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A B S T R A C T

The past twenty years have seen a successful formalization of the idea that percep-

tion is a form of probabilistic inference. Bayesian Decision Theory (BDT) provides a

neat mathematical framework for describing how an ideal observer and actor should

interpret incoming sensory stimuli and act in the face of uncertainty. The predictions

of BDT, however, crucially depend on the observer’s internal models, represented in

the Bayesian framework by priors, likelihoods, and the loss function. Arguably, only

in the simplest scenarios (e.g., with a few Gaussian variables) we can expect a real

observer’s internal representations to perfectly match the true statistics of the task at

hand, and to conform to exact Bayesian computations, but how humans systemati-

cally deviate from BDT in more complex cases is yet to be understood.

In this thesis we theoretically and experimentally investigate how people represent

and perform probabilistic inference with complex (beyond Gaussian) one-dimensional

distributions of stimuli in the context of sensorimotor decision making. The goal is

to reconstruct the observers’ internal representations and details of their decision-

making process from the behavioural data – by employing Bayesian inference to un-

cover properties of a system, the ideal observer, that is believed to perform Bayesian

inference itself. This “inverse problem” is not unique: in principle, distinct Bayesian

observer models can produce very similar behaviours. We circumvented this issue by

means of experimental constraints and independent validation of the results.

To understand how people represent complex distributions of stimuli in the spe-

cific domain of time perception, we conducted a series of psychophysical experiments

where participants were asked to reproduce the time interval between a mouse click

and a flash, drawn from a session-dependent distribution of intervals. We found that

participants could learn smooth approximations of the non-Gaussian experimental

distributions, but seemed to have trouble with learning some complex statistical fea-

tures such as bimodality.

To investigate whether this difficulty arose from learning complex distributions

or computing with them, we conducted a target estimation experiment in which

“priors” where explicitly displayed on screen and therefore did not need to be learnt.

Lack of difference in performance between the Gaussian and bimodal conditions in

this task suggests that acquiring a bimodal prior, rather than computing with it, is the

major difficulty. Model comparison on a large number of Bayesian observer models,

representing different assumptions about the noise sources and details of the decision
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process, revealed a further source of variability in decision making that was modelled

as a “stochastic posterior”.

Finally, prompted by a secondary finding of the previous experiment, we tested the

effect of decision uncertainty on the capacity of the participants to correct for added

perturbations in the visual feedback in a centre of mass estimation task. Participants

almost completely compensated for the injected error in low uncertainty trials, but

only partially so in the high uncertainty ones, even when allowed sufficient time to

adjust their response. Surprisingly, though, their overall performance was not signif-

icantly affected. This finding is consistent with the behaviour of a Bayesian observer

with an additional term in the loss function that represents “effort” – a component of

optimal control usually thought to be negligible in sensorimotor estimation tasks.

Together, these studies provide new insight into the capacity and limitations people

have in learning and performing probabilistic inference with distributions beyond

Gaussian. This work also introduces several tools and techniques that can help in the

systematic exploration of suboptimal behaviour. Developing a language to describe

suboptimality, mismatching representations and approximate inference, as opposed

to optimality and exact inference, is a fundamental step to link behavioural studies

to actual neural computations.
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L AY S U M M A RY

A successful unifying hypothesis in neuroscience is that the nervous system attempts

to choose a ‘statistically optimal’ course of action by accounting for sensory uncer-

tainty and previous experience while serving the goals of the task at hand. Such

optimal behaviour requires an ideal observer to record the pattern of past events and

build an accurate internal model of the environment. Arguably, the performance of a

real observer will match that of an ideal observer only in the simplest scenarios (e.g.,

those following simple statistical regularities) as we would not expect the brain to

be able to recall and assess arbitrarily complex patterns of past events. However, we

have yet to ascertain which statistical features of the environment induce suboptimal

behaviour, and why.

In this thesis, we investigate people’s performance in perceptual and motor tasks

in the presence of events whose patterns feature varying levels of regularity and com-

plexity. The goal is to understand what people learn about these patterns, and how

the learnt patterns are employed in people’s decision making process. We start by

asking how people represent complex patterns of stimuli in the specific case of time

perception. We conducted a series of psychophysical experiments where participants

were asked to reproduce the time interval between a mouse click and a flash, drawn

from a session-dependent pattern of intervals. We found that participants could learn,

through practice, generic statistical features of the presented patterns, but had trou-

ble with some specific aspects of those. In fact, in a separate psychophysical study,

we found evidence that remembering the patterns of past events constitutes more

of a challenge to decision making than manipulating the present complex statistical

information. Finally, we asked whether a major source of suboptimality can be iden-

tified in the mental or physical effort required by the nervous system to correct for

mistakes. We found that people are ‘optimally lazy’; that is, they correct just enough

to preserve their average performance in the task.

Together, these studies provide new insight into the human capacity for, and limita-

tions in, learning and making statistically optimal decisions when dealing with prior

events with complex patterns. This work also introduces several tools and techniques

that can help in the systematic exploration of suboptimal behaviour. Developing a lan-

guage to describe suboptimality, mismatching representations, and approximations –

as opposed to optimality – is a fundamental step to link behavioural studies to actual

neural computations in the brain.
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1
I N T R O D U C T I O N

“And of course, the brain is not responsible for any of the sensations at all.

[. . . ] Thus, the brain, which is naturally cold, tempers the heat and seething

of the heart.”
— Aristotle, Parts of Animals, trans. A. L. Peck

A powerful unifying idea in neuroscience is the hypothesis that the brain is intrin-

sically a probabilistic inference machine.1 According to this hypothesis, the brain

builds statistical models of relevant variables in its environment, keeps track of the

uncertainty associated with sensory measurements, and updates its beliefs by com-

bining new data with previous information according to the laws of probability, as ex-

pressed by Bayes’ theorem. Bayesian probability is a take on probability theory whichBayes’ theorem

interprets probabilities as degrees of belief. Hence, the notion that the brain encodes

and computes with beliefs as probability distributions has been named the BayesianBayesian brain

hypothesis brain hypothesis (BBH; see Knill and Richards, 1996; Knill and Pouget, 2004; Doya et al.,

2007; Whiteley, 2008; and also Friston, 2012 for an historical, personal perspective).

In this thesis, we both test and exploit the BBH by performing what has recently

been dubbed cognitive tomography (Houlsby et al., 2013). We devise psychophysicalcognitive tomography

experiments to probe the way in which human observers process sensorimotor infor-

mation in a number on nontrivial tasks. The noisy pattern of subjects’ behavioural

data contains echoes of their mental representations and thought processes. We use

the powerful machinery of mathematical modelling and machine learning as an in-

strument to reconstruct the complex internal representations inside our participants’

heads. Some skepticism is imperative – can we really read human minds just from ob-

served actions? Indeed, needless to say, our enterprise faces a long list of theoretical

and practical pitfalls to navigate. Thus, as I commence the task of reporting how we

did it and what we found, I ask the reader to expect some necessary lengthy technical

passages. But first, a formal introduction.

1 Pace Aristotle, whose unconventional view of the brain as a cooling system was odd for a natural
philosopher even at his times – but he had interesting arguments for it (Gross, 1995).
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1.1 the bayesian brain hypothesis

1.1 the bayesian brain hypothesis

The BBH is not a specific statement, but rather a family of hypotheses with differ-

ing strengths, which can be roughly related to David Marr’s three levels of analysis:

computational, algorithmic and implementational (Marr, 1982; see also Colombo and

Seriès, 2012 for a slightly different presentation). The less controversial form of BBH,

and the most amenable to experiment, lies at Marr’s computational level, and states

that the brain produces behaviour that conforms, to various extents, to Bayesian in-

ference, for example by correctly accounting for noise in the sensory and motor sys-

tems, or by accumulating and exploiting information about the statistics of stimuli in

the environment (Knill and Richards, 1996; Kersten et al., 2004). This position corre-

sponds to the idea that Bayesian theory provides a normative framework for describing normative framework

the goals of the perceptual and motor systems – such as inferring hidden causes for

the current sensations, and reacting accordingly – at an abstract level. The idea of

perception as unconscious inference has a long history; the process of combining prior

information with currently available sensory evidence has already been stated clearly

in Helmholtz (1925), and seeds of this hypothesis can be traced back at least to writ-

ings of the early Arab physicist and polymath Ibn al-Haytham (Alhazen), about a

thousand years ago.2 The BBH, however, is usually interpreted as a stronger asser-

tion that holds in-between Marr’s computational and algorithmic levels, and casts

Bayesian theory as a process model of computations in the brain (Maloney and Mamas- process model

sian, 2009). This means that there is a direct, one-to-one mapping between elements

of the theory, such as distinct probability distributions, and representations thereof in

the brain, although details are left undefined. Finally, in recent years there has been

the even bolder proposal that the brain’s architecture implements probabilistic infer-

ence directly in the cortex (Lee and Mumford, 2003), meaning that the BBH spans

across all of Marr’s levels, from computational to implementational. There have been

a few suggestions for specific neuronal mechanisms that may support Bayesian com-

putations (sometimes called the Bayesian coding hypothesis; Knill and Pouget, 2004; Bayesian coding

hypothesisDoya et al., 2007).

In this thesis, we adopt an intermediate stance on the BBH, which we consider a

good empirical description of human performance in several situations, and a pow-

erful conceptual framework for clarifying and testing ideas about sensorimotor be-

haviour (Geisler, 2011; O’Reilly et al., 2012; Colombo and Seriès, 2012). Sympathizing

with a pragmatic view of Bayesian reverse-engineering that tries to bridge Marr’s

2 Helmholtz writes, unequivocally: “Previous experiences act in conjuction with present sensations to
produce a perceptual image”. Alhazen’s writing is not much more ambiguous: “. . . familiar visible
objects are perceived by sight through defining features and through previous knowledge. . . ” (see
Helmholtz, 1925; Ma et al., 2014).
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1.1 the bayesian brain hypothesis

levels (Zednik and Jäkel, 2014), we entertain the working hypothesis of BDT as a pro-

cess model of perception and action (Maloney and Mamassian, 2009), but we remain

agnostic about the level of implementation (see Chapter 6 for further discussion). Yet,

even at the behavioural level there are still several outstanding open questions, and

the field is mature for a more critical examination of the details of the BBH.

1.1.1 Why Bayes? Optimal and probabilistic inference

Why would the brain want to be Bayesian in the first place? The rationale is that the

nervous system had to evolve means to cope with noisy, uncertain and ambiguous

data, – and (Bayesian) probability theory is the best, statistically optimal fashion to dealstatistically optimal

with them. A seminal theorem discovered by Cox (1946, 1961) states that, under a few

reasonable assumptions, such as agreement with basic axioms of propositional logic,

probability theory is the only coherent way to attach single-valued real numbers to be-

liefs and to update them upon arrival of new evidence (through Bayes’ theorem). Any

other system of rules different from probability theory would lead to inconsistencies.

In De Finetti’s (1937) interpretation of probability, such incoherence would mean that

an agent could be systematically tricked into losing bets by another agent with a bet-

ter understanding of probability (the so-called Dutch-book argument). The ‘opponents’Dutch-book

would be Nature itself at the beginning of the game, and then other biological agents

as the arms race for a probabilistic understanding of the world has begun (Geisler

and Diehl, 2002, 2003). Since in the case of biological machines survival is at stake, an

evolutionary perspective suggests that a nervous system ought to develop techniques

to deal with probability very well, if not optimally, at least for immediate, low-level

properties of the world involving perception and action. Whether higher-level cogni-

tive functions ought to be included in this argument is less clear – the key point is

whether selective pressures had enough time to perfect the probabilistic machinery

for abstract thought. On the other hand, if the brain, and specifically the neo-cortex,

implements a generic algorithm to perform hierarchical Bayesian computations, cog-

nition may be probabilistic too (Lee and Mumford, 2003; Griffiths et al., 2008, 2010;

Tenenbaum et al., 2011).

This line of reasoning brings us to expose a fine distinction within the BBH. In most

cases, exact Bayesian computations are extremely demanding in terms of computa-

tional resources (space, that is memory, and time) and, therefore, for any problem

of a sufficiently high complexity – as almost anything faced by the visual system,

for example – we cannot expect the brain to reach the optimal solution within an

ecologically-relevant time scale, but it will have to resort to approximations (Tsotsos,

2001; Beck et al., 2012). In fact, any Bayesian system will start behaving suboptimally
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for sufficiently hard problems. With respect to the BBH, it is then typically under-

stood that computations in the brain are optimal (fully Bayesian) for ecologically-

relevant, simple sensorimotor tasks, and become gradually suboptimal for less rel-

evant or more complex settings, although the boundary between the two regimes

is unknown, and there may be several stages of increasing approximation. However,

even in the case of suboptimal behaviour, we would still expect a Bayesian brain to be

probabilistic, i. e. to qualitatively take into account probabilities, albeit not necessarily probabilistic

in the quantitatively correct form (Ma, 2012).

1.1.2 Probability theory is only half of the story

Probability theory provides us with almost no constraints on how to assign proba-

bilities (they should be non-negative and should add up to one) and with a rule for

belief updating (Bayes’ theorem), but this is only part of the story. Two fundamental

elements are missing: how to assign probabilities in the first place (a priori), and how

to convert a probability distribution over states of the world, or possible outcomes of

action, into a unified percept or motor command.

The problem of assigning a priori probabilities is, in fact, a thorny theoretical and

empirical issue with roots in the foundations of probability and the philosophy of

science (Jaynes, 2003). The practical solution when dealing with probabilities of be-

havioural stimuli consists of assuming that a biological agent’s prior expectations

should match the statistics of its environment (Seriès and Seitz, 2013). This approach

may be justified for low-level sensory stimuli out of different considerations, such as

efficient coding (Barlow, 1961; Olshausen and Field, 1997) and optimality (Ma, 2012), efficient coding

but the problem is shifted to a matter of defining what should be considered as

the ‘statistics of the environment’ (e. g., under which timescales and further assump-

tions about random processes). These definitions are always somewhat arbitrary, as

a biological agent may well have good reasons to hold probabilistic beliefs that do

not fully match the statistics of the environment, especially in the artificial setting

of a psychophysical experiment (Feldman, 2013). Moreover, even if we assume that

the ‘statistics of the environment’ are well defined in a given context, we must ask

whether (and how) an observer is able to acquire and represent such statistics, espe-

cially when they take a nontrivial form. This means that, as a further layer of compli-

cation, the observer could be subjectively Bayes-optimal – that is, optimal according subjective optimality

to his or her internal representation of the world – without meeting the externally

imposed criteria for optimality, as we will also see next. Clearly, telling whether an

observer is behaving suboptimally because of non-Bayesian computations or because

of Bayesian computations with wrong assumptions (Ma, 2012; Beck et al., 2012) con-
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stitutes a serious challenge, and, for certain cases, it may well be impossible to make

the distinction, even in theory.

Another order of problems is represented by the question of how the brain chooses

a single percept or action from a world of probability distributions. This problem of

‘estimation’ or ‘action selection’ is addressed with the help of an additional axiom

independent from probability theory per se. It is clear why we need to choose a sin-

gle course of action, as we learn from childhood that our limbs can be in one place

at a time. It may be less clear why our brain needs to choose a single percept, but

we take it as an empirical constraint of consistency. Healthy humans always experi-

ence unified percepts; even in ambiguous cases, such as bistable illusions, the brain

keeps switching between alternative hypotheses (Leopold and Logothetis, 1999); we

do not see a probability distribution over possible percepts, whatever that would look

like. There are several plausible ways to transform a probability distribution into a so-

called point estimate. For example, the brain may adopt a policy of probability matching,point estimate

probability matching by drawing a random sample from the probability distribution that represents the cur-

rent belief (Vulkan, 2000; Wozny et al., 2010). Alternatively, the brain may choose the

estimate with maximal probability among the possible choices. This strategy looks

more sensible, but still does not take into account the disparity of the consequences

of our actions. Suppose that your visual system and memory tell you that there is

60%, maybe even a good 70%, chance that the mushrooms you found in the woods

are safe to eat. You might want to reconsider your options and not simply carry on

with the ‘most likely’ scenario according to your beliefs. A more principled approach,

in analogy with variational methods from physics, would involve choosing an esti-

mate that extremizes a functional of the probability distribution under consideration.

In other words, a ‘rational’ decision maker may want to adopt a policy that statis-

tically maximizes his or her average gains (or minimizes his or her average losses),

according to some provided definition of gain or loss. This is achieved through a

mathematical object called the loss function. In the example considered above, the lossloss function

function would encode a little loss for the option of throwing away the mushrooms,

and a severe loss for the prospect of being hospitalized with mushroom poisoning.

This approach is formalized by Bayesian Decision Theory (BDT), which is essentiallyBayesian Decision

Theory Bayesian probability theory with the addition of a rule for transforming a probability

distribution into a single choice (Berger, 1985; Maloney, 2002; Körding and Wolpert,

2006). Note that the passage from belief to choice is less stringent and less fundamen-

tal than Bayes’ theorem per se (see for example Chapter 13 in Jaynes, 2003), as it is

not a logical necessity for a biological system to minimize its average losses. Other

factors may influence the observer’s choices, such as the variability of the losses, or a

willingness to minimize the maximal losses (minimax strategy); some of these devia-minimax strategy
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1.1 the bayesian brain hypothesis

tions may be accounted for by variants of BDT. Moreover, even for standard BDT, the

shape of the loss function itself is not determined by the theory, but needs to be fixed

by additional considerations (although, in simple cases, a large class of loss functions

produces very similar, if not identical, predictions). These theoretical issues aside,

BDT or minor variations thereof have been empirically shown to account extremely

well for human behaviour in a large variety of simple sensorimotor tasks, and BDT

is assumed to be part of BBH (Yuille and Bülthoff, 1996; Körding and Wolpert, 2006).

1.1.3 Bayesian computations in complex scenarios

A large number of studies on sensorimotor decision making have been concerned

with scenarios that included only simple probability distributions, mostly Gaussian.

Due to specific properties and symmetries of Gaussian distributions, these cases do

not reveal the extent to which humans perform Bayesian computations (Körding and

Wolpert, 2004b). On the other hand, studies that examined perceptual and motor

performance in more complex scenarios have yielded mixed results. Reported human

performance spans from near-optimal to largely suboptimal, suggesting that there are

limits to the human capacity of learning or handling complex distributions optimally.

An investigation to find the point at which BDT stops being an accurate model of

human behaviour may shed light on the approximations being used. The conditions

for such a turning point are yet to be determined.

In terms of methodology, it is common practice to model psychophysical data by

fitting the parameters of a single or a small number of Bayesian models via a point

estimate, such as the maximum likelihood estimate (MLE). The goodness of fit is, then, maximum likelihood

estimatecompared via some statistical method, and the most supported model and its pa-

rameters are taken as a somewhat faithful description of subjects’ behaviour. This

approach is potentially problematic because Bayesian models may be non-identifiable; non-identifiable

that is, multiple distinct models (or model parameters) may give very similar pre-

dictions (Mamassian and Landy, 2010). By using only a handful of ad-hoc models,

and by resorting to a point estimate, researchers may miss the fact that several other

models and parameter sets may be able to explain the data at least as well. This is

not necessarily a problem if the goal is merely to show that a given Bayesian observer

model can explain the data better than other models. However, potential issues arise

if such estimated models and parameters are used to draw specific conclusions about

subjects’ hidden features, such as their internal representations, unless further vali-

dations are provided (Acerbi et al., 2014a).

For these reasons, in this thesis we perform a systematic study of human perfor-

mance in sensorimotor decision-making tasks with complex (beyond Gaussian) distri-
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1.2 a primer on bayesian decision theory

butions. We extensively use Bayesian inference to estimate properties of the observers

over a vast class of possible models (van den Berg et al., 2014). Our approach allows

us to test suboptimal observers and variants of BDT, and we pay particular attention

to the problem of model degeneracy (or non-identifiability). Among the properties of

the observers that we work to reconstruct, we infer the subjects’ internal representa-

tions of the distributions of stimuli in a semi-parametric way, with few assumptions

on the underlying shape. In the following section, we review the Bayesian framework,

an essential component of our modelling and analyses.

1.2 a primer on bayesian decision theory

BDT is a normative or prescriptive theory that formalizes how rational agents ought

to make optimal decisions – under the assumption that it is rational to minimize the

average losses. Given the pivotal role of the Bayesian framework in this thesis, we

provide here a brief introduction to the subject, which is also useful for establishing

the mathematical notation used in the rest of the thesis. In the following section we

describe Bayes’ theorem and decision rules in BDT, concluding with a brief discus-

sion on the degeneracy of BDT. The interested reader is referred to Berger (1985)

for a more comprehensive introduction to statistical decision theory, and to Maloney

(2002); Körding and Wolpert (2006) for its application to the study of perception and

sensorimotor behaviour.

1.2.1 Bayes’ theorem

Derived from the basic axioms of probability, Bayes’ theorem (or rule) is a simple

equation that represents the solution of the inverse probability problem – how to com-inverse probability

pute (infer) the probability of a given hypothesis s, such as an unknown state of the

world, after observing some data (observation x). In the following we assume that

both x and s are one-dimensional real variables, but the description applies also to

multi-dimensional and discrete variables. Calculation of Bayes’ rule takes two objects

as inputs:

. The prior probability (density), or simply prior, of any hypothesis or state of theprior

world, pprior(s). As the name suggests, this is the probability assigned to any

hypothesis or state of affairs before observing the data.

. The conditional probability (density) of obtaining measurement or observation x

given an hypothesis s, pmeas (x |s ), also called the sampling probability (density).sampling probability

This is typically understood as the probability that a given state of the world
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1.2 a primer on bayesian decision theory

generates, or ‘causes’, the observed data, but it is not necessarily a causal rela-

tionship. When considered as a function of s (and not of x), as in Bayes’ theorem,

this mathematical object is called the likelihood and represents the support for likelihood

the hypothesis given the observation.3

A note on normalization: the prior is a probability distribution in s and therefore∫
pprior(s)ds = 1. However, Bayesian probability also admits improper priors that are improper priors

not integrable, as we will see below. Secondly,
∫

pmeas (x |s ) dx = 1, since pmeas (x |s )
is a probability distibution in x, but the likelihood, pmeas (x |s ) as a function of s, is

generally not normalized.

Bayes’ theorem involves the calculation of the two following objects:

. The posterior probability (density) (or simply posterior), ppost (s |x ), represents the posterior

updated probability of the hypothesis after observing the data. This is the quan-

tity we want to calculate.

. The marginal likelihood (or evidence), Z ≡ p(x) =
∫

pprior(s)pmeas (x |s ) ds , which marginal likelihood

typically serves the only purpose of a normalization constant for the posterior.

When comparing different models, the marginal likelihood may be used as a

Bayesian measure of support for each model (see Appendix A).

All these elements combine as follows to give Bayes’ theorem:

ppost (s |x ) =
pmeas (x |s ) pprior(s)∫

pprior(s′)pmeas (x |s′ ) ds′
. (1.1)

When the hypothesis space is large and complicated the calculation of the marginal

likelihood may be computationally expensive. In this case, the posterior distribution

may be evaluated by drawing samples from the unnormalized posterior via Markov

Chain Monte Carlo (MCMC) methods. Simple analytical solutions can be found when

conjugate priors are used that combine with the likelihood in a closed form which is conjugate priors

in the same class of distributions as the prior.

Let us consider the simple case of a Gaussian prior pprior(s) = N
(

s
∣∣∣µprior, σ2

prior

)
,

where N
(
x
∣∣µ, σ2 ) is a Gaussian distribution with mean µ and variance σ2. For the

measurement distribution we assume that the noise is again normally distributed

3 For the sake of clarity, some authors use a different notation to specify when they refer to the sampling
probability density (a probability distribution of x) or to the likelihood (a function of s). In our case the
context should be sufficient to avoid confusion.
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and centered on the true value of the hypothesis: pmeas (x |s ) = N
(
x
∣∣s, σ2

meas
)
. The

posterior takes therefore the form:

ppost (s |x ) =
N
(

s
∣∣∣µprior, σ2

prior

)
N
(
x
∣∣s, σ2

meas
)

∫
N
(

s′
∣∣∣µprior, σ2

prior

)
N (x |s′, σ2

meas ) ds′

= N
(

s

∣∣∣∣∣µpriorσ2
meas + xσ2

prior

σ2
meas + σ2

prior
,

σ2
measσ

2
prior

σ2
meas + σ2

prior

)
,

(1.2)

which is again a Gaussian distribution, since Gaussian distributions are conjugate

priors of Gaussian likelihoods. Note that the posterior distribution has a mean that

is linear in x, namely a weighted average of the mean of the prior and the mean of

the likelihood (the observation), with relative weights equal to the precisions (inverse

variances) of prior and likelihood. Moreover, the variance of the posterior is lower

than either individual variance – the posterior has less uncertainty than the prior or

the likelihood alone.

1.2.2 Decision rules

Bayes’ theorem tells us how to update our beliefs so as to build a posterior distribu-

tion given an observation (Eq. 1.1), but it does not tell us what we should do with the

posterior; this is the topic of decision theory.decision theory

A decision rule is a function that maps an observation onto a decision, which isdecision rule

typically interpreted as either an action or an estimate. Estimates are decisions about

the value to give to a hidden variable, such as an unknown parameter (in which

case the decision rule is also called an estimator). Decision theory aims to identify theestimator

optimal decision rule(s) according to some criteria. Since in this thesis we typically

conflate the problem of estimation and action selection, we use for decisions the

common notation of estimates, which is ŝ for an estimate of s, or more in general for

a decision related to state of the world s.

Optimality is defined with respect to a loss function L (ŝ, s), equivalently called costloss function

function, a mathematical object that represents the loss or cost – a real number – for

any specific decision, ŝ, when the world is in a given state of affairs, s. When the

objective is to estimate the state of the world, the loss function encodes a penalty for

the error between the estimate ŝ and the supposed true value s, according to some

measure of distance.

In standard BDT, the decision rule is deterministic and corresponds to the choice

that minimizes the expected loss, that is the loss averaged over all possible states ofexpected loss
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the world, weighted by their (posterior) probability. The expected loss is a function

of decision ŝ for a given observation, x, and loss function L:

E [ŝ|x,L] =
∫

ppost (s |x )L (ŝ, s) ds, (1.3)

and the optimal decision for observation x corresponds to:

hopt(x) = arg min
ŝ
E [ŝ|x,L]

= arg min
ŝ

∫
pmeas (x |s ) pprior(s)L (ŝ, s) ds,

(1.4)

where we have used the fact that, due to the argmin operation, the optimal decision

is invariant to the rescaling of any of the components of the expected loss, so we can

ignore normalization factors.

The theory does not impose any specific shape for the loss function, but typical

requirements for a well-behaved loss function of an estimator are to be piecewise

continuous and to be veridical, i.e. to have a global minimum for ŝ = s. A few loss veridical

functions are commonly chosen due to their mathematical properties, especially for

allowing a closed-form solution to Eq. 1.4.

. The quadratic loss function, Lquad (ŝ, s) = (ŝ− s)2. The optimal decision that quadratic loss

minimizes the expected quadratic loss is the mean of the posterior, as shown by

the following calculation:

d
dŝ
E
[
ŝ|x,Lquad

]
= 0 =⇒

∫
ppost (s |x )

d
dŝ

(ŝ− s)2 ds = 0

=⇒ 2
∫

ppost (s |x ) (ŝ− s) ds = 0

=⇒ ŝ =
∫

sppost (s |x ) ds.

(1.5)

This decision rule is sometimes called Bayesian least-squares, BLS, or MEAN.

The mean of the posterior is a very popular decision rule among modellers,

mostly because it is very easy to compute.

. The zero-one loss (or delta loss) that equally penalizes any choice different than zero-one loss

the true value of s, Ldelta (ŝ, s) = −δ (ŝ− s), where δ(x) is Dirac’s delta function

(Kronecker’s delta is used instead for discrete variables). The optimal choice

corresponds to the mode of the posterior, the point with maximal probability

(maximum a posteriori or MAP decision rule). This is easy to show as the expected maximum a posteriori

loss is identical to minus the posterior probability:

E [ŝ|x,Ldelta] = −
∫

ppost (s |x ) δ (ŝ− s) ds = −ppost (ŝ |x ) . (1.6)
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MAP is another very established decision rule due to its conceptual simplicity.

. The absolute loss, Labs (ŝ, s) = |ŝ− s|, for which the optimal choice is the medianabsolute loss

of the posterior:

d
dŝ
E [ŝ|x,Labs] = 0 =⇒

∫
ppost (s |x )

d
dŝ
|ŝ− s| ds = 0

=⇒
∫ ŝ

−∞
ppost (s |x ) ds =

∫ ∞

ŝ
ppost (s |x ) ds,

=⇒ Ppost (ŝ|x) = 1− Ppost (ŝ|x) =
1
2

,

(1.7)

where Ppost is the cumulative density function of the posterior and the last equa-

tion is the definition of median. The median is a robust decision rule (or estima-robust estimator

tor) since it is not affected by the tails of the distribution, unlike the mean.

Robust decision rules may be preferrable in many empirical situations since

they tend to be less vulnerable to outlier observations. However, the median

decision rule is not so common as its calculation is not straightforward.

. The inverted Gaussian loss, LGauss (ŝ, s) = −N
(
ŝ
∣∣s, σ2

`

)
, where σ` is the lengthinverted Gaussian loss

scale or width of the loss. The inverted Gaussian loss leads to another robust

estimator since the loss plateaus for values of the error a few times larger than

σ`. Mathematically, the inverted Gaussian loss has the convenient property of

allowing a continuous interpolation between the delta loss (for σ` → 0) and

a quadratic loss (for σ` � σpost, where σpost is a measure of length scale of

the posterior, such as the standard deviation). The first point follows from the

definition since limσ`→0N
(
ŝ
∣∣s, σ2

`

)
= δ (ŝ− s). For the second point, note that:

E [ŝ|x,LGauss]|σ`�σpost
∝
∫

ppost (s |x )
[
−e
− (ŝ−s)2

2σ2
`

]
ds

∣∣∣∣∣
σ`�σpost

∝
∫

ppost (s |x )
[
−1 +

(ŝ− s)2

2σ2
`

+ . . .

]
ds

∣∣∣∣∣
σ`�σpost

∝
∫

ppost (s |x ) (ŝ− s)2 ds + const,

(1.8)

where we have used the analytical expansion of the exponential and the last pas-

sage is almost exact when the length scale of the loss function is much larger

than the scale of the posterior. Constant factors in the expected loss do not

affect the decision, so Eq. 1.8 is equivalent to the expected quadratic loss. An-

other mathematical property is that, if the posterior is Gaussian (or a mixture

of Gaussians), the inverted Gaussian loss allows for a closed-form expression

for the expected loss, which can be numerically minimized with relative ease
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1.2 a primer on bayesian decision theory

(see Chapter 4). Although not as widespread as the MEAN and MAP decision

rules, the inverted Gaussian loss is an appealing choice when a robust decision

rule is needed.

These loss functions are only some textbook examples – an agent may have specific

reasons for making decisions according to other, more complex losses.

Finally, in some cases, the loss is not evaluated on the decision per se, but on the out- outcome

come or result of the decision, which is another random variable. This is typically the

case in action selection problems (as opposed to estimation), since the consequences

of action are rarely certain, e. g. due to motor noise. The extension of the expected

loss, Eq. 1.3, for considering this occurrence is straightforward:

E [ŝ|x,L] =
∫

ppost (s |x ) pout (r |ŝ )L (r, s) ds dr, (1.9)

where pout (r |ŝ ) is the probability of outcome r given decision ŝ and note that the

expectation is taken on both the unknown state of the world s and the unknown

outcome r.

1.2.3 Degeneracy of BDT

An inspection of Eq. 1.4 shows that there is an underlying degeneracy to BDT. Mul-

tiple combinations of priors, likelihoods and loss functions may lead to the same

decision rule, as we illustrate in this section.

As mentioned before, decision rules are insensitive to proper linear transformations

of the loss function (addition or multiplication by a constant):

sopt(x) = arg min
ŝ

∫
pmeas (x |s ) pprior(s) [αL (ŝ, s) + β] ds, with α > 0

= arg min
ŝ

{
α
∫

pmeas (x |s ) pprior(s)L (ŝ, s) ds + const
}

,

= arg min
ŝ

∫
pmeas (x |s ) pprior(s)L (ŝ, s) ds,

(1.10)

but this does not constitute an issue as we can always fix these degrees of freedom

by imposing some constraints (Körding and Wolpert, 2004b).

12



1.2 a primer on bayesian decision theory

Another manifest form of degeneracy is that the decision rule is invariant to a si-

multaneous multiplication and division of the prior and loss function by any function

of s:

sopt(x) = arg min
ŝ

∫
pmeas (x |s ) pprior(s)L (ŝ, s) ds,

= arg min
ŝ

∫
pmeas (x |s )

[
pprior(s) · f (s)

] [L (ŝ, s)
f (s)

]
ds,

= arg min
ŝ

∫
pmeas (x |s ) p̃prior(s)L̃ (ŝ, s) ds,

(1.11)

which means that there is at least an uncountable number of pairs of priors and loss

functions that yield the same decision rule. An example of this kind is depicted in Fig-

ure 1.1. A similar argument extends to any combination of components obtained by

multiplying the original prior, likelihood and loss function respectively by functions

f1(s), f2(s), and f3(s) such that, for any s, f1(s) · f2(s) · f3(s) = const.

A more specific form of degeneracy happens in the case of symmetric, unimodal

posteriors – this is, for example, the case with Gaussian priors and Gaussian likeli-

hoods, since the posterior is always Gaussian (Eq. 1.2). In this case, for the large class

of symmetric loss functions that are non-decreasing in the absolute value of the error

|ŝ− s|, the optimal choice is simply the maximum of the posterior (which is also the

median and the mean).

We presented a brief list of cases of degeneracy, but depending on the specific

shapes of the elements that appear in the expected loss, other degeneracies may

emerge. Moreover, in addition to exact mathematical degeneracies, there is an even

larger class of practical degeneracies that lead to empirically indistinguishable deci-

sion rules under the conditions of noise and amount of data collected in a typical

experiment.

There is another aspect of BDT that is worth mentioning, as it is related to the

same richness of the framework that leads to a redundancy of solutions. For any

measurement distribution, loss function, and decision rule (with some additional

assumptions4), there is always a prior able to induce that decision rule, a result that

is known as complete class theorem (see Berger, 1985; Jaynes, 2003).complete class theorem

All the remarks in this section point to the fact that the inverse problem of inferringinverse problem

the elements of BDT (prior, likelihood, or loss function) from a decision rule, or from

a noisy estimate thereof such as a series of responses obtained in an experiment, is

mathematically ill-posed. However, this does not mean that the enterprise is impos-

sible, since additional constraints, such as reasonable assumptions on the shape of

the probability distributions and losses, and independent validations, such as exper-

4 Namely, the decision rule needs to be admissible, which means there are no better decision rules for that
loss and measurement distribution – ignoring the prior.
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Figure 1.1: An example of degeneracy of BDT. A given decision rule does not identify
a unique pair of prior and loss function. a: A decision rule that maps an observation
x to a decision ŝ (all axes are in arbitrary units). This decision rule is compatible with
prior-loss pairs illustrated in panels b and c, and by an uncountable number of other
prior-loss pairs. For this example we have assumed a Gaussian likelihood centered
on the observation and with unit variance, but this kind of degeneracy holds for
any likelihood. b: Top, a log-normal prior. Bottom, a quadratic loss function L(ŝ, s) =
(ŝ− s)2. Each shaded line represents a slice of the loss function for a fixed value of
s, indicated by a dot. c: Top: A log-normal prior multiplied by 1 + s4. Bottom: A loss
function of the form L(ŝ, s) = (ŝ− s)2/(1 + s4).

iments that test multiple combinations of elements (Maloney and Mamassian, 2009),

may allow us to uniquely identify a restricted and well-defined set of solutions. This

topic will be a major recurrent theme in the thesis.

1.3 overview of the thesis

According to the BBH, humans – at least in their sensorimotor endeavours – behave

as Bayesian observers and actors, by building internal representations of the statistics

of the task at hand, and computing with them according to the prescriptions of BDT.

On the other hand, when the statistical context reaches a certain level of complex-

ity, we can realistically expect to measure deviations from Bayes-optimal behaviour,
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1.3 overview of the thesis

due to failures and approximations in both the representations and the computations.

The goal of this thesis is to develop tools and investigate how human observers repre-

sent and compute with complex distributions of stimuli in a variety of sensorimotor

settings; to describe the aspects in which human behaviour deviates from the pre-

dictions of standard BDT; and to understand what this entails for the BBH and for

human sensorimotor decision making in general. Ours is going to be a truly Bayesian

investigation, as we unleash the full machinery of Bayesian inference so as to analyze

the behaviour of a system, the ideal observer, that is believed to perform Bayesian

inference itself.

1.3.1 Content

In this introductory chapter we have presented the motivations and goals for our

work, and laid the bases of the methods that we use extensively in the thesis.

In Chapter 2 we analyze in depth the structure and elements of Bayesian models of

perception and action, while reviewing the relevant literature from the vantage point

of a modeller. In particular, we are interested in ways to model the observers’ internal

representations and the decision-making process itself.

In Chapter 3 we explore whether BDT is a good descriptive model of human be-

haviour in a time interval reproduction task that uses complex (non-Gaussian) dis-

tributions of durations and distinct experimentally-imposed error costs. At the same

time, we use the Bayesian machinery to infer the internal representations of durations

that subjects are able to learn. We find agreement with the experimental distributions

for low-level statistical moments, but striking mismatches for complex features, such

as bimodality.

To shed light on the origin of the discrepancies observed in the previous exper-

iment, in Chapter 4 we examine how people perform probabilistic inference in a

target estimation task that does not require observers to memorize complex statistics,

but only to compute with them. We test subjects on a large variety of distributions,

and with the help of an extensive factorial model comparison we are able to identify

several sources of suboptimality in their behaviour which suggest a simple stochastic

extension of BDT. Crucially, however, we do not observe any substantial difference in

performance between Gaussian and bimodal distributions, suggesting that the diffi-

culty that arose in the previous chapter was due to an issue with learning a complex

prior, and not computing with it.

Prompted by a secondary finding of the previous experiment, in Chapter 5 we in-

vestigate within a centre of mass estimation experiment the effects that decision un-

certainty may have on subjects’ capability or willingness to correct for mistakes. Con-
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1.3 overview of the thesis

firming the existence of a systematic bias in subjects’ responses, we assess whether

the observed effect could constitute a relevant deviation from BDT and a potential

source of suboptimality.

Finally, in Chapter 6 we critically review our findings, the techniques we have

used, and discuss how they represent a first step towards developing a common

language for describing and analyzing suboptimality. A deep understanding of ap-

proximate representations and computations is needed, if one day we want to connect

behavioural models of decision making with actual neural implementations, in the

ultimate goal of bridging all levels of Marr’s hierarchy.
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2
B AY E S I A N M O D E L L I N G O F P E R C E P T I O N A N D A C T I O N

“We have now arrived within introductory range of that very meek-spirited

creature known to modern science as the “Observer”. It is a permanent

obstacle in the path of our search for external reality that we can never

entirely get rid of this individual. [. . . ] All sciences deal only with a standard

observer, unless the contrary is explicitly stated; and psychology is no

exception to this rule.”

— John W. Dunne, An Experiment With Time

In this chapter, we review how Bayesian models have been succesfully used to char-

acterize human behaviour in perception and action. Among all possible sensorimotor

endeavours, we restrict our focus to a class of tasks with a simple, stereotyped struc-

ture that requires the subject to explicitly or implicitly estimate the value of a single

perceptual variable of interest, such as the duration of a time interval (magnitude esti-

mation; Jazayeri and Shadlen, 2010) or the position of a target for subsequent reaching

(motor planning; Trommershäuser et al., 2003a). We generically refer to these types

of psychophysical tasks as sensorimotor estimation tasks.1 Formally, these tasks can besensorimotor estimation

described by a simple statistical model, with only a few variables (i.e. nodes in a

graphical model) whose general structure is assumed to be known by the observer.

The simplicity of the experimental layout and of its mathematical description allows

for an easy manipulation of the factors involved in the sensorimotor decision-making

process. We especially focus on work that examines the role of the internal repre-

sentation of the statistical context of the task, which is the essential component ofstatistical context

any probabilistic computation. Here, we use the phrase ‘statistical context of the task’

somewhat loosely to refer to (a) the statistics of stimuli appearing in the task (or in

the natural environment, under analogous conditions), (b) the statistics of sensory

errors, and (c) the statistics of reward. These three components approximately corre-

spond, in the internal model of the observer (and actor), to (a) priors, (b) likelihoods

and (c) loss function (and motor errors that stochastically affect reward).

1 We include under this definition also psychophysical tasks that are more commonly known as discrimi-
nation tasks, in which the observer is asked to judge whether a given stimulus is ‘greater than’ another
stimulus along a relevant dimension (e.g., brighter, longer, more to the right). The rationale is that,
broadly speaking, a discrimination task at the core still involves an estimation, but the observer re-
ports differences between percepts as opposed to absolute values. Discrimination tasks are traditionally
preferred in perceptual studies since some response biases are eliminated.
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bayesian modelling of perception and action

In the majority of cases, an observer (and actor) behaves optimally if and only if

his or her internal representation of the statistics of the task match the true ones

(Ma, 2012). The question that has driven the field for a long time – are people Bayes

optimal in task X? – corresponds to asking whether people correctly perform prob-

abilistic inference and their (implicit or explicit) internal representations match the

objective statistics of the task at hand. The Bayesian framework allows modellers to

ask also other quantitative questions about people’s performance. For example, re-

searchers have sought to determine under what conditions – that is, under which

internal model of the task – the observed human behaviour could be considered

subjectively-optimal. Finally, objective (and subjective) optimality is a useful gold stan- subjectively-optimal

dard, but, as we mentioned in the previous chapter, it may be an excessively strong

– or even ill-defined – assumption for more complex tasks . Some studies extend or

tweak the standard Bayesian framework to better characterize subjects’ deviations

from (supposed) optimal behaviour. Ma (2012) define as ‘probabilistic’ the behaviour

of observers that take into account uncertainty in the task, though not necessarily in

the optimal way. We note that ‘probabilistic’ may be easily mistaken for ‘stochastic’

(i.e. randomly variable), whereas here it has a completely different meaning – for ex-

ample, a ‘probabilistic’ observer may be deterministic in his or her choices. To avoid

confusion, we coin the word Bayes-sensible to indicate a performance that is sensi- Bayes-sensible

tive to manipulations of uncertainty in the task in a qualitatively reasonable, but not

necessarily Bayes-optimal, way.

There are several review articles and commentaries that present an introduction

to the field of Bayesian psychophysics from various angles (for example, Geisler and

Kersten, 2002; Mamassian et al., 2002; Geisler, 2003; Ernst and Bülthoff, 2004; Ker-

sten et al., 2004; Yuille and Kersten, 2006; Vilares and Kording, 2011; Colombo and

Seriès, 2012; Friston, 2012; Pouget et al., 2013; Seriès and Seitz, 2013; Feldman, 2014;

Ma and Jazayeri, 2014 for phenomena in perception, with the usual bias towards

vision; Körding and Wolpert, 2006; Wolpert, 2007; Bays and Wolpert, 2007; Trommer-

shäuser et al., 2008a,b; Trommershäuser, 2009b; Maloney and Zhang, 2010; Orbán and

Wolpert, 2011; Berniker and Kording, 2011; Wolpert and Landy, 2012 focused on ac-

tion and motor planning). In their overview, these articles necessarily omit the more

nitty-gritty details of Bayesian modelling. In view of the topics of this thesis, here

we adopt, instead, the complementary and somewhat idiosyncratic perspective of a

modeller (see Knill and Richards, 1996; Maloney, 2002; Ernst, 2006; Doya et al., 2007;

Simoncelli, 2009; Ma, 2010, 2012; Ma et al., 2014), focusing on the role of (complex)

internal representations. As mentioned in the introductory chapter, a self-aware ap-

proach to Bayesian modelling is necessary in the face of possible pitfalls and critiques
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2.1 the standard bayesian observer

that might arise (Jones and Love, 2011; Bowers and Davis, 2012; Marcus and Davis,

2013).

We begin our survey of Bayesian models by introducing what we call the standardstandard Bayesian

observer Bayesian observer model of sensorimotor estimation (Section 2.1). This model, or rather

family of models, describes the structure of the typical Bayesian observer in a typical

psychophysical experiment, which applies to a large number of basic perceptual and

decision-making tasks with at most minor variations. The standard model is a simpli-

fied idealization that gives us a common framework to examine and compare features

of different studies and modelling approaches. Following the historical development

of the field, we start our review in Section 2.2 with studies that look at internal rep-

resentations of sensory noise (likelihoods). Sensory likelihoods and noise distributionslikelihoods

have been the main subject of study of sensory cue integration, so we will review

work in the area that takes a Bayesian perspective. In Section 2.3 we proceed with

an overview of studies that look at internal representations of the statistics of stimuli

(roughly, priors). Prior expectations about the stimuli are acquired from the statisticspriors

of the environment, from the statistics of the experiment itself, or a combination of

both. These studies ask a variety of questions, in particular whether and how sub-

jects’ sensorimotor behaviour matches the statistics of the stimuli (either the natural

statistics, or those of the experiment). Finally, in Section 2.4, we review work on how

human observers integrate considerations of cost and reward, usually through an

externally imposed loss function, in their estimation process or in motor planning. Inloss function

case of decisions that translate to a motor output, subjects need to take into account

the variability of their actions in their computation of losses, possibly building an

internal representation of motor uncertainty. Each section in this chapter closes with

a brief summary under the heading In this thesis, which helps the reader connect theIn this thesis

material of the section with the rest of the thesis.

2.1 the standard bayesian observer

The standard Bayesian observer model of sensorimotor estimation, or simply, from

now on, the standard Bayesian observer, represents a unified mathematical descrip-

tion of a class of models that applies very generally to human observers perform-

ing a basic psychophysical task. The idea of describing perceptual tasks within a

single statistical framework that involves a few random variables is an old one in

psychophysics (Thurstone, 1927); for example, signal detection theory has been widely

applied to detection and discrimination tasks (Green and Swets, 1988; Ma, 2010).
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2.1 the standard bayesian observer

2.1.1 The structure of the standard Bayesian observer

The standard Bayesian observer is fully defined by two formal structures, depicted

in Figure 2.1. The first structure is the generative model of the task that describes generative model

all relevant variables in the task and their objective statistical relationships (Figure

2.1a). The second structure is the internal model of the task, that is how the observer internal model

internally represents the task and its subjective statistical relationships (Figure 2.1b).2

Almost all objective elements of the generative model have a subjective counterpart

in the internal model. To distinguish between objective elements of the worlds and

subjective representations thereof we adopt the notational convention in Table 2.1.

Objective Subjective
Distributions p(·) q(·)
Parameters θ θ̃

Variables y y
Loss function

(
Lexp

)
L

Table 2.1: Notation for elements of the generative and internal models. We con-
sistently denote true, objective distributions with p(·) and their internal, subjective
counterparts with q(·). Model parameters are typically denoted with a Greek letter
in the objective generative model and with the same Greek letter with a tilde for
the corresponding subjective parameter of the internal model. To avoid clutter, we
do not explicitly distinguish between external and internal variables, as there is no
risk of ambiguity (if a variable appears within a subjective distribution, it should
be interpreted as an internal variable). Finally, some tasks impose an objective re-
ward/penalty structure encoded by the experimental loss function, Lexp, but in many
cases the loss function L is intrinsically a subjective construct of the decision-making
process.

The variables and distributions that appear in the standard Bayesian observer are:

. The stimulus s. In a sensorimotor estimation task, the stimulus corresponds to stimulus

the state of the world that the observer is asked to infer. The stimulus variable

s encodes all relevant quantitative aspects of the stimulus (such as position,

magnitude, direction of motion, etc.) and may be randomly drawn from an ex-

perimental stimulus distribution pexp (s) under the control of the experimenter.

The physical stimulus s in each trial is known to the experimenter but not di-

rectly available to the observer. The observer has or develops a prior expectation

for the stimulus, represented by the prior distribution over stimuli, qprior (s).3

2 The internal model is still a (subjective) generative model, but to avoid confusion we use the term
‘generative model’ only for the objective statistical structure of the task.

3 Since priors do not live in a vacuum, it would be more correct to write qprior(s|C), where C represents
the context, i.e. all the information available to the observer, including, for example, the recent history of
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2.1 the standard bayesian observer

s

x

ŝ

r

a. Generative model

Stimulus
presentation pexp (s)

Noisy sensory
measurement

pmeas (x |s )

Decision
process pdecision ( ŝ|x)

Response pmotor (r |ŝ )

s

x

ŝ

r

b. Internal model

qprior (s)

qmeas (x |s )

Minimize
〈L (r, s)〉

qout (r |ŝ )

Figure 2.1: Standard Bayesian observer model of sensorimotor estimation. This fig-
ure outlines the graphical representation of the standard Bayesian model of a simple
sensorimotor task, as seen from the outside (a. generative model) and from the sub-
jective point of view of the observer (b. internal model). The nodes represent the vari-
ables involved in the task, which, in general, can be multidimensional (white nodes
for hidden variables, shaded nodes for known variables, double-contour nodes for
chosen variables; see below). Arrows indicate the influence of one node on another, ex-
pressed in mathematical terms by conditional probability distributions (described in
the text). a: Generative model. This graph represents the objective generative model
of the data as observed by the experimenter. In a given trial, a stimulus s, chosen by
the experimenter, is presented to the observer. The observer (and actor) decides for
action ŝ after experiencing noisy sensory measurement x. The chosen action, further
perturbed by motor noise, yields observed response r. The shaded nodes denote ex-
perimentally accessible variables (s and r). b: Internal model. This graph represents
the observer’s internal representation of the generative model of the data. The ob-
server receives noisy sensory measurement x and has to infer the best estimate or
action ŝ, considering all the possible values of the other hidden variables (s and r).
Shaded nodes denote variables accessible to the observer (x and ŝ). In particular, ŝ
is under the observer’s choice (by default, according to the Bayesian rule of mini-
mization of the expected loss). Note that no element of the internal model is directly
accessible to the experimenter: all the decision-making process is represented in the
generative model (panel a) by the decision probability pdecision (ŝ |x ).

We use a different notation for the experimental distribution and the prior since

past trials. The notation qprior(s|C) also reminds us that priors are nothing but posteriors conditioned on
the contextually available information – according to the usual machinery of Bayesian belief updating.
Keeping this in mind, we resort to the less cumbersome notation.
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2.1 the standard bayesian observer

the relationship between the two can be a complex one (Seriès and Seitz, 2013;

Feldman, 2013). In general, s is a vector and may contain information about

multiple stimulus dimensions, but our focus in this thesis will be mainy limited

to one-dimensional stimuli.

. The internal measurement x. It is a common assumption that the stimuli are cor- internal measurement

rupted by sensory noise according to sensory measurement (or sampling) distri-

bution pmeas (x |s ). The x’s live in an internal (abstract) sensory measurement

space which, in first approximation, can be thought of as an internal representa-

tion of the stimulus space. In each trial, x is available to the observer but not to

the experimenter. The distribution qmeas (x |s ) is the observer’s representation

of the sensory noise distribution (as a function of s, it corresponds to the inter-

nal sensory likelihood). Usually, pmeas and qmeas are assumed to belong to the

same parametric family of distributions (e. g., Gaussian), but with possibly mis-

matching sensory noise parameters, such as different standard deviations σ and

σ̃. Formally, pmeas (x |s ) is always used as a conditional distribution (s is fixed,

x varies; see Figure 2.1a) and qmeas (x |s ) as a likelihood in the decision-making

process (x is fixed, s varies; see Figure 2.1b), but the actual naming convention

in the field is quite loose, with the term ‘likelihood’ applied to both.

. The decision ŝ. The decision corresponds to the course of action chosen by the decision

observer after the measurement x, a step that can generally be stochastic (see be-

low). The decision probability (density), pdecision (ŝ |x ), fully encodes the observer’s decision probability

decision-making process which is detailed in Figure 2.1b. If the decision takes

the form of a deterministic function of the measurement, as it is for example

according to standard BDT (see Section 1.2.2), then the decision probability col-

lapses to a delta function (see below, Section 2.1.2). The decision variable is

not directly accessible to the experimenter. In the internal model, the decision

variable is chosen by the observer according to some decision rule, such as min-

imization of the expected loss for a certain (subjective) loss function L (r, s).

. The response r. In each trial, the response r includes all relevant behavioural response

variables measured by the experimenter. The actual response may differ from

the planned decision ŝ due to motor noise (or other sources of outcome vari-

ability, that we either ignore or clump into the motor term), according to the

probability distribution of motor errors, pmotor (r |ŝ ), sometimes improperly called motor error distribution

motor likelihood. The observer’s estimate of motor uncertainty is encoded in the

subjective motor error distribution qmotor (r |ŝ ) (the subjective motor likelihood).

Clearly r is not accessible to the observer at the moment of decision.
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2.1 the standard bayesian observer

2.1.2 The response probability and optimal decision

Following the generative model in Figure 2.1a, the response probability (density), whenresponse probability

given stimulus s, can be computed as:

Pr (r |s ) =
∫

pmotor (r |ŝ ) pdecision (ŝ |x ) pmeas (x |s ) dx dŝ, (2.1)

which is integrated over the unobserved variables x and ŝ. The sensory and motor

noise distributions, respectively pmeas (x |s ) and pmotor (r |ŝ ), can, in principle, be ex-

perimentally assessed. The decision probability pdecision (ŝ |x ) depends on the strategy

adopted by the observer. The standard Bayesian observer is assumed to be following

Bayesian Decision Theory (BDT; see Section 1.2.2), according to the internal model

depicted in Figure 2.1b. When the decision is a deterministic function of the measure-

ment, s∗ (x), such as in BDT, the decision probability collapses to a delta function:

pdecision (ŝ |x ) = δ (ŝ− s∗ (x)), and the expression of the response probability simpli-

fies to:

Pr (r |s ) =
∫

pmotor (r |s∗(x) ) pmeas (x |s ) dx. (2.2)

The observer computes the optimal decision s∗ by minimizing the expected loss ac-

cording to his or her internal model of the task (see Figure 2.1b). The loss function

L (r, s) encodes the subjective cost of giving response r when the real stimulus is s.

Some sensorimotor tasks comprehend an explicit cost function (e. g., expressed with

a numerical score or with a financial reward for the participants), but in most other

cases the loss function is only mildly constrained by the task goals (see Section 2.4).

The optimal decision that minimizes the expected loss for a generic loss function

takes the form (see also Eq. 1.9):

s∗ (x;L) = arg min
ŝ

∫
qmotor (r |ŝ ) qmeas (x |s ) qprior (s)L (r, s) ds dr. (2.3)

A model that contains Eq. 2.3 may be referred to as an observer and actor model, sinceobserver and actor

the decision process takes into account the consequences of action. Conversely, an

observer, non-actor model would compute the expected loss directly on the decision,

avoiding an integration:

s∗ (x;L) = arg min
ŝ

∫
qmeas (x |s ) qprior (s)L (ŝ, s) ds. (2.4)

Even though an observer, non-actor model is suboptimal if the true statistics of the

task include a stochastic outcome (e. g., due to motor noise), there are experimental
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2.1 the standard bayesian observer

conditions in which differences between Eqs. 2.3 and 2.4 become empirically negli-

gible. We only specify whether or not an observer model is also an actor when it is

relevant. Generally, the computation of the optimal decision, Eqs. 2.3 or 2.4, involves

a marginalization over several unobserved variables, followed by a minimization, but

for certain classes of posterior distributions (e.g., Gaussian or mixture of Gaussians)

and loss functions (e.g., quadratic), the optimal solution, or at least the expected loss,

may afford an analytical expression.

We have seen in this section that the standard model is defined by several math-

ematical objects: (a) the sensory measurement distribution and internal likelihood,

pmeas (x |s ) and qmeas (x |s ); (b) the prior qprior(s); and (c) the loss function L(r, s),

plus possibly the objective and subjective motor error distributions, pmotor (r |ŝ ) and

qmotor (r |ŝ ), for an observer and actor model. To understand the inner workings of

Bayesian observer models, and how they have been used to capture several different

aspects of sensorimotor behaviour, we separately analyze relevant examples of each

object class in each of the following sections.

2.1.3 In this thesis

Since all psychophysical experiments analyzed in this thesis involve some version of

sensorimotor estimation, the standard Bayesian observer is the main building block

of all our modelling endeavours.

. In Chapter 3, we will develop a family of standard Bayesian observers and

actors for a time interval reproduction task. The models differ in terms of the

choice of priors, likelihoods and loss functions, but are otherwise standard.

. In Chapter 4 we will build a large class of observer models based on minor

variants of the standard Bayesian observer. In particular, we will describe sev-

eral models that depart slightly from BDT by having a suboptimal stochastic

element in the decision-making process (that is, pdecision (ŝ |x ) is not a delta

function).

