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PREFACE

This thesis is concerned with attempts to extend the concept
of numerical range. Up to the present time this work has largely
been confined to extensions for the algebra of operators on Hilbert
space, In a series of papers beginning in 1969 V.B. Arveson
[4,526] replaced the algebra numerical range of an operator on
Hilbert space by sets of matrices and showed that these "matrix
ranges" form a complete set of unitary invariants for irreducible
compact operators, At about the same time S.K. Parrott [4,$26]
considered a matrix range which generalised the spatial numerical
range. He showed that the sequence of these ranges form a complete
set of unitary invariants for compact operators with trivial
reducing nullspaces. This range is closcly related to the concept
which we investigate in our first chapter,

It was noted by P.R. Halmos in his Hilbert space problem book
[12, Page 111] that the classical spatial numerical range of a
Hilbert space operator is a particular casec of a multi~-dimensional
concept, It is a study of this range, which we call the Halmos
k-numerical range, that forms the content of our first chapter.
Apart from a result on the convexity of this k-range no published
work seems to have appeared until 1971 when P.A. Fillmore and
J.P. Williams [11] exploited the range for operators on finite
dimensional spaces. We confine our study to operators on Hilbert
spaces of infinite dimension. The sets possess many elegant
properties. e show that the behaviour of the k-ranges
characterises compactness, A simple description of the k-range

of a compact normal operator allows us to deduce that the ranges



- BAE =
form a complete set of unitary invariants for compact normal
operators with trivial kernels. The full unitary invariants
theorem of S.K. Parrott does not hold for the Halmos ranges.

We are unable to give any general necessary and sufficient conditions
for the k-range of an operator to be closed, however we give a
positive result for the special case of the k-range of a compact
operator. The background to the chapter is one of standard
functional analysis and operator theory, the most well used result
being the Spectral theorem, In the face of the same notation
occuring in the established literature for two different concepts

we follow F.F, Bonsall and J. Duncan [4] and use Wk(A) for the
Parrott matrix range of A, and we adopt Pk(A) to denote the

Halmos k-range of A,

We have referred to the main results in the successful theory
of matrix ranges of operators on Hilbert space. The problem of
whether corresponding ideas can be formulated and developed for
operators between general Banach spaces has been raised by
F.F. Bonsall. Ve are indebted to F.F. Bonsall for access to some
unpublished ideas on the subject. Faced with the scarcity of
structure on a completely general Banach space and the problems of
developing a general theory which result, we have taken a particular
example of the Banach space of summable sequences, This space
possesses & readily identifiable dual and pre-dual which can be
exploited, We introduce a definition and develop a theory. We
show that our matrix ranges are "invariants" for compact diagonal

operators and compact weighted shif'ts with zero kernels.
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Finally chapter 3 introduces a new concept which extends the
notion of the numerical range of an element of an arbitrary unital
normed algebra. Tle have christened this extension the Williams
k-numerical range. The observation arose from a description of
the numerical range by J,P, Williams as an intersection of closed
discs. We examine the implications for the algebra that the
Williams range should be a printer for each integer k, and we
consider a natural extension of the k-range to a joint concept for
several elements of a unital normed algebra.

So far as the background material on numerical ranges is
concerned our list of references does not include any individual
papers. Vie have tried to attribute known results where possible
to the author concerned and refer the reader to the books of
F.F. Bonsall and J. Duncan [3] and [4]. These provide an invaluable
exposition of the known work in this field together with an extensive

list of references.

The work contained in this thesis was carried out at Edinburgh
University as a research student under Professor F.F. Bonsall.
I wish to record my appreciation of his good advice and guidance.
fie has shown a continued interest in my work and offered ideas and
much constructive criticism and encouragement.
I am fortunate to have had discussions with Professors
P.R. Halmos and J.P. Williams during their visits to Britain in 1972
Finally I owe a considerable debt of gratitude to my parents
and friends for their understanding and encouragement.
For the past three years I have been supported by a Research

Studentship from the Science Research Council.

Edinburgh July 1974
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NOTATION

Throughout this thesis we adopt the following notation. An

index of symbols on page 86 incorporates additional notation

introduced during the text.

e

r £

pa=

p*

lrgy

denote the sets of real and complex numbers respectively.
denotes the set of positive integers.
denotes the complex conjugate of an element p € G .

denotes the argument of u € ¢ (O<Argu <2m ; Arg 0= 0).

Re g, Impu denote the real and imaginary parts respectively of u € C,

A(NT) , A MMr) = {3 €O |z = Al<r } (A€ C ; r>0) .

A

wl

int S

ExtS

Spani

5,(X)

B(X)

K(X)

ker(T)

5(03;1) is generally abbreviated to A .
denotes the polynomial convex hull of the compact set KQE?
denotes the closure of a subset S of a topological space.
denotes the boundary of S (i.e. dS = S5ns® 1
denotes the interior of S .
denotes the set of extreme points of a subset S of a
linear topological space,
Let (X,A) be a Banach space. Let 2 C X.
denotes the set of all f'inite linear combinations of
members of 2 .
(abbreviated to S(X) when the norm on X is understood)
denotes the unit shell of X (i.e. SA(X) = {xeX : Mx)=11 ).
denotes the space of all bounded linear operators mapping
X into X. The abbreviation of bounded linear operator
to operator is used throughout.

denotes the bi-ideal of compact operators in B(X) .

denotes the kernel of T € B(X) .
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Sp(T),pSp(T) denote the spestrum and point spectrum respectively
of T € B(X).
Let H be a complex Hilbert space.
dim$§ denotes the (Hilbert) dimension of a subspace S of H .
T* denotes the adjoint of T € B(H).
ReT, InT denote the real (= (T+T*)/2 ) and imaginary ( = (T-T*)/2i )
parts respectively of T € B(H),
Let A be a unital normed algebra.
r(a),v(a) denote the spectral radius and numerical radius
respectively of a € A .
p(4,1) (abbreviated to D(A) ) denotes the set of states of A

(i.e. D(A,1) = f £ et ¢ el =2(1) =11).

DECLARATION

This thesis embodies the results of my own work and

has been compcsed by myself,

signed: D—J—%"vk@d



CHAPTER 1

THE HALMOS k-NUMERICAL RANGE

$1. Definition, properties and examples.

OQur aim has been to study the k-range of operators on Hilbert
spaces of infinite dimension. In this account we omit discussion
of the special prcperties which result from an assumption of finite
dimensionality on the underlying Hilbert space. These are well
documented in the paper entitled "Some convexity theorems for
matrices" by P.A, Fillmore and J,P. Williams [11]. We state and
prove those properties which hold for operators on Hilbert spaces
of infinite dimension. The section ends with some examples which
illustrate types of behaviour characteristic for certain classes

of operators.

Notation, Let H be an infinite dimensional complex Hilbert space.

Pk denotes the set of all (orthogonal) projections of rank k.

~

Ok denotes the set of all orthonormal k-tuples of elements of H,

~

ﬁg.denotes the two sided ideal of trace class operators in
B(H) and ||.|li denotes the trace class norm on 77 . e use the
=
abbreviation tr(4) to mean the trace of A whenever A € i% ;
1

Definition 1. Let k € N. The Halmos k~numerical rangq_of an

operator A € B(H) 1is the set of complex numbers

Pk(A) = § -11; tr(Pa) : P e B i %

The following proposition provides a description of Pk(A) in
terms of the set of orthonormal k-tuples of elements of H. The

relationship between Pk(A) and the classical numerical range



W(A) becomes transparent.

ROPOSITION 2, Let A€B(H). Then for k=1,2,...

AT ot e

\

i 3
P (4) = Lg ) ( (Axi,xi) ¢ (X ,%a,000,3)€0, 1«

=1
Given PeP, , choose any orthonormal k-tuple (X1 sX350e0sXk) Of
elements in the range of P Then
tr(PA) = tr(AP) = L (&Pxi,xi) = L (Axi,xi). Therefore we

i=1 i=1
have the inclusion [ Conversely, given (xi, > R ,xk){gk let

P be the orthogonal projection onto Spanixy,Xz,...Xk}. Then

L B

K
5 (Axi,xi) = ZJ(APx;,xL) = —tr(AP) = —tr(PA) which .
i=1 i= 1

gives the inclusion D,

THEOREM 3. Let AeB(H), keN . Then

(1) P1(A) = W(A), the ordinary numerical range of A ,
P(a*) =P (a)* ; P(aa+p =a(a) +8 (apg).

(2) Pk(A) is convex;

(8 B ,(8) Cp(8);

(4) Pk(u'1 AU) = Pk(a) if U is unitary;

(5) Pk(A) contains each arithmetic mean of k eigenvalues of
A, where each eigenvalue may occur in a mean at most as

many times as its multiplicity.

Proof. Parts (1) end (4) are immediate from Proposition 2.
Part (2) was first proved by €.A.Berger and we include
here an argument based on a proof by Halmos [ 12 ].

Let P,Q € Ek s 0O<a<1 , Let T be the operator QPIPH

regarded as a map from PH into gH. Let T= WS be the polar



o
decomposition of T where W is a partial isometry from PH into
QH and S is a positive operator mapping PH into PH., [Note that

aim(PH) = dim(qH) = k. O

t : T i 5 ST ). It is a conseg-
uence of the construction of the polar decomposition of T that
the initial space of W equals (Range S) and therefore we have
T =4S = US. By the finite dimensional Spectral theorem there
exists an orthonormal basis {xy,X2,...%xk} for PH such that
Sxi = aix; (i=1,2,...,k) for some scalars ;>0 (11,9 0505K) s
Let yi =Uxi (i=1,2,.04,k).  {¥1,¥250-.,3k} is an orthonormal
basis for QH. For each i=1,2,...,k let Zi{ Dbe the linear span
of x{ and yi. The subspaces Zi are pairwise orthogonal. To
prove this assertion, it suffices to show that x;,-i. yj whenever
itj since {Xy,Xz,...,%} and {y,,¥2,...,¥k] are orthonormal k-
tuples. However

(x1,¥4) = (Pxi,@y) = (Pxi,yJ) = (Txi,¥j) = @i(yi,yy) =0
vhenever ifj and therefore the assertion holds.

By the Toeplitz-Hausdorff theorem, there exist zi € Zi, MZL"=1
such that

(Azi,21) = ofAxi,xi) + (1-)(Ayi,yi)  (i=1,2,...,k).

{21,82,..0,2k} €0, and therefore

I

o r(ew) + (rmalf o) = ) mx) » BT o)

i= 1
S

= .1;)4 (Azi,21) € Pk(A). 0
=1

(3)., Let A€ P4 (A), then there exists an orthonormal k+1-tuple

x L tm k+1
!.1:3'52’ Jxk'l"l; such t A= k+1 L (Axuxl-)

i=1

1. 'Tﬂa.*efoe-e e enl a um'.l'cwk, me.fjr;x%, U: PH— QH
whick  covnciclea Wil W on TRe wailicl space f W.
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Any average M of k numbers selected from the set
{ (A%y 5% ),(A%2,%X2) 000y (AXkes,Xkse) | 1is a member of Pk(A).
A can be expressed as A= k_:-ﬁd‘ where the sum is taken over all
possible (k+1) distinct averoées e A is therefore a convex
combination of elements of Pk(A) which again belongs to Pk(A) by
part (2).,
(5). The (geometric) multiplicity of an eigenvalue A of A is
defined to be the (Hilbert) dimension of the kernel of AI-A ,
Let A,A25¢..,Ak be eigenvalues of A which satisfy the repetition
condition., Let P be the (orthogonal) projection onto the linear
span of the corresponding eigenvectors where, for repeated eigen-
values we choose orthogonal eigenvectors, With this precaution
we have Pegk. By the triangulation theorem for finite dimensicnal
Hilbert spaces, there exists an orthonormal basis { e4,ez,ee56k }

for PH relative to which the matrix for PAIPH (regarding PA|PH

as an operator mapping PH intc PH) has triangular form , The

eigenvalues Aq,A2,..,Ax oOccur down the main diagonal, Therefcre

th

Ai = the ii™" entry of the matrix for PAIPH

(PAeiyei) = (Aei,ei) (12152, 0009%) &

1}

7 &
Therefore k.L AL € Pk(A). 0

(T}

SOME EXAMPLES,

1. Projecticns. Let Q be a precjection on H, -then—if
(1) .3fQ has infinite dimensional kernel and range tfen
Pk(Q) s [0,1) (&=4,25000 ) &
(2) fdim(QH) =m < = ,ﬁhupk(o) =[[0,1] k=1,2,.00,m .

[O,E] k=m+1 ,m+2,... .
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Proof, The k-range of Q is bounded by the norm of Q ., Also
tr(PQ) 2 0 (P ¢ B,) . Therefore 0 < P.(Q) £ 1. For part (1)
and part (2) when 1 < k s m, select any orthonormel k-tuple
{ X1,%X2,.04,%k } Of elements lying in the range of Q «. Then
%ZK(QxL,xa) =1 € Pk(Q) . Similarly 0 is obtained as an elemeht
ggithe k-range by using any k orthonormal elements from the kernel
of Q . Now suppose kxm and let P be the orthogonal projection onto
any k-dimensional subspace of H containing QH, PQ = Q and there-

% For each P € P, we have

~k
and the result follows from

fore -112 tr(PQ) = % tr(Q) =
3 er(eq) < & 1Bl floll

the convexity of the k-range. []

L 1= ]

g i<

2. Isometries and Unitaries,

(1). Let U be a unilateral shift, then

(2). Let W be a bilateral shift, then P (W) =4 (k=1,2,..)

Proof. (1). U € B(H) is a unilateral shift if there exists an
orthonormal basis ien]:’ of H such that Ue =e . (n=1,2,... ).
It is well known that pSp(U*) = A and that W(U) = A. Any
complex number lying in A may be expressed as the average of k
distinct numbers also lying in A .  Applying Theorem 5 parts (1)
and (5) we have A C P (U0) < P,(U) =W(U) = &4 which gives the
desired result,

(2). W € B(H) is a bilateral shift if there exists an ortho-

normal basis {en ]"'ve (n ='—"1,-"-'2,...).

-0

of H such that We = e
n n+1

e exhibit direectly that P (W) contains a closed disc of radius

as close to one as we please,
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Let 6€E 3 RIEE . For j = 1,2,.0.,1{ let

1 imé i(m=-1)6 i@
V‘j =.J;1( em B‘J-1)m+1 + e( ) e(j-1)m+2 + ses + € €m )-

| VervaseeesvK] € 9 -

i i(m=1)6 ié
ij L\é( elmee(‘j-1)m+2 + el(m ) (Jj-1)m+3 +ese + € €jm+14 )

(Ef'v.,vj) = (E-E—)eie (.j=1,2,...,k).
’ st (n-1)

Therefore Pk(W) contains the closed disc,radius -I%—- . The

desired conclusion follows using the well known fact that

P_t(_t"i") = A, D

3. Compact Operators.

Let T Dbe a compact self adjoint operator with trivial kernel and
-]

spectral decomposition T = ZMEa where the Ei (i=1,2,... ) are
e 4

mutually orthogonal rank one projections and Ai2Ai«y>0 (i=1,2,... )s

K
Then Pk(T) = (0: J}.{. Y A ] (k=1!2so-- ) .

L=

Proof: Let (v,,vz,...,vk)egk .

oo [--]
- 2 =
(ij,vj) = Z)Ll(EiVj,VJ) = L/\thi?.jn (3=1,25000,k) «

K i= 1 - i= 1
1 2 K -
EZ (Tvj,vj) =L Ai %L "Ewﬂ{z ) =Z ayAq
e =1 J= 1 i=1

3
where o =%Z’ "EWJ"Z. Notice that 0 < ay s% (i=1,2,... )
E=

o0
and’ L @i €1, The maximum value of Z aiAi is attained when
heg =1

o

ﬂi.='1'1" (i=1,2,...,k) and this occurs if vi = ei (i=1,2,400,k) &

oo
It is clear that Z aiAi 2 0 and can be made as small as we please
i= 1 2
with suitable choices of § Vy,V2yeeesVk} €0, « Suppose Z aiAL =0

i.=1

for some iVqu:---:Vk!ka , then ;=0 (i=1,2,..,) and therefore

Span{ v4,v2,...vk} C H,‘La contradition., Hence 0{_'Pk(T) s 1



o
Remarks « Certain features of example(é) are interesting and provide
motivation for what follows, For this operator we have
hfiPk(T)— = {0}. In the next section we show that this property
characterises compact operators., The rahgos determine the eigen-
values of T together with their multiplicities., We show that
this is a general feature for compact normal operators. The ranges
of T are half-open half-closed intervals, An inspection of the
proof shows that under the assumption dim(kerT) =m we have the
same right hand end point for Pk(T), however OcPk(T) if and only
if kem, The dimension of the kernel of an operator therefore
plays a part in determining whether. the range is a closed subset
of the plane, We shall see that the spacing of eigenvalues

relative to the corigin alsc plays a part.

