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Abstract

In the early 2020s, cosmology will enter an era of unprecedented precision when
the next generation of large scale structure surveys begin receiving data. As a
result, it is expected that stronger constraints on major features of cosmology
like dark energy and massive neutrinos are forthcoming. The former could help
to favour an explanation for the present accelerated expansion of the Universe,
while the latter has the potential to enhance our understanding of a prominent
intersection between particle physics and cosmology. However, there are many
systematics that must be accounted for in parameter forecasts. One of the most
prominent theoretical cases is the influence of baryonic astrophysics on large scale
structure (e.g., AGN and supernova feedback, adiabatic contraction etc.) and the
effect that marginalising over a limited theoretical understanding of the associ-
ated phenomena will have on forecasts. This question is one of the core concerns
of this thesis. It will be applied respectively in Chapters 3, 4 and 5 to constraints
on dynamical dark energy, the neutrino mass sum and a possible coupling be-
tween dark energy and dark matter. While forecasts are the primary focus here,
much of this work has implications for parameter inference more broadly, and
could be used to inform the direction that model building or simulation devel-
opment should take in pursuit of the goal of more accurate parameter constraints.

The key statistics used here to probe the growth of structure derive from the
power spectrum of matter overdensities. This permits the use of both weak grav-
itational lensing of light from background sources by foreground objects, and
galaxy clustering. The former requires accounting for the intrinsic alignments of
ellipticities and shears, a systematic examined in depth for its impact on fore-
casts. This thesis presents Fisher analyses using weak lensing and galaxy clus-
tering probes for parameter forecasts for a Euclid-like survey.

The approach here to modelling the baryonic phenomena is to adopt a generic
treatment of their global redistribution of the dark matter content in haloes,
via energy transfer to their surroundings. Different baryonic effects are separated
into three general but distinct categories: large scale adiabatic contraction caused
by radiative cooling; high impact energy transfer from specific, localised sources;
and small-scale effects that manifest as inner halo cores. I introduce the inner
halo core through analytic modelling. A central tenet of this work is the use of
analytic modelling, rather than numerical simulations, in capturing the relevant
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physics so as to circumvent computational expenses and underlying systematics
associated with the latter, while retaining the useful physical insight offered by
the former.

Employing a maximum likelihood method, matter and weak lensing power spec-
tra are varied around a fiducial cosmology given by Planck Collaboration et al.
(2016b). For a Euclid-like survey covering 15000 sq. deg. of sky, measuring 10
redshift bins in the range 0 < z < 2, the w0-wa dark energy Figure of Merit is
shown to experience a 40% degradation due to the combination of baryon effects.
This thesis presents a detailed analysis of the relative dark energy and baryon
sensitivities over the range of available lensing modes. Ultimately, it is found
that the application of cosmic microwave background (CMB) priors alleviate the
baryon impact for individual errors on the dark energy parameters but the rela-
tive degradation to the Figure of Merit for the parameter space remains.

A similar approach is used to address the question of whether Stage IV sur-
veys, whilst accounting for baryons and intrinsic alignments, can make a positive
detection of the neutrino mass and whether they can distinguish between the nor-
mal and inverted hierarchy of mass eigenstates. Combined forecasts from weak
lensing, the CMB and galaxy clustering preclude a meaningful distinction of hi-
erarchies but do achieve a positive detection of the mass sum, overcoming the
significant degradation by factors of ∼2 to that arise when marginalising over
baryons for weak lensing alone. These results could be improved upon with fu-
ture CMB priors on the spectral index and information from neutrinoless double
beta decay to achieve a 2-σ distinction of the hierarchies. The effect of intrinsic
alignments on forecasts is shown to be minimal, with constraints even experienc-
ing mild improvements due to information from the intrinsic alignment signal.

Finally, this work explores the prospects for using large scale structure to con-
strain the strength of a possible coupling between dark matter and a dark energy
scalar field. While the growth of structure in the linear regime in this model
has been well-explored, the non-linear regime is more challenging. Forecasts have
been made using polynomial fits to power spectra directly. However, this thesis
presents a more physically motivated approach to the problem. I show that a
single parameter, the halo virial density, is responsible for describing most of the
impact of the coupling on small scales. By computing the changes to the virial
density in this model, a fit can be found that allows for a full physically-motivated
halo model. This allows Fisher forecasts to be made for the coupling strength,
including an assessment of the impact of baryons. Degradations to the coupling
strength constraint of ∼20% due to this systematic are found. While CMB and
galaxy clustering priors notably improve the absolute errors without marginalis-
ing over baryons, when this systematic is accounted for these priors provide little
improvement and the relative degradation increases.
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Taken as a whole, this thesis provides a comprehensive analysis of the impact
of baryons and intrinsic alignments on constraints for a wide range of cosmo-
logical phenomena responsible for the accelerated expansion, the neutrino mass
hierarchy and beyond ΛCDM physics coupling dark matter and dark energy.
Through modified and improved approaches to halo modelling, this work demon-
strates which of these phenomena are subject to the most severe degeneracies
with baryonic effects. This rigorous analysis, grounded in empirically motivated
parameterisations, is designed to inform optimal mitigation strategies to minimise
the impact on forecasts. In turn, this provides a wide scope for making future
improvements to modelling and simulations that can advance efforts to constrain
cosmology still further.
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Lay Summary

Cosmology is rather unique among the sciences in that the observable Universe
represents the results of a single ‘experiment’ to which we have access. The chal-
lenge of recent decades has been to improve our observational capabilities in order
to tackle the underlying questions of the field with a level of precision that will
allow us to draw meaningful scientific conclusions. These questions are among
the boldest that are posed in science - what is the origin of the Universe? What
are its constituents and how does it look like on the largest scales? What is its
history and what is its ultimate future?

As the era of precision cosmology has come more sharply into focus, a broadly con-
sistent model of the Universe has developed but there are a considerable number
of problems that remain unsolved. One of the most striking is that observations
indicate that only ∼ 4% of the matter-energy content of the Universe is provided
by the everyday ‘baryonic’ matter we are familiar with. The orbits of galaxies
and stars indicate that ∼ 26% of the cosmological budget is taken up by ‘dark
matter’, which leaves an observable gravitational signature but does not interact
with light. There are many proposed candidates for what dark matter may be
- a population of familiar bodies like brown dwarfs with luminosities too low to
observe; a manifestation of an incomplete understanding of gravity itself; or some
new type of particle.

Our understanding of the large scale structure of the Universe emerges from
modelling the gravitational dynamics of dark matter, giving rise to a complex
framework of filamentary structures punctuated by collapsed ‘halo’ objects. Large
scale structure bears the imprints of gravitational dynamics and the history of the
expanding Universe in which it forms. It therefore provides an excellent probe
into many of the questions cosmology is currently focused on. One of the main
issues is explaining what the remaining 70% of the matter-energy content of the
Universe is.

Observations of supernovae in 1998 famously showed that today the Universe
is accelerating in its expansion, that galaxies recede from us at greater velocities
the farther they are from the observer. Explaining this remarkable result is a
significant challenge. Quantum field theory indicates that the vacuum of space
itself should generate an accelerated expansion but one that is far greater (by 120
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orders of magnitude) than observations suggest. In lieu of a solution, it is often
assumed that some mechanism cancels the gravitation of the vacuum and that
the remaining 70% is associated with a ‘dark energy’ component of the Universe.
This could range from a new particle to an additional feature of gravitation be-
yond General Relativity.

Forthcoming large scale structure surveys aim to constrain the dark energy model
space, and other interesting physics like the configuration of neutrino mass states,
through precision measurements. In order for this to be successful, it is important
that systematics are properly accounted for. A major example, with which this
thesis is concerned, is the influence of baryonic astrophysics on large scale struc-
ture. Star formation, supernovae, and the activity generated by matter accreting
around black holes all contribute to significantly distort the matter distribution.
This in turn biases our statistical probes.

My work in this thesis explores this issue in detail, adopting and expanding
models of structure with prescriptions for the effects of baryons. This allows me
to quantify the impact of baryons on cosmological forecasts, and to identify po-
tential routes for mitigating this issue. Chapters 3 and 4 performs this analysis
for dark energy and neutrinos respectively. Chapter 5 addresses halo structure
in the context of a coupling between dark matter and dark energy, and assesses
the baryon impact on forecasts of the coupling strength.
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Chapter 1

Introduction

Cosmology is a very broad scientific field. It would be impractical to discuss all

or even most of its subject matter here, so this Chapter will be confined to an

explanation of the principal tenets of the standard model of cosmology, with a

focus on those elements necessary to understand and interpret the methodology

and conclusions of later Chapters.

The interpretation of gravity on large scales provided by General Relativity un-

derpins a modern understanding of the cosmos, and so will be discussed first. This

will lead into an examination of the various components of material permeating

the Universe, and their role in defining different eras of cosmological evolution and

expansion. Particular attention will be devoted to dark matter, as this thesis is

grounded in the matter-dominated era. Dark energy and cosmological neutrinos

will be discussed in detail, as later Chapters are devoted to efforts to constrain

these features of cosmology.

1
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1.1 General Relativity and Cosmology

An understanding of Einstein gravity and its role in cosmology begins with the

acknowledgement that Newtonian gravity does not satisfy the special principle of

relativity that physical laws should be invariant for all inertial frames (Einstein,

1905a). Such a frame is defined by a set of time and space coordinates, (t, x, y, z).

An event observed in one frame will have a different set of coordinates to the same

event observed in another, with a Lorentz transformation governing the relation

between them. Under a Lorentz transformation of the Newtonian gravitational

potential in the Poisson equation,

∇2Φ = 4πGρ, (1.1)

where G is the Universal gravitational constant and ρ is a source matter density,

time derivatives will generally appear alongside spatial derivatives. There is a

clear incompatibility here with the principle of relativity, although Newtonian

gravity remains an accurate approximation provided that the speed of an object

is much less than the speed of light, v � c, and that gravitational fields are

correspondingly weak.

The expansion of Special Relativity to include gravity and non-inertial frames

requires three equivalence principles:

1. Weak equivalence principle: All freely falling test particles of negligible

active gravitational mass and with identical initial positions and velocities

follow the same trajectory.

2. Einstein equivalence principle: In addition to the weak equivalence

principle, Special Relativity is valid in the local region of a freely falling

test particle of negligible active mass. Here the concept of ‘locality’ requires

that variations of gravitational fields are vanishingly small.

3. Strong equivalence principle: For a freely falling massive body, a locally

inertial frame always exists in which physical laws are identical in form to

those in a frame with no gravitational field.



1.1. GENERAL RELATIVITY AND COSMOLOGY 3

The (strong) equivalence principle is the basis for General Relativity (Einstein,

1905b), a theory that interprets the gravitational force on cosmological scales as

a manifestation of the curvature of a four-dimensional ‘spacetime’ manifold. A

review of the fundamental formalism of the theory is presented in Appendix A.

The application of General Relativity to constructing the standard model of cos-

mology follows.

1.1.1 General Relativistic Cosmology and The FLRW Met-

ric

A solution to Einstein’s field equations (see equation A.9) relating the geometry

of spacetime to the matter-energy content of the Universe is required that can

describe the physical Universe. This in turn raises the question of what should be

considered the foundational features of the cosmos that a descriptive model must

accommodate. Here, the Cosmological Principle may be introduced. It states

that on large scales, the content of the Universe is statistically homogeneous and

isotropic (Milne, 1936). The homogeneity assumption requires that the statistical

properties of the Universe are invariant under translations in space on sufficiently

large scales. In other words, if one selects a number of large independent volumes

they should have e.g., consistent mean matter densities, and likewise for other

properties (Hogg et al., 2005). Isotropy requires that observations made in any

direction are indistinguishable. This represents a culmination of a historical trend

away from conceptions of the centrality of Earth and towards Copernican views

that human observers occupy no privileged position in the Universe1.

On sufficiently small scales, ≤ 100Mpc, there is neither homogeneity nor isotropy,

with the Universe revealing a complex, irregular structure of connected dark

matter filaments and haloes. On larger scales, the evidence for the Cosmologi-

cal Principle is strong but not absolute. The angular distribution of temperature

and density perturbations in cosmic microwave background (CMB) radiation (see

§ 1.4.1) provides the most incisive test, with the most recent accurate observa-

tions from Planck (Planck Collaboration et al., 2016a) finding that although the

CMB is extremely isotropic there exist anisotropies at the level of O (10−5) which

1A further extension to the Perfect Cosmological Principle asserts homogeneity and isotropy
in time as well across space, although this is not consistent with observations of the Universe.
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are large enough to be statistically significant.

The Universe is assumed to be homogeneous on large scales. This is one of

the central tenets of the standard cosmological model. The assumption has been

explored by a number of studies examining the scale at which observations are

homogeneous to within a certain statistical threshold (e.g., Hogg et al., 2005),

although these implicitly assume that the geometry associated with standard

cosmology is valid. Many works have used observations of galaxy distributions

and how uniform their associated length scales are to probe for homogeneity indi-

rectly (by absence of significant inhomogeneities). As Maartens (2011) notes one

cannot directly test homogeneity. Observers on Earth have access to a lightcone

to observe the Universe through but cannot study intersecting spatial surfaces.

This places a limit on the capacity to probe the validity of the homogeneity

assumption. Galaxy surveys can only provide information on the galaxy distri-

bution for slices of the sky at constant redshifts.

The strongest basis to make observational claims about homogeneity is to do

so through isotropy, for which the CMB is an effective probe. This requires that

the Copernican Principle that observers do not occupy any special place in the

Universe. Homogeneity then emerges as a consequence if all observers measure

the CMB to be isotropic. For a detailed demonstration of this result, the reader

is referred to Maartens (2011). However, as the CMB is observed to feature small

anisotropies it does not immediately follow that there is near-homogeneity. This

claim rests on a number of assumptions about the derivatives of CMB multipoles

(Maartens, 2011).

The modern formulation of the Cosmological Principle is a consequence of Ein-

stein’s relativistic interpretation of cosmology. A Newtonian approach to an

isotropic Universe requires a finite spatial extent, which leads to special loca-

tions for observation (Barrow, 1989). By contrast, the Einstein equations can be

solved exactly by invoking the assumptions of isotropy and homogeneity as out-

lined above. Friedmann (1922) showed that a metric (known as the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric) satisfying these conditions takes the

form

ds2 = −c2dτ 2 = −c2dt2 +R2 (t)
[
dr2 + f 2

K (r)
(
dθ2 + sin2 θdφ2

)]
, (1.2)
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where R (t) is the scale factor of cosmic expansion with dimensions of length, al-

lowing r to be a dimensionless radial coordinate corresponding to the ‘comoving

distance’ between a source and observer which is constant with respect to the

expansion. The ‘physical distance’ is then given by R (t) r. It should be noted

that in order to satisfy the Cosmological Principle, the scale factor depends only

the ‘cosmic time’, t, rather than the most general possible form, R (t, r, θ, φ), as

a function of position as well. The cosmic time is defined to be the time expe-

rienced by a physical clock travelling with the homogeneous expansion, which

will be measured by all observers with zero peculiar velocity. It can therefore

be seen that the imposition of the Cosmological Principle reduces the contribu-

tion of Einstein’s equations to determining the behaviour of R (t), through the

time-time component, g00, of the metric tensor2. This is of course much more

straightforward than contending with a fully general solution of the equations,

and lays the basis for the Standard Model of cosmology.

For a polar decomposition of the spatial coordinates, the angular components

are given by θ and φ in common with convention. If a coordinate transformation

is performed such that
√
g11dr −→ dr, then the remaining spatial curvature is

described in hyperspherical coordinates by

fK (r) =


sinh (r) , k = −1

r, k = 0

sin (r) , k = +1

(1.3)

with k = {−1, 0,+1} being a ‘curvature’ constant corresponding to spatial hy-

persurfaces that are open, flat or closed respectively. These can be conceptualised

by considering the appropriate 2D geometric surface for a hyperbola, a plane or

a sphere. Note that, in order to preserve isotropy, fK (r) is a radial function,

expressing no angular dependence in θ or φ.

It is useful to define a dimensionless form of the scale factor,

a (t) ≡ R (t)

R0

, (1.4)

2The g0i and gi0 components controlling any mixing of time and spatial coordinates are set
to zero in order to satisfy the time invariant symmetry, t ←→ −t, that ensures physical laws
yield consistent results when equations are solved forwards or backwards in time. The FLRW
metric contains only dt2 and

(
dr2,dθ2,dφ2

)
terms as a result.
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normalised to unity at the present day. This is the form that will be referred to

as ‘the scale factor’ hereafter, with the time-dependence of the quantity assumed

rather than denoted explicitly. Rewriting the metric in terms of a and rescaling

r −→ R0 r (so that the comoving distance is now defined as the physical distance

today between an observer and source) gives

ds2 = −c2dt2 + a2 (t)
[
dr2 + f 2

K (r)
(
dθ2 + sin2 θdφ2

)]
, (1.5)

with the curvature described by

fK (r) =


R0 sinh

(
r
R0

)
, k = −1

r, k = 0

R0 sin
(

r
R0

)
, k = +1.

(1.6)

1.2 Cosmic Expansion

1.2.1 Hubble’s Law and Redshift

The notion of cosmic expansion is best understood as the isotropic recession of

galaxies from an observer at any and all positions. The relationship between the

velocity of a galaxy and its physical separation from an observer measuring this

velocity is given by Hubble’s law as

v = H (t) r, (1.7)

where H (t) is the Hubble parameter. Its present value, H0, is the constant of pro-

portionality relating the speed of recession to the distance of a galaxy today. The

most recent measurements from the Planck survey findH0 = (67.4± 0.5) kms−1Mpc−1

(Planck Collaboration et al., 2018). It is generally repackaged with a dimension-

less parameter, h, as

H0 = 100h kms−1Mpc−1. (1.8)

The observational evidence for Hubble’s law begins with measurements by Slipher

(1917) of spiral nebulae3. The chemical composition of these objects results in

3In this context, ‘nebula’ is an outdated term for a spiral galaxy
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a discrete set of wavelengths required to excite electrons within atoms of the

different elements present. Absorption lines corresponding to these wavelengths

appear in a measured spectrum of light from these sources. The key observa-

tion was that the spectral lines were shifted for observed spectra with respect

to their position from spectra produced under laboratory conditions. When in-

terpreted as Doppler shifts these observations could be related to the velocity of

the spirals, which appeared to increase with distance. As has been discussed,

Friedmann (1922) showed that there were theoretical grounds for an expand-

ing Universe within the framework of Einstein’s relativity. Lemâıtre (1927) and

Hubble (1929) independently established the proportional relationship between

velocity and distance from observations of receding objects that became Hub-

ble’s law, with Hubble (1929) providing an early value for the Hubble constant

of H0 ≈ 500 kms−1Mpc−1. The form of the Hubble parameter as a function of

time but not the spatial coordinates (r, θ, φ) is a requirement of the Cosmological

Principle. It can be seen that by expressing the physical separation in terms of

the comoving separation (now denoted by x) and the scale factor,

r = a (t) x, (1.9)

according to the FLRW conventions previously discussed, that the Hubble pa-

rameter can be written as

H (t) ≡ ȧ

a
, (1.10)

where a dot indicates a derivative with respect to cosmic time. This is a simple

consequence of writing the velocity in Hubble’s law as

v = ṙ = ȧx =
ȧ

a
r, (1.11)

in which it is assumed that ẋ = 0.

The Doppler shift experienced by light observed from a receding galaxy means

that the initial wavelength, λi, of the emission is changed by a factor

z ≡ λ0 − λi
λi

≈ v

c
(1.12)

so that it reaches the observer with wavelength, λ0. This factor is called the

‘redshift’ because light emitted by receding galaxies is observed with a longer
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wavelength, while light received by a body with net incoming motion would be

‘blueshifted’ to shorter wavelengths.

A photon travels along a null geodesic with ds2 = 0 in the (FLRW) metric. For

photons emitted from a source with zero peculiar velocity, a coordinate system

can be defined such that the photon travel is entirely along the radial direction

with the source located at the origin. This gives the relationship

dt =
a (t)

c
dr (1.13)

between time and (radial) comoving distance intervals. A photon emitted at time

tem and observed at time tobs at radial coordinate robs travels a comoving distance

r1 =

∫ robs

0

dr =

∫ tobs

tem

dt
c

a (t)
(1.14)

between the events of emission and observation. A second photon, emitted a

short time interval after the first, travels

r2 =

∫ robs

0

dr =

∫ tobs+∆ tobs

tem+∆ tem

dt
c

a (t)
. (1.15)

It can be seen that r1 = r2. This is because the comoving distance between the

source and observer is time-independent. All the time dependence is associated

with the cosmic expansion and captured by a (t). By equating the two expressions

above and rewriting the integrals via∫ tobs

tem

dt

a (t)
=

∫ tobs+∆ tobs

tem+∆ tem

dt

a (t)
=

∫ tobs

tem

dt

a (t)
+

∫ tobs+∆ tobs

tobs

dt

a (t)
−
∫ tem+∆ tem

tem

dt

a (t)
,

(1.16)

the interval between two photons at emission can be related to the interval at

observation such that ∫ tobs+∆ tobs

tobs

dt

a (t)
=

∫ tem+∆ tem

tem

dt

a (t)
. (1.17)

If these intervals are sufficiently small, this can be approximated as

∆ tobs

aobs

=
∆ tem

aem

. (1.18)
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The relation between redshift and scale factor can be deduced from this by set-

ting ∆ tem equal to the period of the emitted photon. The ratio ∆ tobs/∆ tem is

therefore equal to the ratio of observed and emitted wavelengths. It then follows

from equation (1.12) that

1 + z =
aobs

aem

. (1.19)

If the scale factor is normalised to unity today then the relations

z =
1

a
− 1←→ a =

1

1 + z
, (1.20)

can be used with regard to present day observations. If the source has a peculiar

velocity vpec with respect to the expansion, an additional redshift, zpec, is induced.

For a time-independent vpec, equation (1.15) can be re-expressed as∫ robs

0

dr +

∫ tem+∆ tem

tem

dt
vpec

a (t)
=

∫ tobs+∆ tobs

tem+∆ tem

dt
c

a (t)
, (1.21)

which leads, via the procedure outlined above, to the observed redshift,

1 + zobs = (1 + z) (1 + vpec/c) = (1 + z) (1 + zpec) (1.22)

(in the non-relativistic limit) as a combination of the cosmic redshift and the

fedshift due to the peculiar velocity.

In equation (1.12) the approximate relationship between the recession velocity

of a source and redshift holds well but on sufficiently large scales general rela-

tivistic effects cause Hubble’s law to break down. Large-scale spacetime curvature

can be approximated as by a flat Euclidean plane locally so galaxies within this

environment obey z ≈ v/c. On cosmological scales, however, it is more appro-

priate to determine redshifts using the scale factor as this encodes contributions

from General Relativity directly. This approach will generally be used for objects

at redshifts z & 1.
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1.2.2 The Friedmann Equation and Parameterising Den-

sity

Having established the FLRW metric that allows one to solve the Einstein field

equations in adherence to the Cosmological Principle and the conventions of the

scale factor and Hubble parameter, the Friedmann equations describing the evo-

lution of the cosmic expansion can now be presented. The form of the metric in

equation (1.5) is used. The 00 component of Gµν (equation (A.9)) encapsulating

the global geometry of spacetime can then be ultimately derived from the metric

components required to construct the Christoffel symbols (equation (A.7)), Rie-

mann tensor (equation (A.8)) and Ricci tensor. This can be equated to T00 = ρ,

matter-energy source term of the field equations, to give (Friedmann, 1922)(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
. (1.23)

This is the first Friedmann equation. It should be noted that the freedom to add

a cosmological constant term is accounted for by incorporating its contribution

to the total energy density alongside matter and radiation into ρ such that

ρ = ρm + ρr + ρΛ = ρm + ρr +
Λc2

8πG
. (1.24)

The role played by the cosmological constant will be discussed in more detail in

forthcoming sections but for now it will suffice to think of it as contributing to a

vacuum energy density.

A version of this Friedmann equation can also be derived from Newtonian ar-

guments by considering a homogeneous sphere of matter undergoing isotropic

expansion and a test particle at the boundary experiencing the Newtonian grav-

itational force from the enclosed matter. Using the same definition of the scale

factor relating comoving and proper distances, and then applying energy conser-

vation arguments leads straightforwardly to the same dynamical equation pre-

sented above. The key difference is that the curvature term has an analogue in

the form of a total energy term, the sign of which dictates whether the Universe

is open, closed or flat in the same manner as the sign of k for the relativistic

form. The robustness of the Newtonian approach is due to the fact that the shell

theorem - which states that the test mass experiences no net force from matter
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shells beyond the radius of the sphere (and that the enclosed matter has an in-

distinguishable effect from a point source of the same mass on the test particle) -

has a relativistic analogue in the Jebsen-Birkhoff theorem (Jebsen, 2005; Birkhoff

and Langer, 1923)4 that states that any spherically symmetric solution of the

field equations in a vacuum must be asymptotically flat. In other words, in this

scenario, gravity reduces to the Newtonian limit at large distances where one

would otherwise expect the curvature of spacetime to become relevant.

A flat Universe is associated with a particular time-varying value of the den-

sity called the ‘critical density’, given by the Friedmann equation when k = 0

as

ρcrit (t) =
3H2 (t)

8πG
. (1.25)

It is useful to define a dimensionless parameter,

Ω (t) ≡ ρ (t)

ρcrit (t)
=

8πGρ (t)

3H2 (t)
, (1.26)

simply called the ‘density parameter’. The value of Ω implicitly encodes the

curvature. Corresponding to densities that require k = +1 (k = −1) to satisfy

the value ofH in the Friedmann equation, Ω < 1 (Ω > 1) describes a closed (open)

Universe. Following the division of matter-energy components in equation (1.24),

independent density parameters for each component can be written as

Ωm (a) =
8πGρm (a)

3H2 (a)
, Ωr (a) =

8πGρr (a)

3H2 (a)
, ΩΛ (a) =

ΛρΛ (a) c2

3H2 (a)
, (1.27)

where the scale factor has replaced time in evolving functions as a (or, equiva-

lently, z) is generally a more meaningful parameter to use. For a flat Universe,

the sum of these Ω is unity. For an arbitrary Universe, a density parameter

associated with curvature can be defined as

Ωk = − kc2

(aH)2 (1.28)

so that

Ωtot = Ωm (a) + Ωr (a) + ΩΛ (a) + Ωk (a) = 1 (1.29)

4Jebsen (2005) is a posthumous republication in English of Jebsen’s original 1921 article
demonstrating this result.
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is true generally.

The second Friedmann equation is derived by collecting the remaining inde-

pendent contributions to the Einstein field equations by computing their trace.

Combining this result with the first Friedmann equation leads to the acceleration

equation,
ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (1.30)

Differentiating equation (1.23) with respect to time and substituting this accel-

eration result gives the continuity equation,

ρ̇+ 3
ȧ

a

[
ρ+

p

c2

]
= 0. (1.31)

This is also known as the fluid equation and can be derived independently by ther-

modynamic arguments, assuming that the matter-energy ‘fluid’ is adiabatic. The

importance of the pressure term alongside density in the acceleration and fluid

equations becomes apparent when describing the expansion of a Universe with

multiple matter-energy components, each with their own relationship between p

and ρ governed by an equation-of-state,

w =
p

ρc2
. (1.32)

Values of w will be quoted throughout this work with c ≡ 1 implicitly assumed.

Different equations-of-state for different species can have significantly varying im-

pacts on the above equations. These define distinct eras of cosmological evolution

depending on which species dominates.

1.2.3 Matter Domination

At redshift z ≈ 3600 an early radiation dominated era of the Universe (see § 1.2.4

and § 1.4) transitioned to one of matter domination. In this context, matter refers

to all material travelling at non-relativistic speeds and behaving as a pressureless

fluid. Matter therefore has an equation-of-state, w = 0. In forthcoming sections,

the different effects of e.g., cold dark matter and baryons on large scale structure

will be explored but are grouped together when discussing the evolution of the

background expansion.



1.2. COSMIC EXPANSION 13

The continuity equation with w = 0 becomes

ρ̇+ 3
ȧ

a
ρ = 0. (1.33)

This can be solved simply to show the expected result that matter density scales

with volume, which is represented by a3 for a cosmological context. Hence, sub-

stituting

ρm (a) = ρm,0a
−3, (1.34)

into the Friedmann equation gives a differentiable equation,

da

dt
=

8πGρm,0
3

1

a
(1.35)

that must be solved to discover how the expansion evolves with time. If one

assumes a power-law solution, a (t) ∝ tα then α = 2/3 satisfies the Friedmann

equation. This leads to a Hubble parameter,

H (t) =
ȧ

a
=

2

3t
, (1.36)

that decays with time as the matter content becomes increasingly diffuse. This

result is asymptotic so the expansion continues forever but becomes infinitely

slow. A flat Universe with no cosmological constant and containing only matter is

known as an Einstein de-Sitter (EdS) Universe and shares this evolution (Einstein

and de Sitter, 1932).

1.2.4 Radiation Domination

Radiation collectively refers to the photon content of the Universe and relativistic

particles that have a non-zero pressure, such as neutrinos (under certain condi-

tions; see § 1.5) or warm dark matter particles (see § 1.6.2). The equation-of-state

for radiation is w = 1/3, which yields a continuity equation,

ρ̇+ 4
ȧ

a
ρ = 0, (1.37)

and a density evolution,

ρr (a) = ρr,0a
−4, (1.38)
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with a dependence on an additional factor of a beyond the scaling with vol-

ume. This can be understood by considering that the fractional change to the

wavelength of radiation with the cosmic expansion is proportional to a via equa-

tion (1.12). As the density of radiation is proportional to its energy which depends

on wavelength as E ∝ λ−1, it is apparent that ρr decreases by a factor of a due

to this effect.

Alternatively, one can show the same result through thermodynamic arguments.

Adiabatic expansion, in which the total heat of the Universe is conserved, requires

the transfer of internal energy, dU , to work done, pdV to obey the first law of

thermodynamics, dU + pdV = 0. The change in energy density, expressed as

u ≡ U/V , can then be shown to be

du = −3 (u+ p)
da

a
. (1.39)

Considering the radiation equation of state, w = 1/3, it is clear from this that an

additional power of the scale factor will appear in the radiation density evolution,

dur = −4ur
da

a
, (1.40)

compared to matter which has w = 0. Solving the Friedmann equation with the

substitution, ρr ∝ a−4, with a power law assumption for the scale factor, gives

a ∝ t1/2 and a Hubble parameter,

H (t) =
1

2t
. (1.41)

It is worth noting that during radiation domination the decay of ρr with time is

ρr ∝ t−2 while matter decays slower as ρm ∝ a−3 ∝ t−3/2. However, applying the

finding that a ∝ t2/3 during matter domination gives ρm ∝ t−2 in this era while

radiation drops off faster ρr ∝ t−8/3. It is therefore clear that radiation domi-

nation is inherently temporary when any non-zero matter component is present

and eventually transitions to a period of matter domination that continues indef-

initely, provided that there are no additional contributions to the total density

to consider (Liddle, 2003).
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1.2.5 Accelerated Expansion

The cosmological constant is associated with the energy density of the vacuum.

If thermodynamic arguments are applied for a volume of the vacuum, V , then

d (ρΛc
2V ) = −pΛdV implies that Λ > 0 corresponds to a negative pressure that

drives the expansion of the vacuum with equation of state wΛ = −1. At suffi-

ciently late times, the cosmological constant term dominates over other terms in

the Friedmann equation. When the matter, radiation and curvature contributions

are negligible, the scale factor can be simply derived as

a (t) = exp [Ht] = exp

[√
Λc2

3
t

]
. (1.42)

This is known as the de Sitter solution and is also relevant for describing a period

of inflationary expansion in the early Universe (see § 1.4.2).

A generic dark energy component entering the Friedmann equation as another

fluid term is defined by having wDE < 0 giving rise to a negative pressure contri-

bution. For an evolving equation of state, wDE (a), the continuity equation has

a general solution,

ρDE = ρDE,0 exp

[
3

∫ 1

a

d ln a′ (1 + wDE (a′))

]
. (1.43)

As one would expect, substituting wDE = −1 returns a constant energy density.

It can be shown from the result above that wDE < −1/3 is the condition required

for dark energy to eventually come to dominate over kc2/a2 in the Friedmann

equation and produce accelerated expansion. Values in the range −1 < wDE ≤
−1/3 provide stable accelerating solutions. By contrast, wDE < −1 leads to

phantom solutions that would give rise to a host of extreme particle physics

phenomena, an increasing dark energy density and a Big Rip spacetime singularity

in the future.
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1.2.6 The Hubble Parameter

Substituting the relations for the evolution of each density component into the

Friedmann equation allows it to be re-expressed as the Hubble parameter,

H2 (z)

H2
0

= Ωm (1 + z)3+Ωr (1 + z)4+ΩΛ exp

[
3

∫ z

0

dz′
(1 + w (z′))

1 + z′

]
+Ωk (1 + z)2 .

(1.44)

This formulation replaces the present day values of the densities with the corre-

sponding density parameter values. The label explicitly indicating a present day

value is dropped for convenience, so hereafter it may be assumed, unless stated

otherwise, that Ω ≡ Ω (z = 0)5. Through equation (1.25) the factor of H0 encap-

sulates the present day value of the critical density, which relates ρ to Ω. The time

evolution has been expressed in terms of redshift but could equivalently use the

scale factor. The final term on the right-hand side derives straightforwardly from

equation (1.28). The Hubble parameter encodes cosmological distances; through

this expression these can be computed for an object at a given redshift provided

that one has knowledge of the relative contributions of the different matter-energy

and curvature components to the total density today. As such, this form of the

Friedmann equation is extremely useful for describing key cosmological observ-

ables.

1.3 Cosmological Distances

There are a number of specific distance measures made in cosmology. Observa-

tions are often based on the apparent angular size or the luminosity of an object,

leading to the ‘angular diameter distance’ and the ‘luminosity distance’ being

important measures that are useful to understand in terms of the previously

discussed comoving distance. This can be expressed in terms of the Hubble pa-

rameter in equation (1.44) by changing the integration variable in equation (1.14)

from t to z. This gives

χ (z) =

∫ z

0

dz′
c

H (z′)
, (1.45)

where χ is specifically the comoving distance to an object at redshift z. This

notation will be used hereafter.

5Chapter 5 presents a general exception to this notation as it deals with growth histories
in coupled dark energy cosmologies and so frequently refers to density parameters as fully
redshift-dependent quantities for these purposes.
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The angular diameter distance, DA (z), can be understood by considering two

objects at redshift z, separated by an angular interval dφ, and separated from

an observer at z = 0 by a (z) fK [χ (z)]. The arc length between the objects, or

equivalently the physical size of a single extended object, can therefore be written

dl =
1

(1 + z)
fK [χ (z)] dφ. (1.46)

The angular diameter distance is then defined through this relation as the distance

required to compute this size or separation:

DA (z) ≡ 1

(1 + z)
fK [χ (z)] . (1.47)

The luminosity distance, DL, is defined as the distance measure in an expanding

and curved spacetime that recovers the Euclidean form of the relationship,

L = 4πD2
LS, (1.48)

between the luminosity, L, of a source and the observed flux, S. Several factors

determine the relationship between DL and other distance measures. The rate

of energy flow for emitted photons decreases by a factor of (1 + z) due to the

expansion. There is also a time dilation effect due to the decrease of frequency of

observed photons by a factor of (1 + z) with respect to the frequency of emitted

photons. As the flux depends on radiation energy transferred per unit time,

this leads to S decreasing by a factor of (1 + z)2. The surface area of a sphere

centred at the source increases by another factor of (1 + z)2 due to the expansion.

Overall the flux decreases by a factor of (1 + z)4. To satisfy the above form of

the luminosity-flux relationship, the luminosity distance is therefore defined as

DL (z) ≡ (1 + z)2DA (z) = (1 + z) fK [χ (z)] . (1.49)

The importance of luminosity distance as a cosmological observable is perhaps

most apparent when Riess et al. (1998) and Perlmutter et al. (1999) showed

constraints on DL (z) derived from measurements of type-Ia supernovae provided

the first compelling evidence of an accelerating Universe. This famous discovery
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and its implications for dark energy are discussed in detail in § 1.7.1.

1.4 The Early Universe

1.4.1 Cosmic Microwave Background

The early universe provides one of the most powerful cosmological observables.

A blackbody spectrum of microwave radiation characterised by a high degree of

isotropy provides a signature of an early, high-temperature radiation-dominated

era. Measurements of this cosmic microwave background (CMB) from the Planck

survey mission are used to test the validity of the Cosmological Principle and also

provide some of the tightest cosmological constraints (Planck Collaboration et al.,

2018). The CMB is nearly a perfect blackbody and maintains this spectrum as

photons propagate through the Universe6 so the energy of radiation can be treated

as depending on temperature according to the Stefan-Boltzmann law,

Er = ρrc
2 ∝ T 4. (1.50)

As the density of radiation decreases with expansion via ρr ∝ (1 + z)4, the cosmic

temperature increases with redshift as

T (z) = (1 + z)T0, (1.51)

where T0 = 2.718 ± 0.021 K is the value measured today (Planck Collaboration

et al., 2016b). This relationship suggests that the temperature of the Universe

becomes indefinitely high at sufficiently early times. When the CMB was dis-

covered by Penzias and Wilson (1965) it provided the first compelling observa-

tional evidence in support of ideas proposed by Alpher and Herman (1948) that

a microwave spectrum observed today, arising from early Universe high-energy

radiation redshifted by the expansion, would imply a Hot Big Bang in the past.

The origins of the CMB can be understood in the following simple terms. Before

6There are small deviations due to the Sunyaev-Zel’dovich effect (Sunyaev and Zeldovich,
1970, 1980), which describes how CMB photons interact with high-energy electrons in galaxy
clusters. Inverse Compton scattering increases the energy of the photon enough to produce a
small spectral distortion, . 1 mK in the CMB.
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the energy of radiation had decreased sufficiently to be comparable to the thresh-

old, kBT (z) ' 13.6 eV, at which neutral hydrogen forms, the Universe could

be described as a hot ionised plasma of photons and free protons and electrons.

Thomson scattering coupled the photons and electrons, with a short mean free

path for the former due to the high density of the latter. The Universe is there-

fore referred to as ‘opaque’ during this epoch, which ended when the radiation

temperature had decreased too far for photons to satisfy the ionisation potential

of hydrogen. As a result, the ‘decoupling’ of photons and electrons occurred due

to the latter combining with free protons to form neutral atoms. This marked

the time (at z? = 1089.80± 0.21, see Planck Collaboration et al. (2018)) of a last

scattering surface for the photons before being free to radiate through space with

a blackbody spectrum. This would also suggest that the CMB would be com-

pletely isotropic. This is nearly the case, with anisotropies only of order O (10−5)

observed. These arise due to quantum fluctuations in the dense early Universe

producing temperature variations that are then amplified by the expansion his-

tory. Perturbations in the background can be treated as the progenitors for the

large scale structure of collapsed overdensities observed today.

1.4.2 Inflationary Cosmology

The standard cosmological picture that has been sketched so far encounters a

number of significant problems that can be resolved by introducing a period of

exponential, quasi-de Sitter expansion in the early Universe referred to as ‘infla-

tion’ (Guth, 1981; Linde, 1982).

The first obstacle inflation overcomes is the horizon problem. An observer receiv-

ing photons from opposite directions from two different regions is just coming into

causal contact with each of them. These regions should therefore not be causally

connected following a history of FLRW expansion. However, the extreme isotropy

of the CMB contradicts this reasoning, implying that these distant regions have

attained thermal equilibrium prior to decoupling. The comoving particle horizon,

which defines the distance a photon can travel in time, t, is given by

τ ≡
∫ t

0

dt′

a (t′)
=

∫ a

0

da′

[a′]2H
, (1.52)
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which can be shown for radiation and matter dominated eras to be τ ∝ a and

τ ∝ a1/2 respectively. Therefore, as the particle horizon grows with time these

regions should also have been causally disconnected at last scattering. Indeed,

the particle horizon only spans about a degree on the sky at this time. Some ad-

ditional mechanism is therefore required for attaining such uniform temperatures

across the CMB.

The flatness problem becomes clear by examining equation (1.28) and noticing

that Ωk, the curvature parameter should diverge with time unless k = 0 exactly.

