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This thesis is divided into two distinct and independent parts.

Part 1 concerns the Approximation Property (a.p.) and Radon Nikodym

Property (RNP) in Banach Spaces.

In Chapter 1 we outline the importance of the a.p. and produce

examples of Banach Spaces without the a.p. by modifying a construction

due to Szankowski. These spaces are closed subspaces of £p direct

sums of finite dimensional £q spaces (l <_ q < p < °°), so with

p _< 2 we obtain Banach spaces of cotype 2 without the a.p. - this was

unknown.

In Chapter 2 we discuss the RNP proving in Theorem 2.9 the

characterisation in terms of dentable subsets due to Rieffel and Huff

(among others), of Banach spaces with the RNP. In theorem 2.18 we

prove that dual spaces with the a.p. and RNP have the metric

approximation property, obtaining as corollaries results of Grothendieck.

We introduce p- nuclear and p- integral maps between Banach spaces E

and F and prove in theorem 2.26 that, if E* has the RNP, all p-

integral maps are p-nuclear, and in theorem 2.29 that, if F has

the RNP all integral maps are nuclear. This extends work of

Grothendieck, Perrson and Pietsch.

Part 2 concerns the prediction theory of doubly stationary processes.

In Chapter 3 we outline the basic prediction theory, and state,

for the absolutely continuous case, Helson and Lowdenslager's

characterisation, for a weight function w and an irrational a , of

a process as type 1,2 or 3. We give an example of a process of type 2,

for all irrational a .

In Chapter 4 we obtain in Theorem ^.10 an exact analogue of Helson

and Szego's result, viz. that the past and future of a process are at

positive angle if and only if dy = wdcr , w = exp(u + v) , where



u, v are real Lm functions with IIvll < it .3 oo —

2

We introduce a class of functions - BMO(a) functions, analogous

to BMO functions, and prove BMO(a) is the dual of (o) and

{u+v : u,veL°° (o)} = BMO (a) in Theorems U.19 and 1+.20.



PART
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CHAPTER 1.

The Approximation Problem in Banach Spaces

The chief object of this chapter is to produce examples of Banach

spaces which do not have the approximation property. These examples

are in fact closed subspaces of £p - direct sums of finite dimensional

Jtq. - spaces where p>q>_l(p+») } and so in the case where p <_ 2

we obtain Banach spaces of cotype 2 which do not have the approximation

property. This was unknown.

If X and E are Banach spaces, B(X,E) will denote the space

of bounded linear maps from X into E. If X = E we use the

notation B(E).

A linear map T : X -*■ E is said to be compact if the closure

of the image of the unit ball of X under T i.e. T(Ball X) is a

compact subset of E. Since a compact subset is always bounded, such

a map is necessarily bounded, and denoting by K(X,E) the set of all

such maps, (K(E) if X = E) we have K(X,E) c b(X,E).

A bounded linear map T is said to be finite rank if the image

space of T is finite dimensional. If T e B(X,E) is finite rank,

T(Ball X) is a closed and bounded subset of the finite dimensional

space TX, so is compact, and T is therefore compact.

The set K(X,E) is in fact a closed subspace of B(X,E), and if

F(X,E) (F(E) if X = E) denotes the closure in B(X,E) of the finite

rank maps, we have F(X,E) C K(X,E) and it is a natural question as to

whether equality occurs.

Definition 1.1; [5] A Banach space E is said to have the Approximation

Property (a.p.) if for each e > 0 , for each compact subset K of E ,

there is a T e F(e) such that life - ell < e , for all e e K .
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Put another way, in the topology of uniform convergence on

compacts, the identity operator is in the closure of the finite rank

operators on E.

The crucial result is the following which is in Grothendieck's

memoir.[ 5]

Theorem 1.2: E has the a.p. iff F(X,E) = K(X,E) for all Banach

spaces X.

Most of the naturally occurring Banach spaces have the a.p.:

all the £,^, spaces with 1 <_ p <_ °° , C(K) where K is a

compact hausdorff space, the disc algebra A(D) , the space of compact

operators on a Hilbert space. It is unknown whether H00 or B(H)

(= space of all bounded operators on a Hilbert space H) have the

approximation property.

For many years it was unknown whether there existed a Banach space

which did not have the a.p. In [1+] Enflo produced such a space.

In [l] A.M. Davie produced an elegant simplification of Enflo's result,

and in fact showed that for 2 < p <_ 00 there is a closed subspace of

failing the a.p.

Szankowski [153 presented an example of a Banach lattice (i.e.

a Banach space also having a lattice structure) failing the a.p.

We shall show that, by suitably modifying his construction, we can

produce closed subspaces of jp - direct sums of finite dimensional

spaces which fail the a.p. These give, for the case where

2 h. P > 1^.1 > Banach spaces of cotype 2 failing the a.p.

The procedure is as follows: we construct a Banach space E ,

a compact subset K of E and a linear functional 3 on B(E) such

that B(l) = 1 where I is the identity, 3(T) = 0 for all finite

rank operators T .
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Also I 3 (T) I £ C sup { IITeII : e e K } for all "bounded

operators T on E , where C is a constant. If E had the

approximation property, then I could be approximated arbitrarily

closely on K by finite rank operators and this would necessitate

g(l) = 0 , a contradiction.

NNotation: I = {-1,1}"* is the Cantor group equipped with the natural

product measure, X . In denotes {-l,l}n , and tt^ is the natural
projection of I onto I„ , tt (with m > n) the naturaln ' mn —

projection of I onto In .

For u e In , let Zu = 1Tn"^(u) E I • characteristic
function of this set. For each n e N ,® denotes the (finite)

algebra of subsets of I generated by the sets Zu , with u e In .

By u we mean u = (u^, ..., un_-]_5 -un^ if u = (u^ Un~l' Un^
e In .

If A let nA~ = U {Zu : Zu C A} .

Lemma 1.3: For a £ 3 , for all n sufficiently large (depends on a)
there is a partitionCMv of I (i.e. I = U {A : A e 01 ,

n — >v n

A pairwise disjoint elements of (S^,}) such that

(a) 1 n a £ X(A) £ n a if A eOin (l)
2a

(b) X(nA~ H B) £ 5 n~a m~a if A eCMn, B e Oim (2)

(A modification of Szahkowski's lemma in [15].)

Proof: To prove the lemma we require the following combinatorial lemma

first.



Lemma 1.^: Let X = {1,2, . .. N) , m < /N and K < mA log m.

If y is the usual counting measure on X i.e. if Y C X ,

y(Y) = card Y/N , then there is a family oP partitions

of X so that

(3)
_l _-i K

(a) m < y(A) < 2m for all A e U<£)k
"

XX k"
—p K

(h) y(A n B) < 5m if A,B e UDk , A * B . {k)

Proof: For large enough N , the prime number theorem ensures the

existence of K distinct primes , p^ ... p^ , lying between
1 m and m

2

Let A. = {neX: n = j (mod p.)}
Jk k

cDk = (A. } Pk
J j=l

Then

LpkJ
< card A., <

Jk -
LpkJ

+ 1 for each k

(where [t] denotes the integer part of t) and so

ll 1 V (A._ ) ± 1 f 1 + 1 ^
pj ~ 0 » I kl / "
Since N/pk > N/m ^ ^ cAiWx. OO
Since, for k H , flA^ is a coset mod PkP^»

LpkptJ
< card (A.. D A.. ) <
- Jk .il -

N

LPkPL.
+ 1

and,using m < x/N , m/2 < p < ... p < m , we obtain (U).-L it

Proof: (of lemma 1.3)
00

Put I = ir X. where X. = {-1,1}
j=o J J

2J

Let P. : I -►X. denote the natural projection.
J J



5

Take N = 2^ and m = m. - (2^+"'")0' in lemma l.U , we obtain
J

K = 2.2^ partitions ^ \ k = 1, ... 2.2^ , of the set X. . sok ' 5 j-l
that (3) and (1) are satisfied. (This will work for all j

sufficiently large.)

The partitions 0"L are defined as follows, for
n

n = 2° , 2° + 1 , . .. 2J+1 - 1,

(H.n = <p.;i (D) nr' (1) : D *x>n+p! 2j> u

(p 1 (E) n r 1 (-1) : E eD $} (5)j-1 n n+1

r (t) is the nth Rademacher function on I , defined by

r (t) = t where t = (t, ). . el.
n n k k=l

We first note that 01 C ffi . This means that the sets in
n — n

01 depend only on the first n co-ordinates.

From (5) it is clear that the sets depend only on the

co-ordinates 2 , 2? 1 + 1 , ... 2-1 and n , which are all less

than or equal to n .

In what follows 2^ <_ n < 2t')+1 , 21 <_ m < 21+1
A = p (D) (e) B = p J1 (E) H r"1 (n)
where D e J E e .O 1 . ,

n+1 - (e+l)2J ' m+1 - (n+l)2 '

e and n are ± 1 .

Now 2 a n 01 £ m.1 _< y(D) £ 2m.1 <_ 2(2^+1) <_ 2n ° using (3)

It is clear that a(p. 1 (d)) = y(d) .
J

Since p . 1 (D) depends only on the co-ordinates 2
J

2J_1, 2J-1+1 ... 2J-1 all < n and r_1(e) depends only on the nth
n

co-ordinate, we have X(A) = ^(p^1 (D)) . ^rn~^ (£)) = m(e) . 2
Thus we obtain (l).
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Lastly we obtain (2).

Suppose for a start, that j + i .

Then p (D) and p depend on disjoint sets of

co-ordinates and so

X(A n b) £ X(p.~?" (D) n p ~J- (E))J 1 _L

= (d)) x (p.jj; (e))
= It x(a) x(b) ,

and applying (l) gives (2) .

n ~~ ""1
Now suppose j = i and that m = n , e = n5 so A 5Ern
J ^ _

B C r (_e) and therefore A n B = $ . Otherwise D and E
-

n

belong to different partitions -.0 , H) ^ ^ respectively, so using (h),

X(nA~n B) £ y(D n E) £ 5m72 £ 5n~2a .
J

Szahkowski's example was constructed as a certain subspace of

functions defined on the Cantor Group I. We obtain our examples

by modifying the definition of norm.

Before we define our Banach space and our functional g , we

set up a little more machinery.

If
n = collection of all subsets of {1,2, ... n} let

7^ = U n . For G e Xj define the Walsh function W^(t) on I by
W_,(t) = t r, (t) where the r. are the Rademacher functionsG keG k k

defined previously. These functions are characters on I with its

natural group structure i.e.

WG(t) WQ(u) = WQ(tu) t, u e I .

We construct our example in a series of steps : for ease we take

q = 1 , p > 1 .



Step 1: With
n a partition as in lemma 1.3 , and a se^vc^e

of strictly positive numbers which will be chosen later, for any

function, f measurable on I define

1/p
P

I z, f f \ (6)llfll l e» I
AcOin | Z CA

u X(A)

provided this is finite. Call the Banach space obtained using this

norm Eu. .

Step 2: We define a linear functional 3 on the bounded operators

on E; p by

3 (T) = 2 n I (W TW ) •

Ge^n G °
( By (f,g) we mean J f g d X) so (WQ , TW^)

wG(t) (twg) (t) d x .)
If u s I , G e"S with m > n , we notice W_ is constant

m J n — G

on Z , . Denoting this constant value by W (u) , we have
VJL: Q

B„<T> = 2_n I I TW a*
Ge'&n uel ZJ

J n u

T ip dX .
u '

uel Z
n u

where ip = 2 £ W (u) WU Ge^n G G
For v e I , we have

n

\jj (v) = 2 n I W (u) W (v)U
Ge ^ n

= 2 n I W (uv)
Ge'Ojn

■{
1 if u = v

0 otherwise.



Therefore ill = y and
u u

(T) = I T x dx
u

uel Z
n u

We obtain

3 (T)
n+1

(T) T x - dX

ueI _i_*i zn+1 u

Lemma 1.5: We have

(7)

5n(T) - (T)| < Imax { I
AeOIji +i

Tf : f is

Z CA Z
u u

C£>n measurable and |f| = Xn-g~ for some BeCH^ 18)

Proof: From (7) we have

3n(T) - s (T) = 1 J - SJ
u

uel Z
n+1 u

I I |
AeOin Z Cft. z

u u

T X ~ dX .
u

Consider £ T X - dX .
u

Z CA Z
u u

Denoting t
uv

(9)

T x ~ dX and enumerating the u's we obtain
u

matrix t and (9) is just the trace ) t of this matrix.
"t 0 L uuuv

Given a matrix (t )m (square) 3 e = (e )m n with
uv u u=1

e = ± 1 such that
u

m m

I I I t
m

e I > y t
uv v 1 — L.. uu

U=1 V=1 U=1

In fact we will demonstrate the existence of an e such that

m

1
uu

m m

I e y t e >. y tu uv v
•, 1u-1 v=l u=l



To show this, we will prove that for a matrix (b ) , \vc Cwv cW«-ao.
uv 5

y b e e > 0L UV U V —
v<u

(10)

and then put b = t + t for u > v . ( Ui\/ waX A
uv uv vu v '

For (10) we use induction. If it is true for matrices of order

m , consider (b ) m+^' uv u,v=l

I e e b
u v uv 1

m

eeb + e y e b
U V UV m+1 L V WvifiV

1 <_ u < v <_ m+1 1 <_ v < u <_ m v=l

Choose e., . . . e by the inductive hypothesis and e = sign of1 m m+1
m

J e b . Now applying this to (9) . we obtainL v m+l,v
v=l

I f t x - a* i I T (I x;)ax
z a Z
u u

Z CA
u u

£ max y T f dX

Z CA Z
u u

where the maximum is taken over f , measurable with respect to ®>
n ,

and such that 1 f I = Xm- for some B e Oi1 1 B n

Thus we obtain

i„(T) - Bntl(T) <_ y max { y
AeOt

T f

n
Z CA
u u

• f = XnT

for same B e Oi } .
n

Step 3 : We have from (8)

MP WT) <_ y max

Ae (X „

< I II T f : |f| = XnB-}
Z CA
U' u

£ y x(a)
AE Oi

max 1 I 17J T f

Z CA u°
n u

X(A)
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where = {f : f is8 measurable and Ifl = Xn,
n

for some A e OA. }

If M = number of elements in the partition OA.
n

3 (T) - g ^(T)I < M max X(a)n+1 n CLn
max

°An
I (I

m As CM, Z
ml u

T f

u

X(A)

1/P

1/P
n

= max X(A) 1 max IITf II

C 1/p fcY
n Jn

(11)

Step It: Fix p > 1 and choose an integer on > 3 and numbers
I ~~

Y , <5 such that
P P

Y > a + 1 ,

P P ;

Y < a - 1 \
_P P '

(12)

(13)

y -a<-6<-l.
P P

(lit)

(All of these are possible).

Step_5:

max {II f II : f e } <
p n -

I cm I ( x(nA n B)
m BetM, V X(B)

m >

i/p

Using lemma 1.3 with a = a we obtain the above
P

< [[ c M n aP x constant.— Aj -m m

in
m m

. , and since M < 2aPmaf. J c M converges using
m — * L m m

Put c = m
m

(12). With 6 as above, define
P

K = U (naP ~ + Xf : f s°j } U {0} . (15)n=l -1 n

By (12), (13) and (lit) K is a sequence which converges to

zero and so is compact.



Also 3 (T)1
n n+1

(T)I < const.

YP
i " t* 4 p *1

ii

max llTfllp
f e K

If £',
^ _

a;p + (5 p - 1 , Jn EP < +°° since e;^ < -1 .

Therefore $(T) = lim 3. (T) exists for all hounded operators
n-x»

T on Ep and

13(T) | _< canst (l + £n E£) max IITf IIp .

f e K

Step 6: Clearly 3(id) = 1 where Id = identity operator on

Ep. We show 3(T) = 0, for all finite rank operators T.

It is sufficient to show 3(T) = 0 for all rank one operators T.

Suppose Tg = Q(g)f where Q e Ep* , f e Ep .

3n(T) = 2"n I (IWG , WG)
= 2~n I Q(Wg) (f , WG) ,

and so to show 3^(1) ->-0 as n -*» we need only show (f , WG) ->■ 0
as the number of elements in G "becomes large. This is obviously

true for bounded f , and these f are dense in Ep .

We have constructed then Vp > 1 , a space Ep failing the

a.p. We show now how to represent Ep as a closed subspace of a

H - direct sum of - spaces.
P 1

Define a map from Ep JC

1/P

ll by

u

A(A)

a1a (16)

Z oa
u AeOi n e N

n

The definition of the norm in Ep ensures this map is an

isometry onto a closed subspace of an tp - direct sum of finite

dimensional spaces.
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For 1 < p <_ 2 this supplies an example of a space of cotype 2

failing the a.p.

Definition 1.6: Let {e.} be a sequence of independent, identically
J

distributed random variables such that

Prob [e. = +l] = Prob [e. = -l] = 1/2 V . .
1 J J

A Banach space E is of cotype (resp. type) 2 if there is a
n n ,

constant C such that Jo (II J" e.x.ll) > C( Y Hx.ll ) for allA J J ~ A J
(resp <) xn , ... x e E ,

— 1 n '

for all n e N .

(Here }? denotes expectation.)

This property is clearly preserved on passing to subspaces. To

show Ep is of cotype 2 it is sufficient to show that is of

cotype 2 and also that if 1 < p <_ 2 , - direct sums of cotype

2 spaces are also of cotype 2 . These results are well known.

