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This thesis is divided into two distinct and independent parts.

Part 1 concerns the Approximation Property (a.p.) and Radon Nikodym
Property (RNP) in Banach Spaces.

In Chapter 1 we outline the importance of the a.p. and produce
examples of Banach Spaces without the a.p. by modifying & construction
due to Szankowski. These spaces are closed subspaces of &p direct
sums of finite dimensional #q spaces (1 < g < p < =), so with
P i 2 we obtain Banach spaces of cotype 2 without the a.p. - this was
unknown.

In Chapter 2 we discuss the RNP proving in Theorem 2.9 the
characterisation in terms of dentable subsets due to Rieffel and Huff
(among others), of Banach spaces with the RNP. In theorem 2.18 we
prove that dual spaces with the a.p. and RNP have the metric
approximation property, obtaining as corollaries results of Grothendieck.
We intrcduce p- nuclear and p— integral maps between Banach spaces E
and F and prove in theorem 2.26 that, if E¥ has the RNP, all p-
integral maps are p-nuclear, and in theorem 2.29 that, if F has
the RNP all integral maps are nuclear. This extends work of
Grothendieck, Perrson and Pietsch.

Part 2 concerns the prediction theory of doubly stationary processes.

In Chapter 3 we outline the basic prediction theory, and state,
for the absolutely continuous case, Helson and Lowdenslager's
characterisation, for a weight function w and an irrational a , of
a process as type 1,2 or 3. We give an example of a process of type 2,
for all irrational a .

In Chapter 4 we obtain in Theorem 4.10 an exact analogue of Helson
and Szego's result, viz. that the past and future of a process are at

positive angle if and only if du = wdo , w = exp(u + v) , where



u, v are real L® functions with Ivl < ¢
E) oo Lt
2

We introduce & class of functions - BMO(a) functions, analogous
to BMO functions, and prove BMO(a) is the dual of Hl () and

{fu+v:u, ve L° (o)} = BMO(&] in Theorems U4.19 and L4.20.



PART 1.



CHAPTER 1.

The Approximation Problem in Banach Spaces

The chief object of this chapter is to produce examples of Banach
spaces which do not have the approximation property. These examples
are in fact closed subspaces of fLp - direct sums of finite dimensional
2q - spaces where p > q > 1 (p ¥ ®») , and so in the case where p < 2
we obtain Banach spaces of cotype 2 which do not have the approximation
property. This was unknown.

If X and E are Banach spaces, B(X,E) will denote the space
of bounded linear maps from X into E. If X = E we use the
notation B(E).

A linear map T : X > E is said to be compact if the closure
of the image of the unit ball of X under T i.e. T(Ball X) is a
compact subset of E. Since a compact subset is always bounded, such
a map is necessarily bounded, and denoting by K(X,E) the set of all
such maps, (K(E) if X = E) we have K(X,E) C B(X,E).

A bounded linear map T 1is said to be finite rank if the image
space of T 1is finite dimensional. If T e B(X,E) is finite rank,
T(Ball X) is a closed and bounded subset of the finite dimensional
space TX, so is compact, and T 1is therefore compact.

The set K(X,E) is in fact a closed subspace of B(X,E), and if
F(X,E) (F(E) if X = E) denotes the closure in B(X,E) of the finite
rank maps, we have F(X,E) CK(X,E) and it is a natural question as to

whether equality occurs.

Definition 1.1: [5] A Banach space E is said to have the Approximation

" Property (a.p.) if for each e > O , for each compact subset K of E ,

there is & T e F(E) such that lTe - el < e, for all e e K .



Put another way, in the topology of uniform convergence on
compacts, the identity operator is in the closure of the finite rank
operators on E.

The crucial result is the following which is in Grothendieck's

memoir.[ 5]

Theorem 1.2: E has the a.p. iff F(X,E) = K(X,E) for all Banach
spaces X.

Most of the naturally occurring Banach spaces have the a.p.:
all the &P, I? spaces with 1 <p<®,C(K) where K is a
compact hausdorff space, the disc algebra A(D) , the space of compact
operators on a Hilbert space. It is unknown whether He or B(H)
(= space of all bounded operators on a Hilbert space H) have the
approximation property.

For many years it was unknown whether there existed & Banach space
which did not have the a.p. In [U4] Enflo produced such a space.
In [1] A.M. Davie produced an elegant simplification of Enflo's result,
and in fact showed that for 2 < p < » there is a closed subspace of
P failing the a.p.

Szankowski [15] presented an example of a Banach lattice (i.e.
a Banach space also having a lattice structure) failing the a.p.
We shall show that, by suitably modifying his construction, we can
produce closed subspaces of zP — direct sums of finite dimensional
gq spaces which fail the a.p. These give, for the case where
2>p>q>1, Banach spaces of cotype 2 failing the a.p.

The procedure is as follows: we construct a Banach space E ,
a compact subset K of E and a linear functional B on B(E) such
that B(I) =1 where. I is the identity, B(T) = O for all finite

rank operators T .



Also IB(T)I_ < € sup{ lrel : e e K} for all bounded

operators T on E , where C 1s a constant. If E head the

approximation property, then I could be approximated arbitrarily
closely on K by finite rank operators and this would necessitate

B(I) =0 , a contradiction.

Notation: I= {—l,l}H is the Cantor group equipped with the natural

_product measure, A . I, denotes {-1 11, and L is the natural

projection of I onto I T (with m > n) the naturel

n ?*

projection of I, onto I, .

For uel let Zu= 7 (u) €I . X, is the characteristic

n ° o =
function of this set. For each ne N ,(B , denotes the (finite)

algebra of subsets of I generated by the sets Zu , with u e In

By u we mean u = (ul, cees W o —un) if us= (ul, cees o un)

£ In F

Ir A ey let A" = U {Zu : Zu € A}

Lemma 1.3: For a > 3, for all n sufficiently large (depends on a)
there is a partition[}tn E(B“.' of I (i.e.I=U{A:Ael

A pairwise disjoint elements of @m,}) such that

(&) 3 n & < a(a) < n > if A eOln (1)
20
(b) A("a” N B) <5 n%m® if AeM™n, BeOlnm : (2)

(A modification of Szankowski's lemma in [15].)

Proof: To prove the lemma we require the following combinatorial lemma

first.



Lemma 1.4: Let X = {1,2, ... N} , m < VN and K < m/4 log m.

If p is the usual counting measure on X i.e. if Y CX ,

u(Y) = card Y/N , then there is a family .{‘Dk}i‘—”l of partitions
of X so that
(&) m = <wu(A) < 2m~ for all A ekUJ)k, (3)
e
’ = X
(b) u(ANB) < 5m 2 if AB e UDK , A% B. (4)

Proof: For large enough N , the prime number theorem ensures the

existence of K distinct primes , Py «++ Py oo lying between
lm and m .
2
Let A,jk = {neX: nzj (mod Pk)}
Dr = (4,1} % .
J j=l

card A.k < N +1 for each k
J D,

=
[0
s
| T
g =
e
A

(where [t] denotes the integer part of t) and so

1 (8| =< ula,) < 1 N +1
) d (B )

Since N/pkiN/m and. N/h <« AN/wm  we alJaun  (3)

Since, for k ¥ (. , Ajk nAjL is a coset mod p, P,

[N :| < card (Ajknﬁjt) < |:N ]+1 3
Pka PkP_L

and,using m < VN , m/2 < Py < «-. P <m,we obtain (k).

Proof: (of lemma 1.3)
-] : J
Put I = 7 X. where X, = {—l,l}2
j=o J d

Let Dj $ I —*Xj denote the natural projection.



) 5
3= .
2 + A .
Teke N = 2 and m = mIj = (29 l)a in lemma 1.4 , we obtain

K = 2.29 partitions &)k(J), k=1, o 2.29, 0F the set X, so

that (3) and (4) are satisfied. (This will work for all
sufficiently large.)
The partitions Oi’n are defined as follows, for

n=20 20 41, ... 29

13
W, = 2@t @) D gpmej} it v
2@ty ¢ oeeDl) (5)

rn(t) is the nth Rademacher function on I , defined by

rn(t) = tn vhere t = (tk}k=l

el .

We first note that Ot'n c® o + This means that the sets in
oL , depend only on the first n co-ordinates.

From (5) it is clear that the sets depend only on the
co-ordinates 29+ . R , «+. 2)-1 and n , which are all less

than or equal to n .

In what follows 2° <n«< 23+l s g* <m < 21+l
-1 -1 -1 -1
= " N
A=p; (D) Ar = (e) B= p.; (E) Nr = (n)
where D e * EcD?

i-1 ,

n+l - (e+l)23_1 m+l - (n+l)2

e and n are * 1 .
. O

- - - - + ] p— 3
Now 2 %n % f_mjl < u(D) < Qmjl < 2(2 % < 2n % using (3).

It is clear that A(pjj (D)) = wu(d) .

Since p j:i (D) depends only on the co-ordinates 23—1

gL sdrlyy sl a4 en and r;l(s) depends only on the nth
- - ot
co-ordinate, we have A(A) = A(pj_l (n)) . A(rnl (£)) = wulD) .2

Thus we obtain (1).



Lastly we obtain (2).

Suppose for a start, that j # i .

Then p J:i (D) and o ;:_LI(E) depend on disjoint sets of

co-ordinates and so

MANB) < Ale, 7T (D) Np 77 (E))
= Ap, Ty (D) A (pTy (E))
= L4 a(a) A(B) ,
and applying (1) gives (2) .
Now suppose j =i and that m=n, e=n, so ‘A Er;l (e)
Bgr;l(-—s) and therefore "A N B = ¢ . Otherwise D and E

belong to different partitions D 1(13) 4 ) riJ) respectively, so using (U),

APA"N B) < u(DNE) < st72 < s

Szankowski's example was constructed as a certain subspace of
functions defined on the Cantor Group I. We obtain our examples
by modifying the definition of norm.

Before we define our Banach space and our functional B , we
set up a little more machinery.

if ‘% . = collection of all subsets of {1,2, ... n} let

\% = U% 0" For G ¢ fi define the Walsh function W

U (t) on I by

G
= ™ M

WG(t) oG rk(t) where the r, are the Redemacher functions

defined previously. These functions are characters on I with its

natural group structure 1i.e.

(u) = W (tu) t,uel.

Wc(t) W o

G

We construct our example in a series of steps : for ease we take

a=1, p>1.



T
Step 1:  With Oi'n a partition as in lemma 1.3 , and {cn} a sefuoue
of strictly positive numbers which will be chosen later, for any

function. f measurable on I define

1
5 /p
FE ) ZquI (6)
AeOln L Bl —=
N A(a)
provided this is finite. Call the Banach space obtained using this
norm EP..

Step 2: We define a linear functional Bn on the bounded operators
on EjP by

g(r) = 2" (W, , ™) .
n Gg%n G G

( By (f,g) we mean Jf gd\} so (WG p 'I'WG)
= JWG(t) (1,) (t) a A « )

If vwel , G e% with m > n , we notice W, 1is constant
m n = G

on Z, . Denoting this constant value by WG(u) , we have

B_(T) 2™ W, (u) J(Tw ax
B Gé%n ugrn G 7} G

= ] ngbud)\,

vhere ¢ == 2™ ¥ WG(U.) W

For v e In » Wwe have

W, (uv)

v (v)
- Ge%n G Ge%u .

n
&
=
0~
=
mf-\
g,
=
¥
i
N

7

'{l ifu=v

0 otherwise.



Therefore wu = x_ and

B (T) = ) J T x, dA.
u

n
uel Z
n
We obtain
Bn(T) = B (E) S ) J Tx ;A (1)
uaIn+l Z

8,0 = g < I mx ¢ [ | [or]s g s
AeOln + z CA zZ
u u
®,, measurable and |£| = xop= for some BEO{,H} : (8)
Proof: From (7) we have
B (T) = B (T) = ) J T x 7 dA
u(-:In+l Zu
= ! ) Txgad.
Aclln z2Ca 2z
u u
Consider z J T ¥ = ar . (9)
72 CA 2
u u
Denoting t = J T x = dA and enumerating the u's we obtain
uv 7 v
u

a matrix tuv and (9) 1is just the trace z tuu of this matrix.

: ; m i m :
Given a matrix (tuv)uyay (square) 3 € = (Eu)u=l with
€ = + 1 such that
u
103 > 1
Yo t € >
u=1 v=1 TV w=l M

In fact we will demonstrate the existence of an € such that

m m m

El €u vz tuv €y e

W
t~1
ct

uu
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To show this, we will prove that for a matrix (buv) , W can choene ¢

Such Shall ] B & €& 3 0 (10)
uv u v -
v<u
and then put b =t _+t for u> v. (Puv, Wy ave  wal))
uv uv vu
For (10) we use induction. If it is true for matrices of order
; +
m ,consider (b_ ) L E
uv'u,v=l
m
= +
z €u &y buv ): 0 v buv “m+1 E v En‘.\f ¢
l<u<v<mtl l<v<u=<m v=1
Choose €1 +o0 € by the inductive hypothesis and €41 = Sien of
m
Y €, bm+l,v . Now_ applying this to (9), we obtain
v=1
) ITxﬁdAf_ ) ’JT(Isvx;)dA‘
Z A 2 Z CA Z
u u u u
< max Z | J T £ da ,
Z CA Z
u- u

where the maximum is taken over f , measurable with respect to® N

and such that ]f] = ‘XnB— for some B EO‘Ln ‘
Thus we obtain
B (D) - B (M| < §J  mex { ] HTf|= |£] = xng-
1 wE Aelt_ 7 CA lz) .

for seme B E:U'Ln} i

Step 3 : We have from (8)

B, (T) - snﬂ(T)] e 3 max { ) ' JT P ' : |£] = Xng-}
Ae DL zCA L,
x A(A) max ) |ZJ T f | ’
AL °3n ZCA u
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where b.{? = {f: £ iSBn measurable and |f| = )ﬂ_nA_
for some A e n]
LE Mn = number of elements in the partition(H.n
. 1/p
6.(T) -8 . (T)] <M meax A(A) max |Jc 5 /3| [re 1
B okl n 0y “n |m ™ areol [z |2z /o
m| u u Cn
A(A)
= M max A(A) 1 max  l7gl (11)
n ﬁi?ﬁ P
Cn fs%—n
Step k: Fix p > 1 and choose an integer % > 3 and numbers
) such that
YP 3 D c a
> a_ + 1 (12)
"p B
< o -1 (13)
o D ?
P
- o <=8 <-1 . (14)
IE b P
P
(A11 of these are possible).
Step 5:
max {Iel_: £e®3 3} < |] c ) A(("anp) \P] /P
P - m BeOl A(B)

Using lemma 1.3 with a = up we obtain the above

< [} c Mm]l/P n *® x constant.
m

_XP

. a0 .
Put c, = m ., and since Mm <2 P]ﬂ'P,E cmMm converges using

(12). Wwith Gp as above, define

K = ngl P~ 5P tle s g EO}n} u {0} . (15)

By (12), (13) and (14) X is a sequence which converges to

zero and so 1is compact.
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Also |8n(T) -8 .. (T)] < const. n P max lTelp .

fek

n+l

¥
+ :.'_E . p - £ 5 g _
If €p 5 ap S 1, Jn P<+= since ep < 1 .
Therefore B(T) = 1lim %%(T) exists for all bounded operators

n-+o,

T on Ep and
|8(T)] < const (1 + Jn *P) max lrslp .
fek
Step 6: Clearly B(Id) = 1 where Id = identity operator on
Ep. We show B(T) = 0, for all finite rank operators T.
It is sufficient to show B(T) = 0 for all rank one operators T.
Suppose Tg = Q(g)f where Q ¢ Ep* , f ¢ Ep.

B, (T) e ] (i, , W)

G’ G
27 ] auy) (£, W

1]

G)’
and so to show BnﬁT) + 0 as n »= we need only show (f , WG) + 0
as the number of elements in G Dbecomes large. This is obviously
true for bounded f , and these f are dense in Ep .

We have constructed then Vp > 1 , a space Ep failing the
a.p. We show now how to represent FEp as a closed subspace of a
£P - direct sum of &, - spaces.

J;
Define a map from Ep -+ EE Zi by

e 1/p J 1
£ > c_ 2) £ e % LA (16)
A (a) Zu;A Aeotn nel

The definition of the norm in Ep ensures this map is an
isometry onto a closed subspace of an &p - direct sum of finite

dimensional Rl spaces.
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For 1 < p < 2 this supplies an example of a space of cotype 2

failing the a.p.

Definition 1.6: Let {sj} be a sequence of independent, identically

distributed random variables such that

Prob [ej = +1] = Prob [sj ==-1] = 1/2 v 3
A Banach space E is of cotype (resp. type) 2 if there is a
n
constant C such that E Z €%, 1 > c(} ”x.“2)1/2 for all
= L 3
J=1 j=1
(resp <) Xys o X €,

for all ne N .
(Here £  denotes expectation.)
This property is clearly preserved on passing to subspaces. To

show Ep 1is of cotype 2 it is sufficient to show that 9.1 is of

cotype 2 and also that if 1 <p < 2, 2® - adirect sums of cotype
2 spaces are also of cotype 2 . These results are well known.

o 1
Proposition 1.7T: L is of cotype 2
Proof': let x, = E X.. e 1l <J 2k where the e_  are the
— J = Jn n =% s n

n=1 1
usual unit vectors in &
Khinchin's inequality states that there is a C > O -such that

k k
Y a2 < B (1T ey o< ey HM2
j=l .]' _1 d d J=l d

for all real nos 8‘1

So using Khinchin's inequality , wt Wave

e By all ke N.

k
2y1/2
(L (D IxyDHY2 < ¢ B AL e I lxg,D

|A

k
Y- (’551 e, gl | )
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| A

02 z (z ’x. |2)1j2 again by Khinchin's quyﬂﬁﬁ
n j a8

|A

3
C }E (g [y € xjn|),by one
last use of Khinchin's inequality.

An easy argument shows that the dual of a type 2 space is

always cotype 2. Therefore 2¥ for 1 < p < 2 1is always cotype 2.

