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Abstract

It is known that neutrophils play an important role in host defence mechanisms

especially in acute inflammation. Such neutrophil activation and accumulation in the

myocardium are suggested to be major pathological events in myocardial ischaemia

reperfusion (MI-R) injury. Endothelial dysfunction occurs very early after

reperfusion followed by neutrophil infiltration into the myocardium and subsequent

myocardial necrosis. Neutrophil products cause myocardial injury during MI-R. In

experimental models, interventions that deplete neutrophils or inhibit their function
cause a significant reduction in myocardial infarct size. Neutrophil activation is also
associated with cardiopulmonary bypass (CPB) as well as a failure of platelets to

form large, stable aggregates.

The aims of this thesis were: 1) to establish the role of nitric oxide (NO) and cyclic
GMP in neutrophil chemotaxis and superoxide anion generation (SAG), 2) to

investigate the effects of a novel NO donor GEA 3162, the A2A receptor agonist

2-HE-NECA, and the PGI2 analogue cicaprost on neutrophil accumulation and

myocardial injury in vivo, in a rat model of MI-R, and 3) to identify the role of

neutrophil activation in the formation of stable platelet aggregates and whether

heparin, which is used systemically to anticoagulate for CPB, contributed to platelet

dysfunction during CPB by interfering with neutrophil-platelet interactions. Effects
of heparin in vitro, on neutrophil SAG and myeloperoxidase release were also
determined.

The mechanisms responsible for chemotaxis and neutrophil activation are not fully
understood. Selective inhibitors of the NO and cyclic GMP pathways have been
used to elucidate their roles in the activation and inhibition of human neutrophils. In

addition, the ability of NO donors to inhibit neutrophil chemotaxis was compared
with their ability to increase neutrophil nitrate/nitrite and cyclic GMP levels. The
results confirm that neutrophil activation results from the stimulation of several

signal transduction systems. It appears that chemotaxis can occur via a

NO-dependent as well as NO-independent pathway. Similar pathways appear to

operate in SAG. The results also suggested that the small concentrations of NO and
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cyclic GMP induced by fMLP activated neutrophils while large concentrations ofNO
and cyclic GMP are inhibitory.

The effects of GEA 3162, 2-HE-NECA, and cicaprost on neutrophil accumulation
and myocardial injury in a rat model of MI-R were investigated. Myocardial
ischaemia was induced by occlusion of the left main coronary artery (45 min) and
then reperfused (120 min). Drugs or saline vehicle were infused intravenously for
130 min beginning 10 min before reperfusion. Neutrophil accumulation in the area

at risk and normal area was assessed by myeloperoxidase assay. Infarct and

perfusion area were determined by the triphenyltetrazolium chloride-Evans blue

technique. The results demonstrated that reduction of neutrophil accumulation in the
area at risk by all three drugs was associated with a reduction in myocardial necrosis.

To investigate the platelet defect associated with CBP, patients undergoing routine

aortocoronary bypass grafting were studied before and after heparinisation, and at

end-CPB. Macroaggregation in response to collagen or the neutrophil stimulant
fMLP was determined by whole blood impedance aggregometry. Microaggregation
was determined by counting unaggregated single platelets. Volunteers' blood was

studied in vitro. The results demonstrated that the abolition of macroaggregation
results from heparinisation per se rather than CBP, which had no additional effect.
This major inhibition seen ex vivo was insensitive to heparinase and could not be

fully reproduced in vitro suggesting that heparin released an inhibitory factor in vivo.

While heparin inhibited neutrophil activation in vitro and inhibited fMLP induced

neutrophil-dependent platelet aggregation ex vivo, this did not account for the
inhibition of collagen macroaggregation.
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CHAPTER 1

1.1 NEUTROPHILS

Neutrophils comprise a fundamental component of the non-specific immune

response to bacterial infection. The ability of neutrophils to combat infectious agents

is due to a number of specific activities including adherence to blood vessel walls
and transmigration into tissues, random (non-directed) migration and chemotaxis,

phagocytosis, and microbial killing (Root & Cohen, 1981; Sawyer et al., 1989).
While these functions are essential for host defence against invading

micro-organisms, it is now equally clear that inappropriate or excessive activation of

neutrophils may contribute to inflammatory tissue injury in a variety of clinical
scenarios e.g. the acute respiratory distress syndrome, rheumatoid arthritis and

ischaemia-reperfusion injury. Thus modulation of the activation status of the

neutrophil is of key importance in determining the balance between defence and

injury.

1.1.1 Neutrophil production

Neutrophils are the most common type of leukocyte in blood and constitute 40-75%
of circulating leukocytes. They are small cells with a diameter of 12-15 pm. The
most prominent feature of the neutrophil is the highly lobulated nucleus. When

mature, there are usually five lobes connected by fine strands of nuclear material.
Under conditions of complete physical and mental relaxation, the usual basal level of

neutrophils is 5 to 7 x 109 cells/1 of blood. Their numbers can increase 10-fold

during infection.

The development of mature neutrophils from stem cells involves the processes of

differentiation, amplification of cell numbers and cellular maturation. Granulocyte

progenetor cells (CFU-GM) in the bone marrow produce myeloblasts, which in turn

differentiate via several recognisable morphological stages into mature non-dividing

polymorphonuclear neutrophils. The myeloblasts, promyelocytes, myelocytes, band
cells and polymorphonuclear neutrophils represent the stages in neutrophil

development. Several factors that stimulate neutrophil release from the bone marrow

have been identified including Granulocyte Colony-stimulating factor (G-CSF),

Granulocyte-Macrophage Colony-stimulating factor (GM-CSF), the fifth component

2



CHAPTER 1

of complement (C5a), tumour necrosis factor-a (TNF-a), tumour necrosis factor-p

(TNF-P), and possibly a cleavage product of the third component of complement

(Price et ah, 1994). Neutrophils are released from a storage pool in the bone marrow

into the peripheral blood where they circulate for about 6-10 hours. In the blood
there are two pools of about equal size: the circulating pool and the marginating pool.

Finally, they enter the tissues where they perform their phagocytic function and

probably live for 1-2 days before they are destroyed during defensive action or as a

result of senescence.

1.1.2 Subcellular structure of neutrophils
Mature neutrophils contain several types of granules and other subcellular organelles.
Four well-defined types of granules have been defined in neutrophils: primary

granules (azurophilic granules), secondary granules (specific granules), tertiary

granules (gelatinase granules), and secretory vesicles.

Many constituents of the neutrophil plasma membrane have been defined. These
include membrane channels, adhesive proteins, and receptors for various ligands, ion

pumps, and ectoenzymes. Many of membrane protein molecules probably play a

role in regulating the neutrophil response.

Fike many other cells, neutrophils contain a complex cytoskeleton. Alterations in
the distribution of cytoskeletal elements may be important in chemotaxis,

phagocytosis, and exocytosis. Many protein components of this cytoskeleton have

been identified, including actin, actin-binding protein, a-actinin, gelsolin, profilin,

myosin, tubulin, and tropomyosin. Actin accounts for approximately 10% of

neutrophil protein (Southwick, 1983).

1.1.3 Neutrophil function
The main function of neutrophils is to destroy and remove invading micro-organisms
or inflammatory debris. To carry out these functions, neutrophils exhibit a variety of

rapid and co-ordinated responses designed to transport the cells rapidly to the area of
inflammation and to deal with the inciting agent. Neutrophils are attracted to
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inflammatory sites and/or sites of infection through the production of
chemoattractant mediators at these sites (see section 1.1.3.1). As a result of
chemoattractant receptor activation, neutrophils are stimulated to move, adhere and

de-adhere, rearrange their cytoskeleton and ultimately to phagocytose infectious

micro-organisms (see section 1.1.3.2). In addition they secrete granule contents

containing proteolytic enzymes and antibacterial proteins (see section 1.1.3.3), and
activate the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
to generate toxic metabolites of oxygen (see section 1.1.3.4). These responses are

collectively termed effector responses. Despite the continued presence of

chemoattractant, neutrophils in suspension terminate these responses within 5-10
minutes after stimulation. Termination of the neutrophil response to

chemoattractants has been attributed to the association of bound receptors with the

cytoskeleton and the segregation of these receptors to domains of the plasma

membrane, which is rich in actin and fodrin but depleted of the GTP-binding proteins

required for further signal transduction (Jesaitis et al., 1984, 1986, 1989).

1.1.3.1. Chemotaxis and chemotactic factor receptors
Chemotaxis is defined as the directed movement of a cell along a chemical gradient
and is included in the more general phenomenon of cell motility. The ability of

neutrophils to move along a chemotactic gradient is essential to their accumulation at

sites of injury or infection. The initial step in the neutrophil response to infection is
the detection of an appropriate signal. The interaction of bacteria with blood

components, especially antibodies and the complement system, results in the
formation of various chemotactic factors. In some instances the bacteria directly
release factors that are chemotactic for neutrophils.

Several types of chemoattractant of different origin are known to activate neutrophils

(Table 1.1). By 1986, the structural and functional properties of the "classical"
chemoattractants N-formylmethionylleucylphenylalanine (fMLP), C5a, platelet

activating factor (PAF) and leukotriene B4 (LTB4) had been extensively detailed

(Hwang, 1990; Goldstein, 1992; see review in Snyderman et al 1992).

N-formylmethionyl oligopeptides like fMLP are products of bacteria (Schiffmann et
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al., 1975) or derive from mitochondria of damaged tissue (Carp, 1982). The

complement fragment C5a is formed in blood plasma and inflammatory exudates

upon complement activation (Fernandez et al., 1978). PAF and FTB4 are lipid
mediators released by activated cells including the neutrophils themselves

(Baggiolini et al., 1988; Crooke et al., 1991). Chemokines, a new class structurally
and functionally related to cytokines, has been identified as chemotactic for

leukocytes (Oppenheim et al., 1991). These chemokines are produced by particular
cell types. This family of chemokines has been divided in two groups according to

the position of the first two cysteine residues, which are either separated by one

amino acid residue (C-X-C or a chemokines) or are adjacent (C-C or [3 chemokines).
The C-X-C subfamily of chemokines preferentially activates neutrophils and
includes IF-8, neutrophil activating peptide-2 (NAP-2), melanocyte

growth-stimulating activity (MGSA), granulocyte chemotactic protein-2 (GCP-2),
and interferon-inducible protein-10 (IP-10). The C-C subfamily of chemokines
activates a large number of cell types, including monocytes, lymphocytes, basophils
and eosinophils (Baggiolini & Dahinden, 1994). This subfamily includes,

macrophage inflammatory protein-la (MlP-la), and MIP-ip, monocyte chemotactic

protein 1 (MCP-1) (Murphy, 1994).

Neutrophils express various receptors for a variety of chemotactic factors such as

those for fMFP, C5a, PAF, FTB4 (Baggiolini et al., 1991) and IF-8 (see review

Murphy, 1994) on their cell surface. All of these receptors are

seven-transmembrane-domain-rhodopsin-like G protein-coupled receptors (Probst et

al., 1992; see review Murphy, 1994). The most extensively studied chemotactic

receptors are those for the bacterial peptide fMFP which is a potent

polymorphonuclear leukocyte secretagogue and chemotactic agent (Painter et al.,

1984). Both high and low affinity receptors for fMFP have been described

(Snyderman et al., 1985), and these receptors are subject to up and down regulation.
The initial activation of the neutrophil occurs when soluble chemotactic factors bind
to their receptors on the neutrophil surface. The association kinetics for these

receptor-ligand interactions are very rapid. Typically, sufficient receptor-ligand
interaction to initiate neutrophil activation occurs within seconds.
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Table 1.1 Neutrophil chemoattractants

Chemoattractant Source

Classic chemoattractants (1)
N-formyl peptides
C5a

LTB4
PAF

C-X-C chemokines (2)
IL-8 (NAP-1)

P-Thromboglobulin
(NAP-2/CTAP)

gro-a (MGSA)
ENA-78

C-C chemokines (3)
MlP-la, p

Bacterial (mitochondrial) protein synthesis
Complement activation
Arachidonic acid metabolism

Phosphatidylcholine metabolism

Multiple cells including T-cells, monocytes,
endothelial cells

Degradation of platelet a-granule protein

Multiple cells including endothelial cells, monocytes

Epithelial cells

Monocytes, T cells

(1) References : Devreotes & Zigmond, (1988); Snyderman & Uhing, (1992).
(2) References : Oppenheim et al., (1991); Miller & Krangel, (1992); Kuna et al.,
(1993).
(3) References : Oppenheim et al., (1991); Miller & Krangel, (1992); Tanaka et al.,
(1993); Kuna et al., (1993).
Modifiedfrom Springer T. Traffic signalfor lymphocyte recirculation and leukocyte
emigration; the multistep paradigm. Cell, 1994; 76: 301-314

Occupancy of a critical number of receptors "activates" the neutrophil and leads to

rapid shape changes (polarisation) and directional movement (Snyderman et al.,

1985). Binding of chemoattractants to receptors generates intracellular signals

leading to the alteration in the cytoskeleton involved in the motile response.

Neutrophils stimulated by chemoattractants line up, with the leading edge of the cells
oriented in the direction of the highest concentration of the chemoattractant stimulus.

Signals that emit from the oriented leading edge of the neutrophil to the cell "motor"
result in appropriate cell movement. Occupancy of neutrophil chemotaxis receptors
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appears to generate multifunctional signals. For example, exposure of neutrophils to

a single stimulus (such as fMLP) can cause several different neutrophil activities,

including chemotaxis, degranulation, and oxidative burst. The activity expressed

appears to depend on the concentration of the stimulus and the modulation of the

receptor. For example, occupancy of adenosine A, receptors enhances chemotaxis
induced by fMLP (Rose, et al., 1988).

Moving neutrophils assume a polarised morphology with an anterior lamellipodium
or pseudopodium extended in the direction of movement, a cell body that is

elongated parallel to the axis of lamellar protusion, and a knob-like tail or "uropod".
The lamellipodium is a relatively broad flattened region that is the site of dynamic
alteration in the actin cytoskeleton. Chemotaxis begins with the protusion of a

pseudopodium at the front of the cell. This occurs where the submembraneous actin
fdament network (the cortex) becomes less fdamentous. As the cell moves, the

pseudopodium ruffles rapidly. Part of the pseudopodium adheres to the underlying
surface and the contents of the cell move forward into the pseudopodium, making the

pseudopodium less prominent. This cycle is then repeated with the protusion of
another pseudopodium. Chemotaxis occurs by repetitions of this process, although
often the process is so well co-ordinated as to appear as a continuous gliding motion.
The mechanism of these cell movements appears to involve alterations in the

polymerisation state of actin, regulated by several proteins, including actin binding

protein, gelsolin, and others as well as ATP-dependent contraction of the actin
network mediated by myosin. Local contraction of the cytoskeleton could move

intracellular components forward into an area where the cortical gel has weakened
because of shortening of actin filaments beneath the surface of the advancing

pseudopodium. Gelsolin is important in neutrophil chemotaxis (Stossel, 1994), but
other proteins can compensate to some extent in its absence. The increase in free
calcium that alters the cytoskeleton by activating gelsolin, and thereby decreasing
fdamentous actin with a resultant decrease in viscosity, may play a role in
locomotion. In addition, the transient dissolution of the submembraneous

cytoskeletal network may allow closer contact of intracellular granules with the
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plasma membrane, facilitating granule fusion and release. Some granule release
occurs with chemotaxis.

The development of a two compartment chamber separated by a

leukocyte-permeable membrane has enabled quantitation of chemotaxis in vitro and
facilitated the investigation of chemotactic factors (Boyden, 1962; Baum, 1971).

Such studies revealed that neutrophils show directional migration under the influence
of chemotactic agents, but that a concentration gradient is needed for migration to

occur.

1.1.3.2 Phagocytosis
Phagocytosis is the engulfment of microbial particles that takes place when

phagocytes recognise serum opsonins (complement and immunoglobin) or specific

sugars deposited on the surface of microbes. When a neutrophil meets a particle, it

envelops the particle with pseudopodia, which fuse around it, forming a phagosome
that rapidly fuses with azurophilic and specific granules. Phagocytosis facilitates
effective killing by trapping a particle in a phagosome. The receptors that participate
in the ingestion and killing of microbes can be divided into those that require the

target particle to be coated by serum opsonins and those that do not (Ofek et al.,

1992). Nonopsonic phagocytosis allows ingestion and killing ofmicrobes as a result
of the presence of neutrophil surface receptors that recognise microbial sugar

molecules (Ofek et al., 1992). However, many microbes are most effectively killed
in the presence of serum opsonins (Leijh et al., 1979; Mannion et al., 1990). The
most critical serum opsonins are immunoglobulin and complement.

1.1.3.2.1 Immunoglobulin receptors

Binding and ingestion of some common bacterial pathogens depend on effective

opsonisation with immunoglobulin G (IgG). A deficiency of IgG can increase the
likelihood of severe infection with these organisms. Neutrophils express at least two

types of receptors that recognise the Fc components of the IgG: FcRII and FcRIII.
FcRII is a membrane glycoprotein, whereas FcRIII is a

glycosylphosphatidylinositol-link protein (Huizinga et al., 1990; Kimberly et al.,
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1990). Occupancy of phagocytosis receptors allows particle engulfment and
stimulates microbicidal mechanisms. Phagocytosis is also affected by occupancy of
adenosine receptors; occupancy of adenosine A2 receptors facilitates Fc-mediated

phagocytosis, whereas occupancy of adenosine A, receptors has the opposite effect

(Salmon & Cronstein, 1990).

1.1.3.2.2 Complement receptors

Neutrophils display several types of receptors for complement, each of which

recognises a different component such as the first component of complement (CR1),
and the third component of complement (CR3) (Fallman et al., 1993). Binding of

opsonically active complement component to microbial pathogens is essential, and
CR3 is of greatest importance. CR3 mediates the binding of C3bi-coated particles.
CR3 also known as Mac-1, is a member of the P2 integrin family. CR1 is primarily

responsible for recognition of C3b. Complement coating of a particle allows

engulfment.

1.1.3.3 Granule release

Neutrophils contain four well-defined types of intracellular granules: azurophilic,

specific, gelatinase granules and secretory vesicles. The azurophilic granules contain

many antibacterial components, and the fusion of these granules with phagocytic
vesicles is important in bacterial killing. Among the azurophilic granule contents is

myeloperoxidase (MPO), a protein that catalyses the production of hypochlorite

(OC1") from chloride and hydrogen peroxide (H202) produced by oxidative burst.
The presence ofMPO in azurophilic granules is of prime importance for full function
of the oxygen-dependent bactericidal system. MPO constitutes approximately 5% of
the dry weight of the neutrophil (Schultz & Kaminker, 1962). At the time of

respiratory burst activation, MPO is excreted into the extracellular environment and
has the capacity to generate an array of oxidising species with considerable cytotoxic

potential. Defensins, a group of cationic proteins that kill a variety ofbacteria, fungi,
and viruses (Ganz & Lehrer, 1995; Levy et al., 1995; Martin et al., 1995), also
constitute approximately 5% of total neutrophil protein (Lehrer et al., 1988). Other

components of azurophilic granules include lysozyme, which degrades bacterial
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peptidoglycan (Arnheim et al., 1973), bactericidal permeability-increasing-protein

(BPI), azurocidine and the serine proteinases elastase that may alter locomotion by

hydrolysing certain extracellular matrix components, cathepsin G, proteinase 3, and
others (Baggiolini & Dewald, 1985; Tanaka et al., 1985; Henson & Johnson, 1987;
Kao et al., 1988).

Although some specific (also called secondary) granules fuse with phagocytic

vesicles, they are more readily released from the cell, suggesting an important
function in the extracellular millieu. The known contents of these granules include

apolactoferrin, the major specific granule protein, vitamin B12-binding protein,

plasminogen activator, and collagenase. Lysozyme and some gelatinase are also

present in specific granules. About two-thirds of lysozyme is in the secondary

granule (Quesenberry & Levitt, 1979). These secretory granules are involved in

many inflammatory processes including complement activation (Wright & Gallin,

1977), leukocyte adhesion, collagen removal and bacterial cell wall lysis. Release of

specific granule contents may modify the inflammatory process. For example,

collagenase may degrade collagen, and thus augment movement through collagen
and participate in tissue remodelling. Apolactoferrin, which binds iron, may exert an
antibacterial effect by depriving bacteria of iron, alter hydroxyl radical formation,
and alter cell adhesion (Oram & Reiter, 1968; Oseas et al., 1981; Boxer et al., 1982;
Aruoma & Halliwell, 1987). Membrane components of secondary granules are

upregulated during granule release and may play a role in regulating the expression
of these membrane proteins on the cell surface.

Tertiary or gelatinase granules contain gelatinase in addition to other components

and, like collagenase, this enzyme may play a role in extracellular matrix

remodelling during locomotion. Secretory vesicles, which largely distribute in the

plasma membrane fraction, have also been described. A defining feature of secretory
vesicles is their rapid and complete translocation to the surface membrane with weak
stimulation (Sengelov et al., 1994). These secretory vesicles also contain alkaline

phosphatase, cytochrome b558, and fMLP receptors. Both tertiary granules and the

secretory vesicles contain membrane proteins that can be rapidly up-regulated to the
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cell surface (Kjeldsen et al., 1994), and may play a role in alterations of the

functional utility of these surface proteins following stimulation.

1.1.3.4 Respiratory burst
Neutrophil activation is accompanied by a prominent increase in molecular oxygen

(02) use called the oxidative burst or respiratory burst. This phenomenon was first
described by Baldrige and Aldo (cited in Karnovsky, 1962). The respiratory burst, a
series ofmetabolic events, is a distinguishing property of phagocytes and takes place
when they are appropriately stimulated. Most of the respiratory burst results from
the assembly and activation of NADPH oxidase (Hurst & Barrette, 1989; Clark,

1990; Gallin, 1991; Heyworth et al., 1991; Rotrosen et al., 1992). This system is

responsible for converting 02 into Of by transporting an electron from NADPH

(Babior, 1984) and essential for the bactericidal function of neutrophils.
oxidase

202 + NADPH ► 2Of + NADP+ + H+
Cyt b558

A b-type cytochrome (cytochrome b558), a heterodimer composed of 22 kDa and 91
kDa subunits, oxidises NADPH, leading to the formation of 02". The Of then rapidly
dismutates to form H202, a reaction catalysed by superoxide dismutase. The

hypothetical model ofNADPH oxidase activation is shown in Figure 1.1.

In its dormant state, NADPH oxidase is composed of both membrane-bound and

cytosolic components. The membrane bound components include gp91p/!OT and

p22phm subunits of cytochrome b558 (the term phox indicates that the protein is a

component of phagocyte oxidase). The gp9Fte contains binding sites for both a

flavin adenine dinucleotide (FAD) and NADPH (Rotrosen et al., 1992; Segal et al.,

1992).
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Figure 1.1 Schematic representation of structural features in the activation of
NADPH oxidase. The cytochrome b55S is an integral membrane protein with two
subunits, gp91phox (gp91) and p22phox (p22). The glycosylation site of the cytochrome
is on the exterior, and the FAD and NADPH binding sites are on the interior, of the
plasma membrane. On activation, cytosolic constituents p47p,wx (p47), p67phox (p67)
and Rac 2 (Rac) are translocated to the plasma membrane where they bind to the
cytochrome and initiate 02 synthesis. Activation requires dissociation of a GTP
dissociation inhibitor (GDI) from Rac 2 followed by exchange of GDP for GTP.
Oxidase activation also involves phosphorylation of at least one of the cytoplasmic
subunits, p47phox. Hydrolysis of GTP bound to Rac leads to inactivation and
dissociation of the oxidase complex. Modified from Bastion, N.R.: Assembly and
regulation of NADPH oxidase and nitric oxide synthase, Current Opinion in
Immunology, 1994, 6:131-139.

Several lines of evidence suggested that heme (iron protoporphyrin IX) in the

cytochrome is located in the p22phox (Segal, 1989). Three cytosolic components are

also required for electron transfer to the cytochrome. They include 47 kDa (p47phox),
67kDa (p67phox) protein, and the low-molecular-mass GTP-binding protein, Rac 2.
Rac 2 is also present in the cytosol in its inactive state (with GDP bound),

presumably complexed with a GDP dissociation inhibitor that serves to keep Rac 2
in its inactive state. On activation, cytosolic components p47phox, p67phox and Rac 2
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(Rac) are translocated to the plasma membrane (Dusi et al., 1993) where they bind to

the cytochrome and initiate 02" synthesis. Uhlinger et al (1993) proposed a model in
which pA7',hox binds directly to cytochrome b558, and p67phox interacts with both pA7phox
and the GTP-regulatory protein Rac 2. Activation requires dissociation of a GTP
dissociation inhibitor (GDI) from Rac 2 followed by exchange of GDP for GTP.
This exchange on Rac 2 is catalysed by a GDP/GTP dissociation stimulator in the
intact cell (Knaus et al., 1992). Oxidase activation also involves phosphorylation of
at least one of the cytosolic subunits, p47phox (Heyworth et al., 1991; El Benna et al.,

1994). Isoprenylation of the Rac protein (represented in the Figure 1.1 by a zigzag)
is necessary for oxidase activity and may function as a membrane anchor that helps
stabilise the assembled oxidase complex. Hydrolysis of GTP bound to Rac to GDP
leads to inactivation and dissociation of the oxidase complex. Rac 2 has a very rapid
intrinsic rate of GTP hydrolysis, which may confer unique regulatory properties to

the Rac 2 regulated NADPH oxidase (Knaus et al., 1992). Regulation of GTPase

activity of Rac may be a key factor in the regulation ofNADPH oxidase activity. In
its active state, the FAD redox centre accepts electrons from NADPH and passes

them on to 02 via the heme groups in cytochrome b558. The activated oxidase is

readily detected by nitroblue tetrazolium (NBT) or cytochrome C reduction or the

production of chemiluminescence.

Small concentrations of oxygen free radicals are present in normal oxidative
metabolism but are controlled by the body's defence mechanisms, such as the

enzymes superoxide dismutase, catalase, and glutathione peroxidase. Activated

neutrophils can generate a number of oxygen-derived free radicals including : 02,

H202, and hydroxyl radical (OH). The 02 itself reacts with NO to form peroxynitrite

(ONOO).
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Though stable in ionic form, this compound rapidly decomposes when protonated to

form OH, which has powerful oxidising activity (Beckman et al., 1990). The

proposed reactions are:

This reaction process ultimately produces nitrites and nitrates. Since neutrophils
have been shown to produce NO in high concentration when activated, peroxynitrite,

product ofOf and NO, may be of considerable importance in neutrophil cytotoxicity.

1.1.3.5 Bacterial killing and digestion

Phagocytic cells are ultimately expected to eliminate microbial pathogens. Their
failure to do so permits the development of serious and possibly even fatal infection.
Two types of system work in concert to eliminate pathogens: reactive oxygen

intermediates and varieties of microbicidal proteins stored in granules in the

cytoplasm of neutrophil. Although these two systems interact considerably,
oxidative and nonoxidative mechanisms will be discussed separately.

1.1.3.5.1 Oxygen-dependent antimicrobial system

Optimal killing of many species of bacteria requires products from the oxidative
burst. Bacterial killing decreases under anaerobic conditions, so the respiratory burst
is important to bactericidal activity. As explained above, activated neutrophils

produce Of via a multicomponent NADPH-dependent oxidase. Subsequent
reactions result in the formation of H2Oz and hypochlorous acid (HOC1), which
increase bacterial killing.

NO + Of
ONOO + H+ 4

► ONOO

4 ► ONOOH (peroxynitrous acid)
< ► OH + N02 (nitrogen dioxide)

► NOf

ONOOH

ONOOH
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Although 02" has some antibacterial activity, most 02" is rapidly converted to H202 by

dismutation, either spontaneously or catalytically by superoxide dismutase (SOD):

20; + 2H+ ► 02 + H202

Of the microbial oxidants generated by the respiratory burst, Ofand H202 are not

potent microbicides, but rather function as starting materials to generate more potent

oxidising radicals, such as oxidised halogens (Babior, 1984).

1.1.3.5.1.1 Myeloperoxidase-mediated oxygen-dependent bacterial killing with
oxidised halogens
Some of the granular proteins, especially MPO and lactoferrin, play an important
role in the oxidative chemistry of the phagosome. MPO is released into the

phagosome during granule-phagosome fusion. In the presence of a halide (chloride

being ofmaximal importance for neutrophils), MPO converts H202 generated during

phagocytosis to an oxidised halogen that is a potent antimicrobial, such as

hypochlorite (0C1") (Harrison & Schultz, 1976):
MPO

cr + h2o2 ► h2o + ocr

HOCl appears as the most likely mediator of oxygen-dependent bacterial killing in
the neutrophil phagosome but 0C1" can also react with amines to form long-lived
chloramines. Some N-chloramines have greater microbicidal potency than 02" or

H202 (Weiss & Lampert, 1983). 0C1" can interact with 02" to form OH, albeit in a

low concentration (Ramos et al., 1992). The oxidative chemistry of the phagosome

is shown in Figure 1.2.
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Figure 1.2 Oxidative chemistry of the phagosome. A unique enzyme system
catalyses the formation of 02 (see Figure 1.1). The acid pH within the phagosome
favours the rapid dismutation of 02 to H202. This reaction can be quickly catalysed
by superoxide dismutase (SOD). HOCl is formed from the oxidation of chloride by
MP0-H202. OCl can react with 02 to form hydroxyl radical or with some amines to
form N-chloramines, which are toxic and mutagenic to micro-organisms. 02 can
reduce Fe3+ to Fe2+, which then reduces H202 to hydroxyl radical. However,
lactoferrin can bind Fe3+ to prevent the formation of hydroxyl radical. Modified
from Cohen, M.S.: Molecular events in the activation of human neutrophils for
microbial killing. Clinical Infectious Diseases, 1994, 18 (suppl. 2): SI 70-9.

1.1.3.5.1.2. Myeloperoxidase-independent (but oxygen radical-dependent)
bacterial killing
This antimicrobial system is important because cells with no detectable MPO activity
retain antibacterial actions that require oxygen. Bacterial killing in MPO-deficient
cells is associated with greater oxygen consumption than in normal cells.

1.1.3.5.2 Oxygen-independent antimicrobial system
A variety ofmicrobes can be killed by phagocytes under strict anaerobic conditions.
Both antimicrobial proteins and phagosomal acidity play critical roles in this

process. The delivery of the wide array of antibacterial compounds to the
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phagosome by fusion with azurophilic and specific granules generally results in
bacterial killing caused by the direct actions of the granule contents. In addition,
these effects are potentiated by the acidification of the phagosome, caused partly by
the granule content themselves, as well as active translocation of H+ ion into the

phagosome by ion pumps. The antimicrobial proteins of neutrophils including

defensins, lactoferrin, lysozyme, BPI, cationic proteins, azurocidin and the serine

proteinases elastase, cathepsin G and proteinase 3 (Spitznagel, 1990), make an

important contribution to the function of neutrophils. This contribution is reflected

by the ability of neutrophils to kill a variety of microbes under anaerobic conditions.
In addition, microbicidal proteins work in conjunction with free radicals. The
acidification of the phagosome is an important part of the microbicidal process.
Some microbes are killed by low pH, and some neutrophilic antimicrobial systems

require a low pH for optimal activity (Hurst & Barrette, 1989).

1.1.3.6 Signalling
Chemoattractants (Table 1.1) and other inflammatory agents mediate their biological

responses by binding to and activating their receptors on the surface of inflammatory
cells (Gerard & Gerard, 1994). A variety of chemoattractant receptors have now

been cloned, and these receptors belong to a large family of seven transmembrane
domain receptors, which are coupled to heterotrimeric guanine nucleotide regulatory

proteins (G proteins) (Thelen & Dewald, 1993; Gerard & Gerard, 1994; Murphy,

1994). These receptors mediate chemotaxis, degranulation and activation of the
NADPH oxidase. The binding of chemoattractants to their receptor results in the
activation of G proteins, which act as a molecular switch to relay information from
the activated receptor to downstream effector molecules. These effector molecules

may be enzymes that generate second messengers or ion channels. A large number

of heterotrimeric G proteins, consisting of a (Ga) and (3y (GPy) subunits have been
isolated so far, and many of these are present in leukocytes (Amatruda et al., 1993).

In resting condition, G proteins exist as heterotrimeric complexes with GDP bound

to the a subunit. Receptor activation leads to a conformational change in Ga,

17



CHAPTER 1

resulting in an exchange of GTP for GDP. This interaction causes the dissociation of

GPy from the heterotrimeric complex (Figure 1.3).

Chemoattractants

Figure 1.3 Chemoattrcictant receptor signalling pathways. The receptor is
indicated as the seven transmembrane-spanning structure at the cell surface within
the lipid bilayer. The arrows indicate activation. Gai and fly are the different
subunits of the G protein Gi. PC, phosphatidylcholine; PIP2 phosphatidylinositol
4,5-biphosphate; PLC, phospholipase C; PLD, phospholipase D; DAG,
diacylglycerol; PKC, protein kinase C; IP3, inositol 1,4,5-triphosphate; MAPK,
mitogen activated protein kinase; PI3K, phosphatidylinositol 3-kinase; PIP3,
phosphatidylinositol triphosphate. Enzymatically active forms are indicated by
asterisks. Modified from Ali, H.: Mechanism of inflammation and leukocyte
activation. Medical Clinics ofNorth America, 1997, 81:1-28.

Free a subunits were believed to transduce all signals of the activated receptors. It is

now realised that GPy also plays an essential role in mediating many of these events,

including the activation of phospholipase C (PFC) (Fee et al., 1995). Molecular

cloning has revealed three classes of PLC: PFCp, PFCy and PLC8, and each of these
occurs in several isoforms (Fee et al., 1995). PFCp2 is expressed predominantly in
phagocytic leukocytes and is activated by the peptide chemoattractants, fMLP, C5a,
and IL-8 (Camps et al., 1992; Amatruda et al., 1993). This enzyme catalyses the

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two second

messengers, 1,2 diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG
acts in conjunction with Ca2+to activate various isoforms of protein kinase C (PKC),
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whereas IP3 mobilises Ca2+ from intracellular stores (Verghese et al., 1987; Truet et

al., 1989; Gerard & Gerard, 1994).

The increase in the intracellular concentration of free calcium [Ca2+]i following
stimulation by chemoattractants follows a biphasic course: a rapid and transient

phase attributed to mobilisation of intracellular Ca2+ stores, followed by a more

sustained phase that is dependent on the net influx of Ca2+ from the extracellular

space due to an increase in plasma membrane permeability to Ca2+. The role of
intracellular calcium in the functional responses of neutrophils seems to be best
established in the regulation of degranulation and secretion (Smolen, 1989) and

phagolysosome fusion during phagocytosis (Jaconi et al., 1991). In addition,
transient increases in [Ca2+]i appear to play a role in modulation of adhesive events

essential for effective cell motility. The role of calcium in other neutrophil functions
such as activation of the NADPH oxidase has been a matter of debate. Certain

neutrophil functions might be controlled by Ca2+ oscillations, rather than by
sustained elevations of [Ca2+]i (Lew, 1989; Richter, 1990).

DAG accumulation in response to chemoattractants is biphasic in nature consisting
of initial transient production ofDAG that parallels PIP2 hydrolysis via PLC. This is
followed by phospholipase D (PLD) activation, which leads to DAG production
from phosphatidylcholine (PC) via the sequential involvement of PLD and

phosphatidate phosphohydrolase (Billah, 1993), which is more sustained and of

greater magnitude (Truett, et al., 1989; Snyderman & Uhing, 1992). Phosphatidic

acid, generated from PC, may act as a second messenger itself or serve as a precursor

for DAG (Billah, 1993). It may be involved in the activation of NADPH oxidase

(Agwu et al., 1991; Gelas et al., 1992; Baggiolini et al., 1993) and changes in the
actin cytoskeleton (Ha & Exton, 1993). DAG may interact with putative

DAG-binding proteins, leading to actin polymerisation (Shariff & Luna, 1992; Hitt
& Luna, 1994).

In neutrophils, the most abundant isoform of PKC appears to be PKCp, which
translocates to the plasma membrane in a Ca2+-dependent manner (Majumdar et al.,
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1991). In intact cells, the activation of PKCa and PKCp results from either an

increase in intracellular DAG alone or the synergistic action of increased [Ca2+]i and
DAG. Activation of PKC, as well as various Ca2+-sensitive protein kinases,

catalyses protein phosphorylation, and this is believed to account for activation of
the various neutrophil functions (Rossi, 1986; Lew, 1990; Billah, 1993; Thelen et

al., 1994). PKC has been postulated to be involved in a variety of effector pathways
in neutrophils including: superoxide production, priming, chemotaxis, production of
PAF and LTB4, PLD activation, potentiation of arachidonic acid release, activation
of the Na+/H+ antiporter, production of DAG, and regulation of secretion specific

granules (reviewed by Huang, 1989).

A number of studies provided evidence for PKC- and Ca2+ independent mechanisms
of leukocyte activation (McPhail et al., 1984; Dewald et al., 1988; Watson et al.,

1991). Therefore, chemoattractant signalling is more complex than originally

envisioned, making use of alternate signalling pathways involving kinases and

phosphatases, adapter molecules, and small GTP-binding proteins.

Other neutrophil plasma membrane receptors such as growth factors and cytokines
and those receptors involved in phagocytosis: Fc and complement receptors, are

linked to the cell interior by pathways primarily involving tyrosine phosphorylation.

Tyrosine phosphorylation has been found to play an important role in signal
transduction from various chemotactic factor receptors (Gomez-Cambronero et al.,

1989; Kusunoki et al., 1992). Some chemotactic agents including fMLP, phorbol

myristate acetate (PMA) (Berkow & Dodson, 1990), TNF-a (Akimaru et al., 1992),

GM-CSF (McColl et al., 1991), and PAF (Rollet et al., 1994) increase the tyrosine

phosphorylation of a number of proteins in human neutrophils. This appears to be
caused by both the activation of tyrosine kinases as well as by inhibition of tyrosine

phosphatases (Berkow & Dodson, 1991). Diverse functional responses in

neutrophils have been linked to pathways involving tyrosine phosphorylation

including activation of the NADPH oxidase (Gaudry et al., 1992; Laudanna et al.,

1993), migration (Gaudry et al., 1992), and priming of neutrophils by G-CSF and

TNF-a (Akimaru et al., 1992). Neutrophils also express the src (hck, fgr, fes and
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lyn ) and syk families of nonreceptor protein tyrosine kinases (Bolen et al., 1992).
The involvement of protein tyrosine phosphatases in the regulation of tyrosine

phosphorylation as well as their role in neutrophil responses is still unclear.

Serine and threonine kinases also appear to be involved in signalling, and some are

activated by fMLP. These kinases may be involved in regulating early events in

pathways leading to activation of the respiratory burst, cytoskeletal assembly and

motility, and possibly secretion of granules.

Evidence suggests that chemoattractants stimulate the activity of a

phosphatidylinositol 3-(OH) kinase (PI3-kinase) which catalyses the phosphorylation
of (PIP2) to generate phosphatidylinositol-3,4,5-trisphosphate (PIP3) which has been

implicated in signalling pathways leading to several functional responses including:
the oxidative burst, secretion of granules, and cytoskeletal changes including
membrane ruffling (cytoskeletal assembly) (Eberle et al., 1990; Zhang et al., 1993).
This enzyme is activated by growth factors via its tyrosine phosphorylation. The

G-protein-coupled chemoattractant receptors might directly regulate the activity of
this PI3-kinase. In neutrophils, chemoattractant-mediated PI3-kinase activation

requires G-protein activation, and the onset of PIP3 generation coincides with actin

polymerisation (Downey, 1994).

In addition to heterotrimeric G proteins, neutrophils express a number of small

molecular-weight GTP-binding proteins (SMG), which are likely involved in cellular

regulation. These proteins can be subdivided into three major families including the

Ras, Rho, and Rab families of proteins (Polakis et al., 1989; Bokoch et al., 1994).
Recent attention has focused on the pathway involving activation of SMG Ras and
Rho in cytoskeletal regulation. Activation ofRas via receptor-coupled heterotrimeric

GTP-binding proteins or via as yet unidentified tyrosine kinases binding to growth
factor binding protein (GRB-2) and the guanine nucleotide exchange factor (SOS1),
leads to alterations in the neutrophil cytoskeleton (Li et al., 1993). Ras that has been
activated either by tyrosine kinases receptors and/or G-protein-coupled receptors

activates a number of enzymes including mitogen-activated protein kinase (MAPK).
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Ras/MAPK pathway is likely to play an important role in the early signalling events

leading to cell activation. However, the relationship of MAPK with cytoskeletal

changes remains unproven. Other SMGs such as RhoA and Rac have also been

implicated in activation of cell adhesion, formation of membrane ruffles and

leukocyte chemotaxis (Ridley et al., 1992; Downey, 1994; Laudanna et al., 1996). A
current view of chemoattractant receptor signalling is shown in Figure 1.4

PA,DAG AA IP3,DAG MAPK pip3 Phosphatases Phosphatases

/ \
Ca2+ PKC

Figure 1.4 A current view of chemoattractant receptor signalling: Multiple
pathways. Schematic diagram summarising the known signalling pathways and
effectors used by neutrophil chemoattractant receptor. Modifiedfrom Bokoch, G.M.:
Chemoattractant signalling and leukocyte activation. Blood, 1995, 8: 1649-1660.

1.1.4 Adhesion molecules: Neutrophil-endothelial adhesion
The migration of neutrophils from blood, through the endothelium, to the site of
inflammation involves highly co-ordinated cell to cell adhesive interactions. This

requires a series of activation steps mediated by inflammatory agents. Neutrophils
have to interact with the vascular endothelium, traverse the endothelial cell layer,

penetrate the basement membrane and move through the interstitial medium to reach
the affected area. While this process is essential in destroying offending microbes as

well as repairing injured tissue, abnormal or uncontrolled neutrophil infiltration
contributes significantly to the pathology associated with inflammatory disorders.
The interaction between neutrophils and endothelial cells is dependent on certain
adhesion molecules that are expressed on the surface of both cell types (Springer,
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1990). Some of the known adhesion molecules of neutrophils and endothelial cells
are given in Table 1.2.

Three families of cell adhesion molecules are involved in leukocyte and endothelial
cell interactions: selectins, integrins and the members of immunoglobulin (Ig-like)

superfamily, which interact in a sequential manner to cause neutrophil

transmigration.

1.1.4.1 Selectins

Selectins mediate the initial, low-affinity adherence of leukocytes to the

endothelium, manifested by rolling along the endothelial cell surface under
conditions of flow (Tedder et al., 1995). There are three different selectins:

L-selectin, E-selectin, and P-selectin. L-selectin (CD62L, LAM-1, LECAM-1) is

constitutively expressed on the surface ofmost leukocytes (Butcher, 1991; McEver,

1991; Lasky, 1992; Bevilacqua & Nelson, 1993). The ligand for L-selectin is the

glycoprotein known as glycosylation-dependent cell adhesion molecule-1

(Gly-CAM-1). E-selectin (CD62E, ELAM-1) is transiently synthesised and

expressed on the surface of endothelial cells only following stimulation and its

expression requires de novo protein synthesis. TNF-oc, interleukin-1 (IL-1),
substance P, bacterial endotoxin (lipopolysaccharide, LPS), and several other stimuli
have been found to induce the expression of E-selectin (Bevilacqua et al., 1987,

1989; Bevilacqua & Nelson, 1993; Carlos & Harlan, 1994; Springer, 1994; Imholf&

Dunon, 1995; Tedder et al., 1995). In contrast, P-selectin (CD62P, GMP-140,

PADGEM) is constitutively synthesised and stored in the a granules of platelets and
the Weibel-Palade bodies of endothelial cells (McEver, 1991; Lasky, 1992;

Bevilacqua et al., 1993). It can be rapidly mobilised to the cell surface by a number
of cytokines and inflammatory mediators (Hattori et al., 1989). Recent studies

suggested that IL-1 and TNF also enhance biosynthesis of endothelial P-selectin

(Gotsch et al., 1994).
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Table 1.2 Neutrophil-Endothelial Cell Adhesion Proteins.

Neutrophil Selectins Ligand

L-selectin (1) CD62L, LAM-1, Mel-14 Sialylated carbohydrates related to
sLex (CD 15 s) and sLea (12)

Endothelial Selectins Ligand

E-selectin (2) CD62E, ELAM-1
P-selectin (3) CD62P,GMP-140,

PADGEM

Sialylated carbohydrates
Sialylated carbohydrates including
PSGL-1 on neutrophils (13)

Neutrophil Integrins (4) Ligand

otLp2 (5) LFA-1, CD1 la/CD18

ctMp2 (6) Hmac-1, CD1 lb/CD 18
aXp2 pl50, 95, CDllc/CD18

ICAM-1 (CD54) (14)
ICAM-2 (CD102) (15)
ICAM-3 (CD50)
ICAM-1, iC3b, fibrinogen, factor X
iC3b, fibrinogen

Endothelial Ig Family (7) Ligand

CD54 (8) ICAM-1
CD 102 (9) ICAM-2
CD31 (10) PECAM-1

CD11 a/CD 18, CD 11b/CD 18
CD1 la/CD18

CD31/avp3?

Neutrophil Ig Family Ligand

CD31 PECAM-1

CD50 (11) ICAM-3
CD66a (Bilary glycoprotein)
CD66b (CGM6)
CD66c NCA50/90)

CD31/avp3
CD1 la/CD18

CD66a, CD66c, CD66e
CD66c

CD66a, CD66b, CD66c, CD66e

(1): Butcher, 1991; McEver, 1991; Lasky, 1992; Bevilacqua & Nelson, 1993.
(2): Bevilacqua et al., 1987, 1988; Bevilacqua & Nelson, 1993; Carlos & Harlan, 1994,
Springer, 1994; Imholf& Dunon, 1995; Tedder et al., 1995.
(3): McEver, 1991; Lasky, 1992; Bevilacqua, 1993.
(4): Springer, 1990a; Arnaout, 1990; Kishimoto et al., 1992; Cronstein &
Weissmann,1993.
(5): Larson & Springer, 1990. (6): Diamond et al., 1991; Diamond & Springer, 1993.
(7): Springer, 1990; Arnaout, 1990. (8): Pober & Cotran, 1990. (9): Springer, 1990.
(10): Muller et al., 1993.
(11): de Fougerolles et al., 1992,1994.
(12): Rosen, 1993; Baumhueter et al., 1993. (13): Moore et al., 1992; Sako et al., 1993.
(14): Diamond et al., 1991; Springer, 1990a. (15); de Fougerolles et al., 1994.
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All three of these molecules contain an amino-terminal lectin domain, an epidermal

growth factor (EGF)-like domain, and a variable number of short consensus repeat

(SCR) sequences on the outside with a single transmembrane segment and a short

cytoplasmic tail (Bevilacqua & Nelson, 1993). The selectins function by binding via
their lectin domains to sialylated, fucosylated carbohydrate moieties contained on

glycoproteins and glycolipids. It has been demonstrated that the tetrasaccharide

sialyl Lewis" (sLe\ CD 15s) and related terminal sugars expressed on neutrophils can

act as ligands for E-selectin. sLe" is also recognised by P-selectin and L-selectin,

although the affinity ofbinding may differ substantially (Phillips et al., 1990).

1.1.4.2 Integrins

Intregins are transmembrane heterodimers consisting of noncovalently linked a and

P subunits (Kishimoto & Anderson, 1992; Shimizu et al., 1992; Cronstein &

Weissmann, 1993). There are at least 15 a and 8 p subunits, which combine to form

many different integrin receptors. The major integrins of neutrophils are the

p2-integrins which are composed of a common P2 subunit (CD18) that is

noncovalently linked to one of three a subunits: CD1 la (aL), CD1 lb (a^ or CD1 lc

(ax). This produces noncovalently linked P2-integrins that are made up of aLP2

(LFA-1, CD1 la/CD18), am p2 (Hmac-1, MO-1, CD1 lb/CD 18), and axp2 (pi50/95,

CDllc/CD18). In neutrophils there are intracellular stores of CD lib/CD 18 and

CDllc/CD18, and expression can rapidly be induced by a variety of stimuli,

including IL-8. There are no intracellular stores of CDlla/CD18. Cell surface

expression of P2-integrins is not sufficient for adhesion of leukocytes to endothelial

cells. Activation of the P2-integrins due to a change in conformation or postreceptor

events (e.g., cytoskeletal association) is required before adhesion can occur (Faull et

al., 1994). This activation is induced by soluble agents (cytokines, chemotactic
factors and coagulation factors) and by ligation of other cell surface receptors.

Ligands for the P2-integrins include Ig-like surface proteins expressed on the
endothelial cells such as intercellular adhesion molecule-1 (ICAM-1, CD54) for
CD1 lb/CD 18 and ICAM-1 and ICAM-2 (CD 102) for CD1 la / CD 18. A definite

role of P2-integrins in neutrophil chemotaxis came from the identification of a
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clinical syndrome called leukocyte adhesion deficiency, in which the P2 subunit was
either not expressed or was mutated (Arnaout et al., 1982). Neutrophils from

leukocyte adhesion deficiency patients are incapable of chemotaxis or H202

production in vitro, indicating a role for integrins in regulating neutrophil activation
as well as mediating adherence.

1.1.4.3 Immunoglobulin superfamily
As shown in Table 1.2 several immunoglobulin (Ig) superfamily members are

expressed on endothelial cells and are ligands for leukocyte integrins (Arnaout, 1990;
Pober & Cotran, 1990; Shimizu et al., 1992; Cronstein & Weissmann, 1993). Those

most clearly associated with leukocyte adhesion and diapedesis are intercellular
adhesion molecule 1 (ICAM-1, CD 54), ICAM-2, vascular cell adhesion molecule 1

(VCAM-1), mucosal addressin cell adhesion molecule 1 (MadCAM-1), and

platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD 31). ICAM-1 is a

transmembrane glycoprotein containing five Ig domains found on hematopoietic and

non-hematopoietic cells (Springer, 1990). It is constitutively expressed at low levels
on endothelial cells under normal conditions, but its expression can be increased after
stimulation of endothelial cells with cytokines (IL-1, TNF-a, and interferon-y), LPS,

thrombin, and phorbol esters (Pober et al., 1986). Its upregulation requires de novo

synthesis. ICAM-1 expression on endothelium and other cell types is a common

characteristic of inflammatory and immune responses (Pober & Cotran, 1990;

Springer, 1990). ICAM-2 is a ligand for CDlla/CD18. It contains two extracelluar

Ig domains that are closely related to the two N-terminal domains of ICAM-1. Like

ICAM-1, ICAM-2 is expressed in a variety of non-endothelial cell types (Springer,

1990). It is constitutively expressed on endothelial cells and its expression does not

appear to be modified by inflammatory cytokines or LPS. PECAM-1 is

constitutively expressed on leukocytes, platelets as well as at the junction of
endothelial cells and its surface expression is not increased by stimulation with

TNF-a or IL-1. Other immunoglobulin superfamily members are probably also
involved in neutrophil-endothelial cell adhesion, including ICAM-3 (CD50)

(expressed on the neutrophil but not the endothelial cell), and the CD66 family of

neutrophil activation antigens.
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1.1.4.4 Sequence ofneutrophil-endothelial cell adhesion
The sequence of events involved in neutrophil adherence to vascular endothelium
and transmigration into tissue is complex and has been termed the adhesion cascade

(reviewed in Carlos & Harlan, 1994; Springer, 1994). A multistep model in which
different adhesion molecules in conjunction with chemoattractants and cytokines
mediate neutrophil adhesion, transmigration through vessel walls and accumulation
at the site of inflammation has been proposed and is depicted in Figure 1.5.