"]

92 The essential numerical range.

Theorem & of §1 shows that the k-ranges are nested subsets
cf the plane. This section deals with the problem: Describe
gﬁiPk(ﬂ)- (a€B(H)), To provide a complete account we include
a definition and some known results on the essential range of an
operator. The discussion leans heavily on 34 of "Numerical
Ranges IT" [ 4 ]. e have selected only those results necessary
in order to deduce our theorem. We have not listed individually
the original papers by the authors concerned, these mey be found

by consulting [ 4 ].
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Notation. Let (07 denote a complex unital Banach algebr%.
Let D(OU) denote the sst of statss of (. V(OT, a) denotes
the algebra numerical range of an element a€(J{ .

Let X be an infinite dimenaional.canplax Banach space.
Let K = K(X) denote the closed two sided ideal of compact operators
in B(X). Let = : B(X) 4'%%§} be the canonical homomorphism

of B(X) into the Calkin algebra.

‘Definition 1. Let TeB(X). The essential numerical range of T

Vess(T) is defined by

Vess(T) = V( %%%} » m(T) )

i.e. Vess(T) is the algebra numerical range of the canonical

image of T as an element of the unital Banach algebra % .

The following proposition is straightforward [4;34.2].

PROPOSITION 2. Let TeB(X). Then

[t}

(1). Vess(T) = N { V(B, T+K) : KekK(X) },

(2). VEss(T)

{ £(T) ¢ £eb( B(X) ), £( K(X) ) = {0} 1.

When H d4s an infinite dimensional complex Hilbert space we

have

COROLLARY 3. Given A€B(H),

Wess(A) =N | w( A+K )~ : Kek(H) }.
Proof. W(a) = V( B(H), 4 ). [

Notation: Let M be a (closed) subspace of H, let P, be the

orthogonal projection onto M, and let CM(A) denote the compression

of the operator AeB(H) to M. i.e. CM(A) = PMAIM .
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LENNA 4. (Fillmore, Stampfli, Williams )
& ;
Let 1} be a closed subspace of H such that M has finite

dimension. Then \Viess(4) = Wess(PMAPM) = l{ess CH(A) (A€B(H)) .

Proof, iirite P = PM - I-P has finite rank and therefore

A-PAP = (I -P)A(I -P) +PA(T = P) + (I -P)AP € K(H).
m(4)

u

m(PAP) and therefore Wess(A) = Wess(PAP) .

Suppose feD( B(H) ) annihilates the compact operators and
define g : B(M) »C by g(T) = £(TP) (TeB(N) ). g(IH)' = f(P)= 1
and TeK(M) => TPeK(H), therefore g is.a state on B(M) which
annihilates K(M).

f(PAP) = f(CM(A)P) = g(CM(A)) € Weas(CM(A)) by Proposition
2 part (2). Therefore Wess(PAP) SWess(CM(A)) ‘

Finally, let feD(B(%)) and £(K(3)).= {0} « Define
g : B(H) »¢ by g(T) = f(CM(T)) (TeB(H)). Then
g(1) = £(1) =1 and [l (Tl < |Ivll. Therefore ge D(B(1)) and
g ennihilates K(}) because the compression of a compact operator

is compact. Hence Wess(cﬁ(A)) C wess(a).[]

LEIfA 5. (Anderson, Stampfli )
Let AewWess(A) .« Then there exists a closed subspace E of

H with infinite dimension, an orthonormal basis {e for E,

(=]
k11
and complex numbers Ak such that

s lim A=A,

ko
{8)s CE(A) has matrix representation diag[)\k] relative

to the orthonormal basis [ek]1 g i.e. (Aej,ei) = ;Liaij .

Proof . By Gorollary 3, AcW(A)~ and therefore there exists a unit
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vector e,€H with |(Ae1,e1) - A| <1, The proof proceeds by
induction, Suppose that | es,€2,ese56n}€ 9, has been found such
that (Aejei) =0 (i 43 ) and |(Aei,et) - A | < % for’
1,3 #5250 00 slle

Let M = Spanf €4,€2,..0,€n,A81,A02,¢00,Ae0,A% ,A%e2,.0.,A%en]

)LfWess(CM(A)) by Lemma 4 and by Corollary 3 there exists a unit

1
vector ep+y € M such that | (CM(A)en¢1,en+1) - A | < E:? .
{er,e2,00useniade @ o 5 (Kejei) =0 (4,5 =1,2,,.,0415 1 3 )
and | (Aensssenes) = A | < 2 . Tek B e ihe closed Tinear

n+1
span of the infinite orthonormal set Iean obtained using this

Procedure and let A-k = (A,ek,ek) (k = 1,2,0.. ). []

We are now in a position to prove the new theorem of this
section,
THEOREW 6, Let Ae€B(H).

Then Wess(4) = 0 P.(a)" .
key Kk

Proof',
Let AeWess(A) and let E, [ekI:" , [)ok]:" be as in Lemma 5,

Let m be a fixed positive integer and define Wn € C (n=1,2,... )

C2-

by up = % (Aei,ei)s  Hne€ Ph(A) for n=m,m+1,... by the nested
i= 4

property of the k-ranges. Up > A as n > o, s0 A€ PE(A)-and
o0 - - = - o0 -
therefore AemfhPh(A). The inclusion TWess(A) 5%52 Pk(A) is

therefore established,
We may suppose that Oe€ kfi Pk(AJ-'by replacing A with

eA + B for suitable a,p € C . The proof is completed by showing
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A P(A)T = O (4)
that (013 'bﬂ‘ Pk A =8 € Wess i
For each k>1 there exists an orthonormal k-tuple {€4,€254..5€k]

such that

1K 1
| . ;(Aetset)l <=

Let f, be the linear functional on B(H) defined by

fk(T) = %i (Tei,ei) (Te B(H)) . £, «D(B(H)) .

Let f Dbe a weak * cluster pcint of the set [fk: k>1 }, Then

f ¢ D(B(H)) and £(A) =0, Let T be a finite rank operator.
T=us R Vy + Uz ® Vot «ue & Up XV for some

Ug,U250e0e,Un; Vi,V29e0e,Vn € H & ( u® v is the rank one operator

defined by (um v)x = (x,v)u (xeH) ).

£,(1) = z :';k (ei,vy)(uj,ei) "
J= 1 i= 1
e (D] <2 sl

Hence f vanishes on finite rank operators and therefore by
centinuity f vanishes on the ideal of compact operators. By

Froposition 2 we have 0 = f(4) € Wess(4). []

COROLLARY 7. An operator Ae€B(H) is compact if and only if

A T =
k==1Pk(A) fo}.
Proof,  Wess(A) = {0} if and only if A is compact. []

COROLLARY 8. Let S,TeB(H) . If P, (S) C Pk(T)- (k = 1,2,000 )

then Wess(S) € wess(T) .

Proof, Immediate, (]
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$8. The states which generate the k-range,

The set of states on B(H) is a convex weak* compact subset
of the dual space of B(H) ., A linear functional f € B(H)’ is
said to be & vector state if there exists an element x€H of norm
one such that f£(T) = (Tx,x) (TeB(H)). The spatial numerical
range of an operator A 1is just the image under A of the set of
vector states., The closure of the spatial range is the image
under A of all states, We examine in this section some questions
which arise from a consideration of the subsets of the set of all
states which generate the k-range and its closure. This leads to
a sufficient condition for the k-range of a compact operator to be

closeda

Introductory Remarks.

Let P,Q € B, then tr([aP + (1-a)Qla) = atr(PA) + (1-a)tr(Qa)
and therefore tr([a P + (1-a)Qla) € kPk(AJ whenever Osasi ,

More generally il tr(TA) € Pk(A) whenever T is a convex

k
combination of members of Ek'
Given a trace class operator T ,the linear functional f

T
defined by f(4) = tr(TA) (A e B(H)) satisfies nfTHsurH, and
fT(I) = tr(T) . 1In particular let T be a positive

trace class operator with tr(T) = ||Tlli = 1. Then £, € D(B(H)).

Let T = ZJLJ ejwpej be the spectral decomposition of T ,
J
where {ej] is an orthonormal sequence of elements of H ,

T;O E))‘.J?O (j=1,2,... )

and therefore Z)\J = 1 Dbecause tr('l‘) =1 .
J
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fT(A) = tr(T4) = tr(AT) = Z (ATe j,0) = z rj(aej,ej) (aeB(H)).
: :

J
Therefore f Z:Ajwej where W ( Ikll =1 ) aenotes

T
J
the vector state o _(a) = (8x,x) .(A € B(H)).

The numerical range of A is the image under A of of the set
of all states of the form £, with T as above (more generally,
the image under A of the set of all ultraweakly continuous
states ) since convex subsets of the plane are closed with respect
to the formation of infinite convex combinations.

The following two technical lemmas provide the main step in
identifying the condition on the sequence {Aj} , or equivalently,

the condition on the positive trace class operator T which

ensures that fT(A) belongs to the k"™ Halmos range of A.

Notation.
Let ¥20, Let [y] denote the integral part of y. Let m
be any integer satisfying m > [y]+1 . Let Q  denote the set

m
of m-tuples {Qi,0z2,..,0m} satisfying 0 € ai < 1, Z Gy =Y »

i=1
LEwia 1.
Qm is a compact convex subset of Em and the set Ex:t(nm)
of extreme points of Q consists of all m-tuples with [y]
co-ordinates equal to 1, one co-ordinate egual to y= [y] and

the rest zero.

Proof. Q_is compact and convex as a subset of R with the

usual topology. Let a = (@, 025000 0m] € Qm and suppose

there exist two entries @y s o ( i,<i3) with
2

0<ai1<1 5 0<ai=<1 a

Let & = minj ai,’ aia’ 1—ai1, 1-ai,; >0 .
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Then Et‘ = [_G1,..-,ai1+ 6,...’ai2— 8,.-.,am ] (nm
a; = [a ’...’a_ - 8,...,&. +8""la ; GQ
~ 1 i¢ ig m m

and % ( Q + @) . Therefore a is not an extreme

lQ
u

point of Qm « This argument holds for any member of qm with
at least two entries lying between 0 and 1. Therefore the set
of extreme points of Qm is contained in the set of those m-tuples
with [y] co-ordinates equal to one, one co-ordinate equal to

y = [y] and the rest zero, Conversely, it is clear that any

such point is an extreme point of Q . 0

Remark. Ext(nm) consists of a finite set of m=-tuples.
co(Ext(Qm)) is closed and therefore co(Ext(Qm)) =Q by the

Krein-Milman theorem,

Notation. ULet Wy dencte the set of sequences with precisely
[y] entries equal to one, cne entry equal to y - [y] and the
remaining entries zero. Let = {un}T be a bounded sequence
of complex numbers.

Let YY(E) =E‘§1AJPJ : ;AJ:V’ 0€Aj€1 (j=1,2,ooo )1.

LEMIA 2,

Y5££9 is a convex subset of C and

YV(E) - °°[£1hjpj i A= ULJI1 €W, I«

Proof, The Lemma will follow from two observations.

oo

(0. Ext( Y () ) S | ;Am P A m;:" €W, ].

(e). Any member of Yy(ﬂ) may be approximated arbitrarily



closely by members of

|

[+
co{z: AjHj + A= {}\J]T € Wy
J= 1

oo
Proof of (1). Let ¢t =£;‘3ij € Ext(Yy(g)). We may assume,

J= 1
by making rearrangements and taking combinations if necessary that

whenever fBjuj £ 0 the set | k : Bxik $£0, uk = y4j |} is finite,
0 <Pk €1, and at most one of the coefficients Pk lies strictly
between 0 and 1 . With this assumption, suppose there exist
coefficignis ﬂh', ﬂjz such that 0 < ﬁ.‘h( 1.5 O € ﬁja< 1 (Ji1<da).
Let & = min§ 551’ 552,1 - 531,1 - ﬁjz } then

ti = Pils + eee + (ﬁjf 5)#314- S (ﬂj; 8)uja+ wew 1€ Yy(_g)

ts

- O . + 8y, oo €Y

By + + (ﬂJ1 )#jg + (f"]a )qu+ Y(g)

ts = ty =28(u, - u. ) $0 (by assumption )

jz_ Jl‘.\

t = (t1 + ta)/z .
Therefore t 1is not an extreme point., This contradiction implies
that at most one ﬁj lies between 0 and 1 (and must equal y=[y] ).
L]

Therefore we have t = Z: Bjuj for some g € WY as required ,
J 1

Proof of (2). Let t =) Bjuj ¢ Yy(g) . Define &, by

n J= 1

8n = y-ZﬂJ » and let N €N be sufficiently large so that
J =1

8,€1 whenever n>N ,

Bilig+eeo+Babn+8nln., € Yy(k') « If n 2 max{[y],N] an

application of Lemma 1 (with m = n+1 ) together with the remark

shows that
(-}
[- -]
BibateeesBnbn+Bapiney € c0f )’ Ajuj i A = [Aj] €W, |
E 1 - '
Mso | t = (Bisr+esosButintdapnet)| = | § Bing = Samnes |
J= N+ =
< ull, € A5+ 80)
J= n+1

Ladlg ll, +0 as n,



_I:’_r_oof’ of Lemma 2 ,

let t €Y « Eith t is an interi int of Y
y(E) er is interior poin Y(H')
or t € aYy( 4 . If t 4s an interior point of Yy(y_) then it
follows that t can be written as a convex combination of elements
YN tak g (1)
of the required form by (2). If ¢t ¢ ahy(-@ then t 4is either

an extreme point or the convex combination of two extreme points

and an application of (1) finishes the job. [J

THEOREM 3. Let A € B(H), Thenfor each k = 1,2,...,

P (A) = { tr(sh) : OsST , s ¢ 4, tr(s) =1 ,

Proof. The inclusion C is clear since if P ¢ E-k we have

s 4 1 '
0«7Psgl, tr(zP) =1 . Conversely, let 5 ¢ ,@' where

k
0 <8 < 3-11 , tr(8) =1. Let S =) £j ej(R)ey  be the spectral
decomposition of SX where [ej} is an orthonormal sequence of
elements of H , Oefjsl ZEJ:‘i .
k’ &
J

tre(sa) = tr(as) = ) (4Sej,es) = ¥ &i(hese)) .
J J

(-Aej,ej) ! we have

L B

Applying Lemma 2 with y =k, pu = {

Aj=1 for exactly k distinct

.

tr(sA) € co { 3 3 Aj(aej,e ;)
J
integers j |} .

Therefore tr(SA) € Pk(A) s H

Remarks,
(1). Theorem 3 says that the k-range is closed with respect to

the formation of all infinite convex combinations of the form

). Mi(axj,x;) where {xj} is any orthonormal sequence and
J "11 ©

0 <A s (=12 ) Y,A =1 . Equivalently, Pk(A)
J= 1
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is the image under A of all (ultraweakly continuous) states of
the form f = ZPdwx- with {xj] and [Aj] as before,

{ J

=1

(2). The map

o
K

£, is defined by fT(S) = tr(ST) (SeB(H)),is an affine isometric

T ¢ f T &: 0<Ts =I ,tr(T) = 1 } - D(B(H)) , where
map onto the set of all states of the form f = Z:Aijj where
J

{xj} , {Aj] are as in Remark 1 .

Definition 4. Given k €N, let Dk denote the set of states
given by

w*
Dy =E( [£,:5 ¢, OSSs-:-c-I, tr(s) = 1}
Uflf eDd: £f(k(H)) =0} } )
Remarks,

(4)s D is a convex weak* compact subset of D, the set of all

states on B(H). D, , C D, (k =1,2,00. ) &

k41 =
(2). A result of J.Dixmier [ 7 ] shows that if f € D then
w . pesifive
£ = afy + (1=a)g, A f, is the state associated with the)trace

class operator T with tr(T) = 1 ,andg is a state which annihilates

D

’

the ideal of compact operators and Osasi . Therefore D1

and moreover, taking the weak* closure is redundant when k = 1 ,

]

However for higher values of k we shall see that the corresponding

set with the weak* closure omitted is not in general weak* closed,

PROPOSITION 5,

Let A €B(H). Ten P(A) = [£(4):feD }.

Proof, The set [ £(4) : f ¢ Dk } is the continuous image of a
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compact set and is therefore closed and it clearly contains Pk(A).
Conversely, let f € Dk » then there exists a net of states
if, ¢ A € A} such that £, >f (w*) as A > where

f)‘ = aA fTA & (’1-0’.)")gA for some Oéaké" » gh €D ’

o . 1
g)‘_(“(H)) = 101 ’ TA, ¢ -{‘_’7, y 0= T)L g EI ’ tr(Tl) =1, for

each A € A,
We Raie f)L(‘A') = aAfTA(A) + (1-‘1)\.)5)L(A) , which is the convex

combination of a member of the k-range and a member of the
essential range of A . By theorem 2.6 f‘A(A) € Pk(A)_ (Aeh)

and hence f(A) € Pk(A)_. 0

We require the following well known result which we state

without proof (see for example [ 6 ; 4.1.2 ] ).

TIHEOREL 6.

For each T ¢ gl, let ¢T be the bounded linear functional
on K(H) defined by qu(K) =4tr(KT) (K € K(H) ) . The map
B c.bT
Banach space K(H) . ¢T is hermitian (resp. positive) if and

is a linear bijection of ‘61 onto the dual space of the
only if T is self adjoint (resp. positive ).