. Finally, in Chapter 5 we will construct a standard observer and actor model

for a centre-of-mass estimation task in which participants’ behaviour can be

explained with a non-trivial loss function.

All of the observer (and actor) models developed in this thesis are described by the

graphical model in Figure 2.1, and they closely follow the definitions and equations

presented in this section. The only minor difference is that in all the models we will

introduce, the task-relevant dimension of the stimuli is only one (i.e., duration or
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horizontal position), so we will drop the ‘bold’ vector notation on the variables: the

stimulus becomes s, the measurement x, etc.

2.2 sensory noise distributions and likelihoods

In this section we briefly review the role of sensory noise distributions and their

subjective counterparts, the internal sensory likelihoods, in the Bayesian modelling

of perception.

2.2.1 Sensory measurement distributions

Internal measurements of proximal sensory stimuli are noisy due to several reasons,

such as physical stochasticity in the stimulus (e.g., molecular motion in chemical

sensing, photon absorption of light quanta), signal transduction and transmission

noise, and neuronal variability; see Faisal et al. (2008) for a review. Moreover, in-

ternal sensory measurements may be ambiguous due to an intrinsic ill-posedness ofill-posedness

the sensory mapping, whereby a high-dimensional stimulus s passes through an in-

termediate, lower-dimensional representation x that affords multiple interpretations

(the typical example is vision, in which the three-dimensional world is mapped to a

two-dimensional image on the retina; Poggio et al., 1985). In ideal observer theory,

all such details of the sensory processing are summarized by the objective sensory

measurement (or sampling) distribution, pmeas (x |s ). In the following paragraphs we

present various classes of sensory noise distributions and discuss how they can be

experimentally measured.

Gaussian measurement noise

The simplest and most common form of sensory noise distribution is (multivariate)

normal, which in the one-dimensional case yields:

pmeas (x |s ) = N
(

x
∣∣s, σ2

sens
)

, (2.5)

where σsens, the standard deviation (SD) of the sensory noise, does not depend on the

stimulus value; that is, the noise is homoscedastic. A rationale for Eq. 2.5, aside fromhomoscedastic noise

experimental validation, stems from the assumption that several small perturbations

contribute independently to the sensory noise, summing up to a normal distribution

according to the central limit theorem, or variants thereof. Eq. 2.5 is also a reasonable

choice, due to maximum-entropy considerations, if we do not have any information

about the noise process but we can recover its mean and variance (Jaynes, 2003).
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2.2 sensory noise distributions and likelihoods

Normally-distributed sensory measurements are the default assumption in signal

detection theory (Green and Swets, 1988).

Gaussian measurement noise with stimulus-dependent variance

An important generalization of Eq. 2.5 is given by the case in which the sensory

variance depends on the stimulus value:

pmeas (x |s ) = N
(

x
∣∣s, σ2

sens(s)
)

. (2.6)

In this case, we say that the noise is stimulus-dependent (formally, heteroscedastic), in heteroscedastic noise

the sense that sensory variability changes along with the task-relevant dimension of

the stimulus, as opposed to depending on task-irrelevant properties of the stimulus

(such as blur or contrast).

Eq. 2.6 is relevant, for example, in magnitude estimation tasks, in which the vari-

able of interest is a non-negative stimulus magnitude, such as duration, speed, or

light intensity. In these cases, the empirical Weber-Fechner’s law states that the sen- Weber-Fechner’s law

sory noise is (approximately) proportional to the stimulus value, σsens(s) ≈ W · s,

where W is Weber’s fraction. Since Weber-Fechner’s law makes the noise distribution

scale-invariant, it is also known as the scalar property of noise in the time perception

literature (Gibbon, 1977). The ‘pure’ scalar property predicts that Weber’s fraction is

constant across all scales, which has been experimentally disproved (Lewis and Miall,

2009); nevertheless, the law may still hold as a good approximation for certain ranges.

A variant of Weber-Fechner’s law that corrects for deviations at lower levels of the

noise includes a lower bound on the noise, such as σ2
sens(s) = σ2

0 +W2s2 (Getty, 1975).

The key difference between Eqs. 2.5 and 2.6 is that the former expression retains a

Gaussian shape as a likelihood (function of s), whereas the latter does not (see Section

2.2.2). A non-Gaussian likelihood constitutes a moderate to severe complication to

Bayesian computations, so sometimes it is convenient to change the representation of

the stimulus: s −→ g(s), where g(s) is an appropriately chosen sensory transform, such sensory transform

that the noise distribution in the transformed space is approximately Gaussian with

constant variance. For example, it is a common modelling choice to use logarithmic

coordinates for the stimulus in order to account for Weber-Fechner’s law or variants,

with mappings such as g(s) = log s (Jürgens and Becker, 2006; Battaglia et al., 2011;

Petzschner and Glasauer, 2011) or g(s) = log (1 + β · s), with β a constant (Knill,

1998a; Stocker and Simoncelli, 2006b). We now show the general rule for choosing

g(s), of which we give an informal proof (Acerbi et al., 2014a).

Proposition 2.1. Assume that the measurement noise distribution is Gaussian and het-

eroscedastic with variance σ2
sens(s) (see Eq. 2.6). If the noise magnitude is low compared
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2.2 sensory noise distributions and likelihoods

to the magnitude of the stimulus, σsens(s) � s, and σsens(s) changes slowly as a function of

s, the following sensory transform:

g(s) =
∫ s

−∞

1
σsens(s′)

ds′ + const, (2.7)

constructed so that g(s) is continuous, maps the stimulus scale to a space in which the

measurement noise is approximately Gaussian with constant variance (homoscedastic).

Proof. Note that dg
ds (s) =

1
σsens(s)

by construction. We can write:

g (x) = g (s + σsens(s) · η)

≈ g (s) +
dg
ds

(s) · σsens(s) · η

= g(s) + η,

(2.8)

where η is a normally distributed random variable with zero mean and unit variance.

The second passage of Eq. 2.8 uses a first-order Taylor expansion, assuming that the

noise magnitude is small compared to the magnitude of the stimulus, and changes

slowly as a function of s.4 Under these assumptions, the last passage shows that

the measurement variable in the transformed space is approximately Gaussian with

mean g(s) and unit variance.

For example, it is easy to show that for Weber-Fechner’s law, σsens(s) = W · s, the

solution of Eq. 2.7 takes the well-known logarithmic form g(s) ∝ log s. In general,

the transformation to a different stimulus scale can be seen as a mere mathemati-

cal trick performed by the modeller to simplify calculations, but in some cases it

has been argued that it corresponds to the actual encoding of stimulus values in the

brain, such as for the proposed logarithmic representation of number (Dehaene et al.,

2008). However, as Proposition 2.1 shows, it may be hard to discriminate between

linear representations with magnitude-dependent precision and nonlinear (e.g., log-

arithmic) representations with a fixed precision. Statements about the real scale of

internal representations remain controversial when based only on psychophysical

data (Dehaene, 2001; Cantlon et al., 2009).

Generic measurement noise

Finally, there are scenarios in which the measurement distribution is utterly non-

Gaussian, usually because of a complex relationship between the stimulus variable

(e.g., surface slant) and the modelled measurement variables (e.g., texture size and

shape). This is not uncommon in vision, due to operators such as projection, rotation

4 This can be formalized as a series of requirements on the higher-order derivatives of g(s).
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and scaling (Poggio et al., 1985; Bülthoff and Yuille, 1991). Finding the expression

for the measurement distributions as a function of the experimental variables can

become a considerable exercise in trigonometry; see, for example, Knill (1998a) for a

derivation of texture properties from surface slant and tilt, and Schrater and Kersten

(2000) for a computation of depth from different sets of visual cues.

Psychophysical measures of sensory noise

For many psychophysical tasks, the noise at a given value of the stimulus can be

empirically estimated through a classic measurement of discrimination performance,

the threshold of the psychometric function (Thurstone, 1927; Green and Swets, 1988; threshold

Wichmann and Hill, 2001; Kuss et al., 2005). The typical experimental procedure

consists of a two-alternative forced choice task (2AFC): in each trial, two stimuli s1 and 2AFC

s2 are simultaneously or sequentially presented to the observer and the task consists

of reporting whether a one-dimensional stimulus property of one given stimulus

(such as intensity, duration or length) is greater than the same property of the other,

e. g. s1
?
> s2.5 If we assume that the observer estimates each stimulus independently,

the probability of responding ‘s1 > s2’ in a 2AFC task is given by:

Pr (‘s1 > s2’|s1, s2) =
∫

s∗(x1)>s∗(x2)
pmeas (x1 |s1 ) pmeas (x2 |s2 ) dx1dx2

≈
∫ ∞

−∞
pmeas (x1 |s1 )

{∫ x1

−∞
pmeas (x2 |s2 ) dx2

}
dx1,

(2.9)

where the domain of integration of the first integral is for s∗(x1) > s∗(x2), s∗(x) being

the optimal estimate for the stimulus given internal measurement x. The second pas-

sage follows if the optimal estimate, s∗(x), is approximately equal to the sensed noisy

measurement x, which is true in the absence of biases to the decision-making process

(a flat prior, a well-behaved and symmetric loss function, and with the reasonable

assumption that the internal likelihood peaks at the measurement). If the noise distri-

bution is Gaussian with constant noise (Eq. 2.5), Eq. 2.9 reduces to a simple sigmoidal

form:

Pr (s1 > s2|s1, s2) =
1
2

[
1 + erf

(
1√
2
· s1 − s2√

2σsens

)]
. (2.10)

The noise σsens can be recovered by fitting the psychometric curve, but traditionally

it was taken as the threshold value, s1 − s2, at which discrimination probability is

∼ 76% (the value of a cumulative Gaussian 1√
2

of a SD from the mean). The actual

psychometric function usually includes a lapse term to allow for occasional mistakes

5 When the stimuli are presented sequentially, the layout is also called two-intervals forced choice (2IFC).
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and improve the robustness of the inference (Wichmann and Hill, 2001). Recent com-

putational developments have allowed researchers to look into subtle issues of recon-

structing psychometric curves, such as non-stationarity (Fründ et al., 2011), recency

and order effects (Raviv et al., 2012), erroneous estimates of the lapse rate (Prins,

2012), and systematic response biases caused by task-irrelevant stimulus attributes

(Jogan and Stocker, 2014).

2.2.2 Internal sensory likelihoods

The subjective likelihood, qmeas (x |s ), appears in the inverse problem of recovering

stimulus s given measurement x (Eq. 2.3). The likelihood formally encodes the ob-

server’s internal representation of the uncertainty associated with a sensory mea-

surement (roughly, its ‘error bars’). The representation and availability of sensory

uncertainty has been receiving increasing attention in the recent years (see Orbán

and Wolpert, 2011; Bach and Dolan, 2012 for reviews). Many observer models simply

assume that qmeas (x |s ) ≡ pmeas (x |s ), but here we review studies that explicitly ask

whether the observer’s internal representation is equal to the actual measurement

distribution: qmeas (x |s ) ?
= pmeas (x |s ), a prerequisite of optimal behaviour. There are

essentially two ways to probe the internal representation of noise: either by requiring

the observer to explicitly evaluate his or her confidence in a perceptual judgment (e.g.,

Barthelmé and Mamassian, 2009, 2010), or by tracking how the observer’s implicit be-

lief about measurement noise alters his or her behaviour. In this thesis we deal with

the latter approach.

Note that, according to BDT, the sensory likelihood will generally interact with the

prior and loss function to implicitly drive a sensorimotor decision (Eq. 2.3). However,

since we will extensively describe priors and loss functions in the following sections,

here we consider studies whose main focus is strictly on sensory likelihoods. Ar-

guably, a field that has been deeply involved with the Bayesian examination of sen-

sory likelihoods, their shape and interactions (with a minimal contribution of other

elements of BDT) is sensory cue integration (Ernst and Bülthoff, 2004; Trommershausersensory cue integration

et al., 2011; Fetsch et al., 2013). A ‘cue’ is informally understood as any signal that car-

ries information on the state of some property of the environment, both within and

across the senses (Fetsch et al., 2013). The leading question in most of these studies

is whether (and how) human observers combine distinct, redundant cues about ex-

ternal sensory stimuli in a statistically optimal fashion, according to the principles of

Bayesian inference (which correspond to maximum-likelihood estimation when the

prior is absent and the loss function is assumed to be a zero-one loss).
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The recurrent expression ‘optimal cue integration’ means that the observer com-

bines cues as if he or she had a correct internal representation of the likelihoods

associated with each cue.6 Note that, even if the brain performs Bayesian compu-

tations, the likelihood needs not have a separate representation from the stimulus

itself: stimulus uncertainty could be automatically encoded in the response patterns

of populations of neurons (Ernst and Banks, 2002; Ma et al., 2006).

Gaussian likelihoods and linear cue integration

We start by revising the idealized cue-combination experiment in the case of two in-

dependent cues. The typical experimental methodology is called perturbation analysis perturbation analysis

(Young et al., 1993). The observer is presented with two slightly discrepant sensory

cues s1, s2 (e.g., stereo and texture, or visual and tactile feedback), and the task re-

quires him or her to estimate the value of an underlying stimulus s (e.g., the slant

of a surface, or the height of a bar). It is easy to show that in the case of Gaussian

likelihoods and measurement distributions, the observer’s estimate s∗ is distributed

as another Gaussian variable with mean and variance given by:

E [s∗] =
s1σ̃2

sens2 + s2σ̃2
sens1

σ̃2
sens1 + σ̃2

sens2
(2.11)

Var [s∗] =
σ2

sens1σ̃4
sens2 + σ2

sens2σ̃4
sens1(

σ̃2
sens1 + σ̃2

sens2

)2
σ̃2

sens#≡σ2
sens#=⇒ σ̃2

sens1σ̃2
sens2

σ̃2
sens1 + σ̃2

sens2
, (2.12)

where σ2
sens# denotes the measurement variance and σ̃2

sens# is the likelihood variance,

for cues # = 1, 2. Note that: (a) the mean estimate is a weighted linear combination of

the sensory cues s1, s2, with weights proportional to their relative reliabilities, respec-

tively σ̃2
sens2

σ̃2
sens1+σ̃2

sens2
and σ̃2

sens1
σ̃2

sens1+σ̃2
sens2

; and (b) if σ̃2
sens# ≡ σ2

sens# for both cues, the variance

of the estimate is smaller than the variance of each individual cue, and incidentally

corresponds to the variance of the posterior.7 A strong case for optimal cue combina-

tion can be made only if both the mean and the variance of the combined estimate

match Eqs. 2.11 and 2.12, with σ̃2
sens# = σ2

sens#. Otherwise, for example, the mean esti-

mate alone could match Eq. 2.11 via a suboptimal probabilistic cue-switching strategy,

whereby the observer chooses one cue, ignoring the other, with probability propor-

tional to its reliability (Ghahramani et al., 1997; Landy and Kojima, 2001).

Early studies showed evidence supporting the idea that human observers take into

account cue reliability when computing cue weights, such as in depth estimation

from texture and stereo (Young et al., 1993), target estimation from audio and visual

6 Modulo non-identifiable features; for example, with Gaussian likelihoods, optimal behaviour depends
only on the ratio of the variances.

7 It is not true in general that the variance of the estimate equals the variance of the posterior.
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cues (Ghahramani et al., 1997), edge localization from texture information (Landy

and Kojima, 2001) and spatial localization from visual and auditory signals (Battaglia

et al., 2003). Reduction of the combined variance of the estimate was found in judg-

ing hand position from visual and proprioceptive feedback (van Beers et al., 1996),

or depth from texture and motion (Jacobs, 1999). Strong empirical support for near-

optimal cue integration, however, comes from studies that simultaneously analyzed

the mean and variance of the combined estimates under conditions with different

noise levels (e.g., added blur to visual feedback), finding a good match with predic-

tions from individual variances (see Ernst and Bülthoff, 2004 for a review). Examples

include tasks such as length estimation from visual and haptic information (Ernst

and Banks, 2002; Gepshtein and Banks, 2003), target localization from visual and au-

dio signals (Alais and Burr, 2004), and shape information from realistic (non-virtual)

visual and haptic cues (Helbig and Ernst, 2007).

To sum up, there is considerable evidence that human observers perform near-

optimal linear cue-integration in several perceptual tasks, suggesting that the nervous

system has a method to quickly evaluate the sensory noise – and consequently adjust

the width of the likelihood – associated with each cue. Although there have been

various proposals, details of such a mechanism are unknown to date, as they were

over a decade ago (Jacobs, 2002).

Non-Gaussian likelihoods and nonlinear cue integration

In the studies considered in the previous paragraphs, the likelihoods were (approx-

imately) Gaussian, and a weighted linear combination of the cues was the optimal

solution. Even though cue reliability changed among different experimental condi-

tions, this information could have been provided by ancillary cues, such as blur or

viewing angle (Landy et al., 1995; but see Barthelmé and Mamassian, 2010). A dif-

ferent case arises when cue uncertainty depends on the stimulus value itself (see Eq.

2.6), which yields a non-Gaussian likelihood and therefore a nonlinear optimal com-

bination. In practice, if the discrepancy between the cues is not too large, the solution

can still be linearized around the stimulus – but, crucially, the weights would not be

constant, changing across different stimulus magnitudes (Yuille and Bülthoff, 1996;

Knill and Saunders, 2003). This scenario is arguably more complex than linear cue

combination and it is unclear, a priori, whether human observers would have such a

flexible internal representation of sensory noise.

Knill (1998b) develops an ideal observer model for discriminating surface orienta-

tion from texture that includes several non-Gaussian likelihoods. Qualitatively, hu-

man observers behave like the ideal observer (Knill, 1998a), although their perfor-

mance is typically suboptimal. Saunders and Knill (2001) show that human observers
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nonlinearly combine stereo and skew-symmetry cues to estimate the slant and tilt of

a planar figure, in broad agreement with a Bayesian observer model. Knill and Saun-

ders (2003) perform a tighter test of whether humans adopt an internal likelihood of

stereo and texture information from slant that correctly matches the slant-dependent

measurement noise. Their results show a reasonable quantitative agreement at the

individual level, with possibly some degree of suboptimality.8 In another study, near-

optimal cue combination was found for slant judgement from texture and disparity

cues, under a variety of slants and viewing distances (Hillis et al., 2004).9 In a dif-

ferent domain, Drewing and Ernst (2006) show that cue weights qualitatively follow

the change predicted by individual cue reliabilities in a curvature discrimination

task from haptic cues of force and position, whose noise changes as a function of

curvature. In the case of duration estimation, for which the noise follows the scalar

property, recent work supports close-to-optimal integration of audio-visual ‘filled’ in-

tervals (Hartcher-O’Brien et al., 2014).

All these studies provide evidence that human observers’ likelihoods take into ac-

count stimulus-dependency (heteroscedasticity) of noise, with possibily some amount

of suboptimality. It is unclear whether humans follow a fully nonlinear integration

strategy or rather a locally-linear approximation, as in most tested models.

Non-Gaussian likelihoods from mixture models

Another natural way of obtaining a non-Gaussian likelihood is when the measure-

ment noise is believed to emerge from a mixture of different sources, so that the noise

distribution itself is non-Gaussian. The combination of multiple distributions with dif-

ferent variances may yield a distribution that is heavier-tailed than a Gaussian. Heavy heavy-tailed likelihoods

tailed distributions are associated with ‘robust’ estimation, since, as likelihoods, they

are implicitly more tolerant to outliers in the presence of a big discrepancy between

cues. For example, mixture models have been succesfully used in slant perception

to represent likelihoods that encode multiple hypotheses about the world, such as

properties of textures (texture can be isotropic or homogeneneous; Knill, 2003) and

property of shapes (figures may be circles or generic ellipses; Knill, 2007). Other stud-

ies showed that psychophysical data were well described by observer models with

heavy-tailed likelihoods, such as in a slant discrimination task with disparity and

8 The authors conclude that, on average, stereo cues appear to be over-weighted with respect to texture
information, according to the psychophysical data. However, this discrepancy may emerge since the
model used in the study computes ‘optimal’ cue weights based on a locally-linear approximation of the
optimal, nonlinear solution – but the approximation may be poor, since the noise exhibits large changes
as a function of slant (Knill and Saunders, 2003, Figure 5).

9 The locally-linear approximation in this study seems to hold due to a moderate variation of texture
noise as a function of slant (compare Figure 4 in Hillis et al., 2004 with Figure 5 in Knill and Saunders,
2003).
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texture cues (Girshick and Banks, 2009) and in an audio-visual target estimation task

(Natarajan et al., 2009).

These studies provide some evidence that human performance shows qualitative

effects of robust cue integration in the presence of large discrepancies between cues.

However, we do not know whether such behaviour was ‘optimal’, because the heavy-

tailed noise distributions were postulated and not measured separately (Girshick

and Banks, 2009 did measure single-cue reliabilities, but assuming a single-Gaussian

model). More generally, it is unclear whether statements of optimality with non-

Gaussian likelihoods can be proved at all, beyond qualitative agreement, since changes

in higher-order moments of the sampling noise distribution may have large effects

on the predicted optimal behaviour, but such fine details of noise distributions are

difficult to measure experimentally (Rosas and Wichmann, 2011). Also, ‘robust’ cue

integration (or segregation) in the presence of highly discrepant cues is probably bet-

ter described within a causal (or structural) inference framework in which the observercausal inference

needs also to infer the causal structure of the task, that is, infer whether the perceived

sensory cues are caused by a single event or by distinct, unrelated events (Körding

and Tenenbaum, 2007; Körding et al., 2007; Hospedales et al., 2007; Sato et al., 2007;

Natarajan et al., 2009). A discussion of causal inference models is beyond the scope

of this chapter.

Near-optimal internal models of sensory noise

There are a few studies that show that human performance at cue combination can

be far from optimal, suggesting that observers may have a wrong internal model of

cue reliability. Some effects of suboptimality may be due to the presence of correla-

tion between cues which are not accounted for by basic observer models (Oruç et al.,

2003). Then, there are cases in which human observers simply seem to behave sub-

optimally, such as in a slant discrimination task from texture and haptic cues (Rosas

et al., 2005) or from texture and motion cues (Rosas et al., 2007). Another study found

evidence for probabilistic cue switching, as opposed to cue integration, in a sensori-

motor pointing task that required observers to combine visual and proprioceptive

force information (Serwe et al., 2009).10

Nevertheless, almost all cue integration studies agree that humans take sensory un-

certainty into account when combining different cues, and we have seen a remarkable

number of studies that show that humans perform close to optimally in a variety of

simple perceptual tasks. Overall, this large body of work provides evidence that inter-

nal sensory likelihoods are typically well-correlated with the corresponding sensory

10 Although a later study found a performance closer to optimal with a moderately different setup (Serwe
et al., 2011).
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noise distributions, possibly due to a continuous process of inter-sensory and intra-

sensory calibration, so that the simplifying assumption of qmeas (x |s ) ≈ pmeas (x |s )
may be acceptable, at least as a first approximation, when dealing with natural sen-

sorimotor tasks.

2.2.3 In this thesis

Sensory noise needs to be accurately modelled – even when it is not the main subject

of enquiry – because any assumption about measurement distributions and likeli-

hoods will affect the inferences about the other elements of decision-making.

. In Chapter 3 we will verify whether the sensory noise distributions (and associ-

ated likelihoods) in a time interval reproduction task follow the scalar property,

or are instead more likely to have constant variance. In order to validate our

modelling, we will use the psychophysical methods described in Section 2.2.1

to independently measure subjects’ sensory noise (Weber’s fraction) in a 2AFC

task, checking whether there is a good correlation between the independent

estimate and the model-recovered parameters.

. In Chapter 4 we will introduce a target estimation task that maps to a sim-

ple model of probabilistic inference wherein observers need to integrate a ‘cue’

with a visually provided ‘prior’. Given the somewhat artificial nature of the

sensorimotor task, we will not assume that observers know the true values of

the reliability of the cue, so qmeas (x |s ) 6≡ pmeas (x |s ) as per many of the studies

seen in Section 2.2.2, and, in fact, we will report consistent mismatches. We will

also separately assess additional sensory noise that observers may have in judg-

ing the cue position, which is used in a sub-class of models. We will see that

sensory noise in estimating the position of the cue does not play a major role in

determining observers’ suboptimality in the task.

. Finally, the centre-of-mass estimation task in Chapter 5 requires the observer to

estimate a ratio between the areas of two disks, for which we assume Weber-

Fechner noise that we model in logarithmic space, as per the method described

in Section 2.2.1. Given the perceptual nature of the task, and in order to reduce

model complexity, here we will assume that qmeas (x |s ) ≡ pmeas (x |s ).
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2.3 priors

Priors are probably the most distinctive element of the Bayesian approach – so much

so that in the absence of a prior, Bayesian estimation becomes ML estimation and

BDT falls back to statistical decision theory (Maloney and Zhang, 2010). Priors can

be described as belonging to two broad categories (Seriès and Seitz, 2013): contextualcontextual and

structural priors priors are acquired and apply in a limited context, such as the experimental session;

structural priors are learnt from the environment on a longer timescale and apply in

a more general setting – they may even be built-in in the perceptual system (such as

chicken’s innate prior that light comes from above; Hershberger, 1970).

2.3.1 Priors and empirical distributions

In the standard Bayesian observer, the prior represents the subjective expectation

about the value of a stimulus s in a given context, expectation that manifests itself

in measurable perceptual and decision-making biases. The objective counterpart of a

prior is the empirical distribution – just as the internal likelihood has a parallel in theempirical distribution

objective measurement distribution – although the relationship between prior and

empirical distribution needs some explaining, as it depends on the category of prior.

For a contextual prior developed in the course of an experiment, the empirical

distribution corresponds to the experimental probability of the stimulus (which may

change in time, depending on the stochastic process generating the stimulus). In the

simplest case, the statistics of the stimuli in the experiment are kept constant, with

i.i.d. stimuli ∼ pexp(s); that is, the empirical distribution is stationary. Structural pri-stationarity

ors, instead, have been shaped on a much longer timescale by the statistics of the

environment. Therefore, the empirical distribution to look at, assuming (and ensur-

ing) that there is no learning in the course of the experiment, is not the distribution

of stimuli in the experiment, but the ‘ecological prior’ given by the natural statistics

of the stimulus for the dimension under consideration (e.g., speed, orientation).

The statement that, in the case of optimal decision-making, the prior ought to

match the (stationary) empirical distribution presents subtle issues (Feldman, 2013).

First, the distinction between contextual and structural prior is somewhat arbitrary,

especially because structural priors can be quickly overridden (Adams et al., 2004;

Sotiropoulos et al., 2011). Second, in the case of structural priors, even assuming that

we can overcome the practical difficulties in collecting data about natural statistics of

the stimuli, it is not always clear what exactly constitutes the reference class of stimuli

to take into account. Finally, other assumptions about the generative process of the

stimulus, such as stationarity, are likely to be violated in the environment and, there-
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fore, by human observers (Raviv et al., 2012; Kwon and Knill, 2013). In other words,

we should not necessarily expect a naïve match between the observer’s prior and the

empirical distribution (Feldman, 2013). Nonetheless, the Bayesian framework can be

used to investigate the relationship between the empirical distribution – acquired in

the experiment, from the environment, or both – and the observer’s prior. In this anal-

ysis, we define ‘optimality’, in quotation marks, as the case in which the observer’s ‘optimality’

prior seems to match the chosen empirical distribution – the quotes remind us of the

caveats of such a definition.

2.3.2 Learning contextual priors

In this section we briefly review how human sensorimotor behaviour in sensorimo-

tor estimation tasks is affected by statistical features of the experimental distribu-

tion of stimuli. The basic psychophysical experiment has the following stereotyped

form: in each trial, the observer is exposed to a random stimulus s drawn from a sta-

tionary experimental distribution pexp(s), such as a Gaussian distribution with given

mean and variance (in almost all cases, the stimulus space under consideration is one-

dimensional). In different conditions, usually mixed within the experiment, sensory

noise is manipulated – e.g., by adding blur or altering contrast – to affect the width

of the measurement distribution, and, therefore, of the likelihood. Alternatively, the

noise distribution is kept fixed, but observers perform on multiple experimental dis-

tributions p(1)exp(s), p(2)exp(s), . . . in different (blocks of) sessions. Subjects are trained on

hundrends or thousands of trials per condition, usually till performance plateaues,

to ensure that prior expectations are adapted to the statistics of the experiment.

Gaussian contextual priors

We start by reviewing whether human observers are sensitive to the low-order mo-

ments (mean and variance) of a distribution of stimuli. The mathematics of the stan-

dard Bayesian observer in the case of a Gaussian prior with Gaussian likelihood and

measurement distribution is remarkably similar to that of the cue combination case

(Eqs. 2.11 and 2.12). Assuming any symmetric, veridical loss function, the estimate s∗

is distributed as another Gaussian variable with mean and variance given by:

E [s∗] =
sσ̃2

prior + µ̃priorσ̃2
sens

σ̃2
sens + σ̃2

prior
(2.13)

Var [s∗] =
σ2

sensσ̃
4
prior(

σ̃2
sens + σ̃2

prior

)2 (2.14)
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where µ̃prior and σ̃2
prior denote respectively the (subjective) mean and variance of the

prior. Comparing Eqs. 2.13 and 2.14 with their counterparts, Eqs. 2.11 and 2.12, we

can see that the prior effectively acts as a second cue. Incidentally, this means that the

considerations we made in Section 2.2.2 with respect to Gaussian likelihoods hold for

the case of Gaussian priors as well. In particular, Bayesian biases are characterized

by a response that is the average of the mean of the prior and the location of the

current stimulus, weighted by their relative reliabilities (Eq. 2.13). Also, due to the

mathematical equivalence between a prior and an extra cue, sometimes prior infor-

mation can be modelled as a ‘cue from memory’ (e. g., Brouwer and Knill, 2007, 2009).

This duality shows that the distinction between priors and likelihoods is somewhat

arbitrary.

The main observables of interest here are the slope and bias (i.e., constant error)slope and bias

exhibited by the mean response as a function of the stimulus, which should be a

linear function (Eq. 2.13). As per the cue combination case, a test of ‘optimality’ needs

to independently measure the sensory noise for each experimental manipulation, to

verify that the weights given to prior and cue respect the actual statistics of the task.

Unlike cue combination experiments, the compliance of the variance of the estimate

with Eq. 2.14 is rarely checked, because other sources of variability, such as motor

noise, confound the measurement.

Körding and Wolpert (2004a) showed in a seminal work that humans behave in

qualitative agreement with the predictions of Bayesian integration in sensorimotor

learning. In their task, subjects had to perform a reaching movement to a fixed target,

receiving a visual cue about hand position only at a point halfway through the move-

ment. Unbeknownst to the participants, the visual cue was displaced to the right

with respect to the true hand position, with the amount of displacement drawn from

a Gaussian distribution, pexp(s), with µexp = 1 cm and σexp = 0.5 cm. Also, the visual

cue was provided with different levels of added noise (∼ blur). Crucially, participants

received performance feedback (true movement endpoint position) only in trials with

no added noise, preventing them from adjusting their endpoint with a hill-climbing

strategy in the noisy conditions. Körding and Wolpert (2004a) report that subjects,

after 1000 training trials, fully compensated for the average displacement in the ab-

sence of the visual cue (σmeas = ∞), by pointing 1 cm to the left of the target. Moreover,

when the cue was present, participants’ corrections were in-between the displacement

suggested by the cue and the mean displacement, qualitatively weighted by cue reli-

ability. Notably, this work does not show that human observers were ‘optimal’ in the

task, since the amount of sensory noise associated with the different levels of blur

was not independently measured. Nevertheless, it was the first study to clearly show
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that participants combined prior information acquired during the experiment and

available sensory feedback in a statistically sensible fashion.

Tassinari et al. (2006) importantly extended the above result to a rapid pointing

task in which they also measured each observer’s sensory and motor noise in sepa-

rate experiments. These independent estimates allowed the authors not only to test

whether subjects were ‘optimal’ in the task, but also to identify additional sources

of suboptimality in subjects’ performance. The study concludes that participants reli-

ably learnt the variance of the experimental distribution and behaved in a statistically

sensible way, but they were hindered by other sources of variability (see Chapter 4).

Other studies that manipulated the experimental distribution showed that human

observers sensibly adapt to changes in the mean and variance of the distribution

of stimuli, namely by changing the slope and bias of their responses in the correct

direction. For example, participants gave less weight to the prior mean when the ex-

perimental distribution was broader: in a force estimation task (Körding et al., 2004b),

in a sensorimotor timing task (Miyazaki et al., 2005), and in a toy coin-catching task

(Berniker et al., 2010). Similarly, human participants rapidly adapted their biases to-

wards the mean of each different experimental distribution, as seen in a temporal

order judgment task (Miyazaki et al., 2006), in a time interval reproduction task (Jaza-

yeri and Shadlen, 2010; Cicchini et al., 2012), or in a distance estimation task (Pet-

zschner and Glasauer, 2011). As per the analogous cue-integration case, when the

error follows Weber-Fechner’s law the ‘optimal’ solution does not take a linear form,

Eq. 2.13, anymore, and the weight given to the sensory cue decreases with the magni-

tude of the stimulus (Jazayeri and Shadlen, 2010; Petzschner and Glasauer, 2011). We

will explore this case more in detail in Chapter 3.

This large body of work shows overwhelming evidence that humans adapt to the

low-order statistics (mean and variance) of experimental distributions of stimuli in

a variety of sensorimotor estimation tasks, in broad agreement with the predictions

of Bayesian integration.11 Moreover, the simple framework provided by the standard

Bayesian model is able to elegantly explain phenomena normally observed in psy-

chophysical research, such as (a) the central tendency or regression to the mean, the fact central tendency

that responses are biased towards the mean of the experimental distribution; and (b)

the range effect, the fact that the biases depend on the width of the stimulus distri- range effect

bution (Petzschner, 2013). However, almost all the studies we presented up to now

only trained participants either on Gaussians, or on uniform distributions that were

treated as Gaussians in the analysis, leaving the open question of how humans would

react to more complex distributions.

11 We cannot be more precise because here, unlike in the cue combination field, requirements of full
‘optimality’ are rarely thoroughly checked, with a few notable exceptions (e. g., Tassinari et al., 2006).
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Complex contextual priors

In this section we examine a few examples of how humans perform in the presence of

experimental distributions that present more complex statistical features, such as non-

zero higher order moments (skewness, kurtosis) and multiple modes. We focus on

the complexity of the shape of stationary, one-dimensional distributions. Other forms

of complexity, such as multiple dimensions or spatio-temporal correlations between

trials are beyond the scope of this brief review.

Körding and Wolpert (2004a,c) trained participants in the reaching task described

in the previous section using also a bimodal and a trimodal distribution. In order for

people to learn such distributions, performance feedback was provided on every trial,

all trials had no added sensory noise, and the number of trials was doubled (2000

training trials and 2000 test trials). Even so, subjects showed only qualitative learning

in the case of the trimodal distribution (Körding and Wolpert, 2004c). Subjects’ biases

were consistent with the learning of the bimodal distribution, although individual

performance showed a large amount of variability (Körding and Wolpert, 2004a).

Chalk et al. (2010) investigated whether human observers can implicitly learn a

bimodal distribution of motion directions. Motion stimuli were tested at different

levels of contrast (corresponding to different amounts of sensory noise), with one of

the levels being near-threshold. After the estimation, participants also had to report

whether a stimulus was present in the trial (detection task); occasionally a trial had

no moving stimuli. Chalk and colleagues found that participants’ responses were

biased, on average, towards the most presented directions of motion, in a way consis-

tent with Bayesian integration; a model comparison rejected other possible strategies

that did not combine a prior with noisy sensory stimuli. Moreover, participants oc-

casionally ‘hallucinated’ stimulus motion in the trials with no stimuli, reporting a

false positive in the detection task. Interestingly, the distribution of responses, condi-

tioned on a false positive detection, qualitatively reproduced the experimental distri-

bution, suggesting that participants were ‘hallucinating’ from the prior. The authors

fit the estimation data with a Bayesian observer model equipped with a paramet-

ric prior, finding a qualitative match between the parameters of the reconstructed

priors and the experimental distribution. This study presents evidence that human

observers can approximately learn bimodal distribution relatively quickly (the entire

experiment lasted 1700 trials, but biases emerged already “within few minutes of

task-performance”; Chalk et al., 2010).

More recently, Gekas et al. (2013) used a variant of the above-described motion

estimation task to test whether participants could learn two experimental distribu-

tions at once, with distinct distributions implicitly identified by different stimulus

colours. The distributions were uniform and bimodal in one experiment, bimodal
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and trimodal in another. The findings were mixed: observers learnt an aggregate

distribution in the former case (ignoring colour), and developed distinct biases in

the latter, but hardly learnt the true underlying distributions. Interestingly, a similar

question was addressed in a distance production-reproduction experiment that ex-

posed participants to two distinct experimental distributions, identified by arbitrary

symbolic cues (Petzschner et al., 2012). This study found that participants could learn

the two distinct distributions. A major difference between the two studies is the fact

that Petzschner and colleagues used uniform distributions with different means, as

opposed to complex multimodal distributions.12

These studies provide preliminary evidence that participants are affected by higher-

order statistical features of the context, but whether human observers develop Bayes-

sensible biases, and the speed of this process, seems to change wildly across exper-

iments and individuals, without an obvious pattern. Clearly, it could always be the

case that participants did not experience enough trials to learn such complex features.

To understand the complexity of prior expectations, we examine, in the following sec-

tion, the shape of structural priors, that possibly had a lifetime to develop.

2.3.3 Structural priors

It has been proposed that several systematic biases of human perception and action,

including a number of different illusions, can be explained as a process of proba-

bilistic inference, whereby noisy sensory information is combined with an ecological

prior that is ‘optimally’ adapted to the statistics of the environment (see Geisler and

Kersten, 2002; Feldman, 2013 for a critical analysis). Contrarily to the case of con-

textual priors, which can be more or less directly manipulated via the statistics of

stimuli in the experiment, structural priors are not under the direct control of the

experimenter. To solve this issue, researchers adopt one or more of the following

techniques when choosing how to model structural priors: (a) priors are postulated,

possibly in a parametric form with a few free parameters that are fit from the data; (b)

priors are expressed in some semi-parametric or non-parametric form and (almost)

entirely recovered from the data; (c) priors are reconstructed by the statistics of the

environment. Method (c) is the approach with the strongest predictive appeal, as (a)

and (b) alone may feel somewhat circular and ‘post hoc’ (Bowers and Davis, 2012;

Marcus and Davis, 2013). However, in many cases measuring the natural statistics of

12 Another relevant factor is that the cue distinguishing the two distributions was explicit (a text specifying
‘short’ or ‘long’) for Petzschner et al. (2012) and only implicit (stimulus colour) in Gekas et al. (2013). In
particular, even though humans have been shown to implicitly learn arbitrary correlations between cues
after extensive training (Ernst, 2007), there is evidence that colour may be a ‘bad’ cue for categorization
(Gorea and Sagi, 2000; Seydell et al., 2010; Howard et al., 2013), except when related to stimuli that are
naturally associated with colour, such as light sources (Kerrigan and Adams, 2013).
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stimuli represents a major technical challenge. In such situations, methods (a) and (b)

can still provide useful insights, especially if they are able to predict a novel illusion

or unify several unexplained phenomena (Colombo and Hartmann, 2014).

As a ‘textbook’ example, Girshick et al. (2011) measured the statistics of orienta-

tions of line segments from a large database of natural images and had human partic-

ipants perform an orientation discrimination experiment. A Bayesian observer model

that incorporated a non-parametric prior was fit to the individual psychophysical

data, finding that the shape of each subject’s prior qualitatively matched the nat-

ural statistics of orientations. In the rest of this section we will examine in detail

a well-known case study that has prompted the development of several modelling

techniques.

A case study: the slow-speed prior in motion perception

A paradigmatic example of structural prior is provided by the slow-speed prior, whichslow-speed prior

has been proposed as a unifying explanation for a variety of visual illusions in motion

perception (Weiss et al., 2002; see Geisler and Kersten, 2002; Seriès and Seitz, 2013

for a commentary). Weiss and colleagues built an observer model with a Gaussian

likelihood (based on a simple model of pixel intensity noise) and a Gaussian prior on

speed centered on zero. The specific shape of the prior was chosen for mathematical

convenience, but the model was, nonetheless, able to qualitatively explain a wide

range of classical effects in motion perception (Weiss et al., 2002). The model has been

subsequently improved with a more realistic, nonlinear dependence of the likelihood

on contrast (Hürlimann et al., 2002). Interestingly, a Gaussian prior for slow speeds

has been recently proposed to explain also several tactile illusions, such as length

contraction and the ‘cutaneous rabbit’ (Goldreich, 2007; Goldreich and Tong, 2013).

Further support for the slow-speed prior in visual motion perception was given

by Stocker and Simoncelli (2006b), who non-parametrically inferred the shape of the

speed prior (and the sensory noise) from psychophysical data. The likelihood, as-

sumed to be equal to the objective noise distribution, was Gaussian with noise that

depended separately on speed and contrast. The noise dependence on speed was

accounted for via a transformed sensory mapping in logarithmic space (see Section

2.2.1) while the dependence on contrast was given a neurally-inspired functional

form. Through some approximations, the authors derived an expression for the ex-

pected bias and slope of a psychometric curve of speed discrimination, as a function

of reference stimulus speed and various model parameters, including the profile of

the prior and of the sensory noise. The model fit showed that participants consistently

had prior expectations for slow speeds, which were heavier-tailed (i.e. changing more

slowly and eliciting milder biases) than a standard Gaussian, approximately follow-
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ing a power law (Stocker and Simoncelli, 2005, 2006b). This work provides further

evidence for the slow-speed prior by showing that observers’ behaviour is consis-

tent with such an hypothesis, even when, save smoothness, no specific assumption

for the shape of the prior is made a priori. Moreover, it provides a framework in

which further quantitative questions can be asked. For example, Hedges et al. (2011)

augmented the observer model with a structural inference component to explain the

perceptual coherence of superimposed moving gratings. Another study combined

the model of Stocker and Simoncelli (2006b) with an existing ‘ratio model’ of speed

perception in order to account for some complex dependency of perceived speed on

the contrast and temporal frequency of the stimuli (Sotiropoulos et al., 2014).

Another take on the slow-speed prior is given by Zhang et al. (2013b). Zhang and

colleagues argued that a prior for slow-speeds would only hold for stimuli near the

fovea, whereas the periphery of the visual field is exposed to faster motions which are

expected to be biased towards centrifugal directions (i.e., away from the fovea). Partic-

ipants performed in a direction of motion discrimination task with stimuli presented

at the periphery of vision; the amount of sensory noise was varied by manipulating

stimulus duration (as opposed to the manipulation of contrast in the previous stud-

ies). Additionally, sensory noise in each experimental condition was assessed via a

separate experiment. Observers’ data agreed with the hypothesis, showing, for ex-

ample, that uncertain stimuli in the periphery of vision, albeit physically stationary,

were perceived in centrifugal motion. The priors non-parametrically reconstructed

from individual datasets showed that almost all probability mass was given to cen-

trifugal speeds, with a small bump to centripetal speeds (possibly an artifact).

Contextual changes to structural priors

Recent work has shown that structural priors can be over-ridden by the context, sug-

gesting that the distinction between structural and contextual priors is somewhat

arbitrary (Seriès and Seitz, 2013). For example, humans have a natural expectation

that light comes from above (precisely, from above-left), which has been found to

bias shape perception, quick visual search, and reflectance judgments (Mamassian

and Goutcher, 2001; Mamassian and Landy, 2001; Adams, 2007; Stone et al., 2009).

However, Adams et al. (2004) showed that human observers, unlike chickens (Her-

shberger, 1970), can easily learn a new direction for a light source, transferring this

implicit knowledge to another laboratory task. Moreover, it has been shown that hu-

man observers can learn multiple priors associated with different light colours (Kerri-

gan and Adams, 2013). Morgenstern et al. (2011) observed that the light prior is also

easily over-ridden by other sensory cues. Through a simple Bayesian observer model

they inferred the ratio between the weight given to the prior and the weight given
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to lightning cues of different strength, finding that the prior accounts for very weak

lightning information. Even the slow-speed prior is susceptible to change: after expo-

sure to fast-moving gratings over the course of multiple sessions, people gradually

changed their expectations about motion speed, which manifested in a differently

biased perception of ambiguously moving stimuli (Sotiropoulos et al., 2011).

The difference between structural and contextual priors can be understood by con-

sidering the open problem of how observers choose what prior to adopt in a given

context, which can be formalized within the framework of model selection (the com-competitive priors

petitive priors of Yuille and Bülthoff, 1996) and hierarchical Bayesian inference (Lloyd

and Leslie, 2013). A structural prior can be modelled as an ‘a priori’ prior, a weak

prior compatible with a large variety of contexts, but that is easily over-ridden in the

presence of cues that suggest the usage of more specific priors.

2.3.4 Inferring individual priors

As we have seen in the previous sections, we often do not know the empirical dis-

tribution of stimuli (for structural priors) and even when we know it because it is

imposed experimentally (for contextual priors), we cannot be sure that observers

have learnt it fully. Nonetheless, assuming that human observers approximately be-

have as Bayesian observers, we can reverse-engineer the decision-making model and

infer the priors compatible with subjects’ behaviour from individual datasets – with

all the caveats about model non-identifiability that we have discussed previously (see

Section 1.2.3). In a Bayesian observer model, the prior qprior(s) is represented either

in a parametric form or in a so-called non-parametric (or semi-parametric) form; in

this context, ‘non-parametric’ usually means that there are so many parameters (e.g.,

dozens) that the prior can assume any reasonable shape.13 This is both an advantage

and a drawback of the non-parametric approach, since the expressive power comes

at the risk of overfitting the data.

Common parametric models include, obviously, the Gaussian distribution (e.g,

Berniker et al., 2010; Sotiropoulos et al., 2011; Petzschner and Glasauer, 2011; Cicchini

et al., 2012) and the Von Mises distributions (the equivalent of Gaussian distributions

for circular statistics; see e.g. Morgenstern et al., 2011), and mixtures of a few Gaus-

sian (Huszár et al., 2010; Houlsby et al., 2013) or Von Mises distributions (Mamassian

and Landy, 2001; Chalk et al., 2010; Gekas et al., 2013).14 Other parametric forms are

13 This is not exactly the meaning of non-parametric in Bayesian statistics, which implies a model whose
complexity (number of effective parameters) also adapts to the data (Gershman and Blei, 2012; Gelman
et al., 2013).

14 Note that a mixture of three or more Gaussian (or Von Mises) distributions could be already considered
a non-parametric prior, since it can approximate a large number of target distributions.
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usually inspired by results from a non-parametric approach, such as a power-law for

the slow-speed prior (Hedges et al., 2011) or a skewed Gaussian for the centrifugal

prior (Zhang et al., 2013b).

Non-parametric priors are typically inferred from the data via two types of tech-

niques. The first class of methods directly computes the values of the (log) prior from

the data by exploiting some specific assumption. For example, Körding and Wolpert

(2004a) assume that that the mean of the posterior coincides with the true stimulus

(which is true only on average); Stocker and Simoncelli (2006b) and Sotiropoulos et al.

(2014) additionally assume that likelihood width is narrow so that the log prior can be

linearized around the measurement; and Paninski (2006) proposes to extract the prior

from the constraints imposed by the data via dynamic programming, where degen-

eracies are solved via a chosen regularizer (essentially, an hyperprior on smoothness).

In the second family of methods, priors are modelled by specifying the value of the

(log) prior over a pre-defined grid, each value of the prior being a free parameter of

the model (Stone et al., 2009; Girshick et al., 2011; Zhang et al., 2013b). If the grid is

coarse, values of the prior at intermediate grid points may be obtained via interpola-

tion, such as with splines (Girshick et al., 2011) or Gaussian processes (Zhang et al.,

2013b).

With a few exceptions, such as Zhang et al. (2013b), where the full posterior prob-

ability of the parameters is computed, the priors are typically recovered by maximiz-

ing the likelihood of the data under the model. Likelihood maximization is at risk

of overfitting, especially for non-parametric priors; this risk is partially alleviated by

including additional constraints in the inference (such as smoothness, see Stone et al.,

2009).

2.3.5 In this thesis

In this thesis, prior expectations, understood as internal representations of experimen-

tal distributions, play a key role. The main unknowns under study are the flexibility

and accuracy of such priors beyond the Gaussian case.

. In Chapter 3 we will explore the complexity of internal representations of ex-

perimental statistics of stimuli in the domain of sensorimotor timing. To go

beyond the Gaussian case, we will train observers on different types of distri-

butions: uniform, skewed, and bimodal, for which human performance is still

not understood, as we have seen in Section 2.3.2. For computational reasons, we

will first model individual priors in a fixed parametric form; once we have iden-

tified the best model components describing an observer, we will subsequently

non-parametrically infer the shape of his or her prior, extending methodologies
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briefly mentioned in Section 2.3.4. The non-parametric form will allow us to

compare properties of the inferred priors and of the experimental distribution,

including higher-order moments.

. In Chapter 4 we will work towards understanding the source of the difficulty

humans have in performing probabilistic inference with complex distributions,

as seen in Section 2.3.2. Specifically, we will have subjects perform inference

with visually displayed ‘priors’ belonging to different classes of distributions

(Gaussian, unimodal, bimodal). We will test observer models that incorporate

several different approximations and even a noisy estimate of these ‘priors’. Fi-

nally, we will also non-parametrically reconstruct the group prior correspond-

ing to each experimental distribution, as a means of characterizing systematic

biases in how priors are subjectively treated in the task.

. In Chapter 5 we exploit complex prior expectations as a tool to modulate tar-

get uncertainty, in order to reveal unexpected biases in subjects’ performance.

Namely, we construct a trimodal distribution of endpoint positions whose cen-

tral mode is ‘easy’ to target (low uncertainty, due to a delta function) and the

side modes are ‘hard’ (high uncertainty, due to broader distributions), looking

for a difference in behaviour.

2.4 loss functions and motor error distributions

Priors and likelihoods, examined in the previous sections, combine in the inference

process to yield the posterior distribution. A decision rule is, then, needed to specify

how the observer chooses a course of action, ideally to minimize his or her average

losses (see Section 1.2.2). In this section we review how the explicit and implicit

structure of rewards of the task, reflected in the loss function and in the internal

representation of motor errors, affects sensorimotor decision making. For the sake

of simplicity, we will often use the term ‘observer’ in place of the more correct but

cumbersome ‘observer and actor’.

2.4.1 Loss functions in sensorimotor estimation

In a sensorimotor estimation task, the reward or loss associated with a decision de-

pends on the cost or loss (negative utility) entailed by the outcome of the decision,

encoded by the loss function, and on the probability of the outcomes associated with

each decision, represented by the motor error distribution. In the case of purely per-

ceptual tasks, the outcome (motor) variability is often neglected.
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Loss functions share some common conceptual properties with priors, even if they

are different mathematical objects. First, we can adapt the classification used for pri-

ors (see Section 2.3) and loosely divide loss functions into contextual, which depend

on the task at hand, such as the scores on different regions of a dartboard or mon-

etary prizes associated with correct perceptual classifications, and structural, which

depend on previous experience and general properties of the sensorimotor systems.

Second, loss functions are subjective constructs, even more so than priors. For exam-

ple, in many cases there is no clear objective counterpart for the loss function, and

even when a quantitative goal of a sensorimotor task can be identified, it can be ar-

gued that the way in which different rewards are subjectively weighted (the negative

utility of each outcome) is unknown.15

Similarly to what we have seen with prior expectations, an experimenter can ei-

ther impose a loss function on the task, by providing explicit feedback on losses and

rewards (also called knowledge of results) or leave it underconstrained, in which case knowledge of results

the observer will use whatever loss he or she deems appropriate given the generic

task goals. Leaving the loss function experimentally undefined may seem unwise,

but there are many situations in which knowledge of results needs to be withheld in

order to avoid spurious influences on participants’ behaviour. For example, a study

of structural priors typically does not provide performance feedback, otherwise par-

ticipants could start to adapt to the experimental distribution of stimuli. In many

sensorimotor estimation tasks, the lack of an explicit loss function is somewhat miti-

gated by the following facts:

. In a purely perceptual task (no motor error), if the posterior is Gaussian (e.g.,

due to a Gaussian prior combined with a Gaussian likelihood), the optimal

estimate corresponds to the mean of the posterior for any symmetric, veridical

loss function.

. In a sensorimotor task, if the posterior and the motor error distribution are

Gaussian, the optimal estimate corresponds to the mean of the posterior for the

inverted Gaussian loss, the quadratic loss and the delta loss (the last two being

limiting cases of the first).

These results show that, under common assumptions, optimal behaviour in a sensori-

motor estimation task does not depend heavily on the details of the loss function. On

the other hand, when these assumptions fail (e.g., the posterior is strongly skewed

or bimodal, or the loss function is not symmetric), determining the shape of the loss

function becomes relevant.

15 This arbitrariness led Jaynes, a strong supporter of the Bayesian approach, to state that “from a fun-
damental standpoint loss functions are less firmly grounded than prior probabilities” (Jaynes, 2003,
Chapter 13).
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2.4.2 Contextual loss functions

Decision making in the presence of a well-defined loss function and knowledge of the

underlying probabilities is called decision making under risk. A large body of work hasdecision making under

risk investigated whether human observers are able to ‘optimally’ integrate knowledge

of their sensorimotor uncertainty with an externally imposed (contextual) loss func-

tion so as to maximize gains or, equivalently, minimize losses. Humans suffer from

well-known non-normative biases in cognitive decision making under risk (Kahne-

man and Tversky, 1979), but, as we have seen in the previous sections, sensorimotor

decisions may elicit behaviours that are surprisingly close to statistical optimality (al-

though these, as usual, depend on how we define and test for optimality; Jarvstad

et al., 2014). In this section we will briefly review several studies of motor planning

and perceptual decision making in the presence of an external loss function.

Motor planning under risk

The typical experimental layout for looking at motor planning under risk imposes

an arbitrary reward/penalty structure – the experimental loss function, Lexp (r, s) –experimental loss

function onto the response space (see Trommershäuser et al., 2008a,b for a review). The re-

ward/penalty configuration is usually explicitly shown to the observer in each trial,

and may change from trial to trial or in different blocks. The ideal observer should

choose the optimal action (e.g., aiming point) by taking into account the motor vari-

ability of the subsequent movement, in order to maximize the chance of a high-

scoring response. In terms of losses, the equation for the subjectively optimal action

is:

s∗ (x;L) = arg min
ŝ

∫
qmotor (r |ŝ )L (r, s) dr, (2.15)

which is Eq. 2.3 without priors and sensory noise. As usual, Eq. 2.15 is objectively

‘optimal’ if the internal elements of decision making match their objective counter-

parts, that is qmotor (r |ŝ ) ≡ pmotor (r |ŝ ) and L (r, s) ≡ Lexp (r, s). Formally, since there

are no priors involved, the framework Eq. 2.15 belongs to is statistical decision theory

(SDT) rather than BDT, but it is merely a matter of naming conventions.

In a seminal work, Trommershäuser et al. (2003a) analyzed the performance of hu-

man observers in a rapid pointing task. The target was a green circle on a screen

(worth 100 points), which was adjacent to or partially overlapped by one or two

red ‘penalty’ circles (worth 0, −100 or −500 points). The subjects’ motor error dis-

tribution was separately measured, allowing the computation of the optimal aiming

point for each observer in each configuration, according to SDT. The study found
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that the observers’ average endpoint was close to the ‘optimal’ position in a first ex-

periment (only one penalty circle), whereas it was mostly suboptimal in a second

experiment (with two penalty circles). However, the authors argue that the subopti-

mality was likely due to a small rightward response bias and not (entirely) to errors in

motor planning. Interestingly, after training on practice configurations, participants

were able to immediately adapt to new configurations, showing no trace of feedback-

driven learning after each trial (‘hill-climbing’), nor changes in their motor variability.

Trommershäuser et al. (2003a,b) provided a flexible experimental framework to inves-

tigate the applicability of SDT to human sensorimotor decision-making, spawning a

series of follow-up studies.