Proposition 1.8: If En are Banach spaces such that there is a

C > 0 such that

2,1/2 =
(I le, 192 < o B oy ;e

L 4 .n") (e. € By ,Une N ) ana

dJ Jn

l<p<2, then ® E is of cotype 2.

Proof: Since #p is of cotype 2 for 1 <p < 2,

wE(T] ] e; leg | |Py1/p
n

2/py1/2
(L leg IP)<P) )

J n

A

| A

1
ap TR e le 1 |P)y /P
2 I s
d
Using Khinchin's inequality the above is

2% B ) (Z Hejnue)pfz 1/p
B -

Ap Bp C ) E ( Iy €; ejnﬂp) 1/p
n J

|A

A

apBpc E(JITe, e IP) 1/

n 3 J Jn
and so we have the result.
Remarks: (1) For ease we restricted attention to the case ¢ =1,
peds We can obtain spaces E p, g which are closed subspaces of

2P - @irect sums of finite dimensional &% spaces with p > q > 1

by defining



1k

"f”p,q. = E Cn z Z | Jf Iq l/q P l/‘p
n Asﬁkn ﬁ:A Zu
A(A)

where the Cn > 0 are numbers chosen later.

As before
IBn(T) Bn+l(T)| < Y max! ) | [Tf' £ %% &
Ae Ol
n Z CA 2
u u
ayl/q , n/q*
< M max A(A) max ( z | Tf | ) 2
Z QA 'Z
u u
A(A)
' 1/p 1
< constant x E Cn z ( E l J Tf |Q )PAQ Qn/j
n 1/p
Ae " Zu Zu Cn
(where 1 + 1 = 1)
1
9 q
n/ 1
< constant max lrel 2" S
fe s . Cn

Then a careful choice of Cn as in step 4 yields the result in
the same way as before.
(2) It is unknown whether every closed subspace of 2P (1 <p<2)
has the approximation property.
(3) Szankowski obtains his Banach lattice without the a.p. by taking

as his norm

lel = sup max A(a)7T J l£] ax
n Ae® A
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CHAPTER 2

The Radon Nikodym Property

For ease in this chapter, we shall consider only real Banach
spaces, and all scalar measures and functions will take real values.

(X, J, u) is a finite measure space i.e. X is a set, ) a
o- algebra of subsets of X and u a finite positive measure defined
on } . If m is another finite measure on X , but possibly taking
both positive and negati#e values, we say m 1is absolutely continuous
with respect to u if m(A) =0 for all A e ] for which u(A) = O.
If this is the case, we write m <<y .

If Q 1is a real valued function on X, integrable with respect
to u then

m(A) = [ Qlx) au Ae) (1)
A

defines a finite measure on X , absolutely continuous with respect to
U The crux of the Radon Nikodym Theorem is that all finite measures

absolutely continuous with respect to p must arise as in (1)

Theorem (Radon Nikodym): With (X, }, u) as sbove, and m a finite

measure, absolutely continuous with respect to u , then there is a
Qe it (x, Y, u) such that (1) holds
(We need only require, in fact, that u be o - finite.)

Our first object in this chapter will be to obtain a Radon Nikodym
theorem for measures taking their values in a Banach space. This is
possible only in certain spaces, these with the Radon Nikodym property.
We shall then obtain results c?ncerning the approximation property and

p — integral and p — nuclear operators and spaces with the Radon

Nikodym property.
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Vector Valued Measures and Strongly Measurable Functions:

We first set up the necessary machinery to discuss the theorem.
A fuller account of the following material is available in Dunford
and Schwartz, Volume 1.

Throughout X will be a set, E a o0 - algebra of subsets of

X and E a real Banach space.

Definition 2.1: A vector valued measure m : ) -+ E is a set
function taking values in the real Banach space E such that m
is countably additive i.e. if .{An}z=l is a sequence of disjoint

subsets in ) then

(; A) = 7 m(A_) . (2)
"’ n=1 ° nZl B

We restrict attention to those vector measures which are of finite

(bounded) variation.

Definition 2.2: The variation lImll of a vector measure m is the

positive measure defined by

5o
lmll (4) = sup E Hm(Ai)"

i=1
where the supremum is taken over all finite partitions of the set
A e ) into disjoint subsets Ais vov 5 A€ ¥ s

m is of finite (or bounded) variation if Iml(X) < + » . We

also use the terminology 'finite' .

A null set of m is simply & null set of the measure Iml .

In a fairly obvious way we can sét up a theory of integration of
scalar valued functions defined on X with respect to a vector measure

L

m defined on X . We commence with simple functions.



B

A simple function f has the form f =
i

=

a, Xp. where
a8 1
o, € 5 , and the X, are characteristic functions of the disjoint
i
sets A. € z .
1
n

We define J fam = § o, m(A) (3)
X =1+ 7

We can obtain easily the usual properties of the integral for
simple functions. We now extend the notion of integrability.
We will say f 1is measurable if it is measurasble with respect

to the space (X, ) , Iml).

Definition 2.3: A scalar valued measureble function f is said to be

integrable with respect to m if there is a sequence {fn} of

simple functions such that

(i) fn(x) + f(x) pointwise m almost everywhere
(i.e. Iml almost everywhere)

11 o " " i .
(i1) J |fn fml d Imll  is cauchy
rron (i), 1 [ gan- [an b [ I -glamml o

{ J f dn } is Cauchy and convergent to an element of E.

Define J fdn = lim J fn dm .
X n X

We can show the above definition is independent of the choice of

simple functions, and an integration theory is readily obtainable.

We turn our attention to vector valued functions. H is a
finite positive measure on X . A vector valued function f : X + E

. e; XAi where e, € E and the

1o

is said to be simple if f =
' i

Xp, are characteristic functions of disjoint subsets A. € ¥
1
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Definition 2.4: A function f : X+ E 1is said to be strongly

measurable with respect to p , if it is pointwise u- almost

everywhere limit of simple functions.

n
If f 1is simple, f = E e Xy, we define
i=1 1
n
J fdu = E e. u(A.) . We extend by
X 2 1 i
i

Definition 2.5: A function f : X » E is strongly integrable

(Bochner integrable) with respect to p if there is a sequence

{fn} of simple functions such that

(1) fn(x) + f(x) wup- almost everywhere (so f is measurable)

(i1) { f ”fm = fn" du } is Cauchy.

Define J f(x) dau(x) = 1lim J f du which exists by (ii)
X e X/ 0

since E 1is a Banach space.

Again we can prove the definition is independent of the choice
of simple functions.

LlE (X, }, u) = LlE(u) will denote the set of all Bochner

integrable functions. It is a Banach space.

e he) ., £e LlE(u) we define

I fdu = J f Xp dy .
A X

Define m(A) = f £ du for some f e LlE (w) . (%)
A
Then m 1is a countably additive vector measure of bounded variation.

For if A = AlU e UAn is a partition of A ¢ Z into disjoint

subsets Al ces An € E » then

I lma)l < J Iel au < Jﬂfll au(x)
i=1 UA, X

Thus lIml exists. Moreover m(A) =0 for any A e )} for which

u(a) =0 .
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Definition 2.6: m is u- continuous if m(A) = 0 for all A

with u(A) =0, Ae z .
The natural question is whether every E-valued finite u- continuous

m must arise as in (%) , through some f € LlE(u). The answer

L]

is 'no' as the following example demonstrates: the example is well
known.

Example: Let X = [0,1] , z be the g— algebra of Borel measurable
subsets of [0,1] and u be Lebesgue measure on [0,1] . E is

the real Banach space Ll[O,l] 8

Define m : E + E by

m(A) = for each A ¢ E , Wwhere

Xa
X is the characteristic function of the set A. Then m 1is a
vector measure and since Im(A)l = u(A) for esch A e ] , m is finite
and u-— continuous.
There is, however, no Q € LlE(u) such that m(A) = [ Q du , for
A
each A ¢ X .

Let us suppose there were and that {Qn} is a sequence of simple

functions such that Qn + Q pointwise almost everywhere and

J "Q = Q“ dy < 2—n—l for each n .
n k;

Tl
We may assume Qn(S) = 3 nj X,  (8)
=1 v Anj) nj
5B -n 1
where the A . are disjoint and u(A_.) < 2 Each y : €L [0,1] -
nJ k nj J
n
Consider Ql (s) = ) m(a.) x, .(8) -
n i n APN
J=1 ula ) J
ny
k
1 5 I
= I DR LI
Then J "Qn Qnﬂ du < E m(AnJ) wnJ

j=

vow Ia(a) vl = 1 [ av-| adiic [1g-qta.

A . A . .
nj ©ong An;
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: n
Therefore I Hin - Qn" du <} J lq - Qn" au £ J g - Qn" au < 2707
A X B
n,

=1 .
. J
so [ lgt-qlap<2®,ie. Qlsqin ' () (1)
n = s 1.8, n Q in g ).
Let A Dbe a set such that, for some n > 2 ,
1
AnNnA ., = = F ] = PP
ul( nJ) 5 (AnJ) for §=1,2, k_
kn
Then | —I u -1 =1,
X L Xpy % (8)aslp by -3 02=2
Aj=1 u(a.) M
nj
But (4) gives the above < 5 9 , & contradiction. There is,
therefore, no Q ¢ LlE(u) such that m(A) = J Q dp .

A

The Radon Nikodym Property:

We shall now try to discover for which Banach spaces, an

analogue of the Radon Nikodym theorem is possible.

Definition 2.7: A Banach space E is said to have the Radon Nikodym

property (RNP) if and only if for any finite, positive measure space

(X, Z, u) and any E- valued, finite, pu— continuous measure m on

E , there exists a Q € L}E (p) such that

m(A) = J Q(x) au(x) , Ae ] .
A

Phillips [12] had shown that all reflexive spaces have the RNP,
although he did not state the result in this way. 1In an attempt to
generalise Phillips' result, Rieffel [13] [1k] introduced a
geometric concept — dentability - and established a link between

dentability of subsets of a Banach space and the Radon Nikodym

property.



21

Definition 2.8: A subset D of a Banach space E 1is dentable

if for each € > 0 , there isa d ¢ D such that 4 ¢ CO [D\B (4)] .
€

Here CO (F) denotes the closed convex hull of a set F , and
Be(d) ={eecE: le-al <¢} .

We then have the following theorem:-

Theorem 2.9: A Banach space E has the RNP if, and only if, every

bounded subset D of E is dentable.

Rieffel [14], who introduced the concept, proved that if every
bounded subset D of E is dentable, then E has the RNP. The
other implication was proved in & succession of papers by other authors
including Maynard, [8] Davis and Phelps [2], Huff[6] .

We shall present a proof of this theorem which is a merger of the

proofs of Rieffel [13], [14] and Huff [6] .

Definition 2.10: With (X, }, u) a positive measure space and m &

finite vector measure which is p-— continuous, A e E with u(A) >0

define the set R(A) C E (the range of A) by

R(A) = {9;(2): BC A and 0<u(B)<W}
u(B)

Definition 2.11:Call a subset A e ) , with u(A) >0 , (e, €) — pure

if R(A) c Be(e) (e >0 and e € E).

Lemma 2.12: [13,14] (X, z, u) as before.m is a finite , p— continuous
E- valued measure, where E is a Banach space in which every bounded
subset is dentable. Let e > 0, A e ) with u(A) > 0. There is

a subset B C A with ﬁ(B) >0 and an e € E such that B is

(e, €) - pure.
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Proof: We show first that there is @ BC A with u(B) > 0,
such that R(B) is & bounded, and so dentable, subset of E. The
following argument will be used on several occasions, and is used

extensively by Rieffel.

If R(A) is not bounded, let K = Imll (a)/u(a).

Let k, = smallest integer > 2 such that there is a

B, C A with u(Bl)g_%
L
and "m(Bl)" 5 2K .
u(B))

Letting A, = A\B, decide whether R(A)) is bounded. If it is,
stop.

If not choose k2 = smallest integer > kl such that there is a
BegA\Bl with u(B,) > %_ and Ilwu 5 K.

2

"(Ba)

Continuing the process, we either stop at some stage, or else
obtain a sequence of non-decreasing integers {k.} , a sequence

i
{B;} of disjoint subsets of A with u(B,) > 1, with the

K.
n 1
property that if C C A\ingi and u(c) >0 and Im(c)l > 2k , then
u(c)
u(c) < s
k_-1
i o §
Let B=A\ UB. . 1If CCA UB, and u(C)>0 with
i=1 * i=1
Ilm(c)l > 2K then we have u(Cc) < 1 , for all i . Since
- k. -1
u(c) i

(x, Z, p) is a finite measure space ki +® gg 1 -+ « , so that

u(C) = 0 , a contradiction.



Lastly we show u(B) > 0 .

o

If u(B) =0

Thus m(A) = J m(B.) and we obtain
m 1=1 B—(Elr
lal(a) > 3 (el
o ik T
= iz "m(Bi)" u(Bi)
u(B;) u(a)
> 2 § u(s) = 2,

We may as well assume therefore that R(A) = D

so dentable.

Let € > 0. 3

Consider R(Bo)

If not, let kl

A, € B with p.(Al)

d

X

¢ CO [ D\B

If R{Bo) is (d, €)

smallest integer > 2

but m(Al) > D\Be(d).

u(a)

1

Consider Bl = BO\Al .

continue the process.

1 and m(Al) ¢ Bé(d)
By u(a))
If this is

then m(B) = 0 .

a contradiction.

is bounded and

(@)

pure, stop .

such that there is an

(d,e) pure, stop, if not,

As before we obtain a non—decreasing sequence of integers

{ki} , & sequence ‘{Ai} of disjoint subsets of A with u(Ai) >

n
- U -
and if € C B\.Y A, with u(C) >0 end

u(c) <

kn-—l

m(C
u(c

; ¢ BE(d) , then

1
K. *
1
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e ©

Consid = B\.U a. .
onsider B = B\.U A If CCB\.Y A

]

and u(C) > 0 with m(c) ¢ BE(d) , then u(C)< 1 , for all i ,

u(C) k-1

and so p(C) = 0 as before, a contradiction.

Mso u(B) >0 . If not u(By) = E u(a;)
i=1
and d = m(By)) = ] m(A;)  u(a,)
By ) W(E)

e CO [D\Bs(d)] y & contradiction.

Lemma 2.13: (X, }, u) m and E as before. Given € > O ,
3 sequence {Ai} of disjoint subsets of ) and {ei} CE

such that X = U A, and esch A, is (e., €) pure.
oy 1 i i

1]

Proof': Using lemma 2.12, let k smallest integer > 2 such that

=

there is an AcX with u(A,) >

i and A, is (el, €) pure

% 1
1

for some els E.

We use the same procedure as before to obtain a sequence of

non-decreasing integers {ki} , & sequence {Ai} of disjoint subsets

n
and if Ccx\ U A, satisfies

of X with wu(A.) > 1
Tk, i=]
i
. 1
u(c) > o, R(c) is (e,e) pure for some e, then u(c) <
kn—-l
Let B=Xx\ U A, . B has measure zero. If not,there is a

i=1
CcB.with u(C) >0 and R(C) (e, €) pure for seme e. Then

u(€) < 1 for all i , and so has measure zero.

kg

Adjoin B to Al , and we have the required decomposition.
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Proof: (of theorem 2.9) ([7], [13], [14])

Suppose first that every bounded subset of E is dentable,
that (X, z, p) is a finite positive measure space and m is a
finite ﬁ— continuous E- valued measure.

Let N = collection of all partitions m of X into disjoint
subsets Al, ‘e An each of positive p- measure. This set is
partially ordered in an obvious way.

For a given w define q = Y m(A)

XA'
Aer u(A)
QTT is an integrable simple function. With € » O given, we shall

show the existence of a T, € I such that if = 2T

J"Qﬂ—Qﬂ"dp < o

©
=]
Fix € > 0 and decompose X = U Ai as in lemma 2.13 in which
i=1
each Ai is (ei, e/6 u(X)) pure. Because llml is absolutely

continuous with respect to u , given € > 0, 3 6§ > 0 such that if
u(B) < 6, Be z , ‘then Imll (B) < /3 .

’ n
Since y is finite there is an n € N such that B =X\ U Ai

i=1
satisfies u(B) < 6 .
Let m = {Al, s A s B}
n
Q. = 1 oma;) Xy + nB)x -
o u(B)
u(a;)
Suppose ™ > T _ . Then

J lo, =g @l < J Iq, - q lan + ] I Na +J Io, lax

U A. B B
fu P _
- + .
<, J "Qw an"d" + €3 € /3
U Ai i
i=1



vor [ 1o~ s [ lg el J e - a e
3l

% A- :
Qﬂo = m(Ai) , 80 e, - m(Ai)" < e
: 6 u(x)
“(Ai) U(Ai)
. k
Also Q_ = m(A..) X : _— .
T jzl ( z ) Aij on A. with Al jzl AlJ .
u(Aij)
k k
© .~ Ay
s J e .Zl m( 5 kAi'”du < € .z M(Aij) .
& ’ ’ 6 u(x) 97
B u(Aij)

Thus J "Qﬁ - Qﬂo"dp < e if w> 7
X
The net {Qw} is Cauchy therefore and so 3 Q ¢ LlE(u) with

Qdy = 1lim JQd
.J m oA TH

Clearly m(A) = J Qdp . VAe]) .
A

Let us suppose now there is a subset D of E which is not
dentable.