Proposition 1.7' ^ is of cotype 2

00

Proof: let x. = Y x. e 1 < j < k where the e are the
J jn n n
.1

usual unit vectors m Si

Khinchin's inequality states that there is a C > 0 -such that

C"h ! |a.|2)1/2 <% (| ! |) < C( I la.l2)1/2
j=l ^ j=l J J j=l J

for all real nos a, ... a, , all k e N .1 k

So using Khinchin's inequality } VvfljYt
k 00 , k

ad LJ>2)1/2 i c i (i i pi)
j=l n=l jn j=l J n J

k
< C £ ( £ e. | x. |— L >° L J jn1

n j=l
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£ C2 I tl lx- again by Khinchin\ u^awo-V
n j Jn

1 °3 £ (I II Ej xjnl),^y one
last use of Khinchin's inequality.

An easy argument shows that the dual of a type 2 space is

always cotype 2. Therefore £P for 1 < p £ 2 is always cotype 2.

Proposition 1.8: If are Banach spaces such that there is a

C > 0 such that

(£ He. II2 < C js (II £ e. e. II) f e. e E-.sne N ) and\ jn • J J" jn rL> 'J J

1 < p < 2 , then © E is of cotype 2.
£P n

Proof: Since £p is of cotype 2 for 1 £ p <_ 2,

(HI lie IP)2/p)l/2 < Apl ( I | I e lie II |V/p
j n Jn n j

< Ap Zg ( | I e. He. II |P) 1/P~ ^ 1 J J Jn 1
Using Khinchin's inequality the above is

< ApBp (I le II2P/2 l/p
n j

< Ap Bp C I % ( IJ e. ejnllp) l/p
= Ap Bp C % (I II I e^ e^nllP) 1//p

n J

and so we have the result.

Remarks: (l) For ease we restricted attention to the case q = 1 ,

p > 1 . We can obtain spaces E p, q which are closed subspaces of

- direct sums of finite dimensional spaces with p > q >_ 1

by defining



ll+

II flip >q , = I ((I f q \ i/q p

AsOVn z J
U )

1 A (A)

!/p

where the C >0 are numbers chosen later,
n

As before

VT) " e„+i(T) <_ £ max
AeCR

n

Tf : f e°S-.
Z CA Z
u u

< M max A(A) max ( £n
Z CA

Tf b1/q 2
z J

u u

X(A)

< constant X I c Il n L
Ae

( 1
'

Tf

^ Z
✓

z /
n u u

(where 1 + 1 = l)
q q.1

<_ constant max

fe^r

IITf II 2n^
P'q

n 1/P
n

Then a careful choice of C as in step h yields the result in
n

the same way as before.

(2) It is unknown whether every closed subspace of (l <_ p < 2)

has the approximation property.

(3) Szankowski obtains his Banach lattice without the a.p. by taking

as his norm

,-1llfll = sup max A(A)
n Ae^V

f dA .
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CHAPTER 2

The Radon Nikodym Property

For ease icy, this chapter, we shall consider only real Banach

spaces, and all scalar measures and functions will take real values.

(X, £, p) is a finite measure space i.e. X is a set, J a

o- algebra of subsets of X and p a finite positive measure defined

on £ . If m is another finite measure on X , but possibly taking

both positive and negative values, we say m is absolutely continuous

with respect to p if m(A) = 0 for all A e £ for which p(A) = 0.

If this is the case, we write m < < p .

If Q is a real valued function on X, integrable with respect

to p then

m(A) =

A
Q(x) dp , A e I (l)

defines a finite measure on X , absolutely continuous with respect to

p . The crux of the Radon Nikodym Theorem is that all finite measures

absolutely continuous with respect to p must arise as in (l) .

Theorem (Radon Nikodym): With (X, £, p) as above, and m a finite

measure, absolutely continuous with respect to p , then there is a

Q e I?" (X, £, p) such that (l) holds

(We need only require, in fact, that p be a - finite.)

Our first object in this chapter will be to obtain a Radon Nikodym

theorem for measures taking their values in a Banach space. This is

possible only in certain spaces, those with the Radon Nikodym property.

We shall then obtain results concerning the approximation property and

p — integral and p — nuclear operators and spaces with the Radon

Nikodym property.



Vector Valued. Measures and Strongly Measurable Functions:

We first set up the necessary machinery to discuss the theorem.

A fuller account of the following material is available in Dunfprd

and Schwartz, Volume 1.

Throughout X will be a set, £ a a - algebra of subsets of

X and E a real Banach space.

Definition 2.1: A vector valued measure m E is a set

function taking values in the real Banach space E such that m

00

is countably additive i.e. if a sequence of disjoint

subsets in £ then
00 00

m(UA)=ym(A)f (2)
-1 n Zi nn=l n=l

We restrict attention to those vector measures which are of finite

(bounded) variation.

Definition 2.2: The variation HmII of a vector measure m is the

positive measure defined by
n

l'm|| (A) = sup y llm(A.)H
i=l 1

\

where the supremum is taken over all finite partitions of the set

A s y into disjoint subsets A , ... , A^ e y .

m is of finite (or bounded) variation if llmll(X) < + 00 . We

also use the terminology 'finite' .

A null set of m is simply a null set of the measure UrnII .

In a fairly obvious way we can set up a theory of integration of

scalar valued functions defined on X with respect to a vector measure

m defined on X . We commence with simple functions.



n

A simple function f has the form f = [ a. XA where
n

I
i=l

ai e 5 ' an(^ are characteristic functions of the disjoint
i

sets A. e 7 .

1 L
f n

We define f dm = \ a. m(A.) (3)
XJ i=l 1 1

We can obtain easily the usual properties of the integral for

simple functions. We now extend the notion of integrability.

We will say f is measurable if it is measurable with respect

to the space (X, £ , llmll).

Definition 2.3: A scalar valued measurable function f is said to be

integrable with respect to m if there is a sequence U } of

simple functions such that

(i) fn(x) f(x) pointwise m almost everywhere
(i.e. llmll almost everywhere)

(ii) f - f d llmll is Cauchy.1
n m1

>11 f dm _ f dm <
I n J m ~;

f - f d llmll so1 n m1

f^dm } is Cauchy and convergent to an element of E.
Define

X'

f dm = lim
n X-

f dm .

n

We can show the above definition is independent of the choice of

simple functions, and an integration theory is readily obtainable.

We turn our attention to vector valued functions. y is a

finite positive measure on X . A vector valued function f : X -*■ E
n

is said to be simple if f = I e> X^ where e^ e E and the
i=l 1 i

X^ are characteristic functions of disjoint subsets A. e [ .

T
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Definition 2.h: A function f : X -y E is said to "be strongly

measurable with respect to p , if it is pointwise p- almost

everywhere limit of simple functions.
n

If f is simple, f = £ e. XA we define
i=l 1 i

n

f dp = £ e. p(A.) . We extend by
xJ i=l 1 1

Definition 2.5: A function f : X -*■ E is strongly integrable

(Bochner integrable) with respect to p if there is a sequence

{f } of simple functions such that
n *

(i) f(x) f(x) p~ almost everywhere (so f is measurable)

(ii) { If - f II dp } is Cauchy.
m n J

Define | f(x) dp(x) = lim
n->« X'

f dp which exists by (ii)

since E is a Banach space.

Again we can prove the definition is independent of the choice

of simple functions.

L1^ (X, J, p) = L „(p) will denote the set of all BochnerJcj IL

integrable functions. It is a Banach space.

If A e 7 , f e L1 (p) we define
ill

f dp = f X. dp .

AJ XJ

Define m(A) = f dp for some f e L1^ (p) . (*)
Iv

Then m is a countably additive vector measure of bounded variation.

For if A = A^U ... UAn is a partition of A e \ into disjoint
subsets A. ... A e I , then

1 n L

Y llm(A. ) II < IIfII dp <
A 1 " ui.

1

II f II dp(x) .

Thus IImil exists. Moreover m(A) = 0 for any A e \ for which

P(A) = 0 .
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Definition 2.6: m is y- continuous if m(A) = 0 for all A

with y(A) = 0 , A e £ .

The natural question is whether every E-valued finite y- continuous

m must arise as in ( * ) , through some f e L^" (y). The answerill

is 'no' as the following example demonstrates: the example is well

known.

Example: Let X = [0,1] , £ "be the a~ algebra of Borel measurable

subsets of [0,1] and y be Lebesjjue measure on [0,l] . E 1b
the real Banach space L^[0,l] .

Define m : £ -*• E by

m(A) = f°r each A e £ , where

is the characteristic function of the set A. Then m is a

vector measure and since llm(A)U = y(A) for each A e £ , m is finite

and y— continuous.

There is, however, no Q e „(y) such that m(A) = Q dy , forE aJ
each A e £ .

Let us suppose there were and that a sequence of simple

functions such that Q Q pointwise almost everywhere and
n

Q - qII dy < 2 n for each n .
n vKn

We may assume Q (S) = £ Tfrnj (s)n
j=l yTC-) nj

nj

where the A . are disjoint and y(A .) < 2 n . Each . e L [0,1]
no k no — no

n

Consider Q1 (S) = £ m(A .) Xk ,(s) »

p(A .) J
no

k

llQ^ - Qnl a„ < J lm(Anj
3~±

Then

Q dy -Now llm(A .) - i/i . II = I'
no no

Anj Anj Anj
£ | IIQ - Qnll dy ,



Therefore IIQ - Q II dy < Jn M - .L, .

J=1 A;
•I Q - Q II dy ^

n

nj

So HQ Qll dy £ 2 , i.e. Q Q in L^" (y )1,1 n h

20

IIQ - Q II dy < 2~""
n —

00

Let A be a set such that, for some n > 2 ,

v(A Anj) = |y (A^.) for j = 1,2, ... k^ .nJ

Then II y. -AA ^ "te *A . (S» ^"L1 " "*A - 1 "L1 " T -BJ "A .

A j=l ylA~ ) nj
nj

But (i+) gives the above _< 2 n , a contradiction. There is,

Q dy .therefore, no Q e L1 (y) such that m(A) =Hj

The Radon Nikodym Property:

We shall now try to discover for which Banach spaces, an

analogue of the Radon Nikodym theorem is possible.

Definition 2.7' A Banach space E is said to have the Radon Nikodym

property (RNP) if and only if for any finite, positive measure space

(X, £, y) and any E- valued, finite, y- continuous measure m on

£ , there exists a Q e L"*" (y) such thatJli

m(A) = Q(x) dy(x) , A e I .

PJ

Phillips [12] had shown that all reflexive spaces have the RNP,

although he did not state the result in this way. In an attempt to

generalise Phillips' result, Rieffel [13] [lO introduced a

geometric concept — dentability - and established a link between

dentability of subsets of a Banach space and the Radon Nikodym

property.
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Definition 2.8: A subset D of a Banach space E is dentable

if for each e > 0 , there is a d e d such that d i CO [d\b (d)] .
e

Here CO (F) denotes the closed convex hull of a set F , and

B (d) = {e e E : IIe-dll < e} .

We then have the following theorem

Theorem 2.9: A Banach space E has the RNP if, and only if, every

bounded subset D of E is dentable.

Rieffel [1U] , who introduced the concept, proved that if every

bounded subset D of E is dentable, then E has the RNP. The

other implication was proved in a succession of papers by other authors

including Maynard, [8] Davis and Phelps [2], Huff[6] .

We shall present a proof of this theorem which is a merger of the

proofs of Rieffel [13], [lU] and Huff [6] .

Definition 2.10: With (X, y) a positive measure space and m a

finite vector measure which is y- continuous, A e £ with y(A') > 0

define the set R(A) C E (the range of A) by

R(A) = ( m(B) : B C A and 0 < y (B) < » )
1MB) f

Definition 2,11:Call a subset A e £ , with y(A) > 0 , (e, e) - pure

if R(A) C B (e) (e > 0 and e e E).
—

£

Lemma 2.12: [13,1*0 (X, y) as before, m is a finite , y- continuous

E— valued measure, where E is a Banach space in which every bounded

subset is dentable. Let e > 0, A e £ with y(A) > 0. There is

a subset B C A with y(B) > 0 and an e e E such that B is

(e, e) - pure.
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Proof: We show first that there is a b c a with y(b) > 0,

such that R(b) is a bounded, and so dentable, subset of e. The

following argument will be used on several occasions, and is used

extensively by Rieffel.

If R(A) is not bounded, let K = llmII (A)/y(A).

Let = smallest integer >_ 2 such that there is a

B C A with y(B ) >_ 1_
kl

and llm(B^)ll ^ 2K .

p(b1)
Letting A^ = a\b^ decide whether R(A^) is bounded. If it is,
stop.

If not choose = smallest integer >_ k^ such that there is a
B CA\B with y(B ) > 1_ and llm(B )II > 2K .

k?
v(Bg)

Continuing the process, we either stop at some stage, or else

obtain a sequence of non-decreasing integers {k^} , a sequence
{B.} of disjoint subsets of A with y(B.) >_ 1_ , with the

1 1
k.

n i

property that if C C ^f-q^i an<^ > 0 ant^ Hm(C) II > 2K , then
y(c)

y(c) < .

k -l
n

CO CO

Let B=A\ U B. . If C C A\ U B. and y(C) > 0 with
i=l 1 i=l 1

iim (C) II > 2K then we have y(c) < _1 , for all i . Since
. . k.-l

y(C) i

(X, y) is a finite measure space k^ -*■ 00 as i -> 00 , so that
y(C) = 0 , a contradiction.



Lastly we show y(B) > 0 . If y(B) = 0 then m(B) = 0 .

(Bi:
P(B]"

Thus m(A) - y m(B.) and we obtain
Riy i=i *

IImII (A) > Y llm(B.
TUT ~ i=i

yU)

I llm(Bi) II y(B^)1=1 TTbTT vTut"

> 2K y y(B. ) = 2K , a contradiction.
1=1

y(A.)

We may as well assume therefore that R(a) = D is "bounded and

so dentable.

Let e > 0. 3 d = m(B ) i CO d\b (d) .
o T L £

SIT)

Consider R(B ) . If R(B ) is (d, e) pure, stop .
o o

If not, let k^ = smallest integer >_ 2 such that there is an

A^ C Bq with y(A^) >_ jL and m(A^) £ B^(d)
*1 y(A1)

but m(A^) e D\B£(d)
y(Ax)

Consider B = Bo^Al ' Pu*"e, stop, if not
continue the process.

As before we obtain a non-decreasing sequence of integers

{k.} , a sequence {A.} of disjoint subsets of A with y(A_^) > 1
k •

i

n

and if C C B \ .U A. with y(C) > 0 and m(C) i B (d) , then
- 0 1=1 1 TTCcT E

y(c) < l
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Consider B= B \ .U A. . If C C B \ .U A. ,U l-l i — 0 1=1 I

and y (C) > 0 with m(C) { B (d) , then y(C) < 1 , for all i ,

vTc) e k.-l
1

and so y(C) = 0 as before, a contradiction.
CO

Also y(B) > 0 . If not y(B.) = Y y(A.)0 .L I
i=l

and d = m(B0) = £ m(A^) y(A.)
y(BQ) 1 1 yTA7) ylB^)

e co d\b (d)
e j a contradiction.

Lemma 2.13: (X, £, y) m and E as before. Given e > 0 ,

3 sequence {A^} of disjoint subsets of £ and {e^} C E
oo

such that X = U A. and each A. is (e. , ej pure.
. l l l' *
i=l

Proof: Using lemma 2.12, let = smallest integer >_ 2 such that

there is an A^ C X with y(A^) >_ 1 and A^ is (e^, e) pure
h

for some e^e E.
We use the same procedure as before to obtain a sequence of

non-decreasing integers {k.} , a sequence {A_^} of disjoint subsets1
n

of X with y(A.)>Ll_ and if C C X \ U A. satisfies
1

k. i=l 1
1

y(c) > o , r(c) is (e,e) pure for some e, then y(c) < ^
k .

n-1

Let B = X \ U A. . B has measure zero. If not,there is a
i=l 1

C C B . with y (C) >0 and R(c) (e, e) pure for some e. Then

y(C) < 1 for all i , and so has measure zero.

ki-l

Adjoin B to A1 , and we have the required decomposition.
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Proof: (of theorem 2.9) ([7], [13], [lit])

Suppose first that every hounded subset of E is dentable,

that (X, y) is a finite positive measure space and m is a

finite y- continuous E- valued measure.

Let II = collection of all partitions it of X into disjoint

subsets A^, ...A each of positive y- measure. This set is
partially ordered in an obvious way.

For a given tt define = £ m(A) xA •
Aett y(A)

is an integrable simple function. With e > 0 given, we shall

show the existence of a tt e II such that if tt > it ,
o — o

IIQ - Q II dy < e .

CO

Fix e > 0 and decompose X = U A^ as in lemma 2.13 in which

each A^ is (e^, e/6 y(x)) pure. Because IImil is absolutely
continuous with respect to y , given e > 0, 3 6 > 0 such that if

y(B) < 6, B e £ , then Umll (B) < e/3 •
n

Since y is finite there is an n e N such that B = x\ U A.
• - 1
1=1

satisfies y(B) < 6 .

Let tt = (A , .. . , A , B}
o 1 n

Q = I m(A. ) XA. + m(B) xB
° 1=1

((17) 1 "(B)

Suppose it >_ tTq . Then

11 Qu " V1 1 n f "Q^ - % "an + J + j lq,o II dy

U A.
i=l 1

<
— n "Sr" %"ai1 + e/3 + E/3

U A.

i=l 1



Now IIQ -

AJ
Q II dp <
7TO —

AJ
IIQ - e. II dp +

TT 1
AJ

I e. - Q II dp .
1 7TO

Qtto = ^V>so Ik - m(A.)| <
y(A.) y (A.) 6 p(x)

Also Q £ m(A..) XA on A. with A. = V A. . ,

j=l ^ ij 1 1 j=i ^
pd >

so e.
l

A.
l

-

^ .
^ 1 £ I y(A..) .

n — "1

6 y(X) J 1

Thus IIQ - Q II dp < e if tt > tt
tt TTO — — o

The net {Q } is Cauchy therefore and so 3 Q e L _(p) with7T J]

Q dp = lim
7T A-

Q d
TT p

Clearly m(A) = Q dp . V A e £ .

