
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429708598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Searching the space of representations:

reasoning through transformations for

mathematical problem solving

Daniel Raggi

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2016





Lay Summary

Many problems in mathematics are such that the choice of representation is of great

importance in the process of constructing a solution. In this thesis we develop and

study some mechanisms for reasoning wherein mathematical transformations are used

to change the representation of the problem.

Human reasoning, and specifically valid or correct reasoning, is one of the most

interesting processes for science to study and understand. The endeavour of modelling

this process has been carried out by philosophers, logicians and cognitive scientists

from early times. In the last century, the programme of characterising valid reasoning

as a mechanical process culminated in the development of formal mathematics, and

coincided (not casually) with the development of a notion of computation. Thus, the

problem of mechanising and automating reasoning has been a driving force for research

since the inception of computer science. Moreover, mathematical reasoning has the

property of being approachable, given that it is a source of well-defined problems and

rigorous notions of inference and proof. Its approachability is balanced by the fact that

mathematics is also an unlimited source of challenges for reasoning, requiring both

rigour and creativity. Thus, for our work we use computational tools and paradigms

to formalise and understand some aspects of mathematical reasoning.

Many computational tools have been built for the purpose of formalising, automat-

ing, and assisting the process of mathematical reasoning. These tools can provide a

ground for experimentation. For the work presented in this thesis, we use the interactive

theorem prover Isabelle/HOL. It provides us with a framework to formalise mathemat-

ical theories (formal systems in which mathematical objects can be represented and

reasoned about). Furthermore, Isabelle/HOL is equipped with a formal notion of proof

and many tools for developing complex inference techniques.

Based on the idea that representation has an enormous impact on reasoning, we

embarked on a project to find out how change of representation can be incorporated into

the reasoning process, and whether it is possible to automate it in a way that it results

in more efficient reasoning. For this, we developed a suitable mathematical notion of

transformation and explored some theoretical aspects of it. Moreover, we linked the

abstract notion to some existing mechanisms in Isabelle/HOL. Then we extended the

mechanisms to automate the process of searching the space of representations. To

test these tools, we built a library of transformations useful in discrete mathematics

(combinatorics and number theory) and used our tools for constructing the solutions

of these problems. The analysis of these experiments yields insight.
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Abstract

The role of representation in reasoning has been long and widely regarded as crucial.

It has remained one of the fundamental considerations in the design of information-

processing systems and, in particular, for computer systems that reason. However, the

process of change and choice of representation has struggled to achieve a status as a

task for the systems themselves. Instead, it has mostly remained a responsibility for

the human designers and programmers.

Many mathematical problems have the characteristic of being easy to solve only

after a unique choice of representation has been made. In this thesis we examine two

classes of problems in discrete mathematics which follow this pattern, in the light of

automated and interactive mechanical theorem provers. We present a general notion of

structural transformation, which accounts for the changes of representation seen in such

problems, and link this notion to the existing Transfer mechanism in the interactive

theorem prover Isabelle/HOL.

We present our mechanisation in Isabelle/HOL of some specific transformations iden-

tified as key in the solutions of the aforementioned mathematical problems. Further-

more, we present some tools that we developed to extend the functionalities of the

Transfer mechanism, designed with the specific purpose of searching efficiently the

space of representations using our set of transformations. We describe some experi-

ments that we carried out using these tools, and analyse these results in terms of how

close the tools lead us to a solution, and how desirable these solutions are.

The thorough qualitative analysis we present in this thesis reveals some promise as

well as some challenges for the far-reaching problem of representation in reasoning, and

the automation of the processes of change and choice of representation.
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1 Introduction

Nature presents some entities with problems. The entities to which problems are a

problem need solutions. Some entities find solutions (sometimes), and some problems

are similar to other problems. Thus, some old solutions can be reused for some new

problems. Some entities have been deeply marked by this fact. In some entities, the

shape of this mark is a capacity to invent problems: they create problems for themselves

and for each other to solve. The (often illusory) purpose is to yield reusable solutions.

Especially, to be reused for tackling nature’s problems; when the time comes, and a

solution is vital and urgent.

But nature’s problems are never exactly the same. Thus, the entities’ whole pro-

gramme, of inventing problems and finding solutions, only serves its purpose (reuse)

modulo similarity. This may be called the (meta)problem of reuse.

Some invented problems yield more reusable solutions than others, and reusability is

not randomly distributed across solutions. Thus, it has been possible for some entities

to approximate a (meta)solution to the (meta)problem of reuse. This process of approx-

imation may be called abstraction. Thus and gradually, from the process of abstraction,

mathematics has emerged. As an approximate (meta)solution to the (meta)problem

of reuse, mathematics is a kind of problems whose solutions are particularly reusable.

The problems of this kind may be called mathematical problems, and the entities that

invent and try to solve mathematical problems may be called mathematicians.

Some mathematicians may go through processes of abstraction, unaware that they

happen1. However, some mathematicians become aware of the processes. For some of

them, problems become the objects of new (meta)problems. We may call these mathe-

maticians meta-mathematicians (some may call them logicians). Meta-mathematicians

have classified problems of the mathematical kind into (sub)kinds. We may call these

(sub)kinds systems of representation2.

1 For example, some entities may be equipped from inception with some approximate solutions to

the problem of reuse (e.g., the power of abstraction). The actual entity responsible for such an

approximation may not be a genetic organism, but a genetic family/genera. This (super)entity may

have found such approximation through the mutation and natural selection of its genes. Then, the

power of abstraction would be encoded in the genes of the entities belonging to the (super)entity.

2 A system of representation is both a kind of problems, and the kind of tokens accepted as possible

solutions. In other words, a system of representation characterises the shape its solutions must have.

1



1 Introduction

Some meta-mathematicians have asked themselves is there a universally better sys-

tem of representation? Most have conceded that it depends on what is meant by better.

Thus, they have analysed systems of representation in terms of desirable properties,

such as expressiveness (how many problems can be represented in the system?) consis-

tency (is the system reasonably constrained?), completeness (can all the problems in

the system be solved?), correctness (do the problems of the system accurately represent

some specific relevant problems?), computability3 (is the system even usable to solve

problems?) and complexity/efficiency (how usable?). Some meta-mathematicians have

noticed that some of these questions only make practical sense when asked about the

systems relative to each other (e.g., are there equivalent problems across systems? does

one system subsume another in terms of expressiveness?)4. For simplicity, expressions

such as equivalent problems in different systems may be rephrased as same problem in

different representations.

In the process of analysing systems of representation and searching for desirable

ones, some have described systems that stand out for their expressive power5. How-

ever, others have noticed that many of the desirable properties are incompatible with

each other. Most notably, one entity (which we may call Kurt Gödel) found that consis-

tency, completeness, computability and high expressiveness are not all simultaneously

satisfiable.

Based on the property of computability, some meta-mathematicians have used their

knowledge to build machines which themselves have the power to solve mathematical

problems (or build these systems into machines). Thus, the study of systems of repre-

sentation has become critical for these systems to work at all. Particularly, a deep and

detailed understanding of the complexity/efficiency of different systems is paramount.

Meta-mathematicians have long noticed that the complexity/efficiency of systems is

not a trivial (meta)problem. In any expressive system there are some problems which

are easy to solve and some which are not. Moreover, meta-mathematicians have noticed

that complexity/efficiency is not entirely preserved across systems. In other words, two

systems Γ and ∆ may be such that a problem P is easy to solve in Γ but not in ∆,

while another problem Q may be easy to solve in ∆ but not in Γ . It follows that, for

any entity who intends to build problem-solving capabilities into machines, attention

has to be put on the representation systems. So far this remains an open problem, so

open eyes are crucial.

3 Which may also be called recursively enumerable.

4 It can be argued that the systems of representation are related by construction. This is because, as

our story goes, they were built from each other by abstraction for the purpose of reusability, and

reuse requires some sense of translation.

5 We may call these foundational systems.

2



1.1 Entities that prove

1.1 Entities that prove

The solutions to mathematical problems have very specific features. Key to under-

standing these features are the notions theorem and proof. These notions are relative

to the system of representation, but have commonalities amongst all mathematical

systems of representation.

Theorems are tokens that emerge whenever a mathematical problem is solved. Du-

ally, theorems are the most fundamental tools used for solving mathematical problems.

They are solutions, and building blocks for solutions, to the problems in a given system

of representation. Thus, the most fundamental of the mathematical practices is the

search for theorems. Hence, the problem of building theorems in a system of represen-

tation, or recognising theorems as theorems, is crucial. We may call this the problem

of theoremhood.

Given a system of representation, the accepted solutions to the problem of theorem-

hood are called proofs. And, like all solutions for mathematical problems, the most

fundamental tools involved in constructing them (proofs) are theorems. The process

of constructing proofs is called proving. Thus, theorems are constructed with the help

of other theorems via proofs6. Thus, to solve mathematical problems, the best quality

an entity can have is the power to prove. The power to prove is essentially the ability

to create mathematical tools. This power comes in different magnitudes. From simple

capacity to actual skill. The land separating these is vast and largely unknown, up to

the meta-mathematicians to discover and chart.

The systems that meta-mathematicians have built into machines with the power to

solve mathematical problems can be classified into two kinds: those that can prove and

those that cannot prove. The latter kind only solves mathematical problems insofar as

the corresponding proofs have been constructed somewhere else (outside of the system).

However, the former kind, which has a built-in capacity to prove, may be able to find

theorems, use these theorems (as tools) to construct proofs of other theorems and,

potentially, use these theorems as tools for other purposes. When they are built into

machines, systems that prove may be called mechanical theorem provers.

1.1.1 Mechanical theorem provers

Currently, mechanical theorem provers have the capacity to prove, but only limited

skill compared to human mathematicians. Hence, many of these systems have been

built in a way such that human mathematicians (users) can interact with the machine

6 Naturally, this requires a starting kit of theorems which need not be constructed from other theorems.

These may be called axioms.

3



1 Introduction

to construct proofs together. These systems may be called interactive theorem provers,

to distinguish them from automated theorem provers.

Interactive theorem provers are an ideal ground for testing tools and meta-mathema-

tical ideas (e.g., regarding how to automate aspects of the proving process). The link

between automation and interaction comes in the form of reasoning tactics, which we

may simply call tactics. These are programs that the human meta-mathematician can

construct, under some very specific requirements (which guarantee that the thing being

constructed is indeed a proof). The overall concept of tactic is very versatile, as these

can range from the simplest atomic inference steps (e.g., application of a theorem), to

powerful complex mechanisms (e.g., that search for a sequence of inferences that results

in a full proof).

The list of mechanical theorem provers is long, and their designs, features and pur-

poses are varied. The focus of the work presented in this thesis is the interactive

theorem prover Isabelle [52], but we have attempted to extract some general lessons

that may be used for the development of tools in other systems.

Thus is the ground on which our work stands. The details concerning the technical

choices we have made (pre-existing systems and systems within systems) will be clarified

throughout this thesis.

1.2 Mathematical representations

(and changes thereof)

We described the general (meta)problem of representation in mathematics above. Most

mathematicians (in the broadest sense of the word) are only informal meta-mathema-

ticians. They tend not to concern themselves too much about the system of represen-

tation (SR) they use to solve problems, and yet they effortlessly manipulate them and

move between them at their convenience. Their practice of mathematics appears to be

informed by meta-mathematical intuitions.

To solve a problem, a mathematician will change representations with the apparent

intention to land in a SR where the solution is evident. Now, it is difficult to prove or

disprove statements like this, as we have used the word representation abstractly. We

may have hinted that we mean something related to logic, but we tried to be careful

enough not to actually state anything particular. One of the properties of the notion

of SR, as we want it to be, is that it may contain within itself other SRs. Thus we may

say that a logic is a SR, but a theory is a subsystem of it and theories have subtheories,

which are SRs themselves. Moreover, we may consider mechanisms, rules and even

heuristics to be part of SRs.

4



1.2 Mathematical representations & changes thereof

In this thesis we study SRs with a focus on the notion of transformations (change of

representational system). We do not intend to solve the general problem of represen-

tation, or even the problem of representation in mathematics. In fact, as our work will

hint, the problems of representation are constantly informed by the mathematics them-

selves (e.g., a mathematical theorem means that we can make notational changes that

will make a system more manageable), so this could mean that the problems of repre-

sentation are as open-ended as mathematics itself. In this work we focus on a specific

class of SRs and some transformations between them, and make a few arguments on

generality (in the sense that the transformations cover a large class of representation).

1.2.1 What is a good representation?

Our focus on transformations is motivated by the contention that some patterns exist

relating the solubility of problems and the different systems of representation (in terms

of complexity/efficiency). While the patterns are not trivial (e.g., it is not clear whether

there is one SR that is better than any other for every problem), it is very plausible

that there are kinds of problems for which some kinds of SRs are better than others.

Thus, focussing on transformations allows us to think how change of representation (to

a better one, at least relative to the problem) can happen.

It is argued that the representation of a problem is important because it can make

some important information explicit. For example, Stenning & Oberlander [61], and

Sloman [59] argue that visual representations force some information (such as the tran-

sitivity of a relation taller than) to be represented. Moreover, in the area of machine

learning [7] the notion of entanglement is used to understand how some information

may be hidden in the presentation of some data, but a transformation may make it

explicit (disentangle it).

In general we have no general theory about which mathematical representations

disentangle which kind of data, so we hope that our work can contribute to answering

this question.

In the light of what representations make explicit or hide, let us look at a variety of

representations of natural numbers:

1. A primitive constant 0 with a primitive successor function: this repre-

sentation is the simplest construction. Addition is only one inductive step up

from the construction and multiplication is two steps up.

2. Lists of digits (in any base we want): this representation provides a compact

way of writing (length of notation is logb(n) with base b). The successor function

is very simple to represent. Divisibility rules can be drawn base-dependently (e.g.,

5



1 Introduction

in base 10 the divisibility rules for 2, 5 and 10 are trivial; for 3, 4, 6, 9, 11 they

are easy, and from there on it can get more complicated).

3. Classes of equipotent finite sets: complex set operations (bijections, com-

binations) have corresponding numerical operations. Some other features, like

divisibility, are entangled by the representation.

4. The empty set ∅ with a successor function defined as S(x) = x∪{x}: the

value of this representation is probably only the injection of natural arithmetic

in a more expressive system.

5. Bags (multisets) of primes7, or even lists of the exponents of primes (in

their natural order): in this representation divisibility and other features related

to multiplication become explicit. Addition becomes entangled. Note that, while

other representations (in this list) can be used as foundations for natural number

theory, the bags-of-primes representation can not; it allows us to re-represent

numbers, but they must already have existed for primes to be available.

6. Abstractly through a set of axioms: we can specify whatever we want.

Calculation is not guaranteed. Non-standard models emerge.

These can be considered generic classes of representation, as for each of them there

are many representational considerations to take. For example, Kerber & Pollet [40]

point out that any expression with n terms x1 + x2 + · · · + xn has 1
n+1

(
2n
n

)
ways of

being bracketed which, if included in a search, may become impractical. Thus they

note that once a mathematician establishes associativity, bracketing falls out of use.

We can wonder whether, for mechanical theorem provers, this means that associative

operations should immediately be re-represented (e.g., as list-operators, and if they are

also commutative, as multiset-operators?). Or should the operators remain internally

binary, with only the search and presentation to the user simplified (this is the current

approach of theorem provers)? These are not questions that we can fully answer, but

they prompt a discussion to which we may be able to contribute.

Let us discuss the relation between notation, syntax, and the notions of implicit

and explicit representations. Mathematicians study mathematical entities and the re-

lations between them. The process of doing mathematics consists of using knowledge

about the relations they already know to generate new knowledge. But mathematicians

also observe their own definitions, their notation, and their general practice; and they

draw knowledge from these observations. In other words, they learn from observations

regarding their own syntactic practices. This knowledge then influences their future

7 Bags or multisets, are like sets where elements can appear multiple times; i.e., a multiset comes

‘equipped’ with a function (called multiplicity or count) that yields a positive integer for every

element of the multiset. The multiplicity function tells you how many times each element appears.
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mathematical practice. Sometimes this knowledge is dignified by being itself expressed

as a theorem (or theory), but sometimes it is not. Thus it may remain hidden from

view but ever present in the practice. This, we believe, is the case for the treatment of

unbracketed expressions for associative operations: the representation of the operator

can been changed so that the need to think about the brackets disappears. This new

operator may now take a list of numbers (or even a potentially-infinite sequence, if we

have reached that stage!) as its argument. However, the link between the old binary op-

erator and the new one will (most likely) be considered too trivial to be explicitly stated

by the mathematician. We should not expect to find an operation plus : N list → N
explicitly defined in a textbook, with its use in reasoning justified by theorems such as

plus[x, y, z] = x+ (y + z).

The question is whether what mathematicians actually do is best captured by ex-

plicitly implementing operators such as plus in systems (or at least the capability of

the system to define it automatically, e.g., when it proves associativity). The deci-

sions taken by mathematicians based on economical arguments (‘skip the seemingly

trivial’) pose a problem for those who want to understand the practice and mechanise

mathematical reasoning. Specifically, it may create the illusion that representation is

unimportant and that homogeneity is desirable. Indeed, some may claim that no more

than a foundational system such as ZFC (with modus ponens) is needed for most of

mathematics; not even symbols for domain-specific constants. ZFC serves a founda-

tional purpose but its practicality is questionable for most mathematics. It is likely

that most who do claim the universality of purpose of ZFC or some other foundational

system do so with the assumption that definitions, abbreviations, tactics, and all kinds

of computational short-cuts can be constructed on top of it. Thus revealing that ZFC

serves precisely only a foundational role; it is the skeleton of much a more complex and

heterogeneous monster. For example, consider the Metamath system [45], based on

ZFC. Metamath is a language for constructing formal machine-verified proofs. Natu-

rally, the user has the option of defining new constants for definitions8, and referencing

previous results. Nonetheless, proofs in the database of Metamath tend to be very

long9 because the only inference rules are Modus Ponens and Generalisation (i.e., there

is no notion of reasoning shortcut except reference to previous results).

But let us revisit the notions of notation and syntax, and the idea that mathe-

maticians are, in parallel to their explicit mathematical practice, observing their own

syntactic behaviour (whether it is their notational or inferential behaviour) and draw-

8 In [45, p.57], the author tells us that, without abbreviations (i.e., using only the primitive logical

symbols, variables and ∈), a simple statement such as ‘x is a natural number’ requires 7 lines of the

page to be expressed.

9 For example, the right-cancellation rule for algebraic groups is proved in 45 steps.

7



1 Introduction

ing some knowledge from it that later influences their practice while remaining mostly

hidden from view. While the specific case of the operator plus described above may

be simplistic and inconsequential, it sheds light on the point that syntactic heuristics

(e.g., about bracketing) can be accounted for semantically10.

In this thesis we intend to provide better (and more complex) examples which demon-

strate that some of the apparently syntactic behaviours of mathematicians can be

accounted for by introduction of some mathematical structures-in-their-own-right, re-

lated to the structures-in-question by mathematical transformations-in-their-own-right

(of the kind of algebraic morphisms between groups, vector spaces, and so on).

Now, the following consideration has to be taken before we proceed: that the way

we represent what (to the best of our knowledge) captures the implicit transformations

that mathematicians do is a choice of representation on our part. Thus, while we want

to demonstrate that it captures it in a certain way, we do not wish to claim that this

is how mathematicians’ brains do it. Certainly, our approach is in no way neurally or

biologically inspired.

The first grand choice we take is to work within the interactive theorem prover Is-

abelle/HOL. This already restricts us to a logic and provides us with plenty of notation

and background knowledge. Thus, some basic research concerns regarding the forma-

tion of pre-mathematical representations are taken out of the picture. For example, we

take for granted the availability of logical connectives (as boolean operators) and quan-

tifiers (as higher-order boolean operators), even though history suggests us to treat

them as major inventions; not to be taken for granted. Moreover, we have built-in

notions of function, a grammar based on type theory, notions of truth and inference,

and built-in mechanisms for manipulating representations. The availability of none of

these tools is a trivial consideration. Thus, choosing Isabelle/HOL gives us access to

powerful tools, but it also constraints the project and the kind of things we can claim.

1.2.2 An analysis of the representations of N
Let us analyse the representations of natural numbers (enumerated above). We will

conduct this analysis in the light of: how purely syntactic behaviours can be accounted

for by the introduction of mathematical objects-in-their-own-right. The purpose is to

present some of the motivational points that elucidate our decisions regarding the goals,

the focus, and the background of this work.

In Isabelle/HOL, natural numbers are represented with the primitives 0 and Suc.

10 By semantic we mean concerning the objects about which a formal theory talks. In this specific

example, a behaviour regarding the treatment of brackets can be encoded as an operator which is

itself an object in the formal theory (or in an extension of the formal theory, or in another theory in

the same system/logic).
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The numerals in base 10 are not represented in a theory (as a list of digits), but only

presented to the user as such. While possible to develop this type (for other bases as

well), we do not do so in this work, as we do not have many examples where transforma-

tions between, to, and from, these representations are useful for reasoning11. This case

highlights the fuzzy nature of the distinction between syntactic and semantic. While

the justification of syntactic behaviours in these representations should ultimately be

grounded on a specific theorem (the existence and uniqueness of a set of ai-s such that

a0 + a1b
1 + a2b

2 + · · · + akb
k = n, and 0 ≤ ai < b, and ak 6= 0), this is usually not

explicitly considered (even though we use this representation daily).

Regarding the representation of natural numbers as classes of equipotent finite

sets, we identified that this representation is the basis for something called double

counting or bijective proofs. Thus, we will present the challenges for implementing

this, and some examples. This transformation is one example where the concepts are

explicitly represented as mathematical objects in their own right (sets and numbers),

but the full justification of the transformation is often hidden or taken for granted.

The representation of natural numbers as bags of primes is also interesting for

reasoning, and it highlights the blurred lines between syntax and semantics. While,

for a mathematician the statement y = x2 (for positive natural numbers) is imme-

diately equivalent to pa11 p
a2
2 · · · pann = (pb11 p

b2
2 · · · pbnn )2 (for some n) and moreover to

[a1, a2 · · · , an] = [2b1, 2b2 · · · , 2bn] (as list equality), and even to (a1, a2 · · · , an) =

2(b1, b2 · · · , bn) (as vector scalar multiplication with equality), these facts are not com-

monly stated as such. However, positioning the primes in the same order and nor-

malising the number of factors for the two numbers to n are well-calculated decisions

(grounded on some important mathematical arguments, namely: unique prime factori-

sation, the fact that p0 = 1, and the facts that (ab)x = axbx and (ax)y = axy) that make

the intention clear (to homegenise the representations to be able to reason in terms of

matching). Now, for the work in this thesis we actually made the decision to represent

this behaviour with a transformation to multisets (and another couple more step-wise

transformations). We will describe some aspects behind this decision in chapters 5

and 7.

The abstract representation of natural numbers through axiomatic theories is an-

11 Consider that, while having a representation in base 7 is great for identifying which numbers are

divisible by 7 (those ending in 0), translating into base 7 is harder than dividing by 7. However, this

is not really an argument of why the change of representation cannot be useful when used abstractly.

As a matter of fact, there is a beautiful (but complex) example in combinatorial game theory, where

the winning strategy of the Nim game is recognised only by representing some numbers (which

characterise the state of the game at any given point) in binary. Also, as pointed out by Kerber &

Pollet [40], Cantor’s diagonalisation argument applied to real numbers is hard to imagine without at

least the concept of canonical representations of real numbers in some base.

9
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other class of representations outside of the scope of this thesis (we briefly discuss it in

chapter 2).

We have motivated our work and given a schematic argument that many syntac-

tic behaviours can be captured semantically (i.e., concerning mathematical objects-in-

their-own-right). We have given some specific examples for N. However, we have also

acknowledged that our choice of Isabelle/HOL already confines the project to a specific

set of tools and a limited set of potential claims. In fact, another class of representations

and transformations (atypical logics and logic transformations) is entirely dismissed by

our choice.

1.3 A source of motivation

This project was partially inspired by kind of reasoning expected from students par-

ticipating in mathematical Olympiads or other mathematical competitions for young

students. One of the outstanding features of these competitions is the difficulty of the

problems in spite of the youth of the participants. Most participants in international

Olympiads are no older than 18 years of age. In regional Olympiads, which have as one

of their purposes to select and train students for national and international Olympiads,

the participants are mostly no older than 17. Many students start participating in the

Olympiads at ages below 13. Nonetheless, the problems which they have to solve can

be extremely challenging. Naturally, given the age of the students, it is not expected

for them to possess advanced knowledge of mathematics. Thus, the difficulty stems

from the creativity and ingenuity required to solve these problems.

We contend that the mathematical Olympiads and similar competitions should be

seen by the Automated Reasoning research community as a rich source of challenging

problems. Developing tools and techniques for automatically solving these kinds of

problems should be seen as a crucial goal. This is in contrast to the more typical

programme of mechanising areas of advanced mathematics in computer systems. The

focus on ingenuity above knowledge makes the challenge interesting for the study of

intelligence in general, and in particular for the prospect of automating mathematical

reasoning. Moreover, the number of problems generated for these competitions makes

it viable for testing.

This idea is one of the main motivating forces behind the project of this thesis. Thus,

we have chosen to experiment with some of the areas of mathematics related to the

maths Olympiads (combinatorics and number theory12). However, given the current

12 Typically, the Olympiads also include problems in geometry and basic algebra (e.g., solving inequal-
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state of research and technologies for Automated Reasoning, the goal is distant. Even

though this project is inspired by the problems solved in mathematical Olympiads, our

experiments are still bound to the kinds of problems that students would be challenged

with during early stages of training, rather than the selective competition problems of

national or international Olympiads.

The areas of mathematics and the techniques on which we have focused are basic

but very important in the development of the competition student. Our focus on

representation is only one of the many possible ways in which the ingenuity involved

in solving these problems may be captured mechanically.

1.4 Hypotheses and technical contributions

The hypotheses and motivation of this thesis are mainly concerned with the science of

reasoning, and specifically mathematical reasoning. There are two possible approaches

to study this: through the human-oriented cognitive sciences, or through computer

science and meta-mathematics.

Aside from the possible differences in the tools and methodology that these ap-

proaches use, we highlight a distinction between them in terms of the kind of hypotheses

that each allow. Specifically:

1. In the approach of the human-oriented cognitive sciences, the hypothesis con-

cerns how humans reason. This hypothesis is evaluated by analysing recorded

observations of human behaviour. A positive result would consist of finding a

statistically significant match between the data and hypothesis13.

2. In the computational/meta-mathematical approach, the hypothesis claim con-

cerns how computational systems can reason (e.g., a set of specifications). A

positive result would consist of finding/designing/constructing a program that

fits the specifications.

For this thesis we take the latter approach, even though our hypotheses are obviously

motivated by the prospect of understanding human reasoning and our design is inspired

by it. Thus we state our hypotheses/claims:

ities).

13 Notice that in this approach the hypothesis itself may be of a computational nature and at the same

time the scientific domain may be the human world. For example, the hypothesis may be that humans

behave according to some computational model, and the data (observations of humans) may fit the

simulation of the model, confirming the hypothesis. This would still fall into the human-oriented

approach in spite of the computational model.
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1. That many specific transformations, such as ones found in mathematical textbooks

(explicitly and implicitly), can be captured by a general mathematical notion of

transformation.

2. That this notion of transformation can be incorporated (as tactics) into a compu-

tational system in a way such that inferences based on the transformation can be

performed and their logical validity can be guaranteed.

3. That the tactics (with the transformations we provide) are valuable/useful. In the

context of interactive computer mathematics, we contend that such value stems

mainly from the reduction of effort required from the user, or the quality of the

proofs produced14.

The context (in which we construct the program that fits such specifications) is that of

systems for automated and interactive mathematical reasoning. Specifically, we focus

on the interactive theorem prover Isabelle/HOL [49]. This provides us with a set of

tools built by the Isabelle community, and it discharges the specification of logical

validity (by construction).

In the course of providing evidence for our hypothesis, we present some technical

contributions. They set the context in which the hypotheses are evaluated and extend

the library of reasoning tools available to users of Isabelle/HOL. Broadly, these are the

contributions we present in this thesis:

1. We developed a general mathematical notion of structural transformation that

makes the preservation of structure explicit (encoded in the transformation as

objects). Our contribution for this theory is intertwined with Isabelle’s Transfer

package [33]. We only claim authorship of the theory insofar as it accounts for

the semantics of the Transfer package’s mechanisms (i.e., as an analysis of what

the mechanisms do as transformations at the level of structures). Moreover, our

analysis reveals connections to well-known concrete categories, and captures the

transformations specific to this work.

2. We built a catalogue of transformations in Isabelle/HOL. These link some basic

structures from discrete mathematics (specifically from number theory and enu-

merative combinatorics). For these constructions we use some formalisms of the

Transfer package. Moreover, we implemented a method for automatically gener-

ating what we call the converse transformation of any existing transformation.

3. We developed some tactics that extend the range of applicability of the Transfer

package’s tools, filter results, and perform search in the space of representations

through transformations.

14 In chapter 7 we discuss the notions of quality that we consider for this work.
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In chapter 7 we will provide some discussion regarding how the technical contributions

(and experiments thereof) relate to our hypotheses.

1.5 Outline of the thesis

In chapter 2 we present an overview of the research relevant to the role of represen-

tation in reasoning, and more specifically in automated and interactive mathematical

reasoning. More than anything else, we focus on defining what we are not trying to

answer/solve in this thesis (atypical logics or meta-logical transformations).

In chapter 3 we introduce the areas of mathematics on which our experiments fo-

cus, namely natural number theory and combinatorics. Then we give an overview of

Isabelle/HOL with a focus on some of the aspects relevant to this work.

In chapter 4 we present our notion of structural transformation and put it in context,

as it relates to the transfer package and well-known categories.

In chapter 5 we present the catalogue of transformations that we have mechanised

in Isabelle.

In chapter 6 we present the design of two reasoning tactics that we have implemented

in Isabelle to automate the search of suitable representations.

In chapter 7 we present some experiments with the use of these tactics and analyse

some results of their use in the light of the hypotheses stated above.

In chapter 8 we conclude with a discussion of our contributions in a broader context,

the lessons learned, and some ways forward (as directed by the results).
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2 The problem in context: a review

of the literature

The role of representation in reasoning has been long and widely regarded as important.

It has remained as one of the fundamental considerations in the design of information-

processing systems. However, there is little uniformity regarding its meaning. Even

within specific subfields of research there are mismatches between the expert’s notions

of what it means to represent something (and more specifically, what it means to change

one representation to another). Thus, representation itself (and change thereof) seems

to be a matter of family resemblance rather than fixed consensus.

2.1 No representation?

To illustrate the ambiguity in the uses of the term ‘representation’, consider Rod-

ney Brooks’ influential 1991 paper Intelligence without representation [12], in the area

of robotics. Brooks’ approach to forgo the focus on representations in AI has had

various successes in robotics. The philosophy, systems, and techniques of Brooks’ no-

representation approach are covered by the general paradigm of dynamical systems,

wherein systems (e.g., agents and their environments) are understood and designed

with a focus on their dynamics/behaviour, rather than some internal representations in

the agents. Adherents of the paradigm (including one of the pioneers [4]) have viewed

representation (and the need for it) with scepticism [66], and the relative successes

of the paradigm in robotics may seem to support their point. However, it is clearly

not a matter of no-representation winning over representation (as Brooks’ provocative

title suggest), but one of one notion of representation (distributed, fuzzy, emergent,

dynamic) winning over another (symbolic, explicit, static) in certain real-world prob-

lems (robot locomotion; processing sensory input/large amounts of data). Brooks’ ideas

should be understood as a call to free the robotician’s mind from the concern of building

explicit representations of the environment into robots’ brains, rather than an assertion

regarding the possibility of intelligence in the complete absence of representations.

Perhaps Brooks’ provocation forced researchers to rethink the notions of represen-

tation in AI at the time, or perhaps it simply reflects the fact that the notion was
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changing. It certainly did not stop researchers from thinking about representation,

even in the areas of AI most related to the dynamical systems paradigm. For example,

the role of representation is now an active field of research within the study of compu-

tational neural networks. It has been long noticed that representation of the input is

very important for the outcome/performance of a neural network. Moreover, the recent

success of deep neural networks [44, 58] has been credited, precisely, to the role that

the layered structure plays in re-representing the data at different levels of abstraction

[6]. Specifically, layers are thought to learn representations that ‘disentangle’ some

underlying factors.

More generally, representation learning has become a field in its own right inside the

broader study of machine learning [7], as a way to tackle the importance of starting

with a good representation for the performance of some machine learning method.

2.2 Representation in human and computer

mathematics/logic

The role of representation in reasoning can be studied from many perspectives. One of

them is from the point of view of theory formation and reformation. These processes can

be either driven by aesthetics (make the theory more elegant), by completeness (explain

new data) or consistency (either to remove internal inconsistencies or to account for

data which are inconsistent with the theory). In this work we do not focus on the

perspectives related to aesthetics, completeness or consistency. Instead, we focus on

the point of view of efficiency of representations in problem solving.

2.2.1 Representation in problem solving/theorem proving

George Pólya was a mathematician who, apart from doing research in mathematics,

studied and wrote about the process of problem solving in mathematics [54, 55]. Pólya

emphasised the role of understanding the problem as a process of stating and restating

(transforming) the problem. Bundy [14] argues that most of Pólya’s advice on how to

solve problems is about problem representation, and that the automation of mathemat-

ical reasoning would strongly benefit from following Pólya’s advice (more specifically,

building his advice into the reasoning systems).

Still, it is not entirely clear what kinds of operations would capture Pólya’s notion

(of problem transformation). Pólya tells us that the problem should be transformed

into an equivalent problem “[. . .]so that it becomes more familiar, more attractive, more

accessible, more promising” [55]. Technically, many operations in computer mathemat-

ics fall into this category of transformations. For example, that is the whole point of
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simplifying and normalising operations, and most systems for automatic mathemati-

cal reasoning have operations of this kind built in. However, it is mostly understood

that there is something deeper (perhaps meta-logical) about the steps taken to state,

restate, and understand a problem.

For example, Kerber & Präcklein [41] define reformulation (inspired by Pólya) in

terms of logic morphisms (induced by language morphisms), and they show some ob-

vious advantages in the performance of an automatic theorem prover with the refor-

mulated version of the problem over its performance without the reformulation. They

call for the implementation of reformulation tactics for theorem provers, and emphasise

that the user of the system should be able to choose a reformulation interactively.

We believe that the contention to understand representation (and transformations

thereof) meta-logically (e.g., in terms of the above reformulation) is a reasonable one,

but also one where there is a conceptual split. Thus we review the literature with an

emphasis on the distinction between the two perspectives.

To meta or not to meta?

The work on representation for reasoning in mathematics can be broadly classified in

two: one where the relations between representations are conceived at the meta-level,

and one where they are conceived at the object-level. The meta-level perspective sees

transformations as translations between logics/theories, and the object-level perspective

sees transformations as typical morphisms (between mathematical objects/structures).

Both classes involve very well developed areas of research, but the meta-level class has

been more explored in the context of problem solving. Our focus for this thesis is on

the object-level perspective, which we introduce here by reviewing and contrasting it

with the meta-level perspective.

2.2.2 The meta-level perspective

Within this class we present two kinds of work:

1. On the theory/implementation of novel or atypical representational systems (e.g.,

diagrammatic).

2. On the theory/implementation of transformations between representational sys-

tems.

Diagrammatic Reasoning. The formalisation of logic evolved with a disregard for

diagrams as valid systems for inference. Their status in formal mathematics seemed,

for a while, to be only as heuristic tools. However, Shin [57] discovered that, like
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the well known symbolic systems of logic, systems for diagrammatic reasoning could

be fully formalised and their logical properties could be explored. In particular, Shin

formalised various systems for reasoning inspired by Venn diagrams, and investigated

various logical properties (e.g., soundness and completeness) of these systems, and

explored their expressive power. Inspired by this, other diagrammatic formalisms (like

spider diagrams) have been designed [32] and implemented [62]. It is interesting to

note that spider diagrams are a purely diagrammatic formalism, and yet they have the

expressiveness of first-order monadic logic.

Another interesting diagrammatic system is Jamnik’s DIAMOND [36], developed to

construct theorems diagrammatically for arithmetic identities (see figure 2.1). The

system represents numbers as collections of dots in a grid, where each number may have

various representations, and their organisation may represent operations like addition.

A notable highlight is that the simple diagrams in the system do not express universal

quantification, but the uniformity on particular cases (e.g., the fact that the same

procedure in the diagram shows that it is true for n = 3 and n = 4) is used to construct

a full proof, i.e., the system proves that the procedure would produce the same identity

for any n.

Figure 2.1: Diagram of the proof of the identity 1 + 3 + 5 + · · ·+ (2n− 1) = n2 (from [36]).

HOL and FOL. The most popular systems for interactive theorem proving are based

on some version of Higher-Order Logic (HOL), but higher successes in automatic the-

orem proving have been achieved on First-Order Logic (FOL).

While it is possible to have a finitely-axiomatised HOL which is not finitely-axioma-

tisable in FOL, it is still possible to translate statements from the former to the latter

without introducing inconsistencies (but breaking provability for some statements).

Kerber [39] studied and implemented such a translation and has numerous examples of

the advantages of FOL for automation.

To incorporate automated theorem provers into Isabelle’s Higher-Order Logic, trans-

lations from HOL into FOL have been implemented. Meng & Paulson [46] integrated

Hurd’s first-order theorem prover Metis [35] into Isabelle/HOL. Soundness is relaxed

for this translation because any resulting proof is reconstructed in Isabelle anyway (the
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success rate for proof reconstruction is very high). Other applications in Isabelle of

HOL to FOL translations are done by the Sledgehammer tool [10], which translates

into the logics of first-order external provers. The existence of a proof by one of the

external provers does not necessarily mean that a proof can be reconstructed back in

Isabelle.

Institutions, HETS, LATIN. Goguen & Burstall [21, 22] developed the concept of

Institution to formalise the notion of logical system. The idea is the following: we can

define a signature Σ (a set of symbols), a set of Σ-sentences, and an interpretation of

these sentences in a Σ-model (a satisfaction relation). This describes abstractly a logic.

However, someone else could, independently, also define a logic of their own. So now

we have to consider: how would we know if they are equivalent logics? The answer

is simple: two logics are equivalent if there is a map between their signatures that

keeps the satisfaction relation intact in both directions (under the map induced to the

sentences by the map of the signatures).

Thus, Goguen & Burstall define a logical system as (essentially) the category of all

the logics that are equivalent (under the above criteria), where the morphisms of the

category are all the maps (which witness the equivalence). Then, a morphism between

two institutions is defined in terms of functors between their respective signature cat-

egories. Now these can be used to represent the connections between logics which are

not equivalent.

Institutions inspired the development of the Heterogeneous Tool Set (HETS) [47], for

the management and integration of different logical systems by institution morphisms.

Particularly, HETS integrates various systems for automated/interactive proof, and

algebraic specification, such as Isabelle, OWL and CASL. More specifically, the Logic

Atlas and Integrator (LATIN) [15] project (implemented in HETS) intends to build a

collection of logics and tools for the integration of logics.

The focus of the projects related to Institutions is not specifically the efficiency

of different representations for reasoning, but rather the integration of independently

developed systems. Still, the approach is general enough that representational efficiency

is a potential application, and its generality provides some perspective on where other

approaches to representation stand.

Theory interpretations. Farmer et al. [17] present the notion of Little Theories, as

an approach to organising mathematical knowledge in a modular way. The idea is

that complex mathematical structures (e.g., the real numbers) fall into many classes (a

field, ring, group, linear order, metric space, topological space, etc.), each of which has

19



2 The problem in context: a review of the literature

a relatively small axiomatisation. Then, reasoning can be modularised, and knowledge

can be inherited from each little theory downwards (interpretation-wise) into particular

mathematical structures. Some proofs have been mechanised into their interactive

theorem prover IMPS [18], which is built on this paradigm (little theories related by

inclusion and interpretations).