There is an € > O, therefore, such that
d eCo [D\B_(da)] for each deD .

We shall construct a vector measure m, & positive measure u ,
both on [0,1[ such that ¥ Q@ with m(A) = J Q du even though
m and u are finite and m 1is u- continuous.

Choose some d € D such that d e CO [ﬁ\Be(d)] . There are

1
dj e D with "dj -dal > e, and o, such that O < o, <3 and

Z “j

1}

J
1
2 .

1, with la-7J a.a.l <
3 J J

26
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Consider each 4d.. There are d.. with la.. = a.l > ¢ and
d Ji Ji Jd
i} A
0<a., <=, with ) a..=1 and “d—zud"<£
54 5 AL : ) @..d.. .
o i 9 J CRNE N B 22
Continue this process. RL%¢ nth step we have 4. . with
ll : ln
”di 1 = di : I' > ¢ and 0 < a. ; < 1 with
5 LR | | L e SOk l1 ...1n -
¥ oy ; = 1 and "di i -7 . (A I g
i 1 n  PRL %, S R S n 2"
n n
We now construct a sequence {“n}z=o of partitions of [0,1[ .
Let T, = £ ol 3
T = {Ij} where [0,1[ = U Ij
J
Each I. = [a.,b. with a =0 b. - a. = a.
J g J’ba[ ° J a J
m. = {I..} where each I. = U I.,
2 Ji J 3 Jl
with measure of I.. = a.. times the measure of I,
Ji Ji J
n = {I. . ¥ . L . = U I. .
- O I o | i e
with measure of 1I. . o. . times the measure of
i §. 48 TR i
1 n 1 n
T i
A 5 n—1
[=-]

Define simple functions {Qn} n=0 as follows:

Qy = ax [0,1[
Q = ] d.x
L7 g2
= grie g
Qn _ z _ dil 3 in g ete
ll...ln PO s o | 1..1'1
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The smallest o- algebra containing U  is the o- algebra
n n

of Borel subsets of [0,1[ . This is Z . ¥ 1is just Lebesgue
measure on [0,1[ .

VAce E we define

m(A) = 1lim andu

n+€°A

That this is reasonable follows from the following estimate:-

||j Q_J o, <l -fa g I
1 < ld, g ; & g ; P
T . " T e ll ...ln ll ...ln1n+l l1 ...1nln+l
l1 ..ln ll ln
Ll<Ii1 .
£ S IJ(Iil ;)
o O
By decomposing Ii : and telescoping we obtain
l .. n
IIJ Q—JQ duﬂ<lu(1. . ) for all k .
I: : ¥ ] n;:k - ot L
L s R l ... n
This guarantees the existence of 1lim I Qk dy for any n .
L
L e 1

m(A) exists therefore for all A in the algebra generated by the

partitions {w_} , and Im(a)l < K u(A) , since this holds for
o .3
J Q, du with n sufficiently large. By lemma IV.8.8 in [3]
A

m(A) exists for all A e ) and lm(A)l < Xu(A) for all such A .

Thus m is finite and y- continuous.

Suppose there is a Q e LlE(mI such that m(A) = J Q du for

A

all AE )%
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The sequence =

tends to Q 1in L1 norm .

Now j “¢ = | dp = . -
n n ; Z i m(Ill i ) dl i TH 5 o
1 « : n 1 n 11 .
u (I, )
ll " 1n (*)
But lm(T. . ) = u(I. . ) 4. o
11 e 1n 11 ln 1]_ 1n
= [1im J -
: Q, du Q, du I
I. " I .
= . (-
< ulrg TR1' + 1 . )
1 n n+l n+2
= ulz, ) 1,
11 oavia 1n n
- -n
Thus ( * ) < 1 ) u(I, ;) = 2
o 4 i 1 o
i n
- q lan} :
Thus { J "Qn Qm du} is Cauchy
This is however false for
lg -q _lag = ) I a. . - d. . Yutz .
J 2 o+l T senemer 1 < I 10 l1 ce. n#l 1 ... tnhl
1 n+l

> ¢, forall ne N.

Thus Banach spaces with the RNP have been fully characterised.
As well as reflexive spaces, all Banach spaces isomorphic to separable
duel spaces have the RNP. (It is clear that it is a property
preserved by isomorphisms.) Also every closed subspace of a Banach

space with the RNP has the RNP.
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So important examples of Banach spaces with the RNP are
(1) =11 EP spaces with 1 <p < e |

(2) a1l IP spaces with 1 <p < .

Also all closed subspaces of these Banach spaces.

Important examples of Banach spaces without the RNP are
t'lo,1]1 , clo,2] , r°l0,1], c, i

We should remarks that it suffices in Theorem 2.9 to have
every closed, bounded, convex set dentable. This follows from
Rieffel's result that a bounded subset of a Banach space is dentable
if, and only if, its closed convex hull is dentable.

The RNP is linked to another geometric property of Banach
spaces, namely the Krein Milman Property. A Banach space has the
Krein Milman Property if every closed, bounded, convex set is the
closed, convex hull of its extreme points. Lindenstrauss has shown
that the RNP implies the KMP and in [7] .Huff and Morris show
that, for dual spaces, the two properties are equivalent. It is
unknown whether there exists a Banach space with the KMP, failing

the RNP. In [11] Phelps gives a proof of Lindenstrauss' result

and links the RNP with other geometric concepts in Banach spaces.

The Radon Nikodym Property and Approximation Property

As well as the a.p. Grothendieck also introduced the metric

and bounded approximation properties. (m.a.p. and b.a.p. respectively).

Definition 2.1k4: [5] A Banach space E has the metric approximation

property (bounded approximation property) if for each compact subset
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KC E , for each € >0 there is a T ¢ B(E) of finite rank such
that ol %1 (Nl < same constant ) with Itk - xl < ¢ for
each K € K ,
Grothendieck showed that for reflexive spaces the a.p. implies
the m.a.p. We will obtain a generalization of his result. 1In
proving this it is helpful to have a little tensor product notation.

If E and F are two Banach spaces, E @ F will denote the

n
algebraic tensor product of E and F , and z e, @ fi will

i=1
denote a typical element of this space. E @ F is a linear space
and we can norm this space in a number of different ways. We shall be

interested in two norms.

The projective tensor norm, A , is defined an E & F by

n
Alu) = inf E le.l l£.l where the infimum is taken over all
ji=1  + 7
n
respresentations u?X ei ® fi of the element ue E & F .
i=1

The injective tensor norm, p , is the norm defined by

n n
p( J e.®¢f) = sup | ] ole) v (£) |
. 1 1 . 2 b 1
1=1 1=1
¢ € Ball E¥ , y ¢ Ball F¥

where Ball E¥, Ball F*¥ denote the closed unit balls of E¥, F¥*
respectively.

These in fact are norms (so called cross-norms) on E ® F.
E ® F is not necessarily complete with respect to either of these
norms. Completing E @ F in the usual fashion with respect to

h - 3
A we obtain a space denoted by E @ F - the projective tensor
v

product of E and F. The space E @ F obtained by completing

E ® F with respect to p is called the injective tensor product

of E and F.



. v
Let us consider the space E @ E*. A typical element of
n
E @ E* has the form } e.Q@ ¢. , e, ¢ E . € E¥ .
= i i a4

We define an operator T on E by

n
Te = lzl ¢i(e) E.'i .
n
Now lrell = | ’Zl ¢i(e) e; I
n
= sup ,E ¢1(E) ¢(el)' =
¢ ¢ Ball g% 171
n
so |zl = sup | ¥ ¢(ei) ¢i(e) |
i=1

e € Ball E ¢ € Ball E¥*

n
= sup | 1 ¢(ei) Y (¢i)|

i=1
¥ € Ball E¥ ¢ € Ball E¥

n
= p( izlei@) ¢;)
~
In this way E ® E¥* can be identified as the closure of the
finite rank operators in B(E), namely F(E).
We shall now present a proof of the fact that for a dual space

with the RNP, the a.p. and m.a.p. are equivalent.

Proposition 2.15: Let X ©be a compact Hausdorff space and E a

vV
Banach space. Then C(X) @ E = C(X,E) = the Banach space of
all E- valued continuous functions on X. (This result is well-

known. )

Proof: Define T : C(X)® E —> C(X,E) by

n n
T( ] f3®ey) ) = 1 f)e

i=1

T is a well defined linear map.

32
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Now T ( ] Lo el
. i
11

I
w
e
o]
e
H
P
e
S”
@

n
= sup sup | E fi(x) ﬁ(ei)l
1=1 &
x € X¢ € Ball E¥

ol

. n
= sw 13 v ey ale
i=1

¥ € Ball C(X)* ¢ e Ball E¥*

Thus T is an isometry on C(X) @ E and so extends by
continuity to C(X) (\é E which is therefore conteined in C(X'E).
We show C(X) % E is dense in C(X,E) , and since C(X)\Qi.a E
is closed, the result follows.

If f e C(X,E) , f(X) is compact.

Therefore given € > 0 , there are open balls BE(el) can BE(en)
e; € E covering £(x).

Let U, = £t (Bg(ei)) , &an open subset of X. Choose a
partition of unity '{¢,i} subordinate to ’{Ui} : ]

So each ¢i is continuous, support ¢_i C Ui and ‘§l¢i £ 1.

n n
Then lf(x) - E ¢,i(x)eil| = | qu‘i(x)(f(x) - ei)"

i=1 i=1

< g for all xe X .

Theorem 2.16: The dual of C(X,E) is the set of all bounded, regular,

Borel E¥- valued measures on the compact Hausdorff space X .

Proof: Given m , E¥- valued, bounded, regular and Borel ,

define y,_(f) = }J (am, ) (f ¢ (1O - (5)
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By (5) we mean an integral defined first for simple functions

on X as follows:

n
If £= J e.X, , A, disjoint Borel subsets of X, e. € E
i=1 * A1 x 1 ’

n
define J (am, £ = 1§ (m(Ai), e; ) - this can be easily
X i=1

extended to continuous functions and we obtain

lyml <l .
Suppose, conversely, that V¥ ¢ C(XI)E)* . V¥ is a continuous linear
functional on C(X) é E. Fix e ¢ E and identify C(X) @ {e}
with C(X).
we(f) = Y(f ® e) is a well defined continuous linear functional
on C(X), and clearly ||1pe|| <yl lell .
By the Riesz Representation Theorem 3 m, e bounded, regular,

Borel measure on X such that

() = [ 160 am b (e e c00)

and Ilmell = I|¢eﬁ < Myl lel .

The map e ——> m_ is linear and for each Borel set A CX

> me(A) is linear.
Define m(A) ¢ E¥ by m(A)e = me(A) for each Borel set A.
Linearity is clear and Im(A)l < Iyl clearly.

If Al, An are disjoint Borel sets,

m(Alu uAn) e me(A U ... uAn)

1
me(Al) + ... me(An)

(m(Al) + ... m(An)) e

1}

and m(A\B)e me(A\B)

I

me(A) - me(B)
= (m(A) - m(B))e .

Thus m is a finitely additive, E*- valued set function.



n
We shall now show that z Hm(Ai)H < Il for a1l disjoint
i=1

Borel sets Al, i An , 8ll neN.
Fix n . Let € >0 . Choose e, € Ball E such that
m (A.) = m(Ai) e, > ﬂm(Ai)n = gfen i=ly coe 1o

‘ -
Each m, 1s regular. Let m, o, m be the positive and
negative parts of m, respectively. Using the regularity, we can
find disjoint closed sets Fi’ Gi contained in Ai and open sets

Vi’ Wi containing Ai such that Fi C Vi s Gi C Wi_

£ +
me. (Fl) > me. (Al) = E)J2n 5
i i
me. (Fi) o
i
m (g.) > m_ (A.) - e€/on,
i i
4+
m_ (Gl) = 0,
i

+ =
m, (Vi\Fi) . < g/2n | m_ (Vi\Fi) . < g/en
i i
+ i
mei (Wi\Gi) < ¢g/2n, mei (Wi\Gi)' < e/2p .

We finally choose disjoint open sets Oi’ Ui s.t. F,CO

s 0y v Bos W wwe U are all

BET  EY  BEY 1 i U

1 1

disjoint.
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Using Urysohn's lemma we define continuous functions wi and Gi

such that

<
]

1 on F. ; VY. vanishes off O,,
1 1 L

@
]

1 on G. ; ©. vanishes off U,,
i i i

v. ¢ [0,1] o, € [0,1] .
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.El j Ie:i.l dme. = 2
¥ gAE :
i i
n
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n
Now  sup I z (ei(x) + \Ui(x)) ei" < 1 by the disjointness of the

x e X i=1

open sets and the fact "ein b B

Thus we obtain

n
) “m(Ai)" < Iyl + 2¢ end e was arbitrary.
i=1

=]
So ] m(A;) exists for disjoint Borel sets A, .
i=1

1
B
nc
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It also follows that lml < [yl .

Our last task is to justify regularity. By regularity, in this
context, we mean that the positive Borel measure Iml is regular.
(Existence has been justified by the previous step.)

It suffices to show that, given a Borel set A and an € > O,
there is a compact K C A such that Iml (A) < Inl (X) + ¢ .

Given € > 0 , there is a partition of A into disjoint Borel

. subsets A, ... A such that
1 n

Il () < [ Ima)l, e/3.

i=1 i

‘There are eis Ball E such that

“m(Ai)“ < m(Ai}ei + %’5 i=l, ... n

Denoting by |me| the variation of the real measure m  we have

n
lmh(a) < ¥ |o | (&) + 2¢ .
: e. i
i=1 1 3
Each m being regular, there is a compact Ki g'Ai such that
i
Im | (A.) < |m | (xk.) + & for each i=1,2...n.
e i e. i g
i i 3n
n
So Imll (&) < E |m | (x.) + €
‘ e. i
1=1 1
n
< E um" (Kl) + £ .
i=1
The set K = KIU - UKn is compact, the Ki disjoint, so
KCA and

lal () < ol () + € .
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n
Lastly if N £. @ e e C(X)® E then
oy

(3 ) j
Y £. @ e;) = Jf. dm_ = J(dm,f.\ . )
=1 * . =1/t % iZl £ 2%
n
= J (am, §} f. ® e.
=1 *
NV

We extend to all of C(X) @ E and so the dual space of

C(X,E) 1is the set of Borel E*- valued measures.

Now let us suppose that E¥ has the RNP.

Lemma 2.17: If ¢ e (C(X,E)* with Iyl <1 , there are e.* e E¥,

(=] oo 1
* * = *
My € C(X)* such that z Ilei I !f}l.ill <1 and Y E e.* ® W
i=1 1=1
Proof: By theorem 2.16 we may write
P(£) = J (dm, £
X
Let w = lml , then m is u- continuous and,since E* has

the RNP, there is a ¢ ¢ Ll (u) such that dm = ¢ dpu and so

E*

u(f) = J(q:(x) , £(x) 7 ap(x)
X

Fix € > 0 . There is a simple function
o(x) = } ei* Xp (Ai disjoint Borel sets, ei* € E*)
i=1 i

such that J lg - oll au. < €.

Let My | = u/Ai .

n I
Consider E ei* R My € E* @ cC(Y)*,
i=1

&
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n
| [ o, 1600 a0 - § [ee,", s e, (a)
X L of 3
< | J(q;(x) - o(x), f(x)? au(x) |
< ¢ bzl | (6)
. A
Define T: E¥ @ C(X)¥ —> C(X,E)* as follows.
n
For izl ei* @ Mo define
n _ n
g (i£1 Wu gl = g }J Ceg* 5 £(x) ) au;(x) -

T 1is linear and the norm of T is less than or equal to

): ”ei*ﬂ Hpi" ‘ Taking the infimum over all such representations we
i=1
n
obtain T(] e.*® qu.) < AM) e*® )
i i - joq & i

Extend by continuity to all of C(X)¥ ® E* .

Now by (6),

o) - 1 J J(ei*, £(x) ) g (x) (7)

n
) Ilei*ll I[uill Il

i=1

c & bell ‘1_ 1

n
*
But _): Ilei | |Iuiﬂ
1=1

J lol  ap
P J Iy - ol ay +J gl a

< e + 1,

So (7) is less than 2 ¢ lel .
:\ -
Thus T  which maps C(X)* @ E* into C(X,E)* maps the unit ball of

N
C(X)* @ E* to a dense subset of the unit ball of C(X,E)*. By the
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argument of the open mapping theorem, the map T is such that the image

of Ball (E¥ @ cC(X)*) contains the open ball in C(X E)¥.

Let X = Ball (E*¥¥) with the weak* topology - X is & compact

” :
Hausdorff space, If X ei* @ e, € E¥* @ E , defining
=
n n
* - %
(Z e.* @ ei) (x) ): x(ei )ei %6 X
i=1 i=1

we obtain a continuous function from X to E , and the sup norm of this
i n

function is equal to the injective tensor norm of ): e.* @ e, .
e .
~
Thus E¥ @ E embeds isometrically in C(X'E). Soif ¢ is a

N
continuous linear functional on E¥ @ E with Iyl <31, we may

extend ¢ to C(X,E) without increase of norm by the Hahn Banach

Theorem.