One line of work examined how humans adapt to changes in the probabilities in-

volved in the task, and in the way in which probabilistic information is conveyed (see

Trommershäuser, 2009a for a review). Trommershäuser et al. (2005), unbeknownst to

the participants, added different amounts of noise to the movement endpoint posi-

tion (and to its visual feedback), effectively altering the subjects’ motor variability

in the task. The study found that participants adjusted to the increased variability,

shifting the aiming point in accordance to the task-relevant noise in a near-optimal

way. Maloney et al. (2007) introduced stochasticity in the loss function by including

targets that had 50% chance of rewarding zero points instead of the usual reward or

penalty. Participants were explicitly informed of this element and, as it is usual with

numerically provided probabilistic information (Kahneman and Tversky, 1979), their

performance fell remarkably short of optimal. Conversely, Seydell et al. (2008), using

a slightly different one-dimensional layout, introduced stochasticity in the loss func-

tion by having the penalty regions (‘defenders’) randomly jump to a nearby position

after movement completion. An ideal observer had to take into account the statistics

of the jumps in addition to his or her own motor uncertainty. Participants trained

on the task for several sessions, reaching a good performance level in both symmet-

ric and asymmetric conditions, with occasional suboptimal choices. Importantly, in a

second experiment participants rapidly adjusted their pointing behaviour when the

losses associated with each ‘defender’ were explictly switched after five sessions of

training, suggesting that they had learnt an internal representation of the task and not

a mere stimulus-action contingency. A recent work directly compared cognitive (‘eco-

nomic’) decision-making with an equivalent motor decision-making task, by seeing

how observers selected between alternative choices with different probabilities and

rewards (lotteries) in the two cases (Wu et al., 2009). Results were similar across tasks, lotteries

but participants were generally risk-seeking in the motor task and risk-averse in the

economic task, an effect that was explained by a different weighting of probabilities

in the two conditions (whose reason is unclear).
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Other studies investigated the limits humans may have in performing optimal com-

putations of expected gain. Wu et al. (2006) tested participants on more complex,

asymmetrical configurations, finding that participants were moderately suboptimal

with these. The authors argue that previously found optimality was likely due to the

fact that participants exploited symmetries in the configurations to simplify the com-

putation of optimal behaviour. In another study, Trommershäuser et al. (2006b) used

simple configurations but delayed the onset of the penalty circle, finding that partic-

ipants achieved a reasonably good performance as long as the full reward/penalty

region was available near the time of movement onset, suggesting that humans can

quickly perform computations of optimal behaviour (at least in simple cases). In line

with this finding, Trommershäuser et al. (2006a) showed that humans, given a choice

between two different configurations, can rapidly point to the one which would yield

a higher expected gain (with some decision noise). Finally, note that the label of ‘op-

timality’ is not very robust as it depends on the statistical methods used to assess it.

A recent study in motor planning demonstrates that small changes in experimental

layout can have major effects on the statistical attribution of ‘optimality’ (Jarvstad

et al., 2014).

Perceptual decision making under risk

Arguably, the motor system has to adapt to ever-changing task demands, which may

explain why an arbitrary reward/loss structure can be so easily integrated during

action. It is unclear if perception would afford the same amount of flexibility.

Some studies suggest that perceptual decision-making under risk is similar to mo-

tor planning under risk. For example, Landy et al. (2007) asked observers to esti-

mate the mean orientation of a large number of line segments whose individual

orientations were randomly drawn from a Von Mises distribution with a given trial-

dependent (or block-dependent) concentration parameter (∼ inverse variance). For

small variance, all bars were oriented roughly in the same direction and uncertainty

was low; for high variance, the bars were scattered in several directions and the diffi-

culty in averaging them resulted in high uncertainty. Observers had to place a ‘net’,

which contained both a reward and a penalty region, to enclose the estimated mean

direction. The study found that participants were quite sensible (if not optimal) in

positioning the net when different levels of sensory noise were presented in separate

blocks. Performance level dropped when different levels of noise were interleaved in

the same block, and became generally suboptimal, with a large intersubject variabil-

ity, when noise was changing continuously from trial to trial. Another study found

near-optimal behaviour in an ‘offset’ discrimination task with an asymmetric payoff

matrix (Whiteley and Sahani, 2008). Crucially, participants only received blocked per-
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formance feedback, preventing a ‘hill-climbing’ strategy, suggesting that observers

were integrating their internal representations of sensory uncertainty and reward

(however, the study did not perform a stronger test with multiple levels of noise).

A limitation that is unique to perception is that sensory estimates are performed

continuously – within a relatively short time window, we always perceive a unique

state of the world. Ideally, decision making under risk in an observer and actor model

should take into account both the full perceptual posterior, the loss function and the

motor error distribution (Eq. 2.3). However, the perceptual posterior may be relatively

short-lived, occasionally ‘collapsing’ into a single percept after a perceptual estimate

has been implicitly or explicitly performed. This phenomenon has been hypothesized

by Stocker and Simoncelli (2008) to explain observed biases in a motion discrimina-

tion and estimation task, and a similar effect of categorical perception that leads to

suboptimal behaviour was recently reported by Fleming et al. (2013).

2.4.3 Structural loss functions

Structural loss functions can be thought as ‘natural’ costs associated with certain

generic endeavours. From the point of view of the modeller, structural loss function,

similarly to structural priors, are: (a) postulated from first principles, (b) chosen for

mathematical convenience, or (c) inferred from the data given a parametric or non-

parametric form. For example, the field of motor control has been characterized by

several attempts at defining a structural loss function of (arm) movement, such as

integrated squared jerk (Hogan, 1984), integrated squared torque change (Uno et al.,

1989), endpoint variance under signal-dependent noise (Harris and Wolpert, 1998),

or other forms of biomechanical constraints (see Trommershäuser et al., 2008b). In

general, the aim of these efforts is not necessarily to find the ‘true’ loss function,

which, if it exists at all, may have a very complex shape, but rather to find a simple

approximation that is able to account for a large amount of human data in a variety

of domains.

Studies in perception have traditionally assumed simple structural loss functions

that correspond to basic statistical features of the posterior distribution of the stim-

ulus, such as the mode of the posterior (zero-one loss) or the mean (quadratic loss);

see Section 1.2.2 and Yuille and Bülthoff (1996). Note that, as we remarked before, the

detailed shape of a loss function is relevant only when the posterior is non-Gaussian.

For example, an inverted Gaussian loss has been used within a model of bistable

perception which would join modes in the posterior if they were near enough, but

preserve them when they were far away (van Ee et al., 2003). More complex structural
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loss functions are found in continuous perceptual decision-making (Drugowitsch et al.,

2012).

The typical structural loss function of sensorimotor tasks is assumed to be quadratic

in endpoint error (Harris and Wolpert, 1998). However, Körding and Wolpert (2004b)

had human participants aim at a target with a virtual pea-shooter whose distribution

of shots was asymmetric and bimodal, with variable separation between peaks. By

looking at how subjects placed the pea-shooter with respect to the target, the authors

could infer the subjective loss associated with each error. The non-parametrically re-

constructed loss function was quadratic for small errors and nearly-linear for larger

errors. Parametrically, this corresponded to either a power-law with power less than

two (∼ 1.7) or an inverted Gaussian loss, suggesting that human sensorimotor be-

haviour is better described by a robust, sub-quadratic loss function.

Besides task demands (e.g., hitting the target), another important structural com-

ponent of the loss function is represented by effort, which generally represents energyeffort

consumption and other psychophysical resources (Todorov and Jordan, 2002). Körd-

ing et al. (2004a) borrows from economics a general technique to infer loss functions

by estimating the observers’ indifference curves, i.e. actions that are assumed to be

equally (un)desirable. There, the method is applied to infer the cost associated with

producing a force of a certain intensity for a given time, finding a non-trivial inter-

action between force and duration, that is, nonetheless, quite consistent between sub-

jects. O’Sullivan et al. (2009) explicitly measured the weight of effort (produced force)

in the loss function against the weight of task error in a force production experiment

that allowed to disambiguate between the two components. Interestingly, the effort

term was found to be approximately seven times more important than the variability

term, suggesting that effort may still significantly affect behaviour in task-oriented

movements.

2.4.4 Motor error distribution

In the standard Bayesian model, motor error distributions represent variability in en-

acting the movement due to neuromuscular noise (van Beers et al., 2004) and noise

in motor preparation (Churchland et al., 2006). Abstract motor planning (e. g., which

target to hit) is assumed to be noiseless in BDT and corresponds to Eq. 2.3 (but see

Section 2.4.5). Sensory noise in motor planning, which in some cases may have a

primary role in determining motor variation (Osborne et al., 2005), is here either neg-

ligible or explicitly modelled through the sensory measurement distribution (Section

2.2.1).
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The shape of the distribution of motor errors typically depends on the movement

trajectory and details of the motor plan (Todorov, 2004), but in most sensorimotor

estimation task it can be well approximated with a Gaussian:

pmotor (r |ŝ ) = N (r |ŝ, Σmotor(ŝ) ) , (2.16)

where Σmotor(ŝ) is the motor error covariance matrix, which generally depends on the motor error covariance

matrixvalue of the estimate (e.g., the estimated target position). In the simplest case, the

noise is constant and either one-dimensional or isotropic (the covariance matrix is di-

agonal), with variance σ2
motor. Isotropic noise is found, for example, in many pointing

tasks whose target plane is approximately at a constant distance from the observer

(e.g., Trommershäuser et al., 2003a,b; Tassinari et al., 2006). Note, however, that the

covariance matrix may have a complex, anisotropic dependence on position (e.g., van

Beers et al., 2004; Gepshtein et al., 2007). For one-dimensional tasks, another com-

mon form of motor variability is proportional to the estimate, σmotor(ŝ) ∝ ŝ, due to

signal-dependent noise (Harris and Wolpert, 1998) or to scalar noise in motor timing

(Gibbon, 1977). An interesting hypothesis is that the magnitude of motor noise in

different movements is influenced by the statistics of natural movements (Howard

et al., 2009a).

Internal representations of motor uncertainty

Just as we did for the sensory measurement distributions in Section 2.2.2, we can

ask whether human observers have an accurate internal representation, qmotor (r |ŝ ),
of their own motor variability. Assuming a Gaussian representation for the internal

motor variability, as per Eq. 2.16 but with subjective motor covariance Σ̃motor(ŝ), the

question is: Σ̃motor(ŝ)
?
= Σmotor(ŝ). A sufficient condition for testing this equality is the

verification of the observer’s near-optimal behaviour, according to SDT, in a sensori-

motor task whose expected gain crucially depends on the observer’s estimate of his

or her motor uncertainty.16 We have seen from previous work that human observers

near-optimally represent simple spatial motor noise distributions (constant, isotropic

Gaussians, see e. g. Trommershäuser et al., 2003a) and quickly update their internal

representations of such noise given visual feedback (Trommershäuser et al., 2005).

Here we report a few examples from other domains (i.e., time), with more complex

shapes of motor noise or with different types of tasks.

16 This is a sufficient condition because, even if we observe suboptimal performance, it could still be that
the observer has a correct internal representation of his or her motor variability, but does not correctly
represent or integrate other features of the task. Also, note that it is sufficient modulo issues of non-
degeneracy.
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Gepshtein et al. (2007) tested whether human observers know the covariance of

their endpoint variability in a reaching task that required them to rapidly aim at

targets placed on a touch screen at various distances and directions from a central

starting point. By placing penalty regions at various positions around the target, the

authors could test whether subjects took into account the full two-dimensional shape

of their motor errors, which depended on target position (endpoint distributions

were elongated in movement direction, and larger for larger movements). Partici-

pants sensibly accounted for the anisotropy of their noise distributions, and most of

them performed near-optimally, suggesting that human observers had a rather pre-

cise representation of their own motor uncertainty. Hudson et al. (2010) investigated

observers’ capability to adapt their internal representation of motor uncertainty to

added anisotropic noise. Subjects’ reaching movements were randomly perturbed

in the horizontal direction, leaving the vertical direction unaffected. Participants, in-

stead, adjusted their pointing behaviour almost perfectly as if the added noise was

equal in all directions, suggesting that observers were adopting an isotropic inter-

nal model of motor uncertainty. Recently, Zhang et al. (2013a) studied human ob-

servers’ knowledge of their own motor uncertainty. In the first part of the experi-

ment, observers were as usual required to reach to target/penalty configurations; in

the second part, they were asked to choose which one of two configurations would

yield a higher average gain, given their movement precision. Their choice preferences

showed that participants ignored anisotropy of their motor errors, and only half of

the subjects had an accurate internal model of the amount of motor noise.

In the temporal domain, Mamassian (2008) reported that participants consistently

performed suboptimally in a time reproduction task with a fixed target duration (500

ms), in which penalties were assigned for either undershoots or overshoots, depend-

ing on the condition. Observers shifted their timing reponses away from the penalty

regions, but not as much as they should have, according to their timing variability.

Also, contrarily to the spatial case (Trommershäuser et al., 2005), participants did not

change their response strategies at all when additional Gaussian noise (σextra = 50

ms) was injected to their responses. Mamassian (2008) summarizes this behaviour

as ‘overconfident’ since participants behaved as if they underestimated the amount

of their motor noise, or the amount of their losses. On the other hand, in the same

year, Hudson et al. (2008) reported that participants performed near-optimally in a

temporal production task with a similar structure (temporal target at 650 ms, penalty

regions before or after the target, added Gaussian noise with σextra = 25 ms). How-

ever, we note that the alleged near-optimality may be due to a constrained form of

analysis, i.e. the authors performed a model comparison in which the ‘optimal’ ob-

server model fit the data significantly better, in terms of marginal likelihood, than a
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few suboptimal models, but it is not clear how close the participants’ internal repre-

sentations of motor uncertainty were to their true noise.17

Finally, an alternative way to test subjects’ internal representations of motor uncer-

tainty that does not involve arbitrary loss functions is represented by paradigms that

introduce a trade-off between sensory uncertainty and motor uncertainty. In these

tasks, participants need to perform a motor act (e.g., hit a target, catch a virtual ball)

designed so that motor variability increases over time (because less time is available

to plan and perform the movement) and, conversely, sensory variability decreases

over time (because more sensory information becomes available). The ideal observer

needs to choose the optimal movement time by accounting for the temporal profile

of both sensory and motor uncertainty so that the probability of hitting the target is

maximized. Several studies show that people have a sensible internal representation

of their sensory and motor uncertainty over time (e.g., Battaglia and Schrater, 2007;

Faisal and Wolpert, 2009).

In conclusion, there is evidence that human observers build and update internal

representations of their own motor uncertainty and adjust their behaviour accord-

ingly in a Bayes-sensible way, although such representations may systematically de-

viate from the true noise distributions in important aspects (e.g., underestimation of

the magnitude of noise, lack of anisotropy).

2.4.5 Decision noise

Decision making in the standard observer model, according to Bayesian or statistical

decision theory, is deterministic: the decision, be it an estimate or a planned action, is a

fixed function of the available information (Eqs. 2.3, 2.4 and 2.15). Noise is either ‘up-

stream’ sensory noise (before the decision), modelled by pmeas (x |s ), or ‘downstream’

motor noise (after the decision), represented by pmotor (r |ŝ ); see Figure 2.1a. This situ-

ation is rather unrealistic, as it presumes that the observer is able to flawlessly choose

the course of action that minimizes the expected loss without decision noise. Note that decision noise

the expression ’decision noise’ in the literature loosely refers to any form of added

noise (e.g., Weiss et al., 2002; Knill and Saunders, 2003; Hillis et al., 2004). Here by de-

cision noise we mean stochasticity that emerges during the decision-making process,

specifically during the computation and minimization of the expected loss (Paninski,

17 Model comparison rejected a pair of observer models in which the parameters of the internal represen-
tation of motor uncertainty (constant noise and Weber’s fraction) were free to vary, but the validity of
this result is somewhat unclear given that improper priors with unknown bounds were used for the
model parameters, a choice that may have catastrophic effects on model comparison (Gelman et al.,
2013). The suspicion that the free-parameter models may have been exceedingly penalized by the usage
of improper priors is supported by the fact that the reported model evidence is strikingly lower than
that of any other suboptimal model in Hudson et al. (2008).
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2006; Trommershäuser et al., 2006a; Stone et al., 2009). Therefore, we expect the deci-

sion noise to be a function of the elements of decision making, and, in particular, to

depend on the posterior distribution.

For example, a realistic assumption that has received relatively little attention in

models of sensorimotor decision making is that the observer’s evaluation of the ex-

pected loss is likely to be noisy. Direct signatures of variability in estimation of the

expected loss have been found in motor planning tasks in which the observer had

to quickly choose the most rewarding target between two presented configurations

(Trommershäuser et al., 2006a; Jarvstad et al., 2014). This form of noise would predict

stochastic deviations from optimal behaviour when the difference in expected loss be-

tween alternative choices is small, and near-optimal behaviour for large differences

in expected loss. Instead, various other stochastic heuristics have been used to model

choice variability.

Probability matching and sampling

A stochastic decision rule that has been used sometimes in perception consists of

probability matching, whereby a random estimate is drawn from the posterior distribu-probability matching

tion. Probability matching is a well-known phenomenon in psychology, according to

which observers, asked to predict the outcome of a binary event, answer randomly

and proportionally to the frequencies of the outcomes, instead of taking the opti-

mal strategy of choosing the most probable outcome (see Vulkan, 2000 for a review).

Probability matching, as well as any stochastic decision rule, is suboptimal for how

task goals are defined in our framework, but there are settings in which it might be

a convenient strategy, such as foraging and some competitive games. For example,

recent work has suggested that probability matching may be a strategy of looking for

patterns (Gaissmaier and Schooler, 2008), and that it may be due to internal beliefs

about the generative model of the task (Green et al., 2010).

In perception, probability matching on the posterior, or simply posterior-matching,posterior-matching

has been used to model observers’ choices in multistable perception, such as that of

convex/concave line drawings (Mamassian and Landy, 1998) or of bulging/indented

ridges (Mamassian and Landy, 2001). Mamassian and Landy (1998) call it a ‘non-

committing’ decision rule and argue that, in the absence of an obvious goal, “it is not

inappropriate for the observers’ judgement to reflect the computed posterior prob-

ability”. Probability matching has also been used to model observers’ behaviour in

causal inference of multisensory perception (Wozny et al., 2010) and in an auditory

categorization task (Gifford et al., 2014). A more general hypothesis is that the brain

approximates the posterior distribution by drawing a number κ of samples from it

(Fiser et al., 2010) – posterior-matching is simply the case for κ = 1. In perception,
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sampling models of decision making have been used in multistable perception (Sun- sampling

dareswara and Schrater, 2008; Moreno-Bote et al., 2011) and in a distance estimation

task (Battaglia et al., 2011).

2.4.6 In this thesis

This thesis focusses on internal representations and how they are manipulated dur-

ing the decision-making process. In our modelling we explore the applicability of

different loss functions and decision rules.

. In Chapter 3 we will examine whether participants integrate the experimentally

provided performance feedback – which is related to the loss function – in a

time interval reproduction task. In particular, we will use two different shapes

of feedback, one that relates to a standard, symmetric loss function, and one

that entails a skewed, asymmetrical loss, to see whether observers adapt to

arbitrary losses as seen in Section 2.4.2. In a secondary analysis, we will also

infer the exponent of the loss function, testing whether there is a significant

deviation from the quadratic assumption. Regarding the shape of the motor

error, described in Section 2.4.4, we will verify whether our observers are best

described by a constant motor error or by one that grows with the duration of

the interval, as per the scalar property.

. In Chapter 4 we will explore several variants of the decision-making process

in a target estimation task. In particular, we will compare classical observer

models that follow deterministic BDT against observer models that incorporate

decision noise (posterior-matching, sampling, and others), as briefly described

in Section 2.4.5. We will provide a simple stochastic decision rule that approxi-

mates different sources of noise in decision making.

. In Chapter 5, we will show that observers’ behaviour in a centre-of-mass esti-

mation task, in which they are allowed to compensate for their mistakes, may

require us to take into account an effort term in the loss function, as suggested

by studies reported in Section 2.4.3, to explain the observed lack of correction

in trials with higher perceptual uncertainty.
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3
C O M P L E X I N T E R N A L R E P R E S E N TAT I O N S I N S E N S O R I M O T O R

T I M I N G

“With regard to time, our feeling of duration or of the lapse of time is

notoriously an unsafe guide as to the time that has elapsed by the clock.

[. . . ] But in so far as time consists in an order of before and after, there is no

need to make such a distinction; the time-order which events seem to have

is, so far as we can see, the same as the time-order which they do have. At

any rate no reason can be given for supposing that the two orders are not

the same.”
— Bertrand Russel, The Problems of Phylosophy

In this chapter we study the nature of internal representations built by human ob-

servers in a sensorimotor timing task in which we varied both the distributions of

time intervals, from uniform to highly skewed or bimodal, and the error mapping

that determined the performance feedback. This work was originally published in

PLoS Computational Biology (Acerbi et al., 2012).

3.1 temporal context biases interval timing

Human time perception is notoriously riddled with biases and illusions of both tem-

poral duration and, perhaps more surprisingly, subjective order of events (Eagleman,

2008). Virtually any manipulation of stimulus properties and task layout systemati-

cally alters the perception of time: for example, larger stimuli (brighter, bigger, more

numerous) and novel or unpredictable stimuli are judged to last longer (Xuan et al.,

2007; Pariyadath and Eagleman, 2007), saccades compress spatio-temporal judge-

ments (Morrone et al., 2005), flickering frequency alters perceived duration (Kanai

et al., 2006), and repeated exposure to a specific inter-stimulus lag alters subjec-

tive temporal order (Fujisaki et al., 2004; Miyazaki et al., 2006; Stetson et al., 2006).

Moreover, temporal judgments are particularly susceptible to the central tendency

and range effects common to other psychophysical magnitudes (Hollingworth, 1910;

Fraisse, 1984). Various explanations have been proposed for some of these phenom-

ena, such as a common metric for space, time, and number (Walsh, 2003) or the

hypothesis that subjective duration depends on energy expenditure for encoding a

stimulus (Eagleman and Pariyadath, 2009).
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Here we focus specifically on biases that emerge from the statistics of previously

experienced durations, in the simplified case in which the only variable that changes

from trial to trial is target duration.1 This layout allows us to see how the percep-

tion of a target duration s is affected by the temporal context, i.e. the experimental temporal context

distribution of durations, pexp(s). Moreover, note that (a) the sensing of time inter-

vals is inherently noisy (Buhusi and Meck, 2005; Lewis and Miall, 2009); and (b) the

ability to estimate sensorimotor time intervals in the subsecond range and to react ac-

cordingly is fundamental in many behaviourally relevant circumstances (Mauk and

Buonomano, 2004), such as dodging a blow or assessing causality (‘was it me produc-

ing that noise?’). Therefore, it is typically advantageous to enhance time estimates

with previous knowledge of the temporal context, and we may expect the nervous

system to be reasonably good at that.

As we have seen in Section 2.3, Bayesian integration has been successfully applied

to describe the behaviour of human observers when combining contextual prior in-

formation with noisy sensory measurements. It has been shown in various timing

experiments that humans can take into account relevant temporal statistics of a task

in a Bayes-sensible fashion, if not quite optimal, such as in sensorimotor coincidence

timing (Miyazaki et al., 2005), tactile simultaneity judgements (Miyazaki et al., 2006),

planning movement duration (Hudson et al., 2008), time interval estimation (Jazayeri

and Shadlen, 2010; Ahrens and Sahani, 2011; Cicchini et al., 2012), and multisensory

integration of duration (Shi et al., 2013b; Hartcher-O’Brien et al., 2014); see Shi et al.

(2013a) for a review.

The work by Jazayeri and Shadlen (2010) represents a seminal study in the field,

by showing a striking example of Bayesian integration in a time interval reproduc-

tion task (Jones and Mcauley, 2005 had performed a similar study, although with-

out giving a Bayesian interpretation). In different blocks of trials, participants were

trained on three distinct experimental distributions of stimuli, which were uniform

over three partially overlapping ranges (‘short’, ‘intermediate’ and ‘long’). Partici-

pants received positive perfomance feedback when their reproduced duration was

within a small window of the physical duration. The authors showed that a standard

Bayesian observer model whose sensorimotor noise followed the scalar property and

with a quadratic loss function (‘Bayes least square’) was able to quantitatively capture

the main features of human data, such as the regression to the mean (biases towards

the mean of the current experimental distribution of stimuli) and the range effect

(the biases were stronger at longer intervals due to the greater sensory uncertainty).

The study left several open questions. First, the subjects’ sensorimotor noise proper-

1 Depending on the experimental design, the target duration may be the duration of a stimulus (‘filled’
interval) or the interval between two brief stimuli (inter-stimulus or ‘empty’ interval).
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ties were not independently measured, leaving unknown whether participants were

‘optimal’ at the task or merely sensible. Second, in their analysis the authors simply

assumed that subjects had fully acquired uniform priors identical to the experimental

distributions. Under this assumption, they rejected the hypothesis that subjects were

following a MAP strategy (a zero-one loss function, similar to the provided feedback).

However, this result feels inconclusive due to the degeneracy of Bayesian models (see

Section 1.2.3). For example, it can be equally argued that subjects were using a MAP

strategy, although with a different prior, such as a smoothed approximation of the

uniform distribution. Mamassian and Landy (2010) present a similar argument re-

garding the scalar property, which could be explained instead via a constant noise

model and an asymmetric loss function. Finally, it is unclear how human observers

would behave in the presence of more complex distributions of duration.

In a recent experiment, Ryan (2011) tested different groups of participants on var-

ious distributions of duration in a time interval reproduction task, with visual and

auditory stimuli. Distributions were uniform over the range, skewed and bimodal

(‘V’-shaped). Results must be judged with caution given that the experiment lasted

only 120 trials. Nonetheless, in the different conditions, participants started develop-

ing distinct biases that could have been partially consistent with a Bayesian interpre-

tation (the study did not involve any modelling). However, responses did not show

‘attraction’ to the extremes of the bimodal, ‘V’-shaped distribution, contrarily to the

quick biases that were reported in a motion estimation task (Chalk et al., 2010).

In general, as a realistic working hypothesis, we can expect the observers to acquire,

after training, an internal representation of the statistics of the temporal intervals

which is an approximation of the true, objective experimental distribution. It can be

argued that this approximation in most cases would be ‘similar enough’ to the true

distribution, so that, in practice, the distinction between subjective and objective dis-

tribution is an unnecessary complication. This is not exact though, first of all because

it is unknown whether the similarity assumption would hold for complex temporal

distributions, such as skewed and bimodal, and secondly because the specific form

of the approximation can lead to observable differences in behaviour even for simple

cases (see Figure 3.1).

We propose that understanding how humans learn and approximate temporal

statistics in a given context can help explain a number of observed temporal biases.

In view of the variety of adaptation phenomena observed especially in the temporal

domain (e. g., temporal recalibration, Fujisaki et al., 2004; Stetson et al., 2006), and

of several examples of the failure of ‘optimal’ multisensory integration of ‘empty’

intervals (Burr et al., 2009; Shi et al., 2010; Hartcher-O’Brien and Alais, 2011), it is

worthwhile to ask whether people are able to acquire an internal representation of
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complex distributions of inter-stimulus intervals in the first place, and what are their

limitations.

As seen in Chapter 2, Bayesian Decision Theory (BDT) provides a neat and suc-

cessful framework for representing the internal beliefs of an ideal observer in terms

of a (subjective) prior distribution. We, therefore, adopted the standard Bayesian ob-

server (see Section 2.1) as a framework to infer the subjects’ acquired beliefs about

the experimental distributions. Since the behaviour of a Bayesian observer depends

crucially not only on the prior, but also on the likelihoods and the loss function, with

an underlying degeneracy, we need to properly model and validate these elements

as well.

3.1.1 Summary

In this chapter we analyze the timing responses of human observers for progressively

more complex temporal distributions of durations in a motor-sensory time interval

reproduction task with explicit performance feedback.

We carried out a full Bayesian model comparison analysis among a discrete set of

candidate likelihoods, priors and loss functions in order to find the observer model

most supported by the data, characterizing the behaviour of each individual sub-

ject across multiple conditions. Having inferred the form of the likelihoods and loss

functions for each subject, we could then perform a non-parametric reconstruction

(see Section 2.3.4) of what the subjects’ prior distributions would look like under the

assumptions of our framework, and we compared them with the experimental distri-

butions. The inferred priors suggest that people learn smoothed approximations of

the experimental distributions which take into account not only mean and variance

but also higher-order statistics, although some complex features (kurtosis, bimodal-

ity) seem to deviate systematically from those of the experimental distributions.

3.2 methods

3.2.1 Experimental procedures

Participants

Twenty-five subjects (17 male and 8 female; age range 19–34 years) including the

first author participated in the study. Except for the first author all participants were

naïve to the purpose of the study. All participants were right-handed, with normal or

corrected-to-normal vision and reported no neurological disorder. Participants were
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Figure 3.1: Comparison of response profiles for different ideal observers in the
timing task. The responses of four different ideal observers (columns a-d) to a dis-
crete set of possible stimuli durations are shown (top row); for visualization purpose,
each stimulus duration in this plot is associated with a specific colour. The behaviour
crucially depends on the combination of the modelled observer’s temporal sensori-
motor noise (likelihood), prior expectations and loss function (rows 2-4); see Figure
3.2 bottom for a description of the observer model. For instance, the observer’s sen-
sorimotor variability could be constant across all time intervals (column a) or grow
linearly in the interval, according to the ‘scalar’ property of interval timing (column
b-d). An observer could be approximating the true, discrete distribution of intervals
as a Gaussian (columns a-b) or with a uniform distribution (columns c-d). Moreover,
the observer could be minimizing a typical quadratic loss function (columns a-c) or
a skewed cost imposed through an external source of feedback (column d). Yellow
shading highlights the changes of each model (column) from model (a). All changes
to the observer’s model components considerably affect the statistics of the predicted
responses, summarized by response bias, i.e. average difference between the response
and true stimulus duration, and SD (bottom two rows). For instance, all models predict
a central tendency in the response (that is, a bias that shifts responses approximately
towards the center of the interval range), but bias profiles show characteristic differ-
ences between models.
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compensated for their time and an additional monetary prize was awarded to the

three best naïve performers (lowest mean squared error). The University of Edin-

burgh School of Informatics ethics committee approved the experimental procedures

and all subjects gave informed consent.

Materials and stimuli

Participants sat in a dimly lit room, ∼ 50 cm in front of a Dell M782p CRT monitor

(160 Hz refresh rate, 640× 480 resolution). Participants rested their hand on a high-

performance mouse which was fixed to a table and hidden from sight under a cover.

The mouse button was sampled at 1 kHz (with a 13 ± 1 ms latency). Participants

wore ear-enclosing headphones (Sennheiser EH2270) playing white noise at a mod-

erate volume, thereby masking any experimental noise. Stimuli were generated by a

custom-written program in MATLAB (Mathworks, U.S.A.) using the Psychophysics

Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). All timings were

calibrated and verified with an oscilloscope.

Behavioural task

Each trial started with the appearance of a grey fixation cross at the center of the

screen (27 pixels, 1.5◦ diameter); see Figure 3.2 (top) for a depiction of the task. Par-

ticipants were required to then click on the mouse button at a time of their choice and

this led to a visual flash being displayed on the screen after a delay of s ms, the target target interval

interval, which could vary from trial to trial. The flash consisted of a circular yellow

dot (1.5◦ diameter and 1.5◦ above the fixation cross) which appeared on the screen for

18.5 ms (3 frames). The target interval s was defined from the start of the button press

to the first frame of the flash, and was drawn from a block-dependent distribution

pexp(s). Participants were then required to reproduce the target interval by pressing

and holding the mouse button for the same duration. The duration of button press

(r ms, the response) was recorded on each trial. Participants were required to wait at response

least 250 ms after the flash before starting the interval reproduction, otherwise the

trial was discarded and re-presented later.

After the button release, 450–850 ms later (uniform distribution), feedback of the

performance was displayed for 62 ms. This consisted of a rectangular box (height 2.5◦,

width 20◦) in the lower part of the screen with a central vertical line representing zero

error and a dotted line representing the reproduction error on that trial (see Figure

3.2, top right). The horizontal position of the error line relative to the zero-error line

was computed via an error mapping as either fSk(r, s) = κ · r−s
r (Skewed feedback) error mapping

or fSt(r, s) = κ · r−s
787.5 (Standard feedback), depending on the experimental condition,

with κ = 400 pixels (22.2◦). Therefore, for a response r that was shorter than the
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target interval s the error line was displayed to the left of the zero-error line, and the

converse for a response longer than the target interval. The fixation cross disappeared

500–750 ms after the error feedback, followed by a blank screen for another 500–750

ms and the reappearance of the fixation cross signalled the start of a new trial.

We provided performance feedback (also known as ‘knowledge of results’, or KR)

on a trial-by-trial basis, so as to constrain the loss function, speed up learning and

allow the subjects to adjust their behaviour; our results therefore provide an upper

bound on human performance (Salmoni et al., 1984; Blackwell and Newell, 1996).

The ‘artificial’ response-dependent asymmetry in the Skewed mapping was chosen

to test whether participants would integrate the provided feedback error into their

decision process, as opposed to other possibly more natural forms of error, such as

the Standard error fSt ∝ r− s or the Fractional error fFr ∝ r−s
s (see later).

Experiments

Each experiment consisted of a number of blocks, each comprising of several sessions.

In different experimental blocks we varied both the statistical distribution of the inter-

vals, pexp(s), and the shape of the error mapping, f (r, s). Details of the experimental

layout for each block are reported in Table 3.1. The participants were divided into

experimental groups as follows:

. Experiment 1: This experiment represented a basic test for the experimental

paradigm and modelling framework with simple uniform distributions over dif-

ferent ranges. Statistics: Short Uniform and Long Uniform blocks with Skewed

feedback (4 participants, including the first author).

. Experiment 2: This experiment compared subjects’ responses in a uniform condi-

tion vs a non-uniform one, over the same range of intervals. Statistics: Medium

Uniform and Medium Peaked blocks with Skewed feedback (6 participants, in-

cluding the first author).

. Experiment 3: This experiment verified the effect of feedback on subjects’ re-

sponses by imposing a different error mapping. Statistics: Medium Uniform

block with Standard feedback (6 participants, including the first author).

. Experiment 4: This experiment tested subjects with a more extreme non-uniform

distribution. Statistics: Medium High-Peaked block with Standard feedback (3

participants).

. Experiment 5: This experiment verified the limits of subjects’ capability of learn-

ing with bimodal distributions of intervals. Statistics: Medium Bimodal with
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Figure 3.2: Time interval reproduction task and generative model. Top: Outline of a
trial. Participants clicked on a mouse button and a yellow dot was flashed s ms later
at the center of the screen, with s drawn from a block-dependent distribution (estima-
tion phase). The subject then pressed the mouse button for a matching duration of r
ms (reproduction phase). Performance feedback was then displayed according to an
error mapping f (r, s). Bottom: Generative model for the time interval reproduction
task. The interval s is drawn from the experimental distribution pexp(s). The stimulus
induces in the observer the noisy sensory measurement x with conditional probabil-
ity density pmeas (x |s; ws ) (the sensory measurement distribution), with ws a sensory
variability parameter. The action subsequently taken by the ideal observer is assumed
to be the ‘optimal’ action s∗(x) that minimizes the subjectively expected loss (Eq. 3.1).
The subjectively expected loss depends on terms such as the prior qprior(s) and the
loss function (squared subjective error mapping f̃ (r, s)), which do not necessarily
match their objective counterparts. The chosen action is then corrupted by motor
noise, producing the observed response r according to the motor error distribution
pmotor (r |s∗; wm ), where wm is a motor variability parameter.

Standard feedback (4 participants) and Wide Bimodal with Standard feedback

(4 participants).

The order of the blocks for Exps. 1 and 2 were randomized across subjects. Each block

consisted of three to six sessions, terminating when the participant’s performance had
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stabilized (fractional change in mean squared timing error between sessions less than

0.08). For Exp. 5 we required participants to perform a minimum of five sessions.

Exp. Subjects Interval range Distribution Peak probability Feedback

1 n = 4 Short Uniform − Skewed
Long Uniform −

2 n = 6 Medium Uniform − Skewed
Medium Peaked 7/12

3 n = 6 Medium Uniform − Standard

4 n = 3 Medium High-Peaked 19/24 Standard

5 a n = 4 Medium Bimodal 1/3 and 1/3 Standard
5 b n = 4 Wide Wide-Bimodal See text Standard

Table 3.1: Summary of experimental layout for all experiments. Each line represents
an experimental block, grouped by experiment; subjects in Exps. 1 and 2 took part
in two blocks, whereas in Exp. 5 two distinct groups of subjects took part in each
block. For each block, the table reports number of subjects (n), interval ranges, type
of distribution, probability of the ‘peak’ (i.e. most likely) intervals and shape of per-
formance feedback. Tested ranges were Short (450–825 ms), Medium (600–975 ms),
Long (750–1125 ms) and Wide (450–1125 ms), each covered by 6 intervals (10 for
the Wide block) separated by 75 ms steps. Distributions of intervals were Uniform
(1/6 probability per interval), Peaked/High-peaked (the ‘peak’ interval at 675 ms
appeared with higher probability than non-peak stimuli, which were equiprobable),
Bimodal (intervals at 600 and 975 ms appeared with higher probability) and Wide-
Bimodal (intervals at 450–600 ms and 975–1125 ms appeared with higher probability).
The Skewed feedback takes the form ∝ r−s

r whereas the Standard feedback ∝ r − s,
where r is the reproduced duration and s is the target interval in a trial.

Each session consisted of around 500 trials and was broken up into runs of 84–96

trials. Within each run the number of each interval type was set to reflect the under-

lying distribution exactly and the order of the presentations was then randomized.

However, for the High-Peaked session we ensured that each less likely interval was

always preceded by 3–5 ‘peak’ intervals. Subjects could take short breaks between

runs.

Sensorimotor measurements sessions

All participants of Exps. 1 and 2 additionally took part in a side sensory and motor

measurement session. In these sessions all stimuli and materials were identical to the

ones presented in the main experiment. The design of these sessions itself was chosen

to be as similar as possible to the main experiment, but focussing only on the sensory

(estimation) or motor (reproduction) part of the task.
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In the sensory noise measurement session subjects performed a 2AFC time interval

discrimination task (∼ 320 trials). Each trial, subjects clicked on a mouse button and

a dot flashed on screen after a given duration (s1 ms). Subjects clicked again on the

mouse button, and a second dot flashed on screen after s2 ms. At the end of each trial

subjects had to specify which interval was longer, with correct responses followed

by a positive feedback tone. Intervals s1 and s2 were adaptively chosen from the

range 300–1275 ms on a trial by trial basis in order to approximately maximize the

expected gain in information about the sensory variability of the subject in that range

(we adapted the algorithm described in Kontsevich and Tyler, 1999).

In the motor noise measurement session, each trial subjects had to produce a given

block-dependent interval by holding the mouse button. Subjects received visual feed-

back of their performance through the Skewed error mapping (as in Exps. 1 and 2).

For each block the target interval was always the same (500, 750 or 1000 ms) and the

subjects were instructed about it. Subjects performed on the three intervals twice, in

a randomized order, for a total of six blocks (30 trials per block, the first five trials of

each block were discarded).

3.2.2 Data analysis

We examined the last two sessions of each block of the main experiment, when per-

formance had plateaued so as to exclude any learning period of the experiment. We

analysed all trials for the uniform distributions and Wide Bimodal block. For the

non-uniform distributions, we picked a random subset of the frequently-sampled in-

tervals such that all intervals contributed equally in the model comparison (results

were mostly independent of the chosen random subset), with the exception of the

Wide Bimodal block for which we would have had too few data points per interval.

For each subject we analyzed about 1000 trials for the Uniform or Wide Bimodal

blocks, ∼ 500 for the Peaked or Medium Bimodal block and ∼ 200 trials for the

High-Peaked block. We discarded trials with time-stamp errors (e.g. multiple or non-

detected clicks) and trials whose response durations fell outside a block-dependent

allowed window of 225–1237 ms (Short), 300–1462 ms (Medium), 375–1687 ms (Long)

and 225–1687 ms (Wide), giving 124 discarded trials out of a total of ∼ 30000 trials

(∼ 0.4%). Note that 93% of the discarded trials had responses of less than 150 ms,

which we attribute to accidental mouse presses.

In our data analysis we use all non-discarded data points, but for the sake of visu-

alization we represent a dataset with two important summary statistics: the response response bias

bias (average difference between the response and target stimulus) and standard devi-

ation (SD) of the responses, for each stimulus interval (see Figure 3.1, bottom rows).
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For all analyses the criterion for statistical significance was p < 0.05.

3.2.3 Observer models

We modelled the subjects’ performance with a family of standard Bayesian ideal

observer (and actor) models which incorporated both the perception (time interval

estimation) and action (reproduction) components of the task; see Figure 3.2 (bottom)

for a depiction of the generative model of the data.

Standard Bayesian observer

According to the standard Bayesian observer of sensorimotor estimation (Section 2.1),

we assume that on a given trial a time interval s is drawn from a probability dis-

tribution pexp(s) (the experimental distribution) and the observer makes an internal

measurement x that is corrupted by sensory noise according to the sensory measure-

ment distribution pmeas (x |s; ws ), where ws is a parameter that determines the sensory

(estimation) variability. Subjects then reproduce the interval with a motor command

of duration ŝ. This command is corrupted by motor noise, producing the response

duration r – the observed reproduction time interval – with conditional probability

density pmotor (r |ŝ; wm ) (the motor error distribution), with wm a motor (reproduction)

variability parameter. Subjects receive an error specified by a mapping f (r, s) and we

assume they try to minimize a (quadratic) loss based on this error.

In our model we assume that subjects develop an internal estimate of both the ex-

perimental distribution and error mapping (the feedback associated with a response

r to stimulus s), which leads to the construction of a (subjective) prior, qprior(s), and

subjective error mapping f̃ (r, s); the latter is then squared to obtain the loss function.

This allows the prior and subjective error mapping to deviate from their objective

counterparts, respectively pexp(s) and f (r, s).

Following BDT (see Eq. 2.3), the ‘optimal’ action s∗(x) is calculated as the action ŝ

that minimizes the subjectively expected loss:

s∗(x) = arg min
ŝ

∫
pmeas (x |s; ws ) qprior(s)pmotor (r |ŝ; wm ) f̃ 2(r, s) ds dr, (3.1)

where the integral on the right hand side is proportional to the subjectively expected

loss. Combining Eq. 3.1 with the generative model of Figure 3.2 (bottom) we com-

puted the distribution of responses of an ideal observer for a target time interval s,

integrating over the hidden internal measurement x, which was not directly accessi-

ble in our experiment.
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Therefore, the reproduction time r of an ideal observer, given the target interval s,

is distributed according to (see Eq. 2.2):

Pr (r|s; ws, wm) =
∫

pmeas (x |s; ws ) pmotor (r |s∗(x); wm ) dx. (3.2)

Eqs. 3.1 and 3.2 are the key equations that allow us to simulate our task. Eq. 3.1

represents the internal model and deterministic decision process adopted by the sub-

ject, whereas Eq. 3.2 represents probabilistically the objective generative process of

the data. Note that the experimental distribution pexp(s) and objective error mapping

f (r, s) do not appear in any equation: the distribution of responses of the ideal ob-

servers only depends on their internal representations of prior and loss function. To

limit model complexity, in the majority of our analyses we assume that the internal

representations of the sensory and motor error distributions that appear in the inter-

nal model (Eq. 3.1) match the objective ones that appear in the generative model (Eq.

3.2).

Bayesian observer model components

The family of Bayesian ideal observer models described by Eqs. 3.1 and 3.2 is char-

acterized by a number of independent model factors or components whose specific model factors

choices can be factorially combined to give rise to a large model space (see Figure

3.3). This methodology of building and subsequently testing models via independent

components has been recently named factorial model comparison (van den Berg et al., factorial model

comparison
2014). Model factors are introduced in the following list.

i. The sensory measurement distribution is Gaussian:

pmeas (x |s; ws ) = N
(

x
∣∣s, σ2

meas(s)
)

, (3.3)

whose noise can be either constant or scalar:

σ2
meas(s) =

 (ws · 787.5)2 (constant)

(wss)
2 (scalar).

(3.4)

For the scalar case, ws simply specifies the coefficient of proportionality of the SD

with respect to the mean, whereas in the constant case it specifies the proportion

of noise with respect to a fixed interval (787.5 ms, average of all experimental

durations).
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Figure 3.3: Bayesian observer and actor model components. Candidate (i) sensory
and (ii) motor error distributions, independently chosen for the sensory and mo-
tor noise components of the model. The noise distributions are Gaussians with either
constant or ‘scalar’ (i.e. homogeneous linear) variability. The amount of variability for
the sensory (resp. motor) component is scaled by parameter ws (resp. wm). iii) Candi-
date priors for the Medium Uniform (top) and Medium Peaked (bottom) blocks. The
candidate priors for the Short Uniform (resp. Long Uniform) blocks are identical to
those of the Medium Uniform block, shifted by 150 ms in the negative (resp. positive)
direction. See Section 3.2.3 for a description of the priors. iv) Candidate subjective
error maps. The graphs show the error as a function of the response duration, for dif-
ferent discrete stimuli (drawn in different colours). From top to bottom: Skewed error
f̃Sk(r, s) ∝ r−s

r ; Standard error f̃St(r, s) ∝ r− s; and Fractional error f̃Fr(r, s) ∝ r−s
s . The

scale is irrelevant, as the model is invariant to rescaling of the error map. The squared
subjective error map defines the loss function (as per Eq. 3.1).

ii. Analogously, the motor error distribution is Gaussian:

pmotor (r |s∗(x); wm ) , (3.5)

whose noise can be either constant or scalar:

σ2
motor(ŝ) =

 (wm · 787.5)2 (constant)

(wm ŝ)2 (scalar).
(3.6)

iii. The approximation scheme for the prior, qprior(s), can be:

a) the true, discrete distribution;

b) a single Gaussian with same mean and variance as the true distribution;
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c) a mixture of six (ten for the Wide range) ‘narrow’ Gaussians (37.5 ms SD) cen-

tered on the true discrete intervals, with mixing weights equal to the relative

probability of the true intervals;

d) as (c) but with ‘broad’ Gaussians (75 ms SD);

e) a continuous uniform distribution from the shortest to the longest interval.

f–g) For Exps. 2 and 4 we also considered a mixture of two Gaussians with mixing

weights π and 1− π, with π equal to the proportion of ‘peak’ intervals that

emerge from the uniform background distribution (π = 0 for the Uniform

block, π = 0.5 for the Peaked block and π = 0.75 for the High-Peaked block).

The first Gaussian is centered on the peak (675 ms) and with a small (f: 37.5

ms) or large (g: 75 ms) SD, the second Gaussian is centered on the mean of the

Medium range (787.5 ms) and with SD equal to that of the discrete Uniform

distribution (128.7 ms). Therefore, for the Medium Uniform block approxima-

tion schemes (f) and (g) reduce to a single Gaussian. Analogously, for Exp. 5

we considered a mixture of three Gaussians with mixing weights π, π and

1− 2π, with π equal to the total frequency of one of the two ‘peaks’ emerging

from the uniform background distribution (π = 1/4 for the Medium Bimodal

block and π = 9/28 for the Wide Bimodal block). The first two Gaussians are

centered on the peaks (Medium: 600 ms and 975 ms; Wide: 525 ms and 1050

ms) and with a small (f: Medium: 37.5 ms; Wide: 61.2 ms) or large (g: twice

the small) SD. The third Gaussian is centered on the mean of the range (787.5

ms) and with SD equal to that of the discrete Uniform distribution over the

range (Medium: 128.7 ms; Wide: 251.6 ms).

The values of SDs that appear in the mixture of Gaussians in (c), (d), (f) and (g)

(narrow 37.5 ms, broad 75 ms) were chosen since 75 ms is the gap between time

intervals in all experimental distributions. For the Wide Bimodal block, 61.2 ms

is the SD of the sample for three intervals separated by 75 ms.

iv. The (subjective) loss function is assumed to be the square of the subjective error

mapping: L (r, s) = f̃ 2(r, s). The subjective error mapping can be:

f̃ (r, s) =


r−s

r (Skewed)

r− s (Standard)
r−s

s (Fractional).

(3.7)

Note that the Fractional error was not used as feedback in the experiments, but

we included it as a possibility for the Bayesian observer as it might represent
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an appropriate error signal if time has a logarithmic representation in the brain

(Gibbon, 1981). In fact, the logarithmic squared loss yields:

(log r− log s)2 =
(

log
r
s

)2
=

(
log
[

1 +
r− s

s

])2

≈
(

r− s
s

)2

for
∣∣∣∣ r− s

s

∣∣∣∣� 1.

The pseudo-quadratic form for the loss is chosen mostly for computational rea-

sons. We extend the analysis to a non-quadratic loss function in Section 3.3.2.

Note that, to avoid overfitting, priors and loss functions do not have continuous

parameters in our preliminary analysis. Instead, we considered a finite number of

parameter-free models of loss function, prior and shape of likelihoods, leaving only

two continuous parameters for characterizing the sensory and motor variability (ws

and wm).

3.2.4 Model comparison and non-parametric analysis

Bayesian model comparison

For each participant we assumed that the sensory and motor noise, the approximation

scheme for the priors, and the loss function were shared across different experimental

blocks. For each observer model M and each subject’s dataset D (that is all blocks

within an experiment) we calculated the posterior probability of the model given the

data, Pr (M |D ) ∝ Pr (D |M ), assuming a flat prior over the models (see Appendix A

for a recap of Bayesian model comparison). The marginal likelihood is given by:marginal likelihood

Pr (D |M ) =
∫

Pr (D |ws, wm, M )Pr (ws, wm |M ) dws dwm, (3.8)

where Pr (ws, wm |M ) is the prior over the parameters and Pr (D |ws, wm, M ) is the

likelihood of the data given a specific model and value of the parameters. We as-

sumed the same prior over parameters for all models, with independence between

parameters, Pr (ws, wm |M ) = Pr(ws)Pr(wm). For both parameters we used a broad

Beta prior, ∼ Beta(1.3, 2.6), chosen to weakly favour the range 0.03–0.3 in agreement

with a vast literature on human timing errors (Lewis and Miall, 2009). The likeli-

hood of the data was computed according to our observer model, Eq. 3.2, assuming

independence across trials:

Pr (D |ws, wm, M ) =
N

∏
i=1

Pr
(

r(i)
∣∣∣s(i); ws, wm

)
, (3.9)
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with N the total number of test trials and s(i), r(i) respectively the target interval and

response in the i-th test trial. The calculation of Pr (r |s; ws, wm ) in Eq. 3.2 requires

a computation of the optimal action s∗, that is, the action ŝ that minimizes the ex-

pected loss (Eq. 3.1). The minimization was performed analytically for the Standard

and Fractional loss function and numerically for the Skewed loss function (function

fminbnd in MATLAB; we assumed that s∗ always fell in the range 20–2000 ms; the

results were checked against analytical results obtained through a Taylor-expansion

approximation of the loss function that holds for | r−s
s | � 1).

We computed the marginal likelihood through Eqs. 3.8 and 3.9 both with a full

numerical integration and using a Laplace approximation, with essentially identical

results. For each dataset, given the posterior distribution over parameters and models,

we computed the posterior predictive mean and SD for both the bias and the SD of

the response of each stimulus (see Section A.2 in the Appendix). The integration for

the posterior predictive checks was performed both over parameters and over models,

but typically only one of the models contributed significantly to the integral.

Non-parametric reconstruction of the priors

To examine the subjects’ priors using a non-parametric approach, for each subject we

took the most supported (i) sensory and (ii) motor noise and (iv) loss function, as

inferred from the model comparison. We then allowed the priors to vary indepen-

dently over a broad class of smooth, continuous distributions. For each block, the

log prior was specified by the values of ten (14 for the Wide range) control points

at 75 ms steps over the ranges: Short 300–1025 ms, Medium 450–1175 ms, Long 600–

1325 ms and Wide 300–1325 ms. The control points were centered on the interval

range of the block but extended outside the range to allow for tails or shifts. The

non-parametric prior qprior(s) was calculated by interpolating the values of the prior

in log space with a Gaussian process (Rasmussen and Williams, 2006) with squared

exponential covariance function with fixed scale (σy = 1 in log space, ` = 75 ms) and

a small nonzero noise term to favour conditioning. The Gaussian processes were used

only as a smooth interpolating method and not as an active part of the inference.2

In order to infer the prior for each subject and block, we sampled from the posterior

distribution of priors ∝ Pr
(
D
∣∣qprior, M

)
using a slice sampling MCMC algorithm

(Neal, 2003). We ran ten parallel chains (3000 burn-in samples, 1500 saved samples

per chain) obtaining a total of 15000 sampled priors per subject and block. Conver-

gence of sampling method was checked both by visual inspection and by comparing

the average moments of the priors obtained from each chain against the others for the

same subject and block. Differences between the means were empirically negligible

2 The same technique has been used later by Zhang et al. (2013b).
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(maximum difference < 1 ms). For each sampled prior we calculated the first four

central moments (mean, SD, skewness and excess kurtosis) and computed the mean

and SD of the moments across the sample sets of individual subjects and over the

sample set of all subjects.

3.3 results

We first present a description of the results of Exps. 1 and 2, and then report a series

of analyses on those two main experiments combined, including a number of investi-

gations regarding the role of sensorimotor noise. Exps. 3, 4 and 5 test specific aspects

of the model and of subjects’ behaviour with more complex distributions, and are

presented thereafter.

3.3.1 Experiments 1 and 2

Exp. 1: Uniform distributions over different ranges

In the first experiment the distribution of time intervals consisted of a set of six

equally spaced discrete times with equal probability according to either a Short Uni-

form (450–825 ms) or Long Uniform (750–1125 ms) distribution. The feedback fol-

lowed a Skewed error mapping fSk ∝ r−s
r .

We examined the mean bias in the response (mean reproduction interval minus

actual interval, r − s, also termed ‘constant error’ in the psychophysical literature),

as a function of the actual interval (Figure 3.4 top). Subjects’ responses showed a

regression to the mean consistent with a Bayesian process that integrates the prior

with sensory evidence (see Chapter 2). That is, little bias was seen for intervals that

matched the mean of the prior (637.5 ms for Short Uniform, red points, and 937.5 ms

for Long Uniform, green points). However, at other intervals a bias was seen towards

the mean interval of that experimental block, with subjects reporting intervals longer

than the mean as shorter than they really were and conversely intervals shorter than

the mean as being longer than they really were. Moreover, this bias increased almost

linearly with the difference between the mean interval and the actual interval. Qual-

itatively, this bias profile is consistent with most reasonable hypotheses for the prior,

likelihoods and loss functions of an ideal Bayesian observer (even though details may

differ). The SD of the response (Figure 3.4 bottom) showed a roughly linear increase

with interval duration, in agreement with the scalar property of interval timing (Gib-

bon, 1977; Rakitin et al., 1998).

73



3.3 results

Figure 3.4: Exp. 1: Short Uniform and Long Uniform blocks. Very top: Experimental
distributions for Short Uniform (red) and Long Uniform (green) blocks, repeated on
top of both columns. Left column: Mean response bias (average difference between
the response and true interval duration, top) and SD of the response (bottom) for
a representative subject in both blocks (red: Short Uniform; green: Long Uniform).
Error bars denote SEM (standard error of the mean). Continuous lines represent the
Bayesian model ‘fit’ obtained averaging the predictions of the most supported mod-
els (Bayesian model averaging). Right column: Mean response bias (top) and SD of the
response (bottom) across subjects in both blocks (mean ± SE across subjects). Con-
tinuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of
the most supported models across subjects.

These results qualitatively suggest that the temporal context influences subjects’

performance in the motor-sensory timing task in a way which may be compatible

with a Bayesian interpretation, and in agreement with previous work which consid-

ered purely sensory intervals and uniform distributions (Jones and Mcauley, 2005;

Jazayeri and Shadlen, 2010; Cicchini et al., 2012). To quantitatively verify the hypoth-

esis that a Bayesian model would be able to describe the data, for each participant we
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computed the support for each model based on the psychophysical data, that is the

model marginal likelihood Pr (D |M ), which is proportional to the posterior proba-

bility of the model (see Section 3.2.3). We then calculated the Bayesian model average

for the mean bias and SD of the response, shown by the continuous lines in Figure 3.4.

Note that the Bayesian model ‘fits’ are obtained by integrating the model predictions

over the posterior of all models and parameters (model averaging), with no parame-

ter fitting. In general, the mean biases fits show a good quantitative match with the

group averages (R2 ≥ 0.95 for both blocks); the SDs are typically more erratic and we

found mainly a qualitative agreement, as observed in previous work (see e. g., Figure

S3 in Jazayeri and Shadlen, 2010).

Exp. 2: Uniform and Peaked distributions on the same range

As in the first experiment, six different equally-spaced intervals were used, with two

different distributions. However, in this experiment both blocks had the same range of

intervals (Medium: 600–975 ms). In one block (Medium Peaked) one of the intervals

(termed the ‘peak’) occurred more frequently than the other 5 intervals, that were

equiprobable. That is, the 675 ms interval occurred with p = 7/12 with the other 5

intervals occurring each with p = 1/12. In the other block (Medium Uniform) the 6

intervals were equiprobable. The feedback gain for both blocks was again the Skewed

error map fSk ∝ r−s
r .