It is therefore also clear that unless Ωk was extremely close to zero at all times

in the past then the Universe should not be flat today. As Ωtot ' 1 is observed

today this requires an extreme fine tuning of Ωk in the past; at the Planck scale

it is required to be of order Ωk ≤ O (10−61) (Baumann, 2009).

There is also the monopole problem (Guth and Tye, 1980). A significantly simpli-

fied statement of the problem is that scalar fields associated with Grand Unified

Theories in particle theory are predicted to have their vacuum energy values be-

come aligned across different locations following a phase transition from an earlier

chaotic state. Topological remnants of the pre-phase conditions are predicted to

remain in the form of magnetic monopoles. These should have very large energy

densities due to having central scalar field values of zero. As such they should

that eventually come to dominate the Universe, in contradiction to what is ob-

served (Zeldovich and Khlopov, 1978).

Inflation solves these problems by proposing a scalar field called the inflaton.

The energy density of the inflaton field drops and freezes out in the very early

Universe. Any inflaton occupying a central, local peak or ‘false vacuum’ of its

potential at this time would exhibit the following behaviour. In the false vacuum

the energy density would be constant, which in analogy to the cosmological con-

stant, is associated with a negative pressure and the generation of accelerated de

Sitter expansion. After a very short time interval, the inflaton would roll down

to a stable minimum of its potential, precipitating its decay into other particles.

After exiting inflation, the Universe would follow the FLRW behaviour described

previously.

This accelerated phase allows for a particle horizon that was once larger than
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it is today. In inflationary cosmology the observable regions of the Universe were

initially encapsulated by a very small volume that was able to attain thermal

equilibrium before inflation, which then expanded the volume to the scales now

observed. This solves the horizon problem. The flatness problem is also solved

with enough inflation. This can be seen by substituting a scale factor under-

going de Sitter expansion, in analogy to equation (1.42), into equation (1.28).

The curvature parameter is exponentially driven to zero. With ∼ 60 ‘e-folds’ (an

increase by of a by a factor of e60) of inflationary expansion, Ωk is small enough

that the subsequent evolution of the Universe has not been sufficient to cause it

to deviate strongly from zero. Finally, the monopole problem is resolved by the

accelerated expansion driving the monopole density to be sufficiently small that

no monopoles are present in the observable Universe.

1.5 Cosmological Neutrinos

Neutrinos have three available ‘flavours’ associated with the electron, muon and

tauon charged leptons that give rise to them through weak interactions. Neutrinos

are massive particles7 (though very light) with three eigenstates that correspond

to a specific flavour through superposition. This entails a massive neutrino os-

cillating between different flavours, a phenomenon which allowed the property of

mass to be observationally confirmed. Determining the absolute masses remains

a significant challenge, however, with solar, atmospheric and accelerator exper-

iments restricted to placing constraints on the sum of mass squared differences

(e.g., Maltoni et al., 2004; Fogli et al., 2006). This leads to competing hierarchies

of mass eigenstates. The consequences of this for cosmological observables, and

the capacity of forthcoming cosmological surveys to constrain the mass sum in

different hierarchies will be the focus of Chapter 4. The current upper bound

from cosmological observations for the mass sum is Σ < 0.12 eV (Planck Collab-

oration et al., 2018). Here a brief introduction to neutrinos in cosmology will

be presented to contextualise this work. For a more expansive discussion of the

ideas in this section, see e.g., Lesgourgues and Pastor (2006); Gerbino (2018).

In the early Universe, neutrinos exist in thermal equilibrium with the primordial

7Although there is a possibility that one neutrino is massless.
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plasma provided that their interaction rate surpasses the expansion rate, Γ > H.

When the temperature of the Universe has decreased sufficiently to T = Tν,dec,

then Γ = H and the neutrinos decouple. The decoupling temperature can be

shown to be ∼ 1 Mev by comparing the relative dependences on temperatures.

The Hubble parameter is influenced primarily by radiation during this epoch, so

can be written H ∝ T 2. The interaction rate is given by Γ = nσv, where n ∝ T 3

is the number density, v ' c because the neutrinos are relativistic at this time.

The cross-section is given by σ ' G2
FT

2 where GF ' 10−5 GeV−2 is the Fermi

constant. This leads to
Γ

H
'
(

T

1 Mev

)3

. (1.53)

Following decoupling, the temperature for neutrinos scales with the expansion as

Tν ∝ a−1. The significance of the decoupling temperature is that it is greater

than the temperature at which electron-positron creation ends in the plasma.

Electron-positron annihilation therefore proceeds to increase the photon number

density. This is not true of neutrinos, which have decoupled. The entropy density

of the plasma, which is conserved, is given by

s ∝ g?T
3, (1.54)

where g? is the number of degrees of freedom. Before annihilation, this is g? =

11/2, given by the sum of two photon polarisation states each contributing a

factor of 1 and both the electron and positron contributing two spin states each

contributing a factor of 7/8 due to their fermionic nature. After annihilation, only

the photon contribution remains, requiring a temperature increase to compensate.

Having decoupled, neutrinos do not experience a transfer of entropy, so it can be

shown that their temperature relates to the photon temperature as

Tν =

(
4

11

) 1
3

Tγ. (1.55)

The present day neutrino temperature is then given through knowledge of the

present day observations of the CMB temperature, Tγ,0 ≈ 2.725K, to be Tν,0 ≈
1.95K. The (relativistic) neutrino density parameter can also now be written

in terms of the photon radiation density parameter. As fermions, each of the

three neutrino eigenstates contributes 7/8 degrees of freedom. A correction is

introduced such that the effective number of neutrinos is Neff = 3.045 to account
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for the flavour oscillations and the time required for neutrinos to fully decouple.

As energy density scales as ρr ∝ T 4, the relation between the density parameters

is therefore

Ων =
7

8
Neff

(
4

11

) 4
3

Ωγ. (1.56)

This is the relativistic limit of the most general expression for neutrino energy

density that comes from integrating over the phase-space density (weighted by

energy), which is given by the Fermi-Dirac distribution (Reif, 1965),

Fν =
1

exp [(Eν − µν) /Tν + 1]
, (1.57)

for neutrino fermions in thermal equilibrium, where µν is a negligible chemical

potential. The non-relativistic limit gives,

Ων '
∑

imν,i

94.1h2 eV
. (1.58)

which is the relevant expression for the massive neutrinos this work is concerned

with.

Neutrinos exert an influence on cosmological observables. Knowledge of the den-

sity parameter, and its relation to the mass sum, allows one to predict the effect

on the Hubble parameter and hence on cosmological distances. Observables like

the sound horizon at recombination or baryon decoupling should therefore bear

some signature of the neutrino effect. The redshift of matter-radiation equality

will also be shifted, with both the total matter and total radiation density param-

eters depending on neutrino contributions. This in turn influences the integrated

Sachs-Wolfe (ISW) effect - where CMB photons travelling along the line-of-sight

are redshifted due to travelling through gravitational potential wells generated

by matter perturbations. Time variation of the potentials occurs for the radia-

tion dominated era and later for the dark energy dominated era, but not for the

matter dominated era. A shift of zeq therefore impacts measurements of the ISW

effect.

As will be discussed in some detail in Chapter 4, massive neutrinos have a sub-

stantial influence on the evolution of large scale structure in the matter dominated

Universe. The interplay between gravitational and pressure forces acting on neu-
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trinos is such that there exists a ‘free-streaming’ scale, which depends on their

mass according to (Ringwald and Wong, 2004)

kfs ∼
√

Ωmh2

1 + z

(mν

eV

)
Mpc−1. (1.59)

For scales smaller than kfs, neutrinos free-stream and damp perturbations, acting

to inhibit the growth of structure. Indeed, a matter perturbation growing above

the free-streaming scale with neutrinos contributing to clustering scales as δ ∝ a

during matter domination but below the free-streaming scale this becomes δ ∝
a1−3fν/5 on linear scales, where fν is the ratio of the neutrino density parameter

to the total matter density parameter (see e.g., Lesgourgues and Pastor, 2006).

The larger the neutrino mass sum, the more significant the effect that neutrinos

have on small-scale matter clustering.

1.6 Dark Matter

The matter content of the Universe can be divided into two categories: baryonic

and non-baryonic. The former category is composed of particle species described

in the Standard Model of particle physics. In astrophysical terms direct observ-

ables such as stars and galaxies are composed of baryons. The non-baryonic cate-

gory constitutes ‘dark matter’ which interacts only weakly with forces other than

gravity and which can therefore be observed only indirectly through its influence

on the distribution of matter throughout the Universe. The relative contribu-

tion to the total matter budget of the Universe is heavily weighted towards dark

matter. The present day matter density parameter, Ωm = 0.3156, accounts for

a baryonic density parameter of Ωb = 0.049. Understanding the nature of dark

matter and how to properly model the large scale structure that is dominated by

it are both among the most important pre-occupations of cosmology.

1.6.1 Observational Evidence For Dark Matter

There are several observations that require a substantial dark matter component

to explain, some of which will be detailed here. The first is that the rotation

curves of spiral galaxies tend towards the velocity of matter at large radii being

nearly constant (Rubin et al., 1980). The tangential velocity, v, of an object at
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radius r depends on the mass interior to the orbit via

v (r) =

(
GM (< r)

r

) 1
2

, (1.60)

assuming that the gravitational field across the galaxy is sufficiently weak that

relativistic effects do not need to be accounted for. Equation (1.60) only for-

mally applies to spherically symmetric mass distributions but approximates the

behaviour for other distributions such as those of spiral galaxies. The observed

flattening of the rotation curves (such that velocities at large radii are greater

by several factors than predicted by a v ∝ r−1/2 decline) at large r implies that

M ∝ r, indicating that there must be more matter present than the amount of

luminous matter observed. If the galactic disk, composed of baryonic matter, is

surrounded by a dark matter halo with a density, ρ (r) ∼ r−2, at large radii, the

rotation curves can be explained. Alternatives that rely on additional baryonic

matter in low mass stars or brown dwarfs are generally not favoured by observa-

tions.

On the larger scales of galaxy clusters, further evidence for a substantial dark

matter component can be found. Indeed, in 1933 Zwicky (1933) was the first to

propose that the idea after calculating mass-to-luminosity ratios for galaxies in

the Coma cluster that had values of several hundred. Dominating over the con-

tribution from stars, luminous matter is mostly present in the form of a diffuse

gas called the intracluster medium (ICM). This gas has been heated due to infall

into the gravitational potential well of the cluster, and is consequently observable

through X-ray imaging. This allows the temperature and density of the ICM to

be measured, which in turn provides an estimate of the pressure. This pressure

acts in opposition to the self-gravitation of the gas. Observations indicate that

the self-gravity is insufficient to keep the gas bound within the cluster without

an additional matter component. Indeed the total cluster mass would need to

be larger by approximately an order of magnitude to reconcile observations (e.g.,

Allen et al., 2011). Cluster measurements have been supported by findings from

studies that indicate a dark matter presence is responsible for the strength of

observed lensing of light signals from background objects by foreground galaxies

and clusters (a consequence of the warping of spacetime by massive objects in

General Relativity, discussed further in § 2.3). For a details of the implications
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for dark matter from lensing (see e.g., Massey et al. (2010)).

Baryon acoustic oscillations are another signature of dark matter. The tight

coupling between baryons and photons in the primordial plasma prior to decou-

pling provides a radiation pressure that acts on the baryons in opposition to

the gravitational attraction. This leads to an oscillation of the radiation driving

baryons outwards, collapse re-occurring as the pressure drops away, and the re-

newed increase of pressure due to the increased density via p = ρc2/3. In other

words, the initial perturbation is subject to a sound wave that carries baryons

and photons together from a central dark matter component experiencing a grav-

itational interaction only. Following decoupling the rapid decay of the radiation

pressure as the photons diffuse deposits the baryonic matter at a fixed radius (the

‘sound horizon’) from the centre of the perturbation. This leads to a signature

in the CMB power spectrum and the matter power spectrum, and serves as a

‘standard ruler’ by establishing the comoving size of a physical observable as a

benchmark for other measurements of cosmological distance. As the oscillations

require a non-baryonic component that does not interact with radiation to pro-

vide a suitably strong gravitational potential well, the observation of BAOs also

corroborates the existence of dark matter.

1.6.2 Candidates

N-body simulations by Davis et al. (1985) are fit well by ‘cold dark matter’

(CDM), which has the properties of a weakly interacting (i.e., almost exclusively

interacting gravitationally) fluid composed of collisionless particles travelling at

non-relativistic velocities. Weakly Interacting Massive Particles (WIMPs) repre-

sent a class of candidates with natural explanations arising from particle physics.

They typically have a mass in the range mX ∼ 10 GeV - 1 TeV (the approximate

scale of electroweak interactions) and could be attributed to a range of particles.

An attractive feature of WIMPs (known as the ‘WIMP miracle’) is that super-

symmetric counterparts to Standard Model particles (e.g., the neutralino) in this

mass range could also have a self-annihilation cross-section that would allow the

observed dark matter abundance to be explained by the following process. When

the temperature of the early Universe decreased below the corresponding mass

scale of the dark matter particle, there would have been insufficient energy for
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pairs of the dark matter particle and its anti-particle to form. Annihilations be-

tween particles and anti-particles would then lead to the exponential suppression

of the number density of dark matter particles in the Universe (see e.g., Kolb and

Turner, 1990). This emerges from the Boltzmann equation,

dn

dt
= −3Hn− 〈σv〉

(
n2 − n2

eq

)
, (1.61)

where n is the number density (with neq being the number density during thermal

equilibrium) and 〈σv〉 is the cross-section. The cosmic expansion dilutes the

dark matter content via −3Hn while the final term on the right-hand side of the

equation controls both the creation and annihilation of pairs. As a consequence of

the expansion, the incidence of annihilations drops with the ultimate consequence

of dark matter ‘freezing out’ and asymptotically approaching a constant number

density. It can be shown at the time of freeze out, that the Boltzmann equation

gives a number density of the form (see e.g., Feng, 2010),

nf ∼ (mXTf )
3
2 exp

[
−mX

Tf

]
∼

T 2
f

〈σv〉
, (1.62)

where Tf is the temperature at freeze out. The observed abundance of dark mat-

ter emerges from an electroweak-scale particle forming in thermal equilibrium, a

result termed the ‘WIMP miracle’. It should be noted, however, that detections

of WIMPs remain elusive.

An alternative approach is that dark matter is composed of axions, particles

that were first proposed as a solution to problems in quantum chromodynamics

(Peccei and Quinn, 1977). Specifically, a fixed axion field is used to minimise the

vacuum energy, requiring an extremely light mass to satisfy cosmological con-

straints. Unlike WIMPs, a non-thermal mechanism allows for the possibility of

axions composing dark matter. In the early Universe, the axion field undergoes

a phase transition from a random value to the value required to minimise the

vacuum in the present. This generates a relic density that could be associated

with dark matter. An example of an axionic dark matter candidate is fuzzy dark

matter. For a review of axion cosmology see Marsh (2016).
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1.7 Dark Energy

In previous sections, the effect of the cosmological constant in the Friedmann

equation generating an era of accelerated expansion was discussed. Here, the

broader observational evidence for cosmic acceleration will be reviewed, the mo-

tivation for dark energy as a class of mechanisms for explaining it will be outlined,

and a range of the most prominent candidate models will be discussed. It is im-

portant to state that, in the context of this Chapter, ‘dark energy’ will be used as

an umbrella term that includes the effect of a cosmological constant, additional

scalar fields and modifications to gravity.

1.7.1 Evidence

In the present, the observed flatness of the Universe, a matter density parameter

of Ωm ' 0.3 (including baryons and dark matter) and a negligibly small contri-

bution from radiation requires an additional matter-energy component. This is

attributed to dark energy which, as ΩDE ' 0.7, dominates over the other com-

ponents, driving an era of accelerated expansion.

Evidence for a Universe featuring a cosmological constant was mounting in the

years preceding the famous type-Ia supernovae results (Krauss and Turner, 1995).

For example, it was apparent from distance measurements to the Virgo Cluster

that the Hubble constant required for a flat geometry predicted a Universe that

was several billion years younger than the measured ages of the oldest globular

clusters. This could be explained by a cosmological constant effectively gener-

ating a repulsive force. The Universe would have to have been expanding for

longer than a matter-dominated Universe with the same present observed matter

content and Hubble constant.

Observations of type-Ia supernovae (SNIa) (Riess et al., 1998; Perlmutter et al.,

1999) were a historic result towards ruling out a decelerating expansion. SNIa are

a result of a primary star in a binary system losing material to a secondary white

dwarf. The accretion of matter onto the white dwarf will, if it is carbon-oxygen

rich and has a low rotational velocity, cause the dwarf to approach the Chan-

drasekhar mass, 1.44M�. Beyond this threshold, self-gravity overcomes electron

degeneracy pressure which would lead to collapse into a neutron star. However,
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SNIa are believed to occur due to carbon fusion being induced in the white dwarf

core as its temperature rises significantly when approaching the limit. The final

consequence of the ignition of the core is the high-energy release of a supernova

(Wheeler, 2007).

These events can be considered ‘standardisable candles’. A ‘standard candle’

is a class of objects that share an absolute magnitude (a measure of intrinsic

luminosity). SNIa do not share have this property but their absolute magnitude

is strongly correlated with the rate of decrease of their flux density. A correc-

tion can then be introduced to normalise the light curve (showing the evolution

of luminosity) (Phillips, 1993) and allow these supernovae to be effectively used

as standard candles. As SNIa are also significantly more luminous than galaxy

populations, this makes them useful arbiters of relative distances in cosmology,

with Hamuy et al. (1996) finding that they could be calibrated to 7% accuracy

for this purpose.

Cepheid variable stars constitute a set of local standard candles through a re-

lationship between their luminosity and their pulsation period (e.g., Macri et al.,

2006). These allow for calibrations of SNIa that lead to measurements of the

luminosity distance. Through this H0 can be constrained. Riess et al. (1998)

and Perlmutter et al. (1999) showed that these results from SNIa indicated an

accelerating expansion.

Cosmic acceleration arises when the relative contributions to the matter-energy

content of the Universe are such that ä > 0 is satisfied. Historically, it was

expected that the cosmic expansion would slow down so a dimensionless ‘decel-

eration parameter’,

q ≡ R̈R

Ṙ2
= − ä

aH2
, (1.63)

was defined with the sign convention anticipating negative ä. This can be ex-

pressed in terms of density parameters by appropriately substituting the Fried-

mann and acceleration equations to give the current deceleration parameter,

q0 =
1

2

∑
i

(1 + 3wi) Ωi (1.64)
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where i = {m, r,Λ} in the standard model. The contribution from radiation

can be neglected for much of the expansion. When wm = 0 and wΛ = −1 are

substituted the condition for for current acceleration can be written as

Ωm

2
− ΩΛ < 0. (1.65)

Riess et al. (1998) found that measurements of the distances to SNIa from two

different methods gave Ωm and ΩΛ consistent with q ≤ 0, and hence a currently

accelerating cosmos, with confidence in the range 2.8σ to 3.9σ (assuming a prior

of Ωm ≥ 0). This is illustrated in Figures 6 and 7 of Riess et al. (1998), to which

the interested reader is referred.

This result is corroborated by a number of other cosmological observables. One

example that was previously alluded to is the integrated Sachs-Wolfe effect. Pho-

tons from the CMB travelling through gravitational potential wells experience

redshifting and blueshifting. These effects do not counter each other during ac-

celerated expansion because the potential well is diminished in the presence of

dark energy over the timescale of the passage of the photon. This leaves a resid-

ual redshift that acts as a dark energy signature. CMB anisotropies provide an

additional repository of information that supports a flat Universe by constraining

Ωm = 0.315± 0.007 and ΩK = 0.001± 0.002 (Planck Collaboration et al., 2018).

This requires an additional matter-energy component that can be attributed to

dark energy, ΩDE = 0.6847 ± 0.0073. The constraint on the curvature density

parameter also incorporates information from the BAO scale which, as has been

discussed, acts as a standard ruler. This provides constraints on the angular

diameter distance, which depends on dark energy through the Hubble parame-

ter. The matter power spectrum also features a BAO signature. As will be seen

through the rest of this work the matter power spectrum is a valuable probe for

determining cosmological constraints, depending on Ωm and H (z).

1.7.2 Equation of State For Dark Energy

Efforts to use observational probes to determine the nature of the underlying

dark energy mechanism for acceleration focus on constraining the equation of

state. As previously discussed, the condition for acceleration is that w < −1/3.

Observations (e.g., CMB+BAO+SNIa results from Planck Collaboration et al.
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(2018)) are compatible with a cosmological model featuring cold dark matter and

a cosmological constant (ΛCDM), so w = −1 is usually a good choice as an as-

sumed (or ‘fiducial’) value for the equation of state.

In general, however, there is no requirement that the equation of state have a

static value. (Chevallier and Polarski, 2001) and Linder (2003) introduced a

parameterisation in terms of the scale factor,

w (a) = w0 + wa (1− a) , (1.66)

where w0 is the value of the equation of state in the present and wa ≡ −dw/da

controls how rapidly it varies over time. For ΛCDM, wa = 0. This is also known

as the Chevallier-Polarski-Linder (CPL) model and can in principle capture the

behaviour that is relevant for observational probes for of the wide range of dark

energy models that have a dynamic component. Implementing the (w0, wa) pa-

rameterisation in equation (1.44) gives the Hubble parameter,

H2 (a)

H2
0

= Ωma
−3 + Ωra

−4 + ΩDEa
−3(1+w0+wa) exp [−3wa (1− a)] + Ωka

−2, (1.67)

in terms of the scale factor. An equivalent formulation of the CPL model is

w (a) = wp0 + wpa (ap − a) , (1.68)

where wp0 = w0 + wa (1− ap), wpa = wa and ap = 1/(1 + zp) corresponds to a

‘pivot’ redshift, zp at which w is most tightly constrained. If zp = 0 the standard

CPL model is recovered. Alternatively, zp can be treated as a free parameter

with its true value determined by the choice of priors, probes and underlying

model. This parameterisation is designed to maximise the constraints available

for a dark energy parameter; in general, wp0 can be more tightly constrained than

w0. Many works use the pivot parameterisation but in this thesis, the w0-wa

parameter space is used. This is partly to retain a clearer interpretation of the

physical meaning of the dark energy parameters but also because the focus of

e.g., Chapter 3 is to constrain the overall w (a) space, which is not determined

by the choice of parameterisation.

Having detailed some of the observational evidence for dark energy and the pa-
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rameters of interest for dark energy probes, a discussion of the different proposals

for the nature of dark energy will be presented. This will begin with a deeper

examination of the cosmological constant itself and its relationship to physical

interpretations of the energy of the vacuum.

1.7.3 The Cosmological Constant

The original introduction of the cosmological constant in Einstein’s field equa-

tions was to counteract an expanding spacetime and allow for a static Universe.

The observations supporting Hubble expansion lead to the concept being aban-

doned. However, establishing a physical understanding of what the cosmological

constant represented remained an engaging question. The term Λgµν contributes

a perfect fluid with a negative pressure (wΛ = −1) to the energy-momentum

tensor. Negative pressure is not a property of classical fluids, but can be arise

in a system governed by quantum mechanics. Heisenberg’s uncertainty principle

(Heisenberg, 1927; Kennard, 1927),

σxσp ≥
h̄

2
(1.69)

where h̄ = h/(2π) is the reduced Planck’s constant, sets a fundamental boundary

on the precision to which the position and momentum of a particle can be mea-

sured. This has an equivalent formulation in terms of energy and time, which has

the consequence of allowing pairs of particles and antiparticles to manifest for

brief time intervals. The lowest energy state of a vacuum is therefore non-zero.

Variations in the zero-point energy generate forces via e.g., the Casimir effect

that are important for laboratory experiments in condensed matter and particle

physics, but the significance for cosmology is that through Einstein’s field equa-

tions the absolute energy is what determines the evolution of the Universe.

If one attempts to introduce the energy density associated with the vacuum into

the field equations, while imposing both Lorentz invariance for inertial observers

of the vacuum energy properties and general covariance, an energy-momentum

tensor must be written down in the form

T µνV = −ρvc2gµν . (1.70)



1.7. DARK ENERGY 33

This has the same form as the cosmological constant term in the field equations,

and yields a negative pressure with w = −1. However, it should be stressed that

the vacuum energy density and the cosmological constant are separate concepts.

Determining a value for the vacuum energy density that can be satisfactorily

applied to Λ while being consistent with observations of the expansion presents

a severe challenge. Quantum field theory provides a prescription for calculating

energy densities by quantising each harmonic mode of the field in question and

then summing the energy contribution, (h̄ω) /2 from each frequency state. For

the vacuum, a crude estimate of the energy density is given by

ρvc
2 =

∫ Λv

0

d3k

(2π)3 h̄ω =
Λ4
v

16π2
+ ... (1.71)

where a series of terms have been neglected for either not being of leading or-

der in Λv or for being unphysical by breaking Lorentz invariance8 (Koksma

and Prokopec, 2011). If the cut-off energy scale, Λv, is given by the Planck

mass, MPl ≡
√
h̄c/8πG, then the prediction for the vacuum energy density is

≈ 1076 GeV4. However, cosmological observations indicate that the energy den-

sity associated with a cosmological constant is ≈ 10−47 GeV4 in order to satisfy

ΩDE ≈ 0.7. This presents a fine-tuning problem (called the cosmological constant

problem) for Λ in which a discrepancy of roughly 120 orders of magnitude must

be explained (Weinberg, 1989; Adler et al., 1995). It should be noted that the

problem as presented here is a surface-level explanation and neglects a number of

nuances entering the assumptions regarding e.g., whether quantum field theory

is a robust description up to the Planck mass.

Efforts to resolve the cosmological constant problem generally require a theo-

retical basis for cancelling the vacuum energy density predicted by quantum field

theory, and invoking a separate explanation for the accelerated expansion and

the observed value of Λ. Appeals have been made to super-symmetry, which

would allow the contribution of zero-point energy from a fermion field to be

negated by the zero-point energy from its bosonic superpartner’s field (Bailin and

Love, 1994). However, the need to accommodate the breaking of super-symmetry

8In fact, the remaining term also violates this condition but is generally retained to allow
the cosmological constant to be renormalisable, i.e., to treat infinite terms arising from the
calculations and produce a sensible result.
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tends to require that a time-varying gravitational constant that is not compatible

with constraints (Martin, 2012). Alternatively, quantum gravity approaches have

sought to show that the Hartle-Hawking wavefunction of the Universe (Hartle

and Hawking, 1983) naturally peaks at Λ = 0, but these efforts have not resolved

a number of theoretical obstacles. With a satisfactory solution unavailable at

present, several of the candidates for other dark energy prescriptions that can

explain the acceleration will now be explored.

1.7.4 Dark Energy Models

The model space of dark energy candidates is rich and vast. Most of the propos-

als in the literature will not be discussed here. For a review of dark energy that

focuses on the introduction of scalar fields see Copeland et al. (2006), while for

modified gravity see Clifton et al. (2012). The presentation of models will also

broadly follow discussions presented in these reviews. It is possible to construct

models with a dark energy component interacting with dark matter. Coupled

dark energy (in the context of large scale structure probes) is the focus of Chap-

ter 5, and so the background to this class of theories is deferred to there rather

than being discussed here.

Quintessence

Scalar fields are an attractive approach to generating the observed cosmic accel-

eration. The far more extreme, rapid acceleration during inflation is facilitated

through a scalar field, so it is reasonable to suppose that dark energy may also be

explained this way. They also open the possibility of a motivation rooted in par-

ticle physics. A leading scalar field candidate model is ‘quintessence’ (Wetterich,

1988). The action, which captures the dynamics of a system, for a quintessence

cosmology is

S =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.72)

The quintessence scalar field, φ, has a potential energy density, V (φ), that is

chosen to produce sensible results and perhaps to relate to an underlying physical

motivation, for example by treating φ as arising from string theory. The first term

in brackets in the integrand provides the kinetic part of the action. If conditions

of spatial flatness and a homogeneous φ are imposed then varying the action with
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respect to φ gives the equation of motion,

φ̈+ 3Hφ̇+
dV

dφ
= 0. (1.73)

An alternative definition for the energy-momentum tensor that has not been

presented previously is through varying the action with respect to the metric:

Tµν ≡ −
2√
−g

δS

δgµν
= ∂µφ∂νφ− gµν

[
1

2
gρσ∂ρφ∂σφ+ V (φ)

]
. (1.74)

The energy density and pressure of the field are found by computing −T 0
0 and T ii

respectively. If the spatial derivatives of the field can be neglected, the equation

of state can be shown to be

wφ =
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

. (1.75)

It can be seen that −1 ≤ wφ ≤ 1, with the trend towards ΛCDM behaviour,

wφ −→ −1, emerging when φ̇2 � V (φ). This is known as the ‘slow-roll’ limit. In

order to generate accelerated expansion, wφ < −1/3, which corresponds to the

energy density of the field scaling with the expansion as ρ ∝ a−k for 0 < k < 2.

K-essence

K-essence represents the opposite approach to quintessence in using scalar fields

to generate accelerated expansion (Chiba et al., 2000). In the latter this result

arises through the potential energy but in K-essence the kinetic term (which is

condensed into the notation, X, here) in the action is the source of acceleration.

This action is written in the form

S =

∫
d4x
√
−gf (φ) p̂ (X) , (1.76)

which corresponds to the form of the action of a low-energy effective string theory.

With the appropriate redefinition of the kinetic term and the field in terms of the

coupling functions in such an action, it is possible to write

S =

∫
d4x
√
−gf (φ)

(
−X +X2

)
. (1.77)
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This leads to the equation of state

wφ =
1−X
1− 3X

, (1.78)

which corresponds to accelerated expansion for −1/2 ≤ X ≤ 2/3 and the cosmo-

logical constant for X = 1/2.

Modified Gravity

Accelerated expansion can also be achieved by extending or modifying the Ein-

stein field equations. Generally, modified gravity models can be categorised as

those that rely on i) higher derivatives; ii) extra dimensions; or iii) extra fields.

An example of the second category is f (R) gravity (Buchdahl, 1970) which gen-

eralises the Ricci scalar in the Einstein-Hilbert action that gives rise to field

equations. This leads to fourth order derivatives appearing whereas derivatives

no higher than second order are found in General Relativity. Many modified grav-

ity mechanisms generate a period of late-time accelerated expansion. However,

these typically conflict with solar system tests that place stringent constraints

on deviations from General Relativity. To reconcile these discrepancies screening

mechanisms are introduced. An example is the ‘chameleon mechanism’ which

entails non-minimally coupled scalar fields acquiring effective mass in high den-

sity environments, which allows for gravitation that resembles General Relativity

locally and produces acceleration on larger scales for which the density is much

lower (Khoury and Weltman, 2004).

The detection of gravitational waves from a binary neutron star merger (LIGO

Scientific Collaboration and Virgo Collaboration, 2017) strongly constrains the

low redshift speed of gravitational waves to be very close to the speed of light.

This restricts the form that the Lagrangian describing gravitational dynamics can

take, as first shown by Lombriser and Taylor (2016). As a result many modified

gravity models have been disfavoured, particularly those that rely on quartic-

order derivatives and quintic-order couplings. Quintessence, k-essence and f (R)

gravity (among other theories) do satisfy the gravitational wave constraints, how-

ever (Kase and Tsujikawa, 2019).
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1.8 Summary

This Chapter has provided a foundational review of the standard cosmological

model. Beginning with the essential precepts of General Relativity, the FLRW

metric has been introduced and used to construct the Friedmann equation describ-

ing an expanding Universe. Particular attention has been paid to the importance

of the Cosmological Principle and its conditions of homogeneity and isotropy. The

observational evidence for expansion was also outlined. The Hubble parameter as

a function of redshift was discussed, along with the key measures of cosmological

distance.

The contribution of matter, radiation and a cosmological constant (or dark en-

ergy, more generally) to the evolution of the Universe has been detailed, estab-

lishing the different eras of domination by different components and expansion

rate during these times. A brief explanation of the important features of the

early Universe has been presented, in particular the CMB as one of the most

powerful observables in cosmology. The paradigm of cosmic inflation in the early

Universe has been introduced, primarily to emphasise its importance in solving

several problems in standard cosmology and providing an explanation for large

scale structure at later times.

Cosmological neutrinos, dark matter and dark energy have each been explored as

these components of the matter-energy content of the Universe play important

roles in this thesis. The formalism describing their effects on cosmological evolu-

tion, the observational evidence for their contribution to the total matter-energy

budget, and major candidate models have been discussed in each case.

Having provided the basis for the background cosmology, it is now necessary

to explore the formation and evolution of large scale structure within the Uni-

verse. This thesis focuses on large scale structure probes to explore constraints

on dark energy and neutrinos, so it is important to devote some attention to

outlining the most significant aspects of this field.
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Chapter 2

Probes of Large Scale Structure

2.1 Linear Structure Formation and Evolution

2.1.1 Linear Density Fields

There are a number of thorough reviews of the familiar ideas presented in this

section. Peacock (1999) is recommended in particular for a discussion of greater

depth. The large scale structure observed today has emerged as a complex net-

work of connected haloes and filaments. On scales, . 100 Mpc, where features

of structure can be distinguished, the homogeneity of the Universe breaks down.

This is the eventual result of small inhomogeneities, fluctuations in the large scale

matter density field that have been seeded in the early Universe by a mechanism

like inflation. Perturbations that increase the density of local regions sufficiently

compared to the background are subject to collapse through self-gravitation, as

more matter is accumulated by the region which enhances the local density con-

trast still further. An evolving, comoving spatial perturbation, δ (x, t), about the

mean cosmological matter density, ρ̄ (t), is defined such that the matter density

field is written as

ρ (x, t) = ρ̄ (t) [1 + δ (x, t)] . (2.1)

It is useful to interpret cosmological perturbations through the FLRW framework

that has been laid out previously. The metric can accommodate perturbations

most generally by introducing the two Bardeen scalar potentials, Ψ and Φ, such

39
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that (Bardeen, 1980)

ds2 = −
(

1 +
2Ψ

c2

)
c2dt2 +

(
1− 2Φ

c2

)
a2 (t)

[
dr2 + f 2

K (r)
(
dθ2 + sin2 θdφ2

)]
.

(2.2)

When deriving Einstein’s field equations from this metric, it can be shown that

in order for the energy-momentum tensor to represent a perfect fluid with no

anisotropic stress that Ψ = Φ is a necessary condition. Otherwise non-zero off

diagonal terms appear in Tµν . The potential, Φ, is analogous to the gravitational

potential, Φ, in Newtonian gravitational dynamics that has already been intro-

duced in the Poisson equation.

As has been discussed, within a spherical region of uniform density matter ex-

periences no net gravitational force from external matter. A spherical region

can then be roughly treated as a separate universe, embedded within the FLRW

background. As the background is well described by Ωtot = 1 then for an over-

dense spherical region, Ω < 1. This is equivalent to the region behaving as a

closed universe with k = 1 which will collapse following a period of expansion.

An associated Friedmann equation using the physical radius of the perturbation,

r, normalised at some early time to the scale factor is(
ṙ

r

)2

=
8πG

3
ρ− k

r2
. (2.3)

The term on the left-hand side represents the effective Hubble parameter. By

setting this equal to the Hubble parameter for the background at some early

time and comparing this Friedmann equation to that of the background, the

(initial) linear density contrast emerges directly as

δ ≡ ρ

ρ̄
− 1 ∝

(
ρ̄r2
)−1

. (2.4)

Close to the initial time, when r (t) ' a (t), the perturbation is small and scales

as δ ∝ a2 during the radiation dominated era and δ ∝ a during the matter dom-

inated era.

At this stage, it is useful to introduce the Fourier transform of δ (x). This allows

the overdensity (and derived quantities like the power spectrum), to be expressed
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in terms of wave modes:

δ̃ (k, t) =

∫
d3x δ (x, t) eik·x. (2.5)

This is a particularly useful tool in linear theory because in Fourier space, the

modes evolve independently (in a homogeneous Universe). As will become ap-

parent in later derivations, working in Fourier space also simplifies many compu-

tations, transforming convolutions of quantities into straightforward multiplica-

tions. The wavenumber, k, is related to a (comoving) wavelength via k = (2π) /λ.

Growing modes that satisfy the condition, λ < λH (aeq), where λH (aeq) repre-

sents the comoving horizon scale (the distance a photon could travel since the

origin of the Universe) at matter-radiation equality are said to have ‘entered the

horizon’ during the radiation dominated era. As expansion is more rapid than

during matter domination, there is a relative suppression of growth (Meszaros,

1974).

2.1.2 Linear Growth

The evolution of perturbations can be understood by applying the non-relativistic

fluid equations. A fluid of density ρ with velocity v can be described by the

continuity equation,
∂ρ

∂t
+∇ · (ρv) = 0, (2.6)

the Euler equation,
∂v

∂t
+ (v · ∇) v = −∇P

ρ
−∇Φ, (2.7)

where the gravitational potential is related to the density via the Poisson equa-

tion,

∇2Φ = 4πGρ, (2.8)

which is restated here for convenience. The continuity equation ensures that if

the density of a region decays it is accompanied by an outward flux of matter

through the surface of the region. The Euler equation describes the acceleration

of fluid particles under gravitational and pressure forces. Note that the left-hand

side is the form describing the rate of change of flow as perceived in a frame that

comoves with the fluid. It therefore combines the time evolution perceived in a

frame at a position, x, that is stationary with respect to the flow, and the local
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spatial gradient of the flow given by ∇.

One can derive the same set of equations for the matter perturbation, δ, the

peculiar velocity perturbation, u, given by v = Hx + u and a perturbation, φ,

in the gravitational potential. It is useful to change coordinates from x to a set

of Lagrangian coordinates, q = a−1x, that are comoving with the Hubble flow of

the background fluid. This leads to

δ̇ +
1

a
∇ · u = 0 (2.9)

u̇ +Hu = −c
2
s

a
∇δ − 1

a
∇φ (2.10)

∇2φ = 4πGa2ρ̄δ, (2.11)

at linear order in the perturbations. For CDM and radiation, the term c2
s ≡

dp/dρ = wc2 effectively defines the sound speed of a perfect fluid. The linear

growth equation describing the evolution of the density perturbation results from

a combination of these equations. In Fourier space the spatial second derivative,

∇2, is equivalent to a factor of −k2, which gives

δ̈ + 2Hδ̇ =

(
3

2
H2Ω− c2

sk
2

a2

)
δ. (2.12)

This can be applied to each individual matter-energy component. During the

radiation dominated era, the sound speed of the photon-baryon fluid is given by

cs . c/
√

3 (due to the baryon component being pressure-free) and is therefore of

the order of the speed of light. Therefore the ‘sound horizon’ is approximately

given by the comoving horizon. The radiation pressure is sufficiently strong to

prevent gravitational collapse for perturbations smaller than horizon scales. The

above expression can therefore be written purely in terms of the matter pertur-

bation consisting of coupled CDM and baryons. The final right-hand side term

then disappears as cs = 0 for matter. The second term on the left-hand side is

known as the ‘Hubble drag’ and acts as an effective friction term, slowing the

growth of structure.

On sufficiently large scales, the spatial gradients of the perturbation vanish. In

linear theory one can write δ (q, t) = δ (q, t0)D (t), thereby isolating the time-

evolution in the form of the linear growth factor, D (t). When expressed in terms
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of this quantity the growth equation yields two solutions such that

D (t) = c1t
2
3 + c2t

−1, (2.13)

where the constants, c1 and c2, control the respective contributions of a growing

mode and a decaying mode to the growth factor.

2.1.3 Linear Matter Power

The statistical features of the density field at different scales describe structure

in the Universe and underpin the probes of cosmology that this thesis focuses on.

One of the most important statistical tools is the power spectrum of matter fluc-

tuations. On large scales (k . 0.1h/Mpc today), this can be constructed from

linear overdensities that evolve according to the perturbation equations that have

been outlined. On smaller scales, the linear approximations break down, more

complex structure develops and sophisticated models of the non-linear matter

power spectrum are required. Here, only the linear power spectrum will be ex-

plored, while later an approach to the non-linear power spectrum through the

halo model (used in this thesis) will be discussed.

Fourier modes of δ are treated as uncorrelated and evolving independently in

a homogeneous Universe. Due to the further fact that the quantum fluctuations

assumed to give rise to the initial density perturbations are modelled as an inher-

ently random Gaussian quantum harmonic oscillator (in the ground state), the

density field can be treated as a random Gaussian field. If the field is sampled,

one will find randomly varying δ values at different positions, x. Furthermore, if

one could generate multiple iterations of the Universe the value of δ would vary

randomly. The mean value of the overdensity is necessarily 〈δ〉 = 0, so the vari-

ance of the field is 〈δ2〉. As there is a single iteration of the Universe to observe,

one must rely on there being a sufficiently large volume of points at which the

density field can be measured that averaged values are statistically equivalent to

averaging over multiple iterations of the Universe. In other words, the density

field is assumed to be ergodic. The two-point correlation function,

ξ (|x|) = 〈δ (x + x′) δ? (x′)〉 (2.14)
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encodes all of the statistical properties of the density field. In Fourier space, it is

given by performing the transform,

〈δ̃ (k) δ̃? (k′)〉 =

∫
d3x′ eik·x

′
∫

d3x e−ik
′·(x+x′)ξ (|x|) = (2π)3 δD (k− k′)P (k) ,

(2.15)

where

P (k) ≡
∫

d3x e−ik·xξ (|x|) (2.16)

defines the matter power spectrum. Here, δD represents the delta function. It is

often more convenient to use the dimensionless form,

∆2 (k) ≡ k3

2π2
P (k) , (2.17)

which is equivalent to the fractional contribution to the variance of the matter

distribution per logarithmic interval of k,

σ2 (R) =

∫ ∞
0

d ln k ∆2 (k)W 2 (kR) , (2.18)

where the field is often smoothed over some scale R using the window function

of a spherical top-hat profile,

W (x) =
3

x3
(sinx− x cosx) . (2.19)

The power spectrum is often normalised by fixing the value of σ at R = 8 Mpc/h.

On sufficiently large scales, the power spectrum takes the form P (k) ∝ kns . The

spectral index, ns, describing the slope of the power has a value close to 1 (which

satisfies an expectation that the power spectrum is nearly scale-invariant on large

scales) (see e.g., Peacock, 1999). Matter-radiation equality leads to a break scale

in the linear power spectrum, with larger k giving power as P (k) ∝ kns−4. This is

due to the Meszaros effect (Meszaros, 1974) that describes how the rapid cosmic

expansion of the radiation dominated era freezes perturbations associated with

modes that have entered the horizon. Their growth is prevented until matter-

radiation equality, while superhorizon modes (associated with k values smaller

than the break scale) are not suppressed. The suppression of δ for subhorizon

modes scales as k2, leading to the linear power being suppressed by 4 powers of k.

This form is, however, the most generic conceptualisation. The power spectrum



2.2. THE HALO MODEL 45

is dependent on a number of cosmological parameters. For example, the density

parameters control important features such as matter-radiation equality and the

break scale. The equation of state of dark energy influences the Hubble expan-

sion, which determines the linear growth rate (which the matter power spectrum

is proportional to the square of) and hence the amplitude of the power.

2.2 The Halo Model

An accurate prescription for matter power on non-linear scales presents a steeper

challenge than those of modelling the linear power. One could attempt to scale

the linear power spectrum by some functional form that can be fit to simulations.

A more sophisticated approach to relating non-linear and linear power is available

through the halo model. In this framework it is assumed that all the matter in the

Universe is contained in (spherical) haloes1. Modelling the distribution of these

haloes as a function of their mass, along with a prescription for their internal

density profiles provides a route to constructing a non-linear power spectrum.

The halo model allows the large-scale galaxy distribution to be well-approximated

by treating the halo occupation number for galaxies as a function of halo mass,

and positioning within each halo a central galaxy around which other galaxies

trace the halo profile as satellites (Seljak, 2000; Peacock and Smith, 2000). In

the halo model a distribution of spherically-collapsed halo structures randomly

populate the linear density field, allowing for the effective separation of power

into two distinct source terms,

∆2 (k) = ∆2
1h (k) + ∆2

2h (k) . (2.20)

The 2-halo term, ∆2
2h (k), describes the correlations in the distribution of haloes

themselves. As this occurs on large scales, an acceptable approximation is to

equate this term to the linear matter power spectrum,

∆2
2h (k) = ∆2

lin (k) . (2.21)

1This is of course only partially accurate; observed and simulated large scale structure
exhibits a complex network of haloes, connecting filaments and voids.
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By contrast, the 1-halo term, ∆2
1h (k), represents the internal halo structure on

small scales. Computing this statistic requires averaging the self-convolutions of

haloes over the full range of halo masses, weighted by the total number density

of pairs of haloes of mass M . In Fourier space these convolutions become simple

multiplication operations, leading to the integral

∆2
1h (k) =

k3

2π2

∫ ∞
0

dM
M2n (M)

ρ̄2
u2 (k|M) , (2.22)

where n (M) is the comoving number density of halos per mass interval dM ,

known as the halo mass function, and u (k|M) is the halo density profile in

Fourier space. Press and Schechter (1974) showed that the mass function is

nearly independent of cosmology if expressed in terms of the density peak height,

ν ≡ δc/σ (M), given by the spherical collapse overdensity, δc, when the density

field is smoothed at the mass scale, M . The spherical collapse overdensity marks

the extrapolated linear density value at the time that the overdensity of a per-

turbation diverges according to the non-linear version of the growth equation2.

Sheth and Tormen (1999) determined a form of the ‘universal’ mass function,

f (ν) =
M

ρ̄
n (M)

dM

dν
(2.23)

that fit simulations to be

f (ν) = 0.2162
[
1 +

(
0.707ν2

)−0.3
]

exp

[
−0.707ν2

2

]
. (2.24)

Assuming spherical symmetry, the density profile in Fourier space can be written

as the transform,

u (k|M) =
4π

M

∫ rv

0

r2dr
sin (kr)

kr
ρ (r,M) , (2.25)

with the prefactor normalising the profile by halo mass. The virial equilibrium

of energy exchange between gravitationally interacting matter shells is a natural

threshold at which to truncate the profile. A halo is therefore characterised by

2Further details on the derivation of this quantity, and non-linear growth in general are
deferred to Chapter 5 which focuses on these topics in the context of coupled dark energy
cosmologies.
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its virial density, ∆v, and radius, rv, which are related by

rv =

(
3M

4πρ̄∆v

) 1
3

. (2.26)

Spherical collapse calculations in the relevant cosmology inform ∆v so the virial

radius is fixed for a given halo mass. The process of virialisation (in the context

of coupled dark energy cosmologies) forms a major focus of Chapter 5, to which

a deeper discussion is deferred.

The form of the density profile is typically a matter of fitting to simulations

of collisionless dark matter particles. The most common is the NFW profile

(Navarro, Frenk, and White, 1997),

ρ (r,M) =
ρs(

r
rs

) [
1 +

(
r
rs

)]2 . (2.27)

The scale radius, rs, defines a break scale between the linear and cubic declines

of density in the inner and outer regions of the halo respectively. This scale also

dictates the normalisation factor, ρs.

2.3 Weak Gravitational Lensing

A principal drawback of the matter power spectrum as a statistic is that it can-

not be directly measured. The advantage of weak gravitational lensing as an

observational technique is its capture of the information contained in the three

dimensional power spectrum across all scales, via a two-dimensional projection.

Photon trajectories propagating from background source galaxies are subject to

deflections when passing through the gravitational potential wells of high mass

foreground objects. This distorts images of background galaxies, perpendicular

to the line of sight, when observed from Earth. These shear effects are related to

the distribution of matter on large scales, and so depend on the matter density

field and power spectrum. As weak lensing measurements involve two-point real-

space angular correlations of shear, the required statistics are the corresponding

harmonic coefficients of the convergence power spectrum, itself a function of the

3D matter power spectrum.
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This can be constructed (see e.g., Limber, 1953; Kaiser, 1992; Kilbinger, 2015)

by first considering a light ray propagating through a perturbed FLRW spacetime.

As ds2 = 0, the time coordinate can be expressed as an integral over the path

taken, λ, in proper coordinates,

t =

∫ λB

λA

dλh [r]

∣∣∣∣dr

dλ

∣∣∣∣ , (2.28)

where

h [r] =
1

c

(
1− 2Φ

c2

)
(2.29)

when setting Φ = Ψ. Fermat’s principle that δt = 0 leads to the construction of

the Euler-Lagrange equations,

h ė = −e [(∇rh) · e] +∇rh. (2.30)

For a suitable choice of λ, the unit vector tangent to the path is e ≡ ṙ, with

· ≡ d/dλ. The right-hand side is the perpendicular component of the gradient of

h with respect to the path. We can use the approximation

ė = ∇r,⊥ lnh ≈ − 2

c2
∇r,⊥Φ. (2.31)

To first order, the deflection angle between emitted and received light rays is

given by integrating this quantity over the trajectory as viewed from Earth:

α̂ = − 2

c2

∫
dr∇r,⊥Φ. (2.32)

The comoving arc length between two converging light rays separated by angle θ

at comoving distance χ to their source,

x0 (χ) = fK (χ) Θ. (2.33)

If a deflection is experienced by both rays A and B the separation between them

is modified to

x (χ) = x0 (χ)− 2

c2

∫ χ

0

dχ′ fK (χ− χ′) [∇⊥ΦA (x, χ′)−∇⊥ΦB (χ′)] , (2.34)

where χ′ is the comoving distance to the deflector. The Jacobian, A = ∂β/∂θ,



2.3. WEAK GRAVITATIONAL LENSING 49

maps between the angle measured in the absence of lensing, β = x (χ) /fK (χ),

and the apparent angle via the lens equation, β = θ − α. The deflection, α, is

given by the final term in equation (2.34) with a factor of fK (χ) scaled out. The

resulting inverse amplification matrix

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(2.35)

is commonly decomposed into the traceless part as two-component, spin-two shear

γ = (γ1, γ2) = γ1 + iγ2 = |γ|exp (2iϕ) and the diagonal part as the scalar conver-

gence κ. Varying the angle, ϕ, separating the shear components by 2π corresponds

to a rotation by π of an elliptical image. The shear components are defined as

second derivatives of the 2D Laplacian of the ‘lensing potential’,

ψ =
2

c2

∫ χ

0

dχ′
fK (χ− χ′)
fK (χ) fK (χ′)

Φ (fK (χ′)θ, χ′) . (2.36)

such that

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ, (2.37)

γ2 =
1

2
(∂1∂1 − ∂2∂2)ψ, (2.38)

while as a measure of the isotropic magnification (with anisotropic distortion

quantified by shear), the convergence is given by

κ =
1

2
∇2ψ. (2.39)

As the scattering angle is expected to almost always be small, the Born approx-

imation from scattering theory (Born, 1926) has been applied here, permitting

the integration to be taken along the original, undeflected direction so that the

zeroth order approximation x ≈ x0 is used. The above relations, in concert with

the Poisson equation, indicate that the convergence at χ is an integral over the

large scale matter density perturbation, weighted by the geometry of the configu-

ration of source and deflector with respect to Earth. The average convergence for

an entire population of sources requires an additional weighting with respect to

the number distribution of galaxies that is taken by e.g., the Euclid space survey



50 CHAPTER 2. PROBES OF LARGE SCALE STRUCTURE

mission (Laureijs et al., 2011; Amendola et al., 2018) to be

n (z) ∝ z2 exp

[
−
(
z

z0

) 3
2

]
, (2.40)

where the peak redshift of the distribution is given in terms of the median redshift

by z0 = zmean/1.412. The probability of finding a galaxy within dχ of position

χ is dχn (χ) if n (χ) is normalised. The convergence for a population extending

out to some χmax defined by the limits of the survey can then be shown to be

κ (θ) =
3H2

0 Ωm

2c2

∫ χmax

0

dχ
g (χ)

a (χ)
fK (χ) δm (fK (χ)θ, χ) . (2.41)

where

g (χ) =

∫ χmax

χ

dχ′ n (χ′)
fK (χ− χ′)
fK (χ′)

(2.42)

represents the efficiency of the lens at distance χ, a total weighting function over

the distribution of sources and their relative distance from deflectors.

It is also necessary to address photometric redshift errors. For any particular

redshift bin assumed to have an independent source distribution, the galaxy dis-

tribution when normalised over the survey is given by

ni (z) =
n (z)

∫ zi,+
zi,−

dzph pph (zph|z)∫ zmax

zmin
dz′ n (z′)

∫ zi,+
zi,−

dzph pph (zph|z′)
, (2.43)

where pph (zph|z) is the probability of galaxies at z being measured at redshift zph.

The integrals are equivalent to convolving the true distribution with a binning

top-hat function, whilst accounting for the probability of galaxies being measured

at zph outside the bin. The denominator is the result of normalising over the bin.

This can be shown to be equivalent to the distribution used in Taylor et al. (2007).

The frequently employed probability distribution (Ma et al., 2006; Taylor et al.,

2007),

pph (zph|z) =
1√

2πσz (1 + z)
exp

{
−
[

z − zph√
2σz (1 + z)

]2
}
. (2.44)

is used throughout this work. For the photometric redshift error, I use the Lau-

reijs et al. (2011) value of σz = 0.05 for Euclid-like surveys.
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On large scales, a statistical description for weak lensing is useful. This invites

using the two-point correlation function of convergence,

ξκ (φ) = 〈κ (θ)κ? (θ + φ)〉, (2.45)

for which isotropy ensures only the magnitude of the angular separation between

pairs, φ, determines the average over the sky. This in turn leads directly to

the weak lensing angular power spectrum (assuming a flat sky) via a Fourier

transform,

Cκ (`) =

∫
Ω

d2φ ξκ (φ) ei`·φ. (2.46)

Provided that the flat-sky limit is taken, this power spectrum, in terms of har-

monic wavenumber `, is related to the analogous 3D matter spectrum in terms

of k by taking the inverse Fourier transform of the matter correlation function

within ξκ such that

ξκ (φ) =
9

4
Ω2
m

(
H0

c

)4 ∫
dχ
g (χ)

a (χ)
fK (χ)

∫
dχ̃
g (χ̃)

a (χ̃)
fK (χ̃)

×
∫

d3k

(2π)3

∫
d3k̃

(2π)3 〈δm (k) δ∗m

(
k̃
)
〉

× exp
[
−i
{
fK (χ)θ · k⊥ + fK (χ̃) (θ + φ) · k̃⊥

}]
exp

[
−i
{
k‖χ+ k̃‖χ̃

}]
,

(2.47)

where the wave vector k has been decomposed into parallel and perpendicular

vectors. Evaluating these integrals under the Limber approximation that only

modes perpendicular to the line of sight contribute (Limber, 1953), and similarly

that additional source-source and source-lens clustering can be neglected, the

result is substituted into the expression for the power spectrum to yield

Cij,κ (`) =
9

4
Ω2
m

(
H0

c

)4 ∫ χmax

0

dχ
gi (χ) gj (χ)

a2 (χ)
Pδ

(
k =

`

fK (χ)
, χ

)
, (2.48)

with the remaining subscripts i, j denoting different tomographic redshift bins,

which are treated as having independent source probability distributions. For

surveys probing a finite number of bins, this distinction is useful and leads to an

array of auto- and cross- convergence power spectra.
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2.4 Weak Lensing: Observational Considerations

and Biases

Accurate cosmological inference through weak lensing depends significantly on the

observational approach to measuring galaxy shapes. The practical procedures for

generating and processing this image data encounter a number of sources of bias

that must be carefully accounted and calibrated for.

In the initial stage, images of galaxies are observed through by either ground-

based telescopes such as LSST (LSST Science Collaboration et al., 2009) or

space-based telescopes such as Euclid (Laureijs et al., 2011). Generally, mul-

tiple images are taken with CCDs for each area of sky covered by a weak lensing

survey. This presents an opportunity to process either individual images or a

single stacked image for each area. An immediate source of bias that must be

addressed is that the images of galaxies can be sheared by the instrument as

well as by the intervening matter distribution. It is also important to recognise

that images may correspond to stars as well as galaxies. This typically requires

a prescribed algorithm for identifying and selecting the galaxy images for data

processing. Following the necessary corrections to the image, the values for the

underlying shape parameters can be determined.

The main challenge facing observational weak lensing becomes apparent when

one considers the range of sources of bias that affect galaxy images. One highly

prominent example is the need to account for the point-spread function (PSF).

This describes the degree to which an imaging system blurs a point source. On one

level this is a problem simply because already faint galaxies will be blurred such

that the lensing of their image is significantly obscure. If there are anisotropies

within the PSF effect on shape images (as one would expect) then there is a

substantial risk that the effect could be degenerate with the weak lensing signal

itself by inducing its own coherent alignment of shapes (see e.g., Jee and Tyson,

2011). Calibrating for this bias requires a robust model for the PSF as it varies

in amplitude and anisotropy over time and position on the observed sky. These

changes can be complicated to model as they can depend sensitively on the con-

figuration of the instrumentation. For example, as discussed in Jee and Tyson

(2011), LSST has a small effective focal ratio (to accommodate a large field of
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view) and is sensitive to focal-plane alignment and height deviations across the

CCDs positioned on this plane will have significant effects on the PSF as it is

partly a function of variations across and within CCDs.

There are various efforts that have been proposed to model the PSF. For ex-

ample, a principal component analysis can be applied to the data itself, which

provides the foundation for PSF modelling. This approach is used in e.g., Bertin

(2011). An alternative option is to use the approach of ‘shapelets’, in which im-

age objects are linearly decomposed into a series of basis functions for different

shapes, as is the method used by KiDS (Refregier, 2003; Hildebrandt et al., 2017).

While the PSF has been discussed in some detail, there are further biases that

must be calibrated for in the observing process. These include Poisson pixel noise,

the pixelisation of images by detectors, the blending of source galaxies with other

galaxies or stars via physical interaction or projection, and a range of other effects

(see e.g., Huterer et al., 2006; Massey et al., 2013; Taylor and Kitching, 2016).

A large reservoir of data will become available from Stage IV surveys which can

mitigate the impact of large statistical errors for shear measurements but does

not address the general problem of measurement bias as one of the main obstacles

to cosmological parameter inference. Individually these biases present modelling

challenges but it is also not obvious how bias effects may be correlated with each

other, or indeed if one could expect measurements of the bias to itself be biased.

It is therefore of increasingly pressing need for surveys like Euclid and LSST

to develop generalised robust theoretical frameworks for assessing the impact of

multiple sources of bias on parameter inference from cosmic shear.

Heymans et al. (2006) proposed to model bias generically with a linear model

such that it is decomposed into multiplicative, m, and additive, c, parts via

ĝ = (1 +m) g + c+ δg, (2.49)

where ĝ represents the measured value of the ‘true’ reduced shear, g, and δg is a

residual noise such that 〈δg〉 = 0. Massey et al. (2013) found that if the uncer-

tainty on the multiplicative and additive biases exceeds the limits σm . 2× 10−3

and σc . 2× 10−4 then dark energy error requirements for Stage IV surveys can-

not be met. Therefore, it is important to either devise minimal bias measurement
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methods or develop schemes to accurately correct for bias. This will inevitably

require careful calibration approach to simulated data. However, these calibra-

tion approaches will be limited to some degree; indeed Gillis and Taylor (2019)

show that residual biases and increased errors are a typical feature of current

calibration methods.

Given the range and diversity of bias effect that must be accounted for, and the

lack of knowledge about their underlying relationships to the bias they induce,

it will be necessary to develop accurate approximation schemes for an arbitrary

bias. These should be optimised to accommodate e.g., the breadth of functional

forms that could plausibly describe the relationship between the size of an effect

and the resulting bias; different magnitudes of bias; different spacing and num-

bers of bins sampling the bias; and different weighting functions for the effect size.

Estimators of bias can in principle be used to correct shear measurements for

bias and reproduce the true shear. The most straightforward approach is to re-

place the true biases in equation (2.49) with measured values, m̂ = m + δm and

ĉ+ δc, and rearrange so that a correction to the shear is given by

ĝ′ =
ĝ − ĉ
1 + m̂

. (2.50)

Note that the error, δg, intrinsic to the measurement in equation (2.49) is ac-

counted for by the measurement in the bias. This correction is used by e.g.,

Fenech Conti et al. (2017). For m −→ −1, this approach is problematic because

it involves dividing by a term that both contains noise and that approaches zero.

This former will result in non-Gaussian distributions for the corrected shear and

the latter will entail divergent behaviour. The benefits of any statistical analysis

using this correction will therefore be limited in these cases. Gillis and Taylor

(2019) apply a Taylor expansion to equation (2.50) that improves the statistical

qualities of the correction at the expense of making it slightly more biased:

ĝ′ = (ĝ − ĉ)
(
1− m̂+ m̂2

)
. (2.51)

The authors show that the expected biases on the correction are

〈m′〉 = σ2 [m] (1 + m̂) + m̂3 (2.52)
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Figure 2.1: Post-calibration bias from first (left panel) and second (right panel) order
corrections applied to 104 realisations of datasets containing 104 mock shear values.
The uncalibrated bias values measured are m = {−0.2,−0.1,−0.01, 0., 0.01, 0.1, 0.2}
while c is set to zero. The markers denote values averaged over the set of realisations,
and the error bars represent the scatter due to noise in the dataset used to deter-
mine the correction. The dashed curves show the predicted values for the correction,
given by equation (2.52) and equation (2.55) for the first and second order corrections
respectively.

and

〈c′〉 = 0. (2.53)

They note that the presence of the m̂3 term fundamentally limits the bias on the

correction, even for an infinite sample size of shears that could make the σ2 [m]

term negligible. One solution to this is to correct iteratively. To this end Gillis

and Taylor (2019) provide a second order correction,

ĝ′′ = ĝ′
(
1− σ2 [m] (1− 2m̂)− m̂3

)
. (2.54)

This is determined by applying another Taylor expansion and retaining terms to

first order in m̂′. The measured value of the corrected bias is incorporated by

writing m̂ = m + δm in equation (2.52) and taking the expectation value. The

bias on the second order correction is given by

〈m′′〉 ≈ σ2 [m]
(
σ2 [m] + 3m̂2

)
−m6. (2.55)

One can follow the approach of Gillis and Taylor (2019) to numerically evaluating

the post-calibration bias using the first and second order corrections on samples

of 104 simulated shear values with intrinsic scatter and errors given above. A true

bias is applied to this data set and the measured values of bias are determined by
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performing a linear regression. The correction is then applied, and another linear

regression performed to determine the measured values of the corrected bias and

the error on the correction. The correction, using the measured bias values, is then

applied to a data set with zero error to determine the post-calibration residual

bias. This process is performed for N = 104 realisations which are averaged over

to provide the final results. In Figure 2.1, these results are shown for several

values of multiplicative bias (and setting c = 0 as it is far more straightforward

to correct for additive bias) for the first and second order corrections. This is

essentially a reproduction of Figure 1 in Gillis and Taylor (2019).

2.5 Spectroscopic galaxy clustering

The clustering of galaxies provides an additional probe through the anisotropic

galaxy power spectrum, Pgg (k, µ; z). For the Euclid-like survey forecasts of later

Chapters, the specific observable is Hα-emitting galaxies. The approach to con-

structing Pgg (k, µ; z) outlined here closely follows e.g., Ballinger et al. (1996) and

Seo and Eisenstein (2003).

Sources of apparent anisotropy make it necessary to include the dependence on

the cosine of the wave mode and radial vector, µ, in the power spectrum. These

include redshift-space distortions arising from a peculiar velocity component in

observed redshifts (Kaiser, 1987). As a result, the observed strength of galaxy

clustering will be sensitive to the orientation of the pair-separation vector. To

account for this, the Kaiser factor is incorporated into Pgg (k, µ; z). The under-

lying dark matter distribution is biased by the galaxies that trace it (see e.g.,

Desjacques et al., 2018), so the galaxy power spectrum can then be constructed

from the matter power spectrum according to

Pgg (k, µ; z) =
(
bσ8 (z) + fσ8 (z)µ2

)2 Pm (k; z)

σ2
8 (z)

, (2.56)

where b (z) =
√

1 + z is the effective bias of the sample of Hα-emitters used in

Amendola et al. (2018) and f (z) is the logarithmic growth rate of structure,

which relates the peculiar velocity to the density. The redshift-dependence of the

(linear) matter power spectrum is removed by factoring out σ8 (z), which leads

to bσ8 (z) and fσ8 (z) becoming free parameters in galaxy clustering forecasts
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(White et al., 2009).

Converting measured angles and redshifts into radial and transverse distances

requires assumptions about cosmology. If these are incorrect, distortions arise

through the AP effect. The ratios,

α⊥ (z) ≡ DA (z)

DA,fid (z)
(2.57)

and

α‖ (z) ≡ Hfid (z)

H (z)
, (2.58)

of the assumed and true angular diameter distance and Hubble parameter (Alcock

and Paczynski, 1979) change wavenumbers and angles from their ‘fiducial’ values

to (Ballinger et al., 1996)

k (kfid, µfid; z) =
kfid

α⊥ (z)

√√√√1 + µ2
fid

(
α2
⊥ (z)

α2
‖ (z)

− 1

)
(2.59)

and

µ (µfid; z) = µfid
α⊥ (z)

α‖ (z)

1√
1 + µ2

fid

(
α2
⊥(z)

α2
‖(z)
− 1

) . (2.60)

Under these projections the matter power spectrum transforms as

Pm (kfid, µfid; z) −→ 1

α2
⊥α‖

Pm (k, µ; z) . (2.61)

Hereafter, unless explicitly stated, k and µ may be assumed to account for the

AP effect.

Finally, redshift uncertainties along the line-of-sight are accounted for via the

factor (e.g., Wang et al., 2013),

Fz (k; z) = exp
[
−k2µ2σ2

r (z)
]
, (2.62)

where

σr (z) =
c

H (z)
(1 + z)σz=0, (2.63)
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with the spectroscopic redshift error given by σz=0 = 0.001 (Laureijs et al., 2011).

The full observed linear galaxy power spectrum is then

Pgg (k, µ; z) =
1

α2
⊥α‖

(
bσ8 (z) + fσ8 (z)µ2

)2 Pm (k; z)

σ2
8 (z)

Fz (k; z)

+Pshot (z) . (2.64)

The final term represents any residual shot noise that is not accounted for by

Poisson sampling the underlying CDM density field with Hα-emitting galaxies.

A fiducial value of Pshot,fid = 0 for all z is typically assigned when performing

parameter forecasts for surveys. Non-linear contributions, such as the Finger-of-

God effect (Hamilton, 1998) or the damping of the BAO component of P (k; z)

(Eisenstein et al., 2007; Seo and Eisenstein, 2007), are also important but the

galaxy clustering presented in this thesis is restricted to linear scales. Discussions

of these features in the references provided are therefore recommended for the

interested reader.

2.6 Summary

In this Chapter the formalism underpinning the main probes of large scale struc-

ture has been introduced. The growth of structure in the linear regime has been

discussed in detail, leading to an outline of the linear matter power spectrum.

This statistic for the density field on large scales provides the foundation for the

probes that are used in this thesis to forecast constraints on cosmology. Having

defined the linear matter power, one of the most powerful frameworks for con-

structing a model of power on non-linear scales has been explored. This approach

to describing smaller scales through a distribution of spherical halo structures is

also central to one of the core focuses of this thesis. Namely, how modifications

of the halo model to capture the effects of baryonic astrophysics can be used for

large scale structure survey forecast analyses assessing the impact of such a sys-

tematic on constraining e.g., dark energy or the neutrino mass sum. The specific

probes that this thesis uses for these analyses - weak gravitational lensing and

spectroscopic galaxy clustering - have also been introduced. There is a wider and

deeper literature available for both but the foundational information relevant to

understanding the following Chapters has been provided here.



Chapter 3

The Impact of Baryons On The

Sensitivity of Dark Energy

Measurements

This Chapter provides an examination of the degradation to Stage IV dark energy

forecasts that results from marginalising over parameters introduced to correct

for the effects of baryonic phenomena on large-scale structure. Percent-level pre-

cision is required by next generation surveys for estimates of the dark energy

equation of state parameters. The detailed physics of baryon effects is not yet

well-understood and, as such, baryons represent a major systematic for surveys.

Therefore, it is important this problem is addressed with an appropriate depth

and thoroughness. The work presented here is an expansion of that provided in

Copeland et al. (2018).

I detail analytic modifications to the halo model that have been adopted to cap-

ture the impact of adiabatic contraction of baryons and feedback on the matter

power spectrum. A generalisation is also provided of the Navarro-Frenk-White

profile to account for a possible inner halo core, potentially induced by baryons

or, potentially, an exotic form of dark matter.

The Fisher information formalism underlying my statistical analysis will be out-

lined. This will provide the basis for understanding a full Fisher analysis quan-

tifying the impact of marginalising over the baryon parameters on forecasts. A

discussion of the capacity of Stage IV surveys to constrain the baryonic parame-
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ters themselves is also included.

An exploration of the scales at which baryons and dark energy contribute most

to the Fisher information is presented to determine whether probing deeper into

the non-linear regime can effectively reduce baryon degradation. Other avenues

for potential mitigation will be examined, including the improvement that can be

expected from adding baryon information from external sources. The strength of

priors required to limit degradation to the percent level will be evaluated. The

alternative approach of adding information through the cosmological sector in the

form of cosmic microwave background priors provided by the Planck 2015 data

release will be subject to a detailed study.

The issue of model bias will also be addressed. The level of calibration of baryon

modelling required to limit bias in dark energy forecasts to within an acceptable

threshold for Stage IV surveys will be quantified.

The layout of this Chapter is as follows. Sections 3.1 and 3.2 will provide a

primer on the range of astrophysical baryonic phenomenology influencing large

scale structure, and previous studies of its impact on parameter forecasts. Sec-

tions 3.3 and 3.4 will introduce the formalism of the baryon halo model, and its

extension to incorporate inner halo cores. The methodology underpinning Fisher

forecasts will be detailed in Sections 3.5 and 3.6. The results of this process will

be analysed in Sections 3.7 and 3.8 for dark energy, standard cosmological and

baryon parameter forecasts. Section 3.9 is concerned with mitigation approaches

and Section 3.10 explores the issue of baryon model bias in the results.
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3.1 Baryonic Astrophysical Phenomena

Here I introduce the main baryonic phenomena dealt with in this Chapter. The

purpose is to provide the reader with sufficient background to contextualise the

approaches to modelling their effects on halo structure that are discussed in fol-

lowing sections.

3.1.1 Adiabatic Contraction and Radiative Cooling

Gas undergoing radiative cooling leads to clustering on small scales. This strength-

ens the local gravitational potential which in turn results in an infall of dark

matter. The concentration of haloes consequently increases, leading to an en-

hancement of the matter power spectrum. This becomes the dominant baryonic

effect on power for scales k & 10hMpc−1. The adiabatic contraction model has

been used to partially explain the behaviour of the dark matter distribution since

Eggen et al. (1962) used adiabatic invariant particle trajectories to predict the

dynamics of a proto-galaxy undergoing contraction (Gnedin et al., 2004).

Assuming particles traversing circular orbits in a system with spherical sym-

metry, a constant fractional rate of contraction and the conservation of angular

momentum (such that M (r) r = const.), the ratio of initial and final orbital radii,

r0 and r1,
r1

r0

=
MDM (r0) +Mgas (r0)

MDM (r1) +Mgas (r1)
(3.1)

is given in terms of the mass of dark matter, MDM, and gas, Mgas, enclosed by

them (Blumenthal et al., 1986). It was shown by Gnedin et al. (2004) that this

model was not sufficiently sophisticated to accurately match the results of hy-

drodynamic simulations, which indicated elliptical orbits. Gnedin et al. (2004)

relaxed the circular orbit assumption and introduced orbit-averaged trajectories

described by a power law, 〈r̄〉 ∼ rn. This has since been refined further, for ex-

ample by Gustafsson (2006) who highlight the need to account for more complex

‘baryonic pinching’ effects like stellar feedback on contracting haloes.

Another interesting effect is the increased sphericity of the mass distribution.

The gravitational potential well generated by the central baryon region is itself

more spherical than for the matter distribution as a whole. This leads to the or-
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bits of dark matter particles and condensed baryonic objects like stars becoming

more circular in turn (Kazantzidis et al., 2004; Debattista et al., 2008).

3.1.2 AGN and Supernovae Feedback

Active galactic nuclei refer to extremely luminous, small scale regions at the cen-

tres of galaxies. The most widely accepted mechanism explaining them is the

infall of gas from an accretion disk onto a central supermassive black hole. The

cold matter that initially forms the disk is heated from friction as gravitational

forces contract the disk and increase its angular momentum. Atoms in nearby

cold material are excited by the radiation of the disk and re-radiate an emis-

sion line spectrum that provides a signature of the AGN. Two different modes

of energy output characterise AGN: the kinetic mode is associated with highly

directional relativistic jets of ionised matter from the accretion disk itself, while

the radiative mode describes an isotropic transfer of thermal energy to the sur-

rounding environment (Alexander and Hickox, 2012).

Supernovae exert a similar influence on the matter distribution by heating gas

in their surroundings. The gravitational core collapse of very massive stars when

their ability to sustain thermal pressure through nuclear fusion is exhausted leads

to the explosive release of vast quantities of matter and radiation (Burrows, 2013).

An alternative mechanism that could act as a supernova progenitor is a white

dwarf accreting helium or generating runaway carbon fusion that disrupts the

entire body (Nomoto, 1982). While AGN are single localised sources of thermal

energy production, the effect of supernovae is a cumulative one with many sources

within a single dark matter structure injecting energy into the environment.

The baryonic feedback effect associated with AGN and supernovae1 has a sig-

nificant impact on the matter distribution on megaparsec scales. Dark matter

haloes can experience a bloating effect up to and beyond their virial radii. Con-

sequently, baryonic feedback has been shown to have an effect of suppressing

the matter power spectrum by ∼ 30% in the nonlinear regime (Semboloni et al.,

1It is not uncommon for authors to refer to any and all baryonic phenomena impacting large
scale structure as ‘baryonic feedback’ effects. However, this work will use the term strictly to
refer to the types of thermal feedback effects associated with AGN and supernovae, drawing a
clear distinction with e.g., adiabatic contraction.
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2011). This becomes sub-dominant with respect to adiabatic contraction on the

smallest scales but for k ∼ 5h/Mpc (scales that large scale structure surveys are

sensitive to), it is a highly prominent feature.

3.1.3 Star Formation Rates and Miscellaneous Phenom-

ena

A number of additional astrophysical effects have been shown (e.g., van Daalen

et al., 2011) to have > 1% level impacts an the matter power spectrum at relevant

scales. Adiabatic contraction and baryonic feedback are the principal phenom-

ena, but can themselves give rise to further secondary effects. For example, stellar

distributions are dependent on local supernova activity, with stronger feedback

reducing the star formation rate which can boost the dark matter power spectrum.

Other effects that should be accounted for include the relationship between the

metallicity of cooling gas distributions and the adiabatic contraction induced by

their radiative cooling. Careful modelling of stellar winds generated in and prop-

agated through the environments surrounding supernovae is also important.

3.2 Introduction To Baryon Impact Studies

The impact of the phenomena described above on the large scale matter distri-

bution has prompted a number of works recalibrating the halo model to match

N-body and hydrodynamic simulations implementing baryonic effects (see e.g.,

Semboloni et al., 2011; Zentner et al., 2013; Semboloni et al., 2013; Mohammed

et al., 2014; Mead et al., 2015; Schneider and Teyssier, 2015). A robust baryon-

halo model in principle would allow one to examine the sensitivity of the matter

power spectrum and its weak lensing projection to the parameters controlling the

strength of the baryonic effects on halo structure. In turn this allows for large

scale structure survey forecasts of cosmological parameters to be made that ac-

count for uncertainty in the baryon parameters.

Different approaches for implementing baryons have generated a considerable

range of results for the impact on dark energy error forecasts. Among the most
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alarming are those of Zentner et al. (2013) who find, by modifying the halo con-

centration relation, that 1-σ errors for w0 and wa increase by ∼ 50%. These

degradations would compound to severely reduce the Figure of Merit, given by

FOM =
1√

(σw0σwa)
2 − σ2

w0wa

, (3.2)

that constrains the w0-wa parameter space.

3.2.1 Simulations

Previous efforts to capture baryonic physics using N-body simulations have largely

been replaced by more recent hydrodynamical simulations, which are able to in-

corporate more sophisticated prescriptions for the mechanical and fluid dynamics

of the baryon sector. One particularly comprehensive project are the OverWhelm-

ingly Large Simulations (OWLS; Schaye et al., 2010). OWLS is capable of im-

plementing prescriptions for multiple sources of baryon physics. In Mead et al.

(2015), a halo model variant called HMCODE was calibrated by making fits to

a fiducial dark-matter only model (DMONLY), and then to three baryonic mod-

els. The first introduces radiative cooling and supernovae feedback along with

prescriptions for stellar formation and evolution (REF). These features are also

included in the model designed primarily to account for AGN feedback (simply

referred to as AGN), and in a model that uses a stellar initial mass function

to produce more supernovae as well as introducing a stronger effect from stellar

winds (DBLIM).

Mead et al. (2015) also make a fit to non-linear power spectra generated by

an ‘emulator’ code (COSMIC EMU) for the high resolution N-body simulations

from the Coyote Universe project (Heitmann et al., 2009, 2010; Lawrence et al.,

2010; Heitmann et al., 2014). These power spectra were used as the basis for the

HMCODE claim of ' 5 percent accuracy for scales k ≤ 10h/Mpc and redshifts

z ≤ 2 (improving by several factors over HALOFIT at non-linear scales). This

motivates the decision taken in this work to use these fits to COSMIC EMU

within a version of HMCODE that will be further modified as needed.



3.2. INTRODUCTION TO BARYON IMPACT STUDIES 65

3.2.2 Modified Halo Models

In their halo model variant Semboloni et al. (2011) determine a bias as high as

40% in predictions of w0 when neglecting baryons which reduces to ∼ 10% when

accounting for feedback by fitting mass fractions for separate profiles for dark mat-

ter, gas and stars. Semboloni et al. (2013) argue that this overcomes a shortcom-

ing in the modelling of Zentner et al. (2013) that neglects differences between the

distributions of dark matter and hot gas. Mohammed et al. (2014) adopt a similar

approach, by modelling stellar contributions with a central galaxy, introducing

a hot plasma in hydrostatic equilibrium and accounting for the baryon-induced

adiabatic contraction of dark matter due to cooling. They find a degradation of

∼ 10% and ∼ 30% to the forecasted errors on w0 and wa respectively.

The approach of these works (see also Fedeli, 2014; Fedeli et al., 2014) of fit-

ting for stellar and gas physics within the halo is different to that advocated by

Mead et al. (2015) (hereafter M15). Their corrections to the halo model through

HMCODE (extended in Mead et al., 2016) are designed specifically to calibrate

the power spectrum accurately for the non-linear regime. This requires empir-

ically motivated modifications to internal halo structure relations that can be

directly attributed to the effects of adiabatic contraction and feedback. As the

power spectrum is the statistic underpinning my study of forecast degradations,

I adopt the model of M15 as the most suitable for the purposes of this work.

In this Chapter, HMCODE is extended to include inner halo cores. This is

motivated by e.g., Martizzi et al. (2012) and Governato et al. (2012) who show

that baryons can produce inner cores of the order of 10 kpc. Possible mecha-

nisms range from dynamical friction effects in black hole orbit decays to AGN

feedback removing dark matter from central halo regions by disturbing the grav-

itational potential. Alternatively, axions could be responsible in the form of

solitons (Marsh and Pop, 2015). Whatever the underlying physics, my version of

baryon-halo model will be the basis for a more comprehensive and robust analy-

sis of the baryon impact on dark energy constraints than has been done previously.

This approach also allows for an exploration of how well the baryon parameters

used in the modified HMCODE could be constrained by Stage IV surveys, given

the uncertainty in cosmology. It should be stressed that this does not amount
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to direct constraints on baryonic phenomena, but on the approximate redistribu-

tion of matter in haloes. This could provide opportunities for informing future

hydrodynamic simulations, and insight into the possible nature of inner cores.