Theorem 2.18: For a dual space with the Radon Nikodym property, a.p.

is equivglent to m.a.p.

Proof: For any Banach space m.a.p. implies a.p. To prove the
converse, it suffices to show that the identity operator I is in the
strong closure of Ball (E % E*) in B(E¥),

Let ¢ be a linear functional on B(E*) with |y (T) | <1
T € Ball (E \é E¥); we show lv (1) | <1 (¢ 1is continuous in
the strong operator topology.)

By the definition of the strong operator topology has the form

I
v () = ¥ t.(me.) ( 1.e E*¥, o € E¥).



N
By lemma 2,17, using E* @ E C C(X,E) , we have

v (£) =

i

Il ~1 8

J (ei*, f(x)? dpi(x) | with
X )
iZl"ei*" "pi" <1

\
This holds for all f ¢ E¥* @ E .

o

) J(ei*, e*(x)e ) dy.(x)

i=1 =

So yYle ® e¥)

izl e;*(e) ¢, (e¥)

where ¢‘i e E¥* is defined by ¢i(e*) = Je*(x) dpi(x)
X

Notice that izl "¢‘iﬂ ||ei*|| < 1, since ||¢iff < Ilpi“ .

LS (=]

(8)

> - *) = *
r.(Tej) ) q;i(Tei) O forall TeE @ E* by

KA
extending (8) by linearity,
Since E¥ has the a.p, this holds also for T =1,

To see this put

n o
B(T) = jzl Tj(TGj) - izl ¢‘i(Tei*} , B is a

functional on B(E¥) that annihilates the finite rank operators.

oo
since ) le.*l llg.I <1 , we can find a sequence A; >0
i=1 * *
(=]
such that A.—> 0 and Eliei*ﬂ ||¢_i|| < + ®
& i=1 -
A
L
i = - * ).
Define K = {ej -, S e n} Y e; Al}
le. *l
1

K is a sequence which tends to zero and so is compact.
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n -

Mmso [B(T)] < (§ Mol ) sup Ire.ll + ool He.xl | o ae.® ‘
j=l dJ j J l=l 1 : X 1 L 3
i e, *
i
so  |B(T)| < constantx sup Nkl .
K

So B(I) =0, as I can be approximated arbitrarily closely

on K by finite rank operators.

o o0

so [p(1)] = yizl 6, (e®)| < izl 6.1 dewl < 1.

So E* has the metric approximation property.

As corollaries of this result we obtain

Corollary 2.19: ([5] For E reflexive, a.p. ¢ m.a.p.

Proof: E = (E*)¥ and being reflexive has the RNP.

Corollary 2.20: [5] If a Banach space F is isomorphic to a

separable dual space, a.p. ¢ b.a.p. In particular, if F is a

separable dual space a.p. < m.a.p.

Proof: Separable dual spaces have the RINP. The b.a.p. 1is
preserved by isomorphisms.

To put theorem 2.18 into perspective, it is unknown whether

every dual space with the a.p. has the m.a.p.

p— nuclear, p-— integral maps and the RNP:

Grothendieck [5] introduced special classes of bounded linear
maps between two Banach spaces E and F, the so—called integral and

nuclear maps. Every nuclear map is automatically integral, but
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Grothendieck proved that an integral map T : E-+ F is nuclear
provided one of the following four conditions holds

(1) E reflexive

(2) E* separable

(3) F reflexive

() F a separable dual space.

Following Grothendieck's work Perrson and Pietsch introduced
generalisations of these classes - p- integral and p- nuclear maps
(Grothendieck's maps being the case p=1) and obtained similar
theorems [9] [10] . Using the RNP we shall generalise both

these pieces of work.

Definition 2.21: A linear map T:E -+ F (E,F Banach spaces) is

said to be p-nuclear (1 <p <«) if T has a representation

Te = nzl (en*’ e) fn (en* e E¥ |, fn & F)
(=] oo 1
1
such that ( J ”en*llp)]'/p <+e and sup () | (fn,f* ) Ip ) /pl < 4
n=1 n=1

[ £l <1

1 . The collection of all such maps is denoted

where 1 + 1

1
® b

NP(E JF) .

Proposition 2.22: [9,10] (i) With a norm defined by

(=] w0 l
N (1) = inf (] le *IP)/P  sup  (F | (g 000 [ SVAR
s lexl <1 P51

the infimum being taken over all possible representations, N;(E'F)

" is a Banach space and ITI < NP(T) ;
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(ii) If D,G are Banach spaces and R : D+ E, S : F+> G are
bounded, T : E+ F p- miclear, then TR : D> F, ST : E~> G are

p— nuclear and NP(TR) < Nb(T) IrRl , w (st) < sl n (7).
P = b

Proof: (i) For example

el

sup | (2, £)]
- e g Ball E T% ¢ Ball F¥*

= sup | Z <en*, e) <fn, ¥ )l
n=1
e € Ball E f¥ g Ball F¥

o _ 1 37
(] le #IPYM® qup (] [Cew, 2 2Py P
n=1 px D=1 - ’

| A

Taking the infimum over all possible representations we obtain
Il < w ()
- P
The other parts are proved similarly.
If in the definition of p-nuclear we interchange the roles of

p and pl i.e. we require Te = Z (en*, e )fn with
n=1

e 1 1 =]
iy ( E | (e.%; e >|p )l/P <+ o and ( E Ie “p)l/p <+ @ ye
lel <1 n=1 - n=1 B

obtain a class NP(E‘F) with a norm

1ily = 1/
¥(T) = inf sup ( z | (el.en* }lp ) P ) hfnﬂp} ?
lel <1 271 it
This class is also a Banach space. In the case ﬁ = 1 the two

classes are identical — these are the nuclear operators from E into

r.

A1l finite rank maps from E to F are in the classes NP(E,F)
Np(E,F) ; further in the norms NP(T) , NP°(T) the finite rank maps

are dense in NP(E,F) " NP(E,F) respectively.
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If u 1is a positive measure on a compact Hausdorff space X,
then the set LPE*(p) is the set of all E*- valued strongly

; P
measurable functions ¢ such that J lg" au <+ o, and is a

Banach space.

We may define & bounded linear map T : E -+ LP(u) by

(T )(x) = (e, ¢(x)) if ¢ e IPp, (). (9)

e

Theorem 2.23: [9, ] For 1 < p <= , we have natural embeddings

W(E, IP(1) ¢ M(u) © N (E,1P()

each of norm <1 and such that the map T : E + LP(u) and function

¢ € LPE* (u) correspond as in (9 ) .

N
Proof: Let Te = |} (en*, e)f bea finite ronk map in
n=1

NP(E,Lp(u)) where each fn e LP(u) such that

N 11/71 N 1/
sup (] [Ce ¥, ed[P) P (] Mg 0P) P < W (T) +e where >0 .
n=1 n=1
"e“ 5_1
N
Consider QT(x) = en* fn(x). This is a strongly measurable
n=1
function and
N
P
J “?T(X)HP du f_J sup | E <en*, e )fn(x)| du(x)
n=1
lel. < 1
N 1p/1 (X
< s (LICem e ) P[] 5P w)
bl & 3 &% sk
N 1p/1 N
< sup (1| Ce ¥, e AL A an"p).
n=1 n=1

el < 1
We obtain "9T" E_NP(T) for the finite rank maps and we can

extend by continuity to all of NP(E.F) .
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Suppose now ¢ 1is a simple function in LPE*(u). (By a
straightforward density argument we can extend to all of LE*p(u) .)
N
Suppose ¢ = ] e * yA e * ¢ E¥ and the A disjoint
n=1 " n B n

measurable sets ,

Te = E(en*,e) XA e IP(n)

Moreover writing

N l/P —1/P
Te = nZl(en*, e) u(a) . ou(a)) XAn
we obtain , ‘ay Woldar's Q“mwwﬂdﬂ|
N 1/ N 1 ot 1/
(3 e B ) ) s (L] [ota [P o))
n=1 & & Lp (1) n=1
lgl < 1
X 1/
N 1/ N 1 2 P
< (Y le*Pua)) ® sup (] ( J lel® aw) w(a)p . ua) P )
n=1 n=1 A
g € LP (n) n
lgll <1
N 5 l/P
5_(n£l Hen*ﬂ p(Ah) ) = gl .

Definition 2.24: A p- integral map T : E> F where 1 <p <= is

characterised by the fact that it has a factorisation

P I Q
E —> ¢(X) — P(y) —— F

where X = Ball E¥ in the weak ¥ topology, U is a positive measure on
X, I is the identity and Pl , QI <1 .
The set Ip(E,F) of all p- integral maps from E into F 1is a

Banach space equipped with the norm

Ip(T) = inf u(x)lfp) the infimum being taken over all such

factorisations, Notice Il f-Ip(T) F



Proposition 2.25: [10] Np(E'F) = Ip(E,F) for all Banach spaces

E and F, and Ip(T) < Np(T) .

Proof: We begin by showing each T e Np(E,F) has a factorisation

E —— 4= >£p > F for each € > 0
P D Q

where Pl , lQl <1 and D 1is a diagonal operator with

B{ a3 ) =y, a} with (nzl| P < N (1) + e

Fix € > O and choose a representation

Te = } (en*,e)fn
n=1

=]

with (] le #IP)/P < g

(T) + € and
=1 P

w 1.3/ 4
sup (Y l(f‘*,fn)|p) PPocoa

n=1
lexl < 1
Define Pe = (en*, e),P:E~+2 and Pl <1.
nen*“
; Lo P =
Define D : & -+ &5 by D( {un}) {Anan} 3

P lfP
where A = i|en*|i , Ioll < (} | lnl 1 Ty

D&EMQ(-{an}) = ) of 1 q: P>

cal TBB
and 1Q( {an})“ = sup !nél o <fn, £* ) |
lexl < 1
1 &
1/ ® /gt
cq e e (T 1t
e n=1
lexll < 21

| A

I {an} ﬂgp as required.
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It only remains to showlsDis integral and I (D) < N (T) + ¢ .
b b

For the composition of a bounded S : D+ E and p- integral

T:E+F is p- integral with Ip(Ts) < lsl IP(T) , and the

composition of a p- integral T : E+ F and bounded R : F -+ G is

p- integral and IP(RT) < gl IP(T) .

D is p- integral. & can be identified with C(X) for some

compact Hausdorff X . To ¢ E(EW)* defined by ¢ ({un}) = Z o, Ilnlp
n+l

corresponds a positive measure u on X and the identity map from
c(x) to LP(u) is p- integral. Thus D is p- integral and

IP(D) < NP(T) + € . Therefore T 1is p-integral and
I (T) <N (T)+e. Since e > 0 was arbitrary, I (T) < N (T
P)_p() inc LP)_P)

We shall now obtain some results going the other way.

Theorem 2.26: Let E and F be Banach spaces and suppose E¥* has

the RNP. Then every p- integral map from E to F isrnuclear and

IP(T) = NP(T)

Proof: Suppose T : E~+ F is p- integral. Then given e > 0 , thexe

is a factorisation

E — ¢c(x) — P(y) ——F
D I Q

2 . P
such that lIPl <z , llgl < 1, I is the identity map from C(X) - L (u)

1/
and u(x) P < IP(T) + e

For each A, a u- measurable subset of X, let us define

m(A) as follows:—

talli), &F J(Pe)(X) £
A



m(A} : E> R is linear and

sup | (m(a), e)| < Jdu(:d = u(a)
e € Ball E g

So m(A) is a continuous linear functional on E.

L9

We shall

show m 1is a finite, B - continuous E¥* - valued measure.

Finite additivity is clear. Let {A,};_, Dbe disjoint

[=-]

U— measurable subsets of X . We wish to show m( U A
i=1
It will be enough to show m( U A.) > 0 in norm as n
i=n+l
mt | (e, m( U a))| = | J(Pe)(x) aulx)
i=n+l : = o
U i
i=n+1 '

| A

lell _ J a0l
A

i by
i=n+l

[+

lell u(u A.)+0
i=n+#l *

as n + o, since u is a finite measure.

Since Im(A)l < u(A) for all A, m is a finite,
measure.
Since E* has the RNP, there isa ¢ : X+ E¥ u-

measurable such that

m(A) = J ¢(x) du(x) for each measurable A .
A
Then (m(A), e) = J (e, ¢(x)? du(x) for each measur
A
So (IPE)(x) = (e, ¢(x)? u - almost éverywhere.

¢ 1is wu— strongly measurable and Ieh <1 u p.p.

i} = .Z m(Ai).

-+ o

p— continuous

strongly

able A.

This follows
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from the fact that lIm(A)l < u(A) for all p measursble A.

1/
By theorem 2.23,IP is p- nuclear and NP(IP) < (J"¢(x)up ap) P

1/p
u(x) < IP(T) +e,

| A

: o B
T = QIP 1spnuclear and prop051t10n(and the fact € > 0 was

arbitrary allows us to conclude NP(T) < IP(T) ;

Corollary 2.27: [9] If E is reflexive, every p- integral map

from E to F is nuclear.
Proof: E¥*, being reflexive, has the RNP.

Corollary 2.28: [9] If E¥ .is separable, every p- integral map is

p— nuclear.

Proof: E¥ , being separable, has the RNP.

Theorem 2.29: If E and F are Banach spaces and F has the RNP,

then every integral map T : E~> F is nuclear.

Proof': T has the usual factorisation

E — 5 ¢(X) ——> L) ——> F
P I Q

where ¢ #I(T) = I (T) +e> u(x) .

Define m on the y— measurable subsets of X by m(A) = x

where Xy = characteristic function of the set A.
Then Im(a)l < u(A) for all A . (10)
Mso Im( u ANl < ﬁ( U Ai) + 0 as n=+ ®
j=n+1 T i=n+l

where the Ai are disjoint u- measurable subsets of X .



Therefore m( U A.) = z m(A

- ) L]
i=1 ? i=1 1

m is clearly u- continuous and of bounded variation , using (

Since F has the RNP, there is a y- strongly measurable
¢ : X—=F such that

m(A) = J ¢ (x) du(x) for each measurable A,
A

Moreover, since Im(A)l < w(A) for a11 A, Mol < Ju- almost
everywhere,

Now Qg = J g(x) ¢(x) du(x) for each g ¢ Ll(u). It clearly

suffices to prove this for simple functions,

n

If g= iZl c; XAi (ci e R,A disjoint seté)we have
«© n
Q (iz_lci xAi) = iZ ey m(Ai)
n
= ) e J ¢ (x) an(x)
= A,
i
] (x)) au(x)
#® ( c. X, ¢(x)) dulx
J 1£l oAy E
" jg<x>¢(x> anx) »
In particular for each g e C(X)
Qlg = Jg(x) o(x) au(x).

QI is nuclear. Choose a sequence of uniformly bounded simple
functions '{¢n} which tend to ¢ pointwise almost everywhere and

in Tt (u) .

o1

10 ).

X .
Denote by Q the operator from L (u) to F corresponding to

n

s
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- (n) (n) ( .
If Qn kzlfk xﬂk ( fk m}e F, Ak(n) disjoint )
m
_ (n)
Q¢.nIg i kzlfk Jg(x) x”*k(n) du(x)
So Q, I is nueclear and
b
m
N I (n) (n)
(Q¢n ] £ L e 0 (A )
. J Io, 1 ay
3
sisice "Q‘pnlg —q1gl < gl J Io_~¢1 au
Q¢nI > Q¢I in norm.
Lastly we show the sequence '{Q‘b } is Cauchy in nuclear norm.
n
We may write
£
by~ = kzl £y X“k (fk e F, A disjoint) g
Th N I - I T e
en (Q¢-n | Q¢m ] = kgl floula)

- J Iy - o1 au .

Therefore QI is nuclear.with nuclear norm < u(X) < I(T) + ¢
By propositiondNT = QIP is muclear and N(T) < I(T) + ¢ ,

€ arbitrary. So N(T) < I(T) .

Corollary 2.30: [5] 1If either F is reflexive or is a separable

dual space, then every integral map T from E to F is nuclear.

Proof': F has the RNP.



PART TWO
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CHAPTER 3

Prediction Theory of Doubly Stationary Processes

In this chapter we shall outline the basic Prediction Theory
of doubly stationary processes, as given by Helson and Lowdenslager
in [21] and [22]. We state their characterisation, for the
absolutely continuous case of processes as type 1, 2 or 3, and then
obtain an example of a process which is of type 2 for all irrational
o, '

Lurking in the background throughout what follows will be a
probability space (@, ), P) , © is aset , ) a o- algebra of
subsets of Q and P is a positive measure defined on ) such that
P(R) =1, a probability measure, A random variable on Q is a
complex valued function defined on § , measurable with respect to
the probability measure P .

