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Manipulation of host S-nitrosylation by Pseudomonas syringae 

 

Nitric oxide (NO) and S-nitrosothiols (SNOs) are widespread signalling molecules that 

regulate immunity in animals and plants (Wendehenne et al., 2001). Previously, we have 

reported that Arabidopsis thaliana S-nitrosoglutathione reductase, (AtGSNOR1) modulates 

the extent of total cellular SNO formation, which subsequently regulates multiple modes of 

plant disease resistance (Feechan et al., 2005). Loss-of-function mutations in AtGSNOR1, 

leading to increased SNO levels, have recently been shown to result in S-nitrosylation of the 

key defence regulators NPR1 and AtSABP3, blunting their activity and subsequently leading 

to increased pathogen susceptibility (Tada et al., 2008; Wang et al., 2009). Thus, inhibiting 

AtGSNOR1 function leading to increased SNOs, would potentially provide a good strategy 

for bacterial effector proteins, delivered by the type III secretion system (TTSS), to promote 

infection. 

AtGSNOR1 is constitutively expressed in all organs in Arabidopsis and its expression is 

induced by wounding stress avirulent and non-host pathogen. Using gas phase 

chemiluminescence, we show that infection with Pseudomonas syringae pv. tomato strain 

DC3000 (PstDC3000) resulted in increase SNO levels which is TTSS. At the same time, 

RT-PCR and GUS analysis indicated that AtGSNOR1 expression was transiently suppressed 

by PstDC3000 which is also TTSS-dependent. Therefore, PstDC3000 infection suppresses 

denitrosylase function of AtGSNOR1 to increase SNO levels and this virulence effect is 

delivered by at least one of the effector protein secreted through TTSS. 

Several putative cis-acting elements were identified in AtGSNOR1 promoter through deletion 

analysis including GT-box, W-box and MYB/MYC binding motif. These elements comprise 

of positive and negative regulators which are critical for the induction and suppression of 

AtGSNOR1 in response to pathogen infection.  

A few transgenic plants expressing effector proteins were selected and tested for their 

suppressive effect on AtGSNOR1 expression during PstDC3000 infection. HopAM1 effector 

proteins showed the ability to suppress AtGSNOR1 when expressed in planta.  
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1. Introduction  

1.1 Biotechnology and agriculture 

In agriculture today, the persistent threat of loss of yield and quality from diseases and insect 

attack is one of the most disruptive factors. Insects alone destroy about 25 percent of food 

crops worldwide each year (http://www.gmo-compass.org). Although better farm machinery 

and development of fertilizers, insecticides, and herbicides have been extremely useful, 

biotechnology through genetic modification to increase crop diversification may offer more 

promising solutions and greater impacts (Gurr et al., 2005; Vain, 2006; Toenniessen et al., 

2009). In fact, worldwide use of pest-resistant genetically modified (GM) crops substantially 

reduced pesticide spraying by nearly 300 million kilogram (Lomborg, 2009). Transgenic 

science and technology are fundamental to the molecular genetics and crop improvement for 

sustainable agriculture (Vain, 2006). Development of transgenic crop plants that can tolerate 

adverse weather and soil condition, adapt to different climates and resistant to pathogens will 

potentially improve food security and enhance human nutrition (Abdalla et al., 2003; 

Toenniessen et al., 2009).  

GM crops such as the well known Bacillus thuringiensis (Bt) corn has been commercially 

available since 1996 (Sivasupramaniam et al., 2007) and is already being grown on hundreds 

millions of acres worldwide with no ill effects. In 2008, after thirteen years of 

commercialization, millions of small and resource-poor farmers around the world continue to 

plant more hectares of transgenic crops as a result of the consistent and substantial economic, 

environmental and welfare benefits offered by these transgenic crops. The expanding list of 

transgenic crops now includes soybean, maize, cotton, canola, squash, papaya, alfalfa, 

sugarbeet, sweet pepper and petunia (Clive, 2008).  

Biotechnology advancement is no panacea to the food insecurity and poverty problems in 

developing countries, but it must be looked at as one of the most important tools that will 

contribute to boost food production and thus, poverty reduction. The best way to control crop 

disease is to use naturally occurring genetic mechanisms that have evolved in plants to 

counter pathogen attack. The way pathogens cause disease in plants, and how plants defend 

themselves against pathogens are crucial research issues for global food security. Fruitful 

lines of research are currently in progress towards a better understanding the of molecular 

basis of plant disease resistance in order to precisely engineer plants with increased 

resistance which will benefit farming and lead to a more secure food supply in the future. 
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1.2 Plant-pathogen interactions: An arms race 

A plant is a living organism that makes its own food from organic substances and thus is a 

rich source of nutrients and water for microbes. Therefore, they can be infected by a plethora 

of pathogenic microorganisms and pests such as bacteria, viruses, fungi, protozoa, 

nematodes and insect herbivores. Plants also become infected by microbes with a different 

lifestyle. Biotrophic pathogens such as powdery mildews, rusts and the downy mildews 

(Agrios, 2005) are specialized to feed on living cells of their hosts, rather than killing the 

host cells as part of infection process (Heath, 2002; de Wit, 2007). Some of them have 

developed an intimate relationship with their host plants, co-evolving into obligate biotrophs 

that are completely dependent on their hosts and cannot be cultured on synthetic media. 

Biotrophs have a narrow host range, and strains of these pathogens have often develop 

complex adaptations enabling them to engage in the interaction with a specific line of a 

given plant species (de Wit, 2007). Necrotrophic pathogens, for example Alternaria 

brassicicola and Botrytis cinerea fungi are less specialized and have much less intimate 

relationship with their host plants. They grow on host tissue that are wounded, weakened or 

senescent and frequently excreting toxins or exoenzymes to kill their host cells prior to 

colonization (de Wit, 2007). Many plant pathogens display both lifestyles, depending on the 

stage of their life cycle, and are called hemibiotrophs. Hemibiotrophs are initially biotrophic 

in their interaction with the hosts, but become more necrotrophic as the pathogenesis process 

progresses (Hammerschmidt, 2006). 

Recent works has revealed striking similarities between immune systems across kingdom 

borders (Nurnberger et al., 2004). However, significant differences remain. For example, 

vertebrates are equipped with adaptive immune system, which is characterized by the 

creation of antigen-specific receptors through somatic recombination in maturing 

lymphocytes. Other key players of the animal immune system are specialized cell types that 

exist as parts of a circulatory blood system, which are not found in plants (Nunberger et al., 

2004). Compared with animals, plants are at an apparent disadvantages in these battles, 

because they are rooted in place and do not have circulating antibodies or dedicated immune 

cell lineages. Nevertheless, the world is still green because plants have developed a variety 

of sophisticated defence systems to cope with an environment in which many microbes live. 

Thus, disease is an exception rather than the rule in natural plant communities and on the 

farm.  
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Interactions between plants and bacteria are a complex process and very specific, based on 

pathogen recognition and cell-to-cell communication. It present us with some of the most 

intricate and fascinating examples of ecological and evolutionary interplay between 

organisms. Antagonistic coevolution between a plant and its enemy can be simplified as a 

three-step process. First, the enemy attacks and use a wide variety of virulence factors to 

confound host surveillance and gain access to the resources available in their hosts while 

hosts respond by selecting a novel defence that spreads through the plant population aimed at 

restricting and eliminating infecting pathogens; second, effectively defended plants decrease 

pathogen fitness, thus selecting for a genotype that can overcome the defence barrier by 

acquiring effector molecules to suppress the basal immune responses; and third, plants in 

return acquire surveillance proteins to either directly or indirectly monitor presence of the 

effectors. This long-standing dance of adaptation and counter-adaptation is often called an 

arms race (Figure 1.1). Ultimately, the final outcome of the battle depends on the balance 

between the ability of the pathogen to suppress the plant’s immune system and the capacity 

of the plant to recognize the pathogen and to activate effective defences. 

 

 

Figure 1 .1 Co-evolution of host R genes and the pathogen effector complement 
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1.3 Non-host and basal disease resistance 

As discussed previously, the evolutionary arms race between plants and their attackers 

provide plants with a highly sophisticated defence system that efficiently detects and wards 

off potentially dangerous microbes. The ability of a given plant species to resist infection by 

all isolates of a given pathogen species is termed non-host disease resistance (NHR) or 

species-specific resistance (Heath, 2000; Thordal-Christensen, 2003; Mysore et al., 2004). 

Being the most common form of disease resistance, NHR confers strong and durable crop 

protection against the majority of potentially pathogenic microorganisms. Conceptually, the 

stability of NHR is proposed to be the consequence of several successive layers of protective 

mechanisms that comprise both pre-formed constitutive barriers as well as inducible defence 

reactions.  

Pre-formed physical and chemical barriers constitutively present on a plant surface such as 

wax layers, rigid cell wall and toxic phytoanticipins are frequently cited as controlling 

invasion success of some non-adapted pathogen (Thordal-Christensen, 2003; Mysore et al., 

2005; Reina-Pinto and Yephremov, 2009). For example, a disruption in plant actin 

microfilaments leads to the loss of non-host resistance against several nonhost fungi 

(Kobayashi et al., 1997). Furthermore, a combination of loss of actin cytoskeletal function 

and a disease resistant gene activity severely compromises non-host resistance in 

Arabidopsis thaliana (Arabidopsis) against wheat powdery mildew, Blumeria graminis f. sp. 

tritici (Yun et al., 2003). These data provide evidence that the plant cytoskeleton plays a 

significant role during non-host disease resistance. Despite the diversity of these constitutive 

defences that physically impede the growth and spread of the potential pathogen, many 

microbes succeed in breaking through this pre-invasive layer of defence. However, once the 

plant exterior has been breached, microbes are subjected to recognition at the plasma 

membrane by extracellular surface receptors that recognize a large variety of microbe-

associated products leading to signal transduction and induced innate immune responses 

(Zipfel and Robatzek, 2010). 

Inducible defence responses in non-host plant comprise the synthesis and accumulation of 

antimicrobial reactive oxygen species (ROS; also known as reactive oxygen intermediates, 

ROI), phytoalexins, and translation products from pathogenesis-related (PR) genes as well as 

the localized reinforcement of the plant cell wall and hypersensitive response (HR) (Mysore 

and Ryu, 2004; Thordal-Christensen, 2003). A well-known example of an inducible 

structural barrier during NHR is papilla. Papilla is cell wall apposition composed of callose, 



5 

 

phenolics, hydroxyproline-rich glycoproteins and other materials (Hauck et al., 2003). This 

local cell wall fortification is formed on the inner side of plant cell walls at the site of fungal 

infection representing a physical and chemical blockage deployed to arrest infection. It has 

been studied mostly in the interaction between barley (Hordeum vulgare L.) and Blumeria 

graminis f. sp. hordei (Bgh) (Thordal-Christensen et al., 2000; Zeyen et al., 2002). In wild-

type Arabidopsis, attack from the non-host pathogen Bgh are as well stopped at the pre-

invasive stage of penetration in association with papillae (Thordal-Christensen, 2003).  

Induction of the innate immune response also occurs in susceptible host plants to inhibit 

pathogen spreads after successful infection and onset of disease, defined as basal resistance 

(Dangl and Jones, 2001, reviewed in Jones and Dangl, 2006; Pieterse et al., 2009). However, 

this type of defence is not well defined and still poorly understood. In a recent review, Niks 

and Marcel (2009) integrated the concepts of NHR and basal resistance to account for the 

specificity of defence suppression and argue that NHR and basal resistance to adapted 

pathogens may rest on similar principles. As both type of resistance utilise the same defence 

mechanisms, NHR may represent the success of basal defence system to control the 

pathogen growth while host susceptibility is the consequence of ineffective induction or 

suppression of the system by pathogen (Ingle et al., 2006). 

The ability of a potential host to discriminate between self and non-self is the key to the 

activation of innate defence mechanism. Plants recognize general elicitors that are released 

during attack by both host and non-host pathogens in a non-specific manner to activate 

defence responses. Flagellin, lipopolysaccharides (LPS), peptidoglycans, microbial cell wall 

fragments, phospholipids, proteins, double stranded RNA and methylated DNA serve as 

such elicitors (Heath, 2000). These general elicitors are often indispensable for the microbial 

lifestyle. Pathogen recognition in non-host plants can be brought about by pathogen-

associated molecular patterns (PAMPs), synonymously called general or exogenous elicitors 

(Gomez-Gomez and Boller, 2002; Nurnberger et al., 2004; Zipfel, 2009). Perception of 

PAMPs is mediated by pattern-recognition receptors (PRRs), located on the cell surface. 

Recognition of such signals is very likely to activate defence responses in natural plant 

microbe encounters. However, in basal disease resistance, PAMP-induced defence is 

insufficient to stop infection. 

Several plant signalling components are involved during the induction of plant defence. The 

analysis of mutants impaired in hormone homeostasis revealed that jasmonic acid (JA), 

ethylene (ET) and salicylic acid (SA) are indispensable for maintenance of non-host 
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resistance (Mysore and Ryu, 2004). An ET-insensitive tobacco has been shown to lack non-

host resistance to several soil-borne fungi (Knoester et al., 1998). Moreover, non-host 

resistance of Arabidopsis to Alternaria brassicicola is dependent on JA as coi1 (coronatine-

insensitive 1) mutants are susceptible to fungal infection (Thomma et al., 1998). SA is one of 

the key signalling molecules that activate plant defence responses against invading 

pathogens. The Arabidopsis mutant sid2 (defective in an enzyme required for SA synthesis) 

and Arabidopsis NahG line (expresses salicylate hydroxylase that can degrade SA) support 

growth of non-host cowpea rust fungus, Uromyces vignae (Mellersh and Heath, 2003).  

An Arabidopsis NHR gene, NHO1, encodes a glycerol kinase and is required for resistance 

against Botrytis cinerea and Pseudomonas syringae isolates from bean and tobacco for 

which Arabidopsis is a non-host (Kang et al., 2003). NHO1 is required for resistance to only 

certain pathogens since the nho1 mutation does not compromise resistance to several other 

non-host pathogens. Interestingly, a virulent pathogen of Arabidopsis, Pseudomonas 

syringae pv. tomato DC3000 (PstDC3000) appears to actively suppresses NHO1 

transcription (Kang et al., 2003). These results suggest that NHO1 plays a key role in NHR 

and general resistance against some pathogens in Arabidopsis and is targeted for bacterial 

virulence. 

Programmed cell death or HR is one of the components in defence signalling cascades 

induced by a pathogen on a non-host plant and commonly used as visual marker for 

incompatible plant-pathogen interactions. In many cases, inoculation of a pathogen into non-

host plant elicits HR, but interestingly in some cases, NHR is not associated with induction 

of the HR. Based on these observations, Mysore and Ryu (2004) proposed that NHR could 

be classified into two types: type I and type II, dependent on both the plant and the pathogen 

species. The type I NHR, does not produce any visible symptoms and the type II NHR is 

always associated with HR.  

Even though many components of NHR appear to be well known from host resistance, there 

is obviously a long way to go before we fully understood NHR. One of the reasons for this 

could be that NHR operates at the plant-species level making our understanding of the roles 

played by this type of resistance relatively poor and often beyond the reach of breeding 

programs that are based on allele combinations within a given crop species (Thordal-

Christensen, 2003; Schweizer, 2007). Nevertheless, recent progress in functional genomic 

technologies has made available tools that can be used to dissect the complex phenomenon 

of NHR. 
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1.4 PAMP recognition and PAMP-triggered immunity 

Recognition of non-self and subsequent activation of defence against the attacking pathogen 

in all multicellular organisms, is collectively referred as innate immunity (Chisholm et al., 

2006). PAMP recognition represents the major trait of innate immunity common to plants 

and animals, and it has been revealed that its molecular basis shows remarkable evolutionary 

conservation across kingdom borders (Nurnberger and Brunner, 2002; Nurnberger et al., 

2004; Iriti and Faoro, 2007). PAMPs are also known as microbe-associated molecular 

patterns (MAMPs) (Zipfel, 2008; Zipfel, 2009). Such patterns are invariant surface structures 

that are characteristic of whole class of microbes and therefore are difficult to mutate or 

delete.  They do not exist in the host, allowing the host to recognize them as non-self to fend 

off invading pathogens. Besides pattern of microbial origin, endogenous host molecules can 

also trigger defence reactions in animals and plants. These so-called danger-associated 

molecular patterns (DAMPs) are signals that are encoded by the host and released upon plant 

damage (Postel and Kemmerling, 2009).  

In animals as well in plants, the recognition of the invading pathogens is based on perception 

of the slowly evolving PAMPs by PRRs which are predominatly located on the plasma 

membrane, but can also localize to endosomal compartments or cytoplasm (Nurnberger et 

al., 2004). In animals, Toll (from Drosophila melanogaster) and Toll-like receptors (TLRs) 

(from mammals) recognize PAMPs through an extracellular LRR domain and transduce the 

signal through a cytoplasmic TIR domain (Toll and human interleukin-1 receptor) (Lemaitre 

et al, 1996). Interestingly, this structure is similar to the first identified PRR from plants, the 

flagellin receptor FLS2 (flagellin-sensing 2) that also encodes putative transmembrane 

receptor-kinase with an extracellular LRR domain (Nurnberger and Brunner, 2002; Postel 

and Kemmerling, 2009). Although the extracellular LRR domains of FLS2 and TLR5 (both 

responsible for flagellin sensing in plants and animal, respectively) do not share much 

sequence similarity, it obvious that during evolution, the same LRR were selected for PAMP 

recognition in the animal and plant lineages (Nurnberger et al., 2004).  

It is now clear that there are, in essence, two distinct branches but interconnected 

surveillance system for defence against pathogens (Nurnberger et al., 2004; Chisholm et al., 

2006; Jones and Dangl, 2006). Primary innate immunity, conferred by PTI (Figure 1.2a), is 

achieved through a set of defined PRR at the plant’s cell surface that recognize conserved 

MAMPs or PAMPs. Immune responses in plants triggered by PAMPs comprise the change 

in cytoplasmic Ca2+ levels, the production of ROS as well as the activation of MAPK 
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cascades that lead to the activation of defence-related genes (Nurnberger et al., 2004; Zipfel, 

2008; Postel and Kemmerling, 2009). Intriguingly, most of these components have also been 

described to be of central importance to PAMP-induced activation of innate immune 

responses in animal cells (Nurnberger et al., 2004). These elements add to the growing list of 

parallels in the molecular organization of innate immunity in both plant and animal 

kingdoms.  

In many cases, successful pathogens secrete effectors in the apoplast or directly into the 

cytoplasm of host cells to inhibit PTI, dubbed as effector-triggered susceptibility (ETS) 

(Figure 1.2b) (Jones and Dangl, 2006; Postel and Kemmerling, 2009; Zipfel, 2009).  Plants, 

in turn, can perceive such effectors through additional receptors, typically polymorphic 

nucleotide binding site and leucine rich repeat (NBS-LRR) protein products encoded by 

resistance (R) gene to mount a second layer of defence called effector-triggered immunity 

(ETI) (Figure 1.2c). ETI is an accelerated and amplified PTI response, involves the direct or 

indirect recognition of effectors by the NBS-LRR proteins (Jones and Dangl, 2006; 

Chisholm et al., 2006; Boller and He, 2009). Consecutively, pathogens have evolved 

effectors capable of suppressing ETI, and so the arms-race between host and pathogens 

unfolds. 

The best-characterized PAMP known to activate innate immunity in plants is flagellin, the 

protein subunit of eubacteria flagella (Felix et al., 1999). Flagellum-based motility is 

important for bacterial pathogenicity in plants (Zipfel and Felix, 2005). A conserved N-

terminal 22-mer fragment of eubacterial flagellin, flg22, is a potent elicitor of defence 

responses in Arabidopsis and with slightly different epitope specificity in tomato and 

Nicotiana benthamiana (Felix et al., 1999; Gomez-Gomez et al., 1999; Robatzek et al., 

2007). In Arabidopsis, flg22 is perceived by FLS2. FLS2 consists of an N-terminal signal 

peptide, 28 LRRs, a transmembrane domain, and a cytoplasmic kinase domain (Gomez-

Gomez and Boller, 2000). Although the exact flg22-binding site is unknown, FSL2 directly 

binds to flg22 and contributes to recognition specificity (Chinchilla et al., 2006). Flg22-

induced immune responses restrict the growth of the virulent PstDC3000, whereas mutant 

deficient in FLS2 are more susceptible to bacterial infection (Zipfel, 2004). These studies 

provide genetic evidences that PTI acts as the first layer of plant innate immunity and 

contributes to disease resistance. 
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Figure 1.2 Simplified schematic representation of the plant immune system 

(a) Upon pathogen attack, pathogen-associated molecular patterns (PAMPs) activate 
pattern-recognition receptors (PRRs) in the host, resulting in a downstream signaling 
cascade that leads to PAMP-triggered immunity (PTI). (b) Virulent pathogens have acquired 
effectors (purple stars) that suppress PTI, resulting in effector-triggered susceptibility (ETS). 
(c) In turn, plants have acquired resistance (R) proteins that recognize these attacker-
specific effectors, resulting in a secondary immune response called effector-triggered 
immunity (ETI). (Pieterse et al., 2009) 

 

Elongation factor Tu (EF-Tu) is the most abundant bacterial protein and is recognized as 

another PAMP that triggers innate immune responses in Brassicaceae including Arabidopsis 

(Kunze et al., 2004). A highly conserved N-acetylated 18 amino acid peptide, elf18, is 

sufficient to trigger those responses induced by full-length EF-Tu. EF-Tu is recognized by 

EF-Tu Receptor (EFR), a close homolog of FLS2 and belongs to the same subfamily XII of 

leucine-rich repeat receptor-like kinase (LRR-RLK). The structural and functional similarity 

of FLS2 and EFR suggests that more members of the LRR-RLK family may be receptor for 

yet unidentified PAMPs (Nurnberger and Kemmerling, 2006; Postel and Kemmerling, 

2009). Unlike FLS2, EFR does not contribute significantly to plant defence since bacterial 

growth is not altered in efr mutants but the mutants were more susceptible to Agrobacterium 

tumefaciens-mediated transformation than wild-type plants (Zipfel et al., 2006). This 

supports a role of EFR in defence against Agrobacterium infection and harbours the potential 

to enhance biotechnological tools for plant transformation.  
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Receptor oligomerization is a common principle of animal innate immune receptors. Homo- 

and heterooligomerization of receptors also take place in plants. Brassinosteroid insensitive 

1 (BRI1) is the receptor of brassnosteroid hormones that controls plant growth and 

development. It forms a protein complex with another LRR-RLK named BRI1-associated 

kinase 1 (BAK1), a member of a small subfamily of somatic embryogenesis receptor kinase 

(SERKs), during perception of brassinosteroids (BR) (Li et al., 2002). Unexpectedly, BAK1 

was recently identified as a positive regulator in FLS2 and EFR signalling and FLS2 was 

found to heterodimerize with BAK1 in the perception of flagellin (Chinchilla et al., 2007). 