Examination of the responses showed a central tendency as encountered in the

previous experiment (Figure 3.5 top). However, despite the identical range of inter-

vals in both blocks, subjects were sensitive to the relative probability of the intervals

(Ryan, 2011). In particular, the responses in the Peaked block (light blue points) ap-

peared to be generally shifted towards shorter durations and this shift was interval

dependent (see Figure 3.6). This behaviour is qualitatively consistent with a simple

Bayesian inference process, according to which the responses are ‘attracted’ towards

the regions of the prior distribution with greatest probability mass. Intuitively, the

average (‘global’) shift of responses can be thought of as arising from the shift in

the distribution mean, from the Uniform distribution (mean 787.5 ms) to the Peaked

distribution (mean 731.3 ms); whereas interval-dependent (‘local’) effects are a super-

imposed modulation by the probability mass assignments of the distribution. This

is only a simplified picture, as the biases depend on a non-linear inference process,

which is also influenced by other details of the Bayesian model (such as the loss

function), but the qualitative outcome is likely to be similar in many relevant cases.

The SD of the responses showed a significant decrease in variability around the

peak for the Peaked condition (Figure 3.5 bottom; paired t-test t(5) = 3.95, p < 0.05).

This effect could be simply due to practice as subjects received feedback more often
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at peak intervals, however the local modulation of bias previously described (Figure

3.6) suggests a Bayesian interpretation. In fact, because of the local ‘attraction’ effect,

interval durations close to the peak would elicit responses that map even closer to it,

therefore compressing the perceptual variability, an example of bias-variance trade-

off (Jazayeri and Shadlen, 2010).

Figure 3.5: Exp. 2: Medium Uniform and Medium Peaked blocks. Very top: Experi-
mental distributions for Medium Uniform (light brown) and Medium Peaked (light
blue) blocks, repeated on top of both columns. Left column: Mean response bias (top)
and SD of the response (bottom) for a representative subject in both blocks (light
blue: Medium Uniform; light brown: Medium Peaked). Error bars denote SEM. Con-
tinuous lines represent the Bayesian model fit. Right column: Mean response bias (top)
and SD of the response (bottom) across subjects in both blocks (mean ± SE across
subjects). Continuous lines represent the Bayesian model fit averaged across subjects.

The results of the second experiment show that people take into account the differ-

ent nature of the two experimental distributions, in agreement with previous work

that found differential effects in temporal reproduction for skewed vs uniform dis-
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Figure 3.6: Exp. 2: Difference in response between Medium Peaked and Medium
Uniform blocks. Difference in response between the Medium Peaked and the
Medium Uniform conditions as a function of the actual interval, averaged across
subjects (±1 SEM). The experimental distributions (light brown: Medium Uniform;
light blue: Medium Peaked) are plotted for reference at bottom of the figure. The
dashed black line represents the average response shift (difference in response be-
tween blocks, averaged across all subjects and stimuli), with the shaded area denoting
±1 SEM. The average response shift is significantly different from zero (−32.2± 7.9
ms; paired t-test t(5) = 4.86, p < 0.01), meaning that the two conditions elicited consis-
tently different performance. Additionally, the responses were subject to a ‘local’ (i.e.
interval-dependent) modulation superimposed to the average shift, that is, intervals
close to the peak of the distribution (675 ms) were attracted towards it, in addition
to the average shift, while intervals far away from the peak were less affected. (*)
The response shift at 600 ms and 825 ms is significantly different from the average
response shift; p < 0.01.

tributions of temporal intervals on a wider, suprasecond range (Ryan, 2011). The

performance of the subjects in the two blocks is consistent with a Bayesian ‘attraction’

in the response towards the intervals with higher prior probability mass. Moreover,

although the average negative shift in the response observed in the Peaked condition

versus the Uniform one might be compatible with a temporal recalibration (Stetson

et al., 2006; Heron et al., 2009) or binding (Haggard et al., 2002) effect that shortens the

perceived duration between action and sensory consequences, the specific interval-

dependent bias modulation (Figure 3.6) and the reduction in variability around the

peak (Figure 3.5 bottom) suggest there may instead be in this case a Bayesian expla-

nation (see also Discussion, Section 3.4). As before, we computed the Bayesian model
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fit (or ‘posterior prediction’) via model averaging, finding again a good quantitative

agreement with the group mean biases (R2 ≥ 0.95 for both blocks) and a qualitative

agreeement for the SDs.

3.3.2 Analysis of the first two experiments

We present now a series of analyses of the first two experiments. First, we applied the

machinery of Bayesian model comparison to infer the most likely model components,

which we subsequently fixed in order to non-parametrically reconstruct the subjects’

priors. Then, we tested additional hypotheses about subjects’ behaviour by building

a few extensions of the model.

Factorial model comparison

For each participant of Exps. 1 and 2 we calculated the posterior probability of each

model component (by summing over models with the same components). Table 3.2

reports the most supported (i) sensory and (ii) motor noise models, (iii) priors and

(iv) loss function.

The model comparison confirmed that the best noise models were represented by

the ‘scalar’ variability, which had relevant support for both the sensory component (7

subjects out of 10) and the motor component (8 subjects out of 10). This result is con-

sistent with previous work in both the sensory and motor domain (Mates, 1994; Rak-

itin et al., 1998; Hudson et al., 2008; Jazayeri and Shadlen, 2010). The most supported

subjective error map was the Skewed error (7 subjects out of 10), which matched the

feedback we provided experimentally. The priors most supported by the data were

typically smooth, peaked versions of the experimental distributions. In particular, ac-

cording to the model comparison, almost all subjects (9 out of 10) approximated the

discrete uniform distributions in the Uniform blocks with normal distributions (same

mean and variance as the true distribution; Figure 3.3 iii top, b). However, in Exp. 2

most people (5 out of 6) seemed to approximate the experimental distribution in the

Peaked block not with a standard Gaussian, but with a skewed variant of a normal

distribution (Figure 3.3 iii bottom, d, f and g), suggesting that their responses were

influenced by higher order moments of the true distribution and not just the mean

and variance (see Discussion).

For Exp. 2 we also relaxed some constraints on the priors, allowing the model

selection to pick a Medium Uniform prior for the Medium Peaked block and vice

versa. Nevertheless, the model comparison showed that the most supported models

were still the ones in which the priors matched the block distribution, supporting our
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Subject
Sensory

noise
Motor
noise

Prior
Loss

function

Experiment 1
LA Sc (1.000) Sc (1.000) b (1.000) Sk (1.000)
JW Sc (0.967) Sc (1.000) b (0.960) St (1.000)
TL Cn (1.000) Sc (1.000) b (1.000) Sk (1.000)
DB Sc (1.000) Sc (0.974) e (0.997) St (1.000)

Experiment 2
LA Sc (1.000) Sc (0.997) g (1.000) Sk (1.000)
AC Cn (1.000) Sc (1.000) f (0.978) St (1.000)
AP Cn (1.000) Sc (0.981) b (1.000) Sk (1.000)
HH Sc (0.997) Sc (0.997) g (0.998) Sk (0.875)
JB Sc (0.998) Cn (0.996) f (0.997) Sk (1.000)
TZ Sc (1.000) Cn (1.000) d (0.976) Sk (1.000)

Experiment 3
LA Cn (0.910) Sc (0.990) b (1.000) St (0.993)
NY Sc (0.988) Sc (0.780) b (1.000) Fr (1.000)
JL Sc (0.528) Sc (1.000) b (0.999) St (1.000)
RD Cn (1.000) Sc (0.996) b (0.998) Fr (1.000)
PD Sc (0.758) Cn (1.000) b (0.999) St (1.000)
JE Cn (0.896) Sc (0.912) b (1.000) St (1.000)

Experiment 4
RR Cn (0.986) Sc (0.950) a (0.998) St (−)
DD Cn (0.726) Cn (0.641) f (0.511) St (−)

g (0.486)
NG Cn (0.980) Sc (0.973) b (0.503) St (−)

g (0.458)

Table 3.2: Bayesian model comparison: most supported observer model components
for Exps. 1–4. Most supported observer model components (posterior probability),
for each subject, according to the Bayesian model comparison. A posterior proba-
bility p > 0.95 should be considered suggestive evidence, and p > 0.99 significant
(posterior probability p > 0.9995 is written as 1.000, with a slight abuse of notation).
The sensory and motor noise models can either be constant (Cn) or scalar (Sc); the
subjective priors (a-g) are described in the Methods (Section 3.2.3); the loss function
can be Skewed (Sk), Standard (St) or Fractional (Fr) (see also Figure 3.3). Note the
switch in preferred loss function from Exps. 1 and 2 (which received Skewed feed-
back) to Exp. 3 (which received Standard feedback). In Exp. 4 the loss function was
fixed to Standard to constrain the model selection.
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previous findings that subjects’ responses were consistent with the temporal context

and changed when switching from one block to another (as visible in Figure 3.5).

Non-parametric reconstruction of the priors

To study in detail the internal representations, we relaxed the constraint on the priors.

Rather than choosing from a fixed set of candidate priors (Figure 3.3 iii), we allowed

the prior to vary over a much wider class of smooth, continuous distributions. We

assumed that the noise models and loss function emerging from the model com-

parison were a good description of the subjects’ decision making and sensorimotor

processing in the task. We therefore fixed these components of the observer’s model

and inferred non-parametrically, on an individual basis, the shape of the priors most

compatible with the measured responses (Figure 3.7; see Section 3.2.3 for details).

Figure 3.7: Non-parametrically inferred priors (Exps. 1 and 2). Top row: Short Uni-
form (red) and Long Uniform (green) blocks. Bottom row: Medium Uniform (light
brown) and Medium Peaked (light blue) blocks. Left column: Non-parametrically in-
ferred priors for representative participants. Right column: Average inferred priors.
Shaded regions are ±1 SD For comparison, the discrete experimental distributions
are plotted under the inferred priors.

Examination of the recovered priors shows that the subjective distributions were

significantly different from zero only over the range corresponding to the experimen-

tal distribution, with only occasional tails stretching outside the interval range (e. g.,

Figure 3.7 bottom left). This suggests that in general people were able to localize the

stimulus range in the blocks. The priors did not typically take a bell-like shape, but
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rather we observed a more or less pronounced peak at the mean of the true distribu-

tion, with the remaining probability mass spread over the rest of the range. Interest-

ingly, the group averages for the Uniform priors over the Short, Medium and Long

ranges (Figure 3.7 top right, both, and bottom right, light brown) exhibit very similar,

roughly symmetrical shapes, shifted over the appropriate stimulus range. Conversely,

the Peaked prior (Figure 3.7 bottom right, light blue) had a distinct, skewed shape.

To compare the inferred priors with the true distribution, we calculated their distri-

bution moments (Table 3.3). We found that the first three moments of the inferred pri-

ors (in the table reported as mean, SD and skewness) were statistically indistinguish-

able from those of the true distributions for all experimental conditions (Hotelling’s

multivariate one-sample T2 test considering the joint distribution of mean, SD and

skewness against the true values: p > 0.45 for all blocks). This result is consistent with

the previously stated hypothesis that participants had developed an internal repre-

sentation which included higher order moments and not just the mean and variance

of the experimental distribution. However, when including the fourth moment (kur-

tosis) in the analysis, we observed a statistically significant deviation of the recovered

priors with respect to the true distributions (Hotelling’s T2 test with the joint distri-

bution of the first four moments: p < 10−4 for all blocks); in particular, the inferred

priors seem to have more pronounced peaks and/or heavier tails. Our analysis there-

fore showed that, according to the inferred priors, people generally acquired internal

representations that were smooth, heavy-tailed approximations to the experimental

distributions of intervals, in agreement up to the first three moments.

The deviation of the fourth moment deserves an investigation. First, the heightened

kurtosis is not an artifact due to the averaging process across subjects or the sampling

process within subjects, as we averaged the moments computed for each sampled

distribution (see Section 3.2.3) rather than computing the moments of the average

distribution. In other words, all recovered priors are (on average) heavy tailed, it’s

not just the mean prior that it is ‘accidentally’ heavy tailed as a mixture of light-tailed

distributions. So this result could mean that the subjects’ internal representations are

actually heavy-tailed, for instance to allow for unexpected stimuli (Feldman, 2013).

However, there could be a simpler explanation that the presence of outliers arise

from occasional trivial mistakes of the participants. We consider this hypothesis in

the next section.

Bayesian observer model with lapse

The reconstructed priors show a systematic increase (and variability) in the inferred

kurtosis which may be an artifact due to outliers. To verify whether this is the case,
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Short Uniform Long Uniform

Objective Subjective Objective Subjective
Mean (ms) 637.5 644.2 ± 12.8 937.5 929.9 ± 19.6

SD (ms) 128.1 117.4 ± 13.3 128.1 131.2 ± 16.9
Skewness 0 −0.17 ± 0.24 0 −0.12 ± 0.41

Ex. Kurtosis −1.27 0.86 ± 1.24 −1.27 0.82 ± 0.98

Medium Uniform Medium Peaked

Objective Subjective Objective Subjective
Mean (ms) 787.5 805.7 ± 27.4 731.3 724.1 ± 24.0

SD (ms) 128.1 130.4 ± 23.5 106.6 110.13 ± 18.5
Skewness 0 −0.16 ± 0.41 1.14 0.78 ± 0.42

Ex. Kurtosis −1.27 0.80 ± 1.44 0.09 2.20 ± 2.39

Table 3.3: Main statistics of the experimental distributions and non-parametrically
inferred priors (Exps. 1 and 2; Skewed feedback). Comparison between the main
statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors non-
parametrically inferred from the data. The subjective moments are computed by av-
eraging the moments of sampled priors pooled from all subjects (±1 SD); see Figure
3.7, right column and Methods for details. In statistics, the excess kurtosis is defined
as kurtosis −3, such that the excess kurtosis of a normal distribution is zero. Heavy
tailed distributions have a positive excess kurtosis.

we considered a straightforward extension of our model which added the possibility

of occasional mistakes.

We extended the Bayesian observer model described by Eqs. 3.1 and 3.2 by intro-

ducing for each subject in Exps. 1 and 2 a third continuous parameter, the lapse rate lapse rate

λ (Wichmann and Hill, 2001; Kuss et al., 2005). For each trial, the observer has some

probability λ of ignoring the current stimulus and responding with uniform proba-

bility over the range of allowed responses – a very simple model of outliers due to

mistakes. The response probability with lapse is:

Prlapse (r|s; ws, wm, λ) = λ
1
L
+ (1− λ)Pr (r |s; ws, wm ) , (3.10)

where L is the allowed response window duration (which is block-dependent, see

Data Analysis in Section 3.2.1). By using Eq. 3.10 in Eq. 3.9 we computed the marginal

likelihood of models with lapse. We took a Beta(1, 9) prior for λ that mildly favours

small values of the lapse parameter (Kuss et al., 2005). As before, we extracted the

most supported model components and subsequently inferred the subjective priors.

The excess kurtosis for the observers with lapse, computed by averaging the mo-

ments of sampled priors pooled from all subjects, was (mean ±1 SD): 0.85 ± 1.30
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(Short Uniform), 0.70± 1.01 (Long Uniform); 0.91± 1.57 (Medium Uniform), 1.87±
1.84 (Medium Peaked); as opposed to a true excess kurtosis of −1.27 (Uniform blocks)

and 0.09 (Peaked block). The average moments of the reconstructed priors did not

differ significantly from the ones computed with the basic model without lapse (see

Table 3.3), and in particular the kurtosis was similar, being in general systematically

higher than the true distribution kurtosis, and still quite variable.

In terms of marginal likelihood, generally the models with lapse performed better

than the original models, but with no qualitative difference in the preferred model

components. Crucially, the kurtosis of the recovered priors was still in disagreement

with the true value, ruling out the possibility that the heightened kurtosis had been

caused by trivial outliers. We will consider other possibilities in the Discussion, Sec-

tion 3.4.

Non-quadratic loss function

Our basic model assumed a quadratic (or pseudo-quadratic) loss function that was

obtained by squaring the subjective error map f̃ (r, s). The exponent 2 allowed a semi-

analytical solution of Eq. 3.1, which made tractable the problems of: (a) computing the

marginal likelihood for a relatively large class of models; and (b) non-parametrically

inferring the subjects’ priors. However, previous work has shown that people in sen-

sorimotor tasks may be instead following a subquadratic loss function (Körding and

Wolpert, 2004b).

For the sake of completeness, we explored an extended model with non-quadratic

loss functions. For computational reasons we could not perform a full Bayesian model

comparison, but we considered only the ‘best’ observer model per subject. For each

subject we chose the most supported model components for the sensory and motor

noise and the shape of the subjective error mapping (Standard, Skewed or Fractional),

whereas for the prior we took the mean non-parametrically inferred prior (separately

for each subject). The exponent of the loss function was now free to vary, so that the

equation for the optimal action reads:

s∗(x) = arg min
ŝ

∫
pmeas (x |s; ws ) qprior(s)pmotor (r |ŝ; wm )

∣∣∣ f̃ (r, s)
∣∣∣ν ds dr, (3.11)

where ν > 0 is a continuous free parameter representing the exponent of the loss

function. Eq. 3.11 was solved numerically (functions fminbnd and trapz in MAT-

LAB) for various values of x and then linearly interpolated. Through Eqs. 3.2 and 3.9

we computed for each subject the posterior probability of the exponent Pr (ν |D ) ∝

Pr (D |ν )Pr (ν), where we assumed an (improper) uniform prior on ν.
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Results are shown in Figure 3.8 as a box plot for each subject’s inferred ν. Taking the

median of the posterior distribution as the inferred value for ν, the exponent averaged

across subjects (excluding one outlier) is 1.88± 0.06 which is marginally lower than

2 (t-test t(8) = −2.04, p = 0.08).3 This result is in qualitative agreement with Körding

and Wolpert (2004b) which found that subjects were following a subquadratic loss

function (with exponent 1.72± 0.03 for a power law). Our average inferred exponent

is however higher, and only marginally lower than 2, but this might be due to the fact

that the subjects’ priors have been inferred under the assumption of a quadratic loss

function, and therefore priors may be already ‘fitting’ some features of the data that

were due instead to a subquadratic loss function.
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Figure 3.8: Non-quadratic loss function. Inferred exponents ν of the loss function
for subjects in Exps. 1 (ss 1–4) and 2 (ss 5–10). The box plots have lines at the lower
quartile, median, and upper quartile values; whiskers cover 95% confidence interval.
Excluding one outlier (s3, in red), the average inferred exponent is marginally lower
than 2 (p < 0.07).

In conclusion, although we found some support for a slightly subquadratic loss

function, our analysis did not find significant evidence to reject the quadratic expo-

nent in the loss, suggesting that ν ≈ 2 represents a viable approximation which we

keep using in the rest of the work.

3 Taking the mean of the posterior instead of the median renders analogous results.
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3.3.3 Analysis of sensorimotor noise

A complete study of Bayesian behaviour requires an accurate analysis of the proper-

ties of sensorimotor noise of the observers (see Sections 2.2 and 2.4.4). In this section

we describe a set of additional experiments and analyses which tested various hy-

potheses about our subjects’ sensorimotor noise.

Measuring sensory and motor noise

The sensory (estimation) and motor (reproduction) noise distributions in our observer

model are represented by normal distributions whose SD (either constant or ‘scalar’,

Figure 3.3 i and ii) is governed by the two parameters ws, wm. Here we examine

whether the parameter values ws, wm inferred from the data correspond to direct

measures of sensory and motor variability.

For each subject in Exps. 1 and 2 we computed the posterior distribution of ws, wm

as a weighted average over all models, and took the mean of the posterior as the

‘model-inferred’ sensory and motor variability for that subject. We examined whether

the model-inferred values corresponded to direct measures of sensory and motor vari-

ability (w′s, w′m) obtained in separate experiments. We directly estimated each subject’s

sensory variability in a 2AFC time interval discrimination task, and analogously we

directly estimated the subjects’ motor variability in a time interval ‘production’ task

(see Experimental procedures, Section 3.2.1, for details). For each subject we built

simple ideal observer models of the discrimination and production tasks in which

the sensory and motor variability could either be constant or scalar (according to the

results of the model comparison in the main experiment). We computed the posterior

distributions of the sensory and motor noise parameters, and took the mean of these

posteriors as the ‘directly-measured’ noise parameters (w′s, w′m).

The comparison between the model-inferred values and the directly-measured

ones is shown in Figure 3.9 for the sensory (left) and motor (right) noise parameters.

For sensory variability, we found that w′s had a good correlation (R2 = 0.77) with

ws, and the group means were in good agreement (ws = 0.157± 0.002, w′s = 0.166±
0.009). For the motor variability, the group means were quantitatively similar, even

though in slight statistical disagreement (wm = 0.072± 0.001, w′m = 0.078± 0.001),

but we did not find a correlation between w′m and wm (see Discussion).

These results suggest that the model parameters for the noise properties extracted

from the full model were in agreement with independent measures of these noise

properties in isolation. Interestingly, independent measurements of the sensory noise

had predictive power on the subjects’ performance even at the individual level, due

to the good correlation with the sensory model parameter. The lack of correlation

85



3.3 results

0.1 0.2 0.3

0.1

0.2

0.3

Model average for w
s

M
e

a
s
u

re
d

 w
s′

Sensory variability comparison

R
2
 = 0.77

0.04 0.06 0.08 0.1

0.04

0.06

0.08

0.1

Model average for w
m

M
e

a
s
u

re
d

 w
m′

Motor variability comparison

R
2
 = 0.03

Figure 3.9: Comparison of sensory and motor noise parameters (main experiment
vs direct measurements). For each participant of Exps. 1 and 2 (n = 10) we directly
measured the sensory (w′s) and motor (w′m) variabilities. For each subject we also
calculated the model-averaged parameters ws and wm that appear in our Bayesian
ideal observer model. The parameters are compared in the figure, (ws, w′s) to the
left and (wm, w′m) to the right. Each dot is a participant’s parameter mean ±1 SD.
The group means are plotted as crosses (shaded area 95% confidence interval). The
continuous line is a linear fit.

for the motor noise parameter at the individual level may have been due to other

noise factors, not contemplated in the model, that influenced the variance of the pro-

duced response (e. g. noise in the decision making process, non-Gaussian likelihoods,

deviations from the exact scalar property, etc.).

Internal knowledge of sensory variability

Our modelling framework allowed us to ask whether subjects ‘knew’ their own sen-

sory variability in the task (see Section 2.2.2). We extended our original model by

introducing a distinction between the objective sensory variability ws and the sub-

jective estimate the Bayesian observer had of its value, w̃s. The computation of the

optimal action was modified accordingly:

s∗(x) = arg min
ŝ

∫
pmeas (x |s; w̃s ) qprior(s)pmotor (r |ŝ; wm ) f̃ 2(r, s) ds dr, (3.12)

which is almost identical to Eq. 3.1, but note that the expected loss depends now on

the subjective value w̃s instead of ws. The other equations of the model remained

unchanged as they depend on the objective sensory noise.

We performed a full Bayesian model comparison with the extended model, where

all components (likelihoods, prior, loss function) were free to vary as per the basic

model comparison, the only difference being the presence of three continuous pa-
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rameters (ws, wm, w̃s) and Eq. 3.12. Results of the model comparison showed that the

extended models performed comparably or slightly worse than the original mod-

els in terms of marginal likelihood (average difference in log marginal likelihood:

−5.3± 2.9; paired t-test t(9) = −1.83, p = 0.10), meaning that the additional param-

eter did not provide any significant advantage for explaining the data. This result

suggests that most subjects had a reasonably accurate estimate of their own sensory

variability.

Note that an analogous study for the motor variability is not feasible with our

dataset as the problem becomes in this case under-constrained (see Section 2.4.4). In

fact, if we separate the objective motor variability wm from its subjective estimate

w̃m, some observer models do not even depend on w̃m (e. g., an observer with con-

stant motor likelihood and Standard loss function), and others show only a weak

dependence. In order to meaningfully test whether people ‘knew’ their own motor

variability a much stronger asymmetry in the loss function is needed, along with

some other experimental manipulations (see for instance Hudson et al., 2008).

3.3.4 Experiments 3, 4 and 5

We performed a series of additional experiments that ask specific questions about

subjects’ behaviour with a different loss function and with more complex distribu-

tions.

Exp. 3: Effect of the shape of feedback on the loss function

In our ideal observer model we compared three candidate loss functions: Skewed,

Standard and Fractional (Figure 3.3 iv). The results of the model comparison in the

first two experiments with Skewed feedback showed that there was a good match

between experimentally provided feedback and subjective error metric. However, we

could not rule out the possibility, albeit unlikely, that participants were ignoring the

experimental feedback and following an internal error signal that just happened to

be similar in shape to the Skewed error. We, therefore, performed an additional ex-

periment to verify that subjects behaviour is driven by the feedback provided.

We again used a Medium Uniform block but now with Standard error f (r, s) ∝ r− s

as feedback (see Figure 3.10). The model comparison for this group showed that

the responses of 4 subjects out of 6 were best explained with a Standard loss func-

tion. Moreover, no subject appeared to be using the Skewed loss function (Table 3.2).

These results confirm that most people correctly integrate knowledge of results with

sensory information in order to minimize the average (squared) error, or an empiri-

cally similar metric. Furthermore, all inferred individual priors showed a remarkable
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agreement with a smoothed approximation of the experimental distribution of inter-

vals (Figure 3.11 top), suggesting that the Standard error feedback may be easier to

use for learning. As in the previous experiments, the average moments of the inferred

priors (up to skewness) were statistically indistinguishable from those of the true dis-

tribution, with a significant difference in the kurtosis (Table 3.4 left; Hotelling’s T2

test, first three moments: p > 0.95; first four moments: p < 10−7).

Figure 3.10: Exp. 3: Medium Uniform block with Standard feedback. Very top: Ex-
perimental distribution for Medium Uniform block, repeated on top of both columns.
Left column: Mean response bias (top) and SD of the response (bottom) for a represen-
tative subject. Error bars denote SEM. Continuous lines represent the Bayesian model
fit. Right column: Mean response bias (top) and SD of the response (bottom) across sub-
jects (mean ± SEM across subjects). Continuous lines represent the Bayesian model
fit averaged across subjects.

Exp. 4: High-Peaked distribution

In the Peaked block we did not observe any significant divergence from the Bayesian

prediction. However, the ratio of presentations of ‘peak’ intervals (675 ms) to the

others was low (1.4) and possibly not enough to induce other forms of temporal

adaptation (Heron et al., 2009, 2012). To examine whether we might see deviations

from Bayesian integration for larger ratios we therefore tested another group of sub-

jects on a more extreme variant of the Peaked distribution in which the peak stimulus

had a probability of p ≈ 0.8 and therefore a ratio of about 4.0. We provided feedback
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Figure 3.11: Non-parametrically inferred priors (Exps. 3 and 4). Top row: Medium
Uniform (light brown) block. Bottom row: Medium High-Peaked (dark blue) block.
Left column: Non-parametrically inferred priors for representative participants. Right
column: Average inferred priors. Shaded regions are ±1 SD For comparison, the dis-
crete experimental distributions are plotted under the inferred priors.
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Medium Uniform Medium High-Peaked

Objective Subjective Objective Subjective
Mean (ms) 787.5 782.6 ± 18.7 703.1 702.0 ± 17.9

SD (ms) 128.1 131.7 ± 13.6 80.5 119.5 ± 17.9
Skewness 0 0.03 ± 0.30 2.25 0.67 ± 0.37

Ex. Kurtosis −1.27 0.42 ± 0.53 −0.86 1.66 ± 1.32

Table 3.4: Main statistics of the experimental distributions and non-parametrically
inferred priors (Exps. 3 and 4; Standard feedback). Comparison between the main
statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors non-
parametrically inferred from the data. The subjective moments are computed by av-
eraging the moments of sampled priors pooled from all subjects (±1 SD); see Figure
3.11, right column and Section 3.2.3 for details.

through the Standard error mapping, as the previous experiment had showed that

subjects can follow it at least as well as the Skewed mapping.

Due to the large peak interval presentation frequency we had fewer test data points

in the model fitting. Therefore, we constrained the model comparison by only con-

sidering the Standard loss in order to prevent the emergence of spurious model com-

ponents capturing random patterns in the data. We found that the recovered internal

priors were in good qualitative agreement with the true distribution, with statistically

indistinguishable means (Figure 3.11 bottom, and Table 3.4; one sample two-tailed t-

test p > 0.90). When variance and higher moments were included in the analysis,

though, the distributions were significantly different (Hotelling’s T2 test, mean and

variance: p < 0.05; first three moments: p < 0.01; first four moments: p < 10−7)

suggesting that the distribution may have been ‘too peaked’ to be learnt exactly; see

Discussion. Nevertheless, the observed biases of the responses were well explained

by the standard Bayesian models (group mean: R2 = 0.95), and the SDs were in

qualitative agreement with the data (Figure 3.12).

Exp. 5: Bimodal distributions

Our previous experiments show that people are able to learn good approximation of

flat or unimodal distributions of intervals relatively quickly (a few sessions), under

the guidance of corrective feedback. Previous work in sensorimotor learning (Körding

and Wolpert, 2004a) and motion perception (Chalk et al., 2010) has shown that people

can learn bimodal distributions (see Section 2.3.2). Whether the same is attainable for

temporal distributions is unclear; a recent study of time interval reproduction (Ryan,

2011) obtained less definite results with a bimodal ‘V-shaped’ distribution, although
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Figure 3.12: Exp. 4: Medium High-Peaked block. Very top: Experimental distribution
for Medium High-Peaked block, repeated on top of both columns. Left column: Mean
response bias (top) and SD of the response (bottom) for a representative subject. Error
bars denote SEM. Continuous lines represent the Bayesian model fit. Right column:
Mean response bias (top) and SD of the response (bottom) across subjects (mean ±
SEM across subjects). Continuous lines represent the Bayesian model fit averaged
across subjects.

training might have been too short, as subjects were exposed only to 120 trials in total

and without performance feedback.

To examine whether subjects could easily learn bimodality of a temporal distri-

bution with the help of feedback we tested two new groups of subjects on bimodal

distributions of intervals on a Medium range (600–975 ms, as before) and on a Wide

range (450–1125 ms), providing in both cases Standard feedback. In the Medium Bi-

modal block the intervals at 600 and 975 ms had each probability p = 4/12, whereas

the other four middle intervals (675, 750, 825, 900 ms) had each probability p = 1/12.

In the Wide Bimodal block the six ‘extremal’ intervals (450, 525, 600 ms and 975, 1050,

1125 ms) had each probability p = 4/28 whereas the middle intervals had probability

p = 1/28. Note that in both cases extremal intervals were four times as frequent as

middle intervals.

In the Medium Bimodal block, subjects’ responses exhibited a typical central ten-

dency effect (Figure 3.13 top left) which suggests that people did not match the bi-

modality of the underlying distribution. To constrain the model comparison we in-

ferred the subjects’ priors under the assumption of scalar sensory and motor noise

models and Standard loss function, as found by our previous analyses. As before, we
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first used a discrete set of priors (see Modelling, Section 3.2.3) that we used to com-

pute the model fit to the data and then we performed a non-parametric inference. The

non-parametrically inferred priors for the Medium Bimodal distribution (Figure 3.13

top right) suggest that on average subjects developed an internal representation that

differed from those seen in previous experiments and, as before, we found a good

agreement between moments of the experimental distribution and moments of the

inferred priors up to skewness (Table 3.5 left). However, results of the Bayesian model

comparison among a discrete class of flat, unimodal or bimodal priors do not support

the hypothesis that subjects actually learnt the bimodality of the experimental distri-

bution. Part of the problem may have been that in the Medium Bimodal distribution

the two modes were relatively close, and due to sensory and motor uncertainty sub-

jects could not gather enough evidence that the experimental distribution was not

unimodal (but see Discussion, Section 3.4). We repeated the experiment therefore on

a wider range with a different group of subjects.

The pattern of subjects’ responses in the Wide Bimodal block shows a characteristic

‘S-shaped’ bias profile (Figure 3.13 top right) which is compatible with either a flat

or a slightly bimodal prior. The non-parametrically inferred priors for the Wide Bi-

modal distribution (Figure 3.13 bottom right) again suggest that on average subjects

acquired, albeit possibly with less accuracy (Table 3.4 right), some broad features of

the experimental distribution; however, individual datasets are quite noisy and again

we did not find strong evidence for learning of bimodality.

Our results with bimodal distributions confirm our previous finding that peo-

ple seem to be able to learn broad features of experimental distributions of inter-

vals (mean, variance, skewness) with relative ease (a few sessions of training with

feedback). However, more complex features (kurtosis, bimodality) seem to be much

harder to learn (see Discussion, Section 3.4).

Medium Bimodal Wide Bimodal

Objective Subjective Objective Subjective
Mean (ms) 787.5 794.5 ± 34.2 787.5 822.1 ± 70.7

SD (ms) 160.6 155.7 ± 37.2 251.6 219.2 ± 29.3
Skewness 0 −0.33 ± 0.39 0 −0.22 ± 0.57

Ex. Kurtosis −1.72 −0.08 ± 0.90 −1.64 −0.40 ± 0.51

Table 3.5: Main statistics of the experimental distributions and non-parametrically
inferred priors for bimodal distributions (Exp. 5; Standard feedback). Comparison
between the main statistics of the ‘objective’ experimental distributions and the ‘sub-
jective’ priors non-parametrically inferred from the data. The subjective moments are
computed by averaging the moments of sampled priors pooled from all subjects (±1
SD); see Figure 3.13, bottom and Methods for details.
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Figure 3.13: Exp. 5: Medium Bimodal and Wide Bimodal blocks, mean bias and
non-parametrically inferred priors. Very top: Experimental distributions for Medium
Bimodal (dark purple, left) and Wide Bimodal (light purple, right) blocks. Top: Mean
response bias across subjects (mean ± SEM across subjects) for the Medium Bimodal
(left) and Wide Bimodal (right) blocks. Continuous lines represent the Bayesian model
‘fit’ averaged across subjects. Bottom: Average inferred priors for the Medium Bimodal
(left) and Wide Bimodal (right) blocks. Shaded regions are ±1 SD. For comparison,
the experimental distributions are plotted again under the inferred priors.
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3.4 discussion

Our main finding is that humans, with the help of corrective feedback, are able to

learn various statistical features of both simple (uniform, symmetric) and complex

(peaked, asymmetric or bimodal) distributions of time intervals. In our experiments,

the inferred internal representations were smooth, heavy tailed approximations of

the experimental distributions, in agreement typically up to third-order moments.

Moreover, our results suggest that people take into account the shape of the provided

feedback and integrate it with knowledge of the statistics of the task in order to

perform their actions.

The statistics of the responses of our subjects in the Uniform blocks were consistent

with results from previous work; in particular, we found biases towards the mean of

the range of intervals (central tendency; Hollingworth, 1910; Jones and Mcauley, 2005;

Jazayeri and Shadlen, 2010; Cicchini et al., 2012) and the variability of the responses

grew roughly linearly in the sample interval duration (scalar property; Lewis and Mi-

all, 2009; Jazayeri and Shadlen, 2010). The responses in the Peaked and High-Peaked

blocks showed analogous biases, but they were directed towards the mean of the dis-

tribution rather than the mean of the range of intervals (the two means overlap in

the Uniform case) (Ryan, 2011). We also observed a significant reduction in variabil-

ity at the peak. These results show that subjects considered the temporal statistics of

the context in their decision-making processes. We found a similar regression to the

mean for a ‘narrow’ bimodal distribution (Medium Bimodal), in qualitative agree-

ment with previous work that found a simple central tendency with a ‘V-shaped’

temporal distribution (Ryan, 2011; although with very limited training, no feedback

and a suprasecond range). However, for a bimodal distribution on a wider range we

observed ‘S-shaped’ biases which seem compatible with a nonlinear decision making

process (Körding and Wolpert, 2004a). More refined conclusions needed the support

of a formal framework.

3.4.1 Validation of the Bayesian model

Our modelling approach consisted of building a family of Bayesian observer and ac-

tor models, which provided us with a mathematical structure in which to ask specific

questions about our subjects (Battaglia et al., 2011), going beyond mere statements

about Bayesian optimality. In particular, we were interested in (1) whether people

would be able to learn nontrivial temporal distributions of intervals and what ap-

proximations they might use, and (2) how their responses would be affected by per-

formance feedback, which is related to the implicit loss function of the task. Our
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observer model resembled the Bayesian Least Squares (BLS) observer described in

Jazayeri and Shadlen (2010), but it explicitly included an action component as part of

the internal model. Moreover, to answer (1) we allowed the prior to differ from the

experimental distribution, and to study (2) we considered additional shapes for the

loss function in addition to the Standard squared loss ∝ (r− s)2.

The factorial model comparison (van den Berg et al., 2014) gave us specific answers

for the most likely components describing each of our subjects, and a first validation

came from the success of the most supported Bayesian observer and actor models in

capturing the statistics of the subjects’ responses in the task. However, goodness of fit

per se is not necessarily an indicator that the components found by the model com-

parison reflected true findings about the subjects, rather than ‘overfitting’ arbitrary

statistical relationships in the data. This is of particular relevance for Bayesian mod-

els, because of the underlying degeneracy among model components (Mamassian

and Landy, 2010).

Our approach consisted in considering a large, ‘reasonable’ set of observer models

that we could link to objective features of the experiment. This does not solve the

degeneracy problem per se but it prevents the model comparison from finding arbi-

trary solutions. In particular, the set of experiments was designed in order to provide

evidence that each element of the model mapped on to an experimentally verifiable

counterpart; crucially, we found that a change in a component of the experimental

setup (e. g., experimental distribution and feedback) correctly induced a switch in

the corresponding inferred component of the model (prior and loss function). We

also avoided overfitting by limiting our basic models to only two continuous noise

parameters, which were then computed through model averaging and further vali-

dated by independent direct measures.

To further validate our methods, we directly measured the subject’s noise parame-

ters (sensory and motor noise, w′s and w′m) in separate tasks and compared them with

the model parameters ws, wm inferred from the main experiments (see Section 3.3.3).

The rationale is that, in an idealized situation, we would be able to measure some

features of the subjects with an objective, independent procedure and the same fea-

tures would be predictive of the individual performances in related tasks (Tassinari

et al., 2006). The measured parameters were highly predictive of the group behaviour,

and reasonably predictive at the individual level for the sensory parameter, confirm-

ing that the model parameters were overall correctly representing objective ‘noise

properties’ of the subjects.

Overall, our modelling techniques were therefore validated by (a) goodness of fit,

(b) consistency between inferred model components and experimental manipulations,
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and (c) consistency between the model parameters and independent measurements

of the same quantities.

3.4.2 Comparison between inferred priors and experimental distributions

Given the validation of the results of the model comparison, we performed a non-

parametric inference of the priors acquired by participants during the task. Other

recent works have inferred the shape of subjective ‘natural’ perceptual priors non-

parametrically, such as in visual orientation perception (Girshick et al., 2011) and

speed perception (Stocker and Simoncelli, 2006b; Zhang et al., 2013b), but studies

that focussed on experimentally acquired priors mostly recovered them under para-

metric models (see Section 2.3.4). The non-parametric method allowed us to study

quantitatively the accuracy of the subjects in learning the experimental distributions,

comparing summary statistics such as the moments of the distributions up to fourth

order. Note that the significance and reliability of the recovered priors is based on

the correctness of our assumptions regarding the observer and actor model; uncon-

strained priors might capture all sorts of statistical details, one of the typical ob-

jections to Bayesian modelling (Jones and Love, 2011; Bowers and Davis, 2012). By

being fully Bayesian we reduced the possibility for overfitting, although for reasons

of computational tractability we had to divide the model selection stage from the

prior reconstruction process.

The internal representations inferred from the data show a good agreement with

the central moments of the true distributions typically up to third order (mean, vari-

ance and skewness). Subjects however manifested some difficulties in learning vari-

ance and skewness when the provided distribution was extremely peaked, with a

width less than the subjects’ perceptual variability. This discrepancy observed in the

High-Peaked block may have arisen because (a) the experimental distribution’s stan-

dard deviation was equal or lower in magnitude compared to the perceptual variabil-

ity of the subjects (experimental distribution SD: 80.5 ms; subject’s average sensory

SD at the mean of the distribution: 96.1± 12.1 ms; mean ± SD across subjects) and

(b) due to the shape of the distribution, subjects had much less practice with intervals

away from the peak. Another explanation is that subjects’ representation of relative

frequencies of different time intervals was systematically distorted, with overestima-

tion of small relative frequencies and underestimation of large relative frequencies

(see Zhang and Maloney, 2012 for a critical review), but note that this would ar-

guably produce a change in the mean of the distribution as well, which we did not

observe.
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Moreover, the recovered priors in all blocks had systematically heavier tails (higher

kurtosis) than the true distributions. It must be noted that the kurtosis, being the

fourth-order central moment, is highly sensitive to random fluctuations in the data

and its error is positively skewed (outliers will tendentially increase the observed

kurtosis). Therefore, there might be a bias in our reconstruction method that would

favour more kurtotic distributions. By exploring an extended model that included

lapses we ruled out that this particular result was due to trivial outliers in our

datasets. However, our results are compatible with more sophisticated lapse mod-

els and with other reasons for the heavy tails we recovered, in particular (a) the

noise distributions might be non-Gaussian, with heavier tails (Natarajan et al., 2009),

and (b) the loss functions might follow a less-than-quadratic power law (Körding

and Wolpert, 2004b). For the latter hypothesis we found some evidence, although in-

conclusive, by studying observer models with non-quadratic loss functions (Section

3.3.2). Experimentally, both (a) and (b) would imply that in our datasets there would

be more outliers than we would expect from a Gaussian noise model with quadratic

losses.

Our experiments with bimodal distributions show that, although people’s responses

were affected by the experimental distribution of intervals in a way which is clearly

different from our previous experiments with uniform or peaked distributions, the

inferred priors in general fail to capture bimodality and are consistent instead with a

broad uniform or multimodal prior (where the peaks however do not necessarily fall

at the right places). Note that the average sensory standard deviation for subjects in

Exp. 5 was 87± 18 ms (Medium Bimodal; mean ± SD across subjects) and 106± 28

ms (Wide Bimodal), calculated at the center of the interval range. In other words, in

both blocks, the centers of the peaks were well-separated in terms of perceptual dis-

criminability (on average by at least four SDs). This suggests that most subjects did

not simply fail to learn the bimodality of the distributions because they had problems

distinguishing between the two peaks.

A formula for approximately-learnt priors

Our work provides substantial evidence that the assumption that observers’ priors

match the experimental distribution of stimuli is unlikely to hold for non-Gaussian

distributions. It would be useful to have a formula for a ‘generic’ approximately-

learnt prior, with a single parameter that can be tuned to govern the amount of

approximation. For example, this would be useful to compute a realistic expectation

about the behaviour of an observer even before running an experiment. A look at our

recovered priors (both parametric and non-parametric) combined with theoretical

considerations suggest a simple parametric description. Let pexp(s) be a non-Gaussian
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empirical distribution with mean µexp and variance σ2
exp. We propose the following

‘generic’ expression for an approximately-learnt prior:

q̃prior(s) =
(
1− πapp

)
· pexp(s) + πapp · N

(
s
∣∣∣µexp, σ2

exp

)
, (3.13)

which is a mixture of the empirical distribution (possibly smoothed with a Gaussian

kernel), and a Gaussian with mean and variance that match the moments of the true

distribution, with mixture weight 0 ≤ πapp ≤ 1. Eq. 3.13 represents a simple model

according to which subjects have rapidly learnt mean and variance of the experimen-

tal distribution, but have only partially acquired its higher-order features.4 In Figure

3.14 we fit Eq. 3.13 to our recovered group priors, finding that the approximation,

albeit crude, represents the observers’ priors considerably better than the experimen-

tal distributions. Realistic values of πapp in interval timing appear to be in the range

0.5–1. It is possible that the amount of learning is greater in other perceptual domains

(see Chapter 6 for discussion).

3.4.3 Temporal recalibration and feedback

Lag adaptation is a robust phenomenon for which the perceived duration between

two inter-sensory or motor-sensory events shortens after repeated exposure to a fixed

lag between the two (Fujisaki et al., 2004; Stetson et al., 2006); see Vroomen and Kee-

tels, 2010 for a review. Even though lag adaptation was initially presented as a ‘global’

recalibration effect affecting all intervals (e. g., Di Luca et al., 2009), recent work sug-

gests that recalibration may be ‘local’ and affect only intervals in a neighborhood

of the adapter lag (e. g., Roach et al., 2011; Rohde et al., 2014a). A recent study has

shown that predictability of the visuo-motor delay is necessary to elicit temporal re-

calibration in a variety of behavioural measures, from spatio-temporal errors to shifts

in the point of subjective simultaneity (Rohde et al., 2014b). What is clear from all

these studies is that lag adaptation cannot be interpreted as a simple Bayesian effect

in terms of prior expectations represented by the sample distribution of adaptation

and test intervals, since its signature is a ‘repulsion’ from the adapter as opposed

to the ‘attraction’ induced by a prior (Miyazaki et al., 2006; Stocker and Simoncelli,

2006a; Roach et al., 2011).5

Our experimental setup for the peaked blocks mimicked the distributions of inter-

vals of typical lag adaptation experiments (Stetson et al., 2006; Heron et al., 2009),

4 By construction, q̃prior has the same mean and variance as pexp, but other statistical features may deviate
depending on πapp.

5 Note that temporal recalibration might be explained by a Bayesian model whose parameters are up-
dated over time, for example via a Kalman filter (Burge et al., 2008) or via a structural inference process
(Sato et al., 2007; Sato and Aihara, 2009; Acerbi and Vijayakumar, 2011).
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Figure 3.14: Approximately-learnt priors. Each panel shows the group mean inferred
prior qprior for an experimental condition (continuous coloured line), the best-fitting
‘generic’ approximate prior q̃prior (dashed coloured line) and the experimental distri-
bution pexp (black line). The experimental distributions were smoothed with a Gaus-
sian kernel with σ = 37.5 ms. For each panel we also report the fitted value of πapp
(see Eq. 3.13). Fits were obtained by minimizing the squared error between distribu-
tions (results were analoguous by minimizing the KL-divergence).
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with the adapter interval set at 675 ms (the ‘peak’). However, we did not detect any

noticeable disagreement with the predictions of our Bayesian observer model and, in

particular, there was no significant ‘repulsion effect’ from the peak, neither global nor

local. Our results suggest that people are not subject to the effects of lag adaptation,

or can easily compensate for them in the presence of corrective feedback.

Sensorimotor lag adaptation seems to belong to a more general class of phenomena

of temporal recalibration which induce an adjustment of the produced (or estimated)

timing of motor commands to meet the goals of the task at hand. In the case of

experimentally induced actuator delays in a time-critical task, such as controlling a

spaceship through a minefield in a videogame (Cunningham et al., 2001a) or driving

a car in a simulated environment (Cunningham et al., 2001b), visual temporal infor-

mation about delays provides an obvious, compelling reason to recalibrate the timing

of actions (but see Rohde et al., 2014b for a critical analysis). However, feedback re-

garding timing performance need not be provided only in temporal ways. Previous

studies have shown that people take into account performance feedback (knowledge

of results) when the feedback about the timing of their motor response is provided in

various ways, such as verbal or visual report in milliseconds (Blackwell and Newell,

1996; Franssen and Vandierendonck, 2002) or bars of variable length (Ryan and Robey,

2002). Interestingly, people tend to also follow ‘erroneous’ feedback (Ryan and Robey,

2002; Ryan et al., 2004; Ryan and Fritz, 2007). However, this can be explained by the

fact that people’s behaviour in a timing task is goal-oriented (e. g., minimizing feed-

back error), and therefore these experiments suggest that people are able to follow

external, rather than erroneous, feedback. In fact, when participants are told that

feedback might sometimes be incorrect, which corresponds to setting different ex-

pectations regarding the goal of the task, they adjust their timing estimates taking

feedback less into account (Ryan et al., 2004). Ambiguity regarding the goal of a tim-

ing task with non-obvious consequences – as opposed to actions that have obvious

sensorimotor consequences, such as catching a ball – can be reduced by imposing an

explicit gain/loss function (Mamassian, 2008; Hudson et al., 2008), and it has been

found that people can act according to an externally presented asymmetric cost, even

though their timing behaviour is not necessarily ‘optimal’ (e. g., Mamassian, 2008; see

Section 2.4.2).

Our work extends these previous findings by performing a model comparison with

different types of symmetric and asymmetric loss functions and providing additional

evidence that most people are able to correctly integrate an arbitrary external feed-

back in their decision process, while executing a sensorimotor timing task, so to

minimize the feedback error.
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3.4.4 Bayesian sensorimotor timing

There is growing evidence that many aspects of human sensorimotor timing can be

understood in terms of Bayesian decision theory (Miyazaki et al., 2005; Hudson et al.,

2008; Jazayeri and Shadlen, 2010; Cicchini et al., 2012); see Shi et al. (2013a) for a

review. The mechanism through which people build time estimates, e.g. an ‘internal

clock’, is still unclear (Grondin, 2010), but it has been proposed that observers may

integrate both internal and external stochastic sources of temporal information in

order to estimate the passage of time (Ahrens and Sahani, 2011; Hass and Herrmann,

2012).

Motivated by these results, in our work we assumed that people build an internal

representation of the temporal distribution of intervals presented in the experiment.

However, for all timing tasks in which more or less explicit knowledge of results

is given to the subjects (e. g., ours, Jones and Mcauley, 2005; Jazayeri and Shadlen,

2010), an alternative explanation is that people simply learn a mapping from a dura-

tion measurement to a given reproduction time (strategy known as table look-up), with

no need of learning of a probability distribution (Maloney and Mamassian, 2009). At

the moment we cannot completely discard this possibility, but other timing studies

have shown that people perform according to Bayesian integration even in the ab-

sence of feedback both for simple (Miyazaki et al., 2006; Cicchini et al., 2012) and

possibly skewed distributions (Ryan, 2011), suggesting that people indeed take into

account the temporal statistics of the task in a context-dependent way. Moreover, pre-

vious work in motor learning in the spatial domain has shown that people do not

simply learn a mapping from a stimulus to a response, but adjust their performance

according to the reliability of the sensory information (Körding and Wolpert, 2004a),

a signature of probabilistic inference (Ma, 2012). Analogous findings have been ob-

tained in multisensory integration (Ernst and Banks, 2002; Alais and Burr, 2004; Beier-

holm et al., 2009) and for visual judgements (an ‘offset’ discrimination task) under

different externally imposed loss functions (Whiteley and Sahani, 2008), crucially in

all cases without knowledge of results (see Chapter 2). All these findings together

support the idea that sensorimotor learning follows Bayesian integration, also in the

temporal domain. However, the full extent of probabilistic inference in sensorimotor

timing needs further study, possibly involving transfer between different conditions

in the absence of knowledge of results (Maloney and Mamassian, 2009).

Our results answer some of the questions raised by Jazayeri and Shadlen (2010),

in particular about the general shape of the distributions internalized by the subjects

and the influence of feedback on the responses. An avenue for further work is re-

lated to the detailed profile of the likelihoods and possible departures from the scalar
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property (Lewis and Miall, 2009; Zarco et al., 2009; Laje et al., 2011), especially in

the case of complex experimental distributions. It is reasonable to hypothesize that

strongly non-uniform samples of intervals might affect the shape of the likelihood

itself, if only for the simple reason that people practice more on some given inter-

vals. Cognitive, attentional and adaptation mechanisms might play various roles in

the interaction between non-uniform priors and likelihoods, in particular without the

mitigating effect of knowledge of results. A relatively less explored but important re-

search direction involves extending the model to a biologically more realistic observer

and actor model, examining the connections with network dynamics (Karmarkar and

Buonomano, 2007; Buonomano and Laje, 2010) or population coding (Heron et al.,

2012; Cai et al., 2012), bridging the gap between a normative description and mech-

anistic accounts of time perception. Another extension of the model would consider

a non-stationary observer, whose response strategy changes from trial to trial (even

after training), possibly in order to account for sequential effects of judgement which

may be due to an iterative update of the prior (Stewart et al., 2005; Petzschner and

Glasauer, 2011; Saunders and Vijayakumar, 2012; Raviv et al., 2012).

Finally, whereas our analysis suggests that subjects found it relatively easy to

learn unimodal distributions of intervals, bimodal distributions seemed to represent

a much harder challenge. The fact that subjects developed non-linear biases suggest

that their behaviour was affected by the experimental distribution of intervals, but

it is unclear whether they had a major problem in learning the bimodal statistics,

or in performing correct probabilistic inference. In the next chapter, we will investi-

gate what may be the sources of subjects’ apparent suboptimal performance in the

presence of complex distributions.
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4
TA R G E T E S T I M AT I O N W I T H C O M P L E X P R O B A B I L I S T I C

I N F O R M AT I O N

“Queenie, Queenie who’s got the ball?

Are they short, or are they tall?

Are they hairy, or are they bald?

You don’t know because you don’t have the ball!”

— Queenie, Queenie, who’s got the ball?

A common children’s probabilistic inference game

In this chapter we explore the sources of suboptimality in sensorimotor probabilistic

computations by means of a novel estimation task that requires observers to perform

Bayesian inference with explicitly provided distributions, thereby removing the diffi-

culty of learning a prior. This work was originally published in PLoS Computational

Biology (Acerbi et al., 2014b).

4.1 probabilistic computations in sensorimotor decision making

We have seen in Chapter 2 that a large body of work supports the idea that human

sensorimotor decision making qualitatively conforms to the predictions of BDT in

taking into account sensory uncertainty (Section 2.2), relevant statistics of the context

and previous experience (Section 2.3), and implicit or explicit goals of the task at

hand (Section 2.4). Agreement with the theory is striking in several ‘simple’ cases

with mostly Gaussian statistics and linear operations on the variables of the task,

but it is also easy to find numerous examples with slightly more complex settings

in which deviations from optimal behaviour are observed (see Chapter 2). An anal-

ogous pattern appeared in our time interval reproduction experiments in Chapter 3.

Subjects’ behaviour qualitatively aligned with the predictions of BDT but their per-

formance was generally far from optimal given the true experimental distributions of

stimuli and subjects’ sensorimotor noise. Observed performance was compatible with

an approximate representation of the prior that failed to capture complex features of

the experimental distribution (see Section 3.4).

Bayes-optimal decision making can be abstractly divided in two separate processes:

acquisition and representation of the relevant statistics of the task (priors, likelihoods,

loss functions) and probabilistic computations with such representations (inference
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and action selection via minimization of the expected loss). In most psychophysical

studies that look at human performance in the presence of complex statistics, how-

ever, there is a difficulty in separating any constraints and idiosyncrasies in perform-

ing Bayesian computations per se from any deficiencies in learning and recalling the

correct prior. For example, we have described human performance under bimodal

distributions of stimuli (see ‘Complex contextual priors’ in Section 2.3.2 and ‘Exp. 5:

Bimodal distributions’ in Section 3.3.4). Here the normative prescription of Bayesian

integration under a wide variety of assumptions would be that responses should be

biased towards one peak of the distribution or the other, depending on the current

sensory information. However, for such bimodal priors, the emergence of Bayesian

biases can require thousands of trials (Körding and Wolpert, 2004a) or be apparent

only on pooled data (Chalk et al., 2010), and often data show at best a complex pat-

tern of biases which is only in partial agreement with the underlying distribution

(Gekas et al., 2013 and our results, see Figure 3.13). It is unknown whether this mis-

match is entirely due to the difficulty of learning statistical features of the bimodal

distribution, or there are significant additional limitations in performing Bayesian

computations even when the prior is fully learnt.

In order to tease out the sources of suboptimality in human probabilistic inference,

we need either to ensure that observers perfectly know the prior, or design the task so

that the need of learning the prior does not arise in the first place. Here we follow the

latter path and investigate how human observers compute with probabilistic informa-

tion that is provided on a trial-by-trial basis. Previous work in movement planning

under risk suggests that humans are better decision makers with probabilities im-

plicit in a sensorimotor task than with numerically communicated probabilities in

a similar economic task (see Maloney et al., 2007; Trommershäuser et al., 2008a for

a review). It is actually unclear whether this apparent gap is true or an artifact of

methodological differences between fields (Maloney et al., 2007; Wu et al., 2009), as

supported by recent work (Jarvstad et al., 2013, 2014). Nonetheless, we avoid numeri-

cal information and we choose to communicate probability distributions via a visual

representation, motivated by work on movement planning under risk that suggests

that humans can integrate visually provided costs so as to nearly maximize expected

gain (see Section 2.4.2).

Only a few previous studies looked specifically at how human observers manipu-

late visually provided probabilistic information in a sensorimotor task. Tassinari et al.

(2006) displayed prior information about the target position in a pointing task as a

two-dimensional Gaussian cloud on the screen. The distribution remained fixed for

the whole duration of the experiment, so the graphical representation likely served

as a visual aid to consolidate the prior that was learnt with practice. Assuming that
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subjects had a good representation of the experimental distibution (due to extensive

training and visual feedback), the authors identified several additional sources of

suboptimality in the observers’ behaviour (Tassinari et al., 2006). A stronger test for

Bayesian computations requires probability distributions to change every trial (Ma,

2012). Hudson et al. (2007) tested subjects in a rapid pointing task in which the target,

a vertical bar, would appear only at midpoint during movement. Before movement,

observers were graphically provided with probabilistic information about the target

bar location among a number of possible locations (9 or 7 locations, depending on the

experiment). Prior probability was conveyed via the density of bright pixels within

each possible target location. Different subjects performed in two experiments with

distinct sets of distributions that were randomly presented each trial. The ‘location’

experiment used five prior distributions that had a single peak with p = 0.68 on

one of the five central locations and were equally low on the other eight locations

(p = 0.04). In the ‘scale’ experiment, three distributions were used that had uni-

formly high probability in a central region of varying width (1, 3 or 5 bars) and low

probability elsewhere. Given the complexity of the kinematics and dynamics of the

pointing task, the authors could not build a full observer and actor model, but in-

stead devised a number of necessary conditions for statistical optimality in the task.

Their analyses could not reject optimality for the ‘location’ condition, that tested how

subjects computed with probabilistic information about the mode of the distribution.

However, they rejected optimality for the ‘scale’ condition which tested how people

took into account information about the spread of the distribution. In another study,

Seydell et al. (2008) showed that subjects could sensibly integrate visually provided

probabilistic information about the future location of reward/penalty areas. Note

that the authors described the task as having a stochastic loss function, but an equiv-

alent formulation comprehends a deterministic loss function and probabilistic prior

information about target configurations (see Section 2.4.2).

These studies suggest that we may use visually provided ‘prior’ information as

an experimental means to investigate the extent to which human observers perform

probabilistic inference on complex distributions, beyond simple Gaussians, and the

algorithms and approximations they might adopt (see Section 2.4.5).

4.1.1 Summary

In this chapter we look systematically at how people integrate uncertain cues with

trial-dependent ‘priors’ in a target estimation task. A ‘prior’ here is a complex visual

cue providing explicit probabilistic information about the unknown target location.

The priors were displayed as an array of potential targets distributed according to
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various density classes – Gaussian, unimodal or bimodal. Our paradigm affords full

control over the generative model of the task and separates the aspect of computing

with a probability distribution from the problem of learning and recalling a prior.

We examined subjects’ performance in manipulating probabilistic information as

a function of the shape of the prior. Participants’ behaviour in the task was in qual-

itative agreement with Bayesian integration, although quite variable and generally

suboptimal, but the degree of suboptimality did not differ significantly across differ-

ent classes of distributions or levels of reliability of the cue. In particular, performance

was not greatly affected by complexity of the distribution per se – for instance, peo-

ple’s performance with bimodal priors was analogous to that with Gaussian priors,

in contrast to previous learning experiments. This finding suggests that major de-

viations encountered in previous studies are likely to be primarily caused by the

difficulty in learning complex statistical features rather than computing with them.

We systematically explored the sources of suboptimality and variability in subjects’

responses in the target estimation task by employing a methodology that has been re-

cently called factorial model comparison (van den Berg et al., 2014). Using this approach

we generated a set of models by combining different sources of suboptimality, such

as different approximations in decision making with different forms of sensory noise,

in a factorial manner. Our model comparison was able to reject some common mod-

els of variability in decision making, such as probability matching with the posterior

distribution (posterior-matching) or a sampling-average strategy consisting of aver-

aging a number of samples from the posterior distribution. The observer model that

best describes the data is a Bayesian observer with a slightly mismatched representa-

tion of the likelihoods, with sensory noise in the estimation of the parameters of the

prior, that occasionally lapses, and most importantly has a stochastic representation

of the posterior that may represent additional variability in the inference process or

in action selection.

4.2 methods

4.2.1 Experimental procedures

Participants

Twenty-four subjects (10 male and 14 female; age range 18–33 years) participated

in the study. All participants were naïve to the purpose of the study. All partici-

pants were right-handed according to the Edinburgh handedness inventory (Old-

field, 1971), with normal or corrected-to-normal vision and reported no neurological
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disorder. Participants were compensated for their time. The Cambridge Psychology

Research Ethics Committee approved the experimental procedures and all subjects

gave informed consent.

Behavioural task

Subjects were required to locate an unknown target given probabilistic information

about its horizontal position s along a target line (Figure 4.1a–b). Information con-target line

sisted of a visual representation of the a priori probability distribution of targets for

that trial and a noisy cue about the actual target position (Figure 4.1b).

Subjects held the handle of a robotic manipulandum (vBOT, Howard et al., 2009b).

The visual scene from a CRT monitor (Dell UltraScan P1110, 21-inch, 100 Hz refresh

rate) was projected into the plane of the hand via a mirror (Figure 4.1a) that prevented

the subjects from seeing their hand. The workspace origin, coordinates [0, 0], was

∼ 35 cm from the torso of the subjects, with positive axes towards the right (x axis)

and away from the subject (y axis). The workspace showed a home position (1.5 cm

radius circle) at [0,−15] cm and a cursor (1.25 cm radius circle) that tracked the hand

position.

On each trial a hundred potential targets (0.1 cm radius dots) were shown around

the target line at positions [uj, vj], for j = 1, . . . , 100, where the uj formed a fixed

discrete representation of the trial-dependent ‘prior’ distribution pprior(s), obtained

through a regular sample of the cdf (see Figure 4.1d), and the vj were small random

offsets used to facilitate visualization, vj ∼ Uniform(−0.3, 0.3) cm. The true target,

unknown to the subject, was chosen by picking one of the potential targets at ran-

dom with uniform probability. A cue (0.25 cm radius circle) was shown at position

[xcue,−dcue]. The horizontal position xcue provided a noisy measurement of the target

position corrupted with Gaussian noise, with:

pmeas (xcue |s, dcue ) = N
(
xcue

∣∣s, σ2
cue(dcue)

)
, (4.1)

where σcue is the cue variability which was linearly related to the distance of the cue

from the target line, dcue (cues distant from the target line were noisier than cues close

to it). In our setup, the noise level σcue could only either be low for ‘short-distance’

cues, σlow = 1.8 cm (dshort = 3.9 cm), or high for ‘long-distance’ cues, σhigh = 4.2 cm

(dlong = 9.1 cm). Both the prior distribution and cue remained on the screen for the

duration of a trial. (See Figure 4.1c–d for the generative model of the task.)

After a ‘go’ beep, subjects were required to move the handle towards the target line,

choosing an endpoint position such that the true target would be within the cursor

radius. The manipulandum generated a spring force along the depth axis (Fy = −5.0
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Figure 4.1: Experimental procedure. a: Setup. Subjects held the handle of a robotic
manipulandum. The visual scene from a CRT monitor, including a cursor that tracked
the hand position, was projected into the plane of the hand via a mirror. b: Screen
setup. The screen showed a home position (grey circle), the cursor (red circle) here
at the start of a trial, a line of potential targets (dots) and a visual cue (yellow dot).
The task consisted in locating the true target among the array of potential targets,
given the position of the noisy cue. The target line is shaded here for visualization
purposes. c: Generative model of the task. On each trial the position of the hidden
target s was drawn from a trial-dependent prior pprior(s), whose shape was chosen
randomly from a session-dependent class of distributions. The vertical distance of the
cue from the target line, dcue, was either ‘short’ or ‘long’, with equal probability. The
horizontal position of the cue, xcue, depended on s and dcue. The participants had to
infer s given xcue, dcue, and the current prior pprior. d: Details of the generative model.
The potential targets constituted a discrete representation of pprior(s), built by taking
equally spaced samples from the inverse of the cdf of the prior, Pprior(s). The true
target (red dot) was chosen uniformly at random from the potential targets, and the
horizontal position of the cue (yellow dot) was drawn from a Gaussian distribution,
pmeas(xcue|s, dcue), centered on the true target s and whose SD was proportional to the
distance dcue from the target line (either low-noise or high-noise cues). Here we show
the location of the cue for a high-noise trial. e: Components of Bayesian decision
making. A Bayesian observer combines the prior distribution with the likelihood to
obtain a posterior distribution, which is then convolved with the loss function (here
whether the target will be encircled by the cursor) and the observer picks the ‘optimal’
target location s∗ (purple dot) that minimizes the expected loss (dashed line).
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N/cm) for cursor positions past the target line, preventing subjects from overshooting.

The horizontal endpoint position of the movement (velocity of the cursor less than

0.5 cm/s), after contact with the target line, was recorded as the subject’s response r

for that trial.

At the end of each trial, subjects received visual feedback on whether their cursor

encircled (a ‘success’) or missed the true target (partial feedback). On full feedback

trials, the position of the true target was also shown (0.25 cm radius yellow circle).

Feedback remained on screen for 1 s. Potential targets, cues and feedback then dis-

appeared. A new trial started 500 ms after the subject had returned to the home

position.

For simplicity, all distances in the experiment are reported in terms of standard-

ized screen units (window width of 1.0), with x ∈ [−0.5, 0.5] and 0.01 screen units

corresponding to 3 mm. In screen units, the cursor radius is 0.042 and the SD of noise

for short and long distance cues is respectively σlow = 0.06 and σhigh = 0.14.

To explain the task, subjects were told that the each dot represented a child stand-

ing in a line in a courtyard, seen from a bird’s eye view. On each trial a random

child was chosen and, while the subject was ‘not looking’, the child threw a yellow

ball (the cue) directly ahead of them towards the opposite wall. Due to their poor

throwing skills, the farther they threw the ball the more imprecise they were in terms

of landing the ball straight in front of them. The subject’s task was to identify the

child who threw the ball, after seeing the landing point of the ball, by encircling him

or her with the cursor. Subjects were told that the child throwing the ball could be

any of the children, chosen randomly each trial with equal probability. Subjects were

familiarized with the generative model of the task in a preliminary practice block in

which they observed the yellow ball (the cue) being thrown by the ‘children’ at short

and long distances.

Experimental sessions

After the practice block (64 trials), all subjects performed a training session (576 trials)training session

in which the ‘prior’ distributions of targets shown on the screen (the set of children)

corresponded to Gaussian distributions with a standard deviation (SD) that varied

between trials (σprior from 0.04 to 0.18 standardized screen units; Figure 4.2a). The

actual position of the target (the ‘child’ who threw the ball) was revealed at the

end of each trial and a displayed score kept track of the number of ‘successes’ in

the session (full performance feedback). The use of Gaussian priors in the training

session allowed us to assess whether our subjects could use explicit priors in our

novel experimental setup in the same way in which they have been shown to learn

Gaussian priors through extended implicit practice (see ‘Gaussian contextual priors’
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in Section 2.3.2). Note however that, in contrast with the previous studies, our subjects

were required to compute each trial with a different Gaussian distribution.

After the training session, subjects were randomly divided in three groups (n = 8

each) to perform a test session (576–640 trials). Test sessions differed with respect test session

to the class of prior distributions displayed during the session. For the ‘Gaussian

test’ group, the distributions were the same eight Gaussian distributions used dur-

ing training (Figure 4.2a). For the ‘unimodal test’ group, on each trial the prior was

randomly chosen from eight unimodal distributions with fixed SD but with varying

skewness and kurtosis (see below and Figure 4.2b). For the ‘bimodal test’ group, pri-

ors were chosen from eight (mostly) bimodal distributions with fixed SD but variable

separation and weighting between peaks (see below and Figure 4.2c). During the test

session, at the end of each trial subjects were informed whether they ‘succeeded’ or

‘missed’ the target but the target’s actual location was not displayed. We provided

only partial feedback in order to examine how subjects transferred their knowledge

from the Gaussian training set to the priors in the test set (Maloney and Mamassian,

2009). Pilot studies had shown that partial feedback was enough to keep subjects

motivated in the task but would not provide them with significant information that

would alter their behaviour. The ‘Gaussian test’ group allowed us to verify that sub-

jects’ behaviour would not change after removal of full performance feedback. The

‘unimodal test’ and ‘bimodal test’ groups provided us with novel information on how

subjects perform probabilistic inference with complex distributions. Moreover, non-

Gaussian priors allowed us to evaluate several hypotheses about subjects’ behaviour

that are not testable with Gaussian distributions alone (Körding and Wolpert, 2004b).

Sessions were divided in four runs. Subjects could take short breaks between runs

and there was a mandatory 15 minutes break between the training and test sessions.

Prior distributions

Each session presented eight different types of priors and two cue noise levels (corre-

sponding to either ‘short’ or ‘long’ cues), for a total of 16 different conditions (36–40

trials per condition). Trials from different conditions were presented in random order.

Depending on the session and group, priors belonged to one of the following classes

(see Figure 4.2):

. Gaussian priors: Eight Gaussian distributions with evenly spread SDs between

0.04 and 0.18 i.e. σprior ∈ {0.04, 0.06, . . . , 0.18} screen units.

. Unimodal priors: Eight unimodal priors with fixed SD σprior = 0.11 and variable

skewness and kurtosis. With the exception of platykurtic prior 4, which is a mix-

ture of 11 Gaussians, and prior 8, which is a single Gaussian, all other priors
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Figure 4.2: Prior distributions. Each panel shows the (unnormalized) probability den-
sity for a ‘prior’ distribution of targets, grouped by experimental session, with eight
different priors per session. Within each session, priors are numbered in order of in-
creasing differential entropy (i.e. increasing variance for Gaussian distributions). Dur-
ing the experiment, priors had a random location (mean drawn uniformly) and asym-
metrical priors had probability 1/2 of being ‘flipped’. Target positions are shown in
standardized screen units (from −0.5 to 0.5). a: Gaussian priors. These priors were
used for the training session, common to all subjects, and in the Gaussian test ses-
sion. SDs cover the range σprior = 0.04 to 0.18 screen units in equal increments. b:
Unimodal priors. All unimodal priors have fixed SD σprior = 0.11 screen units but
different skewness and kurtosis (see text for details). c: Bimodal priors. All priors
in the bimodal session have fixed SD σprior = 0.11 screen units but different relative
weights and separation between the peaks (see text).

were realized as mixtures of two Gaussians that locally maximize differential

entropy for given values of the first four central moments. In the maximization

we included a constraint on the SDs of the individual components so to prevent

degenerate solutions (0.02 ≤ σi ≤ 0.2 screen units, for i = 1, 2). Skewness and

excess kurtosis were chosen to represent various shapes of unimodal distribu-

tions, within the strict bounds that exist between skewness and kurtosis of a

unimodal distribution (Teuscher and Guiard, 1995). The values of (skewness,

kurtosis) for the eight distributions, in order of increasing differential entropy:

1: (2, 5); 2: (0, 5); 3: (0.78, 0); 4: (0,−1); 5: (0.425,−0.5); 6: (0, 1); 7: (0.5, 0); 8:

(0, 0).
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. Bimodal priors: Eight (mostly) bimodal priors with fixed SD σprior = 0.11 and

variable separation and relative weight. The priors were realized as mixtures of

two Gaussians with equal variance:

pprior(s) = πN
(
s
∣∣µ1, σ2 )+ (1− π)N

(
s
∣∣µ2, σ2 ) . (4.2)

Separation was computed as d′ = µ1−µ2
σ , and relative weight was defined as

w = π
1−π . The values of (separation, relative weight) for the eight distributions,

in order of increasing differential entropy: 1: (5, 1); 2: (4, 3); 3: (4, 2); 4: (4, 5); 5:

(4, 1); 6: (3, 1); 7: (2, 1); 8: (0,−) (the last distribution is a single Gaussian).

For all priors, the mean µprior was randomly drawn from a uniform distribution

whose bounds were chosen such that the extremes of the discrete representation

would fall within the active screen window (the actual screen size was larger than

the active window). Also, asymmetric priors had 50% probability of being flipped

horizontally about the mean.

Measuring sensorimotor noise

We performed a separate sensorimotor estimation experiment to obtain an indepen-

dent measure of subjects’ sensorimotor variability. The sensorimotor variability in-

cludes subjects’ noise in determining the location of the cue and projecting it back

onto the target line as well as any motor noise in indicating that location. Ten sub-

jects (3 male and 7 female; age range 21–33 years) that had taken part in the main

experiment also participated in the control experiment.

The experimental setup had the same layout as the main experiment (see Figure

4.1), with the following differences: (a) no discrete distribution of targets was shown

on screen, only a horizontal target line; (b) in all trials the target was drawn randomly

from a uniform distribution whose range covered the width of the active screen win-

dow; (c) as usual, half of the trials featured short-distance cues and the other half

long-distance cues, but both types of cues had no added noise. In each trial the target

was always perfectly above the shown cue, with s ≡ xcue.

Subjects performed a short practice session (64 trials) followed by a test session

(288 trials). Full performance feedback was provided during both practice and test.

Feedback consisted in a visual display of the true position of the target and an integer-

valued score that was maximal (10 points) for a perfect ‘hit’ and decreased rapidly

away from the target, according to the following equation:

Score(r, s) = Round
(

10 · exp
{
− (r− s)2

2σ2
score

})
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where r is the response in the trial, s is the target position, σscore is one-tenth of the

cursor diameter (8.3 · 10−3 screen units or 2.5 mm) and Round(z) denotes the value

of z rounded to the nearest integer.

4.2.2 Data analysis

Analysis of behavioural data

Data analysis was conducted in MATLAB 2010b (Mathworks, U.S.A.). To avoid edge

artifacts in subjects’ response due to the discretization of the displayed distribution,

we discarded trials in which the cue position, xcue, was outside the range of the dis-

cretized prior (2691 out of 28672 trials: 9.4%). We included these trials in the experi-

mental session in order to preserve the probabilistic relationships between variables

of the task.

For each trial, we recorded the response location r and the reaction time (RT) was

defined as the interval between the ‘go’ beep and the start of the subject’s movement.

For each subject and session we computed a nonlinear kernel regression estimate

of the average RT as a function of the SD of the posterior distribution, σpost. We

only considered a range of σpost for which all subjects had a significant density of

data points. Results did not change qualitatively for other measures of spread of the

posterior, such as the exponential entropy (Campbell, 1966).

Optimality index and success probability

An objective measure of performance in each trial is the success probability psuccess(r),success probability

that is, the probability that the target would be within a cursor radius’ distance from

the given response (final position of the cursor) under the generative model of the

task. We defined the optimality index (i.e. theoretical efficiency) for a trial as the successoptimality index

probability normalized by the maximal success probability p∗success, that is the success

probability of an optimal response. The optimality index allows us to study variations

in subjects’ performance which are not trivially induced by variations in the difficulty

of the task.

The success probability psuccess(r) in a given trial represents the probability of locat-

ing the correct target according to the generative model of the task (independent of

the actual position of the target). For a trial with cue position xcue, cue noise variance

σ2
cue, and prior distribution pprior(s), the success probability is defined as:

psuccess(r) =
∫ r+ `

2

r− `
2

[
1∫

ds′ pprior(s′)N (s′ |xcue, σ2
cue )

pprior(s)N
(
s
∣∣xcue, σ2

cue
)]

ds, (4.3)
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where the integrand is the posterior distribution according to the continuous gener-

ative model of the task and ` is the diameter of the cursor. Solving the integral in

Eq. 4.3 for a generic mixture-of-Gaussians prior, pprior(s) = ∑m
i=1 πiN

(
s
∣∣µi, σ2

i
)
, we

obtain:

psuccess(r) =

(
m

∑
i′=1

γi′

)−1 m

∑
i=1

γi

2

[
erf

(
r + `

2 − νi√
2τi

)
− erf

(
r− `

2 − νi√
2τi

)]
, (4.4)

where the symbols γi, νi and τi are defined in Eq. 4.8 (see below). The maximal

success probability is simply computed as p∗success = maxr psuccess(r).

Note that in our case a metric based on the theoretical success probability is more

appropriate than the observed fraction of successes for a given sample of trials (em-

pirical efficiency), as the latter introduces additional error due to mere chance.1

The priors for the Gaussian, unimodal and bimodal sessions were chosen such that

the average maximal success probability of each class was about the same (∼ 51.5%)

making the task challenging and of equal difficulty across the experiment.

Statistical analyses

All regressions in our analyses used a robust procedure, computed using Tukey’s

‘bisquare’ weighting function (robustfit in MATLAB). Robust means for data visu-

alization and computation of summary statistics were calculated as trimmed means,

discarding 10% of values from each side of the sample. Statistical differences were

assessed using repeated-measures ANOVA (rm-ANOVA) with Greenhouse-Geisser

correction of the degrees of freedom in order to account for deviations from spheric-

ity (Greenhouse and Geisser, 1959). A logit transform was applied to the optimality

index measure before performing rm-ANOVA, in order to improve normality of the

data (results were qualitatively similar for non-transformed data). Nonlinear kernel

regression estimates to visualize mean data were computed with a Nadaraya-Watson

estimator with rule-of-thumb bandwidth (Härdle et al., 2004). For all analyses the

criterion for statistical significance was p < 0.05.

4.2.3 Observer models

Subjects’ performance was modelled with a family of Bayesian ideal observers which

incorporate various hypotheses about the decision-making process and internal rep-

resentation of the task, with the aim of characterizing various possible sources of de-

viations from optimal behaviour (Tassinari et al., 2006); see Figure 4.1e for a depiction

1 The observed fraction of successes fluctuates around the true success probability with binomial statistics,
and the error can be substantial for small sample size.
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of the elements of decision making in a trial. All these observers are ‘Bayesian’ be-

cause they build a posterior distribution through Bayes’ rule, but the operations they

perform with the posterior can differ from the normative prescriptions of Bayesian

Decision Theory (BDT).

Similarly to what we did in Chapter 3, we constructed a large model set with a fac-

torial approach that consists in combining different independent model ‘factors’ that

can take different ‘levels’ (van den Berg et al., 2014). The basic factors we considered

in our first analysis are:

1. Decision making (3 levels): Bayesian Decision Theory (‘BDT’), stochastic posterior

(‘SPK’), posterior probability matching (‘PPM’).

2. Cue-estimation sensory noise (2 levels): absent or present (‘S’).

3. Noisy estimation of the prior (2 levels): absent or present (‘P’).

4. Lapse (2 levels): absent or present (‘L’).

Observer models are identified by a model string, for example ‘BDT-P-L’ indicates

an observer model that follows BDT with a noisy estimate of the prior and suffers

from occasional lapses. Our basic model set comprises 24 observer models; we also

considered several variants of these models that are described in the text. All main

factors are explained in the following sections and summarized in Table 4.1. The term

‘model component’ is used through the text to indicate both factors and levels.

Decision making: Standard BDT observer (‘BDT’)

The ‘decision-making’ factor comprises model components with different assump-

tions about the decision process. We start describing the ‘baseline’ Bayesian observer

model, BDT, that follows standard BDT. Suboptimality, in this case, emerges if the

observer’s internal estimates of the parameters of the task take different values from

the true ones (see Chapter 2). As all subsequent models are variations of the BDT

observer we describe this model in some detail.

On each trial the information available to the observer is comprised of the ‘prior’

distribution pprior(s), the cue position xcue, and the distance dcue of the cue from

the target line, which is a proxy for cue variability, σcue ≡ σ(dcue). The posterior

distribution of target location, s, is computed by multiplying together the prior with

the likelihood function. For the moment we assume the observer has perfect access

to the displayed cue location and prior (i.e. qprior(s) ≡ pprior(s)), and knowledge that

cue variability is normally distributed. However, we allow the observer’s estimate of
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the variance of the likelihood (σ̃2
low and σ̃2

high) to mismatch the actual variance (σ2
low

and σ2
high). Therefore, the posterior is given by:

ppost(s) = ppost(s|xcue, dcue, pprior) ∝ pprior(s)N
(
xcue

∣∣s, σ̃2
cue
)

. (4.5)

In general, for any given trial, the choice the subject makes (desired pointing location

for s) can be a probabilistic one, leading to a decision or ‘target choice’ distribution

(see Section 2.1.2). However, for standard BDT, the choice is deterministic given the

trial parameters, leading to a ‘target choice’ distribution that collapses to a delta

function:

ptarget
(
ŝ|xcue, dcue, pprior

)
= δ

[
ŝ− s∗(xcue; dcue, pprior)

]
, (4.6)

where ŝ is the observer’s decision and s∗ is the ‘optimal’ target position that mini-

mizes the observer’s expected loss. The explicit task in our experiment is to place

the target within the radius of the cursor, which is equivalent to a boxcar loss function2boxcar loss function

with a window size equal to the diameter of the cursor (the circle is large enough that

the loss is still effectively ‘boxcar’ after considering the vertical jitter of the targets).

For computational reasons, in our observer models we approximate the boxcar loss

with an inverted Gaussian that best approximates the boxcar, with fixed SD σ` = 0.027

screen units (see below and Section B.2.3 in the Appendix).

In our experiment all priors were mixtures of m (mainly 1 or 2) Gaussian distri-

butions of the form pprior(s) = ∑m
i=1 πiN

(
s
∣∣µi, σ2

i
)
, with ∑m

i=1 πi = 1. It follows that

the expected loss is a mixture of Gaussians itself, and the optimal target that mini-

mizes the expected loss takes the form (see below, ‘Computing the optimal target’,

for details):

s∗(xcue) = s∗(xcue; dcue, pprior) = arg min
ŝ

{
−

m

∑
i=1

γiN
(
ŝ
∣∣νi, τ2

i + σ2
`

)}
, (4.7)

where we defined:

γi ≡ πiN
(

xcue
∣∣µi, σ2

i + σ̃2
cue
)

, νi ≡
µiσ̃

2
cue + xcueσ

2
i

σ2
i + σ̃2

cue
, τ2

i ≡
σ2

i σ̃2
cue

σ2
i + σ̃2

cue
. (4.8)

For a single-Gaussian prior (m = 1), pprior = N
(
s
∣∣µ1, σ2

1

)
, and the posterior distribu-

tion is itself a Gaussian distribution with mean µpost = ν1 and variance σ2
post = τ2

1 , so

that s∗(xcue) = µpost.

2 Also called rectangular or ‘square well’ loss.
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We assume that the subject’s response is corrupted by motor noise, which we take

to be normally distributed with SD σmotor. By convolving the target choice distribution

(Eq. 4.6) with motor noise we obtain the final response distribution:

Pr
(
r
∣∣xcue, dcue, pprior

)
=N

(
r
∣∣s∗(xcue), σ2

motor
)

. (4.9)

The calculation of the expected loss in Eq. 4.7 does not explicitly take into account

the consequences of motor variability, but this approximation has minimal effects on

the inference (see Section 4.4.2).

The behaviour of observer model BDT is completely described by Eqs. 4.7, 4.8 and

4.9. This observer model is subjectively Bayes optimal; the subject applies BDT to his

or her internal model of the task, which might be wrong. Specifically, the observer

will be close to objective optimality only if his or her estimates for the likelihood

parameters, σ̃low and σ̃high, match the true likelihood parameters of the task (σlow and

σhigh). As extreme cases, if σ̃low, σ̃high −→ 0 the BDT observer will ignore the prior and

only use the noiseless cues, whereas for σ̃low, σ̃high −→ ∞ the observer will use only

probabilistic information contained in the priors.

Decision making: Noisy decision makers (‘SPK’ and ‘PPM’)

An alternative to BDT is a family of observer models in which the decision-making

process is probabilistic, either because of noise in the inference or stochasticity in

action selection. We model these various sources of variability without distinction as

stochastic computations that involve the posterior distribution.

We start our analysis by considering a specific model, SPK (stochastic posterior,

κ-power), in which the observer minimizes the expected loss (Eq. 4.7) under a noisy,

approximate representation of the posterior distribution, as opposed to the deter-

ministic, exact posterior of BDT (Figure 4.3a and 4.3d); later we will consider other

variants of stochastic computations. As before, we allow the SD of the likelihoods,

σ̃low and σ̃high, to mismatch their true values. For mathematical and computational

tractability, we do not directly simulate the noisy inference during the model com-

parison. Instead, we showed that different ways of introducing stochasticity in the

inference process – either by adding noise to an explicit representation of the ob-

server’s posterior (Figure 4.3b and 4.3e), or by building a discrete approximation of

the posterior via sampling (Figure 4.3c and 4.3f) – induce variability in the target

choice that is well approximated by a power function of the posterior distribution

itself; see Section B.1 in the Appendix for details.

We, therefore, use the power function approximation with power κ – hence the

name of the model – to simulate the effects of a stochastic posterior on decision mak-
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Figure 4.3: Decision making with stochastic posterior distributions. a–c: Each panel
shows an example of how different models of stochasticity in the representation of
the posterior distribution, and therefore in the computation of the expected loss, may
affect decision making in a trial. In all cases, the observer chooses the subjectively
optimal target s∗ (blue arrow) that minimizes the expected loss (purple line; see Eq.
4.7) given his or her current representation of the posterior (black lines or bars). The
original posterior distribution is showed in panels b–f for comparison (shaded line). a:
Original posterior distribution. b: Noisy posterior: the original posterior is corrupted
by random multiplicative or Poisson-like noise (in this example, the noise has caused
the observer to aim for the wrong peak). c: Sample-based posterior: a discrete approx-
imation of the posterior is built by drawing samples from the original posterior (grey
bars; samples are binned for visualization purposes). d–f: Each panel shows how
stochasticity in the posterior affects the distribution of target choices ptarget(ŝ) (blue
line). d: Without noise, the target choice distribution is a delta function peaked on the
minimum of the expected loss, as per standard BDT. e: On each trial, the posterior
is corrupted by different instances of noise, inducing a distribution of possible target
choices ptarget(ŝ) (blue line). In our task, this distribution of target choices is very well
approximated by a power function of the posterior distribution, Eq. 4.10 (red dashed
line); see Section B.1 in the Appendix for details. f: Similarly, the target choice dis-
tribution induced by sampling (blue line) is fit very well by a power function of the
posterior (red dashed line). Note the extremely close resemblance of panels e and f
(the exponent of the power function is the same).

ing, without committing to a specific interpretation. The target choice distribution in

model SPK takes the form:

ptarget(ŝ|xcue, dcue, pprior) ∝
[
ppost(ŝ)

]κ , (4.10)

where the power exponent κ ≥ 0 is a free parameter inversely related to the amount

of variability. Eq. 4.10 is convolved with motor noise to give the response distribution.
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The power function conveniently interpolates between a posterior-matching strategy

(for κ = 1) and a maximum a posteriori (MAP) solution (κ → ∞); see also Battaglia

et al. (2011); Moreno-Bote et al. (2011).

We consider as a separate component the specific case in which the power exponent

κ is fixed to 1, yielding a posterior probability matching observer, PPM, that takes

action according to a single draw from the posterior distribution (see Section 2.4.5).

Observer models with cue-estimation sensory noise (‘S’)

We consider a family of observer models, S, in which we drop the assumption that

the observer perfectly knows the horizontal position of the cue. We model sensory

variability by adding Gaussian noise to the internal measurement of xcue, which we

label ξcue:

p (ξcue|xcue, dcue) = N
(
ξcue

∣∣xcue, Σ2(dcue)
)

with Σ2(dcue) ∈
{

Σ2
low, Σ2

high

}
, (4.11)

where Σ2
low, Σ2

high represent the variances of the estimates of the position of the cue,

respectively for low-noise (short-distance) and high-noise (long-distance) cues. Ac-

cording to Weber’s law, we assume that the measurement error is proportional to

the distance from the target line dcue, so that the ratio of Σhigh to Σlow is equal to the

ratio of dlong to dshort, and we need to specify only one of the two parameters (Σhigh).

Given that both the cue variability and the observer’s measurement variability are

normally distributed, their combined variability will still appear to the observer as a

Gaussian distribution with variance σ̃2
cue + Σ2

cue, assuming independence. Therefore,

the observer’s internal model of the task is formally identical to the description we

gave before by replacing xcue with ξcue in Eq. 4.5. Since the subject’s internal measure-

ment is not accessible during the experiment, the observed response probability is

integrated over the hidden variable ξcue (see also Eq. 4.19 later). A model with cue-

estimation sensory noise (‘S’) tends to the equivalent observer model without noise

for Σcue → 0.

Observer models with noisy estimation of the prior (‘P’)

We introduce a family of observer models, P, in which subjects have access only to

noisy estimates of the parameters of the prior, pprior. For this class of models we

assume that estimation noise is structured along a task-relevant dimension.
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Specifically, for Gaussian priors we assume that the observers take a noisy internal

measurement of the SD of the prior, σ̃prior, which according to Weber’s law follows a

log-normal distribution:

p(σ̃prior|σprior) = LogN
(

σ̃prior

∣∣∣σprior, η2
prior

)
, (4.12)

where σprior, the true SD, is the log-scale parameter and ηprior ≥ 0 is the shape param-

eter of the log-normally distributed measurement (respectively mean and SD in log

space). We assume an analogous form of noise on the width of the platykurtic prior

in the unimodal session. Conversely, we assume that for priors that are mixtures of

two Gaussians the main source of error stems from assessing the relative importance

of the two components. In this case we add log-normal noise to the weights of each

component, which we assume to be estimated independently:

p(π̃i|πi) = LogN
(

π̃i

∣∣∣πi, η2
prior

)
for i = 1, 2, (4.13)

where πi are the true mixing weights and ηprior is the noise parameter previously

defined. Note that Eq. 4.13 is equivalent to adding normal noise with SD
√

2 ηprior to

the log weights ratio in the ‘natural’ log odds space (Zhang and Maloney, 2012).

The internal measurements of σ̃prior (or π̃i) are used by the observer in place of the

true parameters of the priors in the inference process (e.g. Eq. 4.8). Since we cannot

measure the internal measurements of the subjects, the actual response probabilities

are computed by integrating over the unobserved values of σ̃prior or π̃i (see later). For

ηprior → 0 an observer model with prior noise (‘P’) tends to its corresponding version

with no noise.

A different type of measurement noise on the prior density is represented by ‘un-

structured’, pointwise noise, which can be shown to be indistinguishable from noise

in the posterior under certain assumptions (see Section B.1.3 in the Appendix).

Observer models with lapse (‘L’)

It is possible that the response variability exhibited by the subjects could be simply

explained by occasional lapses. Observer models with a lapse term are common in

psychophysics to account for missed stimuli and additional variability in the data

(Wichmann and Hill, 2001). According to these models, in each trial the observer has

a typically small, fixed probability 0 ≤ λ ≤ 1 (the lapse rate) of making a choice from

a lapse probability distribution instead of the optimal target s∗. As a representative

lapse distribution we choose the prior distribution (prior-matching lapse). The targetprior-matching lapse
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choice for an observer with lapse has distribution:

p(lapse)
target

(
ŝ|xcue, dcue, pprior

)
= (1− λ) · ptarget

(
ŝ|xcue, dcue, pprior

)
+ λ · pprior(ŝ), (4.14)

where the first term in the right hand side of the equation is the target choice distribu-

tion (either Eq. 4.6 or Eq. 4.10, depending on the decision-making factor), weighted

by the probability of not making a lapse, 1− λ. The second term is the lapse term,

with probability λ, and it is clear that the observer model with lapse (‘L’) reduces

to an observer with no lapse in the limit λ → 0. Eq. 4.14 is then convolved with

motor noise to provide the response distribution. We also tested a lapse model in

which the lapse distribution was uniform over the range of the displayed prior distri-

bution. Observer models with uniform lapse performed consistently worse than the

prior-matching lapse model, so we only report the results of the latter.

Additional observer models for non-Gaussian priors

Finally, we considered a number of additional model components whose predictions

differ from the previously described models only when the posterior distribution

is non-Gaussian. These observer models represent different generalizations of how

a noisy decision process could affect behaviour beyond the Gaussian case, and are

subject to a separate model comparison (see ‘Comparison of alternative models of

decision making’ in Section 4.3.3). When performing this second model comparison,

we included in the analysis only trials in which the theoretical posterior distribu-

tion is considerably non-Gaussian (see below); this restriction immediately excludes

the training sessions and the Gaussian group, in which all priors and posteriors are

strictly Gaussian.

As new models, we introduce first an additional level for the decision-making fac-

tor, posterior-sampling average (PSA). This observer model chooses a target by taking

the average of κ ≥ 1 samples drawn from the posterior distribution (Battaglia et al.,

2011). This strategy is equivalent to an observer with a sample-based posterior that

applies a quadratic loss function when choosing the optimal target. For generality,

with an interpolation method we allow κ to be a real number (see below). For Gaus-

sian posteriors, model PSA is identical to SPK.

We also introduce a new model factor according to which subjects may use a single

Gaussian to approximate the full posterior. The mean/variance model (MV) assumes

that subjects approximate the posterior with a Gaussian with matching low-order mo-

ments (mean and variance). For observer models that act according to BDT, model

MV is equivalent to the assumption of a quadratic loss function during target se-

lection, whose optimal target choice equals the mean of the posterior. Alternatively,
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a commonly used Gaussian approximation in Bayesian inference is the Laplace ap-

proximation (LA). In this case, the observer approximates the posterior with a single

Gaussian centered on the mode of the posterior and whose variance depends on the

local curvature at the mode (see Section A.3.2 in the Appendix). The main differ-

ence of the Laplace approximation from other models is that the posterior is usually

narrower, since it takes into account only the main peak.

Computing the optimal target

According to Bayesian Decision Theory (BDT), the key quantity an observer needs to

compute in order to make a decision is the (subjectively) expected loss for a given

action. In our task, the action corresponds to a choice of a cursor position ŝ, and the

expected loss takes the form:

E [ŝ; ppost,L] =
∫

ppost(s)L(ŝ, s) ds, (4.15)

where ppost(s) is the subject’s posterior distribution of target position, described by

Eq. 4.5, and the loss associated with choosing position ŝ when the target location is s

is represented by loss function L(ŝ, s).

Our task has a clear ‘hit or miss’ structure that is represented by the (inverted)

boxcar function:

Lbox(ŝ, s; `) =

 − 1
` for |ŝ− s| < `

2

0 otherwise,
(4.16)

where ŝ− s is the distance of the chosen response from the target, and ` is the size

of the allowed window for locating the target (in the experiment, the cursor diame-

ter). The boxcar loss allows for an analytical expression of the expected loss, but the

optimal target still needs to be computed numerically. Therefore we make a smooth

approximation to the boxcar loss represented by the inverted Gaussian loss:

LGauss(ŝ, s; σ`) = −N
(
s
∣∣ŝ, σ2

`

)
, (4.17)

where the parameter σ` governs the scale of smoothed detection window. The Gaus-

sian loss approximates extremely well the predictions of the boxcar loss in our task,

to the point that performance under the two forms of loss is empirically indistinguish-

able (see Section B.2.3 in the Appendix). However, computationally the Gaussian loss

is preferrable as it allows much faster calculations of optimal behaviour.
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For the decision process, BDT assumes that observers choose the ‘optimal’ target

position s∗ that minimizes the expected loss (compare with Eq. 2.4):

s∗ = arg min
ŝ
E [ŝ; ppost,LGauss]

= arg min
ŝ

{
−

m

∑
i=1

πi

∫
N
(
s
∣∣µi, σ2

i
)
N
(
s
∣∣xcue, σ̃2

cue(dcue)
)
N
(
s
∣∣ŝ, σ2

`

)
ds

}
,

(4.18)

where we have used Eqs. 4.5, 4.15 and 4.17. With some algebraic manipulations, Eq.

4.18 can be reformulated as Eq. 4.7. Given the form of the expected loss, the solution

of Eq. 4.7 is equivalent to finding the maximum (mode) of a Gaussian mixture model.

No analytical solution is known for more than one model component (m > 1), so

we implemented a fast and accurate numerical solution adapting the algorithm in

Carreira-Perpiñán (2000).

Computing the response probability

The probability of observing response r in a trial, Pr (r |trial ) (e.g., Eq. 4.9) is the

key quantity for our probabilistic modelling of the task. For basic observer models,

Pr (r |trial ) is obtained as the convolution between a Gaussian distribution (motor

noise) and a target choice distribution in closed form (e. g., a power function of a mix-

ture of Gaussians), such as in Eqs. 4.6, 4.10, and 4.14. Response probabilities are inte-

grated over latent variables of model factor S (ξcue; see Eq. 4.11) and of model factor

P (log σ̃prior and log π̃1
π̃2

; see Eqs. 4.12 and 4.13). Integrations were performed analyti-

cally when possible or otherwise numerically (trapz in MATLAB or Gauss-Hermite

quadrature method for non-analytical Gaussian integrals, see e. g. Press et al., 2007).

For instance, the observed response probability for model factor S takes the shape:

Pr
(
r
∣∣xcue, dcue, pprior

)
=
∫ [∫

N
(
r
∣∣ŝ, σ2

m
)

ptarget
(
ŝ|ξcue, dcue, pprior

)
dŝ
]

×N
(
ξcue

∣∣xcue, Σ2
cue
)

dξcue,
(4.19)

where we are integrating over the hidden variables ξcue and ŝ. The target choice

distribution ptarget depends on the decision-making model component (such as Eqs.

4.6 and 4.10). Without loss of generality, we assumed that the observers are not aware

of their internal variability. Predictions of model S do not change whether we assume

that the observer is aware of his or her measurement error Σ2
cue or not; differences

amount just to redefinitions of σ̃2
cue.
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For a Gaussian prior with mean µprior and variance σ2
prior, the response probability

has the following closed-form solution:

Pr
(

r
∣∣∣xcue, dcue, µprior, σ2

prior

)
=N

(
r
∣∣∣µresp, σ2

response

)
, (4.20)

with

µresp ≡
µpriorσ̃2

cue + xcueσ
2
prior

σ2
prior + σ̃2

cue
, σ2

resp ≡ σ2
m +

1
κ

σ2
priorσ̃2

cue

σ2
prior + σ̃2

cue
+

(
σ2

prior

σ2
prior + σ̃2

cue

)2

Σ2
cue,

(4.21)

where κ is the noise parameter of the stochastic posterior in model component SPK

(κ = 1 for PPM; κ ∼ ∞ for BDT) and Σcue is the sensory noise in estimation of the cue

position in model S (Σcue = 0 for observer models without cue-estimation noise). For

observer models P with noise on the prior, Eq. 4.20 was numerically integrated over

different values of the internal measurement (here corresponding to log σprior) with a

Gauss-Hermite quadrature method.

For non-Gaussian priors there is no closed form solution similar to Eq. 4.20 and

the calculation of the response probability, depending on active model components,

may require up to three nested numerical integrations. Therefore, for computational

tractability, we occasionally restricted our analysis to a subset of observer models, as

indicated in the Results section.

For model class PSA (posterior sampling average), the target choice distribution

is the probability distribution of the average of κ samples drawn from the posterior

distribution. For a posterior that is a mixture of Gaussians and integer κ, it is possi-

ble to obtain an explicit expression whose number of terms grows exponentially in

κ (a Gaussian approximation applies for large values of κ due to the central limit

theorem). Values of the distribution for non-integer κ were found by linear interpo-

lation between adjacent integer values. For model class LA (Laplace approximation)

we found the mode of the posterior numerically (Carreira-Perpiñán, 2000) and ana-

lytically evaluated the second derivative of the log posterior at the mode. The mean

of the approximate Gaussian posterior is set to the mode and the variance to minus

the inverse of the second derivative (see Eq. A.8).

For all models, when using the model-dependent response probability, Pr (r |trial ),

in the model comparison, we added a small regularization term:

Pr(reg) (r|trial) = (1− ε) · Pr (r |trial ) + ε, (4.22)
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with ε = 1.5 · 10−6 (the value of the pdf of a normal distribution at 5 SDs from the

mean). This change in probability is empirically negligible, but from the point of

view of model comparison the regularization term introduces a lower bound log ε on

the log probability of a single trial, preventing single outliers from having unlimited

weight on the log likelihood of a model, increasing therefore the robustness of the

inference.

4.2.4 Model comparison and non-parametric analysis

Computing the posterior distribution of the parameters

For each observer model M and each subject’s dataset D we evaluated the poste-

rior distribution of parameters, Pr (θM |D, M ), where θM is in general a vector of

model-dependent parameters (see Table 4.1). Each subject’s dataset D comprised of

two sessions (training and test), for a total of about 1200 trials divided in 32 distinct

conditions (8 priors × 2 noise levels × 2 sessions). In general, we assumed sub-

jects shared the motor parameter σmotor across sessions. We also assumed that from

training to test sessions people would use the same high-noise to low-noise ratio be-

tween cue variability (σ̃high/σ̃low); so only one cue-noise parameter (σ̃high) needed to

be specified for the test session. Conversely, we assumed that the other noise-related

parameters (κ, Σhigh, ηprior, λ), if present, could change freely between sessions, rea-

soning that additional response variability can be affected by the presence or absence

of feedback, or as a result of the difference between training and test distributions.

These assumptions were validated via a preliminary model comparison (see Section

B.3.2 in the Appendix). Table 4.1 lists a summary of observer models and their free

parameters.

We computed the posterior distribution of the parameters as Pr (θM |D, M ) ∝

Pr (D |θM, M )Pr (θM |M ), where we assumed a factorized prior over parameters,

Pr(θM |M) = ∏i Pr(θi |M). Having obtained independent measures of typical sen-

sorimotor noise parameters of the subjects in a sensorimotor estimation experiment,

we took informative log-normal priors on parameters σmotor and Σhigh (when present),

with log-scale respectively log 3.4 · 10−3 and log 7.7 · 10−3 screen units and shape pa-

rameters 0.38 and 0.32 (see Section 4.3.2; results did not depend crucially on the shape

of the priors). For the other parameters we took a non-informative uniform prior ∼
Uniform[0, 1] (dimensionful parameters were measured in normalized screen units),

with the exception of the ηprior and κ parameters. The ηprior parameter that regulates

the noise in the prior could occasionally be quite large so we adopted a broader range

∼ Uniform[0, 4] to avoid edge effects. A priori, the κ parameter that governs noise
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in decision making could take any positive nonzero value (with higher probability

mass on lower values), so we assumed a prior ∼ Uniform[0, 1] on 1/(κ + 1), which is

equivalent to a prior ∼ 1/(κ + 1)2, for κ ∈ [0, ∞). Formally, a value of κ less than one

represents a performance more variable than posterior-matching (for κ → 0 the pos-

terior distribution tends to a uniform distribution). Results of the model comparison

were essentially identical whether we allowed κ to be less than one or not. We took a

prior ∼ 1/κ2 on the positive real line since it is integrable; an improper prior such as

a noninformative prior ∼ 1/κ is not recommendable in a model comparison between

models with non-common parameters (see Gelman et al., 2013 and Appendix A).

The posterior distribution of the parameters is proportional to the data likelihood,

which was computed in logarithmic form as:

log Pr (D |θM, M ) =
N

∑
i=1

log Pr(reg)
(

r(i)|triali

)
, (4.23)

where Pr(reg) is the regularized probability of response given by Eq. 4.22, and triali

represents all the relevant variables of the i-th trial. Eq. 4.23 assumes that the tri-

als are independent and that subjects’ parameters are fixed throughout each session

(stationarity).

Sampling from the posterior distribution of the parameters

A convenient way to compute a probability distribution whose unnormalized pdf is

known (Eq. 4.23) is by using a MCMC method (e. g., slice sampling; Neal, 2003). For

each dataset and model, we ran three parallel chains with different starting points

(103 to 104 burn-in samples, 2 · 103 to 5 · 104 saved samples per chain, depending on

model complexity) obtaining a total of 6 · 103 to 1.5 · 105 sampled parameter vectors.

Marginal pdfs of sampled chains were visually checked for convergence. We also

searched for the global minimum of the (minus log) marginal likelihood by running

a minimization algorithm (fminsearch in MATLAB) from several starting points (30

to 100 random locations). With this information we verified that, as far as we could

tell, the chains were not stuck in a local minimum. Finally, we computed Gelman and

Rubin’s potential scale reduction statistic R for all parameters (Gelman and Rubin,

1992). Large values of R indicate convergence problems, whereas values close to 1

suggest convergence. Longer chains were run when suspicion of a convergence prob-

lem arose from any of these methods. In the end, the average R (across parameters,

participants and models) was 1.003 and almost all values were < 1.1 suggesting good

convergence.

Given the parameter samples, we computed the DIC score (deviance information

criterion; Spiegelhalter et al., 2002) for each dataset and model. The DIC score is a
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metric that combines a goodness of fit term and a penality for model complexity,

similarly to other metrics adopted in model comparison, such as Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC), with the advantage that

DIC takes into account an estimate of the effective complexity of the model and it is

particularly easy to compute given MCMC output (see Section A.3.3 in the Appendix

for details). DIC scores are meaningful only in a comparison, so we only report DIC

scores differences between models (∆DIC). Although a difference of 3–7 points is al-

ready suggested to be significant (Spiegelhalter et al., 2002), we follow a conservative

stance, for which the difference in DIC scores needs to be 10 or more to be considered

significant (e. g., Battaglia et al., 2011). In Section B.3.1 of the Appendix we report a

set of model comparisons evaluated in terms of group DIC (GDIC). The assumption

of GDIC is that all participants’ datasets have been generated by the same observer

model, and all subjects contribute equally to the evidence of each model.

Hierarchical Bayesian model selection

In the Results section, instead, we compared models according to a hierarchical

Bayesian model selection method (BMS; Stephan et al., 2009) that treats both sub-

jects and models as random factors, that is, multiple observer models may be present

in the population. BMS uses an iterative algorithm based on variational inference

to compute model evidence from individual subjects’ marginal likelihoods (or ap-

proximations thereof, such as DIC, with the marginal likelihood being ≈ − 1
2 DIC).

BMS is particularly appealing because it naturally deals with group heterogeneity

and outliers. Moreover, the output of the algorithm has an immediate interpretation

as the probability that a given model is responsible for generating the data of a ran-

domly chosen subject. BMS also allows to easily compute the cumulative evidence for

groups of models and we used this feature to compare distinct levels within factors

(Stephan et al., 2009). As a Bayesian metric of significance we report the exceedance

probability P∗ of a model (or model level within a factor) being more likely than any

other model (or level). We consider values of P∗ > 0.95 to be significant. The BMS al-

gorithm is typically initialized with a symmetric Dirichlet distribution that represents

a prior over model probabilities with no preference for any specific model (Stephan

et al., 2009). Since we are comparing a large number of models generated by the fac-

torial method, we chose for the concentration parameter of the Dirichlet distribution

a value α0 = 0.25 that corresponds to a weak prior belief that only a few observer

models are actually present in the population (α0 → 0 would correspond to the prior

belief that only one model is true, similarly to GDIC, and α0 = 1 that any number of

models are true). Results are qualitatively independent of the specific choice of α0 for

a large range of values.
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When looking at alternative models of decision making in our second factorial

model comparison, we excluded from the analysis ‘uninteresting’ trials in which

the theoretical posterior distribution (Eq. 4.5 with the true values of σlow and σhigh)

was too close in shape to a Gaussian; since predictions of these models are identi-

cal for Gaussian posteriors, Gaussian trials constitute only a confound for the model

comparison. A posterior distribution was considered ‘too close’ to a Gaussian if the

Kullback-Leibler divergence between a Gaussian approximation with matching low-

order moments and the full posterior was less than a threshold value of 0.02 nats

(results were qualitatively independent of the chosen threshold). In general, this pre-

processing step removed about 45–60% of trials from unimodal and bimodal sessions

(clearly, Gaussian sessions were automatically excluded).

In Section B.3.1 of the Appendix we report instead a classical (frequentist) analy-

sis of the group difference in DIC between models (GDIC), which assumes that all

datasets have been generated by the same unknown observer model. In spite of differ-

ent assumptions, BMS and GDIC agree on the most likely observer model, validating

the robustness of our main findings. The two approaches exhibit differences with re-

spect to model ranking because GDIC, as a ‘fixed effect’ method, does not account

for group heterogeneity and outliers (Stephan et al., 2009; see Section B.3.1 in the

Appendix for details). Finally, we assessed the impact of each factor on model perfor-

mance by computing the average change in DIC associated with a given component.

Non-parametric reconstruction of the priors

We reconstructed the group priors as a means to visualize the subjects’ common

systematic biases under a specific observer model. Each group prior qprior(s) was

‘non-parametrically’ represented by a mixture of Gaussians with a large number of

components (m = 31). The components’ means were equally spaced on a grid that

spanned the range of the discrete representation of the prior; SDs were equal to the

grid spacing. The mixing weights {πi}m
i=1 were free to vary to define the shape of the

prior (we enforced symmetric values on symmetric distributions, and the sum of the

weigths to be one). The representation of the prior as a mixture of Gaussians allowed

us to cover a large class of smooth distributions using the same framework as the rest

of our study.

For this analysis we fixed subjects’ parameters to the values inferred in our main

model comparison for one of the most supported model, SPK-L (i.e. to the robust

means of the posterior of the parameters). For each prior in each group (Gaussian,

unimodal and bimodal test sessions), we simultaneously inferred the shape of the

non-parametric prior that explained each subject’s dataset, assuming the same distri-

bution qprior for all subjects. Specifically, we sampled from the posterior distribution
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of the parameters of the group priors, Pr
(
qprior |D

)
, with a flat prior over log values

of the mixing weights {πi}m
i=1. We ran 5 parallel chains with a burn-in of 103 samples

and 2 · 103 samples per chain, for a total of 104 sampled vectors of mixing weights (see

before for details on sampling). Each sampled vector of mixing weights corresponds

to a prior q(j)
prior, for j = 1 . . . 104. For each sampled prior we also computed the first

four central moments (mean, variance, skewness and kurtosis) and calculated the

posterior average of the moments.

4.3 results

We first describe the results of the experiment and subjects’ performance in a model-

free way (Section 4.3.1). We then briefly present the findings of the sensorimotor esti-

mation session (Section 4.3.2). This section concludes with an extended presentation

of the results of our model comparisons (Section 4.3.3).

4.3.1 Human performance

We first performed a model-free analysis of subjects’ performance. Figure 4.4 shows

three representative prior distributions and the pooled subjects’ responses as a func-

tion of the cue position for low (red) and high (blue) noise cues. Note that pooled data

are used here only for display and all subjects’ datasets were analyzed individually.

The cue positions and responses in Figure 4.4 are reported in a coordinate system rel-

ative to the mean of the prior (set as µprior = 0). For all analyses we consider relative

coordinates without loss of generality, having verified the assumption of translational

invariance of our task (see Section B.2.1 in the Appendix).

Figure 4.4 shows that subjects’ performance was affected by both details of the

prior distribution and the cue. Also, subjects’ mean performance (continuous lines

in Figure 4.4) show deviations from the prediction of an optimal Bayesian observer

(dashed lines), suggesting that subjects’ behaviour may have been suboptimal.

Linear integration with Gaussian priors

We examined how subjects performed in the task under the well-studied case of Gaus-

sian priors (see Section 2.3.2). Given a Gaussian prior with SD σprior and a noisy cue

with horizontal position xcue and known variability σcue (assuming Gaussian noise),

the most likely target location can be computed through Bayes’ theorem. In the rela-
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Figure 4.4: Subjects’ responses as a function of the position of the cue. Each panel
shows the pooled subjects’ responses as a function of the position of the cue either for
low-noise cues (red dots) or high-noise cues (blue dots). Each column corresponds to
a representative prior distribution, shown at the top, for each different group (Gaus-
sian, unimodal and bimodal). In the response plots, dashed lines correspond to the
Bayes optimal strategy given the generative model of the task. The continuous lines
are a kernel regression estimate of the mean response (see Data analysis, Section
4.2.2). a. Exemplar Gaussian prior (prior 4 in Figure 4.2a). b. Exemplar unimodal
prior (platykurtic distribution: prior 4 in Figure 4.2b). c. Exemplar bimodal prior
(prior 5 in Figure 4.2c). Note that in this case the mean response is not necessarily a
good description of subjects’ behaviour, since the marginal distribution of responses
for central positions of the cue is bimodal.

tive coordinate system (µprior = 0), the optimal target location takes the simple linear

form:

s∗(xcue) = w · xcue with w =
σ2

prior

σ2
prior + σ2

cue
(relative coordinates), (4.24)

where w is the linear weight assigned to the cue.

We compared subjects’ behaviour with the ‘optimal’ strategy predicted by Eq. 4.24

(see for instance Figure 4.4a; the dashed line corresponds to the optimal strategy).

For each subject and each combination of σprior and cue type (either ‘short’ or ‘long’,

corresponding respectively to low-noise and high-noise cues), we fit the responses r

as a function of the cue position xcue with a robust linear fit. The slopes of these fits

for the training session are plotted in Figure 4.5; results were similar for the Gaussian

test session. Statistical differences between different conditions were assessed using

repeated-measures ANOVA (rm-ANOVA) with Greenhouse-Geisser correction (see

Data analysis).
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Figure 4.5: Response slopes for the training session. Response slope w as a function
of the SD of the Gaussian prior distribution, σprior, plotted respectively for trials with
low noise (‘short’ cues, red line) and high noise (‘long’ cues, blue line). The response
slope is equivalent to the linear weight assigned to the position of the cue (Eq. 4.24).
Dashed lines represent the Bayes optimal strategy given the generative model of the
task in the two noise conditions. Top: Slopes for a representative subject in the training
session (slope ± SE). Bottom: Average slopes across all subjects in the training session
(n = 24, mean ± SE across subjects).

In general, subjects did not perform exactly as predicted by the optimal strategy

(dashed lines), but they took into account the probabilistic nature of the task. Specifi-

cally, subjects tended to give more weight to low-noise cues than to high-noise ones

(main effect: Low-noise cues, High-noise cues; F(1,23) = 145, p < 0.001), and the

weights were modulated by the width of the prior (main effect: prior width σprior;

F(3.45,79.2) = 88, ε = 0.492, p < 0.001), with wider priors inducing higher weighting of

the cue. Interestingly, cue type and width of the prior seemed to influence the weights

independently, as no significant interaction was found (interaction: prior width × cue

type; F(4.86,112) = 0.94, ε = 0.692, p = 0.46). Analogous patterns were found in the

Gaussian test session.

Mean rightward bias

After analyzing the slope of linear fits of subjects’ responses, we consider here the

average bias (intercept). For a Bayes optimal observer we would expect the bias to be

zero in relative coordinates (Eq. 4.24 has no constant term). Instead, we found that on

average subjects exhibited a small but statistically significant positive (i.e. rightward)
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bias in the training session, of the magnitude of 0.5–3 mm (Figure 4.6a). Interestingly,

we found that the magnitude of this rightward bias was context-dependent, linearly

related to the uncertainty (SD) of the posterior distribution in a trial (R2 = 0.93,

Figure 4.6b). Moreover, the rightward bias was not due to a systematic error that par-

ticipants made in estimating the position of the cue, as separate measurements found

that subjects’ estimates were overall unbiased (see later, Section 4.3.2). These findings

suggest that the bias emerged during the decision-making process or execution of

the planned motor action (see Discussion).

We estimated the impact of the observed mean rightward bias on our subjects’

performance by calculating how this bias would affect the performance of an optimal

Bayesian observer. Specifically, for each subject and for all trials of the training session

we computed the optimality index of a rightward-biased Bayesian observer, whose

responses were shifted to the right according to the linear equation in Figure 4.6. We

found a difference in efficiency of ∼ 2 · 10−3, which is a tiny change in efficiency for

an ideal observer. Given that, as we will see, the subjects were suboptimal in many

ways, a similar change is empirically negligible among other sources of suboptimality.

Therefore, at the level of detail afforded by our data, there is no need to explictly

account for the rightward bias in order to explain subjects’ performance.

Moreover, we found that the average bias was reduced in the Gaussian test session:

(3.2± 1.6) · 10−3 screen units (∼ 1 mm) and only marginally different than zero (t-test

t(7) = 2.06, p = 0.08).

Optimality index

The optimality index is a general measure of performance that is applicable beyond

the Gaussian case. Figure 4.7 shows the optimality index averaged across subjects

for different conditions, in different sessions. Data are also summarized in Table 4.2.

Priors in Figure 4.7 are listed in order of differential entropy (which corresponds to

increasing variance for Gaussian priors), with the exception of ‘unimodal test’ priors

which are in order of increasing width of the main peak in the prior, as computed

through a Laplace approximation. We chose this ordering for priors in the unimodal

test session as it highlights the pattern in subjects’ performance (see below).

For a comparison, Figure 4.7 also shows the optimality index of two suboptimal

models that represent two extremal response strategies. Dash-dotted lines correspond

to the optimality index of a Bayesian observer that maximizes the probability of lo-

cating the correct target considering only the prior distribution. Conversely, dotted

lines correspond to an observer that only uses the cue and ignores the prior: that is,

the observer’s response in a trial matches the current position of the cue. The shaded

gray area specifies the synergistic integration zone, in which the subject is integratingsynergistic integration
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Figure 4.6: Group mean response bias for the training session. a: Group mean re-
sponse bias as a function of the SD of the Gaussian prior distribution, σprior, plotted
respectively for trials with low-noise cues (red line) and high-noise cues (blue line).
Averages are taken across all subjects in the training session (n = 24, mean ± SE
across subjects). A Bayes optimal observer should have overall zero bias (‘unbiased’
dashed line). Overall, the response biases for low-noise and high-noise cues are both
statistically significantly different than zero (resp. p < 10−7 and p < 10−10, signed
test on the pooled response biases), meaning that on average subjects exhibited a
‘rightward bias’. b: Group mean response bias (same data as panel a) plotted as a
function of the SD of the posterior distribution, σpost. The purple dashed line is a lin-
ear fit of the group mean biases, showing that the average rightward bias is correlated
with the width of the posterior (R2 = 0.93).

Session Low-noise cue High-noise cue All cues

Gaussian training 0.86± 0.02 0.87± 0.01 0.87± 0.01
Gaussian test 0.89± 0.02 0.88± 0.02 0.89± 0.01
Unimodal test 0.85± 0.03 0.80± 0.04 0.83± 0.02
Bimodal test 0.90± 0.02 0.89± 0.01 0.89± 0.01

All sessions 0.87± 0.01 0.87± 0.01 0.87± 0.01

Table 4.2: Group mean optimality index. Each entry reports mean ± SE of the group
optimality index for a specific session and cue type, or averaged across all session-
s/cues. See also Figure 4.7.

information from both prior and cue in a way that leads to better performance than

by using either the prior or the cue alone. Qualitatively, the behaviour in the gray

area can be regarded as ‘close to optimal’, whereas performance below the gray area
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Figure 4.7: Group mean optimality index. Each bar represents the group-averaged
optimality index for a specific session, for each prior (indexed from 1 to 8, see also
Figure 4.2) and cue type, low-noise cues (red bars) or high-noise cues (blue bars). The
optimality index in each trial is computed as the probability of locating the correct
target based on the subjects’ responses divided by the probability of locating the
target for an optimal responder. The maximal optimality index is 1, for a Bayesian
observer with correct internal model of the task and no sensorimotor noise. Error
bars are SE across subjects. Priors are arranged in the order of differential entropy (i.e.
increasing variance for Gaussian priors), except for ‘unimodal test’ priors which are
listed in order of increasing width of the main peak in the prior (see text). The dotted
line and dash-dotted line represent the optimality index of a suboptimal observer
that takes into account respectively either only the cue or only the prior. The shaded
area is the zone of synergistic integration, in which an observer performs better than
using information from either the prior or the cue alone.

is suboptimal. As it is clear from Figure 4.7, in all sessions participants were sensi-

tive to probabilistic information from both prior and cue – that is, performance is

always above the minimum of the extremal models (dash-dotted and dotted lines) –

in agreement with what we observed in Figure 4.5 for Gaussian sessions, although

their integration was generally suboptimal.

We examined how the optimality index changed across different conditions. From

the analysis of the training session, it seems that subjects were able to integrate low-

noise and high-noise cues for priors of any width equally well, as we found no effect

of cue type on performance (main effect: Low-noise cues, High-noise cues; F(1,23) =
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0.015, p = 0.90) and no significant interaction between cue types and prior width

(interaction: prior width × cue type; F(5.64,129.6) = 1.56, ε = 0.81, p = 0.17). However,

relative performance was significantly affected by the width of the prior per se (main

effect: prior width σprior; F(2.71,62.3) = 17.94, ε = 0.387, p < 0.001); people tended

to perform worse with wider priors, in a way that is not simply explained by the

objective decrease in the probability of locating the correct target due to the less

available information (see Discussion).

Results in the Gaussian test session (Figure 4.7 top right) replicated what we had

obtained in the training session. Subjects’ performance was not influenced by cue

type (main effect: Low-noise cues, High-noise cues; F(1,7) = 0.026, p = 0.88) nor by

the interaction between cue types and prior width (interaction: prior width × cue

type; F(2.65,18.57) = 0.67, ε = 0.379, p = 0.56). Conversely, as before, the width of the

prior affected performance significantly (main effect: prior width σprior; F(1.47,10.3) =

5.21, ε = 0.21, p < 0.05); again, wider priors were associated with lower relative

performance.

A similar pattern of results was found also for the bimodal test session (Figure

4.7 bottom right). Performance was affected significantly by the shape of the prior

(main effect: prior shape; F(4.01,28.1) = 3.93, ε = 0.573, p < 0.05) but otherwise par-

ticipants integrated cues of different type with equal skill (main effect: Low-noise

cues, High-noise cues; F(1,7) = 1.42, p = 0.27; interaction: prior shape × cue type;

F(2.84,19.9) = 1.1, ε = 0.406, p = 0.37). However, in this case performance was not

clearly correlated with a simple measure of the prior or of the average posterior (e. g.,

differential entropy).

Another scenario emerged in the unimodal test session (Figure 4.7 bottom left).

Here, subjects’ performance was affected not only by the shape of the prior (main

effect: prior shape; F(3.79,26.5) = 20.7, ε = 0.542, p < 0.001) but also by the type of cue

(main effect: Low-noise cues, High-noise cues; F(1,7) = 9.85, p < 0.05) and the specific

combination of cue and prior (interaction: prior shape × cue type; F(3.53,24.7) = 5.27,

ε = 0.504, p < 0.01). Moreover, in this session performance improved for priors

whose main peak was broader (see Discussion).

Notwithstanding this heterogeneity of results, an overall comparison of partici-

pants’ relative performance in test sessions (averaging results over priors) did not

show statistically significant differences between groups (main effect: group; F(2,21) =

2.13, p = 0.14) nor between the two levels of reliability of the cue (main effect: Low-

noise cues, High-noise cues; F(1,21) = 3.36, p = 0.08); only performance in the uni-

modal session for high-noise cues was at most marginally worse. In particular, rel-

ative performance in the Gaussian test and the bimodal test sessions was surpris-

ingly similar, unlike previous learning experiments (see Discussion). Note that this
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near-constancy of efficiency is not visible when we look at the absolute performance,

which does change considerably between different conditions due to the intrinsic

variations in the amount of available probabilistic information (see Section B.2.2 in

the Appendix).

Finally, we examined the average optimality index as a function of trial number

in the training and test sessions (Figure 4.8). We found that group performance ex-

hibited a small but statistically significant improvement between the first and last

quarter of the training session (difference in optimality index: 0.023± 0.008, mean

± SE; paired t-test t(23) = 2.96, p < 0.01), but no significant difference was found

between the beginning and the end of the test sessions (p > 0.30 for each test ses-

sion). This finding suggests that subjects were using the full performance feedback

provided in the training session to (marginally) improve their performance, but there

was no additional learning (or significant worsening) when only partial feedback was

available, as per our initial assumption (see ‘Experimental sessions’ in Section 4.2.1).

Figure 4.8: Group mean performance per trial. Mean optimality index per trial, av-
eraged over all subjects for each session (shaded area ±1 SE). Performance data are
smoothed over a window of radius 10 trials, for visualization purposes.

Effects of uncertainty on reaction time

Lastly, we examined the effect of uncertainty on subjects’ reaction time (time to start

movement after the ‘go’ beep) in each trial. Uncertainty was quantified as the SD of

the posterior distribution in the current trial, σpost. We found that the average subjects’

reaction time grew almost linearly with σpost (Figure 4.9). The average change in reac-

tion times (from lowest to highest uncertainty in the posterior) was substantial during
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the training session (∼ 50 ms, about 15% change), although less so in subsequent test

sessions.
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Figure 4.9: Average reaction times as a function of the SD of the posterior distribu-
tion. Each panel shows the average reaction times (mean ± SE across subjects) for a
given session as a function of the SD of the posterior distribution, σpost (individual
data were smoothed with a kernel regression estimate, see Methods). Dashed lines
are robust linear fits to the reaction times data. For all sessions the slope of the linear
regression is significantly different than zero (t-test p < 10−3 on pooled data, for all
sessions).

4.3.2 Sensorimotor measurement session

A subset of observers (n = 10) performed in a sensorimotor measurement session

to verify the impact of sensorimotor noise on their targeting performance (see ‘Mea-

suring sensorimotor noise’ in Section 4.2.1). The root-mean-squared error (RMSE)

of the response with respect to the true target position was on average (9.3± 0.8) ·
10−3 screen units for long-distance cues and (5.2± 0.3) · 10−3 screen units for short-

distance cues (mean ± SE across subjects). In general, the RMSE can be divided in

a constant bias term and a variance term, but the bias term was overall small, on

average (0.6± 0.5) · 10−3 screen units, and not significantly different than zero (t-test

t(9) = 1.18, p = 0.26), which means that the error arose almost entirely from the

subjects’ response variability.

Since subjects knew that the cues were fully informative about the target position,

all variability in their responses originated from two sources: sensory noise (error in

projecting the cue position on the target line) and motor noise. We assumed that sen-

sory and motor noise were independent and normally distributed, and that sensory

variability was proportional to the distance of the cue from the target line (Weber’s

law). Under these assumptions, variance of subjects’ responses was described by the

following formula:

σ2
response = σ2

motor + w2
sensoryd2

cue, (4.25)
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where wsensory is Weber’s fraction and dcue is the distance of the cue from the target

line. Using Eq. 4.25 we were able to estimate participants’ sensorimotor parameters;

results are reported in Table 4.3.

Parameter Description
Mean± SD

(screen units)
Mean± SD

(mm)

σmotor Motor noise (3.6± 1.1) · 10−3 1.1± 0.3
Σlow Sensory noise (short cues) (3.5± 1.1) · 10−3 1.1± 0.3
Σhigh Sensory noise (long cues) (8.1± 2.6) · 10−3 2.4± 0.8

Table 4.3: Average estimated sensorimotor parameters. Group-average estimated mo-
tor and sensory noise parameters. Estimates were obtained from the data through Eq.
4.25.

The estimated parameters in Table 4.3 allowed us to assess the typical impact of

realistic values of sensorimotor noise on subjects’ performance. First, we computed

the performance of the optimal ideal observer model with added realistic noise. In

order to do so, we generated 1000 subjects by sampling from the distribution of

estimated sensorimotor parameters and we then simulated their behaviour on our

subjects’ datasets according to the optimal observer model. We found an average op-

timality index of 0.997± 0.001, which is empirically indistinguishable from one. The

difference in performance induced by the sensorimotor noise was analogously negli-

gible for the simulations of other ideal observer models, such as the ‘prior-only’ or

‘cue-only’ models (see Figure 4.7). These results show that sensory noise in estimating

the location of the cue and motor noise in executing the reaching movement had a

very limited impact on subjects’ performance.

The pooled estimated parameters summarized in Table 4.3 were used to construct

the informative priors for the motor and sensory parameters that were applied in

our model comparison (see next section). Bootstrapped parameters were fit with log-

normal distributions with log-scale µ and shape parameter σ (which correspond to

mean and SD in log space.The resulting parameters of the priors were µ = log 3.4 ·
10−3 screen units, σ = 0.38 for σmotor; and µ = log 7.7 · 10−3 screen units, σ = 0.32 for

Σhigh. The prior on σmotor was used in all observer models, whereas the prior on Σhigh

was used only in the observer models with sensory noise (model factor S).

4.3.3 Results of model comparisons

We describe in this section the results of a first model comparison (‘Main factorial

model comparison’) on the observer models described in Section 4.2.3. We subse-
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quently present the findings of a second, more specific model comparison that looks

at some aspects of the decision-making process (‘Comparison of alternative models

of decision making’). We conclude by analyzing in detail the features of the most

supported observer model (‘Analysis of best observer model’).

Main factorial model comparison

Figure 4.10 shows the results of the Bayesian model selection (BMS) method applied

to our basic model set (see Section 4.2.3). Figure 4.10a shows the model evidence for

each individual model and subject. For each subject we computed the posterior prob-

ability of each observer model using DIC as an approximation of the marginal likeli-

hood (see Section 4.2.4). We calculated model evidence as the Bayes factor (posterior

probability ratio) between the subject’s best model and a given model. In the graph

we report model evidence in the same scale as DIC, that is as twice the log Bayes

factor. A difference of more than 10 in this scale is considered very strong evidence

(Kass and Raftery, 1995). Results for individual subjects show that model SPK-P-L

(stochastic posterior with estimation noise on the prior and lapse) performed consis-

tently better than other models for all conditions. A minority of subjects were also

well represented by model SPK-P (same as above, but without the lapse component).

All other models performed significantly worse. In particular, note that the richer

SPK-S-P-L model was not supported, suggesting that that sensory noise on estima-

tion of cue location was not needed to explain the data. Figure 4.10b confirms these

results by showing the estimated probability of finding a given observer model in the

population (assuming that multiple observer models could be present). Model SPK-

P-L is significantly more represented (P = 0.72; exceedance probability P∗ > 0.999),

followed by model SPK-P (P = 0.10). For all other models the probability is essen-

tially the same at P < 0.01. The probability of single model factors reproduced an

analogous pattern (Figure 4.10c). The majority of subjects (more than 80% in each

case) are likely to use a stochastic decision making (SPK), to have noise in the esti-

mation of the priors (P), and lapse (L). Only a minority (10%) would be described by

an observer model with sensory noise in estimation of the cue. The model compari-

son yielded similar results, although with a more graded difference between models,

when looking directly at DIC scores (see Section B.3.1 in the Appendix; lower is bet-

ter).

To assess in another way the relative importance of each model component in deter-

mining the performance of a model, we measured the average contribution to DIC of

each model level within a factor across all tested models (Figure B.5 in the Appendix).

In agreement with our previous findings, the lowest DIC (better score) in decision

making is obtained by observer models containing the SPK factor. BDT increases (i.e.
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Figure 4.10: Model comparison between individual models. a: Each column repre-
sents a subject, divided by test group (all datasets include a Gaussian training ses-
sion), each row an observer model identified by a model string (see Table 4.1). Cell
colour indicates model’s evidence, here displayed as the Bayes factor against the best
model for that subject (a higher value means a worse performance of a given model
with respect to the best model). Models are sorted by their posterior likelihood for
a randomly selected subject (see panel b). Numbers above cells specify ranking for
most supported models with comparable evidence (difference less than 10 in 2 log
Bayes factor; Kass and Raftery, 1995). b: Probability that a given model generated
the data of a randomly chosen subject. Here and in panel c, brown bars represent
the most supported models (or model levels within a factor). Asterisks indicate a sig-
nificant exceedance probability, that is the posterior probability that a given model
(or model component) is more likely than any other model (or model component):
(∗∗∗)P∗ > 0.999. c: Probability that a given model level within a factor generated the
data of a randomly chosen subject.

worsens) average DIC scores substantially (difference in DIC, ∆DIC = 173± 14; mean

± SE across subjects) and PPM has devastating effects on model performance (∆DIC

= 422± 72), where 10 points of ∆DIC may already be considered a strong evidence

towards the model with lower DIC (Spiegelhalter et al., 2002). Regarding the other

factors (S, P, L), we found that in general the lack of a factor increases DIC (worse

model performance; see Section B.3.1 in the Appendix for discussion about factor S).

Overall, this analysis confirms the strong impact that an appropriate modelling of

variability has on model performance (see Section B.3.1 in the Appendix for more

details).

We performed a number of analyses on an additional set of observer models to

validate the finding that model SPK-P-L provides the best explanation for the data in

our model set.
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First, in all the observer models described so far the subjects’ parameters of the like-

lihood, σ̃low and σ̃high, were allowed to vary. Preliminary analysis had suggested that

observer models with mismatching likelihoods always outperformed models with

true likelihood parameters, σlow and σhigh. We tested whether this was the case also

with our current best model, or if we could assume instead that at least some subjects

were using the true parameters. Model SPK-P-L-true performed considerably worse

than its counterpart with mismatching likelihood parameters (P = 0.01 with P∗ ≈ 1

for the other model; ∆DIC = 178± 33), suggesting that mismatching likelihoods are

invariably necessary to explain our subjects’ data.

We then checked whether the variability of subjects’ estimates of the priors may

have arisen instead due to the discrete representation of the prior distribution in the

experiment (see Figure 4.1d). We, therefore, considered a model SPK-D-L in which

priors were not noisy, but the model component ‘D’ replaces the continuous represen-

tations of the priors with their true discrete representation (a mixture of a hundred

narrow Gaussians corresponding to the dots shown on screen). Model SPK-D-L per-

formed worse than model SPK-P-L (P = 0.01 with P∗ ≈ 1 for the other model; ∆DIC

= 145± 25) and, more interestingly, also worse than model SPK-L (P = 0.09 with

P∗ ≈ 1 for the other model; ∆DIC = 59± 15). The discrete representation of the prior

does not provide a better explanation for subjects’ behaviour.

In summary, all analyses identify as the main sources of subjects’ suboptimal be-

haviour the combined effect of both noise in estimating the shape of the ‘prior’ dis-

tributions and variability in the subsequent decision, plus some occasional lapses.

Comparison of alternative models of decision making

Our previous analyses suggest that subjects exhibit variability in decision making

that conforms to some nontrivial transformation of the posterior distribution (such

as a power function of the posterior, as expressed by model component SPK). We

perform a second factorial model comparison that focusses on details of the decision-

making process, by including additional model components that describe different

transformations of the posterior.

We consider in this analysis the following factors (the additions are underlined):

1. Decision making (4 levels): Bayesian Decision Theory (‘BDT’), stochastic poste-

rior (‘SPK’), posterior probability matching (‘PPM’), posterior sampling-average

(‘PSA’).

2. Gaussian approximation of the posterior (3 levels): no approximation, mean/variance

approximation (‘MV’) or Laplace approximation (‘LA’).

3. Lapse (2 levels): absent or present (‘L’).
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Our extended model set comprises 18 observer models since some combinations of

model factors lead to equivalent observer models. In order to limit the combinatorial

explosion of models, in this factorial analysis we do not include model factors S

and P that were previously considered, since our main focus here is on decision

making (but see below). All new model components are explained in Section 4.2.3

(‘Additional observer models for non-Gaussian priors’) and summarized in Table 4.1.

Figure 4.11 shows the results of the BMS method applied to this model set. As

before, we consider first the model evidence for each individual model and subject

(Figure 4.11a). Results are slighly different depending on the session (unimodal or

bimodal), but in both cases model SPK-L (stochastic posterior with lapse) performs

consistently better than other tested models for all conditions. Only a couple of sub-

jects are better described by a different approximation of the posterior (either PSA

or SPK-MV-L). These results are summarized in Figure 4.11b, which shows the esti-

mated probability that a given model would be responsible of generating the data of

a randomly chosen subject. We show here results for both groups; a separate analy-

sis of each group did not show qualitative differences. Model SPK-L is significantly

more represented (P = 0.64; exceedance probability P∗ > 0.99), followed by model

PSA (P = 0.10) and SPK-MV-L (P = 0.08). For all other models the probability is es-

sentially the same at P ≈ 0.01. The probability of single model factors reproduces the

pattern seen before (Figure 4.11c). The majority of subjects (more than 75% in each

case) are likely to use a stochastic decision making (SPK), to use the full posterior (no

Gaussian approximations), and lapse (L).

The model comparison performed on group DIC scores (GDIC) obtained mostly

similar results although with a more substantial difference between the unimodal

group and the bimodal group (Figure B.4 in the Appendix). In particular, group DIC

scores fail to find significant differences between distinct types of approximation of

the posterior in the unimodal case. The reason is that for several subjects in the

unimodal group differences between models are marginal, and GDIC does not have

enough information to disambiguate between these models. Nonetheless, results in

the bimodal case are non-ambigous, and overall the SPK-L model emerges again as

the best description of subjects’ behaviour (see Section B.3.1 in the Appendix for

details).

As mentioned before, in order to limit model complexity we did not include model

factors S and P in the current analysis. We can arguably ignore sensory noise in cue es-

timation, S, since it was already proven to have marginal effect on subjects’ behaviour,

but this is not the case for noisy estimation of the prior, P. We need, therefore, to verify

that our main results about decision making in the case of non-Gaussian posteriors

were not affected by the lack of this factor. We compared the four most represented
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Figure 4.11: Comparison between alternative models of decision making. We tested
a class of alternative models of decision making which differ with respect to predic-
tions for non-Gaussian trials only. a: Each column represents a subject, divided by
group (either unimodal or bimodal test session), each row an observer model iden-
tified by a model string (see Table 4.1). Cell colour indicates model’s evidence, here
displayed as the Bayes factor against the best model for that subject (a higher value
means a worse performance of a given model with respect to the best model). Mod-
els are sorted by their posterior likelihood for a randomly selected subject (see panel
b). Numbers above cells specify ranking for most supported models with compara-
ble evidence (difference less than 10 in 2 log Bayes factor; Kass and Raftery, 1995).
b: Probability that a given model generated the data of a randomly chosen subject.
Here and in panel c, brown bars represent the most supported models (or model lev-
els within a factor). Asterisks indicate a significant exceedance probability, that is the
posterior probability that a given model (or model component) is more likely than
any other model (or model component): (∗∗)P∗ > 0.99, (∗∗∗)P∗ > 0.999. c: Probability
that a given model level within a factor generated the data of a randomly chosen
subject. Label ‘¬GA’ stands for no Gaussian approximation (full posterior).

models of the current analysis (Figure 4.11b) augmented with the P factor: SPK-P-L,

PSA-P, SPK-MV-P-L and PSA-P-L. Model SPK-P-L was still the most representative

model (P = 0.80, exceedance probability P∗ > 0.99), showing that model factor P

does not affect our conclusions on alternative models of decision making. We also

found that model SPK-P-L obtained more evidence than any other model tested in

this section (P = 0.72, exceedance probability P∗ > 0.99), in agreement with the

finding of our first factorial model comparison.

Finally, even though the majority of subjects’ datasets is better described by the

narrow loss function of the task, a few of them support also observer models that

subtend a quadratic loss. To explore this diversity, we examined an extended BDT

model in which the loss width σ` is a free parameter (see ‘Observer model with free
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loss width’ in Section B.2.3 of the Appendix). This model performed slightly better

than a BDT model with fixed σ`, but no better than the equivalent SPK model, so our

findings are not affected.

In summary, subjects’ variability in our task is compatible with them manipulating

the full shape of the posterior corrupted by noise (SPK), and applying a close approx-

imation of the loss function of the task. Our analysis marks as unlikely alternative

models of decision making that use instead a quadratic loss or different low-order

approximations of the posterior.

Analysis of best observer model

After establishing model SPK-P-L as the ‘best’ description of the data among the

considered observer models, we examined its properties. First of all, we inspected

the posterior distribution of the model parameters given the data for each subject.

In almost all cases the marginalized posterior distributions were unimodal with a

well-defined peak. We therefore summarized each posterior distribution with a point

estimate (a robust mean) with minor loss of generality; group averages are listed

in Table 4.4. For the analyses in this section we ignored outlier parameter values

that fell more than 3 SDs away from the group mean (this rule excluded at most

one value per parameter). In general, we found a reasonable statistical agreement

between parameters of different sessions, with some discrepancies in the unimodal

test session only. In this section, inferred values are reported as mean ± SD across

subjects.

The motor noise parameter σmotor took typical values of (4.8 ± 2.0) · 10−3 screen

units (∼ 1.4 mm), somewhat larger on average than the values found in the sensori-

motor estimation experiment, although still in a reasonable range (see Section 4.3.2).

The inferred amount of motor noise is lower than estimates from previous studies in

reaching and pointing (e. g., Tassinari et al., 2006), but in our task subjects had the

possibility to adjust their end-point position.

The internal estimates of cue variability for low-noise and high-noise cues (σ̃low

and σ̃high) were broadly scattered around the true values (σlow = 0.06 and σhigh = 0.14

screen units). In general, individual values were in qualitative agreement with the

true parameters but showed quantitative discrepancies. Differences were manifest

also at the group level, as we found statistically significant disagreement for both low

and high-noise cues in the unimodal test session (t-test, t(7) > 3.73, p < 0.01) and

high-noise cues in the bimodal test session (t-test, t(7) = 2.51, p < 0.05). The ratio

between the two likelihood parameters, σ̃high/σ̃low = 2.00± 0.54, differed significantly

from the true ratio, σhigh/σlow = 2.33 (t-test t(22) = 3.01, p < 0.01).
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A few subjects (n = 5) were very precise in their decision-making process, with a

power function exponent κ > 20. For the majority of subjects, however, κ took values

between 1.8 and 14 (median 6.4), corresponding approximately to an amount of deci-

sion noise of ∼ 7–55% of the variance of the posterior distribution (median ∼ 15%).

The range of exponents is compatible with values of κ (∼ number of samples) pre-

viously reported in other experiments, such as a distance-estimation task (Battaglia

et al., 2011) or ‘intuitive physics’ judgments (Battaglia et al., 2013). In agreement with

the results of our previous model comparison, the inferred exponents suggest that

subjects’ stochastic decision making followed the shape of a considerably narrower

version of the posterior distribution (κ � 1) which is not simply a form of posterior-

matching (κ = 1).

The Weber’s fraction of estimation of the parameters of the priors’ density took

typical values of ηprior = 0.48 ± 0.19, with similar means across conditions. These

values denote quite a large amount of noise in estimating (or manipulating) prop-

erties of the priors. Nonetheless, such values are in qualitative agreeement with a

density/numerosity estimation experiment in which a change of ∼ 40% in density or

numerosity of a field of random dots was necessary for subjects to note a difference

in either property (Dakin et al., 2011). Although the two tasks are too different to al-

low a direct quantitative comparison, the thresholds measured by Dakin et al. (2011)

suggest that density/numerosity estimation can indeed be as noisy as we found.

Finally, even though we did not set an informative prior over the parameter, the

lapse rate took reasonably low values as expected from a probability of occasional

mistakes (Wichmann and Hill, 2001; Kuss et al., 2005). We found λ = 0.03± 0.03, and

the inferred lapse rate averaged over training and test session was less than 0.06 for

all but one subject.

We examined the best observer model’s capability to reproduce our subjects’ per-

formance. For each subject and group, we generated 1000 datasets simulating the

responses of the SPK-P-L observer model to the experimental trials experienced by

the subject. For each simulated dataset, model parameters were sampled from the

posterior distribution of the parameters given the data. For each condition (shape of

prior and cue type) we then computed the optimality index and averaged it across

simulated datasets. The model’s ‘postdictions’ are plotted in Figure 4.12 as contin-

uous lines (SE are omitted for clarity) and appear to be in good agreement with

the data. Note that the postdiction is not exactly a fit since (a) the parameters are

not optimized specifically to minimize performance error, and (b) the whole poste-

rior distribution of the parameters is used and not just a ‘best’ point estimate. As

a comparison, we also plotted in Figure 4.12 the postdiction for the best BDT ob-
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server model, BDT-P-L (dashed line). As the model comparison suggested, standard

Bayesian Decision Theory fails to capture subjects’ performance.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

O
p

ti
m

a
lit

y
 i
n

d
e

x

Gaussian training (n = 24)

Low−noise cue High−noise cue

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

Gaussian test (n = 8)

Low−noise cue High−noise cue

6 1 3 2 5 7 8 4 6 1 3 2 5 7 8 4
0.7

0.8

0.9

1

Prior distribution

O
p

ti
m

a
lit

y
 i
n

d
e

x

Unimodal test (n = 8)

Low−noise cue High−noise cue

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0.7

0.8

0.9

1

Prior distribution

Bimodal test (n = 8)

Low−noise cue High−noise cue

 

 

Best stochastic model (SPK−P−L) Best BDT model (BDT−P−L)

Figure 4.12: Model ‘postdiction’ of the optimality index. Each bar represents the
group-averaged optimality index for a specific session, for each prior (indexed from
1 to 8, see also Figure 4.2) and cue type, either low-noise cues (red bars) or high-noise
cues (blue bars); see also Figure 4.7. Error bars are SE across subjects. The continu-
ous line represents the ‘postdiction’ of the best suboptimal Bayesian observer model,
model SPK-P-L; see ‘Analysis of best observer model’ in the text). For comparison,
the dashed line is the ‘postdiction’ of the best suboptimal observer model that follows
Bayesian Decision Theory, BDT-P-L.

For each subject and group (training and test) we also plot the mean optimality

index of the simulated sessions against the optimality index computed from the data,

finding a good correlation (R2 = 0.98; see Figure 4.13).

Lastly, to gain an insight on subjects’ systematic response biases, we used our

framework in order to non-parametrically reconstruct what the subjects’ priors in

the various conditions would look like (see Section 2.3.4). Due to limited data per

condition and computational constraints, we recovered the subjects’ priors at the

group level and for model SPK-L, without additional noise on the priors (P). The

reconstructed average priors for distinct test sessions are shown in Figure 4.14. Re-

constructed priors display a very good match with the true priors for the Gaussian

session and show minor deviations in the other sessions. The ability of the model to
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Figure 4.13: Comparison of measured and simulated performance. Comparison of
the mean optimality index computed from the data and the simulated optimality in-
dex, according to the ‘postdiction’ of the best observer model (SPK-P-L). Each dot rep-
resents a single session for each subject (either training or test). The dashed line corre-
sponds to equality between observed and simulated performance. Model-simulated
performance is in good agreement with subjects’ performance (R2 = 0.98).

reconstruct the priors – modulo residual idiosyncrasies – is indicative of the goodness

of the observer model in capturing subjects’ sources of suboptimality.

4.4 discussion

We have explored human performance in probabilistic inference (a target estimation

task) for different classes of prior distributions and different levels of reliability of the

cues. Crucially, in our setup subjects were required to perform Bayesian computations

with explicitly provided probabilistic information, thereby removing the need either

for statistical learning or for memory and recall of a prior distribution. We found that

subjects performed suboptimally in our paradigm but that their relative degree of

suboptimality was similar across different priors and levels of cue noise. Based on a

generative model of the task we built a set of suboptimal Bayesian observer models.

Different methods of model comparison among this large class of models converged

in identifying a most likely observer model that deviates from the optimal Bayesian

observer in the following points: (a) a mismatching representation of the likelihood

parameters, (b) a noisy estimation of the parameters of the prior, (c) a few occasional
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Figure 4.14: Reconstructed prior distributions. Each panel shows the (unnormalized)
probability density for a ‘prior’ distribution of targets, grouped by test session, as per
Figure 4.2. Purple lines are mean reconstructed priors (mean ±1 SD) according to
observer model SPK-L, smoothed with a small Gaussian kernel for visualization pur-
poses. a: Gaussian session. Recovered priors in the Gaussian test session are very
good approximations of the true priors (comparison between SD of the reconstructed
priors and true SD: R2 = 0.94). b: Unimodal session. Recovered priors in the uni-
modal test session approximate the true priors (recovered SD: 0.105 ± 0.007, true
SD: 0.11 screen units) although with systematic deviations in higher-order moments
(comparison between moments of the reconstructed priors and true moments: skew-
ness R2 = 0.47; kurtosis R2 < 0). Reconstructed priors are systematically less kurtotic
(less peaked, lighter-tailed) than the true priors. c: Bimodal session. Recovered priors
in the bimodal test session approximate the true priors with only minor systematic
deviations (recovered SD: 0.106± 0.004, true SD: 0.11 screen units; coefficient of deter-
mination between moments of the reconstructed priors and true moments: skewness
R2 = 0.99; kurtosis R2 = 0.80).

lapses, and (d) a stochastic representation of the posterior, such that the target choice

distribution is approximated by a power function of the posterior.

4.4.1 Human performance in probabilistic inference

Subjects integrated probabilistic information from both the prior and the cue in our

task, but rarely exhibited the signature of full ‘synergistic integration’, i.e. a perfor-

mance above that which could be obtained by using either the prior or the cue alone

(see Figure 4.7). However, unlike most studies of Bayesian learning, on each trial in
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our study subjects were presented with a new prior. Instances of suboptimality have

been highlighted in several previous studies (see Chapter 2). In particular, previous

work on movement planning with probabilistic information (but fewer conditions)

had similarly found that subjects violated conditions of optimality (Hudson et al.,

2007).

More interestingly, in our data the relative degree of suboptimality did not show

significant differences across distinct classes of priors and noise levels of the cue (low-

noise and high-noise). Due to the logic of null hypothesis testing, this does not mean

that performance was truly identical across conditions – nor we are stating that, as we

did observe some minor differences – but the data suggest that the effect of varying

the experimental condition was not substantial. This finding suggests that human

efficiency in probabilistic inference is only mildly affected by the complexity of the

prior per se, at least for the distributions we have used. Conversely, the process of

learning priors is considerably affected by the class of the distribution: for instance,

learning a bimodal prior (when it is learnt at all) can require thousands of trials

(Körding and Wolpert, 2004a), whereas the mean and variance of a single Gaussian

can be acquired reliably within a few hundred trials (Berniker et al., 2010).

Within the same session, subjects’ relative performance was influenced by the spe-

cific shape of the prior. In particular, for Gaussian priors we found a systematic effect

of the variance; subjects performed worse with wider priors, more than what would

be expected by taking into account the objective decrease in available information.

Interestingly, neither noise in estimation of the prior width (factor P) nor occasional

lapses that follow the shape of the prior itself (factor L) are sufficient to explain this

effect. Model postdictions of model BDT-P-L show large systematic deviations from

subjects’ performance in the Gaussian sessions, whereas the best model with deci-

sion noise, SPK-P-L, is able to capture subjects’ behaviour; see top left and top right

panels in Figure 4.12. Moreover, the Gaussian priors recovered under model SPK-L

match extremely well the true priors, furthering the role of the stochastic posterior in

fully explaining subjects’ performance with Gaussians. The crucial aspect of model

SPK may be that decision noise is proportional to the width of the posterior, and not

merely of the prior.

In the unimodal test session, subjects’ performance was positively correlated with

the width of the main peak of the distribution. That is, non-Gaussian, narrow-peaked

priors (such as priors 1 and 6 in Figure 4.14b) induced worse performance than broad

and smooth distributions (e.g. priors 4 and 8). Subjects tended to ‘mistrust’ the prior,

especially in the high-noise condition, giving excess weight to the cue (σ̃high is signif-

icantly lower than it should be; see Table 4.4). This behaviour can be also interpreted

as an overestimation of the width of the prior. In fact, the reconstructed priors in Fig-
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ure 4.14b show a general tendency to overestimate the width of the narrower peaks,

as we found in the previous chapter (see ‘Exp. 4: High-Peaked distribution’ in Sec-

tion 3.3.4). This behaviour is locally compatible with a well-known human tendency

of underestimating (or, alternatively, underweighting) the probability of occurrence

of highly probable results and overestimating (overweighting) the frequency of rare

events (see Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; Zhang and

Maloney, 2012); see Section 6.1.2 for further discussion. Similar biases in estimat-

ing and manipulating prior distributions may be explained with a hyperprior that

favours more entropic and, therefore, smoother priors in order to avoid ‘overfitting’

to the environment (Feldman, 2013).

4.4.2 Modelling suboptimality

In building our observer models we made several assumptions. For all models we

assumed that the prior adopted by observers in Eq. 4.5 corresponded to a contin-

uous approximation of the probability density function displayed on screen, or a

noisy estimate thereof. We verified that using the original discrete representation

does not improve model performance. Clearly, subjects may have been affected by

the discretization of the prior in other ways, but we assumed that such errors could

be absorbed by other model components. We also assumed that subjects quickly ac-

quired a correct internal model of the probabilistic structure of the task, through

practice and feedback, although quantitative details (i.e. model parameters) could be

mismatched with respect to the true parameters. Formally, our observer models were

not ‘actor’ models in the sense that they did not take into account the motor error

in the computation of the expected loss (see Section 2.1.2). However, this was with

negligible loss of generality since the motor term has no influence on the inference

of the optimal target for single Gaussians priors, and yields empirically negligible

impact for other priors for small values of the motor error σmotor (as those measured

in our task; see Section 4.3.2).

Suboptimality was introduced into our observer models in three main ways: (a)

miscalibration of the parameters of the likelihood; (b) models of approximate infer-

ence; and (c) additional stochasticity, either on the sensory inputs or in the decision-

making process itself. Motor noise was another source of suboptimality, but its con-

tribution was comparably low.

Miscalibration of the parameters of the likelihood means that the subjective esti-

mates of the reliability of the cues (σ̃low and σ̃high) could differ from the true values

(σlow and σhigh). In fact, we found slight to moderate discrepancies, which became

substantial in some conditions. Previous studies have investigated whether subjects
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have (or develop) a correct internal estimate of relevant noise parameters (i.e. the like-

lihood) such as their own sensory or motor variability, plus possibly some externally

injected noise. In several cases, subjects were found to have a miscalibrated model

of their own variability, which led to suboptimal behaviour (e. g., Mamassian, 2008;

Zhang et al., 2010; Battaglia et al., 2011; Zhang et al., 2013a), although there are cases

in which subjects were able to develop correct estimates of such parameters (e. g.,

Trommershäuser et al., 2005; Tassinari et al., 2006; Gepshtein et al., 2007); see Chapter

2 for more examples.

More generally, it could be that subjects were not only using incorrect parameters

for the task, but built a wrong internal model or were employing approximations in

the inference process. For our task, which has a relatively simple one-dimensional

structure, we did not find evidence that subjects were using low-order approxima-

tions of the posterior distribution. Also, the capability of our models to recover the

subjects’ priors in good agreement with the true priors suggest that subjects’ internal

model of the task was not too discrepant from the true one.

A crucial element in all our models was the inclusion of extra sources of variability,

in particular in decision making. Whereas most forms of added noise have a clear

interpretation, such as sensory noise in the estimation of the cue location, or in es-

timating the parameters of the prior, the so-called ‘stochastic posterior’ deserves an

extended explanation.

4.4.3 Understanding the stochastic posterior

We introduced the stochastic posterior model of decision making, SPK, with two in-

tuitive interpretations, that is a noisy posterior or a sample-based approximation (see

Figure 4.3 and Section B.1 in the Appendix), but clearly any process that produces

a variability in the target choice distribution that approximates a power function of

the posterior is a candidate explanation. The stochastic posterior captures the main

trait of decision noise, that is a variability that depends on the shape of the posterior

(Battaglia et al., 2011), as opposed to other forms of noise that do not depend on the

decision process. Outstanding open questions are, therefore, which kind of process

could be behind the observed noise in decision making, and during which stage it

arises, e.g. whether it is due to inference or to action selection (Drugowitsch et al.,

2014b).

A seemingly promising candidate for the source of noise in the inference is neu-

ronal variability in the nervous system (Faisal et al., 2008). Although the noisy rep-

resentation of the posterior distribution in Figure 4.3b through a population of units

may be simplistic, the posterior could be encoded in subtler ways (see for instance
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Ma et al., 2006). However, neuronal noise itself may not be enough to explain the

amount of observed variability (see Section B.1 in the Appendix). An extension of

this hypothesis is that the noise emerges because suboptimal computations magnify

the underlying variability (Beck et al., 2012).

Conversely, another scenario is represented by the sampling hypothesis, an approxi- sampling hypothesis

mate algorithm for probabilistic inference which could be implemented at the neural

level (Fiser et al., 2010). Our analysis ruled out an observer whose decision-making

process consists in taking the average of κ samples from the posterior – operation that

implicitly assumes a quadratic loss function – showing that averaging samples from

the posterior is not a generally valid approach (although differences can be small for

unimodal distributions). More generally, the sampling method should always take

into account the loss function of the task, which in our case is closer to a delta func-

tion (a MAP solution) rather than to a quadratic loss. Our results are compatible with

a proper sampling approach, whereby an empirical distribution is built out of a small

number of samples from the posterior, and the expected loss is computed on the base

of the sampled distribution (Fiser et al., 2010). A recent study has shown that sam-

pling in bistable perception obeys the multiplicative rule of probability, consistent

with the idea of sampling from the posterior and also from the posterior raised to a

power (Moreno-Bote et al., 2011).

As a cognitive, non-mutually exclusive explanation, decision variability may have

arisen because subjects adopted a probabilistic instead of deterministic strategy in

action selection as a form of exploratory behaviour. In reinforcement learning this is

analogous to the implementation of a probabilistic policy as opposed to a determin-

istic policy, with a ‘temperature’ parameter that governs the amount of variability

(Sutton and Barto, 1998). Search strategies have been hypothesized to lie behind sub-

optimal behaviours that appear random, such as probability matching (Gaissmaier

and Schooler, 2008). While generic exploratory behaviour is compatible with our find-

ings, our analysis rejected a simple posterior-matching strategy (see Section 2.4.5).

All of these interpretations assume that there is some noise in the decision process

itself. However, the noise could emerge from other sources, without the necessity of

introducing deviations from standard BDT. For instance, variability in the experiment

could arise from lack of stationarity: dependencies between trials, fluctuations of

subjects’ parameters, and time-varying strategies would appear as additional noise

in a stationary model (Green et al., 2010; Raviv et al., 2012).

In summary, we showed that a decision strategy that implements a ‘stochastic

posterior’ that introduces variability in the computation of the expected loss has

several theoretical and empirical advantages when modelling subjects’ performance,

demonstrating improvement over previous models that implemented variability only
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through a ‘posterior-matching’ approach or that implicitly assume a quadratic loss

function (sampling-average methods).
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5
E F F E C T S O F U N C E RTA I N T Y O N E R R O R C O R R E C T I O N

“Hic manebimus optime

(Here we’ll stay excellently).”

— Marcus Furius Camillus,

in Livy, Ab Urbe Condita Libri, V, 55

In this chapter, prompted by our previous findings, we examine how decision un-

certainty alters the sensorimotor system control strategy for error correction, and

whether this influence, possibly related to the cost of moving or replanning our ac-

tions, may constitute a relevant source of suboptimality. The results presented herein

belong to a manuscript in preparation.

5.1 target uncertainty modulates error correction

Among several results, in Chapter 4 we have reported two apparently unrelated phe-

nomena. The first finding is that observers’ response variability was directly linked

to the shape of the posterior distribution, which we interpreted as a stochastic form

of decision making (such as a noisy representation of the posterior; see Section B.1 in

the Appendix). A second, minor observation is that we noted a small but statistically

significant average rightward bias in the responses during the training session (see

‘Mean rightward bias’ in Section 4.3.1). Systematic biases in sensorimotor tasks are

often found and may arise due to asymmetries in the experimental layout (see e. g.,

Trommershäuser et al., 2003a; de Xivry, 2013). A curious aspect of our data, however,

is that the bias was proportional to the width of the posterior distribution (Figure

4.6b). Assuming that there was some (possibly external) source of asymmetry, such

as the kinematics of the arm and robotic manipulandum, it seems that subjects’ capa-

bility or willingness to correct for the induced error reduced with increasing posterior

uncertainty. This observation led us to ask whether part of the measured variability

in sensorimotor decision making could arise due to a lack of correction of natural

movement errors in the presence of target uncertainty.

A large body of work has investigated how subjects react to subliminal pertur-

bation of visual feedback of hand position during movement in fast reaching tasks

(Saunders and Knill, 2003, 2004). In general, it is clear that task-irrelevant deviations

should be left uncorrected to maximize performance, according to the minimal inter-minimal intervention

principle
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vention principle (Todorov and Jordan, 2002; Todorov, 2004). Indeed, Knill et al. (2011)

found that subjects unconsciously adapted their corrective strategies depending on

the shape of the target on a trial-to-trial basis, in agreement with previous studies

that provided evidence that the central nervous system adapts its online control law

to varying task demands (e. g., Liu and Todorov, 2007). Many experiments have also

observed that human observers undershoot the target in the first movement (or under-

compensate for perturbations), a phenomenon that has been explained via stochastic

optimal control (Engelbrecht et al., 2003; Liu and Todorov, 2007). Namely, subjects un-

dershoot as a trade-off between accuracy and precision, since the signal-dependent

property of motor noise implies that longer reaches are more variable (Harris and

Wolpert, 1998). Also, subjects may undershoot so as to minimize effort, an element effort

of the subjective loss function that might play a major role in motor control (Lyons

et al., 2006; O’Sullivan et al., 2009). These studies used extended targets with a well-

defined shape and position, but according to stochastic optimal control we should

expect similar results with point-like targets with uncertain position. For example,

Izawa and Shadmehr (2008) showed evidence of continuous Bayesian integration of

uncertain target information in a reaching task with a target that jumped to a new

position and/or changed its reliability. Recent work on the interaction between uncer-

tainty and motor control has also found that human sensorimotor behaviour exhibits

risk-sensitivity, that is sensitivity to the uncertainty in the reward (Nagengast et al.,

2010; Braun et al., 2011), which may stem from target variability (Grau-Moya et al.,

2012). Finally, note that all these predictions were formulated for fast directed move-

ment (duration under 1 second); we could expect subjects to behave differently when

allowed full time to correct for their errors. Instead, a recent study found that it is not

necessarily the case: human observers did not fully correct for their own endpoint

errors in both fast and slow pointing reaches, even if they showed awareness of their

mistakes (van Dam and Ernst, 2013; see also Discussion, Section 5.4).

Together, these studies suggest that target uncertainty may affect error correction

in sensorimotor estimation in a nontrivial way, in addition to considerations of task-

dependent costs (Trommershäuser et al., 2003a). It is unclear the impact that such

additional biases would have on task performance, especially in conditions of in-

creased estimation uncertainty, as reflected by the shape of the posterior distribution.

In particular, we wonder whether lack of error correction could be an important fac-

tor behind observed suboptimality in sensorimotor estimation tasks in the presence

of complex distributions.
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5.1.1 Summary

In this chapter we report results from a psychophysical experiment that assesses the

effects of estimation uncertainty on error correction. Unbeknownst to participants, we

randomly shifted visual feedback of their finger position during reaching in a centre

of mass estimation task. In each trial, the perturbation (shift of visual feedback) wasperturbation

applied behind a large occluder and was zero, small (about ±0.5 cm), or large (about

±1.5 cm). Also, in each trial, the centre of mass (i. e., target) position was drawn from

a trimodal distribution, intermixing trials with low and high uncertainty about target

location.

We reasoned that if subjects estimated the centre of mass position and then simply

reported this with a reach, then we would expect that they should correct for the en-

tire perturbation to be as accurate as possible – or at least they should correct just as

much for the high and low uncertainty conditions. However, if subjects represented

their uncertainty in the centre of mass location as reflected in their posterior distribu-

tion they may be less willing to correct in the high-uncertainty condition as the cost

of correction (e. g., energy, movement time, computational) may outweigh the poten-

tial increases in accuracy that can be achieved through correction; if so, we could

quantify the trade-off of effort and accuracy by examining the amount of correction

as a function of uncertainty.

Even though participants were given enough time to compensate for the perturba-

tion, they almost fully corrected for the induced error on trials with low uncertainty

about target location and corrected only partially in conditions with more uncertainty.

Surprisingly, correction gains were tuned so that overall task performance was not

significantly affected. We show that the observed lack of correction can be explained

by considering an additional cost of adjusting one’s response in conditions of un-

certainty. Our findings suggest that subjects’ decision uncertainty, as reflected in the

width of the posterior, is a factor in determining how their sensorimotor system re-

sponds to errors, but at the same time uncertainty-modulated error correction does

not represent a significant source of suboptimality. These results support theoretical

models which fully integrate the decision making and control processes.
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5.2 methods

5.2.1 Experimental procedures

Participants

Sixteen naïve subjects (8 male and 8 female; age range 19–27 years) participated in the

study. All participants were right-handed (Oldfield, 1971), with normal or corrected-

to-normal vision and reported no neurological disorder. Participants were compen-

sated for their time. The Cambridge Psychology Research Ethics Committee approved

the experimental procedures and all subjects gave informed consent.

Behavioural task

Subjects performed a centre of mass estimation task. We used an OptoTrak 3020

(Northern Digital Inc, Ontario, Canada) to track the tip of a subject’s right index

finger at 500 Hz. The visual image from a LCD monitor (Apple Cinema HD, 64 cm ×
40 cm, 60 Hz refresh rate) was projected into the plane of the hand via a mirror that

prevented the subjects from seeing their arm. The workspace origin, coordinates (0, 0),

was ∼ 20 cm in front of the subject’s torso in the mid-saggital plane, with positive

axes towards the right (‘horizontal’ x axis) and away from the subject (‘vertical’ y

axis). The workspace showed a home position (1.5 cm radius circle) at the origin and

a cursor (0.25 cm radius circle) could be displayed that tracked the finger position.

On each trial a virtual object consisting of two filled circles (disks) and a thin

horizontal line (target line) connecting the centres of the two disks (Friedenberg and target line

Liby, 2002) was displayed on the screen (Figure 5.1a). The centres of the disks were

` = 24 cm apart (length of the target line) and at vertical position y = 20 cm. In each

trial, the object was horizontally displaced with a uniformly random jitter ∼ [−3, 3]

cm from the centre of the screen. The radius of one of the disks was drawn from a

log-normal distribution with mean log 1 cm and SD 0.1 in log space. The radius of

the other disk was chosen so that on 1/3 of the trials the disks were of equal size,

making the task equivalent to a simple line bisection, and on 2/3 of the trials the

ratio of the disk radii was drawn from a log-normal distribution with mean log 1.5

and SD 0.1 in log space, leading to a trimodal distribution of centre of mass locations

(Figure 5.1b). The position (left or right) of the larger disk in unequal-size trials was

chosen randomly and counterbalanced across experimental blocks. We expected that

the uncertainty in the centre of mass location would be low for the equal-disk trials

(‘Low-uncertainty’), when the task was equivalent to line bisection, but would be

high for the unequal-disk trials (‘High-uncertainty’) due to both the spread of the
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experimental distribution and the nonlinear mapping between the disks’ ratio and

centre of mass, see below.

Figure 5.1: Experimental setup. a: Screen setup at the start of a trial. The screen
showed a home position (grey circle), the cursor (red circle) and the object (green).
The task consisted of locating the centre of mass of the object, here indicated by the
small dashed line. The cursor disappeared in the region between the home position
and the target line (here shaded for visualization purposes). b: Centre of mass dis-
tribution. The two disks were separated by 24 cm and, depending on the disks size
ratio, the target (centre of mass) was either exactly halfway between the two disks
(p = 1/3) or to the right (p = 1/3) or left (p = 1/3) of the midpoint.

After a ‘go’ tone, participants were required to reach from the home position to the

centre of mass of the disks (the target) on the target line, thereby balancing the objecttarget

on their finger. The horizontal location of the centre of mass s of two d-dimensional

spheres with radii r1 and r2 is given by:

s =
`

2
·
(

rd
2 − rd

1

rd
1 + rd

2

)
, (5.1)

with respect to the midpoint of the target line. In our case, d = 2 and subjects were

explicitly told in the instructions that the circles were to be interpreted as disks in the

estimation.

Importantly, during the reaching movement visual feedback of the cursor was ex-

tinguished in the region y ∈ [2, 19] cm (shaded area in Figure 5.1a). Subjects were

given 1.5 s to arrive in the proximity of the target line (y > 19.5 cm). After reaching

the target line, subjects were allowed 3 seconds to adjust their endpoint position to

correct for any errors that might have arisen during the movement when the cursor

was hidden. The remaining time for adjustment was indicated by a pie-chart anima-

tion of the cursor, which gradually turned from red to yellow. The cursor’s horizontal

position at the end of the adjustment phase constituted the subject’s response for that

trial. If participants were still moving at the end of the adjustment phase (velocity

of the finger greater than 0.5 cm/s), the trial was terminated with an error message.

Such missed trials were presented again later during the session.
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Experimental sessions

Participants performed a preliminary training session (120 trials) in which they re-

ceived performance feedback at the end of each trial. That is both the correct location

of the centre of mass was displayed on screen together with an integer score that

depended on the (horizontal) distance from the centre of mass, ∆s, according to a

squared exponential formula:

Score(∆s) = Round

(
10 · exp

{
− ∆s2

2σ2
Score

})
, (5.2)

where σScore is the score length scale and Round(z) denotes the value of z rounded

to the nearest integer. We chose the numerical constants in Eq. 5.2 (σScore ≈ 0.41 cm)

such that the score had a maximum of 10 and was nonzero up to 1 cm away from

the centre of mass. If the score was zero an animation showed the object falling in

the appropriate direction. A new trial started 500 ms after the subject had returned

to the home position.

Subjects then performed a test session (576 trials) which included standard trials

(192 trials) identical to the training session, and ‘perturbation’ trials in which, unbe-

knownst to the subjects, the visual feedback of the cursor was displaced horizontally

from the finger when the cursor reappeared at the end of the movement (y > 19 cm),

near the target line. Cursor displacement could either be small (drawn from a Gaus-

sian distribution with mean ±0.5 cm and SD 0.2 cm; 192 trials), or large (mean ±1.5

cm and SD 0.2 cm; 192 trials). To avoid overlap between distinct perturbation levels,

the Gaussian distributions were truncated at 2.5 SDs (0.5 cm away from the mean).

All trials were presented in a pseudorandom order and left and right perturbations

were counterbalanced within the session. To keep subjects motivated throughout the

test session without giving away crucial information, participants received trial-to-

trial performance feedback on unperturbed trials only (Körding and Wolpert, 2004a)

and a summary screen communicated their block score, including all trials, every 36

trials (Whiteley and Sahani, 2008). All participants answered a debriefing question-

naire at the end of the session, the results of which showed that they were unaware

of the perturbations or of any other difference between trials with feedback and trials

without feedback.