By the expectation of a random variable X , we mean the

integral J X(w) dP(w) provided this exists i.e. provided
Q

J |X(w)[ dP(w) < + = , The expectation is denoted E (x). A
9]

square summable random variable X 1is one for which

b 2 = 2 i
= (x[%) = J | X(w) | dP(w) < + = .
Q
Definition 3.1: A doubly stationary stochastic (random) process

(function, sequence) is a sequence { Kmn : (msn) € Z x Z} of square

summable random variables defined on 2 which satisfy

(1) }E (an) = 0 .for all - (m,n) € % x Z
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.oy O - ; : '
(ii) A (an Xk£) 1s a function of the differences m-k,
n-% only. (1)

=

7 _ —
00 e (Xm+k’ n+f Xkﬂ)

(k,8)e 2 x2 (2)

Thus  p(m,n)

I
3
Y
>
I

gives a well-defined function of 2 X Z to C , and this function is

positive definite in the sense that if a a, are complex

13 e By
numbers, and (ml,nl), T (mk,nk) elements of Z x Z then
k —_—
Z a. a, p(m, -m,, n, -n,) > O, (3)
j,51 9 i 3 i 3

This follows since we have

k e

=
UEF ( .Z ®3 Xm. n. ) ;
i=1 s i,J

]
i1
o
H
Rl
'_\s‘ﬂ"fr
%)
=]
jui
>
5 |
(]
o

In the sense of harmonic analysis, Zx Z is the dual group of

the Torus group T2, vhere T° = {(eix, eiy) : 0 < x < 2m,
0 <y < 2rn}

The Herglotz-Bochner-Weil Theorem allows us to deduce the
existence of a finite, positive, regular Borel measure u on the
Torus such that

oman) = | ) iy, ((man) & 7% % (1)

T2 |

Before discussing prediction problems concerned with such a process
we need to establish some idea of 'past' and 'future' for such a
process. This is tantamount to imposing an order on Z % Z, the dual

of the Torus. There are many different order relations we could

impose, but we shall be interested in the following type.
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Fix some irrational number o e R and define (m,n) 2 4 (0,0)
if and only if min o > O for (m,n) ¢ Z x Z. Where it is clear
vhich o we are referring to, we shall often drop the o to obtain
(m,n} > (0,0].

For each o, this gives a well-defined, archimedean ordering of
the lattice points in the plane, which divides them into two disjoint
semi-groups, one being the positive elements (the positive half-plane)

i.e. the set {(m,n) : (m,n) I (0,0)}, the other the negative

elements {(m,n) : (myn) < (0,0)} .
a

A typical prediction problem is the following - knowing values
of the process {an} in the past, say at some fixed w e Q , can
we predict the value at some point (0,0), say. That is given

{x (@) : (mn) < (0,0)} can wve predict X_ (u)?

In general the predicted value Xoo(w) will be some function of
the values an(m) where (m,n) < (0,0). We immediately face the
problem of deciding which is the 'best' predicted value. If we

took, for example, |X (w) - Xoo(m)l it is clear that, as this

oo

differs with differing values of w, it is not a good indicator of the
quality of the predicted value ioo(w} .

In a probability theory context, the quality of the predicted
value as an estimate of Xoo{m) can only be evaluated by averaging
in some sense over all w € Q , and the usual method used is that of
%).

We shall restrict also to the case where Xoo is a finite linear

B 5
'least squares', so we consider [ (lXOO - X .
combination of the X . with (m,n) < (0,0). The justification
for this is twofold. In practical applications such combinations

are easily handled. More significantly, for one of the most important
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examples, namely those processes with normal distributions, the
best predicted value is the best linear prediction.

So we can now formulate our prediction problem as : minimise

(1x

)  over all finite

R

© @) < (0,00 ™ ™

linear combinations of X, with (m,n) < (0,0).

o
Since ﬁ?(|X00 - a
(m,n) < (0,0) ™ ™

E (XOO iOD) - E a.I'I].‘I.'Il E (an ‘5{-00) - Z ;mn \E (XOO f1'[[‘!'1)

= p(0,0) - } a . o(m,n) - ¥ émn p(m,n) + ) 8 Ers p(m-r, n-s),
we obtain,using (L),

= j 1 - Y a ei(mx L ny)l2 dul(x,y) . (5)
2 (m,n) < (0,0) ™

Thus the problem of approximating Xoo by finite linear
combinations of X o with (m,n)< (0,0) is equivalent to minimising
the integral (5).

This problem, a generalisation of the one variable problem of
Szega, was solved by Helson and Lowdenslager in [21] . In what
follows o will denote normalised Lebesgue measure on the Torus
i.e. do = 1 d&x dy , P(d) , for 1 < p <® , will denote the

Byt
usual I¥ class on the Torus, and for the finite, positive, Borel

measure u on the torus we have the usual Lebesgue decomposition:

dy = wdo + dus y
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< g 2E . s
whee w > 0 is in L (o) - a weight function on the Torus - and

dps is singular with respect to Lebesgue measure.

Theorem 3.2: ([21] Let u be a finite, positive Borel measure on -

the Torus with Lebesgue decomposition dy = w d o + du -

Then exp ( J log w d g) = inf J ll - ¥ a ei(mx+ny) g au(x,y)
(m,n) < (0,0) ™

(6)
vhere the infimum is taken over all finite sums of the form

ei(mx+ny)

a
(m,u) < (o,0) "

The left side of (6) is to be interpreted as zero in the case

that J logw d g = -,

Helson and Lowdenslager [21] [22] (for other accounts see
Helson [20],Rudin [28] and Gamelin [18]) proceed to obtain many
results analogous to the one variable case. In so doing they introduce
the idea of a 'generalised analytic function' on the Torus.

A function is defined to be analytic if all its Fourier coefficients

amn given by

-1 +

a = J fe 1 (mx ny)ds s (m,n) e 2% 2,

mn T A
T2

vanish off the half-plane (m,n) > (0,0). DNotice the dependence

o
on a.
| - . y 2 .

The algebra Au = {f :f is continuous on T and f 1is

analytic} replaces in this context the disc algebra. We can define

Hardy spaces HE (o) Dy

Hﬁ (6) = LP(s) closure of the algebra A if 1 <p <=.
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If p=w, H: (0) 1is the weak* closure of A, in L (o).
(In situations where it will lead to no confusion we shall often drop
the suffix a,)

A function f ¢ it (¢) 4is inner if [f] = 1 almost

everywhere on the Torus; f is outer if
J log |f[ dg = log | j fdg | .

fe HE (0) 1is outer if, and only if, the set f Aﬁ ={fg:ge€ Au}
is 1P (g) dense in HE (o) (2 <p<w)
1 e 2
If f e H (g) satisfies J fdg # O there are gh e H (o)

such that g is outer and h inner and f = gh, Helson and
Lowdenslager also obtain a variant of the F, and M. ﬁiesz theorem,
However a fundamental difference arises in the case of the Torus.
In the one variable situation, where the problem was to decide whether
1l is in the closed span of the set {eike : k < 0} in Le(u) where
p 1is a finite positive measure on the circle, if 1 is in this
closed span it is clear that eie is in the closed span of
{eike k < 1} and so in the closed span of {eike k < 0} .
Translated into terms of a singly stationary process
{X_ : ke 2} it means X, can be predicted exactly from
{Xk : k < 0} if X can, and the same is then true for any X  with
n > 0, This follows because, having predicted one value, there is
an obvious 'next' point to predict.
In the case of the Jorus, there is no 'next' point to predict,
so we may face the situation where although Xoo can be predicted

exactly from {ng . (k,2) < (0,0)} . 3 cannot, for any

(m,n) > (0,0) .
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To analyse this situation we shall form an analogue of the
Wold decomposition,

2
A closed subspace M of L°(u) where u is a finite, positive

2 . ]
measure on T  will be called invariant if el(mx+ny) f

e M
whenever f e M and (m,n) e Zx2, Le(p) being a Hilbert space,
there is a projection P : LE(u) + M and we have
Lemma 3,3: {22] : P has the form Pf = xf where ¥ € LE(U) takes
only the values O and 1. y = Pl ,

Proof: Put x = Ple M.
2y _i{mx+n 1(mx+ =
J(x-|x|)e( Y)du=Je(mxny)x(l-x)du.
. % _ 1
el(mx ny)x eM, 1 -xe M sothe above is zero for all

Thus x - ]xle = 0 u- almost everywhere,. ¥ ‘takes the values

O and 1 almost everywhere,

Let us define @ o closed span of the set

'{el{kX+QY) (k,2) < (m,n)} in the space Le(u) . The closed

subspace H

o

g r1C>nm (the intersection being over all (mn) e Z x 7.)
is an invariant subspace which we shall call the remote past of the
process ﬁ%m} . The corresponding projection function will be

denoted X3 .
If 1 ¢<P 5 3 let Yoo be the part of 1 orthogonal to @ 0o
= ¥ L 7 ¢
1 Yo ¥ ZOO where Yoo e @ 0o , “oo Gpoo
' = i (mxny) it i hat is
We mey define Ymn = e Yoo' and it 1s clear tha Ymn
the part of el(mx ) orthogonal toﬁpxmf The set

| T (m,n) € Z x Z} is an orthogonal set in L2(u) and its closed
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linear span Hl is a closed invariant subspace. X1 is its

projection function,

The orthogonal complepent of H, © H, may not be zero - it

3

constitutes a third closed invariant subspace H, , with projection
function X5

2
So L = =
(n) H® H ® Hy and x) +x, +xg = 1,

xj . O almost everywhere (j # k). A process in which only one

of the summands is non-zero is said to be pure and of type 1,2,3

depending on whether H or H., is non-zero. More picturesque

1 3

names are : type 1 - innovation process, type 2: evanescent

process, type 3 — deterministic process.

I¥ duj = xjdu, since
- ; + — _. - . -
J (x; ol (mx+ny), (x; o (kxty) g, = J ellmk)x+(n-2)yly
it is clear '{xj el(mx+ny)} is stationary. (j = 1,2,3) .

s el(EX+ny)} is purely of type J

Theorem 3.4 [22] : {

Thus each process decomposes into three pure orthogonal subprocesses.
However the decomposition theorem supplies no information gbout finding
the measures duj = xjdu ; nor does it tell us how to find the
subspaces H,, H,, H3 ; nor does it explain how the duj are related
to the usual Lebesgue decomposition of the measure u . These
questions were considered by Helson and Lowdenslager in their second
paper [22] , where they focuss;d attention on the case of measures

absolutely continuous with respect to Lebesgue measure. The

justification for this is the following result.
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Theorem 3.5 [22] B o=, xl are functions in Lg(u)
satisfying X = 1 almost everywhere (do)\ xl = 1 almost

1 _ XL
everywhere (dus) » X. X = 0, then xqpnm s X Gpnm are closed
subspaces oI‘G)mn for all (mjn) e 2% F,
Proof: It is sufficient to consider the case (mn) = (0,0).

2 .
Suppose f € L (u) 1s orthogongl toGP 56 Then for all

(m,n) < (0,0)

J el(mx+ny) Fai & o

The measure f dp is therefore of analytic type, that is, its
Fourier coefficients vanish off a half plane. By the variant of the
F. and M. Riesz Theorem proved in [21], the same is true of the
absolutely continuous and singular parts separately.

1 3
Thus xf | @ op ¥ KT L ® o 20 equivalently

1
el 2L s x® ,» X &, <O,

oo °
Since @ = XGP + xl G and the summands are mutually
00 00 00
orthogonal we obtain the desired conclusion.
Thus questions about the second order properties of the process,
can be resolved into questions about the gbsolutely continuous and

singular parts separately.

Cauchy Measures and the Absolutely Continuous case:

The main result of Helson and Lowdenslager in their second
paper was to recognise the cruciasl role played by a certain class
of measures in classifying absolutely continuous processes as

type 1,2 or 3,



62
-it -iat
e )

Under the action t — (e R enbeds

isomorphically as a dense subgroup of the Torus. The Cauchy
measures (0 < r < 1) live on this line and have the form
au (t) = y dt r=e” (0 <r <1)

n(tz + 32}

Indeed we obtain a whole family of lines by the action

T —— (el(x—t), el(yuat)) as (x,y) runs over the Torus,

For a measursable function f on T2 we may form the convaelution

(ur ¥ f) (xiy) = I f(x - t,y - at) dur(t).
R

(For ease, from now on, when discussing the Torus we shall often

iy)

replace (elx, e by (x,y).)

It is clear that this convolution is finite if and only if the
function f_ (t), = f(x - t,y — at) is in L1 of the Cauchy

dt

1+ t2

measure ( = ) om R.

The result obtained by Helson and Lowdenslager is the following:

Theorem 3.6: [22] With a fixed order (i.e. fixed a) and w > O
an integrable weight function on the Torus, the process

{ ei(EX+HY)] is pure.

It is of type 1 1if J log w dg > — ® , (7)

of type 2 if (7) fails but

(ur * log w) (x,y) > - <« almost everywhere , (8)
(0<r<1)

of type 3 if (8) fails when necessarily

(ur % log w) (x,y) = -« almost everywhere . (9)
(0<r<1)
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(Equivalently of type 2 if

2

log w(x—t, y-at) e Iﬂ'( at ) almost everywhere, (81)
1+t

of type 3 if log (x-t, y-at) ¢ o ( dt ) almost everywhere) (91)

1+t°

For absolutely continuous measures a complete classification has
been obtained, therefore.
In [ 25 ] Muhly clessifies those measures u for which

FlGJmn = H3 = {0} . They are these measures yu for which

(1) u is quasi-invariant i.e. under the action

(x,y) ——> (x-t3 y-ot) the null sets of u are preserved.
(2) Defining ut(A) =p (A - (t,at)), A a Borel subset of T2, and
defining

o(t,x,y) = du, (x,y) , for almost all (x.,y),

du

log 0O(t,x,y) e ﬁl( at )
142

This naturally agrees with Helson and Lowdenslager in that if

du = wdg (1) means w ¥ 0 almost everywhere and in (2)
o(t,x,y) =ow (x=t,y~at) / wlx,y) .
Cp i . 1
So N —— {0} if and only if log w(x-t,y-at) ¢ L ( dt )
2
1+t

for almost all (x,y), as before.

The type of a process depends, even in the absolutely continuous case,
on wvhich o we are considering. Probabilistic considerations would
turn our attention to thosé procéssés which are of a fixed type for

all directions a .
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The condition log w € Ll(o) is, of course, a— independent,
so type 1 processes are a- independent. Helson and Lowdenslager
produce an example of a process which is type 2 for some fixed a .
It is a natural question as to whether there exists a process which is
type 2, for all irrational a .

We shall now construct an example of a weight function w € i
which gives a type 2 process for each a .

In view of (7) and (81) w will also have to satisfy

(a) J log wdg = -
(b) For each irrational o , we have

J log w (0 +t,¢ +at)dt > - = for almost all

2
o (8 4) & T2 .

Step 1: For ease of calculation, the function will be constructed

on the unit square [0,1] x [0,1]

Define w(x,y) exp(-f(x,y)),

x_3 if x2 <y*< EX%

1l

where f(x,y)

0 elsevhere.

We ZWoe o e ol clearly.

1 2x? 1
Since J J flx,y)dx dy = J xtax = e , the function is not
0 2
x
integrable over the square, so log w * L'. If T is any straight

line segment in the square, the integral of f along T is finite.

We must ensure, therefore, that for each irrational «

- 2
J £(e+t, ¢ + at) dt < + = for almost all (8,4) e [0,11" .

1+ t2
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It clearly suffices to show that for each irrational a

2

f(t, ¢ + at) is finite, for almost all ¢ e [0,1]

1+ t°

Step 2: Fix o , and choose sequences of integers {pk}, {qk}

such that

@ - p | . | (q_k+l >q 2 0) (See e.g. Hardy and
= P j
Qe Qy Wright [19] )

The sequence of functions {gk} defined by

N
gk(¢) = J f(t,¢ + ot)dt is an increasing sequence of measurable
"9 1+ ¢°2
functions. If the sequence converges pointwise, the limit is
clearly £t 4+ ot)dt . Tt suffices to show that, except for
1+ t2

¢ in a set of measure zero, the functions converge to a function

g(¢) which is finite almost everywhere.

N
Set B =) ¢ I f(t +2at)dt > nl |
%k 1+t
E ={¢ £(t,0 +at)dt = =) |
R 1+ t°
Then E= N (VU E ). (10)
n=1 k=1
For, if ¢ ¢ E , then gk{¢) + o . 8o for each n e N there

is a k  such that gk'(¢) > n, so for each ne N
n

ow

$e U Ekn :

k=1
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Conversely, if ¢ 1is in the right hand side of (10), for

each n , there is a k ~ such that 8, (¢) >n .,
n

Since {gn} is an increasing sequence gk(¢) >n for all

k>k . So g(¢)>n, for each n, Hence ¢ € E .
Since B - Ek+l,n » if m = Lebesgue measure on [0,1],
m (VU ) lim m (E__ ).
ko1 BB koo B

Thus m(E) < inf (lim m (Ek )) .
nel ko o

We must estimate m'(Ekn) 1

9

Step 3: We shall first estimate J f(t, ¢ + ot)dt
2

'-CJk 1+t
in terms of k and ¢. As t runs from ~Qy to Q. » We trace
out on the unit square straight line segments with slope a .

There are < 2(pk + qk) + 1 straight line segments crossing
the unit square which comprise the above integral. We suppose now
a is positive (a similar analysis can be carried out for the case
a < 0).

We split the straight line segments into two sets, those
emanating from the x-axis and those emanating from the y-axis.

If we denote by {t} the fractional part of t where t is
a real number, a line emanating from the x-axis corresponds to
{ot + ¢} = 0 ; one emanating from the y-axis to {t} = 0.