3.2.3 Impact Forecasts

To understand the scope of baryon impacts it is important to analyse the sensitiv-

ity of information from baryons and dark energy at different lensing scales. This

goes beyond examining the effect of increasing the scale limit, `max, of an analysis

(e.g., Semboloni et al., 2011; Zentner et al., 2013; Mohammed et al., 2014). Weak

lensing power responses to varying w0 and wa exhibit subtle scale-dependencies

due to competing influences on the growth of structure and the geometry gov-

erning distances. Understanding how the w0-wa degeneracy is broken in this

interpretation, and how this is complicated by the inclusion of baryons, is essen-

tial for informing a mitigation strategy.

The prescription presented here is based on improvements offered by optimis-

ing `max, incorporating external baryon information, and adding Planck CMB

priors. The last step makes use of strong constraints that have not been available

for previous baryon impact studies. At the same time the advent of next genera-

tion surveys is fast approaching so now is an optimal moment to revisit the issue.

The accuracy of power spectra provided by HMCODE and the scope of effects

available through the inclusion of inner cores make this work uniquely placed to

assess baryon degradation and target how to mitigate it.

3.3 Baryon-Halo Model

To incorporate baryons into the halo model I adopt and extend the treatment of

M15. Three general but distinct baryonic effects are parameterised: large-scale

adiabatic contraction caused by radiative cooling; high-impact energy transfer

from localised sources; and the formation of inner halo cores with radius rb due

to small-scale physics. M15 capture the first two by varying internal halo struc-

ture relations through their parameters, AB (referred to as A in M15) and η0. An

inner core is discussed in § 3.4.
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Parameter Fiducial value
Ωm 0.3156
Ωb 0.04917
h 0.6727
σ8 0.831
ns 0.9645

Table 3.1: Fiducial cosmological parameters used for the weak lensing survey forecasts
presented in this work.

It is worth noting that M15 identify a degeneracy between AB and η0 from fit-

ting to multiple OWLS simulations. A likelihood analysis by Hildebrandt et al.

(2017) exploits this by fixing η0 = 1.03 − 0.11AB, where AB becomes the single

free baryon parameter. However, this work retains both parameters as indepen-

dent terms. Having different baryon effects characterised by multiple parameters

allows for the opportunity to explore how well surveys could constrain these par-

ticular phenomena, given the uncertainty in cosmology. It will also make it easier

to identify whether degeneracies between baryon and cosmological parameters

are primarily due to a specific baryonic effect.

Throughout this Chapter, the parameter values corresponding to the base ΛCDM

Planck TT,TE,EE+lowP likelihood (see Table 4 in Planck Collaboration et al.,

2016b) are chosen for the fiducial cosmology, along with the fiducial dark energy

parameters, w0,fid = −1, wa,fid = 0. These values are provided in Table 3.1.

3.3.1 Modelling Adiabatic Contraction

Adiabatic contraction is the most straightforward baryon effect to model. Clus-

tering of baryonic matter due to radiative cooling induces the gravitational infall

of dark matter, so the total matter distribution undergoes contraction. Simula-

tions have shown that the impact is at several percent for non-linear clustering

(Duffy et al., 2010; Gnedin et al., 2011).

In M15 this is captured by modifying the concentration factor, c (M, z), which

relates the scale and virial radii via rs = crv. The amplitude, AB, in the concen-
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Figure 3.1: NFW halo density profiles (in units of the critical density, ρc) for a halo
of mass M = 3× 1014M� at z = 0 with different amplitudes, AB, of the concentration
factor. Blue (red) curves correspond to the lowest (highest) values in the range 0.5AB ≤
AB,fid ≤ 1.5AB,fid. Blue (red) dots indicate the scale radius, rs = 507 (169) h−1kpc,
corresponding to the lowest (highest) AB values. The purple dashed line marks the
virial radius, rv = 1050h−1kpc, at which the profile must be truncated.

tration factor,

c (M, z) = AB
1 + zf
1 + z

, (3.3)

is allowed to vary around a fiducial value, AB,fid = 3.13. This was chosen because

M15 found it produced the best fit to COSMIC EMU power spectra. Fits by M15

to the different OWLS simulations satisfy the range 2 < AB < 4, which could be

used to inform a prior. The dependence on halo mass enters the above expression

via zf , the formation redshift at which a fraction f = 0.01 of the total matter

in a density fluctuation has collapsed. Figure 3.1 shows the impact of varying

the concentration amplitude on the NFW density profile of a halo with fixed

virial radius and mass. Adiabatic contraction then manifests through a reduced

scale radius. This corresponds to suppressing the halo density on large scales,

r & 102 h−1kpc, while enhancing it at smaller scales, r . 10h−1kpc.
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Figure 3.2: NFW halo density profiles (in units of the critical density, ρc) for haloes
of mass M = 2×1011M� (ν < 1) and M = 3×1014M� (ν > 1) at z = 0. The feedback
parameter is varied in the range 0.5 η0,fid ≤ η0 ≤ 1.5 η0,fid. For the low mass halo, low
values of η are represented by green curves and high values by orange curves. For the
high mass halo, low values of η are represented by blue curves and high values by red
curves. The virial radii, rv = 89.9h−1kpc and rv = 1050h−1kpc, for the low and high
mass halo are marked respectively by the green and purple dashed lines. I also include
a reference profile (black) for a halo of mass M = 1012 h−1M� corresponding to ν = 1,
and mark its virial radius rv = 319h−1kpc.

3.3.2 Modelling Feedback

Feedback mechanisms are more complex to model than adiabatic contraction.

Objects like supernovae and AGN release large quantities of energy into their

environments, heating gas which expands to virial radius scales (Pontzen and

Governato, 2012; Lagos et al., 2013). A large range of scales from subparsecs up

to megaparsecs are influenced, so the effect cannot be easily modelled analytically

(Schaye et al., 2010; van Daalen et al., 2011; Martizzi et al., 2014). The impact on

halo structure is also dependent on mass. Simulations have shown (e.g., Pontzen

and Governato, 2012; Teyssier et al., 2013; Martizzi et al., 2013) that similar

mechanisms can describe the expulsion of gas from the central regions of both

lower and higher mass haloes by AGN. In the former case haloes are subjected to

stronger expulsions, resulting in the loss of substantial baryonic matter. Larger
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mass haloes are not so devastated by violent feedback, merely bloating outwards

as heated gas expands through the structure.

M15 accounts for the scale and mass dependence of feedback by transforming

the scale of the halo window function according to

u (k|M) −→ u (νηk|M) , (3.4)

where

ν ≡ δc
σ (M)

(3.5)

is the ratio of the collapse overdensity to the standard deviation of the density

field, smoothed over a mass scale, M . By performing the rescaling r −→ νη r in

equation (2.25) that in real space the modified density profile takes the form

ρ (r,M) =
ρs
ν3η

1(
r

νηrs

) [
1 +

(
r

νηrs

)]2 , r ≤ νηrv. (3.6)

As shown in Figure 3.2, more positive values of η increasingly bloat higher mass

haloes (characterised by ν > 1) while lower mass haloes (ν < 1) are left relatively

reduced by gas being fully expelled. A non-zero value of η was also required to

make empirical corrections to the halo bloating to ensure accurate power spectra

when fitting to dark-matter-only simulations.

When fitting power spectra to COSMIC EMU simulations it was found (see Table

2 in M15) that a number of parameters required redshift-dependent modifications.

This includes η which is decomposed into a constant, η0, that controls the degree

of feedback, and a fixed dependence on σ8 (z) such that

η = η0 − 0.3σ8 (z) . (3.7)

A fiducial value of η0,fid = 0.603 is used here, as this is determined by M15 to

best fit COSMIC EMU spectra. Fits to OWLS simulations lie within the range

0.5 ≤ η0 ≤ 0.8, which could potentially be used to define a prior.
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3.4 Inner Cores

3.4.1 Inner Core Mechanisms

A long-running debate about the nature of the inner most region of the halo

motivates incorporating inner cores into the baryon-halo model. The cusp-core

problem arises from a discrepancy between N-body simulations that predict the

divergent ρ ∝ r−1 NFW cusp in halo centres (see Dubinski and Carlberg, 1991;

Navarro et al., 1997), and observations like dwarf galaxy rotation curves that

indicate constant density cores of the order of a few kpc (Kuzio de Naray et al.,

2008; Walker and Peñarrubia, 2011; Oh et al., 2011). Explanations for this fall

into three categories:

1. Simulations are systematically neglecting some aspect of structure forma-

tion.

2. Replacing traditional CDM with e.g., fuzzy dark matter in the form of

ultra-light axions (alternatively, self-interacting dark matter or warm dark

matter) can generate cores of a few kpc (see e.g., Marsh and Pop, 2015;

Zhang et al., 2016).

3. Baryonic processes flatten cusps into cores (de Blok et al., 2003; Pontzen

and Governato, 2012; Peñarrubia et al., 2012).

A prominent proposal (Pontzen and Governato, 2012) motivated by baryon

arguments is that supernovae feedback transfers sudden, repeated bursts of energy

to surrounding gas, causing oscillations in the central gravitational potential. This

in turn induces rapid orbits of dark matter particles that flatten the cusp (see also

Read and Gilmore, 2005; Governato et al., 2012). However, the core physics is

ultimately of limited relevance here compared to understanding the impact that

the phenomenology has on large-scale structure probes.
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3.4.2 Incorporating an Inner Core Into The Halo Model

There are various ways to introduce cores analytically within an NFW-like profile

(see e.g., Einasto, 1965; Zhao, 1996; Navarro et al., 2004). The simplest extension,

of the form

ρ (r) =
ρN(

r+rb
rs

)(
1 + r

rs

)2 , (3.8)

is sufficient for this work, which is more focused on an exploratory study of generic

core impacts than in rigorously implementing more sophisticated inner core mod-

elling to haloes. This formalism has also been employed by Peñarrubia et al.

(2012), although here the baryon-induced core radius is denoted as rb. Setting rb

to zero reduces the profile to normal NFW. To retain the advantages of a semi-

analytical halo model it is useful for a modified profile to have an analytic Fourier

transform. Numerically computing the 1-halo term of the power spectrum given

in equation (2.22) requires tabulated values of the integrand. This is much less

computationally expensive if there is an analytic expression for the window func-

tion. Inevitably, condition restricts the number of viable profiles, with a general

trend towards simpler extensions being more likely to meet this condition. The

choice of profile here is therefore partly motivated by this practical concern.

The Fourier transform of equation (3.8) is derived as follows. In general,

u (k|M) =
4π

M

∫ rv

0

r2dr
sin (kr)

kr
ρ (r,M) . (3.9)

The well-known transform of the NFW profile is given by Cooray and Sheth

(2002) as

uNFW (k|MNFW ) =
4πρsr

3
s

MNFW

{
F (k, c) cos (krs) +G (k, c) sin (krs)−

sin (ckrs)

krs (1 + c)

}
,

(3.10)

where

F (k, c) ≡ Ci

(
krv
c

(1 + c)

)
− Ci

(
krv
c

)
G (k, c) ≡ Si

(
krv
c

(1 + c)

)
− Si

(
krv
c

)
(3.11)
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and the scale radius, rs, is defined in terms of the concentration, c, and virial

radius, rv, such that rv = c rs. Integrating the profile up to the virial radius

defines the halo mass,

M ≡ 4π

∫ rv

0

r2ρ (r,M) dr, (3.12)

which is evaluated and expressed as a function of the concentration factor,

MNFW (c) = 4πρsr
3
s

{
ln (1 + c)− c

1 + c

}
. (3.13)

Retaining an analytic Fourier transform when incorporating an inner core is part

of the motivation for the simple modification made in equation (3.8). The result-

ing window function is

u (k|M) =
4πρsr

3
s

M

b

b− c

{ MNFW

4πρsr3
s

uNFW (k|MNFW )

+
c

b− c
1

krs

([
G (k, c) cos (krs)− F (k, c) sin (krs)

]
−
[
G (k, b) cos (krb)− F (k, b) sin (krb)

])}
, (3.14)

where b ≡ rv/rb defines an effective ‘baryon concentration factor’. The halo mass

can then be determined as a function of both concentration factors, such that

M (b, c) =
4πρsr

3
s

(b− c)2

{
b (b− 2c)

MNFW

4πρsr3
s

+ c2

[
ln (1 + b)− b

1 + c

]}
. (3.15)

By taking the limit rb → 0 for both u and M , the NFW case is recovered. Despite

the simplicity of the rb modification, it generates a significantly more complex

window function. More sophisticated formulations of an inner core typically re-

quire numerical Fourier transformations, so they are far less practical for the

purposes of this work.

It is also possible to introduce a halo mass dependence, for example by allowing

rb ∝ rs. However, this would entail a dependence in turn on the halo concentra-

tion and therefore a possible degeneracy with AB. This avenue could be further

explored in future work but in this Chapter rb is assumed to be determined by

some combination of processes largely independent from specific halo properties.

It should be emphasised that without introducing a more robust physical motiva-

tion in the modelling the accuracy of results will be limited. However, the main
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Figure 3.3: Modified NFW profile for a halo of mass M = 3× 1014M� featuring an
inner core radius, rb, in the range rb = 0− 100h−1kpc at z = 0. Blue curves represent
profiles closer to standard NFW while red curves indicate prominent baryon cores. The
purple dashed line marks the virial radius, rv = 1050h−1kpc.

concern of this work is including the generic feature of an inner core to explore its

impact on the halo profile and matter power spectrum. This can provide useful

insight into the potential consequences of marginalising over uncertainty in rb,

but should still be treated as a broad, first-pass implementation.

In Figure 3.3 the modified density profile is plotted for a range of cores up to

rb = 100h−1kpc to emphasise the deviation from an NFW profile at small scales.

Once the scale is reduced to rb the density turns off from the NFW branch and

becomes constant. The profile is therefore increasingly suppressed by larger inner

cores.

3.5 Bayesian Statistics

A unique feature of cosmology as a scientific endeavour is that there is just one

experiment available. Conclusions can be inferred only from observations made
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of the single realisation of the evolution of the Universe that is apparent. Impor-

tant properties of this data set can be described by cosmological models that are

defined by a set of parameters. Determining the accuracy to which the values of

these parameters can be known first requires an appropriate and useful interpre-

tation of probability.

The frequentist interpretation is rooted in the notion that the probability of an

event is given by the relative frequency of its occurrence during a large number of

repetitions of an experiment. Underlying physical causes are treated as essentially

random, either through some intrinsic property of the system or as deterministic

phenomena requiring too much information to directly predict. If this approach

were to be applied to cosmology the probability attached to a parameter value

would have to be determined by the distribution of the instances of its measure-

ment across an infinite number of experiments. This is clearly not viable, for the

reasons stated above, but is also problematic on a more fundamental level. Even

if a large but finite number of experiments are performed in place of an ill-defined

infinite limit an additional uncertainty arises on the probability itself, which will

be calculated at slightly different values for different sets of experiments. The ob-

jective probability that should supposedly emerge from this approach is instead

compromised by a circular definition of frequency probability itself.

An alternative approach, the propensity interpretation, invokes objective prob-

abilities that emerge directly from the physical properties of the system. This

has the advantage of allowing probabilities to be assigned to single events. How-

ever, while this approach may prove useful when considering particle states in the

Copehagen interpretation of quantum mechanics it is not viable for cosmology

because intrinsic probabilities do not feature in reasonable cosmological models.

A preferable approach would be one that naturally accounts for the limitations

of data. Bayesian probability provides this through a subjective approach that

leads to assertions about the ‘degree of belief’ in a result, or the probability that

a measurement is correct given the available data. The greatest advantage of this

is that results using the same data (and applying the same prior confidence in a

measurement) will be consistent. Concerns about the subjectivity of conclusions

are mitigated by noting that in cosmology different data sets are ultimately sub-

sets of a single data set provided by the Universe.
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Bayes’ theorem,

P (Θ|D,M) =
P (D|Θ,M)P (Θ|M)

P (D|M)
(3.16)

relates the ‘posterior’ probability, P (Θ|D,M), that a set of parameter values,

Θ, are the true values given the data, D, and assuming a model, M , to the

‘likelihood’, P (D|Θ,M), of obtaining the data for that model with those param-

eter values. All previous information known about Θ is contained in the ‘prior’,

P (D|M). The ‘evidence’, P (D|M), represents the probability of obtaining the

data given the model. As this quantity is independent of the parameter values,

it is more convenient, for a flat (i.e., constant) prior, to write the theorem as

P (Θ|D,M) ∝ L (D|Θ,M) , (3.17)

when comparing likelihoods.

3.6 Likelihood Estimates and The Fisher Ma-

trix Formalism

One can evaluate uncertainties for a set of parameter values Θ = (θ1, ..., θN)

from a data set x by using the Fisher matrix formalism (Fisher, 1935; Tegmark

et al., 1997). This provides a basis for quantifying the constraining power of an

experiment, or in the case of this work, the capacity of a large scale structure

survey to measure cosmological parameters to within a certain accuracy. As will

be detailed in this section, there is a robust statistical underpinning for the Fisher

formalism. It could be argued that it falls short of methods like generating mock

galaxy catalogues or by running Monte Carlo experiments, which use random

sampling algorithms to iteratively determine confidence forecasts for parameters.

While the Fisher methodology lacks computational superiority this does allow it

to retain an advantage of being quick and practical to execute. Moreover, it is

far more plausible to extract the source of important features in its results. The

effects of different parameters on probes, like the power spectrum, entering the

Fisher matrix, can be studied and so it is often possible to trace similar effects

through each step of the calculation to explain degenerate 2-parameter confidence
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regions in the final forecasts. As the focus of this work is to perform these types

of diagnosis in depth, the Fisher formalism is useful.

In the most general sense, the power of the Fisher formalism is that no data

is required to produce forecasts. The essential requirement is that the expected

data from an experiment satisfies a multivariate Gaussian distribution. In the

case of correlated data, the Fisher formalism still applies. At this point the only

information required is a knowledge of the sensitivity of the mean of the data

and the data covariance to the underlying parameters. The Fisher matrix can

then be constructed prior to the relevant experiment itself being performed. The

forecast errors that become available through the Fisher matrix provides a quan-

titative assessment for how effective an experiment will be and therefore how

best to optimise it. It is, however, important to note that the Fisher formalism

cannot be applied in the case of data that is parameter-dependent. This can

arise in certain circumstances where the data is treated as a construction of some

underlying measurement, and hence there may be further parameters that need

to be carefully considered. The appropriate course of action is then to assume a

fiducial set of parameters that are not changed with the data.

It has been shown (Tegmark et al., 1997) that the inverse of the parameter covari-

ance matrix is given by the expectation value of the curvature of the log-likelihood

function lnL (x|Θ) around its maximum, occurring at the set of fiducial, most

likely parameter values, Θfid. This quantity is the Fisher information matrix,

Fαβ ≡
〈 ∂2L
∂θα∂θβ

〉
, (3.18)

in which the definition L = − lnL is a useful convention. The probability distri-

bution of observables is treated as Gaussian such that

L =
1√

(2π)N det C
exp

[
−1

2
(x− µ) C−1 (x− µ)T

]
, (3.19)

where C is the data covariance matrix and µ = 〈x〉 is the mean data. Assum-

ing equal priors on Θ and x, the relation P (x|Θ) = P (Θ|x) holds. A Taylor
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expansion of the log-likelihood around Θfid is

L = L|Θfid
+
∂L
∂θα

∣∣∣
Θfid

(θα − θα,fid) +
1

2
(θα − θα,fid)

∂2L
∂θα∂θβ

∣∣∣
Θfid

(θβ − θβ,fid)

+O
(
(θ − θfid)3) , (3.20)

where there is an implicit sum over α and β. The first order term vanishes

because it is evaluated at the peak of the log-likelihood. The expansion series

is truncated after second order because modern cosmological experiments are

expected to yield small errors on Θ which allow third order terms to be treated

as negligible. The exponential of the remaining terms has the form of a Gaussian

distribution. Hence, it is now possible to relate the data covariance matrix to the

Hessian matrix,

Tαβ =
∂2L

∂θα∂θβ
, (3.21)

the expectation value of which defines the Fisher information. An involved deriva-

tion invoking various matrix identities allows Tegmark et al. (1997) to show that

the Fisher matrix can be written as

Fαβ =
1

2
Tr
[
C−1C,αC

−1C,β + C−1Mαβ

]
. (3.22)

The final term Mαβ = µ,αµ
T
,β + µ,βµ

T
,α is the expectation value of the sec-

ond derivative of the data matrix (x− µ) (x− µ)T under Gaussian conditions.

Derivatives with respect to parameters are denoted by , α ≡ ∂/∂α. For weak

lensing one can approach the Fisher matrix in one of two ways. One possibility

is treating the shear field as the data. The underlying field can be approximated

as a Gaussian here and the mean of the data can be approximated to be zero.

This leads to the second term in the above equation disappearing. Alternatively,

the mean can be defined as the lensing power spectrum directly. In this case, the

covariance is effectively the four-point function of the underlying shear field. In

this work, the power spectrum is treated as the data signal and is assumed to be

Gaussian. The applicability of the Gaussian approximation requires more careful

consideration here. The power spectrum is a quantity that is quadratic in the

underlying field. While the shear field may be treated as Gaussian, this statistical

property is lost when two random Gaussian variables are combined as a product.

However, the central limit theorem can be applied here whereby the sum of a
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sufficiently large number of independent random variables tends towards a Gaus-

sian distribution even if the the variables are not themselves normally distributed.

In this scenario of treating the power as the data, the covariance should be

parameter-independent and so the first term in the equation above vanishes. The

corresponding Fisher matrix can then ultimately be expressed as (Tegmark et al.,

1997; Takada and Jain, 2004)

Fαβ =
1

2
fsky

∑
`

(2`+ 1)
∑
(ij)

∑
(pq)

Cij
`,αC

pq
`,β

[
Cov−1

]
`,(ij),(pq)

, (3.23)

in which the spherical harmonic ` and m modes are summed over, and fsky is

the fraction of sky accessible to the survey. The auto- and cross-correlations

of observed power in redshift bins i, j, p, q = (1, ..., Nbin) are captured by the

covariance matrix,

Cov`,(ij),(pq) = Ĉip
` Ĉ

jq
` + Ĉiq

` Ĉ
jp
` . (3.24)

Contributions from different modes are treated as separable so that the matrix is

block diagonal in `. The full observed power spectrum is constructed by adding

the shape noise, σe = 0.3, when averaged over the number of galaxies to the auto-

correlations of power within each bin. Provided there is no intrinsic alignment to

account for, this is given by

Ĉ`,ij = C`,ij +
σ2
e

ni
δij, (3.25)

where δij is the Kronecker delta and ni is the number density of galaxies in redshift

bin i. This is computed by integrating over the redshift distribution of the galaxy

number density, for which the common parameterisation,

n (z) ∝ z2 exp

[
−
(
z

z0

) 3
2

]
, (3.26)

is used, where the peak density depends on the median redshift of the survey

through z0 = zmed/
√

2.

A 2-parameter confidence region is finally determined by inverting the Fisher

matrix to marginalise over the other parameters, and extracting the resulting 1-σ
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errors, σαα =
√

[F−1]αα. The Cramer-Rao inequality,

σα ≥
1√
Fαα

, (3.27)

sets a lower limit, known as the ‘conditional error’ on a parameter. This is achiev-

able only if all other parameters are known with absolute accuracy. Otherwise,

the inversion of the Fisher matrix incorporates uncertainty on the other param-

eters into the error estimate to provide the ‘marginal error’. The amount of

degeneracy between parameters is related to the correlation coefficient (see e.g.,

Coe, 2009),

ρ ≡
[F−1]αβ√

[F−1]αα [F−1]ββ

. (3.28)

It is clear that ρ lies within the range −1 ≤ ρ ≤ 1, with ρ = −1 representing to-

tal anti-correlation, ρ = 1 representing total correlation and ρ = 0 corresponding

to completely independent posterior probability distributions. The parameters

involved may or may not have a physical dependence on each other.

Simple geometric arguments can be used to show that the dimensions of a con-

fidence ellipse derive from the errors and correlation coefficient via the following

expressions. The semi-major and semi-minor axis lengths are given by

a2 =
σ2
α + σ2

β

2
+

√(
σ2
α − σ2

β

2

)2

+ (ρσασβ)2 (3.29)

b2 =
σ2
α + σ2

β

2
−

√(
σ2
α − σ2

β

2

)2

+ (ρσασβ)2, (3.30)

while the orientation is set by the angle,

φ =
1

2
arctan

[
2ρσασβ
σ2
α − σ2

β

]
. (3.31)

The confidence level required for the ellipse dictates a factor by which the lengths,

a and b, are multiplied, with a 1-σ 68.3% confidence threshold corresponding to

a factor of 1.52 (Lampton et al., 1976). The inverse of the area (Coe, 2009),

A = πσασβ
√

1− ρ2 (3.32)
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determines the Figure of Merit statistic that quantifies the strength of constraints

on a 2-parameter region like w0-wa (Albrecht et al., 2006).

3.7 Impacts of Baryons On Dark Energy Fore-

casts

3.7.1 Matter Power Spectra Responses

The sensitivity of the cosmological probe to baryons and cosmology can be ex-

amined by evaluating power spectra responses to varying each parameter with

respect to its fiducial value while fixing the other parameters. Responses for

∆2 (k) for fixed σ8 at redshift z = 0 are shown in Figure 3.4, and for C` in Fig-

ure 3.6.

The most subtle response to baryons is for η0, where averaging over the scale-

and mass-dependent influences produces a peak response. The bloating impact

on higher mass haloes dominates over the reduction effect on lower mass ones,

so lower values of η0 overall enhance ∆2 (k). The peak is also a function of the

evolution of halo populations, occurring for smaller scales at earlier times. For rb,

I plot the ratio of power for cores up to 100h−1kpc with respect to the case of a

cusp, rb = 0h−1kpc. As expected, larger inner cores increasingly damp ∆2 (k) on

small scales. Adiabatic contraction produces the opposite effect. Increasing AB

boosts ∆2 (k) on non-linear scales, corresponding to enhanced density profiles in

this regime.

Figure 3.4 indicates that w0 and wa are degenerate with AB and rb at z = 0.

For power spectra normalised to σ8, only the non-linear influence of structure

affects P (k) at this redshift. At earlier times the degeneracy is broken because

the AB and rb impacts are largely redshift-independent while increasing w0 and

wa uniformly enhances ∆2 (k) over all scales for any z > 0 (e.g., see Figure 3.5

for ∆2 (k) responses at z = 0.5). This is because, for less negative values of w,

dark energy becomes energetically relevant earlier. By z = 0 there has been more

acceleration and therefore greater suppression of structure growth, so ∆2 (k) is

boosted for fixed σ8.
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Figure 3.4: The ratio of matter power spectra at z = 0 for different iterations
of parameters in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w0, wa, rb), with respect to a fiducial
power spectrum computed with parameter values found by Planck Collaboration et al.
(2016b). Bluer (redder) curves correspond to lower (higher) values for parameters in
the range 0.9 Θfid < Θ < 1.1 Θfid, except in the case of the dynamic dark energy pa-
rameter which varies between −0.1 < wa < 0.1, and rb which is varied between core
sizes of rb = 0− 100h−1kpc and plotted with respect to the fiducial rb = 0h−1kpc.
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Figure 3.5: The ratio of matter power spectra at z = 0.5 for different iterations
of parameters in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w0, wa, rb), with respect to a fiducial
power spectrum given by Planck parameters. Bluer (redder) curves correspond to
lower (higher) values for parameters in the range 0.9 Θfid < Θ < 1.1 Θfid, except in the
case of the dynamic dark energy parameter which varies between −0.1 < wa < 0.1, and
rb which is varied between core sizes of rb = 0 − 100h−1kpc and plotted with respect
to the fiducial rb = 0h−1kpc.
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3.7.2 Weak Lensing Convergence Power Spectra Responses

As weak lensing incorporates information from sources and foregrounds over a

range of redshifts it is important to be aware of the changes in linear power over

the growth history. Integrals of ∆2 (k) along the line of sight average over these

redshift-dependent effects. Varying w0 and wa now induces the opposite response

for C` (see Figure 3.6) than for ∆2 (k). Notably there is also a broad peak on large

scales (` ∼ 100). This is because dark energy influences cosmological distances

and therefore rescales the lensing weight functions. More negative w increases

this geometric contribution to the lensing signal (Huterer, 2002), boosting C` on

all scales. On non-linear scales this is damped by the opposite influence from the

growth of structure, which enters through ∆2 (k). For the smallest `, linear k

can only be accessed at larger distances and therefore earlier times, when more

positive values of w boost ∆2 (k). This also has a mitigating effect on the influence

of geometry, leading to the broad response peak. The results presented here are

consistent with those of Zorrilla Matilla et al. (2017), who thoroughly examine the

competing effects of geometry and growth on the sensitivity of lensing observables

to Ωm and w.

3.7.3 Forecast Results

Fisher matrices using the parameter set (AB, η0, rb,Ωm,Ωb, h, ns, σ8, w0, wa) are

constructed in accordance with the specifications of a Euclid-like survey. In Ta-

ble 3.2, the survey parameters given by the Euclid survey report (Laureijs et al.,

2011) are summarised. Nbin = 10 redshift bins are chosen in the range 0 < z < 2

such that each bin contains an equal number density of galaxies,

N =
1

Nbin

∫ zmax

0

dz n (z) , (3.33)

where n (z) is the redshift distribution of the number density. A large range of

scales from `min = 10 to `max = 5000 are covered. Hence, in practice it is prudent

to compute the summation in equation (3.23) at logarithmic intervals.

The full set of 2-parameter 1-σ confidence ellipses from this analysis for every

parameter combination in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w0, wa, rb) is presented in
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Figure 3.6: The ratio of weak lensing convergence power spectra in a 0.9 < z <
1.1 redshift bin for different parameters in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w0, wa, rb),
with respect to a fiducial power spectrum computed with Planck Collaboration et al.
(2016b) parameter values. Bluer (redder) curves correspond to lower (higher) values
for parameters in the range 0.9 Θfid < Θ < 1.1 Θfid, except in the case of the dynamic
dark energy parameter which varies between −0.1 < wa < 0.1, and rb which is varied
between core sizes of rb = 0 − 100h−1kpc and plotted with respect to the fiducial
rb = 0h−1kpc.
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Parameter Euclid value

Asky 15, 000 deg2

zmin 0.
zmax 2.0
zmed 0.9
Nbin 10
ngal 30 gal/arcmin2

σz 0.05
σe 0.3
lmin 10
lmax 5000

Table 3.2: Survey parameters for a Euclid-like space mission, including the area Asky

of sky probed, the redshift range and median redshift value zmed, the number of redshift
bins Nbin, the number density of galaxies surveyed, ngal, the photometric error σz, the
intrinsic ellipticity σe, and the range of accessible harmonic wavenumbers.
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Figure 3.7: 1-σ 2-parameter confidence ellipses for w0 and wa. In each case,
Ωm,Ωb, h, ns, σ8 have been marginalised over. Results are shown for all baryon param-
eters fixed to their fiducial values (blue); one baryon parameter fixed to their fiducial
value, AB (orange), η0 (green), rb (purple); and all baryon parameters marginalised
over (red; just visible as the largest ellipse).
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Figure 3.8: 1-σ 2-parameter confidence ellipses for σ8 and ns. In each case,
Ωm,Ωb, h, w0, wa have been marginalised over. Results are shown for all baryon param-
eters fixed to their fiducial values (blue); one baryon parameter fixed to their fiducial
value, AB (orange), η0 (green), rb (purple)); and all baryon parameters marginalised
over (red).

1-σ 1-σ fdeg

(no baryon marg.) (inc. baryon marg.)
w0 0.0673 0.0739 1.10
wa 0.208 0.267 1.29
σ8 0.00587 0.00964 1.64
ns 0.00935 0.0260 2.79

Table 3.3: 1-σ error forecasts for dark energy and selected cosmological parameters
for a Euclid-like survey, without and including marginalisation over baryon parameters.
The ratio, fdeg, of errors with baryons marginalised over to those without baryon
marginalisation quantifies the degradation.

FOM FOM RFOM

(no baryon marg.) (inc. baryon marg.)
w0-wa 106 62.4 1.70
ns-σ8 8540 1830 4.65

Table 3.4: Figures of merit for w0-wa and ns-σ8 without and including marginalisation
over baryonic physics. I include the reduction factor, RFOM, calculated as the ratio of
the FOM without baryon marginalisation to the FOM with baryon parameters kept
fixed.



88 CHAPTER 3. BARYON IMPACTS ON DARK ENERGY

2 3 4

0.55

0.60

0.65

η 0

2 3 4

−0.01

0.00

0.01

r b
(M

p
c/
h
)

2 3 4

0.31

0.32

Ω
m

2 3 4

0.0475

0.0500

0.0525

Ω
b

2 3 4

0.65

0.70

h

2 3 4

0.82

0.83

0.84

σ
8

2 3 4

0.94

0.96

0.98

1.00

n
s

2 3 4

−1.1

−1.0

−0.9

w
0

2 3 4

AB

−0.25

0.00

0.25

w
a

0.55 0.60 0.65

−0.01

0.00

0.01

0.55 0.60 0.65

0.305

0.310

0.315

0.320

0.325

0.55 0.60 0.65

0.046

0.048

0.050

0.052

0.55 0.60 0.65

0.625

0.650

0.675

0.700

0.55 0.60 0.65

0.82

0.83

0.84

0.55 0.60 0.65

0.94

0.96

0.98

1.00

0.55 0.60 0.65

−1.10

−1.05

−1.00

−0.95

−0.90

0.55 0.60 0.65

η0

−0.25

0.00

0.25

−0.01 0.00 0.01

0.305

0.310

0.315

0.320

0.325

−0.01 0.00 0.01

0.046

0.048

0.050

0.052

−0.01 0.00 0.01

0.625

0.650

0.675

0.700

−0.01 0.00 0.01

0.82

0.83

0.84

−0.01 0.00 0.01

0.94

0.96

0.98

1.00

−0.01 0.00 0.01

−1.10

−1.05

−1.00

−0.95

−0.90

−0.013 0.000 0.013
rb (Mpc/h)

−0.25

0.00

0.25

0.305 0.310 0.315 0.320 0.325

0.046

0.048

0.050

0.052

0.305 0.310 0.315 0.320 0.325

0.625

0.650

0.675

0.700

0.305 0.310 0.315 0.320 0.325

0.82

0.83

0.84

0.305 0.310 0.315 0.320 0.325

0.94

0.96

0.98

1.00

0.305 0.310 0.315 0.320 0.325

−1.10

−1.05

−1.00

−0.95

−0.90

0.31 0.32

Ωm

−0.25

0.00

0.25

0.046 0.048 0.050 0.052

0.625

0.650

0.675

0.700

0.046 0.048 0.050 0.052

0.82

0.83

0.84

0.046 0.048 0.050 0.052

0.94

0.96

0.98

1.00

0.046 0.048 0.050 0.052

−1.10

−1.05

−1.00

−0.95

−0.90

0.046 0.049 0.052

Ωb

−0.25

0.00

0.25

0.625 0.650 0.675 0.700

0.82

0.83

0.84

0.625 0.650 0.675 0.700

0.94

0.96

0.98

1.00

0.625 0.650 0.675 0.700

−1.10

−1.05

−1.00

−0.95

−0.90

0.65 0.70

h

−0.25

0.00

0.25

0.82 0.83 0.84

0.94

0.96

0.98

1.00

0.82 0.83 0.84

−1.10

−1.05

−1.00

−0.95

−0.90

0.82 0.83 0.84

σ8

−0.25

0.00

0.25

0.94 0.96 0.98 1.00

−1.10

−1.05

−1.00

−0.95

−0.90

0.93 0.96 0.99

ns

−0.25

0.00

0.25

−1.1 −1.0 −0.9

w0

−0.25

0.00

0.25

Figure 3.9: 1-σ 2-parameter confidence ellipses with different combinations of pa-
rameters marginalised over: all parameters in Θ = (AB, η0, rb,Ωm,Ωb, h, σ8, ns, w0, wa)
marginalised over (red); AB fixed to its fiducial value (orange); η0 fixed (green); rb fixed
(purple); AB, η0 and rb fixed (blue).
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Figure 3.9. This Figure includes results where different combinations of baryon

parameters are systematically fixed, or marginalised over alongside the cosmolog-

ical parameters.

The logarithmic derivatives of the weak lensing power spectrum with respect

to each parameter are shown in Figure 3.10 as this is the essential contribution

to the Fisher matrix. This is somewhat obscured by correlations of power be-

tween different redshift bins). I have chosen the redshift bin, 0.9 < z < 1.1, in

which to show these results. I plot the wa derivative around wa = 1 instead of

wa = 0. Similar to the power spectrum response plots, examining the derivatives

is a useful tool for contextualising parameter degeneracies apparent in the forecast

results. Parameters with associated derivatives of the same sign have correlated

influences on the power. Similarly shaped derivatives are more likely to lead to

degeneracies, although the effect of marginalising over other parameters adds a

layer of complexity. The weighting of Fisher information per mode is greater for

non-linear scales so the behaviour of the derivatives on these scales should provide

the most insight into whether two parameters are likely to exhibit degeneracy in

their confidence ellipse.

In Figure 3.7 the dark energy error forecasts are shown. There is a baryon degra-

dation factor (computed as the ratio of the 1-σ errors when marginalising over

baryons to those when baryon parameters are fixed), fdeg = 1.10, on the w0

error, and a more substantial degradation of fdeg = 1.29 on the wa error (see

Table 3.3). These compound such that the dark energy FOM is reduced by a

factor RFOM = 1.70.

When baryons are fixed to their fiducial values, the w0-wa parameter space can

be constrained because the w0-wa degeneracy is broken by two sources. The first

is differences in the scale dependence of the lensing power response to varying w0

and wa. Figure 3.6 illustrates that on non-linear scales, for a given redshift slice,

competing influences from geometry and the matter power spectrum damp the

net sensitivity of the lensing power to wa. By contrast, the effect of varying w0

on geometry remains dominant over its impact on the matter power deeper into

the non-linear regime. The second source is contributions from multiple photo-

metric redshift bins. The evolution of the lensing power spectrum depends on

the growth rate and integrals over the line of sight, which respond differently to
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w0 and wa. However, degeneracies between baryons and dark energy on non-

linear scales obscure these distinctions in the Fisher analysis when baryons are

marginalised over. Breaking the w0-wa degeneracy now depends on evolution

alone and consequently the FOM experiences significant ∼ 40% degradation.

Fixing any single baryon parameter does not significantly reduce the degrada-

tion on dark energy. Setting the inner core radius to zero, for example, will yield

very limited improvement. However, Figure 3.8 exhibits more varied impacts on

ns-σ8 constraints when selectively fixing different baryon parameters. This signals

the importance of accounting for multiple baryon influences. Figure 3.11 shows

there are correlations between baryon parameters in Stage IV forecasts but they

are not sufficiently degenerate to motivate reduction to a single parameter, as in

Hildebrandt et al. (2017).

The dependence of forecasts on the choice of baryon fiducial values should also

be briefly noted. For example, selecting AB and η0 values that best fit the OWLS

AGN simulation (AB = 2.32, η0 = 0.76) results in a ∼10% change in w0 con-

straints, giving σw0,AGN = 0.104.

Figure 3.11 illustrates that other cosmological parameters are also vulnerable

to baryon degradation, using ns-σ8 as an example. P (k) and C` experience

non-linear peak responses to σ8 and η0 (see Figures 3.4 and 3.6). The spectral

index amplifies power with scale k > 1hMpc−1 similarly to varying AB and rb.

These combined degeneracies reduce the ns-σ8 FOM to ∼ 20% of its value before

baryons are marginalised over. Though this work is focused mainly on dark en-

ergy, I include this result to highlight the importance of understanding baryonic

effects for constraining all cosmological parameters.

3.8 Constraints On Baryon Parameters

3.8.1 Results

The analysis framework presented in this Chapter also allows one to quickly

compute confidence limits for prospective measurements of the different baryonic

effects by future surveys. Such information could then be useful for modelling
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baryons in future simulations. This represents an advantage of using multiple

baryon parameters that are kept independent from each other, rather than im-

posing relationships between them that lead to further degeneracies.