5.2.2 Data analysis

For all analyses the criterion for statistical significance was p < 0.05. Unless specified

otherwise, summary statistics are reported in the text as mean ± SE between subjects.
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Trial response data

For each trial, we recorded the horizontal movement end position r of the visual

cursor, the perturbation (difference between position of the visual cursor and position

of the finger, which was 0 for unperturbed trials) and the horizontal position s of the

centre of mass of the current stimulus. We also recorded the effective adjustment time

(time before the subject stopped moving during the adjustment phase). We computed

the response error ∆s as the signed difference between movement end position of the

visual cursor and position of the centre of mass of the current stimulus.

Variation of response bias and SD of the error

We analyzed how the bias (mean error) and SD of the error depended on the class of

stimuli presented and on the perturbation level. Presented stimuli belonged to two

classes: Low-uncertainty (centre of mass in the midpoint) and High-uncertainty, with

centre of mass either to the Left or to the Right of the midpoint. First, we verified that

we could pool Left and Right stimuli with High uncertainty. Limiting our analysis to

High-uncertainty trials only, we examined how the bias and SD of the error varied

with factors of side (Left, Right) and perturbation mean level (−1.5, −0.5, 0, 0.5, 1.5).

Finding no significant effect of side nor interaction between side and perturbation,

we pooled High-uncertainty trials from Left and Right. In the subsequent analysis,

as reported in the paper, we examined how the mean bias and standard deviation

of the responses varied with factors of trial uncertainty (Low, High) and perturba-

tion mean level (−1.5, −0.5, 0, 0.5, 1.5). Statistical differences between conditions in

these analyses were assessed using repeated-measures ANOVA (rm-ANOVA) with

Greenhouse-Geisser correction of the degrees of freedom in order to account for devi-

ations from sphericity (Greenhouse and Geisser, 1959). A logarithmic transformation

was applied to the SDs before performing rm-ANOVA, in order to improve normality

of the data (results were qualitatively similar for non-transformed data).

Slope of the mean bias

For each subject, we performed linear regression of the bias as a function of perturba-

tion size (a continuous variable from −2 to 2 cm) for the Low and High uncertainty

conditions. The slope of the regression fit is a measure of the fraction of the applied

perturbation that was not corrected for. In the graphs, we remove the bias for the

0 perturbation condition from each subject’s data to allow for a direct comparison

between subjects; this has no effect on the estimation of the slope. The difference in

slope between conditions was assessed with a paired Student’s t-test on the individ-

ual slope coefficients.
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5.2.3 Observer model

We built a standard Bayesian observer model to investigate whether our subjects’ cor-

rection biases could be explained as probabilistic inference (see Chapter 2.1). In order

to account for the biases (lack of correction) in the perturbation condition, we intro-

duced a modification to the structure of the loss function that takes into account effort.

As described below, subjects’ datasets were fit individually and model fits were aver-

aged to obtain the group prediction. To limit model complexity and avoid overfitting,

some model parameters were either estimated from the individual training datasets

or fixed to theoretically motivated values.

Perception stage

In our model, we assume that the observer estimates the log ratio of the radii of the

two disks, whose true value is ρ = log(r2/r1), where ri with i = 1, 2 is the radius of

the i-th disk. Log coordinates are convenient as they naturally embed Weber’s law

and allow for a simple representation of (powers of) ratios (see Section 2.2.1). For

instance, the log ratio of the areas of the disks can be easily expressed as log(r2
2/r2

1) =

2ρ.

In the estimation process, the true ratio is corrupted by normally distributed noise

with magnitude σρ in log space, which yields a noisy measurement ρm. The parameter

σρ represents both log-normally distributed sensory noise in estimating the radii of

the disks and additional independent sources of error in computing the ratio. The

conditional measurement probability takes the form:

pmeas(ρm|ρ) = N
(

ρm

∣∣∣ρ, σ2
ρ

)
, (5.3)

and we assume equivalence between the internal representation of sensory noise and

its objective counterpart (qmeas ≡ pmeas, see Section 2.2.2). The experimental distri-

bution of log ratios is a mixture of three components: two Gaussians centered at

± log 1.5 ≈ ±0.405 with SD 0.1 and a delta function at ρ = 0 (Figure 5.1b). For

simplicity, we assume the observer’s prior, qprior(s), corresponds to the experimental

distribution:

qprior(ρ) =
1
3

3

∑
i=1
N
(

ρ

∣∣∣∣µ(i)
prior, σ

(i)
prior

2
)

, (5.4)

with µprior = (− log 1.5, 0, log 1.5) and σprior = (0.1, 0, 0.1), using the formal definition

N (x |µ, 0 ) ≡ δ(x− µ).
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Combining Eqs. 5.3, and 5.4, after some algebraic manipulations, the posterior can

be expressed as a mixture of Gaussians:

qpost(ρ|ρm) =
1
Z

3

∑
i=1

Z(i)N
(

ρ

∣∣∣∣µ(i)
post, σ

(i)
post

2
)

, (5.5)

where we have defined the mixing weights, means and variances as:

Z(i) ≡ N
(

ρm

∣∣∣∣µ(i)
prior, σ

(i)
prior

2
+ σ2

ρ

)
and Z ≡

3

∑
i=1

Z(i),

µ
(i)
post ≡

ρmσ
(i)
prior

2
+ µ

(i)
priorσ2

ρ

σ
(i)
prior

2
+ σ2

ρ

, σ2
post ≡

σ
(i)
prior

2
σ2

ρ

σ
(i)
prior

2
+ σ2

ρ

.

(5.6)

The observer uses the inferred values of ρ to compute the location of the centre

of mass of the two-disk object (here measured with respect to the midpoint between

the two disks). From Eq. 5.1, the relationship between the log ratio of the radii of

two spherical objects in a d-dimensional space and their centre of mass, s, can be

represented by the mapping fd:

fd(ρ) =
`

2
·
[
(−1) · rd

1 + (+1) · rd
2

rd
1 + rd

2

]
=

`

2
·

 rd
2

rd
1
− 1

rd
2

rd
1
+ 1

 =
`

2
·
[

edρ − 1
edρ + 1

]
, (5.7)

whose inverse is f−1
d (s) = 1

d log [(`/2 + s)/(`/2− s)].

We assume that the observer uses the mapping fd from Eq. 5.7 with some fixed

value of d, although not necessarily the correct value d = 2. Combining Eqs. 5.5 and

5.7, the posterior distribution of the location of the estimated centre of mass takes the

form:

qpost(s|ρm) =
∫ ∞

−∞
δ [ fd(ρ)− s] qpost(ρ|ρm)dρ

=
1
Z

3

∑
i=1

Z(i)
∫ ∞

−∞
δ
(
ρ′ − s

)
N
(

f−1
d (ρ′)

∣∣∣∣µ(i)
post, σ

(i)
post

2
)

dρ′
d fd
dρ ( f−1(ρ′))

=
1
Z

3

∑
i=1

Z(i)N
(

1
d

log
[
`/2 + s
`/2− s

] ∣∣∣∣µ(i)
post, σ

(i)
post

2
)

`

d · (`2/4− s2)
,

(5.8)

where we have used the composition rule δ[g(y)] = ∑n
j=1

1
|g′(aj)|δ(y− aj) where g(y)

is a real function and aj are its zeroes. The posterior in Eq. 5.8 is not a mixture of

Gaussian distributions due to the nonlinear relationship in the argument of the Gaus-
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sian function. However, by approximating each mixture component with a Gaussian,

we can write:

qpost(s|ρm) ≈
1
Z

3

∑
i=1

Z(i)N
(

s
∣∣∣∣m(i)

post, s(i)post
2
)

. (5.9)

where m(i)
post and s(i)post are respectively mean and SD of the mixture components in Eq.

5.8 (computed numerically, function trapz in MATLAB).

The ‘Gaussianized’ components in Eq. 5.9 are a very good approximation of their

counterparts in Eq. 5.8 for the parameters in our task, as measured by an average

Kullback-Leibler divergence of (3.1± 0.7) · 10−3 nats (mean ± SD across all posteriors

in the task). This amounts to roughly the KL divergence between two Gaussians

with same variance and whose difference in means is one-twelfth of their SD. The

approximation we chose works better than a Laplace approximation (MacKay, 2003),

which yields worse values for the KL divergence of (7.8± 1.8) · 10−3 nats.

Decision-making stage

According to Bayesian Decision Theory (BDT), the observer chooses the final cursor

position that minimizes his or her expected loss. The typical loss functions used in

perceptual and even sensorimotor tasks take into account only the error (distance

between response and target); see Section 2.4. However, although the explicit goal of

our task consists of minimizing endpoint error, subjects appeared to be influenced by

other considerations.

We assume that the subjects’ full loss function depends on an error-dependent cost

term, Lerr(r− s), which assesses the deviation of the response from the target, and a

second adjustment cost, Ladj(r− r̃), which expresses the cost of moving from the per-

turbed endpoint position r̃ (originally planned endpoint position plus perturbation b).

The rationale is that there is an additional cost in moving from the initially planned

endpoint position, possibly due to the effort involved in an additional unplanned

movement (e. g., for replanning the action).

In a preliminary motor planning stage, the endpoint s∗pre is chosen by minimizing

the error loss:

s∗pre(ρm) = arg min
ŝ

[∫ `/2

−`/2
qpost(s|ρm)Lerr (ŝ− s) ds

]
= arg min

ŝ

[
−

3

∑
i=1

Z(i)N
(

ŝ
∣∣∣∣m(i)

post, s(i)post
2
+ σ2

err

)]
,

(5.10)

where for the loss function we assumed the shape of a (rescaled) inverted Gaussian,

Lerr(ŝ− s) = − exp
{
−(ŝ− s)2/2σ2

err
}

. In addition to the modelling advantages that
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we already discussed (see e. g. Körding and Wolpert, 2004b and Section 1.2.2), the

Gaussian loss is a continuous approximation of the scoring system of the task (Eq.

5.2). To limit model complexity, we assumed subjects conformed to the error length

scale of the performance feedback, that is σerr = σscore (Eq. 5.2).

After the initial movement, subjects are allowed plenty of time to adjust their end-

point position. Due to the applied perturbation b, the (average) endpoint position

after movement will be r̃ ≡ s∗pre(ρm) + b. We introduce, therefore, the adjustment cost

in the final loss function:

L (r, s, r̃) = Lerr(r− s) + αLadj(r− r̃), (5.11)

where α ≥ 0 specifies the relative weight of the adjustment loss with respect to the

error term. The ‘optimal’ final position s∗ that minimizes the expected loss in Eq. 5.11

is:

s∗(ρm, r̃) = arg min
ŝ

[
αLadj(ŝ− r̃) +

∫ `/2

−`/2
qpost(s|ρm)Lerr (ŝ− s) ds

]
. (5.12)

For simplicity, for Ladj(ŝ− r̃) we also assume the shape of an inverted Gaussian loss

with length scale σadj, a free parameter of the model representing the scale of the

cost of moving away from the originally planned target. In Section 5.3.2, ‘Alternative

observer models’, we will see how the solution of Eq. 5.12 changes depending on the

shape of the loss functions.

The final expression for the ‘optimal’ target after adjustment becomes:

s∗(ρm, r̃) = arg min
ŝ

[
−α̃N

(
ŝ
∣∣∣r̃, σ2

adj

)
−

3

∑
i=1

Z(i)N
(

ŝ
∣∣∣∣m(i)

post, s(i)post
2
+ σ2

err

)]
, (5.13)

with α̃ ≡ αZσadj/σerr.

In order to find s∗pre (Eq. 5.10) and subsequently the ‘optimal’ final position s∗ (Eq.

5.13), we implemented a fast numerical algorithm (Carreira-Perpiñán, 2000), as both

equations have no known analytical solution.

Full observer model

In each trial, the decision-making process is simulated in two stages. First, the ob-

server computes the preliminary endpoint position s∗pre(ρm) for a given internal mea-

surement ρm (Eq. 5.10). For simplicity, we assume that the endpoint position is sys-

tematically altered only by the external perturbation b, so that (on average) the arrival

position is r̃ = s∗pre(ρm) + b. In the second step, the observer adjusts his or her end-

point position, moving to the optimal target as per Eq. 5.13. Gaussian noise with
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variance σ2
motor is added to the final choice to simulate any residual noise in the re-

sponse.

According to this model, the response probability of observing response r in a trial

with perturbation b and disks’ ratio ρ is:

Pr (r |ρ, b; θ) =
∫ ∞

−∞
N
(

ρm

∣∣∣ρ, σ2
ρ

)
N
(

r
∣∣∣s∗(ρm, x∗pre(ρm) + b), σ2

motor

)
dρm, (5.14)

where we integrated over the internal measurement ρm which is not directly accessi-

ble in our experiment, and θ = {σρ, d, α, σadj, σmotor} is the vector of model parameters.

Model fitting

We estimated the model parameters for each subject by maximizing the (log) likeli-

hood of the data:

logL(θ) =
N

∑
i=1

log
[
Pr∗

(
r(i)|ρ(i), b(i); θ

)]
, (5.15)

where N = 576 is the total number of trials and we have assumed independence

between trials. We modified Eq. 5.14 with a very small probability ε to improve ro-

bustness of the inference:

Pr∗ (r|ρ, b; θ) = (1− ε)Pr (r |ρ, b; θ) + ε, (5.16)

where ε = 1.5 · 10−5 is the value of the pdf of a normal distribution five SDs away

from the mean. Eq. 5.16 allows for a minute lapse rate that prevents a few outliers in

a subject’s dataset from having an unlimited effect on the log likelihood of the data

in Eq. 5.15.

To limit the possibility of overfitting, the sensory variability parameter of each

subject, σρ, was estimated from a separate model fit of the training datasets. The

observer model fit to the individual test datasets had, therefore, effectively 3 free

parameters: d, α and σadj (σ2
motor represents the mean square of the residuals and is

not typically counted as a free parameter).

5.3 results

5.3.1 Human performance

Subjects found the task straightforward to perform and the debriefing questionnaire

at the end of the session showed that they were unaware of the perturbations on the
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trials. On unperturbed Low-uncertainty trials they received on average 7.36 ± 0.43

points and balanced the object on 97.4% of trials. In contrast on High-uncertainty

trials they received on average 3.35± 0.15 points and balanced the object on 60.2% of

trails.

Mean bias and variability

We analyzed the participants’ response (visual location of cursor) as a function of

trial uncertainty (Low, High) and mean perturbation level (−1.5, −0.5, 0, 0.5, 1.5).

To confirm that the trials with equal-sized and unequal-sized disks correspond to

low and high-uncertainty we examined the variability (SD) of subjects’ response. As

expected, we found that the variability was significantly affected only by trial uncer-

tainty (main effect: Low, High; F(1,15) = 297, p < 0.001) with average SD of 0.40± 0.06

cm and 1.02± 0.05 cm for the Low and High-uncertainty trials, respectively. We found

no significant effect of perturbation and no interaction (p > 0.40 for both). This con-

firms that subjects were more variable in their judgments of the center of mass in

‘High-uncertainty’ trials.

We also examined the subjects’ bias (mean difference between cursor endpoint and

center of mass). The bias was not significantly affected by trial uncertainty (main

effect: Low, High; F(1,15) = 0.69, p > 0.40) but was significantly affected by the per-

turbation level (main effect: perturbation level; F(3.88,58.1) = 25.7, ε = 0.969, p < 0.001)

and in particular by the interaction between the two (interaction: perturbation ×
uncertainty; F(3.64,54.7) = 15.1, ε = 0.91, p < 0.001). This suggests that uncertainty

modulates the effect of the perturbation on subjects’ biases.

To assess the proportion of the perturbation which subjects corrected for, we per-

formed a linear regression of their bias as a function of the perturbation size for Low

and High uncertainty trials (after subtracting the baseline bias from unperturbed tri-

als, Figure 5.2). A slope of zero would correspond to no residual error and hence a

full correction, whereas a positive slope correspond to a smaller fraction of the per-

turbation that subjects correct for, with a slope of 1 corresponding to no correction at

all. The regression slopes were small (0.03± 0.01) for Low uncertainty trials but large

(0.16± 0.02) for High uncertainty trials, both significantly different than zero (t-test

Low: t(15) = 3.61, p < 0.01; High: t(15) = 8.15, p < 0.001) and significantly different

from each other (paired t-test t(15) = 6.80, p < 0.001). These results show that subjects

corrected almost entirely for the perturbation in the Low-uncertainty condition and

left sizeable errors in the High-uncertainty trials by only correcting on average for

84% of the perturbation.
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Figure 5.2: Mean response bias. Mean response bias (i.e., residual error) against mean
perturbation size, for Low-uncertainty (blue) and High-uncertainty (red) trials. The
bias for the 0 perturbation condition has been removed from each subject’s data. a:
Group mean bias. Mean response bias against mean perturbation size. Error bars are
SEM between subjects. Fits are are linear regressions to the mean data. b: Individual
mean bias. Each panel reports the mean response bias against mean perturbation
size for a single subject, for Low-uncertainty (blue) and High-uncertainty (red) trials.
Error bars are SEM between trials. Fits are linear regressions to the individual data.

Exit position

In each trial we also recorded the hidden cursor horizontal position when it crossed

the end of the no-feedback zone (y = 19 cm), before applying visual perturbations,

as exit position xexit. The variability (SD) of xexit was respectively 1.30± 0.04 cm (Low

uncertainty trials) and 1.96 ± 0.06 cm (High uncertainty). We found a statistically

significant but weak correlation between the target position and the exit position in

the High uncertainty trials (considering Left and Right separately), with an average

correlation coefficient of r = 0.31± 0.02 (t-test t(15) = 14.4, p < 10−3). Accordingly,

the variability of exit position when considered with respect to target position was

statistically significantly lower than the variability of xexit itself, but nevertheless es-

sentially the same (1.91± 0.07 cm; paired t-test t(15) = 3.3, p < 0.01). Also, note that

the variability of exit position in Low and High uncertainty trials was substantially

higher than the corresponding endpoint variability (p < 0.001 for both). Together,

these findings suggest that the subjects’ strategy consisted in aiming at a general area

depending on stimulus broad category type (e.g., towards the right of the target line

when r2 > r1, towards the left for r1 < r2, and to the middle otherwise) and then

refined their endpoint position in the adjustment phase. This strategy, encouraged by

our experimental layout, is reminiscent of the two-component model of goal-directed
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movement, which is divided in a ballistic phase aimed at the target followed by a

‘homing’ (adjustment) phase (Elliott et al., 2001, 2010).

Effective adjustment time

We assessed the time subjects spent in the adjustment phase before they stopped

making corrections as a function of trial uncertainty (Low, High) and absolute pertur-

bation size (0, 0.5, 1.5).1 The mean effective adjustment time (1.60± 0.06 s) was not

affected by trial uncertainty per se (main effect: Low, High; F(1,15) = 0.2, p = 0.66),

but was significantly influenced by perturbation size (main effect: perturbation size;

F(1.93,28.9) = 20.9, ε = 0.96, p < 0.001) with no interaction (interaction: uncertainty

× perturbation size; F(2,30) = 0.74, ε ≈ 1, p > 0.40). On average, there was no dif-

ference in adjustment time between baseline and small (0.5) perturbation trials (time

difference 1± 16 ms, p > 0.95). However, subjects spent significantly more time ad-

justing their endpoint position in large (1.5) perturbation trials than baseline trials

(time difference 93± 14 ms, paired t-test t(15) = 6.89, p < 0.001). Effective adjustment

times were broadly scattered in the range 0–3 s and approximately symmetric around

the mean (skewness 0.03± 0.08), with no sign of an accumulation near 3 s. Together,

these results suggest that subjects had ample time to make the needed corrections in

both Low and High uncertainty trials.

Analysis of performance

Overall subjects’ showed significant biases (Figure 5.3a) that depended on the uncer-

tainty level (Low, High) and perturbation size (0, 0.5, 1.5). To determine how these

biases affected performance, we analyzed their mean score per trial as a function of

trial uncertainty and perturbation size (Figure 5.3b). Interestingly, the mean score was

significantly influenced only by trial uncertainty (Low: 7.36± 0.38, High: 3.32± 0.14;

main effect: F(1,15) = 177, p < 0.001), with no significant effect of perturbation size

nor interaction (p > 0.60 for both). Analogous results hold if we split the High-

uncertainty trials in left and right, depending on their location (having, thus, three

levels of trial uncertainty: High-Left, Low-Middle, High-Right), and five levels of per-

turbations (−1.5, −0.5, 0, 0.5, 1.5), suggesting that difference are not hidden by the

pooling procedure. These findings suggest that subjects’ partial lack of correction did

not significantly affect their performance.

We compared subjects’ average score with that of optimal Bayesian observers (see

Methods) which shared the same disks’ ratio estimation noise σρ as the subjects but

correctly computed the location of the center of mass (d = 2) and fully compensated

1 We found qualitatively similar results by defining as ‘effective ajustment time’ the fraction of time that
subjects spent moving in the adjustment phase, instead of the time elapsed before they stopped moving.
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Figure 5.3: Participants’ absolute biases and mean scores. a: Mean absolute bias
(mean ± SE across subjects; biases are computed after removing the bias for the 0
perturbation condition) by perturbation size (0, ±0.5, ±1.5 cm) and trial uncertainty
(Low, High). These data are the same as in Figure 5.2a, here shown in absolute value
and aggregated by perturbation size. b: Participants’ mean scores (mean ± SE be-
tween subjects) by perturbation size and trial uncertainty. Even though the biases
(panel a) are significantly different from zero and significantly modulated by pertur-
bation size (p < 0.001) and the interaction between the uncertainty and perturbation
size (p < 0.001), the scores (panel b) are significantly affected only by the trial uncer-
tainty (p < 0.001).

for any movement error in the adjustment phase (α = 0). The mean score expected

from the ideal observer was 9.88 ± 0.12 for Low uncertainty trials and 6.03 ± 0.26

for High uncertainty ones (mean ± SD computed via bootstrap). Overall, subjects’

average score was significantly lower (paired t-test p < 0.001 for both conditions),

with a relative efficiency of about ∼ 0.75 and ∼ 0.55 for respectively Low and High

uncertainty trials. 2

Our previous analysis (‘Mean bias and variability’) showed that subjects’ corrective

strategy differed between the two levels of uncertainty, with an ‘almost-full’ correc-

tion for Low uncertainty trial (∼ 3% uncorrected perturbation) and a ‘partial’ cor-

rection for High uncertainty trials (∼ 16% uncorrected perturbation). We estimated

what would have been the score in the perturbed Low uncertainty conditions, had the

2 This difference in relative efficiency between Low and High uncertainty trials does not constrast our
conclusions of Chapter 4, which found instead a comparable relative performance across a variety of
conditions in a target estimation task, when the distributions were explicitly provided. In the current
task, subjects had to learn both the experimental distribution of stimuli and the nonlinear mapping
from disks’ ratio to centre of mass, which affected performance differently in the two conditions.
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participants adopted the partial amount of correction as in the High uncertainty tri-

als. To estimate subjects’ score in this hypothetical case we considered their baseline,

unperturbed responses and added the mean response bias from baseline, which we

had previously estimated from both Low and High uncertainty trials (corresponding

respectively to almost-full and partial correction). We simulated also the almost-full

correction strategy as a control, expecting to observe no difference with baseline. The

score in each trial was recomputed through Eq. 5.2. The original mean score in the

Low uncertainty condition, without perturbation, was 7.36± 0.43 (see Figure 5.3b). As

expected, hypothetical mean scores under the almost-full correction strategy were not

significantly different from baseline (7.52± 0.35 and 7.40± 0.39, respectively for small,

±0.5, and large, ±1.5, perturbations; main effect: perturbation size, F(1.96,29.4) = 0.87,

ε = 0.98, p > 0.40). On the contrary, hypothetical mean scores under the partial cor-

rection strategy were significantly different from baseline (6.59± 0.49 and 6.41± 0.41;

main effect: perturbation size, F(1.99,29.9) = 16.1, ε ≈ 1, p < 0.001). These numbers

mean that had the participants been equally sloppy in their correction strategy in the

Low uncertainty trials as they were in the High uncertainty trials, the drop in score

would have been statistically significant and notable (∆Score −0.97± 0.18; paired t-

test t(15) = −6.31, p < 0.001). This suggests that participants’ adjustment strategy

took into account task demands, even in the absence of performance feedback in

perturbation trials.

5.3.2 Bayesian model fit

We examined subjects’ response bias as a function of the actual center of mass lo-

cation relative to the midpoint of the bar and mean perturbation level (Figure 5.4).

Even though individual participants’ datasets are variable, their mean response bias

exhibited a clear nonlinear pattern as a function of center of mass location, partly

driven by the prior over center of mass locations (Figure 5.1b). We fit the Bayesian

observer model to the individual datasets and obtained a good qualitative agreement

with the group data (Figure 5.4) and quantitative agreement for the slope of bias for

individual subjects (R2 = 0.87; see Figure 5.5). A crucial element of the model is a

loss function that takes into account both a final targeting error cost and an additional

cost of moving in the adjustment phase. Due to the width of the posterior distribu-

tion in the High-uncertainty condition, the expected gain for an adjustment is smaller

than in the Low-uncertainty condition and therefore subjects may be less willing to

adjust. Our model qualitatively predicts that the lack of correction to external per-

turbations should correlate with the trial uncertainty (as measured by the spread of

173



5.3 results

the posterior distribution). For example, we observed this signature in the ‘rightward

bias’ that emerged in the experimental setup of the previous chapter (Figure 4.6b).
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Figure 5.4: Response bias (data and model). Mean response bias as a function of
the location of the centre of mass. Circles and error bars are mean data ± SE across
subjects in the test session. Colours correspond to different mean perturbation levels
(displayed with a slight offset on the x axis for visualization purposes). Continuous
lines are the fits of the Bayesian model.

The best fit model parameters to the data were: σρ = 0.063± 0.004 (estimated from

the training session), d = 1.94± 0.04 (not significantly different from the true value

d = 2; t-test t(15) = 1.51, p = 0.15), σmotor = 0.76 ± 0.06 cm.3 Regarding the loss-

related parameters, for 3 subjects the adjustment loss was almost constant (σadj → ∞).

For the other 13 subjects we found: α = 3.1± 0.9, σadj = 2.8± 0.5 cm, suggesting

that the cost would change slowly, with a relatively large length scale (at least as

big as the largest perturbations of ≈ ±2 cm), and in general these subjects were

giving a sizeable weight to the adjustment term (α > 1; t-test t(12) = 2.19, p < 0.05).

Interpreting the adjustment cost as effort, this result is in qualitative agreement with

a previous study that found that effort had a considerabily greater relative weight

in the loss function than the error term (relative weight ∼ 7 for the force production

task described in the study; see O’Sullivan et al., 2009).

3 For a comparison, the residual motor noise in this experiment is about two-thirds of the motor noise
estimated in the Gaussian training session described in the previous chapter (σmotor = 1.20± 0.12 cm,
converted in cm from Table 4.4). The significantly lower value in the current setup (p < 0.01) is likely
due to the adjustment phase and possibly to the adoption of an optical tracking system (the robotic
manipulandum may have small mechanical biases that reduce precision).
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Figure 5.5: Slope of bias, comparison between data and model. Each circle repre-
sents the slope of the mean bias (Figure 5.2b) for a single subject for Low-uncertainty
trials (blue circles) and High-uncertainty trials (red circles).The x axis indicates the
slope predicted by the Bayesian observer model, while the y axis reports the slope
measured from the data (slope of linear regressions in Figure 5.2b). The model
correctly predicts the substantial difference between Low-uncertainty and High-
uncertainty trials and is in good quantitative agreement with individual datasets.

Alternative observer models

We analyze here the predictions of a number of alternative observer models, such as

different models of loss for Eq. 5.11, showing that in many cases alternative models

are unable to account for the principal effect that we observed, that is a modulation

of the amount of correction that depends on target uncertainty. These results further

validate our modelling choices.

First, as an alternative model of loss for the error term in Eq. 5.11, let us consider

the typical quadratic loss function: Lquad(r− s) = (r− s)2. In this case, the ‘optimal’

target (Eq. 5.12) takes the form:

s∗(ρm, x0) = arg min
ŝ

[
αLadj(ŝ− r̃) +

∫ `/2

−`/2
qpost(s|ρm) (ŝ− s)2 ds

]
= arg min

ŝ

[
αLadj(ŝ− r̃) + ŝ2 − 2ŝ ·mpost

]
,

(5.17)

where mpost is the mean of the full posterior in Eqs. 5.8 and 5.9. For example, for a

quadratic adjustment loss, Eq. 5.17 reduces to a simple analytical solution: s∗(ρm, r̃) =

(mpost + αr̃)/(1 + α). However, for any shape of the adjustment loss, Eq. 5.17 predicts

that the optimal target, and therefore the amount of correction to a perturbation, does
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not depend on the variance of the posterior distribution (i. e., on the uncertainty). This

prediction is at odds with the patterns observed in the experiment, so the quadratic

loss model of the error is unable to account for some important features of our data.

To explore alternative models of adjustment cost in Eq. 5.11, we assume an inverted

Gaussian for the error combined with a power function for the adjustment loss. A

power function with power ν > 0 includes several common models of loss as specific

cases (absolute, sub-quadratic, quadratic) and therefore represents a valid alternative

to the inverted Gaussian (Körding and Wolpert, 2004b). The ‘optimal’ target is:

s∗(ρm, x0) = arg min
ŝ

[
αZ
σerr
|ŝ− r̃|ν −

3

∑
i=1

Z(i)N
(

ŝ
∣∣∣∣m(i)

post, s(i)post
2
+ σ2

err

)]
. (5.18)

We compared the performances of the observer models with power loss and inverted

Gaussian loss in terms of (log) maximum likelihood.4 The performance of the two

models was largely similar, with a nonsignificant advantage of the inverted Gaussian

model (0.7± 1.6 difference in log likelihood; t-test t(15) = 0.44, p > 0.60). An analo-

gous lack of empirical difference between the inverted Gaussian loss and the power

loss was reported in a previous study (Körding and Wolpert, 2004b). The choice be-

tween the two functions must therefore be driven by other considerations, such as

mathematical tractability (e. g., in our case the inverted Gaussian loss allows to write

the expected loss as a mixture of non-normalized Gaussians, see Eq. 5.13).

Finally, we examined the predictions for an observer model built from a different

set of assumptions. For this model, we hypothesized that the source of the lack of

correction is not effort, but a miscalibration of the perceived position of the cursor.

Even though in our task the visual feedback of the cursor location during the adjust-

ment phase is unambiguous, subject’s perception may be systematically altered by

proprioceptive feedback according to the relative reliability of vision and propriocep-

tion (see van Beers et al., 1996, 1999). In particular, the posterior distribution of cursor

position r for visual cue xvis and proprioceptive cue position xprop is given by (Ernst

and Banks, 2002):

qcursor
(
r
∣∣xvis, xprop

)
= N

(
r
∣∣xvis, σ2

vis
)
N
(

r
∣∣∣xprop, σ2

prop

)
∝ N

(
r

∣∣∣∣∣ xvisσ
2
prop + xpropσ2

vis

σ2
vis + σ2

prop
,

σ2
visσ

2
prop

σ2
vis + σ2

prop

)
,

(5.19)

4 Since the models have the same number of parameters, several common metrics of model comparison
such as AIC and BIC would yield the same penalty for complexity.
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where σ2
vis and σ2

prop are the (subjective) variances of visual and proprioceptive noise.

Noting that in our setup xprop ≈ xvis − b, where b is the visual perturbation applied

in the trial, we can rewrite Eq. 5.19 as:

qcursor
(
r
∣∣xvis, xprop

)
∝ N

(
r

∣∣∣∣∣xvis − b
σ2

vis
σ2

vis + σ2
prop

,
σ2

visσ
2
prop

σ2
vis + σ2

prop

)
≡ N

(
r
∣∣xvis − µcursor, σ2

cursor
)

,

(5.20)

where we have defined µcursor and σcursor for notational convenience. We assume now

that, according to BDT, the observer places the visual cursor so as to match the ‘opti-

mal’ visual cursor location x∗vis that minimizes the expected loss of the task:

x∗vis(ρm) = arg min
x̂vis

[
−
∫ `/2

−`/2
qpost(s|ρm)N

(
r
∣∣x̂vis − µcursor, σ2

cursor
)
N
(
r
∣∣s, σ2

score
)

dsdr
]

= arg min
x̂vis

[
−
∫ `/2

−`/2
qpost(s|ρm)N

(
s
∣∣x̂vis − µcursor, σ2

cursor + σ2
score

)
ds
]

,

(5.21)

where the subjective error in the loss function is computed with respect to the un-

known exact cursor position r, whose distribution is inferred via cue combination

(Eq. 5.20). The posterior over target locations, qpost (s |ρm ), is defined by the mixture

of Gaussians of Eq. 5.9. For the sake of argument, let us consider the case in which

the posterior is mainly represented by a single Gaussian component with mean mpost

and variance s2
post (both depend on ρm). This is a reasonable approximation in most

of the trials as our observers’ sensory noise on the estimation of the disks’ (log) ratio,

σρ, is much smaller than the separation between components of the prior over (log)

ratios (0.063 � 0.405, see previous section). Using a single Gaussian in Eq. 5.21 we

obtain:

x∗vis(ρm) = arg min
x̂vis

[
−
∫ `/2

−`/2
N
(

s
∣∣∣mpost, s2

post

)
N
(
s
∣∣x̂vis − µcursor, σ2

cursor + σ2
score

)
ds
]

= arg min
x̂vis

[
−N

(
x̂vis

∣∣∣mpost + µcursor, σ2
cursor + σ2

score + s2
post

)]
= mpost + b

σ2
vis

σ2
vis + σ2

prop
,

(5.22)

where we used the definition of µcursor from Eq. 5.20. Crucially, as for previous alterna-

tive models, the solution in Eq. 5.22 does not depend on the variance of the posterior

s2
post, meaning that for the majority of trials the observer model does not present the

features that we observe in our data. Still, for trials with multimodal posteriors, the
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solution of Eq. 5.21 might depend on the uncertainty in the trial. If so, albeit unlikely,

these trials alone might be enough to produce the effect that we observe in our data.

We, therefore, analyzed the behaviour that this observer model would predict for our

observers for a range of reasonable values of the parameters σvis and σprop from 0.1

cm to 2.5 cm (van Beers et al., 1996). For all combinations of parameters and for all

subjects we did not find any sign of interaction between trial uncertainty and residual

error (data not shown), confirming the results of our first approximation (Eq. 5.22).

In conclusion, subjects’ perception of the perturbed cursor position may be altered

by proprioceptive feedback, but this effect alone cannot account for the uncertainty-

dependent modulation of the bias.

5.4 discussion

We found that target uncertainty significantly affected subjects’ error correction strat-

egy for perturbations of the visual feedback on a trial-by-trial basis, but in such a way

that did not hinder overall performance.

Our study differs from previous work that examines how uncertainty affects sen-

sorimotor behaviour. Studies which show that subjects can integrate priors with sen-

sory evidence to produce optimal, yet biased, estimates are consistent with a point

estimate being used by the motor system when enacting a movement (see Chapter 2).

The bias we show here is a bias arising from error correction which acts in addition

to any biases from Bayesian integration, and would not be predicted if the motor sys-

tem only had a point estimate of the target location. Moreover, the partial corrections

we see relate to the posterior width within a trial. This contrasts with studies which

show that the distribution of perturbations can affect the corrections seen from one

trial to the next (Wei and Körding, 2010).

Qualitatively similar trial-to-trial, context-dependent responses to perturbations

were observed in a study that asked people to reach to spatially extended target (Knill

et al., 2011). In that case, corrections happened during fast reaching movements and

were compatible with external task demands: errors along the larger dimension of the

targets required smaller compensations to still successfully hit the targets (according

to the principle of minimal intervention). In our experiment, however, subjects were

sensitive to the implicit posterior width, as opposed to explicit visual target width.

Optimal feedback control predicts that, under time constraints, humans often fail to

fully correct for errors that arise late in a movement even though there is no target

uncertainty (Todorov and Jordan, 2002; Todorov, 2004). However, our bias is hardly

driven by time constraints as a 3 seconds adjustment time ensures that sensory de-

lays cannot prevent corrections (Izawa and Shadmehr, 2008), and our data support

178



5.4 discussion

that subjects had all the time to correct for mistakes up to the desired precision. Also,

note that the long, fixed adjustment time window prevented decision strategies that

become available when subjects can choose freely when to end the adjustment period,

such as ‘skipping’ the more difficult trials (Drugowitsch et al., 2012). Finally, an in-

teraction between target uncertainty and response bias has been previously reported

in motor planning (Grau-Moya et al., 2012). In their task subjects were required to

hit a visual target whose horizontal location uncertainty was manipulated. A robotic

interface was used to generate a resistive force that opposed motion in the outward

direction with the force linearly related to the horizontal location of the hand. They

found that on higher uncertainty trials subjects chose to err on the side of the target

with the lower resistive force. There are several key differences of this previous study

to ours. In their study, the ‘effort’ cost is explicit and externally imposed, hit/miss

performance feedback is provided on all trials, and explicit manipulations of the cost

are blocked by session. By contrast, here we showed an implicit, unconscious trade-

off between accuracy and effort in online error correction during a naturalistic task.

Moreover, in our study task-relevant perturbations (i.e., implicit manipulations of the

cost) were unbeknownst to the subjects and intermixed on a trial-by-trial basis, and

we did not provide performance feedback on perturbed trials. Critically, their work

does not address correction to ongoing motor commands and shows that subjects

can pre-plan a trade-off whereas we show that the online error correction is affected

by target uncertainty. Our work provides, therefore, a stronger test of the interaction

between uncertainty in the estimate and feedback control.

A somewhat surprising finding is that subjects did not fully correct for the per-

turbations, but in a way that did not significantly affect performance. Clearly, a null

effect on score differences might simply due to lack of statistical power in our analy-

sis, but we demonstrated that had subjects used the same partial correction strategy

in all trials, their performance would have dropped by almost one point on average.

This means that subjects’ correction strategy for Low and High uncertainty trials was

well adapted to task demands.

A similar finding of limited but ‘optimal’ correction was reported in a recent study

that looked at subjects’ awareness of their own pointing errors (van Dam and Ernst,

2013). Participants performed a reaching movement to a one-dimensional target, and

visual feedback of both hand and target position was withheld after the commence-

ment of the movement. After movement termination, subjects responded in a 2AFC

task whether they had landed to the left or to the right of the target. In the condition

that is most related to our work, subjects were also allowed to correct for their natu-

ral pointing mistakes, with no time limit. Also, at this point subjects would receive a

brief visual feedback (with small or large blur) about their current endpoint position.
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The study reports that subjects hardly corrected for their mistakes, but the applied

correction gains turned out to be sensible (if not ‘optimal’) when taking into account

information subjects had about their own pointing errors and their current endpoint

position.

Our study differs from the work by van Dam and Ernst (2013) in several funda-

mental aspects. Most importantly, their work probes a form of Bayesian integration

between (a) the current knowledge of endpoint position or, equivalently, estimated

distance from the target (due to proprioception and provided noisy visual feedback)

and (b) the prior knowledge of the error distribution (and target position). One of

their main findings is that it seems that subjects acquire more detailed information

of the endpoint position only after the end of the movement, even for slow reaches

(van Dam and Ernst, 2013). We showed instead that in our task the lack of correction

cannot be explained by a simple form of Bayesian integration. Even if subjects in-

tegrated visual feedback of the cursor with (conflicting) proprioceptive information,

the expected biases would not yield the observed pattern of uncertainty-dependent

corrections.

Our data are consistent with an additional term in the loss function that can be in-

terpreted as ‘effort’ (whether energy, time or computational; see Todorov and Jordan,

2002; Trommershäuser et al., 2003a; O’Sullivan et al., 2009). The exact nature of this

cost is left open, as our experiment does not allow us to pinpoint a specific interpre-

tation. Our model provides good fits to the subjects’ data, and, moreover, we showed

that other common models of loss used in Bayesian estimation and motor planning,

which either ignore the cost of adjustment or use a quadratic error loss term, fail

to account for the key features of our datasets. These results are consistent with an

interpetation of subjects’ behaviour as a form of risk-sensitivity (Nagengast et al.,

2010; Grau-Moya et al., 2012). An interesting alternative hypothesis inspired by van

Dam and Ernst (2013) is that subjects built an internal expectation of their average

error during the trials with performance feedback, and therefore were less willing to

correct for large perturbations that were reputed to be unlikely. This interpretation

predicts, among other things, that σadj should correlate with the spread of the errors

made by the subject, but we did not find any evidence for this pattern in the data.

In conclusion, our results show that even for simple, naturalistic tasks such as cen-

tre of mass estimation, the effect of this additional correction cost can be noticeable

and is significantly modulated by trial uncertainty. At the same time, somewhat para-

doxically, the effects on performance of this cost are statistically insignificant, sug-

gesting that subjects’ may have been ‘optimally lazy’ in correcting for their mistakes,

according to the minimal intervention principle (Todorov and Jordan, 2002; Todorov,

2004), even in the absence of performance feedback. Our findings suggest that there
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is no clear-cut separation between the decision making and motor component of a

task, since perceptual or cognitive uncertainty affects subsequent motor behaviour

beyond action initiation, as the posterior distribution is used even in the adjustment

period.
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6
D I S C U S S I O N

“I began by removing the deeply curved plate that formed the back and top

of my head; then the two, more shallowly curved plates that formed the

sides. [. . . ] I then turned my microscope to the cognition engine. Here too I

observed a latticework of wires, but they did not bear leaves suspended in

position; instead the leaves flipped back and forth almost too rapidly to see.

[. . . ] For many hours I scrutinized the leaves, until I realized that they

themselves were playing the role of capillaries; the leaves formed temporary

conduits and valves that existed just long enough to redirect air at other

leaves in turn, and then disappeared as a result. This was an engine

undergoing continuous transformation, indeed modifying itself as part of its

operation. The lattice was not so much a machine as it was a page on which

the machine was written, and on which the machine itself ceaselessly

wrote.”
— Ted Chiang, Exhalation

In this final chapter we summarize the results of our investigations on the nature of

complex internal representations and manipulation of probabilistic information in the

brain. We put our findings into perspective, discuss the limitations of our approach,

and point to avenues for future work.

6.1 sensorimotor decision making with complex distributions

The driving question in our thesis has been whether the standard Bayesian model is a

good description of human performance in sensorimotor decision making. Our work

probes the Bayesian brain hypothesis (BBH) at the behavioural level (equivalent to

Marr’s computational; see Section 1.1). Since it has been largely established that the

BBH indeed applies to a large variety of relatively simple cases (Chapter 2), mostly

with Gaussian statistics and involving linear computations between a few variables,

we explored the limits of the BBH in more complex scenarios. There are several

directions in which a task (and its analysis) could be made more complex, such as:

. Dimensionality and causal structure: Complexity may be increased by augmenting

the number of task-relevant and task-irrelevant variables the observer needs to

take into account (corresponding to a larger graphical model). Optimal infer-

ence in these cases may require the observer to marginalize over a number of
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unobserved variables such as in visual search (Ma et al., 2011), categorization

(van den Berg et al., 2012; Qamar et al., 2013), and perceptual explaining away explaining away

(Battaglia et al., 2011).

. Temporal correlations and non-stationarity: Most psychophysical studies in the

field assume a stationary, i.i.d. distribution of stimuli in the task and a (mostly)

stationary observer. A promising direction of generalization consists of look-

ing at how the observer reacts to details, such as real or spurious correlations,

of the trial-to-trial statistics, the so-called sequential effects (DeCarlo and Cross, sequential effects

1990; Raviv et al., 2012; Kwon and Knill, 2013). Understanding these effects

is crucial for a theory of Bayesian update and learning (Berniker et al., 2010;

Nassar et al., 2010; Petzschner and Glasauer, 2011).

. Statistical complexity: Complexity of the inference may be increased with statis-

tical distributions that deviate from Gaussian. Crucially, non-Gaussian distribu-

tions entail nonlinear solutions, probing aspects of BDT that are indistinguish-

able for Gaussian variables (see e. g., Körding and Wolpert, 2004b and Chapter

2).

In this thesis, we chose to focus on the complexity of the statistical features of a

univariate distribution that needs to be learnt and/or manipulated by the observer.

We identified three qualitative aspects of the shape of a distribution: symmetry, be-

haviour of the tails, and multimodality. These features are linked to three quantitative

summary statistics, respectively: skewness, excess kurtosis, and number of modes.

For the purpose of this thesis, a statistic becomes ‘complex’ when Bayesian integra-

tion predicts a behaviour that deviates from linear, and the degree of complexity is

loosely related to the amount of nonlinearity; we did not formalize the concept fur-

ther, but rather explored it experimentally with different classes of distributions. We

examined human behaviour in the presence of Gaussian, skewed, platykurtic, lep-

tokurtic, bimodal, and trimodal distributions (Chapters 3–5).

In particular, we analyzed human performance both while learning and computing

with complex distributions, arguing that any observed suboptimality can be broadly

imputed to two sources: mismatched internal representations, and erroneous or ap-

proximate Bayesian computations (Ma and Jazayeri, 2014). Generally, the distinction

between these two classes of explanations is blurred, but, by devising tasks that rely

more on one aspect (e. g., inference or learning) at a time, we may explore their rela-

tive contributions to behaviour. We found evidence that both processes are involved

in observed deviations from ideal performance, but in qualitatively different ways. In-

cidentally, our results suggest that it is unlikely that there is a simple generic measure

of statistical complexity that correlates with human performance in perceptual and
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sensorimotor decision making.1 Any realistic measure of performance would likely

need to take into account a full process model of human learning and inference in

the task under consideration (see e. g., Griffiths et al., 2009 for a study of function

learning).

6.1.1 Learning complex internal representations

One of the questions that we addressed in this thesis is what is the complexity of

the internal representations that can be acquired in the course of an experiment. This

issue was thoroughly explored in the temporal domain (Chapter 3). We did not focus

on the dynamics of learning; instead, we trained subjects for several sessions until

their performance plateaued (Jazayeri and Shadlen, 2010), and only then we exam-

ined their acquired distributions. Before us, other studies had applied non-parametric

techniques to infer subjects’ beliefs, but most only to reconstruct pre-existing priors

(e. g., Stocker and Simoncelli, 2006b; Stone et al., 2009; Girshick et al., 2011; see Section

2.3). Previous studies had reconstructed priors as a means to qualitatively validate

findings (Körding and Wolpert, 2004a) or fit the model to the data (Chalk et al., 2010),

but did not perform a quantitative comparison between empirical and reconstructed

distributions beyond the Gaussian case. Our results suggest that subjects not only

had a good internal representation of the mean and variance of the experimental dis-

tributions, as found by previous studies (e. g., Berniker et al., 2010), but also showed

qualitative learning of higher-order moments.

Our observers accurately learnt the mean and variance of the experimental distri-

butions in the time interval reproduction task, in agreement with previous studies

(Berniker et al., 2010; Cicchini et al., 2012). Results were also compatible with a good

learning of the skewness of the distributions. We found, instead, major deviations

in the representation of kurtosis and multimodality. Note that our reconstruction of

the priors is based on the specific assumptions of the observer model. Higher-order

statistical features are very sensitive to outliers, so any process that increases subjects’

variability will also affect the shape of the inferred prior. We mentioned non-Gaussian

noise distributions and a non-quadratic loss function as possible sources for these de-

viations. Moreover, results from Chapter 4 suggest that there is also an element of

stochasticity in decision making itself that introduces additional variability in sub-

jects’ behaviour. Our findings with bimodal distributions are not inconsistent with

previous studies, which typically found that subjects had more difficulty learning

multimodal distributions, ultimately achieving various degrees of success (Körding

1 An example would be algorithmic complexity, which has been applied with some success to explain
the human perception of randomness (Griffiths and Tenenbaum, 2004).
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and Wolpert, 2004c,a). Even though our subjects practiced for 1500–2000 trials before

the test session (duration of training was comparable to those in the previous stud-

ies), it is still possible that our participants simply needed more trials to accurately

learn the distributions.

Somewhat surprisingly, in some tasks observers display a rapid emergence of

Bayesian biases in the presence of a multimodal distribution (e. g., Chalk et al., 2010).

Indeed, in our centre of mass estimation task, in Chapter 5, we found evidence that

subjects developed nonlinear biases consistent with Bayesian integration within a few

hundred trials (although they become apparent only with pooled data; see Figure 5.4).

We hypothesize that a fundamental feature for rapidly acquiring complex statistics

of the stimuli is the presence of a stable reference frame, so that individual stimuli

(and responses) can be reliably encoded in memory. For example, in our centre of

mass experiment, the object to be balanced provides such reference frame for both

memorizing and recalling the empirical distribution of centres of mass (Figure 5.1b).

Conversely, time perception is notoriously shifty and lacks a fixed external frame

(Eagleman, 2008), so it could be that this imposes major constraints on the learning

of complex distributions (in addition to the limitations due to sensorimotor noise). It

would be interesting to verify how expert musicians, who are likely to have a better

internal framework for representing durations, fare with learning multimodal distri-

butions of intervals, as Cicchini et al. (2012) did with uniform distributions.

Our findings about learning have two major caveats. First, we consistently pro-

vided trial-by-trial performance feedback to facilitate acquisition and retention of

the experimental distribution (as e. g., Körding and Wolpert, 2004a in the bimodal

learning experiment). This means that, strictly speaking, we cannot rule out the pos-

sibility that our subjects and Jazayeri and Shadlen’s (2010) directly learnt a nonlinear,

block-dependent ‘optimal mapping’ between a perceived interval and a reproduced

duration, instead of the distribution of intervals. Humans have been shown to change

their learning strategy depending on the type of training they receive (Fulvio et al.,

2014). On the other hand, Cicchini et al. (2012) showed that subjects behave in a

Bayes-optimal fashion in a time interval reproduction task even without trial-to-trial

knowledge of results, suggesting that people are able to collect, and compute with,

the statistics of durations. These arguments suggest that the conditions of our study

set an approximate higher bound on the learning of temporal statistics for average

human subjects (i. e., without specific timing skills). That is, we can generally expect

people’s internal representations of novel temporal distributions to be less accurate

with less training, and without performance feedback. It remains an open question

whether observers would still learn complex temporal statistical features, such as

skewness, in the absence of feedback.
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A second important proviso of our modelling work is the assumption of stationar-

ity, as per the majority of studies in the field. Recent work, however, has highlighted

that non-stationary and recency effects – that is, the statistics of recent stimuli, recent

responses and recent feedback – play an important role in shaping perceptual and

sensorimotor biases (Petzschner and Glasauer, 2011; Verstynen and Sabes, 2011; Cic-

chini et al., 2012; Raviv et al., 2012; Kwon and Knill, 2013; Wiener et al., 2014). An ideal

experiment for the in-depth study of non-stationary effects in sensorimotor estima-

tion should exclude performance feedback, so as to reduce confounds in the analysis,

and wisely counterbalance the order of the stimuli across the session (Wiener et al.,

2014). For example, a strategy for examining the role of non-stationarity consists

of observing how subjects react to alterations in the trial-to-trial correlations. Kwon

and Knill (2013) found that subjects, in an interception task, adapted their internal

representations to the statistics of target speed, but systematically overestimated the

correlation between subsequent trials. In their case, the experimental distributions of

target speed were uniform with varying width; future work could investigate how

skewed or bimodal distributions affect behaviour within a non-stationary modelling

framework.

In summary, our work provides evidence for the existence of rapidly acquired

complex internal representations in time perception (beyond low-order statistics), in

agreeement with recent work (e. g., in motion perception; Chalk et al., 2010; Gekas

et al., 2013). More in general, considering also results from Chapter 4, we show that

internal representations of experimental distributions are likely to be (highly) ap-

proximate. The degree of approximation depends on the details of the experimental

setup and of the distribution, but systematic deviations are found even for seemingly

simple distributions such as uniform. This means that claims that follow from as-

sumptions of near-perfect learning of the statistics of the task ought to be assessed

accordingly (e. g., Jazayeri and Shadlen, 2010). For example, it should be checked

whether such claims are robust to minor-to-moderate deviations in the internal repre-

sentations. Motivated by these considerations, we proposed a simple generic formula

to simulate approximate learning (Eq. 3.13) that could be used as a coarse tool in the

absence of more specific information about subjects’ priors. Results and techniques

presented in this thesis pave the way for further quantitative investigation on the

nature of internal representations and their approximations in sensorimotor decision

making.
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6.1.2 Computing with complex distributions

In Chapter 4 we proposed a novel experimental layout to study how humans perform

probabilistic inference ‘on the fly’, with distributions that change on a trial-to-trial

basis, which is an important test of Bayesian inference (Ma, 2012). We side-stepped

the problem of the acquisition of complex priors by providing subjects with explicit

visual representations of the distributions they had to compute with. In this setup,

therefore, suboptimal performance is mostly due to inaccuracies and approximations

in probabilistic inference (although there is also the contribution of a mismatching

internal model of the task). We performed an analysis of the possible sources of

suboptimality in our task (see e. g., Tjan et al., 1995; Tassinari et al., 2006), finding that

variability had a considerable role in decision making. Results from Chapter 4 and 5

provide evidence that other considerations than maximizing task score, such as effort,

may have affected subjects’ behaviour, but the effects on measured performance were

likely negligible.

We proposed a simple power-function formula to model decision variability (Eq.

4.10; see also Moreno-Bote et al., 2011) and showed that such model is equally con-

sistent with two conceptually distinct interpretations: internal noise in the represen-

tation and approximate inference via sampling (see Figure 4.3 and Section B.1 in the

Appendix). Nondescript neuronal noise is the classical explanation for observed be-

havioural variability (e. g., Shadlen et al., 1996; Denève et al., 2001; Faisal et al., 2008),

but a recent study has pointed out that the cause could, instead, be deterministic or

stochastic approximate inference (Beck et al., 2012). Stochastic sampling is one of the

major hypotheses of how the brain could implement Bayesian inference, both in per-

ception (Sundareswara and Schrater, 2008; Fiser et al., 2010; Moreno-Bote et al., 2011;

Battaglia et al., 2011) and cognition (e. g., Vul et al., 2009, 2014; Battaglia et al., 2013).

The fact that the power-function formula of decision variability is agnostic about the

level of implementation is both an advantage and a limitation of our model, but it is

not surprising as it is quite common for distinct low-level models to give empirically

indistinguishable predictions at the behavioural level (e. g., Grabska-Barwinska et al.,

2013). Another limitation of the proposed formula is that it is justified only for deci-

sion rules that are close to MAP.2 This may not be a major issue for a large number

of perceptual studies, since MAP is a common assumption. Finding a more general

approximate expression for noisy decision making in the presence of an arbitrary

2 For example, the response patterns of a noisy decision maker under a quadratic loss function is spread
around the mean the posterior. This behaviour generally differs from a noisy MAP, that instead pro-
duces clusters around the peaks of the posterior (in approximate agreement with a power function).
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loss function (or at least for a larger class) remains an issue of great theoretical and

practical interest.3

Our experimental setup to investigate suboptimalities in probabilistic inference can

be extended in several ways, in addition to obvious manipulations, such as by varying

the distributions and the scoring system (i. e., the loss function). First, an improved

familiarization stage and multiple training sessions may be used to ensure that par-

ticipants’ internal model of the task is as close to the true one as possible. Second,

during both training and test, we could prompt participants to produce samples from

the short and long-distance cue distributions at regular intervals (Acerbi et al., 2013).

This information would allow us to assess the subjects’ internal model of cue noise,

to see whether and how it changes in the course of the experiment, and it could

further constrain the analysis. Also, we designed the experiment as a sensorimotor

task motivated by previous work in motor planning (Trommershäuser et al., 2003a;

Hudson et al., 2007), but it would be interesting to perform an analogous study as

pure estimation. The task could be easily implemented as a 2AFC in which observers

are asked whether the target is to the right or to the left of a given vertical line,

which would be placed in each trial to probe interesting decision boundaries. Ad-

ditionally, this setup would easily allow other experimental manipulations, such as

varying stimulus presentation time, or the sequential presentation of multiple cues,

as per a currently ongoing study of suboptimal inference in perceptual categorization

(Drugowitsch et al., 2014b).