Consider firstly these lines coming from the y-axis i.e.
corresponding to {t} = O in the internal [-q,, dk] . There

are < 2q, such lines given by t=j , Je {_q'k' vaenes Oyl ol 9 -1}.
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If €54 fj are the x- co-ordinates of the points of intersection

of the Jjth 1line segment with the curves y=x2 . y=2x2 then

e £ - ae. + (
j it a2
2r.2 = a f. + (13)
. = - C. .
J dJ J 2
c‘j = intersection on the y-axis
= {ja + ¢} -
2,
J
Now f x_3 dx = 1 ( - 1 + 1 ) < 1 < 1
£, 2 2 &) - 2 ¢,
J € g 2f.
J dJ J i
since o > 0 , fj < %5 and (13) holds.
So this part of the integral is
qk"l _l
< ) 1 1 + ¥ 1 il . (1)
IO 1458 (et g) T 14 (3)% (e + 9)

Consider now those lines emanating from the x-axis corresponding
to {at + ¢} =0, te [—qk, qk] }  denote by xj the x— co-ordinate
of the intersection of the Jjth line, (j € {-pps veves 71,0, cinit By,

pk+l} with the axis,

eJ.,

. . : 2 2 , ;
of the Jjth 1line Wlth the curves y=x , y=2x respectively, are

fj ,which are the x- co-ordinates of the points of intersection

given by
e = o - 32 - Lax. (15)
dJ dJd )
2
i.e, one solution of x2 = ax - uxj 3 (16)
and fj = q - faz - 8axj (17)
3
N
i,e. one solution of 2x2 = ox - uxj " (18)

(Since o > O, e5s £y are the smaller roots of (16),(18)

respectively.)
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1 1
If e,j i fJ. are the other roots of (16), (18) we have
3 i)
J
J;de SO S
2 & 2 £ 2
e J J
1 el2 :E'l2
= 3 J . = J E . (19)
1.
(e.e 1%
dJd J) (fJ J}
N , I
ow e.e. = ax. , f.f. = ox. ,6 so we have
J J Jd J i
2
1,2 2
(9) = __1 [(ej) - u(f}) ]
: 2{:23{
= 1 I_(u,-i-v’a —haxj.l)2 - a + Yo - 8ax.)
2 2
20 % 16
= 1 I’CI'.2 - hox, - Y - Box +  lhoax ]
J
8 2 2
o X.
J

(20)

I
|_.

(’l—hx ’1*8}{)
8ux
J

For te [0,3],

So (20) < 1 [Haxj + /2 2&2 ha.x.]

= 1 (b + 8/2) .

Bax.
dJd

Now, certain lines may cut the curves more than once, within the

unit sguare. For those the second part is estimated using
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1
e
d
Jx_de = 1 1 - 1
2 2 2
1
L. :f.'l e].'
d J J
= 1 [h f.2 - e.2] and estimating
5 2 J J
20 X.
J

5 &
J
Jx‘3dx < 1 (b o+ 8/2).
1
J

£ Box
Not every line intersects both curves, Those with no
intersections present no problem, Some lines cut only the curve
¥y = xz twice at points whose x- co-ordinates are € eﬁ, € ¥ &
1
e’
Then f xbsdx = € 1 - i
2 2 12
e, e. (e.)
dJ J J
2
2
- 1 ((e) - &)
> J d
2(e.e
(ese)
= 1 ((a + Yo~ - hux.)e - (a - Vug - haxj)2 )
22 J
8a x.
J

= q Vae - ha%i . (21)

2a2x.2
dJd

2 5
In this situation, since the curve y = 2x 1is not intersected,

hxj < a< Bij so that (21) is less than or equal to

2/2

ox.
J
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The values xj are given by the y- co-ordinate being zero i.e.
at +¢ = J where je{-p, ....... p.}
k k
so that x. = {1 (j-¢)}-
J ) ’
Therefore this part of the integral is

L“K putting D(a) = (L +8/2) +  2/2)

Lo a
By
< D(a) z 1 T + 1
Ll +;,_(j—¢)2{; (5} (-}
a2 o o
-1
+ ) 1 1 (22)
=, 1+ 1 (§+1-9)° {1 G
o a
= D(a) hk(‘”
r 9
Since m(Ekn) = m | ¢ : Jf(tl at + ¢)dt > n
B -qk 1+ 'I:2
qk"l ’_%' l
. ) ik
< m |[¢ : 'Eo B 1 +J=“qk —, —
: J 1+ 5 {jo+ ¢} 1+ (§+1)° {jate}
Pu-t
+ D(a) [): 1 1 ¥ 1
=Ly 41 (5-0)° {1 (§-)} (-9} »
2 o a
o
-1
+ ) 1 1 ] > n
Rl 41 (341=¢)2 L (§-e))
d\? o
qk"‘ ._l
< m| ¢ : E | 1 +'—§ 1 - '1 > %
30 1 4 52 fGared VT 1+ (§41)° {juted
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P, )
B 1 1

j=p1 + }E(j+l—¢)2 {(3-4)%)

=m (Fkn) + m (Gkn) "

we need only estimate m(Fkn) and m(Gkn) i

Consider first m(Gkn). We shall isolate these points where

{1L (j-¢)} =0 and omit a set Tj of small measure 6j to the left
a
of each of these points,
Then m(Gkn) § )J: 5J. + 22(0;) Jhk(ab) ag -
[0, \ UTy
Since m [¢ e [0,1] \ LJ]E : hk(¢) > n }
2D(a)
2D(a) J
= > hk(¢) d¢
[0,1] \ UTJ.
50 m(Gkn) b § Gj + 2£(a) J h (¢) do
EXNANVAH
Py
< L& + 20a) ! 1 1 a¢
J 1 gL 1+1 (G-0)% @ (G-
: [0,1] \ 5\ ';-2 )
=3,
+ J 1 ag + ) 1 1 d¢
. 4 2 .
-4. j=-p 1+1 (j+led)” {1 (5-¢)}
(0,11 V1 {2} k[O?l]\ITZi 2 =
<16+ da. D) 2 f 1 au (2h)
r 2 n 2
1+y {p}
$ [Hpkspk] \ v Ji 32 a
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L i
where Jr 1s an interval of length ér = _1 to the right of
nr
u=ra ,
- 1
So (24) gives m(ng) <2 )} 1 + e D(e) 2 ) I 1 at
r=1 2 2 n r 2 t
ok
o 6r N
=] 2 o
=2 ] 1 + 20(a) o°+1 logn J 1 + 2p(a) oP4l
n =1 2 = .
r & u2 . 1 1+ r2' i a2
X z 2 log r
r=1 1+ r2
(we have allowed k + =,) (25)
We shall estimate m(Fkn) similarly:
for ease we shall consider
Ly
m | ¢ : z 1 1 > n which is
T 141 (Jerg)®  (Gorgd  °

2
a
comparable with m(Fkn)

Omitting as previously a set of small measure to the right of

the points where {ja + ¢} = 0 , and integrating over the remainder
we obtain
=] ml
mr) <b ] o1+ I [ 1
r r=1 r2 n r=l o/ 4 4 r2 t
< b y 1. o+ 4 Y 2logr + logn X 1 . (26)
n r=l r2 n r=l 1+ r2 n r=1 1 4+ r2

(we have allowed k = =,)

Letting n + « in (25) and (26) we havg

inf (lim m(Ekn)) = 0,

nel ko
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The previous arguments hold for o > O. A similar argument

covers the case q < 0

So we have shown that for each irrational «

J £(6+t, ¢+at) dt < + ® for almost all

2
B (6, ¢) € [0,1° .

Thus w(x,y) = exp(-f (x,y)) is the required weight function.
Some mention should be made of the case where o is rational.
The order relation has to be defined somewhat differently, for there

are infinitely many points on a line of slope a through the origin.

Example: Define (m,n) > (0,0) if either m > 0, or if m =0 ,
n >0, (The lexicographic ordering). This order relation is not
archimedean.

Suppose we can predict Xoo exactly. Then stationarity implies

we may predict X (the 'next' point) exactly, and then all

01

points {X k > 0}. It is not, however, clear that we may

Ok
predict any further. So again we seem to be in a type 1, type 2
situation. It is not clear what analytic condition on the weight
function w would correspond to a type 2 process, because, for

example the map t —> (e_lt, e_ult) is not a dense embedding of
R into T2. This problem does not seem to have been treated

anywhere.
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CHAPTER L

The Helson Szego Problem and related topics

A number of other prediction problems have been considered over
the years. In [23] Helson and Szegd considered the following
problem for a singly stationary process '{Xn} with associated measure
¥ on the cirecle T .,
ik6

Let & = closed span of {e : k <0} in L2(u) 7

Let °¥ = closed span of {eike : k >0} in Le(u) .
If M, N are closed subspaces of a Hilbert space H, we define
p(M,N) = the cosine of the angle between M and N as
p(M,N) = sup {|(myn)| : meM, Iml <1, nen Inl <1} (2)
where ( , ) denotes the scalar product in H .
Clearly O <p <1, The subspaces are orthogonal if p =0 ,
and, if p < 1 , the subspaces are said to be at a positive angle.
Helsan and Szegg asked the question: for which measures u are
® and 33‘ at positive angle? Here ¥ is considered the 'past' of

the process and ?f its 'future'. The solution they obtained was

as follows.

Theorem 4.1 [23] : p(® ,°% ) <1 if, and only if, the measure
p is absolutely continuous and in the Lebesgue decomposition

dpy = wd® where w >0, w may be expressed as W = exp(u + v)
2m

where u , v are real valued L~ functions on the circle with

||v||Oo < m, and by Vv we mean the harmonic conjugate of Vv .
2

: ; 2 ;
By the harmonic conjugate of a function v e L~ of the circle,
we mean the unique function ¥ such that f vde = 0 , and v +iv

is in H2 on the circle,
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In this section our object is to obtain an analogue of this
theorem for the case of a doubly stationary process. This problem
was considered by Ohno [26] , but he makes unnecessary assumptions
about the weight function w, We shall present an exact analogue
of the Helson Szegd result.

o will be a fixed irrational number, and the order relation on
Z x Z will be that imposed by o . u , a finite positive Borel

measure on the Torus,will have the usual Lebesgue decomposition

dy = wdo + dus as in chapter 3 .

Aa , Hpu(o) , Lp(c) will glso be as in chapter 3, C(Te) will

denote the continuous complex valued functions on the Torus, T2

We define closed subspaces O o -5 o ©°f 12(u) as follows:

closed span of {el(mx+ny)

@

a

>4 .

(m,n) (0,0)} in L2(n)

R A

i(mxtny) | (m,n) > (0,0)} in 12(n) .

I

closed span of {e

o
Let p = D(Gja By a) where p 1is defined as in (1).
We now ask for what measures u 1is Py < RS
The Conjugate Function:
i i i (mx+ny)
Suppose f € C(T2) has the form f(e** , € y) = Eamn e ( Y

where the sum is finite i.e. suppose f 1is a trigonometric

polynomial,
Consider the function £ : T2 ——> (¢ defined by
2 i; . i (mx+ : i(mx+ny)
£ (e 4 ey = i Z & el(mx ny) _ % ) a e
(myn) g (0,0) (myn) 3 (0,0) (2)
Then I fdo = 0 and (3)
- i i i (mx+ny)
(£ +if) (e, &) = a +2 I e e L

(m,n) > (0,0)
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This is an analytic trigonometric polynomial i.e. its Fourier

coefficients vanish off the half plane (m,n) (0,0) , and we

2
- - a
have defined a linear map of the trigonometric polynomials into

o~

themselves given by f ——=> £,

Theorem 4.2: [28] Let 1, < p <« . There is a constant A?
such that ”}"P < Ap ||f||p holds for every trigonometric polynomial
f . Here "fHP denotes the norm of f as an element of LP(0).
The map f ——> } can therefore be extended to & bounded
linear map of IP(0) to itself.
So f——> f + i maps Lp(c) onto Hﬁ (¢) . The function

f is called the conjugate of f ,

We also obtain (compare [29] , page 254).

- - o«
Theorem 4.3: If f 4is a real-valued measurable function in L (o)

with lfl <1 , then for 0 < k < 7 there is an N, > 0 such that

2

J exp (k [£] ) do < N <t ()
Proof: Suppose firsttat{is a real-valued trigonometric polynomial.
Then exp (k (f - if)) is in A for O<k<m and so

- 2

J exp (k £ - ikf) do = exp (-ik J fdo) , (5)
using the fact that o is multiplicative on
A(i.e.JfgdU=dechdU for f,gEAa)

a

and J fdo = 0 - (3)
Taking real parts in (5) we obtain

J cosk f expk fdo = cos (k J fd o)
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Similarly Jcoskfexp (-k ) d 0= cos (kad0)3

exp (k |[f] ) < exp (kf) + exp (-kf) for O <k <1
L 2
since f is real-valued .
Since [f| <1 and f 1is real-valued we ocbtain cos kf > cos k

almost everywhere and also cos (k I fdo) < 1 so that

cos k J exp (k |£]) do E'J cos kf exp (kf) do  + J cos kf exp (-kf) do
< 2

With N, = 2/cos k which for 0 <k < is finite, we obtain
2
the result for real valued trigonometric polynomials.
For a real valued f in L (o) , choose a sequence {fn} of
real valued trigonometric polynomials such that T ™ f pointwise
almost everywhere and |fn| <1 . We may also assume, by restricting

to a subsequence if necessary, that £ +f pointwise almost

everywhere.

Thea bgusing Fatou's lemma

Jexp (x |§|) do < 1lim inf J exp (k |fn| do) < N
n

Proposition k4, k: If f is regl and measurable and for some
O<e<m , |f| <m-¢, then exp (-f + if) ¢ Hla(c) ;

2 2
Proof: By theorem 4.3 ,exp (-f + if) e Ll(o) . As in theorem 4.3

let {f } be a sequence of real trigonometric polynomials such that
n

|f I < T -E€ for all n ,
n _— —
2 .
f =+ T pointwise almost everywhere ,
n
% + % pointwise almost everywhere .
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Let g ¢ Aa satisfy j gdag = 0.

For each n ,

J g exp ( - £, # 1fn) do = 0 .

Also g exp (- £+ ifn) + gexp (- £+ if)

pointwise almost everywhere

and J lg| exp (- ;n) do ~+ J lg| exp (- £) do .

Therefore J g exp (- fn + ifn) do J gexp (- £+ if) a0 = 0.

Since this holds for each g e A, » exp (-f + if) is contained

in Hlu(c)

Lemma U4.5: If fe Hla(c) and Re £ > 0 , then f 1is an outer

function.

Proof: We recall [21] that a function f is outer if and only
if the closure of the set {fg : g ¢ Au} is Ll(c) dense in
T (o) .
Let g ¢ Aa . We shall show how to approximate g by a sequence
of elements of the form fh with h e Au s
The sequence {f + %} converges to f in 1*o) and also

pointwise almost everywhere.

£ do
Hf'f;g'gd"i"g"wﬂﬁl 1
n

n

+0 as n->« .,

by the Lebesgue dominated convergence theorem.

) 1 '
Choose f, € A. such that £ -+ f in L (c) and Re f, > O .
k a k k



79

Then J fg - Tg do s "gﬂ J_ Lf[ Lf - f[
T 4+ 1 @ . .k do
n kR £+ x g + 2
n k n

+ 0 as k + = , clearly.
Thus given g ¢ A, » which is Ll(u) dense in Hlu(c) , We
may obtai i ' = W0 L
y obtain an element h e A (n g for some k and n)
£+
k —
n

which is arbitrarily close in Ll(a) to g .
Lemma 4.6: (cf [18] ) If feA , Ref >0, then logf e A,

Proof: We shall need the following result about a commutative, semi-
simple Banach algebra A with an identity:

Let ae A, F be a function analytic in a region of the complex
plane containing the spectrum of a ; then there is a unique element
be A such that

b (¢) = F (; (¢)) for all complex homomorphisms o of A .
Here ; denotes the Gelfand transform of a € A . (see [18]
chapter 2 for example).

Since each (eix s eiy) e T° determines a complex homomorphism :
fed, — f(eix y eiy) > A, is semi-simple. The spectrum
of those elements of Au with real part greater than zero is
contained in the half plane Re (Z) > O , where F(Z) = log Z is
analytic.

Consequently F(f) = log f e A -

Lemma 4.7: [cf.26] i fe Hld(c) with Re £ » O , then

log f ¢ Hi (o) .

Proof: We prove first that if f e H;a(ﬁ) and Re £ > ¢ > O then

Tog fie Hla(c) .



By restricting to a subsequence where necessary, choose a
sequence _{fn} in A, with

Ref > €& for each n ,
2

f -— f pointwise almost everywhere

n
and J]f—f|do~+0.
n

Since 4 (log x) = 1 5

dx X
log |f | - 1og |f] ‘ < fwog || - 10g |£| | < &7}
2 .

Ifn—fl ;|fn| - |f||

Thus {log |fn|} converges to log |f| in Ll(o)

arg fn + arg T almost everywhere since fn + f almost

everywhere.
Since [arg fn L (Re fn > g) , the Lebesgue bounded
2
convergence theorem ensures that {arg fn} converges to arg f in
1
L (o)

Thus {log fn} converges to log f in Ll(c). By lemma L.6

1 : i Hl .
each log f e A sologfe u(cr)

Suppose now Re f > 0. {f + 1} converges to f in Ll(o)
n
and pointwise almost everywhere. Also each 1log (f + l) is in

i (o) . :

a

Lemma 4.5 shows {f + 1} , f are all outer functions.

J

= log J (f + 1) do
n

£ + %— - log |f]) do

n
log |f +-% |- 108 |f| ’ do < I (log

since Re f » O

since these

- log ’ J f do

are outer functions. (see lemma k.