Figure 1.5 The sequential steps model of neutrophil adherence to and
transmigration across the endothelium. The initial interaction between neutrophils
and the endothelium involves L-selectin on neutrophils and carbohydrate ligands
(Gly-CAMS) on the endothelium. This is followed by an interaction between
j32-integrins on the neutrophil and Ig superfamily on the endothelium. During these
adhesive interactions, the neutrophils become activated in part through intracellular
signals, generated by adhesion molecules, as well as by chemoattractants (e.g. PAF)
released by endothelial cells. The adhesive phase is followed by transmigration of
neutrophils between the endothelial cells. The process of transmigration involves
interaction of ligands on the neutrophil membrane with PECAM-1, which is located
in the endothelial intercellidar junctions. Modifiedfrom Downey, G.P. Mechanisms
of leukocyte motility and chemotaxis. Current Opinion in Immunology 1994,
6:113-124.
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The cell adhesion cascade is initiated by the rapid interaction of selectins and their

ligands by inflammatory mediators, which result in binding of selectins to cell
surface carbohydrates allowing the flowing neutrophils to attach weakly to the
vascular endothelium and roll over its surface (Springer et al., 1994; Alon et al.,

1995). This loose adhesion brings the neutrophil in close proximity to the
endothelial cell, where chemoattractants can be released or displayed on the cell
surface. The next step involves further activation of the endothelial cell and

neutrophils by cytokines, chemoattractants, and chemokines that are produced

locally. This leads to upregulation and/or activation of the neutrophil (3, integrins
and the endothelial Ig-like molecules. These integrins can then bind their ligands
such as ICAM-1 and/or ICAM-2 (which are expressed constitutively on the
endothelial cell surface or that have been upregulated by cytokines, resulting in the
firm adherence (i.e., sticking) of neutrophils to the endothelial cell and cessation of

rolling (Lawrence & Springer, 1991; Von-Adrian et al., 1991). At the site of

inflammation, neutrophil rolling along the vessel wall is increased and cells may

become more closely apposed to the vessel wall, allowing better interaction with
chemoattractants. The firm adhesion through integrins allows chemoattractants to

mediate migration of neutrophils through two adjacent endothelial cells along the

gradient of chemoattractants being generated at the site of inflammation. This is the
most complex and least understood process, requiring intense cytoplasmic and
membrane reorganisation both in the extravasating neutrophil and in the endothelial
cell. It is followed by passage through the basement membrane and migration into
the subendothelial matrix to reach the site of inflammation. PECAM-1 has been

shown to play a role in the process of neutrophil and monocyte diapedesis between
endothelial cells, both in vitro (Muller et al., 1993) and in vivo (Vaprociyan et al.,

1993). ICAM-1 expressed at endothelial cell junctions appears to be important for

neutrophil migration, at least in vitro (Smith et al., 1989; Furie et al., 1991, 1992).
There is also evidence that E selectin can mediate migration of neutrophils across

endothelial cells (Luscinskas et al., 1991), although other studies do not support

these findings (Kishimoto et al., 1991; Furie et al., 1992).
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1.1.4.5 Adhesion cascade and inflammation
While the adhesion cascade functions normally to recruit neutrophils to extravascular
sites for host defence and repair, under some circumstances the adhesive interactions

may lead to vascular and/or tissue damage. Once neutrophils are firmly adhered to

the endothelium, a protected microenvironment is formed. In this

microenvironment, inflammatory mediators produced by neutrophils may potentially
reach high concentrations and overcome local and systemic anti-inflammatory

protective mechanisms, thereby allowing endothelial cell injury to occur and

resulting in an increase in microvascular permeability and haemorrhage. This series
of events may initiate and sustain a cycle of inflammation, leading to further

neutrophil recruitment and endothelial cell injury. The continued recruitment of

neutrophils can lead to occlusion of the microvasculature by neutrophil aggregates,

causing local ischaemia. Neutrophils may also diapedese between endothelial cells,

gaining access to the extravascular space, where they can mediate further tissue

damage, producing organ dysfunction.

1.2 ENDOGENOUS CYTOPROTECTIVE AGENTS

To maintain the patency of the blood vessels and the fluidity of blood, the
endothelial cells synthesise many active substances. The major endothelial generated

agents that are cytoprotective and thus preserve endothelial function are nitric oxide

(NO), adenosine and prostacyclin (PGI2).

1.2.1 Nitric oxide

In 1980, Furchgott & Zawadzki described the release of an endothelium-derived

relaxing factor (EDRF) from the vascular endothelium. Based on the similarities in
the pharmacological behaviour of EDRF and NO generated from acidified N02",

Furchgott suggested in 1986 that EDRF might be NO. (See Furchgott, 1988). At the

same time, Ignarro et al. also speculated that it may be NO or a closely related

species (see Ignarro et al., 1988). The final proof that nitric oxide was an EDRF was

provided by Palmer et al and was quickly confirmed by Ignarro et al (Ignarro et al.,

1987; Palmer et al., 1987). NO is a biologically active gas that is synthesised by a
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variety of cells, including vascular endothelium, from one of the terminal guanidino

nitrogen atoms of L-arginine in a stereospecific process catalysed by a family of

enzymes, the nitric oxide synthases (NOS). The enzymes are large and complex

haemoproteins that share similarities with cytochrome P-450 reductase, and require

multiple cofactors for their activity (White & Marietta, 1992). Three families of

isozymes have been identified and cloned, namely: constitutively expressed neuronal

(nNOS) (Bredt & Synder, 1990) and endothelial (eNOS) isoforms (Pollock, et al.,

1990), as well as the inducible isoform (iNOS) (Stuehr et al., 1991). According to a

recent nomenclature, nNOS, iNOS and eNOS were designated as NOS-1, NOS-2 and

NOS-3, respectively. Two constitutive isoforms (eNOS and nNOS) are present as

normal constituents in some cell types whereas iNOS is not constitutively expressed
but can be induced in a wide variety of cells after they are exposed to endotoxin or

some cytokines (Stuehr & Griffith, 1992; Nussler & Billiar, 1993). The constitutive

enzymes are Ca2+-calmodulin-dependent, and present in the endothelium, platelets,

myocardium, endocardium, neural tissue and skeletal muscle (Moncada, 1991;
Kobzir et al., 1994). These enzymes produce NO in relatively small amounts in

response to receptor stimulation or physical activation of the cell. In contrast, the
iNOS is functionally Ca2+-independent and can be expressed in a variety of cells,

including endothelial cells, myocytes, immune cells such as macrophages and

neutrophils, and astrocytoma cells in the brain after these cells are exposed to

inflammatory cytokines or endotoxin. The inducible iNOS produces large amounts

ofNO for longer periods of time that can result in tissue damage and cell death.

All three NOS isoforms synthesise NO from L-arginine and 02 in the presence of
NADPH and other cofactors: FAD, flavine mononucleotide (FMN), heme, and

tetrahydrobiopterin (BH4). All three NOS isoforms catalyse a five-electron oxidation
of one of two equivalent guanidino nitrogens in L-arginine to yield nitric oxide at

the cost of 1.5 mols ofNADPH and 2 mols of dioxygen (for review, see Stuehr et al.,

1992). This process involves two successive mono-oxygenation steps (Kwon et al.,

1990; Leone et al., 1991; Stuehr et al., 1991; Mayer et al., 1991; Stuehr & Griffith,

1992). The first step involves the oxidation of one NADPH and the reduction of one

02 in the presence of BH4 yielding Nra-Hydroxyarginine as an isolatable intermediate.
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Subsequent activation of another molecule of 02 facilitates the further oxidation of

Nro-Hydroxyarginine to produce NO, citrulline, and H20. The flavins are used to

deliver electrons singly to heme from the two-electron donor NADPH for the

activation of dioxygen. A schematic diagram of nitric oxide synthesis is shown in

Figure 1.6.
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BH4
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Figure 1.6 Schematic diagram ofNO synthesis and nitric-oxide cyclic GMP signal
transduction system.
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NO has diverse important biological effects including: vasodilatation (Tesmafarium
et al., 1985; Furchgott, 1987), inhibition of platelet aggregation (Busse et al., 1987;

Radomski et al., 1987b; Furlong et al., 1987; Ignarro et al., 1989), and platelet
adhesion to endothelial cells (Radomski et al., 1987c,d), inhibition of both neutrophil

aggregation (McCall et al., 1988) and adhesion to endothelial cells in postcapillary

venules, (Schroder et al., 1990; Kubes et al., 1991), attenuation of cellular

proliferation (Garg & Hassid, 1989); regulation of endogenous ADP-ribosylation

(Brune & Lapetina, 1989; Clancy et al., 1993, 1995); neurotransmission and
neuromodulation (Toda et al., 1993; see review Garthwaite & Boulton, 1995),

inflammatory response (Moilanen & Vapatalo, 1995) and immunological defence

(Liew & Cox, 1991; Kolb & Bachofen, 1992). Normally, NO is released basally by
the endothelial cells of the coronary vasculature and inhibits platelet and neutrophil
adhesion to the endothelium, thereby preventing thrombus formation and
microvascular embolisation. A study by Williams et al suggests that endogenous
NO production exerts a tonic cardioprotective effect, reducing the extent of

myocardial infarct following coronary reperfusion (Williams et al, 1995).

The physiological effects of NO are usually mediated via activation of soluble

guanylate cyclase through direct binding ofNO to its prosthetic haem group (Ignarro,

1991) and the resultant formation of cyclic GMP (Murad, 1986; McCall et al., 1988;
Schroder et al., 1990; Moilanen et al., 1993). In many cell types, the increases in

cyclic GMP lead to cyclic GMP-dependent protein kinase activation and altered

phosphorylation of many endogenous proteins (Rapaport & Murad, 1983b; Murad,

1986; Waldman & Murad, 1987). In addition, it is proposed that NO exerts some of
its main physiological and pathological effects on cell functions by inhibiting

cytochrome oxidase (Brown, 1995).

NO is a free radical and highly unstable, with an apparent half-life of 10-20 seconds,

owing to reactions with 02 and 02" (Ignarro et al., 1987; Palmer et al., 1987;

Moncada et al., 1989; Furchgott et al., 1990). NO is oxidised to nitrite ion (N02~) in
tissue fluid and then converted to nitrate (N03~) in whole blood. In biological

systems, the dominant reaction ofNO will be with another free radical (Ignarro et al.,
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1981; Vanin, 1991; Stamler et al., 1992). These NO adducts, their secondary
reaction products, and products of NO oxidation and reduction are capable of
reaction with metals, thiols, and additional targets to give further products, often with

biological activity and relevance (Stamler et al., 1992). Thus the biological

chemistry ofNO is complex. Reaction of NO with 02" leads to rapid destruction of
NO with loss of biological activity or to the formation of other radicals, including

peroxynitrite (ONOO) (Beckman et al., 1990). ONOO is a highly reactive species
with a half-life of less than 1 sec under biological conditions, owing to its

equilibrium with peroxynitrous acid (ONOOH) (Beckman et al., 1990; Radi et al.,

1991a). ONOOH spontaneously decomposes to N02 and forms an extremely
reactive species with hydroxyl-like properties (Beckman et al., 1990). Cellular

generation and reactivity ofONOO" and its derived chemical species suggest that this

pathway is an important process in pathophysiological actions of NO. ONOO" has
been demonstrated to cause lipid peroxidation, thiol oxidation, and nitrosation or

nitration of several functional groups of amino acids (Radi et al., 1991a; Radi et al.,

1991b; Ischiropoulos et al., 1992). Reaction of NO with ions and macromolecules
such as haemoglobin or glutathione can result either in its inactivation or, in some

cases, in the formation of a relatively stable NO-carrier intermediate that stabilises
NO and permits it to act at a greater distance from its site of synthesis than would
otherwise be possible. NO reacts rapidly with oxygen-bound Fe2+-haemoglobin to

form the corresponding met-haemoprotein (Fe3+-Hb) and nitrate (Doyle et al., 1981).
The reversible binding of NO to the iron of reduced (Fe2+) haemoproteins is a

well-established interaction that results in the formation of NO-heme. NO is known

to inhibit key cellular enzymes with iron-sulphur complexes and cause the release of

iron-NO-sulphur species (Hibbs et al., 1990). Reaction ofNO with macromolecules

(nitrosylation) can result in cell damage and accounts for some of the effects of the

large amounts of NO produced during host defence reactions and in some

pathological states. Several of the oxidation products of NO have the potential to
react with amines to yield products ofpathophysiological significance

Cytotoxic and/or cytostatic effects of NO are important in non-specific host defence

against numerous pathogens and tumour cells. High levels of NO may be cytotoxic

33



CHAPTER 1

to some invading pathogens, cancer cells or normal host cells (Beckman et al., 1990;

Nguyen et al., 1992; Vallance & Moncada, 1993). Neutrophils produce NO after
induction of NOS, and some stimuli (e.g. fMLP) which stimulate NO biosynthesis
also cause neutrophil 02" production. NO reacts with 02 to yield cytotoxic ONOO, a

potent oxidant that can destroy invading organisms, but if produced in excess can

also damage the host. Other mechanisms by which NO may mediate cytotoxicity
include: the impairment of the function of mitochondrial and other iron-sulphur

containing enzymes resulting in the depletion of cellular ATP stores (Stuehr &

Nathan, 1989; Stadler et al., 1991), impairment of DNA synthesis through the
inhibition of ribonucleotide reductase (Kwon et al., 1991) as well as by direct

toxicity through deamination reactions (Nguyen et al., 1992), inactivation of

phosphoenolpyruvate carboxykinase and glyceraldehyde-3-phosphate dehydrogenase
which are important enzymes in glucose metabolism (Nathan, 1992).

1.2.2 Adenosine

Adenosine is an endogenous nucleoside released by many different cell types and is

present in physiologically relevant amounts in plasma; it regulates many

physiological processes. It is produced primarily from the degradation of adenosine

triphosphate (ATP) (Bern, 1980). A schematic diagram of adenosine metabolism is
shown in Figure 1.7.

The major pathways of adenosine formation are the enzymatic dephosphorylation of
5'-adenosine monophosphate (5'-AMP) by 5'-nucleotidase and the hydrolysis of

S-adenosylhomocysteine (SAH) by SAH-hydrolase (Achterberg et al., 1985).

During normoxia, a major source of adenosine is SAH formed from

S-adenosylmethionine (SAM). During ischaemia and hypoxia, 5'-nucleotidase is
activated and is thought to be primarily responsible for adenosine production (Frick
& Lowenstein, 1976; Worku & Newby, 1983) aside from the accumulation of

5'-AMP. Adenosine that is produced from either SAH or 5'-AMP is rapidly

phosphorylated by adenosine kinase or deaminated by adenosine deaminase (Figure

1.7).
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AMP SAH

i
HYP

I
Uric Acid

Figure 1.7 Schematic diagram of adenosine metabolism. SAM,
S-adenosylmethionine; SAH S-adenosylhomocysteine; ADO, adenosine; AMP,
adenosine 5'-monophosphate; IMP, inosine 5 '-monophosphate; INO inosine; HYP,
hypoxantine. Modified from Schrader, J: Metabolism of adenosine and site of
production in the heart, in Berne, R.M., Rail, T.W., Rubio, R. (eds): Regulatory
Function ofAdenosine. Boston, Marinus NijhoffPublisher, 1983, pp 133-156.

Adenosine acts as a neuromodulator in the central and peripheral nervous systems

and as a homeostatic regulator in a variety of other tissues, including smooth muscle

cells, heart muscle, platelets, coronary arteries and cells involved in immune and

inflammatory reactions (Schrier & Imre, 1986; Liang, 1992; Hussain & Mustafa,

1993). Adenosine is a vasodilator in most vascular beds and regulates a variety of
stimulated neutrophil functions. Adenosine inhibits 02" generation (Cronstein &

Kramer, Cronstein et al., 1983, 1985, 1990; Roberts, et al., 1985; Gunther &

Herring, 1991; Thiel & Bardenheuer, 1992; Burkey & Webster, 1993), P2-integrin-
and L-selectin-mediated adhesion to endothelial cells (Cronstein et al., 1992;

Firestein et al., 1995), and phagocytosis (Salmon & Cronstein, 1990) but does not

inhibit chemotaxis (Cronstein, 1994). Adenosine is reported to be a poor inhibitor of
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granule release from stimulated neutrophils, that does not inhibit neutrophil

aggregation (neutrophil-neutrophil adhesion) (Cronstein et al., 1983, 1988;

Cronstein, 1994; McGarrity et al., 1989; Walker et al., 1989). However, some

investigators have reported that adenosine inhibits stimulated neutrophil

degranulation and aggregation (Schmeichel & Thomas, 1987; Skubitz et al., 1988;

Richter, 1992). Adenosine inhibits platelet aggregation (Feoktistov et al., 1991;

Bullough et al., 1994; Grenegard et al., 1996; Jonzon et al., 1997). Adenosine has
been shown to play a role in protecting vascular endothelium from damage by

neutrophils (Cronstein et al., 1986) and exerts beneficial effects in ischaemia and

reperfusion (Engler & Gruber, 1991; Pitarys et al., 1991; Norton et al., 1991, 1992;
Toombs et al., 1992).

Most effects of adenosine are exerted via cell surface receptors, which are present on

most cells and organs. There are four pharmacologically distinct adenosine receptor

subtypes, designated A,, A2A, A2B and A3, all of which have been cloned and their

binding profiles characterised in various cell lines (Fredholm et al., 1994; Olah &

Stiles, 1995). In some tissues, however, only one subtype is present. For example,
the A, receptor prevails in the heart, whereas the A2 receptor is present mainly in
vessels and platelets. In turn, the A2 receptor has been further subdivided into A2A

(high affinity, in brain striatum) and A2B (low affinity, in fibroblasts). It is known
that stimulation of A2A receptors leads to vasodilatation, inhibition of platelet

aggregation and neutrophil adhesion to vascular endothelium, as well as reduction in

generation of oxygen free radicals by activated neutrophils (Hori & Kitakaze, 1991;

Cronstein, 1991; Sandoli et al., 1994). In the nonischaemic heart, adenosine A,

receptors, located primarily on cardiac myocytes, mediate the negative

chronotropic/dromotropic and antiadrenergic effects. Adenosine A2 receptors

located predominantly on endothelial cells, mediate the effects on coronary blood
flow (Lasley & Mentzer, 1995).

Earlier evidence from functional studies showed that neutrophils possess A, and A2A

receptor subtypes (Cronstein et al., 1985). It has been demonstrated recently that

neutrophils also posses A2B and A3 receptors subtypes (Fredholm et al., 1996; Bouma
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et al., 1997). Based on pharmacological data, it appears that the A2A receptor on

neutrophils mediates the inhibition of neutrophil Of generation, adhesion to

endothelial monolayers, and phagocytosis (Cronstein, 1994), whereas activation of

A, receptors promotes chemotaxis (Cronstein et al., 1990) and neutrophil adherence
to endothelial cells (Cronstein et al., 1992).

Regulatory G proteins are involved in the signal transduction for both the A2 and A,

receptors resulting in activation or inhibition of adenylate cyclase, respectively

(Ramkumar & Stiles, 1988). Although adenosine A2 receptors are classically linked
to heterotrimeric Gs signalling proteins and stimulation of adenylate cyclase which
leads to increase intracellular concentrations of cyclic AMP (see Fredholm et al.,

1994), it is clear that cyclic AMP does not act as the second messenger for the

inhibitory actions of adenosine on the neutrophils (Cronstein, 1994). An inhibitory
effect on the late increases in intracellular DAG and Ca2+ has also been proposed, but
a more recent study has indicated that adenosine A2A receptors on human neutrophils

signal via a novel pathway, cyclic AMP-independent activation of a serine/threonine

protein phosphatase in the plasma membrane (Revan et al., 1996).

It has been only recently that potentially important functions have been discovered
for the A2B receptors. A2B receptors have been implicated in mast cell activation,

(Marquardt et al., 1994; Feoktistov & Biaggioni, 1995; Feoktistov et al., 1996),
vasodilatation (Webb et al., 1992), regulation of cell growth (Dubey et al., 1996b;

Boyle et al., 1996; Feoktistov & Biaggioni, 1995), intestinal function (Stehle et al.,

1992; Nicholls et al., 1996), and modulation of neurosecretion and

neurotransmission (Walday & Aas, 1991; Phillis et al., 1993; Okada et al., 1996).

A2A and A2B receptors are frequently found in the same tissue e.g. human neutrophils

(Fredholm et al., 1996). Functional A2B receptors have been found in many cell

types such as various vascular beds (Martin et al., 1993; Chiang et al., 1994;

Prentice & Hourani, 1996; Dubey et al., 1996), myocardial cells (Liang &

Haltiwanger, 1995) endothelium (Iwamoto et al., 1994), neurosecretory cells

(Casado et al., 1992; Mateo et al., 1995). In addition to coupling to adenylate
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cyclase through Gs proteins, A2B receptors can also couple to other intracellular

pathways, including calcium channels through Gs and phospholipase C.

The pathophysiological role of the A3 receptor might be very different from the role
of the A, and the A2 subtypes, in that it may act as an endogenous regulator under
conditions of more severe challenge (see review by Jacobson, 1998). The varied
effects of A3 receptor agonists, in vitro and in vivo, appear to be opposing, i.e. either

cytoprotective or cytotoxic, depending on the level of receptor activation and the

paradigm studied. A3 receptors are potentially involved in apoptosis (programmed
cell death). It appears that intense, acute activation of A3 receptors acts as a lethal

input to cells, while low concentrations of A3 receptor agonists protect against

apoptosis. Selective activation of A3 receptors appears to inhibit human neutrophil

degranulation, suggesting the anti-inflammatory potential of A3 receptor agonists in

neutrophil-mediated tissue injury (Bouma et al., 1997). There might be an

involvement ofA3 receptors in cancer (MacKenzie et al., 1994). There are protective
effects of A3 receptor activation in heart cells administration both prior to (Strickler
et al., 1996; Tracey et al., 1997) and during (Stambaugh et al., 1997) an ischaemic

episode (Tracey et al., 1997). Activation by endogenous adenosine of both A, and

A3 receptors is thought to mediate preconditioning. As A3 receptor activation

protects both in a preconditioning model and during prolonged ischaemia, selective

agonists might be of great clinical importance.

1.2.3 Prostacyclin

Prostacyclin (PGI2) was discovered in 1976 by Moncada &Vane and their colleagues

(Moncada et al., 1976) and is a major active arachidonic acid metabolite produced

mainly by the endothelial cells. In endothelial cells, pulsatile pressure, a number of

endogenous mediators and some drugs stimulate PGI2 generation. Some endogenous

chemical stimulants include substances derived from plasma such as bradykinin and

thrombin, and those liberated from stimulated platelets such as serotonin (5-HT),

platelet-derived growth factor (PDGF), IL-1, and adenine nucleotides (Forsberg, et

al., 1987). PGI2 production is initiated by the enzyme phospholipase A2 (PLA2),
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which liberates arachidonic acid (AA) from membrane phospholipids (Walsh et al.,

1983) (Figure 1.8).

Membrane phospholipids

Phospolipase A2

COOH

Cyclo-oxygenase

OH
Prostacyclin synthase

Arachidonic acid

COOH

PGH,

Nonenzymatic
hydrolysis

OH

6-keto-PGFla

COOH

Figure 1.8 Schematic diagram ofProstacyclin (PGlJ biosynthesis. Prostacyclin is
formedfrom arachidonic acid, with the endoperoxides andprostaglandins G2 and H2
as intermediates. PGI2 is unstable and breaks down into the stable and less active
6-keto-PGF,a ■

Arachidonic acid is converted into prostaglandin G2 (PGG2) and then to

prostaglandin H2 (PGH2) by the enzyme cyclooxygenase (prostaglandin G/H

synthase) and peroxidase, respectively. Prostacyclin synthase subsequently forms

prostacyclin (PGI2) from the endoperoxide PGH2. PGI2 is hydrolysed rapidly in

plasma to 6-keto-prostaglandin Fla; its metabolic half life is about 1-2 minutes at

physiological pH in aqueous media.

39



CHAPTER 1

PGI2 has a number of physiological actions, including vasodilatation of most

vasculatures (Fitzpatrick et al., 1978; Lefer et al., 1978; Moncada & Vane, 1979),
inhibition of platelet aggregation (Tateson, et al., 1977; Higgs et al., 1978; Moncada
& Vane, 1979), prevention of neutrophil adhesion, and stabilisation of membranes

(Lefer et al., 1978; Jones & Hurley, 1984). PGI2 was found to inhibit fMLP-induced
chemotaxis and superoxide anion generation in rat (Fantone & Kinnes, 1983;

Kainoh, et al., 1990) and human neutrophils (Claesson et al., 1981). In addition,

PGR was also found to inhibit lysosomal enzyme release or LTER release from
fMLP-activated human neutrophils (Claesson et al., 1981). Since it has been

proposed that PGR production by the endothelium is reduced following anoxia and

reoxygenation (Hempel et al., 1990) and endogenous PGR seems to be an important

protective prostanoid against myocardial injury inflicted by ischaemia and

reperfusion, the use of PGR or its analogues may offer cardioprotection to the
ischaemic myocardium after reperfusion.

The effects of PGR are mediated via specific cell surface IP receptors (Coleman et

al., 1994), activation of which generally leads to elevation of intracellular cyclic
AMP (Gorman et al., 1977) through Gs protein coupling to adenylate cyclase

(Hashimoto et al., 1990). The resultant increase in cyclic AMP level leads to

activation ofPKA and phosphorylation of several key proteins. For example, a PGR

analogue, beraprost, was shown to effectively inhibit fMLP-induced chemotaxis of

neutrophils via the elevation of intracellular cAMP levels, which interferes with the

signal transduction process, probably through the inhibition of influx of Ca2+
mobilization in neutrophils (Kainoh et al., 1990). Recently, the inhibitory effect of
this drug was shown to mediate through the inhibition of p47 phox phosphorylation
and translocation by a Ca2+ dependent mechanism (Okuyama et al., 1995).

Prostanoid receptors have highly conserved amino acid sequences and constitute a

novel family of seven transmembrane domains receptors, which are coupled to

heterotrimeric guanine nucleotide regulatory protein (G proteins) (Coleman et al.,

1994). Pharmacological studies have revealed that the responses to PGR and its
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analogues are somewhat different among tissues and cells of different species,

indicating that the presence of several receptor subtypes (Corsini et al., 1987) or

coupling of the receptor to more than one species of G protein. However, current
molecular biological knowledge of PGI2 receptor (IP receptor) does not support the
existence of subtypes for this receptor (see review Hirata et al., 1995). In contrast,

cloned IP receptors coupled to both adenylate cyclase stimulation and PLC activation

(Katsuyama et al., 1994) probably via Gs and Gq, respectively. Thus, the IP receptor

belongs to a receptor that can couple to multiple G proteins. Recent evidence

suggests that IP receptors can couple to Gs, Gq, as well as Gi (Schwaner et al.,

1995). Some evidence was presented for IP receptor agonists opening KATP channels

by a process independent of cyclic AMP production, but possibly still involving a G

protein (Jackson et al., 1993).

PGI2 is extremely labile under physiological conditions, with a half-life of 1-2

minutes, and so a variety of chemical stable PGI2 analogues have been developed.

Among them, iloprost, a member of carbacyclin, (Schror et al., 1981) and cicaprost,
another carbacyclin, (Sturzebecher et al., 1985) are the more commonly used IP

mimetics, but cicaprost is the analogue of choice, owing to its potency and high

selectivity (Dong et al., 1986). Iloprost is less selective, acting as a partial agonist at

EP, receptors (Jones et al., 1984; Dong et al., 1986).
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CHAPTER 2

INVESTIGATION OF THE ROLE OF

NITRIC OXIDE AND CYCLIC GMP

IN BOTH THE ACTIVATION AND INHIBITION OF

HUMAN NEUTROPHILS
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2.1 INTRODUCTION

Neutrophils comprise a fundamental component of the non-specific immune

response. It is well established that neutrophils play an important role in host
defences during tissue injury and inflammation, when neutrophils migrate from
microvessels into the tissues to combat pathogens (Curie et al., 1987; Weiss, 1989).

Neutrophils are recruited from the bloodstream by chemotactic factors generated and
released locally in injured tissue (Barten et al., 1976; Weiss, 1989). Once at the site
of inflammation, these cells respond to injurious agents by phagocytosis, the release
of preformed granular enzymes and proteins, and by the de novo production of a

range of potentially damaging, but ephemeral, reactive oxygen intermediates, such as

02\

Neutrophil locomotion to a specific chemoattractant is a complex, multi-step process

requiring ligation of a cell surface receptor, transduction of a signal from the receptor
to intracellular effectors, reorganization of the cytoskeleton and finally a directed

crawling movement towards the source of chemotaxin (Cassimeris & Sigmond,

1990). However, the effector signalling pathway activated in neutrophils to promote

cell migration in response to these stimuli is still poorly understood. Several cellular

pathways, as well as numerous specific macromolecules have been identified as

being essential for the process of neutrophil movement (Cassimeris 1990; Sigmond,

Gaudry et al., 1992; Amatruda et al., 1993). For example, the direct interaction of

receptors with G protein activates PLC, and the subsequent release of calcium, as

well as actin polymerisation, appears to be involved in the chemotactic response

(Snyderman et al., 1984, 1986; Becker et al., 1985; Yasui et al., 1988; Mark &

Maxfied, 1990). Numerous studies have investigated the second messengers

involved in 02" generation in neutrophils, and these have revealed that protein

tyrosine phosphorylation (tyrosine kinase) and the activation of PLD are the major
factors involved in the activation of NADPH oxidase produced by stimulation with
the chemoattractant fMLP (Pai et al., 1988; Agwu et al., 1989; Bonser et al., 1989;

Naccache et al., 1990; English, 1992; Perry et al., 1992; Kusunoki et al., 1992).

Further, it has been reported that tyrosine kinase precedes and induces the

receptor-mediated activation of PLD, but not PLC activity, in human neutrophils
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(Uings et al., 1992). A study by Yasui et al. (1994) indicated that both the

respiratory burst and the migration of neutrophils require tyrosine phosphorylation in
the signalling pathway; however, the former needs PLD activation and the latter does
not. Human neutrophils possess more than one pathway by which they exert their
different functions.

Human neutrophils stimulated with Ca2+-mobilizing agents such as fMLP or the

ionophore A23187 undergo transient polarization followed by increased motility and

degranulation. These actions appear to involve increases in cyclic GMP. The
increase in [Ca2+]i stimulates NO formation. Unstimulated and primed human and
rat neutrophils have been shown to generate and release factors with the

pharmacological characteristics of nitric oxide (NO) (Stephen & Snyderman, 1982;
Rimele et al., 1988; Wright et al., 1989; Schmidt et al., 1989; Salvemini et al., 1989;
McCall et al., 1989; Lee et al., 1990; Mehta et al., 1990; Myers et al., 1990; Kadota
et al., 1991; Lopez et al., 1991; Moncada et al., 1991, 1991; Rimele et al., 1991; Yui
et al., 1991). The release of NO is regulated by nitric oxide synthase (NOS), a

cytosolic enzyme that catalyses the conversion of L-arginine to L-citrulline and NO

(Moncada et al., 1991b). A major molecular event in the signal transduction by NO
seems to be activation of guanylyl cyclase (Garber, 1992; Schmidt et al., 1993) by
formation of an NO-haem iron complex, thus resulting in enhanced production of

guanosine 3': 5'-cyclic monophosphate (cyclic GMP). Coincident with the elevations
of cyclic GMP in activated neutrophils is the colocalisation of cyclic

GMP-dependent protein kinase (G-kinase) and the intermediate filament cytoskeletal

protein vimentin, this is followed by phosphorylation of vimentin by G-kinase

(Wyatt et al., 1991). The transient colocalisation of G-kinase and vimentin correlates
well with phosphorylation, cell polarisation, and degranulation, suggesting a role for
G-kinase in these events. However, the role of NO generated by neutrophils is still

insufficiently understood.

Intracellular accumulation of cyclic GMP has been suggested to regulate neutrophil
chemotaxis in vitro (Sandler et al., 1975; Smith & fgnarro, 1975; Stephen &

Snyderman, 1982; Anderson et al., 1989; Kaplan et al., 1989). Consistent with these
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concepts, it has been shown that fMLP-mediated chemotaxis was decreased by an

inhibitor of NOS, NG-monomethyl-L-arginine (L-NMMA), involving most probably
a cyclic GMP-dependent pathway as exogenous cyclic GMP reversed this inhibition

(Kaplan et al., 1989). Furthermore, it has been shown that NOS inhibitors

significantly attenuate chemotaxis of unstimulated and primed human neutrophils in

vitro and that these effects were specific and modulated by cyclic GMP (Belenky et

al., 1993). These two latter experiments suggested a role for NO as an intracellular

messenger for neutrophil chemotaxis. In addition, cyclic GMP plays a major role in

neutrophil chemotaxis, by increasing cell polarization (Caterina & Devreotes, 1991).

Recently, it was demonstrated that exogenous NO could mediate the chemotaxis of

neutrophils in vitro (Beauvais et al., 1995).

However, there are some contradictory data indicating that NO or NO donors (at high

concentrations, >10pM) can inhibit neutrophil functions e.g. chemotaxis,

degranulation, leukotriene (LT) production and 02" generation. Some of these effects
were suggested to be mediated, at least in part, by an increase of cyclic GMP due to

soluble guanylyl cyclase activation (Ney et al., 1990; Schroder et al., 1990; Kubes et

al., 1991; Rubanyi & Vanhoutte, 1991; Wenzel-Seifert et al., 1991; Clancy et al.,

1992; Moilanen et al., 1993; Rengasamy & Johns, 1993).

2.2 AIMS

The aim of this study was to establish the role of NO and cyclic GMP in chemotaxis
and superoxide anion (02") generation by human neutrophils. For this purpose, the

inhibitory effects of the NOS inhibitors, L-NMMA and F-canavanine; the NO

scavenger Carboxy-PTIO; the guanylyl cyclase inhibitor FY 83583; the G-kinase

inhibitors, KT 5823 and Rp-8-cCPT-cGMPS and the phosphatase inhibitor, 2,3

Diphosphoglycerate (DPG) have been investigated. In addition, the NO donors,

3-morpholino-sydnonimine (SIN-1) and mesoionic 3-aryl-substituted oxatriazol
derivatives (GEA 3162 and GEA 5024) have been tested for inhibition of neutrophil
chemotaxis as well as for their ability to increase neutrophil nitrate/nitrite and cyclic
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GMP levels. The ultimate aim of this work was to resolve the paradox that NO

appears to be able to both activate and inhibit human neutrophils.

2.3 MATERIALS

The following compounds were gifts which are gratefully acknowledged:

3-aryl-substituted oxatriazol derivatives GEA 3162 and GEA 5024 from Dr S. B.

Pedersoen, GEA Ltd, Copenhagen, Denmark; A primary antibody against acetylated

cyclic GMP from Dr. I. Gow, Department of Physiology, University of Edinburgh
and Dr.Brent Williams, Department of Medicine, University of Edinburgh, Western
General Hospital; Donkey-Anti-Rabbit Serum (DARS) and Normal Rabbit Serum

(NRS) from the Scottish Antibody Production Unit, Carluke.

fMLP, L-canavanine, PBS (containing Ca2+ and Mg2+), 2,3-Diphosphoglyceric acid

(DPG), trypan blue and guanosine 3': 5'-cyclic monophosphate were purchased from

Sigma; polyethylene glycol, cytochrome C and cytochalasin B from Aldrich; Percoll
from Pharmacia; RPMI 1640 from Gibco; NG-monomethyl-L-arginine (L-NMMA),

6-anilinoquinoline-5-8-quinone (LY 83583), (8R,9S,11 S)-(-)-9methoxy-9-

methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,ll-epoxy-lH, 8H, 11H-2, 7b,
lla-triazadibenzo (a,g) cycloocta (cde)-trinden-l-one (KT 5823) from Calbiochem;

Rp-8-(4-Chlorophenylthio)-guanosine-3'-5'-cyclic mono phosphorothioate

(Rp-8pCPT-cGMPS) from Biolog; Diff-Quik™ from Gamidor;

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (Carboxy-PTIO)
and 3-morpholinosydnonimine (SIN-1) from Tocris Cookson; Cayman's
Nitrate/Nitrite Assay Kit from Alexis corporation; Guanosine 3',5'-cyclic phosphoric
acid 2'-0' succinyl-3-(125I) iodo from Amersham; triethylamine and acetic anhydride
from BDH.

The chemical structures of the drugs used in this study are shown in Figures 2.1 &

2.2.
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NOS Inhibitors
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Figure 2.1 Chemical structures ofthe NOS inhibitors, L-NMMA and L-Canavanine;
the NO scavenger Carboxy-PTIO; the guanylyl cyclase inhibitor LY 83583 and the
G-kinase inhibitors KT 5823 and Rp-8-cCPT-cGMPS.
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Phosphatase inhibitor
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Figure 2.2 Chemical structures of a phosphatase inhibitor
2,3-Diphospho-D-glyceric acid and the NO donors: GEA 3162, GEA 5024 and
SIN-1.

2.4 METHODS

2.4.1 Isolation of human neutrophils
Where possible and to avoid contamination, the following procedures were carried
out within a laminar-flow cabinet using sterile materials and equipment. The
isolation of human neutrophils is summarised in a simplified flow diagram (Figure

2.3).
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Isolation of human neutrophils

percoll
—

— mononuclear cells

heparinised ►
human blood

—

centrifugation
650 x g/30 min/20°C

— neutrophils
— red cell pellet

I
The neutrophils were washed twice.
Viability assessed by trypan blue exclusion.

I
Chemotaxis was measured using a Neuro Probe 96 well chamber

neutrophils (control or drug-treated)

1^1 incubation
_

3 fim filter —► — ► wash filter
, . _ . stain with DiffA 45 min/37°C/5% COz Quick

chemoattractant (fMLP)

I
Migrated cells measured spectrophotometrically
by measuring absorbance at 550 nm.

Figure 2.3 Flow diagram of isolation of human neutrophils and measurement of
neutrophil chemotaxis.

Method

1. Venous blood (200 ml) was taken from the forearm of healthy volunteers,
divided into 25 ml aliquots in eight 50 ml tubes and anti-coagulated with 50 units

heparin per ml ofblood, mixed with an equal volume of dextran (3% in 0.9% w/v

saline) and left to stand at room temperature for 45 minutes to allow
sedimentation of the red blood cells.

2. After 45 minutes, the leukocyte-rich plasma was then removed and dispensed
into four tubes and then centrifuged at 280xg for 10 minutes. The resultant pellet
was resuspended in 4x4 ml of 55% percoll. Using a syringe, the 55%

percoll-leukocyte-rich solution was carefully layered onto each of the tubes
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containing a discontinuous Percoll gradient (3 ml 70% Percoll layered on top of 5
ml 81% Percoll).

3. The tubes were then centrifuged for 30 minutes at 650xg to separate the

polymorphonuclear leukocytes from the mononuclear cells. After centrifugation,
the cells separated through the percoll concentration gradient into three visibly
distinct layers; red blood cells at the bottom of the tubes, the cloudy neutrophil
band settled in the middle layer and the cloudy monocyte band settled in the

upper layer.

4. The neutrophil-rich layer was removed and washed with 0.9 % saline by

centrifugation at 280xg, for 10 minutes, at room temperature, discarding the

supernatant after spin.

5. Any contaminating red bood cells were lysed by resuspending the pellet in 10 ml
ice cold 0.2% w/v NaCl solution for 20 seconds, after which 10 ml of ice cold

1.6% w/v NaCl solution was added to return the cells to isotonic conditions. To

further wash the cells, 30 ml of 0.9% saline was added and the tubes were then

centrifuged at 280xg, for 10 minutes, at room temperature. The pellet was then

resuspended in 20 ml ofPBS.

6. With this method of separation, neutrophils represented 84 ± 1.9% (n=9) of the

polymorphonuclear leukocyte band, as determined by 1% of cells magnetically

tagged with CD 16 microbeads (Eurogenetic).

7. Neutrophils were then counted and their viability assessed by trypan blue
exclusion: 100 pi of the cell suspension was added to 400 pi of trypan blue and
counted microscopically (x40) in an improved Neubauer chamber. The viability
of the cells was more than 95%.

8. Finally the cells were resuspended, either at a concentration of 3X106 cells/ml in
warm RPMI 1640 medium (without L-glutamine, Gibco) or at a concentration of
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1.5xlO6 cells/ml in warm phosphate buffered saline (PBS containing Ca2+/Mg2+,
Sigma) and kept at room temperature for determination of chemotaxis and Of

generation, respectively.

2.4.2 Chemotaxis procedure
The measurement of human neutrophil chemotaxis is summarised in a simplified
flow diagram (Figure 2.3).
Method

1. The chemotaxis assay was performed using a 96 well chemotaxis chamber

(Neuroprobe, Cabin John, Md). The bottom wells of the chamber were filled

with chemoattractant (30 pi) which had been warmed to 37°C and vortexed to

expel dissolved gases. To prevent excessive evaporative loss, the filling time

was kept under 10 minutes. 30 pi of fMLP (lxlO~7M to 3xlO"6M) was used as the
chemoattractant.

2. The top plate was fitted with a gasket and the framed filter (3 pm). The top plate,
with the filter installed, was then inverted onto the filled bottom plate. The
thumb nuts were installed and tightened gradually with equal force.

3. The upper wells were filled with 225 pi neutrophils (3><106 cells/ml) which had
been treated with inhibitor or RPMI medium. In the case of carboxy-PTIO (100

pM), LY 83583 (10 and 100 pM), KT 5823(1 and 10 pM), Rp-8-pCPT-cGMPS

(10 and 100 pM), and 2,3 diphosphoglyceric acid (DPG) (10 and 100 pM),

neutrophils were treated with these inhibitors immediately prior to addition to the

upper well. In the case of L-NMMA (500 pM), and NO donors (l-100pM), the
cells were incubated with L-NMMA for 45 minutes and with NO donors for 10

minutes, prior to addition to the upper wells. The filled chamber was then
incubated for 45 minutes at 37°C in a moist, 5% C02 atmosphere to allow

neutrophil migration.
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4. At the end of the incubation period, the filter was removed, washed, fixed and
stained with Diff Quik™ (fixative-fast green in methanol for 5 minutes, eosin G
in phosphate buffer for 5 minutes, thiazine dye in phosphate buffer for 5

minutes).

5. Chemotaxis was quantified spectrophotometrically by measuring absorbance at

550 nm (DYNATECH MR7000). The magnitude of the absorbance was taken as

directly proportional to the amount of neutrophils, which had migrated and were

trapped in the filter. An example of a filter with trapped neutrophils is shown in

Figure 2.4. Basal absorbance was taken as cells without fMLP. Each incubation
was carried out in triplicate and the values were averaged.

6. As LY 83583 and KT 5823 were dissolved in DMSO, the final percentages of
DMSO in this assay of 10 pM and 100 pM LY 83583 treated cells were 0.05%
and 0.5%, respectively and of 1 pM and 10 pM KT 83583 treated cells were

0.01% and 0.1%, respectively

Figure 2.4 An example ofa filter with trapped neutrophils in each well.

2.4.3 Superoxide anion generation
In this study, O2" generation by neutrophils was determined by spectrophotometric

3~F 2+
evaluation of the reduction of ferricytochrome C (Fe ) to ferrocytochrome C (Fe )
in the presence of cytochalasin B. Cytochalasin B has commonly been used in any

experiments studying secretion and respiratory burst (Goldstein et 1973) to

52



CHAPTER 2

enhance the amount of Of released during the reaction (Zurier et al., 1974). In the

neutrophils, association of bound chemoattractant receptors with the cytoskeleton
dissociates bound receptors from the signal-transduction apparatus, thereby

terminating the continued generation of intracellular signals required for neutrophil
function. Cytochalasin B, an agent that depolymerises filamentous actin (F-actin),
blocks the association of bound fMLP receptors with the cytoskeleton, permits
increased generation of critical intracellular signals, and thereby amplifies the
functional responses of the neutrophils to fMLP (Jesaitis et al., 1986). The reduction
of ferricytochrome C (Fe3+) to ferrocytochrome C (Fe2+) was previously shown to be
inhibited by superoxide dismutase (SOD) (Babior et al., 1973). The method that was
used in this experiment is a modification of methods used by Gryglewski et al.

(1987) and Babior et al. (1973). The measurement of Of generation is summarised
in a simplified flow diagram Figure 2.5 and the set up for this method is in Table 2.1

Spectrophotometric assay of the reduction of ferricytochrome C (A 550nm)

cytochrome C
cytochalasin B incubation stop reaction
inhibitor

cells (1.5x10 6 cells/ml) ♦
10 min/37 °C LJ 5 min on ice LJ

fMLP (3-300 nM)

I
Samples were centrifuged at 300 x g 4°C for 10 min.

I
Superoxide anion was measured spectrophotometrically
by measuring absorbance at 550 nm.

Superoxide anion was measured as nmols/10^cells/10 min.

Figure 2.5 Flow diagram ofmeasurement ofsuperoxide anion generation.
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Method

Neutrophils were isolated from human blood as discussed in section 2.4.1. For both

control and sample tubes, cells (1.5xl06cells/ml) were resuspended in PBS

containing Ca2+ and Mg2+, 5 mg/ml cytochrome C and 5 pg/ml cytochalasin B.

1. Cells (450 pi) were treated with PBS or inhibitor [Carboxy-PTIO (100 pM) or

LY 83583 (10 and 100 pM) or KT 5823 (1 and 10 pM) or Rp-8-pCPT-cGMPs

(100 pM )], immediately prior to the addition to tubes containing 50 pi of 3xl0"8
to 3x10~6 M of fMLP (3-300 nM) and incubated for 10 minutes at 37°C. In the

case of L-NMMA, L-canavanine, and DPG (all at contrations of 100 and 500

pM), the neutrophils were preincubated for 10-45 minutes, as appropriate, prior
to addition to the tubes containing fMLP.

2. At the end of incubation period, the reaction was terminated by immersing the
tubes in ice for 5 minutes and the samples were centrifuged at 320*g, at 4°C for
10 minutes, to sediment the cells.

3. Supernatant (200 pi) from each tube was dispensed into a 96 well plate and the
absorbance at 550 nm was measured in a spectrophotometer (DYNATECH MR

7000). Basal absorbance was taken as cells without fMLP. Each sample was

carried out in triplicate and the values were averaged. Results are expressed as

nmol superoxide anions/106 cells/10 minute.

4. The final percentages of DMSO in this assay for 10 pM and 100 pM LY 83583

treated cells were 0.14% and 0.5%, respectively and for 1 pM and 10 pM KT

83583 treated cells were 0.01% and 0.18%, respectively
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Table 2.1 : Set up for superoxide anion generation

Tube No. Description cells(pl) Buffer(pl) fMLP (50 pi)

1-3 Blank 450 50

4-6 Control cells »» 3><10"8M
7-9 Control cells It 10"7M
10-12 Control cells If 3xl0"7M
13-15 Control cells II 10"6M
16-18 Control cells II 3xlO"6M
19-21 Blank 50

22-24 Treated cells II 3xl0"8M
25-27 Treated cells II 10"7M
28-30 Treated cells II 3X10"7M
31-33 Treated cells II 10"6M

34-36 Treated cells II 3x10"6M

Cells (450 pi) which were resuspended in PBS containing Ca2+ and Mg2+, 2.5 mg/ml
cytochrome C and 5 pg/ml cytochalasin B were treated with PBS or inhibitor
immediately prior to addition to tubes containing 50 pi offMLP (3-300 nM) and
incubatedfor 10 minutes at 37°C. In the case ofL-NMMA, L- canavanine and DPG,
the cells were preincubated for 10-45 minutes, as appropriate, prior to addition to
the tubes containing 50 pi offMLP. The reaction was terminated by immersing the
tubes in ice for 5 minutes and the samples were centrifuged at 300 xg, at 4°C.
Samples (200 pi) from each tube were dispensed into 96 well plate and the
absorbance at 550 nm was measured.

2.4.4 Measurement of guanosine 3' 5'-cycIic monophosphate (cyclic

GMP)
In this study, radioimmunoassay (RIA) technique which was adapted from the
method of Steiner and collaborators (Steiner et al., 1972) and already set up for
measurement of cyclic AMP in our laboratory (Armstrong & Talpain, 1994) was

adapted for measurement of cyclic GMP production from neutrophils. The assay

was based on competition of unlabelled cyclic GMP with a fixed quantity of labelled

cyclic GMP for the same binding sites on the specific antibody (primary antibody).
Incubation of unlabelled cyclic GMP, labelled cyclic GMP and primary antibody
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allowed an equlibrium reaction to occur. The resulting solution then contained two

more substances, the complex (bound) labelled cyclic GMP as well as the bound
unlabelled. Separation of the bound from the unbound or "free" was achieved by the
double antibody technique, followed by centrifugation. In our laboratory, Donkey
Anti-Rabbit Serum (DARS) and Normal Rabbit Serum (NRS) were used as a second

antibody. The addition of the second antibody to the reaction mixture resulted in the

precipitation of the bound form, with the formation of cyclic GMP-primary antibody
- second antibody complex. This complex was separated from the unbound form,
which was in the supernatant, by centrifugation. After centrifugation, the pellet was
counted in a gamma counter, giving an estimate of bound labelled cyclic GMP. This

assay method measured the bound fraction and so the count obtained was inversely

proportional to the amount of cyclic GMP presented in samples. By studying a

series of standards of known amounts of unlabelled cyclic GMP, an unknown (cyclic
GMP from neutrophils) was measured.

The dilution of primary antibody is often chosen so that the antibody binds

approximately 50% of the labelled antigen. Therefore, before starting the RIA,
dilution curves for the specific antibody were run to determine the optimum
concentration for the RIA. A dilution curve was obtained by measuring the labelled

cyclic GMP (count per minute, cpm) bound to increasing dilutions of the primary

antibody. To get a dilution curve, 50 pi of 50 mM acetate buffer (pH 6.0) was

incubated for 1 hour with 200 pi of 50 mM acetate buffer (pH 6.0) containing

serially diluted primary antibody from 1:100 to 1:50000 and 125I-cyclic GMP (10000

cpm/tube). DARS (50 pi, 1:10 dilution) and NRS (50 pi, 1:100 dilution) were added
to all tubes and incubated overnight to achieve equilibrium binding. The assay tubes
were washed with 6% polyethylene glycol in deionized water (1ml) and then

centrifuged at 1900xg for 30 minutes at 4°C. The supernatant (unbound form) was

aspirated and the residue (bound form) counted using a Gamma Counter. From these
results a 1: 400 dilution of primary antibody which bound about 50% of the total
counts was chosen for this study with the reason of it would produce the most

significant changes in cpm (count per minute) values for a small change in

displacment.
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2.4.4.1 Extraction ofcyclic GMPfrom neutrophils
The set up for extraction of cyclic GMP from neutrophils is summarised in Table 2.2.
Method

1. Neutrophils were isolated from human blood as discussed above in section 2.4.1.

Neutrophils were resuspended to give 5><106 cells per ml in PBS containing 0.25
mM isobutylmethylxanthine (IBMX) (a non selective phosphodiesterase

inhibitor) to block cyclic GMP breakdown by the enzyme phosphodiesterase.

2. 50 pi of 10"6and 3><10"6M fMLP (0.1 and 0.3 pM) or NO donors [GEA 3162 or

GEA 5024 or SIN-1 (10-1000 pM)] or PBS were added to each tube.

3. 450 pi of cells (5x 106 cells per ml) were added to each tube at 10 second
intervals and each tube incubated for 10 minutes at 37°C. The reaction was then

stopped by addition of 1.0 ml ethanol.