Interestingly, the pattern of systematic deviations that we found in the recon-

structed priors in Chapter 4 (‘priors-from-description’) is very different from those

apparent in the recovered priors of Chapter 3 (‘priors-from-experience’). We assume

that, due to the experimental layout, the former priors are mostly influenced by er-

rors in the inference process, while the latter are predominantly affected by errors

in learning and recalling the statistics of the experiment. First, we note that the re-

construction of both Gaussian and bimodal priors-from-description is generally very

accurate, with an excellent match of higher-order moments (Figure 4.14). Conversely,

unimodal priors-from-description present more substantial deviations from the true

priors. This finding may be partly because subjects were trained on Gaussian distri-

butions, and, therefore, may have found it easy to generalize from linear solutions

(Gaussian) to mostly piecewise-linear solutions (bimodal), but were less prepared

to switch to fully nonlinear solutions (unimodal). On the contrary, unimodal priors-

from-experience were generally more accurate than bimodal ones. Moreover, priors-

from-experience tended to have a higher kurtosis than the experimental distributions,

3 See, e.g., Ortega and Braun (2013) for a promising theoretical framework that, by drawing an analogy
between decision making and thermodynamical concepts, formalizes the maximal information gain
(and, thus, the uncertainty) in the computations of an observer with bounded resources.
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whereas priors-from-description were, if anything, less kurtotic than the true priors.

Curiously, our findings seem to go in the opposite direction of the usual description-

experience gap (see Hertwig and Erev, 2009 for a review). The description-experience

gap holds that the probability of rare events is overestimated when learnt by descrip-

tion, and underestimated when acquired by experience (and vice versa for the prob-

ability of common events). However, these results pertain to the domain of discrete

(often binomial) distributions (Hertwig and Erev, 2009), so it is not completely clear

how they would generalize to continuous distributions as in our tasks. Also, a recent

study has challenged the existence of a description-experience gap altogether, when

all task parameters are equated (Jarvstad et al., 2013). Our current understanding is

that the systematic difference that we observe between priors-from-description and

priors-from-experience stems from distinct suboptimalities in the separate processes

of learning and inference.

6.2 uncovering internal representations

The main objects of interest in this thesis are the internal representations built and

manipulated by human observers while engaged in a variety of sensorimotor tasks.

Unlike the protagonist of Ted Chiang’s short story in our opening quotation, our in-

struments for revealing the inner workings of the mind are still extremely coarse. For

example, one study applied fMRI to pinpoint a differential representation of priors

and likelihoods in the brain (Vilares et al., 2012), but several other factors may have

affected the results (Ma and Jazayeri, 2014). Still, a fuller understanding of approx-

imate representations and inference at the behavioural level, beyond statements of

optimality or lack thereof, may be crucial to guide the research at lower levels, since

neural coding will likely reflect such approximations and not the optimal solution

(Grabska-Barwinska et al., 2013; Ma and Jazayeri, 2014).

Given the inaccessible nature, for the moment, of our objects of study, our anal-

yses of the psychophysical data and modelling techniques were an integral part of

our approach. In the following, after critically reviewing our methods, we tackle two

fundamental questions. The first one is whether we have enough information from

behavioural data, with our ‘black box’ approach, to really uncover such hidden mental

representations and processes – a problem related to the issue of non-identifiability.

The second, more fundamental question is whether internal representations and pro-

cesses of a Bayesian kind are there in the first place, and what we are recovering

otherwise.
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6.2.1 Bayesian methods for Bayesian brains

The approach of this thesis has been doubly Bayesian (Huszár et al., 2010), wherebydoubly Bayesian

we analyzed the behaviour of (alleged) Bayesian observers with a variety of Bayesian

techniques. Two classes of analyses were key to our investigations in Chapters 3 and

4: (a) a sensitivity and identifiability analysis of the parameters within each datasetsensitivity analysis

and model, and (b) a factorial comparison of a large set of plausible observer mod-

els. Neither analysis required us to be Bayesian, but the Bayesian framework provides

natural tools to deal with both problems. We performed analysis (a) through the com-

putation of the full posterior over parameters for each dataset and model (either via

explicit calculation or via sampling), and analysis (b) through a factorial Bayesian

model comparison (via computation of the posterior probability of each model, or an

approximation thereof). When computing the ‘postdictions’ of our model class, after

fitting the data, we generally did not commit to a single model and parameter set but

considered the full posterior (see Section A.2 in the Appendix). Such detailed analy-

ses were needed because in Chapters 3 and 4 we wanted to infer the hidden causes –hidden causes

respectively, the internal representations and potential sources of suboptimality – for

the observed behaviour. Due to the potential non-identifiability of Bayesian models

in general, our approach allowed us to perform a sweep search over both parame-

ters and models, and verify whether multiple equally-good explanations for the data

would arise. This crucial information could be lost if we had computed, instead, only

a point estimate, or had performed a comparison within a small set of ad-hoc models.

We remark that a full analysis over parameters and factorially-combined models is

conceptually simple, but can become extremely time-consuming for the modeller for

a long list of practical reasons, from the obvious computational costs to the overhead

of coding, optimizing, and separately testing dozens of different models. Therefore,

although we generally recommend being ‘as Bayesian as possible’, the modelling and

analysis efforts need to match the complexity of the problem. For example, in Chapter

5 we were interested in examining the existence and size of a specific experimental

effect, rather than the detailed inner workings of the observer. We put forth an ob-

server model that could account for some relevant features of the data, and showed

that a number of alternative models could not explain the same features. Our analy-

sis essentially consisted of a ‘proof of existence’, for which we did not need the full

Bayesian toolbox. As another example, in Chapter 3, due to the low dimensionality of

the parameter space (k = 2 or 3), we could directly compute the marginal likelihood

and, therefore, the posterior probability of each model. Conversely, in Chapter 4 we

could only compute an approximation of the model evidence, the DIC score (see Sec-

tion A.3.3 in the Appendix). For this reason, and due to the increased complexity of

191



6.2 uncovering internal representations

the model space, we performed a slightly more sophisticated analysis via a hierarchi-

cal Bayesian model comparison (see Section A.4 in the Appendix), although in the

end we found that differences with a usual group comparison were minor (Chapter

4 and Section B.3.1 in the Appendix).

6.2.2 Identifiability of Bayesian models

The problem of non-identifiability in the modelling of mental representations and

processes from psychophysical data has been acknowledged early in cognitive science

and psychology (e. g., Anderson, 1978) and has prompted the development of several

techniques (Pitt et al., 2002; Navarro et al., 2004; Wagenmakers et al., 2004; van den

Berg et al., 2014). As a recent example, van den Berg and Ma (2014) showed with

extensive simulations that the usage of certain summary statistics in the study of

working memory is catastrophically unsuitable for the recovery of the true observer

model, due to severe indistinguishability. On the other hand, aside from a few studies

that raised a number of objections to the Bayesian approach, including the issue of

non-identifiability (Jones and Love, 2011; Bowers and Davis, 2012; Marcus and Davis,

2013), relatively meagre attention has been given to the problem on the perceptual

and sensorimotor side, with only occasional reminders (Mamassian and Landy, 2010).

Clearly, the issue of identifiability is particularly important for studies whose pri-

mary goal is to recover internal representations from the data (e. g., Stocker and Si-

moncelli, 2006b; Stone et al., 2009; Girshick et al., 2011; see Section 2.3), and it is not

a minor technical detail as the whole feasibility of the enterprise is questionable a

priori due to the degeneracy at the heart of BDT (see Section 1.2.3). The fact that

multiple – in fact, infinite – combinations of priors, likelihoods and loss functions

yield identical behaviour is a pure mathematical equivalence that holds even before

adding to the model empirical sources of confusion such as limited data, motor noise,

and lapses in the observer responses. This line of reasoning seems to condemn the

Bayesian models of perception to a fatal form of non-identifiability that prevents the

reliable recovery of model parameters and components, and, in particular, the sought-

after internal representations, from the data. On the other hand, the aforementioned

studies obtained independent validations, such as agreement with statistics of the

natural environment (Girshick et al., 2011) or with findings from other independent

studies (Stocker and Simoncelli, 2006b; Hedges et al., 2011; Sotiropoulos et al., 2014),

suggesting that, perhaps, the problem of identifiability is not so pressing in practice.

We hypothesize that the common set of conditions that applies in perception, such

as the shape of the sensory noise (Section 2.2.1), or reasonable assumptions over a

natural loss function (Section 2.4.3), provide strong restrictions on the shapes that the

192



6.2 uncovering internal representations

internal models are allowed to take. These constraints on the space of solutions may

lead to an explicit symmetry breaking, whereby the degeneracy of BDT is substan-

tially reduced or even eliminated. To our knowledge, no previous study has explicitly

analyzed this scenario, possibly due to a series of technical difficulties. Although in

the body of this thesis we did not directly tackle the problem of identifiability from a

general standpoint, we did develop several techniques and computational tools that

have been instrumental in building a framework for the study of the identifiability of

Bayesian modelling of perception (Acerbi et al., 2014a). In addition to its foundational

relevance for clarifying a number of open issues in the field, a general understand-

ing of identifiability in the Bayesian modelling of perception would be useful for

improving the design of psychophysical experiments; for example for maximizing

information gain on model parameters of interest.

Finally, we remark that the majority of Bayesian models of perception only focusses

on modelling response biases or variability – or, more generally, the distribution of

responses for a given stimulus (see Chapter 2). However, response data is not the only

information we can obtain from a psychophysical experiment. Reaction times and

confidence judgments, just to mention two common measures used in psychological

studies, could be explicitly included in Bayesian models to augment the available

information on subjects’ decision-making process (Drugowitsch et al., 2014a). These

additional sources of information may further help abate the degeneracy of Bayesian

models.

6.2.3 The real nature of internal models

We began our investigation with the working hypothesis of BDT as a process model

of perceptual and sensorimotor decision making (Maloney and Mamassian, 2009).

We assumed that human observers build internal representations of the statistics of

the task (i.e., priors, likelihoods, and loss functions) and combine them according to

the rules of decision theory. Our results are consistent with a ‘realistic’ or sub-ideal

form of BDT, according to which subjects’ internal representation are approximate

(Chapter 3) and the decision making process itself is approximate or noisy (Chapter

4). When taking into account these elements, we did not find other major systematic

deviations from BDT. However, this does not mean that there are not any, as some

discrepancies may be mistakenly classified as ‘approximate priors’ or ‘decision noise’

by our current models. Specific studies need to be designed to look into nontrivial

deviations from BDT. For example, we investigated a potentially spurious influence of

trial uncertainty on error correction. We found that the phenomenon, albeit present,

did not significantly affect subjects’ performance (Chapter 5). In summary, we did
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not find evidence that we should reject BDT as a process model for decision making –

although we generally found that human observers are Bayes-sensible (‘probabilistic’)

but quite suboptimal (Ma, 2012). On the other hand, more work is needed to provide

positive evidence that substantiates the BBH beyond the computational level.

In fact, a major limitation of our work – as in all psychophysical studies – is that we

cannot provide direct proof that our models of internal representations and inference

are (approximately) correct. Aside from a good fit to the data (which, as we know,

has little to do with being correct, see e. g. Gelman et al., 2013), evidence is only

indirect, such as agreement between parameters of the models and independently

measured ones (Chapter 3), or the capacity of the model to reconstruct the true pri-

ors used in the task (Chapter 4). As it has been repeatedly pointed out (Maloney and

Mamassian, 2009; Ma, 2012; Ma and Jazayeri, 2014), proving that an observer is actu-

ally performing (approximate) Bayesian inference, as opposed to some heuristic that

mimics Bayesian inference, is quite difficult. Although some requirements have been

spelled out, such as the capacity to compute with changing levels of uncertainty on

a trial-by-trial basis, without performance feedback (Ma, 2012), and the ability to in-

stantly transfer probabilistic information from one context to the other (Maloney and

Mamassian, 2009), we note that the logic for testing that an observer is ‘Bayesian’ is

not dissimilar to that of a Turing test of human intelligence, i. e., presenting a series of

tasks that an observer can perform only if he or she has a working (Bayesian) brain –

with all the drawbacks and methodological issues of such definition. Nonetheless, as

more and more studies show successes and failures of human observers at Bayesian

tasks, we can focus our understanding of the inner workings of the probabilistic mind

and direct future research.

6.3 conclusions

In this thesis we challenged the human limitations in building complex statistical

representations of the sensorimotor task at hand, and in performing probabilistic

inference with them. At the same time, we used human data to put to the test our

models of human behaviour. This symmetry is also reflected in the fact that we used

the same machinery of Bayesian inference to estimate hidden properties of systems,

ideal observers, that are supposed to be performing Bayesian computations as well.

In every era, the functioning of the brain, or of the mind, has been assimilated to

the most advanced technology of the period – hydraulics in the ancient times, clock-

works in the Renaissance, electrical wirings in the Nineteenth century, and computers

in recent times (Daugman, 2001). Nowadays, machine learning and Bayesian analysis

techniques represent the state of the art of our technical knowledge for extracting
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meaningful information from large amounts of data. So, maybe the BBH is just an-

other step of this historical trend. However, it seems that this sequence of metaphors

is not merely an empty byproduct of the times. While fluid-based or mechanical

analogies fail to capture relevant properties of the brain, cable equations originally

developed for telegraphs do describe action potential transmission between neurons

(Hodgkin and Huxley, 1952), and the view of the brain as an information-processing

system has proven extremely fruitful in subfields, such as vision (Marr, 1982). The

fact that today we are studying brain processes with the same probabilistic tools that

we hypothesize the brain is using may be taken as a signal that this sequence of con-

ceptual paradigms is actually, slowly, recursively converging by successive iterations

to a peak of real understanding – and a promise for the years to come.
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A
M O D E L A N A LY S I S A N D C O M PA R I S O N

In this thesis we build several mathematical models of the systems of interest, which

are idealized human observers engaged in a psychophysical task. Our models serve

two purposes: (a) to present a compact description of the data at hand; and (b) to

capture real properties of the modelled systems, the human observers. Namely, we

want to infer hidden features of the observers from the experimental measurements,

a task for which we borrow the machinery of Bayesian inference described in Section

1.2. In this Appendix, we briefly revise a number of useful techniques for analyzing

and comparing models that we extensively use in the thesis.

a.1 inference of model parameters

Each model M is characterized by a parameter vector θM of parameters θM
1 , . . . , θM

kM
,parameter vector

where kM is the number of parameters of the model. Different models may have

different parametrizations so the specific form of θM depends on the model under

consideration – however, to avoid clutter, we remove the superscript M from the

notation, leaving it to the context.

Given a dataset D, we typically want to find the set of model parameters that best

captures the data under model M. In our case, a dataset is represented by a series of

trial data (π1, τ1) . . . (πN , τN), where N is the total number of trials for the dataset, πi

represents a vector of trial parameters for the i-th trial (for example, the trial number

and data regarding the stimulus showed), and τi represents a vector of observed

data in the i-th trial (e. g., the observer’s response). The πi are assumed to be fixed

(they may be random but their generative process is fully under the control of the

experimenter), whereas the τi are considered as random variables. The data likelihooddata likelihood

under model M and parameter vector θ can be written as:

Pr (D |θ, M ) = Pr (τ1, . . . , τN |π1, . . . , πN , θ, M ) =
N

∏
i=1

Pr (τi |πi, θ, M ) , (A.1)

where the last passage holds if we take the common assumption of statistical indepen-statistical independence

dence of measurements between trials. This assumption is an approximation, since

the observer’s behaviour in a trial is usually influenced by the events in the previous

trials, but Eq. A.1 does not represent a restriction because, if needed, we could add
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A.1 inference of model parameters

correlations between trials through the model parameters.1 The key quantity that a

model has to specify is the probability of observing the trial data, Pr (τ |π, θ, M ).

A common approach to finding the ‘best’ model parameters consists of maximizing

the probability of the data under the model, a method known as maximum-likelihood maximum likelihood

estimation (MLE). Due to the limits of computational precision, it is preferred to equiv-

alently maximize the log likelihood:

θML = arg max
θ

[ log Pr (D |θ, M )] = arg max
θ

[
N

∑
i=1

log Pr (τi |πi, θ, M )

]
. (A.2)

The advantage of MLE is that it is typically easy to obtain through numerical opti-

mization methods and it has several appealing asymptotic properties. On the other

hand, the ML estimate may overfit the data and does not provide any information

about uncertainty on the estimate.

The Bayesian approach aims instead at finding the full posterior distribution of

the parameters given the data, Pr (θ |D, M ), for a specific model. Applying Bayes’

theorem, Eq. 1.1, we find:

Pr (θ |D, M ) =
Pr (D |θ, M )Pr (θ |M )∫

Pr
(
D
∣∣θ̃, M

)
Pr
(
θ̃ |M

)
dθ̃

, (A.3)

where Pr (θ |M ) is the prior probability density of the parameters (which in general

depends on the model). In our work we typically assume statistical independence

between model parameters and use non-informative or weakly-informative priors, for non-informative

weakly-informativeexample uniform over a large interval that includes all plausible values, or with a

mild preference towards parameter values estimated from previous studies, when

available. However, this is not always the case: to prevent degeneracies, in Chapter 4

we performed an independent experiment to build strong priors of the sensorimotor

parameters of the subjects. As a health-and-safety rule, we avoid improper priors

(non-normalizable priors) when performing a model comparison among models with

different sets of parameters, since this may constitute a problem (see Section A.3).

The denominator of Eq. A.3 is the marginal likelihood of the model, the likelihood

averaged over all possible parameter values, and it is typically hard to compute (see

Section A.3), except for very low-dimensional parameter spaces (k = 1 or 2). For this

reason, we generally compute the posterior probability of the parameters via sam- sampling

pling from the unnormalized posterior, Pr (θ |D, M ) ∝ Pr (D |θ, M )Pr (θ |M ), using a

MCMC method such as slice sampling (Neal, 2003). We refer the reader to MacKay

1 Technically, Eq. A.1 states that the observed trial data are conditionally independent given the trial and
model parameters.
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(2003); Gelman et al. (2013) for an introduction to Monte Carlo methods applied to

inference problems.

The posterior distribution of the parameters automatically encodes the uncertainty

on the parameter estimates through its breadth in the various dimensions. Inspection

of this posterior distribution may highlight non-trivial interactions between parame-

ters and issues of identifiability. In fact, in a complex model several distinct combina-identifiability

tions of parameters may be able to explain the data equally well – especially since we

are dealing with a class of systems, ideal Bayesian observers, whose inner features

may be inherently non-identifiable (see Section 1.2.3). Lack of identifiability in the

form of a near-flat2 marginalized posterior for a specific parameter may also indicate

that a parameter has little or no effect on the model predictions. Note that we could

not become aware of such problems had we only calculated a ML estimate.

If analysis reveals that the marginalized posterior distribution of a parameter is

unimodal and reasonably peaked, it is meaningful to summarize the parameter with

a point estimate such as the mode (MAP) or mean of the posterior, or with a robust

estimator such as a trimmed mean. Nevertheless, for most computations we still want

to keep the full posterior distribution.

a.2 model predictions

The inferred values of θ from dataset D represent our ‘best’ estimates for the model

parameters under a specific model M. However, there is no guarantee that model M

allows for a good description of the data. Therefore, we perform a series of modelmodel checks

checks to validate our findings and to understand which features of the data are

and which are not captured by the model (Gelman et al., 2013). The most natural

validation is to compare predictions of the model against actual data or summary

statistics thereof. Let O (D) : {D} −→ R be an observable of the data, a function thatobservable

summarizes aspects of interest of the data in a single real number, such as the mean

response of the observer in a subset of trials (corresponding to a certain experimental

condition).

If we have a point estimate for the best model parameters, θ∗, such as the ML

estimate or the mean of the posterior, we define the predictive distribution of observablepredictive distribution

O as follows:

Pr (O |θ∗, M ) =
∫

δ
[
O
(
D̃
)
−O

]
Pr
(
D̃ |θ∗, M

)
δD̃, (A.4)

2 Or, more in general, equal to the prior of the parameter.
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where the formal integration is performed on all datasets that can be generated by

model M. In practice, we generate a number S of simulated datasets D̃1, . . . , D̃S ac-

cording to the generative model Pr (D |θ∗, M ) and approximate the predictive dis-

tribution with a set of samples
{
O
(
D̃1

)
, . . . ,O

(
D̃S

)}
. We can, then, compare the

agreement of the predictive distribution with the real observable O (D) by visual

inspection or with classical statistical methods.

In case the posterior distribution of the parameters is available, we can compute

the full Bayesian solution to the problem, the posterior predictive distribution: posterior predictive

distribution

Pr (O |D, M ) =
∫

δ
[
O
(
D̃
)
−O

]
Pr
(
D̃ |θ, M

)
Pr (θ |D, M ) dθδD̃, (A.5)

which again can be easily approximated by sampling – we first take a sample θ

from the posterior distribution and then generate a random dataset D̃ according to

Pr
(
D̃ |θ, M

)
.

As a conclusive remark, note that the in the extreme case the observables under

consideration may be the data themselves. However, sometimes we are not interested

for a model to capture all details of the data, but only a subset. Gelman et al. (2013)

contains a detailed chapter with additional techniques for model checking.

a.3 individual model comparison

So far we have only considered the case of a single model M, but we often face the

situation of having a whole set of alternative models {Mi}, for 1 ≤ i ≤ Nmodels, and

we want to determine which one is the ‘best’ model for a single subject dataset D. The

difficulty of model comparison is that we do not simply want the model that best fits model comparison

the data, but ideally we would like to find the ‘true’ model that characterizes some

real, independently verifiable aspects of the observer. Intuitively, this suggests that

we need to trade-off goodness of fit with some metric of model complexity, so to take

into account the fact that more flexible models tend to fit the data better (Pitt et al.,

2002). There are several approaches to model comparison, supported by different

schools of thought. In this thesis we use the following methods, chosen depending

on the circumstance.
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a.3.1 Marginal likelihood

The first approach to model comparison consists of proceeding along the Bayesian

road. For each model Mi, we compute the posterior probability of the model given

the data:

Pr (Mi |D ) =
Pr (D |Mi )Pr (Mi)

∑Nmodels
j=1 Pr

(
D
∣∣Mj

)
Pr
(

Mj
) , (A.6)

where Pr (Mi) is the prior probability of model Mi and we recognize Pr (D |Mi ) =∫
Pr (D |θ, Mi )Pr (θ |Mi ) dθ as the marginal likelihood of model Mi. Since the prior

probability is usually assumed to be equal across models and the denominator of Eq.

A.6 is equal for all models, we compare models directly according to their marginal

likelihood. The ratio of the marginal likelihood of two models is the Bayes factor,Bayes factor

which is a common metric of comparison (Kass and Raftery, 1995). In some occasions

we may quantify evidence in the same scale as the deviance, as other metrics describeddeviance

later, which leads to the formula −2 log Pr (D |Mi ) (where a higher score means less

support for the model). We usually report differences in evidence since only relative

evidence scores are meaningful.

A very appealing point of the marginal likelihood as a metric for model compari-

son is that it automatically includes a penality for model complexity due to BayesianBayesian Occam’s razor

Occam’s razor (MacKay, 2003). Namely, since the marginal likelihood is a probability

distribution over datasets, it needs to integrate to one. This simple requirement im-

plies that a complex, flexible model that can describe well a large number of datasets

has to give lower values for the likelihood of each ‘good’ dataset, compared to a

simpler model that is able to describe only a small number of ‘good’ datasets.

a.3.2 Laplace’s approximation of the marginal likelihood

Computation of the marginal likelihood requires a marginalization over all model pa-

rameters. As mentioned before, this calculation usually cannot be done analytically

and it is also hard to obtain numerically, unless the model has very few parameters

(2 or 3). A common approximation of the marginal likelihood is obtained through

Laplace approximation (see e. g., MacKay, 2003). Laplace’s method approximates theLaplace approximation

unnormalized posterior distribution of the parameters with an unnormalized multi-

variate normal distribution centered on the mode of the posterior, the MAP solution
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θ∗. The marginal likelihood is computed as the normalization factor of the posterior

distribution of the parameters:

log Pr (D |M ) = log
∫

Pr (D |θ, M )Pr (θ |M ) dθ

≈ log

[
Pr (D |θ∗, M )

√
(2π)k

det [A (θ∗)]

∫
N
(

θ
∣∣∣θ∗, A−1

)
dθ

]

≈ log Pr (D |θ∗, M ) +
k
2

log 2π − 1
2

log det [A (θ∗)] ,

(A.7)

where k is the number of parameters and A (θ∗), obtained through a Taylor expansion

of the (minus) log posterior at the peak, is the matrix of second derivatives (Hessian):

Aij (θ
∗) = − ∂2

∂θi∂θj
log Pr (D |θ, M )

∣∣∣∣
θ=θ∗

. (A.8)

Both the MAP solution and the determinant of the Hessian are relatively easy to

compute numerically. Note, however, that the marginal likelihood obtained through

Laplace’s approximation considers only the main peak of the posterior and clearly

works well only with posteriors that are close to Gaussian (which depends on the

choice of basis; see MacKay, 1998). Convergence to a normal posterior is verified for

large datasets and independent parameters but it may fail to hold for small datasets

or when there are complex interactions between parameters.

a.3.3 Information criteria and DIC

There are several other metrics for model comparison that explicitly include a term

of goodness of fit and a penalty for model complexity. In theory, these metrics instan-

tiate different assumptions and possess different asymptotic properties. In practice,

it is often found that the differences are subtle and no single metric is better than

the others in all cases. Akaike’s Information Criterion (AIC; Akaike, 1973) and the

Bayesian Information Criterion (BIC; Schwarz, 1978) are two well-known examples

of such metrics. In this thesis, we adopt the Deviance Information Criterion (DIC) by

Spiegelhalter et al. (2002). The advantage of DIC over other metrics is that it takes

into account an estimate of the effective number of parameters of the model and it is

particularly easy to compute given the output of a MCMC algorithm. The DIC score

of model M is calculated as:

DIC = 2

[
1

Nsmpl

Nsmpl

∑
i=1

D
(

θ(i)
)]
−D (θ∗) , D (θ) ≡ −2 log Pr (D |θ, M ) , (A.9)
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where D (θ) is the deviance given parameter vector θ, the θ(i) are MCMC parame-

ter samples (out of Nsmpl samples from the posterior), and θ∗ is a ‘good’ parameter

estimate for the model (e. g., the mean, median, or another measure of central ten-

dency of the sampled parameters). As a robust estimate of θ∗ we usually compute

a trimmed mean (discarding 10% from each side, which eliminates outlier parame-

ter values). Like other approximate methods, DIC is only valid when the posterior

distribution is approximately multivariate normal.

a.3.4 Complete continuous model

All previous methods assume that our main goal is model selection, that is the identifi-model selection

cation of the best model among a discrete set of alternatives. However, there are the-

oretical reasons for being wary of the Bayesian approach to model selection through

the marginal likelihood (or approximations thereof). The main problem is that the

marginal likelihood is sensitive to the choice of prior over parameters and this influ-

ence does not disappear with the acquisition of more data. For this reason, improper

priors over parameters are to be avoided in a model comparison, and some authors

eschew the marginal likelihood and Bayes factors altogether unless for very specific

cases (Gelman et al., 2013). An alternative Bayesian approach that avoids model selec-

tion consists of having a single continuous model that includes all models of interest

as special cases. Such a complete model can be analyzed in the usual Bayesian way

through the posterior distribution of the parameters. However, this solution is not

always feasible, sometimes because very different models cannot be resonably de-

scribed with the same parameter set, and in other occasions the scientific questions

of interest may call for a discrete answer (e. g., whether a given assumption is needed

or not to explain the data).

a.4 group model comparison

Another goal of model comparison can be to learn the model (or models) that over-

all best capture the group behaviour of the observers. The methods in Section A.3

allow us to compute a measure of evidence, ηij, such as the log marginal likelihood

or the DIC score, for each indivual dataset Di and model Mj. A simple measure for

group model evidence is the mean model evidence across subjects. Differences be-

tween models can be assessed through classical statistical methods such as t-tests

or ANOVAs (or non-parametric versions of the same tests). This method assumes

that all datasets have been generated by the same observer model, and all subjects

contribute independently to the evidence of each model.
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A more sophisticated approach treats both subjects and models as random factors,

that is, multiple observer models may be present in the population, and the poste-

rior probability over individual subjects’ models is inferred by taking into account

information from the whole group. These assumptions are at the core of the hierar-

chical Bayesian model selection (BMS) method developed by Stephan et al. (2009).

BMS uses an iterative algorithm based on variational inference to compute model

evidence from individual subjects’ log marginal likelihoods (or analogous measures

such as − 1
2 DIC). BMS is particularly appealing because it naturally deals with group

heterogeneity and outliers. Moreover, the output of the algorithm has an immediate

interpretation as the probability that a given model is responsible for generating the

data of a randomly chosen subject.

At times, we are not interested in evaluating a single model but we want to know

the performance of a whole subset of models (for an individual or for the group). This

is a natural question for a modelling technique recently called factorial model compar- factorial model

comparisonison (van den Berg et al., 2014), in which models are built factorially by mixing and

matching several independent components (factors) that may take different shapes

(levels). We may then ask what is the support from the data for a specific model com-

ponent, independently of all the others. If the posterior probability of each model

is available (either through a standard Bayesian computation or via BMS), the pos-

terior probability for a set of models is simply obtained by summing the posterior

probability of each model in the set.

206



B
A D D E N D A T O TA R G E T E S T I M AT I O N W I T H C O M P L E X

P R O B A B I L I S T I C I N F O R M AT I O N

In this appendix we describe a number of supplementary analyses and results for

Chapter 4. In Section B.1 we describe how two different models of noisy Bayesian

computations give rise to a target choice probability that is approximated by a power

of the posterior distribution (observer model SPK). In Section B.2 we report additional

analyses and data that support our results in Section 4.3.1. Finally, in Section B.3 we

describe results of an alternative way of performing model comparison based on

group DIC scores (GDIC), instead of the hierarchical method (BMS) used in the main

body of the thesis; we also report the results of a preliminary model comparison to

establish the parameters shared across sessions.

b.1 noisy probabilistic inference

In this section we introduce two alternative models of stochastic computations in

Bayesian inference (Section B.1.1). The first one (noisy posterior) comprises a repre-

sentation of the posterior corrupted by noise; in the second one (sample-based poste-

rior), a discrete, approximate representation of the posterior distribution is built out

of a number of samples drawn from the posterior. We show that, for the loss function

of our task, for both models the predicted distribution of chosen targets is quantita-

tively very close to a power function of the posterior distribution in the trial (Section

B.1.2). The generality of this result motivates the power function approximation used

for decision-making model level SPK (stochastic posterior), Eq. 4.10 in the main text.

Lastly, we show that, under specific assumptions, the stochasticity in the posterior

can also represent a certain type of noise in the prior (Section B.1.3).

b.1.1 Stochastic posterior models

According to Bayesian Decision Theory (BDT), the computation of the optimal target

s∗ for a given loss function L requires three steps:

1. Computation of the posterior probability ppost(s).

2. Computation of the expected loss, E(ŝ) =
∫

ppost(s)L(ŝ, s)ds.
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3. Computation of the target s∗ that minimizes the expected loss, s∗ = arg minŝ E(ŝ).

Step 1 corresponds to the inference step and is described by Eq. 4.5 in the main text. inference

Steps 2 and 3 correspond to action selection (Eq. 4.7 in the main text). action selection

In principle, noise in decision making could be added to any of the above steps.

For parsimony, here we consider models that add stochasticity to the computation (or

representation) of the posterior distribution (step 1), and we analyze how this noise

propagates to the inferred optimal target s∗. However, our results are compatible also

with noise injected at later stages (e. g., in action selection).

Noisy posterior

For ease of calculation, we convert the continuous posterior distribution ppost(s) to

a discrete probability distribution pi = ppost(si), for a discrete set of target values

{si}1≤i≤N , where we assume that the si cover uniformly the target space with dense

spacing ∆s.1

We model the computation of a ‘noisy posterior’ (step 1) by adding normally dis-

tributed noise to the posterior (see Figure 4.3b):

p̃post(s) =
N

∑
i=1

yiδ (s− si) with yi = pi + σ(pi)ηi, (B.1)

where the ηi are i.i.d. normal random variables and σ(pi) is the SD of the ‘decision

noise’, that in general depends on the value pi.2 For simplicity, the ηi are assumed

to be statistically independent but it is easy to extend the model to take into account

correlations in the noise.

For the form of σ(p) we consider two common alternative rules:

. A Poisson-like law: σPoisson(p) =
√

p/g, where we have defined g > 0 as a

‘neuronal gain’ parameter; higher gain corresponds to less noise. The rationale

for this rule is that the yi can be thought of as a population of N independent

units or channels (‘neurons’), each one noisily encoding the posterior probabil-

ity at a given target value si (see Figure 4.3b). The activation of each unit (‘firing

rate’), with a global rescaling factor g, takes the form yi = gpi +
√

gpiηi, which

approximates the response of a Poisson neuron with mean activation gpi.

1 The discretization step could be skipped by modelling continuous noise with a Gaussian process (Ras-
mussen and Williams, 2006). However, the discrete representation makes the model simpler and easier
to interpret. The lattice spacing ∆s is related to the correlation length of a Gaussian process and affects
the amount of noise and discretization error.

2 Formally, p̃post(s) as defined in Eq. B.1 is not a probability distribution since, aside of normalization,
it is not always non-negative (the pi’s may take negative values for large amounts of noise in the
inference). In this case the ‘noisy posterior’ could be interpreted simply as an intermediate step in a
noisy computation of the expected loss.
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. Weber’s law (multiplicative noise), in which the noise is proportional to the

probability itself, a form of variability which is typical to many sensory magni-

tudes: σWeber(p) = w · p, with w > 0 the Weber’s fraction.

For a fixed lattice spacing ∆s, this model of noise in decision making has only one

free parameter, g (or w), that sets the amount of variability in the inference. Note that

the ‘neural population’ description allows for an intuitive understanding of Eq. B.1,

but the noisy posterior model does not require to commit to this intepretation.

Sample-based posterior

This model assumes that a discrete, approximate representation of the posterior is

constructed by drawing K samples from the posterior (see Section 2.4.5 and Figure

4.3c):

p̃post(s) =
1
K

K

∑
i=1

δ
(

s− s(i)
)

with s(i) ∼ ppost, (B.2)

where the s(i) are i.i.d. samples from the posterior. The parameter K is inversely

proportional to the noise in the representation.

Target choice distribution

For a given posterior distribution ppost(s), Eqs. B.1 and B.2 allow us to compute

several instances of a stochastic posterior p̃post(s) which, after minimization of the

expected loss, entail different chosen targets s∗. By repeating this procedure and bin-

ning the results, we can obtain the shape of the distribution of target choices ptarget(ŝ)

for a given model of stochasticity (see Figure 4.3e & 4.3f). However, this method is

computationally very expensive.

A simple expression for ptarget(ŝ) is needed in order to make efficient use of a

stochastic posterior model in data analysis, e.g. to compute the marginal likelihood

of a dataset. Our goal is to show that the target choice probability of these noisy

decision-making models is well approximated by a power function of the posterior

distribution:

ptarget(ŝ) ∼
[
ppost(ŝ)

]κ , (B.3)

where κ ≥ 0 is an appropriate exponent that is the direct equivalent of the noise

parameter g, w or K; higher values of κ correspond to less decision noise. In gen-

eral, we would like the exponent in Eq. B.3 to be a function of the noise parameter,

that is for example κ = κ(g), where the mapping does not depend on the posterior
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distribution itself but only on the decision noise level (note that the mapping will

depend on other fixed details of the model such as the loss function, and the chosen

discretization spacing ∆s for the ‘noisy posterior’ model).

b.1.2 Results

We computed the target choice probability predicted by the stochastic posterior mod-

els in our task (noisy posterior with either Poisson-like or Weber’s law noise, and

sample-based posterior). We chose as loss function the inverted Gaussian approxima-

tion used by the observer models in the main text (see Section 4.2.3; results did not

qualitatively change with the square well loss). We took as posterior distributions a

representative set of all posterior distributions of the task, built out of several combi-

nations of prior, cue position and cue type (low-noise and high-noise cues), for a total

of about 1000 posterior distributions. We took several levels of decision noise (values

of g, w or K, depending on the model), ranging from an approximately correct in-

ference to an extremely noisy inference. For each posterior distribution and decision

noise level we calculated the shape of the target choice distribution via Monte Carlo

sampling (105 samples per distribution).

Figure B.1 shows the target choice distributions and related posterior-power fit dis-

tributions (Eq. B.3) for three illustrative posteriors and five levels of decision noise for

the noisy posterior model with Poisson-like noise. For high levels of decision noise,

the target choice distribution resembles the posterior distribution (i.e. a posterior-

matching strategy), whereas for low levels of decision noise it becomes a narrow

distribution peaked on the mode of the posterior (the model tends to a MAP strat-

egy for g → ∞). This may intuitively explain why a power function of the posterior

would be a good approximation of the target choice distribution.

We quantified how well a power function of the posterior can approximate the

target choice distributions in terms of Kullback-Leibler (KL) divergence. For each

noise level, we computed the exponent κ that minimizes the KL divergence between

posterior-power distributions and target choice distributions in the set (crucially, the

same exponent κ fit simultaneously all ∼ 1000 distributions). To assess the goodness

of fit in our experiment, we computed mean and SD of the KL divergence according

to a log-normal approximation of the posterior distribution of the values of κ found

in the test sessions for our subjects (see ‘Analysis of best observer model’, Section

4.3.3).

In general, we found that the posterior-power fit approximates quite well the target

choice distribution of all stochastic posterior models. The KL divergence between the

true distribution and its approximation was ∼ 0.02± 0.02 nats (mean ± SD across
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the distribution of values of κ) for all distinct models of noisy inference. These values

are equivalent to the KL divergence between two Gaussian distributions with same

SD and whose means differ by about one-fourth of their SD.

This analysis shows that a power function of the posterior represents a good ap-

proximation of the distribution of target choices of a Bayesian oberver that takes ac-

tion according to a noisy or sample-based representation of the posterior. This result

provides a sound basis for the analytical form chosen for model level SPK (stochastic

posterior), Eq. 4.10 in the main text.

Figure B.1: Posterior-power approximation of the noisy posterior model. Compari-
son between the target choice distributions computed according to the true noisy pos-
terior model (here with Poisson-like noise) and their posterior-power approximations.
The various panels show the target choice distributions ptarget(ŝ) (blue lines) and the
associated posterior-power fits (red dashed lines) for different posterior distribution
and noise level g in the computation. Each column corresponds to a different illustra-
tive posterior distribution, shown on top, divided by class (Gaussian, unimodal and
bimodal). Each row, excluding the first, corresponds to a different level of decision
noise, with noise decreasing from top to bottom. Analogous fits were found for the
sample-based approximation of the posterior.
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b.1.3 Stochastic posterior from unstructured noise in the prior

We show here that the posterior noise model SPK may also subsume the unstructured

components of noise in the prior.

If we assume that the internal measurement of the prior is corrupted by multi-

plicative sensory noise (according to the approximate Weber’s law for density or nu-

merosity esimation; Ross, 2003) and that it changes smoothly in the target position,

the estimated prior can be written as:

p̃prior(s) = pprior(s) · (1 + ε(s)) , (B.4)

where ε(s) is a Gaussian process with zero mean and some appropriately chosen SD

and covariance function (Rasmussen and Williams, 2006). Crucially, if the observer

uses Eq. B.4 to build a posterior distribution, we obtain:

p̃post(s) = ppost(s) (1 + ε(s)) , (B.5)

where ppost(s) is the usual, non-noisy posterior (Eq. 4.5 in the main text). Eq. B.5, once

appropriately discretized, is formally equivalent to the equation we used to describe

a noisy posterior with multiplicative noise (Eq. B.1; see also Figure 4.3b). Therefore,

under these assumptions, the random, unstructured components of noise in the prior

can be absorbed within the noisy posterior model.

Note that the estimation noise on the prior that we considered in Section 4.2.3,

model factor P, is a structured form of noise that varies along task-relevant dimen-

sions (such as the width of the prior or the relative weights of bimodal priors).

Whereas structured noise can be identified at least in principle, teasing out which

stage or component unstructured noise belongs to represents a greater challenge. For

example, an experiment that involves a variable number of inference step may be

able to distinguish whether noise stems from the computation of the posterior, which

is repeated at every step, or from noise in the encoding of the original prior, which

happens only once. A paradigm of this kind has been recently used to explore similar

issues in a perceptual categorization task (Drugowitsch et al., 2014b). However, this

method is still unable to distinguish whether noise appears in the first step (in the en-

coding or recall of the prior) or at the very last stage, during action selection. Another

way to identify noise in the prior could consist in imposing a strong hyperprior on

the subjects via extensive training. The level of attraction to such hyperpriors, once

learned, may be indicative of the amount of uncertainty in the subjects’ measurement

of the prior.

212



B.2 supplementary data analysis

b.2 supplementary data analysis

b.2.1 Translational invariance of subjects’ targeting behaviour

In Chapter 4 we assumed that all variables (e. g., cue position xcue, subjects’ response r,

target position s) can be expressed relative to the current location of the prior (µprior);

a shift of µprior simply produces an equal shift in all other position variables. That

is, subjects’ behaviour is independent of screen coordinates (translational invariance).

The alternative hypothesis is that subjects’ responses instead show some form of

bias that is screen-coordinate dependent, for example a central tendency towards the

middle of the screen.

In order to test whether subjects’ relative responses depend on the absolute loca-

tion of the prior, for each subject we fit a linear regression line to the relation between

the relative response r̃ = r − µprior and the prior mean µprior across all trials of the

training session. Given the generative model of our task, we expected the average

relative response to be zero irrespective of prior mean, 〈r̃〉 = 0 and therefore tested

whether the slope or intercept are different than zero. For almost all subjects, the

slope and intercept were not significantly different than zero (p > 0.05). For two sub-

jects we found that slope or intercept may have been significantly different from zero

(p = 0.002 and p = 0.04). However, even in these cases a correction for multiple com-

parisons (n = 24) suggests that the these differences are not statistically significant

or at most marginally so. This analysis confirms that subjects’ responses in general

do not show statistically significant departures from the assumption of translational

invariance.

b.2.2 Success probability

Figure B.2 shows the success probability averaged across subjects, divided by sessions

(see ‘Optimality index and success probability’ in Section 4.2.2). Note how the success

probability depends substantially on the prior and on the magnitude of noise of the

cue, that is on the amount of available probabilistic information, as opposed to the

near-constancy of the optimality index (Figure 4.7).

b.2.3 Inverted Gaussian loss function

We show here that the inverted Gaussian loss function described by Eq. 4.17 is a very

good approximation of the true loss model of the task, the (inverted) boxcar loss
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Figure B.2: Group mean success probability for all sessions. Each bar represents the
group-averaged success probability for a specific session, for each prior (indexed from
1 to 8) and cue type, low-noise cues (red bars) or high-noise cues (blue bars). Error
bars are SE across subjects. Priors are arranged in the order of differential entropy
(i.e. increasing variance for Gaussian priors), except for ‘unimodal test’ priors which
are listed in order of increasing width of the main peak in the prior. The dashed
line represents the maximal success probability for an ideal observer. The continuous
line represents the ‘postdiction’ of the best Bayesian model, BDT-P-L (see ‘Analysis
of best observer model’ in Section 4.3.3). Compare this figure with Figure 4.7 in the
main text, which shows the optimality index.

(Eq. 4.16). In order to compare the Gaussian loss with the boxcar loss, we computed

the expected RMSE of the predicted target location between the true loss function

(boxcar with `∗ = 0.083 screen units, the cursor diameter) and its approximation

(inverted Gaussian), averaged over the distributions of targets and cues in our task.

We excluded from the analysis single-Gaussian priors, since in that case the predicted

optimal target is identical for both loss models. We repeated the calculation for a

range of values of the scale of the inverted Gaussian, σ`, finding the value for which

the inverted Gaussian loss best approximates the true loss function of the task in

terms of observable behaviour (minimum RMSE). We found an optimal value of σ∗` ≈
0.027 screen units, close to the SD of a boxcar distribution (i.e. continuous uniform)

of range `∗, which is 0.024 screen units. For σ∗` , the total RMSE is 1.2 · 10−4± 1.5 · 10−4

screen units (mean ± SD across different conditions), which is on average less than
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a tenth of a mm. In terms of performance, the optimality index of an ideal Bayesian

observer that uses the inverted Gaussian loss in place of the boxcar loss is 0.9999±
0.0001 (mean ± SE across conditions), which is empirically indistinguishable from 1.

This analysis shows that the inverted Gaussian loss approximates the behaviour of

the boxcar loss far below empirical error for our set of distributions. Hence, we can

use the inverted Gaussian loss function for our Bayesian observer models without

loss of generality.

The inverted Gaussian loss has several advantages over the boxcar loss (see Section

1.2.2). Primarily for us, it allows us to derive an analytic expression of the expected

loss that involves only sums of Gaussian distributions (Eq. 4.7). In addition to theo-

retical appeal, experimentally the inverted Gaussian loss has been proven to account

very well for people’s behaviour in a spatial targeting task (Körding and Wolpert,

2004b).

Observer model with free loss width

In the main analysis we either fixed σ` to the value that best approximates the square

well loss or we considered models that explictly or implicitly assume a quadratic loss

(σ` → ∞). Here we examine the performance of an extended BDT-P-L model (the best

model that follows BDT) in which the loss width σ` is allowed to vary freely. Since

the parameter σ` is irrelevant for Gaussian posteriors, we perform this analysis only

for non-Gaussian posteriors. Given the typical scale of the posteriors in the task, a

value of σ` & 0.2 screen units should be considered near-quadratic for all practical

purposes.

We find that subjects fall in two classes with respect to the posterior distribution

of parameter σ`. For the majority of subjects (10 out of 16), mostly in the bimodal

session, the posterior is peaked around σ` = 0.11 ± 0.02 screen units (mean ± SE

across subjects), which is significantly higher than the ‘true’ value (σ∗` = 0.027 screen

units; signed rank test, p < 0.01) but still qualitatively different from a near-quadratic

loss. For the other six subjects the posterior is much broader and flat in the range of

σ` from 0.2 to 1 screen units, compatibly with a near-quadratic loss. In fact, according

to the comparison between alternative models of decision making, these subjects

show some preference for a quadratic loss or, similarly, a low-order approximation of

the posterior (see Figure 4.11a in the main text and Figure B.4a here, subjects 10–14

and 18). However, note that most of these subjects belong to the unimodal group,

where posteriors are still very close to Gaussians and therefore the exact value of the

loss width may not be necessarily meaningful. The reason why we find a relatively

large loss width in the case of a BDT observer is that it needs to account for large,

posterior-dependent targeting errors that are explained instead by stochasticity in
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decision making by the SPK observer (in neither case posterior-dependent errors can

be adequately explained by constant motor noise σmotor).

Performance of model BDT-P-L with variable loss is better than its corresponding

version with fixed σ` (∆DIC = −11.5± 4.0, p < 0.05), but still slightly worse than

a model with variability in decision making with the same number of parameters,

SPK-L (∆DIC = 22.5± 8.9, p < 0.05). In conclusion, allowing a degree of freedom

to the loss function at most slightly improves model performance for BDT but does

not seem to provide a better explanation for the data than models with variability in

decision making.

b.3 supplementary model comparisons

In this section we describe the results of a slightly different method for model com-

parisons (Section B.3.1) and a preliminary comparison that we performed to establish

which model parameters are shared between training and test session (Section B.3.2).

b.3.1 Model comparison with group DIC

We report here the DIC scores of invidual models for all subjects, and results of

the group DIC (GDIC) model comparison. DIC scores are used in the main text to

approximate the marginal likelihood of each dataset and model within a hierarchical

Bayesian model selection (BMS) framework (Stephan et al., 2009). Here we also use

DIC scores to compute the average impact of each model factor.

Basic model comparison

Figure B.3a shows the model evidence for each individual model and subject. We

calculated model evidence as the difference in DIC between a given model and the

subject’s best model (lower values are better). A difference of more than 10 in this

scale should be considered strong evidence for the model with lower DIC. Individual

results show that model SPK-P-L performed better than other models for almost all

datasets, with the exception of a minority that favoured model SPK-P instead. Unlike

our BMS analysis, here we see a considerable similarity of performance between

model SPK-P-L and SPK-S-P-L, although the latter performs slightly worse than the

former in almost all cases. Figure B.3b shows the group average DIC (GDIC), relative

to the model with lowest average DIC (lower scores are better). SPK-P-L is confirmed

as the best model. Model SPK-S-K-L comes second in terms of average score, but

note that the difference with SPK-P-L is significant (pairwise signed-rank test with
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Bonferroni correction for multiple comparisons, p < 0.001). This suggests that the

extra model factor S is not improving model performance, and therefore that SPK-

S-P-L is not a ‘good’ model, in agreement with the small support it obtained in the

BMS analysis (see Section 4.3.3).
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Figure B.3: Comparison between individual models (DIC scores). a: Each column
represents a subject, divided by test group (all datasets include a Gaussian training
session), each row an observer model identified by a model string (see Table 4.1). Cell
colour indicates model’s evidence, here displayed as the DIC difference (∆DIC) with
the best model for that subject (a higher value means a worse performance of a model
with respect to the best model). Models are sorted by their group average DIC score
(see panel b). Numbers above cells specify ranking for most supported models with
comparable evidence (∆DIC less than 10). b: Group average ∆DIC score, relative to
the best model (mean ± SE). Higher scores indicate worse performance. Asterisks
denote significant difference in DIC between a given model and the best model, after
correction for multiple comparisons: (∗) p < 0.05, (∗∗∗) p < 0.001.

Comparison of alternative models of decision making

We consider first the model evidence for each individual model and subject (Figure

B.4a). Results differ depending on the session (unimodal or bimodal). In both sessions

model SPK-L performs consistently well, closely followed by model SPK. However, in

the unimodal session there are quite a few subjects whose behaviour is well described

by several other models. These results are summarized in Figure B.4b, which shows

the group DIC relative to the model with lowest average DIC (lower scores are better).

Due to the difference between sessions we separately computed the group averages

for the unimodal and bimodal group. GDIC analysis in the unimodal session alone

fails to find significant differences between SPK-L and several other observer models.
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Conversely, GDIC shows significant results in the bimodal session, finding that all

models but SPK perform worse than SPK-L.

These results agree with the BMS analysis in the main text in indicating SPK-L

as the best model, but otherwise present quite a different pattern. Discrepancies be-

tween the two model comparison methods emerge for the following reasons. Firstly,

as mentioned in the main text, BMS is not affected by outliers and by construction

takes into account group heterogeneity, contrarily to DIC. Secondly, posteriors in the

unimodal session may still be very close to Gaussian and therefore distinct models

share very similar predictions, which DIC scores alone cannot disambiguate. The hi-

erarchical probabilistic structure of BMS, instead, allows information to flow between

global model evidence and individual model evidence for each subject (respectively α

and unk in Stephan et al., 2009), at each iteration of the model comparison algorithm.

This propagation of belief led BMS to discard less likely models in the main text.
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Figure B.4: Comparison between alternative models of decision making (DIC
scores). We tested a class of alternative models of decision making which differ with
respect to predictions for non-Gaussian trials only. a: Each column represents a sub-
ject, divided by group (either unimodal or bimodal test session), each row an observer
model identified by a model string (see Table 4.1). Cell colour indicates model’s ev-
idence, here displayed as the DIC difference (∆DIC) with the best model for that
subject (a higher value means a worse performance of a model with respect to the
best model). Models are sorted by their group average DIC score across both sessions
(see panel b). Numbers above cells specify ranking for most supported models with
comparable evidence (∆DIC less than 10). b: Group average ∆DIC, divided by test
group (unimodal or bimodal session), relative to the best model (mean ± SE). Higher
scores indicate worse performance. Asterisks denote significant difference in DIC be-
tween a given model and the best model, after correction for multiple comparisons:
(∗) p < 0.05, (∗∗) p < 0.01, (∗∗∗) p < 0.001.
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Comparison of distinct model components

We assess the relevance of each model level within a factor by measuring the average

contribution to DIC of each level across all tested observer models, relative to the best

level (Figure B.5). This is the GDIC counterpart of the BMS computation of the pos-

terior likelihood of each model component (Figures 4.10c and 4.11c in the main text).

Results of the GDIC analysis are qualitatively similar to BMS for all factors, with the

sole exception of factor S (sensory noise in estimation of the cue position). BMS rejects

factor S, whereas from GDIC we can see that, on average, it seems that not having

factor S decreases model performance (∆DIC: 33.0± 5.6, mean ± SE across subjects).

This is not a contradiction: for many simple observer models the addition of any

reasonable form of noise, including cue-estimation noise, will improve model perfor-

mance. However, model factor S becomes redundant when other more fitting forms

of noise are present. Since GDIC weights equally all model contributions, model S

appears to have a useful influence on model performance due to the average contri-

bution of ‘simpler’ models. On the contrary, BMS weights evidence differentially and

component S appears to be irrelevant for the most likely models (see Section 4.3.3).
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Figure B.5: Influence of different model factors on DIC. Difference in DIC between
different levels within factors, relative to the best level (lowest DIC); highest scores
denote worse performance. Each group of bars represent a factor, each bar a level
within the factor, identified by a model label (see Table 4.1 in the main text). Error
bars are SE across subjects. Asterisks denote significant difference in DIC between a
given level and the best level, after correction for multiple comparisons: (∗) p < 0.05,
(∗∗) p < 0.01, (∗∗∗) p < 0.001. a: Factors in the basic model comparison. b: Factors in
the comparison of alternative models of decision making. Label ‘¬GA’ stands for no
Gaussian approximation (full posterior).
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b.3.2 Model comparison for different shared parameters between sessions

In the analyses in the main text we assumed that each subject shared two parameters

between the training session and the test session (the motor noise σmotor and the ratio

between the cue noise, σ̃high/σ̃low), whereas all the other parameters were specified

separately for the two sessions (see Section 4.2.4). Here we motivate our modelling

choice by showing that it is optimal, at least on a subset of observer models. By

‘optimal’ we mean that models that share more parameters between sessions perform

substantially worse, whereas models that share less parameters (and therefore have

more free parameters to specify) do not provide a significant advantage.

For the current analysis we consider a set of variants of observer model SPK

(stochastic posterior). We focus on this model since it is the simplest model with the

‘best’ decision-making component, as found in the main text. These variants differ

from the standard SPK model only with respect to the number of parameters shared

between training and test sessions. For a single session, model SPK can be charac-

terized by four parameters (σmotor, σ̃low, σ̃high, κ; see Section 4.2.3). Table B.1 lists the

considered variants, labelled by number of parameters shared across sessions (model

SPK#2 corresponds to the variant adopted in the main text).3

Model Total number of parameters Free parameters (θ)

SPK#4 4 σmotor, σ̃low, σ̃high, κ

SPK#3 5 σmotor, σ̃low, σ̃high, κ × 2

SPK#2 6 σmotor, σ̃low, (σ̃high, κ)× 2

SPK#1 7 σmotor, (σ̃low, σ̃high, κ)× 2

SPK#0 8 (σmotor, σ̃low, σ̃high, κ)× 2

Table B.1: Observer model SPK with different shared parameters. Table of observer
models based on SPK (stochastic posterior) but with different number of shared pa-
rameters (model SPK#2 corresponds to the version in the main text). The number
after the ‘#’ symbol represents the number of parameters the model shares between
training and test session. For each model it is also specified the total number of free
parameters used to characterize both sessions. A ‘×2’ means that a parameter is spec-
ified independently for training and test sessions; otherwise parameters are shared
across sessions. See main text for the meaning of the various parameters.

Here we use GDIC instead of BMS since we want to find the modelling choice

that works best on average for all subjects. Figure B.6 shows the relative DIC scores

of the model for different number of shared parameters. Unsurprisingly, the model

3 Although there are in total 16 variants of model SPK that share different combinations of parameters
between sessions, the five models in Table B.1 represent the most natural combinations, in order of
increasing model complexity.
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with lowest group DIC is the model with the highest number of parameters (SPK#0).

However, models SPK#1 and SPK#2 closely match the performance of model SPK#0.

In particular, the difference between SPK#2 and SPK#0 is nonsignificant (∆DIC =

3.5± 2.1; p = 0.55). Conversely, observer models with 3 or more shared parameters

perform significantly worse (e. g.., for SPK#3: ∆DIC = 32.4± 7.3; p < 0.001).

These results show that a model that shares the motor noise parameter and the

ratio between the estimated cues’ SDs between sessions achieves the optimal balance

between model fit and simplicity, supporting our choice in the main text.
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Figure B.6: Comparison of models with different number of shared parameters.
Model comparison between observer models based on model SPK but with different
number of shared parameters between sessions. a: Each column represents a subject,
divided by test group (all datasets include a Gaussian training session), each row
an observer model identified by a model string (see Table 4.1). Cell colour indicates
model’s evidence, here displayed as the DIC difference (∆DIC) with the best model
for that subject (a higher value means a worse performance of a model with respect
to the best model). Models are sorted by their group average DIC score (see panel
b). Numbers above cells specify ranking for most supported models with comparable
evidence (∆DIC less than 10). b: Group average ∆DIC score, relative to the best model
(mean ± SE). Higher scores indicate worse performance. Asterisks denote significant
difference in DIC between a given model and the best model, after correction for
multiple comparisons: (∗∗∗) p < 0.001.
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