Isabelle is not specifically built based on any notion of little theories, but the concept

of locale was implemented by Kammuller and Wenzel [38] as a formalisation of a local

set of assumptions (a small theory). The notion of interpretation [3] is built in, and

it allows for the inheritance of knowledge. Moreover, type classes [27] use locales to

reason uniformly across different types/structures, provided that the types have been

proved to be instantiations of the type class (to satisfy the assumptions of the locale).

Theory interpretations fall under the umbrella of the general theory of institutions,

but to our knowledge there is no treatment of Isabelle’s locales in terms of institutions,

and there is possibly no motivation to do so, as interpretations are handled within

Isabelle, and the focus of the projects inspired by institutions (HETS, LATIN) is the

connections between genuinely different logics.

Abstraction. Giunchiglia & Walsh [20] developed a theoretical framework for the

study of abstraction. They define abstraction in terms of theory mappings, but do

not constrain their study to theory interpretations, as they also consider the possibil-

ity of abstraction for the use of approximate reasoning. Thus, instead they classify

abstractions according to truth preservation.

2.2.3 The object-level perspective

Morphisms are entities in mathematics used to study relations between other mathe-

matical entities. Many branches of mathematics have their specific notion of morphism

(homomorphism in various algebraic structures, linear maps in vector spaces, con-

tinuous functions in topological spaces, etc.), but they are more generally defined in

Category Theory. In each of the branches of mathematics, morphisms are characterised

by a notion of preservation of structure (which structure is preserved depends on the

area).

Morphisms are generally classified by their properties. The basic classes are monomor-

phisms (which generalise injections), epimorphisms (which generalise surjections) and

isomorphisms (which generalise bijections)1. In specific branches of mathematics, an

1 In category theory, the properties of morphisms are studied behaviourally, i.e., in terms of how they

interact with other morphisms, rather than what they do to the internal structure of the objects they

relate. In fact, there is no need to even talk about the internal structure of entities, as categories may

be defined without the need for the objects to be anything other than nodes connected by arrows
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isomorphism between two entities means that the entities are identical with respect to

the structure relevant to the branch.

A typical pattern characterising a morphism σ is

σ(f(x1, x2, . . . , xn)) = f ′(σ(x1), σ(x2), . . . , σ(xn)),

though this is not necessarily exactly the case (e.g., for continuous functions), and it

is often not the complete pattern (e.g., linear maps need to satisfy two preservation

properties).

Many elementary theorems in mathematics state morphism-like properties. For ex-

ample, the fact that every linear map from Rn to Rm has an associated matrix of m×n
dimensions where matrix multiplication corresponds to application is one of the funda-

mental theorems of linear algebra. And this is only the beginning, because a deluge

of theorems follow (some only for m = n), e.g., that the multiplication of matrices

corresponds to the composition of linear maps, that addition of matrices corresponds

to addition of maps, and similarly for scalar multiplication, that some distinguished

matrices correspond to distinguished linear maps, etc.

The result of theorems of this kind is, precisely, that we obtain another way of

representing linear maps, and transforming between the two representations allows us

to reason and calculate more efficiently.

We want to highlight the fact that the proof and search for theorems of this kind is

a mathematical reasoning process just like the proof and search of any other theorems.

In other words, there is nothing more meta-mathematical about these theorems about

representation than about any other mathematical theorems. This has the following

consequence: that catalogues of representations and transformations between

them should not be fixed, but be open for mathematical discoveries to

produce new ones and enrich old ones.

Motivated by this, in this thesis we ask ourselves two questions, for which we provide

partial answers.

1. Exactly what notion of morphism captures the specifications described here?

2. What are appropriate mechanisms for transforming problems/theorems via mor-

phisms uncovered by mathematical theorems?

We do not know of any existing answer to the first question, so we developed a fitting

notion that we present in chapter 4.

(the morphisms). Thus, notions such as monomorphism are defined in terms of the properties of

the arrow relative to the surrounding arrows. In the case of monomorphisms, the behaviour of the

arrow happens to correspond to injections (when applied to the category of sets), and injections that

preserve structure (when applied to groups or other algebraic structures).
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To answer the second question, let us highlight the similarity between our focus and

the problem of data refinement.

Data refinement, code generation, and the Transfer package. Representing data

abstractly makes program specification and writing easier for humans, and delays de-

sign decisions. Thus, a program may be described in broad strokes, without a com-

mitment to a specific implementation, and the choice of machine-level implementation

may be taken later. Moreover, abstraction can facilitate reasoning for automatic theo-

rem provers, so the correctness of programs can be verified. Abstract representations

of data are not appropriate for computation, so a process of translating from the ab-

stract to the concrete (e.g., a recursively defined datatype) is required. This process is

called data refinement. An example of this is the transformation of finite sets into lists,

wherein set operations (membership, union, etc.) have representative list operations

(notice the similarity with morphisms as we describe above).

As a general problem, the question of how to refine a representation for correct

and efficient computation is open (and dependent on advancements in the theory of

algorithms and complexity), but the sense of direction is clear: from abstract to concrete

(implementational).

Refinement methods have applications in industry, specially where safety consid-

erations are critical, precisely because of the interaction between formal verification

(proving the correctness of programs) and implementation that data refinements facil-

itate. A notable example of a framework for abstract specification of programs and

refinement is the B-method [2], with important applications in industry [1, 5].

In Isabelle/HOL, a code generator has been implemented for the efficient computa-

tion of functions defined in the logic. In previous versions its mechanisms were based

on higher order rewriting [26] (which commits the types to remain static), but it has

been enhanced by the use of data refinement mechanisms [25], which aids to poten-

tially convert functions defined over abstract types to efficient computable functions via

step-wise refinements. The engine for refinement is the Transfer package [34] (which

we describe more in detail in chapters 3 and 4).

We think that mechanisms like those provided by the Transfer package are an ex-

cellent fit for reasoning via morphisms as the ones described above. However, one of

the notable conflicts between the mechanisms of the transfer package (as they are built

into the current Isabelle version) and our approach to representation is the sense of

direction. Whereas in the general problem of representations in reasoning there is no

obvious sense of direction, the applications which motivated the implementation of the

Transfer package have a clear one. Thus we will explore (in chapters 5 and 6) how we
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have used the Transfer package and extended it to fit our purposes.

2.3 Summary

We briefly explored the status of representation in AI globally, from which some inter-

esting insights can be drawn. Specifically, the success of deep learning is credited to

the role of re-representation and representation learning; highlighting the concept of

disentanglement of factors.

Then we explored the status of representation in the context of computer mathemat-

ics. We focused on a contrast between representation as conceived from a meta-level

perspective and from an object-level perspective. In the meta-level perspective we find

either interesting/novel forms of representation (e.g., diagrammatic) which are reason-

ing systems in their own right, or transformations between different reasoning systems.

We noted the relative lack of development of the theory and tools for reasoning via

object-level transformations, which we make the focus of this thesis.

In table 2.1 we show our organisation of the computational systems mentioned in

this review.

Specific General

Meta-level
Spider diagrams HETS / LATIN
DIAMOND Isabelle’s locales
HOL to FOL translations IMPS

Object-level Data refinements Transfer package

Table 2.1: The classification of systems according two dimensions: meta-level versus object-

level, and specific (systems that focus on a specific representation or a one-off fixed

transformation) versus general (systems that focus on a framework for handling

transformations of a certain kind). We only consider systems and not general

theories/paradigms, like Institutions or Little Theories.
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In this chapter we introduce the computational system on which we constructed our

tools, and the mathematics to which we apply such tools. The purpose is to build up

the knowledge on which the work presented in this thesis stands, and the motivation

for doing it.

We start with an introduction to basic combinatorics and number theory; the areas of

discrete mathematics to which we applied our work. Then we introduce the state of the

art in the mechanisation of mathematical reasoning, and particularly the Isabelle/HOL

environment.

One of the difficulties in writing this thesis is that the languages used in mathematics

and the languages used in the systems used for mechanising mathematics are differ-

ent. For example, a textbook in mathematics will typically use f(x, y), whereas, in

Isabelle/HOL, it is conventional to write the curried form f x y to represent the ‘same’

function application. There are good reasons for this (as we explore in section 3.2),

but it can lead to confusion. Thus, when we write about mathematics outside of the

context of mechanical reasoning, we use the typical f(x, y), but otherwise we use f x y .

3.1 Discrete mathematics

In the work presented in this thesis we have used discrete mathematics as the grounds

for experimentation with some tools and concepts. Specifically, we focused on some

aspects and problems of enumerative combinatorics and number theory. We introduce

these topics here. Our main purpose in this section is to introduce the reader to the

concepts and the informal style of reasoning (common to these areas) that we have

attempted to formalise and automate.

3.1.1 Enumerative combinatorics

Combinatorics is the branch of mathematics that studies discrete and countable struc-

tures, and their possible configurations. Enumerative combinatorics is the sub-branch

concerned with counting. In other words, it is the study of cardinality, when applied

to combinatorial objects.
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The typical shape of a problem in enumerative combinatorics is

How many x are there, such that P (x)?

where x is already assumed to be some kind of combinatorial object. In other words,

we want to find n where

|{x such that P (x)}| = n,

and we want this n to be an explicit numeric value, or something ‘easy’ to calculate,

possibly parametric on some other variable appearing in the statement of P .

For every one of the examples below we assume A is finite.

Problem 3.1. How many subsets does A have?

Solution. The question is about finding n, where |{x such that x ⊆ A}| = n. The

answer, parametric on A, is 2|A|.

Problem 3.2. How many lists of length k can be formed with the elements of a set A?

Solution. The answer, parametric on k and A, is |A|k.

Also, we may add more constraints, as in the following examples.

Problem 3.3. How many lists of length k can be formed with the elements of a set A,

if we are not allowed to repeat two elements?

Solution. Let n = |A|. Then the answer is n(n− 1)(n− 2) · · · (n− k + 1), which can

also be expressed as n!
(n−k)! (if k ≤ n, otherwise it is 0).

If the length k is the same as the cardinality of A then we obtain the result k!. In other

words, the number of permutations of a list is k!.

Problem 3.4. How many subsets of A are there, with cardinality k?

Solution. Let n = |A|. Notice that, due to the result above, we have both that:

• From the elements of A we can form n!
(n−k)! lists of length k with no repetition,

and each one of these lists represents a set of cardinality k.

• Every set is represented by k! lists (all the permutations of its elements).

Thus, the number we look for is n!
k!(n−k)! . This is often denoted as

(
n
k

)
.

This function, f(n, k) =
(
n
k

)
is sometimes called the choose operator, or the binomial

coefficient operator; the former for its role as ‘ways of choosing’ a subset, and the latter

for its role as the coefficient of xkyn−k in the expansion of (x+ y)n.
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Moreover, this operator is sometimes defined as ‘the number of subsets . . . ’, and

sometimes as n!
k!(n−k)! , so in some cases

(
n
k

)
= n!

k!(n−k)! is presented as a theorem and in

other cases it is presented as a definition.

Furthermore, for 1 ≤ k ≤ n, the operator has the following property (Pascal’s iden-

tity): (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
,

The arithmetic proof of this formula is straightforward. Moreover, Pascal’s identity

provides a way of calculating
(
n
k

)
recursively, and is the basis for the construction of

Pascal’s triangle (shown in figure 3.1). Furthermore, it gives us yet another way of

defining the choose operator.(
0
0

)(
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0

) (
1
1

)(
2
0

) (
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1

) (
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2

)(
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1
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1 1

1 2 1

1 3 3 1

1 4 6 4 1

Figure 3.1: Each number in the triangle is calculated by adding the values of the parent nodes.

Thus we have three ways of defining the choose operator. Either combinatorially as

‘the number of subsets . . . ’, or directly as n!
k!(n−k)! , or recursively as

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
,

with
(
n
0

)
= 1 and

(
n
n

)
= 1. The only difference is that, whereas the combinatorial defini-

tion still has a clear interpretation for k > n (there are zero such subsets), the arithmetic

definitions need those cases to be considered separately (the factorial function has no

appropriate definition for negative integers, and the recursive definition needs
(
0
k

)
to be

defined as 0 for k > 0).

This pattern, wherein a theory gets refactored by turning a theorem into a definition

and making the original definition a consequence, is common in mathematical practice.

For most purposes it is inconsequential, as it yields equivalent theories (or at least

‘equivalent where it matters’). However, it is an important consideration for us and

our evaluation (chapter 7), because it impacts the proofs.

3.1.2 Combinatorial proofs

We introduced enumerative combinatorics through a set of problems, all of which have

the same shape: finding n such that |{x such that P (x)}| = n. It was all about studying

how a set (on the left) relates to a natural number (on the right). Now we will introduce

an interesting class of problems of a different nature, where the statement to be proved
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is of the shape m = n, both sides consisting of natural numbers, but whose proofs rely

on a ‘combinatorial interpretation’ of the numbers. These are problems to which we

have applied the mechanical methods we present later in this thesis.

Combinatorial proofs of arithmetic identities fall into two classes: one often called

‘double counting’ and one called ‘bijective’. A proof of m = n of the former class finds

a set that, when counting its elements in one way we obtain m, and when counting

them in another way we obtain n; thus one must conclude that m equals n. A bijective

proof instead finds two sets, one with cardinality m and one with cardinality n, and

proves that there is a bijection between the two. Both classes have the same essence,

where the identity is arithmetic but the proof is combinatorial. There is a very large

variety of such proofs. The book Proofs that Really Count [8] is completely dedicated

to such proofs, presenting over 200 identities.

Problem 3.5. Give a combinatorial proof of Pascal’s identity.

Solution. The number of subsets of {1, . . . , n} with k elements is
(
n
k

)
. We have to

count these subsets in another manner. We can split them into those that have n as

an element and those that do not. There are
(
n−1
k−1
)

of the former kind and
(
n−1
k

)
of the

latter kind. Thus there are
(
n−1
k−1
)

+
(
n−1
k

)
in total.

Problem 3.6. Give a combinatorial proof of
(
n
k

)
=
(
n

n−k
)
.

Solution. The subsets of {1, . . . , n} can be constructed by either choosing the elements

that are in the subsets of size k, or by choosing the elements of the complement (which

have size n− k).

Notice that the solution to problem 3.5 is strictly about counting the same thing

in two different ways, while the solution to problem 3.6 is really about counting some

other elements (those of the complement) which are in correspondence with those that

we want. Thus, the underlying argument is really a bijective proof. As we can see from

these examples, they are not essentially different. In chapter 7 we will see how both

solutions are different instances of the same pattern of reasoning, by demonstrating

how they can be reproduced with transformation-driven reasoning.

What does it mean to count in different ways?

So far we have presented informally a proof method where we count the elements of a

set in two different ways, yielding two numbers, which we must conclude are equal. So,

what is a way of counting? and how can two ways of counting be different?

Here we claim that counting the elements of A in two ways consists of representing

A by two different terms, such that its cardinality can be calculated from each term.
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For example, in the case of problem 3.5, we represented the set in question as {X :

X ⊆ {1, . . . , n} ∧ |X| = k} and as A1 ∪A2, where

A1 = {{n} ∪X : X ⊆ {1, . . . , n− 1} ∧ |X| = k − 1}

A2 = {X : X ⊆ {1, . . . , n− 1} ∧ |X| = k},

i.e., the subsets of {1, . . . , n} that have element n, and those that do not. Then, we use

the fact that they are disjoint to show that the cardinality of their union must be the

sum of their cardinalities.

In the following chapters we will show how
(
n−1
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
, in a theory of nat-

ural numbers, can be reduced automatically and validly to A = A1 ∪A2, in a theory of

sets. In general, we will show how arithmetic constants have corresponding set-theory

constants that allow us to translate full terms from the former to the latter, effectively

implementing the kind of reasoning necessary for double counting (and bijective) proofs.

3.1.3 Natural number theory

For the work in this thesis we only need some basic number theory. Thus, we only

present a brief introduction to some of the basic concepts, with an emphasis on their

impact for representation. Our main purpose is to present number theory in a way

that it becomes clear how it can be mechanised, and how our methods (subject of this

thesis) formalise an aspect of the informal style of reasoning typical of the area.

Each positive integer has a unique factorisation into prime factors. This theorem is

called the Unique Factorisation Theorem, or the Fundamental Theorem of Arithmetic.

The uniqueness is commonly stated in terms of the order of the factors. For example,

take the prototypical statement from An Introduction to the Theory of Numbers [50]

(assuming that the existence of a factorisation has already been shown):

The factoring of any integer n > 1 into primes is unique apart from the order

of the prime factors.

Implicitly, the product is being presented as in a list (p1p2 · · · pn), and the uniqueness

is restricted to different permutation classes, i.e., two factorisations of the same number

may be different only if one is a permutation of the other. The theorem can be stated

more concisely in terms of multisets (also called bags), although this is generally not the

case in textbooks. (Finite) multisets are precisely what we obtain from identifying lists

modulo permutations. As their name suggests, they are like sets, where the elements

can appear more than once. Multisets abstract the order of lists and sets abstract the

multiplicity of multisets.
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Then, the uniqueness of the multiset of primes is true without the amendment ‘apart

from the order ’. Thus, the multiset corresponding to a number with prime factorisation

pa11 p
a2
2 · · · p

ak
k is that in which the multiplicity of pi is ai, for every 1 ≤ i ≤ k.

Interestingly, in [50], immediately after proving the unique factorisation theorem they

proceed to show how the usual relations and operations of numbers have interpretations

in terms of the exponents of the prime factors. For example, they show all the following

results:

• The product of two numbers corresponds to adding the exponents in their prime

factorisations.

• That n divides m if and only if all the exponents in the factorisation of n are

smaller than all the exponents in the factorisation of m.

• That the greatest common divisor (gcd) takes the smallest exponents per prime.

• That the least common multiple (lcm) takes the largest exponents per prime.

• That being a perfect square corresponds to having all even exponents.

Then, this can be applied to the following exercise of [50].

Problem 3.7. Prove that if a product ab is a perfect square and gcd(a, b) = 1 then a

and b are also perfect squares.

Solution. Without loss of generality we will show that a is a perfect square.

Notice that a and b have no primes in common, which means that the exponent of any

prime p of a is the same as the exponent of p in ab. We know that the primes of ab

have even exponents, so the exponent of p in a must have been even. This proves that

a is a perfect square.

Lets also take a look at the following textbook problem:

Problem 3.8. Let n be a natural number. Assume that, for every prime p that divides

n, its square p2 also divides it. Prove that n is the product of a square and a cube.

A standard solution to this problem is to take a set of primes pi such that n =

pa11 p
a2
2 · · · p

ak
k . Then we notice that the condition “if p divides n then p2 also divides n”

means that ai 6= 1, for each ai. Then, we need to find x1, x2, . . . , xk and y1, y2, . . . , yk

where

(px11 p
x2
2 · · · p

xk
k )2(py11 p

y2
2 · · · p

yk
k )3 = pa11 p

a2
2 · · · p

ak
k

or simply

p2x1+3y1
1 p2x2+3y2

2 · · · p2xk+3yk
k = pa11 p

a2
2 · · · p

ak
k .

Thus, we only need to prove that for every ai 6= 1 there is a pair xi, yi such that

2xi + 3yi = ai. The proof of this is routine.
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As we will see in the following chapters, this kind of analysis of numbers in terms of

the exponents of their prime factors has a very clear interpretation in terms of multisets,

so a transformation from natural numbers to multisets is useful.

3.1.4 Summary

We have introduced some aspects of combinatorics and number theory with an emphasis

on some styles of reasoning that involve:

• double counting/bijective proofs, where numerical identities are interpreted com-

binatorially, and

• reasoning about the exponents of prime factors to show properties of the numbers.

Later we will investigate how both styles of reasoning can be formalised through the

use of one specific kind of transformations, and how we have partially automated this

process in Isabelle using tools from the Transfer package.

3.2 Isabelle

Isabelle is a logical framework for the mechanisation of reasoning originally developed

by Larry Paulson [52], with significant contributions by Nipkow and Wenzel [49], and

others. It is implemented in the functional language ML, in the style of the Logic

for Computable Functions (LCF) paradigm [24]. As such, it is designed to reason

about recursive functions, for which the typed λ-calculus is particularly suitable. The

terms (used to represent functions, propositions, etc.) are objects of Church’s typed

λ-calculus. Its core logic is a higher-order logic with implication (=⇒), equality (≡)

and the universal quantifier (
∧

), based on Mike Gordon’s HOL [23].

The LCF paradigm inspires a recursive notion of proof, whereby an abstract datatype

thm (of theorems) is defined. The notion of proof relies on a small set of axioms and

inference rules in the kernel (modus ponens for =⇒, reflexivity for ≡, instantiation

for
∧

, etc. [51]). Only terms constructed in ML according these trusted axioms and

inference rules are of type thm. Thus, soundness of proofs in Isabelle relies only on

soundness of the axioms and soundness on the type system (ML), which checks whether

the term is well constructed.

3.2.1 Tactics

Objects of the thm type can be generated through the use of tactics. These are functions

of type thm→ thm seq, i.e., they take a theorem and yield a (possibly infinite) sequence
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of theorems. Thus, ensuring that a tactic application is a valid logical inference is

equivalent to ensuring that the program that computes it (in ML) is well typed, i.e.,

that it always yields a value of type thm seq. Notice that checking that the program

is well typed is logically equivalent, but not actually the same, as checking, after every

application of the tactic, whether every term of the sequence it yields is of type thm.

For example, the program’s type may be checked only once (to ensure that it is a tactic)

and, if the type system was sound, we do not need to check the terms it returns to

know that they are of the right type.

Elements in a sequence yielded by a tactic should be understood as potential branches

for exploration1. A tactic, which produces a theorem sequence out of a theorem, should

be interpreted as being a non-deterministic program for generating a new theorem out

of a pre-existing theorem. One of the main reasons why tactics are not simply defined

deterministically (of type thm→ thm) is their reliance on higher-order unification, which

can yield infinitely many unifiers. Given that there is no universal way to decide which

is the right unifier, all options should remain available. More generally, the branching

that a sequence provides can be exploited for combining tactics (as we will show later

in this chapter), and for search (as we show in chapter 6).

One of the properties of sequences is that they are lazily evaluated, which means that

only the head of the sequence is evaluated, unless we explicitly ask for the computation

of more elements of the sequence. This is an absolutely essential property of sequences,

given the possibility of infinite sequences.

For a user of Isabelle interested in proving a conjecture, tactics seemingly modify the

goal, reducing the conjecture step by step, backwards2, until no more subgoals are left

to prove. Thus, tactics may seem to act on arbitrary statements (which may not be

theorems!). For example, if we want to prove Q[c] and we know
∧
x. P [x] =⇒ Q[x], a

‘modus ponens’ tactic3 based on this fact will reduce Q[c] to P [c]4; the user saw Q[c] as

a goal before, and now the user sees P [c], which may be an unprovable/false statement

(e.g., if it was strictly stronger than Q[c]). Then, P [c] is not of type thm! So, what is

actually happening?

1 Distinct elements in a sequence (branches) should be distinguished from subgoals. Elements in the

sequence can be thought of as OR branches (i.e., it suffices to attend to only one of them), while

subgoals are AND branches (i.e., all of them have to be attended to). An arbitrary number of

subgoals can be encoded within every single element (thm) of the sequence, so no separate structure

is required to encode AND branching. We explain more about subgoals later.

2 Some informal statements associated with backwards reasoning are ‘it suffices to prove. . . ’ and ‘to

prove this we need to show. . . ’. We often use the term reduction.

3 Let us denote this tactic as ‘rule R’, where R is any theorem of the shape A =⇒ B. Notice that the

function rule has type thm→ (thm→ thm seq), i.e., given a theorem it yields a tactic.

4 Notice the reliance on unification to instantiate the universally quantified variable x to c.
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In spite of what the user sees, tactics act on some underlying theorem, and not on the

goal. In general, if the initial goal is to prove Q (as above; we drop [c] for simplicity),

Isabelle will generate the theorem Q =⇒ Q, showing to the user only the proposition

to the left of the implication (Q). This statement is of type thm even if Q itself is

not. In particular, by applying the tactic rule with theorem P =⇒ Q, the system

replaces the occurrences of Q (in the left-hand side of Q =⇒ Q) with P , yielding the

theorem P =⇒ Q, but showing only the left-hand side (P ) to the user. If the user

now applies rule using a theorem P ′′ =⇒ P ′ =⇒ P 5, Isabelle will generate theorem

P ′′ =⇒ P ′ =⇒ Q, and the user will be presented with two separate subgoals P ′′ and

P ′. If one of the subgoals is an existing theorem/axiom, it can be discharged as a

subgoal. To conclude the proof, a sequence of tactics should be applied, finishing in a

state where no subgoals remain (the theorem behind the scenes has been transformed

from Q =⇒ Q to Q).

3.2.1.1 Tactics and goals/subgoals

As we mentioned before, a tactic seemingly acts on goals and it may yield new subgoals,

and potentially discharge others. To the casual user of Isabelle, constructing a proof

consists of repeatedly applying tactics to goals until there are none left to prove. We

explained how this is not actually the case. However, for simplicity will use phrases

like ‘apply tactic to the goal’, but it should be understood that this is inaccurate.

If the goals at a certain point during a proof are JP1; . . . ;PnK, then the underlying

theorem has the shape JP1; . . . ;PnK =⇒ Q, so the goals are really its premises. It is

common to denote the underlying theorem as st (for proof state), and we sometimes

use the expression st[i] to denote the ith subgoal (e.g., in the example st[n] is Pn).

Apart from the fact that the user only sees the goals as output, there are other strong

reasons to think of tactics as acting primarily on goals. Mainly, that the conclusion of

a proof state (Q in the example above) should never change during a proof. Then, it

is always sufficient to think of what the tactics modify in the premises (JP1; . . . ;PnK
in the example). As a matter of fact, it would be disastrous if tactics modified the

conclusion of the proof state (even if validly). For example, if JP1; . . . ;PnK =⇒ Q got

modified by a tactic into JP ′1; . . . ;P
′
kK =⇒ Q′ and eventually the user managed to get

all subgoals discharged, the final theorem would be Q′. However, the original statement

was Q, and there would be little evidence to the user that it got replaced mid-way by

an impostor statement (precisely because the conclusion of the underlying theorem is

5 The expression P ′′ =⇒ P ′ =⇒ P actually means P ′′ =⇒ (P ′ =⇒ P ), from the convention to associate

propositions (and types) outwards from the right. Notice that it is equivalent to (P ′′ ∧ P ′) =⇒ P ,

which cuts out the need to define ∧ in the logic. This is also sometimes abbreviated as JP ′′;P ′K =⇒
P .
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never shown to the user during a proof). In this case, the proof would be valid but

extremely deceptive (it is a proof of something different than the user’s intention).

It is common to have tactics which can be applied to some specific subgoal. For

example, if we wanted to prove Q and after a few tactic applications we have reduced it

to subgoals JP1; . . . ;PnK, then we may want to apply some specific tactic to Pi. Thus,

functions of the form f : N→ (thm→ thm seq) are common, where f(i) is the instance

of the tactic that applies to the ith goal. Tactics can also be applied to all the goals.

For simplicity, we will refer to functions of shapes such as f : α→ (thm→ thm seq) as

tactics. Strictly speaking, the tactics are f(a), for every a of type α, but the distinction

is cumbersome for practical purposes. We think of these as parameters of the tactic.

3.2.1.2 Tactics in the proof environment

As mentioned above, tactics are functions in ML, but the interface hides this for the

casual user. In general, a proof is constructed within a proof environment called Isar

[65]. The simplest way to use tactics in the proof environment is by invoking them

through some things called methods. To do this, the user writes

apply 〈method〉.

For practical purposes, methods are indistinguishable from tactics, so we will use

these expressions interchangeably. The important thing to notice is that the result

of apply 〈method〉 is the first theorem (if any) of the sequence yielded by the tactic

invoked by 〈method〉. Thus, this theorem becomes the proof state. In an output window

the user will be shown the current subgoals (corresponding to such theorem). A full

proof might look like a sequence of tactic applications as follows:

apply (t1)

apply (t2)

...

by (tn)

where the keyword by only signals that the proof is complete. The keyword done can

be used similarly. There are other ways of presenting proofs in Isar, but we will not

discuss that until section 3.2.4.
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3.2.1.3 Tacticals

Also inherited from the LCF paradigm is the concept of tactical, or tactic combinator.

The idea is that existing tactics may be combined to build more complex tactics. A

tactical is a function that take tactics as arguments and yields another tactic. The most

common tacticals are THEN, REPEAT, EVERY, TRY, ORELSE, APPEND, plus many variants

of them. Their names are usually quite suggestive of what they do. For example,

(t1 THEN t2) st applies t1 to st and then it applies tactic t2 to the result. It is

important to notice that t1 yields a theorem sequence, so t2 is applied to every branch

of the sequence, yielding a sequence of theorem sequences. Thus, the result is flattened

to yield a theorem sequence. One of the interesting consequences of this is that, if t2

yields an empty sequence when applied to the first result of t1(st), it does not mean

necessarily that (t1 THEN t2) st will yield an empty sequence. This differentiates the

tactic (t1 THEN t2) from the sequential application:

apply (t1)

apply (t2)

in the proof environment, where the proof state after apply (t1) will be the first branch,

which yields no results when we apply t2. In this case, the output window would show

Failed to apply proof method, and we would not be able to proceed in the proof.

On the other hand, the application of a method that invokes (t1 THEN t2) may yield a

result.

The tacticals provide a tool set for constructing new tactics as functions in ML. These

are not designed to be used by the casual user of Isabelle, who will usually remain in

the proof environment.

3.2.2 Isabelle/HOL

Everything we have described up to this point is in the core logic of Isabelle, also called

its meta-logic. But Isabelle is a framework designed for the implementation of other

logics (called object-logics). The most commonly used and developed object-logic in

Isabelle is Higher Order Logic (HOL) [49] (similar to the meta-logic, but at the object-

level). Other logics, like First Order Logic (FOL), Zermelo-Fraenkel set theory (ZF),

and Constructive Type Theory (CTT) are also implemented as object-logics. This has

its own logical constants (∧, ∨, −→, ∀, ∃, ¬, =) and a type bool (which we also denote

as B) with two distinguished objects True and False (which we also denote as > and

⊥, respectively).

The interpretation that we should give to the meta-logic, to distinguish it from the

object-logics, is that, while the meta-logic is concerned with logical entities such as
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propositions (which include rules, formed by =⇒ and definitions, formed by ≡), the

entities of the object-logics are specific to each. For example, HOL’s entities are func-

tions (and more theory-specific entities), while FOL’s objects can be sets (for example,

ZF is an instance FOL), or of natural numbers (e.g., with Peano’s axioms).

We refer to the HOL object-logic as Isabelle/HOL. Due to the similarities between

the meta-logic and Isabelle/HOL, the object-logic inherits many of the meta-logic’s

characteristics. For example the axioms for symbols =⇒, ≡ and
∧

of the meta-logic

are lifted to the corresponding −→, = and ∀ of HOL. The higher-order nature of both

allows for the extensionality axiom to to be lifted as well (if f x = g x for every x, then

f = g). Apart from the extra symbols, the main distinction between the Isabelle/HOL

and the meta-logic is that Isabelle/HOL has the axiom of choice.

Throughout this thesis we will write −→, ∀ and = instead of the corresponding =⇒,∧
and ≡, as we are not interested in their distinction. Even though a distinction exists

between them in Isabelle/HOL, it is irrelevant for our purposes.

3.2.2.1 Types in Isabelle/HOL

Terms in Isabelle/HOL can be constructed according to Church’s simply typed lambda

calculus. Terms represent either entities of some type τ , or functions, which are entities

in some function type τ1 → τ2. We write t : α to express that a term t has type α, but

in Isabelle the same is written as t :: ’a6.

Functions of arity 2 are usually represented by the type τ1 → (τ2 → τ) and, in general,

functions with arity n are represented by the type τ1 → (τ2 → · · · → (τn → τ)· · ·)7.
This means that product types are not necessary, although they are defined (but not

commonly used). This is the reason why we write (f a) b (or simply f a b) instead of

f(a, b).

Defining new types

New types in Isabelle/HOL may be constructed in a number of ways. The basic rules

of the game are that type variables may be used, and new constructor functions may

be introduced. The main Isabelle commands for defining new types are are typedecl,

datatype and typedef.

The command typedecl simply introduces a new name, with nothing to distinguish

it from any other type. Thus, it is common to use this along with the command

axiomatization to specify some properties about the new type (and possible incon-

sistencies!). Type variables may or may not be used. For example, the type α set

6 The apostrophe preceding ’a is used to identify type variables in ML.

7 We usually avoid the brackets and simply write τ1 → τ2 → τ and τ1 → τ2 → · · · → τn → τ instead.
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of Isabelle/HOL is constructed using typedecl and two axioms. This means that, for

every type α, we may talk about the sets whose elements live in α. This defines a

polymorphic type (α set can take many forms), and the declaration determines the

arity of the constructor set (1 in this case). Alternatively, we could introduce a non-

polymorphic type V (V being a type constant, i.e., a type constructor with arity 0) to

represent the sets in the Von Neumann universe of ZFC, and provide an appropriate

axiomatisation.

The command datatype is a recursive way of introducing a new type using con-

structor functions. Types like that of natural numbers nat (which we will generally

denote as N) or α list are defined like this in Isabelle/HOL. The former is built from

a constant 0 and the constructor function Suc (the successor), and the latter from the

empty list [ ] and the Cons constructor which inserts some entity a : α to the head of

the list. Unlike typedecl, which only introduces a name for the type, the command

datatype introduces various axioms. For example, the constructors are assumed to

be injective, and the resulting type’s universe is determined by an induction schema

introduced automatically, matching the recursion in the construction.

The command typedef allows us to introduce a new type from a set out of an

existing type. For example, in Isabelle/HOL, the type α multiset is constructed

from {f : α→ N | finite {x : α | f(x) > 0}}, i.e., the set of N-valued functions with

only a finite set of non-zero values. Under the surface, this is actually implemented

by declaring a new type using typedecl, and axiomatising appropriately a relation

between the old and the new type, through two morphisms Abs (from the old type

to the new type), and Rep (conversely). The axiomatisation is essentially that Abs is

bijective between the source set and the new type, and that Rep is its inverse. Any

time typedef is invoked, it is necessary to prove that the source set is not empty (to

avoid inconsistencies, because the logic assumes that types are not empty).

It is also possible to declare new types using the quotient type command, but we

will describe this below, where we introduce the Transfer package.

Polymorphism and type classes

Terms inherit the polymorphism of types. For example, the term ‘{}’ represents the

empty set, but does not specify of which type. Thus, ‘{}’ is itself polymorphic; we

cannot infer its type just by analysing the expression, and that is fine (because for

every type α, there is an empty set {} : α set). In general, new constants for polymor-

phic types may be defined polymorphically (e.g., the empty set or the empty list), or

instantiated to some specific type (e.g., the set that contains all natural numbers).

Other constants may be defined with only some polymorphism. For example, the

constants 0, + and ≤ may apply to natural numbers, integers, and more. Thus, they
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are defined polymorphically. However, we may not necessarily want to define these

constants for every type, so their polymorphism has to be restricted. This is handled

by type classes [27]. A new constant may be defined polymorphically, but with some

assumptions. For example, we may want ≤ to be transitive, + to be associative and 0

to be the identity with respect to +. All of this is possible by defining a type class (see

figure 3.2). Then, in a term such as ‘x+0 ≤ x’ the type of x cannot be totally inferred,

class preordered comm monoid =

fixes leq : α→ α→ bool (infixl ≤)
and plus : α→ α→ α (infixl +)

and 0 : α

assumes ‘∀x y z. x ≤ y −→ y ≤ z −→ x ≤ z’
and ‘∀x y z. x+ (y + z) = (x+ y) + z’

and ‘∀x y z. x+ 0 = x’

Figure 3.2: An example of a type class declaration (for preordered commutative monoids).

but it is known to be restricted to the type class in which the constants + and ≤ are

defined. To show that a type belongs to a specific type class, all the corresponding

constants have to be defined for the type and they have to be shown to satisfy the

assumptions of the class (this is done with the instantiation command). For example,

order, addition and zero can be defined separately for natural numbers and integers

and then shown to satisfy the assumptions of the class preordered comm monoid. Once

this is done, the symbol defined in the class is overloaded for both definitions.

It should be noted that preordered comm monoid is just an example that we con-

structed to clarify the concept of type class. In practice, type classes are usually

declared in a more modular way. For example, the three constants of our example are

actually defined in separate classes. To define it given the existing classes, we can use

the built-in operators for agglomerating classes, e.g.:

preordered comm monoid = preorder + ab semigroup add + monoid add.

where the preorder provides the constant ≤ and its assumption, ab semigroup add

provides commutativity and monoid add provides 0; note that the latter two actually

share the constant +, which they inherit from a common class.

This way of agglomerating classes creates an acyclic directed graph. The class type

is the initial element of the graph (where completely polymorphic entities fall).

A type may be in many classes. Thus the notion of sort is defined as a set of classes.

The sort of any type is the most general set of type classes (highest in the graph) to

which it belongs. For example, in the term 0 ≤ x, the type of x must be of a sort where

38



3.2 Isabelle

0 and ≤ are defined (a quick query in Isabelle shows this to be {zero, ord}).

3.2.3 The Transfer package

We mentioned above that there are various ways of defining new types in Isabelle/HOL.

In particular, we described the command typedef, which declares a new type (an ab-

stract type) from an existing set (of a raw type). Similar to this is the command

quotient type which declares a new type from an existing set, but identifies elements

according to an equivalence relation. Quotient operations of types have been imple-

mented and re-implemented in Isabelle/HOL a few times.

Harrison [28] first implemented (in HOL Light, a non-Isabelle implementation of

HOL) a notion of quotient types for higher order logic with the purpose of formalising

real numbers. Homeier [31] generalised Harrison’s construction by concretising a few

notions that characterise the behaviour of functions between abstract types, in terms

of their behaviour between their raw types (and the analogous behaviours of products,

lists, and sets). This prompted a general notion of lifting, which captures the idea

that theorems about some types can be lifted to quotient types, provided that certain

respectfulness properties are satisfied.

Homeier’s notions were defined and implemented in Isabelle/HOL by Kaliszyk and

Urban [37] in 2011. This included an implementation of the notion of lifting, so that

quotient types could be defined and theorems could be lifted from the raw type to the

abstract type. Huffman and Kunčar [34] later identified that the notions of Homeier

were not restricted to types specifically defined as quotients, but they could be used to

describe relations between arbitrary types (e.g., subtype relations like that of natural

numbers in integers). Thus, based on this and Huffman’s previous work mechanising

the transference of theorems between standard and non-standard analysis [33], Huffman

and Kunčar’ put together the Transfer package, and it was included in the Isabelle/HOL

2013 distribution, with a reimplementation of quotient types based on their more gen-

eral platform. Moreover, the command typedef was also re-implemented on top of the

Transfer package.

Furthermore, and more importantly, Huffman and Kunčar noticed that some of

Homeier’s notions (developed for quotient types) were analogous to some of Reynolds

notions of relational parametricity [56], which follow from interpreting types as rela-

tions. Reynolds shows that a constant defined parametrically over polymorphic types is

preserved over some relation between different type instances. Huffman and Kunčar no-

ticed that this analogy implied, in particular, that checking that two terms are related

through a (quotient) relation should be analogous to type inference.

Thus, Huffman and Kunčar implemented an efficient mechanism for matching terms
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through quotient relations, and this is the core of the Transfer package. The mechanism

works by using a class of theorems called transfer rules, which are essentially theorems

of preservation (in the spirit of Homeier’s). In particular, (R1 Z⇒ R2) f g means that f

and g behave similarly at opposing ends of a couple of (quotient) relations R1 and R2.

In particular, a parametrically-defined polymorphic function f : α → β satisfies

(A Z⇒ B) f f , for some A : α1 → α2 and B : β1 → β2, if α1, α2, β1 and β2 are instances

of polymorphic types α and β, respectively. This captures Reynolds’ relational para-

metricity, in the language of Homeier (who actually used the symbol ===> instead of Z⇒,

but Huffman and Kunčar have changed the notation, even though the implementation

in Isabelle uses ===>).

Some transfer rules are defined automatically when the user defines a new type either

through quotient type or through typedef. The user is free to add more transfer rules

manually, provided that they prove the corresponding preservation theorem. The main

methods of the transfer package are transfer and transfer′. They try to automati-

cally match the goal sentence to a new one related by either equivalence or implication,

inferring this relation from the transfer rules. We will explain the theory and seman-

tics (how the transfer mechanisms can be viewed in terms of underlying mathematical

structures) of this in more detail in chapter 4, in the light of our more general theory.

We have taken full advantage of the generality of the transfer package as a means

of automating the translation between sentences across domains which are related by

what we consider an appropriate and general notion of structural transformation, which

is introduced in chapter 4.

3.2.4 Presentation, knowledge, and automation in Isabelle

Developments in Isabelle come in the shape of Theory files, which are linked by a

dependency relation. Every new Theory file imports other theory files, and cyclic

dependencies are obviously not permitted. Each Theory file may have definitions and

theorems (which may be called lemma, theorem or corollary), and every theorem needs

to have a complete proof. Other operations are possible, like defining new ML functions

(e.g., tactics), or adding new axioms.

As mentioned above, proofs consist of sequential tactic applications. This, in the

proof environment, looks like a sequence of instructions on how to prove the theorem.

Every instruction typically has the shape apply 〈methodi〉. Only in the output win-

dow can the user see how the subgoals are being modified by the tactics. However,

the ‘official’ method to present proofs is as structured proofs [48, 64] (inspired by the

proof language Mizar; hence the name Isar of the proof environment). In structured

proofs, many of the underlying tactics are hidden. The resulting presentation is usually
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more human-readable. It can be thought of as declarative, rather than procedural. A

structured proof may have words like assume, have, hence, moreover, thus, as well

as references to other propositions (including ones proved locally, within the proof).

Figure 3.3 shows a typical example of the pattern of a structured proof.

theorem T: 〈statement0〉 =⇒ 〈statementn〉
proof -

assume A : 〈statement0〉
have P : 〈statement1〉
apply 〈method1〉
using A by 〈method2〉
...

hence 〈statementn−1〉
by 〈methodk−1〉

from this and P show Q : 〈statementn〉
by 〈methodk〉

qed

Figure 3.3: A typical pattern seen in structured proofs.

3.2.4.1 Libraries and the AFP

Isabelle has had plenty of development, mostly in areas of computer science (e.g.,

programs are constructed and their correctness/security is proved within Isabelle), but

also some pure mathematics and even some applications to other fields, like economics

and physics. The Archive of Formal Proofs8 (AFP) is a public repository where all

kinds of developments are kept. Most of these developments are in Isabelle/HOL.

Many basic branches of mathematics have had some development in Isabelle/HOL.

The most commonly used theories are usually stored in the Isabelle standard libraries

apart from the AFP (i.e., they come in the standard Isabelle package). Some examples

of these theories are Number Theory, Finite Set theory, Partial Orders, etc.

It is important to note that, in Isabelle/HOL, objects like sets may be defined in

ways which are not equivalent to those of ZF. For example, whereas the expression

{a} ∪ {{a}} is syntactically correct in ZF, it is not in HOL. In Isabelle, if a is of type

α then {a} is of type α set and {{a}} is of type (α set) set . The operator ∪ is of

type β set → β set → β set , so it does not admit two arguments of different type.

8 http://www.isa-afp.org/
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3.2.4.2 Specific tactics and automation in Isabelle

We have described tactics as the main tool for constructing proofs. Isabelle/HOL has a

large selection of tactics that the user can apply in proofs. There are tactics which con-

sist of one-step modifications of the goal. For example, rule R described above, which

performs one-step backward resolution, and subst R, which does a substitution of a

term given an equality theorem R. There are tactics that apply simple operations itera-

tively. For example, tactics resolve tac [R1, . . . , Rn] and unfolding [R1, . . . , Rn] are

analogous to rule R and subst R , respectively, but do it iteratively, using whichever

of the theorems in the list are applicable. A few examples of more sophisticated tactics

built into Isabelle/HOL 2015 are:

• simp: This simplifier is an automatic rewriting tool, which rewrites according

to a set of equality theorems. For example, using a theorem of the form a = b,

the simplifier will replace any appearances of a in the goal with b. Equalities

may have conditions, which get introduced as subgoals when rewriting. All the

introduced conditions need to be proved by the simplifier itself (for the process to

be terminated as a successful simplification). A standard set of known equalities

are used, but users can add their own. If the directed graph of equalities (from

left to right) has cycles then the simplifier may loop.

• blast: This tactic is based on tableaux methods. It is specially powerful for

strictly logical reasoning.

• auto and safe: These tactics perform simplification plus some classical reason-

ing. They are similar, except that auto may yield stronger subgoals (and maybe

unprovable), and safe will not.

• presburger, linarith and arith: These are implementations of decision proce-

dures for fragments of arithmetic.

• meson, smt and metis [35]: These are very powerful tactics, but unlike most of the

tactics described above, they use no domain-specific lemmas (like the simplifier

uses equality lemmas) unless provided explicitly as input. Their power relies on

translations from HOL to first-order logic and back (which is not always possible).

Apart from the access to these tactics, the user may invoke some very powerful exter-

nal provers like E, SPASS, Vampire, CVC3 and Z3, through the Sledgehammer tool [53].

Being external, these provers do not return valid proofs in Isabelle/HOL, even if they

find a proof in their own logic. However, they return ‘suggestions’, which Sledgeham-

mer uses to attempt a proof reconstruction within Isabelle. Sometimes Sledgehammer

manages to construct a structured (Isar) proof with these suggestions, but more typ-

ically the tactic metis manages to prove the goal using only a collection of lemmas
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suggested by the external provers (in no particular order, and with no suggestion of

structure!).

A few usual patterns that one finds in Isabelle proofs which were constructed with

little human effort are:

by 〈method〉
unfolding 〈defs〉
by 〈method〉

unfolding 〈defs〉
apply 〈method〉
by (metis 〈thms〉)

where method is either one of the tactics from the list above. The idea of this pattern is

that some unusual definitions get expanded (by the tactic unfolding), then a method

like simp, auto or safe may reformulate the goal in a simpler way, and then the external

provers suggest a list of theorems 〈thms〉 with which metis finishes the proof. We refer

to this pattern as the Standard Proving Method (SPM), but we will not elaborate more

on it on this chapter. We come back to it in chapter 7, when we discuss effort in proofs.

3.2.4.3 Counterexample checkers

Isabelle also has available two counterexample checkers; namely Quickcheck [13] and

Nitpick [9]. These are programs that try to generate counterexamples for a given

statement. They use random generation, calculation and automatic proving methods

in an attempt to prove False (a contradiction). They can be very useful tools for figuring

out whether one is missing a premise or a type constraint. We have given them some

interesting uses for automation (chapter 6) and testing (chapter 7).

3.2.5 Summary

We have described broadly the interactive theorem-proving framework Isabelle and its

logic HOL. We emphasised the role of tactics as the reasoning step units in Isabelle, and

described some ways in which these can be constructed (for the formal implementation

of reasoning methods). We described some of the existing tools for automatic reasoning,

and gave a brief overview of the status of formal theory developments in Isabelle.

For the work presented in this thesis we used Isabelle/HOL 2015. Thus, any time we

mention ‘our Isabelle proof’, or ‘our tactic for Isabelle’, it should be understood that

we are referring to Isabelle/HOL 2015.
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Our search for a suitable notion of transformation is inspired by the shape and role

of many fundamental theorems in specific branches of mathematics that we consider

to be representational results. A few examples of these theorems are those that link

linear maps to matrices in linear algebra, or those that link complex numbers to R2 in

complex analysis. In discrete mathematics there a few such fundamental results as well,

and we focus on these for the mechanisation and implementation of transformations

and proofs (discussed in chapters 5 and 7). However, we want to emphasise that the

notion of transformation described in this chapter was constructed with the intention

to keep it general enough for other applications.

The main motivation for rethinking transformations, as we do in this chapter, is to

account for the open-endedness of the transformations in question. In category theory,

the morphisms of specific categories account for some preservation of structure relative

to the category. In the category of groups the morphisms are those that preserve the

group operation; in the category of rings they preserve the ring operations, etc. So how

should we analyse the transformation between linear maps and matrices in this light?

Is it a group morphism? It is because it preserves addition. Is it a ring morphism?

It is because, apart form addition, it preserves multiplication/composition. What else

is it? Lots of things! The richness of the transformation means that we will run out

of names of categories in which it is a morphism (application, composition, addition,

scalar multiplication are all preserved; this is more structure than specific categories

usually consider simultaneously). Then, if we want to study this transformation in

depth, any known category is insufficient. So it prompts the question: what category

(if any) accounts for open-ended preservation of structure? We provide a candidate

in this chapter (in the context of higher-order superstructures). The open-endedness

consideration forces us to put one foot in model theory.

Our search for the category of such open-ended morphisms is an attempt to provide

some uniform ground for reasoning about a diverse range of transformations. We are

more interested in the preservation-of-structure aspect of the transformations, rather

than their role from a category theoretical perspective. In other words, we focus only

a bit on the transformations as arrows in the category, but mostly we focus on the

internal structure of the transformations. The category-theoretic results are presented

45



4 A Theory of Transformations

only to put our category in context, to be compared to other categories (groups, rings,

vector spaces, etc.).

The theory presented here can be read in two ways:

1. As a formal account of the open-ended morphisms described above.

2. As the semantic account of Transfer package’s mechanisms.

It is important to highlight that by semantic (above), we mean that we focus on the

structures, i.e., we study how the mathematical entities relate to each other by trans-

formations rather than the proof-theoretic (syntactic) mechanisms for reasoning along

transformations. At the end of this chapter we describe how the Transfer mechanisms

work, and tie together the syntactic and semantic perspectives.

It should be clear that our contribution in this chapter is only regarding the semantic

perspective and not the syntactic one. The latter was developed by the authors of

the Transfer package [34] (for their design and implementation of the mechanisms in

Isabelle/HOL), and to the independently developed notion of generalised rewriting [60],

and its applications into the Coq system [68].

4.1 Structures and transformations

For this theory we take the perspective of higher-order logics, but it should be noted

that most notions that we describe here could easily be adapted for other foundations.

On notation

Following the conventions of higher-order logics, functions are defined between two

types, and a function from type α to type β has type α → β. We represent multi-

argument functions in their curried form: as single-argument functions that take func-

tions as values, e.g., a function f : α × β → γ is represented as f : α → (β → γ) (also

written f : α→ β → γ from a convention to associate from the right), thus allowing us

to forgo of the product type constructor (×). Consistently with this, we write (f a) b

(or simply f a b) instead of f(a, b) (note that f takes one argument of type α and yields

a function of type β → γ; in other words, f a represents the function f(a, )). For the

same purpose, we use the λ operator and write (λa. f a b) to represent the function

where the second argument has been fixed). Moreover, a relation R that would other-

wise be represented as a subset of α × β is represented by a function R : α → β → B
where B (also called bool) is a type consisting of only two entities > (true) and ⊥
(false), and the function is the well known characteristic or indicator function of R).
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4.1 Structures and transformations

We borrow some notation from [34] (where it applies), but often take some liberties,

such as ignoring the distinction between normal and infixed operators, and using ∀ and

∃ where they use All and Ex.

Moreover, we often ignore distinctions between sets and types (and this is well moti-

vated). For example, we identify the type nat of natural number with the set N without

many concerns.

4.1.1 Superstructures

First we study in what kind of world the entities in question (mathematical objects)

live, and then we see how a notion of transformation with certain desirable properties

can fit into this world. The semantics we give to Isabelle/HOL theories is similar to

that given in [42] for the HOL Light kernel with conservative extensions, and in [43]

for Isabelle/HOL for slightly more complex extensions. Types are interpreted as non-

empty sets, there is a distinguished set B which consists of boolean values {>,⊥},
functions are interpreted as classical set-theoretical functions, the truth of statements

depends on whether they map to element >, and interpretations are parametrised over

the type variables of polymorphic types1. We will see that transformations can be

seen as relations between models of HOL theories and, perhaps more interestingly, that

transformations themselves are sometimes contained in extensions of the models.

We define a structure from the bottom up. In traditional model-theoretical for-

malisms, a universe (or superstructure) is defined by a class of basic entities (often just

the empty set), and the rest of the structure is defined by the recursive (often transfi-

nite) application of the power-set constructor function. In the context of higher-order

logic we do it analogously: we start with a non-trivial base (a universe of typed enti-

ties), and we extend this through the recursive application of the function constructor

(→).

Definition 4.1. If T is a set of types, the functional type structure T→ is defined

recursively as follows:

• if τ ∈ T then τ ∈ T→

• if τ1 ∈ T→ and τ2 ∈ T→ then τ1 → τ2 ∈ T→.

In other words, T→ is the closure of T under the constructor→. Given that we are only

interested in functional type structures, we can refer to them simply as type structures.

1 Polymorphic types are type families over which functions can be defined without the need of specifying

a concrete type.
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4 A Theory of Transformations

The type structure provides the frame of a structure, but the actual objects that

terms in higher-order logic represent are the entities of these types. With the interpre-

tation of types as sets and families of functions between them, we can define interpre-

tations (models or superstructures) for theories in higher-order logic, which helps us to

reframe things in a familiar set-theoretic context.

Definition 4.2. We assume that every type has a non-empty set associated with it.

We call this its universe. Moreover, we assume that the universes of any two types

are disjoint. The universe of a type τ is written |τ |. If τ1 and τ2 are types, we define

|τ1 → τ2| as the set of all functions2 from |τ1| to |τ2|.

Then we can extend the notion of universe to sets of types. Ultimately, our so that

we can talk, for example, about the universe of a type structure T→.

Definition 4.3. If T is a set of types, we define its universe UT as
⋃
τ∈T |τ |. In other

words, UT is the set of entities with any type τ , with τ ∈ T . Then, we can refer to

UT→ as the superstructure of T ; a universe that contains the entities associated to T ,

plus all the definable functions between them. We also refer to UT as the ground of

UT→ .

Defining superstructures is not unmotivated. As we will see, the most common

structures of traditional mathematical (sets, groups, rings, spaces, . . . ) are all captured

inside superstructures. In the same manner, we will define a notion of transformation

in a way that the respective notions of morphism (for the aforementioned structures)

is accounted for.

Example 4.1. Let N be the natural number type and B be the boolean type. If N =

{B,N}, its superstructure UN→ contains all natural numbers, plus the basic arithmetic

operations (e.g., Suc,+, ∗, . . .). Moreover, our favourite arithmetic relations also live

there (=, <) because they can be represented as boolean-valued functions (with type

N → N → B). Furthermore, there are logical operator-entities ¬, ∧ , ∨ , −→ as well

as quantifier-entities ∀,∃ (which have type (N → B) → B). Thus, a full interpretation

of a basic theory of arithmetic can be given.

In such a superstructure of natural numbers, we can find, amongst all possible oper-

ators, those giving it a monoid (a semigroup with identity) structure, those giving it a

linear order structure, or even those giving it ad-hoc topologies (sets can be represented

2 The approach in which every function type is interpreted as the set of all functions is called full se-

mantics. This is the convention used by Kunčar and Popescu [43]. Alternatively, Henkin semantics

[19] may be used, wherein every type |τ1 → τ2| is interpreted as a (countable) fraction of all functions

from |τ1| to |τ2| (where only definable functions are considered as part of the model). The interpre-

tations have different model-theoretical properties, but the choice is irrelevant for our purposes, as

we do not use any result that is valid for one interpretation which is not valid for the other.
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4.1 Structures and transformations

as functions from N to B, and the set operators as functions with N→ B as arguments

and values).

Example 4.2. The type α set is the type of sets with elements of type α. Let

Sα = {B, α, α set , (α set) set , ((α set) set) set , . . .}, for some type α. Then, US→α

is a universe for a basic set theory.

Let β be any type from the set {α, α set , (α set) set , . . .}. The basic set operators

and relations, such as

∈ : β → β set → B ∪ : β set → β set → β set

⊆ : β set → β set → B ∩ : β set → β set → β set

live in US→α . Other more sophisticated operators also live in there. For example,

the power-set operator Pow : β set → (β set) set lives in US→α , as well as the set

comprehension function Collect : (β → B)→ β set .

In general, any theory in Isabelle/HOL which uses no type variables has a trivial

interpretation into a superstructure. Polymorphic theories, which make use of type

variables (e.g., where we have theorems about entities of α set, for any type α), have

an interpretation for each valid instantiation of the type variables. In other words,

a polymorphic theory refers to many superstructures at once: one for every possible

instantiation of its type variables (recall that not all type instantiations are necessarily

possible in an Isabelle/HOL theory, as polymorphism is constrained by type classes.

See section 3.2.2.1).

4.1.2 Ground transformations

As with superstructures, we define transformations from the ground up; in terms of a

ground transformation and an extension of it into a superstructural transformation, to

which we will also refer simply as structural transformations. The relation between a

ground transformation and a superstructural transformation will be analogous to the

relation between a ground UT and its superstructure UT→ .

Let UA→ and UB→ be superstructures.

Definition 4.4. A ground transformation between UA and UB is a set R where every

R ∈ R is a relation R : α→ β → B between some α ∈ A and some β ∈ B.

Note that the relational nature of a transformation makes it possible to transform

one entity to many other entities, even of various types (by different relations belonging

to the transformation).
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4 A Theory of Transformations

We have given a way to relate two unstructured universes. To relate the superstruc-

tures we need some notion of ‘extension’ of the transformation. So the question is:

given a transformation (in this case a set of relations) between two grounds, is there a

natural way of extending it to the structures built on top of them? Below we suggest

a general notion which accounts for the transformations we are interested in.

Definition 4.5. A structure relator S is any function that takes two relations R1 of

type α1 → β1 → B and R2 of type α2 → β2 → B, in which the result of the application

(S R1R2) has type (α1 → α2)→ (β1 → β2)→ B.

If R is a ground transformation between UA and UB, and two relations R1 and R2

(of R) relate entities from the grounds, the element S R1R2 relates functions of the

superstructures UA→ and UB→ . Thus, we can see any S as a specific rule for extending

a ground transformation R to the superstructures.

Definition 4.6. Let R be a transformation between two grounds UA and UB, and

let S be a structure relator. The S-structural extension of R, written RS , is defined

recursively as follows:

• If R ∈ R then R ∈ RS .

• If R1 ∈ RS and R2 ∈ RS then (S R1R2) ∈ RS .

Thus, if a ground transformation R relates UA and UB, its S-structural extension

RS relates their respective superstructures UA→ and UB→ . We refer to a structural

extension of a ground transformation as a S-structural transformation or simply as a

S-transformation.

We have established a very general way of talking about structural transformations,

based on structure relators. Next we will connect the concepts of our theory with the

operations built into the transfer tool. In particular, we focus on the standard function

relator (denoted Z⇒) which is the basis for the transfer mechanisms. We show that it

accounts for the well known notions of morphism.

4.1.3 Standard functional extension

Typically, a structure-preserving map is characterised by a commutative diagram such

as the following:

α1 α2

β1 β2

t1 t2

f

g
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4.1 Structures and transformations

Then we would say that f : α1 → α2 and g : β1 → β2 are in correspondence with

each other with respect to a pair of maps t1 : α1 → β1 and t2 : α2 → β2. Formally, we

would write: ∀x : α1. t2 (f x) = g (t1 x), or simply t2 ◦ f = g ◦ t1.

However, our original notion of transformation is relational, so let us adapt this notion

of structure-preserving functions to structure-preserving binary relations. Let R1 :

α1 → β1 → B and R2 : α2 → β2 → B be binary relations. We define correspondence of

functions in terms of structure relators.

Definition 4.7. The standard functional extension of two relations R1 : α1 → β1 → B
and R2 : α2 → β2 → B (written R1 Z⇒ R2) is a relation that relates two functions

f : α1 → α2 and g : β1 → β2 whenever they satisfy the following property:

∀ a : α1. ∀ b : β1. R1 a b −→ R2 (f a) (g b)

The operator Z⇒ is what we call the standard function relator. We write (R1 Z⇒ R2) f g

to say that f and g are related by (R1 Z⇒ R2), and it means that the functions f and

g map arguments related by R1 to values related by R2. Notice that if R1 and R2

happened to be functional relations, with functions tR1 and tR2 to represent them, the

property would be: ∀ a : α1. ∀ b : β1. (tR1 a = b −→ tR2 (f a) = g b) , which is clearly

equivalent to tR2 ◦ f = g ◦ tR1 , showing that it generalises the notion of structure-

preserving mapping appropriately.

Using Z⇒ we can also express correspondence between functions with higher arities.

To show this, take two n-ary functions f and g, and a set of n + 1 relations with the

following types:

R1 : α1 → β1 → B

f : α1 → α2 → · · · → αn → α R2 : α2 → β2 → B
...

g : β1 → β2 → · · · → βn → β Rn : αn → βn → B

R : α→ β → B.

Then, we can express correspondence between f and g by nesting the Z⇒ operator as

follows:

(R1 Z⇒ (R2 Z⇒ · · · Z⇒ (Rn Z⇒ R)· · ·)) f g,

which we can write simply as (R1 Z⇒ R2 Z⇒ · · · Z⇒ Rn Z⇒ R) f g. For simplicity, let us

examine the case where n = 2, to show that the expression captures correspondence.

We can concede that an inductive argument would generalise it for any arity. Suppose
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4 A Theory of Transformations

(R1 Z⇒ R2 Z⇒ R) f g. Using the definition of Z⇒ we can expand the expression to:3

∀ a1 b1. [R1 a1 b1 −→ (R2 Z⇒ R) (f a1) (g b1)] .

Expanding again we get

∀ a1 b1. [R1 a1 b1 −→ (∀a2 b2. [R2 a2 b2 −→ R (f a1 a2) (g b1 b2)]] .

It is easy to see that this is equivalent to

∀ a1 b1 a2 b2. [R1 a1 b1 ∧ R2 a2 b2 −→ R (f a1 a2) (g b1 b2)] .

Then, by induction we can show that (R1 Z⇒ · · · Z⇒ Rn Z⇒ R) f g actually means:

∀ a1 b1 · · · an bn. [R1 a1 b1 ∧ · · · ∧ Rn an bn −→ R (f a1 . . . an) (g b1 . . . bn)] ,

which corresponds intuitively to the legend ‘related arguments map to related values’.

As a graphic aid, see the ‘commutative diagram’ below, where the edges representing

the relations can be traversed in any direction. The multi-arguments of the functions

are represented in their traditional product form for simplicity.

α1 × · · · × αn α

β1 × · · · × βn β

R1· · ·Rn R

f

g

As definition 4.6 specifies, we write R Z⇒ to express the Z⇒-structural extension of R.

Thus, the R Z⇒ is a morphism between superstructures that can account for many

of the usual notions of morphism between structures (e.g., monoid, group, or ring

morphisms). It can also be shown that any class of superstructures and their S-

transformations forms a category (for any structure relator S), and that this category

is related to well known categories. This is investigated later, but first let us examine

some examples.

Let N = {N,B}. Then, as shown in example 4.1, UN→ is an interpretation of

basic number theory. Let M = {N multiset ,B}. Then, UM→ is an interpretation of

3 From this point on we will start hiding the types of entities, and avoid the repetitive use of quantifiers

(e.g., writing ∀ a b. instead of ∀a.∀b.).
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4.1 Structures and transformations

basic multiset theory. To build a transformation between these two superstructures we

start with relation BN : N multiset → N → B, which relates every positive natural

number with the bag (multiset) of its factorisation in primes. As we will see in the

examples below, the ground transformation also needs to include boolean operators eq

and imp. Thus, we consider the Z⇒-structural extension of {BN, eq, imp}, and show how

the well known operators of the superstructure of N map to well known operators of

the superstructure of M . We call this transformation the numbers-as-bags-of-primes

transformation. This transformation is explored in depth in chapter 5.

Example 4.3. Let ∗ : N→ N→ N be the usual multiplication and ] : α multiset →
α multiset → α multiset the ‘addition’ of multisets (in which the multiplicities are

added per element). Then we have (BN Z⇒ BN Z⇒ BN) ] ∗. This is due to the law of

exponents papb = pa+b.

Example 4.4. Let exp : N → N → N be the exponentiation function of natural

numbers and smult : α multiset → N → α multiset a ‘scalar multiplication’ of

multisets (in which each multiplicity is multiplied by the natural number). Then we

have (BN Z⇒ eq Z⇒ BN) smult exp. This is because (pa11 · · · p
ak
k )n = pna11 · · · pnakk . Note

that here we use the relation eq (equality) because the scalar does not change when we

move it from the superstructure of natural numbers to the superstructure of multisets.

Example 4.5. Let lcm : N → N → N be the least common multiple operation and

∪ : α multiset → α multiset → α multiset the union of multisets (in which the

greatest multiplicity is taken per element). Then we have (BN Z⇒ BN Z⇒ BN) ∪ lcm .

This is because a prime number appears at least as many times in kn as it appears in

n. The dual result (BN Z⇒ BN Z⇒ BN) ∩ gcd occurs for the greatest common factor.

The next examples concern the relation SN : β set→ N→ B, which relates any finite

set with the number of its cardinality. This follows example 4.2, where an interpretation

for basic set theory is defined. The transformation is defined between superstructures

US→α and UN→ , where Sα = {B, α, α set , (α set) set , ((α set) set) set , . . .} and

N = {N,B}. The ground of the transformation contains SN : β set → N → B (for

every β in {α, α set , (α set) set , . . .}), plus the usual logical operators (eq, imp). We

call this transformation the numbers-as-sets transformation. This transformation is

explored in depth in chapter 5.

Example 4.6. Let Pow : β set → (β set) set be the power set function and exp2 =

(λx. 2x). Then we have (SN Z⇒ SN) Pow exp2. This is because the cardinality of the

power set of S is 2|S|.

Example 4.7. Let nPow : β set → N → (β set) set be the function such that

nPowS n = {X. X ⊆ S ∧ |X| = n} is the set of all the subsets of S with cardinality
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4 A Theory of Transformations

n. Let choose =
(
λx y.

(
x
y

))
. Then we have (SN Z⇒ eq Z⇒ SN) nPow choose. This is

because the cardinality of nPowS n is
(|S|
n

)
.

Example 4.8. Let × : β set → β set → β set be the Cartesian product function.

Then we have (SN Z⇒ SN Z⇒ SN) × ∗. This is because the cardinality of the Cartesian

product of two sets is the product of the cardinalities.

Now, the disjoint union of two sets corresponds to addition of the cardinalities, but

(SN Z⇒ SN Z⇒ SN) ∪ + is simply not true because it requires the condition of disjointness.

Thus, we cannot represent naively such correspondences with the tools we have, but

we will show how to do it with a trick that requires a few extra tools, presented in the

next subsection (see example 4.13).

How can the preservation of relations be captured?

Beyond extending a transformation to the functions of its ground, we need to extend

it to its relations. We will show that the standard function relator suffices for our

purposes. This is because we represent relations as boolean-valued functions. Then,

to represent relations as part of the superstructure of a ground we require it to have

boolean type B, and to represent relational extensions of a transformation we require

the transformation to have boolean relations (e.g., implication and equivalence).

For the simplest case, take p : α → B and q : β → B properties (unary relations) of

α and β, respectively. Then, given a relation R between α and β we can extend it to

relation (R Z⇒ eq) (where eq stands for ‘equal’ or ‘equivalent’)4 between properties of

type α → B and properties of type β → B. This is characterised by the commutative

diagram:

α B

β B

R eq

p

q

The formal meaning of this is ∀ a b. R a b −→ eq (p a) (q b), or more nicely put:

∀ a b. R a b −→ (p a ←→ q b),

4 For any type α there is an equality eq : α→ α→ B, and we write eq, = or ←→ (usually depending

on the context, e.g., the latter is only used when it has type B→ B→ B). When we say (R Z⇒ R Z⇒
imp) eq eq the two equalities are not necessarily the same (they do not have the same type), but

they are instances of the polymorphic equality. In general it is not necessary to type them explicitly

because either the types are clear from the context or whatever we are saying applies to every type.
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4.1 Structures and transformations

i.e., the properties are equivalent under all related arguments. Notice that we can use

any relation S : B → B → B instead of eq (e.g., imp, which stands for ‘implies’) to

express other interesting relations between properties.

For the general case, take n-ary relations r : α1 → · · · → αn → B and s : β1 → · · · →
βn → B, a set of binary relations R1, . . . , Rn, and a boolean relation S. Then, the

following commutative diagram represents the expression (R1 Z⇒ · · · Z⇒ Rn Z⇒ S) r s

(represented with products, for simplicity):

α1 × · · · × αn B

β1 × · · · × βn B

R1· · ·Rn S

r

s

Then, let us take a look at some examples for relation BN:

Example 4.9. Let dvd : N → N → B be the relation such that dvd nm whenever n

divides m (also written n|m), and ⊆ : α multiset → α multiset → B the relation

such that a ⊆ b whenever the multiplicity of each element of a is lesser or equal to its

multiplicity in b. Then, we have (BN Z⇒ BN Z⇒ eq) ⊆ dvd, because n|m if and only if

every prime is contained at least as many times in the multiset-factorisation of m as it

is in n.

Example 4.10. Let prime : N → B be the property of being a prime number, and

is singleton : α multiset → B the property being a singleton multiset (having size

1). Then, we have (BN Z⇒ eq) is singleton prime, because a prime number only has

one prime factor and its multiplicity is 1.

See the following examples for relation SN:

Example 4.11. Let eqp : α set→ α set→ B relate two sets whenever there exists a

bijection between them. Then, we have (SN Z⇒ SN Z⇒ eq) eqp eq, because two sets are

bijectable if and only if their cardinality is the same.

Example 4.12. As above, we have (SN Z⇒ SN Z⇒ imp) ⊆ ≤, but for equivalence we

need the relation ‘there exists an injection’ instead of ⊆.

The following example shows how this trick of relating relations can be used to relate

∪ to + with the precondition that the sets be disjoint.
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Example 4.13. Let disjU : α set → α set → α set → B be the relation such that

disjU a b c if and only if a ∩ b = {} and a ∪ b = c, and let plus : N→ N→ N→ B be

the relation such that plus n m s whenever n + m = s. Then, we have (SN Z⇒ SN Z⇒
SN Z⇒ imp) disjU plus.

Regardless of the type we are working on, we can say few general things about equal-

ity, depending on the uniqueness properties of the relation. First we need to introduce a

few definitions useful for describing relations. These are common mathematical folklore,

and they are used in the actual implementation of Isabelle’s Transfer package.

Definition 4.8. Let R be a binary relation.

• It is right-unique if Ra b and Ra c implies b = c. In other words, when every

element of the left has a unique element of the right. This is also called univalent.

• It is left-unique if Rba and Rca implies b = c. In other words, when every

element of the right has a unique element of the left. This is also called injective.

• It is bi-unique if it is both right-unique and left-unique. This is also called one-

to-one.

Theorem 4.1. Let R be a binary relation.

• R is right-unique if and only if (R Z⇒ R Z⇒ imp) eq eq. In other words,

R a1 b1 ∧ R a2 b2 −→ (a1 = a2 −→ b1 = b2).

• R is left-unique if and only if (R Z⇒ R Z⇒ revimp) eq eq, where revimp is the

reverse implication. In other words,

R a1 b1 ∧ R a2 b2 −→ (b1 = b2 −→ a1 = a2).

• R is bi-unique if and only if (R Z⇒ R Z⇒ eq) eq eq. In other words,

R a1 b1 ∧ R a2 b2 −→ (a1 = a2 ←→ b1 = b2).

All the proofs follow trivially from definition 4.8.

Example 4.14. The prime factorisation of a natural number is unique and it charac-

terises the number. Therefore, BN is bi-unique and hence (BN Z⇒ BN Z⇒ eq) eq eq.

Example 4.15. The cardinality of a set is unique. Then SN is right-unique. Thus,

(SN Z⇒ SN Z⇒ imp) eq eq (i.e., equal sets have equal cardinalities, but sets with equal

cardinality are not necessarily equal).

Logical operators

So far we have said plenty about the applications of the standard function relator for

extending transformations to a superstructure. This allows us to make inference about

one structure by reasoning about another one.
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We have seen that representing relations requires a type B in the ground, and that

representing interesting logical dependencies between the relations of one structure and

the relations of the other requires the transformation to have relations between the type

B in one structure to the type B in the other.

The logical operators may also be related by the structural extension. First we prove

a few lemmas.

Lemma 4.1. The relation (eq Z⇒ eq), where the first equality is for type α and the

second is for type β, is the equality for type α→ β.

Proof. From the definition of the standard function relator, (eq Z⇒ eq) f g is equivalent

to ∀a b. a = b −→ f a = g b, which is equivalent to ∀a. f a = g a. This the extensional

definition of equality between functions. �

Lemma 4.2. The relation (eq Z⇒ · · · Z⇒ eq) is the equality for the corresponding type,

i.e., for any functions f and g we have that (eq Z⇒ · · · Z⇒ eq) f g holds if and only if

f = g holds.

Proof. By induction on the number of times Z⇒ is applied, using lemma 4.1. �

Even more strongly, the same proof applies for any positioning of the brackets in the

expression; e.g., both ((eq Z⇒ eq) Z⇒ eq) and (eq Z⇒ (eq Z⇒ eq)) hold.

Theorem 4.2. For the logical conjunction (and), the disjunction (or), implication

(imp), reverse implication (revimp), equivalence (eq), and negation (not), we have:

• (eq Z⇒ eq Z⇒ eq) and and

• (eq Z⇒ eq Z⇒ eq) or or

• (eq Z⇒ eq Z⇒ eq) imp imp

• (eq Z⇒ eq Z⇒ eq) revimp revimp

• (eq Z⇒ eq) not not

These all say that and, or, imp, revimp, eq and not are logically undisturbed by replac-

ing their arguments with equivalent ones. The following is slightly more interesting:

Theorem 4.3. For the same logical operators we have:

• (imp Z⇒ imp Z⇒ imp) and and

• (imp Z⇒ imp Z⇒ imp) or or

• (revimp Z⇒ imp Z⇒ imp) imp imp

• (imp Z⇒ revimp Z⇒ imp) revimp revimp
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• (revimp Z⇒ imp) not not

Note the use of reverse implication revimp for the implications and negation. The

meaning of this (for implication) is: P −→ Q implies P ′ −→ Q′ if P ′ implies P and

Q implies Q′, and similarly for reverse implication. For negation it means: ¬P implies

¬P ′ if P ′ implies P .

Trivial theorems like these, regarding the mappings between logical operators under

transformations, abound. A large number of them are built into the transfer package

already. There are others that were not included and which are necessary for the

transformations of our work. We have added these manually.

We will clarify the usefulness of theorems connecting logical operators through struc-

tural transformations in section 4.3.

Other important types in the structure of a ground are those of the form (A →
B)→ B, or what we know as quantification. The two quantifiers we normally use are ∀
(for all) and ∃ (exists). The universal quantifier ∀ is a function that takes a property

P : A → B as an argument and yields > if and only if the property yields > for each

possible entity of type A. Similarly, the existential quantifier ∃ yields > if and only if

its property yields > for at least one entity of type A. Naturally, these are the model-

theoretic aspects of them, and their proof-theoretic aspects are non-trivial (but also

unimportant as far as it concerns this work). Other quantifiers may be defined, e.g.,

for every element in S or exists element in S.

The obvious question now is how a transformation extends structurally to the quan-

tifiers, i.e., when does the relation ((R Z⇒ S1) Z⇒ S2) hold, if R is a relation between

types A and B, and S1 and S2 are boolean relations?

Let us start with a few results regarding bounded quantifiers. For any set X, define

the quantifiers ∀X and ∃X such that the following equations hold for any property P :

(∀X x. P x) = (∀x. x ∈ X −→ P x)

(∃X x. P x) = (∃x. x ∈ X ∧ P x)

Theorem 4.4. Let R : α → β → B be a relation with domain A : α set and range

B : β set . Then we have the following:

• ((R Z⇒ imp) Z⇒ imp) ∀ ∀B.

• ((R Z⇒ revimp) Z⇒ revimp) ∀A ∀.

• ((R Z⇒ eq) Z⇒ eq) ∀A ∀B

• ((R Z⇒ revimp) Z⇒ revimp) ∃ ∃B.
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• ((R Z⇒ imp) Z⇒ imp) ∃A ∃.

• ((R Z⇒ eq) Z⇒ eq) ∃A ∃B

The proofs of these statements are routine.

Definition 4.9. Let R : A→ B → B be a relation.

• We say that R is left-total if for every a of type A there exists a b of type B

such that R a b.

• We say that R is right-total if for every b of type B there exists a a of type A

such that R a b.

• We say that R is bi-total if it is both left-total and right-total.

Theorem 4.5. Let R be a binary relation.

• If R is left-total then ((R Z⇒ revimp) Z⇒ revimp) ∀ ∀ and ((R Z⇒ imp) Z⇒
imp) ∃ ∃.

• If R is right-total then ((R Z⇒ imp) Z⇒ imp) ∀ ∀ and ((R Z⇒ revimp) Z⇒
revimp) ∃ ∃.

• If R is bi-total then ((R Z⇒ eq) Z⇒ eq)∀ ∀ and ((R Z⇒ eq) Z⇒ eq)∃ ∃.

What these theorems are saying is essentially that if a property is preserved by R, then

it is preserved when quantifying it, provided that the respective totality properties are

satisfied. The proofs of 4.5 follow immediately from 4.4, by noticing that R is left-total

if and only if its domain is equal to the universe, and so on.

Example 4.16. The relation SN is right-total because for every natural number there

is a set with that cardinality. However, it is not left-total because there are sets with

infinite cardinality. Thus, we have ((SN Z⇒ imp) Z⇒ imp)∀ ∀ and ((SN Z⇒ revimp) Z⇒
revimp) ∃ ∃.

Example 4.17. Relation BN is neither right-total nor left-total. Its domain consists of

the multisets whose elements are prime numbers, and its range consists of the natural

numbers larger than 0. Let ∀bp : ((N multiset → B) → B) and ∀>0 : ((N → B) → B)

be the corresponding quantifiers. Naturally, bp stands for bags of primes. Then we

have ((BN Z⇒ eq) Z⇒ eq) ∀bp ∀>0 and ((BN Z⇒ eq) Z⇒ eq) ∃bp ∃>0.

4.2 The category of superstructures

(with S-transformations)

A class of entities with a notion of morphism is a category if there is an associative

composition of morphisms and an identity morphism. Here we show that for any re-
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lator S, the class of superstructures form a category, with the S-transformations as

morphisms. We define the composition of transformations, and the identity transfor-

mations, checking that they satisfy the necessary properties.

4.2.1 Composition

Given the relational nature of transformations, it makes sense to talk about their com-

position in terms of the usual composition of relations. We say that two binary relations

R1 and R2 are composable if R1 is of some type α → β → B and R2 is of some type

β → γ → B. Recall that the usual relational composition is determined by the formula

(R2 ◦R1)x z ←→ (∃y.R1 x y ∧ R2 y z)

First we define the composition for any pair of sets of relations (e.g., a pair of ground

transformations).

Definition 4.10. Let R1 and R2 be sets of relations. We define their composition as

follows:

R2 ◦R1 = {R2 ◦R1 | for R1 ∈ R2 and R2 ∈ R2 composable}

This defines a ground transformation on which to build a superstructural transfor-

mation.

Definition 4.11. Let RS1 and RS2 be S-transformations. Their S-composition is de-

fined simply as (R2 ◦R1)
S .

In other words, the composition of two superstructural transformations is built by

first composing all the composable relations in the grounds and then extending the

result to the superstructure.

It is interesting to note that the composition of two transformations as sets of relations

(e.g., RS2 ◦RS1 ) is not the same as their S-composition (e.g., (R2 ◦R1)
S). In fact, the

composition RS2 ◦RS1 is not necessarily a structural transformation itself, but the S-

composition is.

Theorem 4.6. The S-composition is associative.

Proof. We need to show that (R1 ◦ (R2 ◦R3))
S = ((R1 ◦R2) ◦R3)

S for any ground

transformations R1, R2 and R3. It suffices to prove that the composition is associative,

i.e., that R1 ◦ (R2 ◦R3) = (R1 ◦R2) ◦R3 is true.