80

5)
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Since [ (f + 1) do + j fdoand Re f > 0 the above tends
n

to zero as n + o

Now arg (f +1) + arg f pointwise almost everywhere, and
n

{arg (£ + 1)}} is bounded. Using the bounded convergence theorem
n

agein, we obtain the convergence of {log (f + 1)} to log f in
n

1 ' ; i :
L7(0)., Each log (f + 1) Dbeing in Hla(o), so also is log f .
n

Solution of the Problem

The object is to characterise those measures yu for which

=i

pa = p( av~3a) <1,
We have dpy = wdo + dus where w > 0 in Ll(o) and Mg
is singular, We conclude immediately log w € Ll(s) for otherwise

&L aCP and p_ =1.
a (s

We can conclude however that mhl € Ll(o) . The justification
for this is the following result.
e ; 2 =1 -1
Proposition 4.8: inf | 1+ F+G[“dn = (] w ™ do) (6)

where the infimum is taken over &ll F g G)a end G e 03-(1 such that
J Gdo = 0, Lﬁ U wﬂwum w M&m ‘ \5 Yhe UU\QM\LM (ORI
\ .
w4 L () . |

Proof: 1In (6) we may as well consider the infimum over expressions
of the form
i(mx+ny) i (mx+ny)
J ¥ Z. & e + z e
(m,n) < (0,0) (m,n) > (0,0)

where the sums are finite,

The collection of all such finite sums is a convex set K whose

closure in L2(u) is also convex.
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If 04 closure of K, in other words, if the infimum in (6)
is strictly positive and equal to §, say, there is a unique element
1 +H in the closure of K such that J |1+ H|2 dp = & .

i(mx+ny)

For each AeC, 1+H+2e € K for all (myn) e 2 x Z ,

~—

except (0,0).
i +
So I | 1+ H+ aedim ny)le du > J | 1 +1 12 dp for all A € C
and we can conclude that

i +
J (1 + H) el(mx ny) de = O for all (m,n) € 2 x Z
except (0,0) .

Also J (L +H) au = J (L +H)(L+H) ap = I | 1 +H |2 dpu = § .

Therefore the measure (1 + H) dp - 8do annihilates all
continuous functions on the Torus and is the zero measure.

(1L + H)au is, therefore, a constant multiple of Lebesgue measure and

(1 + Hlw = & almost everywhere,
m_m.}rejw_lddzlj(l'*ﬂ)do'—'l;
8 $
so & = ( J m_l do)_l "

If 6 =0 , consider (w + €) in place of w.

Then inf J |1 +F+G 12 (0 + €)do + au, (= ( J (0 +e)Fan)™)

inf I [ +F+6 [2 dp + inf e J |1 +F +G |2 do

| A

So f (0w + s)"l do > 1 ,
E

J ot 4o > 1 for all positive e .
€



Proposition 4,7 allows us to conclude that le e L (o) (7)

We shall show also that p cannot have a singular part.

1

Theorem 3,5 of Chapter 3 shows that if x , X" € L2 (n) satisfy

X = 1 almost everywhere (do) >
xl = 1 almost everywhere (dus) >
XxT = 0,
then X®a . Xl@a are closed subspaces of@ «* A similar argument

will show that )(53 5 9 Xlo:\, are closed subspaces ofba‘ o

a
1.0 . =
e J o since 1 7T

I

X
But inf I | X~ - x* pm|2 du inf I | 1~ pm|2 Ay
= 0 s

where the infimum is taken over Pa e@ ‘

a
Therefore xl e@a and P X .

We may suppose, therefore, that u is absolutely continuous and
dp = wdo .

log ® being summable, by theorem 3 of [21] we may find an
outer function h in Hla(c) such that w = |h| .  We define ¢

by w=nh g e

Proposition UL4.9: Py <1 if and only if there is an € > O and

a g€ Hwa(d} such that
|g] > ‘& almost everywhere (do) , (8)

and |arg gh| < @ - € almost everywhere (do) . (9)
2

! . 2 2
Proof: There is an outer function k in H a‘(U) such that h = k

and w = [k|2 - this may be concluded from [21] .
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p = sup

— e,

‘ [fg}f & M g

i T e Ball°3 5

&
g € Ball &

— 2 —_-
= sup } | I fgk e l¢ddc f,g &as above but

restricted to finite sums (10)

Since k 1is outer in Hea(c) , a5 we allow f to vary, the
elements fk run over a dense subset of the unit ball of H2a(°) i
and the elements Ek run over a dense subset of the unit ball of
those functions in Hi (o) whose Fourier coefficients vanish at
the origin.

Their product, therefore, ranges over a dense subset of the

closed unit ball of the subspace,

HO(U) = {feHl(c) : deo=0]

(To avoid cumbersome notation we shall omit the a's).
(10) therefore represents P, 85 the norm of a bounded linear
. 1 1 ; = @
functiongl on H 0(c) . The dual of H 0(0) is L (o)/H (o) and
’ -3 o
so 1>p = dinf {1e™¥ gl ::gei(0)) (11)
Let 6 > 0 satisfy 1> Py +6 . There is a g e H (g) such

that (g depends on §)

+8 > el s> 1 - (x,y)| &lmost everywnere
Py 2 &l = B\ Xy

so ]g[ 24 # (pa + 6) almost everywhere .,

The cosine rule gives for C = |arg e - arg gl
(o, + 6% > 1 + lg|® - 2|g] coscC
P
so that 2[g| cos C > |g|2 + 1 - (pu + &)
2
> el
cos C > |g| > 1- (pa + 8)
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We can therefore choose an € > 0 so that |g| > € almost

everyvwhere and |¢ + arg g| < - € almost everywhere,

1§

2
The stepswthis argument can clearly be reversed, ensuring that

(8) and (9) are both necessary and sufficient for the two subspaces

to be at positive angle.

Theorem 4,10: p < 1 if and only if p is absolutely continuous,
o

dy = wdo, and w may be written as w = exp(u + V) where

u, v are real L (0) functions with Hv"w <7
2

Proof (a) Suppose Py S L s

Since w_l € Ll(U) we obtain, with g and e as in Prop.4.9,

larg gh| < 7 - € a.e, (12)
2
|len| > eln| > o a.e.
Therefore Re gh > 0 a.e. Since gh e 1 (o) by lemma 4.7
log gh e T (o).
Now log gh = 1log |gh| + i arg gh
Let v = arg gh, v is in L (o), real and Ivl <= vy (12).
' 2
Put u = - log |g| € L”(0)
Then w = |gh| = exp(-¥ + u) as required.
el
(b) Conversely suppose w = exp(u+ ¥) with u,v as in the

statement of the theoremn,

: P 7. . .
exp(u + ill) exp(¥ ~iv) . h dis in H (o) eand is in

1l

Put h

fact outer. (Theorem 6 in [22] )

Put g = exp(-u - ifi) € H (g)
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|arg gh| = |v] <m-€ a.,e, where we choose
2
0 < e < m such that |g| e a.e, also, The condition of

2
proposition 4,9 is therefore satisfied and the two subspaces are at
a positive angle,
We have obtained an exact analogue of Helsen and Szego's result.
A further characterisation of the weight functions w for which the

subspaces are at positive angle is as follows (compare [26] , [16])

Theorem 4,11: dp = wdo . Py <1 if and only if there is
€>0, a geH (o) invertible in Hw(o), such that

arg gh| < - e a.,e, (do).

5L
2
Proof: If such a g exists, with possibly a smaller value of € ,

we obtain |g| > e a.e. and |arg gh| < m - € a.e. By Prop.h.9
2

X ,0 are at positive angle.
o o
Suppose conversely that the two subspaces are at a positive angle.

By Prop. 4.9 there is a ge H, € > O, such that |g| > e a.e. and

|arg gh] < ® - e a.e.
2

In these circumstances we have seen that Re gh > 0 a.e. and
lemma 4.5 implies gh which is in Hl(c) is outer. h being outer,
so also is g .
Thus g € H (¢) is outer and satisfies |g| > € =a.e. There
is gl e L (o) such that ggl =1 a,e.
g Dbeing outer, there is a sequence '{pn} of analytic trigonometric

’ 2
polynomials such that gp +1 in L(o)
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So J |le P - ggllle do

]
"'-__‘\
(0]
na
g
o]
1
(0]
l_.l
fo?
a

| v
m
n
Sy
=
tn ]
1
0]
=
u
a

2 -]
Thus g € H (0) VL (¢g) and so gl e H (o)

2!
L~ - Boundedness of the Conjugate Map

We have seen that the conjugate mep f ——> % extends to
a bounded linear map of LQ(U) into itself. It is a natural
question to ask for what weight functions w is the conjugate map a
bounded map of L2(w do) = {f: J If]2 wdo <+ = L2(w)
into itself? It would of course be sufficient to show that this is
a bounded map of trigonometric polynomials into themselves, for
these are dense in L2(w) for any weight function w .

If f 1is a trigoncmetric polynomial, and £ is its conjugate,
then the map f —> f + i} is bounded if and only if the
- map f—— 5 is a bounded map of the trigonometric polynomials

. : . 2 ;
into themselves, In all this, the norm is lfl = (I |£]° w d o)2.

To estgblish boundedness of the map f ——> f + if it suffices
to establish whether the spaces G)a,u% & corresponding to w are at

a positive angle,

To see this in the case of M,N closed subspaces of a Hilbert
space H, we need to show that if p(M,N) <1 and m,n are elements

of M,N respectively

lml < clm#nl where C > 0 is a constant (13)
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Let p =p(M,N) < 1 . Then
In + 0% = 1wl® + Ial? + 2 Re (m,n)
> Ial® 4 1l - 2 |Re (m,n)]
> Iml® 4 1al? — aplnl Inl
= (1-p°) Iml? & (Inl - Hlgl)?

2
5 (1 = p%) | L (13) follows.

If (13) holds with Im | = Inll =1 we have
1
=y £ bi-nl® = 2(1 - Re(m,n))
C
so Re (myn) < 1 - 1 = p<1,
2C2
. _ ie
So if (m,n) = re where lml = Inl =1 .
(e_le ,i) = T = Re (e_le m,n)
< p

So sup |[(m,n)| < p <1 as required
m e Ball M, n € Ball N .

Therefore we obtain:

> f 1is a bounded map of L2(m)

Theorem 4,12: The map f

to itself where w > 0 is in Ll(u) if and only if there are real

L”(0) functions u,v such that Ivl <7 end o = exp(u + ¥).
' 2

The Space BMO(a):

The class of functions {u + ¥ : u,v real L (a) functions},
s subset of which occurs in the solution of the Helson Szego problem,
forms, on the circle T and real line R, the class of functions of

Bounded Mean Oscillation, introduced by John and Nirenberg in [2L].
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Definition L.13: A function

¢ , measurable on the line, is a

function of Bounded Mean Oscillation (BMO) if there is a K > O

such that for all intervals J C R

-

_;Hjlq»(t)—q»Jl < K .
19l 5

Here |J| denotes the length of the interval J and

by = L J ¢(t) at .

lal 3

Fefferman gnd Stein [17] studied these functions extensively,
proved that BMO is the dual of i , and gave the above mentioned
characterisation of functions of bounded mean oscillation,

Our object now is to examine a class of functions on the Torus
which will play an analogous role to that of BMO functions on the
circle or the line.

Iet ¢ be a (real or complex) measurable function on the Torus.

Fix some irrational a .

For almost all (x,y), we shall define ¢xy(t}

by ¢xy(t) = ¢(x-t, y<t) , te R .

Our analogue of BMO will be defined by requiring that all

the functions ¢xy be in BMO in a uniform sense,

Definition- L.1kh: With ¢ & measurable function on the Torus,

say ¢ € BMO(a) if

ess sup sup 1 J ¢ (t) - ¢ny]dt 4
J

(X,Y) |J| < IJl
Here J is an intervel in R, |J| is its length and
¢’ny = J ‘P(X”‘t, y_at)dt .
ST
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Let H¢xyn* = sup 1 J |¢xy(t) - ¢XyJ|dt .

”¢xy”* is a well defined measurable function on the Torus, and

since BMO is translation invariant, is constant on lines

u¢xy"*
of slope a.
By Corollary VII.7.L4 in [18] "¢xy"* is constant almost

everywhere on the Torus,

A result of Fefferman and Stein ([17] page 141) immediately

implies that for almost all (x,y) € T2
1
e L dt ‘
by €T (8 )
1+t

As we have seen, there are functions on the Torus which are in

1 . .
L' ( ) on almost all lines, but are not in L () . We shall

1442

now prove that this cannot happen for BMO(a) functions.

Proposition 4,15: Let ¢ be a regl-valued BMO(a) function. Then
6% = max(4,0) , ¢~ = max(- ¢,0) are in BMO(a), and so therefore is
i 1)
lo] = ¢ +¢ .
Proof': Fix an (x,y) and an interval J . Suppose first that
¢ny > 0.
Then |¢_ () - ¢ny| < |¢xy(t) - ¢ny| for all t e J

S0 fﬁ_[| %wﬁt)-¢wgwt i-ﬁTI[ %WH)—¢ont < Mmﬂw
J J

If ¢ny < 0 , then clearly

|¢ T(4)] < |¢xy(t) - ¢ny| for all t e J .
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and so 1 J |¢xy (t)fat < 1 J |¢xy(t) = ¢ny|dt % H¢xy"* .
la| g |17]

It follows easily thatd'e BMO(o) , and so ¢ and |¢| ere

in BMO(a) .

A}

Theorem 4,16: Let ¢ € BMO(a). There is a k > O such that

1;
exp(k |¢|) € L"(0), 1In particular, ¢ € 1P(6) for 1 <p<e®,

Proof: We shall suppose that ¢ 1is real-valued, The complex case
may be deduced by examining the real and imaginary parts separately.
By proposition 4,15 ¢ = |¢| e BMO(a) .
Define ¢° = min(n ¢ 1o
Then O j_wn <n,
exp(k y") < exp(k ¢n+1) for each n, k>0,
Also exp(t k wn) is in Ll(o) for all n , all k > O .

We shall prove the existence of a k > O such that there exists

D> 0 for which

iy iy
1l = oL Jexp(k P (x-t, y—at) )at (_l Jexp(—k wn(x-—t,y—ut) )dt)
oT -T 2T -T

< D (14)

2
for all T >0 , all n , and almost all (x,y) e T
By a remark in Helson's paper (page 20 ,[20] ) as T >« in

(14) we obtain

J exp(k ™) ég J exp(-k wn)dc < D, for all n .
By Lebesgue's bounded convergence theorem

J exp(~k y")dg - J exp(-k y)do as n > .,
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For all sufficiently large n , therefore,

J exp(k y")do < 2D

[ exp(-k ¥)do

By Fatou's lemma J exp(k ¢)do exists,
It only remains to prove (1L) .

We shall choose k and C later, C depends on (x,y) and T .
T T

1 | exp(x y™)at 1 | exp(~k y™)at

| A

(
(

k>0

(3 =) 4]

T T
a J exp(k y* - kC)at 3 J exp(—k wn + kC)dt
2T -T 2T T

T 2
1 Jexp(k |v" - ¢|)at _ (15)
o7 -T
Consider now wnxy on J=[-r,T] . Suppose firstly that
< 0.

n

Then [y (t) - vl < [ (8) = vl

Putting C = wny , Wwe obtain (15)
£ . 2
<l X J exp(k |y, (t) -y, of)at) (16)
2T -T

: so with
Xy - n i Xy nyII
n we again obtain (15) < (16) .
But by & result of John and Nirenberg [24] we may choose a

such that for almost all (x,y) , all T > O
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| )at < D where D >0 .

1 J exp(k [y, (£) - v <

27 -7

xyd

Therefore J exp(k |¢|)dc exists and in particular ¢ € LP(U) for

1l <p<w,

Theorem 4,17: For ¢ € BMO(a) define loll, vy lgl, = ess sup “¢xy"*

# IIMUI

Then BMO(w) is a Banach space with respect to this norm,

Proof: If ¢,y € BMO(a) , A e C. we have

bo + pl, < Mgl + Hyl,

Iagl, = |af lgl, .
1r lgll, = 0, then for almost all (x,y) |I¢xyll* = 0. By
[18] Corollary VII.T.4 , since ¢ is then constant on lines "
it is constant almost everywhere. The vanishing of J ¢ do ensures
¢ = O almost everywhere,

BMO(a) is therefore a normed linear space.

T T ' T |
1 J | ¢(x-t, y-at)|dt < _1 J |$(x~t,y-at) - ¢ny|dt + ]2 Idz(x—t,y—at)dt
2T -T 2T T 27 -T
T
< ess sup "¢xyﬂ* + | e’ J ¢(x-t,y-at)dt |;
(x,¥) 2T -T

letting T + « , we obtain, using Helson's result,

J l¢] ao < lol, .

p . L
A Cauchy sequence in BMO(a) is therefore Cauchy in L (o).
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Let {¢n} be such a Cauchy sequence. Then given ¢ > 0, there is
an no such that,
1if m,n > n_, "¢n = ¢m”* <E .
7 1 . 1
There is & ¢ € L (o) such that ¢n +¢ in L (o) and some

subsequence {¢n } converges to ¢ pointwise almost everywhere.
k

Using Fatou's lemma we obtain

T
1 J | (¢ - ¢m) - (¢ - ¢m)J|dt < e for all m > n
2T -T

all T > 0 , almost all (x,y). We can deduce easily that ¢ ¢ BMO(a)

and "¢n - ¢“* +> 0 g n-+eo |

It is immediate that all bounded, measurable functions on the Torus
are in BMO(a). We shall now prove that the conjugate of an L (o)
function is in BMO(a).

Theorem 4,.18: The map f —> f 1s a bounded map of Lm(c) into

BMO(a).