4. Five minutes later, the samples were centrifuged at 650xg, 20°C for 20 minutes,
the ethanolic supernatants removed and evaporated to dryness at 55°C. The
residue was dissolved in 0.5 ml 50 mM acetate buffer and centrifuged at 1900xg,

4°C, for 30 minutes to remove insoluble material.
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Table 2.2 Set up for cyclic GMPproduction from neutrophils

Tubes No. Description cells buffer fMLP No-donors
(pi) (pi) (50 pi) (50 pi)

1-2 Control 450 50

3-4 0.1 pM fMLP 10"6M
5-6 0.3 pM fMLP 3xlO"6M
7-8 10 pM GEA 3162 10"4M
9-10 50 pM GEA 3162 5><10"4M
11-12 100 pM GEA 3162 10"3M
13-14 10 pM GEA 5024 10"4M
15-16 50 pM GEA 5024 5X10"4M
17-18 100 pM GEA 5024 10"3M
19-20 10pMSIN-l 10"4M
21-22 50 pM SIN-1 5X10"4M
23-24 100 pM SIN-1 103M
25-26 1000 pM SIN-1 10"2M

50 pi offMLP (10~6 and 3*10~6M) or NO donors: GEA 3162 or GEA 5024 (10~4,
5 * 10 " and 10~3M) or PBS were added to each tube. 450 pi ofcells (5><106 cells/ml)
were added to each tube at 10 second intervals and each tube incubated for 10
minutes at 37°C. The reaction was stopped by addition of 1 ml ethanol. The
samples were then centrifuged at 650*g, 20°C for 20 minutes, the ethanolic
supernatants removed and evaporated to dryness at 55°C. The residue was
dissolved in 0.5 ml 50 mM acetate buffer and centrifuged at 1900xg, 4°C, for 30
minutes. The supernatant was assayedfor cyclic GMP level by RIA.

2.4.4.2 Measurement ofcyclic GMPproduction in neutrophils
The set up for measurement of cyclic GMP by RIA is shown in Table 2.3.

Method.

1. 500 pi aliquots of samples and standards were acetylated with 20 pi of a mixture
of triethylamine/acetic anhydride (2:1), whirlimixed immediately and left for 2-3
minutes to acetylate, prior to the measurement of cyclic GMP by RIA.

2. A cyclic GMP standard curve (0.0625-32 nM) was performed in order to quantify

cyclic GMP concentrations of the samples.
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3. Both samples and standards were measured in duplicate.

4. 12T-Cyclic GMP (about 10 pi) was counted and a volume that would give about
5000 cpm /tube was calculated.

5. Each assay tube contained the following substances: 50 pi of acetylated
unlabelled cyclic GMP (Sigma) (0.0625-32 nM) or acetylated samples to be

measured, 200 pi of 50 mM sodium acetate buffer (pH 6.0) (with 0.1% BSA)

containing primary antibody (1:400 dilution) and guanosine 3',5'-cyclic

phosphoric acid 2'-o' succinyl-3-(125I) iodo tyrosine methyl ester (5000 cpm/tube,

Amersham).

6. The assay tubes were equilibrated at 4°C for 1 hour, then 50 pi of DARS (1:10
dilution in 50 mM phosphate buffer) and 50 pi ofNRS (1 TOO dilution in 50 mM

phosphate buffer) added into all tubes except T/T tube (total count) and the tubes

whirlimixed, then incubated overnight at 4°C.

7. All assay tubes except T/T tube were washed with 1.0 ml 6 % polyethylene

glycol (PEG) in deionized water, whirlimixed and then centrifuged at 1900xg for
30 minutes at 4°C. The supernatant was then aspirated.

8. The residue in all tubes, including T/T tube was counted on a Gamma Counter
for 1 minute. This was pre-programmed to plot a standard curve from the
standards [0.0625-32.0 nM in 50 mM sodium acetate buffer (pH6.0)] and to

calculate a best-fit hyperbola from the points using a "Logit" fit of log x versus y.

An example of a RIA standard curve of cyclic GMP is shown in Figure 2.24.
From this curve the counter also calculated the amount of cyclic GMP (ffnol)

present in each sample. As experiments were carried out in duplicate and

assayed for cyclic GMP in duplicate, the program calculated the mean for four

points and also included the standard error for the four values.
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Table 2.3 Set up for cyclic GMP Radioimmunoassay.

Tube No. Description acetate Standard/Unknown 125I-cGMP/
buffer (50 pi) l°Ab mixture
(Pi) (pi)

1-3 Total bound (0 cGMP) 50 200

4-6 NSB (16000fM) 320 nM cGMP II

7-8 3.125 fMcGMP 0.0625 nM cGMP II

9-10 6.25 fM cGMP 0.125 nM cGMP II

11-12 12.5 fM cGMP 0.25 nM cGMP II

13-14 25 fM cGMP 0.50 nM cGMP II

15-16 50 fM cGMP l.OnMcGMP II

17-18 100 fMcGMP 2.0 nM cGMP II

19-20 200 fM cGMP 4.0 nM cGMP II

21-22 400 fM cGMP 8.0 nM cGMP II

23-24 800 fM cGMP 16.0 nM cGMP II

25-26 1600 fMcGMP 32.0 nM cGMP II

27-28 unknown unknown II

29-30 unknown tl II

unknown II II

T/T Total count II

The assay tubes were equilibrated at 4°C for 1 hour, then 50 pi of DARS (1:10
dilution in 50 mM phosphate buffer) and 50 pi ofNRS (1:100 dilution in 50 mM
phosphate buffer) were added into all tubes except T/T tube (total count) and then
incubated overnight at 4 AS. All assay tubes except T/T tube were washed with 1.0 ml
6% polyethyene glycol and then centrifuged at 1900 xg for 30 minutes at 4°C. The
supernatant was aspirated. The residue in all tubes, including T/T tube, was counted
on a Gamma Counterfor 1 minute.

2.4.5 Nitrate and nitrite production
NO undergoes a series of reactions with several molecules present in biological
fluids. The addition of NO to an aqueous saline environment under physiological
condition of temperature, oxygen tension, and pH results in accumulation of nitrite

(N02") and lesser amounts of nitrate (N03~). To account for the formation of nitrite
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as a primary metabolite ofNO along with smaller amounts of N03~ (Furchgott et al.,

1990), the following reactions have been proposed:
NO + 02" ► 0N02- + H+ > NOf + H+
2NO + 02 > 2 N02 < > N204

N204 + 2 OH" ► NO/ + NO; + H20
NO + N02 ► N203

N203 + 2 OH" ► 2N02" + H20

N02, nitrogen dioxide; N203, dinitrogen trioxides; N204, dinitrogen tetraoxides

The final products of NO in vivo are nitrite (N02 ) and nitrate (N03~). The relative

proportion of N02" and N03" is variable and can not be predicted with certainty.

Thus, the best index of total NO production is the sum ofboth N02" and N03".

2.4.5.1. Total nitrate/nitriteproducton in neutrophils: Effect of the
NO donors andfMLP
There are two ways ofmeasuring the generation of NO quantitatively: the oxidation
of haemoglobin and the formation of N02" and N03". We have used the latter
method. The set up for total nitrate/nitrite production in neutrophils is summarised
in Table 2.4.

Method

1. Neutrophils were isolated from human blood as discussed in section 2.4.1. For
control and sample tubes, cells (1.5><106 cells/ml) were resuspensed in PBS.

2. In the study of the effect of NO donors (GEA 3162, GEA 5024 and SIN-1) on

total nitrate/nitrite production, 450 pi of cells that were treated with these

compounds (1-100 pM) for 10 minutes at 37°C were added to the tubes

containing 50 pi PBS.

3. In the study of the effect of fMLP on total nitrate/nitrite production, 450 pi of
cells that were treated with PBS for 10 minutes at 37°C were added to the tubes

containing 50 pi of 10"7 to 3xl0"6 M of fMLP (0.01-0.3 pM). This was done in
this way to mimic the experimental protocol for 02" generation.
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4. All tubes were incubated for 30 minutes at 37°C. At the end of incubation

period, the reaction was terminated by immersing the tubes in ice for 5 minutes
and the samples were centrifuged at 320xg, at 4°C for 10 minutes to sediment the
cells. Supernatants containing nitrate and nitrite were used for the measurement

of total nitrate/nitrite production.

Table 2.4 Set up for total nitrate/nitrite production from neutrophils: Effect of the
NO donors andfMLP.

Tube No. Description Control/treated cells PBS fMLP
(pi) (Pi) (Pi)

1-3 Control 450 50

4-6 1 pMGEA 3162
7-9 10 pM GEA 3162
10-12 50 pM GEA 3162
13-15 100 pM GEA 3162
16-18 1 pM GEA 5024
19-21 10 pM GEA 5024
22-24 50 pM GEA 5024
25-27 100 pM GEA 5024
28-30 1 pM SIN-1
31-33 10 pM SIN-1 " "
34-36 50 pM SIN-1
37-39 100 pM SIN-1
40-42 Control

43-45 0.01 pM fMLP "
_ 50

46-48 0.03 pM fMLP
49-51 0.1 pM fMLP
52-54 0.3 pM fMLP

Cells (450 pi) that were treated with NO donors or PBSfor 10 minutes at 37°C were
added to the tubes containing 50 pi PBS or 50 pi fMLP (10-300 nM), respectively.
All tubes were incubated for 30 minutes at 37°C and then immersed in ice for 5
minutes to stop the reaction. The samples were centrifuged at 300 *g, at 4°Cfor 10
minutes. Supernatants were used for the measurement of total nitrate/nitrite
production.

62



CHAPTER 2

2.4.5.2 Measurement ofnitrate/nitrite production
Formation ofN02" and N03", the oxygenation products ofNO, can be measured by a

variety of techniques. The simplest is to use reduction of N03" to N02" by nitrate
reductase or metallic catalysts followed by the colorimetric Griess reaction (Davison
et al., 1978; Green et al., 1982; Stuehr et al., 1989) to measure N02". Other methods
measure NOf by chemiluminescence following reconversion to NO (Palmer et al.,

1987; Knowles et al., 1989; Palacios et al., 1989; Bush, et al., 1992) or by h.p.l.c.

techniques with u.v. absorption detection (Stein et al., 1988; Wiklund et al., 1993).
In this study, total N03" and N02" production was measured spectrophotometrically

by using Cayman's Nitrate/Nitrite Assay Kit (Alexis Corporation). The measurement

was a simple two-step process (Figure 2.6).

step 1

step 2 n02

N

N
I

Nitrate reductase

NO3" ►

Nitrate

NH2

+

I
so7nh,

I

so2nh2
Sulfanilamide

[Griess Reagent
Component 1]

hn
I

N-(l-Naphthyl)
ethylenediamine
[Griess Reagent
Component 2]

H

N02"
Nitrite

N
111
+

N
I

I
so,nh,

-nh,
hn

I

y
N
I

I
S02NH2

Azo product
Ariax = 540

Figure 2.6 Diagram ofthe simple two-stepprocess ofthe conversion ofnitrate to
nitrite and the conversion ofnitrite to an azo chromophore.
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The first step was the conversion of nitrate to nitrite utilizing nitrate reductase. The
second step was the addition of the Griess Reagents which convert nitrite into a deep

purple azo compound. Photometric measurement of the absorbance (540 nm) due to

this azo chromophore accurately determined N02" concentration. The measurement

of total nitrate/nitrite is summarised in a simplified flow diagram (Figure 2.7).

Each time the samples were assayed for total nitrate and nitrite production, a nitrate
standard curve was performed in order to quantify sample nitrate/nitrite
concentrations. Both samples and standards were carried out in duplicate.
Method

1. Assay buffer (200 pi) was added to the blank wells. 80 pi of nitrate standards

(5-35 pM) or samples were dispensed into a microtiter plate (96-well plate).

2. The enzyme co-factor mixture (10 pi) was added to each of the wells (standards
and samples).

3. The nitrate reductase mixture (10 pi) was added to each of the wells (standards
and samples). The microtiter plate was covered with the plate cover and
incubated at room temperature for 1 hour.

4. After the required incubation time, 50 pi of Griess Reagent component 1 was

added to each of the wells (standards and samples), followed by the addition of
50 pi of Griess Reagent Component 2 immediately after. The plate was left for
10 minutes at room temperature to allow the colour to develop.

5. The absorbance was read at 540 nM using the plate reader (DYNATECH MR

5000).

6. A nitrate standard curve was constructed and the absorbance of each sample was

calculated back to the concentration of total nitrate/nitrite.
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Figure 2.7 Flow diagram for measurement oftotal nitrate/nitritefrom neutrophils.

2.4.6 Data analysis

2.4.6.1 Data analysis for chemotaxis
EC50 values (concentration of fMLP required to produce 50% of the maximal
chemotactic effect produced by fMLP) were calculated for fMLP in the presence and
absence of inhibitors using the Apple Macintosh programme "KaleidaGraph".
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Kaleidagraph is not a graph-fitting but a graph-drawing programme and so uses the

experimental maximum observed to determine the EC50 value.

Effects of the NO donors, GEA 3162, GEA 5024 and SIN-1, on fMLP-induced

chemotaxis were expressed as the percentage inhibition of the response produced by
a submaximally effective concentration of fMLP (100 nM). The EC50 for GEA 5024
and SIN-1 were expressed relative to the maximum effect achieved with GEA 3162.
From EC50 values, equieffective concentration ratios (EEC) were calculated relative
to the standard inhibitor, GEA 3162 (EEC=1).

\ECsoforB\
EEC for B = ; ~ when [A] = a standard inhibtor

[ECsoforA]

2.4.6.2 Data analysis for superoxide anion generation
The amount of 02" generation (nmole per 106 neutrophils per 10 min) was calculated

using the following equation:

d E 1 . n6
~—, x - x 10
Qxd L

L = 1.5X106 cells per ml (concentration of human neutrophils)
dE = absorbance of samples with fMLP - absorbance of sample without fMLP

Q = coefficient ofmolar extinction 21.1 x 103 per M per cm

d = thickness ofwell = 0.6 cm

Each incubation was carried out in triplicate and the values were averaged.

EC50 values were calculated as above.

2.4.6.3 Data analysis for total nitrate and nitriteproduction
Standard curve y = mx + c

m = slope
c = y-intercept
y = absorbance
x = amount of nitrate and nitrite
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Determination of sample nitrate and nitrite concentrations

[A540 - y - intercept J 200julnitrate + nitrite = : x — — x dilution
slope volume of sample

2.4.7 Statistical analysis
All data are expressed as the mean ± standard error of the mean (s.e. mean), of the

averaged result taken from a minimum of four separate experiments. Differences
were assessed by using Student's two-tailed t test for paired observations. In

addition, data involving multiple comparisons were analysed by ANOVA (two
factors with replication) using Microsoft Excel. A value of P < 0.05 was regarded as

denoting statistically significant differences.

2.5 RESULTS

2.5.1 Neutrophil chemotaxis
2.5.1.1 Effect ofNOS inhibition
When neutrophils were preincubated with the NOS inhibitor, L-NMMA (500 pM)
for 45 minutes at 37°C, significant attenuation (P<0.001, ANOVA) of fMLP-induced

neutrophil chemotaxis occurred (Figure 2.8) (Table 2.5, page 67), giving EC50 for
fMLP of 28.8 ± 5.6; 41.1 ± 4.8 pmol /106cells, n=5 (P>0.05) in the absence and

presence of L-NMMA, respectively. The maximal effect of fMLP was reduced from
1.1 ± 0.1 to 0.7 ± 0.1 n=5 (P<0.05) (Table 2.5). Similarly, L-NMMA at a

concentration of 100 pM induced a significant but less pronounced attenuation of

neutrophil chemotaxis, (data not shown; P<0.05).
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Figure 2.8 Log concentration-effect curve for fMLP induced neutrophil chemotaxis
in control cells and cells treated with 500 pM L-NMMA. Cells were preincubated
with L-NMMA for 45 minutes at 37°C. The values are the mean ± s.e. mean of 5
different donors. Statistically significant differences *P<0.05 and "P<0.01.

Table 2.5 Effects ofan NOS inhibitor, L-NMMA; a NO-scavenger, carboxy-PTIO;
an inhibitor ofguanylyl cyclase, LY 83583 on fMLP-induced human neutrophil
chemotaxis.

Drug Number EC50 for IMLP Maximal effect

(n) (pmol/106 cells)

Control 5 28.8 ±5.6 1.1 ±0.1
L-NMMA (500 (J.M) 5 41.1 ±4.8 0.7 ±0.1*

Control
D

5 19.7 ±4.2 1.4 ± 0.1

Carboxy-PTIO (100 pM) 5 31.7 ±8.5 1.0 ±0.04*

Control
J

5 19.1 ±4.3 1.1 ±0.2
LY 83583 (10 pM) 5 47.0 ±7.5* 0.9 ±0.2
Control 5 32.5 ±11.2 1.7 ±0.01
LY 83583 (100 pM) 5 85.2 ± 10.4* 0.3 ±0.1***

Data expressed as EC50forfMLP-induced neutrophil chemotaxis. The values are the
mean ± s.e. mean of 5 different donors for each group. Statistically significant
differences *P<0.05 and *'*P< 0.005.

Control

L-NMMA
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2.5.1.2 Effect ofa NO scavenger

Carboxy-PTIO, a NO scavenger, at a concentration of 100 pM caused slight
attenuation (P<0.05, ANOVA) of fMLP-induced neutrophil chemotaxis (Figure 2.9),

giving EC50 for fMLP of 19.7 ± 4.2; 31.7 ± 8.5 pmol /106cells, n=5 (n>0.05) (Table

2.5, page 67) in the absence and presence of Carboxy-PTIO, respectively. However,
this concentration of Carboxy-PTIO caused a significant reduction in the maximal
effect of fMLP from 1.4 ± 0.1 to 1.0 ± 0.04, n = 5 (P<0.05) (Table 2.5).

Figure 2.9 Log concentration effect-curve forfMLP induced neutrophil chemotaxis
in control cells and cells treated with 100 pM Carboxy-PTIO. The values are the
mean ± s.e. mean of5 different donors. Statistically significant difference *P<0.05.

2.5.1.3 Effect ofguanylyl cyclase inhibition
LY 83583, an inhibitor of guanylyl cyclase, at a concentration of 10 pM caused a

significant attenuation (P<0.01, ANOVA) of fMLP-induced neutrophil chemotaxis

(Figure 2.10a), giving EC50 for fMLP of 19.1 ± 4.3; 47.0 ± 7.5 pmol/106 cells, n=5
(P<0.05) (Table 2.5, page 67) in the absence and presence of LY-83583,

respectively. This concentration of LY 83583 caused no significant reduction in the
maximal effect of fMLP.

LY 83583 at a concentration of 100 pM caused a highly significant attenuation

(P0.001, ANOVA) of fMLP-induced neutrophil chemotaxis (Figure 2.10b), giving
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EC50 for fMLP of 32.5 ±11.2; 85.2 ± 10.4 pmol/106 cells, n=5 (P<0.05) (Table 2.5)

in the absence and presence of LY-83583, respectively. LY 83583 at a concentration
of 100 pM caused a significant reduction in the maximal effect of fMLP from 1.7 ±

0.01 to 0.3 ± 0.1, n = 5 (P<0.005) (Table 2.5).
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Figure 2.10 Log concentration-effect curve forfMLP induced neutrophil chemotaxis
in control cells and cells treated with LY 83583 (a) 10 pM and (b) 100 pM. The
values are the mean ± s.e. mean of 5 different donors. Statistically significant
differences **P<0.01 and *"P<0.005.
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2.5.1.4 Effect ofG-kinase inhibition
KT 5823, a specific inhibitor of G-kinase, at a concentration of 1 pM had no

significant inhibitory effect (P>0.05, ANOVA) on fMLP-induced neutrophil
chemotaxis (Figure 2.11a), giving EC50 for fMLP of 19.1 ± 4.3; 35.5 ± 13.5

pmol/106cells, n = 5 (P>0.05) (Table 2.6, page 74) in its absence and presence,

respectively. However, at a concentration of 10 pM, KT 5823 completely inhibited

(P<0.001, ANOVA) fMLP-induced neutrophil chemotaxis (Figure 2.11b), giving

EC50 for fMLP of 32.2 ± 11.4; > 135 pmol/106cells, n = 5 (P< 0.005) (Table 2.6) in
the absence and presence ofKT 5823, respectively.

Rp-8-pCPT-cGMPS, another inhibitor of cyclic GMP-dependent protein kinase Gla
both at concentrations of 10 pM and 100 pM had no significant inhibitory (P>0.05,

ANOVA) effect on fMLP-induced neutrophil chemotaxis (Figures 2.12a & 2.12b),

giving EC50 for fMLP of 19.1 ± 4.3; 32.7 ± 14.8, n = 5 (P>0.05) and 32.2 ± 11.4;
21.7 ± 4.2 pmol/106cells, n = 5 (P>0.05) (Table 2.6) in its absence and presence at

the two concentrations, respectively.

2.5.1.5 Effect ofphosphatase inhibition
DPG, an inhibitor of inositol polyphosphate-5-phosphatase, at a concentration of 10

pM caused significant attenuation (P<0.001, ANOVA) of fMLP-induced neutrophil
chemotaxis (Figure 2.13a), giving EC50 for fMLP of 26.0 ± 4.3; 33.4 ± 4.0

pmol/106cells, n = 4 (P>0.05) (Table 2.6, page 74) in its absence and presence,

respectively. The maximal effect of fMLP was reduced by 10 pM DPG from 1.4 ±
0.1 to 0.9 ± 0.1, n = 4 (P<0.05) (Table 2.6).

DPG at a concentration of 100 pM caused significant attenuation (P0.001,

ANOVA) of fMLP-induced neutrophil chemotaxis (Figure 2.13b), giving EC50 for
fMLP of 19.2 ± 4.4; 61.5 ± 16.2 pmol/106cells, n = 4 (P>0.05) (Table 2.6) in its
absence and presence, respectively. The maximal effect of fMLP was reduced by
100 pM DPG from 1.4 ± 0.1 to 0.7 ± 0.1, n = 4 (P<0.05) (Table 2.6), respectively.
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Figure 2.11 Log concentration-effect curve forfMLP induced neutrophil chemotaxis
in control cells and cells treated with KT 5823 (a) 1 pM and (b) 10 pM. The values
are the mean ± s.e. mean of 4 different donors. Statistically significant differences
"P<0.01 and"*P<0.005.
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Figure 2.12 Log concentration-effect curve forfMLP induced neutrophil chemotaxis
in control cells and cells treated with Rp-8-pCPT-cGMPS (a) 10 juM and (b) 100
pM. The values are the mean ± s.e. mean of5 different donors.
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Figure 2.13 Log concentration-effect curve forfMLP induced neutrophil chemotaxis
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"P<0.05.
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Table 2.6 Effects of inhibitors ofG-kinase, KT 5823 and Rp-8-pCPT-cGMPs and a
phosphatase inhibitor, DPG on fMLP-induced human neutrophil chemotaxis.

Drug number EC50 for fMLP Maximal effect
(n) (pmol/106 cells)

Control 5 19.1 ±4.3 1.1 ±0.2
KT 5823 (1 pM) 5 35.5 ± 13.5 1.1 ±0.2
Control 5 32.2 ± 11.4 1.6 ±0.0
KT 5823 (10 pM) 5 , _ _***

>135 0.0

Control 5 19.1+4.3 1.1 ±0.2

Rp-8-pCPT-cGMPs (10 pM) 5 32.7 ± 14.8 1.2 ±0.1
Control 5 32.2+11.4 1.3 ±0.3

Rp-8-pCPT-cGMPs (100 pM) 5 21.7 ± 4.2 0.9 ±0.2

Control 4 26.0 ±4.3 1.4 ± 0.1

DPG (10 pM) 4 33.4 ±4.0 0.9 ±0.1
Control 4 19.2 ±4.4 1.4 ±0.1

DPG (100 pM) 4 61.5 ± 16.2 0.7 ±0.1

Data expressed as EC50forfMLP-induced neutrophil chemotaxis. The values are the
mean ± s.e. mean of 4-5 different donors for each group. Statistically significant
differences *P<0.05 and "P< 0.005.

2.5.2 Neutrophil superoxide anion generation
2.5.2.1 Effect ofNOS inhibition
When neutrophils were preincubated with L-NMMA at a concentration of 100 pM
for 45 minutes at 37°C, L-NMMA caused no significant inhibition (P>0.05,

ANOVA) of fMLP-induced 02~ generation in human neutrophils (Figure 2.14),

giving EC50 for fMLP of 54.2 ± 11.5; 57.1 ± 10.9 nM, n = 6 (P>0.05) (Table 2.7,

page 75) in its absence and presence, respectively. Even when the concentration of
L-NMMA was increased to 500 pM, no significant inhibition of fMLP-induced 02"

generation was observed (Figure 2.14), giving EC50 for fMLP of 54.2 ± 11.5; 61.4 ±

12.9 nM, in its absence and presence, respectively n = 6 (P>0.05) (Table 2.7).
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Figure 2.14 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with L-NMMA (100 pM and 500 pM).
Cells were preincubated with L-NMMA for 45 minutes at 37°C. The values are the
mean ± s.e. mean of6 different donors.

Table 2.7 Effects of an NOS inhibitor, L-NMMA and L-canavanine; an
NO-scavenger, carboxy-PTIO on fMLP-induced superoxide anion generation in
human neutrophil.

Drug number ECS0 for fMLP Maximal effect

(n) nmol/106 cells/10 min

Control 6 54.2 ± 11.5 26.2 ± 1.0

L-NMMA (100 |uM) 6 57.1 ± 10.9 25.1 ±0.9

L-NMMA (500 juM) 6 61.4 ± 12.9 24.6 ± 1.3

Control 5 36.8 ±7.9 22.9 ±0.7

L-Canavanine (100 |aM) 5 32.9 ±5.4 25.5 ± 1.3

L-Canavanine (500 (aM) 5 33.6 ±8.3 24.1 ± 1.6

Control 6 36.2 ±7.4 22.1 ± 1.5

Carboxy-PTIO (100 |aM) 6 86.3 ± 14.1* 9.8 ± 1.6***

Data are expressed as EC50 for fMLP-induced superoxide anion generation
(nmol/106 cells/10 min). The values are the mean ±s.e. mean of4-6 different donors
for each group. Statistically significant differences "P<0.05 and ***P< 0.005.
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Similarly, L-Canavanine at concentrations of 100 pM and 500 |rM caused no

significant inhibition (both P>0.05, ANOVA) of fMLP-induced Of generation in
human neutrophils (Figure 2.15), giving EC50 for fMLP of 36.8 ± 7.9; 32.9 ± 5.4, n
=5 (P>0.05) and 36.8 ± 7.9; 33.60 ± 8.3 nM, n = 5 (P>0.05) (Table 2.7) in its absence
and presence at the two concentrations, respectively.
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Figure 2.15 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with L-canavanine (100 pM and 500
pM). Cells were preincubated with L-canavaninefor 45 minutes at 37°C. The values
are the mean ± s.e. mean of5 different donors.

2.5.2.2 Effect ofa NO scavenger

Carboxy-PTIO, a NO scavenger, at a concentration of 100 pM caused significant
attenuation (P<0.05, ANOVA) of fMLP-induced 02~ generation in human neutrophils

(Figure 2.16), giving EC50 for fMLP of 36.2 ± 7.4; 86.3 ± 14.1 nM, n=6 (P<0.05)

(Table 2.7) in its absence and presence, respectively. The maximal effect of fMLP
was significantly reduced from 22.1 ± 1.5 to 9.8 ±1.6 nmol Of/106 cells/10 minutes
at 300 nM (P<0.005) (Table 2.7).
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Figure 2.16 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with carboxy-PTIO (100 pM). The
values are the mean ± s.e. mean of 6 different donors. Statistically significant
differences *P<0.05 and ""P<0.005.

2.5.2.3 Effect ofguanylyl cyclase inhibition
LY 83583, an inhibitor of guanylyl cyclase, at a concentration of 10 pM caused no

significant inhibition of fMLP-induced 02" generation in human neutrophils (Figure

2.17a), giving EC50 for fMLP of 23.8 ± 1.8; 19.0 ± 4.5 nM, n = 4 (P>0.05) (Table

2.8, page 79) in its absence and presence, respectively. Even at the concentration of
100 pM, LY 83583 caused no significant inhibition of fMLP-induced 02" generation
in human neutrophils (Figure 2.17b), giving EC50 for fMLP of 26.3 ± 1.4; 13.7 ± 3.3

nM, n=4 (P>0.05) (Table 2.8) in its absence and presence, respectively. However, a

significant enhancement in fMLP-induced 02" generation at the low concentrations of
fMLP tested (3-10 nM) was observed with 100 pM LY 83583 (P<0.05).
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Figure 2.17 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with LY 83583 (a) 10 pM and (b)
100 pM. The values are the mean ± s.e. mean of 4 different donors. Statistically
significant difference *P<0.05.

2.5.2.4 Effect ofG-kinase inhibition
KT 5823, a specific inhibitor of G-Kinase, at a concentration of 1 pM caused

significant inhibition (PO.OOOl, ANOVA) of fMLP-induced 02" generation in
human neutrophils (Figure 2.18a), giving EC50 for fMLP of 34.3 ± 8.9; 52.6 ± 4.9

nM, n = 5 (P=0.05) (Table 2.8) in its absence and presence, respectively. The
maximal effect of fMLP 300 nM was significantly reduced by 1 pM KT 5823 from

22.2 ± 0.7 to 12.2 ±1.4 nmol O2 /106 cells/10 minutes, n = 5, (P<0.005) (Table 2.8).
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KT 5823 at a concentration of 10 pM caused significant inhibition (P0.0001,

ANOVA) of fMLP-induced Of generation in human neutrophils (Figure 2.18b),

giving EC50 for fMLP of 36.3 ± 8.8; and > 300 nM, n = 5 (P<0.05) (Table 2.8) in its
absence and presence, respectively. The maximal effect of fMLP 300 nM was

significantly reduced by 10 pM KT 5823 from 28.6 ± 4.2 to 6.6 ± 2.1 nmol Of/106
cells/10 minutes, n = 5 (P0.001) (Table 2.8).

Rp-8-pCPT-cGMPS (100 pM), a moderately potent inhibitor of cGMP-dependent

protein kinase Gla caused no significant inhibition (P=0.058, ANOVA) of
fMLP-induced Of generation in human neutrophils (Figure 2.19), giving EC50 for
fMLP of 28.4 ± 10.8; 49.3 ± 16.8 nM, n = 4 (P>0.05) (Table 2.8) in its absence and

presence, respectively.

Table 2.8 Effects of an inhibitor of guanylyl cyclase, LY 83583 and inhibitors of
G-kinase, KT 5823 and Rp-8-pCPT-cGMPs on fMLP-induced superoxide anion
generation in human neutrophil.

Drug number EC50 for fMLP Maximal effect
(n) nmol/106 cells/10 min

Control 4 23.8 ± 1.8 24.3 ±2.6
LY 83583 (10 pM) 4 19.0 ±4.5 24.3 ±3.7
Control 4 26.3 ± 1.4 23.5 ±2.5
LY 83583 (100 pM) 4 13.7 ±3.3 25.3 ±3.2

Control 5 34.3 ± 8.9 22.2 ± 0.7
KT 5823 (1 pM) 5 52.6 ±4.9* . _ . . ***

12.2 ± 1.4
Control 5 36.3 ±8.8 28.6 ±4.2
KT 5823(10 pM) 5 >300* 6.6 ±2.1***

Control 4 28.4 ± 10.8 28.3 ±0.9

Rp-8-pCPT-cGMPs (100 pM) 4 49.3 ± 16.8 27.3 ±4.5

Data are expressed as EC50 for fMLP-induced superoxide anion generation
(nmol/106 cells/10 min). The values are the mean ±s.e. mean of4-5 different donors
for each group. Statistically significant differences *P<0.05 and ***P< 0.005.
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Figure 2.18 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with KT 5823 (a) lpM and (b) 10 juM.
The values are the mean ± s.e. mean of 5 different donors. Statistically significant
differences *P<0.05 and *"P<0.005.
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Figure 2.19 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with Rp-8-pCPT-cGMPS (100 pM). The
values are the mean ± s.e. mean of 4 different donors. Statistically significant
difference *P<0.05.

2.5.2.5 Effect ofphosphatase inhibition
DPG, an inhibitor of inositol polyphosphate-5-phosphatase, at a concentration of 100

pM caused no significant inhibition of fMLP-induced 02~ generation in human

neutrophils (Figure 2.20a), giving EC50 for fMLP of 36.2 ±9.1; 44.6 ± 8.9 nM, n = 4

(P> 0.05) (Table 2.9, page 84) was obtained in its absence and presence, respectively.
DPG at concentration of 100 pM caused no significantly reduction in the maximal
effects of fMLP, 25.6 ± 1.8 to 24.2 ± 2.2 nmol O2"/106 cells/10 minutes, n = 4

(P>0.05).

DPG at a concentration of 500 pM caused significant inhibition (P<0.005, ANOVA)
of fMLP-induced Of generation in human neutrophils (Figure 2.20b), giving EC50
for fMLP of 33.9 ± 4.2; 61.1 ± 14.4 nM, n =4 (P>0.05) (Table 2.9) in its absence and

presence, respectively. This concentration of DPG significantly reduced the
maximal effect of fMLP from 26.2 ± 2.7 to 20.6 ± 3.0 nmol O2V106 cells/10 minutes,
n = 4 (P<0.05).
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Figure 2.20 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with DPG (a) 100 pM and (b) 500 pM.
The values are the mean ± s.e. mean of 4 different donors. Statistically significant
difference *P<0.05.

In contrast, when neutrophils were preincubated with 100 pM and 500 pM DPG for
10 minutes at 37°C, neither concentration of DPG caused a significant effect on
fMLP-induced Of generation in human neutrophils (Figure 2.21a), giving EC50 for
fMLP of 27.3 ±6.1; 27.0 ± 6.3 nM, n = 4 (P>0.05) and 27.3 ±6.1; 46.1 ± 23.1 nM, n
= 4 (P>0.05) (Table 2.9, page 84) in its absence and presence at the two

concentrations, respectively.
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In addition, no significant effect on fMLP-induced 02~ generation in human

neutrophils was observed when neutrophils were preincubated with 100 pM and 500

pM for 20 minutes at 37°C (Figure.2.2lb), giving EC50 for fMLP of 27.0 ± 2.3; 30.2
± 10.0 nM, n = 4 (P>0.05) and 27.0 ± 2.3; 26.9 ± 9.5 nM, n = 4 (P>0.05) (Table 2.9)
in its absence and presence at the two concentrations, respectively.
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Figure 2.21 Log concentration-effect curve for fMLP induced superoxide anion
generation in control cells and cells treated with DPG (100 juM and 500 pM). Unlike
Figure 2.20, these cells were preincubated with DPG at 37°Cfor (a)10 minutes and
(b) 20 minutes. The values are the mean ± s.e. mean of4 different donors.
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Table 2.9 Effect ofDPG on fMLP-induced superoxide anion generation in human
neutrophils.

Drug incubation number EC50 for fMLP Maximal effect

(min) (n) nmol/106 cells/10 min

Control 4 36.2 + 9.1 25.6 ± 1.8
DPG (100 pM) - 4 44.6 + 8.9 24.2 ± 2.2
Control - 4 33.9 + 4.2 26.2 ±2.7
DPG (500 pM) - 4 61.1 ± 14.4 20.6 ±3.0*

Control 10 4 27.3 + 6.1 26.1 ±2.6
DPG (100 pM) 10 4 27.0 ±6.3 27.4 ±3.8
DPG (500 pM) 10 4 46.1 +23.1 25.9 ±3.8

Control 20 4 27.0 ±2.3 26.9 ±2.5
DPG (100 pM) 20 4 30.2 ± 10.0 30.3 ± 1.8
DPG (500 pM) 20 26.9 ±9.5 27.5 ±2.3

Cells were preincubated with DPG at 37 'G for 0, 10 and 20 minutes. Data are
expressed as ECS0for fMLP-induced superoxide anion generation (nmol/106 cells/10
min) in neutrophils . The values are the mean ±s.e. mean of4 different donors for each
group. Statistically significant differences *P<0.05.

2.5.3 Effects of the NO donors

2.5.3.1 Effect ofthe NO donors on neutrophil chemotaxis
fMLP at a concentration of 1 pM induced a submaximal migration of neutrophils.
When neutrophils were preincubated with NO donors, GEA 3162 and GEA 5024, for
10 minutes at 37°C, these two compounds (1-100 pM) caused a concentration-related
inhibition of fMLP-induced neutrophil chemotaxis (Figure 2.22), producing

complete inhibition at a concentration of 100 pM. IC50 for GEA 3162 was 14.71 ±

1.6 pM, n = 5 and for GEA 5024 was 18.44 ± 0.43 pM, n = 5. When neutrophils
were preincubated with GEA 3162 and SIN-1 for 10 minutes at 37°C, SIN-1 was

found to be a significantly (P<0.05, ANOVA) less potent inhibitor of fMLP-induced

neutrophil chemotaxis than GEA 3162. SIN-1 at concentration of 1000 pM induced
a maximum inhibition of 24.99 ± 7.64%, n=8 (Figure 2.23). If the maximal effect of

85



CHAPTER 2

GEA 3162 at 100 gM was taken to be 100% inhibition, the IC50 for SIN-1 was >

1000 gM (n=8), giving an EEC > 68.0.

□ GEA 3162

Drug concentration (pM )

Figure 2.22 Log concentration-effect curve for inhibition offMLP (1 jiM) induced
neutrophil chemotaxis, observed with GEA 3162 and GEA 5024. Cells were
preincubated with GEA 3162 and GEA 5024 for 10 minutes at 37°C, before being
added to the chemotaxis chamber. The values are the mean ± s.e. mean of5 different
donors.

—□— GEA 3162

Drug concentration (fiM )

Figure 2.23 Log concentration-effect curve for inhibition offMLP (1 juM) induced
neutrophil chemotaxis, observed with GEA 3162 and SIN-1. Cells were preincubated
with GEA 3162 and SIN-1 for 10 minutes at 37°C, before being added to the
chemotaxis chamber. The values are the mean ± s.e. mean of8 different donors.
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2.5.3.2 Effect of the NO donors and fMLP on neutrophil cyclic GMP
levels

An example of a RIA standard curve of cyclic GMP is shown in Figure 2.24.
Incubation of neutrophils with the NO donors, GEA 3162 (1-100 pM), GEA 5024

(1-100 pM) and SIN-1 (1-1000 pM) for 10 minutes at 37°C induced

concentration-dependent and significant increases in cyclic GMP production (P<

0.05, P<0.01 and P<0.005 as shown in Table 2.10). SIN-1 was considerably less

potent than the GEA compounds at increasing cyclic GMP production. fMLP

(0.1-0.3 pM) also induced concentration-dependent and significant increases in

cyclic GMP production in human neutrophils when neutrophils were incubated with
fMLP for 10 minutes at 37°C (P<0.05). However, all NO donors were found to be
more potent than fMLP at increasing cyclic GMP production in human neutrophils

(Table 2.10).
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Figure 2.24 An example ofan RIA standard curve ofcyclic GMP, n=l.
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Table 2.10 The effects ofNO-donors (GEA 3162, GEA 5024 and SIN-l) and fMLP
on cyclic GMP levels in human neutrophils.

Drug concentration Cyclic GMP levels (pmol/106 cells)
(pM) GEA 3162 GEA 5024 SIN-l fMLP

0.0 0.10 ±0.02 0.1 ±0.01 0.09 ±0.01 0.09 ±0.01

0.1 - - - 0.18 ±0.03*
0.3 - - - 0.22 ±0.05*
10.0 0.87 ±0.15** 0.59 ± 0.11* 0.25 ±0.01* -

50.0 1.13 ±0.23** 0.73 ±0.14* 0.29 ±0.01* -

100.0 1.32 ±0.24** 0.85 ±0.18* 0.40 ±0.02* -

1000.0 - " 0.53 ±0.01** -

Data are expressed as mean ± s.e. mean of5 different donors, significant increase in
cyclic GMP above basal values, *P<0.05, "P<0.01.

2.5.3.3 Effect ofthe NO donors andfMLP on total nitrate and nitrite

production
An example of a nitrate standard curve is shown in Figure 2.25. Incubation of

neutrophils with the NO donors, GEA 3162, GEA 5024 and SIN-l (1-100 pM) for
30 minutes at 37°C induced concentration-related increases in total nitrate/nitrite

production (Table 2.11). GEA 3162 significantly increased total nitrate/nitrite
concentration at all concentrations tested (P<0.005, except at 10 pM P<0.05). GEA
5024 and SIN-l at 10-100 pM significantly increased total nitrate/nitrite
concentration (P<0.005). Both GEA 3162 and GEA 5024 were less potent than
SIN-l at increasing total nitrate and nitrite production. With GEA 3162 as the
standard agonist (EC50 = 39.70 ± 0.53 pM), apparent EC50 values calculated for
SIN-l and GEA 5024 were 37.62 ± 0.9 (n=4; EEC of 0.95) and 89.86 ± 1.62 pM

(n=4; EEC of 2.26), respectively. fMLP at concentrations of 10-300 nM caused no

significant increase in the total nitrate/nitrite levels.
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Figure 2.25 An example ofa nitrate standard curve, y is absorbance at 540 nM, x is
nitrate concentration.

Table 2.11 The effects ofNO-donors (GEA 3162, GEA 5024 and SIN-l) and fMLP
on total nitrate/nitriteproduction in human neutrophils.

Drug concentration Total nitrate and nitrite (junoI/lO6 cells)
OiM) fMLP GEA 3162 GEA 5024 SIN-l

0.0 4.1 ±3.3 4.1 ±3.3 4.1 ±3.3 4.1 ±3.3

0.1 4.1 ±2.3 - - -

0.3 4.8 ±2.3 - - -

1.0 - 11.3 ±4.8 4.8 ±0.0 9.4 ±4.6

10.0 - 71.8 ±3.6 30.5 ± 0.6*** 55.4 ± 1.6*
50.0 - 282.2 ±5.5 145.0 ± 1.4*** 305.2 ± 5.1#

100.0 _ 458.0 ±3.6 251.4 ± 1.6*** 552.0 ± 14.7##

Data are expressed as mean ± s.e. mean of 4 different donors. * Significantly less
nitrate/nitrite productuion than the equivalent concentration of GEA 3162,
*P<0.05, "*P<0.005. # Significantly more nitrate/nitrite production than the
equivalent concentration ofGEA 3162, #P<0.05, ##P<0.01. GEA 3162 significantly
increased nitrate/nitrite levels at all concentrations tested.
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2.6 DISCUSSION

In the neutrophil, several second messenger/signal transduction systems can become

activated, and these may be involved in the regulation of a variety of neutrophil
effector functions. It has been shown that fMLP induced chemotaxis in human

neutrophils results from a rise in cyclic GMP levels subsequent to the production of
NO (Kaplan et al., 1989; Belenky et al., 1993). Such a role for NO has been

supported by the results of this study where an inhibitor of NO synthase, L-NMMA
and the NO scavenger Carboxy-PTIO were used.

L-NMMA is a competitive inhibitor (competes with L-arginine) of all the NO

synthases, Kj 1 pM (Schmidt et al., 1991; Stuehr et al., 1991; Pollock et al., 1991;

Stuehr & Griffith, 1992), this inhibition is enantiomer-specific. L-NMMA inhibits
NOS by uncoupling NADPH from catalytic activity without influencing the
reduction of the heme iron oxidation from catalytic activity. Inhibition of NO

synthase with L-NMMA was found to inhibit fMLP-induced human neutrophil
chemotaxis (Figure 2.8).

The NO scavenger Carboxy-PTIO (Akaike et al., 1993), an imidazolineoxyl N-oxide
derivative which is a stable radical compound, was found to antagonize NO produced
in biological systems via a unique mechanism involving a radical-radical reaction in
a completely stoichiometric manner in a neutral solution (sodium phosphate buffer,

pH 7.4), followed by generation of N02"/N03" and imidazolineoxyls

Carboxymethoxy-PTI (Akaike et al., 1993). The result from the current study shows
that chemical antagonism of NO with Carboxy-PTIO was found to inhibit
fMLP-induced neutrophil chemotaxis (Figure 2.9).

However it must be noted that high concentrations of both of L-NMMA and

Carboxy-PTIO have been used (500 and 100 pM, respectively). This suggests that
NO represents only one of the pathways by which chemotaxis is induced, as

complete blockage ofNO only partially blocks the chemotactic response of fMLP.
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It has been reported that G-kinase plays a physiological role in human neutrophils
and the concept of compartmentalisation of cyclic nucleotides during neutrophil
activation was suggested (Pryzwansky et al., 1990). Cyclic GMP and G-kinase were

demonstrated to regulate neutrophil activation in response to fMLP or A-23187

(Pryzwansky et al., 1990; Wyatt et al., 1990). A subsequent study by Wyatt et al.

(1991) demonstrated that after activation by fMLP, G-kinase transiently co-localises
with the intermediate filament subunit protein vimentin, resulting in the

phosphorylation of vimentin by G-kinase. The transient redistribution of G-kinase

may regulate neutrophil activation.

LY 83583, a quinolinedione compound, which is an inhibitor of guanylyl cyclase
was used in this study to confirm the role of cyclic GMP and G-kinase in neutrophil
chemotaxis. LY 83583 inhibits the activation of guanylyl cyclase in many cell types

including macrophages (Naef et al., 1984; Mulsch et al., 1988) and effectively
lowers intracellular cyclic GMP levels in a wide variety of cell types (Diamond &

Chu, 1985; Schmidt et al., 1985; O'Donnell & Owen, 1986). Although its
mechanism of action in the reduction of cyclic GMP is not clear in all cases,

LY-83583 has been reported to inhibit the release of NO in endothelial cells and
inhibit the activation of soluble guanylyl cyclase in smooth muscle cells (Naef et al.,

1984). LY 83583 has been shown to inhibit the fMLP-stimulated increase in

neutrophil cyclic GMP levels resulting in inhibition of vimentin and G-kinase
co-localisation and subsequent phosphorylation of vimentin by G-kinase (Wyatt et

al., 1993). Whether LY-83583 acts on guanylyl cyclase itselfor works through some

other mechanism such as affecting the availability of ATP is not clear. In addition, it
was demonstrated that LY 83583 can stimulate 02~ production (Barbier & Lefebvre,

1992) and the stimulation of soluble guanylyl cyclase by NO mechanisms can be
attenuated by extracellular and intracellular 02" (Cherry et al., 1990; Furchgott et al.,

1990; Omar & Wolin, 1992), thus these effects of LY 83583 may be one of the
mechanisms by which LY 83583 causes inhibition of fMLP-induced neutrophil
chemotaxis. In this study, we found that LY 83583 significantly attenuated
fMLP-induced neutrophil chemotaxis (Figures 2.9a & 2.9b), thus confirming that
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vimentin and G-kinase co-localisation and phosphorylation of vimentin by G-kinase
are involved in fMLP-induced neutrophil chemotaxis.

Two inhibitors ofG-kinase were used to substantiate such a role for cyclic GMP, KT
5823 (Kase et al., 1987; Jin et al., 1993) and Rp-8-pCPT-cGMPS (Butt et al., 1994).
At a concentration of 10 pM KT 5823 completely inhibited fMLP-induced

neutrophil chemotaxis (Figure 2.10b). The inhibition of neutrophil chemotaxis
observed with both LY 83583 (100 pM) and KT 5823 (10 pM) was greater than
would be expected if the rise in cyclic GMP resulted only from NO. This suggests

either that fMLP can increase cyclic GMP levels independently of NO or that LY
83583 and KT 5823 at the concentrations used are not acting as selective inhibitors
of guanylyl cyclase and G-kinase, respectively.

Rp-8-pCPT-cGMPS (10 and 100 pM) failed to block fMLP-induced neutrophil
chemotaxis suggesting that the G-kinase activated in neutrophil chemotaxis is not

type Gla. The inability of Rp-8-pCPT-cGMPS to block neutrophil chemotaxis is

unlikely to result from too low a concentration being used as a significant effect was
observed with Rp-8-pCPT-cGMPS (100 pM) on neutrophil superoxide anion

generation (Figure 2.18).

It has been reported that more than 90% of the diglyceride formed in neutrophils in

response to fMLP occurs through the activation of phospholipase D

(PLD)/phosphatidic acid (PA) phosphohydrolase (Billah et al., 1989). PLD catalyses
the cleavage of the terminal phosphodiester bond of phosphatidylcholine to yield PA
and an inactive choline molecule, and fMLP stimulation of a

phosphatidylcholine-specific PLD activity is a well-documented response in

neutrophils (Cockcroft et al., 1984). PA is converted to DAG by phosphatidate

phosphohydrolase (Billah et al., 1989), and this results in a second, often more

sustained phase of DAG generation than that resulting from the activation of PLC

(Billah et al., 1989; Truett et al., 1988). The receptor-linked PLD can be regulated

by a variety ofmechanisms involving Ca2+ mobilisation (Olson et al., 1991; Kessels
et al., 1991b), GTP-binding proteins (Van Der Meulen & Haslam, 1990), tyrosine
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kinases (Uings et al., 1992), PKC (Billah et al., 1989b), and possibly cyclic

AMP-dependent protein kinase (Agwu et al., 1991a; Kessels et al., 1991a).

In the present study, a phosphatase inhibitor, DPG was used to examine whether
PLD plays a role in neutrophil chemotaxis. DPG is an inhibitor of inositol

polyphosphate-5-phosphatase (Van Lookeren Campagne et al., 1988; Rubiera et al.,

1988), as it possesses a pair of vicinal phosphate groups on a glycerol backbone.
This structure shows some similarity to that of PA. DPG was found to significantly
attenuate fMLP-induced neutrophil chemotaxis (Figures 2.12a & 2.12b) suggesting
that activation ofPLD is a major signal in neutrophil chemotaxis.

However the roles of NO and cyclic GMP are less clear in fMLP-induced 02"

generation by human neutrophils and thus were investigated in this study. The
effects of two NOS inhibitors, L-NMMA and L-canavanine on fMLP-induced 02"

generation by human neutrophils were investigated. L-canavanine is a structural

analogue of L arginine. It was demonstrated that L-canavanine inhibits the inducible

macrophage NO synthase more potently than the constitutive brain and endothelial
NO synthases (Knowles et al., 1989; Stuehr & Griffith, 1992; Vallance et al., 1992).
The results from the current study showed that neither L-NMMA (Figure 2.14) nor
L-canavanine (Figure 2.14) inhibited fMLP-induced 02~ generation even when used
at the concentration (500 pM) required to inhibit neutrophil chemotaxis. However
the NO scavenger carboxy-PTIO (100 pM) significantly inhibited fMLP-induced 02"

generation (Figure 2.15). The reason for this discrepancy is not clear, but these
results suggest that NO may also play a role in 02~ generation by fMLP.

Results with the guanylyl cyclase inhibitor LY 83583 did not show the inhibitory
effect of LY 83583 on 02~ generation but showed its ability to significantly enhance
the amount ofOf generated by low concentrations of fMLP (3-10 nM) (Figure 2.16).
These results are consistent with the report that LY 83583 can stimulate 02~

production (Barbier & Lefebvre, 1992).
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However, both inhibitors of G-kinase, KT 5823 (Figures 2.17a & 2.17b) and

Rp-8-pCPT-cGMPS (Figure 2.18) significantly inhibited fMLP-induced 02"

generation. As with chemotaxis, the effect of KT 5823 is quite dramatic. This

suggests that cyclic GMP may play an additional role to NO. However, the

selectivity of the inhibitors used is crucial to this interpretation and experiments

looking at phosphorylation of G-kinase are required to substantiate these findings.
Furthermore the different sensitivity to these G-kinase inhibitors observed with
chemotaxis and 02~ generation suggests that the G-kinase activated in the two

processes may be different.

PFD catalyses the hydrolysis of phosphatidylcholine to generate PA, which is
converted to DAG by phosphatidate phosphohydrolase (Billah, 1993). In particular
PFD is thought to ensure that diacylglycerol levels are sustained, which is a

requirement for 02" generation (Billah & Anthes. 1990). Although many studies have
shown a correlation between DAG production and 02" formation in intact cells (Rider
& Niedel, 1987), and cell-permeant DAG has been shown to stimulate NADPH

oxidase, other studies have found a lack of correlation between DAG and 02~

(Bauldry et al., 1992). On the other hand, PA has been linked to oxidase activation

(Bonser et al., 1989; Rossi, 1990; Agwu et al., 1991; Bauldry et al., 1991, 1992;

Baggiolini, 1993). For example, inhibition ofPFD-mediated PA production prevents

neutrophil fMFP-induced 02" release (Bonser et al., 1989). Peptide chemoattractants
were found to cause activation of PFD (Kanaho et al., 1991). Studies by Kanaho et

al (1993) in which the ability of the phosphatase inhibitor DPG to inhibit PFD
activation in rabbit peritoneal neutrophils was examined and suggested that PFD

plays an important role in fMFP stimulation of O," generation in the primed

neutrophils. However, a PFD-independent pathway plays a primary role in fMFP
stimulation of 02" generation in nonprimed neutrophils. The inhibition of PFD by
DPG appears to arise from direct interaction with the enzyme (Kanaho et al, 1993).