Let Dk'K(H) denote the set of restrictions to K(H) of

the members of D With th (T € ,@ ) defined as in Theorem 6

k -

we have:



LEMIA 7.

DkIK(H)=[¢T:Te&,osTs-f;I,tr(T)s*t;.

Proof, Let ¢€Dk|K(H). By theorem 6, ¢ = ¢4 for some S € [/

with § > 0. Also ¢ = g|K(H) for some g €D,. Let {f, : A€}

be a net of states such that f, » g (w*) as A > = , where for

A
each A € A

£, = aAfTA + (1-0,)g, (0sa,$1, g, €D, g\(K(H)) = {0,

; 1
Tf,@.l » 0 <« T,¢ 31, tr(TA) =1).

Given x€S(H) we have

(s%x,x) = tr(x® x 8) = ¢S(x® x) = g(x® x) ,

£,(x®x) = o 'fT)L(x(gx) = a,tr(T,x® x)
= o, (T)x,x) - (renr),
So T T - fh(x®x)ﬁ1/k Caeh) o

Therefore 0 < g(x® %) <.1/k .
1
Hence 08 = EI"

Let S = LME'. be the spectral decomposition of S where

i.=1

the Ei are mutually orthogonal rank one projections, For each

n
n>1, let P = ZE;,. P
=1

2= tr(ps) = o(P) < llelle ll = 1 (=120 ) - - (1),

=1

€ P
n ~n °*

0o
Therefore tr(S) '-'Z.M c1.

i= 9

If the spectral decomposition of S has only finitely many terms
(1 say) then line (1) holds with n=l and the desired conclusion
is immediate,

4
k
Let 8 =L AE{ be the spectral decomposition of S where the

im 1

series has been made formally infinite , if necessary, by the

Conversely, let S € ,{f;' be given with 0 €S s=I , tr(s) < 1.
oo
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addition of appropriate mutually orthogonal rank one projectiocns
with zero coefficients,

n
Let q =)Ai, 8 =1-q . Define § € B(H) by

=1

n 40
S, = )MEL+ (sn/kSLEi. (B = %8550 ) »
n+1

is 1 i

.

Then S, €@, 08, sgl, tr(5)=q +35 =1.

Let g be any weak* cluster point of the set of states

{fg :n=1,2,,..} CD_ . Then g €D, and we claim that

S, k

glk(H) = ¢, - Recall that an operator T € B(H) is compact if

and only if, for each net { E, : A € A} of rank one mutually

orthogonal projections, tr('l'; A) +0as A>o , Let A €K(H),
and—puppese—F—=g—{(wi)as—m=2o ., Ve have
le(a) - ¢S(i)l < le(a) - £5 (W] + ] (8) - #() |
= |e(a) - fsm(A)I + |tr((s - 5)4)|
ltr((s- 8)a)| = |tr(a(s - s )|
= Itr(AE z:fh = a"‘/k)li;gf D |
- |3 Metr(a) - ()5 trame) |
< 2;m;::p[ [tr(aBi)| : iTLL }

-0 as m> since A is compact,

Therefore g|K(H) = ¢ 0
THEOREM 8. Let A € B(H) be compact. Then for each k = 1,2,...
- ; 1
Pk(A) =[tr(TA):Teg‘,OSTsiI,tr(T)s1I.

Proof,

Apply Proposition 5 and Lemma 7. [J



Example, This description does not hold if A is not compact,
Let A = I, the identity operator, Then Pk(I) ={1} but

i tr(T) :Te,e‘,osTs-:EI,tr(T)é1i=[0,1].

Notation.  Let D_=0D .

PROPOSITION 9,
Let A € B(H). Then wess(a) = { f(A) : £ €D} and D_
consists of the set of all states which vanish on the ideal of

compact operators.

Proof. The set of states which vanish on K(H) is contained in

D, by definition and therefore we have the inclusion C .,
Conversely,f ¢ D_ = f£(4) ¢ Pk(A)- (k= 1,800 ) by

Proposition 5§ . An application of Theorem 2.6 then shows that

f(a) € wess(a) . [J

We complete this section with a sufficient condition for the

k-range of a compact operator to be closed.

THEOREM 10.
Let A € B(H) be compact with kernel of dimension at least k,

Then Pk(A) is clcsed .

Proof, Re=stating Theorem 8 in terms of orthonormal sequences,the
result says that the closure of the k-range of A consists of all
sums of the form Z Aj(Axj,xj) where {x;} is an orthonormal
sequence of elementsdof H, 0sAjs1/k, Z}q &1

J

The proof consists of showing that every such sum is a member of

P (4) .



- 22 =

oo oo

o= 1 . .
Let t=LAJ(AxJ,xJ) , 00X €7 » ) Aj=a €1 be given,

J=1 J= 1

where {xj} is an orthonormal sequence of elements of H , By

b

lemma 2, it suffices to assume that t =) Aj(Axj,xj) where
o=

A= (A5} € Wy and y = ka , Therefore, renumbering the x's, if

necessary, it s[uffices to prove that _
t = %L%.:‘(ij,m) + (y = [VD) (B[ 3,4 2 X[y741) J € P, (a)
if [yl o0,
t =y g(Ax,x) € P(4) if [y] =0 .

If y=[y]l =k then t ¢ Pk(A) . So suppose k > [y] 21 .

1[!]
Let ¢, = g, (&xj,xi) 5
J= 1
= [yl 7
1 N
t= L 2 s+ gy oy )
Then t=(1- ()/---[y]))t1 + (y - [y])t2 , a convex combination

of t1 and tz . Therefore it suffices to show that
%i(ﬂxj,x\j) € Pk(A) whenever r 1is a positive integer
J=1
satisfying r < k .

"
H ker A 3 (ker a ) .

Let xi = yi @2zt (i=1,2,..,r) where for each i, yi € ker 4 ,

]

zi € (ker 4 )"". Vi1sY¥2s¢++Yr Span a subspace of ker A of dimension

not exceeding r and therefore there exist at least k-r ortho-

—-ker A

Jr+as¥reaseeesYk € (Span[yq,yz,...,yri ) @

normal elements

Let xi =yi & 0 (i=r+1,74+2,.00,k ) . Then [Xy,Xp,ee.,Xk) € 94:

and

L B

r K

1o
2, (8xj,xj) = ) (axj,x;5) € P (4) .
=1 J= 1
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Finally, the remaining case is clear since
dim(ker A ) >k = 0 € Pk(A) and therefore when [y] =0

t = (1—)’)0 + Y% (AX1,X1) € Pk(A) . D

COROLLARY 11.
Let A€B(H) be a compact operator on a non-separable Hilbert

space H. Then Pk(A) is closed for each k = 1,2,400 &

Proof.
A compact = A* compact, A*H is separable and therefore

=
ker A = (A*H)™ has infinite dimension. []

Remarks.,

(1), The condition on the dimension of the kernel of A is
not in general necessary for a closed range. Necessary and
sufficient conditions have been given under which the numerical
range (=P1(.)) is closed by J.P.Williams (unpublished note ).
ife mention his result in the next section where we give some
additional observations and examples for the special case of
compact normal operators.

(2). Theorem 10, does not hold if compactness is relaxed.
e.g. Let U be a unilateral shift . Then

P =b8=fzeg: |zl <1 ] (§1. Example 2.(1) ) .

dim(ker U* ) =1 , but P1(U*) = A is open,
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§4, The k-range of normal éperators,

‘hen A € B(H) is normal it is well known that the closure
of the numerical range of A is the convex hull of the spectrum,
In this section we obtain a description of the closure of the k-
range 2f a normal operator and a description of the k-range itself

for a compact normal operator,

Preliminary remarks,

Throughout the section a reference to the Spectral Theorem
will mean the following version of that theorem ( see e.g.[9] ;
Page 911 Cor, 4).

Let A € B(H) be normal, Then there exists a regular positive
measure space (8, Z; #) and a unitary map U of H onto L2(S;E;u)
such that

UAx = £.Ux (x € H for some f € L (S, ZLQ) %

Let ¢ : S ~» Y be a p-measurable function. We recall that

the essential range of ¢ , which we denote by essrang , is the

set of complex numbers A such that
u( ¢‘1(VA)) >0 for every neighbourhood V’)L of A
Sp(A) = essrang , where ¢ is any function in the equivalence

class of functions f' , since

(A= ¢)-1 is essentially bounded

<=> ¢ is bounded away from A a.e.

] -

<==> A ¥ esspang |

Notation.
q,nannazﬁ?emhﬂ'ﬂ
Givenkﬁ—f—BGH} , let Fk(A) denote the set of all arithmetic

means of k numbers selected from the spectrum of A such that in
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any sum isolated points of the spectrum are repeated at most as
many times as their multiplicity as eigenvalues.

Let A(A;r) denote the open disc of radius r, centre A € C .
LEMMA 1. Let A € B(H) be normel, Then Pk(A)—Q Fk(A) .

Proof. Let A,As,..,Ar be distinct non-isolated points of Sp(A)
and let Ar44,...,Ak be isolated points of Sp(A) with the
repetition condition. Choose N € N sufficiently large so that
the discs A (Ai;1/n) (i=1,2,...;;) are mutually disjoint for
n= N+1,N+2,... and ihr,.,...,ak]nl;i A (Ai31/n) = ¢ (n2N41).
By the Spectral Theorem there exists a measure space (S,Z JH)
such that A 1is unitarily equivalent to multiplication by some
f e L”(s,z. ) on Lz(s,z ,#) » Let ¢ be any function in the
equivalence class of functions f . For each n>N define a map
Yn ¢t S>C by

ba(x) = [ A xed ' MAizi/m) ) i=1,2,...,r

{qb(x) otherwise
Each ¢, is measurable and essentially bounded., ¢n = ¢ uniformedly
as n >, Let fn be the equivalence class defined by ¢p ,
and let An denote the normal operator corresponding to fn .
Then HAn-A" >0asn->w, Foreachn >N, M,Az,..,Ar
are distinct eigenvalues of A_since these points are members of
the gssential range of ¢ .

Write A = Aj (r+1<jsk). Then for some non-zero square
integrable function ¢ : S =G we have the following chain of
implications .

Hx)¢(x) = Ag( x) a.e. X €5
= W {xes : ¢(x) AT N [xes : ¢(x) £0]) =0
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p( §xes : ¢n(x) EA ] pfxes s ¢(x) £0} ) =0 (n>N)
> ¢a(x)$(x) = M(x) a.e. xes

Convorsely, if A (n>N) has A as an eigenvalue then the

N

implications reverse, e conclude that the eigenvalues Arii,.,Ak
are alz¢ elgenvalues for An with unchanged multiplicities.
for each n>N , let Xpn1,Xn2y.+.5Xpk be & set of orthonormal

eigenvectors for An with corresponding eigenvalues Aq,Az,...,Ak

respectively. We have
g & I 14 &
I g2 A= g (axi,xed) | = ¢ | ) {(Anxni, xni) = (Axeoi,xni ]
i= 1 i= 1 i= 1
< " An - A “ >0 asn >,

k -—
Therefore -11-2 AL € Pk(A) . Finally, given any member t of Fk(A)
i=1
there exists a sequence [tn] of points of Fk(A) such that each
tn contains no repetitions of non-isolated points of the spectrum

and such that t = t asn->w, 0

Notation. Let Sp'(A) denote the set of accumulation points of

sp(4) .

LEMLA 2. Given 8>0 , Sp'(A) can be covered with finitely many
measwnhle
mutually disjoint,sets E‘l ,Ez, .o .,Em such that
(1). Each Ei is contained in a closed disc of radius § .

(2). intE, N sp'(4) Lo o

Proof., Cover Sp(A) with finitely many open discs A of radius &
and delete any discs A from the list with the property that
Sp'(A)NA =¢ . Let Ay,l3,...,A¢ be an enumeration of the
remaining discs. Define E1 = 4.

(i), If int( 22N\%4) NSp'(A) £ ¢ , let E, = BN By .

2
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(ii). If int(B2~2:)N Sp*(A) = ¢ then Sp'(A)N b2 C Dy
and we delete Ap; from the list,

If acticn under (i) was taken then prcceed as follows. If
int( 43N2,U B3) NSp'(A) $ ¢ then define B, = BaNBJ By
If int( Be7,Ub;) NSp'(A) = ¢ then Sp'(A) NAs C 43U B,
and we delete 43 from the list,

If action was taken under (ii), renumber the remaining discs
from 2 onwards and re-apply (i) & (ii).

Continuing in this way we obtain a finite number of mutually

disjoint sets E1,E2, “”Em with the desired properties. (]

ILEi.}A 3. Let A € B(H) be normal,

Then sup Re Pk(A) < sup Re P (4) (k=1,2,...) .

Proof. Apply the Spectral Theorem to give a measure space

(s, Z,p ) and an element f € L°(S, Z ,4 ) such that A is
unitarily equivalent to multiplication by £ on Lz(S, Z. ai Yu
Given 8> 0 , let E,,Eje..,E  Dbe a cover of Sp'(A) with the
properties of Lemma 2. Let ¢ be any function in the equivalence
class of functions f, Define amap ¢ : S »C Dby

-1 .
[ Ui x €¢ (Ey) i=1,2,..0.,m
Wx) =1
l #(x) otherwise
where Uy,HUz,...,4y 1s any choice of points such that
pl. € int Ei. n Sp.(A) (131,2, oo.’m) .
¢ is measurable and essentially bounded.
|¢(x) - @(x)| <28 (xes).
For each n=1,2,... take & = 1/n and let {¢n} be the

corresponding sequence of functions. ¢n » ¢ uniformedly as n-w,
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Let fn be the equivalence class defined by wn , and let An
denote the normal operator corresponding to fn . For each fixed
n21 , An has spectrum consisting of distinct eigenvalues
Hy,Hasee.shm together with(possibly) a finite number of eigen-
values of A . The argument in Lemma 1 applies again here to
show that any such eigenvalue occurs as an eigenvalue of An with
unchanged multiplicity.

Let Ay,A2,...,Ar denote the members of Sp(An) written
according to increasing real part i.e. Re Ai € Re Aigq (i=1,.,r=1) .
Let X1,X2,...,Xr be the corresponding eigenspaces with ortho-
normal bases | gt M € my } (i=1,2,...,r) respectively .

Given (e1,e2,...,ek) € 0 we have , for j=1,2,...,k

. oo T A
e = L Z (ej’em)em + hj where hj € (Span!i.’uixi 1)
=1 riel;
fe:gl'ﬁ@ e Je. + fh
nj L b2, 3w Tm nj

=1 giell

r
L < a8 2 : )
(fnej’ej) =.L A Ll (ej,em)l + (fnhj’h,j) since eigen-
1 mell
spaces of An are reducing ,
We claim that (fnhj,hj) =0 (3=1,2,.0.,k; n21 ).

Fix n21 and
Proof, plet K = esssuprlrn. For each m21 let Dm be the punched

o r
disc D = 4 (0;K)“‘~1U‘A (Ai; 1/m) . TFor each A € D, there
Lo
exists an open neighbourhood 'VA of A such that u(¢;1(vh)) =0.

Let V Vﬁ be a finite cover of Dm P

’\19 Ag’”"
. «4, 4
Then  w(¢n (D)) < ‘H(¥a (-L,UJ’M)) =0 .

[ x5 sn(bA (41,2,0000), g0k | = 67 UD )



Therefore
pi xes : g&n‘(x)pu G I .,I.,
= uf xes ¢ |ga(>K 3+ w(4a'(UD ) =0
Since hj € %11:51}{1]'1- it follows that
pi ot M) N x o €4(%) £013 =0 for i=1,2,...,k
where £j is any representative from the equivalence class hj .
This fact together with (1) above implies that
hi h;

Ss&nlé.ilzdu = 0 and therefore (fn ".,e\‘;.) = 0

5 (§=1,25.00,k 3 n21).

Returning to the proof of Lemma 3 , we have

1 k‘l r'l o = I . Vs
Re E.L (fnej’ej) =’z‘ Z ’cm(Re?L.,) . (2)
J= 1 =1 MLE
_ 48 2
where B B <7, |(ej,em)| .

-

o

0Osc  <1/k , iZ"m“ o

i :
=1 el

The right hand side of (2) attains a maximum when CPL PRI
are eigenvectors with eigenvalues chosen in order of descending
real parts including allowed repetitions for multiplicity.
Furthermore the construction of fn was such that this maximum
belongs to Re Fk(A) .

Therefore we have sSup Re Pk(An) < sup Re Fk(A) (n=1,2,.. ).

It follows that sup Re Pk(A) < sup Re Fk(A) (k=1,2,.. ) . 0

THEOREM 4. Let A € B(i) be normal . Then Pk(A)_ = coF () .

Proof., co Fk(A) ng(A)- is clear from Lemma 1, co'katA)-] is the
intersection of all closed half planes containing Fk(A). ahA+p is

normal for all a«,f € C . Hence it follows from Lemma 3 that
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Pk(A)— C oo Fk(ﬁ)-] . Let Ae FkﬁA)_ , then there exists
a sequence of arithmetic means %i anj € Fk(ﬂ.) (n=1,2,... )
which converges to A . Find a augg;quence inm} of the positive
integers such that {a, 5 } converges (to a say) for each j=1,2,.,k.

