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Abstract 

Funding allocation for complete genome sequencing has a severe taxonomic bias; nearly half 

of the completed or draft stage genomes are vertebrates. The luxury of a full genome 

sequence is unlikely to be available for the vast majority of organisms, regardless of their 

importance in terms of evolution, health or ecology. This has lead to the investigation of 

genomes of an increasing number of species, especially parasites, through generating 

expressed sequence tags (ESTs). 

Over 300,000 ESTs are available for 36 species of parasitic nematodes. These species 

include whipworm and filarial worms, which currently infect 3 billion people, as well as a 

large number of plant parasites. The need for a database and analysis suite, which integrates 

these transcriptomes with associated annotation and metadata, led to the creation of 

NEMBASE (http://www.nematodes.org ). The system enables comparative transcriptomic 

analyses across the phylum Nematoda. 

The focus of this thesis is the comparison of nematode proteomes. I describe my work to 

identify sequences and sequence features that have patterns of interest to nematode biology. 

Such patterns, include proteins that are unique to parasitic feeding strategy, and protein 

domains that have been lost in certain nematode lineages. This involved not only global 

comparisons of the proteomes, but also investigating the proteins domain complement from 

each species. 

One vital step in the analysis is identifying credible coding regions within the error-prone 

EST sequences. Robust identification of the coding regions presents an opportunity to 

perform comparative analysis previously confined to those working with complete genomes. 
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To achieve this, I built the translation pipeline prot4EST, a hierarchical collection of freely-

available algorithms. The benchmarking showed that prot4EST produced coding region 

predictions that were better than its constituent algorithms. Exploring the effect of sequence 

composition of both the studied species and the program's training sets, improved the 

accuracy of prediction. A database of high quality protein translations for all nematodes 

studied was generated, called NemPep. This was accompanied by a collection of predicted 

domains (NemDom). The decoration of protein sequences with domain annotation is not 

trivial, especially given the incomplete nature of ESTs. It was necessary to explore domain 

model assignment to ensure the most accurate results. The rigorous analysis of NemPep and 

NemDom has revealed: 

proteins specific to certain nematode-lineages, 

the level and potential effects of contamination in the original cDNA libraries, 

the extent of protein loss and domain modification in the caenorhabditid lineage. 

These findings are of particular importance to parasitic nematodes, as they highlight possible 

candidates for new anthelmintic drug targets. The methods used also offer new approaches 

for other complex cross-species comparisons. 
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Chapter One - Introduction 

1.1 The need for more sequence 

Complete genome sequencing is a major investment and is unlikely to be applied to the vast 

majority of organisms, whatever their importance in terms of evolution, health or ecology. 

Complete genome sequences are available for only a few eukaiyote genomes, most of which 

are model organisms. These species were chosen for the ease with which they can be 

manipulated in the laboratory, and not their relevance to 'wild' biology. Hence the focus of 

eukaryote genome sequencing has been on a restricted subset of known diversity, with, for 

example, nearly half of the completed or draft stage genomes being from vertebrates [2]. 

While Arthropoda and Nematoda have, respectively, three and two completed genomes, with 

a dozen others in progress, when compared to predicted diversity (over a million species 

each) current genome sequence illuminates only small parts of even these phyla. This 

disparity between sequence data and motivation for biological study is significant. Allied to 

this bias in genome sequence is a bias in functional annotation for the derived proteomes: a 

vertebrate gene is more likely to have been assigned a function due to the focus on humans 

and closely related model species such as mouse [3]. 

Diversity between organisms can be explored through any number of avenues. One way, a 

central theme through this thesis, is to study the proteomes of each organism [4]. In 

multicellular organisms the set of proteins expressed in a cell differs from cell type to cell 

type and will change with time because gene regulation controls advances in development 

from the embryonic stage and further on. The proteome considers all these proteins and can 

be defined as the full complement of the polypeptide sequences encoded by the majority of a 

species' genes. There is a proportion of genes which are transcribed but not translated; these 

are classified under the umbrella term RNA genes and include, tRNA (transfer), miRNA 
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(micro), rRNA (ribosomal) and ncRNA (non-coding) [5,6]. 

The proteomes of all organisms can be thought of occupying proteinspace. The concept of 

proteinspace conveys a different meaning to different people. For this body of work, I 

define proteinspace as the composite of properties for all proteins. Protein properties range 

from relatively basic features such as amino acid composition and structural (secondary and 

tertiary) conformation to more complex expression profiles and protein domain (delineation 

and architecture) and finally the intricate quaternary structure and interaction partners. 