Such a role for PFD has been confirmed in these experiments using the phosphatase
inhibitor DPG. It was found that DPG significantly inhibited fMFP-induced 02

generation in these cytochalasin B-treated neutrophils (Figures 2.19a & 2.19b). This
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effect of DPG was lost if cells were pre-incubated with DPG for 10 or 20 min

(Figures 2.20a & 2.20b). This result contrasts with those reported by Kanaho et al

(1993) who observed greater inhibition of Of generation with preincubation. A

greater degree of inhibition was observed with the effect of DPG on neutrophil
chemotaxis than with its effect on Of generation of neutrophils.

While these results suggest that endogenous NO plays a role in mediating neutrophil

chemotaxis, other evidence has been presented indicating that NO donors can inhibit

neutrophil activation (Ney et al., 1990; Schroder et al., 1990; Kubes et al., 1991;
Wenzen-Seifert et al., 1991). To resolve this apparent paradox the investigation of
the effects of NO donors including GEA 3162, GEA 5024 and SIN-1 on neutrophil
chemotaxis were performed. These NO donors have previously been shown to

increase cellular cyclic GMP production concomitantly with the inhibition of

neutrophil chemotaxis (Siminiak et al., 1992; Moilanen et al., 1993, 1994).

GEA 3162 and GEA 5024 at physiological pH were rapidly hydrolysed with a

subsequent release of NO. At the standard conditions (GEA compounds at a

concentration of 30 pM), the NO release reached its maximum in 10 minutes for
GEA 3162, and 30 minutes for GEA 5024. GEA compounds consumed oxygen only
when used at high concentrations (1000 pM), and thereby an oxygen-dependent
mechanism of NO release may not be common with GEA compounds (Karup et al.,

1994). In contrast to GEA compounds, NO release from SIN-1 takes place

spontaneously in aqueous solution and molecular oxygen plays a key role in the
initiation of the decomposition of SIN-1 and thus for NO release (Feelisch et al.,

1989). The results from the current study showed that GEA 3162 and GEA 5024

(1-100 pM) caused significant concentration-dependent inhibition of fMLP-induced

neutrophil chemotaxis (Figure 2.21). SIN-1 was less potent and caused significantly
less inhibition of neutrophil chemotaxis than GEA 3162 (Figure 2.22). The rank
order of potency was GEA 3162 (EC50=14.7 ± 1.6 pM) > GEA 5024 (EC50=18.4 ±

0.4 pM) > SIN-1 (EC50=>1000 pM). One possible explanation for the difference in

potency of these agents as inhibitors of chemotaxis may relate to the ability of SIN-1
to generate 02~ during the liberation of NO (Feelisch et al., 1989; Feelisch, 1991),
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simultaneously generated Of further reduced the half-life of released NO,

presumably by a chemical reaction in which 02~ reacts with NO to form peroxynitrite
under alkaline conditions (Blough & Zafiriox, 1985). Gryglewski et al (1986) also
showed that the concomitant release of NO and 02* by SIN-1 may well attenuate the

inhibitory effects of NO on chemotaxis as NO is inactivated by 02", to form

peroxynitrite. Furthermore, peroxynitrite production by SIN-1 has been shown to

enhance fMLP-induced neutrophil respiratory burst (measured as luminol-dependent
chemiluminescence in whole blood) masking its otherwise inhibitory effects, such as

a reduction in LTB4 production (Bednar et al., 1996). In addition, peroxynitrite
formed from SIN-1 has been shown to stimulate phorbol ester-induced respiratory
burst (Iha et al., 1996). In contrast, GEA 3162 and GEA 5024 (in concentrations up

to 100 mM) do not release significant amounts of 02~, to form peroxynitrite

(Gryglewski et al., 1986). Recently, a study by Holm et al., also showed that GEA
3162 produced more NO than SIN-1 during 1-45 minutes incubation time. SIN-1
releases 02" in its decomposition process while GEA 3162 produces negligible
amounts of 02~ and ONOO" as compared to SIN-1 (Holm et al., 1998). If

peroxynitrite augments chemotaxis as well as 02~ generation, this could explain why
GEA 3162 and GEA 5024 are more potent inhibitors of neutrophil chemotaxis than
SIN-1.

When the effect of these NO donors on the total nitrate and nitrite production were

evaluated, it was found that each agent induced a concentration-related increase in
total nitrate and nitrite (Table 2.6). The rank order of potency was SIN-1 (EC50=
37.6 ± 0.9 pM) > GEA 3162 (EC50=39.7 ± 0.5 pM) > GEA 5024 (EC50=89.9 ± 1.7

pM). Taking GEA 3162 as the standard compound, this gives EEC values

(equi-effective concentration value) for SIN-1 and GEA 5024 of 0.95 and 2.26 for
nitrate and nitrite production compared to > 68.0 and 1.25 for inhibition of
chemotaxis. This data showed that SIN-1 is more potent than GEA 3162 and GEA
5024 in production of nitrate and nitrite, but less potent than GEA 3162 and GEA
5024 in fMLP-induced inhibition of chemotaxis.
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Clearly some reason is required to explain the lack of potency of SIN-1 at inhibiting
chemotaxis compared with releasing NO (as measured by total nitrate/nitrite

production). Interestingly, as reported by Moilanen et al. (1993), SIN-1 was much
weaker than GEA 3162 and GEA 5024 at increasing cyclic GMP levels, these results
are in agreement with the results from the present study which showed that SIN-1

(1000 pM) giving a maximal increase cyclic GMP levels of 5.3 fold over basal

compared to 13.2 and 8.3 fold for GEA 3162 (100 pM) and GEA 5024 (100 pM),

respectively (Table 2.5). Consequently, there is a better correlation between effects
of these drugs on cyclic GMP and inhibition of neutrophil chemotaxis, than for
effects on NO (total nitrate/nitrite production) and inhibition of neutrophil
chemotaxis. Previous studies revealed that nitrate/nitrite which occurs,

simultaneously with the release of NO, as metabolic products of SIN-1 breakdown
did not account for the activation of guanylyl cyclase, because C 78-0698 (a

sydnonimine compound) displayed a higher stimulating potency on guanylyl cyclase
than SIN-1 while producing less nitrite/nitrate (Feelisch et al., 1988).

These results suggest that neutrophil inhibition is likely to be related to increased

cyclic GMP levels rather than ADP ribosylation by NO. Clancy et al. (1995)

suggested that NO inhibited cytosketal assembly and adherence in human neutrophils
in association with the ADP ribosylation of actin. These actions of NO regulate

neutrophil responses such as margination, adhesion, and diapedesis (Clancy et al.,

1995). However, the role of peroxynitrite formed by SIN-1 requires further

clarification, particularly with respect to chemotaxis. At present it is not clear
whether peroxynitrite augments chemotaxis induced by fMLP as is the case for Of

generation (Iha et al., 1996).

These results do not prove that GEA 3162, GEA 5024 and SIN-1 inhibit neutrophil
chemotaxis by a NO-dependent mechanism. However, this is quite difficult to test.

An NO scavenger such as Carboxy-PTIO will itself inhibit chemotaxis (Figure 2.9),
so therefore the NO donor would be tested against a smaller fMLP stimulus.
Because of the nature of physiological antagonism, it is easier to inhibit a smaller
stimulus than a larger one (Kenakin, 1987) making comparision difficult. The
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scavenger oxyhaemoglobin may prove useful in elucidating the role of NO. If this
can be used at a low enough concentration not to affect endogenous NO and the
control chemotactic response to fMLP.

2.7 CONCLUSIONS

These results confirm that neutrophil activation results from the stimulation of
several signal transduction systems. We have shown that chemotaxis induced by
fMLP can be attenuated by inhibitors ofPLD, NO and cyclic GMP, suggesting a role
for these agents in neutrophil chemotaxis. It appears that increases in cyclic GMP
and activation of G-kinase resulting in chemotaxis can occur via a NO-dependent, as
well as NO-independent pathway. As such, very small increases in cyclic GMP and
NO were detectable after neutrophil activation by fMLP. Chemotaxis may occur via
PLD activation. Similar pathways appear to operate in 02" generation. In contrast,

the NO donors, GEA 3162, GEA 5024 and SIN-1, which produce large amounts of
NO (measured as total nitrate/nitrite) and cyclic GMP compared with fMLP, inhibit

neutrophil chemotaxis. The ability of SIN-1 to inhibit chemotaxis correlates better
with effects on cyclic GMP than NO. This hypothesis, that low concentrations of
NO activate whilst high concentrations inhibit neutrophils, is in agreement with that
has been suggested by VanUfflen et al. (1996); they studied the effects of gaseous
NO on rabbit peritoneal neutrophils and demonstrated that NO, not derived from NO
donors but applied directly, may stimulate or inhibit neutrophil migration, depending
on the concentration used. High concentrations of NO were found to inhibit
chemotaxis induced by an optimal concentration of the chemotactic peptide fMLP.
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CHAPTER 3

INHIBITION OF NEUTROPHIL ACCUMULATION

AND MYOCARDIAL NECROSIS

IN A RAT MODEL OF

MYOCARDIAL ISCHAEMIA REPERFUSION
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3.1 INTRODUCTION

Interruption of the blood supply to an area of tissue results in a reduction in the

supply of oxygen and nutrients, and the accumulation of toxic waste products.
Ischaemia leads to hypoxia, which initiates a series of events primarily related to

activation of platelets and release of their vasoconstrictor mediators e.g.

thromboxane A2 (TxA2)> and 5-hydroxytryptamine (5-HT) that further restrict blood
flow to the ischaemic area (Lefer, 1987). Initially, restoration of blood flow will
result in complete recovery of normal function. If, however, the duration of
ischaemia is extended beyond a critical period of time, the rate of metabolism is
diminished and the generation of high energy compounds (e.g. ATP) subsequently
declines. The reduced energy metabolism eventually leads to irreversible cellular

injury and tissue necrosis. Tissue that has undergone a prolonged period of
ischaemia shows characteristic features of an acute inflammatory response with
increased microvascular permeability and leukocyte infiltration.

In the heart, irreversible injury in the subendocardium can be detected after 20
minutes of ischaemia (Jennings & Reimer, 1983). Restoration of blood flow is

absolutely essential in order to arrest the process of necrosis. Ischaemia underlies

many important diseases. The treatment of acute myocardial ischaemia is

accomplished by coronary bypass grafting, coronary reperfusion with thrombolytic

therapy, and percutaneous transluminal angioplasty procedures. These interventions
are based upon animal studies in which early reperfusion of ischaemic myocardium
decreases the infarct size and mortality after acute coronary artery occlusion

(Flaherty et al., 1982; Romson et al., 1983; Guerci et al., 1987) and patients after

perfusion show better functional recovery and reduced loss of cardiac cell enzymes

(Schwartz et al., 1982). Recanalisation or reperfusion is an absolute requirement for
the survival of the ischaemic myocardium. However, reperfusion is not always
beneficial but may be detrimental (Braunwald & Kloner, 1985); abundant evidence

suggests that reperfusion of the previously ischaemic myocardium, in particular the
readmission of oxygen, is often followed by detrimental morphologic and functional

changes in the affected coronary arteries and myocardial tissues which ultimately
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results in tissue damage known as reperfusion injury (McCord, 1985). Although post

ischaemic reperfusion is likely to increase necrosis, both animal (Reimer & Jennings,

1979) and human (Schwarz et al., 1982) studies suggest that early reperfusion of
ischaemic myocardium salvages the cardiac tissue. This has led to a debate as to

whether reperfusion of ischaemic tissue can exacerbate tissue injury (Braunwald &

Kloner, 1985; Lucchesi et al., 1989; Forman et al., 1990; Hearse & Bolli, 1992).

3.1.1 Reperfusion injury
Reperfusion injury refers to a causal event associated with reperfusion that had not

occurred during the preceding ischaemic period. Injury of ischaemic-reperfused

myocardium is complex, involving injury of vascular cells as well as

cardiomyocytes. In a biochemical sense, reperfusion injury has been described as a

complex interaction between substances that accumulate during ischaemia and those
that are delivered as result of reperfusion. The degree of injury is dependent on the
extent of the collateral blood flow and duration of ischaemia, as well as the influx of

neutrophils and the generation of free radicals during reperfusion, which exacerbate
the injury. There are four basic forms of reperfusion injury including: lethal

reperfusion injury, vascular reperfusion injury, myocardial stunning and reperfusion

arrhythmias.

Lethal (necrotic) reperfusion injury is defined as injury caused by restoration of
blood flow after an ischaemic episode leading to death of cells that were only

reversibly injured during the preceding ischaemic period (Kloner et al., 1989). The
existence of lethal reperfusion injury has been debated for years by scientists and is
still controversial (Kloner, 1993; Ferrari & Hearse, 1997; Przyklenk, 1997).

Vascular reperfusion injury refers to progressive damage to the vasculature over time

during the phase of reperfusion. Manifestations of vascular reperfusion injury
include an expanding zone of no reflow and a deterioration of coronary flow reserve.

The no reflow phenomenon is a reduction in perfusion despite restoration of blood
flow in the conductance artery. No reflow is believed to be caused by neutrophil

trapping and plugging of reperfused vessels and, possibly by compression or
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obstruction of intramyocardial arteries by oedematous endothelial and perivascular
cells. Microvascular damage can decrease formation of vasodilatory substances,
such as NO, from the endothelium and promote formation of vasoconstrictors such as

endothelin. Futhermore, endothelial damage could remove factors inhibiting platelet

plugging and neutrophil adherence (Forman, 1989). This form of reperfusion injury
has been documented in animal models and probably occurs in humans.

Myocardial stunning refers to postischaemic contractile dysfunction of the

myocardium and probably represents a form of functional reperfusion injury. This
form of dysfunction was first described by Heyndrickx et al. (1975) and was later
studied by several investigators (Braunwald & Kloner, 1982; Bush et al., 1983).

Myocardial stunning is fully reversible and its full recovery can take a period of
hours or days depending on the duration of ischaemia (Braunwald & Kloner, 1985).
This phenomenon is well documented in both animals and humans.

One of the prominent features of reperfusion following reversible periods of
ischaemia is the occurrence of reperfusion arrhythmias which include ventricular

tachycardia and fibrillation occurring within seconds to minutes of restoration of

coronary flow after brief episodes of myocardial ischaemia. In the human heart,

reperfusion arrhythmias are not common during thrombolytic therapy for acute

myocardial infarction (Maras et al., 1986). Nevertheless, reperfusion arrhythmias

may be important as a cause of sudden death in patients with coronary artery spasm.

Several mechanisms have been proposed for reperfusion injury, including the

generation of oxygen-derived free radicals (Premaratne et al., 1993),

neutrophil-initiated damage, loss of antioxidant enzymes, calcium overload, loss of
normal ATP concentration, vascular endothelial and myocyte oedema, and

haemorrhage (Hudson, 1994). One that has attracted a great deal of attention is

neutrophil infiltration.
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3.1.2 Involvement of neutrophils in myocardial reperfusion injury
Neutrophils are important contributors to in vivo ischaemic reperfusion injury models
of lethal injury produced by coronary occlusion and reperfusion (Romson et al.,

1983; Mehta et al., 1988). Although occasional studies have failed to show the
causative role of neutrophils in myocardial cell death (Reimer et al., 1989; Tanaka et

al., 1993), more evidence lies in favour of this. Both by histological examination
and enzyme assay, it can be shown that ischaemic myocardial injury is accompanied

by a pronounced accumulation of neutrophils in the ischaemic zone (Engler et al.,

1986; Dreyer et al., 1991). Studies in a canine model of coronary occlusion with and
without reperfusion described neutrophil accumulation in the ischaemic endocardium
and also in the epicardium. Accumulation in the endocardium was enhanced by

reperfusion and the results suggested that collateral blood flow is an important
mechanism of neutrophil arrival, early in ischaemic myocardium (Engler et al.,

1986). A subsequent study in a canine model supported the concepts that rapid

neutrophil localisation during reperfusion occurs within the regions of previous

myocardial ischaemia and neutrophils preferentially localise within the
subendocardial region. The rate of neutrophil infiltration was found to be greatest in
the first hour after the initiation of reperfusion (Dreyer et al., 1991). Leukocyte
accumulation during this period showed an inverse correlation with the blood flow

during the ischaemic period. However, this relationship was no longer seen at later

reperfusion times. A number of studies have shown a correlation between infarct
size and the extent of neutrophil accumulation in ischaemic-reperfused myocardium

(Mullane et al., 1985; Chatelain et al., 1987; Lucchesi et al., 1989).

The possibility of infiltrating neutrophils having a deleterious effect in myocardial
infarcts first attracted interest in the early 1980s. That neutrophil accumulation is a

cause ofmyocardial injury rather than simply a response to it, has been demonstrated

by studies of myocardial ischaemia reperfusion (MI-R) models in which the

reperfusing blood was depleted of neutrophils. In 1983, Romson et al reported that

systemic administration of a polyclonal antiserum to neutrophils reduced myocardial
infarct size in a canine model of coronary artery occlusion and reperfusion. In
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subsequent studies, neutrophil antiserum (Jolly et al., 1986) and other interventions

causing a reduction in circulating neutrophils, such as hydroxyurea (Mullane et al.,

1984) and leukocyte filters (Litt et al., 1989), were found to be protective in

experimental models of MI-R. However, in a few studies, antineutrophil
interventions have not been found to confer protection against reperfusion injury

(Reimer et al., 1985; Chatelain et al., 1987). In addition, a number of other
interventions reported to be protective in experimental models of acute myocardial
infarction were also found to have effects on neutrophil function (Dreyer et al., 1991;
Ma et al., 1991).

In addition to having a possible role in causing myocardial necrosis following
ischaemia reperfusion, neutrophils have also been implicated in other less severe

changes in myocardial function, namely myocardial stunning and the no reflow

phenomenon. Although an early study using leukocyte filters (Westlin & Mullane,

1989) suggested that neutrophils played a role in myocardial stunning, subsequent
studies using either polyclonal antiserum, leukocyte filters or cyclophosphamide to

deplete circulating neutrophils have not supported this (O'Neill et al., 1989; Juneau
et al., 1993). Therefore, it seems unlikely that neutrophils are involved in

myocardial stunning. Neutrophils have also been implicated in no reflow (Kloner et

al., 1974a, 1983; Willerson et al., 1975; Hashimoto et al., 1991). In a study carried
out in a canine model of acute myocardial infarction, depletion of circulating

neutrophils was reported to protect against the fall in coronary blood flow during

reperfusion of ischaemic myocardium (Schmid-Schonbein & Engler, 1987; Litt et

al., 1989). However, in another study, depleting circulating neutrophils did not

protect against no reflow in a canine model of acute myocardial infarction (de

Lorgeril, 1989). The involvement of neutrophils in no reflow, therefore, still has to

be resolved.

There is, therefore, evidence both direct and indirect, from a number of studies

suggesting that infiltrating neutrophils exacerbate myocardial injury following
ischaemia and reperfusion.
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3.1.3 Endothelial dysfunction and myocardial ischaemia

reperfusion
It is now established that the coronary vascular endothelium plays a vital role in
maintenance of myocardial blood flow, prevention of intravascular thrombosis, and
modulation of leukocyte function through elaboration of a variety of vasoactive
substances such as adenosine, PGI2 and NO. However, the coronary vascular
endothelium also plays a role in the pathogenesis of ischaemic reperfusion injury and
other inflammatory responses in which neutrophils participate.

Reperfusion leads to reoxygenation and the formation and activation of a variety of
humoural mediators of injury and inflammation, including oxygen-derived free
radicals (e.g. 02~, OH, H202), lipid mediators (e.g. PAF, and LTB4), as well as

polypeptide mediators (e.g. C5a). 02" and PAF originate to a large extent from
endothelial cells.

Endothelial cell dysfunction is thought to be the "trigger" for reperfusion injury

(Bulkley et al., 1989). This endothelial dysfunction results in part from reduction of
NO release by the endothelium which may be due to the inactivation by

oxygen-derived free radicals from the reperfused coronary endothelium (Grygleski et

al., 1986; Rubanyi & Vanhoutte, 1987; Tsao & Lefer, 1990; Lefer et al., 1991).

Damage to the coronary vascular endothelium has been noted to occur within 2.5 to 5
mins after the initiation of reperfusion soon after the generation of 02" by the

reperfused coronary endothelium. Several investigators have observed that

myocardial ischaemia followed by reperfusion interferes with

endothelium-dependent relaxation of coronary artery rings, (Ku, 1982; Van

Benthuysen et al., 1987; Mehta et al., 1989).

NO may be an important endogenous modulator of neutrophil adherence in

postcapillary venules and impairment of the release of NO results in a pattern of

neutrophil adhesion and emigration that is characteristic of inflammation (Kubes et

al., 1991). Ma et al. showed that progressive reduction of the basal release of NO
after MI-R was accompanied by enhanced neutrophil adherence to the coronary
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endothelium, which may lead to neutrophil-induced myocardial injury (Ma et al.,

1993). In addition, endogenous PGI2 seems to be an important protective prostanoid

against myocardial injury inflicted by ischaemia and reperfusion. (Theimermann et

al., 1985). It was suggested that when the endothelium is injured, local production of

PGI2 may be inhibited sufficiently to permit adhesion of neutrophils to the injured
endothelium and so induce the earliest stage in the emigration of neutrophils into the
area of injury (Jones & Hurley, 1984). A number of investigations have reported that
two manifestations of endothelial injury are loss of ability to produce NO and PGI2

(Thiemermann et al., 1985; Aoki et al., 1988; Bitterman et al., 1988; Nichols et al.,

1988). In addition, damage to the endothelium could jeopardise the release of
adenosine as it does NO (Ma et al., 1993; Nakanishi et al., 1992).

3.1.4 Mechanisms of neutrophil accumulation and

neutrophil-induced tissue damage
Decreased NO and PGI2 along with chemotactic and cytotoxic agents (e.g PAF,

LTB4 IL8, C5a, 02~, H202, and elastase) which are released or generated locally in the

early reperfusion period of evolving myocardial infarction, promote neutrophil
recruitment to the reperfusion site and adherence to the dysfunctional endothelium.
These chemoattractants may act as inflammatory mediators causing neutrophil
activation (Neumann et al., 1994). The adherence of neutrophils to the dysfunctional
endothelium is facilitated by cytokine upregulation of ICAM-1 and ELAM-1

receptors and PAF-induced upregulation of GMP-140 receptors on the endothelial
cell surface (Bevilacqua et al., 1985). These adhesive molecules accentuate

neutrophil adherence and promote neutrophil diapedesis through the endothelium.

Since cardiac myocytes express ICAM-1 on their surface (Smith et al., 1991),
activated neutrophils that have diapedesed can adhere to cardiac cells and cause

direct myocardial damage by release of cytotoxic metabolites including

oxygen-derived free radicals, eicosanoids, cytokines and proteolytic enzymes (Weiss,

1989). Although the migration of neutrophils across the endothelium into the

myocardium occurs much later, after reperfusion is initiated, the early
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neutrophil-endothelial events produce microvascular injury and ultimately myocyte

necrosis (Entman et al., 1991; Lefer et al., 1994; Lefer, 1995).

3.1.4.1 Oxygen-derivedfree radicals
The concept that oxygen free radicals are believed to play a major role in

postischaemic injury has been debated extensively by both experimental and clinical

investigators, as discussed by Werns (1994). ONOO" may be of considerable

importance in neutrophil cytotoxicity. H202 was found to promote neutrophil

myocyte adhesion (Gasic et al., 1990). As discussed in Chapter 1, it can produce

highly reactive toxic products such as OC1" (Harrison & Schultz, 1976) which is

thought to be the major product of oxidative metabolism by neutrophils (Weiss,

1989) and has ability to cause tissue damage. OCf can further produce
monochloroamines which attack membrane unsaturated fatty acids causing lipid

peroxidation resulting in loss of membrane associated functions (Kim & Akera,

1987). Lipid peroxidation of membranes induced by oxygen radicals generated

during reperfusion causes functional alterations of various membrane enzymes

(Konno et al., 1987; Kim & Akera, 1987; Kako, 1987; Itoh et al., 1991) and is

accompanied by structural damage to the cardiac cells (Miki et al., 1988; Oguro,

1992). Alterations in membrane proteins by free radicals are among the important
factors in the evolution of myocardial ischaemia reperfusion damage. It has been

proposed that a sudden burst of oxidant stress injured membrane proteins, leading to

ionic imbalances and electrical instability (Pallandi et al., 1987). However, the role
of oxygen free radicals in the pathogenesis of reperfusion arrythmias has been

questioned.

Experimental studies showed considerable evidence supporting an oxygen free
radical-mediated mechanism for myocardial stunning and that 02, H202 and OH are

involved in the pathogenesis of stunning (Myers et al., 1985, 1986; Przyklenk &

Kloner, 1986; Farber et al., 1988; Przyklenk et al., 1990; Jeroudi et al., 1990, 1994;

Bolli, 1991; Triana et al., 1991; Sekili et al., 1991; Corretti et al., 1991; Matheis et

al., 1992; Hess & Kukreja, 1995; Naseem et al., 1995).
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3.1.4.2 Neutrophil proteases
Three neutrophil enzymes have been of particular interest with respect to tissue

damage: the serine proteinase elastase and the two metalloproteases collagenase and

gelatinase. These enzymes are able to degrade key components of the extracellular
matrix as discussed in Chapter 1. Elastase has been shown to alter barrier properties
of endothelial monolayers in vitro and to cause detachment, or even lysis of cells

(Harlan et al., 1985; Smedly et al., 1986). Under normal conditions, mechanisms are

in place to prevent inappropriate action of these enzymes. Elastase can be expressed
on the plasma membrane of adherent neutrophils, and its level of expression is

inversely proportional to cell adhesion (Cai & Wright, 1996). Elastase inhibitors
were shown to reduce neutrophil recruitment in vivo, and this study pointed to a

pro-inflammatory action for this serine proteinase (Yoshimura et al., 1994).
Murohara et al., investigated the effect of a novel serine protease inhibitor (serpin),
LEX032 in a murine model ofMI-R injury in vivo. LEX032 has the ability to inhibit

neutrophil elastase and cathepsin G, two major neutral serine proteases in neutrophils
as well as inhibit 02" generation. It was found that, the recombinant serine protease

inhibitor, LEX032, appears to be an effective agent for attenuating MI-R injury by

inhibiting neutrophil accumulation into the ischaemic-reperfused myocardium and by

inactivating cytotoxic metabolites released from neutrophils (Murohara et al., 1995).

3.1.5 Pharmacological approaches to MI-R injury
The ability of the heart to protect itself during ischaemia and reperfusion is impaired

by a reduction in the endogenous oxygen radical scavengers and some endogenous

agents such as NO and PGI2. The cascade of events leading to vascular and tissue

injury is dependent on neutrophil-endothelial adhesive interactions, and thus,

interruping these interactions at the level of rolling, firm adherence, or diapedesis
should decrease neutrophil-mediated injury. The goal of current research for

management of the coronary heart disease patient is to go beyond the palliative
treatments available by attacking the pathogenic determinants of reperfusion injury

(Janero, 1995). Ongoing studies include the evaluation of antioxidants and free

radical scavengers, membrane stabilizers, endogenous agents, protease inhibitors,
calcium antagonists and nucleoside transport inhibition agents.
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For example, it has been proposed that the use of monoclonal antibodies (Mabs)
directed specifically towards leukocyte and endothelial adhesion molecules may alter
the cascade of inflammatory events involved in neutrophil-mediated MI-R injury.

They can be protective, as in animal models of MI-R injury, in which PMN

accumulation and infarct size were reduced by anti-CD lib (Simpson et al., 1988;
Ma et al., 1991), anti-P-selectin (Weyrich et al., 1993), anti-L-selectin (Ma et al.,

1993), anti-ICAM-1 antibodies (Ma et al., 1992; Yamazaki et al., 1993) and sialyl

Lewisx-containing oligosaccharide (Buerke et al., 1994; Lefer et al 1994, 1995;

Silver et al., 1995). Furthermore, anti-CD 18 antibodies attenuated

ischaemia-reperfusion injury in several other experimental models.

Studies with antioxidants have focused on the potential of these agents to lessen

postischaemic myocardial injury (Janero, 1994, 1995). It has been proposed that
vitamin E and its analogues may offer protection from reperfusion injury (Mickle &

Weisel, 1993). Initial studies with oxygen-free radical scavengers, such as SOD and

catalase, in MI-R showed enhanced salvage of the myocardium (Jolly et al., 1984;
Ambrosio et al., 1987; Forman et al., 1988), while subsequent studies in the
conscious dog showed that free radical scavengers had no effect on infarct size after

reperfusion (Gallagher et al., 1986; Nejima et al., 1989; Patel et al., 1990; Downey,

1990). Thus, some researchers claim that no convincing evidence exists to show that
antioxidant therapy can reduce infarct size after MI-R (Jeroudi et al., 1994).

Early studies using antioxidant enzymes, iron chelating agent, deferoxamine (Bernier
et al., 1986), SOD and catalase (Woodward & Zakaria, 1985; Bemier et al., 1989)
and allopurinol (Bernier et al., 1989) indicated that these antioxidants could be used

successfully to reduce the incidence of reperfusion arrythmias. However, subsequent
studies showed several free radical scavengers unable to reduce the incidence of

reperfusion arrythmias in isolated rat (Coetzee et al., 1990) and rabbit hearts

(Maxwell et al., 1989). Experiments with open-chest dogs showed protection against

myocardial stunning with SOD and catalase (Myers et al., 1985; Przyklenk &

Kloner, 1986; Jeroudi et al., 1990, 1994), dimethylthiourea (Bolli, 1991),
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N-2-mercaptopropionyl glycine (Triana et al., 1991; Sekili et al., 1991), and the iron
chelator deferoxamine (Farber et al., 1988).

Impairment ofNO release after reperfusion of ischaemic myocardium has led several

investigators to treat MI-R injury with authentic NO (Johnson et al., 1991), the NO

synthase substrate L-arginine (Nakanishi et al., 1992; Weyrich et al., 1992; Pernow
et al., 1994) and various NO donor compounds including: nitroglycerine (Flaherty,

1983), sydnonimines such as SIN-1 and C87-3754 (Siegfried et al., 1992a; Fung et

al., 1994), N-nitratopivaloly-S-(N'-acetylalanyl)-cysteine ester (SPM 5185) (Siegried
et al ., 1992b; Lefer et al ., 1993; Williams et al., 1995). Results from all of these
studies demonstrated the cardioprotective role of these drugs in various animal
models ofMI-R injury except the study by Williams et al (1995) with L-arginine in a

rabbit model ofMI-R, which showed equivocal effects on infarct size.

Intravenous adenosine in large and moderate doses during the early reperfusion

period significantly enhanced myocardial salvage in both canine and rabbit models of

regional ischaemia (Pitarys et al., 1991; Norton et al., 1991). The effects of a

selective A, receptor agonist, cyclopentyladenosine (Norton et al., 1992) and a

selective A2 receptor agonist, CGS 21680 (Norton et al., 1992; Schlack et al., 1993)
were investigated in rabbit and canine models of MI-R. The results from these
studies demonstrated cardioprotective roles of these drugs in these animal models of
MI-R. However, other investigators demonstrated no effect of adenosine on infarct
size (Goto et al., 1991) or even, an increased infarct size (Eliseev et al., 1988) in
rabbit models of MI-R. Selective adenosine A, receptor agonists such as BN-063

(1-cyclopropylisoguanosine) were also investigated in a rat models of MI-R and
found to exert, through activation of adenosine A, receptors, antiarrhythmic and
anti-infarct effects (Lee et al., 1995). In addition, the selective A, adenosine receptor

antagonists bamiphylline or xanthine amine congener were found to reduce infarct
size in an in vivo feline model ofMI-R (DiPierro et al., 1995). Adenosine has also

been shown to reduce postischaemic myocardial stunning (Lasley & Mentzer, 1995).

Other approaches with the aim of potentiating the adenosine pathways have also
been successful. Enhancement of adenosine levels through blocking of adenosine
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deaminase, inhibited O," generation from adherent neutrophils (Cronstein et ah,

1986, Cronstein, 1994). More recently, an inhibitor of adenosine kinase enhanced
adenosine concentrations, inhibited neutrophil adhesion to endothelial monolayers in

vitro (Firestein et ah, 1995) and reduced neutrophil elicitation in experimental
inflammation (Cronstein et ah, 1995).

PGE, (Simpson et al., 1988; Schror et al., 1988) PGI2 (Simpson et al., 1987;

Ogletree et al., 1979) and iloprost (ZK 36374), a chemically stable PGR analogue
which has a profile of actions similar to that of PGR (Simpson et al., 1987a;
Chiariello et al., 1988) were tested as therapeutic agents in experimental myocardial

ischaemia, the results showed beneficial effects of these drugs in various models of
acute myocardial ischaemia or postischaemic reperfusion. The cytoprotective effect
of PGR during MI-R in a canine model was suggested to be related to an inhibition
of neutrophil migration and the production of cytotoxic activated oxygen species

(Simpson et al., 1987). Defibrotide, a compound that enhances PGR release from the
vascular endothelium, was also investigated and found to have a beneficial effect in

experimental ischaemic myocardial injury in open-chest minipigs subjected to MI-R

(Hohlfeld, 1993).

Preservation or replenishment ofNO, adenosine, PGR concentrations in the coronary

vasculature should be one of the effective treatments of reperfusion injury.

Therefore, it was postulated that a novel NO donor, GEA 3162, a selective adenosine

A2A receptor agonist, 2-HE-NECA, and a selective IP analogue, PGR, could inhibit

neutrophil infiltration into the ischaemic area and the inhibitory effects of these drugs
on neutrophil infiltration could reduce infarct size in ischaemic myocardial tissue in a

rat model ofMI-R.
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3.2 AIMS

The aims of this study are:

1) to investigate the in vivo effect of a novel NO donor, GEA 3162 on neutrophil
accumulation in a rat model ofMI-R.

2) to compare the in vivo effects of GEA 3162 with the effects of the selective
adenosine A2A receptor agonist, 2-HE-NECA and the selective IP analogue cicaprost
on neutrophil accumulation in a rat model ofMI-R.

3) to investigate the effects of inhibition of neutrophil accumulation by these drugs
on myocardial injury in a rat model ofMI-R.

3.3 MATERIALS

The following compounds were generous gifts: 3-aryl-substituted oxatriazol
derivatives GEA 3162 [3-(3',4'-dichlorophenyl)-l,2,3,4-oxatriazol-5-imine] from Dr
S. B. Pederson (GEA Ltd, Copenhagen, Denmark). 2-HE -NECA (2-Hexynyl-5'-N-

ethylcarboxamidoadenosine) from Dr G. Cristalli, Department of Chemical Sciences,

University of Camerino, Italy. Cicaprost from Dr E. Schillinger, Schering AG,

Berlin, Germany.

Hexadecyltrimethyl ammonium bromide (HTAB), 2,3,5-triphenyltetrazolium
chloride (TTC), 3,3,',5,5'-tetramethyl benzidine (TMB), trypan blue, Evan's blue,
PBS (containing Ca2+ and Mg2+), 30% hydrogen peroxide, 10% formalin in saline
and casein (sodium salt) were purchased from Sigma Chemical Co. Ltd. (UK).

Polymorphprep™ was purchased from NYCOMED PHARMA AS. DiffQuick was

purchased from Baxter Diagnostic AG. Heparin sodium was purchased from CP
Pharmaceuticals Ltd. Wrexham, (UK). Lignocaine hydrochloride was purchased
from Martindale Pharmaceuticals. Pentobarbitone sodium was purchased from
Rhone Merieux (Ireland).
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The chemical structures of GEA 3162, 2-HE-NECA and cicaprost are shown in

Figure 3.1
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Figure 3.1 The chemical structures ofGEA 3162, 2-HE-NECA and cicaprost

A mesoionic 3-aryl-l,2,3,4-oxatriazole-5-imine derivative (GEA 3162), is a potent

NO donor which releases NO spontaneously in aqueous solutions in a

dose-dependent manner as measured by ozone-chemiluminescence (Kankaanranta et

al., 1996). GEA 3162 has been shown to inhibit neutrophil functions such as

chemotaxis, superoxide anion generation, and degranulation of neutrophils

(Moilanen et al., 1993, 1994; Wanikiat et al., 1997). GEA 3162 has vasodilator,

antiplatelet and fibrinolytic activity (Corell et al., 1994). It also inhibits endothelial
cell-mediated oxidation of low density lipoprotein (Malo-Ranta et al., 1994). GEA
3162 has also been shown to suppress the release of histamine and LTB4 from

neutrophils (Corell et al., 1994).

2-hexynyl-5'-N-ethylcarboxamidoadenosine (2-HE-NECA), a new potent selective

A2A receptor agonist, is more potent on A2A than the reference A2A agonist, 2-[4-(2-

carboxyethyl)-pheneethylaminoadeno]-5 '-N-ehtylcarboxamidoadenosine (CPEC) or
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the non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA).
2-HE-NECA is a potent vasodilating agent manifested in both in vitro and in vivo

models (Dionisotti et al., 1992; Conti et al., 1993; Monopoli et al., 1994) and
inhibits platelet aggregation in vitro, in vivo and ex vivo studies (Dionisotti et al.,

1992; Conti et al., 1993; Sandoli et al., 1994). In the anaesthetised rabbit,

2-HE-NECA induced dose-related blood pressure reduction and moderate increase in
heart rate, as well as exhibiting potential anti-ischaemic action (Monopoli et al.,

1994). In the rat Langendorff model, in which global ischaemia was induced,
2-HE-NECA showed significant prevention in the rise of diastolic pressure occuring

during postischaemic reperfusion (Monololi et al., 1994). This anti-ischaemic action
of 2-HE-NECA may support the beneficial effects of 2-HE-NECA in MI-R injury.

Cicaprost, a metabolically and chemically stable PGI2 analogue, has a

pharmacological profile comparable to PGI2 and iloprost. As compared with iloprost,

cicaprost is 5-12 fold more potent with respect to in vivo hypotensive and

anti-aggregatory effects (Sturzebecher, et al., 1986). It is an orally active PGI2

analogue with high oral availability and long lasting biological activity. Due to its

high metabolic stability, cicaprost is more potent and exhibits a longer duration of
action than PGI2 and iloprost with respect to vasodilating and platelet-inhibiting
effects (Sturzebecher, et al., 1986). Following intravenous application cicaprost
lowers diastolic blood pressure in a dose dependent manner. Cicaprost inhibited
fMLP-stimulated rat neutrophil aggregation and produced concentration-related
increases in cyclic AMP accumulation (Wise, 1996).
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3.4 METHODS

As no model of in vivo myocardial ischaemia reperfusion injury was available in our

laboratory, it was necessary for me to set up the rat MI-R model with advice from
Dr. C. Wainwright, Department of Physiology and Pharmacology, University of

Strathclyde (surgical procedure), Dr F. Williams, Imperial College School of
Medicine at the National Heart & Lung Institute (extraction and assay of

myeloperoxidase) and Dr T. Stevens Department of Pharmacology, Astra
Charnwood (isolation of rat peritoneal neutrophils and myeloperoxidase assay). All

experiments were performed in accordance with the United Kingdom Home Office
Guide on the Operation ofAnimals (Scientific Procedures) Act 1986.

3.4.1 Left main coronary artery occlusion and reperfusion
Male Wistar rats weighing 250-350 g were used in this study. Animals were

anaesthetised with sodium pentobarbitone (Sagatal, 60mg/kg intraperitoneally, i.p.)
and the level of anaesthesia was maintained throughout the experiment by
intravenous administration of anaesthetic as required. The trachea was cannulated

(using a polythene cannula, Portex) for artificial respiration. The right carotid artery

was cannulated with a heparin solution (100 iu/ml in 0.9% NaCl)-filled polyethylene
cannula. This was connected to a pressure transducer (Sensor Nor a.s.) for
continuous recording of systolic blood pressure (SBP), diastolic blood pressure

(DBP), mean arterial blood pressure (MABP) and heart rate via a Maclab system

(MacLab/4e, AD Instruments). Heart rate was obtained from the blood pressure

traces. The external jugular and femoral veins were also cannulated for
administration of anaesthetic and drugs or vehicle, respectively. Body temperature

was kept at 37 ± 0.5°C by a heating pad placed under the animal which was

thermostatically controlled by a probe inserted into the rectum (Homeothermic
Blanket Control Unit, Harvard). The rats were artificially ventilated with room air

using a respirator (C.F.Palmer) with the rate of 60 strokes/minute and a tidal volume
of 1.5 ml/100 g. This was sufficient to maintain PC02, 18-24 mmHg, P02, 100-130

mmHg and pH within normal limits, 7.4 units (Clark et al, 1980).
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The left main coronary artery was occluded according to a modification of the

technique previously described by Selye et al., 1960. Briefly, a skin incision was

made over the thorax and the pectoral muscles were retracted to expose the thoracic
wall. A left thoracotomy incision was performed by cutting through the fourth and
fifth ribs at approximately 5 mm to the left of the sternum. The pericardium was cut

to expose the heart and the heart was exteriorised by application of gentle pressure to

the ribs on either side of the incision in the thorax (using two forceps). A 5/0 silk

ligature was passed around the left main coronary artery just below the atrial

appendage then the heart was immediately replaced into the thoracic cavity. Both
ends of the thread were passed through a short length of polythene tube to form a

snare. Lignocaine was intravenously injected at a dose of 2.0 mg/kg prior to

thoracotomy incision in order to prevent the occurrence of ischaemic arrhythmias.

After completion of all surgical procedures, rats were allowed to equilibrate for 15
minutes to ensure that all haemodynamic variables had stabilized and baseline

haemodynamic data were recorded. The left main coronary artery was then

reversibly occluded by tightening the snare and clamping the ends against the

polythene tubing with a vascular clamp. This induced myocardial ischaemia and
was designated as time zero of occlusion. Ischaemia was confirmed visually by

cyanosis in the area at risk. Previous blood flow analyses with radiolabelled

microspheres showed that this procedure produced a 98% reduction in blood flow to

the area at risk (Toombs et al., 1992). Blood pressure and heart rate were

determined pre-occlusion and at 30 minutes and 45 minutes post-occlusion. After 45
minutes of ischaemia, the ligature around the left main coronary artery was

completely loosened by taking the vascular clamp off to allow reperfusion of the

myocardium for a further 2 hours. Blood pressure and heart rate were determined at

30 minutes, 1 hour, 1.5 hours and 2 hours of the reperfusion period.

Ten minutes before reperfusion, the infusion of each drug or vehicle (0.9% saline,
0.5 ml/h) was begun and continued until the end of the reperfusion period. A variety
of infusion rates of these drugs were initially used to obtain an infusion rate that

produced minimal hemodynamic (i.e. vasodilatation) effects in intact rats. The
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optimal rate of GEA 3162 infusion was determined to be 1 pg/kg/min whereas both

cicaprost and 2-HE-NECA were infused at 0.1 and 1 pg/kg/min.

At the end of the reperfusion period, the left main coronary artery was retightened at

the same site to completely occlude the vessel. At that time 1 ml of 40 mg/ml of
Evans blue dye was injected into the jugular vein to stain the area of the myocardium

perfused by the patent coronary arteries. A schematic diagram of the experimental

protocol is shown in Figure 3.2. The area at risk, due to its anatomical dependence
on the left main coronary artery for blood flow, was identified by negative staining

(the lack of Evans blue in this region) as shown in Figure 3.3. The rat was then
sacrificed and the heart was rapidly removed. The atria and great vessels were

trimmed and the remaining tissue weighed, frozen and stored at -70°C for
measurement of infarct size. In this study, infarct size was not measured in the same

hearts as neutrophil infiltration. The hearts required for determination of neutrophil
accumulation were sectioned in transverse rings 0.5 cm thick, from the apex to the
base. The right ventricle was separated and discarded. The unstained portion of the

myocardium (i.e. the total area at risk) was separated from the stained portion (i.e.
the area not at risk or the normal area). They were then collected, weighed and

frozen rapidly in dry ice. Samples were then stored at -20°C until assayed for

myeloperoxidase content, within 2 weeks of each experiment.
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Occlusion Reperfusion
Re-occlusion

Inject Evans blue dye

Stabilisation

-15 min 0 min 45 min 120 min
35 min

Infusion of drug or saline

t
GEA 3162 1.0 pg/kg/min
2-HE-NECA 0.1 pg/kg/min
Cicaprost 0.1 pg/kg/min

Figure 3.2 Schematic diagram of the experimental protocol. Afterl5 minutes of
stabilisation, the left main coronary artery was occluded for 45 minutes. Ten
minutes before reperfusion, the infusion of each drug or vehicle (0.9% saline) was
begun and continued until the end of the reperfusion period. After 45 minutes of
occlusion, the ligature around the left main coronary artery was loosened to allow
reperfusion ofthe myocardium for 2 hours. On completion ofthe 2-hour reperfusion
period, the coronary artery was reoccluded and Evan's blue dye was injected via the
jugular vein to differentiate the area at riskfrom the normal area.

Figure 3.3 Photograph ofthe rat heart subjected to 45 minutes occlusion ofthe left
main coronary artery, followed by 2 hours reperfusion. Shows the area at risk (pink)
and normal area (blue) on the surface ofthe heart after staining Evan's blue dye.
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3.4.2 Determination of neutrophil accumulation
Myeloperoxidase (MPO), an enzyme that is associated with the azurophilic granule
of neutrophils, with less being found in eosinophils and monocytes, has been utilized
as a convenient marker for infiltration of neutrophils into inflamed tissue (Bradley et

al., 1982; Allan et al., 1985; Mullane et al., 1985). Therefore, neutrophil
accumulation in the heart tissue was assessed by measurement of its MPO content.

The non-ischaemic area (area not at risk) and the ischaemic area (area at risk) of the
left ventricle were measured for their MPO content.

In order to express results as the number of neutrophils per g tissue, a standard curve

for MPO content [Absorbance at 460 nm versus neutrophil concentration (103-l 04
cells)] was constructed using MPO extracted from rat neutrophils. Originally, rat

neutrophils were isolated from peripheral blood using Polymorphprep™.

3.4.2.1 Isolation of rat neutrophils from whole blood using

Polymorphprep ™
The isolation of rat neutrophils from whole blood using Polymorphprep™ is

summarised in a simplified flow diagram (Figure 3.4). Polymorphprep™ is a ready
made sterile solution for the isolation of polymorphonuclear granulocytes from
whole blood. It contains sodium metrizoate and Dextran 500. After centrifugation
of anticoagulated whole blood, although two leukocyte bands (the top band of
mononuclear cells and the lower band of polymorphonuclear cells) should be clearly

distinquishable in the supernatant, only the one cloudy band (band A) was evident

(Figure 3.4). In order to check their cellular content, the cells from the upper cloudy
band A and the cells from the lower part of the supernatant which was closest to the

cloudy band A (band B) were harvested separately and were spread onto slides using
a Cytospin centrifuge (Centurion). After the slides were dried, fixed and stained

with Diff Quik™, the cells were identified microscopically. It was found that most

of the cells from band A were monocytes and lymphocytes and most of neutrophils
were found in the lower part of supernatant which was closest to the upper cloudy
band (band B) (Figure 3.5).
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Whole blood-

\J

Centrifugation
400g/ 30 mii^

.Polymorphprep.
Red blood cells

B

Plasma

Cloudy band
Lower layer
of supernatant

I

Figure 3.4 Flow diagram showing isolation of rat neutrophils from whole blood
using Polymorphprep ™ Most of the cells from the cloudy band (band A) were
found to be monocytes and lymphocytes. Neutrophils werefound in the lowerpart of
the supernatant (band B).
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Figure 3.5 Photograph showing rat neutrophils monocytes and lymphocytes isolated
from whole blood using polymorphprep ™. (a) cells from upper cloudy band (band
A), (b) cells from the lower supernatant layer (band B). The black arrows indicate
neutrophils, the black arrow heads indicate monocytes and the red arrow heads
indicate lymphocytes (original magnification x 2500).

Although this method works well with human blood, it is not suitable for isolation of

neutrophils from rats for the following reasons: (a) the small volume of blood
obtained from the rats, (b) the low yield of neutrophils and (c) the subtle difference
in density among monocytes, neutrophils and lymphocytes that causes poor

separation of the mononuclear and polymorphonuclear cell bands. Subsequently, rat

neutrophils were isolated from the peritoneal cavity instead as described below.
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3.4.2.2 Isolation of ratperitoneal neutrophils
The isolation of rat peritoneal neutrophils was carried out according to the method

previously described by Cunningham, with some modification (Cunningham et al.,

1979). The extraction of rat peritoneal neutrophils is summarised in a simplified
flow diagram (Figure 3.6).
Method

1. Male Wistar rats weighing 400-500 g were injected intraperitoneally with 15 ml
of 5% casein (sodium salt) in 0.9% NaCl.

2. After 16 hours, the rats were terminated by anaesthetic overdose and 25 ml of
sterile PBS containing 0.2% glucose and 20 U/ml heparin injected

intraperitoneally to wash the peritoneal cavity. The peritoneum was then opened
and the lavage fluid aspirated and collected in centrifuge tubes. The lavage fluid
from each rat was kept separately and the volume of each tube increased to 50 ml
with PBS-gluccose.

3. The cell suspension was centrifuged at 400 x g for 5 minutes and the supernatant

was discarded. Red blood cells remaining in the neutrophil pellet were lysed by

resuspending the pellet in 10 ml of ice cold 0.2% w/v NaCl solution for 20

seconds, after which 10 ml of ice cold 1.6% w/v NaCl was added to return the

cells to isotonic conditions.

4. The cells were counted and their viability checked by trypan blue exclusion: 100

pi of the cell suspension were added to 400 pi of trypan blue and were counted

under a microscope (x 40) in an improved Neubauer Chamber. The number of

neutrophils that could be isolated from one rat was usually in the range of 5 x 106
to 15 x 106 cells. The viability of the neutrophils thus obtained were over 95% as

estimated by the trypan blue dye exclusion test.

5. The cells were washed twice with PBS containing 0.1% bovine serum albumin

(to maintain viability and decrease aggregation). The cell pellet was stored at
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-20°C for determination of MPO content. The cells from at least two rats were

pooled together for each standard curve repetition. The standard curve for MPO
content represents the results of six repetitions. The method for extraction of rat

neutrophil MPO was the same as that for heart tissue (discussed below).

Rats were injected i.p. with 5% casein

I 16 hours

Rats were terminated and 25 ml of PBS containing
0.2% glucose and 20 u/ml heparin was injected i.p.

The lavage fluid was aspirated.

I
50 ml —'

PBS buffer

centrifugation

400 x g/5min/20°C neutrophils

I
Contaminating red blood cells were removed by hypotonic lysis.

The neutrophils were washed twice.

Viability assessed by trypan blue exclusion.

Cells were counted and stored at -70 °C for determination of MPO
content.

Figure 3.6 Flow diagram showing isolation ofratperitoneal neutrophils.

3.4.2.3 Extraction of myeloperoxidase from heart tissue and

neutrophils
The extraction ofmyeloperoxidase from heart tissue and neutrophils was carried out

according to a previously described method (Williams et al., 1994) with some

modifications. The extraction of MPO from heart tissue and neutrophils is
summarised in a simplified flow diagram (Figure 3.7).
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Method

1. The frozen myocardial and rat peritoneal neutrophil samples were thawed and

kept on ice. Cold homogenisation buffer 1 containing 20 mM of sodium

phosphate buffer (pH 4.7), 0.015 M EDTA, 0.1M NaCl, was added to the tissue

samples in the proportion of 50 mg/ml for tissue samples from the area at risk
and for rat peritoneal neutrophils and 100 mg/ml for tissue samples from the area

not at risk (normal area).