K m
I 7 2
A _sz xj . aj € Sp(A) (1sjsk). If TN coincide and
71
a is an accumulation point of the spectrum then this repetition
1

is allowed, If aj is isolated then for sufficiently large m,
f

@ .=0 , = o = a, i,e, a. is an eigenvalue of A
Nmj1  DmJ2 NmJr J1 Ji
with multiplicity at least r and so this repetition is also

allowed. This argument applied to each group of coincident aj's
shows that A € Fk(A) and so Fk(A) is closed.

The desired conclusion follows. []

THEOREH 5. Let A€B(H) be normal and compact. Then Pk(A)
consists of the convex hull of the set of all arithmetic means
of k eigenvalues of A where each eigenvalue may occur in a

mean at most as many times as its multiplicity.

Proof, The inclusion D is clear by Theorem 1.3 parts (2)&(5).
Let A = Z Aiei(X)ei be the Spectral decomposition of A, where
[eii is anborthonormal sequence of elements of H and

ol » lpvesl - 221,800

Let (X1,Xgy000,%k) € O be given ,

~k

Case 1. Suppose H is separable . Let {f.] be an orthonormal

5
basis for ker(A)with the convention that f'1 =0 is an orthonormal

basis when ker(A) = {0} . We have

]

Xin Z.:(Xm,Ei.)ei. + Z(Xm,fj)f.i
L J

(J‘ixm; xm)

Z“i-l(xmsel)lz
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Therefore

| (xnpei) | 2

=

3 ; ) =) ciui where c¢i = d
kln AXm 5 Xm —-L LHL t= 3
m=1

7

K
Define 4. = %L ( xm, fJ)l . e have O0<cis1/k , 0sdjsi/k ,

me= 4

and )'ci + )'dj = 1. An application of Lemma 3.2 ( with
i J

y = k ) shows that z:cguL € Pk(A) 3

Case 2, Suppose H is non-separable., iith the notation of Case 1

we have kE(Axm,xm) = Zc"”‘ o 8% y-—cha "
me 1

Applying Lémma 3.2 it au:f‘f::.ces to show that every aum of the form
. 1 , ) -
(1)e. ¥ Ths, € P (4) if [y] =

{3ty %(#ij.- + né[y] +,(Vf[vi)yj[y]+1 ) e P (a) if [v]>1.

' 1
(i). y='1jc'-“,j is a convex combination of 0 and X “31 and therefore
: %
belongs to Pk(A) (A has infinite dimensional kermel).

(ii). %(pj1+ ae ok “3[,,] (y-[y])pa[y]+1) can be written as

the convex combination

=Cm DIl 4 eee s W (DD by % ees TR

It follows that ((ii) belongs to Pk(.c‘x) s U

To end this section we return to the problem of necessary and
sufficient conditions for the k-range of an operator to be closed.
We recall from Theorem 3,10 that the k~-range of a compact operator

A is closed whenever A has a kernel of dimension not less than k.

PROPOSITION 6. Let  AeB(H) be normal and compact. Suppose that
the spectrum of A is contained in a sector of angle < 7 (i.e. for
some 0.<.0 < 2%, Sp(4) _C_:i rel¢ :r20 , 0 < @< O4m ]). Then

Pk(A) is closed if and only if dim ker(A) > k
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Proof. We have to establish the 'only if' part of the Proposition.
By Theorem 5 we see that the k-range of A will also lie in the
given sector. By Corollary 2.7, Pk(A) closed == 0 € Pk(A) ‘

0 is therefore an extreme point of Pk(A) and by Theorem 5 must be

an arithmetic mean of the allowed type. Therefore 0 is an

eigenvalue of A of multiplicity at least k . [}

Example. The condition dim ker(A) > k is not in general
necessary for a closed k-range when A is compact. For example,
let A€B(H) be compact self-adjoint with trivial kernel and with
infinite sequences of (strictly) positive .and "(striotly)
negative elgenvalues {un} and {Aq] respectively. ( un 2 Hpss 3
Anet % Aps n=1,2,.., ). By Theorem 5 we have

P (4) = [-f;i Ai s %inj ] (k=1,2,0e0 ) .

J= 1 J=1

PROPOSITION 7, (J.P.Williams)

Let A € B(H). Then W(A) is closed if and only if
wess(4a) € w(a) .

Proof. With the notation of §3, given a state £ on B(H)
Dixmier [7 ] has shown that

£f=afy+ (1-a)g  where fn is the state associated with
t;e trace class operator T , tr(T) =1, 0s T <I. g is a
state which vanishes on the ideal of compact operators , and
0 < a<1 ., Ve remarked in the introduction to §3 that

{ f‘T(A) :Te £ ,tr(T)=1,0cTeI }=wa.
It follows that

W4a)” = co { W(a) Uwess(a) }

2
and therefore W(A) is closed if and only if W(A) FWess(a) . [



Example.
If Pk(A) is closed then Wess(A) C Pk(A) by Theorem 2.6 .

The obvious generalisation of Williams' observation does not
hold for the k-range when k>1 ., For example, let AeB(H) be
compact and self-adjoint with trivial kernel and with infinitely
many negative eigenvalues {up} and finitely many positive eigen-
values | M,Azy0005Am } o (Hne128n 0=1,2,.0 3 M2A32...32An )

By Theorem 5 we have

K K
Pk(A) = ( %Z#J ’ %ZAJ 1 k=1,2,...,m
g1 J= 1
.
1 K 1ITI
[-E ZpJ ' % Aj ) kemsl,m+2,...
| J= 1 J= 1

Thus, when k > m, Pk(A) is not closed but 0 € Pk(A) "
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€5, Unitary snvariants.

S.K.Parrott [ 4 ] generalised the spatial numerical range of
an operator A€B(H) by replacing the subset of the plane with sets
of matrices. ilore precisely, the Parrott mMatrix range ﬁk(A) of
A 1is the set of compressions of A to all k-dimensional subspaces
of H o L8 wk(A) = { PA]PH y PER i .

Parrctt proved that these matrix ranges form a complete set
of unitary inveriants for compact operators with zero reducing
nullspaces [ 4 :536 Theorem 9 ]. Given P € P, then
tr(PA) = tr(PA|PH) and therefore the Halmos k-range consists of
the normalised traces of the operators in the Parrott range. This
gives rise to a natural question. Can the Halmos k-ranges be
substituted in place of the Parrott ranges in the invariants
theorem ? The answer is no in general and we give a counter-
example., e give a positive result concerning the problem of
which classes of operators are completely determined, up to unitary
equivalence,by their k-ranges, Finally we mention another
candidate gencralising the classical numerical range of A ,
denoted by Xk(A) , which 'lies betwecn'the Parrott and Halmos

ranges in the following sensc. Given A,B € B(H) then
w(a) = w (B) = x(a) =x(8) = P(4) =P (B) (k=1,2,...).

PROPOSITION 1,
Let H be a complex Hilbert space of dimension 2 , and let
A,B € B(H). Then W(A) = W(B) if and only if A and B are

unitarily equivalent .
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Proof, There exists an orthonormal basis [e1,ez } for H

relative to which the matrix for A has upper triangular form,

S
Let {* 0 A l be the matrix of A relative to this basis,
=]

Let S be any cperater on H with matrix representa’ion

L_A1 ’ _j relative to an orthonormal basis {u,,u, |
0 L

and such that lal = |u| > 0. Then S and A are unitarily
equivalernt . (The map U : H =+ H defined by Uu, =e, ,
Uu, = (g/a)eg and extended linearly to H is unitary and
s =U'aU.)

The implication ( <= ) of the Proposition is trivial. 1In
view of the foreroing remarks the converse will be established if
the numerical range determines the eigenvalues of A together with
the modulus of the entry in the top right hand corner of the matrix
for A ( when in upper triangular form ) , A calculation shows

that " 5 g 5
wa) = { Mx]® + 2alyl® +ayxr : xy €C L Ix[T4 |y 1],

Case 1. A =A =A. If a=0 then W(A) = {A}. 1If
@ k£ 0, w(A)eenztsts of the closed disc centre A and radius |a|/2.
Case 2. M £A . If a=0 then W(A) consists of the straight
line joining Ay and Az «+ If a £ 0, W(A) is an ellipse with foci
A s Ay and length of minor axis Ial .

In each case the numerical range determines the eigenvalues

of A together with |a| .[

u

IEMiA 2. Let T € B(H) , then P ( ReT ) = Re Pk(T) 3

1t

Pk( InT ) = Im Pk(T) 4 JESR N .,

Proof. Straightforward.[]
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LEMMA 3. Let S € B(H) be compact and self-adjoint, The family
of k-ranges of S determinesthe eigenvalues of S together with
their multiplicities. 1In addition, if S possesses only finitely
many positive or finitely many negative eigenvalues then the k-

ranges determine the dimension of the kernel of S.
Proof. Apply the Spectral Theorem to write S in the form
Z AMELQ - Z HJE j where Ei,Fj are mutually orthogonal

rank one projections, and A{ 2 Aisq > 0, Hj 2 Hjer > 0,
Case 1, Suppose S has infinitely many positive and negative

eigenvalues. It follows from Theorem 4.5 that

4 4 K
P(8) =l -gra, grml Ge=th2,...) .

=1
Case 2. Suppose S has infinitely many negative eigenvalues and
m positive eigenvalues . In each case, using Theorem 4,5 we
have :
(). If m=0 and dim(kerS)=0 then P (s) = [ - %i A, 0)
k=1,2,.00 e
(ii). If m=0,.1%¢ dim(kerS)qw then

P, (5) [-—LM,O] 1

l.=:1

k < dim(kers) ,

n

it

dim(kers) .

v

il

Pk(S) [ -l—c'.z Ao, 0) k
1
(iii). If m=0, dim(kerS) = « then

112’... .

Ai , 0] k

[VJX

P(8) = [ -

1

(iv). If m>1, dim(kerS) = « then
min(ksm)

Yui ] ktze. .

t-/“x

Plc(s) of 5 ‘1-1.

&

= 1
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(v). If m»t and dim(RerS) < e« then
min(Kam) '

; 1K1 g y s
Pk(b)=[-'£2_’)"l-:-1; Z#J] kém+dim(ker5) ]

i=1
K 1an(K,m)
1 s -
Pk(S) = KZ Z uj) k > m + dim(kerS) .
The remaining case when there are finitely many negative

eigenvalues is exactly similar. The desired conclusion follows

immediately from these explicit expressions for the k-ranges. 0

THEOREM 4. Let S,T € B(H) be compact normal operators with
zcro nullspaces such that Pk(S) = Pk(T) (K = 18504 B

Then S and T arc unitarily equivalent.

Proof, Apply the Spectral theorcm to write T in the form

T= ) (AF + 1B - ) (X, + 40 )F, +41 ) unGm - i)’ knHa
§- €A Lehy m €ls nehgy
where each index set Ap may be either empty , finite, or countable,
EJ,F&, GmsHn are mutually orthogonal rank one projections.
Aj;ah'j+1>0,)\"6a)t}“1>0, Hn > tmss > 0, Hn 2 Hped> O
Apply Lemma 3 to the real part of T and invoke Lemma 2.
We see that the sets | A : je A} , X, + &€ Bg | are completely
determined by the k-ranges of T . Suppose Ay + ¢ , and suppose
AT occurs n, times. Re-order the numbers AT4#it, A2 #il2yeen,
A-E1.+iyn1 s S0 that the imaginary parts are decreasing relative to
increasing suffix, Assume that this re-ordering has been carried

out for each set of distinct Aj . By Theorem 4.5 the member of

P1(T) with real part Al (= max Re P1(T) ) and maximum imaginary
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part is A + i . Therefore P, determines s .

Suppose n,>1 , then max Re P2(T) = Al . The member of
P,(T) with real part A{ and maximum imaginary part is

A +[i(pe+12)/2] P2 therefore determines pz. In this way

Pk(T) (k=1,2,...,n1) datermine Mi,Hzyeeeybing, o If M={1y 05050}

we stop. If n1+1 € 0y , suppose An1+1 oceurs n, times , and
n
1
let Hn, =) Hi .
=1

5 & e "
Pn1+1 (T) has maximum real part (n1A1+Ah1+1)/n1+1 with
corresponding maximum imaginary part (un1+un1+1)/n1+1 , Pn1+1

therefore determines K, I By a similar argument as for A{

1
we see that P § iessE determine u geeayld
n1+1 n1+n2 n1+1 n1+n2

In this way thc k-ranges determine the set | uj : jeiy } o

L]

The set [n8 : Leiy } is determined in a like manner from the
minimum real parts of the k-ranges. All the eigenvalues of T
are so far accounted for, except those which are purely imaginary.

InT = JZIJJ'EJ =) MF, + ) umGm = ) Hniln

@y Lely mels nel,

Apply Proposition 3 to the imaginary part of T and invoke Lemma 2,
The eigenvaluss of 1ImT together with their multiplicities are
determined by the k-ranges. Since the sets {uj : jeAy |

{n, : e€ Az} are already fixed , the sets { un : meAs} and

{ Up : neAy } are therefore determined,

Thus the eigenvalues of S and T together with their associated
multiplicities coincide. Since S and T have zero nullspaces the
mep which sends eigenvectors of S to eigenvectors of T with the
same cigenvalues extends linearly to a unitary map of H onto H and

UlTu =5 . [
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Definition 6. Given A€B(H) , let Xk(A) denote the subset of g%
given by
Xk(A) = § ( (ae1,61),(Ae2,€2),.00,(ReKk,0k) ) ¢

(31,93,...,91() e‘g-'k l-

Remarks.

(1). This k-range was mentioned by F.F.Bonsall [ 1 ].
P.A.Fillmore and J.P.wWilliams [ 11 ] considered the set Xn(A)
when A is an operator on a finite dimensional Hilbert space of
dimension n . They were concerned with the following unsolved
problem, If A is a given normal nxn matrix, determine which
n-tuples can serve as the diagonal of some matrix unitarily
equivalent to A ,

(2). It wes remarked by F,F.Bonsall and J.Duncan [ 4 ,336.2]
that the set of matrix representations relative to the natural
basis for QF of the operators in the Parrott range Wk(A) is

{ (aig) ¢ aij = (Auj,ui) ; 1,3=1,2,e005k 5 (WiyUzyeceyuk)e€ 9 .
The following example shows that the Parrott unitary invariants
theorem (as stated in the introduction of this section) does not
hold for the X -ranges and hence does not hold for the Halmos

Ee

k~-ranges.

Example 7. Let H be a separable Hilbert space and let S,T € B(H)
have matrix representations relative to an orthonormal basis

ienl of H as follows :
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"1 2 0 i
11 0
n(s) = 0 0 1
1/2
1/3
2 1/4

1‘1 10
1o 1 2 0
1/2
' 1/3
6 /

S and T are non-normal compact operators each having zero
kernel. Xk(S) = Xk(T) (k=1,2,... ) . S and T are not

unitarily equivalent.

Proof, It is plain that S and T are non-normal compact operators

with zero kernels, Let x,y € H ,
00

x =) xiej ; y=2y;ei .

i=1 i=1

A calculation shows that

2x¥x2 + X¥xa + |x1| + ngl +

"

et
ey

The map 0 : { Z,5%,0se } - {23,2%52%,25,28,... ] : H>H

(Sx, x)

(Ty,5) = ¥y, + 2kyg + 1y, % Iy,yl°

u

invis T

is a 1-1 correspondence between the elements of the Mnit shell
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of H, © preserves orthogonality, i.e. x _L y &> ofx) | oy)
(x,y e H). Also (To(x),0(x) ) = (Sx,x) (x € H). Therefore
x(s) = £ (1) (k=1,2,... ) .

Suppose there exists a unitary operator U such that U*T U =S,

TUe, = USe, =Ue, . Therefore Ue, =a e, for some ae€ Cs, | al ety

1 1 1 1
TU92 = USez = 2U81 + Uez = 2091 + '[_}'e2 -------- (1)
- -]
Ue, = Z (Uez,ej)e‘j
J= 1
TUe,, = (Uez,e1)e1+(Ue2,e2)[e1+e2] + (Uez,es)[2e2+e5] &
e Uea,€j
-l B Tt S S T T e
o e (2)
J=4

From (%) and (2), equating coefficients of e, gives

(Uez,ez) = 2 a which is impossible, []

PROPOSITION 8., (Fillmore [10])
A complex square nxn matrix A is unitarily equivalent to a
matrix with main diagonal (tr(a),0,0,...,0) if and only if

tr(a) e w(a) .

Proof, " only if " is trivial . For the converse we use induction
on the size of the matrix. Since tr(A) € W(A) , there exists a
unit vector x with tr(a) = (Ax,x) . Let {X4,Xzy...,%Xn | be

any orthonormal basis with X, =X Relative to this basis A

has matrix Ftr(A) B] where D is (n=1)x(n-1) and tr(D) = 0.