Proteinspace can be thought of as a multi-dimensional graph where each axis represents one 

of these properties. The orientation of an organism's proteome in proteinspace can then be 

described by positioning each of its constituent proteins on this graph. The proteomes of two 

or more species can be compared with any of the properties used to describe proteinspace. 

The well documented phylogenetic deficit [7], led to the term 'neglected genomes' being 

coined [8]. The term refers purely to the amount of molecular sequence data available for an 

organism, and is distinct from the more widespread title 'neglected taxa'. The need for more 

sequence has led many to explore the use of expressed sequence tags (ESTs) or genome 

survey sequences (GSS) as a tool for investigating the transcriptome and possibly the 

proteome of the target organisms. 

1.2 Expressed sequence tags 

Expressed sequence tags (EST) or genome survey sequences (GSS) have proved to be a cost-

effective and rapid method of identifying a significant proportion of the genes of a target 

organism [9]. ESTs provide a valuable adjunct to whole genome sequencing, as they 

facilitate gene identification. That said, collections of ESTs from one or multiple organisms 

can be studied in their own right, as part of the transcribed genome. 
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ESTs are short DNA sequences (usually 300 to 600 nucleotides in length) generated by 

sequencing either or both ends of the mRNA transcribed from an expressed gene. Typically 

unedited, they are single-read sequences from cDNAs (Figure 1.1). An advantage ESTs have 

over a complete genome sequence is that libraries of cDNAs can be prepared from a variety 

of tissue types, defined developmental stages and environmental challenges, revealing 

specificity in gene expression. 

The growth in the number of sequences in the primary EST repository (dbEST) mirrors that 

of other sequence databases. The first ESTs were from human and mouse, and dbEST entries 

are still dominated by these and other model organisms. However there has been a dramatic 

growth in the number of ESTs deposited that are from species considered as non-traditional 

model organisms, as many genome initiatives utilise EST and GSS strategies to gain an 

insight into "wild" biology (see Figure 1.2 and Table 1.1). By 2000, greater than half the 

sequences in dbEST were from the neglected genomes. Given this increase in partial 

sequences that were generated to be studied in their own right rather than as a complement to 

a complete genome sequence, there was a need to consider the problems common to all EST 

datasets. 
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Growth of dbEST. 

Expressed sequence tags are seen as an excellent way to survey the transcribed regions of the 

genome. This is particularly true for researchers working with neglected genomes (non-

model), where a complete genome sequence is unlikely. Sequences from non-model 

organisms now constitute over half of all sequences in dbEST. 
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Phylum Number of Projects 

Streptophyta (VP) 194 

Chordata (M) 66 

Arthropoda (M) 50 

Nematoda (M) 40 

Not determined 1  29 

Ascomycota (F) 29 

Apicomplexa (A) 16 

Basidiomycota (F) I I 

Mollusca (M) 8 

Platyhelminthes (M) 7 

Cnidaria (M) 6 

Chiorophyta (VP) 5 

Glomeromycota (F) 2 

Annelida (M) 2 

Echinodermata (M) 2 

Bacillariophyta (VP) 2 

Phaeophyceae(S) 1 

Tardigrada (M) 

Chytrodiomycota (F) I 

Zygomycota (F) 

Microsporidia (F) I 

Table 1.1 

Taxonomic distribution of EST projects. 

VP - Viridiplantae; M - Metazoa; F - Fungi; A - Alveolata; S - Stramenopiles; 

(1) species name in dbEST did not correspond to a known phylogenetic lineage in the NCBI 

taxonomy. 
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Sequence redundancy and clustering 

There is usually significant redundancy in EST datasets, where some genes have been 

sequenced more than once. This is particularly true for genes that are expressed at high 

levels. The mapping of multiple ESTs to a gene is useful in confirming the existence of the 

gene product. However the sheer scale of some EST projects means that the redundancy 

must be reduced, thus enabling many types of analyses. For the majority of genes it is also 

the case that a single EST covers only part of the transcribed mRNA. Stochastic clone 

selection, which produces multiple tags for some genes, does not yield sequence for all the 

expressed genes of an organism. Some genes may not be expressed under the conditions 

sampled, and others may be expressed at very low levels and therefore missed through 

random sampling. 