First we show that R1 ◦ (R2 ◦R3) ⊆ (R1 ◦R2) ◦R3. Let R ∈ R1 ◦ (R2 ◦R3). Then,

R = R1 ◦ (R2 ◦ R3) for some R1, R2 and R3. Furthermore, the usual composition is

associative. Thus we have R = (R1 ◦R2) ◦R3, which implies that R ∈ (R1 ◦R2) ◦R3.

The proof of (R1 ◦R2) ◦R3 ⊆ R1 ◦ (R2 ◦R3) is similar. �
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Thus we have shown that the S-composition produces an S-transformation when

applied to two S-transformations, and that it is associative.

4.2.2 Identity

In a category, a morphism from an entity to itself is an identity if it leaves other

morphisms unchanged when composed.

Theorem 4.7. Let UT→ be a superstructure with T a set of types with equalities. Let

IT = {eq : τ → τ → B | τ ∈ T}. In other words, IT is the set of equalities of all the

types of T . Then, (IT )S is the identity for UT→ .

Proof. Let RS be a transformation from some superstructure to UT→ . The S-composition

of (IT )S with RS is (IT ◦R)S . Thus we need to prove that (IT ◦R)S = RS . From the

definitions of ◦ and IT we have:

IT ◦R = {eq ◦R |R ∈ R, for eq and R composable}

Moreover, for every R ∈ R there is a composable equality (because every type has

equality) and eq ◦R = R. Therefore IT ◦R = R, and thus (IT ◦R)S = RS .

The proof of (R ◦ IT )S = RS (for a transformation RS from UT→ to some other

superstructure) is similar. �

By defining the composition of transformations and the identity transformation we

have shown that the S-transformations are the morphisms for a category of superstruc-

tures. We call this the S-category of superstructures. We are particularly interested in

the Z⇒ relator. Before investigating the Z⇒-category we will explore the general notion

of S-transformation a bit more.

4.2.3 Converse S-transformations

Due to the relational nature of transformations, each of them has a converse, analogous

to inverse relations.

Definition 4.12. Let flip : (α→ β → B)→ (β → α→ B) be the operator that flips

the arguments of a relation, i.e., for any relation R we have Ra b = (flipR) b a.

For any relation, flip generates what is usually referred to as its inverse. However,

note that that inverse relation R−1 does not have the property of yielding the identity

when composed with R, but it does have the properties (R−1)−1 = R and (R2 ◦
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R1)
−1 = R−11 ◦ R−12 . Something similar happens when extending this notion to S-

transformations. Thus, we chose to call these ‘converse’ transformations, to avoid the

confusion with the usual notion of inverse morphisms.

In general, given a set of relations (e.g., a transformation) R, we write R−1 to denote

{flipR |R ∈ R}, i.e., the result from applying flip to every element of R. Then, given

a transformation RS , we may wonder whether (RS)−1 is a transformation itself. In

other words, is there a pair (R′,S ′) such that R′S
′

= (RS)−1? The answer is yes, and

we provide them below.

For any structure relator S, let S−1 denote the structure relator determined by the

following equation (for every R1 and R2):

S−1R1R2 = flip (S (flipR1) (flipR2)).

Lemma 4.3. Let RS be a transformation. Then we have (RS)−1 = (R−1)S
−1

.

Proof. First we show that (R−1)S
−1 ⊆ (RS)−1. Let R ∈ (R−1)S

−1
. We prove this by

induction on the number of applications of the constructor S−1 in R.

For the base case we have R ∈ R−1. Hence, R = flipT for some T ∈ R. By

definition of superstructure T ∈ RS and flipT ∈ (RS)−1. Thus R ∈ (RS)−1.

For the step case we have R = S−1R1R2 for some R1 and R2 in (R−1)S
−1

. From

the definition of S−1 we have R = flip (S (flipR1) (flipR2)). By inductive hy-

pothesis R1 and R2 are in (RS)−1 and thus flipR1 and flipR2 are in ((RS)−1)−1

which equals RS . Hence S (flipR1) (flipR2) ∈ RS , from which it follows that

flip (S (flipR1) (flipR2)) ∈ (RS)−1. Thus R ∈ (RS)−1.

Now we will prove that (RS)−1 ⊆ (R−1)S
−1

. Hence, we need to show that for every

R ∈ RS we have flipR ∈ (R−1)S
−1

. Like above, we proceed by induction on the

number of applications of S in R.

For the base case we have R ∈ R. Hence flipR ∈ R−1 and thus flipR ∈ (R−1)S
−1

.

For the step case we have R = S R1R2 for some R1 and R2 in RS . By induc-

tive hypothesis we have that flipR1 and flipR2 are elements of (R−1)S
−1

. Hence,

S−1 (flipR1) (flipR2) ∈ (R−1)S
−1

. Moreover, from the definition of S−1 we have

S−1 (flipR1) (flipR2) = flip (S (flip (flipR1)) (flip (flipR2)))

= flip (S R1R2)

Hence, flip (S R1R2) ∈ (R−1)S
−1

. Thus, flipR ∈ (R−1)S
−1

�

This lemma motivates a definition of converse transformation that coincides with the

usual notion of inverse relation.
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Definition 4.13. For any transformation RS we define its converse transformation as

(R−1)S
−1

.

Thus, the converse of a transformation RS is a transformation itself, and lemma 4.3

guarantees that it can be seen simply as the result of flipping every relation of RS .

Lemma 4.4. Let RS be a transformation. Then, (R−1)S
−1 ◦ (R−1)S

−1
= RS .

Lemma 4.5. Let RS be a transformation. Then, (RS2 ◦RS1 )−1 = (RS1 )−1 ◦ (RS2 )−1.

The proofs of these lemmas are routine, so we skip them here.

It should be noted that the converses do not necessarily fall in the same category,

because S−1 is not necessarily equal to S. Thus, not all S-categories have converses.

In section 4.2.5 we will show that the converse of a transformation R Z⇒ equals (R−1)Z⇒,

making the Z⇒-category a category with converses. We will also see a way of ‘calculating’

those converses.

4.2.4 Where do S-transformations live?

As we have seen, an S-transformation relates two superstructures UA→ and UB→ .

However we have not shown yet whether the transformation is itself encapsulated in a

superstructure UT→ .

Theorem 4.8. Let RS be a transformation between UA→ and UB→ . Then,

RS ⊆ U(A∪B∪{B})→ .

In other words, any transformation between two superstructures is contained in a larger

superstructure.

Proof. Take R ∈ RS . We proceed by induction on the number applications of S in R.

For the inductive base, R ∈ R, which means that it has type α→ β → B with α ∈ A
and β ∈ B. Hence, (α→ β → B) ∈ (A ∪B ∪ {B})→, and thus R ∈ U(A∪B∪{B})→ .

For the inductive step, let R = S R1R2. By inductive hypothesis R1 has type

α1 → β1 → B where α1 ∈ A→ and β1 ∈ B→, and R2 has type α2 → β2 → B where

α2 ∈ A→ and β2 ∈ B→. Consequently, R has type (α1 → α2) → (β1 → β2) → B.

Clearly (α1 → α2) ∈ A→ and (β1 → β2) ∈ B→, so ((α1 → α2) → (β1 → β2) → B) ∈
(A ∪B ∪ {B})→. Thus R ∈ U(A∪B∪{B})→ . �

This is a simple result, but nonetheless it has, as a consequence, that some transfor-

mations can be expressed in higher-order theories (although notice that the transfor-

mation itself is not an object of HOL, but rather all of its elements are).
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4.2.5 The Z⇒-category of superstructures

We have a few theorems regarding compositions, identities and converses for the Z⇒-

category. We will also introduce a notion of order for transformations.

4.2.5.1 Identity transformations in the Z⇒-category

Let UT→ be a superstructure. Recall that we define IT as the set of all the equalities

for every type τ ∈ T . Theorem 4.7 shows that (IT )Z⇒ is the identity for UT→ in the

Z⇒-category.

Theorem 4.9. For any superstructure UT→ , its identity in the Z⇒-category is the same

as its identity in the set category. In other words, (IT )Z⇒ = IT→ .

Proof. We need to prove that every relation in (IT )Z⇒ is an equality, and that for every

type in T→, its equality appears in (IT )Z⇒. Both can be easily proved by induction on

the number of applications of the constructor →, using lemma 4.2, which states that

(eq Z⇒ eq) is the equality for the corresponding type. �

4.2.5.2 Converse transformations in the Z⇒-category

We already defined the converse transformation of RS as (R−1)S
−1

for a special relator

S−1. Then we showed that (R−1)S
−1

= (RS)−1 (see lemma 4.3), which means that it

is simply the result of flipping all the relations of the transformation.

Here we show that the converse (R Z⇒)−1 of any Z⇒-transformation is simply (R−1) Z⇒.

Lemma 4.6. Let R1 and R2 be binary relations. Then we have:

flip (R1 Z⇒ R2) = (flipR1 Z⇒ flipR2)

Proof. We have to prove that the relations have equal values on all arguments. Let f

and g be functions. Then we have the following chain of equivalences:

(flip (R1 Z⇒ R2)) f g = (R1 Z⇒ R2) g f

= ∀a b.R1 a b −→ R2 (g a) (f b)

= ∀b a. (flipR1) b a −→ (flipR2) (f b) (g a)

= (flipR1 Z⇒ flipR2) f g

Thus we conclude the proof. �

From this lemma it follows that (R Z⇒)−1 = (R−1) Z⇒, which can be easily proved by

induction over the number of times Z⇒ is applied.

64



4.2 The category of superstructures (with S-transformations)

Moreover, we have the following trivial result:

Lemma 4.7. If R is a symmetric relation then flipR = R.

Proof. It follows immediately from the definitions of symmetry and flip. �

Lemmas 4.6 and 4.7 help us to mechanically calculate converse transformations. In

particular, the former implies that, to calculate the converse of a Z⇒-transformation,

we only have to calculate the converse of the ground and then extend normally using

Z⇒. We come back to this in section 5.2.

4.2.5.3 Orderings and composition in Z⇒-transformations

In an effort to understand how two transformations may be compared to each other

(e.g., relative strength) we have found that the most fruitful way of thinking about it

is element-wise (i.e., relation-wise rather than transformation-wise).

Definition 4.14. Let R and S be two binary relations over the same types. We say

that R is a subrelation of S if and only if ∀x y. R x y −→ S x y. To denote this we

write R ≤ S (corresponding to ⊆ in the set-theoretical relations).

This imposes an order for any set of relations R. The interesting question is how

this propagates to R Z⇒.

Theorem 4.10. Let R1 and S1 be binary relations with type α1 → β1 → B, and let

R2 and S2 binary relations with type α2 → β2 → B. Assume S1 ≤ R1 and R2 ≤ S2.

Then (R1 Z⇒ R2) ≤ (S1 Z⇒ S2).

Proof. Assume (R1 Z⇒ R2) f g for some f and g. Then we need to show (S1 Z⇒ S2) f g.

To prove this assume S1 a b. From this and S1 ≤ R1 we have R1 a b. From this and

(R1 Z⇒ R2) f g we have R2 (f a) (g b). From this and R2 ≤ S2 we have S2 (f a) (g b).

Hence we have S1 a b −→ S2 (f a) (g b) for arbitrary a and b. This is equivalent to

(S1 Z⇒ S2) f g. Thus we have shown (R1 Z⇒ R2) f g −→ (S1 Z⇒ S2) f g for arbitrary f

and g. This is equivalent to (R1 Z⇒ R2) ≤ (S1 Z⇒ S2). �

It is interesting to note that this can be rewritten as

(geq Z⇒ leq Z⇒ leq) Z⇒ Z⇒,

where leq and geq are the operators ≤ and ≥, respectively. The intuition of this result

is that relation orders can be used as grounds to construct transformations between

transformations.

Now we can think about the relation between the order and compositions. The main

motivation is understanding the relation between (R2 ◦R1)
Z⇒ and R Z⇒

2 ◦R Z⇒
1 .
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Theorem 4.11. Let R1, R2, R3 and R4 be binary relations and f and g functions.

Then the following expression is true (if well-typed):

((R3 Z⇒ R4) ◦ (R1 Z⇒ R2)) ≤ ((R3 ◦R1) Z⇒ (R4 ◦R2))

Proof. Assume ((R3 Z⇒ R4) ◦ (R1 Z⇒ R2)) f g for arbitrary f and g. Then, take h such

that (R1 Z⇒ R2) f h and (R3 Z⇒ R4)h g. From the definition of Z⇒ we have:

∀ a b. R1 a b −→ R2 (f a) (h b)

∀ b c. R3 b c −→ R4 (h b) (g c).

Then we have

∀ a b c. (R1 a b ∧ R3 b c) −→ (R2 (f a) (h b) ∧ R4 (h b) (g c)).

Hence we have that ∀ a c. (R3 ◦ R1) a c −→ (R4 ◦ R2) (f a) (g c) is true, which is

equivalent to ((R3 ◦R1) Z⇒ (R4 ◦R2)) f g, by definition of Z⇒. �

Due to the fact that theorems 4.10 and 4.11 are about relation-wise properties (rather

than transformation-wise), these theorems are provable in Isabelle. In fact, these the-

orems are included in the Transfer package, and used for quotients. The latter can be

used, presumably, for two-step data refinements from abstract types that have been

constructed as quotients from other quotient types. The intriguing version of the for-

mer ((geq Z⇒ leq Z⇒ leq) Z⇒ Z⇒) prompts the question of whether transformations can

be constructed from subrelations, to reason about other transformations. Even though

this is an interesting possibility, it is outside of the scope of this thesis.

Moreover, theorem 4.11 has the interesting interpretation of relating sequential ap-

plications of a transformation R Z⇒
2 ◦R Z⇒

1 with the Z⇒-composition (R2 ◦R1)
Z⇒, showing

that the latter is stronger one level up the superstructure. Now, it is not clear to us

whether really we can say that (R2 ◦ R1)
Z⇒ is stronger overall, and it is outside of

the scope of our work. An interesting note is that sequential application is how our

methods for representation search work (we describe these methods in chapter 6). The

difference between the sequential application of transformations and the calculation of

the composition is a potential avenue of future work; both in terms of research and

implementation.

4.2.6 The Z⇒-category in context

We have studied a couple of examples of S-transformations that promote the intuition

that these generalise some of the well-known notions of morphisms. We should empha-
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sise that this generalisation focuses on the structure-preserving aspect of morphisms,

more than the morphisms-as-arrows aspect (the only visible aspect from a category-

theoretic perspective).

On the outside, the S-category behaves similar to the Rel category, where the objects

are sets and their morphisms are the binary relations. In particular, the S-category has

a copy of Rel. To construct this injection F (a functor), do the following: for every set

x define type X with the same elements as x. Make F (x) = U{X}→ . Also, for every

relation R in Rel make F (R) = {R} Z⇒. It is easy to see that this is indeed an injective

and faithful5 functor. This injection is interesting because it connects S-categories to

a well known category. Thus, other categories mapping to the Rel category can be

mapped to the S-category. For example, all concrete categories (where the objects are

sets) have injective and faithful functors to Rel. Then, any known injections, like the

following: Group → Set → Rel, result in a faithful injection from the category of

groups into the S-category. See figure 4.1 for a broad depiction of how well-known

categories may be injected into Z⇒-categories.

Taking the category-theoretic perspective shows us how morphisms look from the

outside. For example, we know that groups have corresponding superstructures and

that the group morphisms have corresponding transformations (because of the injection

mentioned above). However, this perspective also hides how the structure of a group is

preserved by a morphism, and how this corresponds to some preservation of structure

in the superstructures, once we inject groups into superstructures. What we find when

we focus again in the internal workings of transformations, is that the preservation of

structure that characterises morphisms (such as in a group) can be reflected in the

structural transformation itself. This is captured precisely in the Z⇒-category.

Take, for example, two groups (G1, ·) and (G2,+), and a morphism σ between them.

It is a morphism because σ(x · y) = σ(x) + σ(y). Now make types out of G1 and

G2, and take the relation Rσ (where Rσ a b if and only if σ(a) = b). Then, in the

corresponding transformation {Rσ} Z⇒ between U{G1}→ and U{G2}→ , there is an element

(Rσ Z⇒ Rσ Z⇒ Rσ), where (Rσ Z⇒ Rσ Z⇒ Rσ) · + is true because

(Rσ Z⇒ Rσ Z⇒ Rσ) · + = (∀x1 x2 y1 y2. Rσ x1 x2 ∧ Rσ y1 y2 −→ Rσ(x1 · y1) (x2 + y2))

= (∀x1 y1. σ(x1 · y1) = σ(x1) + σ(y1))

Thus, the preservation of structure occurring in the group morphism not only stays in

the corresponding Z⇒-transformation, but it is encoded by an element of the transfor-

mation.

5 Faithful means injective on the morphisms. This is in contrast with injective functor, which simply

means injective on the objects.
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In fact, for any structure given to G1 and G2 by some binary operator, the relation

(Rσ Z⇒ Rσ Z⇒ Rσ) tells us whether Rσ preserves such structures.

Similar arguments, regarding preservation of structure can be made for injecting

other well known structures into superstructures. Moreover, this can be taken some

steps further to inject well known structures into more complex superstructures. Figure

4.1 visualises various aspects of this (injection of structures of concrete categories into

superstructures).

X1 X2 X2

U{X1}→ U{X2}→ U{X3}→

U{X1,B}→ U{X2,B}→ U{X3,B}→

U{X1,B}→ U{X2,B}→ U{X3,B}→

f

F F

{Rf} Z⇒

F ′ F ′

{Rf} Z⇒

F ′′ F ′′

{Rf , eq, imp} Z⇒

g

F

{Rg}Z⇒

F ′

{Rg}Z⇒

F ′′

{Rg, eq, imp}Z⇒

g ◦ f

{Rg ◦Rf , eq, imp}Z⇒

Figure 4.1: Let X1, X2 and X3 be some types/sets with f and g morphisms in some concrete

category. Let F be the injection functor with Rf and Rg the relations corre-

sponding to functions f and g. Let F ′ be the functor that adds B to the ground

of the superstructures and leaves transformations unchanged. Let F ′′ be the in-

jective functor that adds some logical operators to the ground transformation. It

is easy to see that F , F ′ and F ′′ are indeed functors (i.e., compositions and iden-

tities are preserved; the diagram commutes). For the last composition, note that

eq ◦ eq = eq, eq ◦ imp = imp, imp ◦ eq = imp and imp ◦ imp = imp, and we assume

that f and g are not boolean, so it cannot be composed with boolean operators.

As we mentioned before, higher-order theories can be modelled by superstructures

with a ground containing a type B. Thus we have seen how Z⇒-transformations, between

models of higher-order theories, relate to well known transformations (morphisms) be-

tween the objects of concrete categories.
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4.2.7 Summary of structural transformations

We introduced the concept of superstructures as models of theories in higher-order

logic. Between them, we defined the notion of superstructural S-transformation. In

particular, we investigated the transformations generated from the standard function

relator Z⇒. We showed various motivating examples of its applications. Furthermore,

we proved various results regarding the transformations. In particular, we proved that

the superstructures form a category (for any relator S), with the S-transformations as

morphisms. We called this the S-category.

We showed that the Z⇒-transformations have some interesting properties regarding

composition, identities and converses. Moreover, we showed that the Z⇒-category can

be very naturally related to various other interesting algebraic categories.

4.3 Transforming problems and theorems

Up to this point we have studied the semantic aspect of S-transformations, i.e., how

they relate models of theories in higher-order logic. Here we see how transformations

can be exploited for practical theorem proving. We will demonstrate that some of

the tactics from the Transfer package [34] can be seen as effective implementations of

reasoning via transformations.

The theory of S-transformations we have presented here cannot be encoded in Is-

abelle/HOL, simply because sets of types are not expressible objects in there. However,

the relator Z⇒ can be defined, and various aspects of transformations can be used for

inference within the system. In fact, the Z⇒ operator is central to the Transfer package.

This is no accident, as part of the motivation for developing the theory presented in

this chapter was to understand the semantics behind Transfer, and its connections with

well known notions of morphisms between structures.

In this section we aim to connect the semantics (structural transformations) with

the practical mechanisms (the transfer tactics). We will try to elucidate the in-

ner workings of the mechanisms by unpacking the step-by-step derivations involved in

transferences. For a description of the mechanisms see [34].

A statement in HOL is considered true if its interpretation into a superstructure is

the element > in B. Thus, the truth of a statement ‘Qy’ depends on whether Q yields

> when applied to y. Suppose we know that (R Z⇒ eq) P Q. This means that Q will

yield the same values as P for arguments related by R. Thus, the truth value of Qy is

the same as the truth value of P x, provided that Rxy holds. This is represented by
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the following sequent:

U(A∪B∪{B})→ |= (R Z⇒ eq)P Q U(A∪B∪{B})→ |= Rxy UA→ |= P x

UB→ |= Qy
(4.1)

This sequent shows us that, in theory, knowledge about a superstructure UB→ can be

obtained using only knowledge about another superstructure UA→ and a transformation

R Z⇒ between them6.

To understand the relevance of this in proof-theoretic terms, assume that we have two

Isabelle/HOL theories, TA and TB, with models UA→ and UB→ , respectively. Assume

that R is a set of finitely definable (in Isabelle/HOL) relations. Then, given that Z⇒ is

also definable, we can construct an Isabelle/HOL theory

TR Z⇒ = TA t TB tRdefs t { Z⇒def},

which is the theory that results from joining the axioms of TA and TB, along with the

definitions of all the relations in R, and of the Z⇒ relator. Then, provided that some

elementary conditions are met by the theories7, we have

U(A∪B∪{B})→ |= TR Z⇒ .

This means that we can explore both the superstructures and the transformations

within an Isabelle/HOL theory, so we do not need an external theory to validate

the application of transformations in mechanical proofs. This means that sequent

(4.1), which we judged to hold in our meta-theory concerning superstructures and

Z⇒-transformations, actually has a corresponding one in terms of derivability in an

Isabelle/HOL theory:

TR Z⇒ ` (R Z⇒ eq)P Q TR Z⇒ ` Rxy TR Z⇒ ` P x
TR Z⇒ ` Qy

as long as the conservativity conditions stated above are met.

6 Theorem 4.8 shows that the superstructure U(A∪B∪{B})→ models any transformation R Z⇒ between

the corresponding superstructures.

7 The spirit of the requirement is simply that TA and TB agree on their common ground. More formally,

this can be expressed as the requirement that any theorem in TA with an interpretation in U(A∩B)→

must be satisfied by UB→ with the same (restricted) interpretation, and conversely for TB . This

requirement, in the spirit of (semantic) conservative extensions, is not unusual. Presumably, that

is the case for extensions of HOL theories which only add definitions of new types, introduce new

constants for existing objects, or overload existing constants by type-class instantiation (under some

constraints), but this is still a partially open problem (see [43]). This is part of the question: what

kind of extensions of a theory introduce no new inconsistencies?
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This is generalised by the elimination rule for Z⇒, which is expressible in Isabelle/HOL:

TR Z⇒ ` (R1 Z⇒ R2) f g TR Z⇒ ` R1 x y

TR Z⇒ ` R2 (f x) (g y)
(4.2)

When R2 is an implication or an equivalence, it can be used to derive g y from f x.

This rule is at the centre of the transfer package. Only using rule 4.2, simple derivations

can be produced such as the following8:

(BN Z⇒ BN Z⇒ imp) ⊆ dvd BN {2, 3} 6

(BN Z⇒ imp) (λx. {2, 3} ⊆ x) (λx. 6 dvd x) BN {2, 2, 2, 3, 5} 120

imp ({2, 3} ⊆ {2, 2, 2, 3, 5}) (6 dvd 120)

which shows that, given the appropriate knowledge about the numbers-as-bags-of-

primes transformation, we can show 6 dvd 120 by proving that the bag of prime factors

of 6 is contained in the bag of prime factors of 120 (we only give this example to illustrate

the mechanism, not that this is a desirable way to prove that 6 divides 120; although

it probably is efficient if we know the factorisations of the numbers in advance).

The rule (4.2) is generally sufficient to make such derivations for ground expressions

(terms which contain no variables), provided that every constant appearing in the

expression is known to map to some constant via a transformation R Z⇒. However,

other derivations require us to prove that two functions are related by a transformation

(where this is not known a priori but can easily be known). This is generally the case for

quantified statements. For example, given the expression ∀ y. P y ∨ Q y and the following

assumptions:

((R Z⇒ imp) Z⇒ imp)∀ ∀ (R Z⇒ imp) P′ P

(imp Z⇒ imp Z⇒ imp) ∨ ∨ (R Z⇒ imp) Q′ Q

we should be able to derive (∀x. P′ x∨ Q′ x) −→ (∀y. P y∨ Q y). However, if we analyse

the mechanisms more closely we can see that the deductive steps involved in finding

this expression are not trivial.

Essentially, the known is the goal ∀ y. P y ∨ Q y, and we need to find some unknown9

term ?S0 such that ?S0 −→ (∀y. P y ∨ Q y) which we write as imp (?S0) (∀y. P y ∨ Q y).

We know nothing about ?S0 a priori, and we need to use the transfer rules to infer its

shape. We start by applying rule (4.2). Notice that the term ∀y. P y∨ Q y is wrapped by

8 We skip the use of TRZ⇒ ` · · · for simplicity.

9 In Isabelle, the unknowns (i.e., variables used in its unification algorithm) are called meta-variables

or schematic variables, and are represented by using the symbol ? preceding a character or string. We

follow the same convention when we want to make the computational aspect of variables (concerning

unification) explicit.
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operator ∀, which leads to unification ?S0 = (∀x. ?S1 x), for some new unknown term

?S1. Then, our derivation tree at the moment looks as follows:

TR Z⇒ ` ((R Z⇒ imp) Z⇒ imp)∀ ∀ TR Z⇒ ` (R Z⇒ imp) ?S1 (λy. P y ∨ Q y)

TR Z⇒ ` imp (∀x. ?S1 x) (∀y. P y ∨ Q y)

Now we are stuck because, although the transfer rule ((R Z⇒ imp) Z⇒ imp) ∀ ∀ allows

us to discharge the left-hand side of the derivation tree, there is no explicit rule in

our knowledge base that is unifiable with (R Z⇒ imp) ?S1 (λy. P y ∨ Q y), and the term

(λy. P y∨Q y) is not a function application so we cannot apply rule 4.2 again. Thus, we

cannot discharge the right-hand side of the tree. Then we need some special behaviour

that gets triggered when irreducible λ-terms appear. This is where the introduction

rule of relator Z⇒ comes in:

TR Z⇒t {R1 x y} ` R2 (f x) (g y)

TR Z⇒ ` (R1 Z⇒ R2) f g
(4.3)

wherein R1 x y is assumed (added as a new local transfer rule) for some fresh variables

x and y. This allows us to keep going up in the derivation tree as follows:

TR Z⇒ ` ((R Z⇒ imp) Z⇒ imp) ∀ ∀

...
TR Z⇒ t {Rxy} ` imp (?S1 x) (P y ∨ Q y)

4.3TR Z⇒ ` (R Z⇒ imp) ?S1 (λy. P y ∨ Q y)
4.2TR Z⇒ ` imp (∀x. ?S1 x) (∀y. P y ∨ Q y)

Moreover, {Rxy} ` imp (?S1 x) (P y ∨ Q y) can be further reduced using rule 4.2. This

will get ?S1 fully instantiated to some term; i.e., no unknowns will be left. Ultimately,

the derivation tree (which uses only rule 4.2) looks as follows10:

(imp Z⇒ imp Z⇒ imp) ∨ ∨
(R Z⇒ imp) P′ P {Rxy} ` Rxy
{Rxy} ` imp (P′ x) (P y)

{Rxy} ` (imp Z⇒ imp) (λq′. P′ x ∨ q′) (λq. Px ∨ q)
(R Z⇒ imp) Q′ Q {Rxy} ` Rxy
{Rxy} ` imp (Q′ x) (Q y)

{Rxy} ` imp (P′ x ∨ Q′ x) (P y ∨ Q y)

The transfer package provides two tactics for inference: transfer and transfer’.

Both of these tactics construct derivation trees as we have shown. The former only

derives equivalences, while the latter relaxes this and allows implication. In other

words, given a goal statement P , transfer will try to find a statement P ′ such that

10 For space, we omit writing TR Z⇒ ` · · · every time. We one write {Rxy} ` · · · instead of the full

expression TRZ⇒ t {Rxy} ` · · · , when necessary.

It should be noted that the λ-expressions appearing in this derivation tree are reducible and thus

do not trigger the rule (4.3). The expression (p ∨ q) is only syntactic sugar for ((or p) q). Thus, the

η-reduction is the following: (λq. Px ∨ q) 7→ (or (Px)).
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P ′ ←→ P while transfer’ will only require P ′ −→ P . As tactics, the user should

expect to input the goal P and get P ′ as a subgoal, if the mechanism succeeds.

The mechanism is considered to succeed (to perform an inference via a transformation

R Z⇒), if it can construct a derivation tree where all its leaves are known facts of TR Z⇒

(these will usually have shape Rxy or (R1 Z⇒ R2) f g). In the language of the Transfer

package [34], these facts about the transformation are called transfer rules, and they

are distinguished in Isabelle by a label [transfer rule] (these labels are also called

attributes).

Because of their similarity, we will refer to the tactics transfer and transfer’

simply as the transfer tactics.

4.4 Summary

We have defined structural transformations as relational morphisms between super-

structures. In section 4.1 we developed the theory around these notions, and in section

4.3 we explored some proof-theoretic aspects of it, linking it to the mechanisms of

the Transfer package. We showed that it is possible, with tools such as the transfer

tactics, to perform inferences via structural transformations.

Thus, we can think of structural transformations inducing transformations on prob-

lems. In the rest of this work, we will also call these (at the level of problems, state-

ments or goals) transformations. However, it is important to note that the relational

nature of structural transformations implies that their applications for inference are

non-deterministic. This is because there may be many transfer rules for the same con-

stant, thus allowing the construction of different successful derivation trees. Thus, a

single transformation at the level of superstructures may induce many transformations

at the level of goals.

In the next chapters we will explore in detail some specific transformations, their

implementations in Isabelle, and some complex challenges regarding their applications.
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Isabelle/HOL

In chapter 4 we presented a theoretical framework for reasoning about transformations.

We linked our notion of transformation to well known notions in algebra. We also

saw how transformations can be exploited for inference, and connected this to the

mechanisms of the Transfer package of Isabelle/HOL.

Overall, the idea was that we can obtain knowledge about a superstructure by ‘im-

porting’ it from another superstructure via a Z⇒-transformation between them. The

purpose of this chapter is to understand in detail a few specific Z⇒-transformations be-

tween superstructures involved in discrete mathematics. All of the transformations we

present here have been mechanised in Isabelle 2015, which makes them available for

inference of the kind we have described.

All of our mechanical proofs rely on background theories from the standard Isabelle

Library available in 2015, and the logic on which they are constructed is Isabelle/HOL.

This should be understood whenever we refer to a proof in Isabelle.

5.1 A catalogue of transformations

To know a transformation R Z⇒ we need transfer rules. These are sentences of the form

Ra b, where R ∈ R Z⇒. This knowledge can be constructed by proving such sentences

in some theory TR Z⇒ .

Figure 5.1 shows a graph representing various transformations for which we have

developed theories. For each of these we have built an Isabelle Theory in which the

ground of the transformation is defined and various transfer rules are proved. These

are all transformations that we have identified as useful for reasoning in discrete math-

ematics. We have used some of these transformations to construct mechanical proofs of

basic theorems of discrete mathematics (combinatorics and number theory), namely, 1,

2, 3, 5 and 7 of the list below. Some, such as 3 and 4, are used in the proofs of transfer

rules of other transformations (evidencing their usefulness). We have identified the rest

to be potentially useful, but we have not yet performed interesting experiments with

them.
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The transformations presented in this chapter are, in a way, atomic. As we will see

in later chapters, the sequential application of transformations is also useful.

N

α multiset

α list

α set

Z Q

Z/2Z

B(α→ B)(α→ N)

1

α =
N 24

6, 7

3 8

9 12

10

11

13
5

5

Figure 5.1: Nodes represent structures (or corresponding theories of them), and edges repre-

sent the existence of at least one transformation connecting them. Apart from

the aforementioned transformations, it includes other simpler ones. Some of these

transformations are polymorphic (parametric on a type α), but other are not (like

the one from N to N multiset, which relates natural numbers with multisets of

primes, so it requires that α = N).

Node Z/2Z stands for the structure of the bit type (constructed as a quotient of

integers), and B stands for the boolean type.

Below is a list, briefly describing each of the transformations depicted in figure 5.1.

1. numbers-as-bags-of-primes: where each positive natural number is related to

the multiset of its prime factors.

2. numbers-as-sets: where each natural number n is related to every set of cardi-

nality n.

3. multisets-as-N-functions: where multisets are seen as natural-valued func-

tions.1

4. multisets-as-lists: where multisets are related to lists of their elements.

5. parametric multiset auto-transformations: where multisets with one base

type are related to multisets with another base type (not necessarily different),

through transformations between the base types; these are parametric on the

base transformation, but there are general things that can be said about them

without the need to specify the base transformation. For this work, we have used

the one-to-one mapping between natural numbers and prime numbers as the base

transformation.

1 This one is actually by construction using typedef and the Lifting package, which automatically

declares transfer rules from definitions lifted by the user from an old type to the newly declared type.

This transformation was built by the authors of the Multiset theory in the library, when defining the

multiset type. We added considerably to it.
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6. set-to-multiset: where each multiset is related to the set of its elements, ignoring

multiplicity.

7. set-in-multiset: where finite sets are injected into multisets (the difference be-

tween this and transformation 6 is that this one is bi-unique; only multisets with

multiplicities 0 and 1 are related).

8. sets-as-B-functions: where sets are seen as boolean-valued functions.

9. naturals-as-integers: where naturals are matched to integers (this one was built

by the developers of the Transfer package, not us).

10. bits-from-integers: where type bit is created as an abstract type from the

integers.2

11. bits-as-booleans: where bits are matched to booleans.

12. integers-as-rationals: where integers are matched to rational numbers. Notice

that composition of transformations leads to other natural transformations, such

as the simple relation between sets and multisets.

13. parametric rational auto-transformations: where rational numbers are

stretched and contracted, parametric on a factor.

We will explore these transformations. We pay particular attention to the trans-

formations that we consider to have the most interesting applications, especially with

a focus on those used in the experiments described in chapter 7. Moreover, we only

present detailed Isabelle proofs for some examples to give an idea of the complexity

involved in some of these.

This chapter should be read as a guide to the actual mechanised theories; a bridge

between the informal/human presentation of discrete mathematics (as in chapter 3),

and the Isabelle Theory files. The full Isabelle Theories can be found at

http://dream.inf.ed.ac.uk/projects/rerepresent/

2 It is interesting to note that for every quotient Z/nZ there is a transformation from Z which preserves

the ring structure. These are extremely useful in discrete mathematics. Moreover, it is perfectly

possible to define parametric transformations (e.g., with n as a parameter). However, it is not

possible to define parametric types in Isabelle. Then, each Z/nZ can be defined as a type manually,

so ultimately only a finite number of them can be defined. Parametric types are definable in logics

with richer type theories, such as Coq. The alternatives for us are to either build a finite number

of them (which is obviously not ideal), or to define every Z/nZ as a subset of the type Z, with a

structure of its own. This approach brings its own problems (e.g., that functions between them would

need to be defined over the whole Z, because Isabelle does not admit partial functions).
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5.1.1 Numbers as bags of primes

Every natural number greater than 0 has a unique prime factorisation. This means that

we have a precise representation of each, as a multiset of prime numbers. Moreover,

part of the structure of numbers maps precisely to part of the structure of multisets,

and this is captured by a structural transformation. We have mechanised this transfor-

mation in Isabelle, and here we show how. First we describe the two superstructures

in question and their background theories in the Isabelle library. Then we present the

transformation and our approach towards formalising it in Isabelle, i.e., proving the

appropriate transfer rules3.

Background theories and superstructures

The superstructures in question are {N,B}→, for basic natural number theory, and

{N,N multiset ,B}→, for basic theory of N-valued multisets.

The theories in Isabelle’s library concerning number theory have had some consid-

erable development by various authors. In particular, the unique prime factorisation

theorem is part of the library, and it is stated in terms of multisets. Hence, the fact

that each positive number corresponds to exactly one multiset of primes is available

for us. Furthermore, there are plenty of theorems regarding divisibility, least common

multiple, greatest common divisor and prime numbers.

The theory of multisets the library also has some development but not as consid-

erable as that of natural numbers. In section 5.1.3 we will explain how most of the

knowledge about multisets is inherited from N-valued functions from the construction

of the multiset type through typedef. However, for the sake of numbers-as-bags-of-

primes presented in this section, the specific representation in the foundation of the

theory of multisets is irrelevant.

Transformation

We define the relation BN : N multiset → N → B, which links every positive number

to the multiset of its prime factors. Formally, BNM n holds if and only if

bag of primes M ∧ msetprodM = n

3 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat.thy
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where bag of primes has the obvious definition, and msetprod is defined as the

product of all the elements of the multiset, including repetition. In other words,

msetprodM =
∏
x∈M

xcountM x

where countM x is the multiplicity of x in M .

The transformation in question is {BN, eq, imp} Z⇒.

The most basic transfer rules are theorems such as BN {2, 3} 6, whose proof are trivial

calculations. Moreover, from the Unique Prime Factorisation Theorem we know that

BN is bi-unique. Thus, from theorem 4.8 we can easily show that

(BN Z⇒ BN Z⇒ eq) eq eq

The domain of BN consists of the multisets whose elements are prime numbers, and

the range consists of the natural numbers larger than 0. To quantify over such domain

and range, we define the quantifiers ∀p, ∀>0, ∃p and ∃>0 such that

(∀bp x. P x) = (∀x. bag of primes x −→ P x)

(∀>0 x. P x) = (∀x > 0. P x)

(∃bp x. P x) = (∃x. bag of primes x ∧ P x)

(∃>0 x. P x) = (∃x > 0. P x)

From these definitions and theorem 4.4 (which characterises how bounded quantifiers

map to each others in terms of the domains and ranges of relations), we have the

following:

((BN Z⇒ imp) Z⇒ imp) ∀ ∀>0 ((BN Z⇒ imp) Z⇒ imp) ∃bp ∃

((BN Z⇒ revimp) Z⇒ revimp) ∀bp ∀ ((BN Z⇒ revimp) Z⇒ revimp) ∃ ∃>0

((BN Z⇒ eq) Z⇒ eq) ∀bp ∀>0 ((BN Z⇒ eq) Z⇒ eq) ∃bp ∃>0

where imp is implication, ∀bp is the bounded quantifier representing ‘for every multiset

where all its elements are primes’ and ∀>0 is the bounded quantifier representing for

every positive number, and similarly for ∃bp and ∃>0. The mechanised proofs of these

sentences follow in a relatively straightforward manner from the unique prime factori-

sation theorem. To get an idea of the shape of these proofs in Isabelle, see figure 5.2.

Not all of the theorems in the list have such a complicated shape, as it is only the

reverse implication that is difficult to prove.
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lemma BN_all:
"((BN ===> op =) ===> op =) forall_bags_of_primes forall_nats_gr0"

proof -
{fix y::"nat bool"
fix xa::"nat multiset"
assume a: "∀n>0. y n" and "∀p∈set_of xa. prime p"
from a(2) have "∀p ∈ set_of xa. p 6= 0" by auto
from this have "msetprod xa 6= 0"
apply (simp, erule contrapos_pp)
using mset_prod0 by simp

from this a(1) have "y (msetprod xa)"
by (simp only: neq0_conv)}

thus "((BN ===> op =) ===> op =) forall_bags_of_primes forall_nats_gr0"
unfolding BN_def rel_fun_def forall_bags_of_primes_def

forall_nats_gr0_def bag_of_primes_def
by (auto)

(metis multiset_prime_factorization_exists msetprods_eq msprod_def)
qed

Figure 5.2: Isabelle proof of theorem ((BN Z⇒ eq) Z⇒ eq) ∀bp ∀>0. Notice that eq is denoted as

op =, and Z⇒ is denoted as ===>. The quantifiers are also denoted differently. Natu-

rally, this proof uses the fact that every number has a multiset prime factorisation

(theorem multiset prime factorization exists from the Isabelle library).