Let us suppose now there is a subset D of E which is not

dentahle.

There is an e > 0, therefore, such that

d e CO [d\b (d)] for each d e D .
e

We shall construct a vector measure m, a positive measure y

both on [0,1[ such that ji Q with m(A) = Q dp even though

m and p are finite and m is p- continuous.

Choose some d e D such that d e CO [d\b (d)] . There are
e

d. e D with Hd. — dII > e , and a. such that 0 < a. <77 and
J J ~ J J 2

J a. =1 , with lid - y a. d. II < \ .u 1 3 4* in PJ J



Consider each d.. There are d.. with lid.. - d. II > e and
J Ji Ji J -

0 < a .. < — with 7 a.. = 1 and II d. - V a .. d .. II < —„ .J1 22 • Ji J I jx jx g

Continue this process. nth step we have d. . with
xi 11 .. . n

Hd. - d. . II >. e and 0 < a. . < — with
xn 1i 1 1 x. l _n1 • • • n 1 .. . n 1 1 .. . n 2

y a. . =1 and lid. . - J a. d. . II .< —
• 1 x 1 x . k 1. 1 i. x _

x 1 . . . n 1 . .. n-1 x 1 ... n l .. . n 2
. n n

We now construct a sequence {it } of partitions of [0,l[
n n=o

Let it = { [0,l[ }

tt = {I.} where [0,l[ = U I.
J j J

Each I. = [a.,h.[ with a = 0 h. - a. = a.
J J J o J J J

7T„ = {I..} where each I. = U I..
2 Ji J • Jx

J

with measure of I.. = a., times the measure of I. .

jx jx J

tt = {I. • )
, I- • = u I- ,n X1 ... n 1 ... n-1 in 1 ... n

with measure of I. . a. . times the measure of
1-. X = -x- X
1 . .. n 1 .. . n

I.

11 ... 1n-l
CO

Define simple functions n=° as f°llows:

Qq = d X [0,1[

Qi =! •
«„ =. j . % i *i. i etc-x i 1 ... n x, x

1 ... n 1 ... n
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The smallest a- algebra containing u 7^ is the a- algebra
of Borel subsets of [0,1[ . This is £ . p is just Lebesgue

measure on [0,l[

V A el we define

m(A) = lim
n+-°°

Q dp .
n M

That this is reasonable follows from the following estimate

Q ~
n

I. • I.
1, 1 l, i
1 •.. n 1 . .. n

Q ,, II < Hd. . - 7 a. . . d. . . In+l — i, i L i. l l ,, in l l ,1 ... n 1 . .. n n+l 1 .. . n n+l

V (l- )

i -„+i "(h, i »
2 1 ... n

By decomposing I.
1 .. . n

and telescoping we obtain

V
Qn"

l. l
1 . .. n

V
Q ,, dpII < — p (I. . ) for all k
ntk ~ 2n X1 ... n

1 ...1n

This guarantees the existence of lim
k-+°° V

dp for any n

1 ... n

m(A) exists therefore for all A in the algebra generated by the

partitions {it } . and llm(A) II < K p(A) , since this holds for
n —

Q dp with n sufficiently large. By lemma IV.8.8 in [3]
n

(A) exists for all A e I and llm(A)II <_ Kp(A) for all such A .

AJ

m

Thus m is finite and p- continuous.

Suppose there is a Q e ii^Cmi such that m(A) = Q dp for

all A e I



The sequence \p
i, ... 1
1 n

"tends to Q in L norm

Now H<Jj - Q II dp
n

i. ... l
1 n

m(l.
X1 .

i >
.. n

y (i.
i )

l .

-L
.. n

m(l. i )X1 .

JL
n

y'Ci.
i .

i >
n

xi 11 . .. n

But llm(l. . )
1i 11 ... n

y(I. . ) d. .11
XT 1 i, 1i •.. n 1 ... n

I lira
k \a" Qn an
I.
X"l 11 ... n

I.
xi 11 ... n

1 y(l£ £ ) ( 1 +1 ... )

= y(l.

Thus ( * ) <1

1 ... n 2n+l 2n+2

d. i > i
1 . . . n 2n

I yd. , ) = 2
-n

2n i i
1 ... n

J IIQn - Q^lldy} is Cauchy.Thus {

This is however false for

K ' Qn+l"dU " I II d.
l,

... l - 1
1 n+1

29

y (I,

(*)

. - d. I
n 1 ... n+1

y (i • in+l)
>_ e , for all n e N .

Thus Banach spaces with the RNP have "been fully characterised.

As well as reflexive spaces, all Banach spaces isomorphic to separable

dual spaces have the RNP. (it is clear that it is a property

preserved by isomorphisms.) Also every closed subspace of a Banach

space with the RNP has the RNP.
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So important examples of Banach spaces with the RNP are

(1) all £ spaces with 1 £ p < °° }

(2) all spaces with 1 < p < <*> .

Also all closed subspaces of these Banach spaces.

Important examples of Banach spaces without the RNP are

LX[0,l] , C[0,1] , L°°[0,l] , Cq , £°°.
We should remarks that it suffices in Theorem 2.9 to have

every closed, bounded, convex set dentable. This follows from

Rieffel's result that a bounded subset of a Banach space is dentable

if, and only if, its closed convex hull is dentable.

The RNP is linked to another geometric property of Banach

spaces, namely the Krein Milman Property. A Banach space has the

Krein Milman Property if every closed, bounded, convex set is the

closed, convex hull of its extreme points. Lindenstrauss has shown

that the RNP implies the KMP and in [7] .Huff and Morris show

that, for dual spaces, the two properties are equivalent. It is

unknown whether there exists a Banach space with the KMP, failing

the RNP. In [ll] Phelps gives a proof of Lindenstrauss' result

and links the RNP with other geometric concepts in Banach spaces.

The Radon Nikodym Property and Approximation Property

As well as the a.p. Grothendieck also introduced the metric

and bounded approximation properties. (m.a.p. and b.a.p. respectively).

Definition 2.1*1: [5] A Banach space E has the metric approximation

property (bounded approximation property) if for each compact subset



K C E , for each e > 0 there is a T e B(E) of finite rank such

that ilTII <_ 1 CI'TII <_ same constant m) with llTk — kII < e for

each k £ K 5

Grothendieck showed that for reflexive spaces the a.p. implies

the m.a.p. We will obtain a generalization of his result. In

proving this it is helpful to have a little tensor product notation.

If E and F are two Banach spaces, E 0 F will denote the
n

algebraic tensor product of E and F , and £ e. (?) f. will
i=l 1 1

denote a typical element of this space. E © F is a linear space

and we can norm this space in a number of different ways. We shall be

interested in two norms.

The projective tensor norm, X , is defined an E ® F by
n

A(u) = inf 7 He. II IIf. II where the infimum is taken over all
i=l 1 1

n

respresentations u= y e. ® f. of the element u e H ® F .
i=l

The infective tensor norm, p , is the norm defined by
n n

p( I ei 0 f.) = sup | I <j,(ei) \p (f.) |
i=l i=l

cj> e Ball E* , iJj e Ball F*

where Ball E*, Ball F* denote the closed unit balls of E*, F*

respectively.

These in fact are norms (so called cross-norms) on E ® F.

E ® F is not necessarily complete with respect to either of these

norms. Completing E ® F in the usual fashion with respect to
X we obtain a space denoted by E ® F - the projective tensor

v

product of E and F. The space E © F obtained by completing
E (g) F with respect to p is called the infective tensor product
of E and F.
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Let us consider the space E ® E*. A typical element of

n

E ® E* has the form £ e.® , e. e E , A. e E* .

i=l 1 1 1 1

We define an operator T on E hy

Te = I *,.(e) e.
i=l 1

n

Now IITell = II Y d>. (e) e. II
i-1 1

n

sup | J <t> i (e) *(ei)|
e Ball E* 1-1

n

So IItII = sup | £ (j) (e. ) <() . (e) I
i=l 1 1

e e Ball E (j> e Ball E*
n

sup | I (j).( e.) ip (<J> )|
i=l

ip e Ball E* <(, e Ball E*
n

= P ( I e. @> a.) .

i=l

v

In this way E ® E* can he identified as the closure of the

finite rank operators in B(E), namely F(E).

We shall now present a proof of the fact that for a dual space

with the RNP, the a.p. and m.a.p. are equivalent.

Proposition 2.15: Let X he a compact ttausdorff space and E a

V
Banach space. Then C(X) ® E = C(X,E) = the Banach space of

all E- valued continuous functions on X. (This result is well-

known. )

Proof: Define T : C(X) ® E > C(X,E) by
n 2

T ( I f - ® e . ) (x) = I t±(x) e±
i=l 1 i=l

T is a well defined linear map.
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Now IIT ( I f s> e. ) II = sup II | f.(x) e. I
i=l 11 i=i 1

x e X

n
= sup sup | I f (x) x(e.)|

i=l 1 1
x e X <f> e Ball E*

n

sup II* (f•) <f>(e. ) |
i=l x

if) e Ball C(X)* f e Ball E*

n

= p ( I f. ® e.) .

i=l 1

Thus T is an isometry on C(X) ® E and so extends by
v

continuity to C(X) (£> E which is therefore contained in C(XE),
v W

We show C(X) ® E is dense in C(X, E) , and since C(X) ®i E

is closed, the result follows.

If f e C(X,E) , f(x) is compact.

Therefore given e > 0 , there are open balls B£(e... B^_(e^)
e. e E covering f(x).

Let U. = f ^ (B (e.)) , an open subset of X. Choose a
1 E 1

partition of unity {«J>..} subordinate to -&J.} .
1

n

So each <j> . is continuous, support <j>,. C U. and £ ^> . = 1 .1
i=l

Then llf(x) - I ^(xje.ll = II £ f.(x)(f(x) - e.)ll
i=l 1 i=l

< e for all x e X .

Theorem 2.16; The dual of C(X,E) is the set of all bounded, regular,

Borel E*- valued measures on the compact Hausdorff space X .

Proof: Given m , E*- valued, bounded, regular and Borel ,

define ik(f) = (dm, f ) - (5)
m xj
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By (5) we mean an integral defined first for simple functions

on X as follows:

n

I
i=l " ~"i

n

If I - J e. Xa s A. disjoint Borel subsets of X, e. e E ,
-r-T 1 1 1 '

define
V

(dm, f ) Y (m(A.), e. ) - this can be easily
i=l 1 1

extended to continuous functions and we obtain

II II < llm II

Suppose, conversely, that if e CCX^E)* . f is a continuous linear
v

functional on C(X) ® E. Fix e £ E and identify C(X) ® {e^
with C(X).

^ (f) = ^(f ® e) is a well defined continuous linear functional

on C(X), and clearly llif^ll j< HijJ Hell .

By the Riesz Representation Theorem 3 m0 a bounded, regular,
Borel measure on X such that

* (f) =
e

X'

and llm II = II ib II <
e e —

f(x) dm (x) (f e C(X))
e

The map e V mg is linear and for each Borel set A C X
—^ m (A) is linear.

e

Define m(A) e E* by m(A)e = m (A) for each Borel set A.e

Linearity is clear and llm(A) II H^H clearly.

If A^, ... A^ are disjoint Borel sets,
m(A U ... UA^) e = m^A^U ... uAn)

= + me(An}
= (m(A^) + ... + mCA^)) e

and m(A\B)e = hi^CaXb)
= m (A) - m (B)

e e

= (m(A) - m(B))e .

Thus m is a finitely additive, E*- valued set function.



n

We shall now show that £ IIm(A.)II <_ lljill for all disjoint
i=l 1

Borel sets A .... A , all n e N .1 n

Fix n . Let e > 0 . Choose e. e Ball E such that
1

(Ai) = m(A^) ei > Hm ) II - e/2tl i=l, ... n .
m
e
l

Each m is regular. Let m , m he the positive and
e e e

negative parts of me respectively. Using the regularity, we can

find disjoint closed sets F^, G^ contained in and open sets
V. , W. containing A. such that F. C V. , G. C W.
i i l l — I ' l — l ?

(A.) - e/2n ,me. (Fi>
1 •h

<l>
Sa

m ~(F.)
p 1

= 0 ,
C • J-
l

m (G. )
ci "1

> m
C • J_
1

c •

1

1

oii

m (V.\F. ) . < e/2n , m (V.\F.) . < e/2n >
e. l l 1 e. l l
i l

m +(w.\g. ) < e/2n , m (wAg.) < e/2n
e. l l e. l l
i i

We finally choose disjoint open sets Ch , s.t. F^ C 0^ ^

G. C U. , 0. C V. , U. C W. ; 01 ... 0 , U ... U are all
i — i ' i — i ' i — l 1 n 1 n

disjoint.

Using Urysohn's lemma we define continuous functions iji. and 0

such that

ili. = 1 on F. : ip. vanishes off 0. ,ri 11 i

0. = 1 on G. ; 0. vanishes off U. >
l i i 1

ijii C [0,1] , ©i C [0,1] .
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n n

Then £ Hm(A. ) II < V m (A. ) + e/2
i=l 1 ---■ e" 11=1 i

n

I K + ~ (A.)) + e/2
i=l i 1 ei 1
n

< I (m + (F.) - m (G.)) + e
e. i
li=i ei 11

n

< I
i=l

n

(1/1. + 0. ) dm + e
i l e.

F.UG. 1
l l

< I
i=l X'

(ip. + 0. ) dm + V
l l e. .L

l i=l d.\f.
i l

dm

+ dm
e.
l

n

- I
i=l

10. I dm + e' l1 e.

U. \ G.
l l

< |,p( J (0. + i|)i) e.)| + 2e .
i=l

Now sup II £ (0. (x) + lfi. (x)) e. II £ 1 by the disjointness of the
x e X i=l 1 1 1

open sets and the fact HeJI <_ 1 .

Thus we obtain

n

m

J llm(A. ) II <_ ll-ipll + 2e and e was arbitrary.
i=l 1

So 1 m(A. ) exists for disjoint Bor'ei sets A^
i=l

( .y. A.) e = m ( .U. A.)i=l l e i=l l

CO

= y m (A.) (m ■ countably additive)
e i e

i=l

00

= y m(A.)e for all e e E .
i i=l

Therefore m A. ) = \ m(A^)1_ 1 i=l
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It also follows that llmll < II iJjII .

Our last task is to justify regularity. By regularity, in this

conte^st, we mean that the positive Borel measure llmll is regular.

(Existence has "been justified by the previous step.)

It suffices to show that, given a Borel set A and an e > 0,

there is a compact KC A such that llmll (A) < llmll (K) + e .

Given e > 0 , there is a partition of A into disjoint Borel

subsets A., ... A such that1 n

Imil (A) < V llm(A ) II e/3
+

i=l i

There are e. e Ball E such that
l

IIm (A. ) II < m(A.)e. + e i=l, ... n .
1 1 ^7

Denoting by |mg| the variation of the real measure mg we have
n

llmll (A) < £ |m | (A.) + 2e
i=l Si 1 3

Each m being regular, there is a compact K. C A. such that
e. 1 -1
l

|m I (A.) < |m I (K.) + £ for each i = 1,2 ... n .' e. 1 i e. l ^
x i 3n

n

So llmll (A) < J; |m^ | (K^) + £
i=l i

< 7 llmll (K.) + e .

■-i 1x=l

The set K = IC^U ... UK^ is compact, the disjoint, so
K C A and

IImil (A) < llmll (.K) + £



38

Lastly if I f 0 e e C(X) ® E then
i=l 1

*( I e.) = I
i=l i=l

n

f. dm = V
i e. ,L

i i=l

( dm, f. ® e. )
l l

( dm, J f. ® e. )
i=l

V
We extend to all of C(x) ® E and so the dual space of

C(X.,E) is the set of Borel E*- valued measures.

Wow let us suppose that E* has the RNP.

Lemma 2.1J: If \p e (C(X,E)* with IIiJjII <1 , there are e.* e E*,
CO 00

p. z C(x)* such that y lie.*11 llu. II < 1 and iJj = ) e.* ® y.
l > .l 1 l — T . I I

i=l i=l

Proof: By theorem 2.16 we may write

<Kf) = < dm, f )

Let y = IImil , then m is y- continuous and,since E* has

the RNP
3 there is a d> e L"*" ^Cy) such that dm = <j> dy and so

*(f) = (<t> (x) , f(x) ) dy (x)
XJ

Fix e > 0 . There is a simple function

i=l
0(x) = y e.* X, (A. disjoint Borel sets, e.* e E*)

. „ i ^ I

II <j> - © II dy . < e .

Let y. = y/A. .

such that

i I

n

Consider £ e^* ® y^ e E* ® C(Y)*
i=l
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X

< <j>(x) , f (x) > dy (x) - I
i=l

^
i f(x) ) dy^(x)

< <j>(x) - 0(x) , f(x) ) dy(x)

< E II fJl .

