, SSEA-4, 

OCT4) and differentiation marker (SSEA-1). 

C. CFU-C formation indicative of the hematopoietic differentiation potential of SFCi55 iPSCs was 

compared to a number of other iPSC lines was assessed at day 10 of the differentiation protocol 

(Olivier et al 2016). 
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Supplementary Figure S3.  Inducible KLF1-ERT2 system in H1-ESCs. 

A. Percentage of CD235a and CD71 double positive cells in the presence or absence of 200nM 

tamoxifen at day 17.  

B. Mean Fluorescence intensity (MFI) measurements of CD235a expression in day 17 cells 

following administration of 0 (control) 100 or 200nM tamoxifen from day 10 of differentiation.  

All data represent the mean of 3 independent experiments with error bars showing the standard 

error of the mean (SEM). P values were calculated using paired t-test (*p<0.05) 
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Supplementary Figure S4. AAVS targeting strategy 

A. Schematic of genomic structure of targeted alleles showing the locations of diagnostic internal 

and external PCR assays, 1-3. 

B-D. Genomic PCR analyses using internal primer pair (PCR 1) demonstrating integration of the 

vector (B) and diagnostic PCR confirming correct targeting at the 5’ (PCR 2)(C) and 3’ end (PCR 

3)(D) in 27/29 clones. 

E. Schematic of genomic structure of the endogenous, untargeted AAVS locus.  

F. Genomic PCR analysis using primer pair, PCR 4 distinguished homozygous and heterozygous 

targeted events. Note that the two clones (no 4 and 27) that were not targeted (identified in C and 

D above) generated a more intense PCR product in this untargeted PCR assay as predicted.   

Thus 13/29 of the clones were targeted at both AAVS alleles (homozygous), 14/29 at one allele 

(heterozygous) and 2/29 were not targeted. 

G. PCR genotypes of 2 homozygous (iKLF1.1 and iKLF 1.2) and 2 heterozygous (iKLF1.19 and 

iKLF 1.25) were confirmed using the 4 PCR assays, 1-4. 

AAVS1-RA, AAVS1 right homology arm; SA, splice acceptor; 2A, a self-cleaving peptide 

sequence; Puro, puromycin resistance gene; PolyA, polyadenylation sequence; AAVS1-LA, 

AAVS1 left homology arm. 
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 Supplementary Figure S5. KLF1 expression and production of erythroid cells from control 

iPSCs and iPSC lines iKLF1.1 and iKLF1.2. 

 

A. Western blot analyses of cell lysates from control iPSCs (Con) and two puromycin-resistant 

iKLF1 iPSC clones (iKLF1.1 and iKLF1.2) using anti-HA (αHA), anti-KLF1 (αKLF1) and anti-

GAPDH (αGAPDH) antibodies. (The band observed in Control sample with the αHA antibody is 

non-specific) 

B. %CD235a+/CD71+ cells in day 15 differentiated control iPSCS and in two independently-

derived iKLF1 cell lines (iKLF1.1 and iKLF1.2) in the presence (+) and absence (-) of tamoxifen 

from day 10 to day 15. This experiment was performed once on iKLF1.1 and iKLF1.2 so no error 

bars are shown. Three repeat experiments on iKLF1.2 are shown in Figure 3D. 

C, D. Expression of KLF1 and KLF1-ERT2 in CD34+ cells, undifferentiated iPSCs and iKLF1.2 cells 

and iPSCs and iKLF1.2 cells differentiated for 10 days in the erythroid differentiation protocol when 

the majority of CD34+ cells are present. Note the lower level of endogenous KLF1 in iPSCs 

compared to adult CD34+ cells and that the expression of KLF1 in transgenic iKLF1.2 cells is 

significantly higher than in control iPSCs at same stage in differentiation protocol. Real time PCR 

analyses was carried out with primers to KLF1 (C) that amplifies both endogenous and exogenous 

KLF1 and primers that amplify only the KLF1-ERT2 exogenous transgene (D) 
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Supplementary Figure S6. Tamoxifen has no effect on the expression levels of KLF1 target 

genes in control iPSCs  

 

In Figure 4, statistical analysis of the data to assess the effects of KLF1 activation in iKLF1 cells was 

performed by using the gene expression level of control iPSCs as the calibrator (set as 1) precluding a valid 

statistical analysis of these control cells. To demonstrate that tamoxifen had minimal effect of the expression 

level of these genes in control iPSCs we calculated the ‘fold change’ in these cells in the presence and 

absence of tamoxifen using iKLF1 (no tamoxifen) as the calibrator. A ratio paired T test was used to 

assess the effect of tamoxifen in iPSC derived cells (*, p<0.05). 

 

 

Samples are as Figure 4 from day 15 (A) and Day 24 (B). 
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Supplementary Figure S7. Flow cytometry gating strategy for the enucleation assay 

Differentiating cells were stained with anti-CD235a, -CD71 antibodies, Hoechst and the 

LIVE/DEAD™ Fixable Near-IR Stain then analysed by flow cytometry. Single cells were gated by 

FSC-A and FSC-H, and live cells were identified by the R780_60 filter. Gating thresholds were all 

set using the appropriate FMO and live CD235a positive cells were then assessed in the 

enucleation assay. Similarly, the gating thresholds for CD71 and Hoechst were set using the 

appropriate FMOs minus CD71 antibody and minus Hoechst. CD235a+ / CD71¯ / Hoechst¯ 

enucleated RBCs were expected to appear in Q4 quadrant.  Control human peripheral blood was 

used as a positive control for enucleated RBCs. 
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