Mutants deficient in BAK1 are impaired in brassinosteroid, flagellin, pathogen-induced cell 

death control and other PAMP responses (Kemmerling et al., 2007; Chinchilla et al., 2007; 

He et al., 2007) and show defects that cannot be explained by the interaction with the known 

interacting BRI1 and FLS2. Given the central role of BAK1 in transmitting signals from FSL2 

and possibly from other PAMPs such as EF-Tu, it would seem plausible that it becomes the 

potential target for pathogen effectors rather than the PRR themselves (Shan et al., 2008; 

Boller, 2008).  

In general, even though PTI only induces a relatively weak resistance response compared to 

ETI, it is undoubtedly crucial for non-host disease resistance and contributes to the basal 

resistance of host plants. Moreover, the interference of effector proteins with the PRRs 

accentuates the relevance of these receptor proteins for basal defence and the importance of 

PTI suppression for triggering defence.  

1.5 Effector protein and their delivery 

1.5.1 Type III secretion system (TTSS) 

PTI is known to be effective in preventing invasion by the vast majority of microorganisms 

with which plants come into contact. Somehow, in the co-evolution of host-microbe 

interactions, pathogens acquired the ability to deliver effector proteins to the plant cells 

primarily through type III secretion system (TTSS) to suppress PTI and promote parasitism 

or referred to as ETS. Thus, it is now clear that PTI emerges as a dominant target of plant 

bacterial effectors, and it is very likely that the selective pressures imposed by pathogens in 

general are responsible for shaping and driving the evolution of plant immune systems. 

TTSS is a key pathogenicity factor of many Gram negative plant and animal pathogens such 

as Yersinia, Pseudomonas syringae, Shigella, Xanthomonas, including pathogenic 

Escherichia coli and also present in some symbiotic bacteria (Büttner and Bonas, 2006; Yip 
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and Strynadka, 2006; McCann and Guttman, 2007). This system is a highly conserved, 

complex molecular injection apparatus that translocates type III effectors (TTEs) into the 

host cell cytosol (Figure 1.3) where they promote diseases by targeting various plant cellular 

systems, including plant innate immunity, transcription, cell death, proteasome and 

ubiqutination systems, RNA metabolism, hormone pathways and chloroplast function (Lewis 

et al., 2009; Cunnac et al., 2009).  

In Pseudomonas syringae, TTSS pathway is encoded by hrp (HR and pathogenicity) and hrc 

(HR and conserved) genes (Bogdanove et al., 1996) and associated with an extracellular 

filamentous appendage, called the Hrp pilus (Jin et al., 2003; He et al., 2004). hrp/hrc genes 

also encode avirulence (avr) and hrp-dependent outer proteins (hop) genes. The hrp region is 

conserved in pathogenic microbes and affects the ability of a bacterium to induce resistance 

or susceptibility depending on the nature of the host plants (He, 1998). The Hrc proteins 

direct secretion of TTSS substrates through host cell barriers, whereas a subset of the Hrp 

proteins are themselves secreted by the TTSS as a molecular chaperones or helper proteins 

(Bogdanove et al., 1996; van Dijk, 2002; Yip and Strynadka, 2006). hrp or hrc mutants 

which are defective in TTSS, do not usually multiply or cause disease in otherwise 

susceptible host plants. The TTSS shares many functional, structural and sequence 

similarities with the bacterial flagellum (a rotating motility structure widely distributed 

among the bacteria), except for the ability to translocate proteins into eukaryotic cells 

(Blocker et al., 2003; McCann and Guttman, 2007).  

 

 

 

 

 

 

Figure 1.3 The type III secretion system (TTSS) 

The TTSS provides a conduit for the passage of TTEs that travel through the needle-like 
structure across three membranes into the cytosol of targeted cells. (Adapted from 
http://carbon.bio.ku.edu/research.htm) 
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For a successful infection, plant pathogens must penetrate the polysaccharide-rich host cell 

wall, form a conduit between the bacteria and the host membrane, and generate a pore to 

facilitate translocation of TTEs into the host cell. Specialized chaperone proteins are often 

required to guide the TTEs into the TTSS (Grant et al., 2006). Delivery of TTEs and the 

associated helper proteins into the host cell is essential for the successful life histories of 

many Gram-negative plant-associated bacteria.  

Resistance to bacterial infection by plants is often determined by the presence of R genes in 

plants and avr genes in bacteria (Martin, 1999). avr genes were originally determined as 

incompatibility factors of a pathogen which elicit host plant defence in a gene-to-gene 

manner but the current view is that, the avr gene product is actually bifunctional and also has 

a role in pathogenicity. In incompatible interactions, Avr proteins are recognized by the 

corresponding R proteins and results in activation of a suite of defence responses in plants. 

Conversely, Avr proteins also contribute to virulence of a pathogen on plants lacking the 

corresponding R protein through direct or indirect interaction with host proteins, inhibiting 

them from establishing a specific defence. Hence, avirulence became a conceptually 

restrictive term since the same protein with an avirulence activity in incompatible 

interactions may display a virulence activity in compatible interactions (Hogenhout et al., 

2009).  

Recently, the term effector and its associated concepts have been routinely used by plant 

scientists to describe secreted proteins that exert effect on plant cells. In a broader definition, 

effectors include small molecules that alter host cell structure and function such as PAMPs, 

toxins, and degradative enzymes (Hogenhout et al., 2009). Several best-studied TTEs are 

designated as Avr proteins because they were detected through gain-of-function avirulence 

phenotypes (Keen, 1990). More effectors were subsequently identified by their ability to 

travel the TTSS pathway, for example Hop as designated for Pseudomonas syringae (Alfano 

and Collmer, 1997).  

Over the past few years, virulence promoting function of pathogen effectors and their host 

targets has become a centre of attention. Despite vast documentation on effector proteins in 

animals, very little is known about the molecular mechanism by which bacterial protein 

trigger diseases in plants. PstDC3000, which causes bacterial speck in tomato, is an excellent 

model for investigating the possible operation of TTEs mainly because the DC3000 genome 

has been fully sequenced (Buell et al., 2003) and it has the ability to infect the 

experimentally tractable plants Arabidopsis and Nicotiana benthamiana. Moreover, its TTSS 
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is being extensively studied and molecular function of several of the TTEs has been 

determined. Recently, the complete repertoire of Pseudomonas syringae TTEs have been 

identified (>50) and 47 are present in PstDC3000 (Cunnac et al., 2009). Apparently, only 28 

of them are considered to be fully active, 12 are effector pseudogenes and the rest appear 

only weakly expressed. Although several effectors indeed have the ability to promote 

virulence when expressed individually or produced as a transgene in plant cells, all 

mutations in single effector genes tested so far just cause weak reductions in virulence or 

growth in planta (Cunnac et al., 2009).  

1.5.2 Type III effectors in action 

Consistent with previous findings that PTI is actively inhibited by Pseudomonas syringae 

effectors, several reports demonstrated that regulatory proteins in the PTI pathways are 

directly targeted by these effectors. For example, earlier studies indicated that HopAI1 

directly inactivates Arabidopsis MAP kinases MPK3 and MPK6 through phosphothreonine 

lyase activity to block downstream events associated with PTI (Zhang et al., 2007). HopAI1 

is an OspF-related TTEs that is highly conserved in animal pathogens and Pseudomonas 

syringae. Interestingly, another member of this effector family dephosphorylates kinases 

involved in mammalian innate immunity (Li et al., 2007), showing that pathogens can apply 

the same virulence mechanism to both plant and mammals.  

Pathogens may also acquire or evolve additional effectors that target both PTI and ETI. Most 

spectacularly, AvrPto and AvrPtoB (unrelated effectors from PstDC3000), suppress very 

early immune responses mediated by MAPK cascades, suggesting that suppression can occur 

immediately after signal perception or before MAPKKK signalling (He et al., 2006). Recent 

publications have elegantly demonstrated that AvrPto and AvrPtoB target the kinase 

domains of BAK1, FLS2, EFR and chitin receptor CERK1 (Gohre et al., 2008; Shan et al., 

2008; Xiang et al., 2008; Gimenez-Ibanez, 2009). Both AvrPto and AvrPtoB are believed to 

block PTI through direct binding to BAK1 and interfere with the interaction between BAK1 

and FLS2 (Gohre et al., 2008; Shan et al., 2008). 

In addition to their PTI-suppression abilities, AvrPto and AvrPtoB also inhibit ETI through 

interaction with their host targets, tomato kinases Pto and/or Fen (Xing et al, 2007; 

Rosebrock et al, 2007). AvrPtoB via its C-terminal E3 ubiquitin ligase domain specifically 

targets Fen kinase, which is part of a unique and presumably ancient ETI pathways, for 

degradation by proteosome (Rosebrock et al., 2007) while AvrPto appear to exert its 
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virulence function by inhibiting the kinase activity of Pto (Xiang et al., 2008). This is one of 

the clearest examples of how effector proteins hijack plant ubiquitination/proteosome 

systems. Three other effectors from Pseudomonas syringae, AvrB, AvrRpm1 and AvrRpt2 

were found to interact and differentially manipulate plant-specific Arabidopsis protein RIN4, 

which allows it to be recognized by the R protein RPM1 and RPS2, thus activating defence 

components in plant (Kim et al., 2005; Ong and Innes, 2006). Conversely, a recent 

publication from Cui et al. (2010) shows that Pseudomonass syringae effector protein AvrB 

activates components of MAPK pathway and RIN4 for the benefit of bacterium by 

perturbing hormone signalling and enhance susceptibility. RIN4 also has been shown to be a 

direct target for Pseudomonas syringae effector HopF2Pto and this is the first evidence 

showing that RIN4 is manipulated to promote pathogen virulence (Wilton et al., 2009). 

Pathogen effectors target more than PRRs or the MAPK cascade to suppress PTI. These 

effectors also attack processes directly downstream of PRR signalling and other consequent 

events. The miRNA pathway is a component of RNA metabolism that is important for plant 

immunity (Navarro et al., 2008; Li et al., 2010). HopT1, AvrPto and AvrPtoB suppress 

miRNA activity but their direct targets related to the miRNA pathway remain to be 

determined (Navarro et al., 2008). A number of TTEs manipulate plant hormone signalling 

pathways to alter host defence response. There is growing evidence that Pseudomonas 

syringae injects several TTEs to promote virulence by reducing levels of SA and increasing 

levels of ET, JA, absisic acid (ABA) and auxin (Valls et al., 2006; He et al., 2004; de Torres-

Zabala et al., 2007; Chen et al., 2007). PstDC3000 also produces polyketide toxin 

coronatine, which is a jasmonate mimic that suppress SA levels through activation of JA 

signalling (Uppalapati et al., 2005). In addition, TTEs can modify protein levels by altering 

host transcription, which can lead to increased susceptibility. AvrBs3/PthA family of TTEs 

is widely distributed in Xanthomonas species and the family members have features of 

transcription factors (Grant et al., 2006). AvrBs3 alters transcription by binding to the 

promoter region of the pepper gene upa20 to activate the transcription of this gene and 

enhance hypertrophy, which may prime the host physiology for optimum bacterial 

colonization or dispersal (Kay et al., 2007).  

Figure 1.4 shows how TTEs directly alters a component of PTI and/or ETI signalling, or 

usurps another plant system to indirectly affect plant immunity as reviewed in Lewis et al. 

(2009). The many examples of physical associations between pathogen effectors and 

regulators of host immune responses imply that pathogen effectors can be used as a 

molecular probe to identify unknown components of the plant innate immune system.  
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Figure 1.4 Plant systems targeted by phytopathogenic TTEs 

Plant systems targeted by phytopathogenic type III effector proteins. The direct targets of 
phytopathogenic T3SEs are grouped according to the plant systems to which they belong as 
outlined in the review. Effectors are shown with a red background, while host interactors are 
shown with a grey background. Asterisks indicate proteins or genes predicted to be targets 
of the corresponding effector but for which a direct interaction has not yet been 
demonstrated (Lewis et al., 2009). 

 

There are established and emerging themes regarding TTEs targets as reviewed by Lewis et 

al. (2009) to pave ways for future studies to identify host targets of this vast repertoire of 

pathogen effectors. First, single TTEs may target multiple host factors. Second, TTEs target 

critical steps in key host processes, the immune system. Third, distinct TTEs can congregate 

on specific host targets, perhaps providing redundancy and sturdiness. Finally, important 

host targets of TTEs can directly interact with R proteins containing NBS-LRR. 
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1.6 R gene-mediated resistance (Gene-for-gene model) 

1.6.1 Resistance (R) genes and proteins 

ETI or classically known as gene-for-gene resistance denotes matching specificity between 

dominant R genes in plants whose products recognize those products of pathogen 

complementary avr alleles (Dangl and Jones, 2001; Grennan, 2006). R genes specify a 

polymorphic component of a particular recognition event. Very often, interaction involving 

the products of R and Avr genes culminates in HR (Jones and Dangl, 2006). In contrast to 

basal defence, R genes control heightened state of disease resistance, commonly specific to 

particular pathogen strains. Genetic overlap between specific and basal resistance responses 

suggests that R mediated signalling is more rapid and trigger stronger disease resistance by 

boosting basal defence reactions (Dangl and Jones, 2001). We have achieved remarkable 

progress in understanding R gene-mediated resistance since the development of a model 

based on classical genetics using flax, Linum ultissimom, and the fungal pathogen 

Melampsora lini by Flor in 1940s (Campbell et al., 2002).  

Years ago, the major hub in plant molecular pathology was cloning and characterization of R 

genes. In fact, many R genes have now been cloned, conferring resistance to numerous 

classes of pathogens such as bacteria, viruses, fungi, and even nematode and insect 

pathogens. Despite R genes confer resistance to different pathogens, the encoded proteins 

shared a limited number of conserved elements (van Ooijen et al., 2007). To date, 5 classes 

of effector-specific R proteins are known based primarily upon their combination of a 

limited number of structural motifs and their sequence suggests roles in both effector     

recognition and signal transduction (Martin et al., 2003). The functions of various R proteins 

require posttranslational modification such as phosphorylation, protein degradation, or 

specific localization within host cell (Martin et al., 2003).  

 

 

 

 

Figure 1.5 Domain structure of NBS–LRR proteins 
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The great majority of them are intracellular NBS-LRR proteins (Figure 1.5), forming the 

largest group of plant R proteins with about 150 genes found in Arabidopsis and about 600 

in rice (Rafiqi et al., 2009). Other types of R proteins that have been identified contain an 

extracellular LRR domain. They are either members of the RLK or the receptor-like protein 

(RLP) family. However, while RLKs contain a cytoplasmic serine/threonine kinase domain, 

no recognizable intracellular signalling domains can be discerned in RLP (Tameling and 

Taken, 2007; Tameling and Joosten, 2007).  

Plant NBS-LRR contains a C-terminal LRR domain, a varying N-terminal effector domain, 

and a central NBS-domain (Tamling and Joosten, 2007). The most striking structural feature 

is a variable number of LRRs. LRR domains are characterized by a 25-30 amino acid repeat 

motif that forms barrel-like structures with a parallel β-sheet lining the inner concave surface 

and α-helical structures comprising much of the rest of the domain (Kobe and Kajava, 2001). 

The LRR domain is found in diverse proteins appears to be the major determinants of 

recognition specificity. The NBS domain (also called NB or NB-ARC) contains blocks of 

sequence that are conserved in both plant and animal proteins. It is part of a larger domain 

that includes additional homology between R proteins, human apoptotic protease activating 

factor-1 (Apaf-1) and Caenorhabitis elegans death-4 (Ced-4) (van der Biezen and Jones, 

1998). This domain is proposed to act as a nucleotide-dependent molecular switch regulating 

the conformation and signalling activity of R proteins (Takken et al., 2006). By analogy with 

Apaf-1 and Ced-4 functions, the presence of a specific signal or elicitor, for example Avr 

proteins, would induce conformational changes in R proteins, allowing nucleotide exchange 

for further signalling events (Rafiqi et al., 2009). The N-terminal domain found in plant 

NBS-LRRs can either be a TIR-NBS-LRR or a non-TIR, containing putative coiled-coil 

domain (CC-NBS-LRR) (Martin et al., 2003; Takken et al., 2006; Tameling and Takken., 

2007). TIR-NBS-LRR class represents 60% of overall NBS-LRR proteins (Dangl and Jones, 

2001). The CC-NBS-LRR class probably comprises multiple subfamilies, varying in size and 

in the location of the coiled-coil domain (Dangl and Jones, 2001). The function of CC and 

TIR domain in pathogen perception and signalling is ambiguous. 

The complete Arabidopsis sequence permits a comprehensive analysis of the diversity of 

NBS-LRR R-gene sequence in one plant. There are 149 genes encodes for NBS-LRR and 58 

related genes that do not encode LRRs in Arabidopsis Col-0 and these number represent 

approximately 0.8% of all open reading frames (ORFs) so far annotated in Col-0 (Tan et al., 

2007). This seems surprisingly a small of genes to mediate recognition of all possible 

pathogen-encoded-ligands. Perhaps R proteins actually perceive the presence of more than 
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one Avr protein. In fact, dual recognition has been observed, for example RPM1 disease 

resistance loci of Arabidopsis confer resistance to Pseudomonas syringae strains that carry 

two non-homologous avr genes, AvrB and AvrRpm1 (Bisgrove et al., 1994). In addition, the 

tomato Mi gene confers not only nematode resistance but also aphid resistance (Rossi et al, 

1998). Alternatively, it is also possible that some R protein recognize conserved pathogen 

molecules of ancient origin and may not evolve rapidly in response to pathogen pressure 

(Riely and Martin, 2001). 

1.6.2 Guard and decoy model 

Following the characterization of many R-avr gene pairs, the exact nature of the R-avr 

interaction leading to recognition of pathogen is becoming more comprehensible. Initially it 

was widely thought that R proteins behave like ‘receptors’ that directly interact with  

‘specific ligands’, encoded by avr genes. This receptor-ligand model was supported by the 

fact that some avr gene products co-localize with R gene products, most of which encode 

LRR domains. In fact, a few direct physical interactions between LRR-containing R proteins 

and corresponding avr effectors were found, consistent with a receptor-ligand mode of action 

(Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006). However, for a number of R-avr 

combinations, physical interactions have not been observed, and perception is thought to be 

indirect. In the light of such observations, the original receptor-ligand model was amended to 

add a new dimension to the R-avr interaction that provide intriguing conceptual framework 

for the action of effectors and R protein complex. 

In this so-called guard model (Dangl and Jones, 2001; Belkhadir et al, 2004), R proteins, 

postulated to act as a ‘guard’ are likely to be part of a multiprotein complex that should 

includes protein that are targeted by pathogen virulence factors. Avr proteins, presumably 

acting as virulence factors, interact with cellular targets or ‘guardees’ inside the host cell. 

These targets are probable partners of R proteins. The perturbation of these guardee proteins 

may or may not be required for virulence but still leads to R protein activation.  R proteins 

either constitutively bind to their partner(s) and then dissociate after modification of the 

complex by the TTEs or form a new interaction with a cellular target that leads to activation.  
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Figure 1.6 Comparisons of the Guard and Decoy Models  

The classical Guard Model (A) is contrasted with a modified Guard Model in which the 
effector targets multiple plant proteins (B) and the Decoy Model (C). Effectors are depicted in 
grey, operative targets in purple, guardee in green, decoy in blue and the R protein in 
orange. (van der Hoorn and Kamoun, 2008). 

 

This model was initially proposed to elucidate the role of NBS-LRR protein Prf in AvrPto–

Pto signalling (Van der Biezen and Jones, 1998). In this model, Prf protein was found to 

associate with the Pto protein (a serine/threonine kinase) and render Prf in inactive state. Prf 

is activated upon AvrPto-Pto interaction which disrupt the inhibitory action of Pto and 

allows Prf to induce plant defence responses.  However, new findings on effector activities 

(Zhou and Chai, 2008; Zipfel and Rathjen, 2008) are inconsistent with the original 

description of guard model and a new concept has been proposed, arguing that some host 

targets act as decoy to detect pathogen effectors via R proteins (van der Hoorn and Kamoun, 

2008). In this variation, known as the decoy model, the guardee protein is a decoy that 

mimics the operative host target but only functions in perception of pathogen effectors 

without benefiting pathogen fitness in the absence of its cognate R protein. For this reason, 

the decoy model is distinct from the classical receptor-ligand and refined guard models 

(Figure 1.6). Both indirect and direct recognition model present a fascinating example of the 

diversity and the complexity of mechanism employed by host plants to detect the broad 

range of effectors. 
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1.7 Hypersensitive response 

A ubiquitous feature of plant-pathogen interactions is HR that is manifested as rapid and 

localized necrosis of cells at the inoculation site and often associated with resistance 

responses (Dangl et al., 1996; Heath, 2000). Resistance responses conditioned by initial 

recognition events between host plant and pathogen is often mediated by plant R gene and a 

cognate microbial avr gene, which then triggers the HR. Despite many observations that 

most resistance responses are accompanied by an HR (Zhou et al., 1995; Mackey et al., 

2002), in some cases, they can occur with very little or without cell death (Bendahmane et 

al., 1999). It has been suggested that the HR is a form of programmed cell death (PCD) in 

plants based on some similarities between HR and well-characterized animal PCD known as 

apoptosis (Jacobson et al., 1997; Heath, 2000; Greenberg and Yao, 2004).  

It appears that the signal transduction requirements as well as structural and cytological 

changes that lead to hypersensitive cell death may vary depending on the host-pathogen 

combination (Morel and Dangl, 1997; Heath, 2000). HR-linked cell death in plants requires 

active plant metabolism and depends on the activity of the host transcriptional machinery. It 

has also long been recognised that the HR can generate signals that cause local and systemic 

changes in the plant. One of the most rapid plant responses following pathogen recognition is 

the alterations of ion fluxes characterized in particular by an uptake of Ca2+. An oxidative 

burst producing ROS, including superoxide anion (O2
-) that can be dismutated rapidly to 

hydrogen peroxide (H2O2) through the action of superoxide dismutase (SOD), constitute 

another likely signal in the cascade leading to HR (Lamb and Dixon, 1997; Grant and Loake, 

2000). ROS derived from this oxidative burst are generated by plasma membrane NADPH 

oxidases, anchored by gp91phox proteins related to those responsible for the respiratory 

oxidative burst activated in mammalian neutrophils during infection (Torres et al., 2002). 

Loss-of-function mutations in two Arabidopsis respiratory burst oxidase homologue (rboh), 

rbohD and rbohF indicated that AtrbohD is the major source of extracellular ROS after 

pathogen infection, whereas AtrbohF mainly functions in HR control, potentially in a 

pathogen-dependent manner (Torres et al., 2002).  

Induction of HR is often associated with elevated levels of SA (Lamb and Dixon, 1997). It 

has been suggested that SA functions as both pro-death and pro-survival signals (Lorrain et 

al., 2003; Lam, 2004) and that the ROS generated by Atrboh proteins can antagonize the SA-

dependent pro-death signals (Torres et al., 2005). However, neither ROS nor SA is sufficient 

to activate HR on their own. The generation of NO has been shown to enhance H2O2-
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mediated cell death and defence mechanisms (Delledone et al., 1998). Moreover, it has been 

observed that NO production occurs within the same time frame with H2O2 and a critical 

balance between this two molecules governs whether cell death is initiated or suppressed 

(Delledone et al., 2001). Thus, multiple secondary signals, such as ROS, SA and NO, appear 

to be essential second messengers for the activation and execution of HR. 

In animals, there are three established morphological type of PCD: apoptosis, autophagy and 

non-lysosomal PCD. Whereas apoptosis and non-lysosomal PCD are uncommon in plants, 

autophagy is more recognized since it generally coincides with PCD during plant 

development (reviewed in van Doorn and Woltering, 2005). Autophagy is a major 

degradation and recycling system in eukarotic cells involving the turnover of cellular 

components by delivering portions of the cytoplasm into lysosome and vacuoles where they 

are digested (Klionsky and Emr, 2000). Recent developments in the study of HR-PCD 

suggest that evolutionarily conserved autophagy genes and the autopaghy pathway play an 

important role in the regulation of HR (Liu et al., 2005; Van Doorn and Woltering, 2005; 

Patel et al. 2006; Love et al., 2009). Autophagic pathways can both promote survival and 

death in plants (Kwon and Park, 2008; Love et al., 2008), both of which are a function of the 

degree of its activation which is subjected to tight regulations (Mizushima, 2007; Kwon and 

Park, 2008; Love et al., 2008).  

Considerable efforts have been made to identify genes essential for the hypersensitive cell 

death, for example, by identifying mutant lines in which cell death is misregulated. Lesion 

mimic mutants, which exhibited spontaneous cell death in the absensce of pathogenic 

infection resembling pathogen-inducible HR have been identified in a few plant species 

including Arabidopsis (Lorrain et al., 2003). Lesion simulating disease 1 (LSD1) gene is 

known as a negative regulator of both HR-like cell death and basal defence responses 

(Dietrich et al., 1994). Arabidopsis plants carrying the recessive null lsd1 allele are unable to 

restrict cell death development after infection by various incompatible pathogens and exhibit 

a ‘runaway cell death’ (RCD) phenotype that is dependent on SA production (Jabs et al., 

1996). lsd1 induced-RCD requires enhanced disease susceptibility 1 (EDS1) and phytoalexin 

deficient 4 (PAD4), which are mediators for disease resistance conveyed by R genes 

encoding TIR-NBS-LRR (Rusterucci et al., 2001). Depending on ROS status, non race-

specific disease resistance 1 (NDR1), which mediate disease resistance conferred by CC-

NBS-LRR class of R gene is also required for lsdl-induced RCD (Rusterucci et al., 2001).  
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In essence, there are two major signalling pathways following R-avr interactions that lead to 

HR, depending on the structure of the particular R protein that is activated by pathogen. The 

first one is defined by the NDR1 protein, and the second is defined by the EDS1 and PAD4 

proteins (Loake, 2001; Mur et al., 2007). Overall, it is rather difficult to quantify the 

contribution of HR to pathogen resistance since its establishment is concomitant with the 

activation of other defence mechanisms, such as accumulation of PR proteins. On one hand, 

rapid elimination of infected cells may be responsible for protecting the neighbouring cells 

from further invasion and in the other hand, the HR itself can be uncoupled from resistance 

and thus may not be the primary barrier during plant-pathogen interactions.   

1.8  Systemic Acquired Resistance (SAR) 

Apart from the localized HR at the infection sites, defence responses can also be activated, or 

primed for rapid activation, in distal, uninoculated organs of the infected plants. This 

enhanced state of broad-spectrum disease resistance that develops in the whole plant in 

response to a local infection of leaves with microbial pathogens was termed systemic 

acquired resistance (SAR) (Durrant and Dong, 2004; Conrath, 2006; Grant and Loake, 

2008). In this state of systemic acquired resistance, plants are primed to more quickly and 

more efficiently activate defence responses the second time they encounter pathogen attack. 

Protection is also observed after an attack by herbivorous arthropods, mechanical injuries or 

following contact with certain chemicals. SAR is distinguished from race-specific resistance 

in that it does not decay with time and is generally effective against a broad and distinctive 

spectrum of pathogens including viruses, bacteria, oomycetes, and fungi (Agrios, 2005; 

Conrath, 2006). SAR is associated with activation of a large number of pathogenesis-related 

(PR) genes in local and systemic tissues and these genes serve as powerful molecular 

markers for the onset of SAR (Maleck et al., 2000; Ryals et al., 1996).  

Induction of SAR is not restricted to HR-inducing pathogens but also takes place upon 

treatment with high inoculum of non-pathogenic microbes onto the leaf surface or after 

treatment with PAMPs (Mishina and Zeier, 2007). SAR has been shown to involve various 

different signals with different mode of actions such as SA, JA, isonicotinic acid, lipid-

derived signal, peptidic mobile signal, nitric oxide, hydrogen peroxide and less well 

characterized MAP kinases (Conrath, 2006; Vlot et al., 2008; Shah, 2009). Whereas SAR 

signal generation appears to be a general feature of SA-dependent defence signalling, the 

mobile signal itself has been elusive for decades. SA was initially proposed to serve as the 

mobile signal that is transmitted from the inoculated leaves via the phloem to the uninfected 
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portions of the plant (Durrant and Dong, 2004). SA was found to accumulate both at 

inoculation sites and distant leaves concomitant with the onset of SAR, and NahG plants that 

are unable to accumulate SA are SAR deficient (Malamy et al., 1990; Gaffney et al., 1993). 

In addition, SA was also detected in the phloem of pathogen-infected plants and radio-tracer 

study suggested that a significant amount of SA in the systemic leaves of pathogen-infected 

tobacco and cucumber was transported from the infected leaf (Molders et al., 1996; Shulaev 

et al., 1995). However, grafting experiments involving tobacco plants expressing the NahG 

gene have dismissed SA as the systemic signal in SAR (Vernooji et al., 1994).  

Recently, a study showed that SA-derivative methyl-salicylate (MeSA) acts as a critical 

long-distance mobile signal for SAR because it is not degraded by salicylate hydroxylase in 

vitro and accumulates in nahG transgenic tobacco (Park et al., 2007). A very recent study in 

Arabidopsis further supports the occurrence of MeSA as a mobile SAR signal (Liu et al., 

2010). However, Attaran et al. (2009) argued that MeSA is dispensable for SAR in 

Arabidopsis, and that SA accumulation in distant leaves appears to occur by de novo 

synthesis via isocharismate synthase. The discrepancies in these studies are probably due to 

the complexity in SAR signalling and differences in experimental conditions. There has been 

a considerable argument for multiple mobile signals for SAR as these signals could function 

redundantly, synergistically or perhaps antagonistically depending on various factors (Park et 

al., 2007; Vlot et al., 2008; Shah et al., 2009; Liu et al., 2010). Interestingly, for MeSA, in 

addition to serving as an engoenous SAR signal, it can serve as an airborne signal that is 

emitted from infected plants and induces defence gene expression in neighbouring wild type 

plants (Shulaev et al., 1997). 

Several mutant screens have been performed to identify Arabidopsis mutants defective in the 

SA-dependent SAR signal transduction pathway (Conrath, 2006). Non-expressor of PR-1 

(npr1) mutant is probably the most prominent of these mutants. npr1 mutants accumulate 

high level of SA after infection, but fail to activate PR genes and are highly susceptible to a 

wide range of pathogens (Cao et al., 1994). Pathogen-induced SA accumulation or treatment 

with SAR inducers results in an early transient increase in cellular reduction potential 

followed by a rapid decrease in reduction potential. The SA-induced redox changes lead to 

the reduction of NPR1 from cytosolic, disulphide-bound oligomers to active monomers that 

accumulate in the nucleus where they interact with the TGA class of basic leucine zipper 

transcription factors (Mou et al., 2003; Kinkema et al., 2000; Fan and Dong, 2002). This 

interaction induces the expression of defence response genes via a largely unknown 

mechanism to activate SAR (Fan and Dong, 2002; Mukhtar et al., 2009). The NPR1 
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promoter region contains several W-boxes that function as binding sites for plant-specific 

WRKY transcription factors suggesting that basal and SA-induced expression of NPR1 

appears to be controlled by yet unidentified WRKY transcription factors (Yu et al., 2001; 

Eulgem and Somssich, 2007). Constitutive induction of disease resistance in plants might 

incur fitness costs and it explains why plants have evolved inducible defence mechanism. 

Mutants that constitutively express PR genes and accumulate SA often have reduced plant 

size, loss of apical dominance, curly leaves, and decrease fertility (Heil and Baldwin, 2002), 

while constitutive expression of SAR in uninfected plants is detrimental (Durrant and Dong, 

2004). 

 

1.9 Nitric Oxide (NO) and defence signal transduction  

1.9.1 Nitric oxide: general properties  

Nitric oxide (NO) acts as a signalling molecule within species from every biological 

kingdom. Because of its unique chemistry, which permits both stability and reactivity, NO 

and its exchangeable redox-activated forms are ideally suited to its cellular signalling 

function. At room temperature and at atmospheric pressure, NO is a free radical colourless 

diatomic gas with lipophilic property. It’s small Stoke’s radius and neutral charge allows 

rapid membrane diffusion (Kiger et al., 1993) and can play a part in cell-to-cell signalling in 

a brief period of time. Due to the presence of unpaired electron and free radical nature of 

NO, it readily reacts with oxygen (O2), superoxide (O2
-), transition metals and thiols, which 

largely shape its cellular function within the cell (Mur et al., 2006; Neill et al., 2007; Hong et 

al, 2007). The reaction of NO with O2 results in the generation of NOx compounds (including 

NO2, N2O3, and N2O4), which can either react with cellular amines and thiols, or simply 

hydrolyze to form end metabolites nitrite (NO2
-) and nitrate (NO3) (Wendehenne et al., 

2001).                

1.9.2 Nitric oxide production in animals and plants     

NO is a multifunctional effector involved in numerous mammalian physiological processes, 

including neurotransmission, immunological and inflammatory responses, and relaxation of 

vascular smooth muscle (Schmidt and Walter, 1994). However, the use of NO is not 

confined to the animal kingdom. NO is also involved in diverse physiological processes in 

plants, such as defence response, metabolism, cellular detoxification, transport, iron 
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homeostasis, signalling, flowering, and lignin biosynthesis (He et al., 2004; Bason-Bard et 

al., 2008). Despite the importance to elucidate the biosynthesis of NO in plants, there is still 

much uncertainty after years of research. In animals, NO is synthesized primarily by the 

enzyme nitric oxide synthase (NOS), which catalyzes the NADPH-dependent oxidation of L-

arginine to L-citrulline and NO (Stuehr et al., 2004). Three NOS isoforms have been 

identified (Nathan and Xie, 1994); neuronal NOS (nNOS), endothelial NOS (eNOS) and 

inducible NOS in macrophages (iNOS). nNOS and eNOS are considered as constitutive and 

both show fast and transient activation. iNOS is induced in macrophages and many other cell 

types in response to inflammatory agents and cytokines (Mayer and Hemmens, 1997; Beck 

et al., 1999). Compared to constitutive NOSs, iNOS activity is sustained longer, more stable 

and generates more NO, thus exerting cytotoxic and antimicrobial effects on the immune 

systems (Beck et al., 1999).  

NO synthesis in plants includes both arginine and nitrite-dependent pathways. It is well 

documented that potential enzymatic sources of NO in plant cells include nitrate reductase 

(NR) and NOS-like activity (Neill et al., 2003; Romero-Puertas et al., 2004; Wang et al., 

2006). NR catalyzes the in vitro production of NO through a one-electron reduction of nitrite 

via the use of NAD(P)H as an electron donor (Yamasaki and Sakihama, 2000). It has been 

viewed as a candidate for NO production during plant-pathogen interaction (Neill et al., 

2003), but there are a few contradictory evidences that collectively suggest that NR is not 

likely to be the major generator of NO synthesized during the pathogen-triggered nitrosative 

burst (Hong et al., 2008). In addition, significant NO production from NR is dependent upon 

high levels of nitrite and anoxia or the absence of photosynthetic activity (Yamasaki, 2000), 

which are not the common scenario for the plants under natural condition. Although there is 

no obvious homolog of animal NOS in the Arabidopsis genome, several NOS-like activities 

have been reported (Cueto et al., 1996; Barroso et al., 1999; Corpas et al., 2006). In addition, 

mammalian NOS inhibitors have been shown to effectively abrogate the pathogen-triggered 

NO production in plants (Delledone et al., 1998; Neill et al., 2003). Corpas et al. (2009) had 

elaborately compared animal and plant NOS and concluded that plant also possesses L-

arginine-dependent NOS activity which is differ from canonical animal NOS. 

A search for the enzyme(s) that catalyze(s) the pathogen-triggered NO production in 

Arabidopsis led to the cloning of the Arabidopsis NOS 1 (AtNOS1) gene, which exhibited 

significant sequence similarity to a snail gene that encoded a NOS-like activity, but no 

homology to mammalian NOS (Guo et al., 2003). It now appears that AtNOS1 may not 

actually be NOS at all because it has been difficult to demonstrate reproducibility of typical 
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NOS activity through recombinant AtNOS1 (Crawford et al., 2006; Zemojtel et al., 2006). 

Instead, AtNOS1 was found to serve as a chloroplast-targeted GTPase essential for proper 

ribosome assembly (Flores-Perez et al., 2008). AtNOS1 has therefore been renamed 

Arabidopsis nitric oxide associated 1 (AtNOA1). Several other mutants with altered NO 

levels has been reviewed to show increased NO accumulation correlates with concentrations 

of putative substrates for NO biosynthesis but none of them is exclusively affected in NO 

production (Leitner et al., 2009). Finally, researchers have reported that NO can also be 

formed non-enzymatically in a reaction between nitrogen dioxide and plant metabolites, 

nitrous oxide decomposition or as a result of chemical reduction of NO2
- at acidic pH 

(Wendehenne et al., 2001). 

1.9.3 S-nitrosylation as a redox-based signalling in plants 

NO-related signalling can be attributed to various NO derivatives, collectively referred to as 

reactive nitrogen species (RNS), which comprise not only the NO radical (NO·) and its 

nitroxyl (NO-) and nitrosonium (NO+) ions, but also peroxynitrite (ONOO-), S-nitrosothiols 

(SNO), higher oxides of nitrogen and dinitrosyl-iron complexes (Leitner et al., 2009). NO 

and RNS exert their biological actions through the chemical modification of targets by 

reacting with different amino acids or prosthetic groups. They mostly act through the binding 

to transition metals of metalloproteins (metal nitrosylation) and the covalent modifications of 

cysteine (S-nitrosylation) and tyrosine (tyrosine 3-nitration). These processes are emerging 

as specific posttranslational protein modifications and the best characterised of these is S-

nirosylation. 

S-nitrosylation, the covalent attachment of an NO moiety to the thiol side chain of cysteine 

to form SNO, is emerging as a prototypic redox-based post-translational modification by 

which NO orchestrates cellular functions in animals (Stamler et al., 2001). Recently, S-

nitrosylation has been shown to regulate small numbers of plant proteins in vitro 

(Lindermayr et al., 2005; Lindermayr et al., 2006). In this framework, the formation of SNO 

may serve to stabilize and diversify NO-related signals. Being a new paradigm in signal 

transduction, S-nitrosylation presents unique features, the main one being the fact that its 

formation and degradation depend solely on chemical reactions (Martinez-Ruiz and Lamas, 

2007). In the latest review by Lindermayr and Durner (2009), direct reaction between NO 

and thiol groups was said to be too slow to operate physiologically. Instead, the radical 

combination reaction of the thiyl radical (RS·) with NO· seems to be more efficient and 

extremely fast. The fact that NO+, N2O3, and ONOO- serve as effective nitrosylating agents 
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further supports this notion. Other important S-nitrosylating agents include metal-NO 

complexes, which are the product of NO and transition metals that are able to transfer their 

NO moiety to the thiol group of cysteine residues and operate efficiently in hydrophilic 

environments (Lane et al., 2001; Lindermayr and Durner, 2009). 

Specificity of S-nitrosylation within and between proteins is conferred by acid-base and 

hydrophobic motifs aiming at critical cysteine residues and by protein-protein interactions 

that impound the signals (Hess et al., 2001). For example, in animals, acid-base catalysis has 

been shown to promote nitrosylation and denitrosylation of haemoglobin (β-Cys93) in a 

conformation-dependent fashion (Stamler et al., 1997). In Arabidopsis, S-nitrosylation of S-

adenosylmethionine synthetase 1, metacaspase 9 and recently salicylic acid binding protein 3 

(AtSABP3) also have been shown to specifically occur at cysteine residues that are directly 

surrounded by basic and acidic amino acids (Lindermayr et al., 2006; Belenghi et al., 2007; 

Wang et al., 2009). As a regulatory mechanism in plants and animals, S-nitrosylation is a 

reversible process. Indeed, S-nitrosylated proteins can be easily de-nitrosylated as the S-NO 

bond is labile in a cytoplasm’s reducing environment, allowing cells to flexibly and precisely 

accommodate protein function in response to environmental signals. S-nitrosylated proteins 

are in dynamic equilibrium with de-nitrosylated proteins largely due to the action of 

glutathione (GSH) with the subsequent formation of S-nitrosoglutathione (GSNO), 

reconstituting the protein thiol as a consequence. GSNO has the ability to release NO or 

function as a transnitrosylationg agent, thus it is considered as a natural reservoir of NO 

(Besson-Bard et al., 2007; Leitner et al., 2009).  

Two of the enzymes that are known to metabolize GSNO are S-nitrosoglutathione reductase 

(GSNOR) and thioredoxin. The presence of GSNOR is conserved between bacteria, animals 

and plants (Liu et al., 2001) and due to its ubiquitous nature, this enzyme was suggested to 

confer protection against nitrosative stress rather than as a cell signalling factor. In contrast, 

thioredoxin or thioredoxin reductase denitrosylation reactions seem to be a part of a signal 

transduction mechanisms (Lindermayr and Durner, 2009). GSNOR controls intracellular 

levels of GSNO and limits NO toxicity through NADH-dependent reduction of GSNO to 

glutathione disulfide (GSSG) and ammonia (NH3) (Lamotte et al., 2005). Though highly 

specific for GSNO, GSNOR seems to modulate the extent of total cellular SNO formation 

(Liu et al., 2001; Feechan et al., 2005).  
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1.9.4 NO and SNO functions in plant disease resistance  

The function of NO in signalling defence responses during plant-pathogen interactions have 

been well documented in many experiments conducted years ago. A widespread feature of 

plant disease resistance is the HR. NO is suggested to play a key signalling role during HR, 

next to the accumulation of ROS and SA (Delledonne et al., 2002). In animals, many 

biological effects of NO including apoptosis are mediated by the highly toxic molecule, 

ONOO-, which is relatively non-toxic in plants (Bonfoco et al., 1995; Delledone et al., 

2001). On the contrary, HR-associated cell death in plants is proposed to be mediated by the 

relative level of NO and H2O2 that is formed by dismutation of O2
- by SOD. In plants, 

ONOO- is continuously produced in healthy cells, exposing them to an environment rich in 

ONOO-. Therefore, plants have developed some detoxification mechanism, for example, 

through the action of peroxiredoxin II E (PrxIIE), a member of the peroxiredoxin family of 

antioxidant enzymes responsible for lipidoxidation and tyrosine nitration (Romero-Puertas et 

al., 2007). Interestingly, PrxIIE has been found to be S-nitrosylated during the HR resulting 

in inhibition of its hydroperoxide-reducing peroxidise activity together with its ability to 

detoxify ONOO- and also increasing the amount of tyrosine nitration (Romero-Puertas et al., 

2007). In conclusion, NO regulates the effect of its own reactive species through S-

nitrosylation of crucial components of the antioxidant defence system. NO also controls cell 

death in plants through S-nitrosylation of Arabidopsis metacaspase 9 and cytosolic 

glyceraldehyde 3-phosphate dehydrogenase, both of which can act as a potential executioner 

of PCD (Belenghi et al., 2007; Holtgrefe et al., 2008).  

NO is not only thought to function during the development of hypersensitive cell death but 

also in the establishment of plant disease resistance complementary to and independent of 

ROS. Administration of NO donors induced the expression of defence-related genes 

encoding phenylalanine ammonia lyase (PAL), the first enzyme of phenylpropanoid 

biosynthesis pathway and pathogenesis-related protein 1 (PR-1) (Durner et al., 1998). NO 

action in plants, at least partially, is mediated through the SA-dependent signalling pathway. 

NO treatment induces endogenous SA accumulation required for PR-1 gene induction in 

tobacco (Durner et al., 1998). NPR1, a master regulator of SA-mediated defence genes and a 

crucial component of disease resistance and signal cross-talk is known to be redox-regulated 

(Tada et al., 2008), adding an important clue to understanding NO’s signalling functions. S-

nitrosylation of NPR1 controls its subcellular localization through oligomer-monomer 

exchange and thus its transcription co-factor activity. Mutations at critical cysteine residues 

in NPR1 increased monomer accumulation, constitutive nuclear localization and NPR1-



29 

 

mediated gene expression in the absence of pathogen (Mou et al., 2003; Tada et al., 2008). 

Another very interesting example for the regulatory function of NO is S-nitrosylation of 

AtSABP3, which may interfere with the signal cross-talk as both carbonic anhydrase and SA-

binding activity of the protein are inhibited (Wang et al., 2009).  

In addition to data presented above, the importance of NO and SNO in plant disease 

resistance were presented through the analysis of a GSNOR knock-out mutant. Loss-of-

function mutation in Arabidopsis GSNO reductase 1 (AtGSNOR1) resulted in an increased 

cellular levels of SNOs and compromised all modes of disease resistance (Feechan et al, 

2005). Conversely, enhanced AtGSNOR1 activity results in increased protection against 

ordinarily virulent microbial pathogens. AtGSNOR1 also positively regulates the signalling 

network controlled by the plant immune system activator, SA (Feechan et al., 2005). 

Subsequently, similar results were obtained by Tada et al. (2008) through NPR1 studies. 

Surprisingly, using antisense strategy, basal resistance has been reported to increase in 

atgsnor1 antisense plants, correlating with higher levels of intracellular SNOs and 

constitutive activation of PR-1 (Rusterrucci et al., 2007), which is the opposite result to that 

obtained by Feechan et al. (2005). Probably the contradictory reactions of the GSNOR 

modified plants might be a result of different cellular levels of SNO that change dramatically 

in atgsnor1 mutants (Feechan et al., 2005) compared to a minor changes in the antisense 

plants (Rusterucci et al., 2007) (Hong et al., 2008). Nevertheless, both works underlines the 

physiological importance of SNO formation and turnover in regulating multiple modes of 

plant disease resistance.   

1.10 Defence signalling – crosstalk between the signalling molecules 

Phytohormones play important roles in regulating developmental processes and signalling 

networks involved in plant responses to a wide range of biotic and abiotic stresses. Induced 

plant defences against microbial pathogens and insects are differentially regulated by cross-

communicating signalling pathways involving various types of phytohormones in plants 

resulting in fine-tuning of the expression of defence-related genes (Grant et al., 2009) (Fig 

1.7). Three key signal molecules, namely SA, JA and ET are produced in a specific blend 

upon pathogens attack and mediate expression of both specific (R gene-mediated) as well as 

basal defence responses (Glazebrook et al., 2003; Koornneef and Pieterse, 2008; Pieterse et 

al., 2009). In response to infection by biotroph and hemibiotroph pathogens, endogenously 

accumulating SA antagonizes JA/ET-dependent defences, thereby prioritizing SA-dependent 

resistance to this type of pathogens over JA/ET-dependent defence against necrotrophic 
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pathogens and herbivorous insects (Glazebrook, 2005). Although SA and JA/ET defence 

pathways are mutually antagonistic, evidences of synergistic interactions also have been 

reported (Beckers and Spoel, 2006; Mur et al., 2006; Loake and Grant, 2007), suggesting 

that the defence signalling network activated and utilized by the plant is dependent on the 

nature of the pathogen and its mode of pathogenicity. 

Through mutational or ectopic expression analyses, several genes have been identified as a 

molecular player in SA and JA signalling such as MAPK4, EDS1, PAD4, NPR1, 

glutaredoxin GRX480, PDF1.2 (plant-defensin 1.2) and WRKY transcription factor such as 

WRKY70 (Broderson et al., 2006; Spoel et al., 2003 ; Ndamukong et al., 2007; Li et al., 

2004). NPR1 acts downstream of EDS1 and PAD4 in the SA signalling pathway (Brodersen 

et al., 2006) and downstream of NPR1; several WRKY transcription factors play important 

roles in the regulation of SA-dependent defence response in plants (Eulgem and Somssich, 

2007). WRKY trancription factors are newly identified transcription factors involved in 

many plant specific processes including plant responses to biotic and abiotic stresses (Zhang 

and Wang, 2005). Arabidopsis WRKY70 has been found to positively regulate SA-

dependent defences and negatively regulate JA-dependent defences and plays a pivotal role 

in determining the balance between these two pathways (Li et al., 2004; Li et al., 2006).  

 

 

 

 

 

 

 

 

 

Figure 1.7 Possible interaction between hormone signalling pathways 

BR? 
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Recently, it was demonstrated that ET bypasses the need of NPR1 in SA-JA crosstalk, while 

it enhances NPR1-dependent, SA-responsive PR-1 expression (Leon-Reyes et al., 2009). 

This study highlights the dual role of NPR1 in regulating SA-mediated activation of SA-

dependent defences and SA-mediated suppression of JA-dependent defences. There is a tight 

connection between the SA, JA and ET responses pathway, and several studies indicate that 

JA- and ET-signalling often operate synergistically (Penninckx et al., 1998; Thomma et al., 

2001). The basic helix-loop-helix leucine zipper transcription factor MYC2 and ethylene 

response factor 1 (ERF1) have been shown to play an important role in regulating the 

interaction between the two hormones (Lorenzo and Solano, 2005; Lorenzo et al., 2003).  

Although the SA, JA and ET response pathways serve as the backbone of the induced 

defence signalling network, other hormone response pathways feed into it. ABA is 

commonly involved in the regulation of many aspects of plant development and abiotic 

stress, but it is becoming increasingly evident that ABA also influences many plant pathogen 

interactions depending on pathogen lifestyle. In general, ABA is shown to be involved in the 

negative regulation of plant defence against various biotrophic and necrotrophic pathogens 

(Bari and Jones, 2009; Pieterse et al., 2009). Another enzyme that originally plays a role in 

plant development and is connected to the SA-JA-ET signalling network is auxin. Auxin 

promotes disease susceptibility and repression of auxin signalling could potentially result in 

enhanced resistance in plants (Thilmony et al., 2006; Wang et al., 2007). In PstDC3000 

challenged plants, elevated auxin and ABA responsiveness are TTSS- and coronatine-

dependent (Thilmony et al., 2006). Isolation of virulence factors that target auxin and ABA 

signalling (AvrBs3, AvrRpt2, coronatine and AvrPtoB) further indicates that pathogens 

actively target these pathways to promote virulence (Robert-Seilaniantz et al., 2007). The 

role of cytokinin in plant defence is elusive, but it displays some similarities to that of auxin 

(Robert-Seilaniantz et al, 2007; Piertese et al., 2009).  

Recently, gibberelin (GA) has been shown to affiliate with the SA-ET-JA network as well 

with the opposite effect on plant defence. GA promotes plant growth by inducing the 

degradation of growth-repressing DELLA proteins, a family of putative transcriptional 

repressors that inhibit cell proliferation and expansion, which drives the growth of plant 

organs (Hartberd, 2003). Navarro et al. (2008) demonstrated that DELLA proteins promote 

susceptibility to biotrophic pathogens and resistance to necrotrophic pathogens by 

modulating the relative strength of the SA and JA signalling pathways. In a recent review by 

Grant and Jones (2009), DELLA proteins are proposed to play a central role in fine-tuning 

the defences mounted through the SA, JA, or ET pathways.  
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Emerging evidences indicates that BR treatments can also affect induction of plant defence 

(Nakashita et al., 2003). However, a connection between BR signalling and the SA-JA-ET 

network remains to be established. In conclusion, plant hormones regulate complex 

signalling networks involving developmental processes and plant responses to environmental 

stresses. Thus, the involvement of multiple hormones in plant-pathogen interaction cannot be 

overlooked to fully understand the tight interaction between a host and its pathogen.  

 

1.11 Aims and Objectives 

1. To determine the cellular level of S-nitrosothiol in response to virulent PstDC3000 and 

PstDC3000 hrcC mutant 

2. To explore if AtGSNOR1 might constitute a target of pathogen effector proteins 

3. To identify the specific effector protein(s) that target AtGSNOR1 and the cognate 

mechanism that underlies the manipulation of AtGSNOR1 gene function.  
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2. Materials and Methods 

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich 

Co. Ltd., UK). 

 

2.1 Plant materials and growth conditions 

Arabidopsis seeds of ecotype Columbia (Col-0) were used. Unless otherwise stated, all 

Arabidopsis transgenic and mutant lines used are in a Col-0 background and were 

summarised in Table 2.1.  

Seeds were placed on potting medium consisting of peat moss, vermiculite and sand (4:1:1) 

and vernalized at 4⁰C in dark for 2-3 days. Then they were transferred to a long-day growth 

chamber at 20⁰C with 16 hours light and 8 hours dark.  For aseptic growth, seeds were 

placed onto MS medium (1/2 Murashige and Skoog salt, 1% sucrose, 0.4% phytoagar, pH 

5.8) after being sterilized with commercial bleach (25%) for 5 minutes and washed 5-10 

times in distilled water. Petri dishes were transferred to a growth chamber with a long-day 

condition (16 hours light and 8 hours dark, 22⁰C, 60% humidity). 

 

(a) 

Mutant lines Protein Accession No. Reference Source

At3g01080 WRKY58 SALK_150041C Wang et al., 2006 NASC 

At4g31800 WRKY18 SALK_093916C Xu et al., 2006 NASC 

At3g56400 WRKY70 SALK_025198C Li et al., 2006 NASC 

At2g30250 WRKY25 SALK_136966C Zheng et al., 2007 NASC 

At5g49520 WRKY48 SALK_066438C Xing et al., 2008 NASC  

NASC (Nottingham Arabidopsis Stock Center) 
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(b) 

Transgenic 
line 

Backgroun
d 
accession  

Reference Source

hopAO1(Dex) Col gl1 Underwood et al., 2007 He, MSU 
hopAI1(Est) Col-0 Li et al., 2005 Zhou, National Institute of 

Biological Sciences, Beijing  
hopAM1(Dex) Ws-0 Goel et al., 2007 Grant, Univ. of North Carolina at 

Chapel Hill 
avrPto(Dex) Col-0 Hauck et al., 2003 He, MSU 

MSU (Michigan State University) 

 

Table 2.1 Arabidopsis accessions, mutant and transgenic lines.  

(a) SALK T-DNA insertional mutants were identified from SALK T-DNA database 
(http://signal.salk.edu/cgi-bin/tdnaexpress) and seeds for the lines were ordered from NASC. 
(b) Transgenic lines expressing either dexamethasone- (Dex) or estradiol (Est) – inducible 
effector protein from Pseudomonas syringae.  

 

2.2 Generation of AtGSNOR1::GUS 

Transgenic Arabidopsis lines harbouring AtGSNOR1::GUS deletion constructs was 

generated in collaboration with Dr. Jeum Kyu Hong. The promoters sequences of 

AtGSNOR1 were amplified from Arabidopsis genomic DNA using primers designed to 

amplify DNA fragments from -747 to +342 bp covering the 5’ flanking region upstream of 

AtGSNOR1, first and second exon as well as first intron. Promoter sequences amplified by 

PCR were cloned into pGEM®-T Easy (Promega) and verified by nucleotide sequencing. 

Deletion promoter fragments were generated using site-specific primer pairs demonstrated in 

Table (2.2). The promoter was then subcloned into the XbaI and BamHI sites of the pBI121 

expression vector (Clonetech Laboratories, USA). The insertion site was between the CaMV 

35S promoter and GUS gene and the promoter was placed in the same orientation as the 35S-

GUS gene. Subsequently, the complete cassette was released by digestion with XbaI and 

EcoRI and cloned into the pGreen-0229 binary vector (Hellen et al., 2000). The vector was 

then transferred into Agrobacterium tumefaciens strain GV3101 and used to transform 

Arabidopsis plants using the floral dip method (Clough and Bent, 1998). Transformation of 

female gametes was accomplished by dipping developing Arabidopsis influorescenses for a 

few seconds into a 5% sucrose solution containing 0.01-0.05% (v/v) Silwet L-77 and 

resuspended Agrobacterium cells carrying the genes to be transferred. Independent 

transgenic lines were screen by application of Basta. 
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DNA 
fragments 

Forward primer Reverse primer 

 (-747 ~ 
+342) 

TCTAGATGCTAAACCTCAGCAAAAT
CATGTGTT 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

(-531 ~ 
+342) 
 

TCTAGAATAATTGTGAAATAAACCT
AATTGCTATG 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

(-361 ~ 
+342) 
 

TCTAGATAGCTTTATGGTAACGAGA
AAGAAA 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

 (-221 ~ 
+342) 
 

TCTAGATGTTAACAATGAGCCGGC
GTGA 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

(+1 ~ +342) 
 

TCTAGAAAGACCACACTACTCTCTC
TATCTCTCTT 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

 (+72 
~+342) 
 

TCTAGAATGGCGACTCAAGGTCAG
GTTATCA 

GGATCCGTAAGCGTCGGTGT
GACAAAG 

 

Table 2.2 Primer pairs for generation of AtGSNOR1::GUS promoter deletion 
constructs. 

 

 

 

 

 

 

 

 

 

 

 

(a) pGEM-T Easy vector 



36 
 

 

 

 

 

 

 

 

(b) pBl121 expression vactor 

 

 

 

 

 

 

 

 

 

 

 

(c) pGreen-0229 

Figure 2.1 Schematic diagram of vectors used for construction of AtGSNOR1::GUS 
transgenic lines 

(a) AtGSNOR1 promoter fragment was cloned into pGEM-T Easy and putative positive 
clones sequenced for confirmation using Sp6 and T7 primers. (b) AtGSNOR1 was cloned 
into Xba1 and BamH1 sites of pbBI121 expresion vector. (c) The complete expression 
cassette containing AtGSNOR1 promoter fused to GUS reporter gene was cloned into the 
lacZ region of pGreen 0229 binary vector at EcoR1 and Xba1 sites.  
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2.3 Chemical treatments 

The transgenic lines containing the BASTA resistance gene as a selection marker were 

selected by spraying with a 150 mg/l BASTA herbicide solution (Agrevo, Germany). 

Seedlings were sprayed 10 days after germination and again 4 days later.  

Selection for antibiotic resistance and chemical treatments to induce transgene in the 

transgenic lines were carried out according to the references (Table 2.1)  

 

2.4 Pathogens growth and inoculation 

Bacterial pathogens carrying antibiotic resistance marker were grown in King’s broth (KB) 

liquid media (King et al., 1954) supplemented with specific antibiotics for selection (Table 

2.3). Psp did not carry any antibiotic resistance and was grown in KB liquid media without 

antibiotic. The culture was incubated at 30⁰C overnight under agitation. The bacterial cells 

were harvested by centrifugation at 4000 g for 5 minutes and resuspended in 10mM MgCl2 

to an OD600 of 0.02 or 0.0001 (the equivalent of 107 or 105 colony forming units/ml) for gene 

expression analysis and SNO measurement. The leaves of 4 to 5 weeks old plants were 

infiltrated with 1 ml needleless syringe on the abaxial side and harvested at a certain time 

points for analysis.  

Bgt was obtained from Syngenta (Jealott’s Hill) and maintained on wheat cultivar Hereward. 

The wheat plants maintained in a growth cabinet and heavily infested with Bgt were shaken 

one day before the harvest of spores to displace older spores and ensure that freshly formed 

conidia were available. Leaf segments bearing conidia were harvested, and one leaf segment 

per pot was used to inoculate the leaves of Arabidopsis plants (4 to 5 weeks old) by dusting 

the conidia onto the leaves to be inoculated, then inoculated plants were incubated in 

greenhouse (Yun et al., 2003). 
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Pathogens Antibiotic selection Reference 

PstDC3000 50µg/ml Rifampicin 
(Generics, UK) 

Whalen et al., 
1991 

PstDC3000 hrcC- 50µg/ml Chloroamphenicol Yuan and He, 
1996 

PstDC3000 (avrB) 50µg/ml Kanamycin Whalen et al., 
1991 

PstDC3000 coronatine-deficient (cor-)
DB4G3 50µg/ml Kanamycin Brooks et al., 

2003 
Pseudomonas syringae phaselicola 
(Psp) 1448A - Taylor et al., 

1996 

Blumeria graminis f.sp. tritici (Bgt) - Yun et al., 2003 

Table 2.3 Bacterial pathogens and selection marker 
PstDC3000, PstDC3000 hrcC-, PstDC3000 (avrB) and PstDC3000 cor- were grown in KB 
liquid media supplemented with specific antibiotic at 50µg/ml for selection. Psp 1448A were 
grown in KB medium in the absence of antibiotic and Bgt growth was maintained on wheat. 

 

 

2.5 Genomic DNA extraction 

Genomic DNA was extracted from leaves of about 4 weeks old plants using cetyltrimethyl 

ammonium bromide (CTAB) extraction buffer (2% CTAB, 1.4 M NaCl, 100 mM Tris-HCl, 

pH 8, 20mM EDTA and 0.2% 2-mercaptoethanol)(Ausubel et al., 1994). Excised leaf was 

ground with micro-pestle in 1.5 ml microtube in the presence of 500 µl pre-warmed CTAB 

buffer at 65⁰C and incubated for 30 minutes with grinding at 15 minutes interval. An equal 

volume of chloroform was added into the tube and vortexed for 10 seconds before being 

centrifuged at 12,000 g for 10 minutes at room temperature. This condition applies to all 

centrifugation steps. The upper layer was taken into fresh tube and an equal volume of 

chloroform was added. The tube was vortexed again and centrifuged. The upper clear part 

was removed into a new tube and added with 1 ml of 100% cold ethanol. The tube was kept 

at -20⁰C for one hour. After the incubation, the tube was centrifuged and the supernatant 

discarded. Pellet was washed with 1 ml of 75% (v/v) cold ethanol and vortexed to mix. The 

tube was centrifuged again and residual ethanol was taken out using a pipette. The pellet was 

dissolved in 50 µl deionized distilled water.     
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2.6 β-glucoronidase (GUS) assay 

2.6.1 Fluorometric assay 

GUS enzyme activity was measured in fluorometric assay as described by Jefferson et al. 

(1987). Leaf samples were collected from 4-5 weeks old plant (~ 0.1 gram per plant) at 0, 2, 

4, 8, 12, and 24 hour after pathogen inoculation or chemical treatments and immediately 

frozen in liquid nitrogen. The plant materials were ground in liquid nitrogen using mortars 

and pestles and were immediately transferred to 1.5 ml pre-chilled eppendorf tube. For each 

tube, 1ml of GUS extraction buffer (50 mM NaH2PO4, pH 7, 10 mM EDTA, 0.1 % Triton X-

100, 0.1% Sodium lauryl sarcosine and 10 mM β-mercaptoethanol) was added and vortexed 

vigorously. The tubes were kept on ice before being centrifuged at 12,000 g for 10 minutes 

at 4⁰C. The supernatant (~600 µl) was taken out into a new tube and protein concentration 

was measured by Bradford assay (Bradford, 1976). 

A 100 µl aliquot of the supernatant (protein extract) was added into 1.5 ml reaction tubes 

containing 900 µl pre-warmed GUS assay buffer (GUS extraction buffer and 4-

methylumbelliferyl – β-D-glucoronide trihydrate) to the final concentration of 1 mM 4-MUG 

and incubated at 37⁰C for 1 hour. A volume of 200 µl of the reaction mixture was 

immediately added into 2 ml GUS stop buffer (0.2 M Na2CO3) and vortexed for a 0 time 

control. The step was repeated for the same sample after 1 hour incubation and the amount of 

fluorescence was measured using spectrofluorometer (SPEX FluoroMax3, Horiba Scientific) 

with excitation filter at 365 nm (UV) and emission filter at 455nm (blue) in disposable 

plastic cuvettes. Freshly prepared 4-methylumbelliferone at different concentration in stop 

buffer was used to make a standard curve. GUS activity was expressed as picomoles MU (4-

methylumbelliferone) per minute per milligram fresh tissue. 

2.6.2 Histochemical assay 

Histochemical assay was carried out based on method described by Jefferson et al., 1987). 

Seedlings or excised plant organs (leaf, flower, root, stem or silique) were washed with 100 

mM potassium phosphate buffer (pH 7) for 3 times. They were immersed in the staining 

solution (1mg/ml X-gluc, 100 mM potassium phosphate buffer, pH 7, 5 mM K3Fe(CN)6, 5 

mM K4Fe(CN)6, and 10mM EDTA) in 1.5 ml microtubes and incubated at 37⁰C in the dark 

for overnight. After incubation, the staining solution was discarded and a sufficient volume 

of fixation solution (formalin:acetic acid:ethanol in a ratio 10:5:20 (v/v/v)) was added to the 
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same tube just to cover the sample and incubated for 10 minutes.  The sample was cleared in 

50% ethanol for 30 minutes followed by overnight incubation in 100% ethanol at room 

temperature. Samples were placed on a clean microscope slide and photographed using 

Nikon digital camera (Nikon, Japan). 

 

2.7 RNA blot hybridisation 

Total RNA was extracted from leaves of 4 weeks old plants using the TRIzol method 

according to the manufacturers instruction. The leaf tissues (approximately 100mg per 

sample) were ground to fine powder in liquid nitrogen using mortars and pestles and 1 ml of 

TRI™ Reagent or TRIzol (Invitrogen) was added immediately to dissolve it. The slurry was 

transferred into 1.5 ml microtube and vortexed to mix. The sample was centrifuged at 12,000 

g for 10 minutes at 4⁰C. The supernatant was taken out into fresh tube and 200µl of 

choloroform was added. The was vortexed vigorously for 15 seconds and allowed to sit on 

ice for 3 minutes followed by centrifugation at 12,000 g for 15 minutes at 4⁰C. About 600µl 

of the aqueous phase was transferred to a new tube followed by addition of 300µl of each 

isopropanol and NaCl/Na-Citrate salt solution (1.2 M and 0.8 M respectively) with gentle 

mixing by inversion. The tubes were allowed to sit at room temperature for 10 minutes. Then 

they were centrifuged at 12,000 g for 10 minutes at 4⁰C. The supernatant was discarded 

carefully and pellet was washed with 1 ml of 75% (v/v) ethanol diluted in 

diethylpyrocarbonate (DEPC) water by vortexing briefly. After centrifugation at 7,500 g for 

5 minutes at room temperature, the supernatant was carefully discarded. The residual 

supernatant was pipette out after a short spin. The pellet was resuspended in 40µl DEPC-

treated water and incubated for 30 minutes at 60⁰C to dissolve it. The absorbance of each 

sample was measured at 260 nm and used to calculate the RNA concentration.   