Define T: E* ® C(x)* -> C(X,E)* as follows.
n

For I ® y. , define

n

T ( I ei* ® V-) (f) = I <e.* , f(x) > dy.(x)
i=l 1 i=i 1

X

(6)

I

T is linear and the norm of T is less than or equal to

lle^*ll HyJI. Taking the infimum over all such representations we
1=1

obtain T(£ e.
n

y.) < A{ I e.* ® y.) .

i=l

Extend by continuity to all of C(X)* ® E* .

Now by (6),
n r

( e^*, f(x) ) dy^(x)I
1+e i=l

(T)
X

< e Hfll + 1-1
1+e

V lie.*11 IIy. II llfll.L. l Hi
1=1

But T II e . * II II y . I
i=l 1

II0II dy

II <j> — 0 H dy + ll(j)ll dy

< e + 1 .

So (7) is less- than 2 e llfll
K

Thus T
5 which maps C(X)* ® E* into C(X.|E)*) maps the unit ball of

C(X)* <g> E* to a dense subset of the unit ball of C(X,E)*. By the
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argument of the open mapping theorem, the map T is such that the image

of Ball (E* ® C(x)*) contains the open ball in C(X,E)*.

Let X = Ball (E**) with the weak* topology - X is a compact
n

Hausdorff space. If £ e.*0e. eE*(S>E, defining
i=l 1 1

n n

( I e * 0 e. ) (x) = V x(e.*)e. x e X
• J- _L . u ht
1=1 i=i x 1

we obtain a continuous function from X to E
f and the sup norm of this

n

function is equal to the infective tensor norm of ] e.* Si e. .

•-i 1 11=1
V

Thus E* ® E embeds isometrically in C(X E). So if ^ is a

vj
continuous linear functional on E* ® E with IlijJ < q, we may

extend ip to C(X,E) without increase of norm by the Hahn Banach

Theorem.

Theorem 2.18: For a dual space with the Radon Nikodym property, a.p.

is equivalent to m.a.p.

Proof: For any Banach space m.a.p. implies a.p. To prove the

converse, it suffices to show that the identity operator I is in the

strong closure of Ball (E 0 E*) in B(E*).

Let | bea linear functional on B(E*) with |i|» (T) | <i
T e Ball (E 0 E*) ; we show |i|> (i) \ <1 (<l> is continuous in
the strong operator topology.)

By the definition of the strong operator topology \p has the form

ip (T) = I t . (T0.) ( t. e E**, 0. e E*).
J=1 J J J



By lemma 2.1?, using E* <S E C C(XfE) ^ we have
00

^ ~ I f(x) ) dy.(x) with
i=l t x

T lie. *11 II y. II <1>, l l —
1=1

This holds for all f e E* ® E .

00

So \p(e ® e*) = £ (e.*, e*(x)e ) dy . (x)
i=l > 1 1
00

= I ei*(e) <j) ^(e*)
i=l

where d,.^ e E** is defined "by <j>^(e*) = e*(x) dy.(x)

Notice that T IU. II lle.*ll < 1, since lid . II < lly.ll .> r'i l - ' T l - Hi

It
j-1 J

• (T0.) - I (j). (Te. *) = 0 for all T eE » E* \J J in 1 1

extending (8) "by linearity.

Since E* has the a.p. this holds also for T = I .

To see this put
n 00

3(T) = I t.(T0.) - I (j>, (Te.*) . 3 is a
j=l J J i=l

functional on B(E*) that annihilates the finite rank operators.

Since J lie.*11 lid . II <1 , we can find a sequence X.
■ *. 1 1 —— 1

. > 0

1=1

such that X-—> 0 and V lie. *11 Hd • H < +
1 • 1 1

1=1 -
X.
l

Define K = {6j : J 1» •" n} U (V Ail
| lie.*11 )

K is a sequence which tends to zero and so is compact.



Also 13(T) | < ( I |T J ) sup IIt0.II + Y IU.II ||e.*||
• - .1 . 1 " 1 T

j=l ^ j J i=l 1
A .

1

T X. e. *
l l

lie.*11

so 13(T) | <_ constant x sup IITicII .

k

So 3(I) = 0 , as I can be approximated arbitrarily closely

on K by finite rank operators.

1 .
So |iKl)| = | I <j>. (e.*) | < I 11*. II lie.*11 <

i=l 1 1 i=l _1 1

So E* has the metric approximation property.

As corollaries of this result we obtain

Corollary 2.19: [5] For E reflexive, a.p. ^ m.a.p.

Proof: E = (E*)* and being reflexive has the RNP.

Corollary 2.20: [5] If a Banach space F is isomorphic to a

separable dual space, a.p. ^ b.a.p. In particular, if F is a

separable dual space a.p. ^ m.a.p.

Proof: Separable dual spaces have the RNP. The b.a.p. is

preserved by isomorphisms.

To put theorem 2.18 into perspective, it is unknown whether

every dual space with the a.p. has the m.a.p.

p- nuclear, p- integral maps and the REP:

Grothendieck [5] introduced special classes of bounded linear

maps between two Banach spaces E and F, the so-called integral and

nuclear maps. Every nuclear map is automatically integral, but
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Grothendieck proved that an integral map T : E F is nuclear

provided one of the following four conditions holds

(l) E reflexive

C2) E* separable

(3) F reflexive

(1+) F a separable dual space.

Following Grothendieck's work Perrson and Pietsch introduced

generalisations of these classes - p- integral and p- nuclear maps

(Grothendieck's maps being the case p=l) and obtained similar

theorems [9] [lO] . Using the RNP we shall generalise both

these pieces of work.

Definition 2.21: A linear map T:E -*• F (E,F Banach spaces) is

said to be p-nuclear (l _5 p. < °°) if T has a representation

00

Te = 7 < e *, e > f ( e * a E* , f e f')^ n n v n n J
n=l

such that ( \ He *llp)P/p •-< + » an^ Sup ( \ \ <fn>f* ) |P )P//pP < + 00
n=l n n=l

II f* II <1

where 1. + 1_ = 1 . The collection of all such maps is denoted
P 1

P

I (E F) .

P '

Proposition 2.22: [9,10] (i) With a norm defined by

N (T) = inf ( ? He *llp)l/p sup ( J | <f ,f* > |P )l/p1 ,
P n=1 n llf*ll < 1 n=1

the infimum being taken over all possible representations, N^(EfF)
is a Banach space and IITII < N (T) .-

p
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(ii) If D,G are Banach spaces and R : D -> E, S : F G are

bounded, T : E -> F p- nuclear, then TR : D F, ST : E -> G are

p- nuclear and N (TR) < N (T) HrH , R (ST) < IISH N (T).P — P P P

Proof: (i) For example

IITII = sup | < Tg, f ) |
■ e e Ball E f* e Ball F*

00

= sup I I <e * e > <f , f* ) I
n=l

e e Ball E f* e Ball F*

X1V< ( l IUn*llp)l/p sup (j <f», f > |p )
n_1

Ball F* n_1

Taking the infimum over all possible representations we obtain

IITII < N (T) .
-

p

The other parts are proved similarly.

If in the definition of p-nuclear we interchange the roles of
00

p and p i.e. we require Te = J (e e )f with
n=l n

sup ( £ [ (e *, e ) |P )"^p < + °o and ( \ II f llP)"^P < + <»| we
II el <_ 1 n=l n n=l n
obtain a class RP(E,F) with a norm

NP(T) = inf sup ( I | <e e * > |p ) V± ( I ISf HP) P
lei < 1 n=1 n n=l n

This class is also a Banach space. In the case p = 1 the two

classes are identical - these are the nuclear operators from E into

F .

All finite rank maps from E to F are in the classes N^(E,F) ,

NP(E.,F) ; further in the norms N (T) , NP(T) the finite rank mapsP

are dense in R^(E,F) , NP(E,F) respectively.
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If y is a positive measure on a compact Hausdorff space X,

then the set LPE#(y) is the set of all E*- valued strongly
p

measurable functions <j> such that ll^ II dy < + °° 5 and is a

Banach space.

We may define a bounded linear map T : E ■+• LP(y) by

(Te)(x) = < e, <f,(x) > if <j> e (y) . (9)

Theorem 2.23: [9» ] For 1 £ p < °° , we have natural embeddings

NP(E, LP(y)) C LPE#(y) C Np(E,LP(y))
each of norm <_ 1 and such that the map T : E ->• LP(y) and function

<j> e (v) correspond as in ( 9 ) .

N

Proof: Let Te = ) (e *, e )f be a finite ra<\W map in
■ — L. n ' n

n=l

NP(E,LP(y)) where each f e LP(y) such that

W 1 1/ 1 N 1/
sup ( 1 | < e *, e ) |P ) P ( £ "fn"P) ^ ' < N + e where e > 0
M<1 n<L ° °=1

N

Consider <L„(x) = Y e * f (x). This is a strongly measurable
n n

n=l
function and

lltj)T(x)llp dy < j sup | I <en*, e>fn(x)|P dy(x)
Hell. <_i n=1

n 1 p/ 1 f n
<_ sup ( £ | (e *, e ) |P ) P I I pn^x) I (x)

11 11 , n=l n n=lII e II < 1

N 1 p/ 1 N
i sup (II <e«, e)|p ) p (I If lp).

Hell < 1 n°1 n_1
We obtain llayjl < N (T) for the finite rank maps and we can

-T — p

extend by continuity to all of NP(E,F) .
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Suppose now <j, is a simple function in LPE#(y). (By a
straightforward density argument we can extend to all of L *P(y) . )E

N

Suppose <j) = £ e * xA e * e E* and the A disjoint
n=l n n n n

measurable sets ,

n

He = I <e *, e > XA e LP(y) .u n ' An=l n

Moreover writing

N 1/ -1/
Te = I <en*, e > y(An) P . yUJ P XAn-1 n

we obtain \A ,

N 1/ N r 1 -p1 1/ i
( I He *HPy (A ) ) P sup (I UXA P y(A ) p ) P
n=l n n Tpl, , n=l ^ ng e Ir (y)

< 1
i i ^p1N

. _ l/_ N 1 ~Pl
g|p dy) y(An)p . y(An) P )£ ( I He *I1P y(A ) ) p sup ( £ (

n=l n n TpX, , n=l A<
g e L (y) i

< 1

N 1/
< ( T He *IIP y(A ) ) P
— n n

n=l

Definition 2.2k: A p- integral map T : E F where 1 <_ p < 00 if

characterised by the fact that it has a factorisation
P I Q

E -> C(X) > LP(y) y F

where X = Ball E* in the weak * topology, y is a positive measure on

X , I is the identity and IIPII , HQII <_ l .

The set Ip(E F) of all p- integral maps from E into F is a

Banach space equipped with the norm

Ip(T) = inf y(X)1,/'p_) the infimum being taken over all such

factorisations. Notice IITil < Ip(T) .



Proposition 2.25: [10] Np(EfF) C Ip(E,F) for all Banach spaces

E and F, and Ip(T) <_ Np(T) .

Proof: We begin by showing each T e Np(E,F) has a factorisation

E > £°° > £p => F for each e > 0

p D Q

where IIPII , II Qll <_ 1 and D is a diagonal operator with
°°

/

D( {a } ) = {X a } with ( T I X P)1 P < Np (T) + e .n n n 1 n1
n=l

Fix e > 0 and choose a representation
CO

Te = 7 ( e *, e ) fL. n n
n=l

with ( I lleri*HP)l/p < Nps(T)+e and

P 1/^1

-n nn=l

sup (II <f, fn>|P ) P < 1 .
n=l

II f* II < 1

Define Pe = (e*, eWPiE-^P0 and IIPll < 1 .
n

Define D : C + £P by D( {o^}) = j

1/
where X = He. *11 ■, HDII £ Cy | . X | ) •

n n

WW Q( {a } ) = I a f I Q : i'
J n

n=l

p -> F

and IIQ( {a })H - sup | £ an ^Pn' ^n n=l
II f* II < 1

1 1/ 1
1/ °° ,P P

< cy |a Ip) p sup ( y I <f*, fn > 1 )n n=l
II f* II < 1

< H{a >11 p as required.
n x,
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It only remains to show vkdbis integral and i (d) < N (t) + e
P P

For the composition of a hounded S ; D E and p— integral

T : E + F is p- integral with Ip(TS) < lisII I (T) , and the
~

P

composition of a p- integral T : E F and hounded R : F + G is

p- integral and i (RT) < IIrII i (t) .

P - P

D is p- integral. £ can he identified with C(x) for some

compact Hausdorff X . To 4> e(£ )* defined by <f> ({ot }) = 7 a X P
n n 1 n1

n+1

corresponds a positive measure y on X and the identity map from

C(X) to LP(y) is p- integral. Thus D is p- integral and

I (D) < N (T) + e . Therefore T is p-integral and
p - p

I (T) < N (T) + e . Since e > 0 was arbitrary, I (T) < N (T) .
p - p P - P

We shall now obtain some results going the other way.

Theorem 2.26: Let E and F be Banach spaces and suppose E* has

the RNP. Then every p- integral map from E to F isj>-nuclear and

I (T) = N (T) .

P P

Proof: Suppose T : E ■+ F is p- integral. Then given e > 0 ,

is a factorisation

E -> C(X) -> LP(y) * F
p I Q

P
such that Hp 11 <_1 , HqII £ 1, I is the identity map from C(X) L (y)

1/
and y(X) < I (T) + e .

P

For each A, a y- measurable subset of X, let us define

m(A) as follows:-

<m(A), e > = (Pe) (x) dy(x) .
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mCA) : E -*■ R is linear and

sup | (m(A), e > | <

e e Ball E

dy(x) = y (A)

So m(A) is a continuous linear functional on E. We shall

show m is a finite, ^ — continuous E* - valued measure.

Finite additivity is clear. Let disjoint
00 00

y- measurable subsets of X . We wish to show m( U A. ) = £ m(A.).
•

n 1 • _ 11=1 1=1
00

It will be enough to show m( U A. ) r»- 0 in norm as n -»■ 00 .

i=n+l 1

But | ( e, m( U A.) )
i=n+l 1 "

(P )(x) dy(x)
e

U Ai
i=n+l

< Hell dy (x)
U A.

i=n+l 1

= II ell y ( U A. ) -* 0
i=n+l 1

as n ■+ 00 j since y is a finite measure.

Since llm(A) II <_ y(A) for all A, m is a finite, y- continuous

measure.

Since E* has the RNP, there is a <j> : X ■+ E* y- strongly

measurable such that

m (A) = 4(x) dy(x) for each measurable A
A

Then (m(A), e ) = <e, <J>(x) ) dy(x) for each measurable A.

So (IP )Cx) = <e, <j>(x) > y - almost everywhere.

<J> is y- strongly measurable and lit))" <_ 1 y p.p. This follows
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from the fact that llm(A)ll £y(A) for all y measurable A.

Ilt}> (x) II^ dy) ^

1/p < :
P

By theorem 2.23 , IP is p- nuclear and N (IP) < (
P -

1/.
Ip aw)

< w(X) P < I (T) + E

T - QIP is|)~nuclear and proposition^and the fact e > 0 was

arbitrary allows us to conclude N (t) < I (T) .

P ~ P

Corollary 2.27: [9] If E is reflexive, every p- integral map

from E to F is nuclear.

Proof: E*, being reflexive, has the RNP.

Corollary 2.28: [9] If E* is separable, every p- integral map is

p- nuclear.

Proof: E* , being separable, has the RNP.

Theorem 2.29: If E and F are Banach spaces and F has the RNP,

then every integral map T : E F is nuclear.

Proof: T has the usual factorisation

-> C(X) -> L1Cy) "> FE

p I Q

where s.+l(T) = I^(T) + e > y(X) .

Define m on the y- measurable subsets of X by m(A) = Qx^
where y. = characteristic function of the set a.

A

TKioo llm(A)H £ y(A) for all A . (lO)
OO CO

Also Una ( U A.) II £ yt u A. ) -*■ 0 as n 00
i=n+l 1 i=n+l 1

where the A^ are disjoint y— measurable subsets of X .
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Therefore m( U A. )
i=l 1

I m(A-)
i=l

m is clearly y- continuous and of hounded variation , using (10 )

Since F has the RNP, there is a y- strongly measurable

<t> : X -=5 F such that

m (A) = <j>(x) dy(x) for each measurable A.

Moreover, since llm(A)II <_ y(A) for all A, ll<j> II <_ jy- almost

everywhere.

Now Qg g(x) <j)(x) dy(x) for each g e L (y). It clearly

suffices to prove this for simple functions,
n

If g = £ c. Xa (c. e R , A. disjoint sets)we have
i=l i

Q ( I c i xA )
i=l i

n

= 7 c. m(A. )
x 1

1=1

n

I c. tj)(x) dy(x)
1=1 {.

1

( I c. XA <j> (x)) dy (x)
i=l 1 "i

g(x) <j> (x) dy(x)

In particular for each g e C(X)

QIg = g(x) d, (x) dy(x)

QI is nuclear. Choose a sequence of uniformly bounded simple

functions {d> } which tend to d> pointwise almost everywhere and
n

in L1^, (y) .

Denote by Q the operator from L^y) to F corresponding to
*n

rn



» ♦„ - hkM X^(n) ( -P -C A (n) J- * * J

k \ disjointint ")
m

\ ^ • If, (n)
k=l

(x) x/W^ dy(x)»

So Q I is nuclear and
9.
n

N (Q I) < I llf (n)ll y(A (n))
n ~ k=l k ^

dy

Since IIIg - Q Igll _< II ^ n-<J> 'I dy >

Q, I Q, I in norm.
9 9
n

Lastly we show the sequence {Q } is Cauchy in nuclear norm.
n

We may write

fn - <l>n m

p.

IL fk XAk Cfk £ F) \ disjoint") .

Then N(Q I - QT) < V llf, II y(A. )
9 9 — i K :kYn Tm K=1 *

♦„ - ♦m'

Therefore QI is nuclear - with nuclear norm <_ y(X) <_ l(T) + e .

By propositionl.TCIT = QIP is nuclear and K(T) <_ l(T) + e ,

e arbitrary. So N(T) £ l(T) .

Corollary 2,30: [ 5] If either F is reflexive or is a separable

dual space, then every integral map T from E to F is nuclear.

Proof: F has the RNP.



PART TWO



CHAPTER 3

Prediction Theory of Doubly Stationary Processes

In this chapter we shall outline the basic Prediction Theory

of doubly stationary processes, as given by Helson and Lowdenslager

in [21] and [22]. We state their characterisation, for the

absolutely continuous case of processes as type 1, 2 or 3, and then

obtain an example of a process which is of type 2 for all irrational

a .

Lurking in the background throughout what follows will be a

probability space (ft, p) , £2 is a set , £ a 0- algebra of

subsets of £2 and P is a positive measure defined on ][ such that

P(fi) = 1 , a probability measure. A random variable on £2 is a

complex valued function defined on £2 , measurable with respect to

the probability measure P .

By the expectation of a random variable X , we mean the

integral
£2'

X((jj) dP(co) provided this exists i.e. provided

|X(co) | dP(oj) < + 00 . The expectation is denoted p (X).
£2

square summable random variable X is one for which

(ixn |x(u>) | dP(a)) < + .

Definition 3.1: A doubly stationary stochastic (random) process

(function, sequence) is a sequence { X : (m>n) e Z x Z} of square

summable random variables defined on £2 which satisfy

(i) (X ) = 0 for all (m,n) e Z x zr- xnn ""
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(ii) is a function of the differences m-k,
n-£ only.

Thus p(m,n) = f (x X ) = ^ (x X )r ran oo m+k' n+£ ItJT

(k,£)e Z x Z (2)

gives a well-defined function of Z x z to C , and this function is^ -v J

positive definite in the sense that if a^, ... a^ are complex
numbers, and (n^,^) elements of Z x Z then

k

£ a. a. p(m. - m., n. - n.) > 0 (3)
i,j=l f 1 J 1 J ~

This follows since we have

k 2 k
0 < C (

i=l i i
I a. X ) I a. a. 9- (X X )

• i m. n. ' . L.
, i n i m.n. m.n.

1>J=1 i i j j

k
= > a. a. p(m. -m.,n. -n.)„

• ^=n 1 J 1 J i J-L 5 J -1-

In the sense of harmonic analysis, Z x Z is the dual group of
V 'N.

_ p p IX ly
the Torus group T , where T = {(e , e ) : 0 £ x < 2tt ,

0 _< y < 27r) .

The Herglotz-Bochner-Weil Theorem allows us to deduce the

existence of a finite, positive, regular Borel measure y on the

Torus such that

p(m,n) = ar(x.y).((m,n) e Z * z) (U)
T2

Before discussing prediction problems concerned with such a process

we need to establish some idea of 'past' and 'future' for such a

process. This is tantamount to imposing an order on Z x Z, the dual

of the Torus. There are many different order relations we could

impose, but we shall be interested in the following type.



Fix some irrational number a a R and define (m,n) > (0,0)
if and only if m+n a >_ 0 for (m5n) e Z x Z. Where it is clear

which a we are referring to, we shall often drop the a to obtain

Cm,n) _> (0,0).

For each a, this gives a well-defined, archimedean ordering of

the lattice points in the plane, which divides them into two disjoint

semi-groups, one being the positive elements (the positive half-plane)

i.e. the set {(m,n) : (m,n) >_ (0,0)}, the other the negative

elements {(m,n) : (m,n) < (0,0)} .

a

A typical prediction problem is the following - knowing values

of the process (X } in the past, say at some fixed men, can

we predict the value at some point (0,0), say. That is given

(Xmn(w) : (msn) < (0,0.)} can we predict XQo(m)?
In general the predicted value X (m) will be some function of

. oo

the values X^(m) where (m,n) < (0,0). We immediately face the
problem of deciding which is the 'best' predicted value. If we

took, for example, |X (m) - X (m)| it is clear that, as this1 oo oo 1

differs with differing values of m, it is not a good indicator of the

quality of the predicted value X (.m) .

In a probability theory context, the quality of the predicted

value as an estimate of X (m) can only be evaluated by averaging
oo

in some sense over all men, and the usual method used is that of
vp ~ ^

'least squares', so we consider £ ( X - X ).' I 1 oo oo

We shall restrict also to the case where X is a finite linear
oo

combination of the X with (m,n) < (0,0). The justification
mn

for this is twofold. In practical applications such combinations

are easily handled. More significantly, for one of the most important
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examples, namely those processes with normal distributions, the

best predicted value is the best linear prediction.

So we can now formulate our prediction problem as : minimise

% ( ~ I a x°°
(m, n) < (0,0) 11111 mn

2
) over all finite

linear combinations of X with (m n) < (0 0)
mn » ' v » '

Since cr ( X I a X00 f \ Z in nin mn(m,n) < (0,0)

2

)

= J (X X ) - I a r (X X ) - J a ^ (X X )r* 00 00 L mil ' mn 00 L mn s=> 00 mn

+ y a a ^ (X X )u mn rs / mn rs

= p(0,0) - y a p(m,n) - y a p(m,n) + I a a p(m-r, n-s),L mn ^ mn ^ mn rs J

we obtain,using (^),

- f |1 - I ei(« ( "V d»(x,,) . (5)i U,n) < (0,0) mn
T

Thus the problem of approximating Xqq by finite linear
combinations of X with (m,n)< (0,0) is equivalent to minimising

mn

the integral (5).

This problem, a generalisation of the one variable problem of

Szego, was solved by Helson and Lowdenslager in [2l] . In what

follows a will denote normalised Lebesgue measure on the Torus

i.e. da = 1 dx dy , (a) , for 1 <_ p <_ 00 , will denote the
1+ir2

usual class on the Torus, and for the finite, positive, Borel

measure y on the torus we have the usual Lebesgue decomposition:

dy = w d a + dy j
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wWe, a) >_ 0 is in L (a) - a weight function on the Torus - and

is singular with respect to Lebesgue measure.

Theorem 3.2: [21] Let y be a finite, positive Bore.l measure on

the Torus with Lebesgue decomposition dy = w d a + dy

Then exp ( log to d a) = inf 1 - I a 2 a„(x,y>
Cm,n) < (0.,0) ^

(6)

where the infimum is taken over all finite sums of the form

T a gi(mx+ny)
(m,n) < (0,0) 1,111

The left side of (6) is to be interpreted as zero in the case

that log a) d a =

Helson and Lowdenslager [21] [22] (for other accounts see

Helson [20],Rudin [28] and Gamelin [l8] ) proceed to obtain many-

results analogous to the one variable case. In so doing they introduce

the idea of a 'generalised analytic function' on the Torus.

A function is defined to be analytic if all its Fourier coefficients

a given by
mn

a
mn

t e-i(mx+„y)d(s. _ (m, II) e Z x 2 ,

vanish off the half-plane (m,n) >_ (0,,0). Notice the dependence

T2

a

on a.

2
The algebra = { f : f is continuous on T and f is

analytic) replaces in this context the disc algebra. We can define

Hardy spaces (o) by

H^5 (a) = L^(a) closure of the algebra A if 1 £ p < 00 .
n 0C



If p - 00 , H (o ) is the weak* closure of A in L°° (0).a a

(in situations where it will lead to no confusion we shall often drop

the suffix a.)

A function f e HP (a) is inner if |f| = 1 almost

everywhere on the Torus; f is outer if

log J f I d g = log
✓

jP

f d a

f e H (a) is outer if, and only if, the set f A = {fg : g e A }a a a

is Lp (a) dense in Hp (a) (l < p < 00) .

If f e (a) satisfies
2

f d 0 + 0 there are gth e (a)

such that g is outer and h inner and f = gh. Helson and

Lowdenslager also obtain a variant of the F. and M. Riesz theorem.

However a fundamental difference arises in the case of the Torus.

In the one variable situation, where the problem was to decide whether
-L^-0 2

1 is in the closed span of the set {e : k < 0} in L (y) where

y is a finite positive measure on the circle, if 1 is in this
i0

closed span it is clear that e is in the closed span of
"|Jr Q -jVQ

{e : k < 1} and so in the closed span of {e : k < 0} .

Translated into terms of a singly stationary process

{X : k e Z} it means X can be predicted exactly from
Jv _L

{X^ : k < 0} if XQ can, and the same is then true for any Xn with
n > 0. This follows because, having predicted one value, there is

an obvious 'next' point to predict.

In the case of the Torus, there is no 'next' point to predict,

so we may face the situation where although Xqo can be predicted
exactly from {X^ : (kfJ£) < (OjO)} cannot, for any
(m,n) > (0,0) .
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To analyse this situation we shall form an analogue of the

Wold decomposition.

2A closed subspace M of L (y) where y is a finite, positive

measure on T2 will be called invariant if e1(mx+nJr) f e M

whenever f s M and (m,n) e Z x Z . L2(y) being a Hilbert space,

2there is a projection P : L (y) -*■ M and we have

Lemma 3.3: [22] : P has the form Pf = xf where x e ^2(y) takes

only the values 0 and 1. x = PI •

Proof: Put x = PI e M .

'

(X - Ixl2) = | ei("t+"iy>x(i - dUi
(mx+ny)^ e ^ d e so alove is zero for all

(m,n) e Z x z ,

2
Thus x — | X | = 0 V- almost everywhere. x tak.es the values

0 and 1 almost everywhere.

Let us define (? = closed span of the set
mn

{ei(kx+£y) _ (k,£) < (m,n)} in the space L2(y) . The closed

subspace = n CP (the intersection being over all (m n) e Z x z)3 mn '

is an invariant subspace which we shall call the remote past of the

process {X } . The corresponding projection function will be
mn

denoted x^ •

If 1 , let Y be the part of 1 orthogonal to CP .T oo ' oo oo

1 = Y + Z where Y e ^ -t Z e(p
oo oo oo oo

We may define Y = e^^mX+ny^Y , and it is clear that Y isJ
mn oo' mn

the part of e^(in;x:lIIiy) orthogonal to C? , The set
2

{ Y : (m n) e Z x Z} is an orthogonal set in L (y) and its closed
mn * ^ \.



linear span is a closed invariant subspace. Xp is its
projection function.

The orthogonal complement of @ may not he zero - it

constitutes a third closed invariant suhspace , with projection

function .

So L2(y) = H1 0 H2 © H3 and X]_ + X2 + X3 = 1 ,

Xj X^ = 0 almost everywhere (j + k). A process in which only one
of the summands is non-zero is said to be pure and of type 1,2,3

depending on whether H^, E^ or is non-zero. More picturesque
names are ; type 1 - innovation process, type 2: evanescent

process, type 3 - deterministic process.

If dy . = x-<ty, since1 J

(x. ei(lllx+"y)) (7. jdy =
J 0

i[m-k)x+(n-£)y]
e ay . >

J

it is clear (x • is stationary. (j = 1,2,3) .
J

Theorem 3.^ [22] : { X- ^mX+n^r^} j_s purely of type j .
J

Thus each process decomposes into three pure orthogonal subprocesses,

However the decomposition theorem supplies no information about finding

the measures dy . = x • j nc>r does it tell us how to find the
J J

subspaces H H , H ; nor does it explain how the dy. are related
A. C- 3 J

to the usual Lebesgue decomposition of the measure y . These

questions were considered by Helson and Lowdenslager in their second

paper [22] , where they focussed attention on the case of measures

absolutely continuous with respect to Lebesgue measure. The

justification for this is the following result.



Theorem—3.5 [22] : If x j X"1" are functions in L2(y)
satisfying x = 1 almost everywhere (da)., X1 = 1 almost

everywhere (dy ) , X . X* = 0 then x $ , X* are closedb ' mn ^ mn

sutspaces of CP for all (m. n) e Z x Z .mn ' N*

Proof: It is sufficient to consider the case (m,n) = (0,0).
Suppose f e L2(y) is orthogonal to*? . Then for all

oo

(m,n) < (0,0)
'

ei(m+ny) - d)j = Q

The measure f dy is therefore of analytic type, that is, its

Fourier coefficients vanish off a half plane. By the variant of the

F. and M. Riesz Theorem proved in [2l] , the same is true of the

absolutely continuous and singular parts separately.

Thus xf J_ CP OQ i X^f J_ CP Q ^d equivalently
fix5>00. Thus xeoo. ciyoo _

Since <5> = + x1^ and the summands are mutually
oo oo oo

orthogonal we obtain the desired conclusion.

Thus questions about the second order properties of the process,

can be resolved into questions about the absolutely continuous and

singular parts separately.

Cauchy Measures and the Absolutely Continuous case:

The main result of Helson and Lowdenslager in their second

paper was to recognise the crucial role played by a certain class

of measures in classifying absolutely continuous processes as

type 1,2 or 3.



Under the action t -> (e l1:, e iat) R embeds

isomorphically as a dense subgroup of the Torus. The Cauchy

measures y^ (0 < r < l) live on this line and have the form

dy (t) = y dt r = e-y (0 < r < l)
ir(t2 + y2)

Indeed we obtain a whole family of lines by the action

, . / i(x-t) i(y-at)\ , \ mt ■)> (e , e ) as (x,y) runs over the Torus.
2

For a measurable function f on T we may form the convolution

(v> * f) (x.y)r

R

f(x - t.,y - at) dy^t)

(For ease, from now on, when discussing the Torus we shall often

replace (e*X, eiy) by (x,y).)

It is clear* that this convolution is finite if and only if the

function f (t) , = f(x - t,y - at) is in L1 of the Cauchy
xy '

t 1 dt \
measure ( — — ) on R .

IT d. ^
1 + t

The result obtained by Helson and Lowdenslager is the following:

Theorem 3.6: [22] With a fixed order (i.e. fixed a) and to >_ 0

an integrable weight function on the Torus, the process

{ gi(mx+ny)} fs pure.

It is of type 1 if log u) da > - 00 f (T)

of type 2 if (7) fails but

(y * log to) (x,y) > - co almost everywhere , (8)
(0 < r < 1)

of type 3 if (8) fails when necessarily

(y * log to) (x,y) = - 00 almost everywhere . (9)
r

(0 < r < 1)
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(Equivalently of type 2 if

log to(x t, y-at) e L f dt ^ almost everywhere, (8^")

)f type 3 if log (x-t, y-at) £ L"'" ( dt ^ almost everywhere,) (9^")

.1

\ 1+t'

.1

\l+t'

For absolutely continuous measures a complete classification has

been obtained, therefore.

In [ 25 ] Muhly classifies those measures y for which

^
^ = = {0} . They are these measures y for which

(1) y is quasi-invariant i.e. under the action

(x,y) -> (x-t) y-at) the null sets of y are preserved.

(2) Defining M.j.(A) = (A - (t,at)), A a Borel subset of T^ and
defining

0(t,x,y) = dy (x,y) , for almost all (x,y) ,

dy~

log 0(t,x,y) e L1 / dt \ .

Ut2J
This naturally agrees with Helson and Lowdenslager in that if

dy = udo (l) means co + 0 almost everywhere and in (2)

0(t,x,y) = to (x-t,y-at) / co(x,y) .

So n(? = {0} if and only if log oj(x-t,y-at) z l?~ ( dt
mn ( p

V i+t

for almost all (x,y), as before.

The type of a process depends, even in the absolutely continuous case,

on which a we are considering. Probabilistic considerations would

turn our attention to those processes which are of a fixed type for

all directions a .
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The condition log to e L (a) is, of course, a— independent,

so type 1 processes are a— independent. Helson and Lowdenslager

produce an example of a process which is type 2 for some fixed a .

It is a natural question as to whether there exists a process which is

type 2, for all irrational a .

00

We shall now construct an example of a weight function to e L

which gives a type 2 process for each a .

In view of (j) and (8^) to will also have to satisfy

(a) j log to do = - 00
(b) For each irrational a , we have

log to (6 + t, 4> + at)dt > - 00 for almost all

1+t (0#) E T2 .

Step 1: For ease of calculation, the function will be constructed

on the unit square [0,l] x [0,l] .

Define to(x,y) = exp(-f (x,y)) ,

—3.2 2
where f(x,y) = x if x < y < 2x ,

= 0 elsewhere.

W>rt to e L clearly.

1 2x2 1

Since f(x,y)dx dy x dx = 00 , the function is not

0 2
x

integrable over the square, so log to £ L . If T is any straight
line segment in the square, the integral of f along T is finite.

We must ensure, therefore, that for each irrational a

2
f (6+t, <f> + at) dt < + 00 for almost all (©,<}>) e [0,l]

1+t2
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It clearly suffices to show that for each irrational a ,

f (t, 4> + at) is finite, for almost all <j> e [0,l] .

1 + t2

Step 2: Fix a , and choose sequences of integers (Pk) >

such that

a ~ < 1 (ifc+i > ^ — ®) (^ee e*S* Hardy and
<^k <lk2 Wright [ 19] )

The sequence of functions (g } defined "by
.KL

g ((}>) = f(t,(ji + at )dt is an increasing sequence of measurable
1 ♦ t2

functions. If the sequence converges pointwise, the limit is

clearly f(t, (f> + at)dt . It suffices to show that, except for

1 + t

<f> in a set of measure zero, the functions converge to a function

g(4>) which is finite almost everywhere.