Furthermore, the correspondence between multiset addition and multiplication of

natural numbers:

(BN Z⇒ BN Z⇒ BN) ] ∗

involves proving that∏
x∈M1

xcountM1 x ∗
∏
x∈M2

xcountM2 x =
∏

x∈M1]M2

xcount (M1]M2)x

and this follows from the definition of ] and the law of exponents with respect to

multiplication. These definitions are included as part of Isabelle’s simplifying theorems,

so the statement above can be proved by Isabelle’s auto tactic.

Let multiplicity : N → N → N be the function such that multiplicity p n is the

count of p in the prime factorisation of n (i.e., if p is prime then m is the largest number

such that pm divides n). This definition of multiplicity, in terms of the multiset of the

prime factors of n, makes the following assertion follow trivially:

(eq Z⇒ BN Z⇒ eq) (flip count) multiplicity.

Similarly we proved the theorems

(BN Z⇒ BN Z⇒ BN) ∪ lcm

(BN Z⇒ BN Z⇒ BN) ∩ gcd
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which was technically complicated (structured proofs with about 10 steps applications

each, with the need of an extra lemma), but conceptually simple because in the Number

Theory library of Isabelle it is already proved that the multiplicity of a prime in the gcd

is the min of the multiplicities. Moreover, it is also proved in the Multiset library that

the multiplicities in the multiset intersection takes the min per element. Combining

these two facts is the essence of the proof but there are still technical details that need

to be shown. For example, for the gcd we first need to prove the following:

• ∀x y. bag of primes x ∧ bag of primes y −→ bag of primes (x ∩ y)

• ∀x y. bag of primes x ∧ bag of primes y

−→ msetprod (x ∩ y) = gcd (msetprod x) (msetprod y)

The first one is trivial, but the second one involves first showing that the multiplicity

of any prime is the same in msetprod (x∩ y) as it is in gcd (msetprod x) (msetprod y).

Then one needs to carefully reason about the multiplicities of primes in numbers and

the multiplicities of elements in multisets (as the above theorem shows), concluding

with showing that in both cases the multiplicity is given by the minimum. See figure

5.3 for the verbatim Isabelle proof.

The analogous proof for lcm and ∪ is constructed by replacing min for max.

We define the relation coprime : N→ N→ B to be such that coprime a b if and only

if gcd a b = 1. Naturally, two numbers are coprime if and only if they have no common

prime factors. Hence, we can prove the following transfer rule:

(BN Z⇒ BN Z⇒ eq) disjoint coprime,

because coprimality is defined in terms of the gcd. We constructed the corresponding

proof with 7 tactic applications.

We also proved

(BN Z⇒ BN Z⇒ eq) ⊆ dvd.

Our proof is structured, with 9 tactic applications. First we show that if A ⊆ B

then the msetprod of A divides the msetprod of B. We do this by obtaining K

such that A ] K = B, and showing that msetprod K is a witness for the fact that

(msetprodA) dvd (msetprodB). The next step is proving the converse; we have to

show that (msetprodA) dvd (msetprodB) implies A ⊆ B. Interestingly, this is fa-

cilitated by an existing theorem in the library stating almost what we need: that if

a product of primes divides another product of primes then the former has fewer oc-

currences of each prime4. The proof is concluded with a careful application of this

4 This is actually a very complex proof that the author of the unique prime factorisation theorem in

the Isabelle library built as an auxiliary lemma for proving the uniqueness of prime factorisations.
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lemma BN_gcd: "(BN ===> BN ===> BN) (op #∩) gcd"
proof -
{fix x xa::"nat multiset"
assume a1: "bag_of_primes x" and

a2: "bag_of_primes xa"
hence xxa: "bag_of_primes (x #∩ xa)"
unfolding bag_of_primes_def by simp

from a1 a2 have gx: "msetprod x > 0"
and gxa: "msetprod xa > 0"

by (auto simp only: prime_msetprod_gr0)
hence mgn:

"∀p::nat. multiplicity p (gcd (msetprod x) (msetprod xa))
= min (multiplicity p (msetprod x)) (multiplicity p (msetprod xa))"

by (auto simp only: multiplicity_gcd_nat)
from a2 xxa have

"∀p. multiplicity p (msetprod (x #∩ xa)) = count (x #∩ xa) p"
by (auto simp only: mult_count)

hence
"∀p. multiplicity p (msetprod (x #∩ xa)) = min (count x p) (count xa p)"
by (auto simp only: multiset_inter_count)

from this a1 a2 have
"∀p. multiplicity p (msetprod (x #∩ xa))

= min (multiplicity p (msetprod x)) (multiplicity p (msetprod xa))"
by (auto simp only: mult_count)

from this gx gxa have
almst: "∀p. multiplicity p (msetprod (x #∩ xa))

= multiplicity p (gcd (msetprod x) (msetprod xa))"
by (auto simp only: multiplicity_gcd_nat)

from xxa have "(msetprod (x #∩ xa)) > 0"
by (auto simp only: prime_msetprod_gr0)

from this almst gx have
"msetprod (x #∩ xa) = gcd (msetprod x) (msetprod xa)"
by (auto simp add: eq_multiplicities)

note xxa and this}
thus "(BN ===> BN ===> BN) (op #∩) gcd"
unfolding BN_def rel_fun_def

qed

Figure 5.3: Proof that multiset intersection maps to gcd under the numbers-as-bags-of-primes

transformation. Notice the use of symbol #∩, representing the intersection of

multisets (which we usually write simply as ∩).

theorem. See figure 5.4 for the actual Isabelle proof.

Another interesting transfer rule is

(BN Z⇒ eq Z⇒ BN) (flip smult) exp

where smult s M is the multiset that results from multiplying every multiplicity of M

by the natural number s, i.e., a scalar multiplication. Its proof again follows from the

laws of exponents.

And finally we have

(BN Z⇒ eq) is singleton prime
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lemma BN_dvd: "(BN ===> BN ===> op =) (op ⊆#) (op dvd)"
proof -
{fix x xa::"nat multiset" and nxa nx nxxa
assume a1: "x ≤ xa"
then have "∃t. x+t=xa"

by (metis mset_le_exists_conv)
then obtain t where "x + t = xa"
by auto

hence "msetprod xa = (msetprod x) * (msetprod t)"
by auto

hence "∃t. msetprod xa = (msetprod x) * t"
by simp

hence "(msetprod x) dvd (msetprod xa)"
unfolding dvd_def .}

note p1 = this
{fix x xa::"nat multiset"
fix p
assume a: "(msetprod x) dvd (msetprod xa)"
and a1: "∀p ∈ set_of x. prime p"
and a2: "∀p ∈ set_of xa. prime p"

hence "∀p. count x p ≤ count xa p"
by (simp add: multiset_prime_factorization_unique_aux)

hence "x ≤ xa"
by (simp only: mset_less_eqI)}

note p2 = this
from p1 and p2 show
"(BN ===> BN ===> op =) (op ⊆#) (op dvd)"
unfolding BN_def rel_fun_def bag_of_primes_def by auto

qed

Figure 5.4: Proof that ⊆ maps to dvd under the numbers-as-bags-of-primes transformation.

Notice the use of symbol #⊆, representing the sub(multi)set relation (which we

usually write simply as ⊆).

which means that if a number is prime its corresponding multiset is a singleton (its

size is 1). For this theorem we constructed a structured proof consisting of 11 steps.

First one proves that if M is a singleton and bag of primes M , then msetprodM is

prime. This is trivial, as M must contain one and exactly one prime, so the product

of its elements is prime. The converse consists of proving that if msetprodM is prime

then M must be a singleton. We show the contrapositive, i.e., we assume that M is

not a singleton and we use this to prove that msetprodM is not a prime. We show

that if M is not a singleton then we can take non-empty multisets M1 and M2 where

M = M1 +M2 and thus msetprodM = (msetprodM1)∗ (msetprodM2). Moreover we

can show that M1 and M2 are bags of primes, so their products must be larger than 1.

Then we can conclude that msetprodM is not a prime. For the full Isabelle proof see

figure 5.5.

This transformation is the essence of what we call numbers-as-bags-of-primes rea-

soning. We often use this transformation in combination with others (we show some

examples in chapter 7).

83



5 Mechanising transformations in Isabelle/HOL

lemma BN_prime: "(BN ===> op =) is_singleton prime"
proof -
{fix x::"nat multiset"
assume a: "size x 6= 1" "∀p∈set_of x. prime p"
{assume "size x = 0"

then have "msetprod x = 1" by simp
hence "¬ prime (msetprod x)" by simp}

note case1 = this
{assume "size x > 0"

from this a(1) obtain r s where p:
"x = r + s" and "r 6= {#}" and "s 6= {#}"
by (metis Suc_pred add.left_neutral size_empty

size_eq_Suc_imp_eq_union size_single zero_neq_one)
from this a(2) have
"∀p∈set_of r. prime p" and "∀p∈set_of s. prime p"
by simp+

from this p(2,3) have c: "msetprod r > 1" and "msetprod s > 1"
by (metis BN_1 BN_def One_nat_def Suc_lessI bag_of_primes_def

fact_prod_inv prime_msetprod_gr0)+
from p(1) have "(msetprod r) * (msetprod s) = msetprod x"
by simp

from this c have "¬ prime (msetprod x)"
by (metis less_numeral_extra(4) prime_product)}

note case2 = this
from case1 and case2 have "¬ prime (msetprod x)"
by blast}

note lem = this
show "(BN ===> op =) is_singleton prime"
unfolding rel_fun_def BN_def bag_of_primes_def is_singleton_def
apply auto

using size_1_singleton_mset apply force
apply rotate_tac apply (erule contrapos_pp)
using lem by simp

qed

Figure 5.5: Proof that prime numbers correspond to multiset singletons. Notice that the

empty multiset is represented as {#}.

5.1.2 Numbers as sets

The relation between numbers and sets is at the heart of enumerative combinatorics.

Every finite set maps to a natural number by the cardinality function, and various set

operators correspond to numerical operators. We explore this here and explain how we

have formalised it in Isabelle5.

Background theories and superstructures

Let α be any type. Then, we can construct the superstructure

{B, α, α set , (α set) set , ((α set) set) set , . . .}→

5 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/SetNat.thy
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as an interpretation of basic set theory. In general, enumerative combinatorics is quite

broad, so other types such as lists, multisets and products can be included into the

ground of the superstructure. For our purposes we only need what is stated. For basic

number theory we take the usual {B,N}→.

We use a few theories from the library of Isabelle related to cardinal arithmetic, and

some basic theories regarding finite and infinite sets. As we have noted before, the

use of sets in Isabelle/HOL is significantly different from the use one would give them

in ZF. For example, {a} and {{a}} are of different types. That is why we have to

explicitly include types like (α set) set in the superstructure. It should also be noted

that, in the library, the cardinality function card is defined as 0 for infinite sets. This

is to overcome the fact that, in Isabelle/HOL, a partial function over a type cannot

be defined, so every infinite set necessarily has to be mapped to some number6. One

of the consequences of this is that our proofs often involve splitting in cases: when

cardA > 0, in which case cardinality behaves normally, and when cardA = 0, in

which case A may be either empty or infinite.

We also include some theories from the library, where some elements of combinatorics

are defined (e.g., the choose operator often used as
(
n
k

)
). We define some operators

over sets, such as nPow, which takes a set A and a number k and yields the set of

subsets of A with cardinality k, i.e.,

nPowAk = {S ⊆ A. cardS = k}.

Transformation

The relation at the centre of this transformation is SN : β set → N→ B where SNAn

holds if and only if finiteA ∧ cardA = n. From this point on we will refer to |A| as

cardA. As the ground of the transformation we include every relevant instance of SN :

β set → N→ B, i.e., for every type β ∈ {α, α set , (αset) set , ((αset)set) set , . . .},
as well as the boolean relations eq and imp. We will refer to such instances of SN, over

type β, as SNβ (only when the type matters for the theorem; otherwise we simply write

SN). We defined this transformation polymorphically over any type α, and proved

6 A solution would be to construct a cardinal type (possibly as a quotient of some type β where β is

a type representing sets, either in the style of HOL or in the style of ZF) and define the cardinality

function with values in said type. This would define a transformation between the type of sets and

the type of cardinals. Subsequently a transformation would need to be constructed injecting the

type of natural numbers into the type of cardinals. Thus, the composition of the transformations

would yield a transformation between sets and natural numbers as we do here. Regardless of this

possibility, we chose to take the direct route because the theory concerning the operator card, despite

of its weakness, is already quite developed, so it provides a background theory for us, so we avoid

having to reconstruct it from scratch.
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various transfer rules for the polymorphic type, but for most practical purposes α may

be taken as N.

Naturally, we extend the transformation to the superstructures using the relator Z⇒.

One of the important differences between this transformation and the ones we have

presented above is that it is not bi-unique. For every natural number there are many

sets representing it. Normally, proofs involve choosing some concrete representative, so

we provide transfer rules that allow this. For example, we declare and prove the rules

SN {} 0 and SN {0, . . . , n− 1}n, which simply give us a canonical representative of each

number (notice that the latter assumes that we are using SNN). Evidently, this is not

exhaustive, as some proofs may require other representatives.

If the type β has an infinite universe then SNβ is right-total but not left-total, so we

have the following rules:

((SNβ Z⇒ eq) Z⇒ eq) ∀fin ∀ ((SNβ Z⇒ eq) Z⇒ eq) ∃fin ∃

((SNβ Z⇒ imp) Z⇒ imp) ∀ ∀ ((SNβ Z⇒ revimp) Z⇒ revimp) ∃ ∃

where ∀fin and ∃fin is the bounded quantifiers, over finite sets. To show that SNβ is

right-total when β is infinite we constructed a structured proof with 7 step structured

proof. See figure 5.6 for a full Isabelle proof of this fact. The proofs of all of the above

transfer rules follow from it.

Furthermore, the relation is left-unique but not right-unique, so we have

(SN Z⇒ SN Z⇒ imp) eq eq (SN Z⇒ SN Z⇒ eq) eqp eq

where eqp is the relation of being equipotent, or bijectable. The proof of the former

is trivial, and the latter follows directly from a theorem in the library stating simply

that: if there is a bijection between two sets, then they have the same cardinality, and

conversely, that if they have the same cardinality (and they are finite), then there exists

a bijection between them.

Similarly we have

(SN Z⇒ SN Z⇒ eq) injble ≤

(SN Z⇒ SN Z⇒ imp) ⊆ ≤,

where injbleAB simply means that there exists a function that injects A in B. The

proofs of these two theorems follow directly from theorems in the Set library of Isabelle.

Regarding other combinatorial operators we have

(SN Z⇒ SN) Pow (exp 2)

(SN Z⇒ eq Z⇒ SN) nPow choose
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lemma infinite_set_all_nats:
"infinite A =⇒ ∀n. ∃B⊆A. card B = n"
by (metis card_image card_lessThan finite_lessThan

inj_on_finite one_set_greater)

lemma SN_right_total :
"infinite (UNIV::’a set) =⇒ right_total (SN::’a set ⇒ nat ⇒ bool)"

proof -
assume a: "infinite (UNIV::’a set)"
{fix y::nat assume "y = 0"
hence "finite {} ∧ card {} = y"
by simp}

note case1 = this
{fix y::nat assume a1: "infinite (UNIV::’a set)" and a2: "y 6= 0"
hence "∃B::’a set. card B = y"
using infinite_set_all_nats by blast

then obtain B::"’a set" where pB: "card B = y"
by auto

from this and a2 have "finite B"
by (meson card_infinite)

from this and pB have "∃x::’a set. finite x ∧ card x = y"
by auto}

note case2 = this
from case1 and case2 and a show
"right_total (SN::’a set ⇒ nat ⇒ bool)"

unfolding right_total_def SN_def by blast
qed

Figure 5.6: Proof that SN is right-total when the universe of the types is infinite. Notice

that a lemma had to be constructed to prove this, which itself can be proved by

metis (with lemmas suggested by the external provers). Also notice that the case

where the cardinality is 0 has to be considered separately because the cardinality

of infinite sets in Isabelle is defined as 0.

where, for any n and k natural numbers, choosenk =
(
n
k

)
and (exp 2)n = 2n. The

proofs of these also follow directly from theorems in the library.

A more interesting problem is how to encode the partial match between the union of

sets and the addition of numbers, i.e., what the theorem

A ∩B = {} −→ card (A ∪B) = (cardA) + (cardB)

means in terms of the Z⇒-transformation, or how it can be encoded as a transfer rule.

If we could define partial functions, one could define an operator as a restriction of

the union; only applicable over disjoint pairs. However, this is not possible in Isabelle.

Our solution is to define relational versions of the operators in question. We define

disjU and plus as follows:

disjU A B C ←→ A ∩B = {} ∧ A ∪B = C

plus a b c ←→ a+ b = c.
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Then we have

(SN Z⇒ SN Z⇒ SN Z⇒ imp) disjU plus

The proof of this follows directly from a theorem in the library.

For arbitrary unions and sums we use the following definitions (from the library):

UnionA =
⋃
A

setsum f A =
∑
x∈A

f x,

and we define relational notions of them. Notice the heterogeneity in the shapes of the

definitions; whereas the former is defined over a set, the latter is defined over the image

of set given a function. Thus we define, DisjU and Plus as follows, which homogenises

the shapes of the definitions, and makes them relational:

DisjU f I C ←→ inj on f I ∧ Disjoint {f i. i ∈ I} ∧ Union {f i. i ∈ I} = C

Sum f I C ←→ setsum f I = C.

where inj on f I means that f is injective on I, DisjointA means that every pair of

elements of A are disjoint. The former may look a little convoluted, but it just relates

every disjoint-by-pairs set (indexed by I, i.e., the image of f over the set I), with the

union of all of its elements. With these definitions we have the transfer rule

((eq Z⇒ SN) Z⇒ eq Z⇒ SN Z⇒ imp) DisjU Sum.

The proof of this transfer rule is a bit more complicated. It is structured, with 8 tactic

applications. Again, the library already has plenty of useful lemmas regarding cardinal

arithmetic. For the full Isabelle proof see figure 5.7.

It should be noted that, even if relational definitions such as DisjU look convoluted,

they are only used for constructing the transformation where it is valid. The user does

not have to deal with them, either before or after applying the transformation. In chap-

ter 6 we will show how these definitions are automatically introduced and eliminated,

so the user neither needs to use these constants to state the goals nor does the user

receive goals that use these constants.

This transformation is central to the work of this thesis. We focus on some of its

applications and experiments with it in chapter 7.
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lemma Card_Union:
assumes "∀xa∈x. finite xa"

and "finite (
⋃
x)"

and "∀xa∈x. ∀xb∈x. xa 6= xb −→ xa ∩ xb = {}"
shows "setsum card x = card (

⋃
x)"

by (metis assms card_Union_disjoint finite_UnionD)

lemma SN_setsum:
"((op = ===> SN) ===> op = ===> SN ===> op −→) DisjU Sum"

proof -
{fix x y xa
assume a: "∀xa. finite (x xa) ∧ card (x xa) = y xa"

"finite (
⋃
xa∈xa. x xa)"

"∀xb∈xa. ∀y∈xa. x xb = x y −→ xb = y"
"∀a∈xa. ∀b∈xa. x a 6= x b −→ x a ∩ x b = {}"

from a have xs: "setsum card (x 8 xa) = card (
⋃
(x 8 xa))"

using Card_Union[where x = "x 8 xa"] by auto
from a(1) have py: "y = (card ◦ x)"
by auto

from a(3) have "inj_on x xa"
by (simp add: inj_onI)

from this have "setsum y xa = card (
⋃
xa∈xa. x xa)"

unfolding py using xs setsum.reindex by (metis SUP_def)}
thus "((op = ===> SN) ===> op = ===> SN ===> op −→) DisjU Sum"
unfolding rel_fun_def SN_def DisjU_def Sum_def

bij_betw_def inj_on_def
by auto

qed

Figure 5.7: Notice imp written as op −→ and eq written as op =. Note that the operator 8

stands for ‘image of set under function’. Notice that the essential lemma for this

proof is proved by metis, with lemmas suggested by the external provers.

5.1.3 Multisets as N-valued functions

Multisets are similar to sets. The difference is that the elements of a multiset have

multiplicities whereas the elements in a set do not. Hence, a multiset can be represented

by an N-valued function, where the value represents the multiplicity of the element in

the multiset.

This transformation is already in place in Isabelle. Our contribution to it is small,

but nonetheless it is necessary to explain the details of the transformation7.

Background theories and superstructures

In the theory Multiset in Isabelle’s library, the type α multiset is constructed using

the functionality typedef, defining them directly from N-valued functions. First, the

7 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/Multiset_more.thy

and http://dream.inf.ed.ac.uk/projects/rerepresent/FunMset.thy
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set of functions with only a finite set of non-zero values is defined:

{f : α→ N. finite {x. f x > 0}},

and then, the type α multiset is constructed using typedef from the set (note that

this means that multisets are defined as finite). The function typedef is actually set

up so that a transfer relation is automatically defined from the raw type to the newly

created (abstract) type. Moreover, this relation is (by construction) right-total and

bi-unique.

When using typedef, the ‘morphisms’ connecting both types can be named. In this

case, the morphism that yields the representative N-valued function given a multiset,

is called count. Intuitively, countM is a function such that (countM)x = n where n

is the multiplicity/count of x in M .

Apart from the transfer relation that gets created automatically after defining a

new type with typedef, definitions for the old type may be lifted to the new type

using Isabelle function lift definition. Every declaration of a new definition by

lifting needs to be accompanied by a proof that it is well defined. For most of the

important definitions, this has already been done in the Multiset theory in Isabelle (by

its authors). For example, the empty multiset (here called ‘zero multiset’) and operator

] (here called ‘plus multiset’) are defined as follows:

• lift definition zero multiset : α multiset is ‘λx. 0’

• lift definition plus multiset : α multiset → α multiset → α multiset

is ‘λM N. (λx. M x+N x)’,

To be allowed to lift these definitions the following statements need to be proved,

respectively:

• (λx. 0) ∈ {f : α→ N. finite {x. f x > 0}}, and

• (λx. M x + N x) ∈ {f : α → N. finite {x. f x > 0}}, whenever M and N are

also in {f : α→ N. finite {x. f x > 0}}.

Once a constant has been lifted successfully from one domain to another, the newly

defined constant will be such that it is related to the old constant by a transfer rule

via the structural transformation. In the case of the examples above these will be

• FM (λx. 0) {}

• (FM Z⇒ FM Z⇒ FM) (λx. M x+N x) ]

where FM is the relation from N-valued function to multisets, {} stands for zero multiset

defined above, and ] stands for the operation ‘plus multiset’ defined above.
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Other definitions, such as the size of the multiset, or the union, are defined without

lifting, so we have provided and proved their corresponding transfer rules. Both the

proofs required when lifting a definition, and the proofs of transfer rules (for constants

defined in some other manner) turn out to be relatively easy to prove.

The superstructures in question are {α, α→ N,N,B}→ and {α, α multiset ,N,B}→.

Transformation

As explained above, the type α multiset is linked to N-valued functions by design.

Let FM : (α→ N)→ α multiset → B be the relation where FM f M is true if and only

if f = countM . We will consider the transformation {FM, eq, imp, revimp}Z⇒.

Below we show some important transfer rules satisfied by this transformation.

As we mentioned, the relation is right-total (but not bi-total) and bi-unique. From

theorems 4.5 and 4.8 we have

((FM Z⇒ imp) Z⇒ imp) ∀ ∀

((FM Z⇒ revimp) Z⇒ revimp) ∃ ∃

(FM Z⇒ FM Z⇒ eq) eq eq

Moreover, if ∀m and ∃m are quantifiers over the space of N-valued functions, bounded

over the set {f. finite {x. f x > 0}}, we have transfer rules

((FM Z⇒ eq) Z⇒ eq) ∀m ∀ ((FM Z⇒ eq) Z⇒ eq) ∃m ∃,

by theorem 4.4.

By construction, the function count corresponds to the identity in the domain of

N-valued functions. In other words, the structural transformation satisfies

(FM Z⇒ eq) (λx. x) count

We also have FM (λx. 0) {} (i.e., constant function 0 corresponds to the empty mul-

tiset). We do not have something similar for the universe as we did with sets, because

in the case of multisets, as presented, it cannot exist.

We have the operator ⊆ which checks that the multiplicity of every element on the

left hand multiset is smaller or equal to the multiplicity of the right hand multiset, ]
which adds the multiplicities of two multisets, ∪ which takes the greatest multiplicity

of each element, ∩ which takes the lowest multiplicity of each element, and r which

subtracts the multiplicities. For all of these operators, the structural transformation
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satisfies the following sentences:

(FM Z⇒ FM Z⇒ eq) (λ f g.∀x. f x ≤ g x) ⊆

(FM Z⇒ FM Z⇒ FM) (λ f g x. f x+ g x) ]

(FM Z⇒ FM Z⇒ FM) (λ f g x. fx− gx) r

(FM Z⇒ FM Z⇒ FM) (λ f g x. max (f x) (g x)) ∪

(FM Z⇒ FM Z⇒ FM) (λ f g x. min (f x) (g x)) ∩

For operators ⊆, ] and r, these transfer rules have been added automatically by

typedef. On the other hand, ∪ and ∩ have been defined (by the authors of the

Multiset theory) as A∪B = A] (BrA) and A∩B = Ar (ArB). However, to prove

their corresponding transfer rules, we only need the lemmas

• count (A ∪B)x = max (countAx) (countB x)

• count (A ∩B)x = min (countAx) (countB x),

and these are trivially true (and already proved in the Multiset theory).

Given that the type of multisets is constructed from the type of N-valued functions,

the transformation is essential for proofs about multisets. It is widely used throughout

the theory of multisets in the library of Isabelle, but we will not detail that here. We also

use it in our own mechanisation of other transformations involving the multiset type,

and casually in the proofs of some number theory problems, often after the application

of the numbers-as-bags-of-primes transformation.

5.1.4 Multisets as Lists

Multisets, in the Isabelle library, are necessarily finite. Thus, they only differ from

lists in the abstraction of order. As we mentioned before, multisets are constructed

from N-valued functions, but they could have been defined as a quotient type of lists,

where two lists are in the same equivalence class if one is a permutation of the other.

Thus we have constructed this link. Mathematically it is not very interesting and the

proofs of the transfer rules tend to be easy, but it can be useful for reasoning. In

particular, we have used this transformation in the proofs of the transfer rules of other

transformations8.

8 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetList.thy
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Background theories and superstructures

Let α be a type. We consider the superstructures {α, α list ,N,B}→ for lists, and

{α, α multiset ,N,B}→ for multisets (type N is included to model some functions such

as size, or scalar multiplication).

The theory of lists in the library of Isabelle is well developed. Furthermore, there are

already some theorems linking both structures of lists and multisets. For example, there

is a function multiset of, which takes a list and yields its corresponding multiset. It is

defined recursively (the empty list maps to the empty multiset and adding an element

to a list inserts the element in the multiset). Moreover, there is a constant perm

(standing for permutation), in which a list is defined to be a permutation of another

list if they have the same multiset. A few theorems regarding permutation are proved

in the library.

Transformation

Let LM : α list → α multiset → B be defined by the equivalence

LM l m ←→ multiset of l = m

This relation is bi-total, so we have

((LM Z⇒ eq) Z⇒ eq)∀ ∀ ((LM Z⇒ eq) Z⇒ eq) ∃ ∃

From the recursive definition of multiset of we have LM [ ] {}.
From the definition of ‘permutation’ we have

(LM Z⇒ LM Z⇒ eq) perm eq,

i.e., a list is a permutation of another if their multisets are equal.

Also, it is easy to prove the following transfer rules:

(eq Z⇒ LM Z⇒ LM) # #M

(LM Z⇒ LM Z⇒ LM) ] @,

where @ is the operator that appends two lists, # is the list constructor (insert), and

#M is the analogous operation that adds an element to a multiset.

It is also easy to prove the following:

(LM Z⇒ eq) length size

We defined a function lmult : N → α list → α list that multiplies a list, i.e.,

lmultn l creates n copies of l and appends them. Then we prove that this operator

93



5 Mechanising transformations in Isabelle/HOL

commutes with the analogous for multisets smult:

(eq Z⇒ LM Z⇒ LM) lmult smult.

This is easy to show by induction.

Furthermore, we defined the operator list count : α list → α→ N, which counts

the number of times an element appears in a list. Then we proved

(LM Z⇒ eq Z⇒ eq) list count count

The proof of this is easy by induction.

A small application (data refinement)

Apart from the use of this transformation for the proofs of other transformations, we

have used this transformation as a means of improving some calculations in Isabelle.

For example, in Isabelle, the lemma {4, 1, 3, 1, 2, 1, 4, 1, 2, 2} = {2, 2, 2, 4, 1, 1, 1, 3, 1, 4}
(of multisets) cannot be automatically proved by any of the standard methods, even

though it ought to be just a simple calculation of the counts of elements 1, 2, 3, and

4. Notice that, if this is an issue when stated in terms of multisets, it will necessarily

remain an issue when translating it to a problem about list permutations, because list

permutations are defined in terms of multisets.

What we have done is that we have defined a new function perm alt, completely in

terms of lists, which takes an element of the first list and finds whether it appears in the

second. If it does, it removes it from both and goes on to the next element. If at the end

of this process both lists are empty, then it yields >. If any of the lists becomes empty

before the other does then it yields ⊥. Notice that this definition ensures termination

of the calculation.

Subsequently, we proved that perm alt is equivalent to perm, which allows us to use

the terminating function to know whether something is a permutation of another thing.

Interestingly, to show this equivalence we used the converse transformation9 of the one

mentioned here, i.e., to reason about lists it was simpler to translate to multisets and

reason in that domain. However, once we have this proof of the correctness of perm alt,

it can be used to calculate {4, 1, 3, 1, 2, 1, 4, 1, 2, 2} = {2, 2, 2, 4, 1, 1, 1, 3, 1, 4}: we trans-

form it to a problem about lists and we calculate whether one list is a permutation of

the other using perm alt.

We have tested this method and it works. Now two concrete multisets can be proved

to be equal automatically with the use of a transformation. This falls into the data

refinement paradigm wherein abstract types are assumed to be useful for reasoning,

9 The automatic calculation of converse transformations is explained in detail in section 5.2.
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while concrete types are useful for calculation. Moreover, the application highlights

the fact that it is useful to have both a transformation and its converse available.

5.1.5 Multiset auto-transformations

Here we describe a family of transformations, rather than one specific transformation.

A relation R between two types α and β (not necessarily different) induces a relation

between the types α multiset and β multiset . The essence and motivation of this

kind of transformations is that much of the reasoning regarding multisets is actually

independent of any particular elements that these multisets may contain. For example,

the union of multisets is invariant under a bi-unique change of names of their elements.

Here we study such induced relations10.

Background theories

We write rel msetR : α multiset → β multiset → B to denote a particular multiset

relation, parametric on (or induced by) R : α→ β → B.

The idea of parametric transformations are not new. In fact, the relator rel mset

is defined in the Isabelle library, by the authors of the transfer package. The idea

behind it is similar to the use of the standard function relator Z⇒. Whereas Z⇒ is a

rule for relating two function types given two relations between the respective base

types, rel mset is a rule for relating two multiset types given one relation between the

base types. To state its definition we first need the following auxiliary definition (the

analogous relator for lists):

list all2 R L1 L2 ←→ (lengthL1 = lengthL2 ∧

(∀n < lengthL1. R (nthL1 n) (nthL2 n))).

Its meaning is actually quite simple: two lists are related by list all2 R if the elements

of the list, one by one, are related by R.

Then, the relator for multisets is defined in terms of the relator for lists:

rel msetRX Y ←→ (∃Lx Ly : α list. multiset ofLx = X

∧ multiset of Ly = Y

∧ list all2R Lx Ly).

10 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/Mset_param_transformation.thy

and http://dream.inf.ed.ac.uk/projects/rerepresent/NatPrime.thy
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Simply meaning that two multisets are related by rel msetR if their elements can be

put in lists related by list all2 R.

It is interesting to note that this definition, in terms of lists, is a choice of the authors

of the transfer package and, as a consequence of it, the multisets-as-lists transformation

described above becomes useful for the proofs regarding multiset auto-transformations.

As we mentioned before, the basis of this transformation was defined by the authors

of the transfer package. However, the background theory for it in the Isabelle library

is underdeveloped. Thus we extended significantly to it. In particular, we defined an

alternative but logically stronger version of rel mset as follows:

rel mset alt R X Y ←→ (∃f. bij betw (set ofX) (set ofY ) ∧

(∀a ∈ (set ofX). R a (f a) ∧ countX a = countY (f a)))

In other words, two multisets are related by rel mset altR if there exists a bijection

between their corresponding sets, where every element maps to an element related by R

and the multiplicities of each element and its image are the same. We later proved that,

if R is bi-unique then rel mset altR and rel msetR are equivalent. To prove this, we

had to develop the theory of multisets, lists and relations (e.g., link between relations

and functions with respect to bi-uniqueness, injectivity, etc.). It is also interesting to

note that, for this proof, we used the multisets-as-lists transformation.

Transformations

Given two superstructures {α, α multiset B}→ and {β, β multiset B}→ and a rela-

tion R : α→ β → B, we can construct the transformation {R, rel msetR, eq}Z⇒.

As part of the background theories of the transfer package we have rel msetR {} {}
and various theorems such as

bi-uniqueR −→ bi-unique (rel msetR)

bi-totalR −→ bi-total (rel msetR)

In general, all of the uniqueness and totality properties (left and right) are inherited

from R into rel msetR. All of these theorems have been proved by the authors of the

transfer package.

From this point on, all the theorems that we present regarding this transformation

were added and proved by us.
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First, without the need for bi-uniqueness we have the following:

(rel msetR Z⇒ rel msetR Z⇒ rel msetR) ] ]

(R Z⇒ rel msetR Z⇒ rel msetR) #M #M

(eq Z⇒ rel msetR Z⇒ rel msetR) smult smult,

where #M is the insert operator and smult is the scalar multiplication of multisets.

These proofs required on average 5 tactic applications, using a couple of lemmas from

the library. For the proof of smult we also use the multisets-as-lists transformation.

Moreover, we have theorems expressing the invariance of various multiset operators

under bi-unique transformations. Then we have the following:

bi-uniqueR −→ (rel msetR Z⇒ rel msetR Z⇒ rel msetR) ∩ ∩

bi-uniqueR −→ (rel msetR Z⇒ rel msetR Z⇒ rel msetR) ∪ ∪

bi-uniqueR −→ (rel msetR Z⇒ rel msetR Z⇒ eq) ⊆⊆

For these proofs we used the alternative definition rel mset alt and our lemma stating

that the two definitions are equivalent if the relation is bi-unique. These all have

technically complex structured proofs. For the first two they have between 20 and 25

tactic applications, and the third has 9 tactic applications. This apart from the fact

that we use our lemma above which already has a very complex proof and needed a lot

of development of background theories.

One of the aspects that complicates these proofs is the generality. We proved these

theorems for any relation R, so we have a family of transformations. One of our

main motivations for proving these theorems relates to our use of the numbers-as-

bags-of-primes transformation. The result of applying the numbers-as-bags-of-primes

transformation is that we are left with a sentence about multisets of primes. However, in

many cases the reasoning that follows does not depend on the primality of the elements,

but just on properties of the multisets. Thus, we can transform using a bijection (a

bi-unique relation to be precise) between the set of prime numbers to the whole set of

natural numbers. We will see examples of this in chapter 7. Here we will describe just

what we proved to make this transformation work.

We built a function that enumerates all the prime numbers. We define it recursively

as follows:

enum primes 0 = 2

enum primes (Sucn) = smallest prime beyond (Suc (enum primes n))
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where smallest prime beyond is a function defined in the number theory library.

First we proved that every element in the image of enum primes is a prime. Then

we proved that the function is strictly increasing, and that there are no primes be-

tween enum primes n and enum primes (Sucn). Then we prove that enum primes is

not bounded. Finally, we use these lemmas to show that enum primes is a bijection

between the whole universe of natural numbers and the set of primes. This last proof is

structured with 15 tactic applications, apart from the proof of each of the three lemmas

(with no more than 2 tactic applications per lemma).

We also showed that any relation representing a bijective function is bi-unique and

left-total, and then we defined the relation NP such that

NP n p ←→ (p = enum primes n).

Thus we conclude that NP is bi-unique, so all of the above transfer rules (about

multiset auto-transformations) apply to rel mset NP.

Finally, using that the range of the transformation is the set of prime numbers and

that the domain is the whole universe of natural numbers, we have:

((rel mset NP Z⇒ eq) Z⇒ eq) ∀ ∀bp ((rel mset NP Z⇒ eq) Z⇒ eq)∃ ∃bp

where ∀bp and ∃bp are the bounded quantifiers over the multisets of primes.

5.1.6 Sets and Multisets

We have formalised two transformations that relate multisets and sets. Mathematically

they are not very interesting, but they are useful in practice, as we claim in chapter 7.

Thus we only describe them briefly here, with a focus on the contrast between them11.

Transformations

The two transformations are centred around the relations MS and MSi. The former

relates every multiset with the set of its elements and the latter does so only for the

multisets which are sets, i.e., the multiplicities of their elements are only 0 and 1. We

call these multisets set-like multisets.

MSms ←→ set of m = s

MSims ←→ finite s ∧ multiset of s = m

11 For a record of the formalisation of this theory in Isabelle see

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetSet.thy
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First notice that the former is left-total, but the later is neither left-total nor right-total.

Thus we have

((MS Z⇒ eq) Z⇒ eq)∀ ∀f ((MS Z⇒ eq) Z⇒ eq)∃ ∃f
((MS Z⇒ revimp) Z⇒ revimp)∀ ∀ ((MS Z⇒ imp) Z⇒ imp)∃ ∃

where ∀f and ∃f are the bounded quantifiers over finite sets. The proofs of these are

trivial. For MSi we have

((MSi Z⇒ eq) Z⇒ eq) ∀s ∀f ((MSi Z⇒ eq) Z⇒ eq) ∃s ∃f
((MSi Z⇒ imp) Z⇒ imp) ∀ ∀f ((MSi Z⇒ imp) Z⇒ imp) ∃s ∃

where ∀s and ∃s are the bounded quantifiers over set-like multisets. The proofs of

these are actually not trivial. Particularly, the proofs of ((MSi Z⇒ eq) Z⇒ eq) ∀s ∀f and

((MSi Z⇒ eq) Z⇒ eq)∃s ∃f are long (both are 10-step structured proofs), even though

they are conceptually very simple.

Also, MS is only right-unique, but MSi is bi-unique. Thus we have

(MS Z⇒ MS Z⇒ imp) eq eq

(MSi Z⇒ MSi Z⇒ eq) eq eq.

These rules have relatively simple proofs.

Regarding some operators, for MS we have the following transfer rules:

(MS Z⇒ MS Z⇒ MS) ∪ ∪

(MS Z⇒ MS Z⇒ MS) ] ∪

(MS Z⇒ MS Z⇒ MS) ∩ ∩.

However, for MSi we only have

(MSi Z⇒ MSi Z⇒ MSi) ∪ ∪

(MSi Z⇒ MSi Z⇒ MSi) ∩ ∩.

Notice ] is missing from the latter list. This is because applying it to set-like multisets

does not necessarily yield a set-like multiset. It should be noted that the proofs of the

former theorems are trivial whereas the proofs of the latter ones are not, as they involve

proving that the property of being set-like is preserved by the operation (e.g., that the

union of two multisets, whose multiplicities are only 0 and 1, has itself multiplicities

only 0 and 1).

For the membership predicate we have
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(eq Z⇒ MS Z⇒ eq) ∈∈

(eq Z⇒ MSi Z⇒ eq) appears exactly once ∈,

where appears exactly once x m means that the multiplicity of x in m is 1.

For the subset predicate we have

(MS Z⇒ MS Z⇒ imp) ⊆⊆

(MSi Z⇒ MSi Z⇒ eq) ⊆⊆,

Like above, the proof for MS is trivial, while the proof for MSi is longer (4 tactic appli-

cations).

For size/cardinality we have

(MS Z⇒ geq) size card

(MSi Z⇒ eq) size card,

where geq means greater or equal, meaning that MSms implies sizem ≥ card s. In

this case the proof for MS is similar in size to the proof for MSi.

As we mentioned before, these transformations are not very interesting mathemati-

cally, but they are useful in proofs. Some of its uses will be shown in chapter 7.

5.1.7 Other transformations

In figure 5.1 we show a graph connecting different domains. Above, we have described

the very interconnected left side of the graph. The authors of the transfer package

mechanised transformation 9, and we have further mechanised transformations 8, 10,

11, 12, and 13. We think these are interesting transformations with some applications

in number theory, but we have not experimented with them, so they remain open for

future work. Furthermore, the list that we have provided here is not exhaustive of

the whole set of potential transformations between the typical structures of discrete

mathematics. The Isabelle theories for these transformations can be found at

http://dream.inf.ed.ac.uk/projects/rerepresent/.

5.2 Calculating converse transformations

Apart from all the individual transformations we formalised, we developed a method for

generating the converse of any given transformation. This extends our inference capa-

bilities given some knowledge about a superstructural transformation. For example, it

allows us to logically reduce P x to Qy using the facts Rxy and (R Z⇒ eq)P Q (rather
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than the other way around, as the transfer tactic does)12. The transfer tactic will

only match constants of the goal from the right of a transfer rule, even if there is a

sound derivation to be made by matching constants from the left of the transfer rule. In

order to make inferences the other way around, we need a way of constructing converse

transfer rules. We will show that any transfer rule always has a converse version, and

how to obtain it mechanically (with a logically sound method). We will present the

tool mk converse trule that does this; it takes a transfer rule as input and yields its

converse version.

At its essence, our conversion tool, converse trule, is a systematic application of

a set of rewrite rules concerning the behaviour of the operator flip, shown in section

4.2.3. From the definition of flip and lemma 4.6 we have the following equations:

Ra b = (flipR) b a (5.1)

flip (R1 Z⇒ R2) = (flipR1 Z⇒ flipR2) (5.2)

Furthermore, from lemma 4.7 and the symmetry of equality we have:

flip eq = eq (5.3)

Then, if we have a transfer rule (R Z⇒ eq) f g, we can apply rules (5.1) and (5.2) to

obtain (flip R Z⇒ flip eq) g f . Finally, from (5.3) we can obtain the usable transfer

rule (flip R Z⇒ eq) g f . As we have shown before, transfer rules with equality (such as

this one) are the kind that we can use to infer equivalence between a statement and its

transformed version.

Furthermore, from the definition of flip we have the following facts, regarding im-

plication and reverse implication:

flip imp = revimp (5.4)

flip revimp = imp (5.5)

For other relators (e.g., to construct parametric auto-transformations as we did with

multisets and we mentioned regarding lists) we have

flip (rel mset R) = rel mset (flip R) (5.6)

flip (list all2 R) = list all2 (flip R) (5.7)

12 Note that reducing P x to Qy cannot be done with (R Z⇒ imp)P Q, because of the direction of the

implication, but it can be done with either (R Z⇒ eq)P Q, or with (R Z⇒ revimp)P Q.
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Thus, for any transfer rule of the form Ra b (where R may be of the form (R1 Z⇒ R2))

we can rewrite it starting with rule (5.1), then recursively applying rules (5.2), (5.6) and

(5.7) (pushing flip in), and finish by eliminating flip where possible, using rules (5.3),

(5.4) and (5.5). This is exactly what our main conversion function, mk converse trule,

does.

From this conversion function we build the Isabelle attribute converse trule. Using

it, a whole set of transfer rules can be reversed at once. A typical declaration of an

entirely new set of converse transfer rules looks as follows:

theorems NB trules = BN trules[converse trule flip intro[where R = BN]]

Where flip intro[where R = BN] is an instantiation of rule (5.1). If

BN trules is the set of transfer rules for transforming numbers into bags of primes,

NB trules will be the one for transforming bags into numbers, when possible.

The Isabelle/ML code for these mechanisms can be found in:

http://dream.inf.ed.ac.uk/projects/rerepresent/ReRepresent.thy.

5.3 Summary

We have described the formalisation of various transformations in Isabelle, and a way

of calculating their converses.

In chapter 4 we described how the Transfer package provides some mechanisms for

making inferences through transformations. The theories (transformations) we have

developed, and Isabelle’s Transfer mechanisms provide us with a background for ex-

ploring the potential of automating the process of reasoning through transformations.

Ultimately, the goal is that that the reasoning style behind the mathematical problems

presented in section 3 can be accounted for.

As we will see in chapter 6 and 7, there are many challenges for the problem of

automation. We will present the process, results, analysis and achievements of our

approach to the problem.
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representation

Up to this point we have shown how discrete mathematics involves reasoning about a

few superstructures which are heavily interconnected by transformations. In chapter

5 we described these transformations and how we have mechanised them in Isabelle.

In chapter 4 we described how the transfer tactics of [34] are actually mechanisms

for making inference via transformations. We believe that to take full advantage of

the transformations and the mechanism of inference, we need some mechanisms for the

automation of search between representations.

In this section we present the challenges and implementation of some tools necessary

for the execution of automatic search in the space of representations. Specifically, we

present the implementation of the following tactics, written in Isabelle/ML:

rerepresent tac: Tactic that processes sentences before and after

applying Isabelle’s transfer tac.

representation search: Basic tool for searching the space of represen-

tations, with atomic transformations handled by

rerepresent tac.

The implementation of these tactics can be found in

http://dream.inf.ed.ac.uk/projects/rerepresent/ReRepresent.thy.

The results of the experiments using these tactics are presented in section 7.

Before we describe our tools, let us take a look at an illustrative problem, to get an

idea of what system specification to expect.

6.1 An illustrative problem

Recall problem 3.8:

Let n be a natural number. Assume that, for every prime p that divides n, its

square p2 also divides it. Prove that n is the product of a square and a cube.
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Its solution involves reasoning about the exponents of the prime factors. In terms of

the transformations presented in chapter 5, this kind of reasoning is captured by the

numbers-as-bags-of-primes transformation (built around the relation BN : N multiset →
N→ B).

Formally, we can state problem 3.8 as follows (obviating the universal quantification

for n): (
∀ p. prime p ∧ p dvd n −→ p2 dvd n

)
−→ ∃ a b. a2b3 = n

First, notice that the statement includes the case for n = 0. However, the standard

solution involves reasoning about the exponents of the prime factors, and 0 has no prime

factorisation. Then, this case needs to be considered separately (but it is trivial). Thus,

the first requirement for rerepresent tac is a transformation-specific case split,

one for the domain in which the transformation can be applied, and one for the rest.

Now let us focus on the case where the transformation can be applied:

n > 0 −→
(
∀ p. prime p ∧ p dvd n −→ p2 dvd n

)
−→ ∃ a b. a2b3 = n

This looks better, but recall that the theorem we have is ((BN Z⇒ imp) Z⇒ imp) ∀bp ∀>0,

where ∀bp is the universal quantifier bounded to multisets of prime numbers and ∀>0 the

same for natural numbers greater than 0. To have a perfect syntactic match we need

to introduce the constant of ∀>0. Thus, the second requirement for rerepresent tac

is to introduce transformation-specific symbols. Hence we get:

∀>0 n.
(
∀ p. prime p ∧ p dvd n −→ p2 dvd n

)
−→ ∃ a b. a2b3 = n

At this point it is possible to apply the transfer mechanism from Isabelle’s Transfer

package. A sufficient set of transfer rules for this transformation is:

((BN Z⇒ imp) Z⇒ imp) ∀bp ∀>0 (BN Z⇒ imp) is singleton prime

((BN Z⇒ revimp) Z⇒ revimp) ∀bp ∀ (BN Z⇒ BN Z⇒ revimp) ⊆ dvd

((BN Z⇒ imp) Z⇒ imp) ∃bp ∃ (BN Z⇒ eq Z⇒ BN) (flip smult) exp

(imp Z⇒ revimp Z⇒ revimp) imp imp (BN Z⇒ BN Z⇒ BN) ] ∗

(revimp Z⇒ imp Z⇒ imp) imp imp (BN Z⇒ BN Z⇒ imp) eq eq

(imp Z⇒ imp Z⇒ imp) and and

When we apply the transfer mechanism to the sentence we get the following sentence

about multisets (abbreviating (flip smult)ms as s ·m, and the logical symbols with
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their usual notation):

∀bp n. (∀bp p. is singleton p ∧ p ⊆ n −→ 2 · p ⊆ n) −→ ∃bp a b. (2 · a) ] (3 · b) = n.

A transformation like this may generate an unprovable goal (notice that it was an infer-

ence through an implication, not an equivalence). Thus, we may want rerepresent tac

to check whether the new goal is provably false and, if so, backtrack (take the

next option in the theorem sequence yielded by the tactic). For the current example

this is not the case; the new goal generated is provable.

At this point we may want rerepresent tac to eliminate transformation-specific

symbols like rerepresent tac and leave the result for the user to prove.

This example summarises the list of specifications for the tactic rerepresent tac,

which applies one transformation at a time. However, we may want the machine to au-

tomatically apply more transformations sequentially. This is where search represen-

tation comes in. In particular, for the current example we can repeat a similar process

using rerepresent tac, but now with the transformation built around rel mset NP

(the multiset auto-transformation, with the bi-unique enumeration of prime numbers

NP) to obtain:

∀n. (∀ p. is singleton p ∧ p ⊆ n −→ 2 · p ⊆ n) −→ ∃ a b. (2 · a) ] (3 · b) = n.

Notice that the condition for the multisets to be bags of primes gets eliminated. The

resulting goal predictably turns out to be easier to prove, because we do not need to

prove that the constructed multisets (to prove existence) are bags of primes. However,

it prompts the question: how would the tactic representation search know that this

goal is better? Perhaps a heuristic based on the size of the goals is a reasonable

specification. After unfolding the bound quantifier ∀bp the resulting term is larger than

with ∀, and lacking any more information about the goal, shorter is better.

This illustrative example suggests a few requirements for the tactics rerepresent tac

and representation search. Next we will describe their implementation in more de-

tail.

6.2 Transformation knowledge as sets of transfer

rules

As described in chapter 4, we consider a transformation as a set of ground relations,

and a structural extension of them. To find out whether a sentence can be transformed
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via the induced structural transformation, we need to find the transfer rules that match

every constant or operator in a term to a corresponding one in a different superstructure.

Thus, whether we can apply a transformation at the level of sentences depends on what

we know about the transformation of the superstructures. Our knowledge about such

a transformation can be seen simply as a collection of transfer rules; sentences which

are satisfied by the transformation.

In the context of Isabelle, we simply package theorems into sets. A typical declara-

tion of one of these sets looks as follows:

theorems BN trules = BN 1 BN 2 BN 3 BN 4 BN 5 BN 6 BN 7 BN 8 BN 9

BN 10 BN id0 BN id BN id1 BN bi unique

BN all BN all gr0 BN ex BN ex gr0 BN prod

BN set BN factorization BN multiplicity

BN gcd BN lcm BN exp BN prime BN msetprod

BN msetprod pred BN dvd BN coprime

Where every argument is a named theorem; specifically, one that tells us how two

operators match via a transformation. For example, as explained in chapter 5, the

theorem BN prod, expressed as (BN Z⇒ BN Z⇒ BN) ] ∗, states that multiset addition

corresponds to natural number multiplication.

When we want to apply a specific transformation, we just need to turn on the desired

set of transfer rules and apply the transfer method. This is done by updating the

Isabelle theory context:

ctxtT = add trules to ctxt T ctxt.

Here, add trules to ctxt adds the elements of a transformation T, such as BN trules,

to an Isabelle theory context ctxt (usually accessed during a proof via antiquotation

@{context}). The result is a context ctxtT with more transfer rules.

6.3 Design of rerepresent tac

We will first describe each of the components of rerepresent tac and we will end with

its overall design.

6.3.1 Preprocessing

There are two principal reasons why we would like to preprocess sentences before trans-

forming. One is simply that, for some transformations, the transfer method requires
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sentences to be in a specific shape. In that case, the job of our preprocessing tools is

simply to give the sentences that shape. The other reason is that some transformations

require some semantic conditions to be met and which are not met by default (e.g.,

only positive natural numbers have prime factorisations, which means that many proofs

have to be split in two cases: one for zero, which is often trivial, and one for the rest).

For this matter, our preprocessing tools have to do a case split of the goal into two

subgoals; one of which cannot be transformed but is trivial to prove, and one which is

not trivial to prove but can be transformed.

Below we explain how our preprocessing tools work.

6.3.1.1 Normalising to transformation-specific language

We have built a function tnormalise which, if possible, normalises a goal to a language

in which a transformation can be applied.

Transfer rules typically have the form Ra b, where a and b are constants (of two

respective superstructures) related by a relation R, which either belongs to the ground

transformation, or to the extension of the transformation; in which case it will have the

form (R1 Z⇒ · · · Z⇒ Rn). As explained in chapter 4, if b appears in the goal we want to

prove, the transfer package searches for a transfer rule of the form Ra b. That would

mean that b can be replaced by a, as long as other conditions specified by R are met.

For Isabelle’s transfer package, only atomic constants can be matched. Generally,

in an expression f (g n), the constants f , g and n will have to match, via transfer

rules, to constants in the target theory. This means that, even if we had a transfer

rule Rh (λn. f (g n)), the possibility of matching f (g n) to an expression of the form

hm would not be considered, the only reason being that (λn. f (g n)) is not expressed

with a single constant symbol. Thus, composite operators (those for which there is

no single constant in the language to represent them), cannot be matched. As shown

in chapter 5, our transformations often relate composite operators. For example, in

the numbers-as-bags-of-primes transformation, the quantifiers ∀>0 : (N → B) → B
and ∀bp : (N multiset → B) → B map onto each other (where ∀>0 expresses ‘for

all positive numbers’ and ∀bp expresses ‘for all bags of primes’). However, in typical

mathematical theories it would be considered inelegant to have symbols expressing such

quantifiers; instead, we would see them as composite operators (e.g., ∀>0 would be used

as ∀x > 0. Px, or as ∀x. x > 0 −→ P x, composing operators (λx. x > 0 −→ P x)

and ∀). Thus, before applying a transformation to a sentence, we sometimes need to

fold (rewrite) definitions into specialised single-symbol constants.

Moreover, as shown in section 5.1.2, the way we handle partial matches between

operators (such as between union of sets and addition of numbers), is by defining

specialised relational constants, such as plus, so that plus a b c ←→ a + b = c,
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to match to an analogous relational constant for disjoint union. A relation plus is

atypical for representing addition, but the transformation requires it. Moreover, the

user should not be expected to know that the transformation can only be applied

if a specific atypical notation is used. Thus, we need these language conversions to

be done automatically. It should still be noted that for the relation plus to appear

instead of the function +, the original statement needs to be expressed as an equality

(a+ b = c). Non-equalities (e.g., a+ b > c) will not be translated automatically, but for

the purpose of double counting and bijective proofs we only need to deal with identities.

Alternatively, if we wanted the method to be more general we could first convert any

expression P (a+ b) into the equivalent a+ b = x −→ P x, where a fresh variable x is

introduced.

For each transformation we have assigned a set of definitions (rewrite rules) that we

call pre-transformation definitions, which are applied wherever it is possible. A typical

declaration of these rules, in Isabelle, looks as follows:

theorems BN pretrules = forall nats gr0 def exists nats gr0 def,

where forall nats gr0 def and exists nats gr0 def are the respective Isabelle-level

representations of operators ∀>0 and ∃>0. For example, we have defined ∀>0 in Isabelle

as follows:

definition ‘forall nats gr0 (P : N→ B) ≡ (∀n > 0. P n)’.

Then, the application tnormalise ctxt pretrules i st, that takes goal state st,

will fold any occurrences in st[i] (the i-th goal of st) of the right-hand side of

the pre-transformation definitions pretrules (such as forall nats gr0 def in the

set BN pretrules). For example, let st[1] be goal statement

∀p > 0, ∀a > 0, ∀b > 0, prime p ∧ p dvd a ∗ b −→ p dvd a ∨ p dvd b.

Then, the application tnormalise @{context} BN pretrules 1 st will yield the

following goal statement:

forall nats gr0

(λp. forall nats gr0

(λa. forall nats gr0

(λb. prime p ∧ p dvd a ∗ b −→ p dvd a ∨ p dvd b ))),

and, whereas Isabelle’s transfer tactic cannot transfer a statement where pattern ∀p >
0 appears (unless there are specific transfer rules for the constants ∀, > and 0), it
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can transfer a statement such as the one above, because the bounded quantifier is

encapsulated by a single constant (forall nats gr0).

A goal statement might not contain a pattern that directly matches a definition. For

this reason, we include the possibility of adding extra rules1 associated with a definition.

For example, we can add an extra rule like the following:

forall nats gr0P −→ (∀n. 1 < n −→ P n),

Note that the difference between these rules and the typical Isabelle fold tactic, is

that fold requires the definition to be an equality/equivalence (and hence it does not

change the logical strength of the sentence), whereas these rules could make a provable

goal unprovable.

On the whole, the computation of function tnormalise consists of first resolving

the goal statement with a set of rules which introduce constants (determined by the

transformation), and then folding using a set of definitions (also determined by the

transformation).

6.3.1.2 Case splitting

We have built a function split for transfer that takes a goal and returns two sub-

goals, one regarding the part of the universe where the transformation applies, and the

other regarding the part where it does not apply. This allows us to split a goal and

apply a transformation to the half where it is applicable; the other half will often be

trivial to prove without a transformation.

Let us consider problem 3.8 again:

∀n. (∀p. prime p ∧ p dvd n −→ p2 dvd n) −→ ∃ a b. a2 ∗ b3 = n

In section 6.1 we showed the proof of this theorem for n > 0. The statement is true for

all n, but it requires a separate proof for the case where n = 0. This case is actually

trivial, but it blocks the transformation from being applied directly. Doing the case-

split manually works if we know which transformation we want to apply and we only

want to apply it once. However, if we want to automate the process for either browsing

the space of representations or searching the space in a completely automated way, we

need these case splits to be part of the preprocessing of every transformation.

For transformations which are partial on one of its types, we have assigned a case-

1 In forward reasoning these are called ‘elimination rules’ but here we use them for backward reasoning

to ‘fold’ definitions. Hence, they actually introduce the constants in question.
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splitting tactic, which generates two subgoals, one of which can be transformed, and

another one which cannot.

Case-splitting, as a tactic, is an application of the theorem

((P −→ Q) ∧ (¬P −→ Q)) −→ Q, (6.1)

Then, given Q as a goal statement, we can reduce it to subgoals (P −→ Q) and

(¬P −→ Q). In particular, for the purpose of applying a transformation, we want

P to be a proposition restricting the domain to which Q applies, so that statement

(P −→ Q) can be transformed, while leaving subgoal (¬P −→ Q) open for either

the user or for other automatic reasoning tactics2.

Let the function Range be defined such that, for any relation R : α → β → B, the

following holds:

∀ b : β. b ∈ RangeR ←→ (∃ a : α. R a b)

Then, consider the following instance of the case-split theorem:

∀ b : β. ((b ∈ RangeR −→ Qb) ∧ (b /∈ RangeR −→ Qb)) −→ Qb.

This means we can reduce a goal of the form ∀ b : β. Q b to subgoals

∀ b : β. b ∈ RangeR −→ Qb

∀ b : β. b /∈ RangeR −→ Qb.

Our case-splitting tactic is a little bit more general. Let P be predicate of type

β → B and st a goal state. The application split for transfer P i st first collects

the set of universally-quantified variables of type β that appear in st[i]. If this set is

{x0, . . . , xn}, it will yield a proposition (essentially) of the form

(((P x0 ∧ · · · ∧ P xn) −→ Q) ∧ (¬ P x0 ∨ · · · ∨ ¬ P xn) −→ Q)) −→ Q.

Without loss of generality, assume our goal is ∀ x0. · · · ∀ xn. G x0 · · · xn. Then, sub-

stituting Q for G x0 · · · xn and resolving yields two subgoals:

∀ x0. · · · ∀ xn. (P x0 ∧ · · · ∧ P xn) −→ G x0 · · · xn
∀ x0. · · · ∀ xn. (¬ P x0 ∨ · · · ∨ ¬ P xn) −→ G x0 · · · xn.

2 We have set auto as the standard tactic to be applied in this case. If this fails it gets returned to

the user. Due to the nature of the transformations of this work, auto is always enough, so the user

receives no untransformed subgoals.
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Now assume that the proposition P b is equivalent to b ∈ RangeR for every b : β.

Then the above subgoals will be equivalent to:

∀ x0 ∈ RangeR. · · · ∀ xn ∈ RangeR. G x0 · · · xn (6.2)

∀ x0. · · · ∀ xn. (x0 /∈ RangeR ∨ · · · ∨ xn /∈ RangeR) −→ G x0 · · · xn. (6.3)

Then, subgoal (6.3) may be handed over to the tactic auto. Moreover, subgoal (6.2)

can be further processed by the tnormalise tactic, which can fold patterns such as

‘∀ xi ∈ RangeR. · · · ’ to specific constants representing bounded quantifiers; the result

of which can be handed over to a transformation-applying tactic.

Thus, a problem such as our example:

∀n. (∀p. prime p ∧ p dvd n −→ p2 dvd n) −→ ∃ a b. a2 ∗ b3 = n

may be split into subgoals

∀n > 0. (∀p. prime p ∧ p dvd n −→ p2 dvd n) −→ ∃ a b. a2 ∗ b3 = n

∀n = 0. (∀p. prime p ∧ p dvd n −→ p2 dvd n) −→ ∃ a b. a2 ∗ b3 = n,

the former of which will be tnormalised and transformed. The latter is solved by

auto.

6.3.2 Postprocessing

The previous section explains how a goal has to be modified prior to applying a trans-

formation. Similarly, we can modify a goal after a transformation to help with further

reasoning. There are a couple of reasons for this. First, the language after a transforma-

tion may have symbols such as ∀bp, which may seem unusual, inelegant, or unnecessary

to the user, and it can also prevent a successive transformation to be applied. Secondly,

as we have shown in chapter 5, some transformations generate stronger subgoals, some

of which may turn out to be false. Then, as part of the postprocessing, we can check

for counterexamples and discard the transformation if it generates a provably false

statement.

Below we explain the methods addressing these issues.

6.3.2.1 Unfolding transformation-specific language

As explained above, applying a transformation yields a goal with a language that might

be specific for use of the transformation tool. For this matter we simply use Isabelle’s

unfold tactic, which unfolds any appearance of an unwanted constant into its definition.
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This differs from tnormalise (used in preprocessing), in that tnormalise needs to find

more complex appearances of the definition in the goal, and thus it has to resolve the

goal with a set of rules that introduce constants, rather than simply folding definitions.

In the case of postprocessing, we only need to unfold the definition, which makes this

tactic trivial.

6.3.2.2 Discarding false representations

As shown in chapter 5, a single structural transformation may induce a variety of

possible transformations to a sentence. Some of the induced transformations may

lead to false subgoals. Then, we should exclude these false steps from the search,

as part of the postprocessing of a transformation. For this purpose we use Isabelle’s

counterexample checkers Quickcheck or Nitpick (see section 3.2.4.3). Specifically, after

the transfer mechanism has been applied and the transformation-specific definitions

have been unfolded, the counterexample checkers are called. If any of them find a

counterexample for the current goal, the branch will be dismissed from the search.

This is particularly relevant for combinatorial proofs, where it is not enough to take

any representative set for every natural number. The most difficult step in this kind of

proofs is often choosing the representative sets wisely. Take, for example, the case of

Pascal’s formula: (
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
The left-hand side number is the cardinality of Z = {s ∈ PowA : |s| = k + 1}, where

A is a set with cardinality n + 1. It is standard to make A = {0, . . . , n + 1}. Naively,

we can choose representatives for
(
n
k

)
and

(
n
k+1

)
as X = {s ∈ PowB : |s| = k} and

Y = {s ∈ PowB : |s| = k + 1} respectively, with B = {0, . . . , n}. However we cannot

prove that Z = X∪Y ∧ X∩Y 6= ∅, simply because Z = X∪Y is false; all the elements

of Z have cardinality k + 1, but the elements of X have cardinality k. Moreover, it

is easily provably false, which means that either of Isabelle’s counterexample checkers

will find the counterexample (in this case, the empty assignment).

The combinatorial proof to Pascal’s formula comes from choosing X as {s∪{n+1} ∈
PowB : |s| = k}. Thus, if the choice X = {s ∪ {n+ 1} ∈ PowB : |s| = k} is the second

option in the induced transformations, simply discarding the first (false) option, yields

the desired transformation.

6.3.3 Design

Preprocessing, transferring and postprocessing require a transformation to have the

following information:
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• A set of transfer rules tr.

• A set of pre-processing definitions and rules for introducing constants (pret, elim).

• A set of post-processing definitions postt.

• A predicate representing the range where a transformation can be applied: λx. P x.

Moreover, other convenient information can be given, such as a set of types that must

appear in the goal for the transformation to be even attempted (e.g., for transformations

SN and BN the type of natural numbers must appear), and a set of forbidden constants

which must not appear in the transformed statement. For example, the choose operator

should not appear after applying the transformation SN, because we expect it to be

transformed to nPow. Otherwise we may find that
(
n
k

)
gets transformed to representative

set {0, . . . ,
(
n
k

)
−1} rather than nPow {0, . . . , n} k (both transformations would be valid,

but it is questionable whether the former has any use). Thus, when setting up any

specific transformations, all of the items of the list must be defined.

The overall design of rerepresent tac can be summarised by the following steps:

1. Check that the transformation is applicable. If so, proceed to the next step.

2. Apply split for transfer using the transformation-specific predicate λx. P x,

handing the untransformed cases to the tactic auto.

3. Apply tnormalise using (pret, elim).

4. Apply a transfer mechanism using the rules tr. This is technically almost identical

to the core mechanism of Isabelle’s transfer and transfer’.

5. Apply unfold using postt.

6. Discard the results where Quickcheck or Nitpick find a counterexample.

Furthermore, we have found that time limits and simple heuristics at various steps

can greatly improve the performance, but we discuss that in section 6.4 and in chapter

7 (concerning search and evaluation).

6.4 Design of representation search

We present the tactic representation search that searches the space of representa-

tions to reach a user-specified end-point, provided that there exists a valid path from

source to target. We will briefly mention some simple heuristics that enhance the

performance of the tactic.
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6.4.1 Search space

The tactic rerepresent tac is used to generate new nodes in the search tree. Re-

call that it induces more than one transformation per sentence. Then, the search

of representation involves searching also between potentially many results of a single

transformation. Let T1,T2, . . . ,Tn be transformations. Suppose that, when applied to

a state, each produces

T1 7−→ s(1,1), s(2,1), s(3,1), . . .

T2 7−→ s(1,2), s(2,2), s(3,2), . . .

...

Tn 7−→ s(1,n), s(2,n), s(3,n), . . .

In order to have access to the whole set of options (transformations of the goal state-

ment), the results need to be presented as a sequence that enumerates them all, such

as that given by the lexicographic order:

s(1,1), . . . , s(1,n), s(2,1), . . . , s(2,n), s(3,1), . . . , s(3,n), . . .

This is essential, given that each superstructural transformation may induce an infi-

nite number of transformations for a single statement. If we tried to visit all the results

of a single transformation before proceeding to the next, it would take an infinite

amount of time before getting to the first results of the next transformation.

This establishes the initial breadth-order of the tree (which is not necessarily the

same as the order of the search; this is discussed later). Figure 6.2 shows roughly how

the first two levels of the search tree look like, assuming there are n transformations.

6.4.2 Search strategy

In figure 6.2 we represent the tree in which the search is done. This assumes an implicit

preference for transformation Ti over Tj when i < j, and an even stronger preference for

the first results of each transformation over the ones appearing later. Although we have

argued that ordering like this is necessary (to avoid getting stuck in one transformation),

it is not sufficient for an efficient search. Thus, the interleaved sequence is our starting

point, but the actual search strategy is slightly more sophisticated.

The tactic representation search works best with best-first search, with a rela-

tively simple heuristic based on size. Depth-first or iterative-deepening work almost

as well, but the arbitrary order in which the transformations are applied plays a big-
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ger role in these cases. This is undesirable in terms of reliability. We have found it

to be detrimental to the search time and final result in a number of cases. Thus, we

implemented a heuristic for the search tactic.

Specifically, we use the following measurements:

1. number of subgoals,

2. the sizes of the subgoal terms,

3. the number of constants appearing in all the subgoal terms,

4. the number of ground types appearing in all the subgoal terms.

For each measure, smaller is always assumed to be better. The actual heuristic

is simply the lexicographic order of these 4 measures, preferring them in the order

presented here ((1) is preferred over (2), and so on).

A node may have an infinite sequence of children. Thus, the heuristic is only used

to order a finite quantity (limited by time consumption). The user may chose the

time limit that determines this. Furthermore, the heuristics are applied not only for

the search, but also for the presentation of the results (a sequence of results that

satisfy the goal condition); smaller results are presented first to the user. It should also

be noted that, without the heuristics, the transformations are calculated lazily (later

elements of the sequence are not actually computed until their values are requested).

Laziness is unbroken by the interleaving operation, but broken by the calculation of

the heuristic; to assess the size of the results we need to compute them. Then, the

time limit determines how the balance is set in the trade-off between lazy search and

good (heuristic-driven) search. Lazy/depth-first search will usually be faster but not

necessarily (e.g., larger statements take longer to transform), and heuristic search will

usually yield better results, and will sometimes be faster (because smaller statements

are faster to transform).

We have set the goal condition to be based on a set of ground types {τ1, . . . , τm}
provided by the user. Specifically, the condition is that all types of the set appear

in the statement of the result. The user specifies this set when invoking the tactic

representation search. This condition simply restricts the results to those with an

interpretation in a desirable superstructure. Thus, if the user wants to find whether a

statement about numbers can be transformed into a statement about multisets, they

may simply provide {α multiset} when applying representation search.

The Isabelle/ML code for this tactic can be found in

http://dream.inf.ed.ac.uk/projects/rerepresent/ReRepresent.thy.
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6.5 Summary

We have presented a set of tools for searching the space of representations. Our main

tactic, rerepresent tac, has what we consider the minimum necessary requirements

for applying single transformations. The tactic representation search searches the

space of representations using rerepresent tac to generate the nodes. The results of

using these are presented in section 7.
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fun apply_transfer_select ctxt (〈types〉, (pret,elim), postt, fbdn, tr)
equiv patience i st =

let
val applicable = 〈check that the types in st[i]

match with transformation’s〉
val forbidden_cs = fbdn_global @ fbdn
fun pred x = 〈check that constants in forbidden_cs do not appear in st〉
fun core_tac n = FILTER pred (apply_transfer ctxt trules equiv n)
val main_tac =
if applicable then
(CHANGED_GOAL
(tnormalise ctxt (pretdefs,prelims)
THEN’ core_tac
THEN’ K (unfold_tdefs ctxt (posttdefs@pretdefs))
)

)
else (K no_tac)

in
st |> main_tac i |> reorder_bounded_seq patience []

end

fun rerepresent_tac ctxt (predicate, T) equiv (patience,decay) =
SUBGOAL
(fn (goal,n) =>
let
val check_tac = if equiv then K all_tac else auto_counterex ctxt
val free_vars = Term.add_frees goal []
val terms_for_split = map (make_pred_apply predicate) free_vars
val main_tac =
(split_for_transfer ctxt terms_for_split
THEN’ apply_transfer_select ctxt T equiv (patience,decay)
THEN’ check_tac)

in
main_tac n

end
)

Figure 6.1: Isabelle/ML code for the tactic rerepresent tac. The pair (patience,decay)

is simply a pair of real numbers that determine the time limits for the functions.

We modularised the design into two layers. The inner apply transfer select

handles lower-level processes like normalisation and syntactic filters. The outer

rerepresent tac handles the high-level processes such as case-splitting and coun-

terexample filtering.
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Starting goal state

s(1,1)

s′(1,1) · · · s
′
(1,n) s

′
(2,1) · · · s

′
(2,n) · · ·

· · · s(1,n) s(2,1) · · · s(2,n) · · ·

...
...

...

Figure 6.2: The figure may wrongly suggest that every transformation generates a non-empty

sequence. In fact, most transformations cannot be applied to one particular state,

because the statement may concern a superstructure that has nothing to do with

the transformation. Of course, our tactic only applies transformations that can

be applied.
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We have presented a set of tools with potential applications. In this chapter we assess

their scientific value by analysing the results of some experiments with them. All of the

experiments were done on Isabelle/HOL 2015, with the background theories described

in chapter 5 and the tools/tactics described in chapter chapter 6.

First, let us unpack what the tools to be tested are:

1. The mechanisation in Isabelle of various transformations observed in discrete

mathematics, plus a method for automatically constructing the reverse transfor-

mations.

2. A number of formal proofs using these transformations.

3. A couple of tactics for automatically searching the space of representations to

reach a goal (where the domain is specified by the user).

The light under which these contributions are evaluated is given by the hypotheses

stated in section 1.4. Especially, we pay careful attention on the third point:

That the tactics (with the transformations we provide) are valuable/useful. In

the context of interactive computer mathematics, we contend that such value

stems mainly from the reduction of effort required from the user, or the quality

of the proofs produced.

Thus, our analysis needs to focus on the level of human interaction and a comparison of

proofs based on some notion of quality. Then, first we need to discuss how the quality

of proofs can be assessed.

How do we rate proofs?

The question of what makes one proof better than another is open. There is no definite

answer, but at the very least there are some measures such that, all else being equal,

make a proof definitely better or definitely worse. Here we enlist the major ones, on

which we will be basing our analysis:

• Length: shorter proofs are better than longer proofs; usually.
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• Conceptual ease/readability: more understandable proofs are generally better,

but this depends on who tries to understand the proof.

• Uniformity/generality: if the methods used are more general, the proof may have

value for reuse/learning.

Even though these measures give us criteria to compare proofs, the analysis is seldom

simple. This is because the ‘all else being equal’ assumption is impractical due to the

dependence of the measures; i.e., it is unlikely that we can find two proofs which differ in

only one measure, because modifying any measure often comes at the cost of modifying

others. Often the quality relative to one of them has to be compromised to get more

of the other. For example, short proofs may be hard to understand if the reduction

in length is due to obviating crucial or complicated steps. However, added length due

to unnecessary steps also lowers readability. Conceptual ease and uniformity are also

positively related, but not necessarily. For example, proofs formed by obscure decision

procedures are as uniform as they can be, but may not be readable.

We believe that the overall measure of quality of proofs is a weighted average of

the individual qualities. The distribution of weights is relative to the mathematician

judging it, and the purpose of the proof (whether it is meant to teach a concept or a

technique, or to show the truth of some freshly discovered fact, etc.).

Textbook proofs are one kind of prototypical high-quality proof, compromising be-

tween the three points, sometimes focusing a little more on conceptual ease/readability,

and sometimes on uniformity/generality, depending on the didactic purpose (convincing

the reader, teaching basic concepts, teaching some proof technique, etc.).

In light of this, we can discuss a bit further how tactics can be assessed.

How do we rate reasoning tactics?

The following measures are some candidates for rating a reasoning tactic:

• A rating induced by the ratings of the proofs (as discussed above) in which the

tactic is used.

• The amount of effort required from the user: better tactics reduce the amount of

effort.

• Range of applications: whether including the tactic in a proving tool-set increases

the number of theorems that can be (easily) proved.

• Consumption of resources: using less memory and time is better. We could

extend this to include ‘theory’ as a resource, e.g., using more lemmas or requiring

a stronger theory consumes a certain kind of resource.
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As stated in our hypothesis, the standard for new methods of reasoning is that they

reduce the amount of human interaction for some collection of proofs. In the best case

scenario, the level of interaction is reduced to none. In terms of the above rating points,

this is accounted for by the effort measure and the range of applications measure.

Recall our notion of Standard Proving Method (SPM) from chapter 3. We informally

described this pattern as one consisting of three (optional) steps, starting with unfolding

unusual definitions, followed by some simplifying tactic like simp, auto or safe and, if

still not done, ending with a proof suggested by Sledgehammer (usually an application

of metis using some lemmas suggested by the external provers).

We should highlight that our notion of SPM is informal on purpose. In spirit, SPM

should be reflective of a proof in which very little effort is required from the user.

However, we cannot claim that any proof with low effort is covered by that pattern, nor

that anything with that pattern reflects low effort. In principle, the external provers

might not find a proof, but the user may figure out which collection of lemmas is

sufficient for metis to finish the proof. Then, the whole effort of the proof falls on the

user, but the proof might seemingly have an SPM pattern. Conversely, a proof may

have a large number of tactic applications and still be considered of low effort. For

example, consider the following pattern:

unfolding 〈defs〉
apply 〈method0〉
apply 〈method1〉

...

apply 〈methodn〉
by (metis 〈thms〉)

This can be just a standard (long) and complicated proof. However, it could also be

representative of an almost trivial proof. For example, if method 〈method0〉 gener-

ates n subgoals (e.g., breaking n conjuncts) and each method between 〈method1〉 and

〈methodn〉 fully proves one of the n subgoals, then this could be considered a low ef-

fort proof. Then, if the analysis of the proof shows that this is the case, it means we

can consider it part of the SPM class. This highlights the need for doing qualitative

analyses of proofs.

The general issue is that a mechanical proof can only partially reflect the actual

human effort involved in the proof. The SPM patterns are a reasonable consideration,

but a case by case analysis may still give us different insight per case.

121
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A few evaluation issues

We have suggested a way of rating proofs and tactics according to various criteria. We

argued that there is no universal standard for comparing them overall, because their

overall value must depend on some weighting of the various measures, which is relative

to the judge and to the purpose that the proof serves. Furthermore, we must acknowl-

edge that the tactics in question are there for the use of a human user, in a system

which is partly interactive and partly automatic. Thus, unless the tactic automatically

solves a problem which could not be solved automatically using other standard tactics,

one has to turn to analyse human-constructed proofs using this tactic. So, what should

these proofs be compared to? If the evaluator cannot find a proof without the tactic

it does not mean there is none. If the evaluator can find only a longer proof without

the tactic it does not mean there exists no shorter one (should the problem be given to

many mathematicians to get a statistical result?). The value of a comparative analysis

will remain questionable, unless we additionally have a meta-proof showing that the

tactic is necessary, or that the resulting proof is as short/simple/automatic as it can

be. We have arguments of minimality in only a few of the cases we analyse (e.g., a

three-step almost-automatic proof using a transformation, along with an argument that

no proof this simple can possibly exist without transformations).

Furthermore, we will not be making claims in terms of readability and resource

consumption. The former, because of the issue of subjectivity, and the latter because

we have no good data for this (e.g., the time it takes for a proof to be verified does not

say much about the time it takes for it to be constructed).

Another important consideration to make is that constructing proofs in interactive

theorem provers can be a tedious and long process. For complex problems, like many

that we have presented in this thesis, the amount of human interaction and necessary

theory development is considerable. As a consequence of this, our evaluation is pre-

sented with two issues. First, that the proofs and background theories at our disposal

are subject to human idiosyncrasies, and second, that the set of proofs that we can

analyse and compare is small. Thus we cannot argue by numbers but instead by a

careful analysis of each experiment.

Moreover, the size of the problem set represents a methodological issue by its inter-

action with the tools being tested. Ideally, we would have a small training set (the set

of problems which influence the development of the tools being tested) and a large test

set (the set of problems which did not influence the development of the tools). Then,

we would base the evaluation only on the results on the test set. Instead, we present

an individual analysis of all the proofs in the set, regardless of whether they belong

to the training set or the test set. We think that the analysis is insightful due to its

qualitative style, because regardless of what it says about the effectiveness of the tools,
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7.1 Case analyses (prime factorisation method)

it shows interesting differences between the resulting proofs (with and without trans-

formations). These insights are independent of the manner in which the tools work to

find the transformation. Nevertheless, we will briefly specify the extent to which to

which the problems presented influenced the development of the tools.