In Figure 3.11, it is shown that AB and η0 could be constrained by a Euclid-

like survey at the 50% and 10% level respectively, with 1-σ errors σAB = 0.866

and ση0 = 0.0476. A significant improvement is made, particularly for constrain-

ing adiabatic contraction, by fixing the inner core radius to zero, as this breaks

the degeneracy between AB and rb. This reduces the errors by several factors to

σAB ,cusp = 0.134 and ση0,cusp = 0.0148 for a cuspy halo model, while the AB-η0

FOM is greater by a factor of 6.7. The AB-rb and η0-rb constraints experience

similar improvements when fixing the third baryon parameter in each case, fur-

ther highlighting the degeneracies that occur between the different effects. It

should also be noted that η0 and rb exhibit a positive correlation despite having

opposite effects on C`. This is because there is also marginalisation over AB,

which has a dominant influence compared to rb.

Surprisingly, the results presented here imply that a Euclid-like survey could

be highly sensitive to cores on the smallest scales, within 0.02h−1Mpc. Vari-

ous axionic mechanisms like fuzzy dark matter or solitonic field configurations

of self-gravitating bosons that generate halo cores are posited to exist on kpc

scales (e.g., Marsh and Pop, 2015). Such a preference in favour of the axion

sector over baryon-induced mechanisms of core formation would be significant

for the cusp-core debate. However, it is not realistic to expect the modelling

underpinning these forecasts to be robust at these scales. As an example, one

of the major sources of bias in lensing forecasts - degradation due to intrinsic

alignments - would be expected to have a significant impact. This Chapter does

not address that particular systematic, although work presented in the following

Chapter discusses its significance in detail. I report the finding primarily as an

indication that a more sophisticated approach to incorporating inner cores could

draw substantial benefits from Stage IV forecasts.

As the scope of this work is primarily focused on dark energy constraints, the

main result of this section is that only 59% of the dark energy FOM is retained

when baryons are marginalised over (see Table 3.4). It is now necessary to ex-

plore possible mitigation strategies and identify with greater precision the scales
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1-σ 1-σ fdeg

(no baryon marg.) (inc. baryon marg.)
w0 0.0656 0.0725 1.10
wa 0.197 0.258 1.31
σ8 0.00531 0.00903 1.70
ns 0.00740 0.0247 3.34

Table 3.5: 1-σ error forecasts for dark energy and selected cosmological parameters
for a survey probing up to `max = 10000 , without and including marginalisation over
baryon parameters. The final column shows the degradation factor induced in the
errors by baryonic physics.

`max FOMw0−wa FOMw0−wa RFOM

(no baryon marg.) (inc. baryon marg.)
5000 106 62.4 1.70
10000 121 66.5 1.82

r10000/5000 1.15 1.07 1.07

Table 3.6: Figures of merit for w0-wa without and including marginalisation over
baryon parameters, at `max = 5000 to `max = 10000. The final column and row
respectively show the reduction fraction, RFOM, of the FOM when including marginal-
isation over baryonic physics and the ratio, r10000/5000, of quantities computed using
`max = 10000 to those computed using `max = 5000.

at which constraining information becomes compromised.

3.9 Mitigation

3.9.1 Fisher Information Sensitivity

An analysis that extends further into non-linear scales might be expected to im-

prove upon the baryon impact. Instead it can be seen in Tables 3.5 and 3.6 that

doubling the survey limit from `max = 5000 to `max = 10000 offers a relatively

minor improvement of ∼ 7% on the dark energy FOM. More than twice this gain

is available when the baryon parameters are kept fixed to their fiducial values.

This reflects the fact that baryon degradation actually worsens at higher `max, as

shown in Figure 3.12.

I find degradation is minimised at ∼ 20% for the optimal cutoff `?max ≈ 1700. The

corresponding marginalised errors on w0 are σ?w0,b
= 0.080 and σ?w0,nb

= 0.074 for
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marginalising over and fixing baryons respectively. For larger `max, the degrada-

tion worsens while the overall improvement in the FOM tails off. Despite these

limitations, it should be emphasised that increasing `max is still beneficial because

the information gained at these scales reduces errors. However, it should not nec-

essarily be assumed that simply increasing `max is the most effective approach to

mitigating the baryon impact.

The optimal `max for reducing degradation can be understood by considering

the scale dependence of Fisher information contributions from different param-

eters. Figure 3.13 shows this for the diagonal terms of the Fisher matrix. The

peak contributions for the baryon parameters occur almost entirely over non-

linear scales. However, the dark energy contribution is evenly distributed across

a range of linear and quasi-nonlinear scales of a few hundred `, quickly dropping

off beyond ` ∼ 1000. This is due to the combination of decreasing sensitivity of

lensing power to w0 and wa on these scales (see Figure 3.6) and the increasing

influence of shape noise.

In Figure 3.12 the FOM branch without baryon marginalisation experiences an

upturn at a greater `max than the scale of the dark energy Fisher information

peak. This is because the differences in lensing power sensitivity to w0 and wa

on non-linear scales help to break the w0-wa degeneracy. Baryons impair this ca-

pacity, so the baryon marginalisation branch relies almost entirely on responses

varying with evolution to break the degeneracy. Therefore, there is no upturn,

resulting in the relative degradation increasing.

For low `max, though most of the dark energy information is available, baryons

provide almost no information. The Fisher matrix is therefore close to singular

at low `max and the forecast FOM after marginalising over baryons is likely in-

accurate, although the decrease in FOM with decreasing `max is expected to be

qualitatively correct. In practice, for very low values of `max the baryon parame-

ters would be fixed, allowing them to vary only when `max is large enough that the

data is sufficiently informative that fixing them does not induce significant biases.

There is a caveat to the analysis presented in this work. While calculating Fisher

information using power spectra covariance matrices that are block diagonal in

` is a reasonable approximation, it is not strictly accurate. Particularly at low
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redshifts, non-linear modes couple and further correlate power. The traditional

Fisher framework (Tegmark et al., 1997) can be extended to account for this ad-

ditional information. For instance, Kiessling et al. (2011) developed a method

to model non-linear mode-coupling by treating the shear-power distribution as

a multivariate Gaussian but with a covariance matrix derived from mock weak

lensing surveys. It is beyond the scope of this work to include the necessary non-

Gaussian corrections, here but the issue is raised to highlight that they should

be considered for future studies.

3.9.2 External Baryon Priors

As little mitigation is offered by extending the minimum scale of an analysis,

one can instead consider adding information from independent sources. I first

explore the possibility of an external baryon prior to break degeneracies with

dark energy and increase the total Fisher information available. For example,

Hildebrandt et al. (2017) adopt a top-hat prior, 2 < AB < 4, based on the range

of fits to different OWLS simulations M15 find for AB and η0. A stronger prior

will have to come from future observations or simulations, so it is important to

quantify the level of further information required. I provide a recommendation

for limiting degradation of the error on w0 to 1% by adding a diagonal baryon

prior Fisher element, αFbb, so that

F ′bb = Fbb (1 + α) , (3.34)

where α is the external improvement factor. For simplicity a single prior is

imposed, assuming a prospective scenario with a broadly equivalent informa-

tion increase on all baryonic phenomena. Figure 3.14 indicates that reducing

degradation to 1% requires α = 0.47. This corresponds to an external prior of

σ′b,con = 0.82σb,con in terms of the conditional baryon errors.

At first, baryon degradation is highly sensitive to relatively small increases in

information. This is cause for tentative optimism that if sufficient external data

can be used to further inform Stage IV surveys, substantial improvements can be

made comparatively easily. However, the rate of improvement with increasing in-

formation is soon damped, so significantly stronger priors are required to achieve

negligible degradation.
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w0-wa ns-σ8

FOMWL (no baryon marg.) 106 8540
FOMWL (inc. baryon marg.) 62.4 1830

RFOM,WL 1.70 4.65
FOMWL+CMB (no baryon marg.) 283 128000

FOMWL+CMB (inc. baryon marg.) 145 75800
RFOM,WL+CMB 1.96 1.69

Table 3.7: Figures of merit for w0-wa and ns-σ8 without and including marginali-
sation over baryonic physics, and with and without the addition of priors on ΛCDM
cosmological parameters from Planck CMB measurements. For the cases with and with-
out priors, I include the reduction factor, RFOM, of the FOM when including baryon
marginalisation to the FOM when baryons are fixed.
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Figure 3.15: 1-σ 2-parameter confidence ellipses for w0 and wa. In each case,
Ωm,Ωb, h, ns, σ8 have been marginalised over. Results are shown for when all baryon
parameters are fixed to their fiducial values (without Planck CMB priors: blue; with
priors: light blue) and when all baryon parameters are marginalised over (without
Planck CMB priors: red; with priors: pink).
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3.9.3 Cosmic Microwave Background Priors

If the price of external baryon information is too steep, priors can also be added

on the cosmological parameters from sources like the early Universe that are inde-

pendent of Stage IV large-scale structure survey constraints. Inverting the Fisher

matrix propagates this information through to the dark energy errors, potentially

mitigating baryon degradation.

Excellent information on the cosmic geometry and matter-energy density is pro-

vided by the most recent CMB anisotropy measurements from Planck. I use the

publicly available MCMC chains for the base ΛCDM combined TT, TE and EE

power spectra (see Table 4 in Planck Collaboration et al., 2016b). Constraints

from the CMB on w0 and wa alone are extremely weak without adding infor-

mation from weak lensing and external sources like BAOs (Planck Collaboration

et al., 2016c). I therefore use ΛCDM constraints, which I derive by constructing

a covariance matrix from the MCMC chains for (Ωm,Ωb, h, ns, σ8). Inverting this

incorporates uncertainties from the cosmological parameters into the resulting

prior Fisher matrix, FCMB
2. The total Fisher information from weak lensing

(WL) via a Euclid-like survey and from the CMB via Planck is then

Ftot = FWL + FCMB. (3.35)

Rows and columns of zeroes corresponding to baryon and dark energy parame-

ters have been added to FCMB to satisfy the parameter space dimensionality. The

resulting improvements on dark energy constraints for w0 and wa are shown in

Figure 3.15, and for ns and σ8 in Figure 3.16. Both sets of results are summarised

in Table 5.1.

The CMB provides very strong constraints for ns and σ8, dramatically improv-

ing the forecast obtained from weak lensing alone, and removing much of the

relative baryon degradation. There is an interesting comparison with the w0-wa

constraints. These parameters are not themselves constrained by the CMB but

adding the priors still more than doubles the FOM, including when baryons are

marginalised over. This is mainly due to breaking degeneracies between dark en-

ergy and Ωb, h, and ns. The scale of the transition to non-linear power is affected

2Even though the parameter space is non-Gaussian, this approach is consistent within the
Fisher approximation.
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by Ωb and h, while ns tilts P (k) around k = 1hMpc−1. Hence, as illustrated

in Figures 3.4 and 3.6, comparable boosts to the non-linear power spectrum oc-

cur from raising or lowering these parameters. Dark energy similarly amplifies

non-linear power with scale. Adding CMB information on Ωb, h and ns alleviates

these degeneracies, so the dark energy constraints improve substantially.

Figure 3.15 shows that one linear combination of (w0, wa) no longer suffers from

baryon degradation when CMB priors are included. However there is compar-

atively limited alleviation of the relative degradation for other directions in the

parameter space. This could be due to CMB data being unable to provide infor-

mation about the relationship between w0 and wa, and baryons. This contributes

to the relative degradation of the FOM being largely unchanged after the inclusion

of priors. Therefore it should be emphasised that, despite the FOM doubling, the

key statistic for constraining the dark energy parameter space is no less impacted

by baryons.

3.10 Model Bias

The fiducial values of AB and η0 have been determined by fitting to simulations

in M15. This does not account for systematic limitations of the simulations or

incorrect physics. It is important to know how far from the fitted values the true

values can lie before w0 and wa estimates are severely biased. Taylor et al. (2007)

showed that a first-order approximation of the bias in a cosmological parameter,

θ, can be related to the bias in a nuisance parameter, ψ, (in this case, baryons)

through sub-blocks of the full Fisher matrix, such that

δθi = −
[
F θθ
]−1

ik
F θψ
kj δψj, (3.36)

in which k is implicitly summed over. Figure 3.17 shows the relative biases in-

duced in w0 and wa when the ‘true’ values of the baryon parameters deviate from

the fitted values. Biases of up to 25% can occur for w0 if the true values lie

at the edges of the ranges 2 < AB < 4 and 0.5 < η0 < 0.8 found by M15 fits

to OWLS simulations. A line of minimal bias emerges for both w0 and wa due

to the first-order cancellation of AB and η0 biases. This happens to be almost

perpendicular to the minor axis of the marginalised baryon confidence ellipse.
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Figure 3.17: Absolute bias in w0 (top) and wa (bottom) due to model bias in AB
and η0. The ellipse represents the marginalised 1-σ confidence region for the baryon
parameters, with the red dot marking the fiducial point (AB,fid = 3.13, η0,fid = 0.603).
The dashed lines mark the AB-η0 bias corresponding to the marginalised 1-σ errors for
w0 and wa.
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The AB-η0 regions in which the resulting bias to w0 and wa is within the 1-σ

marginalised error limits is given by{
|δw0|≤ σw0 , −0.563AB + 2.04 ≤ η0 ≤ −0.563AB + 2.69

|δwa|≤ σwa , −0.547AB + 2.11 ≤ η0 ≤ −0.547AB + 2.53 .
(3.37)

A significant proportion of the baryon 1-σ confidence region generates an accept-

able level of bias. However, positions in the parameter space that would generate

biases approaching 35% for w0, and even more severe effects for wa, remain within

the bounds of my forecasts.

Model bias is difficult to mitigate because it arises directly from subgrid limi-

tations. A solution likely requires external data on baryon phenomenology, so it

is beyond the scope of this work to do more than assess the potential impact of

the issue.

3.11 Summary

The work presented in this Chapter has built upon previous analytic modifications

of the halo model to account for the effect of baryonic astrophysical phenomena

on the distribution and power spectrum of matter. I have used the baryon-halo

model of M15 to incorporate the impact of adiabatic contraction on halo con-

centration, and the halo mass-dependent bloating effects of baryonic feedback

from e.g., AGN and supernovae. The model of M15 was chosen because it pro-

vides accurate fits for the power spectrum to within a few percent by calibrating

parameters to the COSMIC EMU (Heitmann et al., 2014) and OWLS (Schaye

et al., 2010) simulations. Other approaches (e.g., Semboloni et al., 2011; Mo-

hammed et al., 2014) focus on precisely modelling stellar, gas and dark matter

distributions. This underlying physics is ultimately of less interest than the broad,

empirically motivated corrections in M15 to the power spectrum. I have extended

the model by incorporating an inner halo core, rb, to account for small-scale struc-

ture. This was motivated by an array of baryonic feedback mechanisms, or the

condensation of ultra-light axions instead of CDM in the inner halo.
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I have examined the degradation that marginalising over the baryon parameters

(AB, η0, rb) has on constraints on the w0-wa dark energy parameter space forecast

for a Euclid-like Stage IV cosmological survey. This was done by studying the

impact that varying cosmological and baryon parameters has on P (k) and C` at

different scales, which informed my interpretation of a full Fisher analysis. The

baryon degradation to the errors on w0 and wa is ∼10% and ∼30% respectively.

However, as the FOM is quadratic in parameter uncertainty this translates to a

∼40% degradation in the capacity of a Stage IV survey to deliver accurate mea-

surements. Though I applied my methodology to a Euclid-like survey, it could

also be used for other next generation surveys like LSST.

This work has also highlighted that the effect of baryons is not limited to dark

energy, showing the severe degradations on forecasts for ns-σ8 errors as an ex-

ample. This illustrates the potential risk in making confident claims from these

surveys even for cosmological parameters which are otherwise well-constrained

from sources like the CMB.

I have shown that my framework can forecast constraints on baryons, marginalised

over the uncertainty remaining in cosmology. This could potentially provide use-

ful information for modelling baryons in simulations. Euclid-like surveys only

constrain AB and η0 at the 50% and 10% level respectively, with σAB = 0.866

and ση0 = 0.0476, although these improve significantly if the inner core is zero,

reducing to σAB ,cusp = 0.134 and ση0,cusp = 0.0148. The results presented here

imply that the inner cores themselves could be constrained to a few kpc. The

underlying modelling is unlikely to be robust on such scales but this remains an

interesting indicator of the capacity of such surveys to potentially forecast inner

cores in more sophisticated models. If this result were accurate it would have

important implications for the cusp-core debate as it would address the question

of cores arising from axion condensation on these scales.

The degradation found to dark energy forecasts is of a similar level to Mohammed

et al. (2014), who also demonstrate a ∼10% baryon impact on w0 constraints.

The model used here has more freedom to vary individual baryonic effects, and

has accurate power spectra fits to COSMIC EMU and OWLS. However, the con-

sistent results should be seen as an encouraging sign that the magnitude of the

baryonic impact on the w0-wa parameter space is well-understood. This should
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temper concerns from the far more pessimistic predictions of Zentner et al. (2013)

of 50% level degradations to w0 and wa. The larger impact could be attributed

to inaccuracies in the baryon modelling by not accounting for distinct distribu-

tions of heated gas and cold dark matter (as noted by Semboloni et al., 2013), and

calibrating to less accurate power spectra than have since become available (M15).

To inform a possible mitigation strategy I first explored the lensing scales on

which Fisher information is most sensitive to both cosmological and baryon ef-

fects. It was determined that the region of maximum sensitivity for dark energy

occurs at ` ∼ 100, i.e. on substantially larger scales than are typically assumed.

This is due to the competing effects of geometry and growth broadening the im-

pact of varying w0 and wa across a wide range of scales. It was illustrated that

raising `max has a limited improvement on the FOM and, in fact, suffers from an

increasingly worse relative degradation.

A small amount of external baryon information from simulations or observations

provided substantial improvements to the degradation on w0 errors. However,

the rate of improvement with information soon tails off so reaching a 1% degra-

dation threshold requires priors of the order of the baryon conditional errors

σb,prior = 0.82σb,con. This may prove challenging but as significant improvements

are still possible, I consider this motivation to acquire stronger observational data

for the influence of baryons on large-scale structure.

Constraints on dark energy greatly improved when including the strong cosmo-

logical priors offered by Planck CMB measurements. Particularly promising was

the result that degradation on the errors for one linear combination of w0 and

wa were almost completely removed. An important qualification is that due to

dark energy itself being poorly constrained by the CMB there is no relative im-

provement to the degradation on the cross-covariance between w0-wa. Therefore,

while the absolute improvements on the dark energy FOM are significant, the key

statistic for constraining the parameter space remains as afflicted by baryons.

Finally, model bias emerging from incorrect calibrations of baryon parameters

has been considered. I have calculated to first-order the bias that w0 and wa

would experience due to the true values for AB and η0 deviating from fiducial

values. Within the AB-η0 confidence ellipse there is a significant area correspond-
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ing to w0 and wa bias within 1-σ error forecasts. I consider this region to be

generally protected from inducing detrimental bias but close to half of the con-

fidence ellipse overlaps with areas of larger biases. It is important to quantify

these limitations, though it will ultimately require additional baryon information

or improved simulations to mitigate the concern.

In summary, by incorporating inner cores into the baryon-halo model of M15,

I have been able to encompass the full range of broad, empirically motivated

baryonic effects on haloes. The framework presented here allows for quick and

flexible predictions on both baryon and dark energy constraints. I anticipate

that baryons will have a substantial but not catastrophic effect on the capacity

of next generation surveys to constrain dark energy. Mitigation remains an issue.

My thorough examination of the complex interplay of cosmological, baryon and

dark energy effects on C` showed the limited value of enhancing the survey scope,

or redirecting observing power to more linear scales. A combination of external

baryon information and CMB priors offers significant improvements and reason

for optimism, but there is still work to be done before degradation could be made

negligible.



Chapter 4

Neutrino Mass Hierarchy

Forecasts In The Baryon-Halo

Model

The focus of this Chapter is an exploration of the capacity of Stage IV large scale

structure surveys to measure the neutrino mass sum and differentiate between the

normal and inverted neutrino mass hierarchies, when accounting for the impact

of nuisance parameters controlling small-scale baryonic astrophysics and intrinsic

alignments. The work presented here closely follows Copeland et al. (2019).

The basic framework outlined and discussed in Chapter 3 for capturing the im-

pact of baryonic feedback and adiabatic contraction on power spectra generated

from the halo model will also be applied here. Further modifications to non-linear

halo power that account for the effects of massive neutrinos will also be discussed.

The following Fisher analysis will be extended to galaxy clustering as well as the

weak lensing probe of Chapter 3. In the case of the former, intrinsic alignments

will be introduced to the lensing modelling and their impact as a major system-

atic assessed for the hierarchy forecasts. This work will therefore represent the

first combined weak lensing and galaxy clustering Fisher analysis with baryons,

intrinsic alignments, and massive neutrinos for both hierarchies.

The degradation from marginalising over baryonic effects to forecasts of the neu-

trino mass sum, Σ, will be assessed first for weak lensing probes. The prospects

for reducing this degradation by adding cosmic microwave background Planck

109
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priors will then be determined. Similarly, the improvements available from in-

cluding galaxy clustering constraints from Euclid and BOSS (Alam et al., 2017)

will be examined in detail. This analysis will be performed for both the nor-

mal and inverted hierarchies, with comparisons between the models and their

responses to marginalising over nuisance parameters and introducing priors will

be made throughout.

The forecasts combining these various probes and cosmological information sources

will provide a comprehensive basis for assessing the confidence level that Σ can

be expected to be measured by Stage IV surveys and whether a meaningful dis-

tinction between hierarchies is a realistic prospect. Potential improvements from

future independent information sources, such as neutrinoless double beta decay

will also be quantified.

The effect of intrinsic alignments (IA) on forecasts will be assessed with spe-

cific emphasis placed on the impact on forecasts when including IA in the weak

lensing power spectrum. This is a separate issue from the important matter of

bias in the predicted measured parameter values. However, model bias will also

be investigated thoroughly in the context of miscalibrations of the baryon param-

eters from simulations, alongside intrinsic alignment bias.

The layout of this Chapter is as follows. In § 4.1, an introduction to the current

state of neutrino mass sum forecasts is provided. In § 4.2 I outline the neutrino

and baryon modifications to the halo model. The formalism of intrinsic align-

ments, and the model choices made for their implementation in this work, are

discussed in § 4.3. The application of the Fisher formalism for galaxy clustering

will be detailed in § 4.4. Results for the mass constraints on the normal and

inverted hierarchies are presented in § 4.5. This will include an analysis of the

degradation due to baryons and intrinsic alignments, and an exploration of the

information gains available from combining weak lensing and galaxy clustering

for a Euclid-like survey with priors from BOSS (Alam et al., 2017) and Planck.

The significance of model bias will be assessed in § 4.6, with concluding points

and a summary provided in § 4.7.
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4.1 Introduction to neutrino mass sum forecasts

Flavour oscillations measured in solar, atmospheric, reactor and accelerator ex-

periments have constrained the mass-squared differences, ∆m2
12 and |∆m2

23|, for

the three neutrino mass eigenstates but cannot determine the absolute masses

(e.g., Maltoni et al., 2004; Fogli et al., 2006). The sign of the largest splitting de-

fines two possible orderings, known as the normal (NH, ∆m2
23 > 0) and inverted

(IH, ∆m2
23 < 0) hierarchies. Lower bounds on the sum of the masses for each

hierarchy, ΣNH & 0.06 eV and ΣIH & 0.1 eV, can be arrived at numerically from

the oscillation constraints (Lesgourgues and Pastor, 2006). Cosmology has been

providing increasingly tight upper bounds. Data from the Lyman-α forest in com-

bination with Planck Collaboration et al. (2016b) cosmic microwave background

(CMB) constraints (Palanque-Delabrouille et al., 2015; Yèche et al., 2017) and

the more recent Planck Collaboration et al. (2018) analysis of CMB and baryon

acoustic oscillation (BAO) data both find Σ . 0.12 eV (95% confidence level).

Though this starts to confront the limits of the IH, it remains an open question

as to whether future cosmological data will be able to distinguish between the

hierarchies by constraining the mass sum. The degeneracy between hierarchies

is partially broken by different sets of free-streaming scales associated with the

mass eigenstates, but these differences are sufficiently small for a fixed mass sum

that there is no realistic prospect of achieving a detection in the near future (Hall

and Challinor, 2012).

Forthcoming Stage IV surveys, such as Euclid (Laureijs et al., 2011) and LSST

(LSST Science Collaboration et al., 2009), are aiming to achieve Σ errors small

enough to determine the hierarchy by using tomographic weak lensing and spec-

troscopic galaxy clustering. The formalism underpinning these probes has been

discussed in previous Chapters. Understanding how galaxies trace the underly-

ing matter distribution through clustering measurements provides a repository of

information on the properties of the Universe (Hauser and Peebles, 1973; Davis

and Peebles, 1983) that adds to that from weak lensing.

These probes are expected to observe the imprint of neutrinos through their

suppression of matter clustering. Neutrinos are very light and so have large

free-streaming lengths. For scales below these they do not cluster. For a fixed

total matter density, this results in matter perturbations being slightly smoothed.
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However, the cumulative effect on the matter power spectrum, P (k), by z = 0 is a

decrease on linear scales by a factor, ∼ 1−8fν , in linear theory, where fν ≡ Ων/Ωm

is the ratio of the neutrino and total matter density parameters (Hu et al., 1998).

On non-linear scales, neutrinos are modelled through perturbative methods (e.g.,

Pietroni, 2008; Lesgourgues et al., 2009; Levi and Vlah, 2016) or accounted for

in simulations. Generally, the most accurate approaches for the latter have im-

plemented neutrinos as separate low-mass collisionless particle species alongside

cold dark matter to fully capture their non-linear evolution (e.g. Bird et al., 2012;

Massara et al., 2014; Liu et al., 2018). These indicate that the effect of neutrino

suppression on haloes depends on their mass, leading to a greater power reduction

than linear theory on intermediate scales of k ∼ 1hMpc−1 where larger haloes

are significant. On deeper non-linear scales where smaller haloes predominate,

the power, while suppressed overall, is boosted relative to the linear prediction.

Depending on the choice of probes, methodology and underlying model, 1-σ errors

on the neutrino mass have been forecast broadly within the range 0.02− 0.04 eV

for Euclid-like surveys (e.g., Carbone et al., 2011; Audren et al., 2013; Boyle

and Komatsu, 2018). A major systematic neglected in these forecasts is the

redistributing of matter on halo scales by baryonic astrophysics. The previous

Chapter discussed, at length, the impact of baryons on the matter distribution

from a range of effects (e.g., adiabatic contraction and AGN and supernova feed-

back) across a range of scales. Overall, P (k) experiences a ∼30% suppression in

the mildly non-linear regime, which gives way to a net increase of power through

adiabatic contraction on deeply non-linear scales of k ∼ 10hMpc−1 (e.g., Sem-

boloni et al., 2011). As neutrinos and baryons both suppress matter power on

weakly non-linear scales it is possible that a partial degeneracy exists between the

two effects. It is therefore necessary to simultaneously constrain them both. Such

degeneracies could potentially be broken by the scale-dependence of the baryonic

effect and the redshift-dependence of neutrino suppression.

Marginalising over the uncertainty in baryon processes can significantly impact

parameter forecasts. Significant biases in neutrino mass measurements were found

by Natarajan et al. (2014) when failing to account for baryons, using simple argu-

ments to model both components in P (k), although the impact of marginalising

over baryon parameters was not explored. More recently, Parimbelli et al. (2018)

found that the neutrino mass is unlikely to be significantly biased by degen-
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eracies with baryons, based on a Markov Chain Monte Carlo (MCMC) method

using weak lensing and galaxy clustering that is limited by excluding freedom in

the cosmological parameters. This work explores similar territory but addresses

different key questions. I am primarily interested in the degradations to error

forecasts from marginalising over baryonic effects, although the separate issue

of bias in the neutrino mass itself is examined in the context of miscalibrations

in baryon modelling. The specific focus in this Chapter is how degradation im-

pacts the capacity to measure ΣNH and ΣIH, and whether it will be feasible to

distinguish between the mass hierarchies. To do this a Fisher analysis of the full

range of cosmological parameters probed by Euclid-like weak lensing and galaxy

clustering surveys will be performed.

The weak lensing analysis, addresses one further source of uncertainty than in the

preceding Chapter. On large scales, gravitational fields cause tidal distortions in

galaxies, which contribute to correlations between the intrinsic ellipticities and

gravitational shear of galaxies. Failing to account for these intrinsic alignments

can significantly bias lensing parameter estimates (Joachimi et al., 2011; Troxel

and Ishak, 2015).

This work is the first to combine baryons, IA and massive neutrinos in a self-

consistent Fisher framework in the context of distinguishing the NH and IH in

Stage IV surveys. By applying this framework to weak lensing, spectroscopic

galaxy clustering and CMB probes, this Chapter presents a uniquely comprehen-

sive analysis of the current prospects for determining the hierarchy.

4.2 Modelling neutrino effects

I employ analytic modifications of the halo model to capture the effects of neu-

trinos and baryons on P (k) and the weak lensing convergence power spectrum,

C`. The Mead et al. (2015) halo model, HMCODE, is again used for its empiri-

cally driven baryon prescription of calibrating internal halo structure relations to

match OWLS. The preceding Chapter provides a comprehensive discussion of the

implementation of baryons in this halo model, which the reader is encouraged to

refer to place this work in its proper context. Mead et al. (2016) (hereafter M16)
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Figure 4.1: Response of the halo mass function at z = 0 to the neutrino mass sum
for the normal hierarchy, with the horizontal blue line corresponding to the fiducial
case using the minimal NH neutrino mass sum, ΣNH,min = 0.06 eV and increasingly
red curves corresponding to Σ in the range ΣNH,min < ΣNH ≤ 1.1 ΣNH,min. Top panel:
the mass function is sensitive to the mass sum through σ (M), which in turn depends
on Σ through the linear matter power spectrum. There is no dependence of δc on Σ
impacting the response. Bottom panel: the mass function depends on Σ through σ (M)
and δc, the latter being sensitive to fν via equation (4.1).
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extend their model to account for non-linear neutrino influences by modifying

the parameters governing spherical collapse, as this will be directly impacted by

the reduction in matter clustering. Fitting to the simulations of Massara et al.

(2014) reproduces P (k) to within a few percent up to k = 10hMpc−1 for multiple

redshifts. This is a slightly better performance than the fitting formula provided

by Bird et al. (2012). The CAMB Boltzmann code (Lewis et al., 2000) is used to

generate linear P (k) for the NH and IH.

Massive neutrinos impact the matter distribution primarily by damping matter

perturbations as they free-stream through structure. For fixed Ωm
1, the suppres-

sion of matter clustering is well-approximated as depending only on fν . This

affects the spherical collapse overdensity, δc, and the virial density, ∆v, which are

characteristic descriptors of halo structure. The former affects the shape of the

mass function and determines the halo concentration by defining the formation

redshift at which a certain fraction of mass has undergone spherical collapse. The

latter defines limits on the density profile. By introducing a linear correction in

terms of fν , such that

δc ∝ 1 + 0.262fν (4.1)

and

∆v ∝ 1 + 0.916fν , (4.2)

M16 achieve a percent-level fit to N-body massive neutrino and CDM simulations

by Massara et al. (2014) up to k = 10hMpc−1. These relations can be interpreted

as the damping of matter fluctuations due to neutrino free-streaming resulting in

a smaller fraction of perturbations collapsing by a given redshift, equivalent to

raising the density threshold for collapse. Potential improvements could be at-

tained by implementing more sophisticated methods by Ichiki and Takada (2012)

or LoVerde (2014) in which, for example, non-linear neutrino clustering effects

are considered. However, the M16 fit is sufficiently accurate for my purposes and

permits one to use fν as a free parameter in fast power spectrum calculations for

forecasts. In practice, the mass sum, Σ, is treated as the actual free parameter,

via the relation,

fν =
Ων

Ωm

' Σ

94.1 Ωmh2 eV
. (4.3)

1I define the total matter density parameter, Ωm = Ωc+Ωb+Ων , as the sum of contributions
from cold dark matter, baryons and neutrinos.
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The Massara et al. (2014) simulations are designed to test the halo model with

neutrinos, specifically by providing accurate halo power spectrum responses to

different neutrino masses. This makes the M16 fits to these simulations par-

ticularly relevant for the purposes of this Chapter, in which an accurate power

spectrum is less important than the sensitivity of the power spectrum to changes

in cosmology for making forecasts. Other implementations of neutrinos in the

halo model (e.g., Takahashi et al., 2012; Bird et al., 2012) generate slightly dif-

ferent non-linear responses in the power spectrum. It should be noted that none

of these treatments is entirely robust, being subject to the limited accuracy of

the underlying halo model fit on non-linear scales and the challenge of properly

accounting for neutrino non-linear clustering effects. There may be future scope

to improve on these approaches by extending the methodology of Mead (2017)

and Cataneo et al. (2018), who demonstrate the increased accuracy on non-linear

scales available to the halo model by incorporating spherical collapse and growth

results into power spectrum responses.

In Figure 4.1 I show the impact of varying Σ on the halo mass function with

and without the modification to δc in equation (4.1). Neutrinos have a very small

impact on the matter distribution on non-linear scales so I have illustrated it

through the ratios of the mass function to the case with the minimal NH neu-

trino mass sum, ΣNH,min = 0.06 eV.

Considering first the case with δc unmodified, I find that for fixed Ωm and σ8,

increasing the neutrino mass increases the mass function for high halo masses in

the top panel of Figure 4.1. This reflects the fact that the suppression of power on

small scales from neutrino free streaming requires that linear power is boosted on

large scales to keep σ8 fixed. As a result, the variance of the matter distribution

is increased for the corresponding large mass scales. This is the regime where

σ (M) is smallest, and hence where ν is largest. At these scales the mass function

is dominated by an exponential tail, as shown in equation (2.23). This leads to

small changes in ν, from varying Σ, generating large changes in n (M).

The non-linear regime begins on smaller mass scales where the clustering is

damped by higher Σ, reducing the probability of matter fluctuations being dense

enough to collapse and contribute to n (M). Equation (2.23) is normalised to

the mean density, so in order to satisfy the condition that integrating the mass



4.3. INTRINSIC ALIGNMENTS 117

function over all scales returns ρ̄, massive neutrinos amplify n (M) for very small

M . However, these are highly non-linear scales that are inaccessible to Stage IV

surveys and so are of limited interest. The higher threshold for collapse in equa-

tion (4.1) suppresses the number density of high-mass haloes. This will propagate

into a reduction of matter power on the weakly non-linear scales corresponding

to such objects. The suppression of clustering due to Σ increases by a factor of

∼ 5 with this change to δc, although it should be emphasised that the overall

effect of massive neutrinos on the mass function remains very small.

The impact of massive neutrinos on the density profile has a less significant (but

still non-trivial) contribution to the matter power spectrum compared to changes

in the mass function. The collapse overdensity partially controls the formation

redshift determining the concentration relation in equation (3.3). At late times,

regions are more likely to collapse due to the amplitude of matter fluctuations

being greater. Increasing δc makes halo formation rarer, favouring later times

over earlier times, and therefore lowering zf . The resulting reduction in halo

concentration translates to an increased scale radius for fixed rv. Consequently,

for a fixed halo mass, the density is suppressed on small scales, with a milder

boost on large scales. However, when the reduction of rv through increasing ∆v

via Σ is also accounted for, this picture is complicated. If this effect is considered

in isolation, for fixed mass and concentration, the density on small scales must

increase to reflect the fact that haloes are smaller when meeting the increased

density threshold for virialisation. Interestingly, when the sensitivity to both δc

and ∆v is included, the two contributions mostly cancel, leaving the halo density

profile with minimal sensitivity to the neutrino mass on small scales. The relative

insensitivity of the density profile, and more importantly the mass function, high-

lights, at the outset, the challenges of using the non-linear regime to constrain

Σ.

4.3 Intrinsic alignments

In previous Chapters the formalism of gravitational lensing has been discussed

and how the Fisher formalism is applied to that probe. In this Chapter, the weak

lensing treatment is extended to include intrinsic alignments. This section pro-



118CHAPTER 4. NEUTRINO FORECASTS IN THE BARYON-HALOMODEL

vides a brief discussion of the background formalism and the choice of alignment

model that is made when incorporating IA into the weak lensing convergence

power spectrum. Although the observable is modified, the Fisher formalism itself

used for weak lensing is the same as presented in Chapter 3.

The tidal forces that correlate ellipticities, ε, and shears, γ, are an intrinsic

contribution to the observed signal. Accounting for this to linear order by writing

the observed ellipticity as ε = γ + εI , the weak lensing power spectrum becomes

C`,ij = Cγγ
`,ij + CIγ

`,ij + CII
`,ij, (4.4)

where Cγγ
`,ij is given by equation (2.3) and the term, CIγ

`,ij, encompasses correlations

of foreground ellipticities with background shear and of foreground shear with

background ellipticities. The latter correlations should be very small under the

assumption that redshift bins do not overlap. The IA-shear and IA-IA terms are

given by

CIγ
`,ij =

3

2
Ωm

(
H0

c

)2 ∫ χmax

0

dχ
gi (χ)nj (χ) + gj (χ)ni (χ)

a (χ)χ

×PmI
(
k =

`

fK (χ)
, χ

)
, (4.5)

and

CII
`,ij =

∫ χmax

0

dχ
ni (χ)nj (χ)

χ2
PII

(
k =

`

fK (χ)
, χ

)
, (4.6)

where

PmI (k, χ) = −aIA
cIAρcritΩm

D (z (χ))
Pm (k, χ) (4.7)

and

PII (k, χ) =

(
aIA

cIAρcritΩm

D (z (χ))

)2

Pm (k, χ) (4.8)

are the matter-IA and IA-IA source power spectra in the non-linear alignment

model (Bridle and King, 2007) and D (z) is the linear growth factor. The ampli-

tude, aIA, can be taken as a free parameter with a fiducial value of unity, while fits

to SuperCOSMOS galaxy data determine the normalisation, cIA ≈ 0.0134/ρcrit,

in terms of the critical density (Brown et al., 2002; Hirata and Seljak, 2004).

In Figure 4.2 I show comparisons of the shear-shear, IA-shear and IA-IA auto-

and cross- lensing power spectra for several combinations of redshift bins. The
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Figure 4.2: Auto- and cross- lensing power spectra in the 00, 44 and 99 redshift bins:
0 < z ≤ 0.41, 0.79 < z ≤ 0.89, 1.52 ≤ z ≤ 2.0. Blue: shear-shear power spectrum;
orange: absolute value of the IA-shear power spectrum; green: IA-IA power spectrum;
red: total power spectrum.
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IA-IA contributions to the signal are most significant for low redshift auto-power

spectra, while the IA-shear term has its greatest impact on cross-power spectra of

widely separated bins because it describes the correlations of foreground galaxy

ellipticities with background shear.

4.4 Fisher formalism for galaxy clustering

The Fisher formalism in the context of weak lensing has been explored thoroughly

in the preceding Chapter. However, for galaxy clustering there are some further

substantial complexities and nuances to address, particularly pertaining to the

treatment of nuisance parameters and projections between different parameter

sets. Here a brief overview is provided.

The Fisher matrix for galaxy clustering (Seo and Eisenstein, 2003),

Fαβ =
1

8π2

Nz,GC∑
i=1

∫ 1

−1

dµ

∫ kmax

kmin

k2 dk

× ∂ lnPgg (k, µ; zi)

∂θα
Veff (k, µ; zi)

∂ lnPgg (k, µ; zi)

∂θβ
, (4.9)

is computed by integrating over the angular and radial contributions of the log-

arithmic galaxy power derivatives across Nz,GC redshift bins. In this respect the

Fisher calculation is more straightforward than for weak lensing. For galaxy

clustering a reasonable assumption can be made that cross-correlations between

redshift bins will have a limited impact on the results, so they can be safely

neglected. This allows information across the range of redshift bins to be accu-

mulated through a simple summation of contributions. In principle, this make it

easier to disentangle important features in the results compared to weak lensing

which must account for covariance between bins.

An upper bound of kmax = 0.2h−1Mpc is chosen for the calculation in order

to restrict the GC forecasts made in this Chapter to linear scales. It is beyond

the scope of this work to address the impact of non-linear systematics like Finger-

of-God effects. The choice of lower bound has very limited bearing on results so
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I use the common value, kmin = 0.001h−1Mpc. The effective volume,

Veff (k, µ; zi) = Vsurvey

[
1

Pgg (k, µ; zi) + 1
n(z)

]2

. (4.10)

encodes the covariances and is calculated from the survey volume, Vs, and the

number density, n (z), of Hα-emitters, for which Euclid survey values provided

by the reference case in Table 3 of Amendola et al. (2018) are used.

Note that all scales and angles refer to the ‘fiducial’ case, although this label

has been dropped for convenience. Free parameters governing the AP effect,

growth, bias and residual shot noise within each redshift bin independently,

{DA (zi) , H (zi) , fσ8 (zi) , bσ8 (zi) , Pshot (zi) |i = 1, ..., Nz,GC}, can then be propa-

gated in a Fisher analysis alongside redshift-independent parameters,

{ωm, ωb, ων , h, ns}, controlling the shape of P (k). The physical densities are re-

lated to the original density parameters via {ωi = Ωi h
2|i = m, b, ν}. I marginalise

over the nuisance parameters, {bσ8 (zi) , Pshot (zi) |i = 1, ..., Nz,GC}, by inverting

the Fisher matrix, removing rows and columns corresponding to these param-

eters, and then inverting the remaining sub-block. This follows a prescription

first detailed by Seo and Eisenstein (2003). The resulting Fisher matrix, F̃ ,

treats {DA (zi) , H (zi) , fσ8 (zi) |i = 1, ..., Nz,GC} as free parameters contributing

information alongside {ωm, ωb, ων , h, ns}. Collecting all these parameters into

the set, Θ̃, a final Fisher matrix is derived for the wCDM parameter set, Θ =

{Ωm,Ωb,Ων , h, ns, σ8, w}, by performing the transformation,

F = JT F̃ J, (4.11)

where J = ∂Θ̃/∂Θ is the Jacobian matrix of parameter derivatives. Note that

because Θ̃ is evaluated in the wCDM model it can be completely determined by Θ.

I make the decision to evaluate the Fisher information available to a Euclid-

like spectroscopic galaxy survey in the redshift range 0.75 < z ≤ 2.05, with

bin width ∆z = 0.1. For lower redshifts I refer to BOSS as it provides su-

perior information at these z than Euclid-like surveys are designed to achieve.

This entails using covariance information provided by Alam et al. (2017) on

{DA (zi) , H (zi) , fσ8 (zi)}, where the i label runs over three partially overlap-
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Figure 4.3: The ratio of matter power spectra at z = 0 using NH for different itera-
tions of parameters in Θ = (AB, η0,Ωm,Ωb,ΣNH, h, σ8, ns, w), with respect to a fiducial
power spectrum computed with parameter values found by Planck Collaboration et al.
(2016b). Bluer (redder) curves correspond to lower (higher) values for parameters in
the range 0.9 Θfid ≤ Θ ≤ 1.1 Θfid, except in the case of the neutrino mass parameter,
which varies between ΣNH,min ≤ ΣNH ≤ 1.1 ΣNH,min with purple curves representing
the minimal mass case, ΣNH,min = 0.06 eV. Chapter 3 showed similar ∆2 (k) response
plots but did not include massive neutrinos.

ping redshift bins, spanning the total range 0.2 < z ≤ 0.75. A matrix inversion

is performed to derive the corresponding Fisher information matrix. The BOSS

bins overlap with the full z range available to the Euclid-like survey, so to ensure

that covariance between the surveys is limited I only use redshift bins for the lat-

ter that lie beyond the range of BOSS. The final galaxy clustering Fisher matrix

is then evaluated from the combination of Euclid-like high z forecasts and BOSS

low z data.
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Figure 4.4: Lensing power spectrum responses using the NH in the ij = 44 redshift bin
0.79 ≤ z ≤ 0.89. Blue (red) lines correspond to the lowest (highest) parameter values for
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1.1 ΣNH,min with purple curves representing the minimal mass case, ΣNH,min = 0.06 eV.
Chapter 3 showed similar C` response plots but did not include massive neutrinos.
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4.5 Neutrino Mass Forecasts

Fisher matrices are constructed for the final parameter set,

(AB, η0,Ωm,Ωb,Σ, h, ns, σ8, w, aIA), for Euclid-like weak lensing and spectroscopic

galaxy surveys. The primary goals of this work are to assess the impacts of IA

(a phenomenon exclusive to weak lensing) and baryonic effects on neutrino mass

forecasts. As the influence of baryons degrades information significantly on scales

k > 1hMpc−1 this effect is of far greater concern to weak lensing forecasts than

those from galaxy clustering. Hence, the analysis here takes the approach of first

discussing weak lensing results and the extent of their degradation due to baryons

and IA. Information from Planck and galaxy clustering is then added to form a

more complete picture of the prospects of a Euclid-like survey to measure the

neutrino mass with sufficient accuracy to distinguish the hierarchies.

4.5.1 Normal and inverted hierarchy results from weak

lensing

In Table 3.2, I state the weak lensing survey parameters specified by the Euclid

survey report (Laureijs et al., 2011). Nz,WL = 10 redshift bins are chosen in the

range 0 ≤ z ≤ 2 such that each bin contains an equal number density of galaxies.

A large range of scales from `min = 10 to `max = 5000 are covered so in practice

I compute the summation in equation (3.23) at logarithmic intervals. I include

full confidence ellipse plots for the NH in Figure 4.6.

The fiducial values of the cosmological parameters in this work are again given

by the base ΛCDM Planck TT,TE,EE+lowP likelihood in Planck Collaboration

et al. (2016b), summarised in Table 3.1. The Euclid-like weak lensing survey

parameters have been given in Table 3.2

This Chapter applies the same philosophy as the preceding one of gaining in-

tuition into Fisher forecasts by examining the response of the power spectra to

varying parameters across relevant scales. This diagnostic can quickly indicate

which scales most Fisher information comes from or is potentially lost due to de-

generate power spectrum responses between parameters. In Figures 4.3 and 4.4 I

show, for the normal hierarchy, responses of ∆2 (k) at z = 0 and C` respectively

to varying each parameter with respect to its fiducial value while fixing the other



126CHAPTER 4. NEUTRINO FORECASTS IN THE BARYON-HALOMODEL

3.0 3.5

0.59

0.61

η 0

3.0 3.5

0.310

0.315

0.320

Ω
m

3.0 3.5

0.04

0.05

0.06

Ω
b

3.0 3.5

0.0

0.2

Σ
/e
V

3.0 3.5

0.6

0.8

h

3.0 3.5

0.825

0.830

0.835

σ
8

3.0 3.5

0.9

1.0

1.1

n
s

3.0 3.5

−1.05

−1.00

−0.95

w

2.9 3.2 3.5
AB

0.99

1.00

1.01

a
IA

0.60 0.62

0.310

0.315

0.320

0.60 0.62

0.04

0.05

0.06

0.60 0.62

0.0

0.2

0.60 0.62

0.6

0.8

0.60 0.62

0.825

0.830

0.835

0.60 0.62

0.8

0.9

1.0

1.1

0.60 0.62

−1.05

−1.00

−0.95

0.59 0.61
η0

0.99

1.00

1.01

0.310 0.315 0.320

0.04

0.05

0.06

0.310 0.315 0.320

0.0

0.2

0.310 0.315 0.320

0.6

0.8

0.310 0.315 0.320

0.825

0.830

0.835

0.310 0.315 0.320

0.8

0.9

1.0

1.1

0.310 0.315 0.320

−1.05

−1.00

−0.95

0.310 0.315 0.320
Ωm

0.99

1.00

1.01

0.04 0.05 0.06

0.0

0.2

0.04 0.05 0.06

0.6

0.8

0.04 0.05 0.06

0.825

0.830

0.835

0.04 0.05 0.06

0.8

0.9

1.0

1.1

0.04 0.05 0.06

−1.05

−1.00

−0.95

0.04 0.05 0.06
Ωb

0.99

1.00

1.01

0.0 0.2

0.6

0.8

0.0 0.2

0.825

0.830

0.835

0.0 0.2

0.8

0.9

1.0

1.1

0.0 0.2

−1.05

−1.00

−0.95

0.0 0.2
Σ/eV

0.99

1.00

1.01

0.6 0.8

0.825

0.830

0.835

0.6 0.8

0.8

0.9

1.0

1.1

0.6 0.8

−1.05

−1.00

−0.95

0.6 0.8
h

0.99

1.00

1.01

0.825 0.830 0.835

0.8

0.9

1.0

1.1

0.825 0.830 0.835

−1.05

−1.00

−0.95

0.825 0.830 0.835
σ8

0.99

1.00

1.01

0.8 0.9 1.0 1.1

−1.05

−1.00

−0.95

0.9 1.0 1.1
ns

0.99

1.00

1.01

−1.05−1.00−0.95
w

0.99

1.00

1.01

Figure 4.6: 1-σ 2-parameter confidence ellipses for the normal hierarchy with all
parameters in Θ = (AB, η0,Ωm,Ωb,ΣNH, h, σ8, ns, w, aIA) marginalised over (purple);
and with the baryon parameters, AB and η0, fixed to their fiducial values (dark green).
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parameters. In § 4.5.2 the responses to the baryon parameters are discussed in

detail.

∆2 (k) responses to most parameters exhibit nodes at the scale corresponding

to σ8, at which I normalise power. For example, the response to Σ is an en-

hancement of power on linear scales in order to satisfy power being damped in

the non-linear regime due to free streaming. The impact of neutrinos on these

scales is small, determined by the limited sensitivity of the mass function and the

halo structure parameters, δc and ∆v, to Σ (discussed in detail in § 4.2). Most

of the C` responses reflect the corresponding ∆2 (k) responses, when accounting

for redshift-dependent effects along the line of sight. However, parameters that

affect the lensing weight function through their impact on cosmological distances

can exhibit significantly different ∆2 (k) and C` responses. For example, the com-

peting influences of geometry and growth are apparent in the w responses, which

is examined in depth in Chapter 3.

I compare the Σ responses for ∆2 (k) and C` for the NH and IH directly in

Figure 4.5. ΣIH,min = 0.1 eV is less than double ΣNH,min = 0.06 eV but the IH

exhibits power responses that are more than twice as large as the NH responses.

The leading order cause of this is likely a dependence of power on Σ that grows

with the mass sum from a quadratic minimum which is reached when Σ ap-

proaches zero.

An additional effect to account for is the influence of the neutrino free-streaming

scale, kfs, which increases with mass. There are different kfs for each mass eigen-

state in a hierarchy but, within the approximation of the NH as

{m1 ≈ m2 ≈ 0 eV,m3 ≈ 0.06 eV} and the IH as {m1 ≈ m2 ≈ 0.05 eV,m3 ≈ 0 eV},
the most relevant free-streaming scales satisfy kfs,IH < kfs,NH. Fixing σ8 means

that, for increases in Σ, large-scale power is enhanced relative to the fiducial case

to satisfy the suppression of power by neutrinos on small scales. There is a sim-

ilar contribution from the peak of P (k) shifting with a decrease in the redshift

of matter-radiation equality, which depends on Ωc (which decreases to keep Ωm

constant for increasing Σ) due to the relativistic nature of neutrinos during this

epoch. As the effect of free-streaming neutrinos arises at smaller k for the IH, the

relative enhancement of the large-scale IH power is greater than for the NH. Sim-

ilarly, the responses for the IH are more sensitive to the same fractional change
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in Σ compared to the NH, which I see reflected in Figure 4.5.

When propagating ∆2 (k) into C`, the lowest ` for a Euclid-like survey correspond

to k where the matter power response is weak. As a result, the strongest linear

responses for C` in Figure 4.5 are several factors smaller than for ∆2 (k). Other

parameter responses generally experience significantly more modest changes from

one probe to another. It should be noted that the background geometry is not

sensitive to increasing Σ when neutrinos are non-relativistic; the angular distances

entering equation (2.3) depend on Ωm, which is kept constant.

A consequence of the weak lensing probe only being sensitive in the linear regime

to scales where the neutrino response is most limited is that the magnitude of

the C` response is similar between the linear and non-linear regimes. The re-

sponse for the latter is due mainly to the modest increases in δc and ∆v. This

highlights the importance of pursuing robust physical modelling for neutrino ef-

fects on structure at these scales because they are as sensitive to Σ as linear scales.

Weak lensing forecasts of Σ are particularly challenging due to this limited sensi-

tivity and the degeneracies apparent between Σ and a range of other parameters

on non-linear scales. A well-known example is the degeneracy with σ8, in which

both exhibit a ‘spoon’-shaped response (see e.g., Massara et al., 2014). An in-

crease in Σ most strongly affects high mass haloes, which dominate over small

mass haloes on intermediate scales. Figure 4.1 shows that in this region higher

Σ reduces the linear clustering of matter, and therefore the number of high mass

haloes that can form, lowering the halo mass function and hence the non-linear

matter power. Raising the collapse and virialisation density thresholds with Σ

deepens the resulting dip in the power response and shifts it to larger scales as-

sociated with higher masses. At higher k the impact of Σ is somewhat decreased

and becomes less scale-dependent.

The bump in the σ8 response is qualitatively similar. By altering the cluster-

ing amplitude, a halo mass-dependent and hence scale-dependent power response

is induced through the change in the peak height, ν = δc/σ (M, z), a quantity

that is also sensitive to Σ. The response becomes roughly scale-independent on

smaller scales. This is similar to the Σ response but with the opposite sign, en-

hancing rather than suppressing power. As most information comes from small
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scales this degeneracy is significant.

In Figure 4.7 the contribution per ln ` to the Fisher matrix for the mass sum

is shown for the NH and IH. This effectively weights the Fisher information by

the signal-to-noise in each ` mode, which increases with `. The greater number

of independent modes in the non-linear regime, and consequently lower noise,

results in most of the available information being drawn from these scales. The

greater sensitivity of information at high ` highlights the limitations on achieving

strong constraints, given the limited neutrino influence on non-linear power. The

IH contributes almost twice as much information as the NH at the peak sensitivity.

The main difference between the hierarchies in their information contribution

is from different logarithmic derivatives of C`. These are partially predicted by

the power responses. On non-linear scales the C` response for the IH is larger

than double the NH for the same fractional change in Σ. As ΣIH,min = 0.1 eV is
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Figure 4.8: 1-σ w-Σ confidence ellipses for the normal (left; Σfid = 0.06 eV) and
inverted hierarchy (right; Σfid = 0.1 eV) for a Euclid-like weak lensing survey with all
parameters in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w, aIA) marginalised over (purple); and
with the baryon parameters, AB and η0, fixed to their fiducial values (dark green).
Planck CMB priors are included for the magenta (light green) ellipses with (without)
baryon marginalisation.

σWL/eV σWL/eV RB,WL σWL+CMB/eV σWL+CMB/eV RB,WL+CMB

(ex bar.) (inc. bar.) (ex bar.) (inc. bar.)
ΣNH 0.079 0.156 1.97 0.036 0.044 1.21
ΣIH 0.120 0.204 1.70 0.033 0.042 1.28

Table 4.1: 1-σ error forecasts for a Euclid-like survey of the neutrino mass sum in the
normal and inverted hierarchies, without and including marginalisation over baryon
parameters and the addition of priors on the ΛCDM cosmological parameters from
Planck CMB measurements. I also include the response factors, RB, to including
baryon marginalisation.

less than double ΣNH,min = 0.06 eV, this leads to ∂ lnC`/∂ΣIH being sufficiently

larger than ∂ lnC`/∂ΣNH that the Fisher sensitivity, which depends quadratically

on the logarithmic derivative, is up to twice as large.

Figure 4.8 shows NH and IH confidence ellipses for w-Σ for a Euclid-like

weak lensing survey. It is not expected that Σ can be well constrained from WL

alone, but I am interested in using it as a baseline probe, through which I can

examine both the impact of systematics like baryons and IA and the improve-

ments available from adding CMB and galaxy clustering information. Before

marginalising over baryons, WL errors of σΣNH
= 0.079 eV and σΣIH

= 0.120 eV

(see by Table 5.1) are found. These are larger than the threshold, |∆Σmin|=
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|ΣNH,min − ΣIH,min|= 0.04 eV, below which hierarchies can be distinguished, and

are indeed too large to permit any positive detection of neutrinos.

The latter issue can be alleviated by adding priors on cosmology from sources

like galaxy clustering or the early Universe. I focus here on the latter through

Planck CMB anisotropy measurements, while impact of galaxy clustering is dis-

cussed in detail in S 4.5.4. The CMB provides a wealth of information on the

matter energy-density and the geometry of the Universe, which is one of the main

contributions to LSS signals. I use the publicly available MCMC chains for the

base νΛCDM combined TT, TE and EE power spectra (see Planck Collabora-

tion et al., 2016b) to construct a covariance matrix which is inverted into a Fisher

matrix, FCMB, that encapsulates the information available from the CMB.

As can be seen in Figure 4.8 there is a substantial improvement to Σ fore-

casts for the NH and IH, with errors reduced below the distinction threshold

to σΣNH
= 0.036 eV and σΣIH

= 0.033 eV. This is partly a result of parameter

degeneracies being broken, for example the CMB provides strong constraints on

σ8 which propagate through to my final Σ forecasts. It should be noted that this

requires CMB experiments to accurately measure the reionisation optical depth,

τ , as it is degenerate with the primordial power amplitude. I marginalise over τ ,

along with a range of other parameters, when constructing FCMB. Cosmological

neutrino measurements stand to benefit significantly from future 21 cm experi-

ments that will probe the reionisation epoch with high precision (Allison et al.,

2015; Liu et al., 2016). However, this work does not extend to examine this in

detail.

The CMB prior provides a significant contribution to the forecasts by breaking

parameter degeneracies and, as it is the same for both hierarchies, it leads to less

difference between the NH and IH for the WL+CMB forecasts. This is reflected

in the weaker WL constraint, σΣIH
, which improves by 72%, benefiting signifi-

cantly more than σΣNH
, which improves by 54% (see Table 5.1). My results are

comparable to findings from Audren et al. (2013) who use an MCMC approach to

explore the degenerate hierarchy case. However, even these improvements would

only achieve a close to 2σ detection of Σ in the case of the NH (although the

IH case fares better with a 3σ detection) and a roughly 1σ determination of the

hierarchy.
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4.5.2 Impact of baryons

When the baryon systematic is accounted for, the prospects of using weak lens-

ing to accurately distinguish hierarchies recede. Figures 4.3 and 4.4 include the

∆2 (k) and C` responses to the adiabatic contraction parameter, AB, and the

baryonic feedback parameter, η0. The preceding Chapter discusses these in de-

tail but they are briefly highlighted again here. The boost to non-linear power

from increasing AB is a reflection of the enhanced halo density profiles in this

regime. The response to η0 exhibits a peak, which is a more subtle consequence

of capturing the effects of baryonic feedback over a range of mass and spatial

scales. The bloating of higher-mass haloes is the dominant influence compared to

the reduction effect experienced by lower-mass haloes, so decreasing η0 generates

a net increase of ∆2 (k). The peak occurs at deeper non-linear scales for higher

redshifts, reflecting the evolution of halo populations.

Baryons and neutrinos both impact the amplitude of the matter power spectrum

on small scales, from which most information is drawn, leading to significant

degeneracies between both baryon parameters and Σ. For example, the mass-

dependent response for η0 emerges from its effect on the peak height which, as

discussed above, determines non-linear halo properties in a similar manner to the

neutrino mass sum. In the M16 model, the peak height depends on Σ directly.

The total baryon impact on the Σ forecast is shown in Figure 4.8 to be severe.

The errors for NH and IH double for the former and increase by 70% for the

latter. The greater sensitivity of ΣΣ Fisher information for the IH relative to

the NH on non-linear scales where the baryons limit information results in this

comparatively lesser degradation.

In the preceding Chapter, several strategies for mitigating baryon impacts on

dark energy forecasts were explored. These included increasing the Euclid-like

survey limit from `max = 5000 to `max = 10000 to access information from modes

deeper in the non-linear regime. When this is done for the Σ forecasts, I find that

baryon degradation is reduced, to 84% and 61% for the NH and IH respectively.

Figure 4.7 shows that there is a repository of potential Fisher information on Σ at

higher `. The response plots suggest that the degeneracies between AB, η0 and Σ

may be less severe for very high ` where the neutrino impact on very small haloes

approaches scale-independence (Massara et al., 2014) in contrast to the baryons.
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This may explain why the degradation is reduced, despite the increasing influence

of baryons on non-linear scales overall, but ultimately this improvement is limited.

I have also explored the gains from adding Fisher information from an external

baryon source (e.g., new simulations or improved observations) which in general

does mitigate the baryon impact on Σ, but to remove it as a statistically sig-

nificant systematic requires more baryon information than could realistically be

accessed at present. As such these results are not shown.

Instead the focus here applied to the most promising source of baryon mitigation

in Chapter 3, the constraints on cosmology from the CMB (Planck Collabora-

tion et al., 2016b). These propagate through the Fisher analysis, contributing

to the breaking of parameter degeneracies. This limits the baryon degradation,

and in the case of neutrinos I find a significant improvement with the impacts

of marginalising over baryons reduced to 21% and 28% for the NH and IH. Al-

though the IH still has a smaller Σ error it now experiences greater relative

baryon degradation than the NH when CMB priors are included. Despite the im-

provements, the baryon impact is detrimental for the weak lensing probe, raising

the WL+CMB errors beyond the 1σ hierarchy distinction threshold, |∆Σmin|, to

σΣ,NH = 0.044 and σΣ,IH = 0.042. These would constitute 1σ and 2σ detections

for ΣNH and ΣIH respectively. It will therefore be important to include additional

information from other sources, such as galaxy clustering.

4.5.3 Including intrinsic alignments

Biased parameter estimations from failing to account for intrinsic alignments

have been extensively studied but it is also important to consider the impact on

forecasts of including IA in the C` signal and then marginalising over aIA. The

results of this Chapter are broadly consistent with the predictions of Krause et al.

(2016) for a Euclid-like survey, with the caveat that I do not extend my analysis

to marginalising over nuisance parameters governing a potential luminosity scal-

ing of the IA amplitude, and so slightly less significant impacts are found. I show,

in Figure 4.9, a direct comparison between hierarchies for the w-Σ forecasts with

and without IA.
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Figure 4.9: 1-σ w-Σ confidence ellipses for the normal (left; Σfid = 0.06 eV) and
inverted hierarchy (right; Σfid = 0.1 eV) for a Euclid-like weak lensing survey. Pur-
ple: intrinsic alignments included in the modelling via the amplitude parameter,
aIA; red: intrinsic alignments not included. All other cosmological parameters in
Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w) are marginalised over in both cases.

These results indicate that the impact is small for most parameters, including

Σ. This can be understood by considering the C` responses with and without IA

for different redshift bin combinations. The Ctot
` responses for the ij = 44 z-bin

(0.79 ≤ z ≤ 0.89) autocorrelation in Figure 4.4 are sufficiently similar to the

corresponding Cγγ
` responses that it is not useful to distinguish between them by

explicitly including the latter. This domination of the shear-shear signal is most

extreme for auto-correlations in the highest redshift bins, as Figure 4.2 shows.

However, for cross-bin correlations the IA-shear signal becomes important as it

arises from the alignment of foreground galaxy ellipticities with background lens

potentials. This term is negative and large enough to provide significant cancel-

lation to the shear-shear signal in these cases.

It should be noted that there is a small improvement in the ΣNH constraint

when including IA in the modelling. This would seem to contradict the intu-

ition that marginalising over an additional source of uncertainty should increase

the error. However, it has been ascertained that the determinant of the Fisher

matrix, which effectively quantifies the total available information, is reduced

by the inclusion of IA. When the inversion to a parameter covariance matrix is

performed this manifests as some individual errors (and parameter correlations)

decreasing while others increase. In this case, a very slight decrease is seen for

the ΣNH error but this is compensated for by increased errors for other parameters.
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Figure 4.10, illustrates the impact on the Ctot
` and Cγγ

` responses for the ij = 09

cross-correlation. To display this clearly, results are shown for a redshift bin

combination, ij = 09, at which the differences between the two cases are most

pronounced. As the IA only significantly affect the cross-power between widely

separated bins or the auto-power for low redshift bins, and most of the lensing

signal comes from the minimally impacted high redshift bin auto-spectra, the

Σ Fisher information is similar between cases with and without IA. Any degra-

dation of forecasts would therefore come from degeneracies between Σ and aIA.

Figures 4.4 and 4.10 show significantly different power responses to these pa-

rameters. When combined with the fact that only a small subset of auto- and

cross-power spectra are significantly sensitive to the IA, I would therefore expect

the impact on constraints to be small.

For both the NH and IH cases, the IA signal adds limited information on all

parameters other than w and Ωm. A possible reason for the improvements due

to IA seen to constraints in this analysis (as in the case of the slight decrease

in the error for ΣNH) could be that the NLA model that is being used here is

insufficiently sophisticated to capture the full impact. However, for the purposes

of this work a relatively simplistic model is sufficient to gain a broad level of

insight. Another finding to note is that neutrinos have a stronger effect on the

power spectrum for the IH compared to the NH, and I find an even smaller, al-

most negligible, impact from IA on the ΣIH forecast than for ΣNH. This suggests

there is some sensitivity to the fiducial values of the parameters chosen. In turn

this implies non-Gaussianity in the posterior, which would limit the validity of

the Fisher approximation. However, the impact of IA for neutrino mass forecasts

is overall of little concern, with only small improvements and degradations. The

main systematic that must be mitigated remains the baryonic phenomena.

4.5.4 Galaxy clustering

I combine my WL+CMB forecasts with information from galaxy clustering (GC),

which is derived from BOSS data at low redshifts (0.2 < z ≤ 0.75) and from a

Euclid-like spectroscopic galaxy survey at higher redshifts (0.75 < z ≤ 2.05).

Figure 4.11 shows confidence ellipses comparing the NH and IH with and with-
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Figure 4.10: Lensing power spectrum responses using NH in the ij = 09 redshift
bin. Blue (red) lines correspond to the lowest (highest) parameter values for Θ =
(AB, η0,Ωm,Ωb,ΣNH, h, σ8, ns, w, aIA) in the range 0.9Θfid ≤ Θ ≤ 1.1Θfid, except in
the case of the neutrino mass parameter, which varies between ΣNH,min ≤ ΣNH ≤
1.1 ΣNH,min with purple curves representing the minimal mass case, ΣNH,min = 0.06 eV.
Solid lines correspond to the power spectrum including IA and dashed lines correspond
to the γγ power spectrum where IA are not included.
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Figure 4.11: 1-σ w-Σ confidence ellipses for the normal (left; Σmin = 0.06 eV)
and inverted hierarchy (right; Σmin = 0.1 eV) with all parameters in Θ =
(AB, η0,Ωm,Ωb, h, σ8, ns, w, aIA) marginalised over (purple: weak lensing only; blue:
weak lensing and galaxy clustering; cyan: weak lensing, galaxy clustering and CMB
priors combined); and with the baryon parameters, AB and η0, fixed to their fiducial
values (dark green: WL only; orange: WL+GC; yellow: WL+GC+CMB).

ΣNH ΣIH

σWL/eV (ex bar.) 0.079 0.120
σWL/eV (inc. bar.) 0.156 0.204

RB,WL 1.97 1.70
σWL+GC/eV (ex bar.) 0.045 0.050
σWL+GC/eV (inc. bar.) 0.053 0.078

RB,WL+GC 1.19 1.57
σWL+GC+CMB/eV (ex bar.) 0.031 0.030
σWL+GC+CMB/eV (inc. bar.) 0.034 0.034

RB,WL+GC+CMB 1.09 1.16

Table 4.2: 1-σ error forecasts for a Euclid-like survey of the neutrino mass sum in the
normal and inverted hierarchies, without and including marginalisation over baryon
parameters and the addition of priors from galaxy clustering and Planck CMB mea-
surements. I also include the response factors, RB, to including baryon marginalisation.
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out baryon marginalisation for three cases: weak lensing only; and weak lensing

and galaxy clustering; weak lensing, galaxy clustering and CMB priors combined.

Table 4.2 contains the corresponding 1-σ errors and the baryon degradation fac-

tors in each case. Neutrinos mainly impact the galaxy power spectrum through

the matter power spectrum. The power sensitivity to Σ is greater for the IH than

the NH, leading to more substantial improvements to forecasts for the former.

However, both hierarchies experience a significant reduction in errors, with com-

bined WL+GC+CMB probes achieving σΣNH
= 0.034 eV and σΣIH

= 0.034 eV,

when accounting for baryons. The degradation due to baryons is also approxi-

mately halved in the combined case. Again, even though the IH experiences a

far greater improvement overall, the relative degradation is almost double that of

the NH at 16% and 9% respectively. Interestingly, when examining the impact

of adding GC to WL without the inclusion of CMB priors, it is apparent the NH

degradation is reduced by a greater fraction than that of the IH.

The inclusion of BOSS data on low redshift clustering was found to have a sig-

nificant impact on galaxy clustering constraints compared to the Euclid-like only

case. However, the combined WL+GC errors are only mildly improved by ∼ 5-

10% while there is no appreciable change for the WL+GC+CMB errors. There-

fore, in my final analysis the dominant information contribution from galaxy

clustering is provided by the Euclid-like forecasts rather than BOSS data. Ulti-

mately, the combined forecast constraints represent a nearly 2σ (3σ) detection of

ΣNH (ΣIH) but are not significantly lower than the minimum threshold required

to achieve a distinction between hierarchies.

My results for a GC+CMB combination are broadly comparable with recent

Fisher forecasts by Boyle and Komatsu (2018), although, as Boyle (2018) notes,

making comparisons between results across the literature is difficult. For example,

differences in the implementation of CMB priors, the use of Fisher versus MCMC

methodology, the choice of parameters to be varied, and their fiducial values leads

to a range of results. Indeed, Audren et al. (2013) and Sprenger et al. (2018) find

stronger constraints in studies restricted to the degenerate mass hierarchy. For

galaxy clustering, where neutrino information is coming primarily from the shape

of the matter power spectrum on linear and mildly non-linear scales, this choice

can have a significant impact. I find that the different free-streaming lengths char-

acterising the NH and IH (discussed in detail in § 4.5.1) can have a non-negligible
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effect on the power sensitivity to Σ. It follows that addressing whether Stage

IV surveys will be able to measure Σ or distinguish between hierarchies should

not simply rely on predicting σΣ for an arbitrary model, but should robustly

account for the effects of different hierarchy mass splittings. As this represents

a sensitivity to fiducial parameters, which implies a potential breakdown of the

Fisher approximation, beyond-Fisher methods such as MCMC may need to be

considered necessary for future analyses (see e.g., Hall and Challinor, 2012).

4.5.5 Required improvements

An extension to the analysis of Chapter 3 of the effects of adding arbitrary pri-

ors by increasing the diagonal baryon elements of the Fisher matrix is provided

here. In this case, the motivation is determine which parameters are contributing

most to the size of the forecast Σ errors. Therefore, to quantify the information

required from an arbitrary external source to reduce the errors on ΣNH and ΣIH

sufficiently for a Euclid-like survey to distinguish the hierarchies beyond the 1σ

level, each diagonal element of the (combined WL+GC+CMB) Fisher matrix is

systematically increased by a factor, (1 + α),

F ′ii −→ Fii (1 + α) . (4.12)

In Figure 4.12 I plot the change in NH and IH errors for increasing α for the

parameters Σ and ns. These provide the strongest improvements, as the impact

of marginalising over other parameters on σΣ is already close to fully mitigated

by the WL+GC+CMB combination of probes.

For Σ, while the WL+GC+CMB constraints alone constitute close to a 2σ de-

tection for the NH (with the IH being constrained to close to 3σ), this can be im-

proved to between 3σ and 4σ by adding priors in the range 0.7σΣ,con . σΣ,prior .

2.0σΣ,con, where σΣ,con is the conditional error on the mass sum. It may also

be possible to achieve a distinction between hierarchies at 2σ or even 3σ with

priors in the range 2.0σΣ,con . σΣ,prior . 2.3σΣ,con. This required information

could be contributed to by e.g., improved data from the Lyman-α forest or pos-

sibly further constraints from particle physics. An example of such a particle

experiment is measuring the decay rate of neutrinoless double beta decay, as

this depends on the sum of mass eigenstates, mββ, when weighted by Majorana
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Figure 4.12: 1-σ WL+GC+CMB errors for Σ for the NH (blue) and IH (orange),
as a function of arbitrary increases, α, to the Σ (top panel) and ns (bottom panel)
Fisher information, as defined in equation (4.12). The shaded regions correspond to
the confidence level that Σ can be measured at in the case of the NH (the equivalent
regions for the IH are not included because ΣIH is already constrained to ∼ 3σ when
α = 0). The red lines mark the thresholds required to distinguish the NH and IH at
1σ (dotted), 2σ (dashed) and 3σ (dash-dotted). The difference between the NH and
IH fiducial values, |∆Σmin|= |ΣNH,min − ΣIH,min|= 0.04 eV, represents the 1σ limit.
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Figure 4.13: Biased 1-σ w-Σ confidence ellipses for the NH and IH with all parameters
in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, w, aIA) marginalised over. Bias in baryon parameters
corresponds to values located in the extremes of the ranges identified in M15, δ AB =
−1.13 (red) and δ η0 = −0.203 (green). The IA amplitude is biased by 10% such that
δ aIA = 0.1 in the blue ellipses. The black ellipses represent the unbiased forecasts.

phases2 (see e.g., Capozzi et al., 2017). Although neutrinoless double beta decay

has not yet been observed, the KamLAND-Zen experiment derives a lower bound

of mββ & 0.061−0.165 eV (KamLAND-Zen Collaboration, 2016).

There is also considerable scope for improving the Σ constraints with additional

priors on the spectral index which, if known with absolute certainty, would allow

a 2σ (5σ) detection of Σ for the NH (IH) and a 2σ distinction between the hi-

erarchies. The next generation CMB surveys CMB-S4 (Abazajian et al., 2016)

predicts constraints on ns tightening by a factor of 2-3 over Planck, which could

contribute to the improvements that appear to be required for σΣ in Figure 4.12.

It should be noted that the greater rate of decrease of σΣIH
with α compared to

σΣIH
is a consequence of stronger degeneracies, e.g. between ns-Σ, being broken

for the IH compared to the NH.

4.6 Model Bias

The parameters controlling the baryon and IA systematics explored in this work

are assigned their fiducial values from fits to simulations (Schaye et al., 2010;

2Neutrinoless double beta decay is subject to the assumption that at least one neutrino is
a Majorana fermion, i.e. that ν ↔ ν̄.
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Mead et al., 2015) and shear observations (see e.g., Hirata and Seljak, 2004;

Bridle and King, 2007) respectively. If the underlying physical models used in

simulations are incorrect or if there are inherent limitations in the construction

of the simulations, then these fiducial values are biased from the ‘true’ values.

Similarly to Chapter 3, it is useful to consider the results of this work in this

context by calculating the degree of calibration bias required to severely bias Σ

forecasts, for example beyond their 1-σ errors.

Again, the Taylor et al. (2007) formalism for bias, captured by equation (3.36), is

used with Figure 4.13 showing the bias in the weak lensing forecasts for w-Σ when

the fiducial values of the baryon and IA parameters have been miscalibrated. I

display results for model bias corresponding to the extreme values of the regions

2 < AB < 4 and 0.4 < η0 < 0.8 that broadly encompass the range of fits to

different OWLS simulations made by M15, and for bias in aIA of 10%.

Figure 4.13 shows that bias in Σ from miscalibrating the strength of the IA

effect is significant, easily invalidating a measurement for either hierarchy with a

10% aIA bias. This is in contrast to the very small impact on Σ forecasts from

marginalising over aIA. However, as I find percent-level constraints on aIA it might

be expected that a 10% miscalibration would indeed produce a very large bias.

The problem of IA bias for other parameters such as w is well-documented; this

work does not address it further here beyond reporting the impact on Σ. The bias

due to baryons is less severe, although an extreme miscalibration of the adiabatic

contraction parameter would bias Σ beyond its 1-σ confidence region. However,

biases of η0, even lying at the extremes of the region of values identified by M15,

do not displace the Σ estimate beyond the 1-σ limit. This difference between AB

and η0 may also be reflected in the fact that marginalising over AB alone has

a significantly greater impact on Σ forecasts than marginalising over η0 alone,

with almost all of the baryon degradation being due to AB. This highlights the

importance of achieving tight calibrations of the adiabatic contraction parameter

and the intrinsic alignment amplitude, while a similarly robust understanding of

the strength of the baryonic feedback parameter is less urgent.

A subtlety worth noting is that a bias of δ η0 = −0.2 produces biases of op-

posite sign in Σ of different hierarchies. Because the sensitivity to η0 is low, it

may be that transitioning from one model to the other induces a small change to
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the bias in Σ that is still sufficiently large to change its overall sign. This could

complicate attempts to distinguish between hierarchies, but overall the η0 bias

remains subdominant to other effects.

As model bias is a product of subgrid limitations, resolving the issue is challeng-

ing without resorting to incorporating external data on baryon phenomenology

into future simulations. In the case of IA, there has been substantial exploration

into self-calibration methods of cleaning IA signals with independent informa-

tion on IA correlations from deriving scaling relations that predict (and then

subtract out) IA-shear signals from shear observables (Zhang, 2010; Troxel and

Ishak, 2012; Yao et al., 2017, 2019). The IA-IA signal is strongest between close

galaxies and so is generally assumed to be more straightforward to treat by pur-

posely using sufficiently high z redshift bins to limit its contribution (Schneider

and Bridle, 2010; Zhang, 2010). A future avenue of research into applying these

methods to mitigate the bias impact on parameters like the neutrino mass sum

would be worth pursuing.

4.7 Conclusions

This Chapter has presented detailed Fisher forecast analyses to assess the poten-

tial of a Euclid-like Stage IV survey to measure the neutrino mass sum within

sufficient accuracy to distinguish between the normal and inverted mass hier-

archies. Particular focus has been applied to the risk of forecast degradation

presented by the need to marginalise over baryonic astrophysics, and further ex-

plored the impact of intrinsic alignments. To evaluate the widest possible scope

of constraints available at present, forecasts for weak lensing were combined with

those of spectroscopic galaxy clustering from Euclid and added prior information

from Planck CMB constraints and BOSS measurements of low redshift clustering.

To explore the behaviour of baryons and neutrinos on non-linear scales, the halo

model of Mead et al. (2015) and Mead et al. (2016) has been used. The impact of

neutrinos is modelled by relating the mass sum to the spherical collapse overden-

sity and the virial density, which exert a significant influence on halo structure

by changing the concentration function and the limits of the density profile re-
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spectively. Fits of this model to simulations by Massara et al. (2014) reproduce

P (k) to within a few percent up to k = 10hMpc−1 over different redshifts, which

represents an improvement over a widely used fitting formula presented by Bird

et al. (2012).

This work has examined both the impact of the Σ dependence of the power

sensitivity to the mass sum and the effect of different free-streaming scales be-

tween hierarchies on the relative sensitivity of the IH compared to the NH. It was

illustrated that for both hierarchies, there is low sensitivity on scales relevant to

the cosmological probes, ∆2 (k) and C`. The resulting limited Fisher information

available for a Euclid-like weak lensing survey lead to forecasts of σΣNH
= 0.079 eV

and σΣIH
= 0.120 eV. These are large enough to rule out making any definitive

measurement for either hierarchy.

By incorporating prior CMB information from Planck Collaboration et al. (2016b),

these constraints were tightened significantly to σΣNH
= 0.036 eV and σΣIH

=

0.033 eV. Discussion was presented of the gains provided by this source of cos-

mological information in breaking degeneracies between Σ and other parameters,

such as σ8, which has a qualitatively similar effect as Σ on non-linear power. It

was also illustrated that the relative advantages in constraining the IH over the

NH were 72% and 54% improvements respectively when including CMB informa-

tion.

This distinction was found to be more nuanced when the analysis was expanded

to include marginalisation over the baryon parameters. Studying power responses

illustrated specific degeneracies, e.g., between Σ and η0 on non-linear scales, that

contributed to the approximate doubling of mass sum error forecasts. While

stronger non-linear sensitivity to Σ for the IH was found to result in a less severe

impact than for the NH, when CMB priors were accounted for the degradation

for the NH (21%) was appreciably less than that for the IH (28%). Despite this,

the IH once again exhibited a much greater overall improvement than for the NH.

My weak lensing analysis has also included an investigation into the impact of in-

cluding (and marginalising over) intrinsic alignments in my model on parameter

forecasts. Unlike the significant bias induced in parameter estimations by ne-

glecting IA, it was found that there is a relatively minimal effect for the separate
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issue of forecasts because C` responses, which determine Fisher information, are

very similar in both scenarios (especially for correlations between high redshift

bins).

As the WL+CMB errors including baryons represent only a 1σ (2σ) confidence

of measuring ΣNH (ΣIH) and are greater than |∆Σmin|= 0.04 eV, I have included

independent forecasts from a Euclid-like spectroscopic galaxy clustering survey.

I have shown that this halved the baryon degradation factor for both hierar-

chies, with the NH still experiencing approximately half the impact of the IH.

The galaxy clustering analysis has highlighted the importance of specifying the

mass hierarchy when making neutrino forecasts as most information is derived

from linear matter power responses. The configuration of free-streaming scales

corresponding to each neutrino mass played a non-negligible role on these scales.

Ultimately, the combination of WL+GC+CMB reduced NH (IH) errors to close

to 2σ (3σ) and below the |∆Σmin| threshold. The challenge of navigating the vari-

ation in forecast methodologies, and therefore results, made across the literature

was noted(e.g., Carbone et al., 2011; Audren et al., 2013; Boyle and Komatsu,

2018; Sprenger et al., 2018). I argue that my approach of simultaneously incor-

porating the effects of neutrinos and baryons in the weak lensing power spectrum

on non-linear scales in a physically well-motivated manner makes the forecasts

presented here reliable and robust.

A potentially encouraging finding has been that additional information from e.g.,

neutrinoless double beta decay on the mass sum, or improved constraints on the

spectral index from forthcoming Stage IV CMB experiments, could substantially

reduce the errors on Σ. If these priors prove sufficient to increase the Fisher

information on their corresponding parameters by 10-50%, it would achieve a 2σ

(5σ) detection of Σ for the NH (IH) and distinguish between the hierarchies at

the 2σ or even 3σ level.

Finally, the issue of model bias has been explored. I used first order approxi-

mations (Taylor et al., 2007) to determine the bias in Σ from miscalibrations of

the baryon and intrinsic alignment parameters. I have found that large biases in

AB or aIA induce a bias in Σ larger than σΣ. By contrast, I have found that even

significant biases in the baryon feedback parameter, η0, did not change the Σ es-

timate by more than σΣ. Though an understanding of model bias is important to
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place the analysis in its proper context, it should be noted that it will ultimately

require additional baryon information, improved simulations or self-calibrating

methods for IA to successfully mitigate the issue.

An important limitation of my analysis to recognise is that the Fisher formalism

underpinning it is not ideal for making forecasts in the case of distinct, com-

peting models, as is the case with the normal and inverted mass hierarchies.

Fisher information is determined by derivatives of likelihood functions around

most-likely values. In cosmology these usually take the form of multi-variable

unimodal Gaussians. In this work I have made assumptions that this is the case

when analyzing each hierarchy separately. However, to make a robust forecast

of Σ, given uncertainty over which hierarchy is correct, my analysis should in-

corporate the resulting bimodal Gaussian (with peaks at ΣNH,min = 0.06 eV and

ΣIH,min = 0.1 eV). This would require a non-trivial extension of the Fisher for-

malism, which is beyond the scope of this work but that I intend to pursue in

future studies.

In summary, by using the M15 and M16 prescriptions for baryonic and neu-

trino effects on haloes, I have been able to perform a full forecast analysis of the

neutrino mass sum in the normal and inverted hierarchies. By combining multiple

large scale structure probes through Euclid-like weak lensing and spectroscopic

galaxy clustering surveys, Planck CMB constraints and BOSS low redshift galaxy

clustering data, I have shown that degradation due to baryon feedback can be

reduced to between 9-16%. Using these sources of information, and account-

ing for baryons and intrinsic alignments, Stage IV surveys could be expected to

measure Σ with 1-σ errors of σΣNH
= 0.034 eV and σΣIH

= 0.034 eV for the NH

and IH. These approach the confidence level required to meaningfully distinguish

the hierarchies, but with additional future priors on Σ and ns there is tentative

optimism for achieving more definitive results.



Chapter 5

Coupled Dark Energy In The

Halo Model Using Virial

Arguments

This Chapter returns to dark energy as its focus. However, rather than the stan-

dard w (a)CDM dynamical dark energy model that Chapter 3 addressed, this

work explores a dark energy model defined by a non-minimal coupling to dark

matter. Modelling the effects of such an interaction on large scale structure en-

counters significant challenges in the non-linear regime. Efforts to fit the matter

power spectrum to results from coupled dark energy simulations have generally

relied on complicated fitting functions with many free parameters to capture these

scales.

This Chapter will present an alternative approach by using collapse arguments

to compute the halo virial density in the presence of a coupling. I will show that

varying this parameter can capture the changes to the non-linear power up to

k = 10h/Mpc with percent level accuracy for coupling strengths and redshifts

of interest. A fit will be made to simulations of the matter power spectrum in

coupled dark energy models, using the baryon-halo model of previous Chapters.

This allows for weak lensing forecasts for the coupling strength to be made, while

presenting for the first time an analysis of the impact of marginalising over bary-

onic effects. An attempt at mitigating the baryon impact will be explored in

detail.

147
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An overview of the range of coupled dark energy theories, the simulations that

currently exist to capture the response of the matter distribution to the coupling,

and the state of forecasts for these models are discussed in an introduction in

§ 5.1. Following this, in § 5.2 the effects of coupled dark energy on dark mat-

ter haloes are explored. This involves an outline first of how the cosmological

background can be computed in these models, before a detailed examination of

the linear and non-linear growth equations in coupled dark energy. These in-

form computations of important halo parameters like the virial density threshold

using spherical collapse arguments. These will be applied in an effort to fit to

simulated power spectra in § 5.3. The Fisher forecast analysis used in previous

Chapters will then be applied using the modified halo model. A discussion of

how power spectrum responses inform the results of the forecasts, including the

impact of baryons will be presented in § 5.4. The capacity of galaxy clustering

and CMB priors to improve on these results will be assesssed before a conclusion

is presented in § 5.5.
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5.1 Introduction To Coupled Dark Energy

The model space of beyond ΛCDM cosmologies includes a range of scenarios

featuring interactions between dark energy and other species. Among them are

scalar-tensor theories of modified gravity that introduce a scalar field, φ, that

is non-minimally coupled to the metric (see e.g., Clifton et al., 2012). Alterna-

tively, models can be constructed in which dark energy interacts with matter-

energy fields. These are generally confined to couplings to cold dark matter or

neutrinos. A hypothetical interaction with baryons should be negligibly weak in

order to satisfy a lack of observation of additional ‘fifth forces’ acting on this

sector (Peebles and Ratra, 2003). Similarly, any coupling to radiation would per-

turb photons from geodesic trajectories, in violation of local observations which

preclude this behaviour (Wang et al., 2016). There are a number of interesting

propositions for relic neutrinos acquiring a growing mass by coupling to a scalar

field. These allow for the possibility of late time dark energy domination being

a consequence of neutrinos becoming non-relativistic and effectively freezing the

evolution of the scalar field. I recommend e.g., Amendola et al. (2008), Wetterich

(2007) and Casas et al. (2016) for the interested reader but, do not consider such

models in this work, which I restrict to interactions between dark matter and

dark energy.

These coupled dark energy (CDE) cosmologies are generally conceptualised as

a cold dark matter component exchanging energy-momentum with a scalar field

responsible for the observed accelerating expansion of the Universe (see e.g. Wet-

terich, 1995; Amendola, 2000; Mangano et al., 2003). As a result, the friction

effect of the Hubble expansion on structure growth is modified, and a fifth force

arises that acts alongside gravity on matter perturbations undergoing collapse.

Both effects would be expected to play a significant role in the distribution of

matter on large scales and have a subtle influence on structure in the non-linear

regime (Macciò et al., 2004; Baldi et al., 2010; Li and Barrow, 2011; Baldi, 2011a).

As dynamical dark energy theories, CDE models circumvent the fine-tuning prob-

lem of the cosmological constant in ΛCDM (Weinberg, 1989). They are more

specifically appealing to the extent that they resolve discrepancies between ob-

servations and predictions from the concordance model of cosmology. ΛCDM

accounts for most cosmological data very well but encounters increasing chal-



150 CHAPTER 5. COUPLED DARK ENERGY HALO MODEL

lenges on smaller scales. For example, the rotation curves of dwarf galaxies in-

dicate inner halo cores in place of predicted density profile cusps (e.g., Dubinski

and Carlberg, 1991; Simon et al., 2003), there is an apparent deficit of observ-

able satellite galaxies in haloes (Navarro et al., 1997), and high infall velocities

characterise Bullet Cluster-like objects far in excess of ΛCDM simulation results

(e.g., Lee and Komatsu, 2010). Complex astrophysical processes like baryonic

phenomena may provide explanations for these and related problems. However,

the alternative that the impacts on non-linear structure resulting from under-

lying interactions between matter and dark energy may be responsible is also

well-motivated (see e.g., Baldi et al., 2010; Baldi and Viel, 2010; Penzo et al.,

2016).

While the background dynamics and the large-scale evolution of perturbations

in CDE are well-understood (Amendola, 2004), the challenge of interpreting the

non-linear growth of structure for these cosmologies is considerable. The CoDECS

project (Baldi, 2012) is arguably the most comprehensive set of simulations con-

structed for this purpose. It combines small-scale adiabatic hydrodynamical sim-

ulations with a set of N-body simulations using a box of 1 Gpc/h comoving length

and 2×10243 CDM and baryon particles. CoDECS incorporates several effects of

CDE to capture non-linear perturbations including the mass variation of cold dark

matter particles due to the dark energy interaction; a modified expansion rate

caused by an effective early dark energy component; an extra velocity-dependent

acceleration of particles generated by the coupling in the Euler equation; and the

fifth force, manifesting as a modification to the CDM-CDM gravitational inter-

action only (Baldi et al., 2010). The latter is achieved through a hybridisation of

Tree and Particle Mesh algorithms. While the effects incorporated in CoDECS

are extensive there are some limitations. For example, a significant branch of cou-

pled dark energy theories is neglected, namely those models where dark energy

couples to massive neutrinos. Growing neutrino quintessence, for example, may

provide an explanation for why dark energy dominates only relatively recently in

the history of the Universe (for details see e.g., Baldi et al., 2011). However, the

complexities associated with including this additional coupling within simulations

are not insignificant. Nevertheless, a future iteration of CoDECS implementing

this physics could have significant benefits for expanding the understanding of

the effects dark energy couplings on structure.
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CoDECS provides non-linear matter power spectra across a range of redshifts

for several CDE models where energy is transferred from dark matter to dark

energy. This is valuable in part because the power spectrum is the underlying

statistical probe for forthcoming Stage IV large scale structure surveys like Eu-

clid (Laureijs et al., 2011) and LSST (LSST Science Collaboration et al., 2009).

As has been discussed in previous Chapters, the matter power contributes to

the weak gravitational lensing signal and the galaxy clustering power spectrum.

Multiple photometric bins allow tomographic weak lensing surveys to constrain

cosmological parameters through their influence on the cosmic expansion history

and the growth of structure (Bartelmann and Schneider, 2001; Albrecht et al.,

2006; Peacock et al., 2006). Spectroscopic galaxy clustering measurements pro-

vide an additional source of information through the relationship between the

underlying dark matter distribution and the galaxies that populate it (Hauser

and Peebles, 1973; Davis and Peebles, 1983).

In order to use lensing and clustering probes to constrain CDE parameters like

the coupling strength (and also to perform full cosmological forecasts assuming

an underlying CDE model), it is necessary to first have a model for the power

spectrum that fits simulation predictions. Casas et al. (2016) determine a polyno-

mial fit to the ratio of CDE to ΛCDM power in CoDECS, leading to a combined

weak lensing and galaxy clustering forecast of 3.4% for the square of the coupling

strength when power is normalised at early times. Cosmic microwave background

(CMB) priors from Planck place on the coupling strength, β, an upper bound of

β . 0.06.

The Casas et al. (2016) fit achieves percent level accuracy but requires 40 free

parameters characterising polynomial and sigmoidal functions of the coupling

strength, scale and redshift. The forms of these functions are motivated by the

pursuit of accurate fits but have no physical justification in themselves. In this

work I pursue an alternative avenue, inspired by the approach of Mead et al.

(2015) and Mead et al. (2016) to constructing the HMCODE halo model power

spectrum fit through empirically motivated modifications to internal halo struc-

ture properties. A prominent example was the underpinning for Chapter 4. The

effects of free-streaming massive neutrinos on non-linear structure are captured

with percent level accuracy to simulations by Massara et al. (2014) in HMCODE

by modifying the spherical collapse overdensity, δc, and virial density threshold,
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∆v. These quantities are characteristic descriptors of the halo model, with their

modified forms predicted by solving the equations for spherical collapse in a mas-

sive neutrino cosmology (Ichiki and Takada, 2012; LoVerde, 2014).

Evidence that a similar strategy may be applicable for CDE is apparent in M16,

who show that lowering the value of a parameter describing a linear combina-

tion of the concentration amplitude and the amount of bloating due to baryonic

feedback provides a reasonable fit to the CoDECS non-linear power. However,

they do not provide a basis for predicting the required changes to this param-

eter for different coupling strengths and at different redshifts. It was shown in

equation (5.34) that the M15 modification for halo bloating effectively changes

the virial radius to which a halo of a given mass must extend to satisfy the virial

density. This suggests that ∆v and δc, which affect the concentration amplitude,

are the important underlying parameters. Moreover, the values of these parame-

ters in CDE can, in principle, be predicted from physical arguments. Wintergerst

and Pettorino (2010) derive the CDE non-linear growth equation and use it to

compute the corresponding δc. This could also be extended to calculate ∆v. One

would expect the conservation of momentum in a CDE scenario where the mass

of dark matter particles is reduced to lead to an enhanced acceleration of particles

undergoing collapse into halo structures. As the process of gravitational collapse

is accelerated, this would lower the density threshold at which virialisation occurs.

Haloes would effectively be more bloated, thereby suppressing matter power on

non-linear scales as seen in the CoDECS results.

This Chapter explores how well these parameters can be used to fit HMCODE

predictions for the matter power (which is accurate to within ' 5 percent for

scales k ≤ 10hMpc−1 and redshifts z ≤ 2 for wCDM) to CoDECS, and the

extent to which the required modifications can be predicted by spherical collapse

calculations. This has the potential to improve on the Casas et al. (2016) fit

by greatly reducing the number of free parameters and providing a physically

grounded description of non-linear CDE power. These benefits are especially im-

portant for performing parameter inference from data and potentially being able

to constrain CDE physics. More immediate for this Chapter are the benefits for

a Fisher forecast analysis, which I perform for weak lensing and galaxy clustering

probes. Using such a physically motivated fit would allow the source of potential

degeneracies between parameters to be traced and understood. This in turn can
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inform strategies for how the degeneracies may be mitigated by forthcoming sur-

veys.

Incorporating CDE effects into a variant of HMCODE through the collapse and

virial densities presents an excellent opportunity to also evaluate the impact of a

major systematic like baryons on the capacity of surveys to constrain the coupling

strength. Chapters 3 and 4 performed in-depth examinations into the baryon im-

pact of w (a) and massive neutrinos. Chapter 3 in particular discusses the details

of the baryonic astrophysical phenomena that are also relevant for Fisher fore-

casts on the coupling strength in this Chapter. An early indication that there

may be strong degeneracies between CDE and baryonic effects is that the param-

eter describing bloating due to feedback affects the virial limit of haloes, which

also seems to plausibly be influenced by the coupling strength. A halo model

parameterising both sets of effects therefore allows for an impact assessment of

baryons on coupled dark energy constraints for the first time.

5.2 Coupled dark energy halo model

5.2.1 Coupled dark energy background

Dark energy models featuring scalar fields can be constructed to generate late-

time accelerated expansion, for example by ensuring that the density of the field

scales similarly to radiation at early times but after matter-radiation equality

resembles a cosmological constant with its energy density dominating over that of

matter. This partially addresses the cosmological constant problem by replicating

the required present acceleration while maintaining a naturally low energy scale

for dark energy1 (Ratra and Peebles, 1988; Caldwell et al., 1998; Steinhardt et al.,

1999). From the Lagrangian (Amendola, 2000),

L = −1

2
∂µφ∂µφ− V (φ)−mCDM (φ)ψψ̄ + Lkin [ψ] , (5.1)

1Although of course the issue of providing a theoretical explanation for why the vacuum
does not gravitate in this interpretation is not resolved.



154 CHAPTER 5. COUPLED DARK ENERGY HALO MODEL

for a spatially uniform scalar field, φ, coupled to a cold dark matter field, ψ, of

mass, mCDM (φ), the evolution equation can be derived as

φ̈+ 3Hφ̇+
dV (φ)

dφ
=

√
2

3
βρcdm. (5.2)

The term on the right hand side describes an exchange of energy between the

dark matter and dark energy sectors. Here I use the convention of an overdot

for derivatives with respect to time and set the reduced Planck mass Mpl =

1/
√

8πG ≡ 1 throughout this work. The coupling strength, β, is given by

β ≡ −d ln mCDM (φ)

dφ
. (5.3)

The sign convention ensures that, for β > 0, a flow of energy from dark matter

to dark energy (accompanied by decreasing mCDM) occurs for φ̇ > 0 and in the

other direction for φ̇ < 0. The form of the scalar field potential,

V (φ) = A exp

[
−
√

2

3
αφ

]
(5.4)

is chosen here and normalised such that φ (t0) = 0 (where t0 denotes the present

time elapsed since the initial singularity) and becomes increasingly negative in

the past. This also sets A = V (t0). For the cosmological models examined

in this work, the remaining free parameter assumes a value, α ≈ 0.1, in order

to satisfy the normalisation condition. I also restrict positive β > 0, so the

coupling configuration in this work is always energy transfer from dark matter to

dark energy. The energy density and pressure of the scalar field are then given

respectively by

ρφ =
1

2
φ̇+ V (φ) , (5.5)

Pφ =
1

2
φ̇− V (φ) . (5.6)

These define the equation of state parameter, wφ ≡ Pφ/ρφ. The background equa-

tions are completed with the density continuity equations for cold dark matter,
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baryons and radiation,

ρ̇cdm + 3Hρcdm = −
√

2
3
βρcdmφ̇

ρ̇b + 3Hρb = 0

ρ̇r + 4Hρr = 0

(5.7)

and the Hubble parameter, H ≡ ȧ/a, provided through the Friedmann equation,

H2 =
∑
i

ρi
3
, (5.8)

for i = {cdm, b, r, φ}. Note that in order to conserve energy, the right hand side of

the cold dark matter equation has an equivalent but opposite in sign contribution

as the right hand side of equation (5.2). This describes the loss of energy from

dark matter to the dark energy sector. Indeed, the cold dark matter density is

modified from its usual scaling with a−3 such that it is now given by

ρcdm (a) = ρcdm (a0) a−3 exp

[
−
√

2

3
βφ

]
. (5.9)

The full set of background equations can be recast in terms of derivatives with

respect to ln a (denoted by a prime) to give the more elegant, less computationally

expensive form (Copeland et al., 1998; Amendola, 2000),

x′ =
x

2

[
3x2 + 3y2 + r2 − 3

]
+ αy2 + β

[
1− x2 − y2 − r2 − v2

]
(5.10)

y′ =
y

2

[
3x2 + 3y2 + r2 − 3

]
− αx y (5.11)

v′ =
v

2

[
3x2 + 3y2 + r2

]
(5.12)

r′ =
r

2

[
3x2 + 3y2 + r2 − 1

]
(5.13)

H ′ = −H
2

[
3x2 + 3y2 + r2 + 3

]
, (5.14)

(5.15)

where

x ≡
√

Ωφ (1 + wφ)

2
, y ≡

√
Ωφ (1− wφ)

2
, v ≡

√
Ωb, r ≡

√
Ωr, (5.16)
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in which the density parameters are defined as Ωi = ρi/3H
2 and, as I impose

flatness, the dark energy density parameter is given by Ωφ = 1−Ωcdm−Ωb−Ωr.

As Amendola (2000) discusses in depth, this system of differential equations has

a range of critical points to which solutions are attracted. However, as Baldi

(2011b) notes, under a time transformation, t −→ −t, this behaviour is inverted

such that the solutions to the equations diverge from the critical points towards

non-sensible results in the past. This is relevant because I desire to solve the

background to match a set of values of cosmological quantities at z = 0 (not

at some initial zi) which become my effective initial conditions in a backwards

integration. Baldi (2011b) demonstrates that it is necessary to tune the present

value of wφ to find a stable solution in these circumstances. This work also follows

this approach, setting the same condition for stability that Ωr ∼ 1 at very early

times, deep in the radiation dominated era.

5.2.2 Linear growth equation

The linear growth equations for a cosmology with cold dark matter coupled to

dark energy have been derived by solving, in the Newtonian gauge, the linearised

conservation equations for matter and scalar field perturbations, δ and δφ, and

then taking the Newtonian limit so that only modes, k � aH, much smaller than

the horizon are considered (Amendola, 2004; Pettorino and Baccigalupi, 2008).

Redefining the prime notation used in § 5.2.1 such that it now labels derivatives

with respect to a rather than ln a, the resulting growth equations can be written

as

δ′′cdm = −

[
3

a
−
√

2

3
βφ′H +

H ′

H

]
δ′cdm +

3

2a2

[
Ωbδb + Ωcdmδcdm

(
1 +

4

3
β2

)]
δ′′b = −

[
3

a
+
H ′

H

]
δ′b +

3

2a2
[Ωbδb + Ωcdmδcdm] .

(5.17)

One may note that the effective changes due to the coupling are an ‘anti’-friction

term, −
√

2/3βφ′H, and an amplification of the effective gravitational constant.

The negative sign for the former is justified by the specific definition of the cou-

pling strength such that for φ̇ > 0, the coupling strength satisfies β > 0. This
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represents a transference of energy from dark matter to dark energy, thereby re-

ducing the friction term in the growth equation. Solving this system of equations

allows one to evaluate the growth function for all matter following the convention

of Baldi (2012),

G (z) =
Ωcdm (z) δcdm (z) + Ωb (z) δb (z)

Ωcdm (z) + Ωb (z)
. (5.18)

5.2.3 Non-linear growth equation

An aim of this Chapter is computing quantities like δc and ∆v in a coupled

dark energy cosmology. These emerge from the non-linear growth equation in

the spherical collapse model. However, incorporating CDE into an equation for

non-linear growth is not immediately straightforward. A typical approach would

be to start with distinct matter density equations of the form in equation (5.9)

for the background and for a density perturbation undergoing spherical collapse

with a gravitational potential perturbed by the coupling to the scalar field. How-

ever, Wintergerst and Pettorino (2010) showed that such a result is incompatible

with the form of the relativistic perturbation equations touched upon in § 5.2.2.

Specifically, the spherical collapse argument yields no fifth force term associated

with the coupled scalar field contributing to the effective gravitational Poisson

term,

∇2Φeff =
a2

2
ρmδm

[
1 +

4

3
β2

]
, (5.19)

where Φeff = Φ +
√

2/3βδφ. Instead Wintergerst and Pettorino (2010) derive the

non-linear evolution equations directly from the non-relativistic Navier-Stokes

equations, which gives

δ̇m = −vm∇δm − [1 + δm] ∇ · vm,
v̇m = −

[
2H −

√
2
3
βφ̇
]

vm − vm · ∇vm − 1
a2∇

[
Φ +

√
2
3
βδφ

]
,

∇2δφ =
√

2
3
βa2ρmδm,

∇2Φ = a2

2
ρmδm.

(5.20)

In this work only the cold dark matter, but not the baryons, is treated as coupled

to the scalar field here. One may again note the effective ‘anti’-friction term,

−
√

2/3βφ̇ with the negative sign arising from the definition of β that for φ̇ > 0,

one has β > 0. This represents a flow of energy from dark matter to dark
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energy, thereby decreasing the effective friction. Wintergerst and Pettorino (2010)

propagate the effective gravitational source term through a successful derivation

of the non-linear growth equation for CDE. For a cosmology with couplings only

to cold dark matter, one finds

δ′′cdm = −

[
3

a
−
√

2

3
βφ′H +

H ′

H

]
δ′cdm

+
4

3

[δ′cdm]2

(1 + δcdm)
+

3

2a2

[
Ωbδb (1 + δb) + Ωcdmδcdm (1 + δcdm)

(
1 +

4

3
β2

)]
δ′′b = −

[
3

a
+
H ′

H

]
δ′b +

4

3

[δ′b]
2

(1 + δb)
+

3

2a2
[Ωbδb (1 + δb) + Ωcdmδcdm (1 + δcdm)] .

(5.21)

For β = 0 this system of equations reduces to the familiar case of a non-coupled

cosmology. If the system is linearised, then (5.17) is recovered.

5.2.4 Spherical collapse density threshold

The linear collapse overdensity threshold, δc, is computed from equation (5.21) by

the following procedure. Initial matter overdensities are chosen with the caveat

that δcdm,in < 10−3, so that they reside within the Einstein-de Sitter (EdS) regime

where δ ∝ a. This also sets the initial growth rate of the perturbation to be

δ′cdm = 1. I determine the initial size of the baryon perturbation using the same

condition determined by Baldi (2012) that δb ∼ 3.0×10−3 δcdm at zCMB. Evolving

both the non-linear growth equation from these initial conditions eventually leads

to δ diverging due to the presence of the [δ′]2 term. In the spherical collapse ap-

proximation, the radius of the density perturbation, r ∼ (1 + δ)−1/3 tends rapidly

to zero when this happens. In my calculations I set the threshold for divergence

to be δ > 108, following a spherical collapse code provided by Mead (2017). This

is an arbitrary choice, with results being insensitive to the divergence threshold

provided that a very large value, δ � 1, is used.

The linear growth equation does not exhibit this behaviour so δc is defined as

the solution to linear growth extrapolated to the time that the non-linear growth

equation diverges. This represents the time of collapse. By varying the initial

density perturbation within the range 2.0 × 10−7 ≤ δcdm,in ≤ 10−3, the time re-
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Figure 5.1: Virial density ratios to the ΛCDM case for linearly increasing (redder
lines) coupling strengths in the range 0 ≤ β ≤ 0.5.

quired to reach collapse also changes. In an EdS cosmology, the linear collapse

threshold is insensitive to this initial condition. A larger initial density pertur-

bation is compensated for by an earlier collapse time so that δc does not change.

The threshold can be evaluated analytically as (Padmanabhan, 1993)

δc =
3

20
(12π)2/3 ≈ 1.686, (5.22)

for all ac. In ΛCDM or dark energy cosmologies, the era of matter domination

gives way to a regime of acceleration which damps the growth of structure. In

these models, the collapse threshold must be calculated numerically. For per-

turbations with early collapse times, the EdS result holds but δc decreases to

δc ≈ 1.676 for those with ac = 1 and (Ωm = 0.3,ΩΛ = 0.7).

Wintergerst and Pettorino (2010) numerically compute the variation in δc (ac)

for different β in a CDE model. They find that for β . 0.4 and zc ≥ 5, the

threshold increases by a factor quadratic in β, given by

δc ∝
(
1 + 0.556β2

)
. (5.23)
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This functional form also holds for later collapse times up to zc = 0 for smaller

coupling strengths, such as β ∼ 0.05, which are within observational limits. Win-

tergerst and Pettorino (2010) interpret their result by noting that linear and

non-linear growth are enhanced in equations (5.17) and (5.21) by terms that

enhance the gravitational source (in effect, modifying the effective gravitational

strength) by a factor quadratic in β and reduce the Hubble drag term that damps

structure growth by a factor linear in β. As a result the density perturbation di-

verges earlier in the non-linear growth equation, at a time when the linear density

value in linear theory is lower. However, the linear growth has also been boosted.

In the non-linear growth equation, the contribution from the reduction to the

Hubble drag is made negligible during matter domination as it is a linear term.

By contrast, in the linear growth equation this has a comparable effect to the en-

hanced gravitational potential. Therefore, the linear growth responds more than

the non-linear growth to increased β, leading to the boost in equation (5.23).

5.2.5 Virial density threshold

In their work, Wintergerst and Pettorino (2010) do not calculate ∆v for a CDE

cosmology. Here, this calculation is performed so that there are spherical collapse

predictions for both δc (β) and ∆v (β) functions that can be used in the halo model

to compute the CDE matter power. Before discussing the general prescription for

calculating the virialisation density, it is necessary to introduce the underlying

virial theorem. For a stably bound system of N particles, Clausius (1870) first

showed through mechanical arguments that the total kinetic energy averaged over

time can be expressed in terms of the separation between the particles and the

forces acting on them via

〈T 〉 =
1

2

N∑
i=1

〈Fi · ri〉. (5.24)

In cosmology, where composite structures bound under gravity are the principal

objects of interest, this theorem is extremely useful. If the force results from a

Newtonian gravitational potential energy, Ugrav ∝ r−1 the virial theorem simplifies

to

T = −1

2
U, (5.25)

where time-averaging is now implicit. The radius of a perturbation grows until it

reaches a maximum turn-around radius, rta, at which time the gravitational force
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overcomes the background expansion and the perturbation should decrease in size

until it completely collapses according to the growth equations. In physical struc-

tures, anisotropic collapse prevents this from happening, with virial equilibrium

being obtained as the structure reaches a final bound state. Energy conservation,

and the fact that Tta = 0, leads to the virial radius of an object being given by

rv = rta/2. The turn-around radius can be found in a numerical computation

by locating the maximum value of r ∼ (1 + δ)−1/3 when evolving the non-linear

density. The virial density, or specifically ∆v − 1 = (ρ/ρ̄)v − 1, at collapse is

then determined by evaluating the value of the density perturbation at rv via rta,

and multiplying by the factor (ac/av)
3. For an EdS cosmology, ∆v ≈ 178, but at

ac = 1 for a ΛCDM cosmology this increases to ∆v ≈ 310 (Mead, 2017).

The approximations used here are strictly limited to an EdS cosmology. If there

is a dark energy component, it is no longer true that energy is conserved be-

tween turn-around and collapse. The self-gravitation of matter is opposed by

the effective force of accelerated expansion. Lahav et al. (1991) show that by

adding a potential energy term for ΛCDM the relationship between the virial

and turn-around radius is given by

rv
rta

=
1− η/2
2− η/2

(5.26)

where η is determined by the ratio of Λ to the turn-around matter density. This

reduces the virial radius. The required modification of the virial theorem for CDE

is likely to be less straightforward as the coupling between matter and dark energy

complicates the effective gravitational potential and introduces a dependence on

β. The focus of this work is not to reformulate the virial theorem itself for CDE,

so I retain the rv = rta/2 approximation for the computation of the virial density.

Mead (2017) notes that physical collapsed structures have a much more complex

relationship with external forces in dark energy models than the spherical collapse

model suggests, and that the shortcomings the EdS virial approximation may be

less significant than these limitations. This work takes this position as well, but

notes that differences between my spherical collapse predictions and the values

of ∆v indicated by simulations may be substantially different for these reasons.

This approach therefore represents a first pass at including β-dependence in ∆v.

In Figure 5.1, the virial density for different β, relative to the ΛCDM case, is
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computed using the approach that has been discussed. Increasing β decreases the

virial density, a reflection of the fact that perturbations grow to larger radial sizes

at turn-around due to the energy transfer from dark matter to dark energy. It is

found that the dependence on the time of collapse is limited but non-zero. Large

coupling strengths exhibit greater dependence than smaller coupling strengths.

For β that are small enough to be relevant for large scale structure survey fore-

casts, it is sufficiently minimal that it can be ignored.

The effect of β on the ratio of the CDE virial density at collapse redshift, zc = 0,

to the ΛCDM case is shown in Figure 5.2. I find that the quadratic fit,

∆v ∝
(
1− 1.08 β2

)
(5.27)

matches the spherical collapse predictions to within 0.4% for β . 0.45. It is

interesting to note that the dependence on the coupling strength is quadratic, as

is the case for the linear collapse overdensity found by Wintergerst and Pettorino

(2010). It may be that it is the β2 modification to the effective gravitational

potential in the non-linear growth equation that drives the changes to ∆v. The

fact that the βφ′ modification to the Hubble drag becomes less relevant at the

time of collapse in the non-linear growth equation further supports this possibility.

5.3 Fits to simulations

To determine values of collapse and virial quantities in CDE that will permit

accurate fits of the HMCODE matter power spectrum to the CoDECS mat-

ter power spectra (Baldi, 2012), a least squares fit for the ratio, R (k, β; z) ≡
Pm (k, β; z) /Pm (k, β = 0; z), is performed. This entails computing

χ2 =
n∑
i

(
Rmodel (ki, β; z)

Rsim (ki, β; z)
− 1

)2

(5.28)

for the (constant) coupling strengths, β = {0.05, 0.10, 0.15}, using the power

spectrum provided by CoDECS at n ∼ 60 different k values. I generate halo

model power spectra with the linear power provided by CoDECS results directly.

The non-linear 1-halo power depends on the clustering strength σ (M), which in
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Figure 5.3: χ2 fits of δc and ∆v to the CoDECS ratio of CDE matter power to ΛCDM
power, for different coupling strengths, β. The best fit values are denoted by the white
markers. The Mead et al. (2016) power spectrum is used, including their ΛCDM fits
for δc and ∆v.



5.3. FITS TO SIMULATIONS 165

10−2 10−1 100 101

1.00

1.02

1.04

1.06

1.08

1.10

P
C
D
E
( k
) /
P
Λ
C
D
M
( k
)

β=0.05

CoDECS Exp001
∆v,CDE/∆v,ΛCDM =0.96

10−2 10−1 100 101

0.996

0.998

1.000

1.002

1.004
R
fi
t(
k
) /
R
si
m
( k

)

β=0.05

10−2 10−1 100 101

1.00

1.05

1.10

1.15

1.20

1.25

1.30

P
C
D
E
( k

) /
P
Λ
C
D
M
( k

)

β=0.10

CoDECS Exp002
∆v,CDE/∆v,ΛCDM =0.86

10−2 10−1 100 101

0.98

0.99

1.00

1.01

1.02

1.03

R
fi
t(
k
) /
R
si
m
( k

) β=0.10

10−2 10−1 100 101

1.2

1.3

1.4

1.5

1.6

1.7

1.8

P
C
D
E
( k

) /
P
Λ
C
D
M
( k

)

β=0.15

CoDECS Exp003
∆v,CDE/∆v,ΛCDM =0.74

10−2 10−1 100 101

k/(h/Mpc)

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

R
fi
t(
k
) /
R

si
m
( k

)

β=0.15

Figure 5.4: Ratios of matter power spectra at z = 0 for CDE to ΛCDM for β =
{0.05, 0.10, 0.15}. Red crosses correspond to CoDECS simulation results (Baldi, 2012),
while blue curves represent results from the halo model. The virial density has been
modified to achieve the best fits to simulations, with the accuracy shown in green below
the relevant panel.
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turn depends on the linear power. As Baldi (2012) evolve their simulations from

fixed initial conditions, the growth function and linear power varies between CDE

models at z = 0. This leads to different σ8 = {0.825, 0.875, 0.967} for different

CDE models compared to σ8 = 0.809 for ΛCDM. I adjust the value of σ8 ap-

propriately for each β > 0 model before fitting for ∆v and δc. The dark energy

equation of state at z = 0 is also slightly varied as w = {−0.997,−0.995,−0.992}
to allow for a stable computation of the background. The remaining cosmological

parameters are given by the WMAP7 results (Komatsu et al., 2011).

In Figure 5.3, I show my χ2 results for each of the CDE models at z = 0 for

a range of fractional changes to δc and ∆v from their β = 0 values in HMCODE.

I find that the best fit values are those with essentially no change to δc, but

with significant changes for ∆v. Linearly increasing the δc change requires the ∆v

change to be linearly reduced to achieve the best fit. However, this is not a line of

degeneracy and the quality of the fit still degrades along it away from the best-fit

value in the region. If, for example, spherical collapse results for the δc change

were imposed, the χ2 values increase notably from the best-fit case regardless of

the ∆v used.

At z = 0 the best fit ∆v values for each β can be described by the fitting function,

∆v ∝
(
1− 12.00 β2

)
, sim. fit (5.29)

to 1.2% accuracy (see Figure 5.2). This shares the quadratic form predicted by

the spherical collapse calculations but the β2 modification requires an amplitude

greater by an order of magnitude. My results indicate that spherical collapse is

not a sufficient framework in which to predict the impact of CDE on halo den-

sity parameters. One explanation for this could be that the approximations that

have been used for the virial theorem are insufficient. As has been discussed, the

change from the EdS relation between virial and turn-around radii to one correct

for CDE would depend on β.

Another possibility becomes apparent by examining the work of Baldi et al.

(2010) and Baldi (2011a) that preceded the final development of CoDECS. A

limitation of the spherical collapse calculations is that they do not account for

the fact that for non-linear virialised structures, particle trajectories include non-
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negligible tangential components alongside the radial contribution. Compared to

the linear regime, velocity dependent acceleration can have significantly different

effects. This directionality does not feature in the spherical collapse model but is

accounted for in the CoDECS simulations. Baldi et al. (2010) show that deriving

the Euler equation from the perturbed stress-energy tensor in CDE leads to a

modified expression for the acceleration,

v̇ = −H

(
1−

√
2

3

βφ̇

H

)
v − G (1 + 4/3β2)M

r
, (5.30)

of a particle at position r with velocity v. Here M is the mass of a spherical mass

distribution at r = 0. The physical coordinates, r = a (t) x of the particle can be

written as

ṙ = Hr + a (t) ẋ (5.31)

where the final term is a peculiar velocity. By recasting this equation in terms

of the variable, p ≡ a2 (t) ẋ, the modified acceleration of the j-th particle in a

system of N particles can be expressed in the form (Baldi et al., 2010),

ṗi =

√
2

3
β φ̇p +

1

a

∑
i 6=j

G (1 + 4/3 β2)Mjxij
|xij|3

. (5.32)

It is clear that in this formulation the acceleration experienced by particles in

CDE is due to a (β modified) Newtonian gravitation and an additional velocity-

dependent term that is entirely separate from the physics of the matter distribu-

tion. This again represents the effective anti-friction, reducing the Hubble drag

and accelerating particles in the direction of their travel. This is attributable to

the fact that for β > 0 and φ̇ > 0 the transference of energy is from dark matter

to dark energy. There is an analogous term reducing the drag in the growth equa-

tions that comes from taking the divergence of the above equation. The velocity

divergence determines the flow of material, and hence how the density grows.

However, an important distinction here is the effect of the orientation of particle

velocities. In the non-linear regime, tangentially aligned velocities will contribute

to deviations from the predictions of spherical collapse, which treats the velocity

as purely radial. Indeed, Baldi (2011a) find that the velocity-dependent acceler-

ation is the most significant contribution in simulations to changes to the matter

power spectrum and the halo density profile in the non-linear regime. By con-
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trast, effects like the effective fifth force arising from the modified gravitational

potential or the loss of mass from cold dark matter particles contribute relatively

little.

Beyond this discussion, this work does not resolve the discrepancy between the

predictions of ∆v (β) from spherical collapse and the best fits found to CoDECS

power. A primary interest is whether modifying density thresholds that char-

acterise the halo model can provide sufficiently accurate matches to simulated

power. If this is achievable then the required fitting function allows β to be intro-

duced to the forecast analysis performed in previous Chapters. In Figure 5.4 the

best fits of HMCODE power spectra, with modified ∆v, to CoDECS simulations

at z = 0 are shown for β = {0.05, 0.10, 0.15}. I have appropriately increased σ8

from its ΛCDM value to the value determined by changes to the growth func-

tion for each β. This increase boosts both linear and non-linear power. ∆v is

then artificially decreased (while the concentration stays fixed) to suppress the

1-halo term. The ensuing fits to the CoDECS results are accurate to at the

sub-percent level for small β ∼ 0.05, and to within a few percent for β ∼ 0.15

across scales 0.01h/Mpc ≤ k ≤ 10 h/Mpc. The spherical collapse overdensity

has also been slightly modified but the required changes are less than percent

level (δc,β/δc,ΛCDM = {1.0001, 1.0002, 1.0012}) and so have not been marked on

the plot.

For redshifts z > 0, I find that the best fits require the fractional virial den-

sity response to β to decrease as the cumulative effect of CDE on non-linear

structure increases over time. Fits were performed for β = {0.05, 0.10, 0.5} for 12

CoDECS simulations at different redshifts in the range 0 ≤ z ≤ 1.25. Simulations

at larger z do not provide sufficient data in the non-linear regime, extending to

k < 5h/Mpc, so they were not included. It was found that the quadratic de-

pendence on β for ∆v works well for these redshifts. I capture the diminishing

CDE impact on ∆v at earlier times with a function of Ωm (z; β), to maintain the

HMCODE approach of using physical parameters to make empirical fits. The

best functional form was found to be

∆v ∝
(
1− c1|ln Ωm (z; β) |c2β2

)
, (5.33)
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Figure 5.5: Halo density profiles for a halo of mass 2 × 1014 h1M� for ΛCDM
(black) and a coupled dark energy model with β = 0.24 (red). The corresponding
virial limits are marked by the vertical dashed lines at rv,ΛCDM = 983h−1 kpc and
rv,CDE = 1466h−1 kpc.

where c1 = 11.829 and c2 = 0.576. At z = 0 this fit is accurate to ∼ 0.5%

for β = 0.05 on all scales of interest. For larger β = 0.10 and β = 0.15 the

accuracy degrades to ∼ 1% and ∼ 5% respectively. The fitting function of Casas

et al. (2016) achieves percent level or better fits for these β, but requires 40 free

parameters compared to my two, with c1 and c2. My fit also has an physical in-

terpretation within the halo model and a form motivated by collapse arguments.

Moreover, the focus of this work is to perform forecasts using a fiducial coupling

strength of β = 0.05, for which the accuracy is well below subpercent level at

z = 0 and within ∼ 1.25% for z = 1.25.

Figure 5.5 shows how the density profile responds to β through the virial density.

In this case the chosen value is β = 0.24, far greater than the bounds placed by

observations on the coupling strength. This serves to visibly illustrate the effect
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of an increased virial radius (via a decreased ∆v) on the halo density profile. For

a fixed mass, haloes are bloated outwards, which suppresses the density profile

on small scales as the concentration is also fixed. On large scales the CDE and

ΛCDM profiles converge. Due to the increased virial radius, integrating over the

profile returns the same mass in both models. This behaviour bears some similar-

ity to the density profile response to changing the baryonic feedback parameter

(see Chapter 3). This is to be expected as it has been shown that

ρ (r,M) =
ρs
ν3η

1(
r

νηrs

) [
1 +

(
r

νηrs

)]2 , r ≤ νηrv (5.34)

for the baryon-halo model, with the virial radius increasing with η for ν > 1. This

indicates at the outset that CDE and baryonic phenomena may have degenerate

effects on halo structure. The choice of β = 0.24 also allows for comparisons

to Figure 6 of Baldi (2011a) which uses this value to compute the halo density

profile through simulations. I find that the shape of my profile, the convergence

to ΛCDM on large scales, and the factor ∼ 2 suppression of the density on scales

of r = 10 kpc/h is consistent with their results. This lends further support for

the ansatz that non-linear matter power in CDE can mostly be accounted for by

an increased halo virial radius or, equivalently, a decreased virial density.

5.4 Forecasts

5.4.1 Power spectra responses

A Fisher analysis encounters challenges in determining the sources of degenera-

cies between parameters that may be apparent in forecast results. As has been

discussed in Chapters 3 and 4, one way to gain an intuitive understanding is to

study the response of the underlying probes to varying parameters across scales

of interest. In this case, the relevant statistics are the matter power spectrum

and the weak lensing convergence spectrum. I show response plots for the former

at z = 0 in Figure 5.6 and the latter in the redshift bin 0.79 ≤ z ≤ 0.89 in

Figure 5.7. When computing the lensing power, it was important to incorporate

the effects of β on the background (which changes e.g., the comoving distance, χ,

via the Hubble parameter) and the growth factor (which is required to determine
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Figure 5.7: Lensing power spectrum responses for the ij = 44 redshift bin 0.79 ≤
z ≤ 0.89. Parameters in Θfid = (AB, η0,Ωm,Ωb, h, σ8, ns, β) are varied in the range
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the contributions of matter power for z > 0).

A feature shared by several of the response plots are nodes at the scales at which

clustering is fixed to compute σ8. As power is normalised at these scales, this has

a significant impact on the shape of the power response. The response is closely

related to the logarithmic derivative of power with respect to a parameter that

control the Fisher information, so the normalisation exerts an important influence

on the final forecasts.

The results presented here differ from those of e.g., Casas et al. (2016), who

normalise power at the initial amplitude, As instead in their forecasts. As a

result, varying the coupling strength can have a substantial effect on power at

z = 0 as differences over the entire growth history contribute. By contrast, my

normalisation ensures that only the non-linear effects on the virial density impact

the power, with the large scale power given by constant Plin (k). A fiducial value

of βfid = 0.05 is used for the forecasts presented here, as this is small enough to

be consistent with Planck CMB observations that restrict β . 0.06. Varying the

coupling strength by 10% around this value changes the power by 0.4% at most,

as only non-linear scales are influenced. As such, far less stringent constraints

would be expected than those reported for β2 by Casas et al. (2016). It should

be emphasised that the amplitude of power on linear scales does respond to β for

z > 0 via the growth factor. This is relevant for lensing forecasts, although the

responses for non-linear modes provide the dominant contribution to the total

Fisher information.

The σ8 normalisation also explains the differences between the shape of the re-

sponse to β in Figure 5.6 compared to the shape of the ratios of CDE power to

ΛCDM power in Figure 5.4. The linear power spectrum at z = 0 is fixed in the

response plot, with the decrease of power on increasingly non-linear scales being

equivalent to the high-k tails in Figure 5.4 having been suppressed relative to a

case where the virial density is not modified. The reduction in ∆v with increasing

β in equation (5.33) results in an increased virial radius. For a fixed mass, haloes

are therefore more bloated, suppressing the density profile on small scales, as

illustrated in Figure 5.5. Therefore, the matter power decreases in this regime.

The ∆2 (k) responses to varying parameters contribute to the corresponding C`
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responses, and so the former are generally reflected in the latter. However, differ-

ences arise from the latter accounting for redshift-dependent influences on struc-

ture along the line of sight. The lensing weight function introduces a dependence

on background geometry that can have a significant effect, especially if it com-

petes with the contribution from the growth of structure provided by the matter

power. This was explored in Chapter 3 for responses of power to varying the

parameters controlling the dark energy equation of state. In this case, the ∆2 (k)

and C` responses are different in sign and shape. For the coupling strength, in-

creasing β suppresses the growth of structure through the transfer of energy from

dark matter to dark energy, as discussed previously. This has the consequence

of lowering the lensing power. Increasing β also further drives the background

expansion, increasing H (z). The comoving distances, χ, that characterise the

lensing kernel must decrease to compensate for this. As a result, the lensing

power is reduced. Growth and geometry both damp power, so the sign of the

lensing power response is the same as the matter power response. However, the

influence of β on the background quantities is significantly smaller than the influ-

ence from non-linear matter power or from the growth function, which becomes

relevant for large scale modes due to integrating over the line of sight. Therefore,

there is no substantial change to the shape of the response.

In the response plots, the effects on power of the baryon parameters, AB and

η0, controlling adiabatic contraction and baryonic feedback are included. As has

been seen in preceding Chapters focused on dynamic dark energy and massive

neutrinos, marginalising over baryonic effects is one of the major systematics

for Stage IV surveys, so it is necessary to explore this in order to make a ro-

bust assessment of the prospects for constraining β. The relevant details are

once again highlighted here that AB straightforwardly amplifies the power on

non-linear scales, due to it enhancing the small-scale density profile. The feed-

back parameter is both scale- and mass-dependent such that high-mass haloes

are bloated while lower mass ones are reduced. The former has the dominant

effect on matter power, and so larger η0 suppress ∆2 (k). It also determines the

location of a peak in the response, where the largest impact on power occurs for

mildly non-linear scales associated with large, high-mass haloes. At earlier times,

the peak is translated to deeper non-linear scales as the predominant haloes are

smaller.
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There are potential degeneracies apparent between β and both AB and η0. The

coupling strength uniformly suppresses non-linear power while AB uniformly am-

plifies it. However, it is clear that the response to β does not grow exponentially

at all non-linear scales like the AB response. This is because it increases the virial

density and decreases the virial radius. This changes the effective scale because,

for a fixed concentration, it is the quantity k rv that is relevant in the Fourier

transform of the NFW density profile (Cooray and Sheth, 2002),

uNFW (k|MNFW ) =
1

ln (1 + c)− c
1+c

×

{
F (k, rv) cos

(
krv
c

)
+G (k, rv) sin

(
krv
c

)
− sin (krv)

krv
(1+c)
c

}
, (5.35)

where

F (k, rv) ≡ Ci

(
krv
c

(1 + c)

)
− Ci

(
krv
c

)
G (k, rv) ≡ Si

(
krv
c

(1 + c)

)
− Si

(
krv
c

)
. (5.36)

For highly non-linear scales, the 1-halo matter power is re-scaled by β according

to

P1h ∼

[
k

(
∆v (β)

∆v (β = 0)

)−1/3
]−n

(5.37)

For mildly non-linear scales, there is a more complex interplay between trigono-

metric functions determining uNFW (k|MNFW ), representing the transitional regime

between the cubic and linear behaviours of the profile on small and large scales.

This manifests as a more gradual power response on intermediate scales, featuring

a shape more comparable to the peaked response of power to η0 in this regime.

Some degeneracy may indeed be expected between β and η0 as the latter also

modifies the virial limit, as seen in equation (5.34).

5.4.2 Results

For a Euclid-like weak lensing survey, (AB, η0,Ωm,Ωb, h, ns, β, aIA) Fisher ma-

trices are computed. By including the intrinsic alignment amplitude as a free

parameter, I account for this significant lensing systematic. However, it should
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Figure 5.8: 1-σ 2-parameter weak lensing confidence ellipses for Ωm-β using weak
lensing only (top left), with baryon parameters fixed (marginalised over) shown as
orange (blue) ellipses; weak lensing and CMB priors (top right), with baryons fixed
(marginalised over) shown in light green (dark green); weak lensing and galaxy cluster-
ing (bottom left), with baryons fixed (marginalised over) shown in magenta (purple);
and weak lensing, CMB priors and galaxy clustering (bottom right), with baryons fixed
(marginalised over) shown in pink (red). All other parameters are marginalised over.

σ σbarfix Rbar

WL 0.0120 0.0102 1.178
WL + CMB 0.0116 0.0060 1.947
WL + GC 0.0115 0.0064 1.800

WL + CMB + GC 0.0110 0.0054 2.047

Table 5.1: 1-σ error forecasts for a Euclid-like survey of the coupling strength between
dark matter and dark energy. I present the errors σ (σbarfix) for the cases where the
baryon parameters are marginalised over (kept fixed), and the ratios of these errors,
Rbar = σ/σbarfix. Results are included for weak lensing only; weak lensing and CMB
priors; weak lensing and galaxy clustering; and weak lensing, CMB priors and galaxy
clustering.
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Figure 5.9: 1-σ 2-parameter weak lensing confidence ellipses for Θfid =
(AB, η0,Ωm,Ωb, h, σ8, ns, β, aIA). Blue ellipses correspond to marginalisation over all
other parameters. Orange ellipses have baryon parameters fixed to their fiducial values
so that they are not marginalised over.
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be noted that the main impact of intrinsic alignments is to induce bias in mea-

surements. The error forecasts are generally not as severely impacted, as was

demonstrated in Chapter 4. Intrinsic alignments are not dealt with in depth in

this Chapter so a full analysis of their impact on coupling constraints will be

deferred to future work.

The final set of parameters for the spectroscopic galaxy clustering forecast is

(Ωm,Ωb, h, ns, σ8, β), which excludes the baryon parameters as they are not rele-

vant for the linear scales probed. Following the same prescription for galaxy clus-

tering Fisher forecasts in Chapter 4, free parameters controlling the AP effect,

growth, galaxy bias and residual shot noise within each redshift bin independently,

{DA (zi) , H (zi) , fσ8 (zi) , bσ8 (zi) , Pshot (zi) |i = 1, ..., Nz,GC}, are propagated along-

side redshift-independent parameters, {ωm, ωb, ων , h, ns}, controlling the shape of

P (k). Once again, the bias and shot noise parameters are marginalised over be-

fore the remaining parameters are projected via a Jacobian transform into the

final parameter set.

The greatest constraints on the coupling strength are expected to come from

the non-linear regime, as indicated by my power response plots. Therefore, I

treat the weak lensing forecast as my baseline set of results to analyse. In this

context, information from galaxy clustering is then added in the form of a prior.

To acquire the most robust forecasts from a comprehensive range of cosmological

information sources, CMB Planck priors are also included.

Table 3.2 provides the survey parameters used for a Euclid-like survey (Laureijs

et al., 2011). Following the same Fisher methodology as previous Chapters, I use

Nz,WL = 10 redshift bins spanning the range 0 ≤ z ≤ 2. The bin widths are chosen

such that each bin contains an equal number density of galaxies. I compute the

summation over lensing modes in (3.23) using logarithmic intervals, as multiple

orders of magnitude are included in the range `min = 10 to `max = 5000. In Fig-

ure 5.9 the full weak lensing confidence plots are presented from my Fisher analy-

sis for each pair of parameters in Θ = (AB, η0,Ωm,Ωb, h, σ8, ns, β, aIA). Wherever

relevant, confidence regions are shown for cases with and without marginalisation

over baryonic effects. The fiducial values of the cosmological parameters are those

given by Table 3.1.
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Figure 5.8, shows results for Ωm-β parameter confidence regions for different

combinations of weak lensing, galaxy clustering and CMB priors, in each case

with and without marginalising over baryons. The GC forecast methodology and

treatment of CMB priors is the same as for work in previous Chapters, which

provide the necessary detail. In particular, it should be noted that my GC re-

sults incorporate low redshift data from BOSS. I provide the corresponding 1-σ

error forecasts for β in Table 5.1. Using the power spectra generated by the

halo model with the∆v (β) fitting function on non-linear scales, it is found that a

σWL = 0.0120 constraint can be placed on β using weak lensing alone. However,

if one neglects to marginalise over the baryon parameters (or, equivalently, as-

signs Dirac delta functions centred on their fiducial values as priors), it is found

that the constraint improves by 18% to σ = 0.0102. This represents a signifi-

cant degree of degradation due to baryon uncertainty. The weak lensing power

spectrum response plot in Figure 5.7 foreshadows this. For ` & 300, there are

similarly shaped C` responses for β and η0 in particular. In both cases, their sup-

pression of power is broadened by averaging over effects along the line of sight.

Although I do not explore the issue in any depth here, I found that the forecasts

for β improve only very slightly when neglecting to include (and marginalise over)

intrinsic alignment effects in the lensing model. Chapter 4 discusses the wider

implications for cosmological forecasts between cases with and without intrinsic

alignments.

By adding CMB and GC priors, one can achieve notable improvements of 40%

and 35% to give σWL+CMB = 0.0060 and σWL+GC = 0.0064 respectively on the

β constraint in a scenario where baryon parameters are fixed. In each case this

is largely a consequence of benefiting from a repository of information on the

other cosmological parameters being marginalised over. For example, the CMB

provides significant constraining power for parameters like the spectral index,

while GC narrows the errors on parameters like Ωm as seen in Figure 5.8. For β

itself one would also expect some improvements from the GC probe measuring

the changes to the linear growth of structure, but as has been discussed previ-

ously this is a subdominant effect compared to the non-linear impacts captured

by the WL probe. Adding both sets of priors further improves the constraint

by another ∼10% to σWL+CMB+GC = 0.0054. This is not a dramatic improve-

ment on the impact of either set individually, potentially indicating that some

parameters are constrained well enough by WL+CMB and by WL+GC that the
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impact of marginalising over them is minimal. Hence, further constraints in the

WL+CMB+GC case have a limited contribution to the β forecast.

However, in the case where baryons are marginalised over it is found that CMB

and GC priors lead to far less substantial improvements of ∼10%. As a result, the

relative baryon degradation increases from ∼18% to a factor ∼2. This indicates

that the main degeneracies with β are with the baryon parameters, and that

these remain a dominant influence on forecasts even when degeneracies with cos-

mological parameters are significantly mitigated. This is reflected by the power

spectra response plots which clearly indicate that the behaviour of β in changing

matter and lensing power is mimicked fairly closely by AB and η0 but not by

the cosmological parameters. An important conclusion, therefore, is that while

the baryon degradation is not completely detrimental to coupling strength con-

straints, it cannot be ignored and, moreover, that multiple probes of large scale

structure are unable to meaningfully mitigate its influence. To substantially im-

prove constraints, it will be necessary to enhance the available information on the

baryon sector itself, whether from future sets of observations or more powerful

simulations. Chapter 3 explores this route for the purposes of mitigating baryon

degradation of w0-wa constraints. However, the scope of this work is limited to

reporting the initial results without attempting to assess the prospects for en-

hanced baryon priors. This is deferred to future work.

It should be noted that as the errors forecast for β are comparable to or smaller

than the accuracy of my halo fitting function with respect to CoDECS simula-

tions, there are grounds to claim that further improvements to the CDE halo

model presented here will be required for Euclid-like surveys to accurately con-

strain the coupling strength.

5.5 Summary and Discussion

This Chapter has explored the influence of a coupling between dark matter and

dark energy on non-linear structure in the halo model. I have expressed the

virial density threshold, ∆v, as a function of the coupling strength, β, allowing

me to generate matter power spectra in HMCODE that fit the power spectrum
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results of the CoDECS simulation suite to percent level accuracy or better at

all relevant scales and redshifts for coupling strengths of interest to survey fore-

casts. I have found that computing the virial density using the spherical collapse

formalism, modified by Wintergerst and Pettorino (2010), provided the correct

quadratic form of the effects of β on ∆v, but under predicted the amplitude by

an order of magnitude. There has been a discussion of several possible shortcom-

ings of the spherical collapse model that might contribute to an explanation of

this discrepancy. These include the use of an Einstein-de Sitter approximation of

the relationship between virialisation radius and turn-around radius of a density

perturbation undergoing collapse. This approximation incorrectly assumes a con-

servation of energy between the turn-around and virialisation which is counter

to a cosmology in which matter is transferring energy to dark energy. Another

possible limitation is that spherical collapse calculations do not account for the

complex non-linear behaviour of particles following trajectories in a CDE cos-

mology on non-linear scales, in particular the importance of a velocity-dependent

acceleration which Baldi (2011a) show has the main impact on matter power and

the halo density profile.

The ∆v (β) fit that has been presented here is sufficiently accurate for the pur-

poses of forecasts while using only two free parameters in contrast to the more

accurate fit of Casas et al. (2016) which requires 40 free parameters. My fit has

also been constructed using physical arguments rather than arbitrary fitting func-

tions of β, k and z. This has provided a basis for interpreting changes to power

with β through the underlying structural changes experienced by haloes. In turn

this has conferred a significant advantage in extracting the important information

from a Fisher forecast analysis, and has allowed for a more thorough diagnosis of

any degeneracies limiting the constraints on β.

In the Fisher analysis of this Chapter it has been found that weak lensing fore-

casts give errors of σ = 0.0102 for β if one neglects to marginalise over the effects

of baryonic astrophysics. However, I have shown through plots comparing the

response of matter and weak lensing power to varying different cosmological pa-

rameters that the β response is similar to the response to adiabatic contraction

and baryonic feedback. As a result, the error degrades by ∼20% to σ = 0.0120.

I have applied priors from the CMB and galaxy clustering to assess the scope

for mitigation. It has been found that the improvements to cosmological con-
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straints from these probes propagate through the Fisher analysis to almost halve

the errors on β provided that baryons are not marginalised over. However, when

including baryons there is very little overall improvement. This could be un-

derstood by noting from the power spectrum response plots and the confidence

ellipse plot that only mild degeneracies exist between β and the cosmological pa-

rameters. Improving upon cosmology constraints therefore has a limited impact

on the main degeneracy with baryons.

Future work in this area would be well-motivated to explore the prospects of

reducing the degradation to coupling strength constraints from baryons by using

external information on the baryon sector from future data or simulations. As

the forecast errors on β are comparable to the accuracy of the CDE power fitting

function presented here, it would be desirable to make further improvements to

the model in order for a Euclid-like survey to be able accurately constrain CDE

parameters. A possible avenue to explore in this regard would be to modify the

form of the halo concentration function as the Bullock et al. (2001) prescription

is not designed to accommodate beyond ΛCDM physics. From a theoretical point

of view it would also be interesting to better understand the reason for the large

effect that β has on the virial density and whether spherical collapse arguments

can be sufficiently improved upon to predict the values that best fit simulations.
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Conclusions and Future Work

This thesis has explored how modifications to the halo model that account for

phenomena not included in the standard ΛCDM formulation can be used for the

purposes of constraining these effects and analysing their impact on parameter

forecasts for weak lensing and galaxy clustering surveys. A core focus of this

work has been to perform Fisher analyses to determine the effects on dark energy

and massive neutrino constraints when marginalising over parameters in the halo

model that control baryonic astrophysical effects like adiabatic contraction and

AGN and supernovae feedback.

I have extended the baryon-halo model of Mead et al. (2015) to include a prescrip-

tion for inner halo cores (which may be caused by small-scale baryonic effects,

or possibly exotic dark matter) alongside parameterisations of adiabatic contrac-

tion and baryonic feedback. The motivation behind this approach has been to

use empirically motivated modifications directly to halo structure relaions that

reproduce accurate power spectra. This has been more useful for the purposes of

this work, which relies on accurate power spectra as probes for forecasts, than a

precise implementation of specific stellar and gas physics (e.g., Semboloni et al.,

2011; Mohammed et al., 2014). The inclusion of the inner cores into my baryon-

halo model represents a positive step towards being able to encompass a wider

range of baryonic effects on haloes.

However, there is naturally a great deal of work in the future that can be done to

improve baryon modelling. An alternative approach to the one in this work is the

‘baryonificiation’ method. This entails modifying the displacements of particles

183
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within haloes in N-body simulations based on baryon effects in the profile (Schnei-

der and Teyssier, 2015). This has the benefit of having free baryon parameters

that can be calibrated, while producing simulations that can accurately capture

the matter distribution. Compared to the ' 5 percent accuracy of HMCODE,

power spectra generated through this methodology are accurate to within ' 2

percent (Schneider et al., 2019). By modifying non-linear density fields directly,

it is possible to move beyond the two-point statistics of this work. One of the rea-

sons that baryonification holds promise in the future is that it could benefit from

new deep learning techniques that could be applied to the complex behaviours of

baryon dynamics in a large dark matter distribution (Chisari et al., 2019). Ex-

ploiting the recent advances in machine learning in this way could help to bridge

the gap between gravity-only N-body simulations and hydrodynamic simulations.

In Chapter 3, I have shown that forecasts of the w0-wa Figure of Merit for a

Euclid-like survey experiences a degradation of ∼40% due to marginalising over

baryon parameters in a Fisher analysis, with ∼10% and ∼30% degradations for

the individual w0 and wa 1-σ errors. This is a substantial impact that has sig-

nificant implications for the next generation of surveys. A valuable direction for

future work would be to perform the same analysis for other surveys, for example

preliminary results showing comparable baryon impacts for an LSST survey that

have not been included in this thesis. In the next few years it will be impor-

tant to be able to interpret results from multiple Stage IV surveys launching in a

similar timeframe. With regards to baryon impacts comparing forecasts between

surveys may help to identify survey specific systematics that compound the issue.

I have also shown the advantages that my framework offers in providing con-

straints on baryon parameters themselves. While forecasting is an important

part of this work, it should not be understated that these results are also impor-

tant for being able to inform the future modelling of baryons in simulations. I

have shown that Euclid-like surveys only constrain AB and η0 at the 50% and

10% level. Perhaps most significantly, my work indicates that if the inner core

can be confidently assumed to vanish then constraints on the adiabatic contrac-

tion and feedback parameters reduce from σAB = 0.866 and ση0 = 0.0476 to

σAB ,cusp = 0.134 and ση0,cusp = 0.0148. While constraints on the inner core itself

need to be regarded with the suitable context that a Euclid-like survey is unlikely

to be reliable probing such small scales, there are interesting implications for the
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cusp-core debate if future surveys are able to measure any inner core to within a

few kpc, as my results suggest.

In Chapter 4, I have shown that there is an even more severe baryon impact

on neutrino mass sum constraints using a Euclid-like weak lensing survey than

there is for dark energy. Forecasts of σΣNH
= 0.079 eV and σΣIH

= 0.120 eV were

found, which roughly doubled to σΣNH
= 0.156 eV and σΣIH

= 0.204 eV when

accounting for baryons. This is enough to easily rule out Stage IV surveys being

able to distinguish between the normal and inverted hierarchy. By contrast, the

effects of marginalising over intrinsic alignments on σΣ is fairly minimal. Indeed

there are only small differences between forecasts where intrinsic alignments are

included in the modelling and when they are excluded.

The baryon impacts for the final physical phenomenon explored in this thesis

- a coupling between dark matter and dark energy - are of a similar order to

those found for w0 and wa, with a degradation to the 1-σ error on β of ∼20%.

This is not surprising as all these parameters are connected in a similar way to

the growth of non-linear structure through their effect on acceleration.

The question of how best to mitigate baryon degradation in each case of dark

energy, neutrino mass and coupling strength constraints is one that this thesis has

addressed in detail. Chapter 3 found that, by exploring the relative sensitivity of

w0 and wa Fisher information on non-linear scales with and without baryons, that

simply extending the limits of the survey would have restricted improvements.

On an intuitive level this can be understood as the baryonic effects being most

prominent on non-linear scales and having obscured the substantial information

gain otherwise afforded to w0-wa constraints on these very scales. While this

has been useful to evaluate the additional priors required from the baryon sector

to reduce the baryon impact on dark energy constraints, implementing this in a

satisfactory way is likely to require future simulations with more sophisticated

baryon prescriptions. The greatest gains for dark energy were found through

CMB priors, relying on additional information on cosmological parameters prop-

agating through the Fisher analysis. This has shown to essentially completely

mitigate the individual impacts on σw0 and σwa , although the the improvements

to the Figure of Merit are a slightly more nuanced matter.
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The reliance on cosmological priors was again applied to the neutrino forecasts

and the coupling strength forecasts, with different degrees of success. In the case

of the former, a combination of weak lensing, galaxy clustering and CMB priors

was shown to reduce the baryon impact to the ∼10% level. I demonstrated how

the mass forecasts were still not sufficient for a meaningful distinction of the hi-

erarchies. However, the prospect of future improvements was discussed in detail.

I identified that stronger CMB priors on ns and information from neutrinoless

double beta decay were the optimal way to eventually achieve a 2σ distinction.

Exploring precisely how these priors may be attained, perhaps by Stage IV CMB

surveys, is therefore a valuable avenue of future work.

The case of the coupling strength in CDE proved interesting, as it was found

that galaxy clustering and CMB priors could make meaningful improvements

to forecasts when baryons were not accounted for. However, this approach was

largely ineffective at mitigating the baryon degradation.

Another feature of this work has been to discuss the limitations of the methodolo-

gies and modelling that have been employed here. In a sense, this is what much

of Chapter 5 has been concerned with. The limitations of modelling coupled

dark energy on non-linear scales through the halo model, by relying on fits to

simulations with many parameters with no physical basis, have been tackled by

identifying the virial density as the key parameter within the halo model that af-

fects the non-linear power as it varies with the coupling strength. This has lead to

a far simpler CDE halo model implementation, with a philosophy of interpreting

the effects on structure through physical arguments. However, it must be empha-

sised that this approach is not complete, the work presented here serving more

as a first pass effort. Discrepancies between predictions from spherical collapse

predictions and values of the virial density required to fit simulations highlight a

gap in understanding of how robust a halo model relying on the theory of spher-

ical collapse is in a coupled dark energy cosmology. There are many ways that

one could attempt to bridge this gap in the future. One way may be to explore

modifying the virial theorem to account for this type of beyond ΛCDM physics,

perhaps following similar approaches to those developed for modified gravity or

dark energy by previous authors.

The underlying Fisher formalism itself is also subject to the fair critique that,
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while a fast and computationally inexpensive tool, it falls short of the more pow-

erful methods like MCMC algorithms that are available. However, the thrust of

this work has consistently been to retain an understanding of the physical effects

of different parameters on power spectrum probes and then trace these through a

Fisher analysis constructed from the derivatives of the power with respect to the

parameters. In this sense the Fisher formalism has provided key insights into the

diagnostic process of identifying the source of parameter degeneracies and why

some methods of mitigation of baryon degradation, for example, are superior to

others. A specific shortcoming of the Fisher formalism in this work has been

its fundamental limitation when attempting to place constraints on the neutrino

mass sum given an underlying uncertainty about which of two models (the hier-

archies) is correct. Ideally, a bimodal likelihood would be incorporated into the

formalism (which is constructed from likelihood curvature around a single peak

of a mulit-variate Gaussian) to correctly account for this. The challenges facing

this are certainly considerable. While an analytical approach may fall short, nu-

merical methods may provide a route forward if this project were to be further

undertaken in future.

In summary, this thesis has provided a comprehensive assessment of the im-

pact that properly accounting for baryonic astrophysical effects (and to a lesser

extent, intrinsic alignments) on large scale structure probes will have on Stage IV

parameter constraints. Specific focus has been directed towards dark energy and

neutrino masses, two areas of particular interest to the cosmological paradigm.

The former is central to our interpretation of the accelerating Universe (and 70%

of its matter-energy content) and the latter ties directly into our understanding

of fundamental particles that exert a significant influence on cosmology. This

work has built on past research by modifying the halo model to account for be-

yond ΛCDM physics like inner cores and couplings between dark matter and

dark energy. This has allowed this thesis to come to wide ranging conclusions on

the overall significance of baryon impacts to parameter constraints, finding that

for many cosmological parameters the effects are severe for Stage IV surveys.

There remain prospects to achieve moderate to significant mitigation in certain

cases, although much of this is dependent on the development of improved baryon

modelling or more accurate simulations in future, or by achieving stronger cos-

mological priors from sources beyond weak lensing and galaxy clustering. The

overall outlook for Stage IV surveys should therefore be one of measured op-
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timism in cases but with due attention directed to overcoming the substantial

issues presented by baryonic astrophysics.
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X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye,

J. Fergusson, R. Fernandez-Cobos, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse,

E. Franceschi, A. Frejsel, A. Frolov, S. Galeotta, S. Galli, K. Ganga, C. Gau-

thier, T. Ghosh, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo,
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J. L. Puget, J. P. Rachen, R. Rebolo, M. Reinecke, M. Remazeilles, C. Re-

nault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, A. Rotti,

G. Roudier, J. A. Rubiño-Mart́ın, B. Rusholme, M. Sandri, D. Santos, M. Save-

lainen, G. Savini, D. Scott, M. D. Seiffert, E. P. S. Shellard, T. Souradeep, L. D.

Spencer, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A. S.

Suur-Uski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi,

M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen, L. Valenziano, J. Valiviita,

B. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus,

D. Yvon, A. Zacchei, J. P. Zibin, and A. Zonca (2016a). Planck 2015 results.

XVI. Isotropy and statistics of the CMB. A&A, 594, A16. doi:10.1051/0004-

6361/201526681.

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,

J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and

et al. (2016b). Planck 2015 results. XIII. Cosmological parameters. A&A, 594,

A13. doi:10.1051/0004-6361/201525830.

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,

J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, and

et al. (2016c). Planck 2015 results. XIV. Dark energy and modified gravity.

A&A, 594, A14. doi:10.1051/0004-6361/201525814.



BIBLIOGRAPHY 209

Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Bac-

cigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak,

R. Battye, K. Benabed, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock,

J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Buri-

gana, R. C. Butler, E. Calabrese, J.-F. Cardoso, J. Carron, A. Challinor,

H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P.

Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J.-M. Delouis,

E. Di Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac,
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S. Gratton, A. Gruppuso, J. E. Gudmundsson, J. Hamann, W. Handley, D. Her-

ranz, E. Hivon, Z. Huang, A. H. Jaffe, W. C. Jones, A. Karakci, E. Keihänen,

R. Keskitalo, K. Kiiveri, J. Kim, T. S. Kisner, L. Knox, N. Krachmalnicoff,

M. Kunz, H. Kurki-Suonio, G. Lagache, J.-M. Lamarre, A. Lasenby, M. Lat-

tanzi, C. R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier,

A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. López-Caniego,
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Appendix A

Formalism of General Relativity

The foundational material presented here is available in a number of reviews.

For a more detailed exposition of these ideas, Peacock (1999) is recommended.

Distances in curved spacetime can be encapsulated by a metric tensor, g, which

generalises the concept of the scalar product of vectors in Euclidean space. The

geometry of spacetime can be described by a differentiable manifold, M , upon

which the length of a smooth curve, x (t) : (t0, t1) −→M , defined for t0 < t < t1,

is given by ∫ t1

t0

dt
√
g (X,X) |x(t). (A.1)

Here, X is a tangent vector of the curve such that

X ≡ dx

dt
. (A.2)

The tensor properties of the metric allow it to be written as the outer product

g = gµνdx
µ ⊗ dxν −→ ds2 = gµνdx

µdxν = c2dτ 2, (A.3)

in which the right-hand side of the expression is a simplified notation that uses

the cosmological convention of denoting ds as the infinitesimal separation of two

points and τ as the quantity referred to as the ‘proper time’. The components of

the four-vector, dx, may be evaluated as those given by dxµ by an observer in one

frame, but observers in all frames will evaluate ds2 equally as this is the invariant

quantity. Index notation, µ, ν = {0, 1, 2, 3}, will be used to denote four-vectors

hereafter.
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216 APPENDIX A. FORMALISM OF GENERAL RELATIVITY

With a suitably defined metric, the General Relativity equation of motion ac-

commodates the equivalence principle by allowing general transformations from

freely falling frames to accelerating frames. There are a number of approaches to

deriving the result, known as the geodesic equation. Arguably the most elegant is

through applying the standard Euler-Lagrange formalism for extremising curves

to timelike trajectories (defined by ds2 < 0)1. The extremal case is one in which

a small perturbation to the curve has no effect on its length to first order. The

interval between two points along such a trajectory, λ (u), is the proper time,

which can be expressed as the functional

τ [λ (u)] =

∫ 1

0

du
√
−gµν (x (λ (u))) ẋµ (λ (u)) ẋν (λ (u)), (A.4)

where u is such that λ (0) < λ (u) < λ (1) and a dot represents derivatives with

respect to u. The curve of extremal proper time is that which satisfies the Euler-

Lagrange equation,
d

du

(
∂G

∂ẋµ

)
− ∂G

∂xµ
= 0, (A.5)

where G is the integrand of equation (A.4). Using the symmetric property of

the metric and replacing u with the proper time (a physical parameter that is

more convenient to use while solving the Euler-Lagrange equations), the geodesic

equation is eventually derived as

d2xµ

dτ 2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0, (A.6)

where the Christoffel symbols that determine the metric connection are con-

structed entirely from the metric and derivatives of the metric (which are written

using the convention, gµν,ρ ≡ ∂gµν/∂x
ρ) such that

Γµνρ =
1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) . (A.7)

1Timelike curves are followed by massive particles, which can be accelerated asymptoti-
cally towards the speed of light while never exceeding it. Photons, however, travel along null
geodesics, curves for which ds2 = 0. In Special Relativity, the world lines of a Minkowski
diagram associated with photons arriving at and emerging from some location define the causal
regions that an observer at this location can (or will ever be able to) interact with. The re-
sulting light cone is no longer necessarily defined by 45 degree lines in the warped spacetime of
General Relativity. Beyond the light cone are regions defined by spacelike geodesics which are
inaccessible to massive particles and photons and defined by ds2 > 0.
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In flat (Minkowski) space, the geodesic reduces to a straight line between its

start and end points. In curved spacetime the geodesic represents the shortest

trajectory available between these points. An analogy can be drawn between

the metric and the Christoffel symbols to gravitational potentials and gravita-

tional forces respectively. This will become more apparent when (mass-)energy

and momentum are introduced to this picture of geodesics in curved spacetime,

but can already be seen by noting the construction of the Christoffel symbols as

derivatives of the metric.

It is worth briefly discussing the term gµσ appearing in equation (A.7). This

is defined in terms of what the metric must be contracted with in order to pro-

duce the invariant quantity, δµν = gνρg
µρ. Quantities with lowered indices, Aµ, and

raised indices, Aµ, are called ‘covariant’ and ‘contravariant’ respectively. They

are related by the metric such that Aµ = gµνA
ν , which serves to effectively lower

and raise indices. It can be seen that General Relativity deals in ‘generally co-

variant’ tensor equations, those which hold the same configuration of raised or

lowered indices for all observers.

The curvature of spacetime is captured fully by the Riemann tensor. It de-

scribes the parallel transport of a four-vector around a small closed loop, along

which there exist different freely falling frames due to the curvature of the mani-

fold. This effectively characterises the tidal force experienced by a massive body

traversing a geodesic, and so is an invaluable quantity in General Relativity. It

can be constructed from the metric connection and its derivatives such that

Rµ
αβγ = Γµαγ,β − Γµαβ,γ + ΓµρβΓργα + ΓµργΓ

ρ
βα. (A.8)

The Ricci tensor, Rαβ, follows by performing a contraction such that µ ←→ γ,

and thence the curvature scalar, R = gαβRαβ. These two quantities, along with

the metric, are sufficient to determine the geometrical part of the Einstein field

equation via the Einstein tensor,

Gµν ≡ Rµν − 1

2
gµνR. (A.9)

Having introduced this underlying formalism for General Relativity, it is now

possible to relate geometrical perturbations to the spacetime manifold to the
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large scale matter-energy distribution that sources these distortions and charac-

terises the gravitational dynamics of the Universe. This will provide the energy-

momentum part of the Einstein field equation. The relevant quantity to be intro-

duced is the energy-momentum tensor, T µν , of spacetime. This is defined through

the flux, P µ, of the µ component of the momentum 4-vector over a surface with

fixed xν coordinate. This is related (via the invariant mass, m) to the corre-

sponding 4-velocity, U ≡ γ (c,v), in which γ is the Lorentz factor and v is the

3-velocity. On sufficiently large scales, such as those characterising cosmology, it

is permissible to approximate the matter-energy distribution as a perfect fluid, in

effect one that can be described entirely by macroscopic quantities like its total

density, ρ, and (isotropic) pressure, p. The energy-momentum tensor then takes

the form

T µν =
(
ρ+

p

c2

)
UµUν − p gµν . (A.10)

Energy-momentum conservation is encapsulated by the statement

∇µT
µν = 0, (A.11)

where ∇µ is the covariant derivative, which generalises the partial derivative, ∂,

to curved manifolds.

The energy-momentum tensor is the source term for the Einstein tensor that

describes the physical Universe. The two are related by

Gµν = −8π G

c4
T µν . (A.12)

When this is combined with the curvature described in equation (A.9) the Einstein

field equations can be written in the form

Rµν − 1

2
gµνR + Λgµν = −8π G

c4
T µν . (A.13)

The new addition characterises the contribution of a ‘cosmological constant’, Λ,

that Einstein originally introduced to allow for a steady-state Universe that did

not expand (or contract) as the field equations predicted. However, the field

equations are free to accommodate additional linear terms, provided they are

proportional to the metric, so the cosmological constant is self-consistent with

General Relativity. Indeed, its resurrection in the modern era of cosmology with
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a small positive value has been necessary to explain the observed acceleration of

the Universe.

Einstein’s field equations serve much the same purpose in curved spacetime as

Poisson’s equation. The weak field limit of the field equations, where Newtonian

gravity is approximately true and the field varies slowly across (space-)time, does

in fact resemble the Poisson equation:

∇2Φ ≡ c2

2
∇2g00 =

4πG

c2

(
ρc2 + 3p

)
. (A.14)

Note that the metric is perturbed from the Minkowski metric, ηµν by a small

quantity, hµν such that |hµν |� 1. The effective source term differs by the de-

pendence on the pressure term, which contributes to the ‘active mass density’ in

General Relativity.

The formalism of General Relativity, which has been presented only through

a brief introduction here, provides the framework through which the large-scale

properties and dynamics of the Universe can be modelled in an entirely math-

ematically consistent way. Within this apparatus, modern cosmology begins to

take shape.
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