2. The tissue samples were first homogenised using an Ultra-Turrax homogeniser
until evenly ground.

3. The homogenate was centrifuged for 15 minutes at 10,000 x g at 4°C (IEC

micromax RF) and the supernatant from each sample, containing mainly the

haemoglobin, was discarded.

4. Cold homogenisation buffer 2 consisting of 0.5% hexadecyltrimethyl ammonium
bromide (HTAB) dissolved in 50 mM sodium phosphate buffer (pH 5.4) was

immediately added to the remaining pellet in the proportion of 100 mg/ml for

pellet from myocardial area at risk and from rat peritoneal neutrophils and 200

mg/ml for pellet from myocardial normal area. Each sample was homogenised a

second time for 20 seconds and the homogenate was then taken through three

cycles of freeze/thaw followed by brief sonication (x 10 seconds) to ensure that

cell lysis and MPO release from storage granules had occured.

5. The homogenates were then centrifuged for 15 minutes at 10,000 x g at 4°C and

the supernatant assayed for MPO.
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Cold homogenisation buffer I was added to the
myocardial and rat peritoneal neutrophils samples

i
Tissue samples were homogenised using Ultra turax

2 ml —
Buffer 0eentrifugatioi^ |—j10,000 x g/15 min/4°C \J~ Pellet

i
Cold homogenisation buffer II containing of 0.5%
HTAB was added to the pellet.

i
Each sample was homogenised for 20 seconds.

I
Homogenate was taken through three
cycles of freeze / thaw / sonicate.

i
centrifugatioi^ 1—j

10,000 x g/15min/4°C\J~
MPO

Figure 3.7 Flow diagram showing extraction ofmyeloperoxidase from heart tissue
and ratperitoneal neutrophil.

3.4.2.4 Myeloperoxidase Assay
In this study, MPO was assayed spectrophotometrically by a modification of the

method of Bos, et al. (1981). MPO uses H202 to oxidise a variety of aromatic

compounds by a 1-electron mechanism to give substrate radical.

3,3',5,5'-tetramethylbenzidine (TMB) is a suitable substrate for the assessment of

MPO activity or content. It can be oxidised both enzymatically by MPO as well as
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chemically by H0C1 produced by the MPO-catalysed oxidation of CI". The proposed
reactions are:

H202 + CI"

TMB
MPO/H,Cb

tmb0X[
MPO

. HOC1 + OH"

HOCL
TMB ► TMBOXI (oxidised product of TMB)

Method

1.

2.

3.

4.

5.

6.

The supernatant from each sample was diluted (one in two, one in five and one in

ten) so that the content ofMPO was within the range that could be measured.

Aliquots of supernatant (30 pi) were pipetted in duplicate on to a 96 well plate.

200 pi of reaction mixture [0.1 mg/ml 3,3',5,5'- tetramethylbenzidine (TMB) in
0.05 M citrate phosphate buffer (pH 5.0) supplemented with 0.012% (v/v)

hydrogen peroxide] was immediately added. The reaction was allowed to

develop for 5 minutes where the product from the MPO-dependent reaction of
TMB and H202 appeared as a bright blue color.

The reaction was then stopped by adding 50 pi of 4M H2S04, and the colour of
the product turned from blue colour to a yellow colour. The absorbance was read
in a spectrophotometer (DYNATECH MR7000) at 460 nm.

A standard curve for MPO content of rat peritoneal neutrophils was generated by

plotting absorbance (460 nm) against number of neutrophils (103 - 5 x 104 cells)

(Figure 3.8).

The average value of absorbance (460 nm) of each sample was calculated back to
number of neutrophils (106 cells/g tissue) using the MPO standard curve of rat

peritoneal neutrophils.
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Neutrophil concentration (10 ^ cells)

Figure 3.8 Standard curve ofMPO content ofratperitoneal neutrophils. Equation
shows absorbance (460 nm), y and number ofneutrophils (xl(f cells), x.

3.4.3 Measurement ofmyocardial injury
To ascertain the effect of drugs on the degree of actual myocardial salvage of
ischaemic tissue after reperfusion, an anatomical measurement of necrotic tissue

using histochemical staining was used as an index of ischaemia reperfusion injury.

Myocardial injury was evaluated with the triphenyltetrazolium chloride-Evans blue

technique (Ytrehus et al., 1994), with some modification.

Method

1. The frozen heart was rinsed in cold isotonic saline solution and cut into 2-3 mm

transverse slices from the apex to the base, and the slices were then incubated at

37°C for 15 minutes in 2,3,5-triphenyltetrazolium chloride (TTC, Sigma; 1 %

w/v in normal saline). This produced a bright red colouration in the presence of
the dehydrogenase enzyme in nonnecrotic myocardium, whereas necrotic regions
remained unstained (pale colour) due to the lack of their enzymes and the
nonischaemic region stayed blue.

2. The slices were fixed in 10% formalin in saline for 10 minutes to distinguish
stained and non-stained regions more clearly (Figure 3.9).
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3. The area of myocardium at risk (ischaemic area) was separated from the
non-ischaemic area within each slide then the necrotic area of the myocardium at

risk that did not stain was carefully separated from the stained area (the
ischaemic but non-necrotic area).

4. All three portions of left ventricular myocardium (i.e. non-ischaemic, ischaemic

non-necrotic, and ischaemic necrotic) were weighed and the results expressed as

the area at risk (AAR) determined as a percentage of the total left ventricular wet

weight and the necrotic area expressed as a percentage of the area at risk (AAR)
and as a percentage of the total left ventricular wet weight. The gravimetric
method has been found to correlate closely with the planimetric method

(Vinten-Johansen et al., 1992; Toombs et al., 1992)

Figure 3.9 Photograph showingfour transverse sections from the apex to the base
of left ventricle ofa heart from control group) subjected to 45 minutes occlusion of
the left main coronary artery followed by 2 hours reperfusion. The blue area
represents the non-ischaemic area, whilst the pink and pale areas represent the
ischaemic non-necrotic and ischaemic necrotic areas respectively.

3.4.4 Assignment of animals to study groups
In this study, we used three drugs, an NO donor, GEA 3162 (Kankaanranta et al.,

1996), a selective adenosine A2A receptor agonist, 2-HE-NECA (Monopoli et al.,

1994) and a selective IP analogue, cicaprost (Sturzebecher et al., 1985, 1987;
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Skuballa et al., 1986). The study of the effect of these drugs on neutrophil
accumulation in myocardial tissue in a rat model of myocardial ischaemia

reperfusion was divided into seven experimental groups: Control for GEA treated

group (0.9% saline, n=7); GEA 3162 treated group (lpg/kg/min, n=7); another
control group for 2-HE-NECA and cicaprost (0.9% saline, n=7); 2-HE-NECA
treated group (0.1 pg/kg/min, n=6); 2-HE-NECA treated group (1 pg/kg/min, n=6);

cicaprost treated group (0.1 pg/kg/min, n=5) and cicaprost treated group

(lpg/kg/min, n=9);

The study of the effect of these drugs on myocardial injury in a rat model of

myocardial ischaemia reperfusion was divided into five experimental groups:

Control for GEA 3162 treated group (n=7); GEA 3162 treated group (1 pg/kg/min,

n=7); control for 2-HE-NECA and cicaprost treated group (0.9% saline n=9);
2-HE-NECA treated group (0.1 pg/kg/min, n=7) and cicaprost treated group

(0.1 pg/kg/min, n=7).

3.4.5 Statistical analysis
All results are presented as the mean ± s.e. mean of n experiments. Statistical

analysis was performed by two-tailed unpaired Student's t test for comparing the

following variables between control and treatment groups: myocardial necrotic area

(expressed as a percentage of AAR, or a percentage of total left ventricular wet

weight), neutrophil accumulation in the area at risk or in the normal area, mean

arterial blood pressure and heart rate. A two-tailed paired Student's t test was used
when comparing neutrophil accumulation in the area at risk and normal area within
the control and treatment groups. One-way ANOVA followed by a Dunnett's test

was used to compare the change in mean arterial blood pressure and heart rate within
individual groups with their respective baseline values (30 minutes occlusion value).
A value of P<0.05 was considered to be statistically significant.
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3.5 RESULTS

3.5.1 Neutrophil accumulation

3.5.1.1 Effect ofGEA 3162 on neutrophil accumulation
Occlusion of the left main coronary artery for 45 minutes followed by 2 hours

reperfusion of control animals receiving saline (n=7) resulted in a significant increase
in the number of neutrophils (as assessed by the MPO content) in the area at risk of
the myocardium compared with the normal area of left ventricle, 8.4 ± 0.8 x 106

cells/g tissue and 2.9 ± 0.3 x 106 cells/g tissue, respectively (P<0.005, Figure 3.10)

(Table 3.1, page 138).

After administration of GEA 3162 (1 pg/kg/min i.v., n=7) there was no longer a

significant difference between the number of neutrophils within the area at risk

compared with the normal area of the left ventricle, 5.9 ± 1.1 x 106 cells/g tissue and

3.8 ± 0.4 x 106 cells/g tissue, respectively (P>0.05, Figure 3.10) (Table 3.1). GEA
3162 (1 pg/kg/min) infusion produced a significant decrease in the number of

neutrophils in the area at risk of the myocardium, when compared with the control

group, 5.9 ± 1.1 x 106 cells/g tissue and 8.4 ± 0.8 x 106 cells/g tissue, respectively

(P<0.05, Table 3.1).

There was no significant difference between the number of neutrophils in the normal
area of the left ventricle of the GEA 3162 treated groups compared with the control

group, 3.8 ± 0.4 x 106 cells/g tissue and 2.9 ± 0.3 x 106 cells/g tissue, respectively

(P>0.05).

In the control group, neither blood pressure nor heart rate changed significantly

during saline infusion (P>0.05 ANOVA, Figure 3.11 & Figure 3.12). Infusion of
GEA 3162 (lpg/kg/min) significantly reduced blood pressure (P<0.005, ANOVA)
but had no significant effect on heart rate (P>0.005, ANOVA) (Figures 3.11 & 3.12).

However, there was no significant difference in blood pressure between the control
and GEA 3162 treated group, except at 1.5 hours of reperfusion.
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Figure 3.10 Neutrophil accumulation in AAR and NA of left ventricle in control and
GEA 3162 (1 jug/kg/min) treated group. Values shown are the mean ±s.e. mean of 7
animals in each group. ***P<0.005 and "P<0.05 indicates significantly different from
NA and AAR ofcontrol group, respectively.

Figure 3.11 MABP recorded before, 30 and 45 minutes ofleft main coronary artery
occlusion and during 2 hours reperfusion in control and GEA 3162 (1 jug/kg/min)
treated group. Values shown are mean ± s.e. mean of 7 animals in each group.
*P<0.05 indicates significantly different from control group. # #P<0.01 indicates
significantly different from 30 minutes ofocclusion of the left main coronary artery.
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Figure 3.12 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control and GEA 3162
(1 jug/kg/min) treated group. Values shown are mean ± s.e. mean of 7 animals in
each group.

3.5.1.2 Effect of2-HE-NECA on neutrophil accumulation
In control animals receiving saline (n=7) occlusion of the left main coronary artery

for 45 minutes followed by 2 hours reperfusion, resulted in a significant increase in
the number of neutrophils in the area at risk of myocardium compared with the

normal area of left ventricle, 8.9 ± 0.3 x 106cells/g tissue and 3.3 ± 0.3 x 106cells/g
tissue, respectively (P<0.005, Figure 3.13, Table 3.1, page 138).

After infusion of 2-HE-NECA (1 pg/kg/min i.v., n=6) there was no longer a

significant difference between the number of neutrophils in the area at risk compared

with the normal area of the left ventricle, 3.1 ± 0.5 x 106 cells/g tissue and 3.5 ± 0.4 x

106 cells/g tissue, respectively (P>0.05, Figure 3.13, Table 3.1).
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Infusion of a lower concentration of 2-HE-NECA (0.1 pg/kg/min i.v., n=6) also

inhibited neutrophil accumulation within the area at risk, 4.5 ± 0.5 x 106 cells/g

tissue and 3.7 ± 0.2 x 106 cells/g tissue, in the area at risk and normal area,

respectivly (P>0.05, Figure 3.13, Table 3.1).
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Figure 3.13 Neutrophil accumulation in AAR and NA of left ventricle in control
group (n=7), 2-HE-NECA (0.1pg/kg/min, n=6) and 2-HE-NECA (1 jug/kg/min, n—6)
treated groups. Values shown are the mean ±s.e. mean for each group. ***P<0.005
and :' ::P<0.05 indicates significantly different from NA and AAR of control group
respectively.

There was no significant difference between the number of neutrophils in the normal
area of the left ventricle of both concentrations of 2-HE-NECA (1 pg/kg/min and 0.1

pg/kg/min) treated groups compared with the control groups, 3.5 ± 0.4 x 106 cells/g
tissue, 3.7 ± 0.2 x 106 cells/g tissue and 3.3 ± 0.3 x 106 cells/g tissue (P<0.05,

ANOVA).

In the control group, both blood pressure and heart rate were significantly changed

during infusion of saline (0.5 ml/h) (P<0.05, ANOVA, Figures 3.14 & 3.15).

Infusion of 2-HE-NECA (lpg/kg/min) had significant effects on blood pressure and
heart rate (P<0.005, ANOVA). This concentration of 2-HE-NECA caused
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significant reduction in blood pressure during 45 minutes occlusion to 2 hours of

reperfusion and significant increase in heart rate during 0.5 hour to 2 hours of

reperfusion when compared with the control groups (P<0.05 and P<0.005 as

indicated in Figures 3.14 & 3.15).

a Control

o 2-HE-NECA (0.1 ng/kg/min)

Figure 3.14 MABP recorded before, 30 and 45 minutes ofleft main coronary artery
occlusion and during 2 hours reperfusion in control group(n=7), 2-HE-NECA
(0.1/jg/kg/min, n=6) and 2-HE-NECA (1 jug/kg/min, n=6) treated groups. Values
shown are the mean ± s.e. mean for each group. **"P<0.005 indicates significantly
different from control group. I"'P<0.01 indicates significantly different from 30
minutes ofocclusion of the left main coronary artery.

Although, infusion of 0.1 pg/kg/min 2-HE-NECA caused a small but significant
decrease in blood pressure and increase in heart rate (P<0.05, ANOVA), neither
blood pressure nor heart rate were significantly different from the control groups

except for the heart rate recorded at the 1.5 and 2 hours of reperfusion (P<0.05).
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-o Control

o 2-HE-NECA (O.llng/kglmin)

Figure 3.15 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control group (n=7),
2-HE-NECA (0.1 jug/kg/min, n=6) and 2-HE-NECA (1 jug/kg/min, n=6) treated
groups. Values shown are the mean ±s.e. mean for each group. *P<0.05, **P<0.01
and ***P<0.005 indicates significantly different from control group. #P<0.05 and
tmP<0.01 indicates significantly different from 30 minutes of occlusion of the left
main coronary artery.

3.5.1.3 Effect ofcicaprost on neutrophil accumulation
In control animals receiving saline (n=7), occlusion of the left main coronary artery

for 45 minutes followed by 2 hours reperfusion, resulted in a significant increase in
the number of neutrophils in the area at risk of myocardium compared with the

normal area of left ventricle, 8.9 ± 0.3 x 106cells/g tissue and 3.3 ± 0.3 x 106cells/g
tissue, respectively (P< 0.005, Figure 3.16, Table 3.1, page 138).
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In animals receiving an infusion of cicaprost (1 pg/kg/min i.v., n=9) there was no

significant difference in the number of neutrophils in the area at risk compared with
the normal area of the left ventricle, 4.7 ± 0.7 x 106 cells/g tissue and 3.9 ± 0.4 x 106
cells/g tissue, respectively ( P>0.05, Table 3.1).

In animals receiving an infusion of a lower concentration of cicaprost (0.1 pg/kg/min

i.v., n=5) the number of neutrophils within the area at risk was significantly lower

than the number within the normal area of the left ventricle, 1.9 ± 0.3 x 106 cells/g

tissue and 3.6 ± 0.2 x 106 cells/g tissue, respectively ( P<0.05, Figure 3.16, Table

3.1).
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Figure 3.16 Neutrophil accumulation in AAR and NA of left ventricle in control
group (n=7), cicaprost (0.1pg/kg/min, n=5) and cicaprost (1jug/kg/min, n=9) treated
groups. Values shown are the mean ±s.e. mean for each group. "*P<0.005 and
P<0.05 indicates significantly different from NA of control and cicaprost
(0.1pg/kg/min) treated group, respectively. mP<0.005 indicates significantly
differentfrom AAR ofcontrol group.

There was no significant difference in the number of neutrophils in the normal area
of the left ventricle of both concentrations of cicaprost (1 pg/kg/min and 0.1

pg/kg/min) treated groups when compared with the control groups, 3.9 ± 0.4 x 106
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cells/g tissue, 3.6 ± 0.2 x 106cells/g tissue and 3.3 ± 0.3 x 106 cells/g tissue (P<0.05,

ANOVA).

In the control group, blood pressure decreased significantly during the occlusion

period. Both blood pressure and heart rate were changed significantly during saline
infusion (0.5 ml/h) (P<0.05, ANOVA, Figures 3.17 & 3.18).
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Figure 3.17 MABP recorded before, 30 and 45 minutes of left main coronary artery
occlusion and during 2 hours reperfusion in control group(n=7), cicaprost
(0.1 jUg/kg/min, n=5) and cicaprost (1jug/kg/min, n=9) treated groups. Values shown
are the mean ± s.e. mean for each group. *P<0.05 and *"P<0.005 indicates
significantly different from control group. mP<0.01 indicates significantly different
from 30 minutes ofocclusion of the left main coronary artery.

Infusion of cicaprost (lpg/kg/min) caused a significant drop in blood pressure

(P<0.005, ANOVA) but had no significant effects on heart rate (P>0.05, ANOVA).
This concentration of cicaprost caused a significant reduction in blood pressure

-a Control

o Cicaprost (0.1 pg/kg/min)

Cicaprost (1 pg/kg/min)
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during 0.5 to 2 hours of reperfusion when compared with the control group (P<0.05
and P<0.005 as indicated in Figure 3.17) and caused a significant increase in heart
rate from 30 minutes occlusion throughout the reperfusion period (P<0.05, P<0.01
and P<0.005 as indicated in Figure 3.18).

Infusion of cicaprost (0.1 pg/kg/min) also caused a significant reduction in blood

pressure (P<0.005, ANOVA) but had no significant effects on heart rate (P>0.05,

ANOVA). However, this concentration of cicaprost did not cause significant
difference in both blood pressure and heart rate when compared with the control

group except the blood pressure recorded at the 2 hours of reperfusion (P<0.05,

ANOVA).

a Control

o Cicaprost (0.1/pg/kg/min)
—— Cicaprost (1 pg/pg/min)

c\ ir\ ^
O

Figure 3.18 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control group (n= 7), cicaprost
(0.1jUg/kg/min, n=5) and cicaprost (1pg/kg/min, n=9) treated groups. Values shown
are the mean ± s.e. mean for each group. *P<0.05, **P<0.01 and ***P<0.005
indicate significantly differentfrom control group.
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Table 3.1 The effect of GEA3162, 2-HE-NECA and cicaprost on neutrophil
accumulation in area at risk and normal area of the left ventricle of the heart
subjected to 45 minutes occlusion of the left main coronary artery followed by 2
hours reperfusion.

Drug/vehicle Concentration

(pg/kg/min)
number

(n)
Neutrophil accumulation
(10 6 cells/g tissue)
AAR NA

Saline 0.5 ml/h 7 8.4 + 0.8*" 2.9 ±0.3

(Control 1)

GEA 3162 1 7 5.9 ± 0.1" 3.8 ±0.4

Saline 0.5 ml/h 7 8.9 ±0.3*" 3.3 ±0.3

(Control 2)

2-HE-NECA 1 6 3.1 ± 0.5*"" 3.5 ±0.4

2-HE-NECA 0.1 6 4.5 ± 0.5*"" 3.7 ± 1.2

Cicaprost 1 9 4.7 ± 0.7### 3.9 ±0.4

Cicaprost 0.1 5 1.9 ±0.3***'* 3.6 ±0.2

Control 1 is for GEA 3162 treated group; control 2 is for 2-HE-NECA and cicaprost
treated group. * P<0.05 and *** P<0.005 indicates significantly different from NA of
cicaprost (0.1 jug/kg/min) treated group and control groups, respectively. nP<0.05
and m#P<0.005 indicate significantly different from AAR of control 1 and control 2,
respectively.

3.5.2. Myocardial infarct size
Occlusion of the left main coronary artery was confirmed by changes in the colour of
the distal portion of the artery and of the epicardial surface. Occlusion of the left
main coronary artery for a period of 45 minutes followed by 2 hours reperfusion
resulted in extensive injury to the myocardium. Figure 3.3 shows the rat heart

subjected to 45 minutes ischaemia followed by 2 hours reperfusion with a clearly
defined area at risk (pink) and normal area (blue) on the surface of the heart after
Evan's blue dye injection. Occlusion of the left main coronary artery in the control

group produced the area at risk (AAR) of 43.0% ± 1.9% of the total left ventricle wet
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weight and necrotic myocardium of 35.1% ± 2.6% of the AAR or 15.0% ± 1.1% of
the total left ventricle (Figure 3.19). The ischaemic necrotic, ischaemic non-necrotic
and non-ischaemic area of the left ventricle subjected to ischaemia and reperfusion of
a control group are clearly seen from the transverse sections from the apex to the
base of the left ventricle (Figure 3.9).

3.5.2.1 Effect ofGEA 3162 on myocardial infarct size
The area at risk expressed as a percentage of the total left ventricular wet weight was
not significantly different between the control and GEA 3162 treated groups, 42.9%
± 1.9% and 43.2% ± 3.2% respectively (n=7, Figure 3.19) (Table 3.2, page 149),

indicating that the region ofmyocardium subjected to ischaemia was comparable in
both groups.

Infusion of GEA 3162 (1 pg/kg/min) significantly reduced the necrotic myocardial
tissue expressed as a percentage of the myocardial AAR, 19.7% ± 1.1% compared
with the control group, 35.1% ± 2.6%, (n=7, P<0.005) (Table 3.2) and reduced
necrotic area expressed as a percentage of the total left ventricular wet weight 8.5% ±

0.8% compared with the control group, 15.0% ± 1.1% (n=7, P<0.005) (Table 3.2).

Thus, GEA 3162 infusion resulted in significant attenuation of necrotic tissue in the
AAR myocardium after ischaemia reperfusion.

In the control group, there was a significant change in heart rate (P<0.01, ANOVA,

Figure 3.21) but there was no significant effect on blood pressure (P>0.05, ANOVA,

Figure 3.20) during infusion of saline (0.5 ml/h).

Infusion of GEA 3162 (1 gg/kg/min) caused a significant reduction in blood pressure

(P<0.005 ANOVA) and had significant effects on heart rate (P<0.005). However,

there was no significant difference in blood pressure and heart rate at any time
between the control and GEA 3162 treated group (Figures 3.20 & 3.21).

140



CHAPTER 3

□ Control

Area at risk Necrotic Necrotic
Total Area at risk Total

Figure 3.19 Tissue wet weight of area at risk as a percentage of the total left
ventricular wet weight, and of necrotic area as a percentage of area at risk and of
the total left ventricular wet weight for control and GEA 3162 (1pg/kg/min) treated
group. Values shown are the mean ± s.e. mean of seven animals in each group.
***P<0.005 indicate significantly differentfrom control group.

Figure 3.20 MABP recorded before, 30 and 45 minutes ofleft main coronary artery
occlusion and during 2 hours reperfusion in control group and GEA 3162
(1 jUg/kg/min) treated group. Values shown are mean ± s.e. mean of 7 animals in
each group. #P<0.05 and ##P<0.01 indicates significantly different from 30 minutes
ofocclusion of the left main coronary artery.
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Figure 3.21 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control group and GEA 3162
(1jug/kg/min) treated group. Values shown are mean ±s.e. mean of 7 animals in each
group. #P<0.05 indicates significantly different from 30 minutes occlusion of the left
main coronary artery.

3.5.2.2 Effect of2-HE-NECA on myocardial infarct size
The area at risk expressed as a percentage of the total left ventricular wet weight was
not significantly different between the control and 2-HE-NECA treated groups,

42.5% ± 1.6% (n=9) and 38.1% ± 2.6% (n=7), respectively (Figure 3.22, Table 3.2).
Infusion of 2-HE-NECA (O.lpg/kg/min) significantly reduced the necrotic

myocardial tissue expressed as a percentage of the myocardial AAR, 17.6% ± 1.2%

compared with the control group, 35.2% ± 1.8% (P<0.005) and of 6.8% ± 0.8% as

expressed as a percentage of the total left ventricular wet weight compared with the
control group, 15.0% ± 0.9% (P<0.005) (Table 3.2). Thus, 2-HE-NECA infusion
resulted in significant attenuation of necrotic tissue in the rat after ischaemia

reperfusion. The effect of 2-HE-NECA (0.1 pg/kg/min) on reduction of necrotic

myocardial tissue is shown in Figure 3.23.
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[~1 Control

& 2-HE-NECA

Area at risk
Total

Necrotic
Area at risk

Necrotic
Total

Figure 3.22 Tissue wet weight of area at risk as a percentage of the total left
ventricular wet weight, and of necrotic area as a percentage of area at risk and of
the total left ventricular wet weight for control (n=9) and 2-HE-NECA (0.1
1pg/kg/min, n=7) treated group. Values shown are the mean ± s.e. mean for each
group. P<0.005 indicate significantly different from control group.

Figure 3.23 Photograph showing five transverse sections from apex to base) of left
ventricle of a heart subjected to 45 minutes occlusion of the left main coronary
artery followed by 2 hours reperfusion of 2-HE-NECA (0.1 pg/kg/min). The blue
area represents the non-ischaemic area, whilst the pink andpale areas represent the
ischaemic non-necrotic and ischaemic necrotic areas, respectively.
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However, infusion of 2-HE-NECA (0.1 pg/kg/min) had significant effects on blood

pressure and heart rate (P<0.005, ANOVA) (Figures 3.24 & 3.25). 2-HE-NECA
caused a significant reduction in blood pressure from 45 minutes occlusion until the
end of the reperfusion period when compared with the control group (P<0.005 and
P<0.01 as indicated in Figure 3.24). Infusion of this drug also caused a significant
increase in heart rate compared with the control group (P<0.01, measured at 0.5 hour

reperfusion and P<0.005, measured at 1, 1.5 and 2 hours of reperfusion) (Figure

3.25)

Figure 3.24 MABP recorded before, 30 and 45 minutes of left main coronary artery
occlusion and during 2 hours reperfusion in control group (n—9) and 2-HE-NECA
(0.1 jug/kg/min, n=7) treated group. Values shown are mean ± s.e. mean for each
group. "P<0.01 and ***P<0.005 indicate significantly different from control group.
#P<0.05 and mP < 0.01 indicates significantly different from 30 minutes ofocclusion
of the left main coronary artery.
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-a Control

o 10 ^ ^1
«"> C) "4

Figure 3.25 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control group (n=9) and and
2-HE-NECA (0.1 jug/kg/min, n=7) treated group. Values shown are mean ± s.e.
mean for each group. **P<0.01 and **P<0.005 indicate significantly different from
control group. #P<0.05 and nP<0.01 indicates significantly different from 30
minutes ofocclusion ofthe left main coronary artery.

3.5.2.3 Effect ofcicaprost on myocardial infarct size
The area at risk expressed as a percentage of the total left ventricular wet weight was
not significantly different between the control and cicaprost treated group, 42.5% ±

1.6% (n=9) and 38.2% ± 3.1% (n=7), respectively (Figure 3.26, Table 3.2).

Infusion of cicaprost at the concentration of 0.1 pg/kg/min significantly reduced the
necrotic myocardial tissue expressed as a percentage of the myocardial AAR, 15.6%
± 0.7% compared with the control group, 35.2% ± 1.8% (P<0.005) and as expressed
as a percentage of the total left ventricle, 6.0% ± 0.6% compared with the control

group, 15.0% ± 0.9% (P<0.005) (Table 3.2). Thus, cicaprost infusion resulted in
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significant attenuation of necrotic myocardial tissue in the rat after myocardal
ischaemia reperfusion.

50-|

□ Control

88 Cicaprost

0

Area at risk Necrotic Necrotic
Total Area at risk Total

Figure 3.26 Tissue wet weight of area at risk as a percentage of the total left
ventricular wet weight, and of necrotic area as a percentage of area at risk and of
the total left ventricular wet weight for control (n=9) and cicaprost (0.1 jtig/kg/min,
n=7) treated group. Values shown are the mean ± s.e. mean for each group.
*"P<0.005 indicate significantly differentfrom control group.

However, infusion of cicaprost (0.1 pg/kg/min) caused significant changes in blood

pressure and heart rate (P<0.005, ANOVA) (Figures 3.27 & 3.28). Cicaprost caused
a significant reduction in blood pressure when compared with the control group

(P<0.005, measured at 0.5 and 1 hour reperfusion and P<0.01, measured at 1.5 and 2
hours reperfusion). Infusion of cicaprost also caused a significant increase in heart
rate compared with the control group (P<0.01, measured at 0.5 hour reperfusion and

P<0.005, measured at pre-occlusion, 1, 1.5 and 2 hours of reperfusion).
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Figure 3.27 MABP recorded before, 30 and 45 minutes ofleft main coronary artery
occlusion and during 2 hours reperfusion in control group(n=9) and and cicaprost
(0.1pg/kg/min, n=7) treated group. Values shown are mean ± s.e. mean for each
group. "P<0.01 and "*P<0.005 indicate significantly different from control group.
## P<0.01 indicates significantly different from 30 minutes of occlusion of the left
main coronary artery.
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<3 Control

Figure 3.28 Heart rate recorded before, 30 and 45 minutes of left main coronary
artery occlusion and during 2 hours reperfusion in control group (n=9) and
cicaprost (0.1 jug/kg/min, n=7) treated group. Values shown are mean ± s.e. mean

for each group. "P<0.01 and "*P<0.005 indicate significantly different from
control group. nP<0.05 and mP<0.01 indicates significantly different from 30
minutes ofocclusion ofthe left main coronary artery.
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Table 3.2 The effects of GEA 3162, 2-HE-NECA and cicaprost on myocardial
necrosis.

Drug/vehicle Concentration number %AAR %Necrotic %Necrotic
(pg/kg/min) (n) Total AAR Total

0.5 ml/h 7Saline

(Control 1)

GEA 3162

Saline

(Control 2)

2-HE-NECA

Cicaprost

1

0.5 ml/h

0.1

0.1

7

9

7

7

42.9 ± 1.9

43.2 ±3.2

42.5 ± 1.6

38.1+2.6

38.3 ±3.1

35.1 ±2.6

19.7 ± 1.1*"

35.2 ± 1.8

17.6 ± 1.2*"

15.6 ±0.7***

15.0 ±1.1

8.5 ±0.8***

15.0 ±0.9

6.8 ±0.8***

6.0 ± 0.6***

% AAR/Total: Tissue wet weight of area at risk as a percentage of the total left
ventricular wet weight. %Necrotic/AAR: Tissue wet weight of necrotic area as a
percentage of the area at risk. %Necrotic/Total: Tissue wet weight ofnecrotic area
as a percentage of the total left ventricular wet weight. Control 1 is for GEA 3162
treated group and control 2 is for 2-HE-NECA and cicaprost treated groups.
*"P<0.005 indicates significantly differentfrom each control group.

3.6 DISCUSSION

Neutrophil activation and accumulation in the myocardium are suggested to be major

pathological events in reperfusion injury (Engler et al., 1983). Emigration of

neutrophils into the ischaemic-reperfused myocardium is associated with
microvascular injury and myocyte damage (Lucchesi, 1990; Mullane, 1988). A
critical event in the early phase of reperfusion injury is endothelial dysfunction;
manifested as a loss of ability to produce NO and PGI2 (Thiemermann et al., 1985;
Aoki et al., 1988; Bitterman et al., 1988; Nichols et al., 1988), both of which are

inhibitors of neutrophil adhesion to vascular endothelium (Lefer et al., 1978; Jones &

Hurley, 1984; McCall et al., 1988; Kubes et al., 1991). Adherence of neutrophils to

the endothelium can lead to further endothelial damage and represents a critical step
in the pathogenesis of ischaemia reperfusion injury (Harlan, 1987). As endothelial
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dysfunction occurs early in reperfusion, efforts have been made to supplement NO,

PGI2 and adenosine during MI-R.

As shown in the results of Chapter 2, the novel NO donor, GEA 3162, caused

significant concentration-dependent inhibition of fMLP-induced human neutrophil
chemotaxis in vitro and it was therefore decided to determine whether treatment with

GEA 3162 during reperfusion would reduce neutrophil infiltration in a rat model of
MI-R. The in vivo effects of GEA 3162 on neutrophil infiltration were also

compared with the effects of drugs that are known to inhibit neutrophil function: a

potent selective A2A receptor agonist 2-HE-NECA, and a metabolically and

chemically stable PGI2 analogue cicaprost (ZK 96 480). In addition, the effects of
inhibition of neutrophil accumulation by these drugs on myocardial injury in a rat

model ofMI-R were also investigated.

To study the effects of these drugs on neutrophil infiltration to the ischaemic area of
the heart, a rat model ofMI-R was set up. Myocardial ischaemia of the left ventricle
of the heart was induced by occlusion of the left main coronary artery to induce an

infarcted area of the left ventricle. During the surgical procedures, which included a

left thoracotomy incision and exteriorisation of the heart, a reduction in blood

pressure always occurred. However, blood presure and heart rate returned to

baseline after rats were allowed to equilibrate for 15 minutes after completion of all

surgical procedures. Reduction in blood pressure always occurred during the
occlusion period within the control and treated groups. After the ischaemic

myocardium was reperfused, an increase in blood pressure was observed within the
control group. However, blood pressure was seen to decrease in the treated group

following the infusion of test drugs and remained low until the end of the reperfusion

period. Although lignocaine was injected intravenously prior to thoracotomy
incision to prevent the occurrence of arrhythmias, during occlusion of the left main

coronary artery, some animals developed arrhythmias and were given further

lignocaine 0.5-1.0 mg/kg iv. After 45 minutes of occlusion of the left main coronary

artery, the ischaemic myocardium was reperfused for 2 hours, reperfusion for a

shorter period may show less infarct size than a longer period. Within a few seconds
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after reperfusion of the ischaemic myocardium, some animals were found to develop
reversible arrhythmias, but some animals underwent irreversible ventricular
fibrillation. Oxygen radical production appears to peak within the first few minutes
of reperfusion, but continues at a lower level for hours (Bolli et al., 1988). The rapid

production of oxygen-derived free radicals during reperfusion of ischaemic

myocardium contributes to irregularities of rhythm (Manning & Hearse, 1984;
Kusuma et al., 1990). Pallandi et al. (1987) proposed that a sudden burst of oxidant

stress, injured membrane proteins, leading to ionic imbalances and electrical

instability. In this study, electrocardiography was not used and therefore, only the
area at risk demarcated with Evan's blue dye was used to confirm the left main

coronary artery occlusion. Animals that did not achieve occlusion of the left main

coronary artery or underwent irreversible ventricular fibrillation were excluded from
this study.

Several factors should be taken into account when examining the ability of these

drugs to limit neutrophil accumulation and myocardial injury. It was suggested that

myocardial injury depended directly on the severity and duration of ischaemia; a

longer duration of ischaemia is likely to cause more cell death, making it impossible
for tissue salvage by any intervention. After prolongation of ischaemic duration, cell
necrosis starts from the subendocardial region, spreads slowly towards the

subepicardium (Reimer & Jennings, 1979), and becomes transmural within 2 hours

(Fujiwara et al., 1982). The duration of the preceding ischaemia may also be

important in determining the effectiveness of antineutrophil interventions (Jolly et

al., 1986; Williams et al., 1994). In this study, myocardial ischaemia was induced
for 45 minutes and analysis of the data showed that both control and drug-treated

groups were exposed to comparable degrees of ischaemia. The area at risk

(ischaemic area) of the control and the drug-treated groups was 38-43% of the total
area of left ventricle wet weight.

The degree of injury is dependent on the extent of the collateral blood flow and
duration of ischaemia. In some species, such as the guinea pig, collateral flow is so

extensive that even complete coronary artery occlusion by ligation results in no
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detectable ischaemia. In other species, such as the rat, the coronary collateral flow is
so low that severe ischaemia occurs (Schaper, 1984) and therefore, coronary

occlusion and reperfusion results in a uniform degree ofmyocardial injury.

Tissue wet weight was used as a measurement of the size of area at risk and infarct
area in this study. The techniques of assessing injury vary considerably. The
method used for measuring the infarct size is a potential source of error. Schaper,

(1979) demonstrated that infarct size measured histochemically, correlated very well
with the size determined by histological examination. 2,3,5-triphenyltetrazolium
chloride was used in this study to demarcate the necrotic and non-necrotic areas. The
use of tetrazolium is a standard choice for delineating the transmural infarct area,
which is not easily measurable by using normal histological techniques (Miura et al.,

1988). It has been suggested that there is a close correlation between the size of area
at risk and infarct area measured by either area (planimetric method) or tissue wet

weight (gravimetric method) (Mullane & Moncada, 1982; Vinten-Johnansen et al.,

1992; Toombs et al., 1992).

Dreyer et al. (1991) demonstrated that neutrophils are localised into the previously
ischaemic myocardium, predominantly during the first hour of reperfusion. In the

present study, each drug or saline vehicle was infused 10 minutes before reperfusion
of the ischaemic myocardium. Infusion was continued throughout the period of

reperfusion (2 hours) because the drugs have to be present in the ischaemic

myocardium prior to reperfusion in order to be effective.

The open-chest rat model of MI-R that was set up in this study enabled the
inducement of myocardial ischaemia of the left ventricle after occlusion of the left
main coronary artery, which led to necrosis of ischaemic myocardial tissue after

reperfusion of the ischaemic myocardium. It is therefore, reasonable to assume that
this rat model of MI-R is useful for the study of the in vivo effects of GEA 3162,
2-HE-NECA and cicaprost on neutrophil infiltration and myocardial injury.
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At physiological concentrations, NO possesses a number of properties which may

make it ideal for the treatment ofMI-R injury. A study by Williams et al., suggested
that endogenous NO production exerted a tonic cardiprotective effect on myocardial
infarction following coronary reperfusion (Williams et al., 1995). Exogenous

administration of NO or organic NO donors provides another means of replacing a

naturally occuring endothelially produced humural agent and attenuating the degree
of ischaemia reperfusion injury. Several investigators have attempted to treat MI-R

injury with authentic NO (Johnson et al, 1991), the NO synthase substrate L-arginine

(Nakanishi et al., 1992; Weyrich et al., 1992; Pernow et al., 1994) and various
nitrovasodilators. A number of experimental studies have provided evidence for the

cardioprotective role of these drugs in MI-R.

In the present study, the ability ofGEA 3162 to inhibit neutrophil infiltration in vivo
was investigated in a rat model ofMI-R injury and the results demonstrated that the
new potent NO donor, GEA 3162 was able to inhibit neutrophil accumulation in the
ischaemic area after MI-R. Furthermore, this was associated with a reduction in

myocardial necrosis. Thus, the reduction of necrotic area within the ischaemic area

may be attributed in part to the inhibitory action of GEA 3162 on neutrophil
accumulation.

These findings are in agreement with those of other investigators using different
classes of NO donors. For example, a novel cysteine-containing NO donor

N-nitratopivaloly-S- (N'-acetylalanyl)-cysteine ester (SPM 5185) (Noak, et al.,

1992) was shown to reduce myocardial necrosis in a feline model ofMI-R injury and
attenuation of neutrophil-induced endothelial dysfunction was suggested to be a

likely mechanism for the cardioprotection of this drug (Siegfried et al., 1992b). The

cardioprotective effect of this drug was also demonstrated in a canine model ofMI-R

by Lefer et al. (1993) who showed that intracoronary administration of SPM 5185

during reperfusion reduced neutrophil accumulation and myocardial necrosis. The
reduction in myocardial injury may be partially related to the inhibitory action of this

drug on neutrophil adherence to the coronary endothelium which leads to attenuation
of neutrophil-dependent endothelial cell damage (Lefer et al., 1993). A study by
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Fung et al. (1994) showed that SIN-1 (Feelisch & Noack, 1987) was an effective in

vivo cardioprotector in a rabbit model ofMI-R. In contrast, Siegfried et al. (1992a)
demonstrated that SIN-1 and C87-3754, the sydnonimine class of NO donors which
release NO spontaneously and nonenzymatically at physiological pH in aqueous

systems (Feelisch, et al., 1989), decreased myocardial necrosis and

reperfusion-induced endothelial dysfunction in a feline model ofMI-R. This was not

however, associated with the accumulation of neutrophils in the necrotic area. From

this, it seems likely that other mechanisms may contribute to the cardioprotective
effect of the SIN-1 and C87-3754. It is thought that MI-R injury is caused largely by

neutrophil-derived mediators. However, there is evidence indicating that another

important source of the oxygen-derived free radicals in reperfusion injury may be the
endothelium itself (Tsao & Lefer, 1990) which suggests that neutrophils might not be
the only source of toxic mediators in reperfusion injury.

Both attenuation of neutrophil accumulation in ischaemic myocardium and reduction
of myocardial injury produced by GEA 3162 were associated with a reduction in
MABP and change in heart rate. It was previously shown that intravenously
administered GEA 3162 induced a dose-dependent and short lasting hypotensive
effect accompanied by a transient tachycardia (Nurminen & Vapaata, 1996).

Unfortunately, the concentration chosen had no significant effect on blood pressure

and heart rate during pilot studies because these used intact rats. The decrease in
MABP in the rat model of MI-R after GEA 3162 was infused may be due to its

vasodilating effect, but other factors such as the depth of anaesthesia and the duration
of infusion of the drug may also have contributed to the decrease in MABP.

As GEA 3162 is an effective vasodilator (Corell et al., 1994), it might be expected

that the cardioprotection of this drug occured through either systemic or coronary

vasodilation. It is possible that NO donors could dilate large epicardial conductance
vessels or collateral vessels to increase the flow to the area at risk (Bassenge &

Mulsch, 1989). Unfortunately, both coronary and collateral flow were not measured

during MI-R in this study, therefore, we cannot conclude whether or not coronary
and collateral flow to the ischaemic-reperfused myocardium contributed to the

154



CHAPTER 3

attenuation of neutrophil accumulation and myocardial necrosis. With regard to the

possibility of collateral flow, Schaper (1984) noted that the collateral circulation of
the rat is poorly developed and unlikely to be a factor. It seems unlikely that colleral
flow contributes a major role in this model of MI-R injury and_GEA 3162 seems

unlikely to achieve its protective effects by dilating collateral arteries in the

myocardium. As the coronary blood flow was not measured during MI-R, it is not

possible to state the extent to which the coronary flow was affected by the

vasodilating activity of GEA 3162. Furthermore, it is also not possible to conclude
whether or not the increase in coronary blood flow affected neutrophil infiltration
and myocardial necrosis. However, if the cardioprotective effect of this drug occured

through either systemic or coronary vasodilation, the admistration of GEA 3162
should result in the attenuation of neutrophil accumulation in both the area at risk
and the normal area, but it was found that only the number of neutrophils in the area

at risk was reduced after GEA 3162 was administered. In addition, according to

Bassenge & Mulsch (1989), the epicardial dilatation produced by SIN-1 was not

accompanied by any long-term increase in coronary flow and resistance. Thus,

systemic or coronary vasodilation seems unlikely to be the mechanism by which
GEA 3162 exerted cardioprotection. Further investigations using GEA 3162 at doses
lower than 1 pg/kg/min are required to find the dose of GEA 3162 that exerts a

cardioprotective effect without causing a significant haemodynamic change.

GEA 3162 has previously been shown to cause significant concentration-dependent
inhibition of fMLP-stimulated human neutrophil chemotaxis (Moilanen et al., 1993;
Wanikiat et al., 1997). It is probable that the inhibitory effect of GEA 3162 on

neutrophil chemotaxis may be related to the attenuation of neutrophil accumulation
in the ischaemic area in the rat model ofMI-R injury.

As GEA 3162 is a potent NO donor which releases NO spontaneously in aqueous

solutions, the probable mechanism of the cardioprotective effect ofGEA 3162 is the

replacement of decreased endogenous NO to protect endothelial cell function. NO is
known to inhibit neutrophil aggregation and quench 02 (McCall et al., 1988;
Moncada et al., 1989). It is possible that these actions protect endothelial cells from
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injury. It was previously demonstrated that the anti-adhesion properties of NO are

related to its ability to inactivate 02~ (Gaboury et al., 1993). GEA 3162 has

previously been shown to suppress dose-dependent zymosan-induced Of production
in human blood cells as measured by luminol-enhanced chemiluminescence

(Moilanen et al., 1993). In addition, it was demonstrated that NO donors can block

NADPH oxidase and the resulting superoxide burst in neutrophils (Clancy et al.,

1992). Thus, the possible mechanisms for the cardioprotective effects of GEA 3162
in MI-R may be the supression of 02" generation and/or the direct quenching of Of

by the NO released from GEA 3162. This may lead to the prevention of adherence of

neutrophils to the endothelium and finally the attenuation of neutrophil
accumulation.

Although GEA 3162 was shown to protect the ischaemic myocardium from

reperfusion injury, there are reports that NO can also combine with Of in vitro to

produce a toxic free radical, ONOO (Beckman et al., 1990). This radical has been
shown to oxidise sulfhydryl groups and peroxidise membrane lipids (Radi et al.,

1991), both of which are harmful to cells. However, it is unlikely that ONOO" plays
a significant role in MI-R injury due to the high concentration of ONOO" required to

produce lipid peroxidation and its short half-life (1.9 sec) (Beckman et al., 1990).

Furthermore, if binding of NO to 02" produced significant quantities of ONOO", an

increase in reperfusion injury would be expected, with the additional NO that GEA
3162 provides, rather than attenuation ofmyocardial injury as was observed with the
administration ofGEA 3162. Moreover, NO donors can block NADPH oxidase and

the resulting superoxide burst in neutrophils, suggesting that NO can simultaneously

disrupt signal pathways, that are initiated by reactive oxygen species and reduce the

potential for toxic levels of ONOO" synthesis (Clancy et al., 1992). In addition,
recent studies have shown that physiologically relevant concentrations of ONOO"
exert significant cardioprotective effects in animal models of MI-R, in part by
inhibition of endothelial cell surface expression of P-selectin and attenuation of

neutrophil-endothelial cell interactions (Lefer et al., 1997; Nossuli et al., 1997,

1998).
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Like other endothelially released vasodilators, adenosine has been shown to protect

the myocardium during both ischaemia and reperfusion (Engler et al., 1991).

Although several mechanisms may contribute to the cardioprotective role of

adenosine, inhibition of neutrophil activation is of some importance (Rudolphi et al.,

1992). Gunther & Herring, (1991) found that endogenous adenosine is released by
the vascular endothelium in sufficient quantities to inhibit 02" generation by

neutrophils, via an A2-mediated mechanism. Adenosine was shown to directly
inhibit the production of 02~ from stimulated neutrophils (an

endothelium-independent action) by interacting with specific adenosine A2 surface

receptors (Cronstein et al., 1983, 1985a, 1985b, 1986, 1990, 1992; Nakanishi et al.,

1994; Zhao et al., 1996), as well as inhibit neutrophil adherence and subsequent

damage to the endothelium (Nolte et al., 1991, 1992; Nakanishi et al., 1994; Zhao et

al., 1996). In addition to inhibition of adherence and injury to vascular endothelium,

Bullough et al. (1995) have shown that adenosine inhibits neutrophil-myocyte
adhesion and adherence-dependent injury to myocytes. Adenosine was found to act

via A2 receptors to inhibit the upregulation of Mac-1 (integrin) expression of
fMLP-stimulated neutrophils (Wollner et al., 1993). This effect of adenosine may

help to limit Mac-1-dependent neutrophil exudation at sites of inflammation or

ischaemic-reperfusion (Wollner et al., 1993). Recently, Zhao et al. demonstrated
that adenosine reduced neutrophil-mediated injury to the coronary endothelium by

A2-receptor-mediated inhibition of 02" generation and adherence (Zhao et al., 1996).
Based on pharmacological data, it appears that the A2A receptor on neutrophils
mediates the inhibition of neutrophil 02 generation, adhesion to endothelial

monolayers, and phagocytosis (Cronstein, 1994). Stimulation of adenosine A2A

receptors, therefore, may account for most of the beneficial effects of adenosine in

reperfusion injury (Cronstein, 1994).

In the present study, the in vivo effect of 2-HE-NECA on neutrophil infiltration and
the inhibitory effect of neutrophil infiltration by 2-HE-NECA on myocardial

necrosis, were examined in a rat model of MI-R injury. The results demonstrated
that 2-HE-NECA inhibited neutrophil accumulation in ischaemic myocardium after

MI-R, and that this was associated with a reduction in myocardial necrosis. Thus,
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the reduction of necrotic area in the ischaemic area by 2-HE-NECA may be
attributed in part to its inhibitory action on neutrophil accumulation.

These results concur with other studies that have shown the cardioprotective effects
of other selective A2A receptor agonists on MI-R. For example, CGS-21680, a

selective adenosine A2A receptor agonist, was shown to reduce infarct size in the

postischaemic area as much as adenosine, in a rabbit model ofMI-R (Norton et al.,

1992) and in a canine model of MI-R (Schlack et al., 1993). The cardioprotective
effects of this drug were recently confirmed by Jordan et al. (1997) who
demonstrated that CGS-21680 reduced infarct size, 02" generation in vitro, neutrophil
adherence to the coronary vascular endothelium and neutrophil accumulation in the
area at risk in a canine model of MI-R. Jordan et al. suggested that selective
activation of adenosine A2 receptors during reperfusion, with the A2-selective agonist

CGS-21680, reduced reperfusion injury by inhibiting neutrophil-mediated damage.

The inhibitory effect of 2-HE-NECA on human neutrophil 02" generation was

examined and the results demonstrated that 2-HE-NECA (0.001-10 pM) produced a

concentration-related inhibition of fMLP-induced Of generation in human

neutrophils (unpublished data from our group). The inhibitory effect of 2-HE-NECA
on neutrophil Of generation and the suggestion that stimulation of adenosine A2A

receptors may account for most of the beneficial effects of adenosine in reperfusion

injury, leads one to presume that 2-HE-NECA administration during reperfusion may
reduce myocardial injury by inhibiting neutrophil-related processes. For example:

neutrophil Of generation, neutrophil adherence to the coronary endothelium and

neutrophil accumulation in the area at risk.

While administration of 2-HE-NECA caused significant attenuation of infarct size
and neutrophil accumulation, it also caused a significant decrease in MABP and an

increase in heart rate during the reperfusion period, particularly at the higher dose.
The decrease in MABP seen with 2-HE-NECA may not only be due to its

vasodilating effect, but other factors (e.g., depth of anaesthesia), previously discussed
for GEA 3162, may have contributed to these haemodynamic changes. Since
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2-HE-NECA is a potent vasodilating agent in both in vitro and in vivo models, it

might be expected that the increase in coronary blood flow to the

ischaemic-reperfused myocardium plays a role in the cardioprotection elicited by
2-HE-NECA as in the case of GEA 3162. If this is the case, 2-HE-NECA infusion

should have resulted in the attenuation of neutrophil accumulation in the area at risk,
as well as in the normal area. However, the results showed only a significant
reduction of neutrophil accumulation in the area at risk. Therefore, it seems unlikely
that the inhibitory effect of 2-HE-NECA on neutrophil infiltration and myocardial
necrosis was related to its vasodilating effect. This assumption is further supported

by other studies. Vinten-Johansen et al. and Hori & Kitakaze. demonstrated a

marked reduction in infarct size (Vinten-Johansen et al., 1992, 1995b) and increase
in functional recovery (Hori & Kitakaze, 1991; Vinten-Johansen et al., 1992) when

reperfusion was gradually, rather than abruptly, restored. With this gradual

reperfusion protocol, coronary blood flow is intentionally limited to approximtely
20% of base line during the first 10 minutes of reflow and is gradually increased to

unimpaired levels over 30 minutes. Therefore, enhanced blood flow during early

reperfusion is not clearly associated with a reduction in morphological injury to the

myocardium, although a transient improvement in contractile function may be
observed. In addition, Toombs et al. (1992) showed that the pretreatment with
adenosine before ischaemia conferred cardioprotection independent of

haemodynamic effects, in a rabbit model of MI-R. From these findings, it is
reasonable to assume that coronary vasodilation seems unlikely to be a mechanism

by which 2-HE-NECA exerts cardioprotection. However, 2-HE-NECA at doses
lower than 0.1 pg/kg/ml will be needed for further investigation to discover the

appropriate dose of 2-HE-NECA that exerts cardioprotection without change in

haemodynamic parameters.