RNA samples (10µg) were separated on a formaldehyde-agarose (Sambrook et al., 1989) gel 

and then transferred to a HybondTM-N hybridisation membrane (GE Healthcare) according to 

the suppliers instruction. To check for equal RNA loading of lanes, membranes were stained 

with methylene blue (0.3M sodium acetate pH 5.5, 0.03 % w/v Methylene blue). Methylene 

blue was removed by washing in DEPC-treated water for 5 minutes followed by 1X SSC, 

1% SDS (w/v) for 15 minutes. Probes were prepared by amplification of appropriate 

sequences by PCR (Table 2.4) and purified using a PCR purification kit (QIAGEN). The size 

of the PCR product was verified by gel electrophoresis and sequencing. For hybridisation, 
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probes were labelled with α-32P-dCTP by random priming prepared using a Prime-a-gene® 

labelling kit (Promega). The pre-hybridisation/hybridisation buffer solution included dextran 

sulphate (10%w/v) to improve efficiency of probe binding (Sambrook et al., 1989). After 

hybridisation overnight at 65⁰C, membranes were washed at 65⁰C, twice for 30 minutes in 

4X SSC, 1% (w/v) SDS and twice in 4X SSC, 0.5% (w/v) SDS for 15 minute. Blots were 

exposed to X-Omat-AR™ imaging film (Kodak). The stripping of blots was done by 

incubating membranes in boiling 0.1% SDS, before washing in 0.5X SSC for 30 minutes at 

room temperature. 

Probe 
name 

Forward primer Reverse primer Size  
(kb) 

AtGSNOR1 GAGGTTCGGATGAAGATCCT CTTGGAACGGAGTTGAT 0.8 

GUS CCGACGAAAACGGCAAGAAAA
AGCTGT 

CCAGAAGTTCTTTTTCCAGT
ACCT 1.0  

 

Table 2.4 Primers used for probe synthesis 

Forward and reverse primers used to amplify specific DNA fragments to generate probe for 
northern blot.  

 

2.8 Reverse transcriptase – polymerase chain reaction (RT-PCR) 

RNA was extracted and the concentration determined as before. One µg of RNA was used 

for RT-PCR using QIAGEN Omniscript RT (Qiagen) kit according to manufacturer’s 

instructions. The PCR was carried out using 1µl cDNA as a template with specific primer 

pairs (listed in Table 2.5). The PCR program was roughly as follows: 94°C, 5 minutes; 94°C, 

30 seconds; 57°C, 30 seconds; 72°C, 1 minutes; 27 cycles (AtGSNOR1) or 28 cycles (Actin-

2) followed by additional extension at 72°C; 7 minutes. The optimal conditions for 

amplification (cycle number and annealing temperature) were experimentally determined by 

preliminary experiments. Optimal number of PCR cycles appropriate for optimal 

semiquantitative PCR analysis was done by identifying the number of PCR cycles that 

permitted detection of signals from a specific gene mRNA, by demonstrating that the amount 

of its products increased proportionally with the cycle number. In this manner, amplification 

was stopped before the signals for the cDNA reached saturation. Amplification was gel 

verified by electrophoresis. 
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Gene Forward primer Reverse primer 

AtGSNOR1 GAGGTTCGGATGAAGAT
CCT 

CTTGGAACGGAGTTGAT 

Actin AATTGACGCAGATTATGT
TTG 

GCTCGTAGTGAGGGAGT
ACC 

HopAM1 GCGCTCGAGCATATGGC
ACGCA 

CAGAACCCAGCCACGCT
GGCGTTATGAAG 

HopAI1 AACTCGAGCGATAGAAA
GCAGGAAAACAAC 

TTTTGCAAGCGAGTCCAG
GGCGGTGGCATC 

HopAO1 TACTCGAGCGAGATAGTT
CATACAGCTATG 

CAACTAGTGCGAGAAACA
CTAAAGGGC 

AvrPto CCGCTCGAGACCATGGG
AAATATATGTGTC 

GACTAGTTCATTGCCAGT
TACGGTACG 

 

Table 2.5 Primers used for RT-PCR 

 

2.9 Polyclonal anti-AtGSNOR1 antibody production and optimization 

To generate the antibody, 3mg histidine-tagged AtGSNOR1 protein (generated earlier by Dr. 

Yiqin Wang, Institute of Genetics and Developmental Biology 

Chinese Academy of Sciences) was purified. Half amount of the purified protein, 1.5mg was 

used to immunize the rabbit for the first time and another 1.5mg was used to repeat the 

immunization after 15 days. After 30 days, small amount of blood were collected and tested 

for the presence of antibody. Another round of immunization with more purified protein is 

required if there is no antibody detected in the test blood. Following successful detection of 

antibody, blood were collected from the immunized rabbit and freeze dried into powder. 

In order to determine the right antibody concentration to be used, serial dilutions were 

performed with an initial 1:1000 dilution in 1X TBST [diluted from 10X TBS (12g Tris, 40g 

NaCl per litre, adjusted to pH 7.6) with 0.1% Tween] and tested with plant protein sample in 

western blot. Optimum antibody concentration was determined at 1:20,000 dilutions in 1X 

TBST in the presence of 5% milk powder to reduce non-specific background signal. Higher 

or lower dilutions will generate signals that are either too strong (dark blot) or too weak 

(almost no band detected).  
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2.10 Western blot analysis 

Leaf tissues from 4 weeks old plants (200mg) were ground in liquid nitrogen, then added to 

2 volumes of proteins extraction buffer (50mM Hepes pH 7.4, 5mM EDTA pH 8.0, 5mM 

DTT, 10mM NAF, 10mM Na3VO4, 50mM β-glycerophosphate, 1mM PMSF, 2ug/ul antipin, 

2ug/ul aprotinin, 2ug/ul leupeptin). Samples were centrifuged for 15 minutes at 13,000 rpm 

at 4⁰C. The supernatant was collected and spun again at 13,000 rpm for 20 minutes at 4⁰C. 

The protein content was quantified by Bradford analysis (Bradford et al., 1976). Proteins 

were separated on a 12% SDS-PAGE gel at 80V for the first 30 minutes and at 100V for 2 

hours. A PVDF membrane (GE Healthcare) was soaked in 100% methanol and 3mM 

Whatman paper was soaked in transfer buffer (25mM Tris, 200mM glycine and 20% 

methanol). Blotting was performed by electrotransfer at 25V for overnight in the cold room 

(4⁰C). Coomassie blue solution was used to stain the membrane to ensure the equal loading 

of protein samples. Blocking was performed in 1X TBS [diluted from 10X TBS (12g Tris, 

40g NaCl per litre, adjusted to pH 7.6), 0.1% Tween and 5% milk powder for 1 hour at room 

temperature and the membrane washed 3 times with TBST (1X and 0.1% Tween). The blot 

was then incubated with a primary antibody at 1:20000 dilutions in 20ml of TBST at 4⁰C on 

a shaker for overnight. The HRP-conjugated secondary antibody (New England Biolabs) was 

then incubated with the blot in 20ml TBST for 1 hour on a shaker at room temperature. 

Finally the blot was washed 3 times with TBST. Protein detection was performed using 

Amersham ECL™ Western Blotting Detection Reagents (GE Healthcare). The blot was 

incubated with solution A and solution B for 1 minute. The blot was exposed to x-ray film 

(Kodak).  

2.11 S-nitrosoglutathione reductase in-gel activity assay 

Proteins were extracted in 2 volumes of 50mM sodium phosphate, 1mM 

phenylmethylsulphonyl (PMSF) and protease inhibitor. Proteins were then separated on a 

non-denaturing 7.5% (w/v) polyacrylamide gel in Tris-boric-EDTA (TBE) buffer, pH 8. 

Gels were soaked in 0.1 M sodium phosphate, pH 7.4, containing 2 mM NADH, for 15 

minutes, in an ice-bath. Excess buffer was drained and gels were covered with filter paper 

strips soaked in freshly prepared 3 mM GSNO. After 30 minutes, the filter paper was 

removed and gels were exposed to ultraviolet light and analysed for the disappearance of the 

NADH fluorescence, indicating GSNOR activity. 
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2.12 Densitometry quantification 

PCR products, in gel assay products or autoradiograms of the immunoblots were scanned 

and loaded for analysis using Adobe Photoshop CS4 (Adobe System, Inc., San Jose, CA). 

The images were set to greyscale mode to discard any colour information and inverted so 

that the band was set to dark and the background was light. The mean and pixel value for 

each band were analyzed using lasso tool and recorded in a spreadsheet. The mean value was 

multiply by the pixel value for each band to give an integrated measure of the intensity and 

size of the band, or absolute intensity. To obtain a relative intensity, the absolute intensity of 

each band was divided by the absolute intensity of a standard which was set to 1. Standard 

error was calculated as the mean of at least three separate experiments repeated with similar 

results. 

 

2.13 Determination of SNO levels 

2.13.1 Saville assay 

Proteins were extracted in 100 mm Tris HCl, pH 6.8. The extracts were incubated for 5 min 

with an equivalent volume of solution A (1% sulfanilamide dissolved in 0.5 m HCl) in the 

presence or absence of solution B (solution A plus 0.2% HgCl2), allowing the development 

of the diazonium salt. The formation of the azo dye product was obtained by reacting the two 

samples for an additional 5 min with an equal volume of solution C [0.02% of N-(1-

naphthyl) ethylenediamine dihydrochloride dissolved in 0.5 m HCl], and the absorbance was 

subsequently read at 550 nm with a multimode plate reader (SpectraMax M5, Molecular 

Devices). SNO content was quantified as the difference of absorbance between solution B 

and A (B − A), comparing the values with a standard curve made from a solution of GSNO.  

2.13.2 Gas-phase chemiluninescence 

Proteins were extracted in 0.5 mM phosphate buffer and protease inhibitor and protein 

samples were analyzed as described (Pinder et al., 2008). SNO measurement was achieved 

by using Nitric Oxide Analyzer (NOATM 280i, SIEVERS, USA) according to the supplier’s 

manual with CuCl in 1mM cysteine solution as a reductive agent.  
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3. Regulation of host S-nitrosylation and manipulation of AtGSNOR1 during pathogenesis 

3.1 Introduction 

Plants have evolved remarkable defence strategies to counter microbial infections, and so do 

pathogens which have evolved virulence systems to overcome host defence and acquire 

nutrients. A variety of pathogenic microorganisms including viruses, fungus, bacteria and 

nematodes possess their own unique pathogenicity factors to effectively overcome several layers 

of defence and successfully colonize their hosts. Bacterial pathogen for example the well-

characterized Pseudomonas syringae equipped with a hrp-gene-encoded TTSS which is essential 

for bacteria to cause disease in susceptible plants by secreting a plethora of effector proteins 

(Hueck, 1998; Galan and Collmer, 1999). In addition, P. syringae are also known to produce 

various phytotoxins which are required for its full virulence (Bender et al., 1999). Suppression of 

basal defence, gene-for-gene resistance and non-host resistance are established as the major 

virulence function of effector proteins and toxins. 

One of the most important component of plant defence response is NO, a small free radical 

bioactive molecule that is well known as an important messenger in key biological processes in 

animals and plants (Lamattina et al., 2003). Predominantly, NO mediates signalling related to 

plant defence by regulating multiple nodes of plant immunity through NO-dependent protein 

modifications such as tyrosine nitration (Saito et al., 2006; Chaki et al., 2009; reviewed in 

Corpas et al., 2009) and S-nitrosylation (Stamler et al., 2001; Feechan et al., 2005; Tada et al., 

2008).  

S-nitrosylation is a form of reversible post-translational modification involving transfers of an 

NO moiety to a critical cysteine residue on a target protein to form SNO. S-nitrosylation of GSH 

forms GSNO, a low molecular weight SNO that may function as a natural NO reservoir. 

Additionally, GSNO has been implicated in systemic resistance against tobacco mosaic virus 

(TMV) in tobacco (Song and Goodman, 2001), as a strong inducer of plant defence gene 

(Durner et al., 1998) and generally in redox regulation (Wang et al., 2006; Lindermayr et al., 

2006; Tada et al., 2008). Although there are still uncertainties about specific enzymatic 

mechanism involved in protein S-nitrosylation, degradation of GSNO promotes a denitrosylated 

state and so GSNO turnover, significantly influences the S-nitrosylation status of whole cells. 



46 

 

GSNO is mainly degraded by an NADPH-dependent GSNOR, also known as glutathione-

dependent formaldehyde dehydrogenase (FALDH), an enzyme that is conserved in most major 

life forms (Liu et al., 2001). GSNOR plays a role in both glutathione-dependent formaldehyde 

oxidation and GSNO reduction but with high specificity towards the latter (Jensen et al., 1998). 

This is further supported by the fact that yeast, mouse and Arabidopsis GSNOR knockouts 

devoid of GSNOR activity show a substantial increase in SNO (Liu et al., 2004; Liu et al., 2001; 

Feechan et al., 2005). Diaz et al. (2003) first demonstrated that Arabidopsis GSNOR is 

transcriptionally regulated by signals related to plant defence but no experiments addressed any 

direct interactions between plant and pathogens. This work is followed by major findings from 

Feechan et al. (2005) where an AtGSNOR1 loss-of-function mutation (atgsnor1-3) increased 

SNO levels which negatively affected multiple modes of plant disease resistance. More detailed 

study on S-nitrosylation status in Arabidopsis showed that a master regulator of salicylic acid-

induced defence gene, NPR1 is S-nitrosylated in atgsnor1-3 thus hampering the expression of 

NPR1 dependent defence gene PR-1 (Tada et al., 2008). In conclusion, both studies successfully 

showed that AtGSNOR1 is one of the most important components of the resistance signaling 

network through explicit control of SNO homeostasis.  

NO and SNO is thought to follow distinct functional roles during establishment of disease 

resistance (Feechan et al., 2005). Thus, while NO accumulation is required for resistance against 

pathogen (Delledonne et al., 1998; Mur et al., 2005), an increase in SNO levels will inhibit the 

normal function of plant disease resistance components and thus promote pathogen susceptibility 

(Feechan et al., 2005; Wang et al., 2006; Tada et al., 2008). Therefore, to see whether an 

increase in host SNO levels are indeed required to aid pathogenesis, SNO levels were measured 

in wild type Arabidopsis in response to virulent PstDC3000 and PstDC3000 hrcC mutants 

which is defective in TTSS. For this reason, AtGSNOR1 could be an attractive candidate for 

pathogens to promote pathogenicity through the suppression of its denitrosylase activity to 

induce cellular SNO levels. In order to investigate the possibility of AtGSNOR1 being a 

virulence target for bacterial TTEs during pathogenesis, gene expression and enzyme activity of 

AtGSNOR1 was monitored in wild-type plants during pathogen infection.  
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3.2 SNO measurement 

Considering the sometimes extremely labile nature of the SNO bond, it is often demanding to 

identify and measure. In addition, SNOs are present in very low concentrations in vivo and are 

exquisitely sensitive to changes in protein structure and location. There are various available 

methods to measure SNO level in biological sample and they include chemuliminescense-based 

assays, colorimetric assay, assays using antibody against S-nitrosocysteine (CSNO), biotin-

switch method and mass-spectrophotometric identification of the SNO containing species.  

In the following experiments, a colorimetric assay (Saville-Griess) and a chemiluminescense-

based assay were used to determine SNO level. Saville-Griess is considered as most commonly 

used method (Zhang and Loscalzo, 2000; Miranda et al., 2001; Basu et al., 2006) because it uses 

simple chemical reagents, does not require expensive instrumentation and suitable for routine 

analysis of large samples (Miranda et al., 2001). The Griess assay was formulated by Griess 

(1879) where in this reaction, nitrite reacts with sulfanilic acid under acidic condition to form the 

diazonium ion which couples to α-napthylamine to form a readily water-soluble, red colored azo 

dye. In the modified Griess method, sulfanilamide and N-(1-napthyl)ethylenediamine (NED) 

were used as nitrosable and coupling components respectively. This so-called Saville-Griess 

assay (Saville, 1958) works via mercury (HgCl2)-mediated decomposition of SNO by releasing 

NO+ followed by subsequent Griess reaction to form azo dye (Fig 3.1). Given that this method 

will as well measure contaminating nitrate and nitrite formed by SNO cleavage, the SNO 

concentration is taken as the difference between NO2
-
 concentration with and without addition of 

HgCl2 in absorbance of 540nm. However, the only drawback of this method is the limit of 

detection for this assay (approximately 100nM to 500nM) which is ordinarily close to biological 

concentrations (Gow et al., 2008). 

Chemulinescence-based techniques have been reported to detect SNO levels at least 1000 times 

smaller than the Saville assay, hence this assay is recognized as the most accurate and sensitive 

technique available to measure SNO (Stamler and Feelisch, 1996). The principle of 

chemiluminescent NO detection is based on the rapid reaction of NO in the gas phase with ozone 

(O3), which forms excited NO2
* (Equation 1 and 2). As the excited electron decays back to its 

ground state, a photon is emitted that can be quantified as chemiluminescence (hv) and can be 

quantified by a photomultiplier to generate electrical signal (MacArthur et al., 2007).  
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3.3 TTSS-dependent increased of S-nitrosothiol during pathogenesis 

SNO levels were measured at early time points (within 24 hours following pathogen inoculation) 

during the course of pathogen infection. Samples were collected at the indicated time points and 

subjected to Saville-Griess analysis. The increase in SNO levels was evident from 2 hpi with 

11.5% induction from initial level at time 0. At six hours after infection with PstDC3000 (1x107 

cfu/ml), SNO levels continue to increase to 15% followed by a minor drop at 12 hpi back to 

initial level. However, at 24 hpi SNO levels rise back up to 39% from initial level. Conversely, 

SNO levels barely increase in wild-type plant inoculated with PstDC3000 hrcC (1x107cfu/ml). 

The levels only climbed as high as 2% from the initial level at 2 hpi preceded by 8% decrease at 

6 and 12 hpi before it went back to initial level at 24 hpi (Fig 3.2a, statistical significance 

confirmed by ANOVA single factor, p<0.05). 

To waive the possibility that changes in SNO levels following pathogen inoculation might be 

influence by high bacterial titre, SNO levels were measured in plants infected with lower 

bacterial titre, at 1x105 cfu/ml, which probably better reveals a weak resistance effect and thus 

more sensitive. This time, the chemiluminescence-based method was utilized to measure SNO 

level using the NO analyzer. The initial level of SNO detected with the analyzer was similar to 

the level detected with Saville-Griess assay indicating the detectable level of SNO in wild-type 

Col-0 is around 50-52 pmole/mg protein (Fig 3.2b). After infection with PstDC3000, SNO level 

increase gradually from the initial level to 44% at 1 dpi and 56% at 2 dpi. The next time point 

was 7 dpi and SNO levels had gone up to 300% compared to the initial level.  

On the other hand, the increment of SNO level observed during PstDC3000 hrcC infection was 

only half that of PstDC3000. In fact, the level actually went down for as much as 39% at 1 dpi 

before it rise up to a level similar to the uninfected sample at 2 dpi. At 7 dpi, SNO level 

increased to 63% but the level was far less compared to PstDC3000 infected sample measured at 

the same time. Both PstDC3000 and PstDC3000 hrcC cause a significant increase in SNO levels 

(p<0.05, ANOVA single factor) at 1 and 2 dpi. However, the increase in SNO levels at 7dpi 

were not significant (p=1) and this can be due to the fact that bacterial growth has reached 

stationary phase or the infected tissues were dying.    
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 Fig 3.3 Structure and histochemical localization of AtGSNOR1::GUS  

(a) Schematic diagram of full-length AtGSNOR1. Putative promoter region is denoted by dash 
line. Exons and introns are represented by filled box and solid lines, respectively. (a) Schematic 
diagram of AtGSNOR1::GUS (b) X-Gluc staining for GUS activity in 14-days old seedling (I), 
flowers (II), rosette leave (III), roots (IV), siliques (V) and 3-days old seedlings (VI).  

 

The AtGSNOR1::GUS translational fusion appeared to be active in the vascular region in most of 

the organs examined, with emphasize on leaf tissue. GUS staining was first detected in 3 days 

old seedling (Fig 3.3, IV) throughout the whole plant except the elongation zone of root tissue. 

14 days after germination, GUS staining was confined to vascular region of cotyledons and 

upper part of hypocotyls (Fig 3.3, I) and as the plant matured, GUS activity was visible 

throughout the leaf blade (Fig 3.3, III). In the flowers, GUS activity was found in vascular region 

of sepal and stamen, and stigma (Fig 3.3, II). Some patchy staining was observed in root and 

lateral root primordium (Fig 3.3, IV) while in siliques, GUS staining was localized to the tip and 

base (Fig 3.3, V).  
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To see the suppression effect at the translational level, the transgenic plants harbouring full 

length AtGSNOR1::GUS construct (Fig 3.3b) were infected with PstDC3000, PstDC3000 hrcC 

or mock and examined for GUS activity using fluorometric analysis. The activity was measured 

from the infected leaves of at least four independent lines at indicated times. Upon infection with 

PstDC3000, GUS expression driven by AtGSNOR1 translational fusion reproduced the data from 

RT-PCR analysis (Fig 3.5b). There were transient reductions of GUS activities in the infected 

leaves, indicating a translational repression of the gene. The repression was apparent after 2 

hours of inoculation, where there was a 5-fold reduction in GUS activity. After 24 hours of 

inoculation, gradually GUS activities were recovered to half that of the control. There was no 

reduction in GUS activity observed with mock inoculation at 2 hpi (Fig 3.5c). The reduction in 

the level of GUS activity following PstDC3000 infection was correlated to the reduced level of 

GUS mRNA accumulation that was determined by northern blot using GUS specific primers 

(Fig 3.5d, e). Therefore, this data further confirmed that AtGSNOR1 was down-regulated as a 

consequence of pathogen infection and this response requires both transcriptional and 

translational regulations. 
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3.5 Transcriptional suppression of AtGSNOR1 by PstDC3000 

Col-0 (a) and AtGSNOR1::GUS (b) were inoculated with PstDC3000. Infected leaves were 
collected at indicated times for RT-PCR (a), GUS flurometric analysis (b, c) and northern blot 
with GUS specific primers (d). Mock inoculation and pathogen infection at 2hpi (c). Actin-2  was 
analyzed as an internal control for RT-PCR. RT-PCR and northern blot products were quantified 
by densitometry. Results represent the mean and standard deviation of at least three biological 
replicates. 
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Time (hpi)    0            2           6          12          24          48 

For a successful infection, PstDC3000 requires a functional type three secretion system (TTSS) 

in order to deliver the type three effectors (TTEs) into the host cells and cause disease in 

susceptible plants (Nomura et al., 2005). To justify that the observed outcome is due to the 

virulence effect of TTEs, wild-type Col-0 was infiltrated with PstDC3000 hrcC which is 

defective in TTSS. The hypersensitive response (HR) and conserved (hrcC) gene encodes an 

outer membrane protein that is essential for the TTEs secretion and has a primary role in protein 

translocation across the outer membrane (Charkowsky et al., 1997). Contrary to the suppression 

effect observed with virulent PstDC3000, there was no reduction in AtGSNOR1 transcript levels 

in all time points tested (Figure 3.6a) indicating that the TTSS is largely responsible for the 

suppression of this gene. Similarly, inoculation of AtGSNOR1::GUS with PstDC3000-hrcC did 

not decrease GUS activity in the cognate transgenic plants (3.6b). Together, these observations 

indicated that AtGSNOR1 transcript accumulation is transcriptionally suppressed in the early 

stage of infection by PstDC3000 and that the suppression is TTSS-dependent. 
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3.6 TTSS-dependent suppression of AtGSNOR1 

Col-0 (a) and AtGSNOR1::GUS (b) were inoculated with PstDC3000 hrcC. Infected leaves were 
collected at indicated times for RT-PCR (a) and GUS flurometric analysis (b). Actin-2  was 
analyzed as an internal control for RT-PCR. RT-PCR products were quantified by densitometry. 
Results represent the mean and standard deviation of at least three biological replicates.  

 

 

3.7 Gene-for-gene resistance activates AtGSNOR1 expression  

In response to virulence gene products which can cause disease symptoms in host cells, plant 

have evolved a repertoire of resistance (R) proteins that can recognize either directly or 

indirectly delivered effector proteins triggering the expression of defence mechanisms. Such 

recognized effectors are also termed avirulence proteins. AtGSNOR1 is required for R gene-

mediated resistance against PstDC3000 containing an avirulence gene (Feechan et al., 2005). 

Wild-type plants expressed R gene-mediated resistance against PstDC3000 (avrB) due to the 

presence of the R gene RPM1 (Grant et al., 1995). Inoculation with PstDC3000 bacteria 

containing avrB was unable to suppress AtGSNOR1 expression (Fig 3.7). Instead, there was a 

small increase in the transcript level from 2 hpi which peaked at 24 hpi before it went slightly 

down at 48 hpi.  

 

 

(b)  



60 

 

 

 

 

 

 

 

 

 

 

 

3.7 Induction of AtGSNOR1 expression in response to PstDC3000 (avrB) 

Col-0 was inoculated with PstDC3000 (avrB) and RNA was isolated at indicated times for RT-
PCR. Actin-2 was analyzed as an internal control. RT-PCR products were quantified by 
densitometry. Results represent the mean and standard deviation of at least three biological 
replicates.  

 

 

3.8 Coronatine is not required for AtGSNOR1 suppression 

Production of the phytotoxin coronatine appears to be an important component in plant 

pathogenesis for most P. syringae pathovars including PstDC3000 (Bender et al., 1987; Gross, 

1991). Moreover, previous works proposed that coronatine and TTEs modulate the expression of 

a similar set of plant genes (Alfano et al., 2000; He et al., 2004). Coronatine exerts its virulence 

function by masquerading as one or more jasmonate analogues, stimulating jasmonates signaling 

during PstDC3000 infection in order to suppress SA-dependent defences (Brooks et al., 2003). 

This suggestion led to an experiment to test whether coronatine also contributes to the 

suppression of AtGSNOR1 expression. In this experiment, wild-type Col-0 was infiltrated with 
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PstDC3000 cor-, a mutant of PstDC3000 that is blocked in the synthesis of coronatine. There 

was a slight decrease in the transcript level observed at 2 and 6 hours post inoculation (Fig 3.8). 

Suppression of AtGSNOR1 transcript by PstDC3000 cor- was almost similar to the suppression 

observed with virulent PstDC3000 (Fig 3.5a). There was a transient decrease in the transcript 

levels at 2 and 6 hpi and the levels went up again at 12 hpi . This result suggests that coronatine 

may not be required for AtGSNOR1 suppression by PstDC3000.  

 

 

 

 

 

 

 

 

 

 

3.8 Suppression of AtGSNOR1 expression in response to PstDC3000 cor-  

Col-0 was inoculated with PstDC3000 cor- and RNA was isolated at indicated times for RT-PCR. 
Actin-2 was analyzed as an internal control. RT-PCR products were quantified by densitometry. 
Results represent the mean and standard deviation of at least three biological replicates.  
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3.9 TTSS-dependent suppression of AtGSNOR1 enzyme activity and protein levels 

In principal, changes in transcript levels don’t necessarily reflect the response at the protein level 

or at the level of enzyme activity (Steinmetz and Deutschbauer, 2002; Glanemann et al., 2002; 

Greenbaum et al., 2003). The impact of changes in transcript level on subsequent cellular events 

depend on rates of turnover of the encoded proteins, their contribution to the control of particular 

pathways in which they are involved in and the rates of turnover of the final products. Therefore 

it is important to analyze changes in protein levels and activity to understand the molecular 

function of specific protein and hence the gene which encode them.  

To establish the effect of the AtGSNOR1 transcript suppression on the enzyme activity, an in gel 

activity assay was performed based on the ability of AtGSNOR1 to specifically metabolize 

GSNO. This assay was developed based on the original method by Seymour and Lazarus (1988) 

to detect pyridine nucleotide–linked dehydrogenases. Generally, crude protein extracts from Col-

0 inoculated with PstDC3000 or PstDC3000 hrcC were first separated on native-PAGE. 

Following incubation with substrate and cofactor, in this case GSNO and NADH, respectively 

bands were visualized under UV light where the oxidized cofactor appears black (Seymour and 

Lazarus, 1988; Barroso et al., 2006).  

The staining for GSNOR activity in Arabidopsis Col-0 showed a single band, as shown by a 

black arrow in Fig 3.9a. There was a delay in the suppression of enzyme activity as compared to 

the suppression of the transcript levels shown in Fig 3.5a. In the compatible interaction with 

PstDC3000, the activity gradually reduced starting from 2 hpi and maximum suppression in 

enzyme activity is observed at 12 hpi (Fig 3.9a). The activity started to increase at 24 hpi and at 

48 hpi, the activity was slightly higher compared to the infected sample at time 0.  However, the 

enzyme activity in PstDC3000 hrcC inoculated plants remained stable at most time points with 

exception of 12 hpi where there was a slight increase in activity (Fig 3.9b). 
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Figure 3.9 In-gel staining for AtGSNOR1 activity 

Col-0 was inoculated with PstDC3000 (a) and PstDC3000 hrcC (b). Infiltrated leaves were 
sampled at the time points indicated and protein extracts (10µg protein) were subjected to 
electrophoresis on 7.5% native-PAGE. Equal protein loading was confirmed by Coomassie blue 
staining. Gel products were quantified by densitometry. Results represent the mean and 
standard deviation of at least two biological replicates.  
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Figure 3.10 AtGSNOR1 proteins accumulation 

Total protein was isolated from Col-0, atgsnor1-1 and atgsnor1-3 in the absence of pathogen (a). 
Total protein was isolated from leaves infected with PstDC3000 (b) or PstDC3000 hrcC (c) at 
indicated time points. The protein (10 µg) was separated on 7.5% SDS-PAGE gels and analyzed 
using anti-GSNOR antibody. Equal protein loading was confirmed by Coomassie blue staining 
(lower panel). Gel products were quantified by densitometry. Due to difficulties in obtaining a 
clear blot with anti-GSNOR antibody, results only represent a single blot for each experiment. 
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3.10 Discussion 

As reported in the previous studies, higher SNO levels promote disease susceptibility by shutting 

down the normal function defence signalling components in plants, for example the master 

regulator SA-induced defence, NPR1 (Tada et al., 2008). In order to elucidate if a virulent 

bacterial pathogen promotes pathogenesis by increasing the total intracellular SNO levels, we 

measured SNO content at different time points during early and later stages of pathogen 

infection. From the analysis, SNO levels barely change following inoculation with PstDC3000 

and PstDC3000 hrcC within 24 hours. After 24 hours, the level starts to rise up gradually and 

are maintained in an induced state for up to seven days post inoculation with both strains 

suggested that the engagement of SNOs during plant-pathogen interaction was not evident until 

24 hours.  

This data supported the hypothesis that pathogen manipulates intracellular SNO levels to aid 

pathogenesis. This is true for both virulent PstDC3000 and PstDC3000 hrcC mutant, in which 

the latter is defective in TTSS. However, the effect was stronger in virulent pathogen suggesting 

that TTSS enhanced the increase of the intracellular SNO during infection to promote disease 

susceptibility. A similar observation was reported in atgsnor1-3, a T-DNA insertion line 

resulting in a loss-of-function mutation of AtGSNOR1 which conveys increased susceptibility to 

bacterial pathogens (Feechan et al., 2005). Inoculation with the avirulent pathogen, PstDC3000 

(avrB) was reported to cause a modest increase of SNO levels in wild-type plant whereas in 

atgsnor1-3, the levels increased substantially indicating that in both cases, attempted pathogen 

infection triggers a pronounced accumulation of SNOs in host cells. Elevated SNO levels 

detected in atgsnor1-3 upon avirulent pathogen challenge and in wild-type plant following 

virulent pathogen infection are associated with enhanced disease susceptibility.  

The initial rise of NO as well SNO levels following both avirulent and virulent pathogen 

infection could be part of a host response to PAMPs (Delledonne et al., 1998). These general 

elicitors are the first microbial components that come into contact with host surface and 

triggered a series of signalling events that eventually activate a basal defence mechanism to halt 

pathogen growth (Nurnberger et al., 2004). However, as the infection process progressed, NO 

contributes to disease resistance in incompatible interaction through its immediate regulatory 

action in conjunction with ROIs during the establishment of the HR. Conversely, virulent 
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pathogen engages the host in compatible interaction where SNO levels are manipulated to 

promote virulence through S-nitrosylation of key regulator of plant defence.  

 

As an important enzyme in controlling SNO homeostasis in animals and plant system, GSNOR 

is indispensable for providing protection from nitrosative stress (Liu et al., 2001). From this 

study, AtGSNOR1 is found to be constitutively expressed in all organs in Arabidopsis indicating 

the general importance of this gene. GSNOR is also highly expressed and conserved in all other 

living organisms ranging from bacteria to humans (Liu et al., 2001). AtGSNOR1 function in 

Arabidopsis comprises several physiological roles related to NO homeostasis. In addition to its 

original ascribed functions as a type III alcohol dehydrogenase and GSNO reductase (Uotila and 

Koivusalo, 1979; Sakamoto et al., 2002; Feechan et al., 2005), Lee et al. (2008) reported that 

Arabidopsis HOT5 (sensitive to hot temperature) also encodes for GSNOR with a prominent role 

in thermotolerance, plant development and fertility, which further confirms the importance of 

GSNOR in modulating nitrosative stress. Fascinatingly, a recently discovered Arabidopsis gene 

Paraquat Resistant 2 (PAR2) also encodes for GSNOR by acting downstream of superoxide to 

regulate cell death through modulation of intracellular NO levels (Chen et al., 2009). 

Furthermore, loss-of-function mutation of AtGSNOR1 resulted in dwarf plants with bushy 

phenotypes, lower seed production, reduced fertility (Feechan et al., 2005, unpublished data) and 

enhanced susceptibility towards pathogen infection (Feechan et al., 2005). Together, these 

results imply that AtGSNOR1 function is required to maintain normal growth and development 

and also in response to environmental stresses. 

A previous study has revealed that AtGSNOR1 is required for non-host resistance expressed 

against fungal and bacterial pathogens (Feechan et al., 2005). In conjunction with the previous 

study, we showed that AtGSNOR1 expression is induced during non-host interaction with Bgt 

and Psph. The temporal pattern is similar to NHO1 induction observed in response to Psph 

infection (Kang et al., 2003). NHO1 is a gene from Arabidopsis that encodes glycerol kinase 

which is required for both general and specific resistance and is targeted by bacterial pathogens 

for parasitism (Lu et al., 2001; Kang et al., 2003; Li et al., 2005). The increased resistance to 

PstDC3000 in NHO1 overexpression plants (Kang et al., 2003) and atgsnor1-1 mutant with 

increased levels of AtGSNOR1 (Feechan at al., 2005) suggests an important role of these genes 

in disease resistance or parasitism. However, in contrast to host resistance, non-host resistance 
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operates under less understood mechanism (Mysore and Ryu, 2004). In this case, the recognition 

events that lead to induction of AtGSNOR1 expression during non-host interaction, is not clear.  

Plants respond to wounding by activating a set of defensive genes, such as phenylalanine 

ammonia lyase (PAL), proteinase inhibitor II genes of potato and tomato as well as wound 

inducible gene (wun1) from potato (Sanchez-Serrano et al., 1987; Logemann et al., 1989). Most 

of these genes play some role in wound healing and the prevention of subsequent pathogen 

invasion (Bowles, 1990; Conrath et al., 2001). There were a few conflicting reports on 

AtGSNOR1 response to wounding stress.  In this study, it was found that AtGSNOR1 is induced 

in response to wounding. In contrast, Diaz et al (2003) reported the down-regulation of 

AtGSNOR1 expression by mechanical wounding which is supported by publicly available 

microarray data from AtGenExpress Visualization Tool (TAIR, 

http://www.arabidopsis.org/index.jsp). This difference could be attributed to the different stages 

of plant growth and different growth condition used for the wounding treatment. These two 

aspects are found to be very crucial in stress related experiments (Kus et al., 2002; Rusterucci et 

al., 2007). In our long day (20ºC, 16 hours light and 8 hours dark) growth chamber, 6 weeks old 

plants already have undergone transition from vegetative to reproductive stage of development. 

Instead of using 4-6 weeks old plants, we strictly used 4 weeks old plants that have not yet 

entered the reproductive phase. In the publicly available microarray data, Harter et al. (2007) 

used seedlings as plant materials thus generating data that showed minor suppression of 

AtGSNOR1 during the first 30 minutes followed by increasing levels of AtGSNOR1 expression 

for up to 12 hours before it went slightly down at 24 hours, comparable to AtGSNOR1 

expression profiled in this study. Hence, it most likely that the expression of AtGSNOR1 is up-

regulated by wounding based on the reports from earlier studies carried out in different plant 

species that GSNOR/FDH expression is induced upon wounding (Kato-Naguchi, 2001; Barroso 

et al., 2006). 

The suppression of host immune mechanism, including basal resistance, HR and R gene-

mediated resistance as well as non-host resistance are major virulence strategies for pathogenic 

bacteria of plants. Most of these pathogenic bacteria depend on specific effector proteins to 

increase their virulence in host tissues. In PstDC3000 alone, more than 40 distinct TTEs are 

delivered into host cells with abilities to manipulate host cellular processes for their benefit 

(Lewis et al., 2009; Cunnac et al., 2009). For example, AvrPto and AvrPtoB from PstDC3000 
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can suppress basal resistance in Arabidopsis (Hauck et al., 2003; de Torres, 2006) and at the 

same time possess the ability to suppress HR and block R gene-mediated resistance in non-host 

plants (Abramovitch et al., 2003; Kang et al., 2004). NHO1, a key player in non-host resistance 

is also subjected to an active suppression from unknown TTEs from PstDC3000 (Kang et al., 

2003). Suppression of host defences is also well described for animal bacterial pathogens 

(reviewed in Galan and Collmer, 1999). However, the vast majority of host targets remain 

unknown and the mechanisms by which effector proteins subvert host immune response are 

poorly understood at the molecular level. 

 In this study, we identified AtGSNOR1 as a virulence target for PstDC3000. The transient 

suppression of AtGSNOR1 expression in the early stage of infection relies on the secretion of 

TTEs via the TTSS because inoculation with PstDC3000 defective in TTSS was unable to 

suppress the transcript accumulation in wild-type plants. This TTSS-dependent suppression is 

also observed at the protein level where the denitrosylase activity of AtGSNOR1 is down-

regulated.  Conversely, coronatine which is another virulence factor in PstDC3000 only play a 

minor role in the suppression of AtGSNOR1 expression. Therefore, it is tempting to speculate 

that at least one of the secreted effectors could be targeting AtGSNOR1 either directly by acting 

on its transcriptional and translational machinery or indirectly through modification of cofactors 

that might involve in regulating AtGSNOR1 expression. This finding is also consistent with data 

that shows AtGSNOR1 expression significantly reduces PstDC3000 growth in planta (Feechan et 

al., 2005). 

It is striking that PstDC3000 carrying the avrB gene reactivated AtGSNOR1 expression. 

Therefore, R gene–mediated resistance abolished the suppression of AtGSNOR1 by PstDC300. 

Even though R gene-mediated resistance was only reduced rather than abolished in the atgsnor1-

3 mutant, these data collectively suggest that AtGSNOR1 defines an important component of the 

defence system.  

 

 

 

 



70 

 

Conclusion 

SNOs confer negative regulatory action when present excessively as described in this study and 

previous studies done by Feechan et al., (2005), Tada et al., 2008) and Wang et al., (2009) where 

the elevated level was associated with enhanced disease susceptibility. The pronounced levels of 

SNOs observed during PstDC3000 infection were attributable to the TTSS since PstDC3000 

hrcC only caused a moderate increase in SNO levels. SNO levels are controlled by AtGSNOR1 

which is ubiquitously expressed in Arabidopsis and also plays a significant role in plant 

development and defence responses. As an important component in the plant immune system, 

AtGSNOR1 is required for all modes of disease resistance in plants and our data implies this 

enzyme is targeted for parasitism. Consistent with this, AtGSNOR1 expression is transiently 

suppressed by virulent PstDC3000 and the suppression is also dependent on a functional TTSS.  

On the other hand, AtGSNOR1 expression is induced in response to wounding, avirulent and 

non-host pathogens; implying that AtGSNOR1 is an inducible defence gene that is being 

deployed by the host for defence. PstDC3000 actively suppressed AtGSNOR1 expression via its 

TTSS suggesting that one or more TTEs could be targeting AtGSNOR1 as a means to weaken the 

host immune system. The next important step is to explore the molecular mechanism underlying 

the manipulation of AtGSNOR1 gene function in response to invading pathogens. 
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4. Dissecting the manipulation of AtGSNOR1 gene expression by TTEs 

4.1 Introduction 

Plant disease is the exception rather than the rule because plants are naturally resistant to 

pathogen attack through a combination of constitutive and induced defences involving 

complex changes in gene expression. These responses are regulated by a complex network of 

intracellular signalling molecules and transcriptional regulators. It is crucial for plants to give 

a rapid response to a microbial attack and transcriptional regulation of defence related genes 

is considered to be vital to induced disease resistance in higher plants (Rushton and 

Somssich, 1998; Riechmann et al., 2000; Singh et al., 2002).  There is a temporal and spatial 

hierarchy for defence gene activation, with primary-response genes exhibiting rapid and 

localized activation at the site of attempted attack, whereas other genes undergo slower 

activation (Zhu et al., 1996; Eulgem et al., 1999). A large proportion of these genes plays a 

role in the regulation of other genes and code for transcription factors.  

Transcriptional activation of a defence gene is initiated by signal perception from elicitors in 

plant cells. These elicitors can be described as general or non-specific, which include 

glycoproteins, small peptides and oligosaccharides; while specific elicitors are designated for 

avr gene products that are delivered into host cells (Montesano et al., 2003). Following 

elicitor signal perception, a web of signal transduction networks commence, leading towards 

activation or de novo biosynthesis of transcription factors. These regulatory proteins will 

bind to specific DNA sites outside of protein-encoding regions, known as cis-acting elements 

and modulate the rate of transcription in order to maintain an appropriate mRNA level in 

cells. Hence, delineation of the cis-acting elements and trans-acting factors underlying the 

activation or suppression of defence-related genes in plants will provide the basis for 

characterizing molecular mechanism involved in the deployment of transcription-dependent 

defences.  

Predominantly, it is understood that gene expression is controlled at the level of steady-state 

transcript accumulation. Transcript abundance in the cells is determined by its rate of 

synthesis and rate of decay (Khodursky and Bernstein, 2003; Meyer et al., 2004) in which 

the initiation of transcription is a primary mode of regulating a large number of genes, 

reflected by the vast amount of transcription factors in plants and other eukaryotes (Singh, 

1998). Other genes are regulated solely by modulating the rate of mRNA decay and in many 
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occasions, both factors are taken into account simultaneously (Green et al., 1993; Carey and 

Smale, 2001; Wang et al., 2002; Khodursky and Bernstein, 2003).  

Towards the elucidation of molecular mechanisms underlying the transcriptional control of 

AtGSNOR1, a computer search into plant promoter and transcription factor database was 

utilized to predict the transcriptional regulatory elements within the AtGSNOR1 promoter. 