An effective way to overcome redundancy problems is to group the ESTs into clusters that 

represent putative genes. These clusters can then be annotated. There are a number of 

clustering methods available for EST projects, however it is beyond the scope of this thesis 

to describe them all. The majority of methods employ an all-against-all comparison. In 

StackPACK [10] the clustering is based upon shared word multiplicity; that is do the same 

words (string of sequence) occur the same number of times in both sequences [11,12]? Other 

clustering approaches make use of the BLAST algorithm [13] to perform iterative 

comparisons. Two popular methods which have adopted this approach are the 'Gene Indices' 

clustering developed by The Institute of Genome Research (TIGR) [14], and CLOBB 

(Clustering On the Basis of BLAST similarity) which allows incremental updates of the 

clusters as more ESTs become available [15]. The initial EST is considered as the first 

cluster in the database. The next sequence (query) available is compared to the database with 

a BLASTN search. If there is similarity between the query sequence and a (subject) EST in 

the database that satisfies the stringency thresholds, the query sequence is assigned to the 
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cluster habouring the subject EST. In other cases, the query sequence is assigned to a new 

cluster. As the process progresses, query sequences will match more than one subject EST, 

and these may be from separate clusters. A series of checks re-analyse the BLAST output to 

determine if the clusters should be merged. The process continues until all sequences are 

assigned to a cluster (Figure 1.3). CLOBB has an advantage over other clustering programs 

in that incremental updates, commonplace for EST projects, can be readily performed. 

Annotation can be assigned to each cluster with a confidence not applicable to unclustered 

ESTs, a step usually aided by the determination of a consensus sequence for the cluster. 

Once clusters are assembled, the redundancy of the dataset can then be exploited by 

enumerating the number of ESTs in a given cluster. This provides a relative measure of gene 

expression and may uncover striking patterns [16]. 

Sequence quality 

Sequence quality describes the faithfulness with which an EST sequence represents the gene 

sequence from which it was cloned. Therefore a low quality EST is a poor representation of 

the originating gene and essentially useless for analysis. As the sequences are single-reads of 

the cDNA, it is anticipated that the quality of the resulting nucleotide string is less accurate 

than for most genome sequencing projects where multiple coverage of each position is 

obtained. The inherent low quality of EST sequences may result in shifts in reading frames 

(missing or inserted bases) or ambiguous bases (called from the chromatographic trace). The 

Phred program is one of the more popular base-calling systems which determines a quality 

score of each nucleotide, based on the strength of signal [17,18]. Assessment of the quality 

of an EST must consider not only the fidelity of the reverse-transcription and sequencing 

reaction but also a background of incorrect sequence. Worryingly an incorrect sequence has 

many potential sources, from stretches of vector or polylinker sequence to contaminants 

from foreign genomes, commonly Escherichia coli and the parasites' hosts. Poly(A) tract and 
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5' and 3' untranslated regions (UTR) also introduce significant amounts of non-protein 

coding sequence, estimated at over 100 nucleotides each [19]. Clustering ESTs provides 

some benefit in improving the effective quality of each consensus base. The consensus for 

overlapping positions can utilise Phred quality scores, if available, or simply use majority 

rule. Despite these problems, an EST survey is a relatively cheap and accessible approach to 

investigate the transcribed part of a genome. 

1.2.1 Processing and databasing ESTs 

There are currently 484 species for which more than 1,000 ESTs have been submitted to 

dbEST. It has become common for each EST collection, or several related datasets, to be 

curated through a database system, which is frequently available online (a small selection is 

available in Table 1.2). As well as the highly redundant practice of inhouse development of 

bioinformatic resources in each laboratory, there are several stand-alone analysis suites 

available for download and local installation. Three widely used programs are, AutoFact 

[20], StackPACK [10], PartiGene [21]. These address the quality, redundancy and partial 

nature of EST sequences, and some provide a platform for subsequent functional annotation. 

The EST sequences used in this thesis motivated the genesis of the PartiGene project, an 

integrated analysis suite that uses freely available public domain software [21]. Users are 

able to (1) process raw trace chromatograms into sequence objects suitable for submission to 

dbEST; (2) place these sequences within a genomic context; (3) perform customisable first 

pass annotation of the data; (4) present the data as an SQL database; and (5) create an online 

portal for the database allowing external users to query the database. The system has recently 

expanded to include an array of annotation tools, collectively named Annot8r (Schmid 

unpublished). The elaboration of the PartiGene system has been motivated by the large 

number of EST projects carried out either by or in conjunction with the Blaxter group at the 

University of Edinburgh. The largest project, in terms of EST numbers, resource devotion 
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and collaboration, has been the generation and analysis of ESTs from nematodes. It is this 

dataset that has motivated much of the work I describe in this thesis. 
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Figure 1.3 

The CLOBB clustering algorithm. 

Taken from Parkinson et al 2004c. