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ABSTRACT

Whilst pituitary-derived luteinising hormone is the primary regulator of corpus luteum

(CL) function, it is becoming increasingly apparent that other factors of extra- and intra-

ovarian origin have the potential to modulate the luteal response to gonadotrophins. The

insulin-like growth factor (IGF) system is thought to play a central role in these

interactions, and studies in vitro have shown that both IGF-I and -II have wide ranging

effects on ovarian function. The aim of this work was to investigate the role of the IGF

system in regulating corpus luteum function.

Bovine CL were collected on days 5, 10, and 15 of the oestrous cycle following

synchronised oestrus (day of oestrus = day 0). In addition, CL were collected following

prostaglandin-induced luteolysis. In situ hybridisation detected luteal expression of IGF-

I, -II and the type 1 IGF receptor messenger ribonucleic acid (mRNA) throughout the

oestrous cycle. The expression of IGF-I mRNA varied significantly during the oestrous

cycle. IGF-I mRNA concentrations were significantly higher on day 15 than on day 10,

and IGF-I mRNA in the regressing corpus luteum 48 hours after exogenous

prostaglandin was significantly greater than in the early or mid-luteal phase (days 5 and

10). In contrast, there was no significant effect of day of the oestrous cycle on IGF-II

and the type 1 IGF receptor mRNA concentrations in the corpus luteum. IGF-II mRNA

expression was localised to a subset of steroidogenic luteal cells and was also associated

with cells of the luteal vasculature. Messenger RNA encoding the type 1 IGF receptor

was widely expressed, in a pattern suggestive of steroidogenic luteal cell expression.



The actions of the IGFs are modulated by their association with members of a family of

IGF-specific binding proteins (IGFBPs), which regulate the transport of IGFs and their

presentation to specific receptors. In situ hybridisation detected mRNA encoding

IGFBP-2, -3, and —4 in the bovine corpus luteum throughout the luteal phase. IGFBP-2

and -4 mRNA concentrations were low within the corpus luteum, and showed no

temporal variation. In addition, a subset of large vessels in the periphery of the CL

showed moderate to intense hybridisation for IGFBP-2 mRNA. IGFBP-3 mRNA

concentrations were high throughout the luteal phase, and expression was localised

predominantly to cells lining microvessels, suggestive of endothelial cell expression.

The administration of gonadotrophin releasing hormone (GnRH) to cattle in the early

luteal phase (day 6) induces ovulation and the formation of an additional CL in greater

than 80% of animals. Progesterone profiles indicate that GnRH-induced CL are

functional, however progesterone levels are reduced and they display a short lifespan

when compared to spontaneously formed CL. Based on the ability of the IGFs to

modulate the ovarian response to gonadotrophins, we hypothesised that changes in

concentrations of mRNA encoding components of the IGF system were responsible.

GnRH was administered to cows on day 6 and ovarian dynamics monitored by rectal

ultrasound and daily blood sampling. Ovaries were collected on day 10 and 15, and

GnRH-induced CL compared to similar aged control CL and spontaneous CL present at

GnRH treatment. Induced CL expressed mRNA encoding IGF-I, IGF-II, the type 1 IGF

receptor and IGFBP-3. The patterns of expression were not significantly different

between control and induced CL, however, concentrations of mRNA expression were
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altered. IGFBP-3 mRNA concentrations were increased in induced CL, whilst type 1

IGF receptor mRNA concentrations were decreased when compared to control CL. We

suggest that these changes will reduce both the bioavailability and bioactivity of IGF-I

and —II, thus compromising the induced CL response to luteotrophic support.

In conclusion, these data demonstrate that the bovine corpus luteum is a site of IGF

production, reception and regulation throughout the luteal phase, and further support the

hypothesis that the IGF system is important in regulating luteal function in the cow.
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INTRODUCTION

The corpus luteum has key functions in the control of ovarian cyclicity and embryo

survival. The establishment of pregnancy and continued embryo development are

dependent on the inhibition of luteal regression and hence maintained secretion of the

primary luteal product progesterone. A lack of appropriate progesterone secretion has a

detrimental effect on pregnancy success (Mann et al., 1999).

During the past twenty years there has been a marked decline in the reproductive

performance of the UK dairy herd. The pregnancy rate to first service has fallen annually

by approximately 1%, and is now only 39.7%. This declining fertility is associated with

an increase in the proportion of animals displaying atypical ovarian hormone patterns,

and abnormal luteal function is thought to be a primary contributory factor (Royal et al.,

2000). Sub-fertility represents a significant loss of revenue for the dairy farmer through

reduced milk output and calf production, and increased insemination and replacement

costs (Esslemont and Peeler, 1993; Stott et al., 1999). In addition, there are considerable

animal welfare implications associated with increased veterinary intervention and a high

rate of culling. An increased understanding of the mechanisms regulating luteal function

should lead to the development of procedures aimed at improving reproductive

efficiency, and help to reverse the current trend of decreasing fertility in the national

dairy herd.

This study is concerned with the role of the IGF system in the regulation of luteal

function. IGF-I and -II have multiple effects on the regulation of follicular development

xi



and steroidogenic activity. IGF-I stimulates follicular steroidogenesis via enhanced

gonadotrophin receptor numbers, sterol delivery, and steroidogenic enzyme activity

(Adashi et al., 1985c; Veldhuis, 1989; Magoffin et al., 1990; Magoffin and Weitsman,

1993; Balasubramanian et al., 1997). Evidence also suggests that IGF-II augments the

steroidogenic response to gonadotrophin stimulation (Garmey et al., 1993).

Comparatively little is known about the effects of the IGFs on luteal function. However,

an important role for the IGFs in the CL is supported by the regulatory actions of the

IGFs on steroidogenesis, as demonstrated in the follicle, and by the stimulation of

progesterone production by luteal cells in vitro in response to both IGF-I and IGF-II

(McArdle and Holtorf, 1989; Talavera and Menon, 1991; Sauerwein et al., 1992; Khan-

Dawood et al 1994; Devoto et al., 1995; Yuan and Lucy, 1996a). The IGFs may also

have important functions in addition to the regulation of steroidogenesis, including the

stimulation of angiogenesis (Hansson et al., 1989; Grant et al., 1993; Vialettes et al.,

1994) and control of apoptosis (Chun et al., 1994), and therefore have great potential to

regulate luteal events. This study aims to characterise the IGF system during the growth

and development of the bovine CL.
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Chapter 1. Literature Review

1.1 The Bovine Corpus Luteum; Formation, function and regression.

1.1.1 Historical background

The first detailed description of the corpus luteum (CL) is credited to Regnier de

Graaf (cited by Short, 1977) whose publication on female reproduction in 1672

describes the formation of "globular bodies" that form to replace "ova". In addition,

de Graaf observed that the "testicles of the female" did not always contain these

"globules" rather that they could be seen to diminish and disappear.

The term "corpus luteum" was first ascribed to these globules by the anatomist

Malpighi (1628-1694) following his observation of the "yellow body" of the cow

(cited by Short, 1977). However, it was not until the late 1800s that specific

functions were suggested for the corpus luteum. In 1897, John Beard proposed that

the CL prevents ovulation during pregnancy and that the degeneration of the

structure towards the end of gestation, or in the absence of fertilisation removes

inhibition and allows for a new ovulation (cited by Amoroso, 1968). Prenant, in

1898, was the first to suggest that the corpus luteum acts as an endocrine gland.

Based on his histological observations, he proposed that the corpus luteum was "a

gland of internal secretion, releasing one or more products into the

bloodstream"(cited by Short, 1977).

Confirmation of the role of the corpus luteum in the maintenance of pregnancy was

first provided by Fraenkel (1903) and Magnus (1901) who showed that removal of

the ovaries or luteal ablation induced abortion or embryo resorption (cited by

Amoroso, 1968). A further role for the corpus luteum in pregnancy preparation and
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survival was demonstrated by Bouin and Ancel (1910) who showed in the rabbit that

endometrial gland proliferation was CL-dependent, thus providing a bioassay that

enabled luteal extracts to be tested for their active principle (cited by Amoroso,

1968). Corner and Allen (1929) extended the results of the CL ablation studies by

successfully inducing endometrial proliferation and maintaining early pregnancy in

ovariectomised animals following the administration of a porcine luteal extract.

Subsequently progesterone was isolated and purified as the primary endocrine

secretion of the corpus luteum (Allen and Wintersteiner, 1934).

1.1.2 Follicular and luteal dynamics

A pool of approximately 2-3 million primordial follicles are established in the ovary

of the cow during fetal development (Gosden and Telfer, 1987), each consisting of

primary oocytes arrested in prophase I of meiosis, surrounded by a single layer of

pre-granulosa cells and enclosed by a basal lamina. These arrested follicles enter the

growth phase during the lifetime of the animal in response to an as yet undetermined

stimulus (Hirshfield, 1991; Webb et al., 1999). The initiation of primordial follicle

growth is characterised by a change in granulosa cell shape from flattened to

cuboidal, granulosa cell proliferation and oocyte enlargement. With continued

growth the granulosa cells of the primary follicle become multi-layered and a zona

pelucida is secreted around the enlarging oocyte.

Outside the basement membrane, the theca interna and externa are formed by

differentiation of stromal cells, and a blood capillary network is increasingly

apparent. Once the follicle has reached 100-300pm in diameter, spaces between

granulosa cells join together to form a fluid-filled antral cavity (Lussier et al., 1987).
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Having left the resting pool a follicle faces one of two fates, continued growth and

ovulation, or degeneration and atresia, and only a small percentage of follicles

proceed to the final stages of follicular development (Figure 1.1).

Antral Ovulation

Preantral Follicle

Figure 1.1 Stages of follicular growth and development.

(Adapted from Webb et al., 1999).
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Real-time ultrasonography has enabled the tracking of follicular and luteal

dynamics. In the bovine oestrous cycle large antral follicle growth occurs in two or

three waves. Each wave is characterised by the simultaneous growth of a group of

antral follicles, one of which is selected to become dominant, while other cohort

follicles regress (Figure 1.2). The follicle that is dominant at luteolysis progresses to

become the ovulatory follicle (Fortune, 1994; Webb et al., 1999). Ovulation releases

the oocyte, and the corpus luteum forms from the granulosa and theca interna cells

of the collapsed follicle.

The length of the bovine oestrous cycle is 21 days for cows and 20 days for heifers,

with a normal range of 17-24 days (Hawk and Bellows, 1980). The corpus luteum is

the dominant structure on the ovary for approximately 17 days, and the follicular

phase lasts 3-4 days. The oestrus period of sexual receptivity is of short duration,

with a mean length of 12-16 hours, ranging in individual animals from 3-28 hours

(Allrich, 1994) and is designated day 0 of the cycle. Ovulation usually occurs 18-48

hours after the onset of oestrus, or 10-12 hours after the end of oestrus.

1.1.3 Formation and structure of the corpus luteum

1.1.3.1 Gross morphology of the corpus luteum

The corpus luteum is formed from the ruptured follicle following ovulation

(Donaldson and Hansel, 1965a), and exhibits rapid growth, to reach its maximal size

around mid-cycle (Ireland et al., 1980; Reynolds et al., 1994). Indeed, the dramatic

growth of the CL is comparable to that of the fastest growing tumours (Jablonka-

Shariff et al., 1993; Zheng et al., 1994).
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Follicle diameter

(mm)

18 0 3 6 9 12 15

Day of the oestrous cycle

Number of
follicles

1 to 2

2 to 6

15 to 20

Figure 1.2 Waves of follicular development in cattle during the oestrous cycle.

A three wave pattern of follicular development is illustrated. S and D represent

phases of follicular selection and dominance respectively.

(Adapted from Webb et al., 1999).
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Gross changes in the appearance of corpora lutea throughout the bovine oestrous

cycle have been described in detail and are used to estimate the day of the cycle in

animals of unknown reproductive history (Ireland et al., 1980). In stage I (days 1-4)

the CL is red, between 0.5 - 1.5 cm in diameter and the point of follicle rupture is

not covered by epithelium. In stage II (days 5-10) the CL has increased in size to its

maximal diameter of 1.6 - 2.0 cm, the ovulation point is now covered and red or

brown in colour, whilst the remainder of the CL is orange. In stage III (days 11-17)

the apex of the CL appears tan or orange, and has a visible vasculature, on bisection

the CL is bright orange or yellow. In the final stage of luteal development (stage IV,

days 18-20) the CL undergoes regression, decreasing in size to less than 1 cm in

diameter, and becomes paler in colour (Ireland et al., 1980).

1.1.3.2 Angiogenesis

The female reproductive organs undergo cyclical growth and regression, which is

accompanied by extensive changes in vasculature and blood flow. Few other tissues in

the adult exhibit the growth of new blood vessels (angiogenesis) unless they are

undergoing tissue repair. Irregularities in the control of angiogenesis, either by the over

or under production of vascular growth, are associated with a number of pathological

conditions, therefore ovarian angiogenesis is expected to be tightly controlled (Redmer

and Reynolds, 1996).

The vascular bed of the Graafian follicle is confined to the theca cell layer by a

basement membrane, which separates the avascular granulosa layers of the follicular

interior from the network of blood vessels. Around the time of ovulation, the basement

membrane breaks down, allowing rapid capillary outgrowth. The subsequent formation
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of the luteal vasculature is both rapid and extensive. Indeed, tissue growth is dependent

upon the growth of new blood vessels and the establishment of a functional blood

supply (Folkman and Klagsbrun, 1987). During early luteal development capillary

sprouts invade the granulosa-derived tissue, and by mid-cycle an abundant capillary

network has formed within the mature CL. Indeed, the vascular network is so dense

that most steroidogenic cells appear in immediate contact with at least one capillary

(Zheng et al., 1993). Endothelial cells, which line blood vessels, are a prominent cell-

type within the corpus luteum, occupying around 15% of luteal tissue volume, and

representing around 50% of all cells at mid-cycle (O'Shea et al., 1989). In addition, the

mature corpus luteum receives one of the highest rates of blood flow to any organ.

Blood flow to the CL-bearing ovary is correlated with progesterone concentrations,

reaching maximal levels during the mid-cycle and showing a rapid decrease associated

with luteolysis (Niswender et al., 1976).

Corpora lutea produce angiogenic factors throughout the oestrous cycle and pregnancy

(Grazul-Bilska et al., 1992b; Ricke et al., 1995). Heparin binding growth factors,

namely the fibroblast growth factors (FGF) and the vascular endothelial growth factors

(VEGF) are considered key mediators of luteal neovascularisation, and are the subject

of recent review (Reynolds and Redmer, 1998).

Acidic FGF (aFGF/ FGF-1) and basic FGF (bFGF/ FGF-2) are known to stimulate

angiogenesis (Klagsbrun and D'Amore, 1991), and both proteins have been detected in

the bovine CL (Zheng et al., 1993). In addition luteal bFGF mRNA expression is

correlated with angiogenic activity (Stirling et al., 1991). Immunoneutralisation of

aFGF and bFGF markedly reduced luteal angiogenic activity, and demonstrated that
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bFGF was responsible for stimulating the majority of the luteal vascular response

(Grazul-Bilska et al., 1992a).

VEGF mRNA expression has been detected in the ovine CL, and was maximal early in

the cycle (Redmer et al., 1996). The temporal association between high luteal VEGF

expression and extensive neovascularisation supports an important role for VEGF in

luteal vascular development. In addition, endothelial cell proliferation and migration,

stimulated by the products of luteal explants in culture, was reduced by anti-VEGF

antibodies, and the greatest reduction in angiogenic activity was observed in the early

CL (Doraiswamy et al., 1995).

Specific receptors for FGF and VEGF have been demonstrated in the corpus luteum of

sheep, rats and women (Asakai et al., 1993; Doraiswamy et al., 1998; Otani et al.,

1999). Basic-FGF binding capacity and mRNA encoding the FGF receptor-1 (FGFR-

1) which is activated by bFGF decreases with advancing luteal age (Asakai et al.,

1993). FGFR-1 and -2 have been detected in vascular and parenchymal cells of the

ovine CL. Parenchymal FGFR-1 concentrations are reduced in the late luteal phase,

whilst vascular FGFR-1 was detected in endothelial cells throughout the oestrous

cycle. In contrast, FGFR-2 was localised to luteal parenchymal cells at all stages of

oestrous cycle, and vascular expression was limited to large microvessels and was only

detectable during the late luteal phase (Doraiswamy et al., 1998). Messenger RNA

encoding the VEGF receptor Fit-1 is expressed in the human corpus luteum. Fit-1

protein was localised to human granulosa and theca lutein cells and luteal endothelial

cells during the menstrual cycle and early pregnancy (Otani et al., 1999). In addition,

treatment with truncated soluble Fit-1 receptors to inhibit VEGF bioactivity caused
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near absolute suppression of luteal angiogenesis, demonstrating that VEGF is essential

for neovascularisation (Ferrara el al., 1998).

Futeal angiogenic activity appears to be regulated by luteotrophic and luteolytic

factors. Futeinising hormone (FH) stimulated bFGF mRNA expression in cultured

bovine luteal cells, whilst prostaglandin (PG)F2a reduced bFGF mRNA (Stirling et al.,

1991). VEGF is also subject to modulation by FH; FH significantly increased VEGF

production and mRNA expression by luteinising granulosa cells (Christenson and

Stouffer, 1996; Garrido et al., 1993).

1.1.3.3 Cellular components of the corpus luteum

The corpus luteum consists of a number of different cell types. These include

steroidogenic cells, endothelial cells and pericytes, fibroblasts and immune cells

(Farin et al., 1986; O'Shea et al., 1989; Parry et al., 1980). The most numerous cells

are those associated with the luteal vasculature, whilst the steroidogenic cells occupy

most of the volume of the CF.

At least two populations of steroidogenically-active luteal cells can be distinguished.

These are characterised by size and referred to as "large" and "small" luteal cells.

Both luteal cell types possess ultrastructural features characteristic of steroid

secreting cells, including a well-developed smooth endoplasmic reticulum (SER),

abundant mitochondria containing tubular cristae, an extensive Golgi apparatus and

cytoplasmic lipid droplets (Parry et al., 1980). Fipid droplets, which may serve as

steroid precursor stores, are inversely related to progesterone synthesis (Parry et al.,

1980).
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In addition to their difference in size, other distinguishing structural features have

been attributed to the small and large luteal cells (Fields and Fields, 1996; Parry et

al., 1980). The small cells characteristically display whorls of SER and adherens-

type junctions, whilst large cells contain a notable abundance of membrane-bound

electron-dense secretory granules within their cytoplasm which are extruded from

the cell by exocytosis.

It was initially proposed that these granules contained progesterone, based on the

correlation between progesterone secretion and granule formation and release

(Sawyer et al., 1979), although an autoradiographic study suggested that labelled

progesterone-precursors synthesised into progesterone did not concentrate in the

granules (McClellan et al., 1979). Immunocytochemistry has subsequently localised

oxytocin and neurophysin to the same secretory granule (Fields et al., 1992).

Secretory granules have also been reported to contain tissue inhibitor of

metalloproteinases (TlMP)-l, which plays an important role in regulating

extracellular matrix (ECM) remodelling (Mclntush et al., 1996).

Whilst both large and small luteal cells possess the cellular machinery associated

with steroid synthesis, they are also well equipped for protein secretion (Niswender

et al., 1985; Parry et al., 1980).

In addition to displaying structural differences, the two cell populations appear to be

functionally distinct. Whilst both large and small cells secrete progesterone,

steroidogenesis appears to be controlled by different regulatory pathways. In vitro

studies have shown that large luteal cells produce higher amounts of progesterone in

the absence of LH stimulation than small cells (Brannian et al., 1993; Ursely and
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Leymarie, 1979). However, physiological doses of LH stimulate small luteal cells to

synthesise progesterone whilst eliciting only a modest response from the large luteal

cells.

1.1.4 Function of the corpus luteum

1.1.4.1 Steroidogenesis

The first reaction in steroidogenesis is the conversion of cholesterol to pregnenolone.

This conversion is catalysed by the cytochrome P450 side chain cleavage (P450scc)

enzyme in complex with adrenodoxin and adrenodoxin reductase. P450scc has been

immunolocalised to both large and small luteal cells in the bovine CL (Rodgers et al.,

1986a) and luteal content of P450scc has been characterized throughout the bovine

oestrous cycle. Levels ofP450scc and its electron donor adrenodoxin in the developing

CL are not different from follicular concentrations. However, subsequent luteal

maturation leads to a substantial increase in the tissue content of luteal P450scc in

parallel with changing progesterone production, followed by a decline associated with

luteolysis (Rodgers et al., 1986b). Expression of mRNA encoding P450scc and

adrenodoxin has been demonstrated in the bovine corpus luteum during luteal growth

and development, and was undetectable during luteal regression (Rodgers et al., 1987).

Steroid hormone biosynthesis is regulated by both the levels of regulatory enzymes

and substrate availability. Steroid secreting cells may derive cholesterol from the

uptake of lipoprotein cholesterol extracted from the circulation, from intracellular

cholesterol ester stores, or by de novo synthesis. Bovine luteal cells have been shown

to depend on lipoproteins as the cholesterol source for progesterone synthesis

(O'Shaughnessy and Wathes, 1985). Low density (LDL) or high-density (HDL)
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lipoproteins transport the majority of blood cholesterol, and the lipoprotein class

utilised appears species-specific. In the cow both LDL and HDL are able to stimulate

progesterone production (Carroll et al., 1992), although LDL may be the preferred

lipoprotein (O'Shaughnessy and Wathes, 1985).

P450scc activity was considered the rate-limiting step in steroid hormone biosynthesis.

However, recent observations have indicated that the acute regulation of steroids is

indispensably regulated by the actions of a protein involved in substrate delivery.

P450scc is located within the inner mitochondrial membrane: therefore, steroid

precursors must firstly be transported to the outer mitochondrial membrane and then

across the intermembrane space to the inner membrane. This intra-mitochondrial

transport is facilitated by the actions of a protein namely the steroidogenic acute

regulatory (StAR) protein (Clark and Stocco, 1996). StAR mRNA and the protein

product have been detected in bovine luteal homogenates. StAR mRNA abundance is

low in developing bovine CL, elevated in the mid-to late-luteal phase and virtually

absent in regressing CL (Pescador et al., 1996).

Pregnenolone produced by the actions ofP450scc must travel from the mitochondria to

be converted to progesterone in the SER. The final steps in progesterone biosynthesis

are performed by 3-p-hydroxysteroid dehydrogenase/ A 4-5 isomerase (3P-HSD). This

enzyme is bi-functional, catalysing the dehydrogenation and isomerisation of A-5, 3-p

hydroxysteroid precursors into A-4, 3-ketosteroids (Penning, 1997).

3P-HSD mRNA, protein product and enzymatic activity have been characterised in the

bovine ovary. Prior to ovulation, bovine follicles display low and constant 3p-HSD
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activity. However, shortly after oestrus 3P-HSD levels undergo a marked increase,

reaching maximal levels on days 8-11, before declining dramatically coincident with

luteal regression (Couet et al., 1990).

The changing levels of steroidogenic enzymes may offer an explanation for the marked

changes in progesterone secretion during the oestrous cycle. However, studies

following induced luteolysis do not support the hypothesis that the decline in

progesterone associated with regression is due to a reduction in tissue concentrations

of P450scc or 3{3-HSD (Rodgers et al., 1995). Whilst mRNA levels have been shown

to decline, the authors argued that since P450scc and 3p-HSD enzymes have long half

lives, changes in their mRNA levels do not cause a sufficiently rapid reduction in the

tissue content of the enzymes to be responsible for the decline in plasma progesterone

concentrations.

Whilst both large and small luteal cells have been shown to possess the necessary

regulatory enzymes for progesterone production, they appear to vary in their secretory

ability. In the absence of hormonal stimulation, basal progesterone production is much

higher in large bovine luteal cells than small luteal cells (Ursely and Leymarie, 1979).

However, the large cells appear less sensitive to LH, requiring supraphysiological

concentrations of LH to achieve stimulation in vitro (Alila et al., 1988; Ursely and

Leymarie, 1979). Ovine large luteal cells possess LH receptors, but at considerably

lower levels than small luteal cells (Fitz et al., 1982). Messenger RNA encoding the

LH receptor was highly expressed in small bovine luteal cells and theca-derived luteal

cells luteinised in culture (Mamluk et al., 1998; Yuan and Lucy, 1996b). Intracellular

levels of cyclic adenosine monophosphate (cAMP) were significantly elevated in ovine
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small luteal cells stimulated by LH. However, LH did not stimulate cAMP levels in

large luteal cells. In addition, treatments that dramatically increased cAMP levels

failed to stimulate large luteal cell progesterone production. This suggests that large

luteal cell steroidogenesis is independent of elevated cAMP levels, despite the

similarity in protein kinase A activity observed in ovine small and large cells (Hoyer et

al., 1984; Wiltbank etal., 1989).

1.1.4.2 Biological functions of progesterone

The primary function of the corpus luteum is to secrete progesterone, which has a

range of effects on the reproductive tract that are essential for pregnancy (Graham

and Clarke, 1997).

Progesterone influences events from early in gamete transport, regulating oviductal

contractility and secretory activity that support early development of the conceptus

and the timing of its delivery to the uterus. Once within the uterus progesterone has

an important, if incompletely understood, role in the preparation and support of

implantation, with actions on both the uterine environment and the blastocyst. In the

event of successful fertilisation, transport and implantation, progesterone secreted by

the rescued corpus luteum continues to support uterine growth and function. In

addition, it inhibits contractions of the myometrium, which if unopposed could result

in the expulsion and subsequent loss of the growing foetus.

1.1.5 Hormonal control of luteal function

Regulation of luteal function and lifespan involves a number of hormonal factors

produced outside of the ovary. The adenohypophysis, or anterior pituitary gland, in

response to GnRH signals from the hypothalamus, secretes LH which is considered
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the primary luteotrophic hormone in most species. If pregnancy occurs the corpus

luteum is maintained in response to the presence of the conceptus. However, in the

absence of conception the corpus luteum must undergo morphological and functional

regression, so releasing the inhibition on follicular development and ovulation,

allowing the next cycle of follicle development to begin, and so creating the next

chance for fertilisation. In non-primate species the uterus produces this luteolytic

signal.

1.1.5.1 Luteinising hormone

Early experiments in the ewe suggested that pituitary hormones were not obligatory

in the formation and maintenance of corpora lutea. However subsequent studies have

shown that the removal of pituitary gland early after ovulation can prevent CL

formation, and hypophysectomy on day 5 causes luteolysis (Kaltenbach et al., 1968),

therefore supporting a positive role for one or more pituitary products.

The pituitary hormones LH and prolactin are both candidate luteotrophs. Prolactin

has been shown to be an important luteal regulator in several rodent species. The

maintenance of luteal function following prolactin therapy in hypophysectomised-

hysterectomised ewes suggested that prolactin may also be an important regulator in

ruminants (Denamur et al., 1973). However, subsequent prolactin depletion studies

showed no concurrent diminishment of luteal function in sheep and cattle (Hoffman

et al., 1974; Niswender, 1973). In addition, prolactin infusions could not stimulate

luteal steroidogenesis or lifespan, and were unable to overcome the inhibitory effects

of oxytocin (Donaldson et al., 1965).
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In contrast, a range of evidence supports the role of LH as the primary luteotroph in

ruminants (Hansel and Seifart, 1967). Administration of LH can prolong the lifespan

of the corpus luteum (Donaldson and Hansel, 1965b; Karsch et al., 1971), whilst

administration of antiserum to LH reduces luteal weight and progesterone content

and can induce luteolysis (Fuller and Hansel, 1970; Snook et al., 1969). In addition,

LH stimulates luteal progesterone in vivo (Carlson et al., 1971) and in vitro when

incubated with luteal cells or slices (Seifart and Hansel, 1968).

1.1.5.1.1 Mechanism of action of LH

Binding of LH to its membrane-bound receptor causes the activation of two second-

messenger systems leading to a biological response (Davis et al., 1996). Cyclic AMP

is considered the primary intracellular mediator of LH action in the corpus luteum,

and is synthesised from adenosine triphosphate (ATP) by the enzyme adenylate

cyclase. The gonadotrophin receptors are members of the super-family of G-protein-

coupled, seven transmembrane receptors (McFarland et al., 1989). Functionally

these receptors are characterised by interactions with a guanosine triphosphate

(GTP)-binding regulatory protein (or G-protein) upon hormone binding which

couples the activated receptor to adenylate cyclase.

In its inactive form the stimulatory G-protein (Gs) binds guanosine diphosphate

(GDP). When activated by binding to a receptor-hormone complex the guanyl-

nucleotide binding site is altered, allowing GDP to be replaced by GTP. The binding

of GTP causes a further conformational change, resulting in the dissociation of

heterotrimeric G proteins into a subunits and (3y dimers. The GTP-bound a-subunit

then binds to the catalytic component of adenylate cyclase, which is subsequently
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activated to produce cAMP. Following a short period of G-protein activation, Gs

hydrolyses bound GTP to GDP, dissociates from adenylate cyclase, reassociates with

the Py dimer and returns to its inactive form (Taussig and Gilman, 1995).

Intracellular cAMP, the product of adenylate cyclase activation, in turn stimulates

protein-kinase A (PKA). It is also rapidly destroyed by one or more cAMP

phosphodiesterases which hydolyze cAMP to adenosine monophosphate. The

binding of cAMP causes the dissociation of the regulatory (R) subunits of protein

kinase A from its catalytic (C) subunits, enabling the free C-subunits to

phosphorylate target proteins. C-subunits phosphorylate serine and threonine

residues when recognised as part of a target sequence present in a number of

cytosolic and nuclear proteins: the serine/threonine residue must be downstream

from a pair of basic amino acids, separated by a single neutral amino acid

(Spaulding, 1993). A major role of protein kinase phosphorylation is the regulation

of transcription factor activity. Active PKA modulates nuclear factors which bind to

cAMP-responsive elements (CREs) in the promoter regions of cAMP-inducible

genes, resulting in either the activation or inhibition of transcription. CRE-binding

factors, which include CRE-binding proteins (CREB), CRE modulator (CREM) and

activating transcription factor-1 (ATF-1) are members of the basic region/ leucine

zipper (bZIP) transcription factor class, some of which can also interact with

components of the protein kinase C pathway (Lalli and Sassone-Corsi, 1994;

Spaulding, 1993).

LH stimulates multiple signal transduction pathways. In addition to adenylate

cyclase mediated events, LH also activates inositol phospholipid-specific
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phospholipase C (PLC). PLC generates two second-messengers, inositol

triphosphate (IP3) and diacylglycerol (DAG). IP3 acts to release Ca2+ from

intracellular calcium stores. DAG can be cleaved to release arachidonic acid which

can itself act as a messenger or be utilised in eicosanoid synthesis. However, its

major role is the activation of a crucial serine/threonine protein kinase, Ca2+

dependent protein kinase C (PKC) (Newton, 1995). Jun and Fos proteins are targets

of activated PKC phosphorylation, and can dimerize to form the nuclear factor AP-1.

AP-1 in turn binds to TPA (12-O-tetradecanoylphorbol-13-acetate) responsive

elements (TREs) present in the promoters of various genes to regulate their

expression (Karin and Hunter, 1995).

1.1.5.2 Follicle Stimulating Hormone

LH is secreted in a pulsatile manner, and causes the pulsatile release of progesterone

in response. However, the frequency of progesterone pulses exceeds that of LH, and

led to the suggestion that progesterone secretion was not solely under LH-control

(Hixon et al., 1983). Indeed, almost all pulses of Follicle Stimulating Hormone

(FSH) were associated with progesterone release, suggesting that FSH may be a

principle regulator of progesterone secretion (Walters et al., 1984). In addition to

this temporal relationship, binding characteristic of FSH receptors has been detected

in the bovine CL (Manns et al., 1984). However, whilst FSH stimulated

progesterone release by granulosa cells, FSH has not been shown to have a direct

luteotrophic effect (Hansel et al., 1973). Indeed, early studies of FSH receptor

binding and activation which suggested a possible role for FSH in stimulating luteal

function utilised preparations of FSH that were contaminated with LH. More recent

studies suggest that the corpus luteum is not under the influence of FSH. Low levels
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of mRNA encoding the full-length FSH-receptor have been detected in the bovine

CL on day 1. However, by day 3 no full-length transcripts were detectable. Splicing

of the FSH-receptor primary transcript was also observed in granulosa cells

luteinised in vitro. The loss of full-length FSH-receptor transcripts associated with

luteinisation is likely to prevent FSH action (Rajapaksha et al., 1996).

1.1.5.3 Prostaglandins

Corpora lutea have been shown to produce prostaglandins PGI2 and PGE2 (Rodgers et

al., 1988), which stimulate progesterone secretion by luteal cells in vitro (Alila et al.,

1988; Milvae and Hansel, 1980). A regulatory role for these prostaglandins is further

supported by the demonstration of PGI2 and PGE2 binding sites in the bovine CL

(Chegini et al., 1991).

Bovine luteal cells also secrete PGF2a and production is greatest in the early luteal

phase (Del Vecchio and Sutherland, 1997; Milvae and Hansel, 1983; Rodgers et al.,

1988). Binding sites for PGF2a have been detected in the bovine corpus luteum and

were predominantly localised to large luteal cells (Chegini et al., 1991). In ovine

corpora lutea, mRNA encoding the PGF2a (FP) receptor was also largely limited to

large steroidogenic cells (Juengel et al., 1996; Tsai et al., 1998). In the cow, mRNA

encoding PGF2a was present in both large and small steroidogenic luteal cells and

endothelial cells, with greatest expression detected in large luteal cells (Mamluk et al.,

1998). Whilst the role of uterine PGF2a in luteolysis is established (see section 1.1.6.2),

PGF2a has also been shown to stimulate progesterone release, suggestive of a

luteotrophic role for luteal PGF2a (Miyamoto et al., 1993).
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Administration of the prostaglandin synthetase inhibitor indomethacin, early in the

cycle reduced progesterone secretion and luteal lifespan, indicating that prostaglandins

are required for early luteal development and function (Milvae and Hansel, 1985). This

correlates with the observation that luteal biosynthesis of prostaglandins is highest

during the early luteal phase (Rodgers et al., 1988).

The vasodilatory effects of prostaglandins may also influence luteal function, by

altering blood flow and luteotrophin supply.

1.1.5.4 Oxytocin

Oxytocin is a major luteal peptide product in cattle and sheep. Whilst there is

considerable evidence to support a role for oxytocin in control of luteal regression, the

evidence indicating a role for oxytocin in luteinisation and luteal steroidogenesis

remain inconclusive.

Bovine granulosa cells isolated from the preovulatory follicle show a dramatic increase

in oxytocin mRNA expression in response to the LH surge (Voss and Fortune, 1992).

Indeed, oxytocin gene expression is considered a marker of luteinisation (Smith et al.,

1994c). Oxytocin mRNA and protein have been localised to the large steroidogenic

cells of the bovine corpus luteum (Fehr et al., 1987; Fields et al., 1992). Luteal

oxytocin mRNA peaks around days 1-3, whilst oxytocin concentrations are maximal in

the mid-luteal phase (Fehr et al., 1987; Jones and Flint, 1988).

Oxytocin has been suggested to have direct effects on luteal progesterone release. An

inhibitory effect of high doses of oxytocin on steroidogenesis in bovine luteal cells of

early pregnancy has been demonstrated (Tan et al., 1982), and oxytocin infusions

during the early luteal phase inhibited luteal development (Wathes et al., 1991). Others
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have reported limited effects of oxytocin on luteal cell progesterone production

(Hansel and Dowd, 1986; Rodgers et al., 1985). In further contrast, intraluteal

administration of oxytocin using microdialysed bovine corpora lutea stimulated

progesterone in a dose dependant manner, and was most effective during the early to

mid-luteal phase (Miyamoto and Schams, 1991). A luteotrophic role for oxytocin is

supported by the detection of oxytocin receptors in the bovine CL, which display

maximal binding in the mid-luteal stage (Okuda et al., 1992).

1.1.6 Luteolysis

Luteal regression or "luteolysis" occurs at the end of the luteal phase of the non¬

pregnant ovarian cycle, and also at the end of pregnancy. This loss of luteal function is

characterised by decreased progesterone secretion, followed by breakdown of luteal

tissue.

1.1.6.1 Role of the uterus

The importance of the uterus in luteolysis was first recognised by Loeb, who

demonstrated that hysterectomy resulted in extension of luteal lifespan in guinea

pigs (cited by McCracken et al., 1999). Hysterectomy has since been shown to cause

maintenance of luteal function in the cow, pig, sheep, mare and the pseudopregnant

hamster, rat and rabbit (Andersen et al., 1969; Wiltbank and Casida, 1956).

However, in a number of other species the uterus is not required for luteolysis to

occur. Hysterectomy does not cause luteal maintenance in a number of primate

species, including women and rhesus and cynomologous monkeys, the dog, the

opossum or the ferret (Andersen et al., 1969; Beling et al., 1969; Castracane et al.,

1979; Neill et al., 1969).
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In most species where hysterectomy demonstrated a uterine involvement in

luteolysis, the effect was unilateral. Removal of the uterine horn adjacent

(ipsilateral) to the ovary bearing the CL prevented luteal regression. However,

removal of the uterine horn contralateral to the CL did not lengthen luteal lifespan,

demonstrating that uterine effects on the ovary were via local rather than systemic

pathways (Andersen et al., 1969). In addition, autotransplantation of either the ovary

or the uterus to the neck, extended luteal function in ewes, whilst transplantation of

the one uterine horn and the adjacent ovary with associated blood system maintained

normal ovarian cyclicity (Harrison et al., 1968). In the rabbit and the mare, the

uterine luteolysin may be mediated systemically (Ginther and First, 1971; Hunter

and Casida, 1967).

The local transport of a uterine luteolysin to the corpus luteum in the sheep and cow is

via a veno-arterial countercurrent system. The uterine factor appears to pass from the

uterine vein to the ovarian artery directly, despite a lack of vascular connections

between the two vessels. The ovarian artery is highly convoluted, and is closely

apposed to the uterine vein, creating extensive regions of contact. Surgical

manipulations of the veno-arterial system support the theory that a factor borne by the

uterine venous output causes regression of the ipsilateral corpus luteum. In addition,

ovine uterine venous plasma collected around the time of luteolysis reduces

progesterone secretion following infusion into the ovarian artery (Caldwell and Moor,

1971).
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1.1.6.2 Nature of the luteolytic factor

Elevated PGF2a concentrations in uterine venous output (Baird et al., 1976),

endometrial tissue (Shemesh and Hansel, 1975) and uterine flushings (Bartol et al.,

1981) are temporally associated with falling progesterone and expected luteolysis.

Exogenous administration of PGF2a causes premature luteal regression in cattle and

sheep (McCracken et al., 1970; Rowson et al., 1972; Thorburn and Nicol, 1971),

whilst inhibition of uterine prostaglandin synthesis prevents spontaneous luteolysis,

and maintains luteal weight and plasma progesterone concentrations (Lewis and

Warren, 1977). In addition, immunisation of cyclic ewes against PGF2a prolongs luteal

maintenance (Scaramuzzi and Baird, 1976), suggesting that prostaglandin, in particular

PGF2a is required for luteolysis, thus providing further evidence that PGF2a is the

natural luteolysin.

1.1.6.3 Secretion of PGF2a

In the ewe, the first significant increases in PGF2a concentrations in utero-ovarian

venous blood occur on days 12-14 (Baird et al., 1976), and the primary PGF2a

metabolite 15-keto-13, 14 dihydro PGF2a(PGFM) is detectable in bovine plasma and

uterus, at increasing concentrations from around day 14 (Parkinson and Lamming,

1990; Shemesh and Hansel, 1975). PGF2a secretion is pulsatile, and PGF2a is released

from the uterus in a series of pulses which are typically 6-8 hours apart. Low level

PGFM episodes can be detected on day 14 (Parkinson and Lamming, 1990), the

amplitude of pulses of PGFM are markedly increased during luteolysis and in contrast

are inhibited in the pregnant animal (Kindahl et al., 1984).
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1.1.6.4 Regulation of uterine secretion of PGF2a

1.1.6.4.1 The role of oxytocin

Uterine secretion of PGF2o can be stimulated by oxytocin (Laffance and Goff, 1990;

Roberts and McCracken, 1976). Oxytocin is released primarily from the corpus luteum

(Hooper et al., 1986) where it is stored in large luteal cell secretory granules. Around

the time of luteolysis, spontaneous episodes of PGF2a secretion occur concurrently

with elevated oxytocin concentrations (Hooper et al., 1986; Vighio and Liptrap, 1986).

In addition, immunoneutralisation of oxytocin in ewes significantly extended the

oestrous cycle, reflecting prolonged luteal lifespan (Sheldrick et al., 1980), and

exogenous administration of oxytocin causes premature luteolysis (Armstrong and

Hansel, 1959), providing support for a regulatory role for oxytocin in luteolysis.

Furthermore, the observation that ovarian secretion of oxytocin is stimulated by

prostaglandin analogue (Flint and Sheldrick, 1982) has led to the suggestion that a

positive feedback loop exists between the two hormones (Flint and Sheldrick, 1983).

Uterine PGF2a initiates luteal oxytocin release (Moore et al., 1986), which

subsequently stimulates further PGF2ct release from the uterus. Pulsatile secretion may

be established by a combination of effects, with the interval between episodes

determined by transient uterine refractoriness to further oxytocin stimulation, luteal

desensitisation to PGF2a, and depletion of oxytocin stores or PGF2a precursors (Flint et

al., 1990; Silvia et al., 1991).

However, others have failed to demonstrate both a role for oxytocin in modulating

luteal function in vivo, as determined by cycle length, luteal weight and progesterone

concentration (Milvae et al., 1991), and a link between PGF2a and oxytocin in vitro
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(McCann and Flint, 1990). Furthermore, frequent sampling of ovine uterine-ovarian

venous output demonstrated that whilst most pulses of PGF2a coincided with a pulse of

oxytocin, a number of oxytocin pulses occurred in the absence of a PGF2a pulse

(Hooper et al., 1986). In the ewe, surgical lutectomy did not affect the frequency of

pulsatile PGF2a release, although pulse amplitude was reduced (Mann and Lamming,

1995), and depletion of oxytocin stores did not affect luteolysis or length of the

oestrous cycle in cattle (Kotwica and Skarzynski, 1993).

Oxytocin is synthesised de novo in the ruminant corpus luteum. Messenger RNA

encoding oxytocin is expressed at high levels in the early luteal phase and declines

thereafter (Fehr et al., 1987; Ivell et al., 1990; Jones and Flint, 1988), whilst oxytocin

concentrations peak at mid-cycle, and decline during the late luteal phase, prior to

functional regression (Jones and Flint, 1988; Wathes et al., 1984;). Indeed the lack of

temporal association between maximal oxytocin levels and luteolysis seems

paradoxical in light of oxytocins' expected role in luteolysis.

In order that oxytocin can stimulate PGF2a release, the uterus must acquire

responsiveness to oxytocin. Uterine sensitivity develops during the late luteal phase

(Roberts et al., 1976; Silvia and Taylor, 1989) and is the likely product of increased

oxytocin receptors (Fuchs et al., 1990; Roberts et al., 1976), increased PGF2aprecursor

utilisation (Silvia et al., 1991), and PGF2a synthetic capacity (Basu and Kindahl, 1987).

1.1.6.4.2 The role of steroids

The timing and extent of PGF2ct production are thought to be further regulated by the

ovarian sex steroids oestradiol and progesterone (McCracken et al., 1999; Silvia et al.,

1991).
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1.1.6.4.2.1 Progesterone

Supplemental progesterone administration in the early luteal phase induces premature

PGF2a release and subsequent luteolysis in sheep and cows (Ginther, 1970; Ottobre et

al., 1980), whilst luteal regression is delayed following progesterone antagonist

treatment. Furthermore, progesterone priming is required in order for oxytocin to

stimulate uterine PGF2a secretion in ovariectomised cows or ewes (Homanics and

Silvia, 1988; Lafrance and Goff, 1988).

Progesterone regulates the capacity of the uterus to synthesise prostaglandins, by

increasing precursor accumulation (Brinsfield and Hawk, 1973) and prostaglandin

synthase/ cyclooxygenase concentration and activity (Raw et al., 1988). Whilst

progesterone increases the synthetic capacity of the uterus to produce prostaglandins,

luteal phase levels may prevent the premature release of PGF2a. This effect is proposed

to be the result of progesterone inhibiting oestradiol receptor formation, and hence

oestradiol-dependant up-regulation of the oxytocin receptor. The inhibitory effect of

progesterone is thought to be lost in the late luteal phase, allowing increased uterine

responsiveness to oxytocin at an appropriate time (McCracken et al., 1999). Indeed,

progesterone withdrawal during the late luteal phase has been shown to stimulate

uterine PGF2a secretion, and oxytocin receptor numbers increase following the loss of

progesterone action (Leavitt et al., 1985).

1.1.6.4.2.2 Oestradiol

Oestradiol also appears to regulate uterine PGF2a secretion, and the stimulatory effects

of oestradiol can be further enhanced by a prior period of progesterone priming

(Homanics and Silvia, 1988; Laffance and Goff, 1988).
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Oestradiol may up-regulate prostaglandin synthesis by increasing both the release of

arachidonic acid from phospholipids by the enzyme phospholipase A2 (PLA2) and the

conversion of arachidonic acid to PGF2aby PG synthase (Raw et al., 1988). However,

the treatment of ovariectomised ewes with oestradiol-17(3 markedly reduced mRNA

encoding prostaglandin synthase in the ovine endometrium (Salamonsen et al., 1991).

In addition, oestradiol is thought to enhance the uterine response to oxytocin

stimulation, an effect that may be mediated by increased oxytocin receptors (Nissenson

et al., 1978).

Whilst both progesterone and oestradiol have been implicated in the control of uterine

PGF2a secretion, and are thought to regulate oxytocin receptor concentration, there is

little evidence for direct steroid stimulation of the oxytocin receptor gene (Ivell and

Walther, 1999). Indeed, detailed analysis of the oxytocin receptor gene in a range of

species has failed to find functional response elements for either oestrogen or

progesterone.

The expression of oxytocin receptors may also be regulated by specific non-genomic

actions of sex steroids. In the rat uterus, progesterone directly inhibits oxytocin-

binding and signal transduction, without interacting with nuclear receptors (Grazzini et

al., 1998). However, this effect may prove to be highly species-specific (Ivell and

Walther, 1999).

1.1.6.5 Mechanism of PGF2aaction

1.1.6.5.1 Receptors

Prostaglandin binding sites have been identified on luteal cells of both cattle (Powell et

al., 1975) and sheep (Balapure et al., 1989), and two classes of receptor can be
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distinguished on the basis of affinity and capacity for PGF2a. Large ovine luteal cells

possess predominantly high affinity binding sites, whilst PGF2c( binds small luteal cells

with low affinity (Balapure et al., 1989). PGF2a binding sites are also more numerous

in large luteal cells (Chegini et al., 1991). High affinity binding PGF2ct activity is

increased during the late luteal phase in bovine corpora lutea (Rao et al., 1979) and

luteal cells (Chegini et al., 1991), and PGF2a receptor mRNA follows the same pattern

(Sakamoto et al., 1995).

The identification of specific luteal receptors for PGF2a supports a role for PGF2a

acting directly on luteal cells. However, whilst PGF2ct is clearly luteolytic in ruminants

in vivo, studies in vitro have provided inconsistent results. Indeed, PGF2a has been

shown to both stimulate (Speroff and Ramwell, 1970) and inhibit (Wiltbank et al.,

1990) luteal progesterone production.

1.1.6.5.2 Multiple sites of action

PGF2a is thought to have multiple sites of action (Auletta and Flint, 1988; McCracken

et al,. 1999; Michael et al., 1994), and can inhibit a range of steroidogenic responses to

LH. LH receptor numbers are reduced following luteal regression (Garverick et al.,

1985), however, the PGF2a-stimulated reduction in progesterone has been shown to

occur before a decline in occupied or unoccupied LH receptors (Diekman et al., 1978).

The LH receptor was thought to become "uncoupled" from adenylate cyclase in

response to PGF2a as demonstrated by decreased adenylate cyclase activity in day 19

bovine CL (Garverick et al., 1985). It has also been proposed that the decrease in

adenylate cyclase activity during luteolysis may be the result of altered interactions of

the enzymes regulatory and catalytic subunits (Agudo et al., 1984). The concurrent
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increase in phosphodiesterase activity may additionally reduce cAMP levels, and

hence alter the response to LH stimulation (Garverick et al., 1985). Alterations in

membrane fluidity associated with luteolysis and loss of cell function may also

influence receptor-mediated events (Carlson et al., 1982; Goodsaid-Zalduondo et al.,

1982).

PGF2(i may also exert actions subsequent to cAMP generation, and a primary target

may be cholesterol transport. PGF2a causes inhibition of luteal steroidogenesis that

results in part from reduced utilisation of lipoprotein substrate (Wiltbank et al., 1990).

Messenger RNA encoding StAR, which facilitates cholesterol transport across the

mitochondrial membrane, was significantly reduced within 12 hours of induced

regression in ewes (Juengel et al., 1995). A similarly rapid decline in StAR mRNA

was observed in the bovine CL, with levels becoming undetectable after 24 hours,

whilst levels of P450scc mRNA decreased more slowly (Pescador et al., 1996). In

addition to effects prior to pregnenolone production, PGF2a has also been shown to

markedly reduce 3P-HSD mRNA concentrations (Flawkins et al., 1993), which is in

agreement with the dramatic fall observed around the time of natural luteolysis (Couet

et al., 1990).

An alternative means of action for PGF2ct to induce luteolysis was thought to be

alterations in luteal blood flow, and subsequent hypoxia. Decreased luteal blood flow

has been demonstrated during natural and PGF2a-induced luteolysis (Ford and

Chenault, 1981; Nett et al., 1976). However, blood flow reduction is not thought to

initiate functional luteal regression, but may play a role in structural luteolysis.

(McCracken et al., 1999).
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The cellular mechanisms of PGF2a inhibition are thought to be mediated by an increase

in intracellular calcium concentration, which can be cytotoxic to luteal cells (Hansel et

al., 1991), and can also cause activation of the calcium dependant PKC (Michael et al.,

1994; Wiltbank et al., 1991j.

1.1.6.6 Local PGF2a production in the corpus luteum

The corpus luteum contains substantial levels of arachidonic acid (Lukaszewska and

Hansel, 1980) and has the ability to convert arachidonic acid to PGFs (Milvae and

Hansel, 1983). However, luteolysis is not temporally associated with high levels of

luteal PGF2a production (Milvae and Hansel, 1983). In contrast, some cytokine

products of immune cells which increase around the time of luteolysis such as

interferon (IFN)-y, tumour necrosis factor (TNF)-a, and interleukin (IL)-1 (3, can

stimulate luteal cell PGF2a production, and may play autocrine/ paracrine regulatory

roles (Fairchild and Pate, 1991; Fairchild Benyo and Pate, 1992; Nothnick and Pate,

1990).

Interest in the ability of accessory cells of the corpus luteum such as endothelial cells,

fibroblasts, pericytes and macrophages to modulate corpus luteum function is

increasing. Luteal cells cultured in the presence of accessory cells show elevated PGF2a

synthesis (Del Vecchio and Sutherland, 1997). In addition, there is considerable

evidence to support a role for an endothelial cell product, endothelin-1 (ET), in

mediating the luteolytic actions of PGF2a. ET content in the bovine CL was highest on

days 17-21 of the cycle, and ET-1 mRNA was significantly increased around the time

of luteolysis (Girsh et al., 1996b). PGF2a rapidly increased luteal ET-1 mRNA, when

administered to heifers, or luteal slices in vitro, and the endothelial cells of bovine
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luteal microvessels respond to PGF2a with increased ET production and expression

(Girsh et al., 1996a, 1996b). ET-1 production was also elevated in response to

oxytocin (Girsh et al., 1996b). ET-1 is thought to mediate the response of CLs to

PGF2a, since ET-1 suppressed progesterone release from both bovine corpus lutea

microdialysed in vitro (Miyamoto et al., 1997), and granulosa and theca cells

luteinised in culture (Girsh et al., 1996a). In addition, the inhibitory effect of PGF2a on

LH-stimulated progesterone secretion was prevented by the addition of an ET receptor

antagonist (Girsh et al., 1996a). The ET-1 receptor gene is expressed by small and

large steroidogenic luteal cells, and luteal endothelial cells, and is maximal during

luteal regression (Mamluk et al., 1999). ET-1 may act directly to reduce the

progesterone production by steroidogenic cells, and may in addition contribute to a

reduction in luteal blood flow, since ET-1 is a potent vasoconstrictor.

1.1.6.7 Role for immune cells in luteal regression

A potential role for immune cells in luteal regression has long been recognised,

following the detection of an influx of leukocytes into the corpus luteum around the

time of luteolysis. However, whilst immune cells were thought to be primarily

phagocytotic, involved in the removal of cell debris associated with regression, they

are now thought to have more active luteolytic functions (Pate, 1995).

Immune cell populations have been detected in corpora lutea from a range of species

including guinea pig, rabbit, pig, mare, human and cattle (Bagavandoss et al., 1988;

Duncan et al., 1998b; Lawler et al., 1994; Paavola, 1979; Spanel-Borowski et al.,

1997; Standaert et al., 1991), and a number of studies have demonstrated increased

immune cell numbers prior to luteolysis. The stimulus for macrophage migration is

31



undefined. However there is increasing interest in a specific chemoattractant for

monocytes/ macrophages namely monocyte chemoattractant protein (MCP-1). MCP-

1 mRNA is expressed in the corpora lutea of pigs, rats, sheep, cattle and women

(Haworth et al., 1998; Hosang et al., 1994; Penny et al., 1998; Senturk et al., 1999;

Townson et al., 1996) and is increased during functional luteolysis. In addition to

this temporal correlation, the administration of exogenous luteolytic stimuli induces

MCP-1 expression in the corpora lutea of sheep, rats and cattle (Bowen et al., 1996;

Tsai et al., 1997).

Changes in the expression of cell surface glycoproteins, the major histocompatibility

complex (MHC) molecules, may be important for immune cell activation within the

corpus luteum. Luteal cells of the early bovine CL (day 6) express Class I MHC

molecules, but exhibit limited Class II MHC expression. However, Class II MHC

expression increases during the oestrous cycle, and maximal expression was

observed prior to luteolysis. Class II MHC expression can be induced following

PGF2a administration and is significantly reduced in corpora lutea of pregnancy

(Fairchild Benyo et al., 1991).

The expression of Class II MHC molecules is largely restricted to antigen-presenting

cells, and is involved in antigen recognition. Hence, it is thought that the luteal cell

expression of Class II MHC molecules may stimulate an immune response, despite

the non-immune cell location. Indeed, bovine luteal cells can stimulate T-cell

proliferation in a Class Il-restricted manner, and the proliferative response was

greatest in the presence of cells from regressing corpora lutea (Petroff et al., 1997).

32



Secreted products of activated immune cells can have important effects on luteal cell

function. Cytokines can be directly cytotoxic, can inhibit progesterone production

and can stimulate luteal cell prostaglandin production (Pate and Townson, 1994).

Immune cells have also been implicated in the regulated production of reactive

oxygen species (ROS) which may further mediate luteolytic events. Indeed activated

leukocytes are among the most potent generators of ROS. ROS such as the

superoxide anion (O2") and hydrogen peroxide (H2O2), and lipid peroxides (formed

by the actions of ROS on polyunsaturated fatty acids) are generated in the rat CL at

luteolysis (Riley and Behrman, 1991; Sawada and Carlson, 1991; Shimamura et al.,

1995). In addition, levels of the protective antioxidant ascorbic acid (Vitamin C) are

reduced in response to PGF2a. This rapid depletion of ascorbic acid is the result of

PGF2a inhibiting ascorbic acid uptake from the circulation, combined with increased

luteal cell ascorbic acid secretion (Musicki et al., 1996). The corpus luteum has

other mechanisms to protect against ROS damage, that include degradative enzyme

activity, antioxidant Vitamin E, and radical scavengers such as the carotenoids (Aten

et al., 1992; Chew et al., 1984).

ROS have several luteal sites of action, damaging the plasma membranes of luteal

cells (Wu et al., 1993), and inhibiting rat luteal cell steroidogenesis. The anti-

steroidogenic effect may result from the inhibition of adenylate cyclase activation,

impaired delivery and utilisation of steroid precursors, and inhibition of protein

synthesis (Behrman and Aten, 1991; Behrman and Preston, 1989; Kodaman et al.,

1994; Musicki et al., 1994). Whilst ROS can clearly influence important aspects of

luteal function directly, they may stimulate other effector systems with luteolytic

results.
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The heat shock proteins (Hsp) may form such a system, and are produced in

response to ROS in other cells (Heufelder et al., 1992). Hsp 70 is induced in the

corpora lutea of rats and sheep following either exogenous PGF2a or natural

luteolysis (Khanna et al., 1995a; Murdoch, 1995). A role for Hsp 70 in luteal

regression is further supported by its ability to inhibit rat luteal progesterone

secretion, an effect that is reversed by blocking Hsp synthesis (Khanna et al.,

1995b).

1.1.6.8 Apoptosis in luteolysis

Apoptosis is a form of cell death, distinct from pathological or necrotic cell death,

which serves an important physiological role in the maintenance of tissue

homeostasis (Martin et al., 1994; Steller, 1995; Ueda and Shah, 1994).

Cells undergoing physiological cell death by apoptosis display a series of

characteristic changes. Typically cells shrink and lose cell-cell contacts. Nuclear

condensation creates dense aggregates of chromatin and membrane alterations result

in the fragmentation of the cell into membrane-bound "apoptotic bodies". Apoptotic

cells are commonly phagocytosed, and the removal of cellular debris does not evoke

an inflammatory reaction. Cell death caused by apoptosis is commonly associated

with marked deoxyribonucleic acid (DNA) fragmentation, caused by endonuclease-

mediated internucleosomal chromatin cleavage. The resultant "DNA laddering" is

often used as a marker.

The morphological changes characteristic of the process now known as apoptotic

cell death, were first observed in the ovary over a century ago, and apoptosis is now

thought to be important in perinatal germ cell loss, follicular atresia and luteal
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regression (Amsterdam and Selvaraj, 1997; Tilly, 1993). Indeed, apoptotic cells have

since been detected in regressing corpora lutea of many species, and endonuclease-

mediated DNA fragmentation has been identified at the time of structural luteal

degeneration (Bacci et al., 1996; Boone and Tsang, 1998; Juengel et al., 1993;

McCormack et al., 1998; Murdoch, 1995; Young et al., 1997; Yuan and Giudice,

1997; Zeleznik et al., 1989).

The fate of ovarian cells is thought to be determined by the complex interplay of

survival factors and apoptotic signals. The gonadotrophins are crucial to the growth

and development of follicles. Reduced gonadotrophin concentrations induce

follicular apoptosis, whilst gonadotrophin treatment is anti-apoptotic, suggesting that

FSH and LH act as follicle survival factors (Chun et al., 1994, 1996). The treatment

of ovarian cells in culture with serum deprivation has identified numerous additional

factors that can regulate cell survival when replaced in vitro. Ovarian steroids,

glucocorticoids, ECM components and a range of growth factors and cytokines (e.g.

IGF-I, epidermal growth factor (EGF), transforming growth factor (TGF)a, bFGF,

IL-1 (3, IL-6) may all influence apoptotic pathways (Amsterdam et al., 1999; Hsu and

Hsueh, 1997).

Apoptotic pathways (White, 1996) appear to be well-conserved across species from

the nematode Caenorhabditis elegans to mammals, and among different cell types.

One such well-conserved gene with an important regulatory role in apoptosis is the

proto-oncogene bcl-2. The protein product of bcl-2 inhibits apoptosis resulting from

a range of stimuli. Several genes related to bcl-2 also encode proteins with key roles

in mediating cell death. BAX interacts with BCL-2 and potentially antagonises its
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protective activity. The BAX: BCL-2 ratio is thought to be critical in determining

susceptibility to cell death. A further member of the bcl-2 gene family bcl-x, is

uniquely processed via alternative splicing, to produce a long and short form with

markedly different regulatory potential: BCL-Xlong has death suppressor activity,

whereas BCL-Xshort inhibits cell survival (Adams and Cory, 1998).

Cell fate is further influenced by the products of tumour suppressor genes. The p53

protein can arrest cell-cycle progression following cellular DNA damage, via

alterations in kinase activity. Alternatively, when DNA damage is too extensive to

be repaired, high levels of p53 can induce apoptosis. The mechanism of p53 action

may involve cross-talk with 6c/-2-related genes, since p53 protein can directly

activate bax gene transcription and repress bcl-2 expression. In addition, alterations

in murine double minute-2 (mdm-2) oncogene expression may be important in

controlling a cell's entry into apoptosis, based on the ability of mdm-2 to complex

with the p53 protein and to neutralise p53-mediated transactivation (Evan and

Littlewood, 1998; Oren, 1999).

A family of cytoplasmic proteases are thought to be important executors of cell

death, promoting apoptosis through the degradation of proteins crucial to cellular

integrity. This family comprises of at least ten cysteine proteases or "caspases",

related to the interleukin-ip converting enzyme (ICE), which are structurally and

functionally homologous to the C.elegans death gene ced-3 (Thornberry and

Lazebnik, 1998). Pro-survival proteins such as BCL-Xl0ng may function by

inactivating caspase activity.
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Known regulators of cell death have been localised to corpora lutea undergoing

regression, in addition to the identification of physiological markers of apoptosis.

For example, luteal cells of several species express a number of hc/-2-related genes.

In the bovine corpus luteum, pro-apoptotic bax mRNA expression was significantly

elevated during luteal regression and was accompanied by increased p53 mRNA

levels (Rueda et al., 1997). In the rabbit, withdrawal of luteotropic oestradiol results

in luteal cell apoptosis and a coincident increase in bax mRNA (Goodman et al.,

1998). In contrast, in women luteal BAX production was not altered at luteolysis

(Rodger et al., 1998). Anti-apoptotic bcl-2 family members have also been localised

within the regressing CL, and bcl-x mRNA levels decreased in the rabbit CL

coincident with apoptosis (Goodman et al., 1998). However, limited changes in

BCL-2 protein and longform bcl-x were observed in the human and bovine CL

respectively (Rodger et al., 1995; Rueda et al., 1997). Caspase mRNA and protein

activity has also been detected in luteolytic tissue. A PGF2a-initiated increase in both

caspase-3 mRNA expression and activity was detected in ovine CL (Rueda et al.,

1999) and high levels of caspase-3 have been detected in the human corpus luteum

(Krajewska et al., 1997). Studies in the rat found no difference in the distribution or

intensity of caspase-3 immunostaining in CL that were positive or negative for

apoptosis, however this study did not distinguish between the proenzyme and the

mature activated form of caspase-3 (Boone and Tsang, 1998). Whilst in the cow,

ICE/caspase-1 mRNA levels were significantly higher in day 21 regressed CL than

day 21 functional pregnant CL (Rueda et al., 1997). A role for additional regulatory

pathways such as Fas and Fas ligand (Roughton et al., 1999) and ubiquitin (Murdoch
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et ai, 1996) in luteal apoptosis has also been suggested, although their mechanisms

of action are not well characterised.

1.1.6.9 Structural luteal regression

Luteolysis is characterised by both functional and structural changes. In the absence

of pregnancy the ECM undergoes extensive remodelling to enable the removal of

non-functional luteal tissue. The ECM not only provides a physical structure for

cellular attachment, it can also influence aspects of cellular function. The ECM can

sequester growth factors and their binding proteins and hence influence their

mobilisation. In addition, cell-matrix interactions can directly influence cell

behaviour. The dissolution of matrix components therefore has considerable

regulatory potential (Streuli, 1999).

There is limited information on the composition and organisation of the luteal ECM.

However, the ruminant luteal ECM is thought to be composed primarily of collagen

(types I and IV), fibronectin and laminin (Silvester and Luck, 1999; Zhao and Luck,

1995). Indeed, collagen is a major component of the bovine corpus luteum,

accounting for up to one sixth of luteal dry weight (Luck and Zhao, 1993).

A number of enzymes are responsible for ECM remodelling. These include the

plasminogen activator (PA)/ plasmin system, and the large family of matrix

metalloproteinases (MMPs).

1.1.6.9.1 Plasminogen activators

Two plasminogen activators, the tissue-type PA (tPA) and urokinase-type PA (uPA),

are responsible for converting the zymogen plasminogen into the proteolytically

active enzyme plasmin. Plasmin has fibrinolytic activity, can activate other proteases
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involved in matrix breakdown, and can degrade both laminin and fibronectin. To

prevent uncontrolled tissue destruction, the proteolytic activity of the plasminogen

activator-plasmin system is regulated by the actions of two specific protease

inhibitors, PA inhibitor type 1 (PAI-1) and type 2 (PAI-2).

Plasminogen activators have been identified as luteal secretory products of the

rhesus monkey (Feng et al., 1993), rat (Liu et al., 1995, 1996) and sheep (Smith et

al., 1997), and luteolysis was temporally associated with increased expression of

mRNA encoding rat tPA (Liu et al., 1996). Luteal PA activity is controlled by the

local production of PAI-1, and unexpectedly mRNA encoding PAI-1 also increased

following both prostaglandin induced (Smith et al., 1997) and natural luteolysis (Liu

et al., 1996). However, despite the increase in inhibitor expression, net PA activity

was elevated at the time of luteolysis in the rat and monkey supporting a role for PA

activity in the dissolution of matrix components (Feng et al., 1993; Liu et al., 1995,

1996). It has also been suggested that tPA may play a role in functional luteal

regression, since the addition of tPA to rat luteal cells in culture decreased

progesterone production (Liu et al., 1995), and immunoneutralisation of endogenous

tPA increased progesterone production in the rat and monkey (Feng et al., 1993; Liu

et al., 1995).

1.1.6.9.2 Matrix Metalloproteinases

Considerable attention has focused on the role of matrix metalloproteinases in ECM

degradation in the ovary (Duncan, 2000; Mclntush and Smith, 1998; Smith et al.,

1999). The family of MMPs has at least 17 members, which display different

specificities for ECM proteins. MMPS are largely secreted in a latent proenzyme
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form and undergo proteolytic cleavage to produce the active enzyme. Association

with specific inhibitors, the TIMPs, further regulates MMP activity.

Structural luteolysis induced by prolactin or GnRH agonist treatment caused an

increase in total proteinase activity in the rat CL, and was associated with increased

activated MMP-2 (Endo et al., 1993) and MMP-2 mRNA expression (Goto et al.,

1999). Others have shown that mRNA encoding MMP-13 is uniquely expressed in

the regressing rat CL (Liu et al., 1999). Evidence from human corpora lutea also

supports a role for MMPs in regulating structural luteolysis. MMP-2 activity and

mRNA expression peaked in the late luteal phase. MMP-9 activity was also high

around the time of luteolysis, however MMP-9 levels were also raised in the early

luteal phase suggesting an additional role in luteinisation (Duncan et al., 1998a).

Gelatinase activity has been detected in the developing bovine corpus luteum, and

attributed to MMP-2 and MMP-9 (Goldberg et al., 1995), however, the potential role

ofMMPs in luteal regression has not been addressed.

TIMPs, most notably TIMP-1, have been detected in bovine (Goldberg et al., 1996),

ovine (Smith et al., 1994a), porcine (Smith et al., 1994b), murine (Bagavandoss,

1998), marmoset (Duncan et al., 1996), and human (Duncan et al., 1998a) luteal

tissue. TIMPs are important regulators of MMP activity, and the ratio of TIMPs to

active MMPs largely determines the extent of ECM degradation. Therefore luteal

regression might be expected to be associated with reduced inhibitor levels. In the

marmoset corpus luteum induced luteal regression was correlated with a significant

reduction in mRNA encoding TIMP-1, which may allow for increased ECM

degradation by MMPs (Duncan et al., 1996). In addition, levels of TIMP-1 protein

were reduced in the ovine CL following PGF2a treatment (Mclntush and Smith,
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1997). However, others have failed to demonstrate a correlation between luteolysis

and reduced TIMP concentrations or mRNA expression. In the cow CL

concentrations of mRNA encoding both TIMP-1 and TIMP-2 showed transient

increases following induced luteal regression (Juengel et al., 1994). In the

pseudopregnant rat, luteal TIMP-1 mRNA expression was highest on day 1,

decreased from days 2 to 12, and increased again around the time of luteolysis

(Nothnick et al., 1995). Whilst the proteolytic activity of MMPs must be tightly

regulated, it is unclear why in some species the regressing CL is a site of abundant

TIMP production. However, it has been suggested that since MMPs and TIMPs

occupy different cellular sites, that MMP activity can occur despite the high levels of

inhibitor (Bagavandoss, 1998; Duncan et al., 1998a). Alternatively, the balance of

active MMPs to TIMPs may be further regulated by the destruction of TIMPs, which

may favour ECM degradation. TIMP-1 has been shown to be subject to inactivation

by proteolytic degradation or reaction with oxygen radicals (Frears et al., 1996; Itoh

and Nagase, 1995).

Whilst TIMPs are responsible for much of the MMP-inhibitory activity, broad

spectrum protease inhibitors such as the a-macroglobulin-type inhibitors have also

been shown to contribute to the regulation of MMP activity in the ovary (Nothnick

et al., 1995). Indeed, a2-macroglobulin protein content and mRNA expression

declines in the pregnant rat CL when functional luteolysis occurs at parturition

(Gaddy-Kurten et al., 1989).
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1.1.6.10 Maternal recognition of pregnancy

In the event of pregnancy, the corpus luteum must be maintained. The inhibition of

luteolysis requires the 'maternal recognition of pregnancy' in response to the products

of conception, and subsequent interruption or modification of luteolytic prostaglandin

release (Thatcher et al., 1997).

The critical period for recognition of pregnancy in the cow is around day 16 after

conception. Luteal lifespan is extended despite the removal of bovine embryos on day

17 but not day 15. Furthermore, infusion of day 17 or day 18 embryo homogenates into

the uterine lumen of non-pregnant heifers has an anti-luteolytic effect (Northey and

French, 1980).

The embryos of ruminants regulate luteal maintenance via the secretion of

antiluteolytic interferons. In the sheep and cow, the embryonic signal is provided by

ovine (o) or bovine (b) trophoblast protein-1 (TP-1), which has since been

characterised as a type IIFN, and subsequently renamed IFN-x (Roberts et al., 1992).

Homologous proteins have also been identified as products of goat and red deer

conceptuses (Demmers et al., 1999; Guillomot et al., 1998). Intrauterine infusion of

purified trophoblast proteins or recombinant IFN-x extends luteal function in cyclic

cattle (Helmer et al., 1989b; Meyer et al., 1995), ewes (Godkin et al., 1984; Martal et

al., 1990), goats (Ott and Newton, 1993) and red deer (Demmers et al., 2000). In

addition, uterine administration of IFN-x is associated with attenuation of both basal

and oxytocin-induced endometrial prostaglandin secretion, both in vivo and in vitro

(Danet-Desnoyers etal., 1994; Helmer et al., 1989a; Meyer et al., 1995).
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Embryonic antiluteolysin production is further supported by the detection of

messenger RNA encoding bTP-1 and bTP-1 protein in the trophectoderm of bovine

conceptuses (Farin et al., 1990; Lifsey et al., 1989). In addition, bTP-I mRNA and

protein levels were highest at blastocyst elongation, coincident with maternal

recognition of pregnancy around days 15-17 of gestation (Bartol et al., 1985; Farin et

al, 1990).

IFN-x is thought to prevent the development of the luteolytic mechanism, and to act

on the uterus rather than the corpus luteum. The primary targets of the inhibitory

effects of IFN-t are endometrial oxytocin receptors. Intrauterine injection of ovine

conceptus secretory proteins decreased the number and binding affinity of oxytocin

receptors (Mirando et al., 1993), and inhibited subsequent second messenger

generation (Mirando et al., 1990). IFN-x may regulate the oxytocin receptor directly

or indirectly by down-regulating endometrial oestrogen receptors and/or maintaining

endometrial progesterone receptors.

In cyclic cows, endometrial oestrogen receptor numbers increased dramatically from

day 14 to day 16, to reach levels ninefold higher than in pregnant ewes on day 16

(Ott et al., 1993). Furthermore, intrauterine injection of ovine conceptus secretory

proteins from day 11 to day 15 post-oestrus reduced endometrial oestrogen receptor

concentration and mRNA (Mirando et al., 1993). Oestrogen receptor mRNA and

protein levels were also suppressed by infusion of recombinant oIFN-x into the

uterus of cyclic ewes (Spencer et al., 1995). However, in cows the presence of an

embryo was not associated with any alteration in oestrogen receptor mRNA

expression (Robinson et al., 1999).
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Interferon-x does not appear to regulate oxytocin receptor number via maintenance

of progesterone receptors in the cow, since progesterone receptor mRNA and protein

concentrations were not different between pregnant and non-pregnant animals at the

time of luteolysis (Robinson et al., 1999). The influence of IFN-t on regulation of

progesterone receptor levels in sheep is unclear, although the loss of endometrial

progesterone receptors may be prevented during pregnancy (Ott et al., 1993).

In addition to inhibiting oxytocin reception, the embryo may also inhibit prostaglandin

synthesis, by down-regulation of cycloxygenase-2 and prostaglandin F synthase

expression (Xiao et al., 1999).

1.2 Overview of the IGF System

The insulin-like growth factors, IGF-I and IGF-II, are homologous polypeptide

growth factors with widespread roles in growth and development. IGF-I binds

preferentially to the type 1 IGF receptor, a tyrosine kinase receptor related to the

insulin receptor. The type 1 IGF receptor also binds IGF-II with slightly lower

affinity than IGF-I, and binds insulin with still lower affinity. The IGF-II receptor,

which is identical to the mannose-6-phosphate receptor, binds IGF-II with high

affinity, binds IGF-I with lower affinity and does not recognise insulin. In addition,

at high concentrations both IGF-I and -II can stimulate the insulin receptor. The

IGFs are regulated by the specific interaction with high affinity IGFBPs, which have

been shown to both inhibit and enhance IGF actions. IGFBPs are subject to post-

translational modifications including proteolytic cleavage, which can alter binding of

the IGFs to the IGFBPs, and further modulate the biological actions of the IGFs.
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1.2.1 IGFs

1.2.1.1 Discovery

The growth promoting activities of pituitary-derived somatotrophin or growth

hormone (GH) are well established in vivo and in vitro. The administration of GH to

hypohysectomised rats was found to stimulate the release of a factor in serum, which

mediates GH actions on cartilage growth and sulphate incorporation (Salmon and

Daughaday, 1957). Subsequently, this sulphation factor was renamed somatomedin,

due to its generalised ability to mediate the actions of somatotrophin on target tissues

(Daughaday et al., 1972). At around the same time, studies were underway to

characterise serum-borne factors with insulin-like effects. Distinct from insulin, the

bioactivity of these factors in vitro would be unaffected by the addition of an anti-

insulin antibody and was hence described as non suppressible insulin-like activity

(NSILA). Following the observation that both the NSILA extract and somatomedin

stimulated sulphate incorporation into cartilage and affected glucose metabolism,

similarity of identity was proposed. The amino acid sequence of purified NSILA was

deduced and it was shown that its insulin-like activity was accompanied by insulin¬

like structure, with NSILA showing 48% homology with human proinsulin, and was

renamed IGF-I. A second insulin-like factor was shown to be structurally

homologous, but not identical to IGF-I, and was designated IGF-II. Subsequently the

similarity of identity between NSILA and somatomedin was confirmed by amino

acid sequencing, which showed that somatomedin-C was identical to IGF-I (Klapper

et al., 1983).
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1.2.1.2 Peptide structure

The IGFs are both low molecular weight, single chain polypeptides, with structural

similarity to proinsulin. Human IGF-I was first purified and sequenced by

Rinderknect and Humbel in 1978 (Rinderknect and Humbel, 1978a). It consists of 70

amino acids, has a molecular weight of 7646 Da, and a basic (8.5) isoelectric point.

The amino acid sequences of both IGF-I and IGF-II are highly conserved (Rotwein,

1991). Bovine (Honegger and Humbel, 1986) and porcine (Francis et al., 1989b)

IGF-I sequences are identical to human IGF-I, whilst ovine IGF-I has a single

substitution at residue 66 (Francis et al., 1989a). There are three amino acid

differences between rat and human IGF-I (Shimatsu and Rotwein, 1987), and an

additional fourth substitution in the mouse sequence (Bell et al., 1986).

Human IGF-II is a 67-amino acid polypeptide, with a molecular weight of 7470 Da

and an acidic (<6.5) isoelectric point (Rinderknecht and Humbel, 1978b). IGF-II is

approximately 70% homologous with IGF-I and 50% homologous with proinsulin.

The IGF-II peptide sequence is also highly conserved with sixty of sixty seven

residues being invariant for the human, cow, pig, sheep, rat and mouse (Rotwein,

1991). Porcine IGF-II differs from human IGF-II by just one substitutive change

(Francis et al., 1989a), while bovine (Honegger and Humbel, 1986) and ovine IGF-II

(Francis et al., 1989b) have three and four amino acid changes respectively.

1.2.1.3 Gene structure

The human IGF-I gene spans more than 90 kilobases, and comprises six exons, five

introns and a number of promoter sites (Figure 1.3). Exons 1 and 2 encode part of

the signal peptide. Exons 3 and 4 encode the mature IGF-I peptide, plus a portion of
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the signal peptide and E domain. Exons 5 and 6 encode the E domain and are the site

of potential polyadenylation (Rotwein, 1991; Sussenbach et al., 1992).

The mature IGF peptides are the products of complex processing at both the peptide

and mRNA levels. The primary IGF-I transcript undergoes alternative splicing to

produce precursor peptides IGF-IA and -IB, which have different carboxy-termini

(Jansen et al., 1983; Rotwein, 1986). The two precursors have 16 residues of the E

domain in common, the remaining amino acids of the human IGF-IA precursor are

derived from exon 5, whilst IGF-IB is derived from exon 6. Divergent IGF

precursors have also been reported for the rat and mouse (Bell et al., 1986; Shimatsu

and Rotwein, 1987). The heterogeneity of IGF-I transcripts is further increased by

the use of alternative promoters and variable polyadenylation. The mechanism for

post-translational cleavage of the mature peptide from its precursors is unknown.

The processing of IGF-II is similarly complicated (Figure 1.3). The IGF-II gene in

the mouse, rat and human contains a number of untranslated 5' exons. The regions

coding for the signal peptide, the mature IGF-II peptide, and E domain are found

within the last 3 carboxy-terminal exons in all three species. Multiple IGF-II

mRNAs are produced by the use of alternative promoters, transcription start sites,

and polyadenylation. The combination of variables enables the production of at least

8 different human IGF-II mRNAs. However, the positioning of promoters adjacent

to non-coding exons and the absence of alternative splicing of coding exons

produces multiple mRNAs that encode the same precursor (Rotwein, 1991).
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Figure 1.3. Structure of human IGF-I and IGF-II genes.

The exon-intron organization of the human IGF-I (a) and IGF-II (b) genes are

shown.

Exons are represented by boxes, with coding regions in black and non-coding

regions in white. Asterix represents polyadenylation sites, P represents promoter

regions and dotted lines represent regions yet to be determined.

(Adapted from Rotwein, 1991).
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1.2.1.4 Regulation of IGF-I expression

IGF-I and -II mRNAs are synthesised at multiple sites. A range of factors regulate

IGF-I expression, and for many tissues GH is the principal modulator. GH

administration increases both circulating IGF-I levels (Lemal et al., 1989) and IGF-I

mRNA abundance (Hynes et al., 1987; Murphy et al., 1987; Roberts et al., 1987).

The increase in IGF-I mRNA is the product of enhanced transcription (Mathews et

al., 1986) and differential processing (Lowe et al., 1988) and has been demonstrated

in the primary site of IGF-I synthesis, the liver, and in extra-hepatic tissues. In

addition, cattle with a GH receptor deficiency have reduced blood IGF-I (Chase et

al., 1998). Furthermore, the response to GH stimulation occurs rapidly, nuclear IGF-

I transcripts are induced within 15 minutes of hormone treatment (Gronowski and

Rotwein, 1995), and IGF-I mRNA levels in hypophysectomised rats are restored to

normal within 4 hours (Hynes et al., 1987). The molecular mechanisms by which

GH stimulates IGF-I gene expression remain incompletely understood (Carter-Su et

al., 1996; Gronowski and Rotwein, 1995; Thomas, 1998).

A number of other factors are involved in the regulation of IGF gene expression

(Daughaday and Rotwein, 1989; Rotwein, 1991; Simmen, 1991). In reproductive

tissues IGF-I mRNA abundance can be modulated by steroid hormones. In the pig,

uterine IGF-I mRNA levels are increased by administration of both oestradiol and

progesterone, and IGF-I levels secreted into uterine luminal fluid are also raised

(Simmen et al., 1990). In the rat ovary, IGF-I mRNA is localised to the granulosa

cell layer, and oestradiol treatment doubles ovarian IGF-I transcripts in immature

hypophysectomised animals (Hernandez et al., 1989).
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IGF-I production may also be regulated by other growth factors, including platelet-

derived growth factor (PDGF), FGF, EGF, and TGF-a and (3-1 although

understanding of the complexity of growth factor interactions remains limited

(Simmen, 1991).

Nutrition is an important modulator of IGF-I. The restriction of dietary energy or

metabolizable protein, adversely affects IGF-I synthesis and action (Thissen et al.,

1994; Wester et al., 1995). A reduction in serum IGF-I levels following food

restriction has been demonstrated in a range of species including swine (Buonomo

and Baile, 1991), dog (Maxwell et al., 1998), cow (Yambayamba et al., 1996), sheep

(Hua et al., 1995), rat (Goldstein et al., 1991; Straus and Takemoto, 1990) and

human (Thissen et al., 1994). Hepatic IGF-I mRNA is co-ordinately reduced

following fasting and protein restriction. The reduction in mRNA abundance

following such nutritional regulation has been proposed to be the result of changes at

the level of gene transcription (Hayden et al., 1994; Straus and Takemoto, 1990)

and/or post-transcriptional mechanisms such as altered RNA splicing or stability

(Zhang et al., 1997). IGF-I expression has also been shown to be induced during

development, and in a number of tissues undergoing growth or regeneration.

1.2.1.5 Regulation of IGF-II expression

The regulation of gene expression is less well defined for IGF-II than for IGF-I

(Daughaday and Rotwein, 1989; Rotwein, 1991). IGF-II has been implicated as an

important modulator of embryonic development. Targeted mutagenesis in mice has

demonstrated that IGF-II has a major post-implantation growth-promoting role, and

mutation of the IGF-II gene results in a 40% reduction in birth weight (Baker et al.,
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1993). Investigations into this developmental role have demonstrated that the IGF-II

gene undergoes parental imprinting, such that the gene is expressed from only one

parent-specific allele (Bartolomei and Tilghman, 1997; Lyle, 1997), and is subject to

tissue-specific regulation. The paternal IGF-II gene is transcriptionally active in

most mouse embryonic tissues, whereas the maternal gene is silent, with the

exception of the choroid plexus and leptomeninges of the brain, where both maternal

and paternal alleles are expressed (DeChiara et al., 1991). Imprinting of the IGF-II

gene is evolutionarily conserved from mouse to man (Ohlsson et al., 1993). Ovine

parthenogenetic embryos, which lack a paternal genome, display growth retardation

and subsequent foetal lethality. In addition, whilst normal sheep foetuses express

IGF-II, parthenogenetic embryos do not (Feil et al., 1998). Subsequent molecular

studies have confirmed that IGF-II is subject to genomic imprinting in the sheep, and

that most embryonic tissues express the paternal allele (McLaren and Montgomery,

1999). IGF-II is implicated in the promotion of carcinogenesis, and is highly

expressed in a variety of tumours, including embryonal tumours (Scott et al., 1985).

It has been suggested that disruption of the normal pattern of imprinting of IGF-II

may be important in the regulation of tumorigenesis (Lyle, 1997).

1.2.2 IGF reception

The IGF-I receptor, or type 1 IGF receptor, mediates most of the effects of both IGF-

I and IGF-II. The IGF-II receptor, or type 2 IGF receptor, specifically binds both

IGF-I and -II, and is identical to the cation-independent-mannose 6-phosphate

receptor (MPR), which is involved in targeting lysosomal enzymes to lysosomes

(Oshima et al., 1988). However, the type 2 IGF receptor is not thought to have an

IGF signalling function. In addition, the insulin receptor has low binding affinity for
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the IGFs and hybrid IGF/ insulin receptors may also have IGF-mediated signalling

functions (Nissley and Lopaczynski, 1991; Oh et al., 1993a).

1.2.2.1 The type 1 IGF receptor

1.2.2.1.1 The type 1 IGF receptor: structure

The type 1 IGF receptor and the insulin receptor are heterotetramers, comprised of

two classes of subunits, a and P, which are linked in a p-a-a-p conformation

(Figure 1.4). The a- and P- subunits are the product of a common precursor, which

is proteolytically cleaved to yield the subunits. They are subsequently linked by

disulphide bonds, to form an a.p- pro-receptor. The mature receptor is then

assembled by the dimerisation and linking of two pro-receptors (Treadway et al.,

1989; Ullrich et al., 1985, 1986).

Each a- subunit is entirely extracellular, and contains the ligand binding domain,

whilst the p- subunit has a transmembrane domain and a cytoplasmic domain which

confers the receptor's tyrosine kinase activity.

Structural similarity of the insulin receptor and the IGF-I receptor has been indicated

by a range of functional studies, and subsequently confirmed by sequencing of the

complementary DNA (cDNA) encoding the human IGF-I receptor. The two

receptors show considerable homology. Overall the two sequences exhibit 50-60%

sequence identity, with the greatest homology (84%) being located in the tyrosine

kinase domain of the P-subunit (Ullrich et al., 1986).
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Figure 1.4. Receptor structure of the insulin receptor, type 1 IGF receptor and type 2

IGF receptor.

The insulin and type 1 IGF receptor are structurally related heterotetramers,

composed of extracelluar a-subunits which confer ligand binding specificity and

transmembrane P-subunits that contain cytoplasmic tyrosine kinase activity. The

type 2 IGF receptor is structurally distinct from both the insulin and type 1 IGF

receptor, lacks an intrinsic tyrosine kinase domain and is characterised by fifteen
extracellular repeats.
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1.2.2.1.2 The type 1 IGF receptor: signalling

The type 1 receptor preferentially binds IGF-I with high affinity, IGF-II with up to

15-fold lower affinity, and insulin with low affinity (Steele-Perkins et al., 1988).

IGF-I can also bind to the insulin receptor, albeit with 100-fold lower affinity than

insulin. A cysteine-rich domain of the IGF-I receptor confers IGF-I binding

specificity, whilst the determinants of insulin recognition appear more complex, and

are discontinuous (Fabry et al., 1992; Gustafson and Rutter, 1990; Kjeldsen et al.,

1991; Schumacher et al., 1991). Ligand occupancy of the a-subunit causes

phosphorylation of specific p-subunit tyrosine residues (Jacobs et al., 1983). This

ligand-stimulated autophosphorylation occurs as a "trans" intra-molecular reaction

between P-subunits within an 012P2 receptor, in both the IGF-I and insulin receptor

(Fratalli and Pessin, 1993).

The P subunit contains a tyrosine kinase catalytic domain, which when disrupted by

mutagenesis abrogates IGF action, suggesting that IGF-I receptor signalling requires

tyrosine kinase activity (Kato et al., 1993). Intrinsic tyrosine kinase activity has also

been shown to be important in mediating most, if not all, of the functions of insulin

(Debant et al., 1988; Murakami and Rosen, 1991). Subsequent signal transduction

also appears similar for the IGF-I and insulin receptors (Figure 1.5).
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CELLULAR RESPONSE

Figure 1.5 Proposed signalling pathways for the type 1 IGF receptor.
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A protein with a key role in insulin receptor signalling, the insulin receptor substrate

(IRS-1) and its homologues IRS-2 and IRS-3, are also phosphorylated in response to

IGF-induced receptor activation (He et al., 1996; Myers et al., 1993; Xu et al.,

1999). IRS-1, -2 and -3 contain a number of potential tyrosine phosphorylation sites,

and a recognition sequence for interaction with src homology-2 (SH2) domain-

containing proteins. Following activation, they act as docking molecules linking the

insulin and IGF receptors to signalling pathways.

Despite the high level of conservation between the IRS proteins, and common

functional features, evidence now suggests that they are not functionally

interchangeable: rather they may play important distinct roles in IGF-I and insulin

signalling. Targeted gene knockout of IRS-1 in mice reduces growth by up to 80 %

(Brunig et al., 1997), and alters glucose homeostasis (Tamemoto et al., 1994). IRS-2

disruption causes type-2 diabetes in mice, and indicates that IRS-2 is of particular

importance in glucose regulation (Withers et al., 1998).

SH2 domain binding by the IRS proteins activates several signalling cascades (Sun

et al., 1993). The phosphatidylinositol-3 kinase (PI-3 kinase) is activated via binding

of its p85 regulatory subunit, leading to production of the cell-growth signal

phosphatidylinositol-3 phosphate (PIP3) (Myers et al., 1993).

The growth factor receptor-bound protein 2 (Grb2) contains Src homology domains.

Binding of Grb2 to phosphorylated IRS leads to the eventual activation of mitogen

activated protein (MAP) kinase, which signals to the nucleus, and acts as an

important intermediate in cellular differentiation and growth (Davis, 1993). Grb2

binding induces the guanine nucleotide releasing factor, Son of Sevenless (Sos), to
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activate the GTP-binding protein Ras. In turn, Ras activates the MAP-kinase kinase

kinase Raf, which activates the MAP-kinase kinase Mek, leading to the

phosphorylation of MAP-kinase on threonine and tyrosine residues and its

subsequent activation (LeRoith et al., 1995).

The tyrosine phosphatase Syp can mediate growth factor-stimulated signal

transduction, including responses to insulin and IGF-I (Xiao et al., 1994). Syp

contains two SH2 domains, and can associate with IRS-1. In addition, direct

interaction with the insulin and IGF-I receptors has been suggested (Seely et al.,

1995).

The GTPase-activating protein (GAP) also has an SF12 domain, and an association

with tyrosine kinase receptor signal transduction. GAP negatively regulates Ras

activation, and can also directly interact with the IGF-I receptor via its SH2 domain

(Seely et al., 1995).

IGF-I-induced autophosphorylation of the IGF-I receptor can also result in the

tyrosine phosphorylation of a cytosolic protein termed She (Src-homology 2/

collagen), which is considered a major mediator of IGF-I receptor signalling.

Phosphorylated She can then complex with Grb2/Sos and subsequently activate the

Ras/Raf/MAP kinase pathway, independent of IRS binding (Giorgetti et al., 1994).

IGF-I and insulin receptor signalling appear therefore to share many features, whilst

resulting in markedly different physiological outcomes. Signal divergence could be

achieved in many ways. The identification of an IGF-I receptor specific substrate,

Crk-II (Beitner-Johnson and LeRoith, 1995), suggests potential mechanisms for

specificity. Proteins of the Crk family contain SH2 and SH3 domains, and are
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considered to be important modulators of growth factor-stimulated signal

transduction.

Phosphorylated Crk-II binds guanine nucleotide-releasing factors, which can activate

the Ras/Raf/MAP kinase pathway (Tanaka et al., 1994) and/or the Jun kinase

pathway (Tanaka et al., 1997). Indeed, the suggestion that IGF-I inducible signalling

pathways must exist in addition to PI-3-kinase and MAP kinase activation

(Scrimgeour et al., 1997) supports a role for Crk-mediated Jun kinase activation.

1.2.2.2 The type 2 IGF receptor

1.2.2.2.1 The type 2 IGF receptor: structure

The type 2 IGF receptor has a large extracellular domain, composed of 15 repeats,

each of around 150 amino acids (Lobel et al., 1988). Within each repeat, there is a

conserved pattern of 8 cysteine residues. Repeat number 13 is characterised by a 43

amino acid insertion with homology to fibronectin. The intracellular domain is short,

contains sequences known to be potential protein kinase substrates and can be

phosphorylated at a number of these sites. The MPR was first described for its role

in the recognition of newly synthesised lysosomal enzymes and their subsequent

transport to lysosomes from the Golgi apparatus and cell surface (Kornfeld and

Mellman, 1989).

The MPR was shown to be multifunctional, following the demonstration that the

human IGF-II receptor and the bovine cation-independent MPR had a similar

general structure, and 80% amino acid identity (Morgan et al., 1987). The receptor

has distinct sites for IGF-II and lysosomal enzyme binding (MacDonald et al.,
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1988), and can bind both ligands simultaneously (Waheed et al., 1988). However,

simultaneous binding may cause noncompetitive alterations in binding.

1.2.2.2.2 The type 2 IGF receptor: signalling

Cell surface type 2 IGF receptors bind IGF-II with high affinity. The ligand-bound

receptor is then rapidly internalised, segregated from IGF-II and recycled back to the

cell surface, whilst IGF-II undergoes degradation (Oka et al., 1985). This scavenging

role for the type 2 IGF receptor is well established, however the receptor's signalling

potential remains in question (Nielsen, 1992; Nissley and Lopaczynski, 1991). IGF-

II receptor-blocking antibodies fail to affect the response to IGF-II stimulation in a

range of cell types, including ovarian granulosa cells (Adashi et al., 1990). In

addition, inhibition of IGF-I receptor activation has demonstrated that many of the

biological responses to IGF-II are mediated by the type 1 IGF receptor. In contrast,

others have demonstrated that blocking the type 1 IGF receptor does not alter IGF-II

stimulation (Minniti et al., 1992). The IGF-II receptor, despite the absence of the

seven transmembrane helices characteristic of the G-protein-coupled receptor

family, may mediate signal transduction via G-protein coupling to the receptor

(Nishimoto et al., 1989), which can then activate the MAP-kinase dependant

pathway (Groskopf et al., 1997). IGF-II receptor coupling may be cell-type specific,

as others have failed to demonstrate functional coupling to G-proteins (Korner et al.,

1995).

The type 2 IGF receptor has also been implicated in binding additional mannose-6-

phosphate-containing ligands, such as latent TGF-P (Dennis and Rifkin, 1991),

leukemia inhibitory factor (LIF) (Blanchard et al., 1999), and proliferin (Lee and
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Nathans, 1988). In addition, recent reports have extended the potential functions of

the IGF-II receptor by the demonstration that the IGF-II receptor binds retinoic acid

and urokinase-type plasminogen activator receptor at sites distinct from the IGF-II

and mannose-6-phosphate binding sites (Kang et al., 1998; Nykjaer et al., 1998).

1.2.3 IGF binding proteins

1.2.3.1 Structure and function

In addition to binding their cognate receptors with high affinity, the IGFs bind a

family of structurally related secreted proteins, the IGFBPs with comparable affinity

(Clemmons, 1997; Jones and Clemmons, 1995; Rechler and Clemmons, 1998). Six

high affinity IGFBPs have been identified and characterised, and are numbered

according to the order of their discovery. In addition, several related proteins

comprise a family of low affinity IGFBPs, designated IGFBP-related proteins

(IGFBP-rPs) (Hwa et al., 1999; Kim et al., 1997). The IGFBPs are synthesised and

secreted by many tissues, and they can act locally as autocrine or paracrine factors,

or as endocrine factors effecting targets distant from the site of production. The

IGFBPs transport IGFs, regulating their half-life and clearance. In addition, the high

affinity of binding prevents interaction with cell surface receptors, hence regulating

IGF bioavailability, and inhibiting IGF activity.

Approximately 75% of IGFs are present as a complex of IGF-I or IGF-II, IGFBP-3

and a glycoprotein termed the acid labile subunit (ALS). Association of IGFs into

this ternary complex of approximately 150kDa limits efflux of IGFs out of the

vascular compartment, so increasing their half lives, and creating a pool of IGFs

unable to exert undesirable insulin-like metabolic effects.
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The IGFBPs display considerable structural similarities. Consisting of around 2-300

amino acids, they show between 47 to 67% overall amino acid similarity in the rat,

and 49 to 62% in the human. The highest regions of similarity are the N and C

terminal domains. In particular, all IGFBPs except IGFBP-6 have 18 conserved

cysteines, 12 at the N terminal and 6 at the C terminal. These are conserved both in

number and position (Shimasaki and Ling, 1991), and may be important in ligand

binding (Lalou et al., 1996).

Whilst the IGFBPs are structurally and functionally homologous, they also exhibit

distinctive characteristics. Human IGFBP-1 contains a C-terminal Arg-Gly-Asp

(RGD) integrin recognition sequence, which is conserved in the IGFBP-1 sequence

of the rat, cow and mouse, (Luthman et al., 1989; Murphy et al., 1990; Schuller et

al., 1994; Sneyers et al., 1991b) and in human, mouse, rat, sheep and chick IGFBP-2

(Binkert et al., 1989; Delhanty and Han, 1992; Margot et al., 1989; Schuller et al.,

1994).

Integrins mediate adhesion of cells to the ECM. In addition, whilst they lack intrinsic

tyrosine kinase activity, there is increasing evidence that integrins are important in

intracellular signal transduction. Indeed, integrins can generate signals following

ligand-binding, or can mediate signals originating from growth factor and cytokine

receptors (Giancotti, 1997; Howe et al., 1998).

IGFBP-1 has been shown to interact with the a5pi integrin receptor. In Chinese

hamster ovary cells IGFBP-1 stimulates cell migration via specific binding to the

a5pi integrin receptor, an effect that was abrogated by mutation of the RGD
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sequence (Jones et al., 1993c). In the rabbit, IGF-1-stimulated wound healing

requires activation of the a5pi integrin receptor by IGFBP-1 (Galiano et al., 1996).

Whilst the RGD sequence is conserved in IGFBP-2, there is limited information on

the mediation of its actions via association with integrin receptors. IGFBP-3 and

IGFBP-5 lack an RGD sequence, but can adhere to the surface of cells in culture

(Booth et al., 1995), and IGFBP-5 additionally binds to the ECM (Jones et al.,

1993b). Glycosaminoglycans such as heparin and heparan sulphate are abundant

components in ECM, and both IGFBP-3 and IGFBP-5 contain C-terminal heparin-

binding sequences, and exhibit heparin binding affinity (Booth et al., 1995). IGFBP-

5 binding to ECM proteoglycans markedly reduces IGF-I binding affinity, and the

resultant dissociation of the IGF/IGFBP complex may then potentiate IGF action by

increasing potential IGF receptor activation. Binding of IGFBP-3 to cell surfaces

also results in reduced IGF-I binding affinity. The cellular response to IGFBP-3

binding is further complicated by the recent discovery of an IGFBP-3 receptor (Leal

et al., 1997), identified as the type V TGF-|3 receptor (TpR-V) which mediates a

growth inhibitory IGF-independent signalling pathway (Leal et al., 1999).

1.2.3.2 Post-translational modification

1.2.3.2.1 Glycosylation and phosphorylation

The IGFBPs also vary in the extent to which they are post-translationally modified.

Structural analysis has demonstrated that IGFBP-3 and IGFBP-4 can be subject to

N-glycosylation, IGFBP-5 and IGFBP-6 have potential O-glycosylation sites, and

IGFBP-1, IGFBP-3 and IGFBP-5 occur as phosphoproteins. The functional

significance of glycosylation is unknown, although it has been suggested that
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glycosylation slows the rate of proteolytic degradation of IGFBP-3 (Kubler et al.,

1998). Functional consequences of phosphorylation have been described for IGFBP-

1. In vitro, the affinity for IGF-I of IGFBP-1 phosphorylated on serine residues is up

to six fold higher than non-phosphorylated IGFBP-1 (Jones et al., 1991). IGFBP-1

mutated at a primary site of phosphorylation displayed reduced IGF-I affinity (Jones

et al., 1993a). In addition, physiological significance of phosphorylated IGFBP-1 is

suggested by the presence of phosphorylated isoforms in vivo (Jones et al., 1991).

1.2.3.2.2 Proteolysis

In order for interaction with the cell surface receptors the IGFs must be released

from the IGFBPs. In general terms, this is achieved by a reduction in binding affinity

of IGFBPs for IGFS. As described above, association of IGFBPs with cell surfaces

or ECM can alter IGFBP binding affinity, as can the degree of phosphorylation.

However, the major mechanism for regulating IGF bioavailability may be

proteolytic degradation of the IGFBPs (Fowlkes, 1997; Maile and Holly, 1999).

IGFBP proteolysis was first described in human pregnancy serum (Guidice et al.,

1990). IGFBP-degrading protease activity has since been described in a wide range

of biologic fluids such as amniotic fluid (Claussen et al., 1994), seminal plasma (Lee

et al., 1994), skin interstitial fluid (Xu et al., 1995a), synovial fluid (Matsumoto et

al., 1996) and follicular fluid (Cwyfan Hughes et al., 1997) under normal

physiological conditions. In addition, IGFBP-proteolysis has been identified in

clinical conditions such as arthritis (Matsumoto et al., 1996) and has been shown to

be elevated in patients suffering an acute catabolic state associated with severe
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illness (Davies et al., 1991), in patients suffering from advanced cancer (Frost et al.,

1996) and in cases of untreated diabetes (Bang et al., 1994).

IGFBP-1 to 6- all appear susceptible to proteolytic degradation: however, this is not

thought to be the result of the activity of a common enzyme. A number of candidate

enzymes have been identified which are capable of IGFBP proteolysis, and in

general are characterised as serine proteinases, matrix metalloproteinases or

cathepsins (Fowlkes, 1997).

Numerous studies have demonstrated that the major consequence of IGFBP

proteolysis is a reduction in affinity of the binding protein for the IGFs. The addition

of prostate specific antigen (PSA), an IGFBP-3 protease, to prostatic epithelial cells

reversed the inhibitory effects of IGFBP-3 on IGF mitogenesis, by the generation of

IGFBP-3 fragments with a ten-fold reduction in IGF-I binding affinity (Cohen et al.,

1994). In human pregnancy plasma, limited proteolysis of IGFBP-3 resulted in

diminished affinity for IGF, thus accelerating dissociation of the IGF-IGFBP

complex and increasing free-form IGF-I (Lassare and Binoux, 1994). Porcine aortic

smooth muscle cells secrete an IGFBP-2 specific serine protease, which cleaves

IGFBP-2 into two fragments that do not bind the IGFs (Gockerman and Clemmons,

1995). Degradation of IGFBP-4 is associated with reduced IGF-I binding capacity

and increased IGF-I stimulated DNA synthesis (Cohick et al., 1993). In human

osteosarcoma cells, plasmin caused dissociation of IGF-I and IGF-II from IGFBPs

and reversed the inhibitory effects of IGFBP-1 on IGF-I stimulated DNA synthesis

(Campbell et al., 1992). The creation of an IGFBP-5 mutant with IGF-I binding

affinity and protease resistance, demonstrated that proteolysis prevents the inhibition
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of IGF-I-stimulated events by IGFBP-5, and regulates the responsiveness of porcine

smooth muscle cells to 1GF-I (Imai et al., 1997).

Flowever, whilst most IGFBP fragments display limited IGF binding affinity, in

some circumstances proteolysis may generate biologically active fragments.

Plasmin-induced proteolysis of recombinant human IGFBP-3 in vitro generated two

major fragments, of 22/25 kDa and 16 kDa respectively. The 22/25 kDa fragment

displayed a marked reduction in affinity for IGFs. Furthermore, inhibition of IGF-I

stimulation of chick embryo fibroblast DNA synthesis (Lalou et al., 1996) and

prostate carcinoma cell (PC-3) proliferation (Angelloz-Nicoud et al, 1998) were

diminished in comparison to intact IGFBP-3. In contrast, the 16 kDa fragment lost

all ability to bind radiolabeled IGF, but remained a potent inhibitor of IGF-I

activity. The anti-mitogenic effects of the 16 kDa proteolytic fragment of IGFBP-3

were also demonstrated in mouse fibroblasts carrying a targeted disruption of the

type 1 IGF receptor, confirming that the action was IGF-independent (Zadeh and

Binoux, 1997). The fragments of IGFBP-3 generated by plasmin digestion have also

been shown to block insulin-stimulated mitogenesis of chick embryo fibroblasts

(Lalou et al., 1996), insulin-receptor auto-phosphorylation (Vorwerk et al., 1998)

and activation of the FGF signalling pathway (Zadeh and Binoux, 1997).

In contrast to the inhibitory effects of IGFBP fragments, others have demonstrated

stimulatory activity following proteolysis. A 23- kDA fragment of IGFBP-5 purified

from human osteosarcoma cell conditioned media, stimulated mitogenesis in the

absence of IGF, and further enhanced cell proliferation when coincubated with IGF-I

or IGF-II (Andress and Birnbaum, 1992).
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1.3 The IGF system and the ovary

1.3.1 Actions of IGFs in the ovary

IGFs influence critical aspects of ovarian function in follicular and luteal cells of

many species (Poretsky et al., 1999; Spicer and Echternkamp, 1995).

1.3.1.1 Follicular growth

IGF-I stimulates cell proliferation and DNA synthesis in human (Yong et al., 1992),

rodent (Bley et al., 1992), porcine (May et al., 1988), ovine (Monniaux and Pisselet,

1992) and bovine (Spicer et al., 1993) granulosa cells in culture, and this potent

autogenic effect can be further enhanced in synergy with gonadotrophins. FSF1

enhances IGF-I-stimulated granulosa cell mitosis in the rat and human. Similarly,

the proliferation of bovine granulosa cells from small follicles (< 5mm) is increased

following stimulation by IGF-I plus FSH or LH. The mitogenic effects of IGF-I do

not appear to be granulosa cell specific; IGF-I has also been shown to enhance DNA

synthesis and/or proliferation in human and rat theca cells (Duleba et al., 1997,

1998), and in bovine luteal cells (Chakravorty et al., 1993).

In vivo studies also support a role for IGF-I in promoting follicle growth. In cattle

and pre-pubertal gilts, somatotropin treatment increased both circulating IGF-I

concentrations and the number of small follicles, without alterations in

gonadotrophin levels (Gong et al., 1991; Spicer et al., 1992). In addition,

superovulated heifers treated with somatotropin showed an increase in ovulation rate

correlated with raised serum IGF-I concentrations (Gong et al., 1993).

Whilst studies of the growth promoting effects of the IGFs on ovarian cells in culture

have concentrated primarily on IGF-I, IGF-II also stimulates cell proliferation and
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DNA synthesis in porcine granulosa (Kamada et al., 1992) and human granulosa-

luteal cells (Di Blasio et al., 1994).

1.3.1.2 Steroidogenesis

The IGFs have been shown to be important promoters of steroidogenesis with the

potential to act at multiple sites.

1.3.1.2.1 Progesterone

IGF-I and -II stimulate granulosa cell progesterone production in numerous species.

In the human, IGF-I augments progesterone production by granulosa-luteal cells in

synergy with gonadotrophins (Erickson et al,. 1991), whilst IGF-II stimulates basal

progesterone secretion (Kamada et al., 1992). In the rat, IGF-I enhances FSH-

stimulated progesterone secretion, but has limited effect alone (Adashi et al., 1985b).

IGF-I stimulates progesterone production by granulosa and theca cells of domestic

animals, which is further increased by FSH treatment (Spicer and Echternkamp,

1995). In addition, LH receptor acquisition is enhanced in rat granulosa cells in

culture, in synergy with FSH (Adashi et al., 1985c), an effect that may be mediated

via increased LH receptor mRNA stability (Hirakawa et al., 1999).

Increased progesterone release in response to IGF stimulation is the result of actions

at a number of loci. In porcine granulosa cells IGF-I augments the metabolism of the

steroid precursors LDL and HDL (Veldhuis, 1989). IGF-I can enhance the

subsequent delivery of cholesterol from the outer to inner mitochondrial membrane,

by up-regulation of the mitochondrial transport protein StAR (Balasubramanian et

al., 1997). Once within the mitochondria, cholesterol is converted to pregnenolone

by the side chain cleavage enzyme complex comprised of cytochrome P450scc,
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adrenodoxin and adrenodoxin reductase, which are all regulated by IGF-I (deMoura

et al., 1997; Magoffin et al., 1990). The final conversion of pregnenolone to

progesterone is performed by 3|3-HSD, which increases in concentration following

IGF-I stimulation (Magoffin and Weitsman, 1993).

Whilst the cellular actions of IGF-II are less well defined, IGF-II has been shown to

increase progesterone production. In porcine granulosa cells the potent stimulatory

effects of IGF-II on progesterone biosynthesis are the result of enhanced sterol

delivery, via increased lipoprotein binding, internalisation and utilisation, and

P450scc enzyme activity (Garmey et al., 1993).

Direct stimulatory effects of IGFs on luteal cells have been demonstrated, and

consistently result in enhanced progesterone production (Devoto et al., 1995; Khan-

Dawood et al., 1994; McArdle and Holtorf, 1989; Sauerwein et al., 1992; Talavera

and Menon, 1991; Yuan and Lucy, 1996a). Whilst the sites of IGF action on luteal

steroidogenesis are undefined, it is clear from follicular studies that the IGFs have

great potential to modulate critical components of progesterone production.

1.3.1.2.2 Oestradiol

IGF-I stimulates basal oestradiol secretion in human granulosa cells and granulosa-

luteal cells, and this is enhanced in synergy with gonadotrophins (Erickson et al.,

1989). IGF-II also stimulates oestradiol secretion by human granulosa cells, and is

most effective following a period of insulin pre-incubation (Mason et al., 1994). In

rat granulosa cell cultures IGF-I stimulates oestradiol production in co-treatment

with FSH, and aromatase activity is significantly greater than following FSH

treatment alone (Adashi et al., 1985a). Both IGF-I and IGF-II stimulate porcine

68



granulosa cell oestradiol production (Howard and Ford, 1994; Kamada et al., 1992).

In cattle IGF-I stimulated the secretion of oestradiol by granulosa cells from small,

medium and large follicles (Gong et al., 1994). However, it has been suggested that

insulin is a more potent promoter of oestradiol biosynthesis than IGF-I. In addition,

changes in follicular fluid oestradiol content have not always been correlated with

changes in IGF-I concentrations in vivo, although this may be influenced by

concurrent changes in IGFBPs and hence IGF-bioavailability (Spicer and

Echternkamp, 1995).

1.3.1.2.3 Androgen

IGF-I can stimulate androgen biosynthesis induced by LH in the theca cells of rats

(Cara and Rosenfield, 1988; Hernandez et al., 1988), pigs (Caubo et al., 1989), and

women (Bergh et al., 1993). In contrast, IGF-I was unable to stimulate basal

androstenedione secretion by bovine theca cells obtained from large follicles

(Meidan et al., 1990). In the rat the stimulatory effect of IGF-I on androgen

production is mediated via increased cytochrome P450 17a-hydroxylase/C 17-20 lyase

(P450cl7) enzyme content and mRNA expression (Magoffin et al., 1990).
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1.3.2 The intra-ovarian IGF system

Ovarian patterns of expression and production for components of the IGF system

show marked variation between species.

1.3.2.1 Ovarian IGF production and reception

1.3.2.1.1 Human

Limited IGF-I mRNA expression has been detected in the human ovary (Zhou and

Bondy, 1993). Follicular IGF-I mRNA expression was restricted to the theca cells of

small follicles and was absent from dominant follicles (El-Roeiy et al., 1993).

Immunohistochcmistry also localised IGF-I peptide to the thecal compartment

(Hernandez et al., 1992), although others failed to detect IGF-I immunoreactivity in

the human ovary (El-Roeiy et al., 1993).

Follicular fluid IGF-I levels did not vary with stage of the menstrual cycle, and were

not correlated with follicular fluid oestradiol levels or follicular size (Van Dessel et

al., 1996). Clinical observations also suggest that IGF-I may not play an obligatory

role in follicular development. Women with Laron-type dwarfism exhibit GH

receptor deficiency, elevated peripheral GH concentrations and very low levels of

both circulating and follicular fluid IGF-I. However, despite these hormonal

alterations, there are cases of fertility and response to gonadotrophin stimulation

(Dor et al., 1992).

In contrast, abundant IGF-I I mRNA and protein was detected in the granulosa cells

of dominant follicles, and follicular fluid IGF-II levels were correlated with follicle

diameter and oestradiol levels, leading the authors to suggest that IGF-II may have
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greater influence in the regulation of human follicular growth than IGF-I (El Roiey

et al., 1993).

In the human, abundant type 1 IGF receptor mRNA was localised by in situ

hybridisation to oocytes, and the granulosa cells of antral follicles, where expression

increased with follicular dominance (El-Roeiy et al., 1993; Zhou and Bondy, 1993).

1.3.2.1.2 Rodent

In the rat, IGF-I gene expression is exclusively localised to the granulosa cell layer

of healthy follicles, and is absent from follicles undergoing atresia. In addition,

mRNA encoding IGF-I was undetectable in the corpus luteum (Oliver et al., 1989;

Zhou et al., 1991). In contrast, the expression of mRNA encoding IGF-II is theca

cell-specific (Hernandez et al., 1990). Whilst IGF-II mRNA expression was detected

in the immature and mature rat ovary by RNase protection assay, others have failed

to detect ovarian IGF-II mRNA expression in the adult rat by Northern analysis

(Murphy et al., 1987). In addition, others have suggested that IGF-II must play a

limited role in the regulation of ovarian function, based on the decline in ovarian

IGF-II levels observed postnatally (Levy et al., 1992).

In the rat, the type 1 IGF receptor protein is present in both the granulosa and theca

cells, does not vary according to the maturational status of the follicle and was

present in both healthy and atretic follicles (Hernandez et al., 1990; Zhou et al.,

1991).

Whilst most rodent work has focused on the rat, the IGF-I system has also been

characterised in the mouse. As in the rat, mouse ovarian IGF-I mRNA expression is

granulosa-specific and restricted to healthy growing follicles. Messenger RNA
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encoding the type 1 IGF receptor was also concentrated in granulosa cells and was

detected in small, large, healthy and atretic follicles (Adashi et al., 1997).

1.3.2.1.3 Livestock species

The ovaries were first suggested to be a local site of IGF-I production following

studies in the pig, which demonstrated that IGF levels in follicular fluid from pre¬

ovulatory follicles were greater than those in serum or in immature follicles

(Hammond et al., 1985). In addition, following gonadotropin-induced follicular

development, follicular fluid IGF-I levels were correlated with oestradiol levels

(Hammond et al,. 1988). IGF-I has since been detected in the follicular fluid of

mares (Spicer et al., 1991), cows (Spicer et al., 1988) and sheep (Monget et al.,

1993).

In the porcine ovary IGF-I mRNA expression was granulosa cell-specific and

restricted to healthy follicles (Yuan et al., 1996; Zhou et al., 1996). In porcine

granulosa cell culture, FSH and GH increased levels of IGF-I mRNA and protein

(Samaras et al., 1996). IGF-II mRNA has also been localised to granulosa cells

where expression was independent of follicle health (Zhou et al., 1996). However,

others have found IGF-II mRNA expression to be theca specific (Yuan et al., 1996).

Messenger RNA encoding the type 1 IGF receptor has been detected in porcine

granulosa cells (Zhou et al., 1996).

IGF-I mRNA expression patterns in the bovine follicle remain controversial. IGF-I

mRNA was localised by in situ hybridisation to the granulosa cell layer of

developing follicles in heifers, and was greatest in the dominant follicle (Yuan et al.,

1998). Low and inconsistent follicular IGF-I mRNA expression has also been
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demonstrated (Perks et al., 1999). In contrast, others have failed to detect both IGF-I

protein in bovine granulosa cell conditioned medium (Gutierrez et al., 1997) and

follicular IGF-I mRNA expression (Armstrong et al., 2000a). Reports of follicular

IGF-II expression show more agreement. IGF-II mRNA expression is theca-specific,

and was detected throughout the growth of antral follicles, from antrum formation to

the development of dominance (Armstrong et al., 2000a; Yuan et al., 1998).

Messenger RNA encoding the type 1 IGF receptor was detected in both granulosa

and theca cells of preantral and antral bovine follicles (Armstrong et al., 2000a),

whilst others have shown that receptor expression was restricted to the granulosa

layer (Perks et al., 1999).

In sheep, IGF-II as opposed to IGF-I is thought to have a major role in regulating

ovarian function. IGF-I mRNA was undetectable in the ovine follicle, whilst mRNA

encoding IGF-II was detected in the theca cell layer and varied significantly with the

size and health of the follicle. IGF-I receptor mRNA was detected in both granulosa

and theca cells (Perks et al., 1995).

1.3.2.2 Ovarian IGF binding proteins

IGFBPs also appear to have important roles in regulating ovarian function, and one

or more IGFBPs are produced by the ovary of the rabbit (Ricciarelli et al., 1991),

sheep (Perks and Wathes, 1996), human and non-human primate (El-Roiey et al.,

1994; Fraser et al., 1998), cow (Armstrong et al., 1998), pig (Zhou et al., 1996),

mouse (Adashi et al., 1997) and rat (Nakatani et al., 1991).

The addition of IGFBPs to ovarian cells in culture, or to whole ovaries perfused in

vitro, has resulted in the attenuation of IGF action. IGFBPs have been shown to
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block ovarian steroidogenesis (Mason et al., 1998; Spicer et al., 1997; Ui et al.,

1989), inhibit cell proliferation (Bicsak et al., 1990), decrease ovulation rate and

oocyte maturation (Yoshimura et al., 1996), and remove IGF-I-mediated suppression

of apoptosis (Chun et al., 1994).

A number of studies have demonstrated that follicular fluid IGFBP concentrations

are correlated with the size and health of the follicle, thus suggesting a physiological

significance of IGFBP action in vivo. In cattle, the establishment of follicular

dominance is associated with a reduction in low molecular weight IGFBPs (IGFBP-

2, -4 and -5) (Echternkamp et al., 1994: Stewart et al., 1996), whilst follicular atresia

is associated with increased IGFBP levels (Echternkamp et al., 1994). IGFBP

profiles in follicular fluid from women demonstrated similar increases in IGFBP

concentrations during atresia (Cataldo and Guidice, 1992). Messenger RNA

encoding IGFBPs has been detected in the ruminant follicle and the patterns of

expression have been related to follicular development (Armstrong et al., 1998;

Perks and Wathes, 1996). Follicular fluid IGFBP-2 concentrations are reduced in

large healthy bovine follicles in parallel with decreased granulosa cell IGFBP-2

mRNA expression (Armstrong et al., 1998; Perks and Wathes, 1996).

Changes in follicular fluid IGFBP profiles may be attributed to alterations in local

production or degradation of IGFBPs, and/or transudation from the serum. The

resultant changes in IGF availability are thought to influence follicular sensitivity to

gonadotrophins, and hence regulate follicle selection and dominance. In addition,

alterations in bovine follicular IGFBP mRNA expression observed following

increased dietary energy regimes is suggestive of a role for IGFBPs in mediating the

effect of nutrition on follicular growth (Armstrong et al., 2000b).
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Enzymes capable of cleaving IGFBPs have been reported in follicular fluid and

ovarian cell conditioned media, and such proteolytic activity is thought to be an

important mechanism for increasing IGF bio-availability at critical points during

follicle growth and development (Besnard et al., 1996, 1997; Cwyfan Hughes et al.,

1997; Grimes and Hammond, 1994; Mason et al., 1996).
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Chapter 2. Materials and Methods

The composition of buffers are detailed in the appendix. The sources of individual

chemicals are detailed within the experimental protocols and suppliers listed in the

appendix. Frequently used materials and chemicals including solvents, chemicals for

buffers and plastic or glassware were obtained from the Sigma-Aldrich Company Ltd

.2.1 Total RNA isolation

2.1.1 Controlling ribonuclease activity

To obtain good preparations of RNA it is necessary to minimise the actions of

RNases. Polypropylene centrifuge tubes (50 ml) used throughout the isolation

procedure were filled with 0.1% (v/v) diethyl pyrocarbonate (DEPC), allowed to

stand for 1 hour at room temperature and then autoclaved. Wherever possible

solutions were treated with 0.1% (v/v) DEPC overnight at room temperature and

then autoclaved. Solutions not suited to DEPC (e.g. Tris) were prepared in DEPC-

treated water (0.1% v/v) and autoclaved. Solutions not suited to autoclaving (e.g.

dithiothreitol; DTT) were prepared using DEPC-treated water (0.1% v/v), baked

glassware and sterile filtered. RNA was isolated in an area with restricted air

movement and all surfaces were treated with an RNase decontamination solution

(RNase Zap; AMS Biotechnology (UK) Ltd). Disposable gloves were worn

throughout the preparation of materials and solutions and during the isolation and

analysis ofRNA.
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2.1.2 RNA isolation

Total cellular RNA was prepared according to the method of Chomczynski and

Saachi (1987) from bovine ovarian and liver tissue collected from the local abattoir.

Denaturing solution (2.5ml) containing the potent RNase inhibitor guanidine

thiocyanate was dispensed into 50ml DEPC-treated centrifuge tubes, 17.9jul of P-

mercaptoethanol (P-ME) was added, mixed and held on ice. Frozen tissue (250mg)

was placed into the solution and immediately dissociated using a high-speed polytron

homogeniser for 3x 10 sec. To the homogenate was added 62.5pl of 20% (w/v)

sodium lauryl sarcosine (SLS) to aid in the breakdown of nucleoprotein complexes.

RNA was isolated from contaminants by phenol: chloroform extraction performed at

low pH. The acid environment was created by the addition of 250pl of 2M NaAc (pH

4). Aquaphenol (2.5ml) (Appligene Oncor) was added and mixed by inversion,

followed by 500pl of chloroforrmisoamyl alcohol (24:1 v/v). The tube was then

vigorously shaken for 10 sec and placed on ice for 15 min. The sample was then

centrifuged at 9100rpm (Beckman J-20) for 20 min at 4°C. RNA is selectively

partitioned to the aqueous phase, which was carefully removed avoiding the

interphase and transferred to a fresh DEPC-treated tube. An equal volume of

isopropanol was added, mixed and placed at -20°C for at least lhr. The RNA was

pelleted by centrifugation at 9100rpm (Beckman J-20) for 20 min at 4°C and then re-

dissolved in 750pl of denaturing solution plus 18.75pl of 20% (w/v) SLS and 5.35pl

of P-ME. An equal volume of isopropanol was added, mixed and placed at -20°C for

at least lhr. The sample RNA was again pelleted by centrifugation (9100rpm

Beckman J-20) for 10 min at 4°C. The pellet was washed with 75% (v/v) ethanol,



vortexed and spun for a further 10 min (9100rpm Beckman J-20) at 4°C. The pellet

was then air dried, and resuspended in lOOpl of DEPC water.

2.1.3 Assessing total RNA yield

The optical density of a suitable dilution (typically 1/200) was measured at 260nm

using a Beckman Du-63 Spectrophotometer and a 1 cm-pathlength

spectrophotometric cuvette and the concentration calculated using the formula;

optical density of 1 at 260nm=40pg RNA.

Thus the concentration ofRNA = optical density at 260nm x 40 x dilution factor.

RNA was stored at -80°C in 50pg aliquots until required.

2.1.4 Assessing RNA integrity

The integrity of the purified RNA was determined following denaturing gel

electrophoresis. Typically 10-15pg of RNA was mixed with 12.5pl of deionised

formamide (AMS Biotechnology (UK) Ltd), 4pl of formaldehyde (37% v/v) and

2.5pl of lOx MOPS in a total volume of 25pl, and incubated at 65°C for 10 min. The

mixture was chilled on ice for 20 sec and 2.5pi of loading buffer (0.01% (w/v)

bromophenol blue in 50% (v/v) glycerol) added. The RNA was electrophoresed

through a 1.1% (w/v) standard agarose gel containing lx MOPS, and 17% (v/v)

formaldehyde (37% stock) using lx MOPS as running buffer. If electrophoresis was

performed overnight, buffer was constantly recirculated, and the gel run at 20V.

After electrophoresis, the gel was stained with dilute ethidium bromide (0.5pg/ml; 30

min), destained in water (30 min) and photographed under UV transillumination

(Polapan 55PN film, Polaroid, supplied by HA West). RNA resolved by denaturing



gel electrophoresis characteristically exhibits 28s and 18s ribosomal RNAs, which in

the absence of gross degradation display a near 2:1 ratio by ethidium bromide

staining.

2.2 Synthesis of cDNA

Total RNA extracted as described above was used as the template for cDNA

synthesis. Total RNA (lpg) was mixed with random hexamers (125pmol; Promega)

in the presence of 20 units of ribonuclease inhibitor (RNasin, Promega) to a total

volume of 1 lpl. This RNA/primer mix was incubated for 10 min at 70°C and then

held on ice. Following the annealing of primers to template RNA, cDNA synthesis

was initiated by the addition of 9pl of reverse transcription mix, incubated at 20°C

for 10 min, followed by 42°C for lhr. The reaction was terminated by incubation at

95°C for 5 min. Prior to cDNA amplification the synthesis reaction was diluted with

4pi of 50mM MgCh (Life Technologies) and 8pl of lOx RTase buffer (Promega) to

a total volume of lOOjul and stored at -70°C.

Reaction tubes were prepared without RNA or without reverse transcriptase to assess

contamination of reagents with DNA and genomic contamination of RNA samples

respectively. These control tubes were included in subsequent polymerase chain

reactions.

2.3 Polymerase Chain Reaction (PCR9

Primers were designed to amplify target sequences of bovine IGF-I, IGF-II, the type

1 IGF receptor, and the insulin receptor using published DNA sequences available in

the European Molecular Biology Laboratory (EMBL) database (http://srs.ebi.ac.uk)

and the Prime programme of the GCG Wisconsin sequence analysis package (GCG).



Details of the primer pairs, their target sequences and subsequent PCR conditions are

shown in Table 2.1.

Plasmids containing porcine IGF-I, bovine IGFBP-2, -3 and -4, human P450arom

and ovine LH receptor probes were already available and target sequences are

detailed in the relevant experimental chapters.

A PCR reaction mixture (20pl) for each sample was prepared by adding 6pl of

RTase reaction, lpl of lOx PCR buffer (Promega) and 12pl of dFFO. A reaction tube

was prepared in the absence of the cDNA synthesis reaction to assess reagent

contamination. The tubes were vortexed and then placed in the thermocycler

(Personal Cycler, Biometra Ltd), and heated to 93°C. At this point lpl of Taq/primer

mix was added to each sample. Taq/primer mix (25pl) contained 5pl of Taq

polymerase (5U/pl; Roche Diagnostics Ltd), and 100-200pmol of both the 5' and 3'

primers (Cruachem). The tubes were held at 93°C for 5 min. This was followed by

30 cycles of denaturing (93°C, 30 sec), annealing (55-65°C (table 2.1), 30 sec) and

primer extension (72°C, 30 sec). The final cycle was completed by an extended final

stage at 72°C for 5 min. On completion of the reaction, samples were cooled to 4°C

prior to analysis by agarose gel electrophoresis. A 5pl aliquot of each reaction was

mixed with lpl of 6x loading buffer (Promega) and electrophoresed on a 3% (w/v)

agarose gel (2:1 mix of standard agarose (Appligene Oncor) and NuSieve GTG

(Flowgen) dissolved in lx TAE) with lx TAE running buffer. A DNA ladder (PCR

Markers; Promega) was included as a marker lane to confirm amplified fragment

size. After electrophoresis, the gel was stained with dilute ethidium bromide
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(0.5pg/ml; 30 min), destained in water (30 min) and photographed under UV

transillumination (Polapan 55PN film, Polaroid, supplied by HA West) (Figure 2.1).

Target Primer Sequences Annealing Product
sequence temperature gize ^ .
(EMBL)

IGF-I 5'-CCTCTGCGGGGCTGAGTTGGT-3' 65°C 196

(BTILGF1A) 5 '-CGACTTGGCGGGCTTGAGAGGC-3'

IGF-II 5' -TCTGTGCGGCGGGGAGCTGGT-3' 65°C 154

(BTILGF2) 5 '-AGTCTCCAGCAGGGCCAGGTCG-3'

Type 1 IGF 5'-CCAAGCTAAACCGGCTCAAC-3' 60°C 189
receptor 5' -TTATAACCAAGCCTCCCAC-3'

(BTIGF1B)

Insulin 5'-AACTCTTCTTCCACTATAACCC-3' 55°C 100

Receptor 5 '-GCAATGTCGTTTCTCTCC-3'
(HSINSR)

Table 2.1

Details of PCR primers are shown for IGF-I, IGF-II, the type 1 IGF receptor and the

insulin receptor. (EMBL) refers to the 'ID' of each sequence in the EMBL database.
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Figure 2.1

Agarose gel electrophoresis of Reverse Transcription-PCR products.

a) 300

150

Amplified bands following RT-PCR of bovine luteal RNA, using
primers designed against bovine IGF-I (1,2) and IGF-II (3, 4).
Blanks (minus reverse transcriptase) (2, 4). PCR Markers (M).

Amplified bands following RT-PCR of bovine luteal (1,2) and
liver (3, 4) RNA, using primers designed against human insulin
receptor. Blanks (minus reverse transcriptase) (2, 4). PCR Markers (M).

Amplified bands following RT-PCR of bovine luteal RNA,
using primers designed against bovine typel IGF receptor.
Blanks (minus reverse transcriptase) (1,3). PCR Markers (M).
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2.4 Primer design

2.4.1 IGF-I

Primers were designed to amplify positions 156-351 of bovine IGF-I mRNA (Fotsis

et al., 1990). The amplified product is within the coding region (1-462), and

corresponds to the region encoding the mature peptide (145-354). A porcine IGF-I

probe was kindly gifted by DrM Lucy (University ofMissouri). A comparison of the

bovine and porcine (Tavakkol et al., 1988) IGF-I mRNA sequences detailing the

primer positions is shown in Figure 2.2.

2.4.2 IGF-II

Primers were designed to amplify positions 7-160 of a partial bovine IGF-II mRNA

(Brown et al., 1990). The amplified product is within the coding region (1-451), and

by comparison to the human sequence (Rail et al., 1987) corresponds to the region

encoding the mature peptide. The human and bovine IGF-II mRNA sequences are

compared in Figure 2.3.

A Bestfit comparison (GCG Wisconsin package, GCG) of bovine IGF-I and bovine

IGF-II mRNA sequences demonstrates a 72% similarity as shown in Figure 2.4.

Despite this level of homology, bovine IGF-I and IGF-II primers specifically amplify

only their target mRNA, as determined by BLAST or FASTA analysis (GCG

Wisconsin package, GCG). The amplified regions of the mRNA sequences encoding

bovine IGF-I and -II are compared in Figure 2.4.
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2.4.3 Type 1 IGF receptor

Primers for the type 1 IGF receptor were designed to avoid regions of homology with

both the insulin receptor and insulin receptor related receptor. The lowest degree of

similarity is shown in the signal peptide and transmembrane sequences. The

available bovine mRNA sequence for the type 1 IGF receptor encodes only the P-

subunit (Sneyers et al., 1991a), whilst much more of the human mRNA sequence is

published (Ullrich et al., 1986). Therefore, initial searches were made using the

human sequence. Suitable primers were identified and checked for homology. Since

the most suitable primer pair was in the P-subunit the primers were then adapted to

the bovine sequence and subjected to FASTA analysis (GCG Wisconsin package,

GCG), which demonstrated specificity of amplification. Primers were designed to

amplify positions 2717-2905 of human type 1 IGF receptor mRNA which

corresponds to positions 491-679 of a partial bovine mRNA. A comparison of

human type 1 IGF receptor mRNA and human insulin receptor mRNA is illustrated

in Figure 2.5.

2.4.4 Insulin receptor

There is no published mRNA sequence data for the bovine insulin receptor. Primers

were designed to amplify positions 1493-1592 of human insulin receptor mRNA

(Figure 2.6) (Ebina et al., 1985), which corresponds to part of the alpha subunit.

FASTA analysis (GCG Wisconsin package, GCG) indicates that these primers

specifically amplify the insulin receptor, and not the type 1 IGF receptor.
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bIGF-I 62aggtgaagatgcccatcacatcctcctcgcatctcttctatctggccctg
I II I I II I I II I II I II I I II II I I I II II I I I I I I I I II II II I

pIGF-I 5 aggttaagatgcacatcacatcctcttcgcatctcttctacttggccctg

111

54

112 tgcttgctcgccttcaccagctctgccacggcgggacccgagacectctg 161
I I I I I II I I I I I I I II I II I II I II II I I I I III MINN IMIII

55 tgcttgctctccttcaccagctctgccacggctggac<rfcgagacC€t;ctg 104

162 cggggctgagttggtggacactctccagttcgtgtgcggagacaggggct 211
I M I I I I I I I I I I I I I INN I I I I I I I I I I I I I I I I II I I II I I I

105 tggggctgagctggtggacgctcItcagttcgtgtgcggagacaggggct 154

212 tttatttcaacaagcccacggggtatggctcgagcagtcggagggcgccc 261
I I I I I I II I I I I I I I II II II I II I II II I I II I II II II II I I I I

155 tttatttcaacaagcccacagggtacggctccagcagtcggagggcgcea 204

262 cagacaggaatcgtggatgagtgctgcttceggagctgtgatctgaggag 311
I I I II II I I I I I I I I I I I I I I I I I I I I I I I I I I I MIM M.I I II II I

2 05 cagacgggc&tcgtggatgagtgctgcttccggagctgtgatctgaggag 2 5 4

312 gctggagatgtact.gcgcgcctctcaagcccgccaagtcggcccgctcag 361
II I I I II II II II II II II I I II II I I I I I I II I II II II II II I

255 gc tg g aga tg ta c Lg tgc a cccc tcaagcc t g cc a ag tcgg cc c g c t. c c g 3 04

362 tccgtgcccagcgccacaccgacatgcccaaggctcagaaggaagtacat 411
I II II I I I II I I I I I I I II II I I II I I I I I I I I I I I I II II I I I I I I I I

305 tccgtgcccagcgccacacggacatgcccaaggctcagaaggaagtacat 354

412 ttgaagaacacaagtagagggagtgcaggaaacaagaactacagaatgta 461
I I I I I I I I I I I I I I I I I I II II I I II I I I I I I I I I I I I II I II I I II I I

355 ttgaagaacacaagtagagggagttcaggaaacaagaactacagaatgta 404

462 ggaagaccttcctaaagagtgaagaatgacatgccaccggcaggatcctt 511
I I I I I I I I I I I I I II I I I I I I I II II II I I I II II I I I I I I I I I I I I I

405 ggaagaccttcctgaagagtgaagaatgacatgccactggcaggatcctt 454

512 cgctctgcacgagttacctgttaaacaccagaagacctacc..aaaaata 559
I I I I I I I I I I I I I I I II II I I I I I I II I I I II I I I II I I I I I I I II I

455 tgctctgcacgagttacctgttaaacaccagaagacctaccaaaaaaata 504

560 agtttgataacatttcaaaagatgggcatttcccccaatgaaat....aa 605
II I II II I II II I I I II I I I II I II II II I II I I II I II II I II

505 agtttgaaaacatttcaaaagatgggcattccccccaatgaaatacacaa 554

606 gtaaacattcc 616
II I II I II I II

555 gtaaacattcc 565

Figure 2.2

A Bestfit alignment of bovine and porcine IGF-I mRNA sequences. Primer positions
are emboldened and the region coding for the mature peptide highlighted.
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hlGF-11 338 qagaccctgtgcgqcgggqaqctggtqqacaccctccagttcgtctgtqg 387
I I II I I I II I I I I I I I I I I I I I I I II I I I I II I I I II I I I I II I II I I

bIGF-II 2 gagactctgtgcggcggggagctggtggacaccctccagtttgtctgtgg 51

388 ggaccgcggcttctacttcagcaggcccgcaagccgtgtgagccgtcgca 437
I I I I I I I I I I II I I I I I II I I I I II I I I I I I I I III I II I

52 ggaccgcggcttctacttcagccgaccatccagccgcataaaccgacgca 101

438 gccgtggcatcgttgaggagtgctgtttccgcagctgtgacctggccctc 487
I I I I I I II I I I II II I I I II II I I I II II I I I I I I I I II I I I I

102 gccgtggcatcgtggaagagtgttgcttccgaagctgcgacctggccctg 151

488 ctggagacgtactgtgctacccccgccaagfcccgagagggacgtgtcgac 537
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II II I I I I

152 ctggagacttactgtgccacccccgccaagtccgagagggatgtgtctgc 201

538 ccctccgaccgtgcttccggacaacttccccagataccccgtgggcaagt 587
I II I I I I I I I I I I I I I I I I I II II II I I I I I I I II I I I I I I II

202 ctctacgaccgtgcttccggacgacgtcaccgcataccccgtgggcaagt 251

588 tcttccaatatgacacctggaagcagtccacccagcgcctgcgcaggggc 637
I I I I I I I I I I I II I I I I II II I I I I I I I I II I II II I I I I I I I I I I II I

252 tcttccaatatgacatctggaagcagtccacccagcgcctgcgcaggggc 301

638 ctgcctgccctcctgcgtgcccgccggggtcacgtgctcgccaaggagct 687
I I I I I III II I I I II II I I I I I I I I I I I I II I I I II I I I II II

302 ctgcccgccttcctgcgagcacgccggggtcgcacgctcgccaaggagct 351

688 cgaggcgttcagggaggccaaacgtcaccgtcccctgattgctctaccca 737
I II I I I I I I I I II I I I I I I I II I II I I II I I I II II II I I

352 ggaggccctcagagaggccaagagtcaccgtccgctgatcgccctgccca 401

738 cccaagaccccgc...ccacgggggcgcccccccagagatggccagcaat 784
II I I I I I I I I I I II I I I I I I II I I I I II II I I I I I

402 cccaggaccctgccatccacgggggcgcctcttccaaggcatccagcgat 451

785 cggaagtgagcaaaactgccgcaagtctgcagcccggcgccaccatcct. 833
I I II I I II I III II II II I I I I I III III I III

452 tagaagtgagccaaagtgtcgtaattctgccaagtggcaccatctacctc 501

834 gcagcctcctcctgaccacggacgtttccatcaggttccatcccgaaatc 883
II I I I I I I II I I I II II III I I I I I I II I II I

502 gcgccgacctcctgacc.gggaccgccccactaggtctctctctgaaatc 550

Figure 2.3

A Bestfit alignment of human and bovine IGF-II mRNA sequences. Primer positions
are emboldened, and the region coding for the mature peptide of the human sequence

is highlighted.
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bIGF-II

bIGF-I 150 cgagaccctotgcggggctgagttggtggatgctctccagttcgtgtgcg 199
I I I II I II I II I I I III I I I II I I I I I I I I I I I II II I

1 cgagactctgtgcggcggggagctggtggacaccctccagtttgtctgtg 50

200 gagacaggggcttttatttcaacaagcccacggggtatggctcgagcagt 249
I I I II I I II I I I I I II I II II II I I

51 gggaccgcggcttctacttcagccgacc atccagccg. 87

250 cggagggcgccccagac.aggaatcgtggatgagtgctgcttccggagct 298
I I II I I I I I I I I I I II I I I I I II I I I I I I II I I I I I

88 cataaaccgacgcagccgtggcatcgtggaagagtgttgcttccgaagct 137

299 gtgatctgaggaggctggagatgtactgcgcgcctctcaagcccgccaag 348
I I I II I I I I I I I I I I I I I I I I II I I I I II I I I

138 gcgacctggccctgctggagacttactgtgc cacccccgccaag 181

349 tcgg 352
I I I

182 tccg 185

Figure 2.4

A Bestfit alignment of bovine IGF-I and IGF-II mRNA sequences. Primers are

emboldened.
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Ins R 2869 tgcaggctgcgtgggctgtcaccggggaactacagcgtgcgaatccgggc 2918
I I I I I Nile I II I II II I II II I I I I I I I I I

IGF R 2716 gccaagctaaaccggctaaacccggggaactacacagcccggattcaggc 2765

2919 cacctcccttgcgggcaacggctcttggacggaacccacctatttctacg 2968
I II I I I I I I I I I I I II II I I I II I I I II I I I I

2766 cacatctctctctgggaatgggtcgtggacagatcctgtgttcttctatg 2815

2969 t gacagactatttagacgtc..ccgtcaaatattgcaaaaa 3007
I II I I III I I I II II I I

2816 tccaggccaaaacaggatatgaaaacttcatccat|§ 2851

3008 ttatcatcggccccctcatctttgtctttctcttcagtgttgtgattgga 3057
I 1111111 i I 1 JJ 1 UJ 1 1 IJ 1 1 c i 1 g

2 8 52 r.gateaccgetctgcccgtcgcrgtcetgt'cgatcgtgggagggttggtg 2 9 01

3058 agta...tttatctattcctgagaaagag gcagccagatgggccg 3099
I a| I II I M il MINI II MM Mill I

2902 at$t;afcgct.gt.acgtCit.t!!&catagaaagagaaataacagcaggctggg. . q 2949

Figure 2.5

A Bestfit alignment of the human insulin receptor and type 1 IGF receptor mRNA

sequences, to illustrate primer positions for the type 1 IGF receptor. Primer positions
are emboldened, and the sequence coding for the transmembrane region is

highlighted. Letters are shown between the aligned sequences to illustrate when the
bovine type 1 receptor mRNA sequence varies from the human type 1 IGF receptor

mRNA sequence.
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InsR 1405 gggaactactccttctatgccttggacaaccagaacctaaggcagctctg 1454
I I I I I I I I I I I! I I I I I I I I I I I I I I I I I I I I III II II

lUrr K. 1291 gggaattactccttctacgtcctcgacaaccagaacttgcagcaactgtg 1340

1455 ggactggagcaaacacaacctcaccaccactcaggggaaactcttcttcc 1504
I I II I II I I I I I I I II I I I I II I I I I I I I I III

1341 ggactgggaccaccgcaacctgaccatcaaagcagggaaaatgtactttg 1390

1505 actataaccccaaactctgcttgtcagaaatccacaagatggaagaagtt 1554
I II I I I I I I I I I I I I I I I I I II I I I I I I I II I

1391 ctttcaatcccaaattatgtgtttccgaaatttaccgcatggaggaagtg 1440

1555 tcaggaaccaaggggcgccaggagagaaacgacattgccctgaagaccaa 1604
I II II I I I I I I I I I I II I I I I I I I I I I I I

1441 acggggactaaagggcgccaaagcaaaggggacataaacaccaggaacaa 1490

1605 tggggacaaggcatcctgtgaaaatgagttacttaaattttcttacattc 1654
I II I I I I I I I I I I I I I I I I I I III III I I I I

1491 cggggagagagcctcctgtgaaagtgacgtcctgcatttcacctccacca 1540

1655 ggacatcttttgacaagatcttgctgagatgggagccgtactggcc 1700
I I II I I I I I II I I I I I I I I I II I I

1541 ccacgtcgaagaatcgcatcatcataacctggcaccggtaccggcc 1586

Figure 2.6

A Bestfit alignment of the human insulin receptor and type 1 IGF receptor

mRNA sequences, to illustrate primer positions for the Insulin receptor.
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2.5 Ligation of vector and insert DNA

pGEM-T (Promega) was used as the vector for PCR product cloning. pGEM-T is

prepared from the pGEM-5Zf(+) vector, cut at the EcoRV site and with 3' terminal

thymidines (3'-T overhangs) added to both cut ends for increased ligation efficiency.

The plasmid contains T7 and Sp6 RNA polymerase transcription initiation sites, a

sequence coding for the Lac a-peptide, interrupted by a multiple cloning site that

enables blue/white colour selection for insertion, ampicillin resistance in addition to

a number of restriction enzyme sites.

Aliquots of PCR product (0.5pl, 1.5pl or 4.5pl) or 2pl of pGEM-T vector control

(Promega) were added to a ligation reaction (10pl) containing lpl of T4 DNA Ligase

(lU/pl; Promega), lpl of T4 DNA ligase lOx buffer (Promega) and lpl of pGEM-T

vector (50ng). Reactions were mixed and incubated overnight at 4°C.

2.6 Bacterial transformation

2.6.1 Preparation of Luria bertani agar -ampicillin plates

Sterile Luria bertani (L.) agar was warmed to melting and mixed with antibiotic

(ampicillin, 6mg/100ml) and poured into sterile petri dishes (Bibby Sterilin). Plates

were allowed to set at room temperature. Prior to use L. agar-ampicillin plates were

coated with a layer of Isopropyl |3-D-Thiogalactopyranoside (IPTG) (4pl of 1M

IPTG/plate; Promega) and 5-Bromo-4-chloro-3-indolyl (3-D-galactopyranoside (X-

gal) (40pl of 50mg/ml X-Gal /plate; Promega) and allowed to absorb for

approximately 30 min at 37°C, for subsequent blue/white colour screening.
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2.6.2 Transformation of cells

Bacterial transformation of plasmids was performed using JM-109 High Efficiency

Competent Cells (Promega). A 2pl aliquot of each ligation reaction was placed into a

thin walled tube on ice. In addition, 0.5ng uncut pGEM-3Z plasmid was used as a

positive control to determine transformation efficiency. JM-109 cells were thawed on

ice and mixed by gentle flicking. A 50pl aliquot of cells was added to each pre-

chilled ligation reaction and mixed during dispensing. The cells were placed on ice

for 20 min, heat shocked for 45 sec at 42°C and returned to ice for 2 min. L. broth

(900pl) was added and the cells incubated with shaking (225 rpm) at 37°C for lhr.

L.agar-ampicillin plates (see section 2.6.1) were spread with lOOpl of each

transformation culture and incubated overnight at 37°C.

2.6.3 Blue/ white colour screening

After overnight culture on IPTG/X-gal supplemented plates possible positive

transformants were selected by colour. Bacterial colonies containing recombinant

vector constructs are white due to the insertional inactivation of the Lac-a sequence,

whilst in general non-recombinants produce functional (3 galactosidase as indicated

by a blue colour.

Single colonies were lifted from the plates and used to inoculate 5ml of L. broth plus

ampicillin (6mg/100ml). Cultures were incubated at 37°C overnight with shaking.
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2.7 Plasmid DNA preparation

2.7.1 Mini plasmid preparation

Small-scale DNA preparation was carried out using the Wizard Miniprep system

(Promega). A 2ml aliquot of each culture was removed and spun at high speed in a

microcentrifuge (Beckman-E) for 2 min. The pellet of cells was resuspended in

200pl of cell resuspension solution, prior to cell lysis in 200pl of lysis solution.

Neutralisation solution (200pl) was added to the mix and the resultant precipitate

containing protein and chromosomal DNA was pelleted by high-speed centrifugation

for 5 min. The supernatent was decanted to a fresh tube and mixed with 1ml ofDNA

purification resin. For each miniprep a 3ml-syringe barrel was attached to a Wizard

minicolumn and placed on a vacuum manifold (Vac-man; Promega). The resin mix

was then loaded on and drawn into the minicolumn under vacuum. Column wash

(2ml) was then applied and the resin allowed to dry for a further 2 min under

vacuum. The syringe barrel was removed and the minicolumn transferred to a

microcentrifuge tube and spun at high speed for 20 sec to remove any residual

column wash. The minicolumn was transferred to a fresh microcentrifuge tube and

50pl ofwater was applied to the minicolumn, and left for 1 min. To elute the plasmid

DNA the minicolumn was spun at high speed for 20 sec and stored at 4°C.
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2.7.2 Restriction digestion

Initial confirmation of successful ligation was by restriction enzyme digestion.

Restriction endonucleases were chosen for their ability to cleave DNA at specific

recognition sequences present within the desired insert but not the plasmid vector.

Potential target sites within the PCR product were analysed using the GCG

Wisconsin Mapping programme (GCG). Restriction enzymes were purchased from

New England Biolabs or Roche Diagnostics Ltd. Each restriction digestion reaction

was performed to digest approximately lpg of sample DNA in the presence of

excess enzyme (20U) and the appropriate enzyme lOx buffer diluted to a final lx

strength. Samples were incubated at 37°C for lhr. The result of restriction

endonuclease cleavage was analysed by gel electrophoresis (Figure 2.7). It would be

difficult to tell successful ligation by size difference alone. However, a single

cleavage of circular DNA substrate will linearise the DNA, creating a difference in

mobility through the gel that allows circular and cut to be resolved. Since the

restriction enzyme sites were chosen to be present only within the insert,

linearisation represents successful ligation.

Digestion with two enzymes was also performed when possible, to confirm ligation

by cutting out the insert from the plasmid cloning site. Digestion was carried out

with both enzymes acting simultaneously if buffer and temperature conditions for

both enzymes activity were compatible. However, when enzymes had different

digestion requirements and were known to perform poorly in a generalised multicore

buffer, digestion was carried out with first one of the enzymes and then the other,

with each enzyme in its own buffer with the lowest salt concentration used first.
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Figure 2.7

Agarose gel electrophoresis following single and double restriction enzyme

digests.

a)

M 1 2 3 4 5 6 7 8 9

IJ —: 'A- S3- v -•

'

• I.- Jfe f
*-

- mm*
« 3054 bp

Putative typel IGF receptor plasmid cut with BamHl (present in bovine sequence) (lanes 1, 4, 7), or
Smal (present in human sequence) (2, 5, 8), or uncut (3, 6, 9). DNA Marker X (M; Roche
Diagnostics Ltd).

M 1 2 3 4 5 6 7 M

b)

1000 bp
750
500

300

150

50

Putative typel IGF receptor plasmid (lanes 1-4) and insulin receptor plasmid (5-8) cut with Notl and
Ncol (1, 3, 5, 7) or uncut (2, 4, 6, 8). PCR Marker (M; Promega).

c)
M C IJ C U C IJ C IJ C IJ C IJ C IJ C IJ M

2799 bp

Putative IGF-I plasmid cut with Xhol (C) or uncut (U). DNA Marker VII (M; Roche Diagnostics
Ltd)
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2.7.3 PCR confirmation of ligation

PCR was also used for further confirmation of successful ligation. To lpl of ligation

reaction (lOng) was added 11 pi of dH20, 2pl of deoxynucleotides (dNTPs)

(Promega), 2pl of lOx PCR buffer (Roche Diagnostics Ltd), and 3pl of MgCl2. The

samples were mixed, placed in the thermocycler at 93°C and lpl of taq/primer mix

added prior to continued cycles of amplification.

Following initial confirmation of successful ligation, cultures of putative

recombinants were used to streak out L. agar plus ampicillin plates (Section 2.7.1).

Plates were incubated overnight at 4°C, single colonies removed and used to

inoculate 5ml of L. broth plus ampicillin (6mg/100ml). Tubes were incubated at

37°C with shaking for approximately 8hr. The culture was then used to inoculate

500ml of L. broth plus ampicillin (6mg/100ml) grown overnight at 37°C with

shaking.

2.7.4 Maxi plasmid preparation

Large scale preparation of plasmid DNA was carried out using the Wizard Maxiprep

system (Promega). A 5ml aliquot of overnight culture was put aside for later use. The

remainder of the culture was pelleted by spinning in a centrifuge bottle at 5,000g for

10 min at 22°C (Beckman JA-14). The bacterial pellet was resuspended in 15ml of

resuspension solution and the pellet disrupted with a glass rod. Cell lysis solution

(15ml) was added, gently mixed and allowed to stand for 20 min. Neutralisation

solution (15ml) was then added, mixed gently by inversion and the precipitate

pelletted by centrifugation at 14,000g for 15 min at 22°C. The supernatant was then

filtered through 4 layers of muslin into a measuring cylinder and 0.5 volumes of

95



isopropanol added. After mixing by inversion the sample was spun at 14,000g for 15

min at 22°C. The supernatant was poured off and the pellet ofDNA resuspended in

2ml of lx TE buffer. DNA purification resin (10ml) was added and swirled to mix,

and then loaded onto the Maxicolumn attached to a vacuum manifold. The centrifuge

bottle was rinsed with column wash solution (13ml) which was then applied to the

Maxicolumn under vacuum. A further 12ml of column wash was added, followed by

5ml of 80% (v/v) ethanol. Once the solutions had been drawn through the column,

the vacuum was maintained for a further minute to dry the resin. The column was

removed from the vacuum and placed inside a screw top tube. Residual column wash

was then removed by centrifugation in a swinging bucket rotor at 2,500 rpm for 5

min and a further 5 min on the vacuum. The column was transferred to a fresh screw

top tube and 1.5ml of preheated (65°C) water was applied to the column. After

standing for 1 min, DNA was eluted by centrifugation in a swinging bucket rotor at

2,500 rpm for 5 min and stored at 4°C. Optical density of a suitable dilution was

measured at 260nm using a 1-cm path-length spectrophometric cuvette. DNA

concentration was calculated using the formula

optical density of 1 at 260nm = 50pg/ml ofDNA.

Therefore, the concentration of DNA in pg/ml = optical density x 50 x dilution

factor.
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2.7.5 Glycerol stocks

Stocks of successful bacterial transformations were prepared for future use from 5ml

of overnight culture previously set aside. Cells were pelleted by centrifugation at

4000 rpm for 15 min at room temperature, resuspended in 1ml of TM buffer and 1ml

of glycerol, and stored in 0.5ml aliquots at -70°C.

2.8 DNA sequencing

DNA was sequenced using the Sequenase Version 2.0 kit (Amersham Pharmacia

Biotech UK Ltd), based on a dideoxy-mediated chain-termination method. The DNA

polymerase "Sequenase" initiates enzymatic synthesis of a DNA strand

complementary to the template at the site where an oligonucleotide primer anneals

specifically to the template. Deoxynucleotides are then added to the growing DNA

chain until a competing dideoxynucleotide (ddNTPs) is incorporated, blocking

further strand synthesis. Four separate reactions, each with a different ddNTP,

generate chains of various lengths that terminate at each Adenosine, Cytidine,

Guanosine or Thymidine in the template. The inclusion of a radiolabelled nucleotide

enables the chains to be visualised by autoradiography after separation by high-

resolution electrophoresis, and the template sequence deduced.

DNA sequencing was performed in five steps as detailed below.

2.8.1 Preparation of double stranded DNA

Double stranded DNA template was subjected to sequencing and required initial

denaturation. An aliquot of DNA (5pg in 50pl) was denatured under alkaline

conditions by the addition of 0.1 volume of 2M NaOFl, 2mM EDTA (30 min, 37°C).

The mixture was neutralised by adding 0.1 volume of 3M NaAc (pH 5.5) and the



DNA precipitated with 4 volumes of ethanol (-20°C, 30 min). The denatured DNA

was then pelleted at high speed in a microcentrifuge at 4°C, washed with 70% (v/v)

ethanol, air dried and resuspended in 7pl of dH20. A control reaction was also

performed using single stranded DNA of known sequence (5pi of DNA + 2pl of

water).

2.8.2 Anneal template and primer

To the DNA was added lpl of oligonucleotide primer and 2pl of reaction buffer. The

primer was annealed to the template by heating at 65°C for 2 min and cooling to

room temperature over a period of approximately 30 min, before being placed on ice.

2.8.3 Labelling reaction

To the annealed template-primer mix was added lpl of 0.1M DTT, 2pl of labelling

mix (1.5pM of dGTP, dCTP, dTTP), 0.5pl of [a-35S]dATP (Amersham Pharmacia

Biotech UK Ltd) and 2pl of prediluted Sequenase (diluted 1:8 in ice cold enzyme

dilution buffer). The contents were mixed thoroughly and incubated at room

temperature for 5 min.

2.8.4 Termination reaction

Aliquots of labelling reaction (3.5pi) were transferred to one of four termination

reactions containing prewarmed dideoxy GTP, dideoxy ATP, dideoxy TTP or

dideoxy CTP (2.5pl). Contents were mixed and DNA synthesis continued at 37°C

for 5 min, until halted by the addition of 4pl of stop solution. After thorough mixing

samples were placed on ice prior to electrophoresis.
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2.8.5 Acrylamide gel electrophoresis

A pair of glass plates, one slightly shorter in length, were repeatedly rinsed with

distilled water and dried. The inner side of the small plate was coated with an

acrylamide-releasing agent and both plates wiped with ethanol. The plates were

placed together, separated by a spacer and then sealed together along the sides and

bottom of the assembly using tape. A 6% monomer acrylamide gel was prepared

using the Sequegel Sequencing System (National Diagnostics). Sequegel concentrate

(24ml), diluent (66ml) and buffer (10ml) were mixed on ice and the polymerising

agents N,N,N',N'-tetramethylethylenediamine (TEMED) (40pl) and ammonium

persulphate (500pl of 10% v/v) were added. The solution was gently mixed and

poured between the plates using a syringe. An inverted comb was inserted between

the plates to form a flat upper surface, clamps were applied and the gel left to

polymerise for at least lhr. The clamps were then released and the comb removed.

The plates were rinsed and the sealing tape removed, prior to placing in the vertical

electrophoresis apparatus. Running buffer was poured into the top reservoir (lx

TBE) and the apparatus checked for leaks prior to the addition of buffer to the

bottom reservoir (lx TBE, 0.6M NaAc). Top buffer was used to rinse the gel surface

and the sharks-tooth comb inserted to form sample wells. Stop solution (3 pi) was

added to alternate wells to check against leaks, and the gel pre-run for at least 15 min

at 40W. Immediately before loading, samples were denatured by heating to 75°C for

2 min. Electrophoresis was then continued for approximately 2hr. Once the

bromophenol band reached the bottom gel edge the power supply was stopped and

the plates removed. The plates were levered apart, leaving the gel adhered to the

large plate. The gel was transferred to a solution of 10% (v/v) acetic acid, 10% (v/v)
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methanol in distilled water for 15 min before being lifted off onto fdter paper

(Whatman). The upperside of the gel was covered in clingfdm and the gel placed in a

vacuum dryer (Bio-Rad Laboratories Ltd). Once the gel was dry, the clingfilm was

removed and the gel exposed to X-ray film overnight in a cassette with intensifier

screens. The film was developed using an automatic film developer (X-OGraph

Compact X2, supplied by HA West).

2.9 Preparation of DNA template for transcription in vitro.

2.9.1 Plasmid linearisation

Following successful sequencing and comparison of insert to target, the DNA

plasmid was linearised to enable production of "run-off' transcripts derived largely

from the insert sequence alone. Restriction enzymes for linearisation were chosen to

avoid the generation of 3' protruding ends, which are linked to extraneous transcript

production, did not cut the insert and were present at only one site within the

plasmid. Plasmids were cut in the presence of excess enzyme. A typical reaction

(200pl) contained 50pg of template in the presence of 200 units of enzyme

appropriately buffered, incubated at 37°C for lhr and continued overnight at 4°C. In

order for subsequent transcription to be successful, digestion for linearisation must

be performed to completion. Aliquots of "cut" versus "uncut" were run on a 1%

(w/v) low melting point agarose gel (SeaPlaque; Flowgen) to check for complete

digestion (Figure 2.8). In the absence of complete linearisation following ethidium

bromide staining (0.5pg/ml; 30 min), destaining in water (30 min) and UV

visualisation, bands of cut
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Figure 2.8

Agarose gel electrophoresis to check for plasmid linearisation.

1 2 3 4 5 6

a)

IGF-I plasmid uncut (1), cut with Ncol (2) or Nsil (3).
IGF-II plasmid uncut (4), cut with Ncol (5) or Nsil (6).

Insulin receptor plasmid uncut (1), cut with Ncol (2) or Notl (3).

Typel IGF receptor uncut (4), cut with Ncol (5) or Notl (6).
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template were excised from the gel using a scalpel blade, placed into preweighed

1,5-ml tubes and weighed.

DNA was purified from the surrounding agarose either by phenol extraction or using

the QIAquick gel extraction system (Qiagen).

2.9.2 Extraction of linearised plasmid

2.9.2.1 Phenol extraction.

To the weighed slice was added 3 volumes of water. The agarose was remelted at

65°C for 10 min and mixed well. An equal volume of phenol pH8 (Appligene Oncor)

was added, well mixed and spun for 2 min. The supernatant was removed to a clean

tube and phenol extraction repeated until the solution appeared clear. The solution

was then subjected to phenol chloroform isoamyl alcohol (PCI), chloroform isoamyl

alcohol (CI), ethanol precipitation.

2.9.2.2 Phenol chloroform isoamyl alcohol (PCI), chloroform isoamyl alcohol

(CI), ethanol precipitation.

To the sample was added an equal volume of PCI (25:24:1 (v/v)). The sample was

vortexed, spun and the top layer removed to a clean tube. To the supernatant was

added 1 volume ofCI, the sample was then vortexed, spun and the top layer removed

to a clean tube. Then 0.1 volume NaAc (3M pH 5.5) was added, and then 2 volumes

of 100 % (v/v) ethanol. The sample was then mixed and placed at -20°C for at least

30 min to precipitate the DNA. The DNA was recovered by centrifugation at 4°C for

20 min, washed in 70 % (v/v) ethanol, and centrifuged again. The supernatant was

removed and the tube upturned and the pellet air dried for 10 min. The DNA was

then resuspended in 50pl ofDEPC water, and stored at -20°C in 1.5pl aliquots.



2.9.2.3 QIAquick Gel Extraction

The DNA fragment was removed from the agarose gel with a clean sharp scalpel,

trimmed to remove excess agarose and placed in a pre-weighed tube. The gel slice

was weighed and 3 volumes of buffer QX1 added to 1 volume of gel (where lOOmg

gel is equivalent to lOOpl of buffer). The gel slice was dissolved by incubation at

50°C for 10 min, with vortexing every 2-3 min. After the gel slice had completely

dissolved, lOpl of 3M NaAc (pH5) were added to ensure a pH suitable for adsorption

of DNA to the QIAquick membrane (pH<7.5). One gel volume of isopropanol was

added to the sample and mixed. The DNA sample was loaded onto a QIAquick

column placed in a 2ml collection tube, microcentrifuged for 1 min and the flow

through discarded. The column has a maximum volume of 800pl, sample volumes

greater than 800pl required multiple loading. To ensure complete removal of agarose

from the sample 0.5ml of buffer QX1 was added and centrifuged for 1 min. The

column was washed with 0.75ml of buffer PE, centrifuged for 1 min and the flow

through discarded. Residual column wash was removed by a further 1 min

centrifugation. The QIAquick column was transferred to a clean 1.5ml centrifuge

tube. To elute DNA, 50pl of H20 was added to the centre of the column, allowed to

stand for 1 min and then centrifuged for 1 min.
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2.9.3 Proteinase digestion

Following the removal of agarose contaminants by either method, proteinase K

digestion was performed. To the linearised plasmid sample was added lOpl of

proteinase K (lmg/ml 30U/mg; Promega) in the presence of lOpl of lOx proteinase

K buffer to a total volume of lOOpl. The sample was incubated for lhr at 65°C. The

digestion was halted by PCI:CI:Ethanol precipitation (Section 2.9.2.2) and the DNA

pellet resuspended in 50pl of DEPC-water. Template was stored in 2pl aliquots at -

20°C for subsequent riboprobe synthesis.

2.10 Synthesis of high specific activity radiolabelled RNA probes

2.10.1 Transcription

RNA synthesis in vitro was performed to produce radio-labelled RNA transcripts,

using P-UTP for RNase protection assays and S-UTP for in situ hybridisation

studies. To prevent the precipitation of template DNA in the presence of cold

spermidine from the 5x buffer, non-enzymatic components were allowed to

equilibrate at room temperature for lhr prior to transcription, and subsequently the

mixture was held at room temperature during successive additions.

The transcription mix contained 4pi of 5x transcription buffer (Promega), lpl of

1 OOmM DTT (Promega), 1 pi (20U) of RNasin ribonuclease inhibitor (Promega), 4pl

of nucleotide mix (ATP, GTP, CTP each at lOmM; Promega), lpl of linearised

template (0.2-lmg/ml), 2.5pl of 32P-UTP (20mCi/ml) or 5pl of 35S-UTP (20mCi/ml)

(Amersham Pharmacia Biotech UK Ltd), and lpl (20U) of RNA polymerase
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(typically Sp6, T7 or T3; Promega) in a volume of 20pl. The reaction mix was

incubated at 37°C for lhr.

Following transcription the DNA template was removed by digestion with DNase.

To the mix was added lOpl of yeast transfer ribonucleic acid (tRNA) (1 lmg/ml), 8pl

of 5x transcription buffer, lpl of RNasin and lp.1 (1U) of RNase-free DNase

(Promega). A lpl aliquot of labelled probe was removed and diluted 1:10 in water

for subsequent determination of percent incorporation and specific activity. The

remaining mix was incubated at 37°C for 15 min. In order to limit problems of high

background and to give optimum sensitivity, unincorporated nucleotides were

removed from the labelled probe by applying the transcription mix to a TE-Midi

select G-50 spin column (CP Laboratories).

The gel contained within the column was resuspended by inversion, and shaken with

a sharp downward motion to draw the resin from the top closure. The column

closures were removed and the column placed into a collection tube, prior to

microcentrifugation (90 sec). The collection tube was discarded and the column

placed in a second collection tube. The 50pl sample was applied to the surface of the

gel bed and allowed to stand for 2-3 min. The loaded column was then spun for 60

sec (Beckman E) to elute the labelled probe free of unincorporated nucleotides, into

a solution ofTE buffer.

2.10.2 Determination of percent incorporation and probe specific activity

Aliquots (lpl) of the 1:10 dilution of labelled probe removed previously were

spotted onto duplicate (1cm diameter) glass fibre filters (Whatman International

Ltd), allowed to air dry and used to determine total cpm per microlitre. In order to
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calculate incorporation, a further 1 pi of the 1:10 dilution was added to lOpl of yeast

tRNA (1 lmg/ml) in a total volume of lOOpl, mixed and 0.5ml of ice-cold 5% (w/v)

trichloroacetic acid (TCA) added. The mix was placed on ice for 5 min, then applied

to glass fibre filters prewetted with 5% TCA under vacuum. The mix was drawn

through the filters, washed three times with 1ml of 5% (w/v) TCA and rinsed once

with 3ml of 100% (v/v) ethanol. The filters were then dried under vacuum. To

calculate the specific activity of the probe lpl of eluted probe was applied to

duplicate glass fibre filters and allowed to air dry. The six dry filters were then

placed into scintillation vials, 2ml of scintillation fluid (Optiphase HiSafe 3, Fisher

Scientific UK Ltd) added and the samples counted in a P-counter.

Percentage incorporation was calculated as TCA precipitated cpm/ total cpm x 100.

Specific activity of the probe is expressed as the total incorporated cpm/ total pg

RNA synthesised.

2.11 In situ hybridisation

2.11.1 Prehybridisation

2.11.1.1 Cryostat sections

Sections of ovarian tissue (14pm) were cut at -20°C using a cryostat (Shandon OT,

Shandon Scientific Ltd), and mounted onto prechilled microscope slides (Superfrost-

Plus, Merck Ltd). Sections were stored in desiccated air-tight boxes at -80°C until

required. For each hybridisation, two sections per animal were hybridised with the

antisense probe and one section was hybridised with the sense probe.
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Slides were removed from -80°C and allowed to warm to room temperature. All pre-

hybridisation steps were performed to minimise RNase contamination, using DEPC

treated solutions and baked glassware. Sections were fixed in 4% (v/v) formaldehyde

in lx PBS for 5 min, and then hydrated in 2x SSC for 2 min at room temperature.

Sections were acetylated in 0.25% (v/v) acetic anhydride in 0.1M triethanolamine

HC1, 0.154 M NaCl (pH8) for 10 min with shaking. Sections were then rinsed in 2x

SCC and dehydrated in 60%, 80%, 95% and 100% (v/v) ethanol each for 2 min.

Sections were then delipidated in chloroform for 5 min, and returned to 100% and

then 95% (v/v) ethanol each for 2 min, before being left to air dry.

2.11.1.2 Paraffin embedded sections.

Sections of ovarian tissue fixed in 4% (w/v) paraformaldehyde and embedded in

paraffin were cut at 8 micron on a microtome and floated onto pre-coated microscope

slides (Super-Frost, Merck Ltd). Sections were twice placed in Histoclear (National

Diagnostics) for 10 min, followed by 100% ethanol (2x 2 min) and 95%, 80%, 60%,

and 30% (v/v) ethanol each for 2 min. Sections were then washed in 0.85% (w/v)

NaCl and lx PBS each for 5 min prior to fixation in 4% (w/v) paraformaldehyde in

lx PBS for 20 min. Tissue was then treated with proteinase K (lmg/ml) in 0.01M

EDTA, 0.1M Tris for 7.5 min, and twice washed in lx PBS for 5 min. Slides were

then placed into 4% (w/v) paraformaldehyde in lx PBS for a further 5 min, briefly

rinsed in dH20 and then twice washed in 2x SSC each for 2 min. Slides were

subsequently treated as detailed above for frozen sections from the acetylation stage

onwards.
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2.11.2 Hybridisation

■J e

Hybridisation was performed using 50pl of S-labelled riboprobe diluted to 1 x

107cpm/ml in hybridisation buffer containing 50% (v/v) formamide, lx Denhardt's

solution, 0.05M DTT, 500pg/ml yeast tRNA and 10% (w/v) dextran sulphate. Slides

were placed in airtight chambers humidified with 50% (v/v) formamide in lx SSC,

diluted probe applied, and covered with a piece of parafilm. Hybridisation was

performed overnight at 55°C.

2.11.3 Post hybridisation

Following hybridisation, the parafilm was removed by repeatedly dipping the slides

in 2x SSC pre-warmed to 55°C. Excess probe was removed by washing the slides

twice in pre-warmed 2x SSC each for 15 min, at room temperature with shaking.

Sections were then treated with RNase A (20 mg/ml) in 2x SSC, to digest

mismatched probe and hence reduce non-specific binding. RNase digestion was

performed for 1 hour at 37°C in a slow shaking water bath. Slides were then washed

at 55°C in 2x SSC for 15 min, lx SSC for 15 min, 50% (v/v) formamide in lx SSC

for 30 min and twice in O.lx SSC each for 15 min, with each wash supplemented

with 0.1% (v/v) (3-ME. Sections were then dehydrated in 60%, 80%, 95% and 100%

(v/v) ethanol each for 2 min at room temperature and air dried.

Slides were dipped in (50% v/v) Ilford K-2 emulsion (HA West) warmed to 42°C,

and then left to dry overnight. Slides were then placed in air-tight desiccated boxes

and kept at 4°C for a three week exposure period. The slides were then placed in

50% (v/v) Kodak D-19 developer (HA West) for 2.5 min, rinsed in water for 30 sec

and fixed in 20% (v/v) Ilford Hypam Fix (HA West) for 3 min. Slides were then



lightly counterstained with haemotoxylin and eosin and mounted for microscopic

examination under light and darkfield illumination.

2.12 RNase protection assays

Total RNA (25 pg) from luteal and liver homogenates was incubated simultaneously

with low specific activity 18S ribosomal RNA antisense riboprobe (3000 cpm/

sample; 1.5 x 106 cpm /ml), synthesised using a T7 RNA 18S template (AMS

Biotechnology (UK) Ltd.) and high specific activity riboprobes directed against the

target RNA of interest (100,000 cpm/ sample; 5 x 107 cpm /ml). Riboprobes were

32
synthesised as described above (see section 2.10) using P-UTP. Hybridisation was

performed in 1,4-piperazine-diethanesulfonic acid (PIPES) buffer (0.025M, pH 6.8)

containing NaCl (0.4M), EDTA (l.OmM, pH 8) and formamide (50% v/v). Samples

were incubated for 10-min at 85°C, and then overnight at 55°C. Following overnight

incubation 500pl of RNase digestion buffer (0.3M NaCl; 7.5M Tris-HCl buffer, pH

8; 5mM EDTA, pH7.5), containing 2pg/ml RNase T1 and 40pg/ml RNase A (Roche

Diagnostics Ltd) were added, and samples incubated for a further 30-min at 37°C.

RNase digestion was subsequently terminated by incubation with Proteinase K

(200pg 30U/mg; Promega) with 20pl 10% (w/v) sodium dodecyl sulphate (SDS) for

30 min at 37°C. Samples were then precipitated in isopropanol, resuspended in gel

loading buffer, heated to 90°C and loaded onto 6% monomer sequencing gels

(section 2.8.5) (Sequegel, National Diagnostics). Gels were run in lx TBE buffer,

and were subsequently lifted off onto filter paper, and exposed to X-ray film

overnight at -70°C with intensifying screens. Films were developed using an
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automated processor (X-OGraph Compact X2, supplied by HA West) and protected

RNA bands viewed.

The protection of bovine IGF-I, IGF-II, the type 1 IGF receptor, IGFBP-3, IGFBP-4

and porcine IGF-I riboprobes with total luteal and liver RNA are included in the

appendix for further confirmation of probe specificity.

2.13 Progesterone Assay

Plasma progesterone concentrations were analysed by radioimmunoassay as

described by Corrie et al., (1981) and modified using a non-extraction assay by Law

et al., (1992). All reagents were diluted in phosgel assay buffer. Standard solutions

were prepared from P-0130 progesterone (Sigma-Aldrich Company Ltd), to give

standards of 7.8, 15.6, 31.2, 62.5, 125, 250, 500, 1000 and 2000 pg/tube. Plasma

(50pl) from ovariectomised animals was added to all standard tubes, which were

assayed in triplicate and made up to 500pl in assay buffer. Two quality controls (one

high progesterone and one low progesterone) were assayed with the plasma samples.

Plasma samples were dispensed in duplicate and made up to 500 pi 1 with assay buffer.

[125I]-Labelled progesterone (11a glucuronide hemisuccinate; Amersham Pharmacia

Biotech UK Ltd) was reconstituted in assay buffer to give 12-15,000 cpm per 100pl,

incorporating lmg/ml of 8-anilino-l-naphthalene sulfonic acid (ANS). Standards and

samples were incubated with lOOpl of label and 200pl rabbit antiprogesterone

antiserum (SAPU: diluted 1:50,000). Primary antibody cross reactivity is detailed in

the appendix. Blanks received 200pl assay buffer. All tubes were vortexed and left to

incubate at room temperature for at least 3hr. In order to separate free and antibody-

bound progesterone, donkey-anti-rabbit serum (lOOpl) (SAPU) (1:35 in assay buffer
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containing 10% 0.1M EDTA), and normal rabbit serum (SAPU) (1:300) were added

to all tubes except totals. The tubes were vortexed and left to incubate at 4°C

overnight. All tubes except totals were prewashed by adding 1ml of cold assay buffer

and spun at 2000g for 30 min at 4°C. The supernatant was then decanted and the

tubes allowed to dry briefly, before counting the activity of the precipitates.

Ill



Chapter 3. Expression of mRNA encoding IGF-I, IGF-II and the

type 1 IGF receptor in the bovine corpus luteum at defined stages of

the oestrous cycle.

3.1 Summary

Previous studies have implicated insulin-like growth factors, IGF-I and -II, in the

regulation of ovarian function. We have investigated the localisation of mRNA

encoding IGF-I, -II and the type 1 IGF receptor to further determine the roles of the

IGFs within the bovine CL at precise stages of the oestrous cycle using in situ

hybridisation. Luteal expression of IGF-I, -II and the type 1 IGF receptor mRNA was

detected throughout the oestrous cycle. IGF-I mRNA expression varied significantly

during the cycle. IGF-I mRNA levels were significantly higher on day 15 than day

10, and IGF-I mRNA in the regressing CL 48 hours after exogenous PGF2a was

significantly greater than in the early or mid-luteal phase (day 5 and 10). In contrast,

there was no significant effect of day of the oestrous cycle on mRNA expression for

IGF-II and the type 1 IGF receptor in the CL. IGF-II mRNA expression was

localised to a subset of steroidogenic luteal cells and was also associated with cells

of the luteal vasculature. Messenger RNA encoding the type 1 IGF receptor was

widely expressed, in a pattern suggestive of steroidogenic luteal cell expression.

These data clearly demonstrate that the bovine CL is a site of IGF production and

reception throughout the luteal phase. Importantly however, this study highlights the

potential of IGF-II in addition to IGF-I, in the autocrine/paracrine regulation of luteal

function.
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3.2 Introduction

Whilst pituitary-derived LH is the primary regulator of CL function, it is becoming

apparent that other factors of extra- and intra- ovarian origin have the potential to

modulate the luteal response to gonadotrophins. The IGF system plays a central role

in these interactions and studies in vitro have shown that both IGF-I and IGF-1I have

wide ranging effects on luteal function (Giudice, 1992; Spicer and Echternkamp,

1995).

The formation of the CL in response to the preovulatory surge of LH involves

changes in cellular morphology and ultrastructure, and key alterations in steroid

hormone synthesis (Smith et al., 1994c). In sheep and cattle following the LH surge,

production by the ovulatory follicle of oestradiol and androstenedione ceases and

progesterone synthesis increases. This dramatic shift in steroidogenesis is the product

of changes in the tissue content of steroidogenic enzymes and factors involved in

steroid precursor provision (Couet et al., 1990; Rodgers et al., 1986b, 1987; Voss

and Fortune, 1993).

IGF-I enhances LH receptor binding capacity in rat granulosa cells luteinised in

culture, acting in synergy with FSH (Adashi et al., 1985c). The increase in receptor

numbers is accompanied by increased sensitivity to LH and potentiation of its

luteotrophic effects. In addition, IGF-I has direct stimulatory effects on key

components of the steroidogenic pathway, and increased progesterone secretion has

been demonstrated in rat (Talavera and Menon, 1991), ovine (Khan-Dawood et al.,

1994), porcine (Yuan and Lucy, 1996a), rabbit (Constantino et al., 1991), human

(Devoto et al., 1995) and bovine (McArdle and Holtorf, 1989; Sauerwein et al.,

1992) luteal tissue. IGF-I has potent actions on sterol metabolism that include
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amplification of StAR (Balasubramanian et al., 1997) and the delivery and utilisation

of steroid precursors (Veldhuis, 1989). The key steroidogenic enzymes P450scc and

3(3-HSD are also targets of IGF action, demonstrated by both increased gene

expression and enzyme activity in response to IGF-I stimulation in the rat (deMoura

et al., 1997; Magoffin et al., 1990; Magoffin and Weitsman, 1993).

Many studies have focused on the potential roles of IGF-I in ovarian function.

However, the regulatory effects of IGF-II have not been studied to the same extent,

possibly because IGF-II has been considered to exert its effects predominantly

prenatally (Hossner et al., 1997). Our recent results have indicated that IGF-II is the

major ligand of the IGF system in the bovine follicle (Armstrong et al., 2000a).

Moreover, IGF-II has been shown to increase progesterone production by luteal cells

in vitro (Sauerwein et al., 1992) and detailed studies in porcine granulosa cells have

demonstrated potent stimulatory effects of IGF-II on progesterone biosynthesis,

largely facilitated by enhanced sterol delivery via increased lipoprotein binding,

internalisation and utilisation, and P450scc enzyme activity (Garmey et al., 1993).

Studies in vitro strongly suggest a role for IGF-I and/or IGF-II in regulating the

acquisition and maintenance of differentiated function in the CL. However, the IGFs

may also have additional actions within the ovary, particularly within the CL, that

extend beyond the regulation of steroidogenesis to include angiogenesis and

apoptosis. The vascularisation of the developing CL increases significantly to

support tissue growth and steroid production, in addition to cellular differentiation of

luteal cells. The primary regulators of ovarian angiogenesis appear to belong to the

VEGF and FGF families (Reynolds and Redmer, 1998), though IGF-I has also been

implicated in neovascularisation occurring in response to injury (Hansson et al.,



1989), in some disease states (Vialettes et al., 1994) and in the classical angiogenic

model of the rabbit cornea (Grant et al., 1993). Immunohistochemical studies also

suggest a role for IGF-II in the regulation of luteal vasculature (Amselgruber et al.,

1994).

The CL is a transient endocrine gland, which must undergo functional and structural

regression in the absence of pregnancy. Morphological and biochemical events

suggestive of apoptotic cell death have been associated with this controlled demise

(Juengel et al., 1993; Sawyer et al., 1990; Zeleznik et al., 1989). The interaction of

the IGF receptor with IGF-I or IGF-II has been shown to protect a range of cell

types, including ovarian cells (Chun et al., 1994), from apoptosis (Harrington et al.,

1994; Parrizas and LeRoith, 1997; Robinson Singleton et al., 1996).

The aims were to understand the role of the IGFs in the growth and regression of the

bovine CL, by describing the temporal and spatial changes in the expression of the

mRNAs encoding IGF-I, IGF-II and the type 1 IGF receptor throughout the luteal

lifespan.
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3.3 Materials and Methods

3.3.1 Animals

The oestrous cycles of 9 Holstein/Friesian cows were synchronised with intravaginal

progesterone release (PRID; 1.55g P4, lOmg oestradiol benzoate; Sanofi Animal

Health Ltd) maintained for 12 days, and PGF2a analogue (Estrumate; 500 pg;

Coopers Animal Health Ltd) administered intramuscularly (i.m) on the day before

PRID removal to induce luteolysis. Ovaries were collected on days 5, 10 or 15 after

the onset of oestrus (day 0) in the subsequent cycle (n=3 per group). An additional

three animals were treated with PGF2a analogue and the ovaries collected 48 hours

later to study the regressing CL. Following ovariectomy, all corpora lutea were

excised and divided into blocks. Luteal pieces were either, 1) frozen in liquid

nitrogen and stored at -80°C prior to cryostat sectioning for in situ hybridisation or

RNA extraction, or 2) fixed in 4% (w/v) paraformaldehyde and processed for

paraffin embedding. Frozen sections from ovaries collected for follicular studies

(Armstrong et al., 1998) were also subjected to in situ hybridisation.

Blood samples (10ml) were collected on alternate days during the synchronised cycle

by jugular or coccygeal venepuncture into tubes containing 1 OOjul of sodium citrate

(0.35 g/ml), from haltered and restrained animals. All blood samples were

centrifuged (lOOOg), and plasma separated and frozen at -20°C until assayed for

progesterone (see section 5.3.2).
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3.3.2 RNA probes

Homologous bovine IGF-II and type 1 IGF receptor probes were prepared using the

primer pairs detailed in section 2.4. A plasmid containing a porcine IGF-I probe was

donated by Dr M Lucy (University ofMissouri). Riboprobe specificity was tested by

RNase protection assay (see section 2.12). The protection of [32P]-labelled

(Amersham Pharmacia Biotech) bovine IGF-II, bovine type 1 IGF receptor and

porcine IGF-I riboprobes with total luteal and liver RNA (25pg) is shown in the

appendix.

Isotopic antisense and sense RNA probes for in situ hybridisation were transcribed

from linearised cDNA templates following a standard transcription protocol (see

section 2.10.1) using [35S]-UTP (Amersham Pharmacia Biotech).

3.3.3 In situ hybridisation

Frozen sections (14 pm) of ovarian tissue were subjected to in situ hybridisation (see

section 2.11). Antisense RNA probes for IGF-I, IGF-II and the type 1 receptor were

each hybridised to two serial sections per CL or ovary. The sense probe for each

mRNA species was applied to a further serial section. The intensity of the in situ

hybridisation signal was quantified using a NIH-Image analysis system (NIH,

Bethesda, MD). Four fields of view were chosen within each slide and the number of

pixels occupied by silver grains counted. In order to minimise operator bias the

chosen fields of view corresponded to the points of the compass, North, South, East

and West on all sections. The position of each field was also selected to minimise

possible artefacts, for example, bright spots from scratches in the emulsion, holes or

tears in the tissue, and edge effects. The full extent of each field, viewed under the
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lOx objective, was then selected on the video screen and the signal quantified. This

was then presented as a percentage of the total number of pixels within the defined

area and antisense signals were then compared to their respective sense (background)

signals. Defined areas of a control slide were routinely selected and analysed to

ensure that alterations in microscope settings did not create between-session

variation.

3.3.4 Statistical Analysis

In situ hybridisation data was analysed using a split-plot analysis of variance

(ANOVA) (Genstat 5; Payne et al., 1993) to determine the effect of stage of the

oestrous cycle (treatment factor) on mRNA expression. Measurements made within

slides were nested within cows for use as the blocking factor. Significant differences

between timepoints were tested using least significant differences with a pooled

standard error of the difference (SED) determined by ANOVA. Differences between

stages were considered significant when P < 0.05.

3.4 Results

3.4.1 Expression of IGF-I mRNA

Messenger RNA encoding IGF-I was expressed in CL at all timepoints studied.

Expression was low and widespread, with areas of higher abundance towards the

periphery and in lines radiating through the CL (Figure 3.1). The exact identity of

these cells could not be determined. Concentrations of IGF-I mRNA varied

significantly with the day of the cycle (P = 0.027) (Figure 3.4a). Steady-state IGF-I

mRNA levels were significantly higher on day 15 than day 10, and the expression

observed in the regressing CL 48-hours after prostaglandin administration was
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significantly greater than IGF-I levels detected in the early and mid-luteal phase (day

5 and 10).

3.4.2 Expression of IGF-II mRNA

Messenger RNA encoding IGF-II was present in CL at all timepoints studied.

Expression was localised to a subset of steroidogenic luteal cells and was also

present in cells associated with blood vessels of the CL (Figure 3.2). Quantitative

analysis showed no significant effect (P > 0.05) of day of the oestrous cycle on IGF-

II mRNA expression (Figure 3.4b).

3.4.3 Expression of type 1 IGF receptor mRNA

At all timepoints studied, CL expressed mRNA encoding the type 1 IGF receptor.

The hybridisation signal was widespread and the pattern of hybridisation suggested

that expression was localised to steroidogenic luteal cells (Figure 3.3). Expression

was absent from peripheral (stromal/capsular) regions and some large blood vessels.

Statistical analysis revealed no significant changes (P > 0.05) in expression of

mRNA encoding type 1 IGF receptor throughout the luteal phase (Figure 3.4c).
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Figure 3.1. Bovine ovarian sections (14 urn) were probed with an IGF-I
antisense (a-f) or sense (g and h) riboprobe. The same fields of view are
shown under lightfield (a, c, e and g) and darkfield (b, d, f and h)
illumination. Localisation of mRNA encoding IGF-I is shown in luteal
tissue adjacent to a small follicle, at two different magnifications (a-d),
and in a further corpus luteum at higher magnification (e and f). Scale
bar represents 450 pm (a and b), 180 pm (c and d) and 90 pm (e-h ).
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Figure 3.2. Bovine ovarian sections (14 pm) were probed with an
IGF-II antisense (a-h) or sense (i and j) riboprobe. The same fields of
view are shown under lightfield (a, c, e, g, and i) and darkfield (b, d, f,
h, and j) illumination. Localisation of mRNA encoding IGF-II is
shown in a typical corpus luteum at three different magnifications
(a-f). Follicular expression is shown in theca tissue of a small follicle
(g and h). Scale bar represents 180 pm (a, b, g, and h), 90 pm (c, d, i,
and j) and 45 pm (e and f). *, G, and T represent a blood vessel,
granulosa cells, and theca cells respectively.
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Figure 3.3. Bovine ovarian sections (14 pm) were probed with a type 1
IGF receptor antisense (a-f) or sense (g and h) riboprobe, and the same
fields of view are shown under lightfield (a, c, e, and g) and darkfield
(b, d, f, and h) illumination. Localisation ofmRNA encoding the type
1 IGF receptor is shown in the same CL at two magnifications (a-d)
and in luteal tissue adjacent to a small follicle (e and f). The scale bar
represents 450 pm (a and b), 180 pm (e and f), and 90 pm (c, d, g and
h). G, T, and CL represent granulosa cells, theca cells, and corpus
luteum respectively
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Figure 3.4.

Quantitative analysis of IGF-I (a), IGF-II (b) and the type 1 IGF receptor (c) mRNA
concentrations in bovine luteal tissue on days 5, 10 and 15 of the oestrous cycle, and
following exogenous prostaglandin (post PG). Luteal timepoints with different
superscipts are significantly different (P < 0.05). Bars represent pooled standard
error of the difference (SED). Messenger RNA concentration is expressed as the
percentage of the total number of pixels occupied by silver grains within a defined
area. Hybridisation with sense probes gave average background values of 2, 4 and 6
units for IGF-I, IGF-II and the type 1 IGF receptor respectively.
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3.5 Discussion

The present study describes the temporal and spatial changes in mRNAs encoding

IGF-I and -II, and the type 1 IGF receptor during growth and regression of the

bovine CL. It extends the current understanding of the IGF system in the CL of the

cow, being to our knowledge, the first detailed report of the localisation of mRNAs

encoding IGF-I, IGF-II and the type 1 IGF receptor throughout the luteal phase.

Messenger RNA encoding IGF-I, IGF-II and type 1 IGF receptor showed distinct

spatial patterns of expression within the bovine CL. IGF-I mRNA expression was

low throughout the CL, with areas of higher abundance towards the periphery and in

lines radiating through the CL. In contrast, mRNA encoding IGF-II was found in a

subset of steroidogenic luteal cells and also in association with luteal blood vessels.

Messenger RNA encoding type 1 IGF receptor was widely expressed throughout the

CL in a pattern suggestive of steroidogenic luteal cell expression, but was absent

from peripheral regions of the CL and some large blood vessels.

Whilst mRNA encoding IGF-I, IGF-II and type 1 IGF receptor differ spatially within

the bovine CL, only IGF-I mRNA showed significant temporal changes in

expression. In addition, follicular patterns of expression of mRNA encoding IGF-I,

IGF-II and the type 1 IGF receptor were in agreement with our previous observations

(Armstrong et al., 2000a).

Previous studies have reported the ability of IGF-I and IGF-II to regulate ovarian

function, and the expression of mRNA and protein components of the IGF system

within the ovaries of a range of species has led to the hypothesis that the IGF system

can exert its influence at the autocrine/paracrine level. Although studies of the local
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production of components of the IGF system is less complete for the CL than the

follicle, the bovine CL has been shown to express IGF-I mRNA (Einspanier et al.,

1990; Kirby et al., 1996; Vandehaar et al., 1995), and IGF-I and -II proteins have

also been localised in the bovine CL (Amselgruber et al., 1994). Moreover, binding

characteristic of the type 1 IGF receptor has been demonstrated in CL throughout the

luteal phase (Sauerwein et al., 1992). Messenger RNA encoding IGF-I, IGF-II and

the type 1 IGF receptor has recently been localised in bovine CL at uncharacterised

stages of the cycle (Perks et al., 1999). The present study further extends our

understanding of the role of the IGF system in bovine luteal function by the use of

precisely timed corpora lutea collected throughout the luteal phase.

In the present study, mRNA encoding IGF-I was demonstrated in the CL throughout

the oestrous cycle. However, the temporal changes in expression of IGF-I mRNA in

the ruminant CL remain controversial. An earlier study of the presence of IGF-I

mRNA in the bovine CL by Northern hybridisation demonstrated low expression in

the early luteal phase (days 1-5), which increased from days 6-11 to reach maximal

on days 12-17, before rapidly decreasing around the time of natural luteolysis (days

18-21) (Einspanier et al., 1990). In contrast, in the present study, IGF-I mRNA levels

were low in the early and mid luteal phase (day 5 and 10), increased significantly

between day 10 and 15, and were maximal following prostaglandin-induced luteal

regression. The increase in IGF-I mRNA between early and mid luteal groups

observed by Einspanier et al. (1990) is not supported by the results of the present

study. Differences in methodology may partly explain differences in IGF-I mRNA

expression patterns, since analysis of IGF-I mRNA expression by Northern

hybridisation is complicated by the similarity in size of major luteal IGF-I mRNA
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transcript(s) (3 to 5kb) and the 28S ribosomal RNA (4.7kb). The differences in IGF-I

mRNA expression observed between the present study and that of Einspanier et al.

(1990) might also be due in part to differences in tissue collection. The early luteal

phase group of Einspanier et al. comprises corpora lutea judged by macroscopic

observations to be 1 -5 days post-ovulation, and is therefore likely to include younger

CL than the present study where an oestrus synchronisation regime was used to

collect luteal tissue of a known age. If luteal IGF-I mRNA levels are lower prior to

day 5 this would not be reflected by the present study's first timepoint, but would

result in an increase between the early and mid luteal groups of Einspanier et al.

(1990). Indeed, luteal IGF-I mRNA concentrations were shown to increase between

day 3 and day 6 of the ovine oestrous cycle (Juengel et al., 1997), although others

had previously observed limited variation throughout the oestrous cycle of the ewe

(Perks et al., 1995).

An important regulatory role for IGF-I in the CL is suggested by IGF-I-stimulated

progesterone release in vitro, and further supported by positive immunostaining for

IGF-I in both large and small steroidogenic luteal cells (Amselgruber et al., 1994).

Expression of IGF-I mRNA in the bovine CL is confirmed by the present study, and

indicates that IGF-I may act as an autocrine/paracrine regulator of luteal function.

The correlation between increasing IGF-I mRNA and peak progesterone production

(Fields and Fields, 1996; Ireland et al., 1980) further implies a physiological

significance for locally produced IGF-I within the bovine CL. Increased IGF-I

expression during periods of high metabolic activity may reflect an important role for

IGF-I in stimulating key components of the steroidogenic pathway. It is interesting to

note that whilst IGF-I has been shown to influence the acquisition of differentiated
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function, that local expression is low during luteinisation.

It has also been suggested that IGF-I derived from the peripheral circulation might

act in an endocrine manner to regulate luteal function. Support for this theory is

provided by an apparent heterogeneity of immunostaining for IGF-I in the CL, which

may be dependent on the proximity of luteal cells to blood vessels, implying luteal

uptake of IGF-I (Amselgruber et al., 1994). In addition, there is evidence in extra-

ovarian tissues of IGF transport, whereby IGF peptides have been localised to

cellular sites within human foetal tissues which are distinct from the site of mRNA

expression (Hill et al., 1988), such that immunostaining reflects site of IGF binding

rather than production. Hence, although the IGF-I peptide is associated with luteal

cells (Amselgruber et al., 1994), these cells may not be the primary source of IGF-I

within the bovine CL. The relative importance of endocrine versus

autocrine/paracrine IGF-I stimulation in the CL remains to be determined.

Furthermore, the significance of high expression of IGF-I mRNA seen as radiating

lines within the CL remains unclear, though a similar pattern was described by Perks

et al. (1995) in the ovine CL. These cells may be endothelial in nature, although the

function and importance of IGF-I mRNA expression by cells lining a small number

of blood vessels in such a restricted pattern is unknown. Alternatively, the cells may

be steroidogenic luteal cells, and the expression pattern may be related to the

morphogenesis of the luteal lobules. Immune cells are also suggested sites of luteal

IGF-I expression (Perks et al., 1995).

The potential role of IGF-I during luteal regression also remains unclear. Einspanier

et al. (1990) demonstrated a reduction in IGF-I mRNA expression around the time of

natural luteolysis in the bovine CL, whilst induced luteolysis in the ewe (Juengel et



al., 1997) was not associated with any significant alteration in the expression of

mRNA encoding IGF-I up to 24 hours following the administration of PGF2a.

Furthermore, the expression of IGF-I mRNA was shown to be higher in the corpus

albicans than the CL of the ewe (Perks et al., 1995) and to double following

prostaglandin-induced luteal regression in the pregnant rat (Tamada et al., 1995).

The demonstration of a rapid decrease in IGF-I expression and content on days 18-21

of the cycle (Einspanier et al., 1990) suggests that bovine luteolysis is associated

with reduced IGF-I action. Since numerous stimulatory effects of IGF-I have been

shown in ovarian cells in vitro (Giudice, 1992; Spicer and Echternkamp, 1995), this

reduction of IGF-I expression in vivo might be expected to influence luteal function

both directly, and indirectly by modulating the trophic support of LH, so contributing

to the demise of the CL. In addition, decreased IGF-I and the subsequent abrogation

of type 1 IGF receptor activation may also influence apoptotic cascades. However,

studies to date have not addressed the potential of reduced IGF-I stimulation as a

proximal cause of luteal regression and cell death.

In the present study we observed maximal IGF-I mRNA expression 48 hours after

exogenous prostaglandin, at which time both functional and structural regressive

changes will have occurred (Juengel et al., 1993). As suggested in the ewe (Perks et

al., 1995) the high expression may be due to immune cell activity during the cellular

destruction and phagocytocis associated with structural luteal regression (Pate and

Townson, 1994; Penny et al., 1998). IGF-I is produced by immune cells (Baxter et

al., 1991; Rappolee et al., 1988), affects immunoregulation extensively (Renier et

al., 1996) and stimulates wound healing (Suh et al., 1992). Identification of the
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cellular source of IGF-I mRNA expression in the regressing CL will further our

understanding of the role of IGF-I in tissue remodelling.

The demonstration of local ovarian IGF-I mRNA production in previous studies has

favoured IGF-I rather than IGF-II as an autocrine/paracrine intra-luteal regulator. We

report here that the bovine CL is a site of high IGF-II mRNA expression, in

agreement with recent results from unstaged large bovine corpora lutea (Perks et al.,

1999). Although we were unable to detect any change in the level of IGF-II mRNA

expression throughout the luteal phase, the results highlight the importance of locally

produced IGF-II and suggest a major role in luteal function. It remains unclear

whether the balance of IGF-I to IGF-II has an important influence on luteal function

or if the growth factors serve different but crucial functions in different cell types.

The intense hybridisation for IGF-II mRNA in the luteal vasculature agrees spatially

with immunohistochemical observations (Amselgruber et al., 1994) which localised

IGF-II protein to perivascular cells. The site of IGF-II mRNA expression was not

fully determined in the present study. However, the hybridisation signal was not

limited to endothelial cells lining the vessels, and pericytes, fibroblasts or smooth

muscle cells may contribute to IGF-II mRNA expression. Whether the association of

IGF-II with blood vessels reflects a role for IGF-II in controlling angiogenesis, luteal

blood flow or interactions between vascular and steroidogenic cells requires further

investigation. Prior to this study, the interest in the potential role of IGFs in the CL

was based primarily on the ability of IGFs to stimulate luteal steroid biosynthesis.

However, for IGF-II in particular, additional functions and targets should now be

considered.
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The IGFs exert their effects by interacting with cell surface receptors. The type 1

IGF receptor is activated by both IGF-I and IGF-II binding. The presence of the type

1 IGF receptor within the bovine CL has been indicated by competitive binding

characteristics, as well as by the ability of IGF-I (and to a lesser degree IGF-II) to

modulate luteal function. The expression ofmRNA encoding the type 1 IGF receptor

throughout the lifespan of the CL therefore confirms and extends previous reports.

The spatial pattern of expression appears similar to that described in the ovine CL

(Perks et al., 1995). The lack of a temporal change in the pattern of expression is also

in agreement with the absence of alterations in receptor number observed previously

in the bovine CL (Sauerwein et al., 1992).

In addition to regulation at the level of gene expression, the IGFs are subject to

modulation by the specific binding of IGFBPs. IGFBPs control the bioactivity of

IGFs in a complex and incompletely understood manner, and can regulate the

bioavailability of IGFs and hence their interactions with IGF receptors. Future

studies of the complex interactions of IGFBPs with the IGFs and IGF receptors will

be necessary to further our understanding of the roles of IGF-I and IGF-II in

regulating bovine CL function.

In conclusion, the present study (i) describes the temporal and spatial patterns of

IGF-I, IGF-II and type 1 IGF receptor mRNA expression in the bovine CL

throughout the luteal phase, (ii) demonstrates that the bovine CL is a site of IGF

production and reception, and (iii) highlights the potential importance of IGF-II, in

addition to IGF-I, in bovine luteal function.
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Chapter 4. Expression of mRNA encoding insulin-like growth factor

binding protein -2, -3 and -4 in the bovine corpus luteum at defined

stages of the oestrous cycle

4.1 Summary

The insulin-like growth factors, IGF-I and -II, have important effects on luteal cells

in vitro, and the demonstration of luteal expression ofmRNA encoding IGF-I, IGF-II

and the type 1 IGF receptor in Chapter 3 is suggestive of paracrine/autocrine roles

for both IGF-I and IGF-II in the regulation of bovine luteal function. The actions of

IGF-I and IGF-II are modulated by association with members of a family of high

affinity IGFBPs, and to date the interaction of IGFs with IGFBPs has been shown to

attenuate the actions of IGFs on ovarian cells in vitro.

We have investigated the localisation ofmRNA encoding IGFBP-2, -3 and -4 using

in situ hybridisation to further determine the regulation of the IGFs within the bovine

CL at precise stages of the oestrous cycle. Luteal expression of mRNA encoding

IGFBP-2, -3 and —4 was detected throughout the oestrous cycle, and showed limited

temporal variation. Luteal expression of mRNA encoding IGFBP-2 and —4 was

predominantly low. In addition, a number of large blood vessels showed moderate to

intense hybridisation for IGFBP-2 mRNA. IGFBP-3 mRNA expression was also

associated with the luteal vasculature, and hybridisation was localised to cells lining

microvessels, suggestive of endothelial cell expression.

These data clearly demonstrate that the bovine CL is a site of IGFBP production and

hence IGF regulation throughout the luteal phase. In addition, this study highlights

the contribution of vascular expression of IGFBPs to bovine luteal function.
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4.2 Introduction

The actions of IGFs are modulated by binding to up to six high affinity IGFBPs

(Rechler and Clemmons, 1998). IGFBPs bind IGF-I and IGF-II with high affinity

and so regulate their access to IGF receptors. IGFBPs have been shown to

consistently block IGF-stimulation of ovarian cells. IGFBPs inhibit steroid

production (Mason et al., 1998; Spicer et al., 1997; Ui et al., 1989), and cell

proliferation (Bicsak et al., 1990), reduce ovulation rate and oocyte maturation

(Yoshimura et al., 1996), and induce apoptotic cell death (Chun et al., 1994).

However, in certain cases IGFBPs can potentiate IGF action (Conover et al., 1996).

IGFBP-2, -3 ,-4 and -5 have been detected in the follicular fluid of cattle, and

IGFBP concentrations vary with the stage of follicular development (Echternkamp et

al., 1994; Stewart et al., 1996). These changes are thought to regulate follicle

selection and dominance by altering IGF availability and follicular sensitivity to

gonadotrophins. Follicular fluid IGFBP concentrations are thought to be modulated

via changes in local production (Armstrong et al., 1998; Perks and Wathes, 1996),

changes in uptake from the plasma (Armstrong et al., 1996) or variable proteolysis

(Besnard et al., 1996, 1997).

IGFBPs have also been detected in both the CL and luteinised granulosa cells of

human and non-human primates (Fraser et al., 1998; Giudice et al, 1991), pig

(Gadsby et al., 1996; Samaras et al., 1992; Zhou et al., 1996,), rat (Erickson et al.,

1993, 1994; Nakatani et al., 1991) and sheep (Armstrong et al., 1996; Perks and

Wathes, 1996). In the cow, granulosa and theca cells in culture secrete IGFBPs

following luteinising stimuli (Sakal et al., 1992) and mRNA encoding IGFBP-2 and -

3 has been detected in luteal tissue (Kirby et al., 1996). Whilst marked species



variations have been shown to exist with regard to the expression of components of

the IGF system, evidence suggests that the IGFBPs could play important regulatory

roles in luteal function.

The work in this chapter aims to describe the temporal and spatial changes in

expression ofmRNA encoding IGFBP-2, -3 and -4 within the bovine CL throughout

the oestrous cycle.

4.3 Materials and Methods

4.3.1 Animals

The expression of mRNA encoding IGFBP-2, -3 and -4 was examined in the same

CL as described in section 3.3.1. In brief, CL were collected on day 5, 10 or 15

following oestrus synchronisation (n=3 per group), and 48 hours following PGF2a

administration (n=3).

4.3.2 RNA probes

A plasmid containing the bovine IGFBP-2 probe was a gift from Dr. M Lucy

(University of Missouri), and corresponds to positions 1084-1192 of a bovine

IGFBP-2 cDNA (Bourner et al., 1992). Homologous bovine IGFBP-3 and -4 probes

were prepared after reverse transcriptase PCR from total theca cell RNA (gifted by

Dr. DG Armstrong).

IGFBP-3 mRNA transcripts were amplified using a 21-mer upstream primer (5'-

ATTCCACCCCATCCACACCAA-3') and a 21-mer downstream primer (5'-

CACGTCCCCTTTCCCCTTCAC-3'). The amplified product (358 bp) corresponds

to position 611 to 968 of a bovine IGFBP-3 cDNA (Spratt et al., 1991). IGFBP-4

mRNA transcripts were amplified using a 21-mer upstream primer (5'-



ATCGAGGCCATCCAGGAAAGC-3') and a 21-mer downstream primer (5'-

CGCCCGGTGCAGCTCACTCTG-3'). The amplified product (228 bp) corresponds

to position 523 to 750 of a bovine IGFBP-4 cDNA (Moser et al., 1992).

Riboprobe specificity was tested by RNase protection assay (see section 2.12). The

protection of [32P]-labelled (Amersham Pharmacia Biotech) bovine IGFBP-3 and

IGFBP-4 riboprobes with total luteal and liver RNA (25 pg) is shown in the

appendix. A very weak protection of bovine IGFBP-2 was also detected in bovine

luteal RNA extracts (results not shown).

Isotopic antisense and sense RNA probes for in situ hybridisation were transcribed

from linearised cDNA templates using [35S]-UTP according to the protocol detailed

in section 2.10.

4.3.3 In situ hybridisation

Frozen sections (14 pm) of ovarian tissue were subjected to in situ hybridisation for

IGFBP-3 and IGFBP-4 as detailed in section 2.11. Additional paraffin sections were

utilised for IGFBP-2 (see section 2.11.1.2). Antisense RNA probes for IGFBP-2, -3

and -4 were each hybridised to two serial sections per corpus luteum or ovary. The

sense probe for each mRNA species was applied to a further serial section.

The intensity of the in situ hybridisation signal was quantified (see section 3.3.3),

and antisense signals were then compared to their respective sense (background)

signals.
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4.3.4 Statistical Analysis

The effect of stage of the oestrous cycle on mRNA concentration was determined by

a split-plot ANOVA (Genstat 5; Payne et al., 1993) using the hierarchical structure

previously described (see section 3.3.4).

4.4 Results

4.4.1 Expression of IGFBP-2 mRNA

Messenger RNA encoding IGFBP-2 was expressed in CL at all timepoints studied.

Luteal expression of IGFBP-2 was predominantly low. In several animals a more

intense punctate expression pattern was observed for IGFBP-2 mRNA (Figure 4.1a-

b). In addition, moderate to intense expression of mRNA encoding IGFBP-2 was

detected in large blood vessels within both the luteal and stromal tissue, and may be

localised to smooth muscle cells (Figure 4.1 d-f). Vascular expression was observed

to be heterogeneous, with some vessels appearing negative for IGFBP-2 adjacent to

those expressing IGFBP-2 mRNA. IGFBP-2 mRNA concentrations were not

significantly affected by day of the oestrous cycle (P >0.05).

4.4.2 Expression of IGFBP-3 mRNA

Messenger RNA encoding IGFBP-3 (Figure 4.2) was present in the CL at all

timepoints studied. Expression was predominantly localised to the vascular system,

and the strong expression by cells lining microvessels suggests that endothelial cells

are a probable site of expression. Quantitative analysis showed no significant effect

(P > 0.05) of day of the oestrous cycle on IGFBP-3 mRNA concentrations (Figure

4.4).
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4.4.3 Expression of IGFBP-4 mRNA

At all timepoints studied, CL expressed mRNA encoding IGFBP-4. The

hybridisation signal was diffuse and detected at moderate level. The pattern of

hybridisation is suggestive of steroidogenic cell expression (Figure 4.3). IGFBP-4

mRNA concentrations were similar throughout the oestrous cycle (P > 0.05).

4.5 Discussion

The present study describes the expression of mRNA encoding IGFBP-2, -3 and -4

during growth and regression of the bovine CL. Previous reports have demonstrated

that bovine theca and granulosa cells stimulated in culture to differentiate into luteal-

like cells secrete IGFBPs (Sakal et al., 1992) and bovine corpora lutea of the late

luteal phase (day 17) express mRNA encoding IGFBP-2 and -3 (Kirby et al., 1996).

The results presented here confirm that the CL of the cow is a local site of expression

ofmRNA encoding IGFBP-2, -3 and -4.

Messenger RNA encoding IGFBP-2 was detected at low levels within the CL

throughout the oestrous cycle. During the development of follicular dominance

IGFBP-2 concentrations in follicular fluid (Stewart et al., 1996) and IGFBP-2

mRNA expression were decreased (Armstrong et al., 1998). The low level of

expression demonstrated during the final stages of bovine follicular development was

maintained in the CL. IGFBP-2 mRNA expression has also been shown to persist at

low levels in the CL of the sheep (Perks and Wathes, 1996), pig (Gadsby et al., 1996;

Zhou et al., 1996) and rat (Erickson et al., 1994). In addition, the synthesis and

release of IGFBP-2 by human luteinising granulosa cells is inhibited by hCG
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Figure 4.1. Bovine ovarian sections (14 pm) were probed with an IGFBP-2
antisense (a-h) or sense (i and j) riboprobe, and the same fields of view are shown
under lightfield (a, c, e, g and i) and darkfield (b, d, f, h and j) illumination.
Localisation of mRNA encoding IGFBP-2 is shown in luteal tissue at low
magnification (a and b), and in a further corpus luteum at two different
magnifications (c-f). Follicular expression is shown in the granulosa cell layer of a
small follicle (g and h). The scale bar represents 100 pm (a, b, e, fi g, and h), and
200 pm (c, d, i and j ).G and T represent granulosa cells and theca cells respectively.
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Figure 4.2. Bovine ovarian sections (14 |xm) were probed with an IGFBP-3 antisense
(a-f) or sense (g and h) riboprobe, and the same fields of view are shown under
lightfield (a, c, e, and g) and darkfield (b, d, f, and h) illumination. Localisation of
mRNA encoding IGFBP-3 is shown in typical corpora lutea at three different
magnifications (a-f). The scale bar represents 100 pm (c and d) and 200 pm (a, b, e, f,
g, and h).
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Figure 4.3. Bovine ovarian sections (14 (am) were probed with an IGFBP-4 antisense
(a and b) or sense (c and d) riboprobe, and the same fields of view are shown under
lightfield (a and c) and darkfield (b and d) illumination. Localisation of mRNA
encoding the IGFBP-4 is shown in luteal tissue adjacent to a small follicle (a and b).
The scale bar represents 200 jam (a - d). G, T, and CL represent granulosa cells, theca
cells, and corpus luteum respectively.
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Figure 4.4

Quantitative analysis of IGFBP-3 mRNA concentrations in bovine luteal tissue on

days 5, 10 and 15 of the oestrous cycle, and 48 hours after PGF2a treatment (post

PG). There was no effect of stage of cycle on the concentration ofmRNA encoding
IGFBP-3 (P > 0.05). Bar represents pooled standard error of the difference (SED).

Messenger RNA concentration is expressed as the percentage of the total number of

pixels occupied by silver grains within a defined area. Hybridisation with an IGFBP-
3 sense probe gave an average background value of 4 units.
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(Cataldo et al., 1993). This low expression of IGFBP-2 mRNA is suggestive of a

limited role for this binding protein in luteal function.

IGFBP-2 expression was predominantly low throughout the whole CL, although a

more punctate pattern was observed in several animals. However, additional intense

hybridisation was observed associated with a small number of large blood vessels,

probably arterioles. Since this high concentration of IGFBP-2 mRNA was

heterogeneous, and not observed in all sections, it remains unclear whether such

expression is restricted to a certain size or type of vessel, or alternatively whether it

reflects a difference in expression between animals, or between stages of luteal

development. The association of IGFBP-2 with blood vessels has been shown

previously in other tissues. IGFBP-2 mRNA has been detected in bovine aortic

vascular smooth muscle cells, although at comparatively low levels (Boes et al.,

1996). Since IGF-I has been implicated in the regulation of vascular tone (Walsh et

al., 1996) the intense hybridisation suggests a role for IGFBP-2 in modulating

regional blood flow.

Bovine granulosa and theca cells in culture have previously been shown to secrete

IGFBPs, and luteinising stimuli caused a shift in this secretion to high molecular

weight binding proteins, putatively identified as IGFBP-3 (Sakal et al., 1992). The

present data confirm the local expression of IGFBP-3 mRNA within the bovine CL,

and demonstrate that IGFBP-3 mRNA is readily detectable within the corpus luteum

throughout the oestrous cycle.

IGFBP-3 mRNA was also detected in the ovine CL throughout the cycle. However,

in contrast to the present study, luteal IGFBP-3 mRNA concentrations were very low
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(Perks and Wathes, 1996). Studies in the pig have shown that IGFBP-3 mRNA was

abundantly expressed by the CL and was maintained at levels that display no stage-

dependant changes (Gadsby et al., 1996) until the onset of luteolysis when

expression was significantly decreased (Samaras et al., 1992). Similarly high

concentrations of IGFBP-3 mRNA were observed in the marmoset CL until the late

follicular phase when levels showed a marked decline (Fraser et al., 1998).

Additionally, mRNA encoding IGFBP-3 was detected at high levels during the early

luteal phase in the human CL, and was significantly reduced during the mid- and

late-luteal phase (Fraser et al., 2000). The rat exhibited a different temporal pattern

of luteal IGFBP-3 expression. In situ hybridisation has shown that IGFBP-3 mRNA

was absent from newly formed CL, became detectable with continuing luteal

development and was most abundant during luteolysis (Erickson et al., 1993). Whilst

luteolysis was associated with an upregulation of IGFBP-3 mRNA concentrations in

the rat, the absence of any increase of IGFBP-3 mRNA following prostaglandin-

induced luteolysis suggests this is not the case in the cow CL. Indeed the presence of

IGFBP-3 mRNA from early in the luteal phase is more suggestive of a role in CL

formation and function rather than regression.

IGFBP-3 mRNA was distributed throughout the entire structure of the bovine CL.

The hybridisation signal was particularly intense in cells associated with blood

vessels, and based on the intensity of hybridisation signal lining microvessels,

endothelial cells are a probable site of IGFBP-3 mRNA expression. Where cellular

identification has been possible in other studies this spatial pattern of expression

seems well conserved between species, despite marked temporal differences in the

expression of IGFBP-3 mRNA. In the rat IGFBP-3 mRNA was detected throughout
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the CL (Nakatani et al., 1991) predominantly localised to endothelial cells, some

perivascular cells and for a short period during luteolysis granulosa and theca lutein

cells (Erickson et al., 1993). In the porcine CL following dissociation and elutriation,

IGFBP-3 mRNA was enriched in the small-cell fraction which contains endothelial

cells (Gadsby et al., 1996). Vascular cells of the human and non-human primate CL

also showed the most intense localisation of IGFBP-3 mRNA (Fraser et al., 1998,

2000). Whilst the temporal pattern of expression of IGFBP-3 in the rat suggests a

role for vascular IGFBP-3 in luteal regression, the presence of IGFBP-3 mRNA from

early in luteinization through the functional lifespan of the CL in the cow, pig,

human and monkey is more suggestive of actions in angiogenesis. An important role

for vascular IGFBP-3 in other reproductive tissues has also been suggested. In the

bovine uterus during pregnancy IGFBP-3 mRNA was detected in vascular

endothelial cells of the myometrium (Keller et al., 1998).

Whilst IGFBP-3 is the most abundant IGFBP in serum (Clemmons, 1997) and the

predominant IGFBP in the follicular fluid of pre-ovulatory follicles (Funston et al.,

1996), mRNA encoding IGFBP-3 has only been detected at low levels and does not

increase with follicular development (Yuan et al., 1998). This lack of follicular

IGFBP-3 expression is in sharp contrast to the detection of luteal IGFBP-3

expression. Since IGFBP-3 mRNA was detected in the bovine CL early in the luteal

phase we hypothesise that it plays an important role in luteinisation. The earliest

timepoint in the present study was day 5 of the luteal phase. It remains to be

established how early in luteal development IGFBP-3 mRNA expression was

upregulated.
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Messenger RNA encoding IGFBP-4 was detected within the bovine CL throughout

the oestrous cycle. This is the first report of IGFBP-4 expression within the luteal

tissue of the cow to our knowledge. IGFBP-4 mRNA has been detected in the CL of

the pig (Zhou et al., 1996), where it was determined to be the most abundant IGFBP

(Gadsby et al., 1996) and the sheep (Perks and Wathes, 1996), where expression

levels were low by contrast. An IGFBP putatively identified as IGFBP-4 was also

present in culture medium conditioned by human luteinising granulosa cells (Cataldo

et al., 1993). An association of IGFBP-4 with luteal formation and function was also

suggested by increased IGFBP-4 production and mRNA expression following the

addition of a luteinizing dose of LH to ovine and bovine theca cell cultures

(Armstrong et al., 1996, 1998).

IGFBP-4 mRNA was detected throughout the bovine CL, and did not appear to be

associated with major structural components such as blood vessels. Whilst the

identification of the cellular site of expression was limited by low resolution, the

diffuse pattern is suggestive of steroidogenic cell expression of IGFBP-4 mRNA. In

the bovine follicle mRNA encoding IGFBP-4 was localised in the theca cell layer

(Armstrong et al., 1998). However, it remains to be established whether luteal

IGFBP-4 expression is predominantly localised to large or small luteal cells.

Whilst IGFBPs have been shown to potentiate IGF-stimulation in certain cases

(Conover et al., 1996), IGFBPs inhibit the actions of IGFs on ovarian cells in

culture. Therefore it is unclear why mRNA encoding any IGFBP should be

synthesised throughout the functional lifespan of the corpus luteum. However, the

present study details changes in local IGFBP mRNA concentration and additional
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post-transcriptional events may serve to vary the final IGFBP protein concentration

and hence the regulation of IGFs during the luteal phase.

The actions of IGFs are regulated in part by the relative abundance of IGFBPs, since

the high affinity binding of IGFBPs for IGF-I and IGF-II prevents ligand-receptor

interactions. In addition to regulation of the IGFs:IGFBPs ratio, IGFBPs can undergo

post-synthetic modification. The affinities of IGFBPs for IGFs can be significantly

lowered by variable proteolytic cleavage, phosphorylation and binding to cell

surfaces or extracellular matrix in ways that may lead to the potentiation of IGF

actions (Clemmons, 1997). It is unknown whether such changes modulate luteal

IGFBP function.

IGFBP proteases have been identified in a variety of physiological and pathological

conditions (Fowlkes, 1997; Rajaram et al., 1997). IGFBP-degrading activity has

been identified in human (Chandrasekhar et al., 1995), porcine (Besnard et al.,

1997), ovine (Besnard et al., 1996) and bovine (Chandrasekhar et al., 1996)

follicular fluid. IGFBP-specific proteolytic activity has also been detected in human

and rat granulosa cell conditioned media (Iwashita et al., 1998; Liu et al, 1993), and

bovine theca cell conditioned media (Nicholas et al., 2000). Whilst protease activity

has been correlated with follicular growth and development, the possible role of

IGFBP proteases in regulating luteal function has not been investigated. Our

understanding of the roles of IGFBPs in luteal function is further complicated by the

possibility that IGFBPs can exert IGF-independent inhibitory effects on target cell

growth and DNA synthesis. However, it remains to be determined how widespread

these effects may be (Rechler, 1997).
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In conclusion, the present study (i) describes the temporal and spatial patterns of

IGFBP-2, -3 and -4 mRNA expression in the bovine corpus luteum throughout the

luteal phase, (ii) demonstrates that the bovine CL is a site of IGF regulation and (iii)

highlights the potential importance of vascular expression of IGFBPs in bovine luteal

function.
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Chapter 5. Follicular response to an ovulatory challenge of GnRH in

the early luteal phase.

5.1 Summary

The CL is essential for the establishment and maintenance of pregnancy, and luteal

insufficiency is therefore a major contributor to infertility. Measures to reduce

reproductive wastage have included supplemental progesterone regimes to augment

inadequate luteal function. One strategy to improve endogenous progesterone

concentrations is via the induction of accessory corpora lutea.

The oestrous cycles ofmature dairy cows were synchronised and follicular dynamics

observed by ultrasonography. Administration ofGnRH on day 6 caused ovulation of

the dominant follicle of the first wave and formation of a secondary luteinized

structure. There was a trend for plasma progesterone concentrations to be increased

in animals treated with GnRH when compared to control animals, although no

significant effect was detected on day 14. The GnRH-induced CL has been shown

previously to have limited progesterone secreting capacity. The luteal insufficiency

observed following GnRH administration may be the result of sub-optimal follicular

development, inadequate luteotrophic support or premature luteolytic stimuli.
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5.2 Introduction

The CL is essential for the establishment and maintenance of pregnancy. Inadequate

or abnormal luteal function therefore has significant implications for fertility. Indeed,

insufficient progesterone levels have been associated with early embryo loss (Mann

et al., 1999), which accounts for the majority of reproductive wastage, with the

greatest losses occurring within 20 days of fertilisation (Sreenan and Diskin, 1983).

Cows in which pregnancy failed had significantly lower milk progesterone

concentrations on day 6 and between days 12 and 15 after mating, when compared

with pregnant cows (Mann et al., 1999). In addition, pregnancy failure has been

associated with delayed increases in post-ovulatory concentrations of progesterone

(Lamming and Darwash, 1995). These results suggest that progesterone

concentrations critically regulate early embryo growth and survival. In contrast,

others have failed to demonstrate a positive relationship between pregnancy outcome

and peripheral progesterone concentrations (Hasler et al., 1980).

Measures to improve reproductive efficiency have included the use of exogenous

progesterone supplementation (Robinson et al., 1989), and the administration of

human chorionic gonadotropin (hCG) (Breuel et al., 1990) or GnRH (Lewis et al.,

1990), the rationale being that increased peripheral progesterone would support

embryo survival, until such time as the corpus luteum could be maintained through

the embryo's own luteotrophic and/ or anti-luteolytic effects (Sreenan and Diskin,

1983). This assumes that supplemental therapy is additive to endogenous

progesterone, although there is evidence to suggest that whilst supplemental

progesterone increases plasma progesterone concentrations it also decreases

endogenous luteal progesterone production (Robinson et al., 1989). However, these
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methods have had some success, although they have not consistently improved

pregnancy rates (Robinson et al., 1989; Sreenan and Diskin, 1983).

It has been postulated that the most efficient means to augment endogenous

progesterone production is via the induction of accessory corpora lutea

(Rajamahendran and Siangama, 1992). The induction of a second CL is expected to

increase plasma progesterone levels, despite the lack of significant difference in

progesterone between animals displaying single or twin ovulations (Morris et al.,

1987). The induction of accessory CL formation should coincide ideally with the

presence of large follicles on the ovary. The bovine oestrous cycle is characterised

by waves of follicular growth and development, as demonstrated by peaks of

oestradiol secretion and daily ultrasound observations. Large luteal-phase follicles,

whilst destined not to spontaneously ovulate are responsive to gonadotrophin

stimulation and oestrogen-active (Ireland and Roche, 1983a). Large follicles respond

to hCG and GnRH treatment with ovulation, and produce a secondary luteinized

structure (Fricke et al., 1993; Price and Webb, 1989; Rajamahenran and Sianangama,

1992; Schmitt et al., 1996a, 1996b). Large follicles were most responsive to

exogenous hCG during the early luteal phase (days 4-7) (Price and Webb, 1989), at

which time the large follicle of the first wave displays increased LH-binding (Ireland

and Roche, 1983b).

The luteinized structure formed in response to a second gonadotrophin surge has

been characterised and treatment with either hCG or GnRH induces a functional CL.

However, peripheral progesterone concentrations were markedly higher in hCG

treated animals, when compared to those induced to ovulate with GnRH-agonist

(Schmitt et al., 1996a, 1996b). In addition, GnRH agonist-induced CL displayed
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reduced LH-stimulated progesterone secretion in vitro (Schmitt et al., 1996a). The

formation of a CL with reduced steroidogenic capacity following the administration

of GnRH was demonstrated both in vivo and in vitro (Rusbridge, 1993). Serum

progesterone levels produced by the GnRH-induced CL following removal of the

original CL failed to reach those following spontaneous ovulation, whilst in culture,

cells of the induced CL displayed reduced cAMP-stimulated progesterone secretion

(Rusbridge, 1993).

IGF-I and -II have been shown to have numerous stimulatory effects on ovarian

steroidogenesis. We hypothesised, therefore, that the reduction in steroidogenic

capacity shown by the GnRH-indueed CL could be due to a disruption of the

expression of the local IGF system in the CL. This chapter describes the production

of accessory CL in response to GnRH treatment in the early luteal phase (day six),

and the following chapter describes the effect of GnRH-administration on the luteal

IGF system.

5.3 Materials and Methods

5.3.1 Animals

All animals were Friesian/Holstein crossbred cows, aged between 3 and 8 years,

housed at the Roslin Institute Farm at Blythbank. Cows were housed in covered

courts with straw bedding. Water was available ad libitum and cows were fed a

maintenance diet. All experiments were carried out in accordance with the 1986 UK

Animals (Scientific Procedures) Act.
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5.3.2 Procedures

The experimental protocol is illustrated in Figure 5.1. The oestrous cycles of

fourteen mature dairy cows were synchronised by intravaginal progesterone release

(PRID; 1.55g P4, lOmg oestradiol benzoate; Sanofi Animal Health Ltd) over 9 days.

Luteolysis was induced by PGF2a analogue (Estrumate; 500 pg; Coopers Animal

Health Ltd) administered i.m on the day of PRID removal. Oestrous behaviour was

monitored by daily observation, together with the use of heat detection devices

(Heatmount Detectors, Kamar Inc). Oestrus was expected to have occurred within 48

hours of progesterone withdrawal, and ovulation was confirmed by ultrasound

scanning. Ovarian dynamics were monitored by daily rectal ultrasound scanning

using a real-time B-mode ultrasound scanner (Echo Camera SSD-220 DX II, Aloka

Company Ltd) equipped with a 7.5 MHz intrarectal probe. Scans were recorded on

videotape, and ovarian structures mapped. Six days after the synchronised oestrus

(oestrus = Day 0) cows received 0.5 mg synthetic GnRH (Fertagyl, Intervet

Laboratories Ltd) by i.m injection, and daily ultrasonography was continued until

slaughter 5 or 10 days later. Blood samples (10ml) were taken by jugular or

coccygeal venepuncture into tubes containing lOOpl of sodium citrate (0.35 g/ml),

from haltered and restrained animals at the time of scanning. All blood samples were

centrifuged (lOOOg), and plasma separated and frozen at -20°C until assayed for

progesterone (see section 2.13).
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Figure 5.1

Oestrous cycles were synchronised by intravaginal progesterone release and i.m

PGF2a. Ultrasonography and blood sampling were performed daily from the expected

day of oestrus (Day 0). GnRH analogue was administered on day 6 to cause

ovulation of the first wave dominant follicle and the formation of a GnRH-induced

CL. Cows were slaughtered on day 10 or day 15 and the spontaneous CL and GnRH-

induced CL from each pair of ovaries collected.
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Peripheral progesterone concentrations were compared between control animals

following oestrous synchronisation (see section 3.3.1) and animals induced to

ovulate in response to GnRH administration and form a second CL. Samples were

assayed in two assays. The mean sensitivity was 0.26 ng/ml. The intra- and inter-

assay coefficients of variation were 8.1% and 9.1% respectively. The effect of GnRH

treatment on progesterone concentrations on day 14 of the control and GnRH-treated

cycles (9 days post-GnRH) was analysed using an unpaired Student's t-test.

5.3.3 Tissue collection

Ovaries were collected at slaughter, and photographed in pairs from each cow

(Figure 5.2). Corpora lutea were excised, divided and frozen in liquid nitrogen within

20mins of slaughter, and stored at -80°C prior to cryostat sectioning or RNA

extraction.

5.3.4 In situ hybridisation

In situ hybridisation was performed to detect the expression ofmRNA encoding the

LH receptor and cytochrome P450arom in CL from GnRH-treated animals, and

similar-aged control CL from the synchronised cycle (see section 3.3.1). Ovarian

tissue collected for follicular expression studies (Armstrong et al., 1998) was also

subjected to in situ hybridisation.

[35S]-UTP-labelled riboprobes were generated from templates kindly gifted by

Professor A. Garverick (University of Missouri) (Xu et al., 1995b, 1995c) using the

transcription protocol described previously (see section 2.10). The 730-bp LH

receptor riboprobe encodes a portion of the extracellular domain of the ovine LH

receptor, and corresponds to positions 193-922 of porcine (p) and human (h) LH



1 cm

Figure 5.2 Pairs of ovaries were collected 4 days (a) and 9 days (b-d) after GnRH
administration. Ovulation was induced both on the ovary ipsilateral (c) and contralateral
(a, b, d) to the ovary bearing the spontaneous CL. In one animal (041) ovaries were found
to bear a spontaneous CL, a GnRH-induced CL and a large follicular cyst (d).
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receptor (LHr) cds (EMBL id: pLHr - SSLHHCGA; hLHr - HSLHHCGR) (Loosfelt

et al., 1989; Minegish et al, 1990). The 579-bp aromatase riboprobe corresponds to

positions 139-718 of human P450arom cDNA (EMBL id: HSARMA) (Harada,

1988).

Antisense RNA probes for LH receptor and cytochrome P450arom were each

hybridised to two serial sections per corpus luteum or ovary. The sense probe for

each mRNA species was applied to a further serial section. The intensity of the in

situ hybridisation signal was quantified (see section 3.3.3), and antisense signals

were then compared to their respective sense (background) signals.

The effect of GnRH administration on LH receptor mRNA concentration was

determined by a split-plot ANOVA (Genstat 5; Payne et al., 1993), using the

blocking factor cow/ slide/ replicate as previously described (see section 3.3.4).

5.4 Results

5.4.1 Ovarian observations

One animal had an ossification of the left ovary following oestrous synchronisation

and was removed from the experiment. The remaining 13 animals used for this study

all displayed three waves of follicular growth and development. Ultrasound

observations confirmed the presence of a large preovulatory follicle following PRID

withdrawal, which was subsequently replaced by a "spontaneous" CL. The

emergence of a large follicle from the first wave of follicle growth was observed

following synchronised oestrus. Ultrasonography confirmed ovulation and the

presence of an "induced" accessory CL in the GnRH responders following GnRH

treatment (Figure 5.3a). All 13 animals formed an additional CL. However, in two
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animals the second ovulation was not due to ovulation of the largest follicle present

at GnRH injection. The time from GnRH injection to the appearance of a newly

formed CL was markedly extended (5 days and 4 days) in these animals, and there

was no clear ovulation of a dominant follicle. In one of these late-responding

animals, the large follicle present at GnRH administration failed to ovulate, and

became cystic reaching a maximum diameter of 25mm: this animal was not included

in further experimental analysis (Figure 5.4). Ovulation occurred in the remaining 11

animals within 48 hours. It is of note that the largest follicles present in the ovaries of

both late responding animals were under 9mm in diameter at the time of GnRH

administration. Among all 13 cows, the large follicle at the time of GnRH

administration ranged from 8-19mm, with a mean diameter of 13.7mm. A bolus of

GnRH induced single ovulations in all animals, and led to the formation of accessory

CL contralateral (n=6) or ipsilateral (n=6) to the spontaneous CL. The dynamics of

medium-sized follicle development was also recorded by ultrasonography, and a

reduction in medium follicle number was observed which was associated with the

acquisition of dominance of the large follicle in each wave (Figure 5.3b).

5.4.2 Plasma progesterone concentrations

No difference in plasma progesterone concentration was observed between control

animals and animals treated with GnRH in the period prior to GnRH administration.

Profiles of progesterone concentrations were unaffected by GnRH treatment until

day 14, when there was a tendency for progesterone concentrations in the GnRH

treated animals to be higher than control levels (Figure 5.5). However, no significant

effect of treatment on day 14 was detected by the Student's t-test (P = 0.12).
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Days after spontaneous ovulation

Figure 5.3

Follicle dynamics of GnRH responders as assessed by ultrasonography.
Growth profile of the largest follicle (a) and changes in the number of
medium-sized follicles (b). Mean values ± SEM.
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Figure 5.4

Ultrasound assessment of follicle dynamics in animal 041, which developed
a follicular cyst. Growth profile of largest follicle (a) and changes in the
number ofmedium-sized follicles (b).
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Days after spontaneous ovulation

Figure 5.5

Plasma progesterone concentrations before and after administration of
GnRH (day 6). Mean values ± SEM.



5.4.3 In situ hybridisation

Messenger RNA encoding P450arom was detected in sections of bovine follicular

tissue, and was localised to granulosa cells. Expression of mRNA encoding

P450arom was absent from CL of the control cycle and CL induced by GnRH

treatment.

Messenger RNA encoding the LH receptor was detected in the GnRH-induced

corpora lutea. LH receptor mRNA levels in GnRH-induced corpora lutea were not

significantly reduced (P > 0.05) when compared to spontaneous corpora lutea of

similar age.
< i

5.5 Discussion

This study has confirmed that the administration of GnRH on day 6 of the oestrous

cycle results in ovulation of the dominant follicle of the first wave, and the

subsequent formation of a secondary luteinized structure in >80% of animals.

Previous studies in our laboratory have demonstrated that following the removal of

the spontaneous CL, the luteinized structure formed in response to a second surge

release of LH begins to secrete progesterone in vivo. However, its steroidogenic

activity falls markedly below that of a spontaneously formed CL of a similar age. In

addition, the induced CL has a shortened lifespan, with progesterone concentrations

falling below 1 ng/ml within 10 days ofGnRH administration (Rusbridge, 1993).

Abnormal luteal function may be the result of one or more of the following

generalised effects: 1) sub-optimal follicular development, 2) inadequate luteotrophic

support or 3) premature luteolytic stimuli.
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5.5.1 Sub-optimal follicular development

Whilst the early stages of folliculogenesis are gonadotrophin-independent, FSH and

LH are the primary regulators of the final maturation and development of antral

follicles. FSH is required for the growth of follicles up to 9mm, whilst pulsatile LH

is essential for continued growth (Gong et ah, 1996a, 1996c). The period of

ovulatory follicle selection is characterised by low progesterone concentrations,

decreasing FSH support and high frequency-low amplitude LH pulses prior to the

LH surge (Campbell et ah, 1999; Scaramuzzi et ah, 1993). Following ovulation, the

dominant follicle of the first wave develops in a very different hormonal

environment, which may not provide the follicle with sufficient stimulation in

preparation for subsequent luteal function. Indeed in the ewe, premature induction of

ovulation resulted in luteal phase insufficiency, suggestive of a lack of suitable

follicular maturation (Murdoch et ah, 1983). The first wave dominant follicle is

exposed to increasing progesterone concentrations produced by the developing

spontaneous CL, and studies using exogenous progesterone supplementation in the

early luteal phase significantly reduced the growth rate and size of the first dominant

follicle in cattle (Adams et ah, 1992; Burke et ah, 1994), demonstrating the potential

for progesterone to be inhibitory to follicle development. This suppressive effect may

be the result of the negative feedback of progesterone on the frequency of release of

LH pulses by the pituitary gland (Bergfeld et ah, 1995), as the abolition of

preovulatory LH pulses has been shown to limit CL development (Quintal-Franco et

ah, 1999).

Short-lived CL are often observed following reproductive quiescence in cows and

sheep (Braden et ah, 1989a; Keisler et ah, 1983; Knight et ah, 1981; Lamming et ah,
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1981) and it has been suggested that this naturally occuring reduction in luteal

lifespan may also be partly the result of altered follicular development (Garverick et

al., 1992; Hunter, 1991). Indeed, developing follicles expected to form short-lived

CL post-partum were shown to have fewer gonadotrophin receptors and lower

follicular fluid oestradiol concentrations than preovulatory follicles of normally

cycling cows (Braden et al., 1989b).

No comparison of the steroidogenic capacity of the ovulatory and anovulatory

follicles was made in the present study. However, the mean diameter of the largest

follicle present at GnRH administration was lower than that preceding spontaneous

ovulation, suggesting that progesterone production by the spontaneous CL may have

had an inhibitory effect on subsequent follicle waves.

5.5.2 Inadequate gonadotrophic support

Corpus luteum formation is a complex process involving tightly co-ordinated

changes in cellular form and function (Smith et al., 1994c). The primary drive for

luteinization is the preovulatory LH surge, and sustained luteotrophic support in the

form of LH pulses post-ovulation are required for both structural and functional

luteal development (Quintal-Franco et al., 1999). It is clear therefore that alterations

in LH stimulation have the potential to disrupt CL function greatly. However, despite

the requirement of LH for normal luteal development and function, there is little

evidence to suggest that naturally occurring short-lived CL are the result of reduced

luteotrophic support (Garverick et al., 1992; Hunter, 1991) Indeed, premature

luteolysis is thought to be the primary cause of an inadequate luteal phase (Hunter,

1991). Gonadotropic stimulation was not significantly different between post-partum
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cows having short or normal oestrous cycles (Garverick et al., 1988), and repeated

injections of hCG failed to decrease the incidence of short cycles in cows following

prolonged postpartum anoestrous (Carruthers et al., 1986).

Whilst luteotrophic support was not reduced in short-lived CL, abnormal luteal

function might result from a lack of sensitivity to LH. However, besides receiving

the same LH stimulation, short-lived and normal CL in the early luteal phase had

similar numbers of LH receptors (Rutter et al., 1985), and adenylate cyclase and

phosphodiesterase activities were not different (Smith et al., 1986). However, day 7

corpora lutea expected to have a short lifespan were less responsive to LH in vitro

than cyclic CL (Kesler et al., 1981) and short-lived CL had significantly reduced LH

receptor mRNA on day 8 (Smith et al., 1996).

In the present study induced CL did not exhibit significantly reduced LH receptor

mRNA levels when compared to spontaneous CL of similar age. Indeed, Rusbridge

(1993) demonstrated that the GnRH-induced CL had increased LH receptor numbers,

suggesting that the limited function of the GnRH-induced CL was not caused by a

lack of LH reception. However, GnRH-induced CL had a reduced response to

cAMP-stimulation in vitro, suggesting that alterations downstream of the LH

receptor may serve to limit the response to LH stimulation.

The transition from follicle to CL following the LH surge is characterised by

increased progesterone production. In the bovine CL this is also accompanied by a

decrease in oestradiol secretion, resulting from decreased cytochrome P450arom and

P450cl7 mRNA levels and enzyme content (Rodgers et al., 1986b, 1987; Voss and

Fortune, 1993). Whilst it has been suggested that GnRH-induced ovulation of the
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first-wave dominant follicle might not allow sufficient follicle maturation, and that

the normal transition from the follicular to the luteal phase might be disrupted, the

results of the present study indicate that cytochrome P450arom mRNA expression

was similar in the GnRH-induced CL and the spontaneous CL.

5.5.3 Premature luteolytic stimuli

There is considerable evidence to suggest that naturally occurring CL displaying a

short lifespan are not pre-programmed to be short-lived, but regress prematurely in

response to an early luteolytic stimuli. Prevention of the luteolytic signal by

hysterectomy, indomethacin infusion and immunisation against PGF2a extended the

lifespan of CL anticipated to be short-lived (Copelin et al., 1987, 1989; Troxel and

Kesler, 1984). In further support of advanced secretion of PGF2a, short luteal phases

have been correlated with increased PGFM and endometrial oxytocin binding sites

when compared to normal corpora lutea (Hunter, 1991; Hunter et al., 1989).

In the studies by Rusbridge which established the GnRH-induced CL model

(Rusbridge, 1993), prostaglandin was administered on day 9 after oestrus (day 3 of

the induced cycle) to cause regression of the spontaneous CL. At this time the

spontaneous CL was sensitive to the luteolytic signal, whilst the GnRH-induced CL

did not undergo luteolysis. The lack of responsiveness of the 3 day old induced CL to

prostaglandin treatment is in agreement with data from the natural cycle, where

corpora lutea acquire sensitivity to PGF2ct after day 5 of the oestrous cycle. This

suggests therefore that the GnRH-induced CL does not develop sensitivity to

prostaglandin in advance of normal CL. In contrast, others have shown that CL
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induced with hCG on day 10 undergo luteolysis following exogenous PGF2a

administered within 2 days of ovulation (Howard and Britt, 1990).

To further examine the development of the luteolytic response in animals with

induced CL, heifers were subjected to an oxytocin challenge 7 days post-GnRH.

Administration of oxytocin resulted in a PGFM response which was of similar

magnitude to that of control animals, and it was concluded that there was no

alteration in uterine secretory responsiveness that might account for the short luteal

phase observed following GnRH-induced ovulation (Rusbridge, 1993). Prostaglandin

was released in response to oxytocin despite the low levels of progesterone produced

by the GnRH-induced CL. However, the uterus had previously been exposed to

progesterone produced by the spontaneous CL, which would be expected to have

contributed to uterine priming.

The results of Rusbridge demonstrated that animals bearing a GnRH-induced CL

were able to respond to an oxytocin challenge with a PGFM response within the

normal range. Whilst this suggests that there was no increase in uterine sensitivity to

oxytocin, it does not preclude the possibility of raised endogenous PGF2a

concentrations. Intrauterine indomethacin infusion was used to determine the effect

of prostaglandin-suppression on the development and function of hCG-induced CL

(Sianangama and Rajamahendran, 1996). Indomethacin treatment prevented pulsatile

PGFM secretion, but did not enhance the growth of the induced CL. Progesterone

production was significantly increased during the infusion period, but PG-

suppression was unable to elevate progesterone concentrations beyond levels

observed in control cows during the early luteal phase. The authors concluded that

whilst endogenous prostaglandin may have contributed to the limited secretory
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function of the hCG-induced CL, the luteal inadequacy could not be wholly

attributed to the luteolysin PGF2ct (Sianangama and Rajamahendran, 1996). However,

whilst indomethacin reduces luteolytic prostaglandins, it is not specific for PGF2a and

also reduces luteotrophic prostaglandins.

In summary, early embryonic death accounts for a major proportion of reproductive

wastage, and evidence suggests that luteal dysfunction contributes significantly to

infertility. Progesterone supplementation has been proposed as a possible corrective

measure and one possible route is via the induction of accessory corpora lutea. The

present study confirms that administration of GnRH to cows in the early luteal phase

induces ovulation of the first wave dominant follicle and formation of an induced

CL, and plasma concentrations of progesterone were increased in the presence of a

GnRH-induced CL. However, previous studies have demonstrated that the

contribution of the induced CL to progesterone production is limited. The inadequate

function of the GnRH-induced CL may be the result of a number of factors including

sub-optimal follicular development, inadequate luteotrophic support or premature

luteolytic stimuli. Messenger RNA encoding LH receptor was not reduced in the

present study, suggesting that the induced CL did not lack luteotrophic support.

However, LH responsiveness may be altered downstream of the LH receptor as

suggested by the reduced response of cells from the induced CL to cAMP

stimulation in vitro (Rusbridge, 1993). Previous suggestion of aberrant luteal

oestradiol production are not supported by the present study, since mRNA encoding

P450arom was undetectable in the GnRH-induced CL. There is substantial evidence

to suggest that inadequate luteal function occurring naturally often results from

premature induction of luteolysis, although others have suggested that luteal
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inadequacy is not wholly attributable to the actions of PGF2a. Whilst the

development of the CL induced in response to GnRH is likely to be markedly

different from that of naturally occurring inadequate corpora lutea, the possible

causes of its limited function warrant future study.
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Chapter 6. Effect of GnRH administration in the early luteal phase

on the IGF system in the bovine corpus luteum

6.1 Summary

The administration of GnRH to cattle on day 6 causes ovulation of the first wave

dominant follicle and formation of an additional corpus luteum. This GnRH-induced

CL has been characterized and displays reduced steroidogenic capacity. Studies in

vitro have demonstrated that IGF-I and -II regulate many aspects of ovarian

function, including steroidogenesis. We have tested the hypothesis that diminished

IGF stimulation may contribute to the limited function of the GnRH-induced CL.

In situ hybridization has demonstrated that mRNA encoding IGF-I, IGF-II, the type 1

IGF receptor and IGFBP-2, -3 and -4 were expressed within the GnRH-induced CL.

The spatial patterns ofmRNA expression were not different between GnRH-induced

and control corpora lutea. In contrast however, significant differences were detected

in mRNA concentrations following GnRH-administration in both the induced CL

and the original CL present on the ovary at the time of treatment compared to control

CL levels. The concentration of type 1 IGF receptor mRNA was significantly

decreased in the GnRH-induced CL when compared to early luteal phase control, and

there was a trend for increased IGFBP-3 mRNA concentrations in the GnRH-induced

CL when compared to day 10 control CL. These changes are expected to reduce both

the bioavailability and bioactivity of IGF-I and IGF-II in the GnRH-induced CL, thus

compromising the response to luteotrophic support. This may in part explain the

limited steroidogenic function of CL induced by the administration of GnRH in the

early luteal phase.
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6.2 Introduction

IGF-I and IGF-II are important regulators of ovarian steroidogenesis. IGF-

stimulation of luteal cells in vitro increases progesterone release in a number of

species (Constantino et al., 1991; Devoto et al., 1995; Khan-Dawood et al., 1994;

McArdle and Holtorf, 1989; Talavera and Menon, 1991; Yuan and Lucy, 1996a),

resulting from multiple effects on the steroidogenic pathway. IGFs augment sterol

uptake and utilisation (Veldhuis, 1989), transport of steroid precursors to

mitochondria (Balasubramanian et al., 1997), and the subsequent enzymatic

conversion of cholesterol to pregnenolone, and of pregnenolone to progesterone

(deMoura et al., 1997). The in vitro results suggest therefore that the IGFs have great

potential to regulate luteal progesterone production in vivo.

The first-wave dominant follicle can be induced to ovulate in response to a second

surge release of LH and subsequently form a secondary luteinized structure (Fricke

et al., 1993; Price and Webb, 1989; Rajamahenran and Sianangama, 1992;

Rusbridge, 1993; Schmitt et al., 1996a, 1996b; see chapter 5). However, whilst

corpora lutea formed following GnRH administration in the early luteal phase (day

6) begin to secrete progesterone, peripheral progesterone concentrations fall below

those produced by spontaneously formed CL of a similar age (Rusbridge, 1993).

We hypothesise that the subnormal steroidogenic function of the GnRH-induced CL

is the result of changes in the luteal IGF system, resulting in reduced IGF

bioavailability and /or bioactivity and hence diminished local IGF-stimulation of

luteal function.
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6.3 Materials and Methods

6.3.1 Tissue collection

6.3.1.1 GnRH-treated animals

Secondary corpora lutea were induced by early luteal phase GnRH administration, as

detailed in section 5.3.2. In brief, the oestrous cycles of mature dairy cows were

synchronised by intravaginal progesterone release (PRIDs) and PGF2a analogue

(Estrumate) injection. On day 6 after oestrus cows received 0.5mg synthetic GnRH

(Fertagyl) to induce ovulation of the first-wave dominant follicle and formation of a

second corpus luteum. Pairs of ovaries were collected on either day 10 or day 15 of

the oestrous cycle (Figure 5.1), and both the GnRH-induced and spontaneously

formed CL within each pair were processed for in situ hybridisation using frozen

sections.

6.3.1.2 Control animals

The oestrous cycles ofmature dairy cows were synchronised using PRIDs and PGF2a

analogue injection (see section 3.3.1). Corpora lutea collected on day 5, 10 and 15

after oestrus were studied.

6.3.2 In situ hybridisation

In situ hybridisation (see section 2.11) was performed to detect the expression of

mRNA encoding IGF-I, IGF-II, the type 1 IGF receptor and IGFBP-2, -3 and -4 in

frozen sections of luteal tissue (14pm). Antisense and sense riboprobes were

generated using a standard transcription protocol and labelled with [35S]-UTP (see

section 2.10.1). Target sequences are detailed in sections 2.4 and 4.3.2. The intensity

of the in situ hybridisation signal was quantified by image analysis (see section 3.3.3)



and mRNA concentrations were compared between similar aged corpora lutea of the

control cycle, GnRH-induced CL and spontaneous CL present at the time of GnRH

administration.

6.3.3 Statistical Analysis

The effect of GnRH administration on mRNA concentration was determined by a

split-plot ANOVA (Genstat 5; Payne et al., 1993), using the blocking factor cow/

slide/ replicate as previously described (see section 3.3.4).

6.4 Results

In situ hybridisation detected mRNA encoding IGF-I, IGF-II, the type 1 IGF receptor

and IGFBP-2, -3 and -4 within GnRH-induced CL at both timepoints studied (4 and

9 days post GnRH). The spatial pattern ofmRNA localisation was similar for GnRH-

induced and spontaneously-formed CL, and is detailed in chapter 3 and 4. Analysis

of the intensity of the in situ hybridisation signal demonstrated a significant

difference in the concentration ofmRNA encoding the type 1 IGF receptor between

GnRH-induced and control CL of a similar age. Differences in expression of IGFBP-

3 mRNA approached significance. There was no significant effect of treatment on

the concentrations ofmRNA encoding IGF-I, IGF-II, IGFBP-2 or -4.

IGFBP-3 mRNA levels were not significantly different fP>0.05) between control CL

of the early luteal phase and GnRH-induced CL of a similar age (Figure 6.1a).

Differences in IGFBP-3 mRNA expression between control CL, GnRH-induced CL

and the spontaneous CL present at GnRH administration of around 10 days old

approached significance (/>=0.052) (Figure 6.1b). IGFBP-3 mRNA levels in control

CL were below those in both GnRH-induced and spontaneous CL.



a)

Messenger RNA
concentration

(arbitrary units)

25

20

15

10

SED

...

:N
-

5 day normal 5 day GnRH
induced

b)

Messenger RNA
concentration

(arbitrary units)

25

20

15

10

SED
a a

a

10 day normal 10 day GnRH 10 day GnRH
induced spontaneous

c) 20 SED

Messenger RNA
concentration

(arbitrary units)

15

10

15 day
normal

15 day GnRH
spontaneous

Figure 6.1

Quantitative analysis of IGFBP-3 mRNA concentrations in bovine luteal tissue.
Concentrations were compared between 5 day old (a), 10 day old (b) and 15 day old
(c) corpora lutea from control animals, and animals treated with GnRH bearing both a
spontaneous and GnRH-induced CL. Luteal timepoints with different superscipts are
significantly different (P < 0.05). Bars represent pooled standard error of the
difference (SED). Concentration ofmRNA is expressed as the percentage of the total
number of pixels occupied by silver grains within a defined area. Hybridisation with
an IGFBP-3 sense probe gave an average background value of 5 units.

172



Messenger RNA encoding IGFBP-3 was not significantly different (P>0.05) between

control CL of the late luteal phase and age-matched spontaneous CL (Figure 6.1c).

Messenger RNA encoding type 1 IGF receptor was observed at significantly higher

levels (P =0.045) in CL of control animals on day 5 than similar aged GnRH-induced

CL (Figure 6.2a). A significant difference (P=0.05) in type 1 IGF receptor mRNA

concentration was detected amongst control CL, GnRH-induced CL and spontaneous

CL around day 10; concentrations of type 1 IGF receptor mRNA were highest in

control CL and lowest in the spontaneous CL (Figure 6.2b). Type 1 IGF receptor

mRNA levels were not significantly different (PN3.05) between day 15 CL of control

animals and age-matched spontaneous CL (Figure 6.2c).

6.5 Discussion

GnRH-treatment in the early luteal phase causes ovulation and formation of a

secondary luteal structure (Rusbridge, 1993). However, the GnRH-induced CL has

reduced secretory function (Rusbridge, 1993) that is correlated with significant

alterations in the local IGF system.

This study demonstrates that the GnRH-induced corpora lutea expresses mRNA

encoding IGF-I, IGF-II, the type 1 IGF receptor and IGFBP-2, -3 and -4 at both

timepoints studied. The spatial patterns of expression were not different between CL

induced by a second surge release of LH and those formed during the natural cycle.

In addition, there was no significant effect of treatment on the concentrations of

mRNA encoding IGF-I, IGF-II, IGFBP-2 or -4. However, there were significant

differences in the levels ofmRNA encoding the type 1 IGF receptor and a trend for

alterations in IGFBP-3 mRNA levels following GnRH administration.
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Quantitative analysis of type 1 IGF receptor mRNA concentrations in bovine luteal
tissue. Concentrations were compared between 5 day old (a), 10 day old (b) and 15
day old (c) corpora lutea from control animals, and animals treated with GnRH
bearing both a spontaneous and GnRH-induced CL. Luteal timepoints with different
superscipts are significantly different (P < 0.05). Bars represent pooled standard
error of the difference (SED). Concentration of mRNA is expressed as the
percentage of the total number of pixels occupied by silver grains within a defined
area. Hybridisation with a type 1 IGF receptor sense probe gave an average
background value of 6 units.
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Concentrations of mRNA encoding the type 1 IGF receptor were significantly

reduced in GnRH-induced CL compared to similar-aged CL from the early luteal

phase of the control cycle. The reduction in mRNA is assumed to result in reduced

receptor numbers, and subsequently reduced IGF-stimulation in GnRH-induced CL.

Since progesterone production by luteal cells is stimulated in vitro by IGF-I and IGF-

II a reduction in IGF-reception in the GnRH-induced CL may contribute to the

diminished steroidogenic output observed experimentally. However, induced corpora

lutea of around 10 days old did not exhibit significantly different type 1 IGF receptor

concentrations compared to control levels.

There was a trend for increased concentrations of mRNA encoding IGFBP-3 in

GnRH-induced corpora lutea compared to age-matched CL of the mid-luteal but not

early-luteal phase. In its IGF-dependant role, IGFBP-3 binds both IGF-I and -II with

high affinity, preventing ligand-receptor interaction IGFBP-3 inhibits IGF-I-

stimulated progesterone production by bovine granulosa and theca cells in culture,

and this inhibitory effect is thought to result from IGFBP-3 sequestering IGF-I

(Spicer and Chamberlain, 1999; Spicer et al., 1997). Therefore, increased IGFBP-3

would be expected to further reduce IGF-stimulation of luteal cell steroidogenesis.

Failure of the IGF system to develop to normal levels in the GnRH-induced CL may

be the result of disruption to both follicular and luteal events. The hormonal

environment of the first-wave dominant follicle differs markedly from that of the

ovulatory follicle. In particular, the dominant follicle of the first wave is exposed to

increasing progesterone produced by the spontaneous CL and subsequently reduced

LH-pulse frequency (Bergfeld et al, 1995; Rahe et al., 1980).
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Bovine dominant follicles undergo atresia in response to exogenous progesterone

treatment. The concentrations of low molecular weight IGFBPs were increased in

follicular fluid during progesterone-induced atresia, with a profile similar to natural

atresia. In addition, atresia was associated with reduced follicular fluid IGF-I and -II

concentrations (Manikkam and Rajamahendran, 1997). In the present study

progesterone produced by the original CL was not sufficient to cause atresia of the

first wave follicle, since GnRH administration resulted in ovulation. However,

progesterone concentrations may regulate components of the IGF system in the first

wave dominant follicle and subsequently the GnRH-induced CL.

In the follicle, the IGFs stimulate cellular proliferation and steroidogenesis, and in

synergy with gonadotrophins, stimulate follicular growth and differentiation. The

actions of both IGF-I and -II are mediated via the type 1 IGF receptor and a

reduction in IGF-reception and hence IGF-stimulation would be expected to have

major implications for both the follicle and CL. IGF-receptor binding and mRNA

encoding the type 1 IGF receptor have been detected within bovine follicles.

However, it remains unclear whether receptor numbers alter with follicular

development or hormonal regulation (Spicer and Echternkamp, 1995). In vitro,

granulosa cells from large bovine follicles had greater IGF-I binding than those of

small follicles (Spicer et al., 1994). In contrast, expression of mRNA encoding the

type 1 IGF receptor did not vary with follicle size in vivo, although this study did not

examine changes in expression at different points during follicle growth (Armstrong

et al., 2000a).

Type 1 IGF receptor levels are regulated in response to a number of physiological

and pathological stimuli (LeRoith et al., 1995; Werner et al., 1995). The binding of
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IGF-I to cultured rat granulosa cells was increased by FSH and LH treatment (Adashi

et al., 1988). However, neither LH nor progesterone influenced IGF-I binding in

cultured bovine granulosa cells (Spicer et al., 1994). This lack of regulatory action

suggests that differences in LH and progesterone secretion between the growth of the

ovulatory follicle and the dominant follicle of the first wave may not be the cause of

reduced type 1 IGF receptor mRNA levels in the induced CL. A significant

difference in type 1 IGF receptor mRNA concentrations was observed between early

luteal CL from control animals and similar aged GnRH-induced CL. This result

suggests that the type 1 IGF receptor is sensitive to changes in the hormonal

environment, however it remains unclear whether this reflects a response to changes

in late follicular or early luteal development. Whilst progesterone did not influence

IGF-I-binding to cultured bovine granulosa cells, steroid hormones have been shown

to regulate type 1 IGF receptor gene expression in reproductive tissues. Oestradiol

caused a two- to three-fold increase in type 1 IGF receptor mRNA levels in normal

human breast xenografts, whilst progesterone treatment down-regulated type 1 IGF

receptor mRNA concentrations to half that of controls (Clarke et al., 1997).

Progestins also reduced mRNA encoding the type 1 IGF receptor in cultured T-47D

human breast-cancer cells (Goldfine et al., 1992), an effect that may be mediated by

enhanced IGF-II secretion (Papa et al., 1991). It remains to be determined whether

type 1 IGF receptor mRNA concentrations are similarly reduced in the GnRH-

induced CL in response to the high levels of progesterone produced by the CL

present at GnRH administration. Type 1 IGF receptor gene expression is also

regulated by local and circulating levels of IGF-I. Patients with low circulating IGF-I

levels as a result of GH deficiency or Laron-type dwarfism display raised



erythrocytic IGF-I binding sites and increased lymphocytic type 1 IGF receptor

mRNA levels (Eshet et al., 1993). An inverse correlation between IGF-I

concentration and receptor number has also been demonstrated in cell culture.

Increasing concentrations of IGF-I cause a reduction in IGF receptor number in vitro

in a number of different cell types (Hernandez-Sanchez et al., 1997; Rosenfeld and

Dollar, 1980; Rosenfeld and Hintz, 1980). However, it is not clear whether a similar

relationship operates in the ovary.

A number of other growth factors regulate type 1 IGF receptor abundance. Basic

FGF, for example, stimulates IGF-I binding and type 1 IGF receptor mRNA levels in

muscle cells (Pfeifle et al., 1987; Rosenthal et al., 1991). In contrast, in bovine

granulosa cells bFGF decreased IGF-I receptor numbers (Spicer et al., 1994). PDGF

also increases the number of IGF-I binding sites and the expression of the IGF-I

receptor gene, an effect that is due at least in part to PGDF-stimulation of IGF-

receptor promoter activity (Rubini et al., 1994). The physiological role of these

factors in regulating luteal type 1 IGF receptor numbers remains uncertain.

IGFBP-3 is the most abundant IGFBP in serum (Rajaram et al., 1997) and the

predominant IGFBP in bovine preovulatory follicular fluid (Funston et al., 1996).

However, mRNA encoding IGFBP-3 is expressed at low levels in the follicle, and

does not vary with follicle size (Yuan et al., 1998), and neither ovine granulosa or

theca cell cultures produced significant quantities of IGFBP-3 (Armstrong et al.,

1996). It has been suggested therefore that follicular fluid IGFBP-3 is primarily the

product of transudation from serum. There is limited information on the regulation of

IGFBP-3 expression in the ovary. Messenger RNA encoding IGFBP-3 is abundant in

the bovine CL by day 5 (Chapter 4). However, it remains to be established when in



early luteal development IGFBP-3 mRNA expression is upregulated, and whether

this occurs as a direct response to the LH surge. An increase in IGFBP-3 mRNA

concentration was observed between day 10 control CL and similar aged GnRH

induced CL, whilst no effect was detected in the early luteal phase. The lag between

GnRH treatment and significant alterations in IGFBP-3 concentrations may suggest

that IGFBP-3 mRNA is more sensitive to hormonal changes during luteal growth and

development than during follicular growth and development. In addition, it suggests

that the signal which upregulates IGFBP-3 mRNA levels from the relatively low

follicular levels is still in place following GnRH treatment.

A number of IGFBPs are expressed at any one time within the ovaries of many

species. The IGF system may have in-built redundancy, such that an increase in the

concentration of one IGFBP can be accompanied by a compensatory decrease in the

concentration of another. However, the addition of IGFBP-3 to ovarian cells in

culture or its administration to the whole ovary in vitro has had dramatic results,

suggesting a lack of compensation. IGFBP-3 profoundly inhibited IGF-stimulated

cell proliferation and steroidogenesis in bovine theca and granulosa cells in culture

by sequestering IGF-I and -II (Spicer and Chamberlain, 1999; Spicer et al., 1997).

The addition of IGFBP-3 to perfused rabbit ovaries in vitro inhibited hCG-induced

ovulation, oocyte development and oestradiol production (Yoshimura et al., 1996).

In human luteinising granulosa cells IGFBP-3 reduced the stimulatory effect of IGF-I

on oestradiol production (Barreca et al., 1996).

The primary regulator of plasma IGFBP-3 concentrations is GH, produced by the

pituitary somatotrophs. Analysis of the rat and cow IGFBP-3 gene promoters

localized consensus sequences for a number of putative response elements including
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GH (Albiston et al., 1995; Erondu et al., 1997). The secretion of IGFBP-3 by human

luteinising granulosa cells in culture was stimulated by GH (Barreca et al., 1996),

supporting a role for GH in ovarian IGFBP-3 regulation. However, in the

reproductive tissues of cattle, concentrations of mRNA encoding IGFBP-3 were

unaffected by exogenous GH treatment, suggesting that GH does not directly affect

gene expression in this species (Kirby et al., 1996). Hence, with the limited

information available it remains unclear to what extent GH may regulate IGFBP-3

expression in the cow CL. Furthermore we have no clear understanding of how GH-

stimulated IGFBP-3 mRNA expression might be altered in the GnRH-induced CL to

account for increased IGFBP-3 concentrations.

However, regulatory actions of GH within the ovary have been demonstrated (Lucy

et al., 1999). Treatment of mature ewes with GH resulted in enhanced follicle

development and increased follicular secretion of IGF-I in culture, in addition to

increased peripheral concentrations of IGF-I (Gong et al., 1996b). Many of the

actions of GH are mediated by IGF-I, which is released from the liver in response to

GH-stimulation. However, GH may also act directly on the ovary, since the GH

receptor has been detected in the bovine ovary and GH receptor concentrations were

20-fold higher in the CL than in follicles (Lucy et al., 1993). Abnormalities of GH

receptor expression (either occurring naturally or following gene knockout

experiments) have demonstrated that GH is not essential for reproduction, but it

appears to have an important facilitatory role (Chase et al., 1998; Zhou et al., 1997).

In CL, GH influences luteal growth and development (Juengel et al., 1997) and

increases progesterone secretion in vitro (Liebermann and Schamms, 1994).
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A number of other factors have been shown to modulate the production of IGFBP-3

by a range of cell types in culture. IGFBP-3 protein and mRNA levels are increased

by treatment with factors including IGF-I, the tumour suppressor p53, retinoic acid,

PDGF and vasopressin (Buckbinder et al., 1995; Corps and Brown, 1991; Gucev et

al., 1996). In addition, porcine granulosa cells respond to oestradiol and EGF

treatment with increased IGFBP-3 production, whilst the addition of FSH and TGF-|3

inhibited IGFBP-3 secretion (Mondschein et al., 1990). Under luteinising conditions

porcine granulosa cell IGFBP-3 production is stimulated by PGF2a and attenuated by

PGE2 (Grimes et al., 1993). It is unknown whether any of these factors regulate

IGFBP-3 mRNA concentrations in the bovine corpus luteum during the oestrous

cycle, or whether these factors are influential in creating the changes in IGFBP-3

mRNA concentrations observed in the GnRH-induced CL.

The inhibitory effects of IGFBP-3 on ovarian function (Barreca et al., 1996; Spicer

and Chamberlain, 1999; Spicer et al., 1997; Yoshimura et al., 1996) have been

largely attributed to the sequestering of IGFs and subsequent prevention of IGF

receptor activation. However, IGFBPs can exert additional IGF-independent actions

that do not involve IGF binding or influence IGF reception. The growth inhibitory

actions may be mediated by binding of IGFBP-3 to cell surface proteins (Oh et al.,

1993b, 1993c). In addition, the type V TGF-P receptor has been suggested to be a

putative IGFBP-3 receptor, although the nature of any signalling response to IGFBP-

3 is unknown (Leal et al., 1997). IGF-independent actions of IGFBP-3 have also

been proposed to occur intracellularly (Li et al., 1997), although the extent and

mechanism by which IGFBP-3 interacts with the nuclear machinery remain to be

determined. The growth inhibitory actions of IGFBP-3 may also involve the
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induction or accentuation of apoptotic cell death (Gill et al., 1997; Rajah et al.,

1997), via an IGF-receptor independent pathway and possible interaction with other

growth inhibitors. It remains to be established whether IGFBP-3 influences follicular

and luteal function via IGF-independent mechanisms, in addition to its ability to bind

IGF.

Whether IGFBP-3 exerts IGF-independent luteal growth inhibition or sequesters

stimulatory IGFs, it is unclear why the CL should express IGFBP-3 from the early

luteal phase in the natural cycle and at times of high steroidogenesis. Despite this

paradox, increased expression of IGFBP-3 mRNA in the induced CL would be

expected to be detrimental to both luteal lifespan and function.

Our understanding of the role of IGFBP-3 in ovarian function is further complicated

by its ability to potentiate the effects of IGF in vitro. Potentiation is thought to

involve IGF-binding to cell surface-associated IGFBP-3, and may enhance delivery

of IGF to its receptor (Conover et al., 1990). Cell associated IGFBP-3 has a 10-fold

lower binding affinity for IGF-I than IGFBP-3 in solution, and a 2-fold lower affinity

for IGF-I than the type 1 IGF receptor (Conover, 1991). Additionally proteolysis of

IGFBP-3 may potentiate IGF action, since cleavage of IGFBP-3 produces a fragment

with reduced IGF-binding affinity (Schmid et al., 1991). Reduced affinity of binding

proteins for IGF would then be expected to increase the IGF available for ligand-

receptor interactions.

GnRH treatment in the early luteal phase causes ovulation and subsequent formation

of a luteinised structure. In addition, the administration of GnRH and/or the presence

of the induced CL also influence the spontaneous corpus luteum present on the ovary

at the time of treatment. Concentrations of mRNA encoding both IGFBP-3 and the
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type 1 IGF receptor were altered in the spontaneous CL when compared to control

corpora lutea of a similar age. IGFBP-3 mRNA levels were raised above control

levels in the mid-luteal spontaneous CL, but were not different in the late luteal

phase. In contrast, type 1 IGF receptor mRNA concentrations in GnRH-treated

spontaneous CL were significantly below the levels in control CL of the mid-luteal

phase, whilst no difference was observed in the late luteal phase.

Exposure of the developing corpus luteum to an LH surge following GnRH

administration has been shown to impair the function of the original CL (Martin et

al., 1990). This effect may be the result of LH receptor down-regulation (Rodger and

Stormshak, 1986) or post LH-receptor disruptions (Conti et al., 1977) leading to

desensitisation to gonadotrophin stimulation. In contrast, others have suggested that

increases in plasma progesterone observed two days post-hCG could not be

accounted for by the induced CL and must therefore result from a stimulatory effect

of hCG on the original CL (Fricke et al., 1993).

In the present study the relative contributions of the original and GnRH-induced CL

to plasma progesterone production were not determined, therefore it remains unclear

whether GnRH had a stimulatory or supressive effect on the progesterone secretion

of the original CL. However, the observed increase in IGFBP-3 and decrease in the

type 1 IGF receptor mRNA levels would not be expected to be consistent with

increased progesterone production, therefore, the functional capacity of the original

CL may also have been compromised. Interestingly, whilst the GnRH-induced CL

exhibited alterations in mRNA concentrations at both timepoints studied, the original

CL was only affected when compared to mid-luteal CL of control animals and no

differences in mRNA concentrations were detected when compared to late luteal
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control CL. The original CL therefore appears to display only a transient variation

from control IGFBP-3 and type 1 IGF receptor mRNA levels. It is unclear whether

this reflects an intrinsic quality of the original CL or its advanced stage of luteal

development to recover from earlier hormonal changes. Alternatively, there may

have been a diminution of the signal that caused the initial variations or the

sensitivity of the original CL to that signal, although the increase in IGFBP-3 mRNA

levels observed in the GnRH-induced CL also present on the ovary suggests the

former not to be the case.

In conclusion, this study demonstrates that (1) many components of the IGF system

are expressed in the GnRH-induced CL, (2) differences in type 1 IGF receptor and

IGFBP-3 mRNA concentrations from control levels may contribute to the reduced

functional capacity of the GnRH-induced CL (3) GnRH administration also affects

the original CL present on the ovary at the time of treatment.
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Chapter 7. General Discussion

The corpus luteum is crucial to reproductive success. Its primary secretory product

progesterone is required for the establishment and maintenance of pregnancy, and

inadequate progesterone production is a major cause of infertility and embryonic

loss. The corpus luteum is also central to the regulation of cyclicity. Whilst LH and

PGF2a are the principal luteotrophic and luteolytic hormones in domestic animals,

there is increasing interest in the potential of local factors to modulate the response

of the CL to hormonal action.

The insulin-like growth factors are putative regulators of ovarian function, and both

IGF-I and IGF-II have direct effects on ovarian cells in culture. Whilst there is

considerable evidence to support a role for the IGFs in regulating normal follicular

development, there is a relative paucity of information regarding the actions of the

IGFs in the CL. However, an important role for the IGFs in regulating luteal function

is suggested both by the multiple stimulatory effects of the IGFs on follicular

steroidogenesis, and by the direct stimulation of progesterone production by luteal

cells in vitro.

Whilst the in vitro evidence suggests that the IGFs are important regulators of both

follicular and luteal function, the local expression of mRNAs encoding the IGFs in

the bovine ovary remains controversial.

This series of studies has examined the temporal and spatial pattern of expression of

mRNA encoding IGF-I, IGF-II, the type 1 IGF receptor and IGFBP-2, -3 and -4

during the growth and regression of the bovine corpus luteum. Corpora lutea were

collected at defined stages of the oestrous cycle after synchronised oestrus (see



Chapter 3), and following GnRH-induced ovulation of the first wave dominant

follicle (see Chapter 5).

The expression of IGF-I mRNA in the ruminant ovary has been the subject of much

debate. This study confirms that the bovine corpus luteum is a site of IGF-I

production (see Chapter 3), and suggests an important regulatory role for locally

produced IGF-I. Expression of IGF-I mRNA was low and widespread, but increased

towards the periphery and in lines radiating through the corpus luteum. The exact

identity of these cells could not be determined, however, endothelial cells,

steroidogenic cells and immune cells are all suggested sites of IGF-I mRNA

expression. It is clear that accurate identification of the cellular sites of IGF-I mRNA

expression is essential to a greater understanding of the role of locally produced IGF-

I in luteal function.

The results of follicular cell culture suggest that IGF-I acts with the gonadotrophins

to regulate the acquisition of differentiated function. However, the results of the

present study do not support a similar role in the bovine corpus luteum for

endogenously produced IGF-I, since the expression of mRNA encoding IGF-I was

low during luteinisation. However, the correlation between increasing luteal IGF-I

mRNA concentrations and peak progesterone production observed in the present

study, in addition to enhanced progesterone biosynthesis in response to IGF-I in

vitro, suggests that local IGF-I might act as a stimulator of luteal steroidogenesis.

The variation in IGF-I mRNA concentrations during the oestrous cycle suggests that

regulated local expression is important for luteal function. However, it is unclear

how critical a role is played by the low levels of locally produced IGF-I, since there

are high levels of IGF-I present in the circulation. It is not known whether the CL



receives significant IGF-I stimulation from peripheral sources, and if so, whether

locally produced IGF-I supplements the actions of endocrine IGF-I or serves an

entirely different role in CL regulation. Liver-specific inactivation of the IGF-I gene

caused a large decrease in blood IGF-I concentrations (Sjogren et al., 1999; Yakar et

al., 1999). However, mutant mice with liver IGF-I gene deletion were fertile and had

litters of normal size (Yakar et al., 1999), suggesting that systemic IGF-I may not be

crucial to the stimulation of reproduction in the mouse. There is little known about

the contribution of circulating IGF-I to luteal function. An endocrine effect of IGF-I

on luteal growth was suggested in nutrient-restricted heifers, where reduced CL size

was correlated with low blood IGF-I, whilst luteal IGF-I mRNA expression was

unaffected (Vandehaar et al., 1995). However, whilst the treatment of cows with GH

increases peripheral IGF-I concentrations, subsequent progesterone secretion has

been unaffected (Gong et al., 1991), increased (Lucy et al., 1994) or decreased

(Jimenez-Krassel et al., 1999).

Maximal expression ofmRNA encoding IGF-I was detected in the regressing CL, 48

hours after exogenous prostaglandin. The role of IGF-I in luteolysis is unclear, given

the potential of IGF-I to stimulate luteal function. However, the high expression may

reflect the intense immune cell activity associated with luteal regression. The role of

IGF-I in the regulation of immune cell function during luteal regression could be

further examined by the collection of CL at additional timepoints following natural

or induced luteolysis, and the subsequent identification of the sites of IGF-I mRNA

expression.

Previous studies have concentrated on the potential of IGF-I rather than IGF-II to

regulate ovarian function. The present study reports that the bovine corpus luteum is
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a site of IGF-II mRNA expression (see Chapter 3). Despite the limited number of

studies that have previously examined the potential role of IGF-II in the ovary, IGF-

II has been shown to enhance steroidogenesis (Garmey et al., 1993; Kamada et al.,

1992; Mason et al., 1994), including the stimulation of progesterone production by

bovine luteal cells in culture (Sauerwein et al., 1992). The local production of IGF-II

by the bovine corpus luteum suggested by the detection of IGF-II mRNA therefore

allows for local regulation of steroidogenesis. However, the expression of mRNA

encoding IGF-II was shown to be particularly intense in the luteal vasculature, and

suggests that IGF-II may regulate aspects of luteal function in addition to the

stimulation of steroid biosynthesis. Hybridisation was not limited to endothelial cells,

and pericytes, fibroblasts or smooth muscle cells may also be sites of IGF-II mRNA

expression. Indeed, previous immunohistochemical observations localised IGF-II

protein to perivascular cells (Amselgruber et al., 1994). It remains unclear whether

this reflects a role for locally produced IGF-II in the control of vascular growth and

function, or the regulation of vascular and steroidogenic cell interactions, and

warrants further examination.

IGF-I and IGF-II interact with the same receptor and binding proteins, albeit with

different affinities. It is unclear how the IGFs might co-operate to support luteal

growth and development. However, the distinct cellular sites of expression ofmRNA

encoding the IGFs suggest that these factors may serve different functions in

different cell-types. It remains to be determined whether locally produced IGF-II is

sufficient to influence luteal function in the presence of a potential excess of IGF-I

from circulatory sources, since IGF-I has a higher affinity for the type 1 IGF receptor

than IGF-II.
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The detection of mRNA encoding the type 1 IGF receptor within the corpus luteum

throughout the oestrous cycle (see Chapter 3) suggests that stimulation by IGF-I and

IGF-II (produced locally or derived from the circulation) may be important

throughout the lifespan of the corpus luteum. Whether these multifunctional proteins

stimulate different aspects of luteal function at different times is unknown.

Type 1 IGF receptor mRNA was widespread, and steroidogenic luteal cells are the

suggested site of mRNA expression. These results confirm and extend previous

reports of binding characteristic of the type 1 IGF receptor in bovine luteal

membrane preparations (Sauerwein et al., 1992). The diffuse pattern of mRNA

expression encoding the type 1 IGF receptor suggests that IGFs may influence luteal

cells which do not themselves produce IGF-1 or -II, given the low levels of locally

produced IGF-I, and the predominant association of IGF-II mRNA with the luteal

vasculature. This suggests that local IGFs may act as paracrine regulators of non-

expressing cells. Additionally it may further support a role for IGFs derived from the

circulation in the regulation of luteal function.

The actions of IGF-I and IGF-II are modulated by association with members of a

family of high affinity IGFBPs (Clemmons, 1997; Jones and Clemmons, 1995;

Rechler and Clemmons, 1998). Current evidence suggests that the interaction of

IGFs with IGFBPs serves to attenuate the actions of IGFs on ovarian cells (Bicsak et

al., 1990; Chun et al., 1994; Mason et al., 1998; Spicer et al., 1997; Ui et al., 1989;

Yoshimura et al., 1996). This study has determined that the bovine CL is a site of

IGFBP expression (see Chapter 4) and indicates that there is a requirement for the

regulation of IGF-actions in the CL. Messenger RNA encoding IGFBP-2, -3 and -4

was detected throughout the oestrous cycle, and showed limited temporal variation.
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IGFBP-4 mRNA was expressed by steroidogenic luteal cells and may act to block

IGF-stimulation of steroid production as has been demonstrated in vitro. However,

mRNA encoding IGFBP-2 and -3 was predominantly localised to non-steroidogenic

luteal cells. Indeed, mRNA encoding IGFBP-2 and -3 showed particular association

with the luteal vasculature. A number of large blood vessels showed moderate to

intense hybridisation for IGFBP-2 mRNA which may be localised to smooth muscle

cells. Messenger RNA encoding 1GFBP-3 was detected in cells lining microvessels,

suggestive of endothelial cell expression. IGFBP-2 and -3 may therefore serve a

number of functions. They may 1) regulate the actions of IGFs on vascular function,

2) act as paracrine factors outwith the vasculature in the regulation of IGF-stimulated

steroidogenic cell function, or 3) act as a sink for peripheral IGFs, enabling

subsequent controlled release of the ligands in response to changes in affinity of the

IGFBPs for the IGFs due to proteolysis or ECM-binding.

The IGFBPs exhibit different binding preferences for IGF-I and -II. IGFBP-2, -5 and

-6 bind IGF-II with higher affinity than IGF-I (Jones and Clemmons, 1995). It is not

known whether luteal IGFBP-2 is therefore primarily involved in regulating the

actions of IGF-II within the corpus luteum due to differential binding affinity, whilst

other IGFBPs such as IGFBP-3 and -4 may interact predominantly with IGF-I.

These studies have detected limited temporal variation in mRNA levels throughout

the oestrous cycle, despite the dramatic changes in luteal growth and function that

occur during the oestrous cycle. Evidence from in vitro studies support a role for the

IGFs in enhancing steroidogenic activity. However, only IGF-I mRNA levels varied

significantly with day of the oestrous cycle, whilst concentrations of mRNA

encoding IGF-II and the type 1 IGF receptor showed no correlation with changes in
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steroidogenic activity. The bioactivity of IGF-I and -II can be further modified by

changes in levels of IGFBPs. However, IGFBP mRNA concentrations did not vary

with day of the oestrous cycle.

The lack of a correlation between major luteal events and alterations in steady-state

mRNA levels might imply a lack of critical function. However, in vitro evidence

supports an important role for the IGFs in vivo (Poretsky et al., 1999; Spicer and

Echternkamp, 1995). A reduction in IGF-bioavailability following the addition of

exogenous IGFBPs to ovarian cells in culture and the subsequent sequestration of

IGFs had dramatic effects on steroid production (Mason et al., 1998; Spicer et al.,

1997; Ui et al., 1989), cell proliferation (Bicsak et al., 1990), ovulation rate and

oocyte maturation (Yoshimura et al., 1996), and apoptosis (Chun et al., 1994).

GnRH-administration on day 6 of the oestrous cycle results in ovulation of the first

wave dominant follicle and subsequent formation of a secondary luteinized structure

(see Chapter 5). Removal of the spontaneous CL has previously demonstrated that

the GnRH-induced CL does secrete progesterone. However, the steroidogenic

activity of the induced CL falls below that of a spontaneously formed CL of a similar

age. Ovulation of the first wave dominant follicle and formation of an induced CL

has been demonstrated in response to the administration of hCG, synthetic GnRH or

GnRH-agonist. However, peripheral progesterone concentrations were greater

following hCG treatment than GnRH-agonist treatment (Schmitt et al., 1996a,

1996b). This may be due to differences in LH-like exposure induced by the two

treatments. Human chorionic gonadotrophin has a markedly slower clearance rate

than LH, and hence an increased plasma half-life. In addition, hCG bound to the LH

receptor is internalised much slower than LH bound to its receptor resulting in



extended stimulation. The increase in plasma progesterone concentrations in

response to hCG may be the result of increased stimulation of the original CL or

greater differentiation of the induced CL.

There may also be differential effects of hCG and GnRH-agonist on luteal

morphology. Alterations in the size distribution of steroidogenic luteal cells could

potentially affect the luteal response to both LH-like stimulation and PGF2a binding,

since large luteal cells contain the majority of PGF2amembrane receptors, whilst only

small luteal cells respond to LH stimulation with increased progesterone production.

The extent ofmorphological differences induced by GnRH treatment is unknown and

warrants further investigation.

In the present study GnRH-induced CL did not exhibit significantly reduced LH

receptor mRNA levels when compared to spontaneous CL of similar age, suggesting

that a lack of LH reception was not the cause of the limited function of the induced

CL. Indeed, Rusbridge (1993) demonstrated that the GnRH-induced CL had

increased LH receptor numbers. The cause and biological significance of increased

LH receptor concentration observed by Rusbridge remains unclear (1993), however,

it was suggested that progesterone production by the endogenous CL may have been

responsible for the premature induction of LH receptors. The reason for the

discrepancy in LH receptor concentration assessed by LH-binding (Rusbridge, 1993)

or detection ofmRNA encoding the LH receptor is unknown.

Evidence from the GnRH-induced CL demonstrates that significant alterations to the

luteal IGF system are correlated with reduced functional capacity (see Chapter 6).

Increased IGFBP-3 mRNA concentrations and decreased type 1 IGF receptor mRNA

concentrations are expected to result in reduced bioavailability and bioactivity of
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IGF-I and -II. The resultant reduction in IGF-stimulation may compromise the

response of the GnRH-induced CL to luteotrophic support, and thus contribute to its

limited steroidogenic function. Abnormal luteal function such as that exhibited by

the GnRH-induced CL may also reflect a lack of suitable follicular maturation prior

to CL formation. A reduction in progesterone secretion has critical implications for

subsequent fertility, since low luteal phase progesterone concentrations are

detrimental to the successful maintenance ofpregnancy (Mann et al., 1999).

The current studies were designed to determine the local production of components

of the IGF system, and were therefore limited to detection at the RNA level.

Determination of IGF and IGFBP protein concentrations would reflect changes in

both local production and transudation from plasma. Any resultant changes in IGF

bioavailability and bioactivity are beyond the scope of this work, but would be a

valuable extension of the present studies. Indeed they may even provide insights into

the relative importance of endocrine versus autocrine/paracrine IGF stimulation of

luteal function.

IGFBPs are subject to proteolytic degradation (Fowlkes, 1997; Maile and Holly,

1999). IGFBP-specific proteases have been identified within follicular fluid, and

their ability to alter IGF-bioavailabilty related to follicular growth (Besnard et ah,

1996, 1997; Cwyfan Hughes et al., 1997; Grimes and Hammond, 1994; Mason et al.,

1996). IGFBP-4 proteolytic activity has also been identified in luteinized human

granulosa cells (Iwashita et al., 1996). However, there has been little research thus

far on the role of IGFBP-specific proteases in the regulation of the luteal IGF system.

IGFBP- proteases are potentially important regulators of the IGF system within the

CL and hence luteal function.
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Much of this study is based on results generated by in situ hybridisation. In situ

hybridisation reveals the cellular localisation of specific nucleic acids in cells and

tissues, and therefore has the potential to greatly increase our understanding of

cellular function. However, the technique does have associated difficulties and

limitations.

Accurate identification of cell-types was not always possible in this study, thus

limiting the power of the analysis. In order to identify the precise positions of gene

transcription target nucleic acids must be immobilised. A number of methods are

suitable for the preparation of tissue prior to in situ hybridisation, and this study

primarily utilised tissue snap-frozen in liquid nitrogen and prepared as cryostat

sections. The use of frozen tissue allows good penetration of the probe to the in situ

target, but the preservation of tissue morphology can be poor. In contrast,

paraformaldehyde-fixation and paraffin-embedding stabilises the tissue, but the

creation of cross-links can cause problems of probe penetration. Paraffin sections

were used to detect luteal IGFBP-2 mRNA expression, and tissue integrity was much

improved without increased problems of probe accessibility. Future studies are likely

therefore to use fixed tissue sections for improved identification of the cellular sites

of expression. Further improvement might also be achieved by a reduction in the

thickness of tissue sections which may have contributed to limited resolution.

In the follicle, theca and granulosa cells are physically separated into distinct layers

by the basement membrane allowing for easy cell identification, in contrast, the

corpus luteum is a complex tissue comprised of a number of different cell-types

which display a heterogeneous distribution. In order to distinguish more precisely

between different cells, specific markers of cell-type can be detected by
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immunohistochemistry. Cell-specific markers have previously been used in the

corpus luteum to identify steroidogenic cells, endothelial cells and a number of

immune cells (Jablonka-Shariff et al., 1993; Penny et al., 1999). Immunolocalisation

performed in conjunction with the standard in situ hybridisation protocol, either on

the same or parallel slides, could be used in subsequent studies to more accurately

determine the sites ofmRNA expression.

In tissues where the expression of a specific mRNA is restricted to a small sub-

population of cells in situ hybridisation may prove more sensitive than techniques

which rely on the extraction ofRNA by tissue disruption. However, quantification of

selected fields of view may prove to be unrepresentative if the pattern of

hybridisation is non-uniform. In this situation techniques such as RNase protection

assays or Northern blotting may provide a more representative approach to

quantitative analysis. In addition, these methods have the further advantage that they

allow for both relative and absolute quantification of mRNA concentrations. The

analysis of mRNA expression levels by in situ hybridisation may also be subject to

more bias than RNase protection assays or Northern blotting, since the investigator

must locate the fields of view to be quantified.

The accuracy of quantification can also be affected by the process of exposure and

development. In order for expression levels to be compared it is assumed that a

doubling of hybridisation signal reflects a doubling in target mRNA, however, the

response of photographic film or emulsion to exposure is not a simple linear one. By

exposing slides to emulsion or gels to film for varying times an appropriate length of

exposure can be chosen to ensure that readings are taken from the linear part of the
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sigmoid curve, and that saturation has not been reached. The linearity of signal is

also influenced by the specific activity of the probe hybridised to the RNA target.

In spite of potential limitations, in situ hybridisation studies have extended our

knowledge of the spatial patterns of mRNA expression for components of the IGF

system. Whilst it is clear that there is much still to be learnt about the complex

interactions of the IGF system within the CL, the work presented here supports a role

for the modulation of luteal function by locally produced IGFs. In general terms,

much of our understanding of the importance of IGF-I and -II to luteal function

relies heavily on information gained from follicular studies, and IGF-actions in the

follicle are extrapolated to the CL, often with little direct evidence. Clearly, the luteal

targets of IGF-stimulation should be the subject of further detailed study, and should

consider IGF effects on both the steroidogenic and non-steroidogenic components of

the CL. However, collectively the data in this thesis have demonstrated that the

bovine CL is a site of IGF production, reception and regulation.
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APPENDIX.

Porcine IGF-I and 18S ribosomal RNA.
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Figure I.
The protection of 32P-labelled porcine IGF-I and 18S ribosomal RNA
probes with total RNA (25jig) isolated from bovine luteal and liver
tissue.

Protected hybrid of size 80 base pairs was detected with the 18S
ribosomal RNA riboprobe. Full length porcine IGF-I probe (472 bp)
was not protected in bovine tissue due to mismatches. Undigested
probes for 18S and pIGF-I are also shown.
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Bovine IGF-I
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Figure II.
The protection of 32P-labelled bovine IGF-I RNA probe with total
RNA (25pg) isolated from bovine luteal and liver tissue.

Protected hybrid of size 196 was detected with a bovine IGF-I probe.
Undigested probe of size 285 base pairs is also shown.
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Bovine IGF-II
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Figure III.
The protection of 32P-labelled bovine IGF-II RNA probe with total
RNA (25pg) isolated from bovine luteal and liver tissue.

Protected hybrid of size 154 base pairs was detected with a bovine
IGF-II probe. Undigested probe of size 242 base pairs is also shown.
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Bovine type 1 IGF receptor, IGFBP-3 and 18S
ribosomal RNA.
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Figure IV.
The protection of 32P-labelled bovine type 1 IGF receptor , IGFBP-3
and 18S ribosomal RNA probes with total RNA (25pg) isolated from
bovine luteal and liver tissue.

Protected hybrids of size 189, 358 and 80 base pairs were detected with
type 1 IGF receptor (IGFr), IGFBP-3 and 18S ribosomal RNA probes
respectively. Undigested probe of sizes 251 and 433 base pairs for the
type 1 IGF receptor and IGFBP-3 are also shown.
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IGFBP-4 and 18S ribosomal RNA
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Figure V.
The protection of 32P-labelled bovine IGFBP-4 and 18S ribosomal
RNA probes with total RNA (25pg) isolated from bovine luteal and
liver tissue.

Protected hybrids of size 227 and 80 base pairs were detected with
IGFBP-4 and 18S ribosomal RNA probes respectively. Undigested
probe of size 326 base pairs for the IGFBP-3 probe is also shown.
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BUFFERS

Denaturing solution (100ml)

47.264g guanadine thiocyanate (4M)
10ml 250mM trisodium citrate (25mM)

Adjust to pH 7 with NaOH (5M), filter through 0.22pm nylon bottle top filter
and store in the dark.

Denhardt's solution (lx)

0.02% (w/v) Ficoll

0.02% (v/v) polyvinylpyrolidone

0.02% (w/v) bovine serum albumin (BSA)-Fraction V

L. agar plates with ampicillin (per litre)

lOg Bacto-Tryptone

5g Bacto-Yeast extract

5g NaCl

15g agar

Adjust pFI to 7.5 with NaOH, and autoclave.
Remelt in microwave when required, and allow to cool to 55°C before adding

ampicillin. For liquid media omit the agar.

MOPS (lOx)

0.2M 3-[N-Morpholino]propanesulfonic acid (MOPS)
0.05M NaAc pH7
0.01M EDTA

Paraformaldehyde 4% (w/v)

Add 80g paraformaldehyde to 1000ml DEPC H20,

heat to 60-70°C until the paraformaldehyde dissolves,
add a few drops of 2M NaOH until the solution clears,
make up to 2000ml with 200mM PBS (pH 7.4) and

adjust to pH 7.4 .
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PBS (lx)

0.05M NaP04 pH7.5
0.9% (w/v) NaCl

Phosgel assay buffer

18g NaCl

2g swine skin gelatin

200mg thimerosal
200ml 0.5M P04 buffer (pH7.5)

Proteinase K buffer (lOx)

O.lMTris pH7.8
0.05M EDTA

5% (w/v) SDS (warm to dissolve).

Reverse transcription mix

42pl 50mM MgCl2,

42pi lOx RTase buffer,

42pl dNTP mix (each at lOmM; Promega),

12pl RTase Superscript II (25U/pl; Life Technologies) and
add dH20 to 200pi.

SSC (20x)

3M NaCl

0.3M sodium citrate

adjust to pH7

SSPE (20x)

3M NaCl

0.2M NaPO, pH7
0.02M EDTA (disodium salt)
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TAE (Tris/acetate/EDTA) electrophoresis buffer (50x)

242g Tris base
57.1 ml glacial acetic acid
100 ml 0.5M EDTA pH8

final working concentration 40mM Tris acetate, ImM EDTA.

TBE (Tris/borate/EDTA) (lOx)

108g Tris base (890mM)

55g boric acid (890mM)
40ml 0.5M EDTA pH8 (20mM)

TE buffer

lOmM Tris-HCl pH 7.5
ImM EDTA

TM buffer

50mM Tris-Cl, pH 7.5
lOmM MgS04

259



ANTIBODY DATA

Anti-progesterone (rabbit) antibody; SAPU product S235-201

Cross reactivities;

11 Hydroxyprogesterone < 300%

17 Hydroxyprogesterone <5%

11 Deoxycorticosterone < 10%

5-a-Pregnan 3,20 dione <20%

Hydrocortisone < 0.25%
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Aloka Company Ltd

Tokyo, Japan.
Amersham Pharmacia Biotech UK Ltd

Little Chalfont, Buckinghamshire, UK.

AMS Biotechnology (UK) Ltd

Abingdon, Oxfordshire, UK.

Appligene Oncor

Watford, Hertfordshire, UK.

Beckman Instruments (UK) Ltd

High Wycombe, Buckinghamshire, UK.

Bibby Sterilin

Stone, Staffordshire, UK.

Biometra Ltd

Maidstone, Kent, UK.

Bio-Rad Laboratories Ltd

Hemel Hempstead, Hertfordshire, UK.

Coopers Animal Health Ltd

Crewe, Cheshire, UK.

CP Laboratories

Bishop's Stortford, Hertfordshire, UK.

Cruachem

Glasgow, UK.

Fisher Scientific UK Ltd

Loughborough, Leicestershire, UK.

Flowgen

Ashby de la Zouch, Leicestershire, UK.
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GCG (Genetics Computer Group)

Madison, Wisconsin, USA

Intervet Laboratories Ltd

Cambridge, UK

Kamar Inc

Steamboat Springs, Colorado, USA.

Life Technologies

Paisley, UK.

Merck Ltd

Poole, Dorset, UK

National Diagnostics

Hessle, Hull, UK.

New England BioLabs (UK) Ltd

Hitchin, Hertfordshire, UK.

Promega

Southampton, Hampshire, UK.

Qiagen

Crawley, West Sussex, UK.

Roche Diagnostics Ltd

Lewes, East Sussex, UK.

Sanofi Animal Health Ltd

Watford, Hertfordshire, UK.

SAPU (Scottish Antibody Production Unit)
Law Hospital, Carluke, UK.

Shandon Scientific Ltd
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