C DI

i

-

If n=2,D =0 and we are finished . Suppose n>2, Let Aq,..,Ap-1

The
bepeigenvalues of D . Then B-J‘;T(t\g+)te+...+hn-1) = 'n%‘l- tr(D) = 0

Therefore 0'€ coSp(D) and hence 0 ¢ W(D) ., By induction

there exists a unitary matrix U such that U*D U has main



diagonal consisting of zeros,
10 itr(4) B !tr(A) BU |

V= is unitary and V¥ VvV =
0 u | C D| lU*C U*D U}

has main diagonal (tr(4),0,...,0). [

THEOREL 9. Let A € B(H) . A e Pk(A) if and only if Xk(A)

contains a vector with each co-ordinate equal to A,

Proof. " if " is trivial. Ve may assume that A =0 € Pk(A).
Then there exists P € P, such that tr(PA) = 0.
0 = tr(PA) = tr(CPH(A)) . By Proposition 8, there exists
an orthonormal basis ej,ez,...,ex ©of PH such that
(CpylA)ei,ei) =0 (4=4,2, v53K)

But (C..(A)ei,ei) = (Paei,ei) = (Aei,ei) (i=1,2,...,k).

PH(
Therefore 0 € xk(A). i)

Remark, A few preliminary results on the Xk-ranges are
described in [11]. In connection with our discussion the notable
outstanling problem is the following.

Which operators are distinguished by the Xk-ranges and not
by the Halmes ranges?

We end this section with some examples of Xk-ranges.

Examples.
wawlaterol
(1) Let 8 be a,shift of arbitrary multiplicity.

Then xk(s) = B

Proof. Recall that S is an isometry with the property that
there exists a wandering subspace K CH for S such that

s 2 o]
Ky SRy 8K 3 8Ky 5 o s are pairwise orthogonal and
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H=K@® _Z@ $9K . The multiplicity of S = dimK .
J= 1

Let (AqyR2yee0,X) € ﬁk. Choose any positive integer n23 such

that |ail < 1—-:; (i =1,2,...,k), and let 6 = Arg A for

i=1,2,...,k . Given x € S(K) define

. o s -1
y1 =-J% ( eln61x + el(n 1)915x X i 816131'1 x ) ;
= ox . Il = Hell = 1
A calculation shows that
-1 i@
(S.YuYi) = E‘ﬁ" e ! F (321,2’-1) = 0 .
Lt t= |A|n/n=1, then 0s<t<1. Bythe.

Toeplitz-lausdorff Theorem there exists u, € Span{y1,z1 t; ||u1||=1,
such that (su,l,uﬂ = (1=%)0 + t 'Lnill o161 _ N .

Now define Vg and z_. in a similar manner using s"x in

2
place of x. The Toeplitz-tHausdorff Theorem yields u,, € Sp[yz,zzis
||u2|| = 1, such that (Suy,u.) = A, . Hote that (u,5u,) =0 .
Continuing in this way we find u‘s,...,uk with the property that
(u-l!uz)""uk) € ‘9-'1{ a'nd (qu!uj) = ’\‘J (531!2""!k) .

Thevefore A- C Kk(S) N xk(s) cannot contain a k-tuple

having an entry with nodulus one, for such an entry would be an

eigenvalue of 3, ]

(2). Let V be a non-unitary isometry . Then xk(v) consists
of all k-tuples of numbers taken from A with the property that
any entry of modulus one in a k-tuple may not occur more often

than its multiplicity as an eigenvalue of V .

Froof. Let V =U/HS be the Wold decomposition of V and let
H = I, (9 H, denote the corresponding decomposition of H . (U is

a unitary map of H, onto H, , S is a shift on H, £0}) .
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Applying the result of example (1), xk(v).cnntains the
specified set of k-tuples. Conversely if

( (Ve1,e1),(Vez,e2),...,(Vek,ek) ) € xk(v) » then any
component (Vej,ej) having modulus one is an eigenvalue of V with

eigenvector e o1




CHAPTER 2
A MATRIX RANGE FOR OPERATORS

1
ON THE BANACH SPACE £

$1. Definition and properties.

In this chapter we propose a definition for a Ratrix range
of an operator cn the Eanach space of summable sequences. The
results depend heavily on the exploitation of the special structure
of &1, notably the presence of a readily identifiable predual and
dual.
Notation.

Let co,&1,&m , denote the spaces of complex sequences which
converge to zero, are summable, are bounded, respectively.

1 ;
co,& ,6“ will have their usual Banach space norms.

1
Let (, ) : & x ” > C denote the sesquilinear map defined

by LA 1 w
(%y) = ) xjy; (x={xj} et ; y={yjlet ).
J= 1
The map ¥ : y~ ¥y : £ > (61)' where Yy(x) = (x,y) (xeﬂ1)

is an antilinear isometric isomorphism of ¢~ onto the dual space

Let ( , )on 2 CxC = G denote the sesquilinear map given

by n—. % n
(a,ﬁ)cn= Lai.ﬁi- ( a=(a1;5‘2:---,an), ﬁ = (ﬁl,ﬁQ,-a-,ﬁﬂ) € 9, ) .

~ i=1
n ny! n
The map ¢ : Qﬁ: c - (Q_) where qﬂﬁ(z) = (z,ﬁ)cn (z€§ )

L3 . . 3 3 . - n
is an antilinear isometric isomorphism of C onto the dual space of

.

-~
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Definition 1., Iet A be a bounded linear map of En into &1 ;
For a fixed y € & the map 2z * lIJy(Az) : g‘n > G is a bounded
linear functional on Qn. Therefore there exists a unique member

of gn which we denote by ATy , such that

&y (
ATy
: T bt n .

The bounded lineear map y™ Ay : ¢ =( will be called the

2) = ¥ (4z) (z ¢ ) .

transpose of A .

1 oo
Notetion. Let i : & = &° denote the inclusion map of &' in £

Given A € B(gn,&1) , we abbreviate to A* the composition of AT

and i , and so A* is a linear map from ¢! into gn.
If z € Q_n then the subscript 81 attached to the norm sign,
||z|I&1, indicates that gn is endowed with the %1-nom »

n
i.e. "3"61 = lei-l (2z-= (21322:---3zn)€ _Qn Y s
i= 9

Definition 2. Let nn(e1) denote the set of isometrio linser

1

maps A : gn+ ¢ ( with the 61-norm on En ) which satisfy

(1). & A= I,n ;

—~

(2)s A A* is a contraction (i.e. |ja & x|| < ||x| xee] ;A

i 1 , ;
Given T € B(¢ ) , the W spatial matrix range for T is the

set Vn(',l‘) of linear operators on gn given by

V(D) ={LTA:Ac nn(.z1) .

PROPOSITION 3,

1
Let A € nn(e ) . Then A* is a contraction.

Proof, If A ¢ Hn(€1) we have

I & x “61 = |la £ x| < ||| (xe&T) since A is isometric and A £
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is a contraction. [

1
LELA 4. For each n=1,2,... there exists A ¢ l'ln(& ) such
that § Anﬁ';l ]? is a sequence of norm one projections which

1
converge strongly to the identity map on 4 .

. 1
Proof, Let A be the linear map of En into 2 given by
n
Az = l 21,22’000,5[],0’0’.9- i (8 = (21,52,...,Bn) € g' )c

A is isometric with the &1 norm on Qn . We have

n
@ (2) = ¥ (az) = (4z,y) =), %% = (z,won = & (z)
Ay i=1 b
for all z = (24,225.00,2n) € Qn where y = {yi} €t” and
W= (¥1.F2,0005¥n) € Qn .
T 1

Therefore A'y = Aol (¥) = ( ¥4,¥25-..50) (¥ = {yile ).

It is clear that AFA = Ign and
1
ALY = { Y1,3500455n,0,0, .00 } (v = {yilet’)s
1

Therefore A € Hn(& ). Let P=AA . The sequence [Pn}

of such projections for n = 1,2,,.., converges strongly to the

identity operator on &1 .0

Notation. Let n(s1) denote the subset of £ x (&1)' given by
1
n(e’) = {(x,£) = llxll = llell = £(x) =1} .

For the remainder of the chapter we use the symbol ey to

denote the sequence with 1 in the lcth place and zeros elsewhere.
PROPOSITION 5.

(1). The map A > (A1,£*) is a one to one map of n1(z1) into
n(e').

(2). I}1(&1) consists of those linear maps A, of the form

A1 = qe,  for some integer k > 1 and complex number & , la, l=1,
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Proof. (1). Applying Proposition 3 we see that (a1,4%) € H(-&1)
whenever A € H1(61). Since A is a linear map of C into ¢ %
A is completely determined by its action on 1 and therefore the
map A - (A1,A%) is 1-1 .
(2). Given A ¢ n1(&1) , write A1 = [aj]': .

£a1=1=>1

u

(1, 241 = (1,45 1(a1)), = (a1, 1(an)). .

e -]

2
Ela‘]l .

J=1

i.e. 1

i

(-]
A isometric =>Z Iaj| = .
Je 1

The desired conclusion follows from these two facts. []

Remark,
V1(.) is not a Printer. V1(T) can be very much smaller than
the spatial numerical range of T . For example, let T € B(&1)

be a shift on &1 (i.e. Te = n=1,2;.. ) # Given

e
n n+1

1
A € IT1(&) » then A1 = o ey for some k>1 and @ € Cc, lfﬁc]= ’

by Proposition 5.(2) . TFor each z € C ,¥y= [yj] € (;1 we

have
@A,y(z) = ‘Pi(y)(AZ) = (42,i(y)) =2z o ¥2 = (""’1"2-"1{)9
= ¢ * (Z) .
%%
Therefore A%y = oy, (y = iyj] e J %

* _ ak _ * = il
AT A1 = A'T qe = A e =0. With B(C) and ¢
identified in the usual way (i.e. S+ S1 ) we therefore have
v, (1) = {o} .

Let ¥y = L,y,y2,000 § 5 lygl €1 (351,200 )

Then (e \Py) € H(61) -

1!
wy(Te1)=y=;. Therefore V(T) ={ z ¢C : |z] s1 ] .
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Definition 6, Let U € B(61) and let ¥ be as before. For a
fixed y € £, the map x* fy(Ux) is a bounded linear
functional on 81 : Therefore there exists a unique element of
e , which we denote by U?y , such that

Ux

1

S o (0= 0@ (xed),
Uy y
The bounded linear map y = U'y : £ » £~ will be called the

1
transpose of U . As before write v o= UToi « U € B(¢ ,8m) -

1
PROPOSITION 7. Let U be an isometric linear bijection of &€

onto &' . Then U® is an isometric linesr map of £ into £ .

Proof. Let y € £ then

Ty

[}

Ixll =11 (v is isometric)

thell = 13
a

su v o (0]
p{ | L

svp { | v, (0n) |

el =

1

Notation, Let \J denote the set of all isometric linear

bijections of &1 onto 81 which in addition satisfy "y = 10131.

PROPOSITION 8. “\f' consists of those isometric linear bijections
of 81 onto &1 which are also isometries relative to the ew—nonm

on &1 =

Proof. Let x € 31, and denote the supremum norm of x by "x"w.

We have
lell, = Bl = Il v*ox || = || vPaux)
= || i(ux) | by Proposition 7
=fluxf, .0

Proposition 8 leads to a precise deseription of the members

of'\[.
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PROPOSITION 9. Let U ¢ |/ , then there exists a permutation o
of the positive integers and a sequence of complex numbers {an]':
of modulus one such that Uey = akeo(k) (k=1,2;654 )o
Conversely any U € B(&1) which acts in this way on the natural

basis of &1 is a member of ’U-

Proof. Let U e'\fand fix an integer k21, It follows from

Proposition 8 that all components of Ue, vanish except one, and

k
this non-zero component has unit modulus. Therefore there exists
a map ¢ sending the positive integers into themselves such that
Ue, = @@ )y for some q €C, |ak|=1 (k=1,2,... ).
1
Let n be any positive integer, There cxists x € £ such that
Ux =e_ .+ By Proposition 8, x = xe_  for some €N x €0 .,
n Y P P PP Peld , T
It follows that n = o{p) and therefore o is surjective. ¢ is
injective since if p,q € N :
-1 -1
= => U(a e =Ula e => =q.
o(p) = o(q) (ay'e,) (qq) P=4q
Therefore o 1is a permutation.
1
Conversely, suppose U € B(£ ) has the property that
Uek= “keo(k) (k=1,2,... ) for some permutation o of N and
conplex numbers % |ock|= 1 (k=1,2,... ). Then

(x, U*y) = (Ux, i(y)) = ) %07 o(n)

n=1

= (G ey ye)) (y=lylece ).
Therefore Uty= 1(2 a‘;yo(n)en) (y= [yn] e ) &

(=] ob
= . 2 1
U*Ux =) xnanU*eo(n)n 1(2 |an| xnen) =i(x) (x = ixn] € L),
n= 1 =1

Therefore U € 'U’. 0

PROPOSITION 10. Let U € |J then Vn(U—1T U) = V(1) (n=1,2,..0 ).
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Proof. Let AeI‘{n(&1) . Then
(z,(UA)Ty)Cn = (UAz,y)=(Az,UTy)
N = (z,ATUTy)Cn (zeg_'n,yecﬁ.

I . . 3
Therefore (UA)T = A% and so (ua)* = (ua)'oi = ATUTOJ. = AU,

(AP TR s A0 A = A1 4= ifh = Ign .

Let y € &' , then there exists x € &' such that Ux =y , |xl=lill.
¢y = vux = i(x) .

Therefore ATU"y = A'x ||ATU#Y|I£1= iy x"81~<. llxll = llyll since

A* is a contraction (Proposition 3 ).

1
Hence |(ua)(ua)*| = | uaA " |l €1 . Therefore UA € I'ln(é ) s

futoaliv!c A% (sines v*=iv!)

Therefore a*(u'% U) A = (Ua)*T (Ua) € Vn(T) :

. -1

Hence vn(u TU) C Vn(T) ;

Mlso  V(T) =V ( u(u™ ' v)u™) c Vv ( vl u) .

Therefore Vn( ' U) = Vn(T) as required, [J

THEOREM 11. Let S,T € 5(51) i

Then V (8) SV (T) (n=1,2...) = lsls<lTl

Proof. Let A € l'ln(&1) (n=1,2,... ) possess the property that
{ ABA; ic: is a sequence of norm one projections which converge

strongly to I,1 (Lemma 4), For each A there exists B ¢ nn(a1)

)
such that A* sA =B T3B .
n n n n

c e & i i
PSP =AB TB A where P = A A% (n=1;2450s )s
| P S Pn" < |l il (Proposition 3) .

PSP +» 5 stronglyasn->=
n n xe%i) lhg,l;f
Let 8 > 0 , then there existaau—séé—)suoh that ” Sx" > || S||- s,

Therefore for all sufficiently large n :||T || 2 "PnSan“ > sl 8.

The result follows, []

-~ -—'E"'b..
Fd -f-_BU"t?é\
y .‘:. \
Ly i

T8\
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$2. Some convergence propertiee and the inclusion theorem,

The aim of this section is to construct a relation between
two operators given information about their matrix ranges. 1In
particular, what is implied by Vﬁ(S) cv (1) (n=1,2,... ) for

s,T € B(¢) 2

Notation.
' 1
Let I denote the antilinear isometric isomorphism of ¢

oo
1
onto (co) given by xm I where I‘x(w) =ijx§
J= 1

(w=lei € Co , x=1xj} € )os
Let 7 denote the strong operator topology on B(&1) .
Let 7, denote the weak* operator topology on B(&1)
generated by the family of seminorms

P = | I | (weoo, xee) Ten(e).

Let 'rp denote the topology on B(&t&n) generated by the
family of seminorms

qx,y(S) = | \Ifsy(x) | (xy € 61) S € B(&'1,6ﬂ).

Theorem 1. The unit ball of 3(61-) is compact in the topology 7 ..

freg M s llwlllxll 3 weoco, xeé.
1
Q } o
Q is compact in the product topology. Given T € 3(61) , T Jlst

Proof. Let D
——— w

2

H[Dw,x:weco,xez

let FT : Cg X 81 >C be defined by

FT(W,x) = I‘Tx(w) (weog, x€ ¢! ) . Let Qo be the
image of the unit ball of 3(81) with the weak* topology (Tw*)

under the map T > F

p - An arbitrary neighbourhood of FrneQ

is of the form



V(FT) ={GeQq: | G(wk,xk) - FT(wk,xk) | < € (k=1,2,...,n) |}
for some positive integer n , some € > 0 , and s0me Wy ,W2,.+..,Wn€Co,
1
x1,JCz,..-,JCn € 'Er .
An arbitrary neighbourhood of T € B( 61) is of the form

U(T) = 8 ¢ B¢ : |erk(wk) - rTxk(wk) | < € (k=1,2,..,n) }

1
for some n € N, € > 0, Wi,Waye0e,Wn € Co 5 X15Xay0009Xn € &

The map T = FT is therefore a homeomorphism of the unit ball of
B( &1) onto Qo . Hence it suffices to show that Qo is closed
in the product topology. ULet F € Go . Then F is sesqui-
linear and | F(w,x)| < Iwlllxll (weeo,xee') .