In the present study, the ability of cicaprost (ZK 96 480) to inhibit neutrophil
infiltration into ischaemic myocardium in vivo in a rat model of MI-R injury was

demonstrated and this was associated with a reduction in myocardial necrosis. Thus,
the reduction of myocardial necrosis in the ischaemic area by cicaprost may be
attributed in part to the inhibitory effect of cicaprost on neutrophil accumulation.
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These results are in agreement with the results from other investigators' work where

PGI2 and its stable anlogues were used. For example, a stable PGI2 analogue,

taprostene, which is more potent than PGI2 in its cytoprotective and antiplatelet
effects (Lefer & Darius, 1989), exerted a significant cardioprotection in a feline
model of MI-R. This cardioprotection was related to protection of coronary

endothelium integrity and prevention of neutrophil accumulation in the ischaemic

myocardium (Johnson, et al., 1990). The beneficial effect of taprostene in

ischaemia-reperfusion was later confirmed by Lefer et al. (1994) who showed that

taprostene exerted a profound inhibitory effect on neutrophil-endothelium interaction
and subsequent neutrophil-mediated coronary endothelial dysfunction. Another

synthetic PGI2 analogue, beraprost was shown to exert cytoprotective effect in a

canine model of MIR. This effect may be the consequence of the inhibition of

neutrophil migration (Ueno et al., 1994). This drug was previously shown to

effectively inhibit fMLP-induced chemotaxis of neutrophils. Cicaprost has

previously been shown to cause concentration-dependent inhibition of fMLP-induced
human neutrophil chemotaxis (Armstrong, 1995) and fMLP-induced 02~ generation
in human neutrophils (unpublished data). It is probable that the inhibitory effect of

cicaprost on neutrophil chemotaxis and 02" generation may be related to the
attenuation of neutrophil accumulation in the ischaemic myocardium, and

myocardial necrosis in the rat model ofMI-R injury.

As with GEA3162 and 2-HE-NECA, the inhibitory effects of cicaprost on neutrophil
infiltration and myocardial necrosis were associated with a decrease in MABP and
increase in heart rate. Cicaprost caused attenuation of neutrophil accumulation only
in the area at risk but not in the normal area. Interestingly, it reduced the number of

neutrophils in area at risk to a level lower than that of the normal area. This suggests

that the cardioprotective effect of cicaprost seems to be related to inhibition of

neutrophil function and not related to its haemodynamic effects. This assumption is

supported by other investigators' work, as dicussed below.

Several prostaglandins and their metabolites or synthetic analogues have been tested
as therapeutic agents in experimental myocardial ischaemia. PGE, (Simpson et al.,
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1988; Schror et al., 1988), PGI2 (Ogletree et al., 1979) and iloprost (Schror et al.,

1981; Simpson et al., 1987a) but not PGE2, showed beneficial effects in various
models of acute myocardial ischaemia or postischaemic reperfusion. These drugs are

all vasodilators. In theory these effects might be attributed in part to the vasodilator

property of these drugs. If the vasodilator action of prostanoids alone (dilation of the

coronary vascular bed or reduction in blood pressure, which reduces myocardial

oxygen demand) is responsible for their cardioprotective effect then one would

expect that all of these agents would salvage the ischaemic myocardium. This was

not the case as PGE2 has been reported to be ineffective.

Beneficial effects of PGI2 and its analogue iloprost on experimental infarct size
followed by reperfusion were shown to be related to modification of neutrophil
function (Simpson et al., 1987a,b; Farber et al., 1988) and were independent from
their haemodynamic effects (Simpson et al., 1987a,b) as vasodilators (Berti et al.,

1988; Ruocco et al., 1988). Werns & Lucchesi, (1988) found that another stable

analogue of PGI2, SC39902, which exerted haemodynamic effects similar to PGI2,
did not inhibit neutrophil accumulation and reduce infarct size. This evidence

suggests that PGI2 and iloprost decreased myocardial injury by inhibition of

neutrophil-mediated damage (Simpson et al., 1987a,b). In addition, Werns et al.
demonstrated that PGI2 which inhibited 02" generation from neutrophils, also limited
canine myocardial injury despite having no effect on collateral blood flow (Werns &

Lucchesi, 1988). Recently, a study by Aitchison et al. demonstrated that in a rabbit
model of MI-R, the reduction in myocardial infarct size by iloprost and SIN-1 was

not dependent on the effects of the drug on haemodynamics or platelet aggregation

(Aitchison & Coker, 1999). An additional mechanism of limitation by PGI2 of the

injurious effect of neutrophils on the ischaemic myocardium is stabilisation of

lysosomal membranes (Hieda et al., 1988), leading to limited release of proteolytic

enzymes that injure myocytes.
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3.7 CONCLUSIONS

In the present study, the NO donor GEA 3162, a potent selective A2A receptor agonist

2-HE-NECA, and stable PGI, analogue cicaprost (ZK 96 480) have been shown to

inhibit neutrophil accumulation in ischaemic myocardium and myocardial necrosis in
a rat model ofMI-R injury. The attenuation of myocardial necrosis by these drugs

may be attributed in part to their inhibitory action on neutrophil accumulation in
ischaemic myocardium. Although, all three drugs at the concentrations used, in this

study caused a significant attenuation in neutrophil accumulation and myocardial

necrosis, they also caused a significant change in blood pressure and heart rate.

Further study using lower doses of these drugs will be required to find doses that
would exert cardioprotection without causing any haemodynamic change.
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CHAPTER 4

CARDIOPULMONARY BYPASS,

HEPARIN, NEUTROPHIL

AND PLATELET AGGREGATION
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4.1 INTRODUCTION

4.1.1 Platelets

4.1.1.1 Platelet structure, functional anatomy andphysiology
Platelets are small, anucleate blood elements with a diameter of 3-4 |aM, and under
normal conditions constitute a small fraction of the circulating cells, the platelet

count in healthy human blood ranging from 1.3-4.0x10" platelets/1. Classically they
were thought to be derived from megakaryocytes in the bone marrow by the process

of fragmentation (Wright, 1990). However, it has more recently been suggested that

megakaryocytes travel to the lung vasculature from the bone marrow where they

physically become fragmented following impact with the extensive capillary network

(Martin & Levine, 1991). Platelet production is under the control of a humoural

agent known as thrombopoietin. The platelet lifespan has been estimated at 8-12

days.

The plasma membrane represents the site of platelet interactions with the external
environment and is ultimately involved in the control or generation of the many

specialised functional properties of the cell. The platelet plasma membrane is a

typical trilaminar membrane with glycoproteins, glycolipids and cholesterol
embedded in a phospholipid bilayer. 57% of total human platelet phospholipids are

present in the plasma membrane (Perret et al., 1979). Platelet membrane

glycoproteins (GPs) mediate a wide number of adhesive cellular interactions. These
GPs function as receptors that can receive signals from outside the platelet,

facilitating cell-cell interactions. Binding of specific ligands to these receptors

results in distinct platelet responses to the external environment. GP Ilb-IIIa is the

principal receptor on the platelet plasma membrane (Philips et al., 1988). It is a

member of the integrin family of proteins, which are heterodimeric, transmembrane

complexes made up of an a subunit containing 3 or 4 divalent cation binding

domains and a disulfide bond-rich [3 subunit which has a recognition sequence for
RGD (Arg-Gly-Asp) amino acid sequences (Uzan et al., 1988). All ligands known to

bind GP Ilb-IIIa, including fibrinogen, fibronectin, von Willebrand factor (vWF), and

thrombospondin, contain this cell recognition sequence (Plow et al., 1985). GP lb is
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present on platelet surfaces in a 1:1 ratio with GP IX (Hickey et al., 1989). Stable

platelet adhesion requires the interaction of the GP Ib-IX complex with vWF

(Bennett, 1990). GP V forms a noncovalent complex with GP Ib-IX in the platelet

membrane. Membrane GPs such as GP Ia-IIb, GP Ic-IIa, and av[33 mediate platelet

adhesion to collagen, fibronectin, laminin, and vitronectin.

Platelet cytoplasm contains a number of different organelles essential to the
maintenance of normal haemostasis. Two membrane systems weave throughout the
cell interior, effectively increasing the platelet surface area. The functions of the
surface-connected canalicular system (open canalicular system) are to provide a route

of entry and egress for molecules, an internal reservoir of membrane to facilitate

platelet spreading and filopodia formation after adhesion and a storage reservoir for
membrane glycoproteins that increase on the platelet surface after activation (Suzuki
et al., 1992). The dense tubular system is associated with the circumferential
microtubule band. This system is involved in the regulation of intracellular calcium

transport (Cutler, et al., 1978).

The platelet cytoskeleton is made up of three major structural components: an actin
microfilament network present throughout the cytoplasm, a microtubule coil
localised at the platelet periphery, and a membrane skeleton comprising a network of
short actin filament that underlies the inner surface of the plasma membrane (Fox et

al., 1991). Platelet stimulation results in profound changes in cytosketal

organisation.

Platelets contain four distinct populations of granules: a-granules, dense bodies,

lysosomes, and microperoxisomes. After platelet stimulation by agonists, granules
fuse with channels of the surface-connected canalicular system and extrude their

contents (White, 1972, 1973). Proteins present in a-granules include (3-TG, PF4

(Stenberg et al., 1984; Hegyi & Nakeff, 1989; Harrision et al., 1990), vWF

(Wencel-Drake et al., 1985; Cramer et al., 1985), thrombospondin and fibrinogen

(Cramer et al., 1985; Suzuki et al., 1988, 1990), albumin, IgG, fibronectin,

platelet-derived growth factor (PDGF) (Kaplan et al., 1979), GP Ilb-IIIa (Cramer et
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al., 1990,1991; Suzuki et al., 1992). Proteins present on the a-granule membrane
include P-selectin, GP Ilb-IIIa, granule membrane protein-33, CD9, PECAM-1.
Dense granules contain ADP and ATP, PPi, 5-HT and calcium. Platelet lysosomes

contain a large variety of enzymes (Holmsen, 1994) such as P-hexosaminidase, (3-

glycerophosphatase, cathepsins, collagenase. Microperoxisomes contain enzyme

catalase, the function ofwhich is to break down H202.

4.1.1.2 Platelets in haemostasis and thrombosis

Blood platelets play an essential role in haemostasis, thrombosis, and coagulation of
blood. Intact blood vessels are lined by haemostatically inert endothelial cells and as

a consequence, subendothelial structures do not normally come into contact with

flowing blood. Vascular injury (either spontaneous or traumatic interruption of
vascular continuity) is the stimulus required to initiate a series of complex and

interdependent reactions. Platelets adhere to the injured blood vessel wall to prevent

blood loss. Platelets perform this task through a discrete series of steps involving

platelet adhesion to the wounded area and platelet activation, i.e. the generation of
intracellular chemical signals that are initiated by platelet adhesion and by soluble
factors that stimulate the platelet through specific receptors. These signals cause

rapid morphological changes e.g. the extension of pseudopodia, platelet-platelet

aggregation, and granule secretion. ADP discharged from the dense granules and

TXA2 generated by the activation of platelet membrane PLA2 influence the
recruitment of additional circulating platelets to clump on those already adhered to

the injured site. If the flow conditions are sufficiently disturbed, platelet aggregates
form on the vessel wall and serve as a focus for the acceleration of the coagulation
reaction via platelet factor 3 (PF3). Contact of blood with the subendothelium and
release of the tissue factor (thromboplastin) from the damaged vessels initiates the
cascade of proteolytic reactions in the intrinsic coagulation pathway, culminating in
the formation of thrombin. The newly formed thrombin acts synergistically with
ADP and TXA2 to promote further aggregation of platelets to form an enlarging

platelet mass as the haemostatic plug (Zucker, 1980). Thrombin converts fibrinogen,

present in plasma and released from platelets, into fibrin monomers, which

polymerise to stabilise and reinforce the platelet plug.
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4.1.1.2.1 Platelet adhesion and adhesion receptors on platelets

Vascular injury disrupts the single layer of endothelial cells that line blood vessel
walls and normally resists platelet aggregate formation, exposing a rich matrix of
subendothelial proteins. A few of the many proteins that make up the
subendothelium include collagen, vWF, and fibronectin. Upon blood vessel injury,

platelet surfaces will adhere to the exposed proteins such as collagen fibres and vWF,

through several membrane GPs adhesion receptors.

Adhesion receptors on platelets include, the GPIb-V-IX which interacts with vWF
and mediates adherence of the platelet to the vessel wall under conditions of normal
wound healing following arterial injury (Hickey et al., 1993; Berndt et al., 1995;

Siedlecki et al., 1996; Savage et al., 1996); integrin allb(33 (GPIIb-IIIa) which can

bind fibrinogen, fibronectin, vWF, and thrombospondin (Smyth et al., 1993); other

platelet integrins such as a2pi integrin (GPIa-IIb) (VLA-2) which is a receptor for

collagen (Santoro, 1986; Kirchhofer et al., 1990; Saelman et al., 1994). Platelets
also have on their surface, three other integrins, all of which are present in low

numbers per platelet. These integrins are the 0.5(11 integrin (GPIc-IIa) (VLA-5),

which is a fibronectin receptor, the a6pl integrin (GPIc'-IIa) (VLA-6) which is a

laminin receptor, and the avp3 integrin, which binds vitronectin, fibronectin,

fibrinogen, thrombospondin, vWF etc. (Felding-Habermann & Cheresh, 1993).
Other platelet GPs include, GP VI which is thought to be a collagen receptor and GP
IV which has been proposed to be a receptor for collagen (Tandon et al., 1989) and

thrombospondin (Asch et al., 1987).

4.1.1.2.2 Platelet aggregation

Platelets circulate as disc-shaped cells but when they come into contact with the

exposed subendothelium, agonists that activate platelets are exposed, generated, or
released. These agonists include collagen, which is present in the subendothelium;

thrombin, which is generated on the surface of activated platelets and elsewhere;

ADP, which is released from damaged red blood cells and secreted from activated

platelet-dense granules; circulating epinephrine and; arachidonic acid, which is
released from lipid stores in platelets and metabolised to the potent agonist TXA2.
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These agonists generally cause platelets to change shape preceding platelet

aggregation. Platelets change shape from discoid to a more spherical form. This

process is mediated by the contractile microtubular system and characterised

morphologically by the extension of short and long dendritic pseudopodia (White,

1987). Platelet aggregation requires activation of the platelet integrin adhesion

receptor GPIIb-IIIa so that it can bind soluble fibrinogen or vWF in plasma and link

adjacent platelets together in an aggregate. Platelets circulate freely in the blood in a

resting state with GPIIb-IIIa existing in a low affinity conformation that is unable to

bind soluble fibrinogen, thus preventing spontaneous aggregation. In order to bind

fibrinogen, platelets must be activated by locally generated or exposed agonists such
as thrombin, ADP, or collagen. Binding of these agonists to their receptors on the

platelet surface generates a cascade of signalling events, which leads to activation of
the fibrinogen receptor GPIIb-IIIa. This cascade of inside-out signalling events

induces a conformational change in the GPIIb-IIIa, resulting in activation of the

receptor and rendering it capable of binding soluble fibrinogen (Sims et al., 1991).
Calcium is important in maintaining a functional conformation (Loftus et al., 1990).

Under high shear stress flow conditions, the initial platelet attachment to the
subendothelium is mediated by the interaction of vWF with the platelet GPIb-IX

complex (Weiss et al., 1978), subsequent platelet aggregatiom requires binding of
vWF to the platelet GPIIb-IIIa complex (Weiss, 1989; Ikeda et al., 1991). Under
conditions of low shear stress, platelet aggregation is mediated by the interaction of
GPIIb-IIIa with fibrinogen (Ikeda et al., 1991).

Platelet shape change can be monitored with an optical aggregometer, which records
the change as a decrease in light transmission through a suspension of platelets.
Platelet aggregation in platelet rich plasma can be measured both

spectrophotometrically as an increase in light transmission and by electrical

impedance. PRP is slightly turbid due to the presence of platelets in suspension.
When an aggregating agent is added, the turbidity decreases because of the clumping
action of the platelets. In plasma, this reduces the optical density of the PRP

allowing more light (infra red) to pass through. The instrument develops a voltage
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proportional to the transmittance of light through the plasma. This voltage is
recorded on a strip chart recorder as a function of time. Platelet aggregation in whole
blood cannot be measured spectrophotometrically because it is opaque. However, it
can be measured by electrical impedance. The impedance method detects

aggregation by passing a very small electric current between two electrodes
immersed in a sample of blood and measuring the electrical impedance between the
electrodes. The electrodes become coated with a monolayer of platelets during initial
contact with the blood or PRP. When an aggregating agent is added, platelets

aggregate to the monolayer coated on the electrodes. This coats the electrodes,

increasing the impedance (resistance)

4.1.1.2.2.1 General signalling mechanisms ofplatelet activation

Some signalling pathways involved in platelet activation are reasonably well

understood, whereas others are not. Many, but not all, platelet agonists activate

platelets by occupying seven transmembrane-spanning G protein-coupled receptors.

Activation of these receptors generally results in phosphoinositide hydrolysis and the

activation of phospholipase Cp. PLC hydrolyses PIP2, which generates IP3 and

DAG. Both IP3 and DAG appear to play important roles in pathways leading to

various aspects of platelet activation. IP3 is believed to interact with specific

receptors to induce intracellular Ca2+ release from the dense tubular system.

However, the exact mechanism by which this response contributes to platelet

aggregation is not entirely clear because IP3-induced platelet aggregation is also

dependent on TXA2 production and ADP release (Knezevic et al., 1992). DAG
interacts directly with PKC, leading to PKC activation. Activated PKC appears to

play a crucial role in pathways of some agonists, for example, the activation of
GPIIb-IIIa and fibrinogen binding.

Collagen stimulation of platelets results in several intracellular signalling events that
lead to platelet activation and aggregation. Collagen treatment of platelets leads to

the rapid activation (less than a minute) of two nonreceptor protein tyrosine kinase,

Syk (Fujii et al., 1994) and Src (Huang et al., 1992; Shattil et al., 1994). Following

Syk and Src activation, collagen stimulation of platelets results in the tyrosine

169



CHAPTER 4

phospholyration and activation of PLC y2 (Daniel et al., 1994; Keely & parise,

1996). PLC y2 activation, in turn, catalyses the cleavage of PIP2 into IP3, which
causes Ca2+ release in the platelet (Smith et al., 1992; Daniel et al., 1994), and DAG,
which activates PKC. The co-ordinated action of the, GPIa-IIb, GP VI, and perhaps
other receptors for collagen, leads to collagen-induced platelet aggregation.

4.1,1.2.3 Platelet release reaction

After platelets are activated by agonists, they undergo a release reaction, secreting

granular contents. The release reaction is associated with the production of TXA-,

(Smith et al., 1973; Hamberg et al., 1975). The secretion of a-granule and dense

granule contents occurs by centralisation of secretory granules followed by

exocytosis. The extent of secretion depends on the strength of the agonist. Strong

agonists (such as thrombin and collagen) at high concentrations induce platelet

aggregation secretion that is independent of cyclooxygenase activity (Krishnamurthi
et al., 1984), whereas at low concentrations induce aggregation and secretion that is

entirely dependent on cyclooxygenase activity and released ADP.

4.1.1.3 Neutrophil-platelet interaction
Interactions between platelets and neutrophils occur at sites of vascular damage, as in
haemostasis. Platelets bind to prothrombotic endothelium and to the underlying
basement membrane in vascular injury. Binding of neutrophils to platelets in a

thrombus may facilitate emigration into thrombosed areas, wound healing, tissue

repair, or protection from infection, and may contribute to the maintenance of
vascular integrity, as well as to its impairment in pathological states. Platelets and

neutrophils do indeed co-localise at sites of haemorrhage, vascular grafts,
atherosclerotic lesions, and myocardial infarction. Activation of neutrophils with

platelet adhesion occurs after coronary angioplasty and has been associated with late
clinical events (Mickelson et al., 1996).

Physical interaction of neutrophils with platelets was previously described by Jungi
et al (1986). Platelet-neutrophil interaction can also be mediated by P-selectin

(Belvilacqua et al., 1991) and Lewis X (CD 15) could be a component of the ligand
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for P-selectin (Larsen et al., 1990). Rolling and arrest of neutrophils on activated

platelets in flow has been shown to require the sequential action of P-selectin and (32

integrins, respectively (Buttrum et al., 1993; Yeo et al., 1994; Lalor & Nash, 1995;
Diacovo et al., 1996). The dynamic interaction of activated platelets and neutrophils
in stirred suspension also involves a P-selectin-dependent step and a functional signal
that proceeds through tyrosine kinase activation to stimulate adhesiveness of Mac-1

(Evangelista et al., 1996). It has been shown that, in stasis, adhesion strengthening
of neutrophil on thrombin-stimulated, surface-adherent platelets was mediated by

binding of Mac-1 (aM(i2) on neutrophils to unidentified ligands on platelets

(Diacovo et al., 1996). Fibrinogen, a Mac-1 ligand (Wright et al., 1988; Altieri et

al., 1990), that can bind to activated platelets via GPIIb-IIIa (Pytela et al., 1986), has
been implicated in platelet-neutrophil interactions in cell suspension or whole blood

(Ruf et al., 1992). Recently it was reported that neutrophil accumulation on

thrombin-stimulated platelets in flow is mediated by interactions of Mac-1 with

fibrinogen presented by GPIIb-IIIa on platelets, activation by PAF, and possibly

tethering on platelet ICAM-2 (Weber & Springer, 1997).

There is considerable evidence to suggest that platelet aggregation in vivo is a

multicellular process (Marcus et al., 1995). In particular, considerable cross talk
between platelets and neutrophils has been observed (Ott et al., 1996), suggesting
that neutrophil activation contributes to platelet activation in vivo since a number of

neutrophil-derived agents trigger platelet aggregation (Cerletti et al., 1995). These

agents include PAF (Koltai & Braquet, 1992), cathepsin G (LaRosa et al., 1994a;

Selak, 1994), elastase (Renesto & Chignard, 1993) and superoxide anions (Iuliano et

al.,_\991). Evidence suggests that neutrophil activation may promote the formation
of giant mixed aggregates by increasing platelet P-selectin and platelet-leukocyte
interaction (Maugeri et al., 1994; Gawaz et al., 1996; Brown et al., 1998).

Human neutrophils activated in vitro by several agonists are able to stimulate

coincubated, autologous platelets (Chignard et al., 1986; Del Maschio et al., 1990).
This effect is largely mediated by cathepsin G, a neutral serine protease stored in the

azurophilic granules and released after neutrophil stimulation (Selak et al., 1988;
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Ferrer-Lopez et al., 1990; Renesto et al., 1990; Evangelista et al., 1991). Cathepsin
G induces platelet calcium mobilisation and serotonin release (Chignard et al., 1986).

Cathepsin G is a potent platelet activator (Selak et al., 1988; Renesto & Chignard,

1995) and degranulator which enhances binding to neutrophils (LaRosa et al., 1994a)
as well as platelet macroaggregation (Rabhisabile et al., 1996) by increasing surface

expression of P-selectin and GPIIb-IIIa (LaRosa et al., 1994b). Human neutrophil

elastase, a neutral serine proteinase, at physiologically relevant concentrations may

inhibit thrombin-stimulated platelet aggregation and serotonin release as well as

ristocetin-mediated platelet agglutination (Brower et al., 1985).

Proteolytic enzymes released from activated neutrophils affect platelet-dependent
haemostasis by several mechanisms, including inactivation of plasma inhibitors of

coagulation and complement components as well as direct effects on platelets

(Weksler, 1988). Cathepsin G has been shown to degrade the GPIb receptor of
washed platelets (Aziz et al., 1995) by cleavage of the GPIb-IX receptor at the GPIa
sub-unit which decreases the ability of the platelet to interact with vWF (Pidard et

al., 1994). Neutrophil elastase as well as cathepsin G also cleave the GPIIb moiety
and upregulate fibrinogen receptor activity. This modulation of the surface

expression of the GPIb-IX complex transforms the platelet from a state favouring
adhesion to one which favors binding to GPIIb-IIIa (LaRosa et al., 1994b).

Cathepsin G has also been shown to promote platelet activation by opening platelet
membrane divalent cation channels (Cerletti et al., 1995).

Free oxygen radicals released by activated neutrophils alter platelet function and

platelets exposed to phagocytosing neutrophils exhibit decreased aggregatory

responses. In contrast, there is evidence that 02~, a major free oxygen radical formed

by activated neutrophils, induces platelet serotonin release and acts synergistically
with thrombin to activate platelets (Handin et al., 1977). Evidence that catalase
reverses the inhibitory effect of neutrophils on platelet aggregation suggested that

H202 released from neutrophils may mediate this effect on platelets (Levine et al.,

1976).
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There is increasing evidence to support the mutual activation of neutrophils and

platelets (Aziz et al., 1995b; Ruf & Patscheke, 1995). For example, the precursor of

neutrophil-activating peptide-2 (NAP-2), a cytokine that causes neutrophil

degranulation and chemotaxis, is released by activated platelets (Cohen et al., 1992).

Platelet a-granule membranes contain P-selectin (also refered to as guanosine

monophosphate-140, PADGEM protein, and CD62, (Hsu-Lin et al., 1984; Sternberg
et al., 1985; Belvillacqua et al., 1991), which is translocated to the platelet surface

during stimulated secretion and enables adhesion of stimulated platelets to

neutrophils (Hamburger & McEver, 1990; Palabrica et al., 1992). Platelets

expressing P-selectin can induce the production of 02" in neutrophils upon binding

(Tsuji et al., 1994; Ruf & Patscheke, 1995).

4.1.2 Cardiopulmonary bypass (CPB)
4.1.2.1 Cardiopulmonary bypass (CPB) andplatelet dysfunction
CPB alters haemostasis and results in excessive postoperative bleeding (Khuri et al.,

1994) which led to increased tranfusion requirements in 29% of patients undergoing

operation using CPB (Belisle & Hardy, 1996). The most important factor

contributing to the haemostatic defect associated with CPB is considered to be

platelet dysfunction (Woodman & Harker, 1990; Michelson, 1990; Kestin et al.,

1993; Khuri et al., 1994). CPB adversely affects both platelet count and function.
Haemodilution causes platelet counts to decrease rapidly soon after starting CPB.
Within minutes after starting CPB, the bleeding time (BT) is prolonged significantly
and platelet aggregation response to ADP or collagen is impaired (Harker et al.,

1980; Zilla et al., 1989). Some intrinsic platelet defects have been reported in
association with CPB. For example, some studies have reported that CPB results in

partial platelet degranulation (Rinder et al., 1991). Although contact with the

extracorporeal circuit results in platelet loss secondary to platelet activation,

secretion, and degranulation, the resultant thrombocytopenia encountered in the

majority of patients undergoing CPB is not severe enough to account for the platelet

dysfunction observed in these patients, which is manifested by a marked

prolongation of the postoperative bleeding time (Khuri et al., 1992). It was
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postulated that CPB induced platelet dysfunction by altering the platelet membrane

receptors (GP Ib-IX complex and GPIIb-IIIa complex) responsible for platelet
adhesion and aggregation. Loss of platelet membrane receptors for both the vWF
and fibrinogen were reported during and after CPB (George et al., 1986; Wenger et

al., 1989; Rinder et al., 1991). In contrast to these studies, Kestin et al. (1993)
demonstrated that membrane receptors were intact in platelets circulating during
CPB. It was suggested that the platelet dysfunction of CPB is not a defect intrinsic
to the platelet, such as a loss of platelet surface GPIb and GPIIb-IIIa complex, but
factors extrinsic to the platelet, such as an in vivo lack of availability of platelet

agonists, might be important determinants of the platelet dysfunction observed

during and after CPB (Kestin et al., 1993). Two such factors are hypothermia and

heparin (Valeri et al., 1992).

4.1.2.2 Cardiopulmonary bypass, heparin and heparinase

Heparin, a highly sulfated glycosaminoglycan (Hook et al., 1984) synthesised by
different cells and organs (Jacques, 1979), is used systematically as an anticoagulant
in patients undergoing CPB to prevent clotting in the extracorporeal oxygenator. The

anticoagulant action of heparin resides in its ability to potentiate the activity of an

endogenous coagulation cofactor antithrombin-III (AT-III) (reviewed in Bourin &

Lindahl, 1993). Antithrombin-III inhibits many of the serine proteases involved in
the coagulation cascade, particularly factor Ha (thrombin) and factor Xa. Heparin
interacts with AT-III to form a complex that inhibits thrombin and Xa much more

effectively than AT-III alone.

Of the three distinct phases of platelet aggregation namely: shape change,

microaggregation and macroaggregation (Pedvis et al., 1988), it is macroaggregation,
the consolidation of small aggregates into large stable aggregates (Pedvis et al.,

1988) that is impaired after cardiopulmonary bypass, while microaggregation, the
formation of aggregates containging up to 100 platelets per aggregate is not (Menys
et al., 1994, 1995; Kawahito et al., 1999).
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Persistent levels of circulating heparin, secondary to inadequate neutralisation

(Shanberge et al., 1987; Gundry et al., 1989) or heparin rebound (Gravlee et al.,

1990), can contribute to excessive bleeding in the period following CPB. Protamine
is currently the most widely used drug for the reversal of heparin anticoagulation, but
it causes multiple adverse reactions. Heparinase I, a specific enzyme that inactivates

heparin, is a possible alternative to protamine and is currently under clinical

development. Heparinase I neutralises heparin by enzymatic cleavage of

a-glycosidic linkages at the antithrombin III binding site on heparin (Choay, 1989;

Baugh et al., 1992; Desai et al., 1993), resulting in di-, tetra-, and hexa-saccharide

fragments. Heparinase I was shown in vitro, to effectively reverse heparin-induced

anticoagulation in residual blood obtained from the extracorporeal circuit

immediately after surgery, using CPB in humans as determined by activated clotting
time (ACT) assay (Michelsen et al., 1996). Heparinase was also highly effective in

eliminating the anticoagulant effects of even large amounts of heparin in plasma
from cardiac surgical patients (Despotis et al., 1994). Other studies by Dehmer et al.

(1995) and Levy et al. (1995) also demonstrated the effectiveness of Heparinase I in

reversing heparin anticoagulation in vitro.

4.1.2.3 The involvement ofneutrophils in cardiopulmonary bypass
Cardiopulmonary bypass is also associated with the activation of neutrophils and
formation of circulating platelet-neutrophil complexes (Kestin et al., 1993; Rinder et

al., 1992, 1994; Larson et al., 1996; Morse et al., 1998). Neutrophil activation, a

feature of extracorporeal circulation, is associated with generation of 02~ and release
ofproteinases such as cathepsin G, elastase, and tumour necrosis factor (Del Maschio
et al., 1990; Butler et al., 1993).

Using washed platelets and neutrophils, neutrophil-derived proteases can cause

platelet aggregation but this has not been demonstrated in whole blood (Selak, 1994;
Molino et al., 1995). Human platelet aggregation induced by purified

neutrophil-derived cathepsin G is blocked in a dose-dependent manner by heparin

(Evangelista et al., 1992; Ferrer-Lopez et al., 1992). The inhibitory effect of heparin
was not related to its anticoagulant property, since a heparin preparation with an
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inactivated active site for antithrombin III was also effective, but may be explained

by a blockade of protease activity of cathepsin G. A study by Hind et al. (1988),
showed that the heparin, rather than the CPB procedure was implicated in the
activation of neutrophils (manifested as an increase in plasma elastase levels, a

marker of neutrophil activation which at physiologically relevant concentrations may
inhibit thrombin-stimulated platelet aggregation, following heparinisation).

In addition, recent in vivo research suggests that the complications associated with
CPB are a result of multicellular activity, and are particularly associated with the

respiratory burst, which initiates the production of oxygen-dependent free radicals
from stimulated neutrophils. In contrast, in vitro studies have shown that heparin has
an inhibitory effect on the respiratory burst.

Therefore, it was postulated that the neutrophils played a role in platelet aggregation
and that heparin contributed to platelet dysfunction during CPB by interfering with a

possible neutrophil-platelet interaction that contributes to platelet macroaggregation.

4.2 AIMS

The aims of this study are to determine if heparin, which is used systemically as an

anticoagulant for CPB, contributes to the dysfunction of platelet macroaggregation
observable with patients undergoing CPB, by interfering with neutrophil-platelet
interactions and if heparinase can reverse the ex vivo and in vitro effects of heparin
on platelet dysfunction. For this purpose the following investigations were

performed.

1. The ex vivo effects of heparin on a direct platelet stimulant, collagen- and a direct

neutrophil stimulant, fMLP-induced platelet aggregation (macroaggregation and

microaggregation) in whole blood from patients undergoing CPB were

investigated.
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2. The in vitro effects of different concentrations of heparin on collagen and
fMLP-induced platelet aggregation (macroaggregation and microaggregation) in
whole blood from normal volunteers were also investigated.

3. The ability of heparinase I to neutralise the effects of heparin on platelet

aggregation (macroaggregation and microaggregation) induced by collagen and
fMLP in whole blood from both patients and normal volunteers were

investigated.

4. The in vitro effects of heparin upon macroaggregation in PRP induced by

collagen and fMLP from volunteers were investigated.

5. The in vitro effects of heparin on neutrophil activation using neutrophil

production of MPO and superoxide anion generation as markers of neutrophil
activation were investigated.

4.3 MATERIALS

The following compounds were kindly donated and are gratefully acknowledged:
recombinant desulphatohirudin (r-hirudin, CGP 39393), specific activity 11,700

ATU/mg from Dr A. Suter, Novartis Pharma AG, CH 4002 Basel, Switzerland,

Heparinase I (lot # G61-64) from Dr R. Vickers and Dr C. Poulin of IBEX

Technologies Inc., Montreal, Quebec, Canada. R-hirudin was dissolved in PBS (pH

7.4) containing 0.1% polyethylene glycol 600 and stored at -20°C at a concentration

of 20,000U/ml. Heparinase I was aliquoted and stored at -20°C. Just before use, it
was dissolved in distilled water (specific activity 123U/ml).

Equine microfibrillar collagen and diluent were purchased from Hormon-Chemie,

Munich, Germany. Collagen was stored at 4°C and diluted with the manufacturer's

glucose buffer before use. fMLP was purchased from Sigma and dissolved in DMSO
at a concentration of 10~2 M, aliquoted and stored at -20°C. Heparin was purchased

from Leo Laboratories, Risborough, UK. Isoton II was purchased from Coulter
Electronics Ltd, Luton, UK. Glutaraldehyde was purchased from Agar Scientific,
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Stanstead, UK. Percoll from Pharmacia. Cytochrome C and cytochalasin B were

purchased from Aldrich. 3,3,',5,5'-Tetramethyl benzidine (TMB), trypan blue, PBS

(containing Ca2+ and Mg2+), 30% hydrogen peroxide, were purchased from Sigma
chemical Co. Ltd. (UK). Diff Quick was purchased from Baxter Diagnostic AG.

4.4 METHODS

All studies were approved by the Royal Infirmary of Glasgow Research Ethics
Committee. Informed consent was obtained from all patients. In this study,

macroaggregation and microaggregation in whole blood were studied using blood

samples from patients and volunteers. In addition, volunteers' blood was used in the

study ofmacroaggregation in PRP and superoxide anion generation from neutrophils.

4.4.1 Studies in whole blood

4.4.1.1 r-hirudin anticoagulation concentration
Recombinant hirudin (r-hirudin), a direct thrombin inhibitor, was used to

anticoagulate blood samples in this study, to maintain normocalcaemia and to avoid
artefacts associated with the use of citrate (Packham et al., 1989; Wallen et al., 1993)

or heparin (Lages et al., 1981). In order to find the appropriate concentration of
r-hirudin to use for anticoagulation of the blood from both patients and volunteers,
the thrombin clotting times for blood samples were determined using different
concentrations of r-hirudin. Venous blood taken from a normal volunteer (n=l) was
added to tubes preloaded with r-hirudin at concentrations of 0, 10, 50, 100, 200 U/ml.
The thrombin clotting times for these samples were <9 sec, 175 sec, 285 sec, >25

mins, and >25 minutes respectively. It is therefore confirmed that r-hirudin
concentration of 200 U/ml would give adequate anticoagulation.

4.4.1.2 Collagen andfMLP concentration
Collagen, a direct platelet stimulant, and fMLP, a direct neutrophil stimulant, were
used as agonists in this study. Collagen was chosen on the basis that platelets adhere
to collagen in the damaged vessel wall in vivo. Following this, there is formation of
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TXA2 and release of ADP and serotonin. At normocalcemia it has been shown that

TXA2 formation and release of ADP and serotonin largely account for platelet

aggregation with collagen in vitro as determined by platelet counting (Menys et al.,

1993). Thus collagen-stimulation provides a means of assessing platelet response in

vitro.

In order to find the appropriate concentration of collagen and fMLP used in this

study, four concentrations of collagen and two concentrations of fMLP were tested

upon platelet macroaggregation. The procedure of platelet macroaggregation in
whole blood by impedance aggregometry is detailed in section 4.4.1.4. Briefly, 500

pi ofwhole blood from volunteers was diluted with the same volume of 0.9% saline

in plastic cuvettes and samples were then equilibrated for 5 minutes at 37°C before
measurement. Each sample was then stirred at 1000 rpm for 3 minutes at 37°C in the

aggregometer to allow for spontaneous platelet aggregation and then 10 pi of
different concentrations of collagen (40-80 pg/ml) or fMLP (10"5-10 4 M) were added
to each sample. The platelet macroaggregatory response to different concentrations
of collagen or fMLP was then determined as the scale deflection in centimetres at 5

minutes for collagen and at 15 minutes for fMLP. It was found that collagen induced
a dose-related platelet macroaggregation in whole blood (n=7) at concentrations 0.4,

0.6, 0.7 and 0.8 pg/ml. The median aggregatory responses were 6.8, 11.9, 12.8 and
11.5 ohms respectively. This indicated that a sub-maximal response would be
obtained in whole blood with a collagen concentration of 0.6 pg/ml. fMLP, at both
concentrations caused a platelet macroaggregatory response that was less marked and
slower than that seen following collagen stimulation. The median macroaggregatory

response achieved with 10~7 M and 10~6 M of fMLP were 3.8 and 3.6 ohms,

respectively. The macroaggregatory response was not increased when a higher
concentration of fMLP (10~6 M) was used. Thus, 10~7 M of fMLP was chosen for this

study.
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4.4.1.3 Blood samples
4.4.1.3.1 Patients

Patients undergoing elective operations using CPB were recruited into these studies.

They had not received aspirin or other non-steroidal anti-inflammatory drugs for at
least seven days. Diabetics or patients on anticoagulants, intravenous nitrates or

heparin were excluded. Blood samples from these patients were studied. A total of
33 patients were studied, fourteen of whom took part in the full protocol. Blood
from the others was used in validation studies and other experiments. Of the 14,
there were 12 men and 2 women, median [interquartile range] age 60 [54-64] years,

height 170 [165-177] cm and weight 79 [73-84] kg.

Preparation for and conduct of CPB was undertaken according to the individual

surgeon's normal practice. These patients underwent a standard CPB procedure

using the CPB circuit which consisted of an avecor tubing set, an affinity 40 pM
arterial line filter (Avecor Ltd, Bellshill, Strathclyde, UK) and a membrane

oxygenator (Duo-Cobe) driven by a Stockert roller pump. The pump was primed
with 2.0 1 of lactated Ringer's solution, 50 mM NaHC03 and 5,000 u sodium

heparin. Ringer lactate solution was used to maintain pump reservoir volume. Flows
were between 2.2 and 2.4 L/min/m2. Perfusion pressure was maintained between 40
and 80 mmHg by use of methoxamine. Cardiopulmonary bypass duration ranged
from 67-114 minutes (median 84 [76-98] minutes). Heparin sodium at a

concentration of 300 u/kg was used as an anticoagulant for cardiopulmonary bypass
and was administered through a central venous cannula, just before cannulation of
the aorta, about 5 minutes before commencement of bypass. Anticoagulation was

monitored regularly during CPB by the activated clotting time (ACT) in whole blood

using a Hemacron system (Hemacron™, International Technodyne Corporation,
Metuchen NJ). Additional doses of heparin were given if the ACT was less than 400
sees. After returning blood from the extracorporeal oxygenator to the patient at the
end ofCPB, heparin was neutralised with protamine sulfate.

The heparin concentration present in the blood was estimated using the Hepcon

system (Hepcon™, Medtronic Ltd, Watford, UK), an automated protamine titration
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assay, according to the manufacturers instructions. The median concentration of

heparin in the blood after heparinisation was 4.1 [3.4-4.8] U/ml. The end-CPB value
was significantly lower at 2.7 [2.7-3.4] U/ml. This allowed estimation of the amount

of heparinase I required for neutralisation of heparin in the blood sample. By the
addition of heparinase it was possible to remove heparin from the samples while

maintaining thrombin inhibition with r-hirudin. It was indicated that 0.05 IU/ml of

heparinase I completely neutralised therapeutic levels of heparin (unfractionated or

LMWH) (3.5 U/ml) in vitro. Heparinase was added at the appropriate concentration
to determine the effect of heparin neutralisation.

Venous blood samples were taken through an indwelling 14g catheter in the internal

jugular vein.
1. before heparinisation with the chest open (pre-heparin)
2. after heparinisation and before the onset of extracorporeal circulation
3. at the end of cardiopulmonary bypass (still heparinised but fully rewarmed and

before protamine administration) (end-CPB)

10 ml of blood was taken at each time point for the platelet aggregation studies. The
blood was anticoagulated with r-hirudin (200 U/ml) to maintain normocalcemia. An
extra 4 ml of blood was taken in EDTA (5mM) for determination of the total platelet
count.

4.4.1.3.2 Volunteers

Venous blood (25 ml) was withdrawn, using a 19G needle without a tourniquet, from
the antecubital fossae of 14 healthy male volunteers who had not taken non-steroidal

anti-inflammatory drugs or any other antiplatelet therapy for at least 7 days. The
blood was placed in an r-hirudin (200 U/ml)-containing siliconised glass tube, for

platelet aggregation studies. 4 ml of blood was anticoagulated with EDTA (5mM)
for determination of the total platelet count. In an additional experiment, 4 ml of
blood was anticoagulated with sodium citrate (3.8%) for studies of platelet

aggregation.
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4.4.1.4 Macroaggregation in whole blood by impedance aggregometry
Platelet macroaggregation, in whole blood from both patients and volunteers was

performed on an impedance aggregometer (Chrono-log 500-VS, Chronolog

Corporation, UK) (Mackie et al., 1984). This aggregometer measured platelet

aggregation in whole blood by changes in impedance (ohms) across two electrodes
immersed in the samples. The aggregometer was calibrated so that 20 ohms change
in electrical impedance would give a deflection of the recorder 16 cm, giving a

conversion factor of 1.25 ohms per centimetre.

4.4.1.4.1 Macroaggregation in whole blood from patients
Method

1. 10 ml of venous blood was sampled, at each time point (at pre-heparin, 5 minutes
after heparinisation and at the end-CPB), from patients. Blood was then

anticoagulated with r-hirudin (200 U/ml).

2. Hirudinised whole blood from patients was then divided into two 5 ml aliquots.
The first was used for the measurment of platelet macroaggregation in the

presence of heparinase I and the second aliquot was used for measurement of

platelet macroaggregation in the absence of heparinase I. According to the

manufacturer, 0.05U/ml of heparinase completely neutralised 3.5 U/ml of

heparin.

3. 500 pi of whole blood from both aliquots was placed in plastic cuvettes and
diluted with the same volume of 0.9% saline. The samples from the end-CPB,
due to high haemodilution, were not diluted with 0.9% saline. The samples were

then equilibrated for 5 minutes at 37°C before measurement of platelet

macroaggregation.

4. Each sample was then stirred at 1000 rpm for 3 minutes at 37°C in the

aggregometer to allow for spontaneous platelet aggregation.
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5. 10 ju.1 of collagen (60 gg/ml) or 10 pi of fMLP (10 5 M) was added to each

sample. The platelet macroaggregatory response to collagen (0.6 pg/ml), and
fMLP (10~7 M) were then determined for each sample. Stirring rate was kept
constant at 1000 rpm and results are recorded as ohms of scale deflection. The

macroaggregatory response to collagen was read as the scale deflection in
centimetres at 5 minutes from the start of aggregation. Ex vivo neutrophil
stimulation by fMLP caused platelet macroaggregation, which was less

pronounced than with collagen and took a longer time, therefore these readings
were taken at 15 minutes.

4.4.1.4.2 Macroaggregation in whole blood from volunteers
Method

1. 25 ml of venous blood was sampled from healthy volunteers. Blood was then

anticoagulated with r-hirudin (200 U/ml). In an additional experiment, 4 ml of
blood was anticoagulated with sodium citrate (3.8%) for studies of platelet

aggregation.

2. 2.5 ml of hirudinised whole blood from volunteers was then pipetted into nine

plastic tubes, which were divided into two groups. The first group contained 6

samples in plastic tubes. The different concentrations of heparin were then added
to the 2nd-6th plastic tubes to produce final concentrations of heparin at 0.1-10
U/ml. The same volume of 0.9% saline was added into the 1st plastic tube and
this tube served as a control. These samples were used for measurement of the
effects of different concentrations of heparin on platelet macroaggregation in the
absence of heparinase I.

3. Heparin at concentrations of 0.4 U/ml and 4 U/ml were added into the 8th and 9th
plastic tubes, respectively. The same volume of 0.9% of saline was added into
the 7th plastic tube which served as a control sample. The appropriate amounts of

heparinase I (as discussed in section 4.4.1.5.1) sufficient to neutralise 0.4 U/ml
and 4 U/ml of heparin in the blood samples were then added to the 8th, 9th plastic
tubes, respectively. The 7th plastic tube was added with the appropriate amounts
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of heparinase I sufficient to neutralise 4 U/ml of heparin in the blood sample.
These samples were used for the measurement of the effects of heparin on

platelet macroaggregation in the presence of heparinase I.

4. 2.5 ml of citrated blood from volunteers was then pipetted into the 10th plastic
tube. The citrated blood was used to investigate the macroaggregatory response

induced by a direct platelet stimulant, collagen, and, a direct neutrophil stimulant,
fMLP.

5. 500 pi of hirudinised whole blood from each tube and 500 pi of citrated blood
from the 10th plastic tube were diluted with the same volume of 0.9% saline in

plastic cuvettes. The samples were then equilibrated for 5 minutes at 37°C before
measurement of platelet macroaggregation.

6. Each sample was then stirred at 1000 rpm for 3 minutes at 37°C in the

aggregometer to allow for spontaneous platelet aggregation.

7. 10 pi of collagen (60 pg/ml) or 10 pi of fMLP (10~5 M) was added to each

sample. The platelet macroaggregatory response to collagen (0.6 pg/ml), and
fMLP (10~7 M) were then determined for each sample. Stirring rate was kept
constant at 1000 rpm and results are recorded as ohms of scale deflection. The

macroaggregatory response to collagen and fMLP were read as the scale
deflection in centimetres at 5 and 15 minutes, respectively from the start of

aggregation.

4.4.1.5 Microaggregation in whole blood (Singleplatelet counting)
Spontaneous aggregation and the microaggregatory response induced by collagen
and fMLP in whole blood from both patients and volunteers were determined by

counting unaggregated single platelets with a Coulter Counter ZM (Falcon et al.,

1989; Pedvis et al., 1988; Menys et al., 1994). Platelet counts were performed on

samples of EDTA-anticoagulated blood to determine the total platelet count (A). In

hirudinised blood, platelet counts were performed before stirring, after 3 minutes
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stirring in the cuvette of aggregometer and after agonists had been added. This
determined platelet count (B), spontaneous aggregation (C), and platelet count with

agonists (D), respectively.

Method

1. 100 pi aliquots of blood were taken from the aggregometer cuvette during

impedance aggregometry: before stirring (B), 3 minutes after stirring (C), and
after exposure to agonists (D) (5 minutes for collagen and 15 minutes for fMLP).

2. The aliquots were added to 400 pi of 1% glutaraldehyde in isoton II in a 1 ml

eppendorf tube. Blood samples in glutaraldehyde were then left at room

temperature for an hour to settle.

3. After an hour, 10 pi of platelet suspension was taken from the supernatant

(platelet rich layer) and added to 10 ml of isoton II.

4. Counts were performed in duplicate and corrected for dilution. The results are

expressed as number of platelets x 109/1. The extent of spontaneous aggregation
in stirred blood was calculated with reference to the platelet count found for

unstirred blood. The extent of agonists-induced aggregation was calculated with
reference to the platelet count measured following stirring with vehicle alone.

The results are expressed as:

Percentage of aggregation = (A-B) x 100 / A

Percentage of spontaneous aggregation = (B-C) x 100 /B

Percentage of agonist induced-aggregation = (C-D) x 100 /C
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4.4.2 In vitro studies in platelet-rich plasma (PRP)
4.4.2.1 PRPpreparation
Method

1. Venous blood (45 ml) was taken, using a 19G needle without a tourniquet, from
the antecubital fossae of 11 healthy male volunteers who had not taken
non-steroidal anti-inflammatory drugs for at least 7 days.

2. The blood was anticoagulated with r-hirudin (200 U/ml). After collection,
hirudinised whole blood (40 ml) was split into 2 aliquots (2x20 ml) which were

treated with 4 U/ml heparin and 0.9% saline, respectively. 2x1 ml of hirudinised
whole blood was collected into eppendorf tubes for isolation of platelet poor

plasma (PPP).
3. Both treated and untreated hirudinised blood was left at room temperature for 5

minutes before centrifugation at 120xg for 18 minutes at room temperature to

obtain the PRP. Aliquots of PRP were dispensed into siliconised glass cuvettes

and kept at room temperature before assessment of macroaggregation.

4. PPP was obtained by centrifugation of the r-hirudin-anticoagulated blood in a

microcentrifuge at 9000xg for 1 minute.

4.4.2.2 Macroaggregation in PRP
Before measurement of PRP macroaggregation, calibration of the aggregometer was

carried out according to the manufacturer's instructions using PPP (16 cm scale

deflection) and PRP (0 cm scale deflection). Aliqouts of PRP (0.4 ml) were

equlibrated at 37°C for 3 minutes, 100 pi of collagen (2-10 pg/ml) or fMLP

(10"6-10"5M) were added and stirred at 1000 rpm, then platelet macroaggregation was

recorded using a Payton Dual Channel Aggregometer with a potentiometric recorder

(Payton Associates Ltd, Ontario, Canada). The aggregation response was quantified
in terms of amplitude (cm) of the increase in light transmission through the sample
after addition of the agonist (at 3 minutes after the initial 'shape change' response).
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4.4.3 In vitro studies of neutrophils
4.4.3.1 Isolation ofhuman neutrophils
Venous blood (160 ml) was taken from six healthy volunteers who were free from
non-steroidal anti-inflammatory drugs for at least 7 days. The blood was

anticoagulated with r-hirudin (200 U/ml). Neutrophils were isolated from human
blood as discussed in section 2.4.3 of Chapter 2. After neutrophils were counted

microscopically in a counting chamber, cells were resuspended at a concentration of
1.5xl06 cells/ml in PBS containing Ca2+ and Mg2+, 5 mg/ml cytochrome C and 5 pg

per/ml cytochalasin B and then divided into 4x8 ml aliquots.