The training/test set spectrum. The last problem analysed in section 7.1.3 and Pas-

cal’s identity analysed in section 7.2.3 had an influence in the development of both

tactics rerepresent tac and representation search. The problems from sections

7.1.1 and 7.1.2 both influenced the development of representation search but not

of rerepresent tac. The first problem of 7.1.3, and the problems from sections 7.2.1

and 7.2.2 had no influence in the development of any of the tactics, except for the idea

that the techniques existed (e.g., 7.2.1 is paradigmatic of the combinatorial method, so

the ideas of the proof influenced the overall development). In total, 2 examples can be

fully characterised as part of the training set and 3 examples can be fully characterised

as part of the test set. The other 2 presented are in the middle.

With all of this in mind, let us analyse the results of applying our tactics to some

problems. We divide the evaluation into two sets of problems, the first ones belonging

to number theory and the second to combinatorics.

7.1 Case analyses (prime factorisation method)

It should be mentioned first that none of the cases (that we analyse here) using the prime

factorisation method have a proof by SPM (the Standard Proving Method, introduced

in chapter 3), neither before applying the transformation nor after. Thus, a careful

case by case analysis is required.

7.1.1 Global coprimality & pair-wise coprimality

Consider the problem of finding three natural numbers where every pair of elements

has some common divisor greater than 1 but overall the set has no common divisors

(below with Isabelle’s syntax, in terms of the greatest common divisor)1:

∃x y z : N. gcdx y 6= 1 ∧ gcdx z 6= 1 ∧ gcd y z 6= 1 ∧ gcdx (gcd y z) = 1

For this example we will present the results of applying no transformation, applying

1 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_gcd.thy.

123

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_gcd.thy
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the tactic rerepresent tac (which takes only one transformation and does not search),

and applying tactic representation search which takes a set of transformations and

searches the space using them.

The first thing to know is that, in Isabelle, none of the automatic methods can solve

it directly (including all the external provers called by Sledgehammer). This is very

surprising, given that assigning random values to x, y and z should eventually produce

a solution (which, in principle, is much easier for a machine than for humans). Then the

user has to provide the values (6,10 and 15 work, for instance). Once the user provides

them, the proof can be finished by tactic eval, which happens to know an algorithm

to calculate the greatest common divisor. Then, the proof without a transformation is

trivial, but the user still has to provide the values.

So what about applying a transformation? Simply applying the tactic rerepre-

sent tac with the numbers-as-bags-of-primes transformation BN transformation (fol-

lowed by auto with the introduction rules of ∃ and ∧, to simplify the expression), we

get the following subgoals:

• bag of primes ?x

• bag of primes ?y

• bag of primes ?z

• ?x ∩ ?y 6= {}

• ?x ∩ ?z 6= {}

• ?y ∩ ?z 6= {}

• ?x ∩ (?y ∩ ?z) = {}

where variables preceded by ‘?’ are variables which need to be instantiated (also, they

are of type multiset). Again, the automatic methods cannot find the right instantia-

tions, but once the user provides them, the system can find proofs ({2, 3}, {2, 5} and

{3, 5} work). However, this time it is not as simple as applying tactic eval, but the

external provers find the proof using various basic lemmas about multisets2. Moreover,

there are more (trivial) subgoals that need to be proved (the first three).

Thus, the proof after the transformation is slightly more lengthy and consumes

slightly more resources in every respect. However, it is crucial to notice that the con-

2 We believe this is due to the theory of multisets being under-developed in Isabelle, compared to

number theory, even though multisets can be argued to be intuitive, common-sense objects in human

reasoning. Interestingly, proving {2, 3} ∩ {2, 5} 6= {} is harder than {2, 3} ∩ {3, 5} 6= {}
and {2, 5} ∩ {3, 5} 6= {} (it requires more lemmas and takes much more time to the external

provers), even though it is clearly analogous. The difference is that, in the case of {2, 3} and {2, 5}
the intersection is the first element of both multisets. This is further evidence that the theory

of multisets in Isabelle needs more development to resemble the human intuitions we have about

multisets.
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struction of the multisets seems well motivated, i.e., it can be intuitively guided (add

one element to each pair and not to the remaining element. See figure 7.1), whereas

Figure 7.1: Add a different element to each of the pairwise intersections.

the only motivation or guidance we can think for constructing the numerical examples

(6, 10 and 15) is by thinking about them in terms of their prime factors i.e., applying

the transformation! Thus, from this example we may cautiously conclude that there is

an interesting motivation to research the use of transformations for the construction of

examples and counterexamples.

In terms of our rating points, it can be argued that conceptual ease is higher using

the transformation in this problem.

In this example we showed an evaluation for the tactic rerepresent tac, which in-

volves only one transformation and does not search the space. However, things get bet-

ter if we use the tactic representation search, with a catalogue that includes trans-

formations BN transformation and NP transformation (parametric multiset trans-

formation, specifically regarding a bijection between naturals and primes).

Recall that the end-point of the search is determined by the user. If we select the

multiset structure to end we get:

• ?x ∩ ?y 6= {}

• ?x ∩ ?z 6= {}

• ?y ∩ ?z 6= {}

• ?x ∩ (?y ∩ ?z) = {}

were the variables are of type multiset. The reason why the subgoals with the shape

bag of primes ?x disappear is that the transformation NP transformation bijects

primes with natural numbers. Furthermore, this transformation preserves the multiset

operations because it is bijective (we only need to find isomorphic solutions for figure

7.1). Moreover, the heuristic of preferring states where the size of statements is smaller

makes sure we end with this.

This proof is slightly better than the previous in length, but not much in resource

consumption; it still requires reasoning about multisets, which we have argued is not

ideal.
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But let us stop for a minute to think more about why our intuitions might seem

so simple in spite of being in a clunky theory about multisets. Is the reason not that

we are actually reasoning about sets, and we know it is equivalent? Then, what if

we include the transformation SMi transformation (set-in-multiset transformation),

which injects all finite sets into the multiset type. Indeed, it becomes simpler when

we search the space of transformations using BN transformation, NP transformation

and SMi transformation. If we, as the user, select to end in a structure of sets we get

the following:

• finite ?x

• finite ?y

• finite ?z

• ?x ∩ ?y 6= {}

• ?x ∩ ?z 6= {}

• ?y ∩ ?z 6= {}

• ?x ∩ (?y ∩ ?z) = {}

where the variables are of type set . In this case, providing the values ({0, 1}, {0, 2}
and {1, 2} work) makes everything solvable by tactic simp (Isabelle’s ubiquitous simpli-

fication tactic). In this case the consumption of resources is much lower and arguably

it is much better in terms of conceptual ease. In fact, one might argue that this rep-

resentation, in terms of sets, was the underlying interpretation of figure 7.1 from the

start.

Moreover, and very interesting to note, is that even though the user still has to pro-

vide the values for the variables, we got something different when trying the following:

negate the result, and then run a counterexample checker. Nitpick finds the right in-

stantiations. In fact, it finds precisely {0, 1}, {0, 2} and {1, 2}. This means that the

mechanisms for constructing counterexamples for sets with these specific constraints

are there (in Isabelle) but they are not implemented in any of the automatic provers

to find examples! Thus, not only is the consumption of resources and conceptual ease

better, but if the mechanisms that the counterexample checkers are using to find coun-

terexamples were implemented for normal existential proofs in the typical provers, we

would be in the scenario where our tactic almost fully solves the problem3.

3 Note that we also tried to apply the same process of negating the result and running the counterex-

ample checkers for the problem without the transformation, and a counterexample was not found
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7.1.2 Super-divisible set

We have also applied this method to a similar problem, which generally states that

for any natural number n we can find a set A of n natural numbers such that every

element in A divides the product of any pair of numbers in A. To showcase the use of

transformations we built this proof for n = 3. The formal statement is as follows4:

∃x y z : N. x 6= y ∧ y 6= z ∧ x 6= z ∧ z dvd x ∗ y ∧ y dvd x ∗ z ∧ x dvd y ∗ z

This case is very similar to the example above in that the solution needs to be pro-

vided by the user (the tuple (6,10,15) works); none of the automatic provers finds it.

When the user provides the solution of the problem without a transformation, the

resulting subgoals can be solved with tactic auto, so the resulting proof is very sim-

ple. For comparison, if we apply the single transformation BN transformation, we get

something very similar to the example above, and applying representation search,

including both BN transformation and NP transformation, followed by auto, we ob-

tain the subgoals:

• ?x 6= ?y

• ?y 6= ?z

• ?x 6= ?z

• ?z ⊆ ?x] ?y

• ?y ⊆ ?x] ?z

• ?x ⊆ ?y ] ?z

where the variables are of the type multiset. Like in the previous problem (and this

same problem without a transformation), the user still needs to provide the example

because none of the automatic provers will solve it alone. Once the user provides

the example, the resulting subgoals can be solved by first applying the transformation

FM transformation, which transforms multisets into their functional representation

(natural numbered functions), and then applying auto.

It should be pointed out that this is another case where the multiset representation

is not ideal, but is an intermediate step between the numerical representation and

something else, a domain where it is also easily solvable (in this case, the space of

functions representing multisets). Also, like in the example above, there is no obvious

benefit from applying the transformation in terms of making an unsolvable problem

solvable, or making the proof shorter. However, similarly to the example above, the

4 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_dvd.thy.
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construction of the example in multisets is well motivated, in the sense that there

is an intuitive way of constructing the solution, when thinking in terms of multisets.

In general, the set {{1, 2, . . . , n} r {i} : 1 ≤ i ≤ n} has the property that every

element divides the union (or multiset ]) of any two other elements. Intuitively, this

is because every element is missing only one different element of the set (or multiset)

{1, 2, . . . , n}, so combining the elements of any two of this shape should contain the

whole set {1, 2, . . . , n}.

Summary of examples 7.1.1 and 7.1.2

Thus, our conclusion for these two cases is similar: the proofs which include the trans-

formations are only slightly longer and require a similar level of interaction, but there

is a possible conceptual superiority of the proof with the transformation than the proof

without it, because the construction of the sets/multisets which satisfy the properties

in question seems guided (and we have given the informal arguments; these heuristics

were not computationally implemented).

In addition, we also conclude from both examples that there is a benefit from using

the search tactic representation search rather than individual transformations with

rerepresent tac, because transforming more than once is conducive to a better proof.

7.1.3 Other applications

In total, we have mechanised 5 proofs of number theory problems using the search

tactic representation search, where BN transformation is used, followed by other

transformations.

For example, we mechanised the proofs for problems 3.7 and 3.8 from chapter 3.

Problem 3.7 states that if a product of two coprime numbers a and b is a perfect

square then they must be themselves perfect squares. Formally, it is stated as follows

(obviating the universal quantifiers)5:

n2 = a ∗ b −→ gcd a b = 1 −→ (∃x. x2 = a)

and, after applying representation search we get

2 · n = a ] b −→ a ∩ b = {} −→ (∃x. 2 · x = a).

Notice that there is no bag of primes predicate. This is because it has been removed

by transformation NP transformation, after BN transformation was applied. Our

5 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_squareproduct.thy.
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proof of this statement is a structured proof with 5 tactic applications. It uses only

basic knowledge about multisets.

For comparison, we constructed a proof of this theorem without using transforma-

tions. This proof is structured and uses 15 tactic applications, and the spirit of the proof

is the same: reasoning about the multiplicities of the prime factors. First we show that

the multiplicity of any prime in n2 is even (using a lemma stating such about squares).

Then we show that if the multiplicity of a prime in a were odd then it would also be

odd in b (using the lemma stating that multiplicities of the prime factors of a and b are

added when a and b are multiplied), and use this to show that then a and b would have

a common factor, contradicting the fact gcd a b = 1. From this we conclude that a must

be a square. It is interesting to note that it uses (twice) the lemma stating that the

prime factors of perfect squares have even multiplicities (whose proof in the theory we

developed uses a transformation, incidentally). This lemma is not explicitly required

for the proof with the transformation, because its essence is already captured by the

transformation of exponentiation (of N) into scalar multiplication (of N multiset ).

Problem 3.8 assumes that for every prime that divides n its square also divides it, and

it must be shown that n is the product of a square and a cube. The formal statement

of this is6:

∀n.
(
∀ p. prime p ∧ p dvd n −→ p2 dvd n

)
−→ ∃ a b. a2 ∗ b3 = n

and after applying representation search we get

∀n. (∀ p. is singleton p ∧ p ⊆ n −→ 2 · p ⊆ n) −→ ∃ a b. (2 · a) ] (3 · b) = n

The tactic finds a two-step transformation, starting with BN transformation, followed

by NP transformation. The proof of this is a little bit more complicated than the

proof of 3.7. We believe this problem is conceptually easy, and the end result is solved

by a decidable fraction of arithmetic. However, the steps between the application of the

transformation and reaching the decidable expression are surprisingly tedious. Here we

give the outline.

First we use the premise (∀ p. is singleton p ∧ p ⊆ n −→ 2 · p ⊆ n) to show

that ∀x. count n x 6= 1 (which corresponds to noting that the exponents in the prime

factors are not 1). This is done with 5 tactic applications, including an application of

FM transformation (the multisets as N-valued functions transformation). Once this

6 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_squarecube.thy.
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has been proved, it is sufficient to show

∀n. (∀x. count n x 6= 1) −→ ∃ a b. (2 · a) ] (3 · b) = n

We proved this with 9 tactic applications, also including an application of FM transfor-

mation. It is interesting to note that this transformation is what helps us to (essentially)

reduce the problem to the expression

∀ni : N. ni 6= 1 −→ ∃ ai bi. 2ai + 3bi = ni,

which is linear (the multiplication is by constants), so it falls in a decidable part of

arithmetic (Presburger). Thus, it can be solved by Isabelle’s decision procedures for

arithmetic.

The reason why it takes 9 tactic applications (in spite of it being essentially decidable)

is that the terms that appear after FM transformation are of higher-order. Specifically,

the resulting expression looks as follows:

∀fn. (∀x. fn x 6= 1) −→ ∃ fa fb. (λx. 2 ∗ (fa x) + 3 ∗ (fb x)) = fn.

Thus, the process of logically reducing it to the linear expression above is problematic.

We did not find a way around it (and we found that without FM transformation,

reasoning was similarly problematic). The complete Isabelle proof is structured and,

in total, it has 14 tactic applications.

For comparison, we also constructed a proof of this statement without a transforma-

tion. This proof is structured and it consists of 30 tactic applications, with 10 calls to

lemmas which had to be stated and proven specially for this example. These lemmas

have between 1 and 4 tactic applications each and one uses induction. Overall, the

difficulty of the proof can be traced down to the fact that it relies on reasoning about

the multiplicities of the prime factors of n uniformly, for which multisets (and N-valued

functions) are ideal. Hence, this proof still makes explicit reference to multisets of prime

factors (and to the corresponding N-valued functions) with the handicap of having no

transformation tactics. Without these tactics, the logical links between the state-

ments about natural numbers, and about multisets (and N-valued functions) have to

be proven manually, with explicit calls to some lemmas (linking natural multiplication

∗ : N → N → N, multiset addition + : N multiset → N multiset → N multiset ,

and function addition + : (N → N) → (N → N) → (N → N)). All of these is-

sues can be avoided using BN transformation and FM transformation. Moreover,

NP transformation eliminates the need to construct the required multisets specifically

as bags of primes.
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Let us summarise our observations from these proofs (of examples 3.8 and 3.7, with-

out transformations). Both of them were constructed trying to capture the spirit of

the proofs with transformations (i.e., reasoning about the multiplicities of the prime

factors). The resulting proofs without transformations are considerably larger (from

5 with to 15 without, and from 14 with to 30 without, plus various lemmas). Given

that all of the proofs are constructed manually, we cannot unequivocally attribute the

reduction in length directly to the use of transformations. However, we should high-

light that the explicit use of lemmas to account for the behaviour of exponents in prime

factorisations seems to be the main source of additional length. For example, in the

proof of example 3.8, it takes 5 user-directed steps to get from7

msetprod (Abs multiset (λp. 2 ∗ (fa p) + 3 ∗ (fb p))) = n

to

(msetprod (Abs multiset fa))
2 ∗ (msetprod (Abs multiset fb))

3 = n

(pushing msetprod and Abs multiset inwards, with explicit invocations to lemmas

linking operators of natural numbers, multisets and N-valued functions). All of these

steps are automatically taken care of when we use our tactics. Moreover, in both

examples a case split (n = 0 and n > 0) is required, which our transformations do

automatically.

In general, we speculate that the difference in the complexity of the concepts makes

a difference in the complexity of the proofs. In particular, the concepts surrounding

divisibility of natural numbers tend to be more complex than their corresponding mul-

tiset concepts. For example, let us compare the concept of count (multiplicity of an

element in a multiset) with the corresponding concept of multiplicity (of a prime factor

in a number). In Isabelle, the multiplicity of p in n is defined by the equation8:

multiplicity p n = count (multiset prime factorisation n) p.

Hence, the concept for naturals is inherently more complex than the corresponding

concept for multisets (because it is inherited from the latter to the former). Therefore,

7 Here, Abs multiset is the function that creates a multiset from an N-valued function. In this proof

we have constructed the functions fa and fb manually, and we only need to prove that the numbers

derived from these multiplicity functions satisfy the necessary property (that the square of one times

the cube of the other yield n). See http://dream.inf.ed.ac.uk/projects/rerepresent/MsetNat_

squarecube.thy for the full Isabelle proof.

8 Alternatively, multiplicity could be defined in purely arithmetical terms (no multisets). For example,

it could be defined as the largest k such that pk divides n. We speculate that the proofs using

this concept would be even longer, but to check this we would require more experimentation with

reconstructions of Isabelle’s library using alternative definitions.
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when the concept multiplicity is used in a proof, the user needs to give an argument

concerning multisets anyway, but also needs to justify the validity of the logical link

between natural numbers and multisets manually. On the other hand, the transforma-

tion implicitly justifies the validity of the link, removing the burden to prove it from

the user.

Thus we have shown a difference in the length of manually-constructed proofs with

and without the use of transformation tactics. We have given an argument of why

this is the case, supporting the hypothesis that the length difference is not just a fluke

resulting from the manual construction. This lends further evidence of the benefits of

transformation tactics.

7.2 Case analyses (combinatorial method)

In this section we analyse combinatorial proofs, i.e., the double counting and the bi-

jective proof methods. The analysis in these cases is much more complicated, because

the proofs in question require plenty of human interaction. However, there is value in

the fact that our tactic (plus the transformation) works as an implementation of the

combinatorial method of proof; a very important tool for reasoning in combinatorics.

This method has been regarded as ‘one of the most important tools in combinatorics’

by [63, p.4]. Moreover, [11, p.65] says ‘The proofs of these identities are probably even

more significant than the identities themselves’. The book Proofs that Really Count [8]

presents a catalogue of over 200 identities with such proofs. Their ubiquity and power

positions the proofs arising from this method in the category of ‘valuable by unifor-

mity’ and ‘valuable by conceptual ease’ (although these examples suggest conceptual

ease and readability are different things, as we will see).

These proofs do not involve search of the space of representations, but rather just

search within one transformation. In other words, the essence of this method is not

finding a chain of useful structural transformations to apply to the problem, but finding

the right representatives within a single transformation. Thus, our evaluation is based

on comparing the performance of tactic rerepresent tac (using the transformation

SN), with proofs that do not use transformations. The challenge for our tactic is that

the transformation that links sets to numbers by cardinality has infinitely many repre-

sentatives per number, and the choice is crucial. The way choice is managed is by the

following:

1. the use of counterexample checkers

2. a good set of transfer rules to start with

We consider that our inclusion of (1) into our tactics makes them strictly stronger
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(except for a cost in the runtime of the tactics). However, we believe that the way we

have handled (2) points to a limitation (necessary only to an extent), which needs to

be addressed for future work. These points will come up later in the analysis.

For this evaluation we will compare proofs of the theorems in question, with and

without the use of transformations. For all cases, these proofs exist in the library of Is-

abelle. Thus we have some points of comparison. However, these are not perfect points

of comparison because proofs rely on the background theory. The library of Isabelle

has been developed by humans, so human choice/preference has been a factor in their

construction. There has been a choice of foundations and a choice of development. A

theorem might have a very simple proof given one choice of foundations of a theory, but

a very complicated proof given another choice9. Thus, the analysis of the performance

of tactics and the quality of proofs, given a fixed theory, may lack generality. We have

been careful to consider how the background affects our results, and have taken steps

to account for alternative background theories/foundations. These steps usually con-

sist of deleting theorems from the database to which the external provers have access.

Moreover, we have attempted to construct proofs using more than one technique (e.g.,

with and without induction). Thus, for each example we have more than one proof (or

proof attempt) to compare it with, using different techniques and different background

theories.

Now let us proceed with some examples of the use of rerepresent tac for combi-

natorial proofs.

7.2.1 Sum of a row in Pascal’s triangle

Recall the identity10: ∑
0≤i≤n

(
n

i

)
= 2n

The combinatorial proof is based on arranging the subsets of A by size (from 0 to n)

for |A| = n. Looking at [11, p.66], we see that the combinatorial proof is given in less

than 3 lines, in an elegant and intuitive way. Actually, the proof seems simple because

it obviates a few facts (in particular, that the parts are disjoint). That still has to be

justified formally in a mechanical proof. In Isabelle, after applying rerepresent tac,

we can obtain a proof in 7 sequential tactic applications using 10 basic lemmas regarding

finite sets from the Isabelle library (they do not have to be provided by the proof; the

9 Trivially, if a theorem t has already been proved, or has been chosen as an axiom, it is trivial to

prove it again in only one step, using t −→ t.

10 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/SetNat_choosesum.thy.
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external provers provide them). The resulting proof has a very simple and familiar (to

Isabelle users) pattern: first some definitions are unfolded, then tactic safe is applied

(a safer, more restricted variation of auto). After this, the external theorem provers

suggest the application of tactics/lemmas that solve each of the 5 remaining subgoals.

Notice that this follows an SPM pattern.

The fact that the combinatorial proof is almost completely automatic suggests that

Isabelle’s library can account most of the human intuitions regarding the manipulation

of finite sets required for this proof. Thus, the effort of justifying common sense is

taken away from the user. Moreover, the creative step in this proof, which consists

of thinking about it in terms of the right subsets, is automated by rerepresent tac.

This suggests a high score for the tactic in terms of reduction of human interaction.

Still, we need to compare it to other methods, without the transformation. Below is a

list of experiments and observations that we did:

1. Applying SPM.

2. Applying induction followed by SPM (to the subgoals of induction).

3. Looking at existing proofs in Isabelle (for this theorem there is already one in the

Isabelle library).

For (1), we had to consider that there is already a proof for this theorem in the

library. We deleted it from the database of theorems used by sledgehammer. No

sequence of applications of SPM resulted in a proof. Then, given that these same

tactics and provers were enough for constructing a proof (after the transformation), we

can confidently say that the use of rerepresent tac is a strict improvement over only

SPM (for this case).

The next experiment, of point (2), consists of applying induction, proceeded by the

standard methods. There is a good reason for applying induction in this case. Namely,

that the setsum operator (
∑

) is defined recursively over the size of the set. However,

after applying induction, no sequence of applications of the standard tactics and provers

results in a proof. Thus we can say that our tactic scores better than induction in terms

of reduction of effort required from the user. It should be highlighted that this can be

said confidently, without the need to discuss any actual proof by induction, simply

because we have shown that, without the transformation, a simpler proof just cannot

be constructed.

Still, we have constructed a mechanical proof by induction for comparison. Infor-

mally, the proof is as follows:

The base case is trivial. For the step case, we assume the equation is true for n.
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Then we can multiply both sides of the equation by 2 to obtain

∑
0≤i≤n

2

(
n

i

)
= 2n+1

In other words, every term of the sum appears twice. Then, we can do some ‘term

gymnastics’ to associate all terms as follows:(
n

0

)
+

((
n

0

)
+

(
n

1

))
+

((
n

1

)
+

(
n

2

))
+ · · ·+

((
n

n− 1

)
+

(
n

n

))
+

(
n

n

)
= 2n+1

Then, applying Pascal’s identity to each of the associated consecutive pairs, we get(
n

0

)
+

(
n+ 1

1

)
+

(
n+ 1

2

)
+ · · ·+

(
n+ 1

n

)
+

(
n

n

)
= 2n+1

which is clearly equivalent to our inductive goal:

∑
0≤i≤n+1

(
n+ 1

i

)
= 2n+1

Writing and proving this formally is tedious, as the mechanisms for manipulating

term lists of arbitrary size are not implemented in Isabelle. The following lemma

captures the re-association of terms :

n+1∑
i=0

f(i) + g(i) = f(0) +

(
n∑
i=0

g(i) + f(i+ 1)

)
+ g(n+ 1)

In terms of the current techniques in automated theorem proving, there is little justifi-

cation for figuring it out (the intuitive justification is that each pair of associated terms

fits one side of Pascal’s identity). The proof of this lemma, once we have stated it, is

not complicated. The external provers cannot find a proof directly, but when we start

the proof by induction the external provers can solve the base and step cases imme-

diately. Using this lemma we can prove our theorem in a carefully guided structured

proof consisting of 13 tactic applications. In summary, we have a guided structured

proof by induction in 13 steps, using an additional lemma. The highly creative step

of coming up with the lemma is left to the user. In contrast, the creative aspect of

the combinatorial proof is precisely the step of reformulating the problem in terms of

representative sets, which our tactic accounts for.

For (3), we take a look at the existing proof of this theorem in the Isabelle library.

This proof is also well known and quite beautiful. It is done by instantiating the
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binomial theorem

(a+ b)n =
∑

0≤i≤n

(
n

i

)
aibn−i

with a = b = 1. After this instantiation, the proof is immediate. Moreover, without

providing the instantiation the external provers can find the right instantiation. How-

ever, the formal proof of the binomial theorem itself is interactive and complex11. The

simplicity of the combinatorial proof shows us that, if the theory was reconstructed

from the ground up, it is possible that a combinatorial proof would appear first (under

some circumstances, e.g., where finite set theory is well developed and combinatorial

results are understood as contributing to a transformation between two structures).

In summary, this example shows that rerepresent tac can make a problem (almost)

automatically solvable, which was far from automatically solvable using the standard

tactics and provers of Isabelle. Furthermore, like all proofs in this section, it has value

in the aspect of generality/uniformity, due to it being an instance of a general proof

technique used in combinatorics.

7.2.2 Symmetry of Pascal’s triangle

Recall the identity12: (
n

k

)
=

(
n

n− k

)
If we define

(
n
k

)
as n!

k!(n−k)! then the proof is immediate. In Isabelle,
(
n
k

)
is defined

recursively through Pascal’s identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
.13 The identity

(
n
k

)
= n!

k!(n−k)!
is also proved separately, so this is considered carefully in our analysis.

The identity we want to prove,
(
n
k

)
=
(
n

n−k
)

is already a proved theorem in Isabelle, so

we remove it for the experiments. Now, with the theorem
(
n
k

)
= n!

k!(n−k)! in the library,

the external provers find the proof trivially. However, using SPM we fail to find a proof,

if the identity
(
n
k

)
= n!

k!(n−k)! is removed form the database of theorems, highlighting the

11 The binomial theorem in Isabelle has a structured 11-step proof by induction. Every step consists

of an intermediate result. These results were stated by the author of the proof, which suggests the

choice of intermediate results was entirely human-driven. To assess the degree of difficulty of these

steps, we have attempted to reconstruct this proof, calling the external provers in the proof of each

intermediate lemmas. We found that 4 of them require some degree of interaction; i.e., the external

provers cannot find immediate proofs for these intermediate results, so the author must have had to

guide the proofs of each of these steps themselves.

12 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/SetNat_choosesym.thy.

13 Actually, the motivation for the recursive definition in Isabelle is clear: the operator choose is defined

over the type of natural numbers, so n−k (from the expression n!
k!(n−k)! ) only has a reasonable value

when k ≤ n, and all functions in Isabelle/HOL need to be total. The recursive definition based on

Pascal’s identity causes no problems.
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effect that the choice of definitions and background theory have. In other words, there

is no routine proof of the theorem using the Pascal-recursive definition of
(
n
k

)
. However,

we found an interactive proof by induction over n. A few noteworthy aspects of this

proof are that, first of all, variable k needs to be instantiated with different values in

the inductive hypothesis for the proof of the inductive step; both for k and k− 1 in the

middle step of the following chain of equalities:(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
=

(
n

n− k

)
+

(
n

n− (k − 1)

)
=

(
n+ 1

n+ 1− k

)
Thus, the user needs to make a choice to universally quantify the variable so that the

quantifier can move ‘inside’ the inductive proof, whereas simply applying induction

with the unquantified variable (meta-quantified in Isabelle), the inductive hypothesis

will work for only one k. Furthermore, the user needs to guide the proof step by step

(only SPM will not result in a proof without this guidance). Eventually, after 8 simple

but careful interactive steps, the external provers will suggest a structured proof of the

remaining subgoal, with 3 tactic applications using various basic arithmetic lemmas.

Thus, the proof by induction requires one clever judgement by the user (how induction

is applied), plus various steps guided by the user.

The standard combinatorial proof consists of showing that there is a bijection between

representative sets. Indeed, applying rerepresent tac turns the problem into

∃ f. bij betw f (nPow {0, . . . , n− 1} k) (nPow {0, . . . , n− 1} (n− k)).

The resulting proof is simple, but it requires the user to provide the bijection, and to

show it is a bijection by showing that it has a right and left inverse14. There are other

conceivable ways to show that a function is a bijection, so this choice is down to the

user. More importantly, neither the bijection that works, nor its inverse, are trivial

to find (the bijection is the function that maps every subset of {0, . . . , n − 1} with its

complement, and it is its own inverse). Once the user has provided the function, the

proof that it is its own inverse follows the usual pattern (unfold, auto, suggestion from

external provers), so it is essentially automatic.

Thus, this example is one where there exists a trivial proof given that the identity(
n
k

)
= n!

k!(n−k)! is available 15, but where the proof without a transformation is longer

and more user-guided than the proof with rerepresent tac. Regardless, we still have

14 The fact a function is a bijection if and only if it has an inverse is a basic result which nonetheless

we had to prove separately. Its proof has the pattern of SPM: unfold definitions, apply auto, use

external provers to find proofs for the resulting subgoals.

15 It is worth mentioning that this identity itself has a relatively complex proof in the Isabelle library,

with 13 tactic applications in a highly guided structured proof.
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to acknowledge that the proof with the transformation is only essentially automatic

after the user has provided the witness that works.

7.2.3 Pascal’s identity

Recall Pascal’s identity16: (
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
The usual combinatorial proof involves dividing the set of k+ 1-subsets of {0, . . . , n}

into two parts: those which contain n and those which do not.

However, applying a transformation naively does not work. The most obvious rep-

resentatives of
(
n+1
k+1

)
,
(
n
k

)
and

(
n
k+1

)
are, respectively, the set of (k + 1)-subsets of

{0, . . . , n}, the set of k-subsets of {0, . . . , n − 1}, and the set of (k + 1)-subsets of

{0, . . . , n−1}. If we turn off the counterexample checkers in our tactic rerepresent tac,

the first representatives to be found are the aforementioned. This leads to the following

subgoals:

• {x . x ⊆ {0, . . ., n − 1} ∧ card x = k} ∪ {x . x ⊆ {0, . . ., n − 1} ∧ card x = k + 1} =

{x . x ⊆ {0, . . ., n} ∧ card x = k + 1}

• {x . x ⊆ {0, . . ., n− 1} ∧ card x = k} ∩ {x . x ⊆ {0, . . ., n− 1} ∧ card x = k + 1} = {}

The first one is clearly false, simply because the left side of the equation contains

elements with cardinality k, while the right side only contains elements with cardinality

k+1. Thus, the transformation leads to a dead-end, but thankfully it also easy to prove

that it is a dead-end. Thus, when the counterexample checkers are turned on in the

tactic rerepresent tac, that choice is discarded.

We have shown how one bad choice of representatives can be discarded. The next

question is how the right one can be found at all. Let us go back to the intuitive idea

of the combinatorial proof of Pascal’s identity. The set of k + 1-subsets of {0, . . . , n}
can be divided into those which contain n and those which do not. Those which do not

contain n are simply the k+1-subsets of {0, . . . , n−1} (the standard choice), but those

which contain n have a stranger form. They look like a k-subset of {0, . . . , n− 1}, but

with n forcefully attached. Thus, they are formed by applying the function insertn

to every k-subset of {0, . . . , n− 1}. Then, the set that contains them can be expressed

as

(insertn) 8 {x . x ⊆ {0, . . ., n− 1} ∧ card x = k}

16 These experiments are recorded in the Isabelle Theory file:

http://dream.inf.ed.ac.uk/projects/rerepresent/SetNat_Pascals.thy.
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where the symbol 8 stands for image of set under function. Thus, there is a corre-

sponding transfer rule stating

(eq Z⇒ eq Z⇒ SN) (λnk. (insertn) 8 (nPow {0, . . . , n− 1} k)) choose

where choose stands for the binomial operator
(
n
k

)
. This is not a good looking rule,

but it is a way to express, as a transfer rule, that the binomial operator is also related

to another set operator (k-subset followed carefully by insert). Proving and adding this

as a transfer rule is enough for rerepresent tac to find the right transformation of the

problem. Let us talk about the resulting proof before coming back to the weaknesses

of this approach, and a discussion about alternative approaches.

After applying rerepresent tac with both the counterexample checker on and the

aforementioned transfer rule in the list, we obtain the subgoals:

• ((insertn) 8 {x . x ⊆ {0, . . ., n− 1} ∧ card x = k}) ∪
{x . x ⊆ {0, . . ., n− 1} ∧ card x = k + 1} = {x . x ⊆ {0, . . ., n} ∧ card x = k + 1}

• ((insertn) 8 {x . x ⊆ {0, . . ., n− 1} ∧ card x = k}) ∩
{x . x ⊆ {0, . . ., n− 1} ∧ card x = k + 1} = {}

which correspond to the intuitive proof stated above.

The Isabelle proof that follows requires plenty of human interaction (a structured

proof with 12 tactic applications)17. Thus, a proof that is highly intuitive for a human

mathematician turns out to be tedious in a strictly formal language.

Furthermore, when we compare the combinatorial proof with the mechanical proof

without a transformation, it may seem even more embarrassing; but just at first sight.

Without a transformation the theorem is solved by simp. However, a simple inspection

shows why this is: in the Isabelle library, the choose operator is defined recursively

by Pascal’s identity. However, there are many equivalent ways of defining it (often as
n!

k!(n−k)! or as the cardinality of a specific set). This highlights again the importance

17 Since this experiment was originally performed, we have found an unstructured proof of Pascal’s

identity which is almost in the SPM class, except that the definition of the image operator 8 is

manually unfolded at one point. It contains only 5 tactic applications after the transformation,

in the following order: auto, metis (to solve the first subgoal, with many lemmas suggested by the

external provers), unfolding, auto, metis (again with many lemmas). Whether this is SPM depends

only on whether we consider the image operator to be unusual. Certainly, the fact that we dismissed

this in our original (complicated) proof, suggests that things that look like SPM may not be so

standard. Overall, this highlights the fact that small proofs do not necessarily reflect little effort

from the user, as spotting that the external provers could find a proof if only the image operator

was dismissed may not be a trivial observation and it may take a long time before realising this. In

retrospective, it seems that maybe, the fact that it is a higher-order operator could have hinted at

this, as the external provers are first-order provers, so the translation of the image operator from

HOL to FOL may not have been ideal.
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of the choices in the background theory. However, for our analysis we can use the

fact that there is a proof of the alternative definition from Pascal’s identity (a proof of(
n
k

)
= n!

k!(n−k)! using
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
). We can assume that this existing proof is

of equal difficulty as the proof in reverse because they are equivalent facts (the proof

is actually a chain of equalities). This library proof is a structured proof by induction,

with 15 tactic applications, where each of these 15 steps is directed by the author of

the proof (although, once stated, each of the 15 intermediate results is automatically

provable by SPM).

In summary, this example is interesting because it required a non-trivial choice of rep-

resentatives. This is solved by the pruning methods of our tactic, plus a rich knowledge

base of the transformation (good transfer rules). As mentioned before, we consider the

use of counterexample-checking as a necessary and valuable tool. However, we see the

requirement of very specific transfer rules as a limitation. In this example we showed

that we needed the overly-specific rule:

(eq Z⇒ eq Z⇒ SN) (λnk. (insertn) 8 (nPow {0, . . . , n− 1} k)) choose

The issue we see with this is the following: suppose that whenever a problem requires

non-trivial representatives we have to build a specific transfer rule to account for these

representatives. Then, the creativity of the choice is really being delegated to the

human. If this is so, the human might as well just plug in the right representatives,

rather than providing the right representatives directly to the machine (through transfer

rules) in hopes that it will choose it when searching. On top of that, not only does the

human have the task to choose the representative, but also has to know the language

of transfer rules to represent it as a transfer rule. We are certain that even a brilliant

mathematician would struggle to understand the meaning of the expression above.

Let us enumerate a few opposing arguments along with some possible solutions to

these negative points:

1. That the necessity of human choice and addition of transfer rules would decrease

as the system is “taught” more combinatorial proofs. So even though we needed

to add a transfer rule for the proof of Pascal’s identity, we will be able to reuse

it in future proofs.

2. A method may be built for automatically adding transfer rules. For example,

we can define equivalence classes for the domain of a relation R such that, for

any two elements a and a′ in the same equivalence class, Ra b holds if and only

Ra′ b holds, for any b. Then, if we had a way of generating elements which

are guaranteed to belong to the equivalence class of a, we would have a way of

generating rules (maybe on the fly, e.g., when stuck during a transformation). In
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terms of our example, it would correspond with the fact that the image of an

injective function preserves cardinality. Thus is the function (insertn) over a

set A when n does not appear in the elements of A. Then, knowing this basic

fact could be used to generate more members of the equivalence class of A. We

think this method corresponds elegantly with the human way of reasoning about

combinatorial proofs. However, the implementation of this is outside of the scope

of this thesis.

We conclude the analysis of this example by acknowledging that, as an instance

of the method of double counting (appearing in textbooks), it has value. In terms

of our rating system, this is the value of uniformity/generality. In both length and

readability it clearly has a lower rating than any inductive proofs without the use of

transformations.

7.2.4 Summary of combinatorial proofs

In summary, for each of the examples we analysed, we obtained the following:

Sum of a row in Pascal’s triangle (7.2.1).
∑

0≤i≤n
(
n
i

)
= 2n:

• Proof after transformation is almost entirely automatic (with SPM), with no

creative choices left to the user.

• No proof with only SPM.

• The mechanical proof by induction is long and interactive, with a creative aspect

left to the user.

• Existing proof in the library uses the difficult-to-prove Binomial theorem.

Symmetry of Pascal’s triangle (7.2.2).
(
n
k

)
=
(
n

n−k
)
:

• Proof after transformation is very short, and almost automatic, except for one

creative step from the user.

• Proof with identity
(
n
k

)
= n!

k!(n−k)! trivial.

• No proof with only SPM once we remove
(
n
k

)
= n!

k!(n−k)! , i.e., using the definition

based on Pascal’s identity.

• Reconstructed proof by induction without
(
n
k

)
= n!

k!(n−k)! is long and interactive.

• Existing proof in the library uses
(
n
k

)
= n!

k!(n−k)! , which itself has a long and

interactive proof.

Pascal’s identity (7.2.3).
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
:
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• Proof after transformation is long and interactive, even though the intuitions are

simple18.

• Trivial proof due to choice of definition in library.

• No proof with only SPM (from the alternative definition
(
n
k

)
= n!

k!(n−k)!).

• The difficulty of a proof which uses the alternative definition is assessed by looking

at the equivalent proof of
(
n
k

)
= n!

k!(n−k)! using Pascal’s definition. This is long

and interactive.

• The tactic chooses appropriate representatives by discarding useless possibilities.