For a fixed x € &1 the map w* F(w,x) is a bounded linear
functional on ¢¢ , and therefore there exists a unique Tx € &1
such that PTx(w) =Fw,x) (we€co) . Themap x+ Tx is
well defined , linear , and belongs to the unit ball of 3(81)

since

el = x|

SuPi|rTx(W) |+ weco lwll <1}
5“P[|F(st)]: WEEO:Ih"“'I

Il - (xeely.

Therefore Qo is closed. [J

i

N

Definition 2. T € B(61) is the dual of an operator on c¢o if
there exists S € B(co) such that

I‘x(SW) = I‘Tx(w) (wee , x€ &1 ) .

FROPOSITION 3., Let [An] be a sequence of operators on &1 which
converge to A € 3(51) in the weak* operator topology, and let

1
T ¢ B(¢ ) be compact and the dual of an operator on co .

Then TAh-PTA ('rs) as n > »,



Proof, A A (Tw*) as n » o if and only if
1
T (W)"" rAx(W) asn*o foreach wecye , x€£& ,

A x
n

For a fixed X € & , | L n>11} is a family of bounded
n
linear functionals on co such that sg.p| Iy Jc(w) | <o for
n

each w € co . By the Uniform Boundedness theorem

sup|| T, _ || < », and therefore { A x ], is a bounded

n Aﬂx n 1
sequence ., By the compactness of T there exists a subsequence
{ A x ] such that TA X >y € ¢ asmro, Suppose T is the
dual of S € B(cg). We have

I‘y(w) =1im T x(w) = 1lim I, _(sw) = I‘Ax(Sw) = rTAx(w) (weeg «

m-booTAm m-bcoAmx

1
Therefore y = TAx .() It follows that TAnx +TAx asn >, []

Lemma 4. Let T ,T eB(61) (n =1,2,0ee ). Then

g (rw,,) as n > => T:l-’ T"'(-rp) as n >,

Proof.
1
T, *0 ('rw*) <&=> rTnx(w) -> rTx(w) (wec, xee)

<> (w,Tx) (v, ™ (eoco, xet)

= @,2x)> @, ™ (uy ee)
> (Tri(p) » (Ti)  (xy <2')
< bR S u (M) (ke ')
> (0 > () (xy €¢')
<= B> i) asn >, [

1 ;
Lemma 5. Let A , B e€B(¢), ||An" =1 (n=1,2,... ) satisfy
(. A ~»a (r,) asn>w ;

(2). B wB (Ta) as n >

s ®
Then A'B A"B (rp) as n > o ,

EN—-'\?F Jhw\:ﬁetvm.nce, "S‘ {TAkxl fos oL B ubseruence Rat CoMarrgen s TAx ,
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Proof.
| ¢ y (x) = g () |

< | wA; By (x) - wA;By (%) | + | WA; By(x) - ‘I’A"By (%) |
I‘I’l(By 1:1.,3,)(4%3:)|+|‘I’ RN (xyee) .

| lll(A#_ A#)By(x) | -0 agsn-—+*® by Lemma 4 ,
n

li(By -8y) < llBy~8y|l>0 asn->« by condition (2).[

Lemma 6. Let A,B € B( ¢, ¢') , then ( B&")* =isB* .

Proof. Let x ¢ 8 yee We have

¥ o0 = w(m"‘x) = 8, ( &%) =(4a"%, 8y )m
(Ba)7y & By =

® *

= @ (8y )" = ® o (3%y)

Ai(x)
e T i »
= ¥ )(aBY) = (&y , i(x) )

u

(x, 1(a8%5) ) = (o) .

Therefore (BA*)T = iABT , and so (BA")* = (BA*)Ei = iaB*, [

THEOREL 7. Let S,T €B(Z') besuch that v (s) € v (1) (n=1,2,.. )
and suppose that T is compact and the dual of an operator on cp.
Then 1S is compact and there exists a contraction F on (,1

E' )
such that iS =F TF .

1
Proof. Let A € Hn(t. ) (n=1,2,... ) be a sequence of operators
&
with the property that P, =kA > 11 ('rs) as n » © (Lemma 1.4).
For each n=1,2,.,. there exists B € Iln(61) such that

* %
AnS An = BnT Bn
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* * " _ *
Therefore Pn S Pn = Fn T Fn by Lemma 6 , writing Pn = AhAn’
%
F =BA . ByProposition 1.3, Ihnn i [am 1,9 00e )a
(1-) ApE m‘}—of——iF—n-;— such

th&%—%%;**iL—£7;;}——&&ﬂ&4*4&. Proposition 3 shows that

TF > TF (rs) , and finally Lemma 5 shows that
* * ) i
- oo
D2 FTF (Tp as m i
* -
Mlso PSP =iP SP - iS (Ts) asm > o ,

%
Therefore iS =FTF . (]

§3. Applications.

In this section we ask the question : What is implied by the
condition Vh(s) = Vh(T) n=1;2,sss (S,T € B(61)) ? For two
simple classes of operators, namely compact diagonal operators and

compact weighted shifts the matrix ranges form a set of invariants.

Definition 1.
T € B(&1) is said to be diagonal if there exists a sequence
o 1
of complex numbers {Ah]1 such that T[fn] = {Ahen] ( {&ni €e).

e B(&1) is said to be a weighted shift if there exists a

oo
sequence of complex numbers {Ah]1 such that Tbnzahen+1 (821;2504 )

PROPOSITION 2.

(1), Let T € B(&1) be diagonal, then T is the dual of a
(diagonal) operator acting on co

(2)e Let T ¢ B(si) be a weighted shift, then T is the dual

of a backward shift on co .

Proof. (1). Let [Ah] denote the bounded sequence associated

with T . Define S € B(co) by

I ‘ﬁ?ayh} TReotem |, Reb F be a 't@*--c&mhw Pcwd?qﬁ {F;Lﬂ.
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i

S {x }

A { A x ] ( {xn] €co ) . With T as before we

have
oo

(sw,x) = w Mk = (w,Tx) = PTx(w) (W=[Wh1500,
me 1

Px(SwO

x:{xnle ¢ )
Therefore T is the dual of S .

(2). Let iAhIT denote the sequehce of weights associated
o0
with T. Define § € B(co) by s{x | = {A;xn+1]1 ([xh; € co) .

S is (by definition) a backward weighted shift.

o0

Tx(SW) = (Sw,x) = 1wh+1A;x; = (w,Tx) = Erx(w) (w:{wn}ecg,
nN=

1
x:[xhleﬁ s
Therefore T is the dual of S . []

THEOREN 3. Let S,T € 3(31) be compact diagonal operators with
zero nullspaces such that Vh(s) = Vh(T) (6ot Biees Ve

Then there exists F ¢ \f such that § = FTE .
Proof. Since S and T are compact their associated sequences
converge to zero. We may assume that each sequence has terms
with non-increasing modulus. (Otherwise apply Proposition 1.9 to
find U, Ve \j‘ with the property that U’1S U, V’1T V have
the required form, )
Let T{ ) = (A&} , SiE)=uel (fglee’) where

It 2 da b Tl 2 le o] (esty2,... ).

Proposition 2 together with Theorem 2,7 shows that there exist
F,c e B(¢') , IFll <1, llol < 1, such that iS = F*T F , iT = G*S G.

iSe1 = i(u1e1) = F*T Fe1.

]

Therefore i = (e1,i(p1ei) ) (21,F*T Fe1) = (Fe1,i(TFe1)).

- o 2
irite Fe, = [f1k]1 , then p, = EZ;Ak|f1kl .
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=]
Therefore h-l1| € Zl)ﬁcl |£'m|:a < |)«.1| (by Jensen's inequality
K= 1

1]

together with ||F|l € 1 ). Notice that |ls|| |y1|, IIr)l = IA1[,

and therefore by Theorem 1,11 we have l;.l1| = |)L1| .
oo
Hence |A.1| =y Ihkl |f1k|2 . wSuppose |JL1| occurs n, times in

k= 1
the sequence | |.\k|] . Since Z [f‘1k|2 < 1 we must have
ny 2 K= 1
Z |f1k{ = 1 -
k= 1 -

ny 1
= % . o

1a ¥ Ibf1k| <) If,lkl €4
K= 1 k=1

Therefore there exists an integer o(1) , 1 < o(1) < n, , such that

|£ (Kroneckex's 8 ) . Suppose |u1| occurs m, times

1k| = 8ka(1)

in the sequence “”nl }. The foregoing argument can be applied

equally well t0 e,,ez54s05¢ ~ and since F is 1-1 ( because S
1

has trivial kernel ) we have m, < n

1 i
A repetition of the reasoning using iT = G*S G shows that

n, < my s and therefore n, = m Also

1 1°
Fe}c = o eo(k) where |ak| = 1 (k=1,2,...,m1) and ¢ is a

rermutation of the first m, positive integers.

3
i(ue,) = iSe, = F*T Pey = A1) % F*eo(x) (k=1,2,.00,m,) =(1)

]

Span| e,,e

Let X, 3**7%, } s
X, =8 e ! in &)
;= panj en1+1, n,+ yio (closure taken in &) ,
Given x € XT » ¥y € X, then (Fx,i(y)) = (x, F*y) = 0 (using (1)),

oo

Therefore F XT e X‘l "

Given x € 61, y € X1 then
ni
(x, F*Fy) = (Fx,i(Fy)) = ) moayie = (x, i(y)).
k=1
Therefore F*Fy = i(y) (y € X1) "

Write S, =8|, , T, = Tlxw . Since xT is invariant for F



- 59 -
iS1 = F*7] FIX? - F*lxw T1 le? .
lis, < eyl = 1A,

< I“n1+1| from iT1 = G*lx? S1 GIXT .

Therefore |u

i

-

n1+1|
Similarly lah1+1|

Therefore |u | = |A.m +1| and the arguments may be re-applied

n4 +1
to the next block of coinciding terms in the sequence {|M|}. It
follows that there exists a permutation o of the positive integers
and complex numbers {ax] of modulus one such that Fe, = % e (k)
(ko185 504 )u P ejlf.by Proposition 1.9, F* =1 F-j and therefore

1

S=F TF.[

THEOREM 4. Let S,T € 3(41) be compact weighted shifts with zero
nullspaces such that V (S) = Vn(T) (n=1,2,.+. ) . Then there

exists F €1 such that § =F 'T F.

Proof, Let T be given by Te (n=1,2,... ) where 1Ahl

=Ae
n n n+1
is a bounded sequence of complex numbers, Define U € B(-F/1) by

1 _ _
ulgd =186 1 (&) €e) where {8 ] isgivenby 8 =1,
M = |Al8nss (n=2,3,... ). Then U e |f (Proposition 1.9)
-1 -1 . -1

=U T8e = §AUe , = |Ak+1lek+1 i.e. U TU

is a shift with weights i]Ah|l . Therefore we may assume that the

and U T Ue

sequences of weights for S and T consist of positive numbers.

Let Te =Ae . , Se =pe . Ak 20 (n=1,25000 ).

Let p (respectively q) be any integer such that Ap = max[hn:naﬂ
(respectively Hy = max{,un:naﬂ). By Theorem 1.11 we have )LP =y
By Proposition 2 and Theorem 2.7 there exist F,G ¢ B(&1) , [IFll €1,
llell s 1, such that iS = F*T F , iT = G*S G .

Let A=(J: A, =A B=}Jj:u, = . Given m € B
1.] 3 p]’ iJ MJ “q] ’
= i = F*

we have i(“mem+1) 1Sem =T Fem .

o0

= i = = . *
Therefore H_ (em+1,1(pmem+1)) (Fem+1,TFem) j;:A5fm+1 541 fmj
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where Fex-. = {fxj] (k=1,25000 ) »

Hm € ‘§1AJ|fm+1J+t fmjl < ?\.p = pq since "Fek" <1 (k=1,2,.. ).

(= =]
J=1

It follows that §1|fm+1j+1 fmi | =1 and therefore there exists
J €A

5 = =1 .
an integer o(m) € A such that | fm+1 o(m) +1 I | fm o(m)l

i — = = o : Lad of
Write Fey = @ e . where |am| 1 The map m + o(m)
B into A is 1-1 since F has trivial kernel,

Applying the same argument using iT = G¥S G we find a 1-1

map of A into B, and since each set is finite A and B must

possess the same number of elements. Let m € A’Bthen

= a3 * = ok *
1 = (Fem,Fem) = (em,F Fem) = a* (em,F ea(m)) i
F*¥ is a contraction , for let y ¢ 81 then

T,
Iyl = IEi( 1l = IIHFFTjL ” I = supl |y

< llvg ) WFN < I <l <

J(®)|x € € il < 1]

i

a* e (me x8B).

Therefore F¥e c( m) .

Let X, = Span | e JE€k 1, Y, = Span| e jeB},

X1=Span[ej:j€§\ﬁ.] " YT:Span{ ej:jeg\}sl.

GiveanXT » ¥ €Y, then (Fx, y) =(x, F*y) =0 and

therefore F Xo; € YT; .

iSI.X:o = F*T leo; F*“TIY:° le‘f : lis| X Il < ItrlYT I = =(8)

6*s ¢ we obtain [li7|y» |l < lls] = Il - -(2)
1 1

i

Equally well, using iT

i

Let Py be the smallest integer such that A

max{ A mellNA }.

P
2
Let g, be the smallest integer such that o, = max{ W ineN\B i
2
From (1) and (2) we have )\.p = “q and the foregoing arguments
2 2
can be repeated for the sets
—] i 2 A,. = h = j : R ®
Ay =3 v, 5 By =13dsmy ho, }
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It follows that there exists a permutation o of the positive
integers and complex numbers [rxk] of modulus one such that
Fek = akea(k) (k=1’2’0ll ) .

F e ‘U_ (Proposition 1.9 ) , F* = 57

, and therefore

s=FTF.[




CHAPTER &

THE WILLIAMS k-RANGE

§1. Definition and elementary properties,

In this chapter we investigate a new concept which extends the
idea of the numerical range of an element of an arbitrary complex
unital normed algebra. The observation arose from a character=

isation of the numerical range by J.P.Williams.

Notation.
Let A denote a complex unital normed algebra . Given
a € A,let "V(4,a) denote the numerical range of a , i.e.
¥(a,a) = { £f(a) : £ € D(A,1) } where D(A,1) denotes the

set of states on A .,
LEM:A 1. ( J,P.Wwilliams ), Given a € A

V(a,2) = ﬁC{ A: o |z=A| < || z-all } .

Proof. Let A € V(A,a) , then there exists f ¢ D(A,1) such that
f(a) = A and therefore

|z=A| = |z-£(a)| = |£(z-2)| < llz-a]l (z € c) .
Conversely, suppose A € C satisfies |z-A| < |lz-a|| (z ¢ c).
If a =pl for some u € C then for any f € D(4,a)

|£(a)=A] = |p-A| < Jut-all = 0 . Therefore A = £(a) € V(4,a).
If 1 and a are linearly independent, define f, on Span{ 1, a}
by fo(a +pfa) =a+pr (qpeg).

Ifo(a + fa)i = o« Al < flu + Ball , £o(1) = 1.

Extend fo to £ € D(A,1) by the Hahn Banach Theorem, £(a) = A )
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Notation. Let Polk denote the set of all complex polynomials of
degree s k , Let /I'(\ denote the polynorniaJJJconvex hull of the

compact set K Cg_n .

Definition 2. Given a € A , the kth (algebra) Williams range of a

is the subset of G given by
T (a8) = { A eg: [p(N] < |p(a)ll, p € Po1, § .

For the remainder of this section we assume that A is complete,

PROPOSITION 3. For eacha € A, k €N , Jk(A,a) is a non=-void
polynomially convex compact subset of G such that

(1)- J1(-A-:a') = V(A!a) H Jk+1(ﬂ,&) - Jk(Asa) (k=1,2, o P

(2)!! SP(AJE') ;_ Jk(AJa) (k=1323--. ) .

Proof., V(A,a) = J1(A,a) is a statement of Lemma 1 . It is
clear that the Williams ranges are closed bounded nested subsets
—

of the plane. Let A € Jk(A,a) then

|p(A)| < max { |p(2)| : z € Jk(A,a.) } for all polynomials p .
Therefore |p(A)]| < [lp(a)]l (p e Polk) ice. AeJ (A8) end so
J,(A;2) is polynomially convex . Finally an application of the
spectral mapping theorem for polynomials shows that

sp(4,a) € J,(4,8) (k=1,2,... ) . [J

Remarks,

(1). The M1 1ams range of a € A depends only on the subspace
of A spanned by 1,a,32,...,ak . If B is any subalgebra of A
containing 1 and a , then Jk(B,a.) = Jk(A,a) . We shall omit
reference to the underlying algebra and use the abbreviation

Jk(a) whenever no confusion arises,
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(2). J, 1is not a comnected set in gemeral when k>1.

Example, Let T = 1{1} _?] , a(z) = 22 - 1 € Pol, .
(M < [reg: e < gDl =03 =1, -1} =sp(T)

Therefore Jk(T) = §{1,-1] =sp(T) (k=2,3,... ).