Proof: Let f e L (o). Then by theorem 4.2 f certainly exists and

]

isin LP(¢) for 1 <p <= .
Let us choose a sequence of trigonometric polynomials {fn} such

that

£ ——> f pointwise almost everywhere,

le I < Il for all n ,
nwﬁ-—l [=s]

- ———> f pointwise almost everywhere.
Define (ng) (x,y) = P.V. ;.J g(x-t,y-at)dt , feor U\%oﬂ@wmlﬂx FkbfwmmL
m ® [
t
where by P.V. we mean the Cauchy Principal Value of the integral.

)
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We shall siow this is certainly well defined for trigonometric
polynomialsc$and in fact gives the conjugate function of g .

It is enough to show that

Ta ei(mX+HY) - i ei<mX+ny) if (m+ na) < 0,
= 0 if m=n=0,
= -1 ei(mx+ny) if (m+na) > 0.
Twwem = n = 0 is clear.

+ -1 (m+
= ilmtny) 5 o B e i(ma)t o0
™ t
If m+na <O, 1ev e—l(m+na)t at = 10V Elu du = i,
LI T J u
N (- (] ;
It m+na>o0, 10¢ ei(mmalt . _ Ly fMaw =-i,
LI T ) u
by the usual complex variable argument. So T, agrees with the

conjugate map on trigonometric polynomials,

In [17] Fefferman and Stein prove that the Hilbert Transform

is a bounded map of L” + BMO .

Since (Tag)(x—t, y-at) = y’-\hj g(x-t-s, y-ot-as) ds

m
s

= Hilbert transform of the function gxy(t), ‘we have that

1 |(r £ ) (x=t, y-ot) - (Tafn)ny| at < A Iely

|| 9
for all J , a subinterval of R , almost all (x,y) and n e N .,

So



A 1 £ (x~t, y- - 1
I | £ (x-t, y-at) gl & 2 A Ilfnﬂm < alsgl
Jd

Letting n + @ and using the fact that fn + f pointwise

almost everywhere, and Fatou's lemma, we obtain

-~

1 J | £(x-t, y-ot) - 5ny[ at < Azl

o] 7

Mso | f £ do| < (J |£|2d0)% < (J [f|2dc)% < =l

So the map f ——> f is a bounded map of Lm(c) into
BMO(a) .
We shall now prove that BMO(a) is the dual of Hl(U) in the
following sense,
Let H' (o) = {g:g-= #(c)} . H (o)
gl9) = g :g-= Ref , f ¢ o - o
is a real linear space, and is in fact a Banach space equipped with
the norm
lgl1 = lg+igl, (g isin L'(0)
g Hl = g + gl g 1s 1n o
since g = Ref , f ¢ Hl(U)) .
We shall prove that there is a constant C > O such that, if
¢ is a real valued function in BMO(a) and g is continuous and

: 1
in H R(c) "

< clg+ ié"l ol

J g ¢ do
: 1 ; x Hl
Then since the above set of g € H R(c) is dense in R(c) the
functional defined by
Ag) = J g ¢ do
extends by continuity to all of HlR(c) and Al < c lgl, .

Conversely every continuous linear functional A on HlR(a)

gives rise to a ¢ € BMO(a) such that
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a(g) = J g ¢ do  for all g¢ L2R(c) say
; . . 1 ‘ : 2
(which is dense in H R(c)). We shall prove this second claim first,
Theorem 4,19: (compare [17] Theorem 3) There is a constant

A > Q , such that, given A, a continuous linear functional on

Ll .
H R(O) s there is a ¢ € real BMO(a) such that
= 2
A(g) = J g $ do for all ge L R(U}
and lgl , < A Ial |
= 1 1
Proof: Let B = L R{U) B L R(c) normed by
I I = gl Inll_ .
Let S = subspace of B for which h =g . S is a closed
subspace of B - this follows from the completeness of Hl(a) >
Any continuous linear functional X on HlR(o) can be
identified with a corresponding functional on S , since the norms on

S and HlR(c) are clearly equivalent. So, by the Hahn Banach

Theorem A extends, without increase of norm, to a continuous linear
functional on B .,
- - == =]
The dual space of B is equivalent to L R(o) @ L R(0) so

there are u, Vv ¢ LmR(o) such that
Alg) = J gu do + J év do

and there is a B > O independent of A , u and v such that

< Bl

lal_ < BIal, Iyl

Now if g € Lgﬂ(c) , since v is also in LeR(o),

I gv do = —,I gv do (for example, compare the Fourier Series)

so Ag) = J g(u-v) do .

By theorem 4,18 ,u - ¥ € BMO(a) and lu-vl , < a Il



We shall now prove that each ¢ ¢ real BMO(q) gives rise to

& bounded linear functional on Hlﬁ(q)

08

We shall first discuss a certain technique which allows us to use

Fefferman and Stein's result on the duality of Hl and BMO .

If £ e C(T°9)

i J f(x-t, y<ot) &t —> J fdo as T+ @ ,
i 2 2

T +t
for almost all (x,y)

For, if f is a trigonometric polynomial, say

1 (mx+
f= Jm. . (mx+ny ) , then
T If(x_t _at) 4t = Eamn o (mxtny) T Je—l(mh‘la)t 4 (17)
m T2 + t2 i T2 3 t2
. ; it
Let us examine T dt for X e R
m T2 + t2
Setting t = Tu we obtain
- o)
T J elkt dt = ;'J et T gy
g T° 4+ t2 LA
ST e 0
= & if A=0
Then, as T —> « in (17) ,ve obtain a = J f do as required.
By approximating f uniformly by trigonometric polynomials we
obtain the result for continuous f .
; 2 ’
More generally, if g.€ Ll(o), we can define g, on T , which

is also in Ll(c), by

ET(X;Y) = T J glx—t, y—it) dt .
m 2 2

T + t
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J|g[ac=j|g|aa .

We show &np — J g do in Ll(g) as T+x, Fix € > 0

Also J lgT|dU 2 I J at
m T2 + t2

and choose f ¢ C(T%) such that Ir—gl, <e .

Then lg, - j gaol < gt + lg- Jf‘ aol, + | Jf‘ ao - J g aol,

< 2lgsl o+ g - J £ aol

Now ||:E'T||m < lfl_ so the right hand term tends to zero as
T >« , Dby the bounded convergence theorem, Since e > 0 was

arbitrary we obtain

lim "gT = J g dc“l = 0
e

There is, therefore, a sequence {Tn} such that

0<T1<T2<,._’Tn+m
and Tn glx-t, y-ot) it —> J g do pointwise a,e.
T 2 + t2
n

The subsequence depends on the g , of course,

Theorem 4 ,20: Each ¢ & real BMO(a) gives rise to a continuous

. . 1 § 3 i ; i
linear functional X on H (0),which is defined fU%ﬂﬂ for tone q e\4R(43

such that g and é are continuous (a dense subset of HlR(U) ) by
A(g) = J g ¢ do, and there is a C > O independent
of A and ¢ such that "An < C"¢"* . It then extends by

continuity to all of HlR(U) 2

Proof: We show first that for fe A and ¢ e real BMO(a)

| j eoaol < ol Mol . (9



Wethon define A  on the dense subset of HlR(U), consisting of

those g such that g, g are continuous by

e
—
(0]
—

Il

J g6 do = Re J (g + ig) ¢ do .

S
EH
=
i
Il

lRef(swé)Mol

| A

| J (g + ig) ¢ ao|
< ¢ lg+ ié"l lgl, s \hﬁ x) .
This is the required result, W& Wow  preas Q3

¢ € BMO(a) &and so is in Ll(o) . Since feA , I f ¢ do

exists.,

Fixing f, ¢ choose a sequence {Tn} such that

Tn J f(x-t, y—ot) ¢ (x-t, y-ot)dt _ > J f ¢ do ,
= Tn2 5 ‘b2

for almost all (x,y)

This integral is equal to

T, J f(x-t, y-at) (% + 4 ) ¢ (x-y, y-et)dt

. 2 —_—
m (t + 4 Tn) (t -1 Tn)

Now (see [18], Chapter VII, section 7) for almost all (x,y) ,

fx-t, y—=lt) ¢ Hl(dt) .
(t +1i Tn)2

100

We shall show, that for almost all (x,y), ¢(x-t, y-«t) (t + i Tn)
(t - i Tn)

I

is in BMO and its BMO norm < K “dJWH* + K[¢ ngn

K is a constant independent of ¢ and

T
n

) = 1 J¢(x—t,}'—at)dt
n
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Fefferman and Stein's result [17] on the duality of H1

and BMO gives

T J fx-t, y- t) ¢ (x-t, y- t)at

n
T2+t2
n

< ¢t 3 Ilf(x_t' y-at)| dt X

T T2+t2
n

=]

T

Kl I, + x
*
¥ 27

n
ek J ¢(x-t, y- t)at
n ~-T

n

for almost all (x,y) .

Now letting T <« in the above, and using either Helson's

result ( [20] , page 20) or the elementary estimate

T
n

A

I 3 J $(x-t, y-at)dt|
2

T

T, f | ¢(x-t, x—2t|dt
n JTn

T2+t
n

=

> J |¢lac as T e
and I lolac < Tolly

We obtain ne resull we o w.kuﬂ ,M\m\xj‘

fere

| A

K ot "le (ess sup "¢xy"* + | J ¢ do| )

= C Hfﬂl loll, .

Corollary 4,21: Any ¢ € BMO(a) mey be written as ¢ = u + v where

u, Vv € L”(c) and there is a B > O such that we can choose u and

v to satisfy

lul_ < Blel, , Ivl_ < Bll,

Proof: Follows immediately from theorems L4.19 and L.20 .
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We are only left to justify the statement that

EE_i_i_E; $(x-t, y-at) is in BMO and obtain the estimate of its
t -1 T

BMO norm,

Notice first that the map ¢(t) —> ¢(at), a > 0, is an
iSOmetry of BMO onto itself, It is sufficient therefore to prove

u+% Pp(u) dis in BMO if is, where y(u) = ¢(x-ul, y-auT) ,
u-i

We will obtain the estimate of its norm as 1

J v(u) du .
1

< K (lyl, + |¢J|) where Y. =1
2

Then reversing the process, we obtain BMO norm of
1

%_ J Y(u) du )
-1

T
= |1 J ¢(x-t, y-at) at
T

ct| et
+
'_}

i T —t, y-at Il Il
r—— St K- ( by F

2T

o=

( )
J.

So BMO norm < K ( “¢xy"* + |4 | ) as required.

xy2T

To obtain our result, we require first two lemmas.

Lemma 4,22: [27] Let ¢ € BMO, I and I. be two concentric

intervals with Ir r times the length of I (which has length 1) .

If r>1, |[¢. -¢_ | < 3(1 +logrx) loll,
I I =
r log 2
1y gl
If r<l, [o;-¢;] = 32 +10gr ) lol,
r log 2
Proof: We take r > 1 , the other case is proved similarly.
Consider first r = 2° where s is an integer. Setting
¢S = ¢I s » V€ obtain

2
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|¢s N ¢s—ll B & l bs bs lldx
|1 s-1| I,s-1
s 1 J (Tog =0l + o -0 Dax
|1 s—1|
2 I s-1
2
< B J o, - ¢fax + _1 J |6 - ¢ ;| ax
|Izs| I8 |I25—1| Is-1
< 2lgly, + lgl, = 3lgl, .
S
Ten o, -¢ | < 1 lo -o 1 < 3s el .

k=1

s+l

Suppose now o5 < : s S

+ ¢ - ¢

s o] |

| A

Clearly |¢Ir - ¢I| |¢Ir - ¢

ol

| A

le; - o | + 3 10g2° lgl,

r log 2
Mso [¢; -¢ | < _1 | 6 - ¢lax + 2 [ | ¢ - ¢ |ax
& II25| 125 ¥ |Ies]
1_2_JI¢I - ¢lax + 1 JI¢—¢SIdx
r
lz.| I, |1s]
< 3lgly, .

Thus I¢I - ¢I| < 3(1 + log r) ol .
T log 2

Lemma 4,23: Let ¢ € BMO, I and I, are intervals of length 1 ,

.
Ir I, and I, are disjoint and the distance between their midpoints
is r (r > 1)
then |¢I - ¢; | < [ 6 (1L +log r) + 2 loll, .
1 2 L log 2
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If I, and I, intersect then |¢Il - ¢IEI' < ealely, .

Proof:  Let ) : sl gl
Proof Ilr (resp I2r1 be intervals concentric with 11(12)

whose length is r times the length of Il (Ig) .

Ilr and I2r are adjacent.
Then [¢. =~¢. | < |6, - |+ ¢ -4 |
Ilr IQr Ilr Ilr U “or Ilr U I2r I2r
< 1 J o - ¢ lax + _1 JI¢-¢ lax .
II | II | Ilr‘ U IZI‘ II I IlI‘ U IQI‘
1r 1r 2r' I
2r
; _ _ U . .
Using lIlrl |I2rl %-llrl Ir2| v dese Wy
< 2 J ¢ - ¢ | ax
|1 1| 1 I f1r U Tor
rl U r2 rl U "r2
< ealgl, . (18)
Using lemma 4.22 and (18) we |howxe
6., =61 < oo o | + oo oo | + [o, -0 |
Il 12 I1 Ilr Ilr IQr I2r I2
< 6(1 +logr) + 2 gl
log 2
If Il and I2 overlap & proof similar to that of (18)
gives the result.
Theorem L.2k: Let ¢ e BMO . f(t) = 1 . Then f ¢ € BMO
t-1
and lroll, < K!¢I| + klgl, where X is a constant and
T = [<3,3] . (Tn theorem 4.20 I =[-1,1] but lemma .22 shows

this makes no difference).
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Proof: J is an interval of length |J].
Let us first suppose J =[a, a + |J|lx.where a 1s nearer to
zero than a + |J| 5 This is no restriction - thé same arguments

would work in the other case.

a2 [lremgyeec < [ 1ol delax v logl [ie - 5 lex

EI lg| 3 171

< Bl o+ gl J £ - £ fax
I
since |f| <1 everywhere.

Suppose now |J| > 1 , and g1 is en interval of length 1

concentriec with J .

los| = logal + 3 (1 +10g [3]) Tolly, (19)
i - log 2

using lemma 4,22

|¢Jl| £ ]¢I| + 6(-l+1og |3+li|_|)"‘2 Il (20)
2
log 2
(if a+ 7] > l)
2
lo;1] < legl + 2lely  (ir a+%Lil). (21)

Bah ﬁmﬁgﬁﬁkw one Mandusing lemma 4.23

a+|J]
Now JIf—ledx = J |£ - 1] ax -
J a

Either [J| > J|a| or |d| < |a| .

1f |a| > |J] , then a > O and we obtain



a+[J| a+|J[ a+|J|
J |£ - £;]lax < 2I |f]lax < QJ}_GJ(
X

a

2 log a + |J| R
a

Now using (19) and (20) we obtain

|¢;l1| J ]f—led.x = {|¢I| + 11lell, + 310g |o] ol
|a] g log 2

+610g %+ 12 n¢||*}_l_ iJf|f_fJ|dlx

log 2 IJ[ L
< 2le | o+ 22 gl +
{3 log |J| + 6 log ® ¥ |%l } ol f |£ - ledx
Log:@ log 2 || ¢

In the case a 1|J| the above is

% 2|¢J| + 22 lgl, + {3 log & + 6log%§}ll¢ll* 2
a

og 2 log 2

using loga + |J]| < [J]| | since 13l <1, S gt
a a a

[ A

2|¢J| + K lgll, where K is a constant.

(using log t < e—l for 5 1 .)

t
Suppose now |J| > la] . We first consider O < a < |J] é
men 1 [lr-glex < 2 | lelex
BA la| 9
at|J| :
¢ _e__{ [ el + [lﬂax}.
lo] U 2 a

(Interpret the second integral as zero if a > 3)

106

g

(22)
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< 2 log2|Jd| + 2
|71 |91

Inserting into (22) and using |J| >4  we obtain (22)

< 2|¢.| + x lgl, .
I

1t |a| > |e|, but &< 0 &g & || s

.a+|J! —% a+|J|
_&J|f1ﬂiLI+T+I lmax
13| = 7] . -3 3

< 2 log2|y] + 2 + _2 1log2|d|,

5] a1 7]
so again we obtain the required result,

Suppose now |J| < 1. 1If a > |J| the same estimate as
before will work, for the last part of (22). The last part provides

no problem if a < |J| also.

The problem arises with log \J|_l 1 J | - foldx .
J

log 2 [a]
We shall estimate 1 j |£ - fJ|dx . Notice that if x, c € R
IR
|£(x) - £(c¢)] < |x-c| . ©Let c be the midpoint of the interval J.
Then _1 J (Pt li 4 X J [£(x) - £(e)|ax + [£(c) - 1]
13T TaT
J J
< 2 J |£(x) - £(c)|ax
19T 3
< 2 sup [£(x) - £(c)]
|x-c| < lg]
2

[ A
7y
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Now,since we are considering |J| <1,

log |J|_l 1 J |f —ledx < sup |J] log |J|—l' < e_l

J 7] <1
Thus in all cases we obtain an estimate of (22) as

<K (|¢I[ + ”¢|1*) where K is a constant independent of ¢ .

Since t + i ¢(t) = (l + 2i ) ¢(t) , the former function is
t -1 t -1

in BMO if ¢(t) is, with the appropriate condition on the norm.
t -2

The space BMO(a) thus plays an analogous role to that of

BMO on the real line or the circle,
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