4.4.3.2 Measurement ofsuperoxide anion generation
Method

1. Neutrophils (450 pi) in hirudinised whole blood were treated with PBS or

different concentrations of heparin to produce final concentrations of 0, 1, 4, 10

U/ml prior to the addition to tubes containing 50 pi of 3xl0"8 to 10"5 M fMLP

(3-1000 nM) and incubated for 10 minutes at 37°C.

2. At the end of incubation period, the reaction was terminated by immersing the
tubes in ice for 5 minutes and the samples were centrifuged at 320xg, at 4°C for
10 minutes, to sediment the cells.

3. Supernatant (200 pi) from each tube was dispensed into a 96 well plate and the
absorbance at 550 nm was measured in a spectrophotometer (DYNATECH MR

7000). Basal absorbance was taken as cells without fMLP. Each sample was

done in triplicate and the values were averaged. The amount of 02~ generation
was calculated as discussed in section 2.3.6.2. Results are expressed as nmol

superoxide anions/106 cells/10 minutes. In this assay the final percentage of
DMSO was 0.09%.

187



CHAPTER 4

4.4.3.3 Measurement ofMyeloperoxidase (MPO) production
Venous blood (160ml) was taken from five healthy volunteers, who were free of
non-steroidal anti-inflammatory drugs for at least seven days. The blood was

anticoagulated with r-hirudin (200 U/ml). The neutrophils were isolated and counted

using the same methodology as the 02" generation assay as discussed in section 2.4.3
ofChapter 2. After neutrophils were counted microscopically in a counting chamber,

cells were resuspended at a concentration of 1.5xl06 cells/ml in PBS containing Ca2+
and Mg2+, and 5 pg/ml cytochalasin B and then divided into 4x8 ml aliquots.

Method

1. Neutrophils (450 pi) in hirudinised whole blood were treated with PBS or

different concentrations of heparin to produce final concentrations of 0, 1, 4, 10

U/ml prior to the addition to tubes containing 50 pi of 3x10"8 to 10"5 M fMLP

(3-1000 nM) and incubated for 10 minutes at 37°C.

2. At the end of incubation period, the reaction was terminated by immersing the
tubes in ice for 5 minutes and the samples were centrifuged at 320xg, at 4°C for
10 minutes, to sediment the cells.

3. Aliquots of supernatant (30 pi) were dispensed in duplicate into a 96 well plate.

4. 200 pi of reaction mixture [0.1 mg/ml 3,3',5,5'- Tetramethylbenzidine (TMB) in
0.05 M citrate phosphate buffer (pH 5.0) supplemented with 0.012% (v/v)

hydrogen peroxide] was immediately added. The reaction was allowed to

develop for 7 minutes where the product from the MPO-dependent reaction of
TMB and H202 appeared as a bright blue colour.

5. The reaction was then stopped by adding 50 pi of 4M H,S04, and the colour of
the product turned from a blue colour to a yellow colour.

4. The absorbance was read in a spectrophotometer (DYNATECH MR7000) at 460
nm. MPO release has been expressed as a percentage of the maximum response

188



CHAPTER 4

observed with control cells stimulated with fMLP. In this assay the final

percentage of DMSO was 0.09%.

4.4.4 Statistical analysis
All data except those of the in vitro study of neutrophil superoxide anion generation
and MPO production are expressed as medians [interquartile range] unless otherwise
stated. Analysis of the data used Arcus Quickstat Biomedical software (Addison

Wesley Longman trading as Research Solutions). Dependent upon distribution,

paired comparisions were made using Paired t-test or Wilcoxon signed rank tests.

Data were analysed for multiple comparisons by either Kruskal-Wallis or Friedman
distribution-free analyses of variance (ANOVA), using appropriate corrections for

multiple comparisions or ties.

The results from the in vitro study of neutrophil superoxide anion generation and
MPO production were analysed using Microsoft Excel software. Data are expressed
as the mean ± s.e. mean of the averaged result taken from a minimum of five separate

experiments. EC50 values were calculated (concentration of fMLP required to

produce 50% of the maximal 02" produced by fMLP) for fMLP in the absence and

presence of different concentrations of heparin. Statistical analysis was performed

by two-tailed paired Student's t test for comparing 02" generation and MPO

production between control and treatment groups. In addition, data involving

multiple comparisons between groups were analysed by ANOVA (Two factors with

replication). A value of P<0.05 was considered to be statistically significant.
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4.5 RESULTS

4.5.1 Platelet macroaggregation in whole blood by impedance

aggregometry

4.5.1.1 Patients

The macroaggregatory response to collagen (0.6 pg/ml) in whole blood was

significantly reduced by heparinisation (before the onset of CPB) from 18.0

[13.9-21.6] to 2.5 [1.1-6.1] ohms (PO.OOOl), n=14), and remained diminished at 1.7

[0.6-3.6] ohms after CPB (Table 4.1). The administration of heparinase to the blood

samples before collagen stimulation did not in itself affect aggregation and did not

restore the macroaggregatory response to collagen (Table 4.1). The

macroaggregatory response to collagen (0.6 pg/ml) in whole blood in the presence of

heparinase was 16.5 [10.8-21.6] and 3.1 [1.3-4.8] ohms, before and after

heparinisation (P<0.0001, n=14), and remained diminished at 1.3 [0.0-2.1] ohms
after CPB.

Table 4.1 Collagen-induced macroaggregation ofplatelets in whole blood before
and 5 minutes after heparin and at end CPB in the presence and absence of
heparinase as determined by impedance aggregometry.

Intra-operative
Sampling time

Without heparinase
Collagen (0.6 pg/ml)

Heparinase
Collagen (0.6 pg/ml)

Pre-heparin 18 16.5

[13.9-21.6] [10.8-21.6]

Heparinised 2.5*** 3.1***
[1.1-6.1] [1.3-4.8]

End CPB 1.7*** 1.3***
[0.6-4.0] [0.0-2.1]

Data are medians [interquartile range] ofmacroaggregation in ohms in whole blood
from patients, with collagen (0.6 jug/ml). "*P<0.0001 indicates significantly different
from pre-heparin.
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Examples of traces of the macroaggregatory response to collagen (0.6 pg/ml) in the

presence and absence of heparinase in whole blood samples taken before

heparinisation, at heparinisation and at end ofCPB are shown in Figure 4.1.

a. —V

t
collagen

b. \
I
t
collagen

2.5 ohms

\

collagen collagen

mm

collagen collagen

Figure 4.1 Example of traces showing collagen-induced platelet macroaggregation
in whole blood from patients, before heparin, (a) without heparinase, (b) with
heparinase; 5 minutes after heparin (c) without heparinase, (d) with heparinase; at
the end ofCPB (e) without heparinase, (f) with heparinase. Arrows indicate point at
which collagen (0.6 /jg/ml) was added.

The neutrophil stimulant fMLP at concentration of 10"7 M caused a platelet

macroaggregatory response that was less marked and slower than that seen following
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collagen stimulation. The response was measured at 15 minutes. Before

heparinisation, the response was 3.6 [1.7-5.6] ohms (n=14). After heparinisation for

CPB, this response was completely abolished and remained absent at the end of CPB.

(Table 4.2). The administration of heparinase to the blood sample before stimulation
with fMLP did not restore the macroaggregatory response to fMLP (Table 4.2).

Table 4.2 fMLP-induced macroaggregation ofplatelets in whole blood before and 5
minutes after heparin and at end CPB in the presence and absence of heparinase as
determined by impedance aggregometry.

Intra-operative Without heparinase Heparinase
Sampling time fMLP(l 07M) fMLP (107 M)

Pre-heparin 3.6 2.8

[1.7-5.6] [1.8-6.0]

Heparinised 0.0*** 0.0***
[0.0-0.0] [0.0-0.0]

End CPB 0.0*** 0.0***
[0.0-0.0] [0.0-0.0]

Data are medians [interquartile range] ofmacroaggregation in ohms in whole blood
from patients, with fMLP (107 M). *"P<().000I indicates significantly different from
pre-heparin.

Examples of traces from the platelet macroaggregatory response to fMLP (10"7M) in
the presence and absence of heparinase in whole blood samples taken from each

stage are shown in Figure 4.2.
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a.

e.

f.

t
fMLP

c.
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t
fMLP

t
fMLP

t
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1 min.
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Figure 4.2 Example of traces showing fMLP-induced platelet macroaggregation in
whole blood from patients, before heparin, (a) without heparinase, (b) with
heparinase; 5 minutes after heparin (c) without heparinase, (d) with heparinase; at
the end ofCPB (e) without heparinase, (f) with heparinase. Arrows indicate point at
which fMLP (107M) was added.

4.5.1.2 Volunteers

In this study the effects of heparin concentrations (0.1-10.0 U/ml) upon collagen
induced platelet macroaggregation were examined in vitro. In unheparinised blood,

the macroaggregatory response to collagen (0.6 pg/ml) was 18.1 [17.3-19.9] ohms.

Heparin concentrations at 0.1, 0.4 and 1.0 U/ml did not affect collagen-induced

macroaggregation. However, heparin at concentrations of 4.0 and 10.0 U/ml caused
a small but significant inhibition of collagen-induced macroaggregation and their
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macroaggregatory responses were 13.8 [9.4-16.2] and 13.5 [6.5-14.7] respectively

(PO.OOOl, n=ll) (Table 4.3). The addition of heparinase to blood samples with a

heparin concentration of 4 U/ml before collagen stimulation prevented the inhibition
ofmacroaggregation by heparin (P<0.05, n=l 1) (Table 4.3)

Table 4.3. Collagen-induced macroaggregation ofplatelets in whole blood from
volunteers in the presence and absence of heparinase as determined by impedance
aggregometry.

Without heparinase With heparinase

Heparin (u/ml) Collagen (0.6 pg/ml) Collagen (0.6 pg/ml)

0 18.1 19.3

[17.3-19.9] [17.8-21.4]

0.1 20.3 _

[19.1-22.6]

0.4 18.9 20.1

[16.5-21.8] [16.8-22.0]

1 16.6 _

[13.2-19.3]

4 13.8*** 18.7#
[9.4-16.2] [11.3-20.0]

10 13.5*** -

[6.5-14.7]

Data are medians [interquartile range] ofmacroaggregation in ohms in whole blood
from volunteers, with collagen (0.6 g/ml). "*P<0.005 indicates significantly different
from heparin 0 u/ml; "P<0.05 indicates significantly different from the absence of
heparinase.

Examples of traces of the effect of different concentrations of heparin on

macroaggregatory response to collagen (0.6 pg/ml) in the presence and absence of

heparinase in whole blood samples from volunteers are shown in Figure 4.3.
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Figure 4.3 Example of traces showing the effect of heparin 0 U/ml (a, b), 0.4 U/ml
(c, d) and 4 U/ml (e, f) on collagen-induced platelet macroaggregation in whole
bloodfrom volunteers without heparinase (a, c and e) and with heparinase (b, d and
J). Arrows indicatepoint at which collagen (0.6 jug/ml) was added.

In control blood, the macroaggregatory response to fMLP (107 M) was 3.3 [1.9-5.7]
ohms. In contrast to the effects of collagen, fMLP-induced macroaggregation was

significantly potentiated by heparin concentrations 0.1, 0.4, 1, 4 U/ml (P<0.0001,

n=ll) but the potentiative effect of heparin was reduced to 4.4 [2.9-6.3] ohms at 10
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U/ml of heparin (Table 4.4). The potentiative effects of heparin at the concentrations
of 0.4 and 4 U/ml on fMLP-induced macroaggregation were significantly reversed by
the addition of heparinase before fMLP stimulation (P<0.05 and PO.OOOl,

respectively) (Table 4.4).

Table 4.4 fMLP-induced macroaggregation of platelets in whole blood from
volunteers in the presence and absence of heparinase as determined by impedance
aggregometry.

Without heparinase With heparinase

Heparin (u/ml) fMLP(107 M) fMLP(107 M)

0 3.3 3.2

[1.9-5.7] [2.5-5.0]

0.1 8.0"* -

[5.9-13.3]

0.4 6.6*** 4.8"
[5.5-8.7] [4.3-6.3]

1 7.7***
[4.5-11.1] -

4 7.5*** 3.1™
[4.6-8.0] [1.5-4.7]

10 4.4 -

[2.9-6.3]

Data are medians [interquartile range] ofmacroaggregation in ohms in whole blood
from volunteers, with fMLP (10 7 Mj. ""P<0.0001 indicates significantly different
from heparin 0 u/ml; fi<0.05 and ^P<0.0001 indicate significantly different from
the absence ofheparinase.

Examples of traces of the potentiative effect of different concentrations of heparin on

macroaggregatory response to fMLP (10~7 M) in the presence and absence of

heparinase in whole blood samples from volunteers are shown in Figure 4.4.
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Figure 4.4 Example of traces showing the effect of heparin 0 U/ml (a, b), 0.4 U/ml
(c, d) and 4 U/ml (e, f) on fMLP-induced platelet macroaggregation in whole blood
from volunteers without heparinase (a, c and e) and with heparinase (b, d and f).
Arrows indicatepoint at which fMLP (10~7 M) was added.

4.5.1.3 Platelet macroaggregation in citrated blood by impedance

aggregometry

The macroaggregatory response to the direct platelet stimulant, collagen (0.6 pg/ml)
in citrated blood was 16.0 [12.7-18] ohms (n=6) which was not significantly different
from the macroaggregatory response in blood anticoagulated with r-hirudin (18.1

[17.3-19.9] ohms, n=ll). As collagen acts through the thromboxane system by

stimulating TXA2 production and low Ca2+ concentration favours TXA2 production

(Abbate et al., 1986; Schneider et al., 1997), the platelet macroaggregation induced
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by collagen can be seen in whole blood anticoagulated with citrate with chelation of
Ca2+.

In contrast fMLP, a direct neutrophil stimulant, (10~7 M) induced platelet

macroaggrgation in r-hirudinised blood (3.3 [1.9-5.7], n=ll) but did not induce

platelet macroaggregation in whole blood anticoagulated with citrate. The neutrophil
stimulant fMLP was found to induce platelet aggregation in whole blood only when
extracellular Ca2+ was present because neutrophil activation is dependent on the level
of cytosolic free Ca2+ concentration, which increases rapidly as cells become
activated. As such, the aggregation induced by fMLP was not observed when citrate
was used.

4.5.2 Platelet microaggregation in whole blood by single platelet

counting
4.5.2.1 Patients

Heparinisation, before CPB and before addition of agonists (collagen or fMLP),

significantly reduced the platelet count in stirred blood to 75% of control (from 120

[101-173]xl09 cells/1 to 90 [70-120]xl09 cells/1 (P<0.005, n=14». Since the platelet

count at end of CPB and before addition of collagen was 90 [86-135]xl09 cells/1,
CPB had no additional effect after correction for haemodilution (Table 4.5). The
addition of heparinase to the sample taken before heparinisation and before addition
of agonists (collagen or fMLP) caused a significant reduction in platelet count from
120 [101-173]xl09 cells/1 to 103 [84-131]xl09 cells/1 (P<0.01, n=14).

Addition of collagen (0.6 pg/ml) to stirred blood samples taken before heparinisation

significantly reduced the platelet count from 120 [101-173]xl09 cells/1 to 36

[27-43]xl09 cells/1 (P<0.005, n=14). In heparinised blood, collagen significantly

reduced the platelet count from the reduced value of 90 [70-120]xl09 cells/1 to 36

[25-57]xl09 cells/1 (P<0.005, n=14). The platelet count in stirred blood taken from at

end of CPB was similarly reduced from 90 [86-135]xl09 cells/1 to 37 [31-48]xl09
cells/1 (P<0.005) with the addition of collagen. At each stage, collagen-induced
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microaggregation was preserved with 70%, 60%, and 59 % of the unaggregated

platelet count (all p<0.0001, n=14), respectively (Table 4.5).

The addition of heparinase to the sample taken before heparinisation and before
addition of agonists (collagen or fMLP) caused a significant platelet loss from 120

[101-173]xl09 cells/1 to 103 [84-132]xl09 cells/1 (P<0.01, n=14). With the addition
of heparinase, heparinisation, before CPB and before addition of agonists (collagen
or fMLP), did not cause a significant change in platelet count in stirred blood (109

[90-117]xl09 cells/1 (n=14)). CPB had no additional effect after correction for

haemodilution. The platelet count at end of CPB and before addition of collagen was

97 [77-121]xl09 cells/1. Therefore, CPB had no additional effect after heparinisation.
In the presence of heparinase, collagen-induced platelet microaggregation was

preserved with 60%, 59% and 59% of the unaggregated platelet count at before and
after heparinisation and at end of CPB (all p<0.0001, n=14) (Table 4.5).

Table 4.5. Collagen-induced microaggregation ofplatelets in whole blood before
and 5 minutes after heparin and at end CPB in the presence and absence of
heparinase as determined by single platelet counting.

Platelet count (xlO9 cells/ml)
Intra-operative Without heparinase With heparinase
Sampling time Vehicle alone Collagen Vehicle alone Collagen

(0.6pg/ml) (0.6 pg/ml)

Pre-heparin 120 36*** 103t 41***
[101-173] [27-43] [84-131] [31-66]

Heparinised 90### 36*** 109 45***
[70-120] [25-57] [90-117] [27-59]

End CPB 90### 37*** 97 40***
[86-135] [31-48] [77-121] [31-61]

Data are medians [interquartile range] of microaggregation in whole blood from
patients, following 3 minutes stirring with vehicle alone and 5 minutes stirring with
collagen (0.6 g/ml). *"P<0.0001 indicates significantly different from vehicle alone,
###p<o o5 indicates significantly different from pre-heparin and ,P<0.01 indicates
significantly differentfrom the absence ofheparinase.
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fMLP at a concentration of 10"7 M caused significant reduction in the platelet count
of the sample taken before heparinisation and in the absence of heparinase from 120

[101-173]xl09 to 87 [50-116]xl09 cells/1 (PO.OOOl, n=14). In heparinised blood,
fMLP did not cause a significant reduction in the platelet count in stirred blood, the

platelet count was 86 [58-102]xl09 cells/1 compared with 90 [70-120]xl09 cells/1 in
the heparinised blood with vehicle alone. At the end of CPB the platelet

microaggregatory response to fMLP remained absent with a platelet count of 99

[63-133]xl09 cells/1 (Table 4.6). However, after the addition of heparinase to the

heparinised sample before CPB, fMLP caused a significant reduction in the platelet
count in stirred blood from (109 [90-117]xl09 cells/1 to 70 [63-105]xl09 cells/1)

(P<0.005, n=14).

Table 4.6 fMLP-induced microaggregation ofplatelets in whole blood before and 5
minutes after heparin and at end CPB in the presence and absence ofheparinase as
determined by single platelet counting.

Platelet count (xlO9 cells/ml)
Intra-operative Without heparinase With heparinase
Sampling time Vehicle alone fMLP (107M) Vehicle alone fMLP (107M)

Pre-Heparin 120 87*** 103t 101

[101-173] [50-116] [84-131] [82-128]

Heparinised 90m# 86 109 70***. ###
[70-120] [58-102] [90-117] [63-105]

End CPB 90### 99 97 76*
[86-135] [63-133] [77-121] [60-105]

Data are medians [interquartile range] of microaggregation in whole blood from
patients, following 3 minutes stirring with vehicle alone and 15 minutes stirring with
fMLP (10~7 M). *P<0.05 and "*P<0.0001 indicates significantly different from
vehicle alone, P<0.05, P<0.005 indicate significantly differentfrom pre-heparin
and rP<0.01 indicates significantly differentfrom the absence ofthe heparinase.
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4.5.2.2. Volunteers

The effects of heparin at 0.4, 4.0, 10.0 U/ml upon collagen-induced microaggregation
and platelet count were examined. In the absence of both heparin and heparinase,

collagen (0.6 pg/ml) caused microaggregation of about 90% of the unaggregated

platelet count and reducing the platelet count from 214 [188-237]xl09 cells/1 to

21[20-29]xl09 cells/1 (P<0.0001, n=ll) (Table 4.7). Heparin at a concentration of
0.4 U/ml did not affect collagen-induced microaggregation, but the microaggregatory

response to collagen (0.6 pg/ml) was significantly reduced by 4 and 10 U/ml of

heparin (P<0.05 and P<0.01, respectively, n=ll) when compared with the response

induced by collagen in the absence of heparin. These two concentrations of heparin
caused significant reduction in platelet count from 178 [154-221 ]x 109 cells/1 to 35.2

[20-94]xlO9 cells/1 (P0.0001, n=ll) and from 168 [137-243] xlO9 cells/1 to 29.8

[22-71]xl09 cells/1, (P0.0001, n=ll) respectively (Table 4.7). With the heparin
concentration at 4 U/ml, the addition of heparinase to blood samples before collagen
stimulation prevented the inhibition of microaggregation by heparin when compared
with the response induced by collagen in the absence of heparin.

The same concentrations of heparin were used to examine the effects of heparin upon
fMLP-induced microaggregation and platelet count in volunteers (n=ll). In the
absence of heparin, fMLP (10 7 M) did not significantly induce microaggregation.

However, in the presence of different concentrations ofheparin (0.4-1.0 U/ml), fMLP

significantly induced platelet microaggregation, seen as significant decreases in

platelet count (P<0.005, n=ll). The platelet counts at 0.4, 4.0, and 10.0 U/ml of

heparin were significantly lower than the count with zero heparin (139 [102-177]
xlO9 cells/1, 133 [126-199] xlO9 cells/1, 132 [103-222] xlO9 cells/1, respectively)

(PO.01 and P<0.05) (Table 4.7). Addition of heparinase prevented the potentiation
effect of 0.4 and 4U/ml of heparin and caused an increase in platelet count to 190

[127-222] xlO9cells/1, 188 [132-197] xlO9cells/1, respectively.
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Table 4.7 Collagen- and fMLP-induced mieroaggregation of platelets in whole
blood from volunteers in the presence and absence of heparinase as determined by
single platelet counting.

Platelet count (xlO9 cells/1) Platelet count (xlO9 cells/1)
Without heparinase With heparinase

Heparin Vehicle Collagen fMLP Vehicle Collagen fMLP

(u/ml) alone (0.6 pg/ml) (107M) alone (0.6 pg/ml) (107M)

0 214 21*** 185 198 31*** 187

[188-237] [20-29] [174-201] [180-245] [20-39] [144-217]

0.4 201 31*** 139*** 208 31*** 190

[144-241] [16-41] [102-177] [146-267] [14-31] [127-222]

4 178 35.2***,# 133**# 211 32.0*** 188

[154-221] [20-94] [126-199] [165-228] [22-44] [132-197]

10 168# 29.8***,# 132** - - -

[137-243] [22-71] [103-222]

Data are medians [interquartile range] of microaggregation in whole blood from
volunteers, following 3 minutes stirring with vehicle alone, 5 minutes stirring with
collagen (0.6 g/ml) and 15 minutes stirring with fMLP (10 7 M). **P<0.005 and
***P<0.0001 indicate significantly different from vehicle alone; P<0.05 and
^P<0.01 indicate significantly differentfrom no heparin.

4.5.3 Macroaggregation in PRP

Collagen at concentrations of 0.2, 0.6, 0.8 and 1.0 pg/ml induced a concentration-
related platelet macroaggregation in PRP by optical aggregometry. The median

aggregatory responses were 4.25, 8.1, 9.5 and 9.3 cm, respectively (n=9). In

contrast, fMLP (10~7 M) caused no response in PRP. The presence of heparin (4

U/ml) caused significant reduction in the macroaggregatory response to all
concentrations of collagen used (P<0.0001 ANOVA) (Table 4.8).
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Table 4.8 Macroaggregation in PRP from volunteers' blood as determined by
optical aggregometry.

Heparin (u/ml) Collagen( pg/ml) fMLP (M)
0.2 0.6 0.8 1.0 107 106

0 4.25 8.1 9.5 9.3 0 0

[1.5-6.0] [5.1-10.4] [7.9-11.5] [7.9-10.7] [0.0] [0.0]

4.0 1.8* 5.2* 6.3* 7.0* 0.3 0

[0.0-2.0] [1.3-7.5] [3.1-7.4] [2.9-8.6] [0-0.63] [0.0]

Data are medians [interquatile range] for macroaggregation in PRP from
volunteers' blood following stimulation for 3 minutes and 15 minutes with collagen
and fMLP, respectively in the presence and absence of heparin 4 U/ml. *P<0.05
indicates significantly differentfrom no heparin.

4.5.4 The effects of heparin on neutrophil superoxide anion

generation and MPO production
To evaluate the effect of heparin on neutrophil 02" generation, superoxide
dismutase-inhibitable cytochrome C reduction was measured in human neutrophils
treated with different concentrations of heparin. Figure 4.5 illustrates the dose-

response curve of fMLP stimulated neutrophil Of generation in nmol/106 cells/10
minutes and the effect of different concentrations of heparin on Of generation.

In the control group (heparin 0 U/ml), fMLP at the concentration of 1000 nM

induced the Of generation in human neutrophils of 20.2 ± 2.2 nmol Of/106 cells/10

minutes (Figure 4.5). As shown in Figure 4.5 heparin at a concentration of 1 U/ml
caused no significant inhibition (P>0.05, ANOVA) of fMLP-induced Of generation
in human neutrophils, giving EC50 for fMLP of 84.1 ± 13.1; 54.0 ± 18.6 nM, n=6

(P>0.05) in its absence and presence, respectively. This concentration of heparin

reduced the maximal effect of fMLP (1000 nM) from 20.2 ± 2.2 to 13.6 ± 2.1 nmol

Of/106 cells/10 minutes (P>0.05).
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a Control

Heparin 1 u/ml

Heparin 4 u/ml

—•— Heparin 10 u/ml

1 10 100 1000

fMLP concentration (nM)

Figure 4.5 Log concentration-effect curve for fMLP-induced superoxide anion
generation in control neutrophils and neutrophils treated with heparin (1 U/ml, 4
U/ml and 10 U/ml). The values are the mean ± s.e. mean of 6 different volunteers.
Statistically significant differences * P< 0.05 and *" P<0.005.

Heparin at a concentration of 4 U/ml caused significant inhibition (P<0.05, ANOVA)
of fMLP-induced 02" generation in human neutrophils (Figure 4.5), giving EC50 for
fMLP of 84.1 ± 13.1; 41.4 ± 10.9 nM, n=6 (P<0.05) in its absence and presence,

respectively. This concentration of heparin significantly reduced the maximal effect
of fMLP (1000 nM) from 20.2 ± 2.2 to 4.7 ± 0.6 nmol O2V106 cells/10 minutes

(P<0.005).

At the highest concentration (10 U/ml), heparin caused significant inhibition

(P<0.05, ANOVA) of fMLP-induced 02" generation in human neutrophils (Figure

4.5), giving EC50 for fMLP of 84.1 ± 13.1; 245.6 ± 136.1 nM, n=6 (P>0.05) in its
absence and presence, respectively. The maximal response of fMLP was

significantly reduced by this concentration of heparin from 20.2 ± 2.2 to 2.1 ± 1.2

nmol O2V106 cells/10 minutes at 1000 nM (P<0.0005).
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Neutrophils were incubated with fMLP (3x10H to 10"5 M), causing a

concentration-related production of MPO. Figure 4.6 illustrates the percentage of
MPO produced in response to fMLP stimulated neutrophils in the presence of

increasing concentrations of heparin. The maximum production of MPO by fMLP at

1000 nM in the control group was taken to be 100%.

Heparin at a concentration of 1 U/ml caused a significant inhibition (P<0.005,

ANOVA) of fMLP-induced MPO production in human neutrophils (Figure 4.6),

giving EC50for fMLP of 30.3 ± 1.3; 29.1 ± 4.7 nM, n=5 (P>0.05) in its absence and

presence, respectively. The maximal effect of fMLP (1000 nM) was significantly
reduced by this concentration of heparin to 85.3 ± 1.2% (P<0.01).

Heparin at a concentration of 4 U/ml caused a significant inhibition (P<0.005,

ANOVA) of fMLP-induced MPO production in human neutrophils (Figure 4.6),

giving EC50for fMLP of 30.3 ± 1.3; 27.1 ± 4.3 nM, n=5 (P>0.05) in its absence and

presence, respectively. With the addition of 4 U/ml of heparin the maximal effect of
fMLP (1000 nM) was significantly reduced to 73.7 ± 3.9% (P<0.0005).

The addition of 10 U/ml of heparin caused a significant inhibition (P<0.005,

ANOVA) of fMLP-induced MPO production in human neutrophils (Figure 4.6),

giving EC50for fMLP of 30.3 ± 1.3; 23.4 ± 5.6 nM, n=5 (P>0.05) in its absence and

presence, respectively. With the addition of 10 U/ml of heparin the maximal effect
of fMLP (1000 nM) was significantly reduced to 58.6 ± 6.9% (P0.001).
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Figure 4.6 Log concentration-effect curve for fMLP induced MPO production
expressed as a percentage ofMPOproduction in control neutrophils and neutrophils
treated with heparin (1 U/ml, 4 U/ml and 10 U/ml). The values are the mean ±s.e.
mean of 5 different volunteers. Statistically significant differences P<0.05,
**P<0.01 and*"P<0.005.

4.6 DISCUSSION

CPB is associated with both impaired platelet macroaggregation and neutrophil
activation. Previous studies have demonstrated that the bleeding diathesis associated
with CPB is at least in part due to a defect in platelet macroaggregation, a problem
which persists after the end of CPB with slow recovery (Menys et al., 1994; 1995a;

1995b). Much research has been undertaken to determine the mechanism whereby

platelets fail to form stable aggregates during CPB surgery. Some investigators

suggested that platelet functional changes have been attributed to initial contact with
the extracorporeal circuit (van Oeveren et al., 1990; Jestice et al., 1990). Recent
research suggested that platelet dysfunction is evident before the initiation of CPB

surgery but after the administration of heparin (Kestin et al., 1993; Khuri et al.,

1995), suggesting heparin's involvement in the pathophysiology of platelet

aggregation. Heparin may cause some platelet dysfunction (manifested by a
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prolongation of bleeding time and a reduction in the production of TXB2) in patients

undergoing CPB (Kestin et al, 1993; Khuri et al., 1995), although its specific action

upon the aggregation process is unclear. Khuri et al. (1995) suggested that heparin
contributes to the haemostatic defect observed in patients undergoing CPB not only

by inhibiting coagulation through its effect on antithrombin III, but also by eliciting
direct adverse effects on the platelet and the fibrinolytic system. Heparin has been

suggested to affect platelet aggregation and accumulation along the endothelium by

disrupting interactions among vWF with collagen and platelets (Savage et al., 1996).
Previous investigators showed that while macroaggregation in PRP measured by

optical aggregometry is impaired by CPB, microaggregation in whole blood and PRP
as determined by platelet counting is not (Menys et al., 1994; Kawahito et al., 1999).

The present study was designed to elucidate the effects of heparin, used as an

anticoagulant in CPB surgery, on platelet aggregation both in patients undergoing
CPB and in volunteers. The possibilities were: either that heparin had a specific but
as yet unknown effect upon the platelet, or that heparin had an inhibitory effect upon

neutrophil-platelet interactions that may stimulate platelet aggregation.

Whole blood was used to enable interactions between different cell types (eg.

platelet-neutrophil) to occur, r-hirudin was used as anticoagulant in all studies

namely: studies in whole blood both from patients and volunteers, in vitro studies in

platelet-rich plasma (PRP) and in vitro studies of neutrophil 02" generation and MPO

production, r-hirudin is a suitable anticoagulant for studying platelet functions
because it does not produce any alterations in platelet reactions and does not provoke

any changes in the ionised calcium concentration in blood (Glusa & Markwardt,

1990). In addition, r-hirudin can better preserve platelet function and may reduce the
risk of postoperative bleeding, therefore it can be used successfully as an alternative

anticoagulant to heparin during cardiac operations including CPB (Riess et al.,

1997). Neutrophil lactoferrin secretion is affected by the anticoagulant used and is
best preserved by r-hirudin (Engstad et al., 1997). Similarly r-hirudin does not

interfere with the neutrophil response to fMLP (Karlsson et al., 1996).
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The effects of heparin on platelet macroaggregation in whole blood from patients
were investigated. CPB resulted in haemodilution, but this was previously found not

sufficient to interfere with aggregometry (Menys et al., 1994). Collagen-induced

macroaggregation ex vivo was found to be abolished by heparinisation per se rather
than by CPB. As collagen-induced macroaggregation is mediated through TXA2

generation it either suggests an action by heparin upon eicosanoid metabolism or a

specific heparin effect upon an, as yet unknown, mechanism by which large stable

aggregates are formed. The inhibitory effect of heparin on collagen-induced

macroaggregation was not restored by adding heparinase, suggesting an indirect
action of heparin in macroaggregation induced by collagen.

It was demonstrated, ex vivo in whole blood that fMLP-induced neutrophil
stimulation could cause platelet macroaggregation; it was also shown that this was a

neutrophil-mediated mechanism because of the absence of macroaggregatory

responses to fMLP in platelet-rich plasma. Furthermore, the macroaggregatory

response to fMLP in whole blood was much slower than that observed with a direct

platelet stimulant, collagen. This also tends to indicate that macroaggregation
induced by fMLP is an indirect action and being secondary to neutrophil activation
as fMLP did not directly activate platelets. The macroaggregatory response of fMLP
was measured at 15 minutes after the starting of macroaggregation. Although the

responses were already clear at 15 minutes, this is probably too short a period for
observation of the full fMLP effect, which takes about 30 minutes (Armstrong, R.A.

personal communication). Heparinisation for CPB completely abolished
fMLP-induced platelet macroaggregation and the abolition remained at the end of
CPB. This showed that fMLP-induced macroaggregation ex vivo was abolished by

heparinisation per se rather than by CPB. However, r-hirudin does not interfere with
the neutrophil response to fMLP (Karlsson et al., 1996). The abolition of
fMLP-induced macroaggregation by heparinisation remained even when the sample
was subsequently treated with heparinase (Table 4.2). This suggests that this effect
of heparin may be irreversible or heparin may not exert a direct effect to inhibit
fMLP-induced macroaggregation.
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The findings of the present study, that neutrophil stimulation by fMLP caused

macroaggregation of platelets in patients' blood, which was blocked by heparin,

suggested release of mediators from the neutrophil, which stimulate platelet

macroaggregation. A likely cause of the platelet macroaggregatory response was

initially considered to be the release of cathepsin G from neutrophils. Cathepsin G
has been shown, in washed cell systems, to promote platelet aggregation which can

be inhibited by heparin as it forms heparin-cathepsin G complexes (Ferrer-Lopez et

al., 1992). However, in the present study, cathepsin G (200 and 250 nM) did not

induce macroaggregation in whole blood (data not shown) and therefore this
mechanism cannot be confirmed.

In contrast to the study in whole blood from patients, when volunteers' blood was

examined with in vitro heparin concentration of 4 U/ml (i.e. the concentration
measured in heparinised patients), the macroaggregatory response to collagen was

only slightly inhibited. Lower concentrations of heparin (0.1, 0.4, and 1 U/ml) had
no effect. The addition of heparinase abolished the in vitro inhibition of

macroaggregation by 4 and 10 U/ml heparin thus suggesting that after in vitro

heparinisation, digestion (neutralisation) of heparin by heparinase leaves no

fragments of heparin that are inhibitory to platelet aggregation. The inhibition of

macroaggregatory response to collagen of 4 and 10 U/ml heparin appears to be a

direct heparin effect because it was inhibited by heparinase.

In contrast to the present study Chen et al. (1992a) showed that in an in vitro study in
whole blood, heparin (0.5-5.0 U/ml) enhanced collagen-induced platelet aggregation
both in calcium-chelated blood and in blood anticoagulated with hirudin, and that the

heparin potentiating effect on platelet aggregation seemed to be independent of
extracellular ionised calcium, and could be operative at physiological calcium
concentration. The heparin effects were found to be related to activation of the

platelet GPIIb/IIIa receptor complex (Chen et al., 1992b). The discrepancy between
these contradictory findings remains unexplained.
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In contrast to the ex vivo findings, in vitro addition of heparin at concentration of
0.1-4.0 U/ml enhanced the macroaggregatory responses to fMLP. The potentiation
of the macroaggregatory response to fMLP in vitro was inhibited by heparinase

suggesting that this was a direct heparin effect.

The findings that : 1) in vivo heparinisation inhibits platelet macroaggregation to a

much greater extent than in vitro heparinisation of whole blood, 2) that ex vivo

heparinase failed to neutralise the inhibitory effects of heparin, whereas in vitro

heparinase blocked the inhibitory effect of heparin, suggest that heparinisation for
CPB causes the release of a mediator(s) from endothelium or other vascular cells,
that can inhibit platelet macroaggregation. Intravenous administration of relatively
low doses of heparin rapidly releases platelet factor 4 (PF4) (Dawes et al., 1982;
O'Brien et al., 1984), extracellular superoxide dismutase (Karlsson et al., 1987),

lipoprotein lipase and hepatic lipase from endothelium (Malmstrom, 1999), with
maximum levels being achieved within 10 minutes. An association of increased

bleeding time with lipase release has been seen in rabbits given unfractionated

heparin with lesser effects seen with low molecular weight heparin (Barrowcliffe et

al., 1988). The release of hepatic lipase and lipoprotein lipase causes acute changes
in plasma lipid profile (Malmstrom, 1999). Plasma lipid fatty acid composition has a

variety of effects on platelet aggregation (Maclntyre et al., 1984). Intravenous

administration of heparin and other sulphated glycosaminoglycans releases numerous
endothelial proteins into the plasma (Novotny et al., 1993). Low doses of continuous

heparin infusions maintain the peak levels of these proteins in plasma for several
hours (Malmstrom et al., 1999). During CPB, after large loading doses, plasma

heparin levels remain elevated (Despostis et al., 1995). It is therefore reasonable to

assume that the levels of these heparin-released endothelial proteins remain elevated.

Thus, it is possible that the inhibition of platelet macroaggregation may be secondary
to a factor(s) released in vivo by heparin.

Heparinisation caused a significant loss of platelets before CPB. Heparinisation for
CPB caused a loss of approximately 25% of the unaggregated platelet count before
administration of agonist. This raises two concerns: the first is that the loss of this
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amount of platelets may contribute to postoperative bleeding, but there is little
evidence that the loss is large enough to cause this; the second concern is that heparin
caused spontaneous in vivo platelet aggregation which may stimulate further

aggregation. However, the evidence from this study and previous investigations has
shown that large stable aggregate formation (macroaggregation) is inhibited by the

presence of heparin (Menys 1994, 1995a, 1995b), rather than stimulated.

Collagen-induced microaggregation was not affected by heparinisation or CPB, thus

confirming previous findings in which the microaggregation response was

maintained despite the macroaggregatory response being inhibited (Menys et al.,

1994, 1995a, 1995b). fMLP-induced microaggregation was observed in patients

before, but not after, heparinisation. The addition of heparinase to the sample taken
before heparinisation and before addition of agonists (collagen or fMLP) caused a

significant platelet loss, this effect was too small to be detected by impedance

aggregometry. In the presence of heparinase, collagen-induced platelet

microaggregation was preserved at each stage. The definite effect of heparinase on

microaggregatory response to collagen remains unexplained. Addition of heparinase
reversed the inhibitory effect of both heparinisation and CPB on fMLP-induced

microaggregation suggesting that digestion of heparin by heparinase left no

fragments that are inhibitory to microaggregation of platelets.

In contrast to the ex vivo effect, addition of heparin promotes both collagen- and
fMLP-induced microaggregation in vitro; indeed, microaggregation was lacking in

response to fMLP in vitro until heparin was added. This is consistent with a mild,
direct stimulatory effect of heparin. The addition of heparinase prevented the

potentiating effect of heparin on fMLP-induced platelet microaggregation. The
definite microaggregatory response to heparin remains unexplained.

The mechanism of the decreased platelet counts (microaggregation) and the small but
definite change in electrical impedance (macroaggregation) seen following fMLP
stimulation in the present study may be complex. Platelet-neutrophil conjugates
have been demonstrated in whole blood and their formation has been shown to be

211



CHAPTER 4

P-selectin and divalent cation-dependent, thus suggesting that platelet activation is

required for their formation. In one study, fMLP-induced neutrophil stimulation in
citrated blood did not increase the number of platelet-neutrophil conjugates (Peters et

al., 1997), whereas another study, using flow cytometry with citrated blood, found a

dose-dependent increase in conjugates in response to fMLP, PAF, ADP and thrombin

(Li et al., 1997). In the present study, fMLP was found not to induce platelet

macroaggregation in whole blood anticoagulated with citrate. fMLP, a neutrophil

stimulant, was found to induce platelet aggregation in whole blood only when
extracellular Ca2+ was present. Certain aspects of neutrophil activation such as

elastase release and 02" generation require the influx of extracellular calcium

(Norgaer et al., 1994; Khalfi et al., 1996). As such, the platelet aggregation induced

by fMLP was not observed once the Ca2+ had been removed by citrate. This finding

provides further evidence to support the role of neutrophil activation in platelet

macroaggregation. In addition, fMLP added to PRP did not cause platelet

macroaggregation. It can therefore be postulated that the fMLP effect was

neutrophil-mediated.

To support the hypothesis that heparin contributed to platelet dysfunction during
CPB by interfering with a possible neutrophil-platelet interaction that contributes to

platelet macroaggregation, the in vitro effects of heparin on neutrophil activation
were investigated by measuring markers of neutrophil activation (Of generation and
MPO production). The results showed that heparin at all concentrations had an

inhibitory effect on Of generation. Of generation in fMLP-stimulated neutrophils
was dose-dependently reduced by heparin. With the addition of 4 U/ml and 10 U/ml
of heparin, Of generation was almost completely abolished. These findings are

consistent with previous studies that showed the inhibitory effects of heparin on

respiratory burst of neutrophils, stimulated with fMLP in a concentration-dependent
manner (Pasini et al., 1984; Bazzoni et al., 1993; Cerletti et al., 1994; Risenberg et

al., 1995). Others have observed a biphasic dose-response curve for inhibition of Of

production in vitro following fMLP stimulation, at low concentrations, heparin
enhanced neutrophil Of generation but was suppressed at higher concentrations.

(Itoh et al., 1995). These studies suggested that heparin has an inhibitory effect on
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02 generation, although the concentrations of heparin required to cause significant
inhibition varied greatly.

Heparin in vivo has been implicated in the indirect neutralisation of 02" through its
association with superoxide dismutase (SOD) (Oyanagui & Sato, 1990). Several
studies have focused on the effects of heparin on other markers of neutrophil
activation such as SOD and MPO. A study by Karlsson et al. (1987), suggested that
extracellular superoxide dismutase (ecSOD), induced by heparin, may play a

protective role against 02, an event which would not be seen in vitro. Other studies
have focused on lactoferrin and myeloperoxidase turnover (Larson et al., 1996). In
this study, the in vitro effects of different concentrations of heparin on MPO

production in neutrophils from volunteers were measured. It was found that
inhibition of MPO production was gradual and dose-dependent with increasing
concentrations of heparin. The results that different concentrations of heparin
inhibited fMLP-induced 02" generation and MPO production in neutrophils, illustrate
the in vitro inhibition of neutrophil activation by heparin. This could be indirect
evidence to support the hypothesis that heparin contributes to platelet dysfunction

during CPB by interfering with a possible neutrophil-platelet interaction.

4.7 CONCLUSIONS

The present study demonstrated that in vivo heparinisation, per se rather than CPB
abolished ex vivo macroaggregation induced by collagen or fMLP. This ex vivo

inhibitory effect of heparin on platelet macroaggregation is suggested to be an

indirect effect of in vivo heparinisation because heparinase cannot restore ex vivo

collagen- or fMLP-induced platelet macroaggregation. This is further supported by

the results from the in vitro study, which showed that inhibition of collagen-induced

macroaggregation was far less marked and heparin enhanced the aggregatory

response to fMLP. As heparinase could inhibit these effects of heparin on

macroaggregation, the phenomenon is likely to be a direct heparin effect. These

findings suggest either that, heparin is irreversibly bound and indigestible, or that
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heparin exerts its in vivo effects indirectly on platelet macroaggregation. In addition,
other factors such as endothelial/other cell types or plasma proteins, might also be
involved.

Heparinisation caused a significant loss of platelets before CPB. In vivo

heparinisation or CPB did not affect the collagen-induced microaggregation

response, but affected the fMLP-induced microaggregation response. Ex vivo

heparinase caused a fall in platelet count and was therefore not helpful in the

investigation ofmicroaggregation. In contrast to the ex vivo effect, heparin promoted
both collagen-and fMLP-induced microaggregation in vitro and heparinase prevented
the potentiation effect of heparin on platelet microaggregation.

The findings that different concentrations of heparin inhibited both 02 generation
and MPO production in vitro in neutrophils, suggest that neutrophil activation was

inhibited by heparin in vitro and this may be attributed in part, to its inhibitory effect
on platelet macroaggregation in vivo.
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The results from this study confirm that neutrophil activation results from the
stimulation of several transduction systems. NO, cyclic GMP and PLD have been
shown to play a role in the activation of human neutrophils since neutrophil
chemotaxis and O2 generation, were attenuated by agents that inhibit these

pathways. However, the increase in cyclic GMP and NO induced by fMLP, which
are associated with neutrophil activation, are very small. In contrast, the NO donors,
GEA 3162, GEA 5024 and SIN-1, which produced large amounts of NO (measured
as total nitrate/nitrite) and cyclic GMP compared with fMLP, inhibit neutrophil
chemotaxis.

Neutrophil activation has been suggested to have an important role in MI-R injury

(Lefer et al., 1993; Forman et al., 1993). A number of studies have shown a very

strong correlation between the extent of neutrophil accumulation in the

ischaemic-reperfused myocardium and infarct size (Mullane et al., 1985; Chatelain et

al., 1987). As it was clearly shown in Chapter 2 that the NO donor, GEA 3162
inhibits human neutrophil chemotaxis in vitro, it was reasonable to investigate the

ability of this drug to inhibit neutrophil infdtration in an in vivo rat model ofMI-R.
GEA 3162 was compared with a potent selective A2A receptor agonist 2-HE-NECA
and the stable PGI2 analogue cicaprost (ZK 96 480). All three drugs have been
shown to be able to inhibit neutrophil infiltration and attenuate myocardial necrosis
in the ischaemic myocardium. Although, these drugs, at the concentrations used in
this study caused a significant attenuation in neutrophil accumulation and myocardial

necrosis, they also caused a significant decrease in blood pressure and increase in
heart rate. Thus, further investigation using lower doses of these drugs to infuse the
ischaemic myocardium for a period of less than 2 hours are required to achieve the

cardioprotective effect of these drugs without causing hypotension and reflex

tachycardia (haemodynamic changes). In addition, if possible, the measurement of

coronary blood flow (transmural blood flow) should be monitored. However, it is
not known whether these drugs can preserve the ischaemic myocardium over longer

periods of time. Therefore, a further investigation with a reperfusion period longer
than 2 hours (e.g. 42-72 hours) in a closed-chest rat model ofMI-R injury may be of
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value to perform. The results from such studies could add to the support for the
beneficial effects of these drugs in the long term.

GEA 3162, 2-HE-NECA and cicaprost have been shown to inhibit human neutrophil
chemotaxis. The effects of these drugs on fMLP-induced rat neutrophil chemotaxis
were also investigated in this study. Unfortunately, no results were obtained, even
with fMLP-induced neutrophil chemotaxis in the control group. This is likely to be
the result of the conditions used to measure chemotaxis being optimised for human
rather than rat neutrophils. Indeed rat neutrophils were shown to behave differently
from human neutrophils in terms of their sedimentation using polymorphoprep™.

Unfortunately, this investigation could not be repeated because of time constraints
and the cost of animals, but the effects of these drugs on fMLP-induced rat

neutrophil chemotaxis need to be investigated further.

The results from neutrophil accumulation and measurement of myocardial injury
cannot pinpoint the exact mechanisms by which these drugs achieve their beneficial

effects, but the evidence from this study points to an inhibitory effect of these drugs
on neutrophil infiltration. However, there are a number of other possible
mechanisms by which these drugs could provide cardioprotection. Their effects may
be related to inhibition of adherence of neutrophils to the coronary endothelium;
inhibition of direct activation of neutrophils; inhibition of the release of cytotoxic
metabolites (superoxide anion, hypochlorous acid, proteases, PAF etc.) from

neutrophils; or a reduction in adherence-dependent injury to myocytes.

In order to identify the exact mechanisms for the cardioprotective effects of these

drugs in MI-R injury, the following in vitro assays are required. Firstly, an in vitro

neutrophil adherence assay could be used for assessing the effect of the test drugs on

the adherence of activated fluorescent neutrophils to the endothelial surfaces of
isolated coronary artery. Adherence can be determined by counting the number of

neutrophils adhering to the endothelial surface/mm of endothelium. Secondly, an in

vitro assay of O2" production by isolated neutrophils could be used to investigate the
effects of the test drugs on O2" production by activated neutrophils in suspension
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(i.e., adherence-independent generation) which can be determined by measuring the

superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome C to

ferrocytochrome C. Cytochrome C reduction can be monitored

spectrophotometrically by determining the optical density of ferrocytochrome C, as

discussed in Chapter 2. Thirdly, isolated coronary arterial rings can be used for
evaluation of the effects of the test drugs on activated neutrophil-mediated coronary

endothelial dysfunction. Endothelial function can be assessed by comparing
vasorelaxation to an endothelium-dependent with an endothelium-independent
vasodilator. The results from these assays should provide additional evidence to help
reveal the exact cardioprotective mechanisms of these drugs in this rat model of
MI-R injury.

Neutrophil activation is associated with cardiopulmonary bypass as well as failure of

platelets to form large stable aggregates. The present study demonstrated that

heparinisation contributes to the platelet dysfunction by inhibiting platelet

macroaggregation before the onset of extracorporeal circulation. This finding is in

agreement with that ofKestin et al. (1993) and Khuri et al. (1995) who demonstrated
that platelet dysfunction is evident before the initiation of CPB but after the
administration of heparin. It was suggested from this study that heparin may cause

the release of some mediator(s) from endothelium or other cell types, that could
inhibit platelet macroaggregation. The release of various plasma proteins from the
endothelium into the plasma after administration of heparin (as discussed in Chapter

4) has been clearly demonstrated. It has subsequently been hypothesised by our

group that if in vivo heparinisation inhibits platelet macroaggregation through release
of one or more endothelial-derived factors into the plasma, then platelet poor plasma
obtained from blood with dysfunctional platelets should impair the function of
normal platelets. Recent results have demonstrated that platelet dysfunction is

secondary to such a plasma change which is transferable in vitro to normal platelets

(Dr E Murithi, personal communication) to impair their aggregation. The nature of
this transferable factor still needs to be elucidated but these results support the
contention that heparin effects result from an endogenous inhibitor rather than the
lack of an in vivo agonist as previously suggested (Kestin et al., 1993).
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As the effects of heparin on platelet macroaggregation were so profound, it was not

possible to identify whether CPB had any additional effects on aggregation. The use

of alternative anticoagulants for CPB would help to clarify this. This study also did
not address the mechanism by which heparin inhibited platelet macroaggregation.
Since no measurements of adhesion molecule expression or production of cytokines
were performed in this study, the effects of heparin in relation to these in whole

blood, remain unclear. Assessment of platelet reactivity by measuring the expression
of adhesion molecules such as P-selectin using flow cytometry might clarify the
mechanism by which heparin exerts platelet dysfunction.