More generally if T € B(H) where H is a complex Hilbert space of
dimension n then Jk(T) = 8p(T) (k=n,n+1,... ) because T satisfies
its characteristic polynomial,

If a is an algebraic element of a unital normed algebra and
A‘l’)\Z""’Am are the roots of the minimal monic polynomial (having
degree n ) then Jk(a) = { ApAgseeas A !} o(k=n,n+1,... ) «

(3). Examples of iWiilliams ranges are difficult to calculate from
the basic definition . As a result of theory developed in §2 we
see that the Williams ranges of elements of certain group algebras

are amenable to calculation , and we give some examples ,

PROPOSITION 4. For each a € A, a €(

(4). Jk(a a)

(2).  7,(142)

a Jk(a) .

1l

1 + Jk(a) .

Proof, (1). Let a {0, then

[ Az [p(M)] < llp(aa)ll , p € o1}

[ ar: |p(an)| < [lp(aa)ll , p € Pol, ]

farzp (M) <o (a)ll , p € Po1 ]

where p (2) = p(az) . Therefore J,(ea) = a Jk(a) (ako) .

J (o a)

[}

1]

If a =0, Jk(O) < v(o) = {o} .

i

(2).  3.(142) = { 2 [p(N)] < [p(1+2)l , p € Po1 }
{ 142 2[p(14A)] < llp(14a)ll , p € Po1, }
{142 s [aM] < lla(a)ll , q € Po1_}

1 +Jk(a.) « 1

]

U



& G5 =

$2. Intersections, equivalent norms and states.

We first answer the outstanding problem raised by 1 , namely,
describe }51 Jk(a.) . The effect of calculating the Williams ranges
relative to an equivalent norm is considered , and finally we
identifly those states which generate the kth Williams range,

Throughout this section A will denote a complex unital

Banach algebra.

N 00
TIZOREM 1. Given a ¢ A , Spla) = k:ﬂ Jk(a) .
W ——— 1

T
Proof. A« sp(a) = [p(N]| < max {|p(2)| : 5 €5p(a) ]
< leCa)ll
for a1l polynomials p . Thereforc A€ ﬂ Jk(a)
Conversely , suppose A €k=n1 Jk(a.) ~N S;(:) Then there exists
a polynomial p such that
|p(M)| > max{ |p(2)| : z € sp(a) } = r(p(a)) .

Consider the sequence of polynomials Eqm] defined by
- z)\ k .
- 5 () e
k=o

[qm(a)] is a comvergent sequence. qm(,\) =m+1 . Therefore
there ex:l.sts mo € N such that lqm (N > IIqu(a) | which implies

that A F ﬂ J (a.) , a contradiction, []

Notation. Let N(A) denote the set of all algebra norms ‘ A on A
that are equivalent to the given norm and satisfy A(1) =
Let Jl‘:'_(a) denote the k' Williams range of a € A

determined by the norm A (€ N(A)) in place of the given norm .
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We recall the following two well known facts [3]
(1). Given 2,18, +.0,8 mutually commuting elements of A
and € > 0 , there exists A € N(A) such that
)\(ak) < r(ak) + ¢ (k=1,2,...,0).

(2). Givena € 4, co Spla) = N § J?(a) : A e N(4) 1.

THEOREH 2. Let a € A and let U be any open neighbourhood of

Sp(a) . Then there exists a positive integer m, depending on U,
such that

™
‘Sﬁa)g ﬂ{J;:(a):AcN(A)ICU whenever k > m .

AN
Proof. Sp(a) C J;(a) (k € N, A €N(A) ) by Theorem 1,

(1) 12 sp(a)is—oonvex—thenm=i, Suppose & € co Sp(a)~U ., Then

there exists a polynomial U of degree me say , such that
]qe( &| > r(qe(a)). Therefore there exists A ¢ N(A) such that
)‘(qf(a)) < Iqe(é)l . Thus £ kJi(a) whenever k > m, .

Let U& be any open neighbourhood of € such that

TR
f\(qg(a)) < lqé(z)l (z € Ug) . A&LLJ { Uf : & €,co Sp(a)\U} is an

open cover of the compact set co Sp(a)\U . Let

U',3 Uu, U...UlU be any finite subcover, Take
1

2 ¢

n

m = max { me j=1,2,4..,n} . Then 3z € co Sp(a)\U =>
J
z k ﬂ[.]';:(a.) : A e N(A) } whenever k > m ,

There fore n[Jf:(a):AeN(A)I CU if kx2m. ]

Notation. Given x € S(A) , a € A, k € N let
T (a5a,%) = {2 €G s [p(2)| < [lp(e)xll, p e PoL, | ;

{ f ¢ i lell = £(x) =1, f(ajx) = f(ax)‘j

Dk(A;a,x)
55132:'--’k ] .

b T ©o$H@) cU | WRea m=1,

)



Remarks,

(1). Jk(A;a,x) C Jk(A,a) (xes(a)) ;

v { Jk(A;a,x) : x € 8(8) } =J,(4,a) since

Jk(A;a.,‘l) = Jk(A,a) .

(2): Dk(A;a,x) is a weak* compact subset of the set of all
support functionals at, x. Dk+1(.&-;a.,x) o Dk(,‘,;a,x) (k=1,25000 )
Dk(A;a,x) i.i: ‘;:E)n-Empty im—general when k>1 .
Example, Let A be the group algebra &1(@5) (_%5 = {0,1,2} under
addition modulo 3 )., Given f € 51(_%5) , wite £=(£(0),£(1),£(2)).

D(a) = { (up.k) = wky € 8y Tulst,luglst ],
Let a = (1,1,0) , x = (0,0,1) . A calculation shows that

a*x = (1,0,1) , a*a = (1,2,1) , a*a*x = (2,1,1) .

Let f = (1,u1,u2) € D(A) then

f(a."‘x)zz fa*a*x) <=> pg +Hy =14y

2
Therefore Dz(A;a.,x) = {(1, -1, ”2) : |u2| €4 .

PROPOSITION 3. Given a € A , x € S(A) then

3 (a,8,%) = | £(ax) : £ € D (A5e,%x) ] (k=1,2,...) .

Proof, Let (x) = span{ x, ax, azx, o a¥x }.  Given
frool A > ’

¢ €J,(a,x) define £, on A (x) vy fc(p(a)x) =p(g) (p €Pol)).

PysPy € Pol, => p,-p, € Pol, , 50 prlateps(a)—==> p()x = p,(dx
S 1p4(8) = 2 (O] < llpy(a) x-py(a) xll= 0.  Therefore £, isa

well defined linear functional on A, (x) and fc(x) =1 = |]f§|| :
Extend fg to f ¢ Dk(A;a.,x) using the Hahn Banach Theorem,

Conversely it is clear that f(ax)e Jk(fs.;a,x) whenever f € Dk(A;a,x).

COROLLARY 4. Let a € A . Jk(a) ={fla) s £ ¢ Dk(a.,‘f) ¥ s
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PROPOSITION 5., Given a < A,
S/P(‘Q = { £(a) : £ €D(a,1) , £(a’) = £(a)? (3=1,2,4.. ) } .

Proof. We claim that

n Jk(a.): { £(a) : £ €D(a,1) , £(a%) = £(a)? (5=1,2,000 ) } .
For let A enﬂ Jk(a.) , then by Corollary 4 , for each k>1 there
exists f, ¢ Dk(A,‘l) such that fk(a) =A . Let £ be any weak*

cluster point of the set {f, : k=1,2,... } « Then f(a) =A ,

k
£ €D(a,1) , and f(a?) = £(a)? (§=1,2,... ) . The converse is

clear, An application of Theorem 1 gives the desired conclusion,(]

Remark. The well known fact that the generator of a monothetic

algebra has polynomially convex spectrum follows immediately from

Proposition 5.

These elementary observations on the states which generate ch
are applied in the next result to show how the Williams ranges of
the tensor product of two elements is related to the Williams ranges
of the individual elements, F.F.Bonsall and J.Duncan [4 ; §22.6 ]
have given the following result .

Let A and B be unital normed algebras and let A be any
algebra norm on A4 ¢)B which dominates the weak tensor product
norm @ . Then

cof M :AeV(a) , pev(d)} < V(a®®@b) (a€A,beB),
Examples are given where equality holds and also where strict

inclusion holds .
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FHEOREM 6., Let A and B be unital normed slgebras and let AX)B
be_given any slgebre norm A which dominates the weak tensor product
norm., Then

f AL Ae Jk(a.) , U € Jk(b) = Jk(a@b) (a€A , beB ; k22),

Proof. Let p(z) = aozkia- . (ocn,t:z:“,..4.,o'nk €C ).

pla®b) = acak®bk + a1ak-1 @bkm‘| +oeee O 1651 .

Je note that completeness of A was not required for the definition
of D, and that Proposition 3 and Corollary 4 hold sthen A is an
arbitrary unital normed algebra. Therefore given A ¢ Jk(a) .

B o€ Jk(b) » there exist £ € D, (4;2,1) , g € D (B;b,1) such that
A=£(a) , u=g).

Ip(M)| = | & £(a)e(®)* + a,2(a)Te(®) "+ .. 4+ o |
lf(acak)g(bk) + f‘(a1ak_1)g(bk—1)+ cer * f(ak)g(‘l) |
w( p(a®D) ) < Mp(2a®D)) .

Therefore Au € Jk(a®b) . O

N

Examples. (1) Let A =C(E) , B = C(F) where E, F are compact

Hausdorff spaces . We recall that the completion of AR with

the weak tensor product norm is isometrically isomworphic to C(ExF)

[ 2; $42] . Suppose a € C(E) , b € C(F) possess the property

that a(E)b(F) = | a(s)b(t) : (s,t) € ExF } is convex . Then
a(E)b(F) Sp(a@b) C Jk(a®b) £ J1(a®b)

co Sp(a@b) = a(E)b(F) .

a(E) =sp(a) C 3. (a) 5 B(F) =8p(b) € 3, () (k=t1,2,... ).

i

These observations together with the theorem imply that

I (a®@P) =7, (a) J.(b) (k=1,2,...) .



(2). Let A =(61(§6) , ¥ ) where 2z = {0,1,2} under addition

modulo 3 . As before , given f € A write f = (£(0),£(1),£(2)).

Let a = (1,1,0) , then J1(a) = { Teuy 4 |u1|€‘1 } = { zeC :|z-1]€1},
g C.24)

2 2
Let f = (1,u1,p2) € D(a,1) then f(a)” = £(a")
2—
15 Hg -
Therefore Dz(A,a) = { (1,p,u2) : |ul€1 } and hence Jz(a) = J1(a).

<==> U

We recall that for any group G , the completion of
61(G)(g;&1(G) with the projective tensor product norm is
isometrically isomorphic to &1(GxG) [2;842] .

A calculation shows that under this isomorphism we have
af<ya = (1,1,0,1,1,0,0,0,0) relative to the following ordering
of the elements of §6 * §5 :

(0,0}, (0,1), {0,8), (1,0), (1,1, (1,8), (8,0), (8,11, (8,2) .

J1(a@'a)=[zegz |z=1] <33} .

(a@:‘-a)2= B.Qk)a* agX)a
Let f =(1,-1,0,-1,0,1,0,1,0) . f ¢ D(£1(§5x§5)).

(1;8,4:0:8,2.0:5:1) .

f((a@)a)z) =1 = f‘(&u\@a)2 . Therefore f € Dz(&1(z5xzs); &)
f(a@a) ==1; =1 &Jz(a) Jz(a) g

Therefore Jg(a) Jz(a) % Jz(a({;a) .
(3). For the element a of example 2 we have
Js(a®a) g Jz(a@a) ('; J1(a®a) :
Suppose =2 € Jz(a.®a) s, then there exist M, € c, Iuilé‘l (1<i<8)

-2 e (1)

such that 1+u1 +Hz +ly

and (-2)2

u

1420, +1,+2( 5+2p4+u5) g2ty = =(2)
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(1) = My, = Hg = H, = =1, and then (2) becomes
p2+2u5+u6+2u7+p8= 11 which cannot be satisfied.
Therefore =2 € J1(a®a)\J2(a®a) "
(ag a)? & (4,6,6,6,9,9,6,9,9) .
Suppose =1 € JS(aGE}a) , then there exist p, € G ,lpi|s1 (1<i<8)
such that 14u +pg+u, = =1 - =(1)
(-1)2= 1+2p1+p2+2(u5+2u4+p5) g +2H g - =(2)
(-1)°= 446y +i i) +9( U iig ) 461 49 ywig) = =(3)
6x(2)~ (3) gives 17 = 9u4+3(u5+u7—ﬂ8) . The maximum real part
of He+Hp=Hg is 3. Therefore the real part of Hy cannot be less
than 8/9 , but then (1) is impossible to satisfy .

Therefore =1 € Jz(a._’_:{)a)“‘\.ls(a(@a) g

$3. Printers.

The notion of a printer was introduced by F.F.Bonsall and a
full account is to be found in "Numerical ranges II " [ 4 ; §37 ].
A printer provides a unified concept of numerical range by selecting
as defining axioms three properties enjoyed by several concrete
numerical ranges. In this section we establish a definition for
a printer on a subspace of a unital normed algebra and investigate
the relationship between this notion of printer and the Williams

ranges.,

Notation. Let ( A, |l.|| ) be a unital normed algebra , and let A be
any linear norm on A equivalent to |l.|| such that A(1) =1 .
Given a € A , let La denote left multiplication by a on A , i.e.
Lx = ax (x €a) . Let }’i)\ denote the operator norm on B(A)

determined by A .



-T2 =
The map L:a»La:(A, A > (B(A)’I"A) is a norm-
increasing monomorphism. Let B be a linear subspace of A
containing 1 .

Definition 1. & is an (algebra) printer on ( B, A ) if and

only if QOL-1 is a (spatial) printer on L(,B&) in the usual
sense , i.e., @ 1is e mapping from B into the class of non=-
void subsets of ( which satisfies :
(#). #(a + pa)
(2). sup|&(a)l

(3). inf|e(a)l

"

a + B #(a) (agﬁfg ja €B ),
RN (aeB),

M ax) (aeB, xes,(a)) .

)

N

Remarks.

(1) Taking A.) = I v nave |nl, = lall (a € &) ana

therefore a+ V(a) , the algebra numerical range of a , is a

printer on (&, |.]) .

(2). The given algebra norm on A does not play an explicit

role in the axioms, Since A is equivalent to ||.|| we have
gl € 2 < gyl

ML x) = Max) < Kyllxll < Kyllalllxl < xk72A(a) A(x)

-2
Hence lLa.')\. < KK “Na) .

| for some K1,]{2 > 0 , and therefore

Therefore the condition " A is equivalent to ||.|| " ensures
that the map a*= 1L : (4,A) - (B(a) , l.|A) is bounded .
Define a new norm on A by ||a||;,L = lLa‘A (a €A) . Then
(A, ||.||]t ) is a unital normed algebra and ||.||A is equivalent
to A,

Given any algebra A with unit together with a linear norm

A on A such that
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(1), A1) =1,
(ii), Themap L : (A, A ) = ( B(a) , I.IA) is bounded;
Then A can be given a norm , namely "'"A , relative to which

A 1is a unital normed algebra.

We require the following well known result on the (spatial)

printer .

Notation. Let X be a normed linear space, L a subspace of B(X)

containing I .

THEORELl 2. (4: §37.4 ) Let & be printeron L , and let T € L ,

Then co &T) = V( B(X) , T) .

COROLLARY 3. Let & be a printer on (B,A) , and let a € B .

Then co &(a) = V( B(4), |.|A, La) .

Proof. By definition <I?DL-1 is a printer on { L, :aca } € B(a)

il

and so by Theorem 2, V( B(a),|.[, , L, ) co( @01,"1(La))

co #a) .0

]

Definition 4, The statement " J, is a printer on (B,A) " will
mean that the map

av 7,084, |.1,, L. ) ds a printer on ( B,A) .

PROPOSITION 5. If | z € G : |p(z)| < AM(p(a)x), p € Pol, } k¢

for each x € 5,(A) , a € B , then J, is a printer on (B,N).

Proof. Clearly the mapping a = J,( B(a),].] pl, ) satisfies
axioms 1 and 2 of definition 1 and J,( B(a), l.|A,La ) £ ¢

(Propositions 1.3 & 4 ) . Given x € SA(A) .
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we | zeC : |p(z)| < A(p(a)x) , pePol, | => lw| < Aex).
Also A(p(a)x) = A.(p(La)x) < Ip(La)lA . Therefore

w e J (B(a),].],,L,) and so inf|g (B(A),].],,L,)] < A(ax)

(aeB, xes,(a)) .0

Notation, With (A,A) as before,let v, denote the numerical radius

A

-”A on A, i.e,

calculated relative to the nomm |

vh(a.)=maxi|z|:acV(A,ll.llh,a)I (afﬁ)-

THEOREM 6. Let (A,]|.]) be a unital Banach algebra , let A be a
linear norm on A equivalent to l|. |l with M(1) =1 . Then if
r(a) =v,(a) (a €a), J,. is a printer on (a,v,) for each

k = 1,2,.-& .

Proof. The condition r(a) = v,(a) for each a € A implies that

A is commutative [3 ; $4.7 ] . Let x € s, (A), then there exists
A

an element ¢ of the carrier space of A such that |§x)| = 1.