Further in vivo characterization of the AtGSNOR1 promoter was carried out using 5’ deletion 

analysis. From this study, it was shown previously that suppression of AtGSNOR1 was 

dependent on TTSS because PstDC3000 hrcC which is defective in TTSS lose the ability to 

suppress AtGSNOR1 during infection. In the light of this finding, it is tempting to speculate 

that at least one of the secreted TTEs could be targeting AtGSNOR1 to suppress its activity. 

To check this hypothesis, AtGSNOR1 expression was studied in transgenic lines exhibiting 

conditional expression of a given effector. 

 

4.2 Chemical-inducible gene expression system 

One of the proven strategies for the identification of effector targets has been in planta 

expression. This method was predominantly useful in identifying weakly or transiently 

interacting partners of effectors and may improve the understanding of the mechanisms 

underlying plant-pathogen interactions. Bacterial effectors have been effectively localized to 

the plant nucleus and plasma membrane (Deslandes et al., 2003; Shan et al., 2000; Nimchuk 

et al., 2000) and the potential targets are expected to co-localize together with their 

interacting effectors. The in planta expression of TTEs was mostly undertaken through the 

application of chemical-inducible systems, because constitutive expression of some effectors 

causes toxic or lethal effects on plants, thereby blocking regeneration. Despite a few isolated 

cases describing the limitations of this system (Kang et al., 1999; Berger et al., 1992), it is 

still widely utilized for its flexibility as it allows the selective induction of gene expression 

and the quiescent status of the transgene in the absence of inducers which largely avoids the 

lethality or toxicity problems.  

The artificial chemical-inducible systems in plants are generally based on de-repression 

(Gatz and Lenk, 1998), inactivation (Weinmann et al., 1994) or activation of the target gene 

(Aoyama and Chua, 1997; Zhuo and Chua, 2000) in which the latter are the most commonly 

used inducible expression systems in plants. In this study, AtGSNOR1 expression was 

analyzed in transgenic lines expressing effector proteins from PstDC3000 under a 
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dexamethasone or estradiol-based chemical-inducible promoter which are based on the same 

principle; the activation of the target gene. The regulation is based on the retention of GR- 

cellular protein (including heat-shock protein 90, HSP90) complex in the cytosol as a 

monomer in the absence of hormone ligand. Association of ligand with the hormone-binding 

domain leads to the release of associated cellular protein from the receptor (for example 

HSP90) followed by receptor dimerization and translocation into the nucleus to bind to target 

DNA (Aoyama and Chua, 1997; Zuo et al., 2000).  

The dexamethasone-inducible system was developed by Aoyama and Chua (1997), taking 

advantage of the regulatory mechanism of vertebrate steroid hormone receptors which 

consists of a chimeric protein composed of the DNA-binding domain of the yeast 

transcription factor GAL4 (G), the transactivating domain of the herpes viral protein VP16 

(V) and the receptor domain of the rat glucocorticoid receptor (G; GR) designated as GVG 

(Fig 6.1). Several years later, the same group developed a similar inducible system using 

estradiol (Zuo et al., 2000). This time the chimeric transcription activator, designated as 

XVE, was assembled by fusion of the DNA-binding domain of the bacterial repressor LexA 

(X), the transactivating domain of VP16 (V) and the regulatory region of human estrogen 

receptor (E; ER) (Fig 6.2). 

 

 

 

 

 

Figure 4.1 Schematic diagram of the GVG vector. 

GVG expression systems in dex-inducible binary vector pTA7002 used for the construction 
of effectors transgenic plants. Only fragments between right border (RB) and left order (LB) 
were shown. The construct contains the CaMV 35S promoter (35S), GVG fragment, the 
poly(A) addition sequence of the pea ribulose biphosphate carboxylase small subunit rbcS-
E9 (E9), nopaline synthase promoter (NOS; blue box), hygromycin phosphotransferase II 
coding sequences (HPT), NOS terminator (NOS; green box), six copies of the GAL4 UAS 
(6XUAS) and rbcS-3A (3A) (Adapted from Aoyama and Chua, 1997). 
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Figure 4.2 Schematic diagram of the XVE vector. 

The vector contains PG10-90, a synthetic promoter controlling XVE; LexA, VP16 and hER 
fragments constitute XVE; TE9, rbcS E9; PNOS; HPT; TNOS; OLexA, 8 copies of the LexA 
operator sequence; -46, the -46 35S minimal promoter; MCS, multiple cloning sites for target 
genes; T3A; rcbs 3A (Adapted from Zuo et al., 2000). 

 

 

4.3 Analysis of common regulatory elements in the AtGSNOR1 promoter 

There are various publicly available algorithm and bioinformatics tools that have been 

developed to facilitate in silico analysis of plant promoter sequences, for example 

TRANSFAC, PLACE, AGRIS, PlantCARE and JASPAR (Wingender et al., 2000; Hiro et 

al., 1999; Duvuluri et al., 2003; Lescot et al., 2002; Sandelin et al., 2004). These computer 

approaches estimate the probability of occurrence of short DNA motifs based on random 

sampling or statistical modelling of a background distribution (Priest et al., 2009).  

The regulatory elements in the AtGSNOR1 promoter were analyzed using the online 

databases PLACE and PlantCARE. It was found that most of the identified putative elements 

were redundant between databases (same element being recognized more than once) or 

within the database itself and sometimes represented variation in the binding sites. 

Nonetheless, the search revealed several putative cis-acting elements related to 

environmental stresses including disease resistance and developmental cues (Fig 4.3). These 

elements were found as a cluster or a single motif and were spread over the whole length of 

the putative promoter region. The putative transcription start site was located at 71 bp 

upstream the ATG translation start codon. The presence of a few TATA and CAAT boxes in 

AtGSNOR1 promoter region are reflective of typical eukaryotic promoters and both are 

required for initiation of the basal transcription complex (Zhu et al., 1995; Smale and 

Kadogaga, 2003).  
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As seen in many other defence-related genes such as PR-1, AtGSNOR1 contains several 

putative W-boxes, a group of pathogen-inducible cis-acting elements that act as a binding 

site for members of the WRKY family of transcription factors. The term WRKY was derived 

from its domain which is defined by the conserved amino acid sequence WRKYGQK and a 

novel zinc-finger-llike motif at the N-terminal end.  A group of three W-box elements are  

present in the AtGSNOR1 promoter region between -531 and -361, while several others are 

present as a single motif at a various position in the promoter.  

Another likely candidate present in the AtGSNOR1 promoter is the ACGTA motif or G-box 

of the ABA-responsive element (ABRE) (Marcotte et al., 1989), which is located at position 

-398. ACGT sequence is known to be recognized by plant basic region/leucine zipper motif 

(bZIP) that regulate processes including pathogen defence, light and stress signalling and 

several developmental events (Jakoby et al., 2002). The G-box was previously detected in 

the Arabidopsis alcohol dehydrogenase (Adh) gene (Chang and Meyerowitz, 1986) and is 

bound in vivo by a protein factor (Ferl and Laughner, 1989), suggesting the functional 

significance of this motif in transcriptional activation or repression of AtGSNOR1 promoter. 

The involvement of ABA or JA in mediating AtGSNOR1 responses is further justified by the 

recurring MYB/MYC recognition sites, cis-acting elements well-known to be involved in 

plant development and JA/ABA signalling (Abe et al., 1997; Yang and Klessig, 1996; 

Anderson et al., 2004). There are only a few members of MYB/MYC family involved in 

plant defence responses. For example in Arabidopsis, AtMYC2 is known to play a role in JA 

signalling and functions as negative regulator of plant defence genes (Boter et al., 2004) 

while a R2R3 MYB factor was reported to be induced by pathogens via a jasmonate-

dependent pathway (Mengiste et al., 2003). 

A repeated CT motif or pyrimidine-rich repeat, was among other significant motifs present 

in the AtGSNOR1 promoter within the 5’ untranslated leader regions (UTRs), 60 bp from 

translation start site. CT dinucleotide repeats have been shown to play an enhancer role and 

increase promoter activity in several plant genes as well as viruses (Bolle et al., 1994; Chen 

et al., 1996; Pauli et al., 2004).  A previous study claimed that AtGSNOR1 is up-regulated by 

light (Barroso et al., 2006) but there was no experimental data presented. Our results 

demonstrated that light-responsive elements (LRE) such as GATA boxes, also known as I-

boxes and GT-boxes elements (Hiratsuka and Chua, 1997) are over represented throughout 

the AtGSNOR1 promoter. Parallel to the aforementioned study, these data suggest that 

transcriptional regulation of AtGSNOR1 is light-dependent. The occurence of AAAG or the 

reverse CTTT motifs add to the growing list of putative cis-acting elements in the 
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AtGSNOR1 promoter. These elements are the binding sites for one finger (Dof) domain 

proteins, a plant-plant specific zinc finger transcription factor (Yanasigawa, 2004) that 

function as a transcriptional activator or a repressor involved in diverse physiological 

processes including light-regulated gene expression and disease resistance (Yanagisawa and 

Sheen, 1998; Gutterson and Reuber, 2004). In order to establish the putative pathogen 

responsive regulatory elements required for regulation of the AtGSNOR1 promoter, a number 

of 5’ end point deletions were generated and tested. 
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Figure 4.3 Cis-element analysis of the promoter sequences of AtGSNOR1. 

The letters in red indicate putative cis-elements sequence, as indicated. Forward and 
reverse red arrows represented the position of the elements on positive or negative strand 
respectively. The individual deletion constructs were represented by the forward black arrow. 
The numbers shown at the left and right end indicated the distance to the start codon.  
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4.4 Analysis of relative promoter strength by fluorometric GUS assay 

A promoter region may contain both enhancer and repressor elements. To probe which part 

of the full length promoter is required for the strong basal AtGSNOR1 expression, a series of 

5’ deletion mutants constructs (Fig 4.4a) driving the expression of GUS reporter gene were 

generated and transformed into Arabidopsis Col-0. Control plants containing a promoterless 

GUS gene construct were also generated. Arabidopsis plants containing homozygous 

recombinant transgene were subjected to fluorometric analysis for GUS activity. The levels 

of GUS activity in leaves were assayed quantitatively in seven independently transformed 

Arabidopsis plants from T3 generation for each deletion constructs. Despite variation in 

GUS activity among individual plants from the same gene construct, which was most likely a 

result of position effect of transgene insertion (Dean et al., 1988; Peach and Velten, 1991), 

significant difference in GUS activity were observed among plants transformed with 

different deletion constructs (statistical significance in this experiment is confirmed by 

student t-test, p<0.05). 

Plants harbouring the full length AtGSNOR1 construct displayed the highest expression level 

(Figure 4.4b). Deleting the promoter from -747 to -531 showed a minor but significant 

reduction in promoter activity with only 20% decrease. Thus, the elements in this region 

might not be necessary for AtGSNOR1 specific activity.  Further deletions of the promoter to 

-361 significantly reduced promoter activity to 60% when compared to the level of activity 

in plants with an undeleted promoter, suggesting that elements in the region from -531 to -

361 bp were required for AtGSNOR1 specific activity and might enhance the promoter 

activity. This region contains three copies of W-box elements, with the first two boxes 

located in close proximity; as well as one TATA-box element.  Deletion to position -211, 

which contains several MYB/MYC elements, two Dof binding sites and one CAAT and 

TATA boxes did not further reduced the promoter activity indicating that the elements 

present in this region are not important for the minimal promoter activity. 

Deletion of 211-bp sequences (+1 to +324) just upstream of the transcription start site 

resulted in statistically significant reduction of GUS expression to background levels. 

Similarly, deletion of the entire promoter (position +72) resulted in expression 

indistinguishable from background levels. This also suggests that the high GUS activity 

displayed by the full length construct was solely conferred by the promoter region and not 

influenced by the presence of exons and intron. The promoterless construct only exhibited 

background GUS expression as expected.  
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4.4 Deletion analysis of the AtGSNOR1 promoter 

(a) Schematic diagram of AtGSNOR1::GUS 5’ deletion constructs. (b) Fluorometric GUS 
analysis of transgenic Arabidopsis plants carrying different AtGSNOR1::GUS deletion 
fragments. Results are mean of measurements from at least ten independent transgenic 
lines carrying a single copy of the given construct. Asterisks indicate statistically significant 
(p<0.05) decrease in GUS activity. Error bars indicate standard deviation (SD). 

*

*
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4.5 Histochemical analysis of AtGSNOR1::GUS promoter deletion constructs during 

plant development 

Histochemical GUS staining of 14-day old seedlings, rosette leaves, flowers, stems and 

siliques revealed differential expression patterns in each deletion as observed in the 

quantitative analysis. Five independent transgenic lines were assayed and all had the same 

overall pattern of expression for each organ tested. As discussed previously, the undeleted 

promoter construct conveyed intense GUS activity throughout the reproductive and 

vegetative organs (Fig 4.5). In this analysis, constitutive expression gradually reduced with 

the deletion series. However, despite low promoter activity as measured quantitatively at 

position -361 and -211, GUS expression can still be clearly observed in all tissues. Similar to 

the fluorometric analysis, deletion to position +1 and +72 resulted in the absence of GUS 

expression in all organs tested. 
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4.5 Histochemical analysis of AtGSNOR1::GUS  deletion constructs 

Seedlings, rosette leaves, flowers, stems and siliques were harvested from healthy Col-0 
plant carrying full length AtGSNOR1::GUS and promoter deletion constructs. Samples were 
stained for GUS activity and observed under a light microscope.   
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4.6 Identification of a pathogen-responsive promoter region in AtGSNOR1 

To identify promoter regions necessary for the transcriptional suppression or activation in 

response to pathogens, transgenic plants containing the deleted promoters were challenged 

with PstDC3000 and subjected to GUS fluorometric analysis. GUS activity was monitored at 

the early time points (2 and 4 hpi) where the suppression of AtGSNOR1 transcript is 

strongest (Fig 4.6). As discussed previously (section 4.4), the promoter construct containing 

873 bp (-531 to +342) only showed a minor reduction in GUS activity in the absence of 

pathogen. Surprisingly, while the full length construct showed a huge drop in GUS activity 

following PstDC3000 inoculation, the 873 bp construct lose the suppression.  

Instead, the 837 bp construct showed elevated GUS activities at 2 and 4 hpi suggesting the 

presence of positive regulatory elements. These results also conclude that the deleted 

fragment in the region between -747 and -531 harbours the elements mandatory for the 

suppression of AtGSNOR1 in response to PstDC3000. In this case, MYC or GT-1 elements 

would be the most likely candidates for negative regulatory elements sites since both have 

been reported to negatively modulate gene transcription in response to pathogen challenge 

(Laurie-Berry et al., 2006; Buchel et al., 1999).  

Interestingly, the deleted promoter from position -361 and -211 bp displayed increasing GUS 

activities at both time points following PstDC3000 infection, despite the minimal GUS 

activities exhibited by both constructs in the absence of pathogen. When compared to the full 

length construct, the 703 bp construct (-361 to +342) displayed higher induction in GUS 

activity than the 553 bp construct (-211 to +342). This result suggests that this region of the 

promoter is dispensable for basal gene expression and no longer responsive to pathogen 

suppression, instead it contains elements conferring inducibility in response to pathogen.  

Thus, positive regulatory elements that may enhance the promoter activity in response to 

pathogen infection could be positioned in the region between -531 and -211 which include a 

few W-boxes, MYB and Dof binding sites. It is possible that these elements might act singly 

or additively since progressive deletion resulted in gradually decreasing value of GUS 

activity in response to pathogen infection. A change in promoter activity was not detected 

following deletion from position +1 and +72 due to complete removal of the promoter 

sequence which resulted in very low reporter gene activity indistinguishable from 

background activity.  
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4.6 Differential expression of AtGSNOR1::GUS constructs in transgenic Arabidopsis 
plant inoculated with PstDC3000.  

Fluorometric GUS analysis of transgenic Arabidopsis plants carrying different 
AtGSNOR1::GUS deletion fragments. The GUS activity at each time point was the average 
measured from three independent transgenic lines carrying a single copy of the given 
transgene. Error bars indicate standard deviation (SD). 

 

4.7 Role of W-box in mediating AtGSNOR1 expression in response to pathogens. 

From previous analysis in this study, we have found that W-boxes elements in the promoter 

might constitute negative regulatory elements responsible for the suppression of AtGSNOR1 

expression in response to pathogen infection. Through the available resources from The 

Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org/), several WRKY 

mutants in Col-0 background were obtained from SALK and tested for their expression 

profile in response to pathogen infection. As described in the previous chapter, AtGSNOR1 

expression was transiently suppressed following PstDC3000 at an early stage of infection 

and the expression resumes within 24 hpi. A mutant with enhanced or opposite profile will 

be of interest in this study and further detailed analysis will be carried out to elucidate the 

nature of the interaction between the identified WRKY transcription factor and its cognate 

cis-acting elements in AtGSNOR1 promoter.  
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Transcription factor WRKY70 is involved in the modulation of SA- and JA-mediated 

signalling events during plant responses to pathogen (Li et al., 2004; Li et al, 2006). 

WRKY70 has been shown to positively influence disease resistance, for example 

overexpression of AtWRKY70 leads to constitutive PR gene expression (Li et al., 2004) and 

functional WRKY70 is required to confer disease resistance against wide range of pathogens 

including bacteria, fungus and oomycetes (Li et al., 2004; Li et al., 2006; Knoth et al., 2007). 

However, there was no change of AtGSNOR1 transcript levels in a wrky70 mutant during the 

early hours following pathogen challenge, suggesting the requirement of WRKY70 as a 

negative regulator for AtGSNOR1 expression in response to pathogen infection (Fig 4.7).  

This is supported by the fact that apart from being a positive regulator, WRKY70 can also 

negatively regulates plant defence genes as reported in Li et al. (2004). 

AtGSNOR1 expression in the wrky58 mutant was not detected in the absence of pathogen 

challenge (Fig 4.7). Based on this observation, WRKY58 could be responsible for the 

normal function of AtGSNOR1 under developmental condition consistent with the stunted 

growth phenotype of the wrky58 mutant (Wang et al., 2006), resembling the atgsnor1 loss-

of-function mutant (Feechan et al., 2005). After challenge by pathogen, the transcript level 

was suppressed at 2 hpi followed by a considerable increase at 6 hpi and remains at induced 

state for up to 48 hpi almost similar to the wild type Col-0 plant. In this case, AtGSNOR1 

response to pathogen was not altered in the wrky58 mutant background.  

 

 

 

 

 

 

 

Figure 4.7 Expression profile of AtGSNOR1 in different WRKY mutant background. 

wrky mutants were inoculated with PstDC3000. RNA was isolated at indicated time points for 
RT-PCR and Actin-2 was analyzed as a control.  
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In wrky25 mutant, AtGSNOR1 transcript was absent at 2 hpi and 24 hpi (Fig 4.7). Moreover, 

compared to the wild type plant the expression of AtGSNOR1 at 6, 12 and 48 hpi appeared to 

be very weak. In contrast to the previous study by Zheng et al. (2007), WRKY25 is thought 

to play a role as a positive regulator in AtGSNOR1 response to pathogen and is required for 

the induced AtGSNOR1 expression at the later stages of the infection. In addition, WRKY25 

was also implicated with heat tolerance because overexpression of WRKY25 enhanced 

thermotolerence (Li et al., 2009). The parallel function of AtGSNOR1/HOT5 as a regulator of 

thermotolerance (Lee et al., 2008) further supported the potential involvement of WRKY25 

in regulating AtGSNOR1 during plant development and biotic stress.  

AtGSNOR1 expression in wrky7 and wrky48 exhibit a similar expression profile with no 

suppression at 2 hpi and induced transcript levels at 24 hpi, while at other time points 

AtGSNOR1 transcripts were suppressed (Fig 4.7). The expression profile in the mutants’ 

background was roughly the opposite match of wild type Col-0 profile, apart from the 

unexpected increase at 24 hpi. These results imply that there could be a complex network 

linking WRKY7, WRKY48 and AtGSNOR1.  

 

 

4.8 Transgenic expression of effector proteins suppressed AtGSNOR1 expression 

In the light of the findings that AtGSNOR1 suppression is TTSS-dependent, it is tempting to 

speculate that at least one of the secreted TTEs could be targeting AtGSNOR1 to suppress its 

activity. To check this hypothesis, AtGSNOR1 expression was studied in transgenic lines 

exhibiting conditional expression of a given effector. A total of four stably transformed 

transgenic plants expressing different effector proteins in different backgrounds (Table 2.1, 

Chapter 2) at four weeks old were sprayed once with dex or estradiol. Leaf samples were 

collected at indicated times and AtGSNOR1 expression were analyzed using RT-PCR (Fig 

4.8). In the transgenic line expressing the AvrPto effector protein, there was no significant 

changes in AtGSNOR1 transcript accumulation after dex treatment at all time points tested. 

Similarly, in the transgenic line expressing HopAI1 the AtGSNOR1 transcript level did not 

change over time. Interestingly, in the transgenic line expressing HopAM1, AtGSNOR1 

transcripts disappeared after 6 hours post treatment (hpt) with dex but re-appeared at 12 hpt 

and remained stable for up to 24 hpt.  

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Expression profile of AtGSNOR1 in effector transgenic lines 

All transgenic plants were sprayed with a specific inducer (dex/estradiol) to induce transgene expression or silwet as a control. HopAI1, estradiol; 
AvrPto, HopAM1 and HopAO1, dex. Leaves were collected at indicated times and subjected to RT-PCR analysis. Actin-2 was used as a loading 
control. 

86 



87 
 

The RT-PCR data obtained from the three transgenic lines were reproducible across at least 

two independent experiments. In the transgenic line expressing HopAO1, the AtGSNOR1 

transcript levels did not vary from time 0 within the first 12 hpt but the transcript was 

suppressed at 24 hpt. However, this effect was failed to be accurately reproduced. 

In a control experiment, the transgenic plants were mock treated with distilled water 

containing silwet, a surfactant that acts as a wetting agent. AtGSNOR1 transcript levels 

remained stable after treatment with silwet within 24 hour period. In another control 

experiment, the induced level of the effector proteins following dex treatment was shown. 