Recent in vivo research suggests that the complications associated with CPB are a

result of multicellular activity, and are particularly associated with the respiratory

burst, which initiates the production of oxygen-dependent free radicals from
stimulated neutrophils. Although, in vitro studies have shown that heparin has an

inhibitory effect on the respiratory burst, further investigations of the in vivo effects
of heparinisation and CPB on neutrophil activation in patients undergoing CPB are

required. This would help to identify the role of neutrophils in relation to the defect
in platelet macroaggregation. Neutrophil activation could be measured ex vivo using

O2" generation or MPO production.

One of the aims of this study was to identify the role of neutrophils in platelet

macroaggregation. This was very difficult, mainly because of the techniques used in
this study. Macroaggregation was induced by collagen, which is a platelet stimulant.
However without looking at the composition of the aggregate, either by microscopy
or flow cytometry, it is not possible to determine if neutrophils are recruited into the

platelet macroaggregate secondary to platelet activation. Aggregation induced by
fMLP was used to measure neutrophil-driven platelet aggregation. However because

heparin inhibited both collagen and fMLP-induced macroaggregation it is not clear

as yet, whether this is a result of inhibition of platelet activation, neutrophil
activation or both. As can be seen from the aggregation traces, the aggregatory

responses to fMLP are slow and much smaller than the collagen response. The size
of the fMLP response varies considerably between donors, possibly as a result of
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different neutrophil counts in whole blood. Although this fMLP response is a new

finding, because it is only evident in blood anticoagulated with hirudin or heparin
and is not observed when calcium chelators are used, it is a crude response. Clearly,
a more sophisticated method of assessing neutrophil-platelet aggregation such as

flow cytometric analysis is required to identify the role that this might play in platelet

macroaggregation.
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Buffers and solutions used for isolation of human neutrophils

Saline solution

0.2% saline

0.9% saline

9% saline

1.6% saline

0.2g NaCl in 100 ml dist.H20
4.5g NaCl in 500 ml dist.H20
9g NaCl in 500 ml dist.H20
1.6g NaCl in 100 ml dist.H20

3% Dextran solution 12 g dextran in 400 ml 0.9% saline

Percoll solution

81% percoll
70% percoll
55% percoll

40.5 ml percoll, 5ml 0.9% saline and 4.5 ml 9% saline
35.5 ml percoll, 10.5ml 0.9% saline and 4 ml 9% saline
27.5 ml percoll, 19.5ml 0.9% saline and 3 ml 9% saline

Phosphate buffer (pH 7.4) Made from commercial tablets

Dissolved 1 tablet in 200ml dist.H20; Autoclaved at 115°C for
15 minutes

Buffer and solutions used for measurement of superoxide anion generation

PBS/cytochrome C/ 0.125g cytochrome C and 50pl cytochalasinB (stock solution
cytochaiasin B 5mg/ml in DMSO) added to 50 ml PBS

Buffers and solutions used for measurement of cyclic GMP

50mM Acetate buffer (pH 5.0) 500 ml 0.1M acetic acid added to 500 ml 0.1 M sodium acetate

anhydrous ; adjusted to pH 5.0 using NaOH. Stored at 4°C

50mM Phosphate buffer 250ml 50mM NaH2P04.2H20 added to 500ml 50mM Na2HP04;
(pH 7.4) adjusted to pH 7.4 using NaH2P04.2H20; sodium azide added

as a preservative. Stored at 4°C

Trimethylamine/ acetic 10ml acetic anhydride added to 20ml triethylamine
anhydride solution (2:1)
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Buffers and solutions used for extraction of MPO from heart tissue and rat

neutrophils

Homogenisation Buffer I (pH 4.7)
(0.02M Phosphate buffer)

1.168g NaCl (0.1M), 0.624g NaH2P04 (0.02M) and
1.116g NaEDTA (0.05M) in 200 ml dist. H20;
adjusted to pH 4.7 using NaOH

Homogenisation Buffer II (pH 5.4)
(0.05M Phosphate buffer)

4 ml 0.05M Na2HP04 added to 196ml 0.05M
NaH2P04; adjusted to pH 5.4.

Buffers and solutions used for measurement of MPO

0.05M Citrate Phosphate Buffer (pH5) 7ml 0.05M citric acid added to 13ml 0.05M Na2HP04;
adjusted to pH 5.0.

Reaction Buffer 2mg 3,3'5,5'-tetramethylbenzidine and 8 p.1 H202.
(0.012%v/v) added to20ml 0.05M citrate phosphate
buffer

Solutions used for measurement ofmyocardial infarct size

4% Evan's blue 0.4g Evan's blue in 10ml dist.H20

1% w/v 2,3»5-triphenyItetrazolium lg TTC in 0.9% saline
chloride (TTC)

10% formalin 10ml of 40% formaldehyde and 0.9g NaCl added to
90ml dist.H20
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Solvents for stock solutions

fMLP

L-nMMA

L-Canavanine

Carboxy-PTIO

LY 83583

KT 5823

Rp-8-cpCPT-cGMPS

2,3 DPG

GEA 3162, GEA 5024 and SIN-1

Cytochalasin B

Cyclic GMP

Cicaprost

2-HE-NECA

r-hirudin

Heparinase I

Dissolved in DMSO at concentration of 10"2 M,
aliquoted stored at -20°C.

Dissolved in 0.9%saline at concentration of 10"2 M,
aliquoted stored at -20°C.

Dissolved in distilled H20 at concentration of
10"' M, aliquoted stored at -20°C.

Dissolved in distilled H20 at concentration of
10"2 M, aliquoted stored at -20°C.

Dissolved in DMSO at concentration of 10 2 M,
aliquoted stored at -20°C.

Dissolved in DMSO at concentration of 10"2 M,
aliquoted stored at -20°C.

Dissolved in 0.9% saline at concentration of

10"2 M, aliquoted stored at -20°C.

Dissolved in 0.9%saline at concentration of 10 2 M,
aliquoted stored at -20°C.

Dissolved in 0.9%saline at concentration of 10"2 M,
aliquoted stored at -20°C.

Dissolved in DMSO at concentration of 5 pg/ml
aliquoted stored at -20°C.

Dissolved in acetate buffer at 3.2 mM

Stock 50pg/ml in 0.9% saline

Dissolved in DMSO at concentration 10"3 M

Dissolved in PBS (pH 7.4) containing 0.1%
Polyethylene glycol 600, stored at -20°C.

Dissolved in 62.5 mM Na-Phosphate, 125 mM
NaCl pH7.
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Investigation of the role of nitric oxide and cyclic GMP in both
the activation and inhibition of human neutrophils
P. Wanikiat, *D.F. Woodward & f 'R.A. Armstrong

Department of Pharmacology, University of Edinburgh, 1 George Square, Edinburgh, *Allergan Inc., Irvine, California, U.S.A.
and "("Department of Dietetics and Nutrition, Queen Margaret College, Edinburgh. EH 12 8TS

1 The aim of this study was to establish the role of nitric oxide (NO) and cyclic GMP in chemotaxis
and superoxide anion generation (SAG) by human neutrophils, by use of selective inhibitors of NO and
cyclic GMP pathways. In addition, inhibition of neutrophil chemotaxis by NO releasing compounds and
increases in neutrophil nitrate/nitrite and cyclic GMP levels were examined. The ultimate aim of this
work was to resolve the paradox that NO both activates and inhibits human neutrophils.
2 A role for NO as a mediator of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced
chemotaxis was supported by the finding that the NO synthase (NOS) inhibitor l-NMMA (500 fiM)
inhibited chemotaxis; EC50 for fMLP 28.76 + 5.62 and 41.13 + 4.77 pmol/106 cells with and without L-
NMMA, respectively. Similarly the NO scavenger carboxy-PTIO (100 /iM) inhibited chemotaxis; EC50
for fMLP 19.71+4.23 and 31.68 + 8.50 pmol/106 cells with and without carboxy-PTIO, respectively.
3 A role for cyclic GMP as a mediator of chemotaxis was supported by the finding that the guanylyl
cyclase inhibitor LY 83583 (100 /rM) completely inhibited chemotaxis and suppressed the maximal
response; EC50 for fMLP 32.53 + 11.18 and 85.21 +15.14 pmol/106 cells with and without LY 83583,
respectively. The same pattern of inhibition was observed with the G-kinase inhibitor KT 5823 (10 /tm);
EC50 for fMLP 32.16+11.35 and >135 pmol/106 cells with and without KT 5823, respectively.
4 The phosphatase inhibitor, 2,3-diphosphoglyceric acid (DPG) (100 ^m) which inhibits phospholipase
D, attenuated fMLP-induced chemotaxis; EC50 for fMLP 19.15 + 4.36 and 61.52+16.2 pmol/106 cells
with and without DPG, respectively.
5 Although the NOS inhibitors l-NMMA and L-canavanine (500 /j,m) failed to inhibit fMLP-induced
SAG, carboxy-PTIO caused significant inhibition (EC50 for fMLP 36.15 + 7.43 and 86.31 +14.06 nM and
reduced the maximal response from 22.14+ 1.5 to 9.8+ 1.6 nmol O2~/106 cells/10 min with and without
carboxy-PTIO, respectively). This suggests NO is a mediator of fMLP-induced SAG.
6 A role for cyclic GMP as a mediator of SAG was supported by the effects of G-kinase inhibitors KT
5823 (10 yiiM) and Rp-8-pCPT-cGMPS (100 fiM) which inhibited SAG giving EC50 for fMLP of
36.26 + 8.77 and 200.01+43.26 nM with and without KT 5823, and 28.35+10.8 and 49.25+ 16.79 nM
with and without Rp-8-pCTP-cGMPS.
7 The phosphatase inhibitor DPG (500 ^M) inhibited SAG; EC50 for fMLP 33.93 + 4.23 and
61.12+14.43 nM with and without DPG, respectively.
8 The NO releasing compounds inhibited fMLP-induced chemotaxis with a rank order of potency of
GEA 3162 (IC50= 14.72+ 1.6 ^m)>GEA 5024 (IC50= 18.44 + 0.43 ^M)>SIN-1 (IC50> 1000 ^m). This
order of potency correlated with their ability to increase cyclic GMP levels rather than the release of NO,
where SIN-1 was most effective (SIN-1 (EC50 = 37.62 +0.9 ^m)>GEA 3162 (EC50 = 39.7 + 0.53 /rM)>
GEA 5024 (EC50 = 89.86 ±1.62 ;<M)).
9 In conclusion, chemotaxis and SAG induced by fMLP can be attenuated by inhibitors of
phospholipase D, NO and cyclic GMP, suggesting a role for these agents in neutrophil activation.
However, the increases in cyclic GMP and NO induced by fMLP, which are associated with neutrophil
activation, are very small. In contrast much larger increases in NO and cyclic GMP, as observed with
NO releasing compounds, inhibit chemotaxis.

Keywords: Neutrophils; nitric oxide; superoxide anion; chemotaxis; guanylyl cyclase; cyclic GMP; G-kinase; phospholipase D;
nitric oxide synthase

Introduction

Neutrophils represent the first line of host defence against
bacterial infection. They are recruited from the bloodstream by
chemotactic factors generated and released locally in injured
tissue (Barten et al., 1976; Weiss, 1989). Once at the site of
inflammation, neutrophils release toxic substances such as
superoxide anion (02~) and lysosomal enzymes, and ingest
micro-organisms by phagocytosis.

Neutrophil locomotion to a specific chemoattractant is a
complex, multi-step process requiring ligation of a cell surface
receptor, transduction of a signal from the receptor to intra-

1 Author for correspondence.

cellular effectors, reorganisation of the cytoskeleton and finally
a directed crawling movement towards the source of chemo-
taxin (Cassimeris & Zigmond, 1990). Several cellular path¬
ways, as well as numerous specific macromolecules have been
identified as being essential for the process of neutrophil
movement (Cassimeris & Zigmond, 1990; Gaudry et al., 1992;
Amatruda et al., 1993). However, the effector signalling
pathways activated in neutrophils to promote chemotaxis are
still poorly understood. Unstimulated and primed human and
rat neutrophils have been shown to generate and release fac¬
tors with the pharmacological characteristics of nitric oxide
(NO) (Stephens & Snyderman, 1982; Rimele et al., 1988; 1991;
Wright et al., 1989; Schmidt et al., 1989; Salvemini et al., 1989;
McCall et al., 1989; Myers et al., 1990; Mehta et al., 1990; Lee
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et al., 1990; Yui et al., 1991; Moncada & Higgs, 1991; Mon-
cada et al., 1991; Lopez Farrt et al., 1991; Kadota et al., 1991).
The release of NO is regulated by nitric oxide synthase (NOS),
a cytosolic enzyme that catalyses the conversion of l-arginine
to l-citrulline and NO (Moncada et al., 1991). Through the
stimulation of guanylyl cyclase, nitric oxide increases guano-
sine 3':5'-cyclic monophosphate (cyclic GMP) formation. In¬
tracellular accumulation of cyclic GMP has been suggested to
regulate neutrophil chemotaxis in vitro (Sandler et al., 1975;
Smith & Ignarro, 1975; Stephens & Snyderman, 1982; An¬
derson et al., 1986; Kaplan et al., 1989). Consistent with these
concepts, it has been shown that fMLP-mediated chemotaxis
was decreased by an inhibitor of NOS, NG-monomethyl-l-
arginine (l-NMMA), and that exogenous cyclic GMP reversed
this inhibition (Kaplan et al., 1989). Furthermore, it has been
shown that NOS inhibitors significantly attenuate chemotaxis
of unstimulated and primed human neutrophils in vitro and
that these effects were specific and modulated by cyclic GMP
(Belenky et al., 1993). These two latter experiments suggest a
role for NO as an intracellular messenger mediating neutrophil
chemotaxis, possibly by increasing cell polarization (Caterina
& Deureotes, 1991). This is supported by the recent demon¬
stration that exogenous NO induced chemotaxis of neutrophils
in vitro (Beauvais et al., 1995).

However, in contradiction to this, there is also data sug¬
gesting that NO or NO-releasing compounds can inhibit as¬
pects of neutrophil activation such as chemotaxis,
degranulation, leukotriene (LT) production and 02~ release
(Clancy et al., 1982). Some of these effects were suggested to be
mediated, at least in part, by an increase of cyclic GMP from
activation of soluble guanylyl cyclase (Ney et al., 1990;
Schroder et al., 1990; Kubes et a!., 1991; Wenzel-Seifert et al.,
1991; Moilanen et al., 1993).

The aim of this study was to clarify the role of NO and
cyclic GMP in chemotaxis and superoxide anion generation
(SAG) by human neutrophils. For this purpose, the inhibitory
effects of the NOS inhibitors, l-NMMA and l-canavanine; the
NO scavenger carboxy-PTIO; the guanylyl cyclase inhibitor
LY 83583; the G-kinase inhibitors, KT 5823 and Rp-8-cCPT-
cGMPS and the phosphatase inhibitor, 2,3 diphosphoglycerate
(DPG) have been investigated. In addition the NO-releasing
compounds, 3-morpholinosydnonimine (SIN-1) and 4-aryl-
substituted oxatriazol derivatives (GEA 3162 and GEA 5024)
have been tested for inhibition of neutrophil chemotaxis as
well as for their ability to increase neutrophil nitrate/nitrite
and cyclic GMP levels. The ultimate aim of this work was to
resolve the paradox that NO appears to be able to both acti¬
vate and inhibit human neutrophils.

Methods

Isolation of human neutrophils

Human neutrophils were isolated as described previously
(Talpain et al., 1995). Any contaminating red cells were re¬
moved by hypotonic lysis with ice-cold NaCl (0.2% w/v) and
the cells returned to isotonic conditions with NaCl (1.6%). The
cells were > 95% viable as determined by trypan blue exclu¬
sion and were resuspended as required below.

Chemotaxis procedure

Cells were resuspended at a concentration of 3 x 106 cells
ml-1 in RPMI 1640 medium (HEPES buffered, without glu-
tamine, Gibco) and chemotaxis measured in a 96 well che¬
motaxis chamber (Neuroprobe, Cabin John, Md). The
bottom wells of the chamber were filled with chemoattractant,
N-formyl-methionyl-lencyl-phenylalanine (fMLP; 0.1-3/rM)
in 30 pi RPMI medium which had been warmed to 37°C. The
top plate with the filter (3 pm) installed was then inverted
onto the filled bottom plate, and the upper wells filled with
cells (225 pi) which had been treated with inhibitor or RPMI

medium. In the case of l-NMMA, SIN-1, GEA 3162 and
GEA 5024, the cells were pre-incubated with these drugs for
10-45 min, as appropriate. With carboxy-PTIO, LY 83583,
KT 5823 and Rp-8-pCPT-cGMPS, no preincubation was
required. The chamber was then incubated for 45 min at 37°C
in a moist, 5% C02 atmosphere. At the end of the incubation
period, the filter was removed, washed, fixed and stained with
Diff Quick (Baxter Diagnostics AG; fixative-fast green in
methanol for 5 min, eosin G in phosphate buffer for 5 min,
thiazine dye in phosphate buffer for 5 min). Chemotaxis was
quantified spectrophotometrically by measuring absorbance
at 550 nm and the magnitude of the absorbance taken as
directly proportional to the number of cells which have mi¬
grated and are trapped in the filter. Basal absorbance was
taken as cells without fMLP. Each incubation was carried out
in triplicate and the values were averaged.

Superoxide anion generation

Neutrophil SAG was assayed by spectrophotometric evalua¬
tion of the reduction of ferricytochrome C to ferrocytochrome
C (A 550 nm) as described previously (Armstrong, 1995).
Briefly, cells (1.5 x 106 cells ml"') were resuspended in PBS
containing cytochrome C (2.5 mg ml-1) and cytochalasin B
(5 pg ml-1). Cells were treated with PBS or inhibitor, imme¬
diately before the addition to the tubes containing fMLP (3-
300 nM) and incubated for 10 min at 37°C. With l-NMMA, l-
canavanine and DPG, cells were pre-incubated for 10-45 min,
as appropriate. The reaction was terminated by immersing the
tubes in ice for 5 min and the samples were centrifuged at
300 g, at 4°C for 10 min, to sediment the cells. Aliquots
(200 p\) from each tube were dispensed into a 96 well plate and
the absorbance at 550 nm was measured. Basal absorbance
was taken as cells without fMLP. Each incubation was carried
out in triplicate and the values were averaged.

Cyclic GMP measurement

Neutrophils were resuspended to give 5 x 106 cells ml-1 in PBS
containing 0.25 mM isobutylmethylxanthine (IBMX). Cells
(450 pi) were incubated for 10 min at 37°C, with buffer, fMLP
or NO releasing compounds, and the reaction stopped by the
addition of ethanol (1.0 ml). Five minutes later, the samples
were centrifuged at 650 g, 20°C for 20 min, the ethanolic su-
pernatants removed and evaporated to dryness at 55°C. The
residue was dissolved in assay buffer (0.5 ml) and centrifuged
at 1900 g, 4°C, for 30 min to remove insoluble material. Two
samples (50 pi) of the supernatant were assayed. Both samples
and standards were acetylated with a mixture of triethylamine/
acetic anhydride (2:1) before measurement of cyclic GMP by
radioimmunoassay. Each assay tube contained the following
substances: unlabelled cyclic GMP (Sigma) (50 pi of 0.0625-
32 nM) or samples to be measured and sodium acetate buffer
(pH 6.0) (200 pi of 0.05 mM) containing specific antibody and
guanosine 3',5'-cyclic phosphoric acid 2'-0'-succinyl-3-[l25I]-
iodotyrosine methyl ester (5000 c.p.m./tube, Amersham). The
assay tubes were kept at 4°C for 1 h, then donkey anti-rabbit
serum (50 p\ of 1:10 dilution in phosphate buffer) and normal
rabbit serum (50 p\ of 1:100 dilution in phosphate buffer) were
added and the assay tubes were incubated overnight. The assay
tubes were washed with 6% polyethylene glycol in deionized
water (1.0 ml) and then centrifuged at 1900 g for 30 min at
4°C. The supernatant was aspirated and the residue counted
with a gamma counter.

Total nitrate and nitrite production

Total nitrate and nitrite production was measured by use of
Cayman's nitrate/nitrite assay kit (Alexis Corporation). The
measurement is a simple two-step process where nitrate is
converted to nitrite with nitrate reductase, and nitrite is mea¬
sured spectrophotometrically at 540 nm by use of the Griess
reagents.
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Cells (1.5 x 106 cells ml -1) were resuspended in PBS and
treated with NO-releasing compounds (GEA 3162, GEA 5024
and SIN-1) for 10 min at 37°C before addition to the tubes
containing PBS and incubated for 30 min at 37°C. With
fMLP, cells were treated with PBS for 10 min at 37°C before
addition to the tubes containing fMLP (3-300 nM) and in¬
cubated for 30 min at 37°C. The reaction was terminated by
immersing the tubes in ice for 5 min and the samples were
centrifuged at 300 g, at 4°C for 10 min to sediment the cells.
Aliquots (80 p1) were dispensed into a microtitre plate and
assayed spectrophotometrically.

Data analysis

Chemotaxis and SAG EC50 values were calculated as the
concentration of fMLP required to produce 50% of the max¬
imal response obtained in each experiment with fMLP
(300 nM). As such, when drug treatment suppressed the fMLP
maximum response, this observed maximum (i.e. determined
in the presence of drug) was used for the purpose of deter¬
mining the EC50 value. Each concentration-effect curve was
illustrated by use of the Apple Macintosh programme 'Kalei-
dagraph' and the EC50 value determined.

Effects of the NO-releasing compounds, GEA 3162, GEA
5024 and SIN-1, on fMLP-induced chemotaxis were expressed
as the percentage inhibition of the response produced by a
submaximally effective concentration of fMLP (100 nM). The
EC50 values for GEA 5024 and SIN-1 were determined relative
to the maximum effect achieved with GEA 3162. From EC50
values, equieffective concentration-ratios (EEC) were calcula¬
ted relative to the standard inhibitor, GEA 3162 (EEC= 1).

Statistical analysis

Data are expressed as the mean + s.e.mean, of the averaged
result taken from a minimum of four separate experiments.
Data were analysed with Student's paired two-tailed t test. In
addition, data involving multiple comparisons were analysed
by ANOVA (two factor with replication) by use of microsoft
Excel. A value of /><0.05 was taken as significant.

rabbit serum were supplied by the Scottish Antibody Pro¬
duction Unit (Carluke).

Results

Neutrophil chemotaxis

Effect of NOS inhibition When neutrophils were preincuba-
ted with the NOS inhibitor, l-NMMA (500 pM) for 45 min at
37°C, significant attenuation (P< 0.001, ANOVA) of fMLP-
induced neutrophil chemotaxis occurred (Figure la), EC50 for
fMLP 28.76±5.62 and 41.13±4.77 pmol/106 cells, n = 5
(P<0.05) in the absence and presence of l-NMMA, respec¬
tively. The maximum effect of fMLP was reduced from
1.1 ±0.09 to 0.72±0.09, n = 5 (P<0.05). Similarly, l-NMMA
at a concentration of 100 pM induced a significant but less
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Materials

The following compounds were gifts which are gratefully ac¬
knowledged: 4-aryl-substituted oxatriazol derivatives GEA
3162 (3-(3',4'-dichlorophenyl)-l,2,3,4-oxatriazol-5-imine) and
GEA 5024 (3-(3'-chloro-2'-methylphenyl)-1,2,3,4-oxatriazol-5-
imine) from Dr S.B. Pedersoen (GEA Ltd, Copenhagen,
Denmark) specific antibody against acetylated cyclic GMP
from Dr I. Gow (Department of Physiology, University of
Edinburgh).

N-formyl-methionyl-leucyl-phenylalanine (fMLP), l-cana-
vanine, PBS (containing Ca2+ and Mg2+), 2,3-diphospho-
glycerate (DPG), trypan blue, guanosine 3':5'-cyclic
monophosphate, polyethylene glycol, cytochrome C and cy-
tochalasin B were purchased from Sigma; RPMI 1640 from
Gibco; NG-monomethyl-L-arginine (l-NMMA), 6-anilino-
quinoline-5-8-quinone (LY 83583), (8R,9S,1 lS)-(—)-9-meth-
oxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11 -ep-
oxy-lH,8H,l lH-2,7b, 1 la-triazadibenzo (a,g) cycloocta
(cde)-trinden-l-one (KT 5823) from Calbiochem; Rp-8-(4-
chlorophenylthio)-guanosine-3'-5'-cyclic monophosphoro-
thioate (Rp-8pCPT-cGMPS) from Biolog; Diff-Quick from
Gamidor; 2-(4-carboxyphenyl)-4,4,5,5-tetra methylimidazo-
line-l-oxyl-3-oxide (carboxy-PTIO) and 3-morpholinosydno-
nimine (SIN-1) from Tocris Cookson; Cayman's nitrate/
nitrite assay kit from Alexis Corporation; quanosine 3',5'-
cyclic phosphoric acid, 2'-0'-succinyl-3-[125I]-iodo tyrosine
methyl ester from Amersham; triethylamine and acetic an¬
hydride from BDH. Donkey-anti-rabbit serum and normal
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Figure 1 Log concentration-effect curves for fMLP induced
neutrophil chemotaxis in control cells and cells treated with (a) l-
NMMA (500 pu) and (b) carboxy-PTIO (100 pu). Cells were
preincubated with l-NMMA for 45 min at 37°C. No preincubation
was required with carboxy-PTIO. The values are the mean, and
vertical lines show s.e.mean, of 5 different donors. Statistically
significant difference of *P<0.05 and **P<0.01.
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pronounced attenuation of neutrophil chemotaxis (data not
shown; P<0.05).

Effect of a NO scavenger Carboxy-PTIO, a NO scavenger, at
a concentration of 100 /rM caused slight attenuation (P< 0.05,
ANOVA) of fMLP-induced neutrophil chemotaxis (Figure
lb); ECS0 for fMLP 19.71 ±4.23 and 31.68 + 8.50 pmol/106
cells, n — 4, (P= 0.052) in the absence and presence of carboxy-
PTIO, respectively.

Effect ofguanylyl cyclase inhibition LY 83583, an inhibitor of
guanylyl cyclase, at concentrations of 10 pM (P<0.01, ANO¬
VA) and 100 (PcO.OOl, ANOVA) caused significant at¬
tenuation of fMLP-induced neutrophil chemotaxis (Figure 2a
and b); EC50 for fMLP 19.07±4.3 and 47.04±7.52, n = 4
(P<0.05) and 32.53±11.18 and >135 pmol/106 cells, n = 4
(P<0.05) in the absence and presence of LY-83583 at the two
concentrations, respectively. LY 83583 at a concentration of
100 /rM caused a significant reduction in maximal effect of
fMLP from 1.65±0.01 to 0.32±0.05, n = 4 (P< 0.005).

Effect of G-kinase inhibition KT 5823, a specific inhibitor of
cyclic GMP-dependent protein kinase (G-kinase) at a con¬
centration of 1 /rM had no significant inhibitory effect
(P>0.05, ANOVA) on fMLP-induced neutrophil chemotaxis
(Figure 3a); EC50 for fMLP 19.07±4.29 and
35.45 + 13.54 pmol/106 cells, n = 4 (P>0.05) in its absence and
presence, respectively. However, at a concentration of 10 /rM,
KT 5823 completely inhibited (P<0.001, ANOVA) fMLP-
induced chemotaxis (Figure 3b); EC50 for fMLP 32.16 ± 11.35
and > 135 pmol/106 cells, n = 4 (P<0.005) in the absence and
presence of KT 5823, respectively.

Rp-8-pCPT-cGMPS, another inhibitor of cyclic GMP-de¬
pendent protein kinase Gla both at concentrations of 10 and
100 yM had no significant inhibitory effect (7>>0.05, ANOVA)
on fMLP-induced chemotaxis (figures not shown); EC50 for
fMLP 19.07±4.3 and 32.67± 14.81. n = 4 (P>0.05) and
32.16± 11.35 and 21.67±4.15 pmol/106 cells, n = 4 (P>0.05)
in its absence and presence at the two concentrations, respec¬
tively.
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Figure 2 Log concentration-effect curves for fMLP induced
neutrophil chemotaxis in control cells and cells treated with LY
83583 (a) 10 yM and (b) 100 yM. The values are the mean, and
vertical lines show s.e.mean, of 4 different donors. Statistically
significant difference, *P<0.05 and ***/><0.005.
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Figure 3 Log concentration-effect curves for fMLP induced
neutrophil chemotaxis in control cells and cells treated with KT
5823 (a) 1 yu and (b) 10 yM. The values are the mean, and vertical
lines show s.e.mean, of 5 different donors. Statistically significant
difference, *P<0.05, **P<0.01 and ***P<0.005.
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Effect ofphosphatase inhibition DPG, an inhibitor of inositol
polyphosphate-5-phosphatase, at concentrations of 10 and
100 (both P<0.001, ANOVA) caused significant attenua¬
tion of fMLP-induced neutrophil chemotaxis (Figure 4a and
b); EC50 for fMLP 25.97 ±4.25 and 34.37 ±4.04, n = 4
(P<0.05) and 19.15±4.36 and 61.52± 16.2 pmol/106 cells,
w = 4 (P<0.05) in its absence and presence at the two con¬
centrations, respectively. Maximal effects of fMLP were re¬
duced by 10 and 100 pM DPG from 1.38 ± 0.05 to 0.86 ±0.14
and from 1.39±0.11 to 0.72±0.14, n = 4 (P<0.05), respec¬
tively.

Neutrophil superoxide anion generation (SAG)

Effect of NOS inhibition When neutrophils were preincuba-
ted with l-NMMA at a concentration of 100 pM for 45 min at
37°C, l-NMMA caused no significant inhibition (P<0.05,
ANOVA) of fMLP-induced SAG in human neutrophils (figure
not shown); EC50 for fMLP 54.24± 11.5 and 61.36± 12.93 nM,
71 = 6 (P>0.05) in its absence and presence, respectively. Even
when the concentration of l-NMMA was increased to 500 pM,
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no significant inhibition of fMLP-induced SAG was observed
(EC50 for fMLP 48.93 ±12.51 and 57.13 ±10.93 nM, respec¬
tively 7i = 6 (P> 0.05)).

Similarly, L-canavanine at concentrations of 100 and
500 pM caused no significant inhibition (both P<0.05, AN¬
OVA) of fMLP-induced SAG in human neutrophils (figure not
shown); EC50 for fMLP 36.75 ±7.87 and 32.9 ±5.41, n = 5
(P>0.05) and 36.75±7.87 and 33.60±8.28 nM, n = 5
(P> 0.05) in its absence and presence at the two concentra¬
tions, respectively.

Effect of a NO scavenger Carboxy-PTIO, a NO scavenger, at
a concentration of 100 gM caused significant attenuation
(P<0.05, ANOVA) of fMLP-induced SAG in human neu¬
trophils (Figure 5); EC50 for fMLP 36.15 ±7.43 and
86.31 ± 14.06 nM, n = 6 (P<0.05) in its absence and presence,
respectively. Maximal effects of fMLP were reduced from
22.14± 1.5 to 9.8± 1.6 nmol O2~/106 cells 10 min~' at 300 nM.

Effect ofguanylyl cyclase inhibition LY 83583, an inhibitor of
guanylyl cyclase, at concentrations of 10 and 100 pM caused
no significant inhibition of fMLP-induced SAG in human
neutrophils (figure not shown); EC50 for fMLP 23.81 ±1.76
and 18.96±4.52, n = 4 (P>0.05), and 26.27±1.44 and
13.73±3.33 nM, n = 4 (P>0.05) in its absence and presence at
the two concentrations, respectively. However, a significant
enhancement in fMLP-induced SAG at the lowest concentra¬
tions of fMLP tested (3- 10 nM) was observed with 100 pM LY
83583 (P<0.05).

Effect of G-kinase inhibition KT 5823, a specific inhibitor of
G-kinase, at concentrations of 1 and 10 pM caused significant
inhibition (both P<0.001, ANOVA) of fMLP-induced SAG in
human neutrophils (Figure 6a and b); EC50 for fMLP
34.28±8.9 and 52.59±4.9, n = 5 (P = 0.05) and 36.26±8.77
and >300 nM, n = 5 (P<0.05) in its absence and presence at
the two concentrations, respectively. Maximal effects of fMLP
were reduced by 1 and 10 pM KT 5823 from 22.22 ±0.68 to
12.17 ± 1.43, 77 = 5, (P< 0.005) and from 28.64 ±4.15 to
6.59±2.06 nmol O2~/106 cells/10 min at 300 nM, n = 5
(P< 0.001), respectively.

Rp-8-pCPT-cGMPS (100 ^m), a moderately potent inhibi¬
tor of cyclic GMP-dependent protein kinase Gla, caused some
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Figure 4 Log concentration-effect curves for fMLP induced
neutrophil chemotaxis in control cells and cells treated with 2,3-
diphosphoglyceric acid (DPG) (a) 10 pM and (b) 100 pM. The values
are the mean, and vertical lines show s.e.mean, of 4 different donors.
Statistically significant difference, *P<0.05.
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Figure 5 Log concentration-effect curves for fMLP induced super¬
oxide anion generation in control cells and cells treated with carboxy-
PTIO (100 pM). The values are the mean, and vertical lines show
s.e.mean, of 6 different donors. Statistically significant difference,
*P<0.05 and ***P<0.005.
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Figure 6 Log concentration-effect curves for fMLP-induced super¬
oxide anion generation in control cells and cells treated with KT 5823
(a) 1 pM and (b) 10 [am. The values are the mean, and vertical lines
show s.e.mean, of 5 different donors. Statistically significant
difference, *P<0.05, **P<0.01 and ***P<0.005.

inhibition (P = 0.058, ANOVA) of fMLP-induced SAG in
human neutrophils (Figure 7); EC50 for fMLP 28.35+10.82
and 49.25+16.79 nM, n = 4 (P<0.05) in its absence and pre¬
sence, respectively.

Effects ofphosphatase inhibition DPG, an inhibitor of inositol
polyphosphate-5-phosphatase, at a concentration of 500
(P<0.005, ANOVA) but not 100 pM caused significant inhi¬
bition of fMLP-induced SAG in human neutrophils (Figure 8a
and b). EC50 for fMLP 36.23 + 9.05 and 44.59 ±8.88, n = 4
(P<0.05, one-tailed test only) and 33.93 + 4.23 and
61.12+ 14.43 nM, n = 4 (P<0.05) were obtained in the absence
and presenceof 100 and 500 pM DPG, respectively. Maximal
effects of fMLP were reduced by 100 and 500 DPG from
25.64±1.75 to 24.18±2.15 (n = 4) and from 26.17 + 2.7 to
20.59 + 3.0 nmol 02~ 106 cells 10 min~', n = 4 (P<0.05), re¬
spectively. In contrast, when neutrophils were preincubated
with 100 and 500 pM DPG for 10 min at 37°C, neither con¬
centration of DPG caused a significant effect on fMLP-in¬
duced SAG in human neutrophils (Figure 9a); EC50 for fMLP
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Figure 7 Log concentration-effect curves for fMLP-induced super¬
oxide anion generation in control cells and cells treated with Rp-8-
pCPT-cGMPS (100 pm). The values are the mean, and vertical lines
show s.e.mean, of 4 different donors. Statistically significant
difference, *P<0.05.

27.32 + 6.06 and 26.95±6.31 nM, n = 4 (P>0.05) and
25.57 + 4.63 and 46.13 + 23.05 nM, n = 4 (P>0.05) in its ab¬
sence and presence at the two concentrations, respectively. In
addition, no significant effect on fMLP-induced SAG in hu¬
man neutrophils was observed when neutrophils were prein¬
cubated with 100 and 500 pM DPG for 20 min at 37°C (Figure
9b); EC50 for fMLP 26.97 + 2.32 and 30.23±9.98 nM, n = 4
(P> 0.05) and 26.97 ±2.31 and 26.90 ± 9.53 nM, n = 4
(P< 0.05) in its absence and presence at the two concentra¬
tions, respectively.

Effect of NO-releasing compounds on neutrophil
chemotaxis

fMLP at a concentration of 100 nM induced a submaximal
migration of neutrophils. When neutrophils were preincubated
with NO-releasing compounds, GEA 3162 and GEA 5024, for
10 min at 37°C, these two compounds (1-100 pM) caused
concentration-related inhibition of fMLP-induced chemotaxis
(Figure 10), producing complete inhibition at a concentration
of 100 pM (IC50= 14.71 ± 1.6 pM, n = 5 and 18.44±0.43 pM,
n = 5, respectively). SIN-1 was a significantly (P<0.05) less
potent inhibitor of fMLP-induced chemotaxis than GEA 3162;
SIN-1 (1 mM induced a maximum inhibition of 24.99±7.64%
(n = 8) (Figure 11). If the maximal effect of GEA 3162 at
100 pM was taken to be 100% inhibition, the IC50 for SIN-1
was >1000 pM (n = 8), giving an EEC >62.7.

Effect of the NO-releasing compounds and fMLP on
cyclic GMP levels

Incubation of neutrophils with the NO-releasing compounds,
GEA 3162 and GEA 5024 (1-100 pM), as well as fMLP (0.1 -
0.3 ^m), for 10 min at 37°C induced concentration-dependent
and significant increases in cyclic GMP production (P<0.05).
Both GEA 3162 and GEA 5024 were found to be more potent
than fMLP at increasing cyclic GMP production in human
neutrophils (Table 1). SIN-1 was considerably less potent than
the GEA compounds (data not shown).

Effect of the NO-releasing compounds and fMLP on
nitrate/nitrite

Incubation of neutrophils with the NO-releasing compounds,
GEA 3162, GEA 5024 and SIN-1 (1-100 pM) for 30 min at
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Figure 8 Log concentration-effect curves for fMLP induced super¬
oxide anion generation in control cells and cells treated with DPG (a)
100 /tm and (b) 500 /iM. The values are the mean, and vertical lines
;how s.e.mean, of 4 different donors. Statistically significant
lifference, *P<0.05.

57°C induced concentration-related increases in total nitrate/
titrite production (Table 2). GEA 3162 and GEA 5024 were

ess potent than SIN-1. With GEA 3162 as the standard ago-
tist (EC50 = 39.70 + 0.53 /iM), apparent EC50 values calculated
or SIN-1 and GEA 5024 were 37.62 + 0.9 (« = 4; EEC of 0.95)
tnd 89.86+1.62 /iM (n = 4; EEC of 2.26), respectively. fMLP
it concentrations of 3-300 nM caused no significant increase
n total nitrate/nitrite.

n the neutrophil, several second messenger/signal transduc-
ion systems can become activated, and these may be involved
n the regulation of a variety of neutrophil effector functions. It
las been shown that fMLP-induced chemotaxis in human
leutrophils results from a rise in cyclic GMP levels subsequent
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Figure 9 Log concentration-effect curves for fMLP induced super¬
oxide anion generation in control cells and cells treated with 2,3-
diphosphoglyceric acid (DPG) 100 /iM and 500 /iM. Unlike Figure 8,
here cells were preincubated at 37°C with DPG for (a) 10 min and (b)
20 min. The values are the mean, and vertical lines show s.e.mean, of
4 different donors.

to the production of NO (Kaplan et al., 1989; Belenky et al.,
1993). Such a role for NO has been supported by our results
here where inhibition of NOS with l-NMMA (Figure la) and
chemical antagonism of NO with the NO scavenger carboxy-
PTIO (Akaike et al., 1993) (Figure lb) inhibited fMLP-in-
duced chemotaxis. However, it must be noted that high con¬
centrations of both of these agents were used (500 and 100 /im,
respectively), suggesting that NO represents only one of the
pathways by which chemotaxis is induced, as complete block
of NO only partially blocked the chemotactic response of
fMLP.
It has been shown that cyclic GMP and G-kinase regulate

neutrophil activation in response to fMLP or A-23187 (Pryz-
wansky et al., 1990; Wyatt et al., 1990). After activation by
fMLP, G-kinase transiently co-localizes with the intermediate
filaments, resulting in the phosphorylation of its substrate
protein, vimentin (Wyatt et al., 1991). LY 83583 is an inhibitor
of guanylyl cyclase and has been shown to inhibit the fMLP-
stimulated increase in neutrophil cyclic GMP levels resulting in
inhibition of the co-localization and subsequent phosphoryla-
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Drug concentration (pM)

Figure 10 Log concentration-effect curves for inhibition of fMLP-
induced chemotaxis, observed with GEA 3162 and GEA 5024. Cells
were preincubated with GEA 3162 and GEA 5024 for 10 min at 37°C
before being added to the chemotaxis chamber. The values are the
mean, and vertical lines show s.e.mean, of 5 different donors.

Drug concentration (|um)

Figure 11 Log concentration-effect curves for inhibition of fMLP-
induced chemotaxis, observed with GEA 3162 and S1N-1. Cells were

preincubated with GEA 3162 and SIN-1 for 10 min at 37°C before
being added to the chemotaxis chamber. The values are the mean,
and vertical lines show s.e.mean, of 8 different donors.

tion of vimentin by G-kinase (Wyatt et al., 1993). We found
that LY 83583 significantly attenuated fMLP-induced che¬
motaxis (Figure 2a and b) confirming that the co-localization
and phosphorylation of G-kinase and vimentin are involved in
fMLP-induced neutrophil chemotaxis. Two inhibitors of G-
kinase were used to substantiate such a role for cyclic GMP,
KT 5823 (Kase et al., 1987) and Rp-8-pCPT-cGMPS (Butt et
al., 1994). At a concentration of 10 fM (Figure 3a) KT 5823
completely inhibited fMLP-induced chemotaxis. The block
observed with both LY 83583 (100 /tM) and KT 5823 (10 fiu)
was greater than would be expected if the rise in cyclic GMP
resulted only from NO. This suggests either that fMLP can
increase cyclic GMP levels independently of NO or that these
agents are not acting as selective inhibitors of guanylyl cyclase
and G-kinase at the concentrations used. Rp-8-pCTP-cGMPS
(10 and 100 ^M) failed to block fMLP-induced chemotaxis,
suggesting that the G-kinase activated in neutrophil chemo-

Table 1 The effects of NO releasing compounds (GEA
3162 and GEA 5024) and fMLP on cyclic GMP levels in
human neutrophils

Drug
concentration Cyclic GMP levels (pmol/10 cells)
(fiM) GEA 3162 GEA 5024 fMLP

0 0.1 ±0.02 0.1+0.01 0.09 + 0.01
0.1 0.18 + 0.03*
0.3 0.22 + 0.05*
10 0.87 + 0.15*** 0.59 + 0.11**
50 1.13 + 0.23*** 0.73 + 0.14**
100 1.32 + 0.24*** 0.85 + 0.18**

Data are expressed as mean ± s.e.mean of 5 different donors.
Significant increase in cyclic GMP above basal, *P<0.05,
**><0.01, ***P< 0.005.

Table 2 The effects of NO releasing compounds (GEA
3162, GEA 5024 and SIN-1) on total nitrate/nitrite
production in human neutrophils

Drug
concentration Total nitrate/nitrite (/imol/106 cells)
(mm) GEA 3162 GEA 5024 SIN-1

0 5.8 + 3.3 5.8 + 3.3 5.8 + 3.3
1 11.3 + 4.8 2.8 + 0.0* 9.4 + 4.6**
10 71.8 + 3.6 30.5 + 0.6** 55.4+1.6**
50 282.2 + 5.5 145.0+1.4** 305.2 + 5.1#
100 458.0 + 3.6 251.4+1.6** 552.0+14.7##

Data are expressed as mean ± s.e.mean of 4 different donors.
*Significantly less nitrate/nitrite production than the equiva¬
lent concentration of GEA 3162, *P<0.05, **/•< 0.005.
"Significantly more nitrate/nitrite production than the
equivalent concentration of GEA 3162, #P<0.01,
P <0.005. GEA 3162 significantly increased nitrate/nitrite

levels at all concentrations tested.

taxis is not type Gla. The inability of Rp-8-pCPT-cGMPS tc
block chemotaxis is unlikely to result from too low a concen¬
tration being used as a significant effect was observed with Rp-
8-pCPT-cGMPS (100 mm) on SAG (Figure 7).
It has been shown that more than 90% of the diglyceride

formed in neutrophils in response to fMLP occurs through the
activation of phospholipase D (PLD)/phosphatidic acid (PA;
phosphohydrolase (Billah et al., 1989). A phosphatase inhibi¬
tor, DPG, significantly attenuated fMLP-induced chemotaxis
(Figure 4a and b), suggesting that activation of PLD is a majoi
signal in neutrophil chemotaxis. It is not clear from these re¬
sults whether increased intracellular Ca2" resulting from PLE
activation is the trigger responsible for activation of NOS.

However the roles of NO and cyclic GMP are less clear ir
fMLP-induced SAG. Two NOS inhibitors were investigated
and neither L-NMMA nor L-canavanine inhibited fMLP-in¬
duced SAG, even when used at the concentration (500
required to inhibit neutrophil chemotaxis. However, the NC
scavenger carboxy-PTIO (100 /rM) significantly inhibited
fMLP-induced SAG (Figure 5). The reason for this discre¬
pancy is not clear, but these results suggest that NO may alsc
play a role in SAG by fMLP.

Results with the guanylyl cyclase inhibitor LY 83583 suffei
from the ability of LY 83583 to enhance significantly the
amount of SAG by low concentrations of fMLP (3-10 nM)
consistent with data showing that LY 83583 can itself stimu¬
late SAG. However, both inhibitors of G-kinase, KT 582;
(Figure 6a and b) and Rp-8-pCPT-cGMPS (Figure 7) signifi¬
cantly inhibited fMLP-induced SAG. As with chemotaxis, the
effect of KT 5823 was quite dramatic, suggesting that cyclie
GMP may play an additional role to NO. However, the se¬
lectivity of the inhibitors used is crucial to this interpretatior
and experiments looking at phosphorylation of G-kinase are
required to substantiate these findings. Furthermore, the dif-
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ferent sensitivity to these G-kinase inhibitors observed with
chemotaxis and SAG suggests that the G-kinase activated in
the two processes may be different. Consistent with this, KT
5823 has been found not to inhibit the neutrophil G-kinase
which phosphorylates vimentin (Wyatt & Pryzwensky, 1991).

PLD is thought to play a major signalling role in SAG in
the primed neutrophil (Bonser et al., 1989; Kanaho et al.,
1993). In particular PLD is thought to ensure that diacylgly-
cerol levels are sustained, which is a requirement for SAG
(Billah & Anthes, 1990). Such a role for PLD has been con¬
firmed in these experiments by use of the phosphatase inhibitor
DPG, which significantly inhibited fMLP-induced SAG in
these cytochalasin B-treated neutrophils (Figure 8a and b).
This effect of DPG was lost if cells were pre-incubated with
DPG for 10 or 20 min (Figure 9a and b). This result contrasts
with those obtained by Kanaho et al. (1993) who observed
greater block with preincubation. A greater degree of block
was observed with chemotaxis than with SAG.

While these results suggest that endogenous NO plays a role
in mediating neutrophil chemotaxis, other evidence has been
presented indicating that NO releasing compounds can inhibit
neutrophil activation (Ney et al., 1990; Schroder et al., 1990;
Kubes et al., 1991; Wenzen-Seifert et al., 1991). To resolve this
apparent paradox we have investigated the effects of GEA
3162, GEA 5024 and SIN-1 which have previously been shown
to inhibit neutrophil chemotaxis (Moilanen et al., 1993). GEA
3162 and GEA 5024 (1-100 jtM) caused significant concen¬
tration-dependent inhibition of fMLP-induced chemotaxis
(Figure 10). SIN-1 was less potent and caused significantly less
inhibition of chemotaxis than GEA 3162 (Figure 11). The rank
order of potency was GEA 3162 (EC50= 14.7± 1.58 jtM)>
GEA 5024 (ECS0= 18.4+ 0.43 /tM)> SIN-1 (ECs0=>
1000 /tM). One possible explanation for the difference in po¬
tency of these agents as inhibitors of chemotaxis may relate to
the ability of SIN-1 to release superoxide anion (Feelisch et al.,
1989; Feelisch, 1991). The concomitant release of NO and
superoxide anion by SIN-1 may well attenuate the inhibitory
effects of NO on chemotaxis as NO is inactivated by super¬
oxide anions, to form peroxynitrite (Gryglewski et al., 1986).
Furthermore, peroxynitrite production by SIN-1 has been
shown to enhance fMLP-induced neutrophil respiratory burst
(measured as luminol-dependent chemiluminescence in whole
blood) masking its otherwise inhibitory effects, such as a re¬
duction in leukotriene B4 production (Bednar et al., 1996). In
addition peroxynitrite formed from SIN-1 has been shown to
stimulate phorbol ester-induced respiratory burst (Iha et al.,
1996). In contrast, GEA 3162 and GEA 5024 (in concentra¬
tions up to 100 mM) do not release significant amounts of
superoxide anions to form peroxynitrite. If peroxynitrite aug¬
ments chemotaxis as well as SAG, this could explain why GEA
3162 and GEA 5024 are more potent inhibitors of neutrophil
chemotaxis than SIN-1.

The NO releasing compounds increased total nitrate/nitrite
production (Table 2) with a rank order of potency of SIN-1

(EC50 = 37.62 + 0.9 pu)>GEA 3162 (EC50 = 39.7±0.5 jtM)>
GEA 5024 (EC50 = 89.9 ±1.7 hm). Taking GEA 3162 as the
standard compound, this gives EEC values for SIN-1 and
GEA 5024 of 0.95 and 2.26 for nitrate/nitrite production
compared to >62.7 and 1.25 for inhibition of chemotaxis.

Clearly some reason is required to explain the lack of po¬
tency of SIN-1 at inhibiting chemotaxis compared with re¬
leasing NO. Interestingly, as found by Moilanen et al. (1993),
SIN-1 was much weaker than GEA 3162 and GEA 5024 at

increasing cyclic GMP levels, giving a maximal increase of 1.4
fold over basal (data not shown) compared with 13.2 and 8.3
fold for GEA 3162 and GEA 5024, respectively (Table 1).
Consequently, there is a better correlation between effects on
cyclic GMP and inhibition of chemotaxis, than for effects on
NO and inhibition of chemotaxis. At first glance, this suggests
that neutrophil inhibition is likely to be related to increased
cyclic GMP levels rather than ADP ribosylation by NO
(Clancy et al., 1995), but the role of peroxynitrite formed by
SIN-1 requires further clarification, particularly with respect to
chemotaxis. At present it is not clear whether peroxynitrite
augments chemotaxis induced by fMLP as is the case for SAG
(Iha et al., 1996).

These results do not prove that GEA 3162, GEA 5024 and
SIN-1 inhibit neutrophil chemotaxis by a NO-dependent me¬
chanism. However, this is quite difficult to test. A NO sca¬
venger such as carboxy-PTIO will itself inhibit chemotaxis
(Figure lb), so that the NO donor would be tested against a
smaller fMLP stimulus. Because of the nature of physiological
antagonism, it is easier to inhibit a smaller stimulus than a
larger one (Kenakin, 1987) making comparison difficult. The
scavenger oxyhaemoglobin may prove useful in elucidating the
role of NO, if this can be used at a low enough concentration
not to affect endogenous NO and the control chemotactic re¬
sponse to fMLP.

In conclusion, these results confirm that neutrophil activa¬
tion results from the stimulation of several signal transduction
systems. We have shown that chemotaxis can be attenuated by
inhibitors of PLD, NO and cyclic GMP. It appears that in¬
creases in cyclic GMP and activation of G-kinase resulting in
chemotaxis can occur via a NO-dependent as well as NO-in-
dependent pathway. As such, small increases in cyclic GMP
but not NO were detectable after neutrophil stimulation by
fMLP. Similar pathways appear to operate in SAG. In con¬
trast, the NO releasing compounds, GEA 3162, GEA 5024 and
SIN-1, which produce large amounts ofNO (measured as total
nitrate/nitrite) compared to fMLP, inhibit neutrophil chemo¬
taxis. This hypothesis, that low concentrations of NO activate
while high concentrations inhibit neutrophils, has also been
suggested recently by VanUfflen et al. (1996); they studied the
effects of gaseous NO on rabbit peritoneal neutrophils.

P.W. is funded by a Royal Thai Government Scholarship. This work
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