For each p € Polk we have

Ip(¢(a))| = lo(p(a))| = |#(p(a)x)| < v,(p(a)x) .
Therefore ¢(a) € { z : |p(z)| < v,(p(a)x) , p € Pol,_].
An application of Proposition 5 ( with v, in place of A ) gives the

desired conclusion. []

Examples.

(1). Let A =C(E) where E is a compact Hausdorff space . Let A
have the uniform norm “”m , and take A = |HL°. Then

r(a) = v(a) = vA(a) = ||a||m . This is a trivial example for which
the hypotheses of the theurem are satisfied. Bonsall and Duncan

[4 ; §25.9 ] give an example of a unital Banach algebra with the
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following properties, The details are not included here as they
fall outside the scope of this discussion.

(2). Let T denote the closed unit disc, A(T) the algebra of

continuous functions on T which are analytic in the open unit disc.

There exists a norm ||.|| for A(T) relative to which A(T) is a

complex unital Banach algebra such that
(1). r(a) = v(a) (a € A(T)) ,
(31). Il = 5

Let A=v , then A is an algebra norm and ua”flLah:)t(a) (aea).

i

e where u(z) =2 (z¢€T) .

]

Therefore vA(a.) < Ma) = v(a) , and since r(a) < Vl(a.) we have
v,(a) =v(a) =r(a) (a €A). The hypotheses of Theorem 6 are

satisfied .

THEOREM 7. Let ( A, [l.]|) be & unital Banach algebra , let A be
a linear norm on A equivalent to ||| with A(1) =1 . If I is a
printer on (A,A) for each k=1,2,,,. then r(a) = V)L(a) (a €a) .

Therefore A is commutative and the spectral radius is an algebra

norm equivalent to the given norm ||.l| on A .

Proof., Notice that Jk(B(A), I”)L ,La ) = Jk(A, Il ")».’ a ) (aea;k>1)
and therefore Corollary 3 together with the fact that J (4, ll.[l,,2)

is compact shows us that

OOJk( A, “'lh! a) =J1(A’ HOIIA.O )
Given a € A, let I'={ ze¢ : |z| = vh(a) } . Suppose r(a.)<vA(a.).

5
Then co Sp(a) NI = ¢ and therefore g a) N T=¢ (Theorem 2.1).
1

n
Since the Williams ranges are nested compact subsets of the plane

there exists n € N such that J (a)AT =¢ .

z € Jk(a) = |z| < v)‘(a) . Therefore co J (a) NI =¢ and so
n
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J1(a) NT =¢ which is a contradiction . Therefore
r(a) = vk(a) (a € 4) . This condition implies that A is
commutative [3 ; $4.7]. v, is a linear norm equivalent to "'"A
and therefore by Remark 2 v is equivalent to ".H . Since the

spectral radius is an algebra semi-norm the desired conclusion

follows. [J

It is natural to ask whether the results of Theorems 6&7 are
best possible or whether some strengthening would achieve general

necessary and sufficient conditions that Jk should be a printer

for each k21 .
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§4. Joint Williams ranges.

th

The notion of a K Williams range has a natural extension to
a joint concept in the case of several elements of a unital normed
algebra , which also extends the notion of the joint numerical

range.

Notation. Let Pcﬂ.n denote the set of all complex polynomials in

k
n non-commuting variables of degree < k .

Let A denote a complex unital normed algebra. Given
g =(a85..052 )¢ A A= (Apshgseeesh) € ¢ 5 Ae) will
denote the norm closed algebra generated by 1,a1 38greassBy o
IL(A;E,Q) , IR(A;E,&) will denote the left ,

respectively right, ideals of A generated by 2\.1-a1,... ,An-a -

Definition 1. Given a € A" , the k' joint Williams range of 2

is the subset of Qn given by

3 (8,8 = {2aeg”: (M| < (), perory .

For the remainder of the section we assume that A is complete.
We recall the definition of thejoint spectrum of a € T « The left
joint spectrum LSp(A,a) , respectively right joint spectrum RSp(A,a),
of a € A" is the set of n-tuples A € Qn such that I.L(A 3585 2)
is a proper left ideal , respectively IR(A 3 2, A) is a proper
right ideal of A , The joint spectrum Sp(A, a) of a € A"

is the union of the left and right joint spectra.

Remark. The joint spectrum may be empty and the left and right

joint spectra are in general distinct.
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Example. Let A be the algebra of all 2x32 matrices,
0o 1 0 0 . 2_2_
Let a, = [0 0] ) B, :e[l ol * Then a8, + a8, = T a,=8,= 0.

Clearly the equation b1(h1-a1) + 'bz()tz-az) =1 can be solved

for b1,b € A for all (A ,7«2) egz « Therefore LSp(a1,a2)e¢.

2
Similarly the right joint spectrum is empty.

Let A = B(H) , dim(H) = 4.

0000 _looo0o0 ; ;
Let U1 = 1000 5 U2 = 10000 relative to a basis

0100 0100

0011 11 001
©12€9s€,58, for H. U2U1e1 Sy U1U291 =€, > therefore |

" is—not—in the range of
LA 3 u,u, 9 < Rsp( U,,U, ) since e,

¢ UH=+ UH,

. T"U,1 +T2U2=I o

OO0 O
l=le R ool
o N el o]
_L_'.xoo

Therefore 0 ¢ LSp( u, ,Uz) .

Theorem 2., For each g € An , keN , the kthjoint Williams range
is a polynomially convex compact subset of En such that
(Do 3 4(82) € 3 (82 (k=1,2,...) 5 3,(8,2) = V(A,2) ;

(2). sp(a,a) S J,.(8,8) (k=1,2,...) .

Proof, It is clear that the joint Williams ranges are nested
polynomially convex compact subsets of gn. The remaining assertions

will follow once the states which generate J, have been identified,

k
We return to the proof of Theorem 2 after this has been done,

Given a € A", let Ak(il-) ={p(a) :pe Polﬁ d o Ak(i"-) is

the subspace of A spanned by all words formed from 1,:3.1,...,&.n of
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degree < k , Given A € Jk(ﬂ,_%) define fA : Ak(?;)"’g by
n
£,(p(2)) = () (pePoly ).
~ n

n el
P, s Py € Pol, => p,-p, € Pol, There fore p1(g) = pz(g.') =>

|p1(_z})-p2(é)|s |b1(3)- pz(g)" =0 , and so f, is well defined,

"~

fAU) =1= "fhu «  Apply the Hahn Banach theorem to extend f, to
&A-state f on~A . N
Conversely,suppose f is a state on A with the property that
£(p(2)) = p(£(a,),f(ay)s.0058(2))) ( p € Poly ),

Then it is clear that (:E‘(a.1),f(a2),...,f(an)) € Jk(A,g_) "

Notation. Given g € A", let D,(A,2) denote the set of states

of A with the property

£(p(2)) = p(£(a,),f(a,),.00sf(a))  ( p € Poly ),
1 2 n k
We have established

PROPOSITION 3. Given g € A" then

Jk(Asﬁ) = { (f(a.l)sf(a-z)s “nf(a-n)) : £ EDk(A:,E) } (k21)

Proof of Theorem 2. J1(A,g.) = V(A,,g.) is a statement of

Proposition 3 when k =1 . Let A ¢ LSp(A,8) , then I.(4;2,3)
is a proper left ideal of A and therefore d(1,IL) =1, By the
Hahn Banach theorem there exists f € D(A) with f(I.L) = {0} .

Let ai1ai2... a.im be any word formed from 1,a1,9.2,...,9.n )

Ao. A- “ss A. i a. &, ese &
1 '3 . M2 in

= a-i a, ess B, (Ai-ai) +Aim(h see A -8

2 m=-1 m m 1 j'131-1 1 m=1

(3=1,250450)

8, +ev By (Ai - a, ) € I . It follows by induction that
2 m=1 m m
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;\'. A. e A- -8, 8., +sas 8 € . .
T T R T

Therefore f(ai 8y see By ) = f(ai )f(ai ; f(ai ) and hence
172 m 1 2 m

£ € Dk(A,_q.) . Therefore Sp(A.a) C Jk(A,E) (k=1,2,... ) « [
LEIDIA 4. 1 Dk(A,a) ={ f eD(a) : £|A(a) is multiplicative } .
— - 1 -~ ~

Proof., Immediate., []

THRORE 5. N 3,(8,8) = { (2(a,),8(e),..008(a) £ £ € D(a)

fla(a) is multiplicative }.

-]

Proof. Let A ekﬂ Jk(A,a.) , then for each k>1 , there exists
————— ~ = 4 ~

£l € Dk(A,__%) such that fk(a.j) = ,xj (§=1,250..,n) . Let f be a
weak* cluster point of {f, : k>1 } . Then f(aj) = )Lj (§=1,2,.,n)

and f € N Dk(A,a.) . Apply Lemma 4 , The converse is clear. []
1 Lt

COROLLARY 6. Let A be a commutative unital Banach algebra .
Then SP(A.!,% = { (f(a.l):f(az),“uf(an)): ffD(A) ’
fla(e) is multiplicative }.

E_{‘_O_O_f.‘ We show that Sp(A,J = r: Jk(.e'x,g) and then appeal to
Theoren 5 pp(A, a) £ ﬂ Jk(A,a.) follows from Theorem 2,
Let A € ﬁ J (a)\Sp(j Then there exists a polynomial p such
that Ip()l > max| Ip(¢(a1),¢(a2),...,¢(an))| T XEN } where
<I>£ denotes the carrier space of:A.

Therefore |p(A)|> max{ |¢(p(a))| 2, 1= r(a(2)

(@ = Y @/ ) (m=1,5,...) .

Jd=0
o0

{ qm(a.) } is a convergent sequence , however since A€ ﬂ Jk(a.)

we have m+1 = Iqm(éﬂ < ||qm(_§_.)]| (m=1, 2540 ), & contradiction.[l
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LEWHA 7. Given g = (8,5805...,8 ) € A", let £ be a

2
multiplicative state on A(g._). Then the kernel of f equals the

norm closed algebra generated by

f(&1)‘-a1, f(a-z)"‘az, cer 3 f(a-n)""an L]

Proof, Let x € ker f , There exists a sequence of polynomials
{ P } in n non-commuting variables such that

| x - Pm(f(a-.,)-&.,,f(&z)—az, i ,f’(an)-an )l=>0 asm>ew .
irite pm(g) = q(2) + @  where q has no constant term.
£( pn(f(a1)-a1,f‘(a2)-az,...,f(a.n)—an) ) = @ + f(x) =0 as m> e,
Therefore x belongs to the norm closed algebra generated by

f(a1)-a1,f(a1)-a1, .o .,f(an)—a.n o 11

We are indebted to P.Rosenthal for pointing out to us the full
strength of the next result and also for an attractive direot proof

which we give after Corollary 9,

n n
THEOREM 8. Let a = (a1,a2,...,an) € A, A= (A1,A2,...,An)eg
be given . The closed left and closed right ideals of A(g) qenerated

b%/ G- Ay Qa-Nyy s Q= An

coincide and equal the norm closed algebra generated by

31-A1,a2—A-2,-o.’an-An.

Proof, Suppose I‘L(A(f') ;8,A) is a proper left ideal of A(a) ,
then by Theorem 5 there exists a multiplicative state f on A(Q)
such that f(aj) = Ay (j=1,254..,n). Lemma 7 together with the
observation that IR(A(E:)i a,A) Cker f shows us that

I, VL C kerf C -]‘_;ﬁ'f;

Therefore I—L = q = ker £ . ]
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COROLLARY 9, Let & € A" be given . Then

Lsp( A(a),a ) = RSp( A(g),a ) = if\‘Jk(A(_g),g) (ket,2, 500 ).

Proof. Since A(a) is a Banach algebra IL(A(Q),_&,_{L) is a proper
left ideal of A(g) if and only if H(A(E)’E’é)_ is a proper

Sand
left ideal of A(z). Apply Theorems8. []

Proof of Theorem 8.( P.Rosenthal ).

Let x € IL(A(a);~,J then there exists X ,X,,eeeX € Aa)
such that x = Z i(a. A) For each i=1,2,...,n , there
exists a sequence of polynomials | ) 2 Ve 4 such that

I pmi(aT-J\.V...,a.n-)\n) -x | - 0 as m+e,

Let qm(g_) = é‘n‘pmi(i) (zi-)ti) g = (21,52,...,zn) Mm=1,2yees

|| qm(a1-)~.1,...,an-hn) - X || »0 asm>» ,
qm(81-/\1’t..,an-hn) 3 -I: nf;' (m=1,2gnno) .
Therefore -f;(_: 'I_IOI_R and 80 q c I_R . Similerly

I.C I, . Therefore I =I, and the result follows. []

Remark, Completeness of A is not required in Theorem 8,

To end this section we consider the effect of caloulating the
Joint Williams range relative to an equivalent norm on the algebra,
Let J;(A,_%) denote the k0 joint Williams range of g € A"
calculated relative to the norm A € N(4) .

PROPOSITION 10, Given g € A"
N{aag) : A eN®) }={gc”: [p(2)| < r(p(a)), pepor® }.

Proof. The inclusion D is clear since r(.) s A(.) for each AeN(A).

Conversely, let z €N | Jf:(_g.') : AeN(a) } . For each P € Polz
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we have inf | A(p(a)) : A € N(&) } = r(p(a)) .

Therefore |p(z)| < r(p(a)) ( p € Polﬁ Yo O

TIEOREH 11. Let a be an n-tuple of generators for the unital
Banach algebra A and let U be any open neighbourhood of Sp(4,a).
Then there exists an integer m > 1 depending on U such that

sp(a,8) € { zc” & |p(2)| < x(p(a)) , p ¢ Polﬁ ] Ccu
whenever k 2 m .,

Proof. From Corollary 9 we have

oo

0,3 (2) =sp(a8) € N INa) AN ] .

I g J?(a) : A eN(A) } =8Sp(a) an application of Proposition 10
m

with )¢ = 1 gives the result. If N | J:‘(&) t A eNA) INT k¢

let §€¢ N J:'(Q_) : A € N(A) }\U . Then there exists

ké € N such that _glsJ (a) (Corollary 9). Therefore there

exists P,é € Poln with ﬁ' |p§(_§)| > ||p£(~)“ 2 r(p‘é(a)
ie. £¢ N | J(a) : AEN(A.) } ifk>k,. Let U, be

£ £

any open neighbourhood of § such that |p£(£)| > |Ip£(§.)“ (z € U£)°
& Ug ¢ £enf J';L(_%) :A € N(A) ] \U ] is an open cover of a

compact set, Let U.VUTU sonie W Uﬁ be a finite subcover.
n

T

Take m =max{ k, : j=1,2,...,n } . We have

€.

J
N § J;‘(g,_) : AeNA) 1 CU if k2>m . The result follows

from Proposition 10, [
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§5. Future progress = A spatial concept.

We have concentrated our study so far on the Williams ranges
which extend the notion of the algebra numerical range. It is
also clear by analogy how to define a spatial kth Williams range
which extends the notion of the spatial range of an operator on
a normed linear space. This section contains a definition and

records a few immediate observations. It is included to

indicate an open area which we think merits further investigation.

Notation. Let X be a complex normed linear space, x' its dual
space, M(X) the subset of X x X given by

N(x) = { (x,£) €s(X)xs(X) : £(x) =11 .
Given x € S(X) , let D(X,x) = { f € S(X') : f(x) =1 1.

Given T € B(X) , x € S(X) , let V(T,x) = | £(Tx) : £ € D(X,x) }.

It was observed that the method of Lemma 1.1 of J.P.Williams
could be used to exhibit V(T,x) as an intersection of closed
discs

V(T,x) =fAeC: | a-¢]<l(T-axl (Zeg)} .

By analogy with the definition of the k°D (algebra) Williams

range we make the following definition,

Definition. Given T € B(X) , the k'* spatial Williams range of

T Eka » is the subset of the complex plane given by

5pI(T) = U { spI,(T,x) : x € S(X) }

where
SpI(T,x) = { A e G : [p(N)] < fl(D)xll (p e Po1) § .
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Remarks,
(1). The following properties of SpJ, ere immediate.
@) sp3, (1) =v(1) 5 spIy (T) € spo(T) (k=1,2,...) ,

(1), spI (oI + BT) = a + B SpI(T) (a,B €C),

(1id), Ska(T) o Jk(T) .
(2)s If Tu =X for some u € S(X) then A € Ska(T,u) and
therefore pSp(T) C Spﬂk('.l‘) . If X has finite dimension then

Ska(T) = Sp(TY (k2dimX).

Problems.

(1), Is the A spatial range non-empty in general ? It is well
known that Sp(T) CV(T)™ . Is the approximate point spectrum
of T contained in SpJ,(T)” 2

(2). It is well known that o V(T) = V(B(X),T) . What is the
relationship, if any, between the kth Spatial and kth algebra
Williams ranges when k22 ?

(3). Describe 51 Ska(T)_ whenever the intersection is non-
empty., If A €(C is a limit of a sequence of eigenvalues of T we
have A € Ska(T)"_ . If T is either a compact operator on a
Banach space , or a diagonal operator on a Hilbert space then

sp(T) = D Ska(‘l‘)_ ( because for such T, Sp(T) C sPJk(TT_c_: 7,.(T) )
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