This accounts for part of the creative aspect that would be left to the user oth-

erwise.

Thus, let us look at these results in terms of a few of the measures we had suggested

for rating proofs and tactics.

7.2.4.1 Length and effort

In example 7.2.2 it is clear that our tactic results in a shorter proof, with less effort

required from the user (than any possible proof without transformation, but same

background theory).

In 7.2.2, our tactic results in a shorter proof only under a background theory where

the alternative definition of
(
n
k

)
is removed.

Conversely, the only meaningful analysis of 7.2.3 can be made in a theory with the

alternative definition. In that case the proof using our tactic is comparable (12 steps

with transformation, against 15 of proof without) in length and effort.

These facts highlight the importance of taking into account the role of the background

theories.

7.2.4.2 Uniformity/generality of proofs, and range of applications

The examples to which we have applied our tactic are simple but representative of

a general class of proofs, which includes double-counting and bijective proofs. The

technique has an extensive range of applications and is considered an essential tool in

combinatorics, appearing in many introductory textbooks in combinatorics ([63], [11]).

In terms of applicability, we believe that the same tactic can be used for various prob-

lems, with the strength of the transformation being a limiting factor. As exemplified

by our proof of Pascal’s identity, the possibility of finding ‘the right’ transformation

18 As stated in another footnote, we have since realised that, after the transformation, a much simpler

unstructured proof can be constructed, consisting of only 5 tactic applications with two calls to the

external provers.
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may depend on whether a transfer rule has been previously proven or not. Moreover,

no set of transfer rules can be complete. This means that we would always be able to

find examples where the set of transfer rules is not rich enough to find the right trans-

formation. Thus, to automate the process even more, the next problem to tackle would

be how new transfer rules can be automatically generated. Adding such capabilities

to our tactic would expand the space of possible transformations, and this would be

synergistic with its current powers of vetting bad choices.

7.3 General remarks on evaluation

We gave an analysis of the use of the tactics rerepresent tac and

representation search, in a couple of families of proofs.

For the first family of proofs, we showed the potential of searching the space of rep-

resentations for finding relatively succinct and familiar representations of the problem

(in terms of finite sets or multisets). We argued that a potential application of this

is for constructing examples (or counterexamples). This opens up the possibility for

techniques of this sort to be used widely (increasing its value by broadening the range

of its applications). In general, the resulting proofs are human-readable and intuitive,

but not necessarily cheaper computationally; at least given the state of the background

theories on which we stand.

For the second family of proofs, we showed how our tactic is an implementation of a

very general proof technique in combinatorics. We mechanised the relevant transforma-

tion (cardinality) manually and showed that it is rich enough to aid in the construction

of basic textbook examples of double-counting and bijective proofs. Furthermore, the

selection of the right representatives in the transformation is aided by counterexample

checking.

Our experiments and evaluation are only restricted to a small part of discrete math-

ematics, although we have formalised transformations (although we have not imple-

mented any proofs which exemplify their use) for a slightly larger (but not exhaustive)

part. Simply in this area of mathematics we have identified plenty of potential appli-

cations of these techniques, and we foresee and encourage its use in different areas.

7.3.1 Comparison with Isabelle’s transfer tactics

The case analyses presented above are mostly based on how standard proving methods

(SPM) are augmented by our transformation tactics. Recall that our tactics were built
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around Isabelle’s transfer tactics19, using the internal mechanism of these tactics as

the core of ours. Thus, we also have to discuss whether our design really augments

the capabilities of the transfer tactics themselves, which were not our contribution

themselves. In other words, we should discuss how SPM + transfer compares to

SPM + rerepresent tac + representation search. If we showed that they have

equal power, it would be concluded that the value of our work only extends to the

mechanisation of the specific transformations that we presented, and not to our tactics

for automation. Nonetheless, our analysis (below) shows that there are many ways in

which our tactics strongly improve the performance of the transfer tactics.

For example, when we apply the transfer tactics to any of the problems presented

above, the tactics fail to yield any result at all. There are various reasons for this,

and many layers at which transfer can fail for any single example. To analyse these

layers, we tried applying manually, step-by-step, the solutions which we know allow us

to move forward (which our tactics do automatically). Each step, after correcting the

problems encountered, we tested the transfer tactics again. Below is the analysis of

these layers:

1. Suppose we have three transfer rules:

R (f n)n ((R Z⇒ imp) Z⇒ imp) ∀ ∀ (R Z⇒ imp)QP

where n is a variable (recall that free variables are implicitly universally quanti-

fied). Suppose we want to apply transfer to a statement P x, where x is also a

free variable. Thus we can interpret the statement as ∀x. P x which would lead

to subgoal ∀x.Qx after transferring. However, it can also lead to Q (f x). Both

are valid inference steps, and there is no a priori preference. The transfer tac-

tics deal with this choice by allowing the users to ‘fix’ some variables manually

(stop them from being interpreted as universally quantified). The command the

user needs to write is apply (transfer fixing: x). Our tactic deals with this

choice by simply including all of the possible combinations of ‘fixing’ variables

in the search. It makes the search space larger and redundant in some cases,

which is why filters and search strategies become necessary. This is one of the

instances where transfer fails and our tactic goes forward. To be able to proceed

to the next layer of testing we simply use apply (transfer fixing: n) for the

variables that need it.

2. Case splitting is necessary for the prime factorisation method, as the case n = 0

cannot be transformed. Thus, to proceed to the next layer of testing, we can split

19 Recall that Isabelle has two such tactics, transfer and transfer’, the former of which only trans-

forms the goal into something equivalent, while that latter relaxes this and may result in a stronger

(possibly unprovable) subgoal. We refer to both of them simply as the transfer tactics.
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manually and solve that case with auto.

3. As mentioned before, the transformations require transformation-specific lan-

guage. This is the case for all bounded quantifiers (e.g., ∀>0), and for the

relational versions of operators like +, which we require for the combinatorial

problems. To proceed to the next layer we substitute the necessary definitions.

4. For the transference of examples 7.1.1 and 7.1.2 we noticed that some logical

transfer rules were missing. These are things of the sort of:

(imp Z⇒ imp Z⇒ imp) ∧ ∧ (eq Z⇒ imp Z⇒ imp) ∧ ∧ (imp Z⇒ eq Z⇒ imp) ∧ ∧

The reason for their absence in the Transfer package is most likely that they

induce a combinatorial explosion (a necessary one for our examples), which may

have seemed impractical for the simpler transformations for which the Transfer

package was designed. This combinatorial explosion is certainly something to

avoid without good filters and search strategies. Our tactics handle it reasonably

well, at least for our test examples.

5. If the language is the right one for the transformations to be applicable and the

necessary transfer rules are there, then the transfer tactics may yield a result.

However, it is common to get either a logical dead end (a false subgoal, as is the

case with Pascal’s identity), or to get open subgoals of the form (X Z⇒ Y ) (?x) a,

i.e., the transfer mechanisms failed to find a full match for all the constants so the

user would have to find one and prove the transfer rule to complete the transfer.

The interesting thing about this phenomenon is that it happens in cases where we

know that there is a full match (as all our examples above show). This layer can

only be overcome with manual backtracking20 to browse all the possible results of

the tactic (the items of the theorem sequence it yields). This phenomenon does

not occur in all of our examples, but it does occur in the majority of them.

6. Once all the layers are manually overcome we get a transformation. The only issue

may be notation, as inelegant transformation-specific symbols appear. These can

be expanded manually.

The tactic rerepresent tac does not have any of the above limitations. Given any

of the problems from our test set it overcomes all the 6 problems in the list (by design)

and the end result has no inelegant transformation-specific symbols. Moreover, the

tactic representation search can iteratively apply rerepresent tac, select the best

of the matches according to some size heuristics, and give the user the choice of which

20 Backtracking is possible in Isabelle/Isar with command back, but its use is not encouraged other

than for testing.
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theory to end at. In section 7.1 we saw the advantages that this can bring.

It should be noted that in the design of the original transfer tactics it was not

explicitly intended for them to be used for problem solving involving complex trans-

formations. Recall that the main applications of the Transfer package revolved around

the definition of new (quotient) types. It was used to generate some basic knowledge

about newly-defined quotient types, and to allow the users to transfer knowledge from

the old (raw) type to the new (abstract) type. When a new type is created with ei-

ther typedef or quotient type, some transfer rules are automatically generated (for

example, a quotient map Q is surjective so ((Q Z⇒ imp) Z⇒ imp)∀ ∀ is a theorem by con-

struction). The other important use of the original transfer tactics for newly-defined

types has been the lifting of definitions, wherein a definition for the new type is stated

in terms of the old type; the appropriate transfer rule is generated then. In chapter 5

we mentioned that the transformation from N-valued functions to multisets is there by

construction, because the type of multisets was defined using these tools.

7.3.1.1 Other uses of the Transfer package

The other notable application of Isabelle’s Transfer package is for code generation [25].

The transfer package provides capabilities of data refinement for the code generation

tools in Isabelle/HOL. The purpose of the code generation programme is that the high-

level languages of Isabelle/HOL theories may be used to build programs that can have

both efficient and correct implementations, with efficiency achieved by the use/design

of appropriate low-level structures, and correctness achieved by verification at higher

levels through mechanical proofs and the validity of refinement as performed by the

Transfer tools. One of the main differences between the approach of refinement for

code generation, and the use of transformations for problem solving (as we study in

this thesis) is the sense of direction. Even though the kind of transformation used

is the same (structural transformations, with transfer as an inference mechanism),

refinement goes from the abstract to the concrete with a very specific purpose (efficient

implementation of a function). For complex problem solving it is not necessarily clear

which representation is more likely to yield a solution.

It is possibly due to great foresight of the authors of the Transfer package that led

them to a modular design of the tools, which endows these with a rich applicability. In

fact, reading our theory of structural transformations (chapter 4) as a semantic account

of the Transfer mechanisms, we see the theory as an attestation of the mechanism’s

generality and a prediction of its applications in a broader context.
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7.3.2 Were the hypotheses confirmed?

Let us analyse each of the three statements of our hypothesis (stated in section 1.4), in

relation to the work presented in this thesis. Each hypothesis is informally stated, so

their confirmation (or disconfirmation) is only valuable modulo the meaning of words

such as many, some, effort, etc. We provide an explanation for each hypothesis, with

the intention to elucidate such meanings.

Hypothesis 1. That many specific transformations, such as ones found in mathe-

matical textbooks (explicitly and implicitly), can be captured by a general mathematical

notion of transformation.

We consider this hypothesis to be confirmed. Still, the range of the word many

should be understood in the light of both: the examples in which we mechanically ap-

plied the transformations, and the theoretical extent of the general notion of structural

transformation as proved in section 4.

We demonstrated (with actual, mechanical applications) that it captures the essential

aspects of two classes of proofs: the class of combinatorial proofs, and the class of proofs

using the prime-factorisation method. We have demonstrated that the key reasoning

step involved in both of these classes can be seen as an inference via a structural

transformation. Moreover, in chapter 4 we showed that the category of superstructures

and superstructural transformations is related to well-known concrete categories. It

follows from this that, in theory, many common reasoning steps, justified by instances

of specific algebraic morphisms (of groups, rings, fields, vector spaces, etc.), can be

justified by a structural transformation. For example, the relation between one vector

space and another through a linear map is justified by a vector space morphism. More

interestingly, the relation between linear maps themselves and matrices is justified by

group, ring and vector space homomorphisms (plus many other interesting matches

between the structures whose defining category has no name). Thus, there is some

promising generality in the approach.

Hypothesis 2. That this notion of transformation can be incorporated (as tactics) into

a computational system in a way such that inferences based on the transformation can

be performed and their logical validity can be guaranteed.

We consider this hypothesis to be confirmed by many accounts. In section 4.3, we

demonstrated generally that the core mechanism of transference from Isabelle’s Transfer

tools performs an inference via structural transformations. This, by itself, is already

a witness of the confirmation of this hypothesis. More importantly, the extent to

which it is possible to traverse transformations via tactics (e.g., the range of problems
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to which the tactics are applicable, and the efficiency/correctness of the process of

transformation) needs to be discussed. As we demonstrated in section 7.3.1, our tactics

have a broader range of applicability than the transfer tactics, as the latter have many

layers (the 6 problems examined in section 7.3.1) that need to be manually overcome,

sometimes with very specific and problematic solutions (such as manual backtracking).

Specially, for combinatorial proofs we showed that some care must be taken to find the

right set representatives and that our tactics do this. Thus, our tactics have a greater

range of problems over which they can be applied (and they do it correctly).

Logical validity is guaranteed by the context (Isabelle/HOL) in which the tactics and

the transformations are built.

Hypothesis 3. That the tactics (with the transformations we provide) are valuable/use-

ful. In the context of interactive computer mathematics, we contend that such value

stems mainly from the reduction of effort required from the user, or the quality of the

proofs produced.

We think that this point needs much longer and broader testing, but the small-scale

results that our means allow, and the thorough and careful analysis that we have done

reveals some valuable lessons and some promising aspects of the techniques.

In particular, an important success was seen in combinatorial proofs, where a paradig-

matic example (7.2.1) becomes almost immediately provable by SPM (with only very

long and complex solutions without such a transformation). Other problems in com-

binatorics that we tested (7.2.2 and 7.2.3) also show some promising aspects of the

technique, even though their analysis is not as straightforwardly positive. They get

a reduction in length only under certain background theories. This highlights an im-

portant lesson that we saw in other cases as well: that part of the value of a specific

representation may have nothing to do with intrinsic aspects of the representation, but

rather with the familiarity (background developments) of a reasoner (machine or hu-

man) with the system of representation. Moreover, the class of combinatorial proofs

may have some value in the measure of uniformity/generality. Certainly, the method

is held in high esteem by mathematicians [8, 11, 63].

Our analysis of the proofs by prime factorisation also revealed some very promising

aspects of the techniques and their applications. For example, we saw some very inter-

esting potential for their use in example/counterexample construction (example 7.1.1

and 7.1.2). In particular, we found that taking the transformed version of example

7.1.1, negating it, and running the counterexample checkers produced the right wit-

nesses! The same was not true for the untransformed version. Interestingly, despite the

success of the counterexample checkers in finding the witnesses, SPM failed generally

to find the same examples across transformed or untransformed versions. We argued
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that, intuitively, the construction of the examples is clearly motivated in terms of finite

sets or multisets, whereas the same cannot be said for the purely arithmetic versions.

In another couple of examples (7.1.3) using the prime factorisation method (with

considerably more complex solutions) we found that the interactive proofs with trans-

formations are intuitive and make use of other transformations within the proof. On

the other hand, the proofs without transformations are considerably longer. We ar-

gued that the reason for this is that the concepts and techniques necessary to construct

purely arithmetical proofs are more complex than the concepts used in the proofs in

the target domain (multisets).

We expect that the value of transformation tactics such as ours should become more

apparent as other aspects of automated theorem proving move forward. One of the key

lessons to absorb from our work and analysis is that mathematical problem solving is

dependent on a motley of interconnected and incredibly diverse tools. For example, our

tools and techniques simply could not be tested without some existing machinery for

automatic reasoning, and some –at least moderately developed– background theories.

Thus, all of our tests depend on small and large contributions of a vast community.

Being as it is, it has as a consequence that our choice of problems to tackle cannot be

tested on a large scale, and that only some aspects of our results can be extrapolated. In

our analysis we tried to highlight all the main results that we think can be extrapolated,

and we hope this moves forward the research on the role of representation in reasoning,

and the development of tools for mechanical reasoning.
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Before we end, we will explore the potential avenues of research motivated by the

process and the findings of our work.

8.1 Technical and research potential

Through our research we found a large set of unopened doors. Even though many

of them shone with promise and potential, we restrained our curiosity to the strictly

relevant and achievable under some time constraints. Moreover, retrospectively some

light has been shown on other paths that could have been taken. We discuss this here.

Some related work will be discussed in the context of potential research.

8.1.1 Extensions and improvements of our techniques

We only focused on the efficiency of our programs as far as it made them usable and the

right representations were found. Similarly, presentation and usability in the Isabelle

proof environment (Isabelle/Isar) could be improved.

Optimise mechanisms. We set time-limits throughout the different mechanisms (to

avoid divergent and loop-like behaviours of the different components) and exploited

lazy evaluation whenever we could (which is not really possible when we are evaluating

many things heuristically). Moreover, our search mechanisms avoid going through the

same path twice. But there are always some extra steps that could be taken to improve

the search time. For example, the calculation of heuristics is performed at various steps,

and sometimes agglomerations of previously-ordered lists are ordered again. Merge sort

could make these calculations more efficient. Overall, the amount of additional work

that can be done on low-level details is limitless.

Improve presentation and usability of tactics. Our tactics are used on the proof

environment through explicit calls to the ML programs. Naturally, this made sense

for testing, as some parameters needed to be readily available and modifiable. Usu-

ally, when Isabelle tactics are made available in the official packages, the tactics have
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corresponding mediator methods that make them more presentable and easier to in-

voke. A more interesting point is that Isabelle proofs always run in real time, which

makes search tactics (such as ours) unappealing to the theory developer. Some com-

plex mechanisms used in Isabelle (the external provers called through Sledgehammer)

usually take some time to yield results, but these are not tactics themselves. Thus,

Sledgehammer reconstructs the result efficiently (either by constructing a structured

proof, or by giving metis a minimal set of lemmas necessary to reconstruct the proof).

Thus, any invocations of Sledgehammer are ultimately replaced by explicit applications

of simpler mechanisms. Similarly, it could be possible for our tactics to yield more ex-

plicit proofs which can replace the call to the search tactic. This could even mean that

the mechanisms of search could be made much more efficient by relaxing the constraint

that every step taken must be a valid inference (taking advantage of the fact that the

nodes visited in the search do not need to be validated, as long as the end-result is).

Improve reasoning about equivalence classes. In our examples of combinatorial

proofs we saw that the search for representative sets is a very complex process. We

showed that our tactics deal with some of the complexities by vetting dead-end choices.

However, we also saw that in order to have the options (representatives) in the first

place, some complex reasoning must have been done before-hand and encoded in the

form of transfer rules (example 7.2.3). Although this is definitely a complex problem

(and central to the creativity of the combinatorial method), we can envisage some ap-

proaches to it. For example, some theory exploration is not outside of the possibilities

of current theorem provers. We can easily imagine a system being able to generate

arbitrary quantities of (not necessarily simple) sets of any cardinality n by means of

theorems with shapes |f(n)| = n, or P (f, n) −→ |f(n)| = n, or combinations of those

and P (x, y) −→ |x| = |y|. Then, this could either fill a database of set cardinalities

that may be used as transfer rules, or they could be generated on the fly during search

(under the more specific constraints and assumptions of the problem at hand). In gen-

eral, other complex transformations such as this one require complex equivalence-class

reasoning.

Develop existing and new transformations. We developed a small class of transfor-

mations that are applicable in two classes of problems in combinatorics and number

theory. The open-endedness of the transformation means that they are subject to be

enriched by the reasoner (human or machine). Moreover, there are many other trans-

formations which can be thought of and developed. In particular, we have done some

preliminary work on the representation of N multiset as lists, where the nth item of

the list is the multiplicity n in the multiset. This, in conjunction (sequential) with the
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transformations around BN and NP, would account for the representation of a number

pa11 p
a2
2 · · · p

ak
k as [a1, a2, · · · , ak]. There are various things to account for, regarding the

calculus of lists, wherein lists can be enriched with all the vector-like operations, zeroes

at the end can be inserted or removed at will (for matching arguments), etc.

Notice that, the more a transformation is developed (more transfer rules), the broader

the search space becomes. This is not so much the case for bi-unique transformations,

where the transformation of the problem is more strongly determined by the structural

transformation. However, in transformations such as SN transformation, where every

positive number has a potentially infinite number of representative sets, the search

space may become arbitrarily large (particularly if equivalence class reasoning were

improved as per the suggestion above, and transfer rules are added automatically by

the system). Then, it is possible that stronger processing power, heuristics or learning

will be necessary to deal with the choices.

8.1.2 Theory formation and exploration

There are two dual aspects in the relation between transformations and theory forma-

tion/exploration. One is how transformations can be used to construct, explore and

develop mathematical domains, and the other is how transformations themselves can

be constructed, explored and developed. We start by discussing the former.

8.1.2.1 Discovery assisted by transformations

In general, our uses of transformations in problem solving are an instance of using

transformations to assist discovery. However, we can envisage uses of transformations

where there is no problem to begin with, i.e., transformations are simply used for the

sake of theory formation and exploration.

When a function is respectful over an equivalence relation, its definition may be lifted

through the quotient map (i.e., it is well-defined over the target structure). The result is

a function in the target structure that mimics some of the behaviour of the old function

in the source structure. Isabelle’s lifting command allows us to do this manually. The

mimicking behaviour is captured by a transfer rule (which is automatically generated

in Isabelle).

In general, we can envisage that this same process can be done automatically to con-

struct interesting or useful concepts in the target theory. Particularly, we can imagine

that, given that a transformation has been established, useful concepts can be lifted

from one domain to the other. For example, in the numbers-as-bags-of-primes trans-

formation, the fundamental concept of multiplicity in multisets (the function count in

Isabelle), may be lifted to construct a more complex concept in the domain of numbers,
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which is the multiplicity of a prime in the number. Moreover, other basic definitions

of multisets, such as intersection, may be lifted; creating the concept of greatest com-

mon divisor. Thus we may speculate that some of the most helpful aspects of this

transformation could be for theory development.

Furthermore, not only definitions, but also theorems can be transferred (by the for-

ward versions of the transfer tactics). This functionality is actually available in

Isabelle as an attribute [transferred], i.e., this tag can be put next to theorems to

generate their transferred version.

The process of definition and theorem generation through transformations may be a

key element to explain plausibly how natural number theory may be developed from a

very basic starting point. Moreover, it is likely that statements such as
(
n
0

)
+
(
n
1

)
+ · · ·+(

n
n

)
= 2n would never be conjectured by themselves other than by deriving a theorem

about sets (by counting the elements of some set in two different ways) and using it

to come up with the corresponding theorem about numbers. This may be a suitable

way of generating true but incredibly complex identities of numbers. Applications

of this process can be useful in education (already is, as far as humans do it): the

teacher/computer takes a set, counts twice to generate a numerical identity, checks

that the identity is not trivially provable, and proceeds to give the statement in a test

for a student. Interestingly, this kind of hard-to-reverse processes is the kind used for

creating unbreakable codes.

These statements motivate some interesting research directions regarding the use of

transformations to develop theories.

8.1.2.2 Discovery of representations.

The search for good representations is not only a meta-mathematical affair, but also

(and maybe more importantly) a mathematical one. What we mean by this is best

explained as follows: mathematicians not only observe and modify their representa-

tions so that they can reason better about mathematical objects, but they are actively

looking for theorems which would allow them to make better representations. Thus,

transformations between representations may be seen as attractors; objects the math-

ematical practitioner strives to find (and strives to do so mathematically, in the form

of theorems).

In general, it is hard to understand why mathematical theories go in the directions

they do. Here we speculate and argue that an important driving factor is, precisely,

the formation of new (and efficient) representations. So let us examine the case of the

natural numbers (or positive integers) from an elementary perspective:

The positive integers can be generated by 1 and +. This drives their representation

as terms of the form 1+((1+1)+1). However, associativity means that they may be
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written simply as 1+1+1+1 without ambiguity. This suggests a unary representation.

Thus we can write 1111 to represent the number 4. What we saw here is that a

generation theorem can drive a representation. Now let us ask ourselves: what do

we need in order to accomplish with multiplication what we just accomplished with

addition? In other words, what generates the positive integers from multiplication?

The answer is prime numbers. Thus the prime factorisation theorem can be seen as a

generation theorem. So, does it also suggest a representation? Yes. As above, take an

expressions (((5 ∗ 3) ∗ 3) ∗ (11 ∗ (3 ∗ 11))) and use associativity and commutativity (like

above) to remove brackets and pack them into groups (obtain 5 333 (11)(11)?). Then,

for each group we can simply say how many times its member appears in the expression

(obtain (5 7→ 1)(3 7→ 3)(11 7→ 2)? . . . or simply 5133112).

In general, every time we prove a generation theorem we are essentially giving the

building blocks with which to build a representation. Let us draw an analogy with

vector spaces. If we find the generators i, j and k for a space V , we can represent every

element as xi+yj+zk or simply (x, y, z). In general, we can ask: are new representations

just nice consequences of generation theorems, or are generation theorems actively

looked for with the purpose of constructing new representations? If the latter is true,

then it could yield some insight into the kind of mechanisms and triggers that drive

theory exploration. For example, it could be that the unary representation of a number

makes its properties relative to + obvious (almost pictorial), while it hides (or entangles)

its properties relative to ∗ (e.g., divisibility). Thus, to be able to see these properties

we may want a representation which is based on ∗ rather than +. Thus we generally

speculate that a difficulty with a class of problems (reasoning about a set of operators F

in a space S) may trigger the search of a generation theorem (of S by F ). For example,

a sequence of plausible questions may be:

1. Generation: can we find G ⊂ S such that GF = S, where GF is the closure of

G under F?

2. Independence: is there a unique way of generating each x ∈ S? How unique

(e.g., modulo permutations of applications of F )?

3. Dimensionality: how small a G can we find? This is usually related to in-

dependence, as the dependence of a specific set of generators means that some

redundant generators may be removed.

These questions are standard to ask regarding vector spaces, but we speculate that in

any practice of mathematics there is a thirst for this kind of knowledge, and that these

are some of the basic ingredients for a new representation. For example, the numbers-

as-bags-of-primes construction can be easily seen to arise from such a process (F only

contains multiplication, G is the set of primes, uniqueness is modulo permutations,
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dimension is ω). Similarly, if we theorise about a hypothetical world where every real

polynomial has its roots, it is possible that the best questions to ask are the generation

questions (with F = {+, ∗}), as they will lead to a surprisingly small set of generators

(which we can denote as 1 and i) which allow us to build a compact representation as

x ∗ 1 + y ∗ i, or simply (x, y).

We can speculate that, after a process such as this one, the questions over preserva-

tion of structure begin. The shape of these are: given our old representation, what are

the correspondences to the new? As we demonstrated in this work, this is the shape

of the rules that allow to successfully transform problems from one representation to

another.

Interestingly enough, everything we speculated above is related to the discovery

of new representations which nonetheless preserve all the information of the original

structure. However, we can also wonder how abstract representations can be created

from concrete ones, where information is lost. We speculate that a driving force for

this relates to Hobbs’ notion of granularity [30], wherein entities of a space are deemed

indistinguishable if they are identical (or almost identical) under certain (relevant)

predicates. Thus, the driving questions would be of the sort of:

1. Relevance: what predicates are relevant to the current problem (or class of

problems)?

2. Indistinguishability: can we identify some classification of the objects that

respect these predicates (i.e., an equivalence relation ∼ where x ∼ y implies

P (x)←→ P (y))?

Interestingly, Hobbs does not mention the word quotient in [30], but others [67] have

noted that this is the kind of construction envisioned by Hobbs. In terms of quotients,

the implication of Hobbs’ respectfulness property is that those predicates deemed rel-

evant can be transferred from the old to the new abstract representation. This is

precisely captured by the quotient relation, such as the ones that can be constructed

in Isabelle.

We speculate that a process of abstraction driven by questions of indistinguishability

explains the existence of many mathematical structures, such as natural numbers. In

particular, natural numbers can be seen as an abstraction of finite sets through the

relation of equipotency. Sets themselves can be seen as an abstraction of multisets, and

multisets can be seen as an abstraction of lists. Every abstraction loses some informa-

tion, but preserves some other.

Thus, we can envision a system for theory exploration where questions of generation
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and indistinguishability drive the process of conjecture, and result in the construction

of representations (and transformations linking old and new).

8.1.3 Beyond Isabelle/HOL

In chapter 4, we developed the notion of structural transformation, as relational mor-

phisms between superstructures (which are models of higher-order theories). There is

some potential work regarding this; both theoretical and practical.

The theory of transformations that we presented was particularly motivated to de-

scribe the mechanisms of the transfer tactics in terms of a broader theory, and more

specifically in terms of what it does to the structures (models) in question. However,

we tried to be general enough so that the notions may be reused outside of Isabelle.

In principle there is no good reason why it cannot be reused for different higher-order

logics. An interesting research question is the extent to which it may be used to explain

or develop transformation-driven reasoning techniques used in other systems.

It is interesting to note that one of the most significant differences between different

foundations of mathematics is the role that types play. In general, types can be seen

as meta-mathematical objects. They are ‘properties’ of terms, i.e., they qualify syntax.

Hence, types are used to differentiate between the strings that make grammatical sense

(the well-formed ones) and those that do not. However, the roles that types play

in different foundations of mathematics suggests that there is no universal agreement

between meta-mathematicians concerning how exactly to use them best. On one end

of this spectrum there are untyped and trivially typed systems (e.g., one-sorted first-

order theories such as ZFC). On the other end of the spectrum there are systems where

types play very complex roles (higher-order, with type polymorphism, with type-and-

term-dependent types, such as Coq [16]). In the former, types play a purely syntactic

role. However, in the latter types can represent complex mathematical objects and,

hence, the theory studying the mathematical objects is itself used for enforcing syntactic

constraints. This distinction is very interesting because it has an impact on how the

users formalise mathematical structures. Whereas in ZFC, mathematical structures

(such as the rational numbers) may be defined as sets, in the latter they may be defined

as types. Hence, the former approach sees types as trivial grammatical constraints

whereas the latter sees them as bases for formalising mathematical structures.

Isabelle/HOL lies in the middle between these two extreme approaches. Isabelle’s

theory developers have to choose between defining a new structure as a set (maybe a

subset of an existent type), or as a type. Due to the totality constraint for functions in

Isabelle the choice is often to construct new mathematical structures as types. How-

ever, Isabelle’s types have only limited flexibility. Mathematical structures which are
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parametric on some argument (e.g., the space of matrices of size n×m or the integer

rings Z/nZ) cannot be defined uniformly with n and m as parameters1. Thus, that

creates an inelegant heterogeneity in the definitions; Z may be defined as a type, but

the quotient Z/nZ is defined as a finite subset of Z. Moreover, the operations of Z/nZ
still have to be defined over the whole Z which makes the theory inelegant. Below we

discuss how our notion of transformation and its applications may fit in either of the

extremes.

Flexible type systems In Coq, types can be defined ‘dependently’, which means that

they may take terms form other types as arguments. For example, in Coq it is possible

to construct the quotient type Z/nZ with n as a parameter. Thus, it is possible to

reason uniformly about finite types of every size, and define functions and relations

which are parametric on n (the size of the type). Then, in particular, transformations

such as the quotient maps from Z to Z/nZ can be defined easily. These transformations

are incredibly useful in number theory. Similarly, a transformation linking linear maps

to matrices could be dependent on the dimension of the space (and hence the size of the

matrix). Thus, there is vast potential for incorporating mechanisms for reasoning using

transformations in systems with flexible types. As mentioned before, some work has

already been done to include a transfer-like mechanism in Coq [60, 68]. No applications

with the breadth of this thesis have been explored. The flexibility of types in systems

(such as Coq) may be useful to deal with representations and transformations thereof,

making some aspects of reasoning easier than with systems with more rigid types (such

as Isabelle).

Foundational set-theoretic systems. On the other end of the spectrum of type flexi-

bility we have the set-theoretic foundations of mathematics. Even though we state the

theory of structural transformations for higher-order logics, it is easy to see how it could

be adapted to a first-order set theory (such as ZFC), by changing every mention of type

to set. A few interesting questions arise when it comes to the notions of truth. For

example, the type B in Isabelle/HOL is deeply related to the proof-theoretic aspects of

the logic (e.g., relations are B-valued), and logical operators are entities in their own

right. However, in a ZFC system there may be no such notions. Thus, the theory

concerning preservation of truth through a transformation would have to be adapted.

1 However, Harrison [29] formalised in HOL Light a trick for representing Rn, wherein it is represented

as τ → R, e.g., a type parametric on some type τ . Then, the dimension of the space is accessed

by referring to the cardinality of the universe of τ . This trick has been reused in Isabelle/HOL to

construct finite cartesian products.
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Order-transformations and meta-transformations. In section 4.2.5.3 we mentioned

some interesting aspects of orderings that may exist between the relations of a transfor-

mation. One of the aspects of this was that such orderings could be used to understand

relations between transformations (e.g., in terms of strength). Even more interesting

was that transformations can be constructed out of ordering relations, and that the

operator Z⇒ is related to itself by a structural order-transformation, i.e., that we could

use meta-transformations that transform some transformations into others to import

facts about one transformation into another. For example, if a transformation of a

problem cannot be achieved because a statement (R1 Z⇒ R2) f g cannot be found as a

transfer rule, it may be possible to apply a transformation to it that converts it to a

statement (R′1 Z⇒ R′2) f g which may be a transfer rule. We did not explore this further,

but it seemed potentially interesting.

Composition transformations. In chapter 4 we explored the notion of S-composition

of transformations, in order to reveal the category-theoretical nature of structural trans-

formations. However, we did not explore the possible applications of composition for

practical use. We know that the composition of transformations is different from the

sequential application of transformations (which is what searching accomplishes), but

nonetheless they are related. In section 4.2.5.3 we showed that, for particular in-

stances, the sequential application of transformations was logically weaker than their

Z⇒-composition. Retrospectively, we wonder whether instead of searching, it would have

been possible to develop some techniques for automatically generating all the possible

compositions beforehand. This would have created very large sets of transfer rules, but

probably it would have put less pressure on finding transformations on the fly. The

problem of generating composition well is not trivial either, as it may not be possible

to take into account (into the compositions) the normalisation and case-splits (which

are transformation-specific) that our tactics perform.

Structural transformations, theory morphisms, proof preservation. Theory mor-

phisms are usually understood as interpretations, where the symbols of one theory

get mapped to the symbols of another one, and this induces a mapping of the theo-

rems that preserves theoremhood. This is the notion under which Isabelle’s locales are

constructed.

Trivially, it can be seen that if all the constants of a theory can be transferred via

a structural transformation so that the axioms of the former get mapped (through

equivalence) to theorems of the latter, then this induces an interpretation of the former

theory into the latter. Thus, some particular transformations may induce some theory

interpretations. However, given the flexibility of structural transformations these may
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induce many interpretations, partial interpretations (intersections), or more interesting

relations between the theories. Moreover, note that a transformation of a problem

induced by a structural transformation is an inference step in a specific theory (see

section 4.3). Thus, once the transformed problem is solved, there is no reason to

believe that there is a proof in the ‘original theory’, neither is it clear what ‘original

theory’ means in this context.

To elucidate this, take two theories TA and TB in Isabelle/HOL. Let p be a problem

in TA. Assume that there is a proof of p that consists of transforming it to TB and

solving it there. Then, taking a global perspective, we can see that p is solvable in

some theory TR Z⇒ (the theory of the transformation, which incidentally includes both

TA and TB). Now, we may assume that TA and TB are semantic conservative extensions

of their intersection (as we do through this work, see section 4.3). Thus, it follows that

TR Z⇒ is a conservative extension of TA, and it can be reconstructed by taking TA and

adding the missing (or isomorphic) definitions (of types and constants) of TB, plus the

definition of Z⇒. Thus, we essentially created a copy of TB in TA, and also the means

to relate them (the transformation).

Now, we know that p is provable in TR Z⇒ . Thus we have shown that p is provable in

a conservative extension of TA. This is, under one perspective, equivalent to p being

provable in TA. However, it also is (under other reasonable perspectives) cheating2,

as defining new types is a non-trivial operation (it is not that conservative). Now,

if we remove the possibility of defining new types (from the notion of conservativity)

it may be the case that the problem is not solvable purely in TA plus conservative

extensions. The necessary distinction to observe is between the notions of syntactic

(proof-theoretic) conservative extensions and semantic (model-theoretic) conservative

extensions. In particular, in syntactic conservative extensions the notion of proof is

preserved (so having a proof in TB implies that a proof exists in TA). However, it is

uncertain (and outside of the scope of this thesis) whether defining new types may

render previously unprovable statements provable.

It is interesting to note that, in our examples of specific transformations, auto-

transformations are syntactically conservative, but others are semantically conserva-

tive. When we examine some of our test examples closely (e.g., the double counting

proofs), we can see that some proofs are not really meant to be transformed back3. The

transformation itself is a valid backward inference, so it stands as justification enough.

The only real issue would be to introduce theories which are neither syntactically nor

2 The witness proof that we just constructed in the conservative extension of TA actually uses the

transformation to the copy of TB that we created!

3 For example, what would it mean to transform the combinatorial proof of
∑n
i=0

(
n
i

)
= 2n into a

purely-numerical proof?
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semantically conservative extensions of their intersection (say, the same set theory, but

one with the continuum hypothesis and another without it or with its negation). Then,

transferences of theorems would only be valid relative to the union of the theories (so

we would have to agree that everything both theories say is true) and this could be

inconsistent.

In general, the relation between structural transformations and morphisms between

systems of representation (including logic morphisms) is of potential research inter-

est. Moreover, the concern with proof preservation for morphisms prompts interesting

questions (e.g., whether transformations induce proofs).
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8.2 Summary

In this thesis we have presented the following:

1. A class of problems (in combinatorics and number theory) with solutions that

involve a change of representation, or whose solutions are best understood in

terms of representational changes.

2. A notion of structural transformation that captures these changes of representa-

tion (and more).

3. A catalogue of such transformations, mechanised in Isabelle/HOL in the form of

collections of theorems (transfer rules), and a tool for automatically generating

the converse transformation of any given transformation.

4. A couple of tactics that automate parts of the processes involved in applying the

transformations appropriately and searching the space of possible representations

through sequential applications of the transformations.

5. The results of experiments which look at some applications of the tactics, using

the catalogue of transformations, for solving some test example problems. We

provided a thorough analysis of these experiments.

Overall, our work showed that it is possible to implement transformations (used or

useful in mathematics) and tools for reasoning via transformations in computer math-

ematics systems. Moreover, we found some potential value of these transformations

and tools in problem solving. This value was assessed in terms of how the process of

transformation can be automated and how much closer transformations can bring us to

a solution.

To the best of our knowledge, our approach to the problem of representation for prob-

lem solving is original, although with an interesting intersection with data refinement

methods. Moreover, the results of our experiments teach us valuable lessons regarding

the science of representation and, more generally, the science of reasoning.
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Pólya and Lakatos Have to Say. In The Complex Mind, pages 167–183. Springer,

2012.

[15] Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, and Florian

Rabe. Project abstract: logic atlas and integrator (latin). In Intelligent Computer

Mathematics, pages 289–291. Springer, 2011.

[16] G Dowek, A Felty, H Herbelin, G Huet, C Paulin, and B Werner. The Coq Proof

Assistant User’s Guide, Version 5.6. Technical Report 134, INRIA, 1991.

[17] William M Farmer, Joshua D Guttman, and F Javier Thayer. Little Theories. In

11th International Conference on Automated Deduction, pages 567–581. Springer,

1992.

[18] William M Farmer, Joshua D Guttman, and F Javier Thayer. IMPS: an interactive

mathematical proof system. Journal of Automated Reasoning, 9(11):213–248, 1993.

[19] Murdoch J Gabbay and Dominic P Mulligan. Nominal Henkin Semantics: simply-

typed lambda-calculus models in nominal sets. arXiv preprint arXiv:1111.0089,

2011.

[20] Fausto Giunchiglia and Toby Walsh. A Theory of Abstraction. Artificial Intelli-

gence, 56(2–3):323–390, 1992.

[21] Joseph Goguen and Rod Burstall. Introducing institutions. Logics of Programs,

1984.

[22] Joseph Goguen and Rod Burstall. Institutions: Abstract Model Theory for Speci-

fication and Programming. Journal of the Association for Computing Machinery,

39(1):95–146, January 1992.

[23] Mike Gordon. From LCF to HOL: a short history. In Proof, Language, and

Interaction, pages 169–186, 2000.

[24] Mike Gordon, Robin Milner, Lockwood Morris, Malcolm Newey, and Christopher

Wadsworth. A metalanguage for interactive proof in LCF. In Proceedings of the

5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 119–130. ACM, 1978.

164



Bibliography

[25] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. Data
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