Set ^n " * : f (t, + at) dt > n
2

■k 1 + t

E <j) : j f (t ,4) + at)dt = 00
R 1 + t2

CO CO

Then E = n ( U E, )
i 1 _n knn=l k=l

(10)

For, if <j> e E , then g, (t}>) 00 . So for each n e » there

is a . k such that g (<j>) > n , so for each n e N
11

*' i hn ■
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Conversely, if <j, is in the right hand side of (10), for
each n , there is a k such that g (<J>) > n .n

n

Since (g } is an increasing sequence g () > n for all
K '—

k ji • So g(<j>) >_ n , for each n . Hence <f> e E .

Since C
^ , if m = Lebesgue measure on [ 0,1] ^

00

m ( U K ) = lim m (E ) .

k=l k+~ kn

Thus m(E) £ inf (lim m (E )) . (ll)
n e N k-*°

We must estimate m,(E, ) .

kn

04

Step 3: We shall first estimate

A

f(t, 4> + qt)dt
1 + t2

in terms of k and <j>. As t runs from -q, to q , we traceK it

out on the unit square straight line segments with slope a .

There are £ 2(p^_ + q^) + 1 straight line segments crossing
the unit square which comprise the above integral. We suppose now

a is positive (a similar analysis can be carried out for the case

a < 0).

We split the straight line segments into two sets, those

emanating from the x-axis and those emanating from the y-axis.

If we denote by {t} the fractional part of t where t is

a real number, a line emanating from the x-axis corresponds to

{at + <j>} = 0 ; one emanating from the y-axis to {t} = 0 .

Consider firstly these lines coming from the y-axis i.e.

corresponding to {t} = 0 in the internal • There

are £ 2q^ such lines given by t=j , je ^-<^k' ^k *
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If , fj are the x- co-ordinates of the points of intersection
of the jth line segment with the curves y=x2 , y=2x2 then

=/ = « e. + c. , (12)
2f.2 - atj *c.. (13)

c. = intersection on the y-axisJ

e .

Wow

{jot + <j)}

-3 / \
x dx = 1 / - 1 + l\< 1 <

f- 2 I 2 2 I
„ P c.

0 \ e. f. J 2f. 0

since a > 0 , f. <_ e. and (13) holds.
J J

So this part of the integral is

V1 -1

1 1 1 1 + _ I I 1 . (1*0
^ 0 1 + j2 (jot + <f)} ^ \ 1 + (j+l)2 { ja + <j>}

Consider now those lines emanating from the x-axis corresponding

to {at + <j>} = 0 > t e [ -q^, q^] | denote "by x^. the x- co-ordinate
of the intersection of the jth line, (j e ("P^s ~1j0> P^»

p +1} with the axis.
K.

e. . f. .which are the x- co-ordinates of the points of intersection
J J

2 2
of the jth line with the curves y=x , y=2x respectively, are

given "by

e. = a - jut2 - lax. (15)
J J >

i.e. one solution of x2 = ax - ax. , (l6)
J

and f. = a - >/a2 - 8ax. (l?)
J J i

i.e. one solution of 2x2 = ax - ax. . (l8)
J

(Since a > 0, e., f. are the smaller roots of (l6),(l8)
J J

respectively.)



t, i a
ej ' j 8X6 the other roots of (l8) we have

f.
j

-3
x Jdx — ( -JL_ _ _L_2 e.2 f.2

J J

1

2

1
e .

(ejej'
'JL

(y)>
Now e.e. - ax. f.f^ = ax. so we have

J J J J J J_
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(19)

(19) = 1

o 2 22a x.
J

[ (e^)2 - k(fhL J J

2 „

o 2 22a x.
J

ft 2 2oa x.

f~2 2 r~2(a + /a - ktxx.) - i+(a + /a
i

8ax.)
J

2 1

16

Z2va2a /a" - 1+ax.
J

Ja~ - 8ax . +2a /a"- - 8ax. + Hax.
J J J

2 2
8a x.

2a f1-Hx. - / 1 - 8x. \ + llax.
1 I J

For t e [ 0. g] >

(20)

/l^t - /l—2t

/lit + /l-2t

/2

So (20) < 1
ft 2 2oa x.

J

hax. + /2 2a ^ax.
J 1

= JL (1| + 8/2) .

8ax.
J

Now, certain lines may cut the curves more than once, within the

unit square. For those the second part is estimated using



1
e .

J
-3,

x dx

f1
J

1

2
1

f1
J

1
e.
J

69

2 2
2a x.

J

h f / e.
J

and estimating

as we did previously we obtain
1
e.
J

f1
J

x ^dx £ 1 (k + 8/2) v

8ax.

Not every line intersects both curves. Those with no

intersections present no problem. Some lines cut only the curve

2 11
y = x twice at points whose x- co-ordinates are e., e., e. < e. .

J J J J
1

e .

a
Then

-3
x dx

e .

J

1/1 - 1
212 ,TT

1 ( (e1) - e.2)
Q J J

2 (e . e"^)
J J

ft 2 2oa x.
J

1 ( (a + /a2 - It ax. )2 - (a - /a2 - Uax.)2
J J

/2*a va ^ax.

_ 2 2
2a x.

J

JL »

(21)

In this situation, since the curve y = 2x is not intersected,

1+x. < a < 8x. so that (2l) is less than or equal to
J ~ J

2/2
ax.
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The values x. are given by the y- co-ordinate being zero i.e.J

at + <}> = j where j e {-p ,K.

so that x. = { 1_ (j - <f>)|J
a

Therefore this part of the integral is

(tatj putting D(a) = (h + 8/2) + 2/2)Ua a

< D(a)
Pk-\
I
j=l

+ 1

1 t 1 (j-<j>)'
"a2 {/H,l {D

-i

+ I
j=-P, l + l_(j+!-<!>)'

(22)

- D(a) hk(<f>)

Since m(E, ) = mkn <j> : f(t, at + (j))dt > n

< m

v1
4> : I L

-1

♦. I i

j=0 . . -21 + j (ja + <j)}
j=-q.k

1 + (j+l)2 { ja+4>)

+ D(a)
M
I 1 + 1

P 1 l + l_ (j —4>) {l (j-<(>)} {-$_}
2 a a

-1
+ I

J pk l + l_ (j+H) U(j-<f>)}_

> n

< m

v>

<A?
-1

<f> : I 1 _i +. I
0
1 + j2 {ja+<|>} J qk 1 + (j+l) {ja+<f)}

1 > n

2
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a2 a * ..2
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+ '-fill " 2D(a) (23)

= m (F^) + m (G^) ,

we need only estimate m(F, ) and m(G, ) .kn kn

Consider first m(G ). We shall isolate these points where

{!_ (j-(J>)} = 0 and omit a set T. of small measure 6. to the left
a J J

of each of these points.

Then m(G ) < 7 6. + 2D(a)kn — L -> hk(4>) d<}>

[0,1] \ u J-

Since m <j> e [0,1] \ UJ. : h (<J>) > n
J K

2D(a) J

2D(o)
n

[0,1] \ uT.

so m( G, ) < 7 <5 .kn — h j

< y 6. + 2D(a)
~

j J —

+ 2D(a) hk (<J>) d<}>
Lo,a\^)T.

r Pi,

I
j=l

d<()

1 d(|) + i1 f 1 d<J>

[0.1] \ T {"±> [0,1] \ Tj1 + V U+1""> {i (j"+)Jo a

< J 6 + a +1 .
— L r
r 2

D(ct) 2 dp
n

r i\ut11+^- * H *[_pk'pk' r 2 a

(2k)
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where is an interval of length <5 = 1 to the right of
r

2
nr

u = ra .

So (2*0 gives m(Gkn) <_ 2 £ _^L_ + q2+i p(a) 2 £
r=l 2 ,2 n r .

nr cfc 6

dt

2 t

r 1 + r

oo

=
— ^ 1_ + 2D(a) a + 1 log n 1 + 2D(a) a^+1
n r=l 2

r
2 r=l ,

, 2
a n 1 + r

• 2
n a

x I 2 log i
r=l .

. 21 + r

(we have allowed k -> °°.) (25)

We shall estimate n^F^) similarly:
for ease we shall consider

m

Ik
+ : I

J 4K 1 + (j ot+<f>) {ja+<}>}
2

1 > n

2
which is

comparable with •

Omitting as previously a set of small measure to the right of

the points where (ja + <)>} = 0 , and integrating over the remainder

we obtain

m (\n) i il I I_ + A I.
r r=l r2 n r=l 6 1 + r

r

_1 dt
2 t

iL I L- + i I 2 lQfi r + 1oS n I — *(26)
n r=l r2 n r=l x + r2 n r=l 2

1 + r

(we have allowed k -»■ °°.)

Letting n + » in (25) and (26) we havt?

inf (lim m(Ekri)) = 0 .
n e N k-x»



The previous arguments hold for a > 0. A similar argument

covers the case a < 0 .

So we have shown that for each irrational a.

f(8+t, (j)+at) dt < + «> for almost all

1 + t2 / v r ,2(6, $) e [ 0,l] .

Thus m(x,y) = exp(-f (x,y)) is the required weight function.

Some mention should be made of the case where a is rational.

The order relation ha.s to be defined somewhat differently, for there

are infinitely many points on a line of slope a through the origin.

Example: Define (m,n) > (0,0) if either m > 0, or if m = 0 ,

n > 0 . (The lexicographic ordering). This order relation is not

archimedean.

Suppose we can predict X exactly. Then stationarity implie

we may predict (the 'next' point) exactly, and then all

points {X , : k > o). It is not, however, clear that we mayOK

predict any further. So again we seem to be in a type 1, type 2

situation. It is not clear what analytic condition on the weight

function w would correspond to a type 2 process, because, for

example the map t > (e , e 01 ) is not a dense embedding of
p

E into T . This problem does not seem to have been treated

anywhere.



CHAPTER k

The Helson Szego Problem and related topics

A number of other prediction problems have been considered over

the years. In [23] Helson and Szego considered the following

problem for a singly stationary process (X } with associated measure
n

y on the circle T .

Let (P = closed span of {elk0 : k < 0} in L2(y) .

Let " jr = closed span of {e1^0 : k >_ 0} in L^(y) .

If M, N are closed subspaces of a Hilbert space H, we define

p(M,N) = the cosine of the angle between M and N as

p(M,N) = sup {|.(m,n)| : m s M , IImil £ 1 , n e N IInil £ 1} (l)
where ( , ) denotes the scalar product in H .

Clearly 0 £ p £ 1 . The subspaces are orthogonal if p = 0 ,

and, if p < 1 , the subspaces are said to be at a positive angle.
n

Helson and Szego asked the question: for which measures y are

CP and at positive angle? Here CP is considered the 'past' of

the process and its 'future'. The solution they obtained was

as follows.

Theorem U.l [23] : p(CP jPr ) < 1 if, and only if, the measure

y is absolutely continuous and in the Lebesgue decomposition

dy = u)d6 where to £ 0 , to may be expressed as to = exp(u + v)
2tt

where u , v are real valued L functions on the circle with
llvll < it and by v we mean the harmonic conjugate of v .

CO .—. '

2

2
By the harmonic conjugate of a function v e L of the circle,

we mean the unique function v such that / vd0 = 0 , and v + iv
p

is in H on the circle.
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In this section our object is to obtain an analogue of this

theorem for the case of a doubly stationary process. This problem

was considered by Ohno [ 26] , but he makes unnecessary assumptions

about the weight function 10. We shall present an exact analogue

of the Helson Szego result.

a will be a fixed irrational number, and the order relation on

Z x Z will be that imposed by a . y , a finite positive Borel

measure on the Torus^will have the usual Lebesgue decomposition

dy = u d a + dy as in chapter 3 •
s

A , (a) , LP(a) will also be as in chapter 3. C(T2) will
a a

2
denote the continuous complex valued functions on the Torus, T

We define closed subspaces of L2(y) as follows:
a a

(? = closed span of {gi(mx+ny) . (m n) < (0,0)} in L (y)
a a

= closed span of {e^111* ny^ : (m,n) >_ (0,0)} in L (y) .
a

a

Let p = p((? ) where p is defined as in (l).rct a 5 a

We now ask for what measures y is Pa <

The Conjugate Function:
, 2s ;,/ ix iy* _ v i(mx+ny)

Suppose f e C(T ) has the form f(e , e ) - ^a^ e

where the sum is finite i.e. suppose f is a trigonometric

polynomial.
2

Consider the function f : T -> C defined by

i (=ix • - 1 I V ~ 1 J V
(m,n) < (0,0) (m,n) > (0,0) (2)

Then f d o = 0 and

i(mx+ny)
(f + if) (e1X , eiy) = aQo + 2 £ a^ e

(m,n) > (0,0)



This is an analytic trigonometric polynomial i.e. its Fourier

coefficients vanish off the half plane (m,n) >_ (0,0) , and we
a

have defined a linear map of the trigonometric polynomials into

themselves given by f > f .

Theorem k.2: [28] Let 1 < p < °° . There is a constant A
^ p

such that £ A^ NfH holds for every trigonometric polynomial
f . Here IIfII denotes the norm of f as an element of L^(a).

P

The map f

linear map of L (a) to itself.

-> f can therefore be extended to a bounded

So f -> f + if maps L (a) onto H (a) . The function
a

f is called the conjugate of f .

We also obtain (compare [29] , page 25b).

00 .

Theorem U.3: If f is a real-valued measurable function in L (a)

with II fII < 1 , then for 0 < k < it there is an N. > 0 such that
00 — '

2"

exp (k|f| ) da N <+°°. (M

Proof: Suppose first is a real-valued trigonometric polynomial.
and soThen exp (k (f - i{)) is in A for 0 < k < tt_

a 2

exp (k f - ikf) da = exp (-ik fda) ,

using the fact that a is multiplicative on

A ( i.e. f g d a -I fda g d a for f, g e A )& ' ° a

and f d a = 0 - (3)

Taking real parts in (5) we obtain

cos k f exp k f d a = cos (k fda).

(5)
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Similarly cos k f exp (-k ) d a = cos (k f d a) ,

exp (k | f | ) <_ exp (kf) + exp (-kf) for 0 < k < tt

. 2

since f is real-valued .

Since |f| <_ 1 and f is real-valued we obtain cos kf > cos k

almost everywhere and also cos (k f d a) < 1 so that

cos k exp (k |f|) da < cos kf exp (kf) da + cos kf exp (-kf) da

< 2

With N - 2/cos k which for 0 < k < tj_ is finite, we obtain

the result for real valued trigonometric polynomials.
00
/

For a real valued f in L (a) , choose a sequence

real valued trigonometric polynomials such that f -* f pointwise

almost everywhere and |f | <_ 1 . We may also assume, by restricting
to a subsequence if necessary, that f f pointwise almost

everywhere.

Tk&iv fusing Fatou's lemma

exp (k | f | ) da £ lim inf exp (k | f | da) <_ N ,

Proposition U.U: If f is real and measurable and for some

0 < e < tt_ , |f| <_ £ - e i then exp (-f + if) e H1 (a) .
2 2 "

Proof: By theorem h.3 , exp (-f + if) e L (a) . As in theorem k.3
let {f } be a sequence of real trigonometric polynomials such that

n

If I JL ~ e for a11 n 'n
2

f f pointwise almost everywhere ,
n

f f pointwise almost everywhere
n
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Let g e A satisfy
a J

For each n ,

g d a = 0 .

exp ( - f + if ] dcr = 0
n n

Also g exp i- f^ + ifn) g exp (- f + if)
pointwise almost everywhere

and exp (- f ) dcr -v
n exp (- f) da .

Therefore exp (- f + if ) da
n n

g exp (- f + if) da = 0

m

Since this holds for each g e A^ , exp (-f + if) is contained
H1 (a) .

Lemma k. 5: If f e H"*" (a) and Re f > 0 , then f is an outer

function.

Proof: We recall [ 2l] that a function f is outer if and only

if the closure of the set {fg : g e A^} is L1(a) dense in
H^c) .

Let g e A^ . We shall show how to approximate g by a sequence
of elements of the form fh with h e A

a

The sequence {f + converges to f in L^(a) and also

pointwise almost everywhere.

f

f + 1
n

da <
f + 1

n

- 1
da

■+ 0 as n -*■ 00 .

by the Lebesgue dominated convergence theorem.

Choose f. e A such that f, f in L (a") and Re f ^ 0k a k k —
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Then fS .. - ffi
f + 1 f. + 1

— k —
n n

da <: LfL Lf - fl
. k da
1 1

f + - f, + —
n k n

0 as k , clearly.

Thus given g e A^ , which is L^"(a) dense in H^(a) , we
may obtain an element h e A (h = ' g for some k and n)

a —

fk + i
n

which is arbitrarily close in L"^(a) to g .

Lemma k.6: (cf [ 18] ) If f e A . He f > 0 . then lose f e A..
a

Proof: We shall need the following result about a commutative, semi-

simple Banach algebra A with an identity:

Let a e A , F be a function analytic in a region of the complex

plane containing the spectrum of a ; then there is a unique element

be A such that

b (a) = F (a (a)) for all complex homomorphisms a of A .

Here a denotes the Gelfand transform of a e A . (See [ l8]

chapter 2 for example).

Since each (e1X , e1"^) e T^ determines a complex homomorphism :

f e A > f(e1X , e1^) , A is semi-simple. The spectrum

of those elements of A with real part greater than zero is
a

contained in the half plane Re (Z) >0 , where F(Z) = log Z is

analytic.

Consequently F(f) = log f e A .

Lemma 1+.7: [cf.261 If f e H1^Ccr) with Re f > 0 , then
log f e (aO .

Proof: We prove first that if f e H1 (a) and Re f > e > 0 then
ci

log f E H1 (a) .