Transcripts corresponding to all effectors were not detected in these transgenic lines before 

dex treatment. AvrPto expression level was induced from 6 hours and remains at the induced 

level for up to 24 hours. However, the induction of HopAI1 following estradiol treatment 

along with HopAM1 and HopAO1 expression following dex treatment was only moderate at 

6 hours. Stronger induction was seen in all transgenic lines at 12 hpt which last until 24 hpt. 

 

4.9 Discussion 

To elucidate the molecular basis of AtGSNOR1 gene expression, its genomic organization 

and promoter activity were analyzed in this study. Several 5’ deletion mutants were fused to 

the GUS reporter gene and their expression tested in Arabidopsis plants. This approach 

revealed the organ and cell type specificity of the AtGSNOR1 promoter during plant 

development and in response to bacterial infection. Expression of AtGSNOR1 in all tissues 

and organs is consistent with the role of AtGSNOR1 in plant development and plant defence. 

A dramatic drop in GUS activity was observed in all organs by deleting the promoter region 

from -531 to -361 indicating that positive regulatory elements might be located between -747 

and -361. 

It was found that the deleted fragment in the region between -747 and -531 harbouring MYC 

and GT-1 putative elements were mandatory for the suppression of AtGSNOR1 in response 

to PstDC3000. Meanwhile, positive pathogen-responsive elements might reside in the 

promoter region between -531 and -211 since this region no longer conferred suppression, 

instead the promoter activity increase in response to pathogen infection. The putative cis-

elements in this region include a few W-boxes, MYB and Dof binding sites and they might 

act additively. Deletion in the region between +1 and +72 resulted in very low reporter gene 
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activity similar to the background activity and could not be further stimulated by pathogen 

challenge. 

The presence of two adjacent W-box elements suggested that they may function in the 

AtGSNOR1 promoter because spacing between transcription factor binding sites can 

significantly affect their strength in activating gene expression. As reported by Eulgem et al. 

(1999) and Yu et al., (2001), an individual contribution of W-box to elicitor-induced gene 

expression was low compared to a group of several W-boxes situated closely together. Two 

closely positioned GT-boxes were also identified in the critical region of the promoter which 

is required for the suppression by PstDC3000, implying the likely involvement of GT-1 

transcription factors as transcriptional repressors. A previous study showed that AtGSNOR1 

was repressed by JA and unresponsive to ABA, but the results were inconclusive (Diaz et al., 

2003). The occurrence of several ABA/JA responsive elements such as MYB/MYC 

suggested that AtGSNOR1 might be responsive to both JA and ABA that could leads to 

increased susceptibility. JA-mediated signalling was thought to antagonize defence 

activation exerted through SA-mediated signalling (Glazebrook et al., 2003) and similarly, 

ABA increases susceptibility by counteracting SA-dependent defences (de Torres-Zabala et 

al., 2007). Meanwhile, AtGSNOR1 was shown to be regulated by light (Barroso et al., 2006) 

and through this present study, several light-responsive elements were identified in the 

promoter region which further support the previous report. The presence of CT repeats in the 

5’ UTR was thought to maintain the minimal promoter activity because their deletion 

reduced promoter activity to a background level.  

Following the finding of a putative W-box in the AtGSNOR1 promoter, several WRKY 

transcription factor candidates were tested for their potential engagement in transcriptional 

regulation of AtGSNOR1. The AtGSNOR1 expression profile was examined in WRKY 

mutant backgrounds and a few conclusions were drawn from this analysis. WRKY70 was 

found to be a putative negative regulator, despite its positive role reported in previous studies 

(Li et al., 2004; Li et al., 2006; Knoth et al., 2007). A knock out mutant of WRKY58 did not 

have any significant effect on AtGSNOR1 expression while WRKY25 was considered as 

putative positive regulator, which also contradicts its originally described function as a 

negative regulator (Zheng et al., 2007). AtGSNOR1 expression in wrky7 and wrky48 

exhibited complex profiles and it is difficult to make any deduction without further detailed 

analysis. 
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AtGSNOR1 was proposed to be the target of PstDC3000 effector proteins delivered through 

TTSS. Its expression was transiently suppressed in response to PstDC3000 infection but 

adequately maintained in response to PstDC3000 hrcC. To further verify this hypothesis, 

AtGSNOR1 expression was determined in several independent transgenic Arabidopsis plants 

expressing different effector proteins. These effector proteins include AvrPto, HopAM1, 

HopAO1 and HopAI1. These transgenic lines were constructed using chemical-inducible 

systems which were developed by Zuo et al. (1993) and Aoyama and Chua (1997). The 

individual contribution of these effector proteins to promote virulence in planta were 

reported in detail in the previous studies (Hauck et al., 2003; Goel et al., 2007; Underwood et 

al., 2007; Li et al., 2005).  

AvrPto was initially identified by its ability to induce ETI in tomato plants carrying a 

canonical R proteins of the NBS-LRR family, Pto and Prf (Chang et al., 2000). 

Conspiciously, ectopic overexpression of AvrPto in Arabidopsis restored growth of 

PstDC3000 hrcC to almost wild-type levels, suppressed the expression of genes encoding 

defence and secreted cell-wall proteins, as well as inhibiting callose deposition induced by 

PstDC3000 hrcC (Hauck et al., 2003). Together with several other findings on AvrPto (Li et 

al., 2005; He et al., 2006), these data suggested that AvrPto targets early PTI signalling 

components to promote virulence. AtGSNOR1 was suppressed during the early stage of 

infection by PstDC3000, hinting at a possbile connection to PTI signalling. Surprisingly, 

despite the strong virulence feaure of AvrPto when expressed in planta, there was no 

reduction observed in AtGSNOR1 transcript levels in AvrPto transgenics plant after dex 

treatment. Nonetheless, it is possible that AtGSNOR1 might still be involve in PTI signalling 

but through a different pathway that is not targeted by AvrPto. 

HopAI1 is an effector protein with phosphothreonine lyase activity which belongs to an 

effector family widely conserved in both animal and plant pathogenic bacteria (Li et al., 

2005; Zhang et al., 2007). HopAI1 suppressed flg22-induced immunity through direct 

dephosphorylation of MPK3 and MPK6 (Zhang et al., 2007) while in planta expression of 

HopAI1 suppressed NHO1 expression, enhanced disease susceptibiltiy to PstDC3000 as well 

promoting nonpathogenic bacterial growth, a characteristic similar to AvrPto (Li et al., 2005; 

Hauck et al., 2003). AtGSNOR1 was shown earlier to be an important component of non-host 

resistance. However, similar to AvrPto, a high level of expression of HopAI1 in planta did 

not suppress AtGSNOR1.  
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From this experiment, HopAM1 is the only effector that was able to suppress AtGSNOR1. 

HopAM1, formerly known as AvrPpiB encodes protein of unknown function (Counoyer et 

al, 1995) and its expression in Arabidopsis strongly but transiently suppressed AtGSNOR1. 

The ABA response was thought to contribute to the virulence effect of HopAM1 (Goel et a., 

2008). In fact, ABA has been shown to suppress defence responses and ABA–deficient 

mutants are more resistant to pathogens (Anderson et al., 2004; Mohr and Cahill, 2003). 

Moreover,  PstDC3000 manipulates ABA production and ABA responses to suppress 

defence responses and this phenomenon is dependent on TTSS (de Torres-Zabala, 2007). In 

parallel with an earlier findings in this study that there are several ABA-responsive elments 

present in AtGSNOR1 promoter, this data also suggests that the type III effector HopAM1 

might targets AtGSNOR1 expression through the manipulation of ABA response to promote 

virulence.  

HopAO1 was initially known as HopPtoD2, a modular proteins remisniscent of TTEs from 

animal (Kaniga et al., 1996). HopAO1 functions inside plant cells to suppress nonhost HR, 

PTI and ETI by targeting a step downstream or independent of MAPK activation (Espinosa 

et al., 2003; Bretz et al., 2003; Underwood et al., 2007; Guo et al., 2009). It has been shown 

to contribute to virulence as a PstDC3000 mutant lacking HopAO1 was reduced in virulence 

in Arabidopsis (Espinosa et al., 2003; Bretz et al., 2003).  However, in planta expression of 

hopAO1 only cause a minor decrease in AtGSNOR1 transcript accumulation at later time 

during infection process which does not correspond to the suppression effect delivered by the 

PstDC3000 observed at the early stage.  

 

Conclusion 

AtGSNOR1 is transcriptionally regulated in response to PstDC3000. WRKY, GT-1 and 

MYB/MYC transcription factor might contribute to the transcriptional regulation of 

AtGSNOR1 and to support this hypothesis, a few putative WRKY transcription factors have 

been identified. In addition to the possible involvement of the transcription factors, 

AtGSNOR1 expression in response to PstDC3000 may also dependent on ABA, JA and SA. 

Suppression by HopAM1 corroborates the idea that ABA plays an important role in 

mediating the transcriptional down-regulation of AtGSNOR1 in response to infection.   
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5. General discussion 

Nitric oxide (NO) was originally conceived as a freely diffusible second messenger that 

positively conveys signals through activation of guanylate cyclase and negatively influences 

cellular processes by contributing to toxicity through reaction with superoxide. At present, 

accumulating evidence indicates that modification of protein thiols via S-nitrosylation is part 

of the main principle behind the regulation of protein function by nitric oxide. This study 

further justified the important role of S-nitrosylation in disease resistance during the 

interaction between Pseudomonas syringae and Arabidopsis. Detailed analyses were also 

carried out to probe if AtGSNOR1 might constitute a target of Pseudomonas syringae 

effector proteins and the cognate mechanism that underlies the manipulation of AtGSNOR1. 

Finally, experiments were done to identify the specific effector protein(s) that target 

AtGSNOR1. 

 

5.1 Type III secretion-dependent induction of S-nitrosothiol levels in Arabidopsis 

during pathogenesis 

S-nitrosylated proteins have been successfully identified in Arabidopsis and conspicuously, a 

majority of these proteins have already been identified as substrates for S-nitrosylation in 

animals, suggesting the common feature of NO-regulated protein function in plants and 

animals (Lindermayr et al., 2005). At an appropriate physiological condition, NO is 

constitutively delivered to the tissue from enzymatic and non-enzymatic sources as a 

ubiquitous signalling messenger, thus explains the presence of basal levels of SNO in plants 

and animals. Although it has not yet been possible to identify a plant enzyme exhibiting 

NOS-like activity, a body of evidence has been presented supporting the presence of L-

arginine dependent nitric oxide production in plants (Corpas et al., 2009).  

Pathogen inoculation was found to induce further protein S-nitrosylation in Arabidopsis. 

Similar level of SNO was detected at very early stage of pathogen infection following the 

inoculation of both virulent PstDC3000 and TTSS-defective PstDC3000 hrcC mutant 

suggesting that the engagement of SNOs in the very early stage of this plant-pathogen 

interaction are not influenced by effector proteins. However, there was a significant 

difference as the infection process progresses where PstDC3000 caused a major increase in 

SNO levels after one day of infection compared to the PstDC3000 hrcC mutant. Despite the 
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fact that an initial burst of NO is thought to be essential to confer immunity from attempted 

pathogen invasion, SNO synthesis and turnover seems to provide an alternative regulatory 

mechanism independent from NO biosynthesis. S-nitrosylation and denitrosylation are 

tightly regulated processes and certainly, SNOs are stored within intracellular substrates until 

they are required for the rapid response to stress signals (Gaston et al., 2003). Indeed, 

increased protein S-nitrosylation has been implicated with several cases of increased 

susceptibility through covalent modification of cysteine residue of several key components 

of plant defence signalling (Tada et al., 2008; Wang et al., 2009; Lindermayr et al., 2010). S-

nitrosylation of NPR1, a master regulator of SA-mediated defence signalling, and AtSABP3 

are two examples of how pathogens disrupt the normal function of proteins to cause disease 

in plants.  

Interestingly, PstDC3000 hrcC mutant infected plants that lack typical disease symptoms 

only show a modest increase of SNO levels after a few days, suggesting that TTSS enhanced 

the increase of the intracellular SNO during infection to promote disease susceptibility. 

TTSS is essential for virulence of phytopathogenic bacteria in susceptible hosts. 

Pseudomonas syringae TTSS mutants, such as PstDC3000 hrcC typically exhibit lack of 

growth in plant tissues (Kloek et al., 2000; Nomura et al., 2006), demonstrating the absolute 

requirement for type III secretion in pathogenesis. TTEs secreted through TTSS utilize 

various biochemical activities, including protein modification, transcriptional regulation, and 

hormone mimicry to control host cell function (reviewed in Grant et al., 2006; Cunha et al., 

2007). In this case, the TTEs possibly exert their virulence function by increasing the rate of 

SNO synthesis or most likely by increasing the rate of SNO turnover through inhibition of a 

denitrosylase enzyme. 

The accumulating evidence suggests that pathogens of animals and plants are exploiting 

SNO levels to increase pathogen susceptibility (Akaike and Maeda, 2000; Tada et al., 2008; 

Wang et al., 2009; Atochina-Vasserman et al., 2009; Husain et al., 2010). While there have 

been quite a number of reports on negative effect of S-nitrosylation on animal defence 

systems (Stamler et al., 2001; Ricciardolo et al., 2004; Ascenzi et al., 2005; Zaki et al., 2005; 

Wei et al., 2010 ), only a few cases have been reported in plants as mentioned previously. 

Having said that, many potential targets are awaiting discovery since the majority of the S-

nitrosylation targets identified in Arabidopsis are already well known S-nitrosylation targets 

in animals. 
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5.2 PstDC3000 targets AtGSNOR1 through TTSS to manipulate SNO level in plants 

during pathogenesis. 

In cells, interaction between NO and glutathione (GSH), a major cellular antioxidant resulted 

in rapid formation of S-nitrosoglutathione (GSNO), a stable and mobile molecule that can 

serve as a reservoir of NO bioactivity in vivo. Both NO and GSNO regulate a broad 

spectrum of cellular proteins and functions with a differential specificity S-nitrosylation 

(Foster et al., 2009). Arabidopsis GSNO reductase 1 (AtGSNOR1) is the enzyme responsible 

for the GSNO turnover as well as the turnover of S-nitrosylated proteins in vivo. This 

enzyme was initially known as Arabidopsis glutathione-dependent formaldehyde 

dehydrogenase (Martinez et al., 1996) that plays a role in glutathione-dependent 

formaldehyde oxidation before it was discovered to partially regulate nitrosothiol 

hemeostasis by reducing endogenous GSNO, hence it was renamed as AtGSNOR1 

(Sakamoto et al., 2002).  

Later, Diaz et al. (2003) claimed that AtGSNOR1 was associated with plant defence and in a 

separate study, loss-of-function mutation of AtGSNOR1 resulted in increased SNO levels and 

disabling plant defence response, making the plant more susceptible to diseases (Feechan et 

al, 2005). As a denitosylase, AtGSNOR1 is an important molecule that controls not only the 

cellular levels of GSNO but also the levels of S-nitrosylated proteins, thus it is central to the 

immune system. Additionally, AtGSNOR1 is also required to maintain fertility, organ 

development, thermotolerence and cell death regulation through modulation of protein SNOs 

(Lee et al., 2008; Chen et al., 2009). In conjunction, the expression of AtGSNOR1 is found to 

be constitutively expressed in all organs in Arabidopsis indicating the general importance of 

this gene. GSNOR expression is also present ubiquitously in mammals and together with 

various NOS isoforms as well as other proteins, GSNOR plays a very important role in 

regulating nitrosative stress (Foster et al., 2009).  

As a vital component of plant defence response, AtGSNOR1 was found to be induced by 

wounding stress, avirulent and non-host pathogen. Non-host and avirulent pathogens activate 

similar defence signalling components in a complex manner which is largely dependent on 

the TTSS (Mishina and Zeier, 2007). A strong induction profile of AtGSNOR1 in response to 

non-host pathogen is similar to NHO1, a gene encoding glycerol kinase that is required for 

both general and specific resistance in response to bacterial attack (Kang et al., 2003) 

suggesting the similar requirement for AtGSNOR1 in plant disease resistance. Wounding 

stress only causes a transient increase in AtGSNOR1 transcript accumulation at a very early 
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stage of pathogen infection whereas infection by PstDC3000 carrying avirulent gene 

reactivated AtGSNOR1 expression indicating that R gene-mediated resistance masked the 

suppression of AtGSNOR1 by a virulent PstDC3000.  

Despite remarkable progresses in the study of plant resistance to pathogens, little is known 

about the molecular basis of plant susceptibility to virulent pathogens. It is understood that 

key step in pathogenesis appear to be the suppression of host defences including basal 

defences, R gene-mediated resistance and non-host resistance. Defence suppression is 

collectively mediated by effector proteins which are secreted through type III secretion 

system and by coronatine, a bacterial toxin that structurally and functionally mimics methyl 

jasmonate. 

Infection with PstDC3000 but not PstDC3000 hrcC transiently suppresses AtGSNOR1 

during the early stage and in conjunction with the initial finding that PstDC3000 infection 

increase SNO levels, it is intriguing to say that PstDC3000 suppresses denitrosylase function 

of AtGSNOR1 to increase the SNO levels. This is supported by a study done by Loake group 

(Feechan et al., 2005) inferring that loss-of-function mutation of AtGSNOR1 resulted in 

increase basal SNO levels. Moreover, both AtGSNOR1 suppression and SNO augmentation 

were shown to be TTSS-dependent, indicating that the virulence effect exerted on 

AtGSNOR1 by PstDC3000 is delivered by at least one of the TTEs secreted through the 

TTSS either by directly targeting AtGSNOR1 transcription machinery and translational 

machinery or indirectly through modification of cofactros that might be involved in 

regulating AtGSNOR1 expression. On the other hand, phytotoxin coronatine does not play a 

role in the suppression of AtGSNOR1 expression. Coronatine is known to induce JA pathway 

and functions as suppressor of SA-mediated defence responses during pathogenesis (Brooks 

et al., 2005; Cui et al., 2005). Yet, as happens with most bacterial phytotoxins, coronatine 

does not seem to be essential for pathogenicity by all strains of Pseudomonas bacteria and in 

fact, coronatine production did not enhance the growth of PstDC3000 hrcC in planta or its 

ability to cause typical disease symptoms (Penaloza-Vazquez et al., 2000).  
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Two GT-boxes, the binding sites for GT-1 transcription factor were found in the critical 

region of the promoter which is required for the suppression by PstDC3000.  GT-1 factor 

can have a positive or negative effect on transcription (Park et al., 2004) and in this case, it is 

likely that the GT-1 transcription factor play a role as a transcriptional repressor. MYC/MYB 

are JA/ABA responsive elements and their presence further indicated that AtGSNOR1 is 

responsive to JA (Diaz et al., 2003) and might be responsive to ABA that could leads to 

increased susceptibility. In fact, PstDC3000 has been shown to induce a rise in ABA content 

which is TTSS-dependent and full virulence is only achieved when the ABA biosynthetic 

pathway is intact (de Torres-Zabala et al., 2007).  

Finally, the presence of two W-boxes suggested the involvement of WRKY transcription 

factor, a class of DNA binding protein that play a diverse role in plant defence response. 

WRKY transcription factors constitute a large family that includes positive and negative 

regulators. Indeed, a few putative WRKY transcription factors have been identified that 

might play a role in transcriptional regulation of AtGSNOR1. 

 

5.4 Type III effector proteins target denitrosylase activity of AtGSNOR1 for virulence 

It was shown earlier that PstDC3000 transiently suppresses the denitrosylase activity of 

AtGSNOR1 to increase the level of SNOs in plant cells and that this is TTSS-dependent. In 

conjunction, a few type III effector proteins were selected and tested for their suppressive 

effect on AtGSNOR1 expression during PstDC3000 infection. Effector protein HopAM1 

showed the ability to suppress AtGSNOR1 when expressed in planta. HopAM1 is a protein 

of unknown function and its conditional expression in Arabidopsis suppresses basal defence 

(Goel et al., 2008).  Based on the same study, HopAM1 is thought to convey its virulence 

effects on AtGSNOR1 through ABA response. The presence of several ABA responsive 

elements in AtGSNOR1 promoter further supports the idea that HopAM1 targets AtGSNOR1 

expression through the manipulation of ABA response to promote virulence.  

 

5.5 Future works 

Probing deeper, the results in this thesis also provide a strong foundation for future works in 

DNA-protein or protein-protein interaction and more detail analysis on S-nitrosylation status 

during plant-pathogen interaction.  
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Following the identification of several putative cis-acting elements and a few related 

transcription factors, in depth analysis of the interaction between the transcription factors and 

their cognate genomic binding sites will definitely enhance our understanding on AtGSNOR1 

gene regulation. For example, two W-boxes have been found in the critical region of 

AtGSNOR1 promoter and in parallel, several putative WRKY transcription factors were also 

identified. In order to confirm whether the putative W-boxes are indeed the functional 

binding sites for the WRKY transcription factors, a pull-down assay will be carried out using 

a glutathione (GST)-tagged WRKY protein as a ‘bait” to capture its putative binding partner, 

a W-box elements or termed as ‘prey’. The immobilized bait protein will be incubated with a 

cell lysate from PstDC3000 infected plants and the interactors are selectively eluted for 

analysis by Western blot. 

Based on the idea that effector protein delivered by PstDC3000 suppresses AtGSNOR1 to 

increase SNO levels in order to promote virulence, SNO levels are expected to be high in the 

effector transgenic line. SNO measurement will be done using gas phase chemiluminescence 

to further confirm this idea.  

HopAM1 was found as the putative effector protein that might suppress AtGSNOR1 

expression. To further confirm this interaction in vivo, dex-induced and uninduced HopAM1 

transgenic leaves will be subjected to immunoprecipitation with anti-AtGSNOR1 antibodies.   

 

5.6 Conclusion 

S-nitrosylation has now become one of the important themes in plant science. With 

increasing number of defence-related targets being identified in plants, this redox-based 

post-translational modification is indeed vital to maintain normal protein function during 

plant-pathogen interaction. The body of evidence presented here proposes that AtGSNOR1 is 

a target of PstDC3000 effector proteins. Through transcriptional regulation of its 

denitrosylase activity, virulent PstDC3000 deflect SNO homeostasis towards its benefit 

which is to promote virulent and increase susceptibility. The knowledge gained from this 

study might be invaluable in order to further understand the role of S-nitrosylation in plant 

disease resistance. 
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