By restricting to a subsequence where necessary, choose

sequence (f } in A' with
n a

and

Re f^ _> e_ for each n ,

f pointwise almost everywhere

f - f da + 0
n 1

Since d_ (log x)
dx

log |fj - log |f|

I ,

log |f I - log |f| e_
2

-1

f - f
n

Thus {log |f |) converges to log |f| in L^a) .

arg f arg f almost everywhere since f ->■ f almost

everywhere.

Since |arg f | < tt_ (Re f >_ e_) , the Lehesgue "boundedn
2 n 2

convergence theorem ensures that {arg f } converges to arg f in

B1(o) •

Thus {log f } converges to log f in L^(a). By lemma k.6

each log f e A so log f e (a) .&
n a a

Suppose now Re f > 0. {f + 1} converges to f in L (a)
n

and pointwise almost everywhere. Also each log (f + 1_) is in
n

H1 (a) .
a

Lemma k.$ shows {f + ^} > f are all outer functions.

log |f + - |~ log |f| da < (log f + log |f|) da

since Re f > 0

= log (f + _l) da - log
n

f da since these

are outer functions. (see lemma U.
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Since (f + l) do
' n

to zero as n -»■ »

f d a and Re f > 0 the above tends

Now arg (f + l) arg f pointwise almost everywhere, and
n

{arg (f + 1)}} . is bounded. Using the bounded convergence theorem
n

again, we obtain the convergence of {log (f + l)} to log f in
n

L (a). Each log (f + 1_) being in H1 (a), so also is log f .

n a

Solution of the Problem

The object is to characterise those measures y for which

<V = ' 1 ■

We have dy = to d o + dy where to > 0 in L"^(a) and y
s — s

is singular. We conclude immediately log to e L^a) for otherwise

1 e (y and p = 1 .
a a

We can conclude however that to ^ e L^(a) . The justification

for this is the following result.

1 + F + G|2 dy = ( to 1 da) 1 (6)Proposition U.8: inf

where the infimum is taken over all F e C? and G e such that
a a

G d a = 0
j ^ ^ ^ ^ \.o

U>"X 4- Ls (6) .

Proof: In (6) we may as well consider the infimum over expressions

of the form

y a + y a ei(mx+ny)L mn L mn

(m,n) < (0,0) (m,n) > (0,0)
where the sums are finite.

The collection of all such finite sums is a convex set K whose

2
closure in L (y) is also convex.



If 0 £ closure of K, in other words, if the infimum in (6)

is strictly positive and equal to 6, say, there is a unique element

1 + H in the closure of K such that 1 + H dy = 6 .

For each AeC, 1 + H + A e1(mx+ny) £ K for all (m>n) e z x Z

except (0,0).

So 1 + H + dy > 1 + H dy for all AeC

and we can conclude that

(1 + H) e1(mx+ny) dy = 0 for all (m,n) e Z x z

except (0,0)

Also (1 + H) dy = (1 + H)(1 + H) dy = 1 + H dy = 6

Therefore the measure (l + H) dy - 6da annihilates all

continuous functions on the Torus and is the zero measure.

(l + H)dy is, therefore, a constant multiple of Lebesgue measure and

(l + H)ui = 6 almost everywhere.

so 6 = (

to do = 1
6

(1 + H) da

-1
da)

1 '>
6

If 6 = 0, consider (to + e) in place of to «

i 2
Then inf

< inf

|l + F + G | (to + e)do + dy (=( (to + e) 1 da) -1")

I1 + F + G dy + inf e 1 + F + G da

= e

So
,-1(to + e) da 1 .

1
da > 1 for all positive e

So a ^ j: L^(a)
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Proposition 1+.7 allows us to conclude that cu ^ t L~^(a) (7)

We shall show also that y cannot have a singular part.

Theorem 3.5 of Chapter 3 shows that if x » X1 e L2(y) satisfy

X = 1 almost everywhere (da) >

X^ = 1 almost everywhere (dy )>
s

1 - n
X*X = 0 ,

then x^ , X1^)a are closed subspaces ofG^ . A similar argument
will show that

Q , X1^ are closed subspaces of ^ .

1 cA
X e -J since 1 e ~T

a a

I 1 1 12I X - X Pal = infBut inf i 121 - p dya1 s

= 0 ,

where the infimum is taken over p
a a

Therefore x £ C? and p = 1 .
a a

We may suppose, therefore, that y is absolutely continuous and

dy = wda .

log w being summable, by theorem 3 of [ 2l] we may find an

outer function h in H"*" (a) such that id = IhI . We define <j>
a

by to = h e 1(^ .

Proposition ^.9: pa < 1 if and only if there is an e > 0 and
00

a g e H (a) such that
a

|g| >_ e almost everywhere (da) > (8)
and [ arg gh| <_ tt - e almost everywhere (da). (9)

2

2 2
Proof: There is an outer function k in H '(0) such that h = k

and id = Ik12 - this may be concluded from [ 21] .



bh

sup
„ — , 2 -isfif g k e do : f e Ball^

g e Ball

sup f g k2 e 1<^dda : f,g as above but

restricted to finite sums (10)
• . C.

Since k is outer in H ^(o) , as we allow f to vary, the
p

elements fk run over a dense subset of the unit ball of H (a) ,

and the elements gk run over a dense subset of the unit ball of
2

those functions in H (a) whose Fourier coefficients vanish at
a

the origin.

Their product, therefore, ranges over a dense subset of the

closed unit ball of the subspace.
f

H^a) = { f e H1(a) : f do = 0}
(To avoid cumbersome notation we shall omit the a's).

(10) therefore represents p as the norm of a bounded linear
I 1 , 00 / \ / 00 / \

functional on H q(o) . The dual of H ^(o) is L (oj/H (a) and
so 1 > p = inf { II e ^ - gll ::g e H (a) } (ll)

a m
CO .

Let 6 > 0 satisfy 1 > p^ + 6 . There is a g e H (o) such
that (g depends on 6)

p + 6 >_ IIe-1^- gll^ 1 1 - |gU»y)| almost everywhere

so |g| _> 1 - (pQ + 6) almost everywhere.
I I

The cosine rule gives for C = jarg e - arg gj

(p + 6)2 > 1 + |g|2 - 21g| cos C
a —

2 2
so that 21 g| cos C >_ |g| + 1 - (pq + 6)

i Ul2
cos C > \&\ >_ 1 - (p + 5) .

2
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We can therefore choose an e > 0 so that |g| > e almost

everywhere and | <J> + arg g| <_ tt_ - e almost everywhere.
2

The stepstothis argument can clearly he reversed, ensuring that

(8) and (9) are both necessary and sufficient for the two subspaces

to be at positive angle.

Theorem H.10: < 1 if and only if y is absolutely continuous,

• / ^ \

dy = to d a , and to may be written as to = exp(u + v) where

u, v are real L (a) functions with IIvll < it .
00

2

Proof (a) Suppose p < 1 .

Since to ^ e L"^(a) we obtain, with g and e as in Prop.i+.9i

| arg gh[ <_ jl - e a.e. (12)
2

| gh | fle|h| > 0 a •e •

Therefore Re gh > 0 a.e. Since gh e H (a) by lemma it.7

log gh e H1(a).
Now log gh = log |gh| + i arg gh

Let v = arg gh, v is in L (a), real and < JL ^ (12).
2

Put u = - log |g| e L (a) .

Then to = | gh| - exp(-v + u) as required.
Is!

(b) Conversely suppose m = exp(u + v) with u,v as in the

statement of the theorem.

Put h = exp(u + iu) exp(v — iv) . h is in H (a) and is in
fact outer. (Theorem 6 in [22] )

Put g = exp(-u - in) e H (a) .

)
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I arg gh | = | v I < tt - £ a.e. where we choose
2

0 < e c tt_ such that |g| j> e a.e. also. The condition of
2

proposition U.9 is therefore satisfied and the two subspaces are at

a positive angle.

We have obtained an exact analogue of Helson and Szego's result.

A further characterisation of the weight functions to for which the

subspaces are at positive angle is as follows (compare [26] , [ l6] )

Theorem k ,11: dy = to d a . < 1 if and only if there is
00

# . 00 . .

e>0, a geH(o) mvertible in H (a), such that

| arg gh | < tt - e a.e. (do) .

2

Proof: If such a g exists, with possibly a smaller value of e ,

we obtain |g| >_ e a.e. and [arg gh| <_ - e a.e. By Prop.i+,9
2

\ , G* are at positive angle,
a a

Suppose conversely that the two subspaces are at a positive angle.

By Prop, i+,9 there is a geH,E>0, such that |g| >^ £ a.e. and

I arg 8*11 £. JL ~ e a.e.
2

In these circumstances we have seen that Re gh > 0 a.e. and

lemma h,5 implies gh which is in H^"(a) is outer. h being outer,

so also is g .

Thus g e H°°(a) is outer and satisfies [g| > e a.e. There

is g"1" £ L (a) such that gg1 = 1 a.e.

g being outer, there is a sequence analytic trigonometric
2

polynomials such that g p^ -*■ 1 in L (a) .



2
L - Boundedness of the Conjugate Map

We have seen that the conjugate map f > f extends to
2

a bounded linear map of L (o) into itself. It is a natural

question to ask for what weight functions to is the conjugate map a

2
bounded map of L(u)da) = {f: |f|2a)da<+°:'} = L2(a>)
into itself? It would of course be sufficient to show that this is

a bounded map of trigonometric polynomials into themselves, for

these are dense in L (to) for any weight function to .

If f is a trigonometric polynomial, and f is its conjugate,

then the map f > f + if is bounded if and only if the

map f —> f is a bounded map of the trigonometric polynomials
( 2 \

into themselves. In all this, the norm is II f II = ( |f| to d a) .

To establish boundedness of the map f > f + if it suffices

to establish whether the spaces 6> . corresponding to to are at
cr a

a positive angle.

To see this in the case of M,N closed subspaces of a Hilbert

space H, we need to show that if p(M,N) < 1 and m,n are elements

of M,N respectively

IImil < cllm+nll where C > 0 is a constant (13)
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Let p - p(M,N) < 1 . Then

IIm + nil2 = Umll2 + IInII2 + 2 Re (m,n)

£ IImil2 + IInII2 - 2 |Re (m,n)|

£ IImil2 + IInII2 - 2p IImil IInil
= (1 - P2) IImil2 + (IInII - p IImil )2

2 ?
i (l ~ P ) 'Imil so (13) follows.

If (13) holds with II m || = II ra II = 1 we have

1 2
£ IIm-nII = 2(1 - Re(m,n))

C

so Re (m,n) £ 1 - £ = p < 1 .

2C2
So if (m,n) = re^"® where IImil = IInil = 1 .

( \ / -i0 \(e m,n) = r = Re (e m,n)

1 P

So sup |(m,n)| £ p < 1 as required

m e Ball M,.n e Ball N .

Therefore we obtain:

2
Theorem ^,12: The map f > f is a bounded map of L (to)

to itself where to _> 0 is in L^(a) if and only if there are real

L (a) functions u,v such that IIvll < 7r and to = exp(u + v).
2

The Space BMO(a):
00

The class of functions (u + v : u#v real L (a) functions},

a subset of which occurs in the solution of the Hels0n Szego problem,

forms, on the circle T and real line R, the class of functions of

Bounded Mean Oscillation, introduced by John and Nirenberg in [2^].



Definition 14.13: A function <f> , measurable on the line, is a

function of Bounded Mean Oscillation (BMO) if there is a K > 0

such that for all intervals J C p

<fr(t) - * | < K

J

Here |j| denotes the length of the interval J and

= 1 <(> (t) dt .

|j|

Fefferman and Stein [17] studied these functions extensively,

proved that BMO is the dual of H^" , and gave the above mentioned

characterisation of functions of bounded mean oscillation.

Our object now is to examine a class of functions on the Torus

which will play an analogous role to that of BMO functions on the

circle or the line.

Let (J) be a (real or complex) measurable function on the Torus,

Fix some irrational a .

For almost all (x,y), we shall define <f> (t)xy

by (J) (t) = <J>(x-t, y-lt) , t e R .
xy

Our analogue of BMO will be defined by requiring that all

the functions <t> be in BMO in a uniform sense.
xy

Definition- k.lk: With <j> a measurable function on the Torus,

say (J) e BMO(a) if

ess sup sup 4> (t) - <j) Idt < +yxy xyJ1
(x,y) I JI < 00 IJI J

Here J is an interval in R , |j| is its length and

^xyJ 4>(x-t, y-at )dt .
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Let h H* - sup _JL_ |<j> (t) - 4 T|dt .xy

|j| < 00 |J|
xy xyJ

rxy
is a well defined measurable function on the Torus, and

since BMO is translation invariant, Hd> IL is constant on lines
xy *

of slope a.

By Corollary VII."J.k in [ 18] lid) IL is constant almost
xy *

everywhere on the Torus.

A result of Fefferman and Stein ([17] page 1^1) immediately
2

implies that for almost all (x,y) e T

4> e L1 ( dt ) .

xy p
1+t

As we have seen, there are functions on the Torus which are in
1 1
L ( dt ) on almost all lines, but are not in L (a) . We shall

1+t2

now prove that this cannot happen for BMO(a) functions.

Proposition U.15: Let <j> be a real-valued BMO (a) function. Then

<})+ = max(<}>,0) , <j> = max(- 4>,0) are in BMO(a) , and so therefore is

|<j)| = <p+ + tj) .

Proof: Fix an (x,y) and an interval J . Suppose first that

<j> % 0xyJ

Then \^+(t) - *^1 £ U^t) - <^1 for all t e J ,

so 1 ♦w+(t) 5 _nj I "Vj|at 1
J

If d) < 0 , then clearly
xyJ '

*xy+(t)| 1 ~ ^xyJ1 f°r a11 t £ J •
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and so 1 ifjjy (t)|dt ^ JL_
1 1

I <f> (t) - d> I dt < II d) II „ .|Txy xyj1 — xy *

It follows easily tKul4 £ BMO(a) , and so <J> and | <j> | are

in BMO(a) .

\

Theorem l|.l6: Let <j> e BMO(a) . There is a k > 0 such that

exp(k | <f> | ) e L^"(a), In particular, <J> e L^(o) for 1 < p < 00 .

Proof: We shall suppose that cf> is real-valued. The complex case

may he deduced by examining the real and imaginary parts separately.

By proposition U .15 ip = |<}>| e BMO(ct) .

Define \pn = min(n , \p) .

Then 0 <_ 411 < n ,

exp(k i(jn) <_ exp(k 4,n+"'0 for each n , k > 0 .

n 1
Also exp(± k \p ) is in L (a) for all n , all k > 0 .

We shall prove the existence of a k > 0 such that there exists

D > 0 for which

T

(1 < ( 1
2T -T

exp(k ip (x-t, y-at) )dtj f 1
k2T -T')(; exp(-k ^n(x-t,y-at) )dt

< D (11+)

for all T > 0 , all n , and almost all (x,y) e T

By a remark in Helson's paper (page 20 , [ 20] ) as T m in

(ll+) we obtain

exp(k ^n)do exp(-k ijjn)da £ D. for all n .

By Lebesgue's bounded convergence theorem

exp (-k \p ) dp exp(-k 41) da as n ■+ 00
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For all sufficiently large n , therefore,

exp(k ^n)da < 2D

exp(-k ijj)da

By Fatou's lemma exp(k i/i)da exists,

It only remains to prove (lh) ,

We shall choose k and C later, C depends on (x,y) and T .

T \ / T

_1
2T -T

exp(k ijjn)dt JL
2T -T

exp(-k ) dt

_JL
2T -T

exp(k \pn - kC)dt J J 1
2T -T

exp(-k ij;11 + kC)dt

T

< I _JL
2T -T

exp (k I tp - CI ) dt (15)

Consider now il/1 on J = [ -T,T] . Suppose firstly that
xy

ip T K n '
xyJ —

Then I i|jn (t) - ^ I < I (t) - ip I|r
xy xyJ1 - |Vxy rxyJ'

Putting C = 'I' j > we obtain (15)

< I _1
2T -T

exp(k '|^xy(t) - )dt

If ib _ > n ~ then
xyJ >

|i|jn (t) - n| £ (t) ~ ^ so with
xy'-' ' — ''xy' ' xyJ '

C = n we again obtain (15) £ (l6) .

But by a result of John and Rirenberg [ 2U] we may choose a

k > 0 , such that for almost all (x,y) , all T > 0

(16)
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JL
2T -T
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exp(k I^U) - \ < D where D > 0 .

Therefore

1 < p < » .

exp(k |$|)da exists and in particular- $ e L^(o) for

Theorem H.17: For $ e BMO(a) define by ll$ll# = ess sup 11$ II #xy

(J) da

Then BMO(a) is a Banach space with respect to this norm.

Proof: If <j>, $ e BMO(a) , A e C. we have

II $ + $11 < II <J) II „ +

|A| 1*1, .

If II$11* = 0 , then for almost all (x,y) 11$ II# = 0 . Byxy

[ 18] Corollary VII.J.h , since $ is then constant on lines

it is constant almost everywhere. The vanishing of

$ = 0 almost everywhere.

BMO(a) is therefore a normed linear space.

T T

1 J | $(x-t, y-at) | dt <_ _1 | $ (x-t ,y-at) - $ j | dt +

$ da ensures

2T -T 2T -T

_1
2T -T

$(x-t,y-at)dt

< ess sup II $
U.y)

xy
_l
2T -T

$ (x-t ,y-at)dt

letting T -> 00 , we obtain, using Helson's result

$| da <_ ll$H# .

A Cauchy sequence in BMO(a) is therefore Cauchy in L (a),
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Let such a Cauchy sequence. Then given e > 0, there is

an n such that,
o

if m,n > n IId> - d> IL < e .
— o ' Tn Ym *

There is a <j> e L (a) such that ij> -+ <p in L^cr) and some

subsequence {<j> } converges to <J> pointwise almost everywhere,
k

Using Fatou's lemma we obtain

T
r

1 | (<j> - <j> ) - (<j) — cj) ) I dt <e for all m > n— J m m J' — o
2T -T

all T > 0 , almost all (x,y). We can deduce easily that <)> e BMO(a)

and II (j> - <p II # -y 0 as n -* 00 ,

It is immediate that all bounded, measurable functions on the Torus

are in BMO(a). We shall now prove that the conjugate of an L (a)

function is in BMO(a).

• / \
Theorem 4.18: The map f > f is a bounded map of L (a) into

BMO(a).

Proof: Let f e L°°(a) . Then by theorem k.2 f certainly exists and

Pis in L (a) for 1 <_ p < M .

Let us choose a sequence of trigonometric polynomials such

that

f -> f pointwise almost everywhere,

II f II < II f II for all n ,
co — oo '

f^ y f pointwise almost everywhere.

Define (x»y) = P.V. 1_ g(x-t ,y-qt)dt , (or
71

t J
where by P.V. we mean the Cauchy Principal Value of the integral.



We shall show this is certainly well defined for trigonometric

polynomialsand in fact gives the conjugate function of g .

It is enough to show that

i(mx+ny) _ . i(mx+ny) . _ , ^ •,
1 e if (m + not) < 0 •,

T e
a

0 if m = n = 0 >

i(mx+ny)
-l e if (m + na) > 0 .

Ita cits, m = n = 0 is clear.

Now P.V. 1
77

i(mx+ny) -i(m+na)t
G 0 Q"t

ei(m+ny) p -i(m+na)t ,,

0 dt

If m + na < 0 ( 1?.V. -i(m+na)t
g d. u lM.

77

lu ,

e_ du
u

= l

If m + na > 0> lP-V. -i(m+na)t ,,

e • dt -lP.v!
77

1U
_ .

e_ du = -l
u

by the usual complex variable argument, So agrees with the

conjugate map on trigonometric polynomials.

In [ 17] Fefferman and Stein prove that the Hilbert Transform
00

is a bounded map of L BMO .

Since (T g)(x-t, y-at) = lfcV, ;(x-t-s, y-at-as) ds

= Hilbert transform of the function g (t), we have that
xy

{ |(Tarn)(x-t, y-ct) - (T0fn)wJ| dt < A «fnl.
J J

for all J , a subinterval of R , almost all (x,y) and n e N

So



1 I fn^X_t' y~at)
I J| J

f J dt < A 111" 1 < A llfll
n xyJ1 — n 00 — <

96

Letting n and using the fact that f -* f pointwise

almost everywhere, and Fatou's lemma, we obtain

1

J J

f(x-t, y-at) - f I dt < A llfllxyJ1 —

Also f da I < ( | f I da)2 < ( f|2da)2 < llfll .

So the map f

BMO(a) .

-> f is a bounded map of L (a) into

We shall now prove that BMO(a) is the dual of H (o) in the

following sense.

Let = = S = Ref , f e H1(a)} . h1r(°)
is a real linear space, and is in fact a Banach space equipped with

the norm

H
+ igll (g is in L (a)

since g = Ref , f e H (a)) .

We shall prove that there is a constant C > 0 such that, if

is a real valued function in BMO(ci) and g is continuous and

in H (a) ,
R

g <j> da < C IIg + igll

Then since the above set of g e H^fcr) is dense in (a) theR R

functional defined by

1(g) g <J) do

extends by continuity to all of H ^(a) and IIAII £ C ll<|>l!# .

Conversely every continuous linear functional X on H^(cr)
gives rise to a <J> e BM3(a) such that
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A(g) = <j) da for all g f L D(a) sayR

(which is dense in H (a)). We shall prove this second claim first.
X\

Theorem ^,19: (compare [ 17] Theorem 3) There is a constant

A > 0 , such that, given A, a continuous linear functional

H R(o) , there is a <j> z real BMO(a) such that

on

A (g) =

and

5 <j> da for all g e L (a)K

A IIAII .

Proof: Let B = L^~ (a) 05 L^" (a) normed byR R

!(g,d)l II1 + lhl1 .

Let S = sub space of B for which h = S is a closed

subspace of B this follows from the completeness of H (a) .

Any continuous linear functional A on H (a) can be
R

identified with a corresponding functional on S , since the norms on

S and H^" (a) are clearly equivalent. So, by the Hahn Banach

Theorem A extends, without increase of norm, to a continuous linear

functional on B .

CO
/ \ 00 . .

The dual space of B is equivalent to L „(a) © L „(a) soR R
00

there are u, v e L ^(<?) such that

A(g) = gu do + gv da

and there is a B > 0 independent of A , u and v such that

Hull < BIIAII , Hvll < BIIAII .00 — 7 00

2 2
Now if g s L R(a) , since v is also in L R(a) ,

gv da (for example, compare the Fourier Series)*gv da =

so A(g) g(u-v) da .

By theorem U.l8 , u - v £ BMO(a) and Hu vll # <_ A IIAII



We shall now prove that each <j) E real BMO(a) gives rise to

a bounded linear functional on H (g) .

We shall first discuss a certain technique which allows us to use

Fefferman and Stein's result on the duality of and BMO .

If f e C(T2)

T

IT

f(x-t, y-oit) dt
2 2

T + t

f do as T 00 ,

for almost all (x,y)

For, if f is a trigonometric polynomial, say

*= I

T

ir

a e
mn

i(mx+ny) then

f(x-t,y-at) dt
2 2

T + t

I a ei(mX+ny) Tu mn —
IT

-i(m+na)t
e dt_ .

2 2
T + t

(IT)

Let us examine T
IT

iAt
dt for X e R

m2 a-2T + t

Setting t = Tu we obtain

iAt
T

TT 2 2
T + t

dt = 1
IT

iXTu ,

e du

1 + u

-111 T

= 1

if X * 0

if X = 0

Then, as T -> 00 in (17) > we obtain aQo = f da as required.

By approximating f uniformly by trigonometric polynomials we

obtain the result for continuous f .

1 • 2
More generally, if g.e L (a), we can define g^ on T , which

is also in L1(a)^ by

gT(x,y) = T g(x-t, y-at) dt .
17 T2 + t2



Also gT Ida - -

dt ISI da =
2 2

T + t

99

g d0

We show g da in L (a) as T Fix e > 0

and choose f e C(T ) such that llf-gll < e .

Then II gT - dal^ < »gT-fTll1 + II fT- f da II + f da - da II.

< 2 Hg-fll + II f„ f da II.
1 T

Now £ IIflic s° the right hand term tends to zero as

T , by the bounded convergence theorem. Since e > 0 was

arbitrary we obtain

lim II gT -
T-*»

g dol^ = 0

There is, therefore, a sequence such that

0 < T.. < T_ < . .. , T 0012 n

and T g(x~t, y-at) dt
2 2

T + t
n

g da pointwise a.e.

The subsequence depends on the g , of course,

Theorem 4.20: Each <J> e real BMO(a) gives rise to a continuous

linear functional X on H ^(a) , which is defined e vVP
such that g and g are continuous (a dense subset of H ^(a) ) by

A (s) = cj> da , and there is a C > 0 independent

of X and such that < C It then extends by

continuity to all of H (a) .
i\

Proof: We show first that for f e A and 4> e real BMO(a) ,

f <f> da | <_ Cllfll * • w



define A on the dense subset of H1 (a) consisting ofR

those g such that g, g are continuous ^"by

A(g) = g (J> da = Re (g + ig) <j> da .

Now |A(g)| = [Re (g + ig) <f> da |

(g + ig) <}> da |

<_ C IIg + igll 1 llfjill^ j IX") „

This is the required result. vlwx.'

<fc e BMO(a) and so is in lRc) . Since f e A ,
a

exists.

Fixing f, <f> choose a sequence {T } such that

f <p da

f(x-t, y-at) (j> (x-t, y-at)dt ■)
2 2

T + t
n

f <J> da j

for almost all (x,y)

This integral is equal to

f(x-t, y-at]
(t + i T )2

n

(t + i Tn) <t>(x-y, y-okt)dt

Now (see [ 18] , Chapter VII, section j) for almost all (x,y)

f(x-t, y-oCt) e H**"(dt) .

(t + i T )2
n

We shall show, that for almost all (x,y), <j>(x-t, y-<*t) (t + i
(t - i

is in BMO and its BMO norm <_ K "* + xy2T

K is a constant independent of <j> and
T

Fxy2T
n 2T

<f) (x—t, y-at )dt
n -T
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Fefferman and Stein's result [ 17] on the duality of H

and BMO gives

f(x-t, y- t) d> (x—t, y- t)dt
2 2

T + t
n

< C1 T |f(x-t, y-at)| dt X
2 2

T + t
n

K 11(f) II + K
xy 2T

4> (x—t, y- t)dt
n -T

n

for almost all (x,y) .

Wow letting Tn -> 00 in the ahove, and using either Helson's
result ( [20] > page 20) or the elementary estimate

T
n

2T
<j>(x-t, y-at)dt

n -T

< T <|>(x-tt y- t| dt
n

m 2 j. 2T + t
n

| <f) I da as Tr -* 00 ,

| (j) | da £ ll({. II # ,

Vsoe obtain AW M.SJO.U W*. O-w ; /

f if) da < K C IIfII (ess sup ll<b II*
- 1 xy

<f> da I )

= C II f II H(f) ll;

Corollary k,21: Any if) e BMO(a) may be written as (j) = u + v where

u, v e L°°(a) and there is a B > 0 such that we can choose u and

v to satisfy

Hull < B * »
llvll <_ B 11(f) II #

Proof: Follows immediately from theorems Wl9 and h.20
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We are only left to justify the statement that

(t + i T) <f>(x-t, y-at) is in BMO and obtain the estimate of its
(t - i T)

BMO norm.

Notice first that the map <j>(t) -> cf>(at), a > 0 , is an

isometry of BMO onto itself. It is sufficient therefore to prove

u+i iHu) is in BMO if is, where ijj(u) = <j>(x-uT, y-auT) .

u-i

We will obtain the estimate of its norm as

_< K (IIiJjIL + Ui ) where = 1J J 7T
^(u) du

-1

Then reversing the process, we obtain BMO norm of
1

t + i T <j>(x-t, y-at) £ K j 11(f) II# +
t - i T

1
2

\jj (u) du

-1

1 ij;(u) du = 1 <j)(x-t, y-at) dt
2 2T

-1 -T

So BMO norm <_ K ( + l^xy2T^ ^ aS
To obtain our result, we require first two lemmas.

Lemma. k ,22: [27] Let (j> e BMO, I and I be two concentric

intervals with I r times the length of I (which has length l) .
r

If r > 1 , |^ - +z | <3(1 +
log 2

If r < 1 , |<t>T - 4>t | 1 3(1 + log r 1) M:
log 2

Proof: We take r > 1 , the other case is proved similarly.

Consider first r = 2S where s is an integer. Setting

(j) = (j> , we obtain
s 2S
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It's - ts-ll
|I2S-1| IjS-l

tS - ♦g^ldX

< 1

lM~l|
( | ~ <j> | + | 4> ~ )dX

I2S_1

< 2 kg - *P | <lX + l_
|I2SI I2s lI2s-1l

k - ♦sj

I2s-1
< 2ikii# + M* = 3ikii* .

s

ks - <f>0l 1 I \K ~ K-i\ K 3s
k=l

k k-11

Suppose now 2s < r < 2S+1,

Clearly | ^ - ^ | < - <J,g | + 14>s ~ <^01

< kT ~ *J + 3 log 2S ik'I* -
r 3 log 2

Also kj ~ $s' —
< 1 <f> - <j) | dx +

IX2SI I2S IV'
^ ^g|dX

< 2 | (^ - ()>|dx + 1
1 i 1 r kosr1 r 1 2

<f> ~ <Psldx

< 31k11* -

Thus | <j> — cj) | <_ 3(1 + log r) il<f>".
r log 2

Lemma ^.23: Let tp e BMO. . I and I are intervals of length 1 .

If I and I2 are disjoint and the distance between their midpoints
is r (r > l)

then kT - +t I iX1 2
6 (l + log r) + 2

log 2
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If 1^ and I intersect then [ <j> - <p | <_ 2llc)>ll# ,
1 I2

Proof: Let 1^^ Cresp. IQvil he intervals concentric with I, Cln)2r r 21

whose length is r times the length of I (I ) .

and I are adjacent.

Then U - A | < |a -a | + | * _ A
lr 2r lr lr U 2r lr U ±2r 2r

< 1

'Ilr' 'Tlr
|<fi - <j) |dx + 1

lr U 12r i_

!* - dx

lr U x2r
~2r1 I

2r

Using |I lr1 I X2r I = | l^i U Ir2' ' ^

'Irl U Jr2' Irl U Xr2
|* - +T T |dx

lr U 2r

2II 4> II * •

Using lemma 4.22 and (l8) Wk

(18)

l+T", " ♦ T " I 1 |fr ~ I
ll 2 1 lr

+ l+T - K I
lr 2r

\K ~ K I
2r 2

6(1 + log r) + 2
log 2

If I and Ig overlap a proof similar to that of (l8)
gives the result.

Theorem 4.24: Let <j> e BMO . f(t) = . Then f <J> e EMO
t-i

and IIf<f) H# _<_ Kj | + KIIcf> II^ where K is a constant and

I = t "4 » si • Cln theorem 4.20 I = [-1,1] hut lemma 4.22 shows

this makes no difference).
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Proof: J is an interval of length |j| -

Let us first suppose J = [a, a + 1j|i, where a is nearer to

zero than a + |j| . This is no restriction - the same arguments

would work in the other case.

| f + - fj (j,j | dx < _1_ | + - ^jl |f|dx + |^j| f - fj|dx
j j J a- 7J| *

■*". + U.tI lf - fjldx >

M" 3

since |f| £ 1 everywhere.
.1 •

Suppose now |J| >1 , and J is an interval of length 1

concentric with J .

I + tl 1 Ut1! + 3 (1 + log |j! ) 11+1. >
log 2

using lemma h.22 .

(19)

i+jH 1 i+jl + 6 / l + log a + J

log 2

+ 2 Ml* , (20)

(if a + Jj]_ > 1 ()

l+jl| < l+pl + 2 (if a + Jj]_ £ l)
2

(21)

VWk cWoixAnsing lemma b.23
a+1JI

Now [f - fT|dx =J |f - fj| dx

Either |j| > j a| or |J| £ lal •

11" |a| 1 |j| , then a > 0 and we obtain



a+1J | a+|j| a+ J

f - fjlcbc < | f | dx £ 2 1_ dx
x
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2 log a + |J|

Now using (19) and. (20) we obtain

l*,l
|J| J

f - f |dx <_ j |(j> | + 111'II^ + 3 log 1J1 M*
log 2

+ 6 log
a + M

2

log 2

_A_ j |f - fj|dx
|J| J

< 21 <J) | + 22 H<jJ* +' * J

13 log |J| + 6 log a + lil |
log 2 log 2 |J|

* { lf - *jlta
J

(22)

In the case a >_|j| the above is

< 2|*j| + 22 + I 3 log a + 6 log 3a ) 2_ ^

\ log 2 3^-!- j
using log a + ]j] £ [J1 ) since | J| £ 1 ,

< 21 tj>j | + K Hi}) II # where K is a constant.
(using log t £ e for t £ 1 .)

t

Suppose now |j| > |a| We first consider 0 < a < |j| .

Then 1

|J| J

| f - fj | dx < 2 f dx

|J| J

a+|j|
< 2 | f | dx + | f I dx I ,

|J| I i
(Interpret the second integral as zero if a £ 5)
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< 2 log 2 J + 2

|J| |J|

Inserting into (22) and using |j| >_\ we obtain (22)
< 2|<j> | + K ll(j>ll# .

If |j| > | a. | ^ but a<0<a+|j| ^

a+| j| -5

|J| e

| f | dx £ 2

PI

a+1 J |
|f|dx

£ _2_ log 21JI + _2£ + 2 log 21J K
PI |J|. |J|

so again we obtain the required result.

Suppose now |j| £ 1 . If a_>|j| the same estimate as

before will work, for the last part of (22). The last part provides

no problem if a £ |j| also.

The problem arises with log |j| ^ 1
log 2 pT

f - fjlcbc

We shall estimate 1

PT
|f - f-Jdx . Notice that if x, c e R

|f (x) -f(c)| £ |x-c| . Let c be the midpoint of the interval J,

|f(x) - f(c)|dx + |f(c) - fj|Then 1

w
f - fT dx < 1J FT

< 2

"PT
|f(x) - f(c)|dx

£ 2 sup |f(x) - f(c]
Ix_c I 1 1±LL

2

1 lJl ,
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Now,since we are considering |j| < 1 >

log |J| 1 1
PT

| f - f | dx <_ sup IJI log IJI 1 < e 1J IJI < 1

Thus in all cases we obtain an estimate of (22) as

<_ K ( | tjj-j- j + ll<j>ll#) where K is a constant independent of <{) .

Since t + i <j>(t) = (1 + 2i \ <J>(t) , the former function is
t - i \ t - i J

in BMO if <j>(t) is, with the appropriate condition on the norm,
t - l

The space BMO(a) thus plays an analogous role to that of

BMO on the real line or the circle.
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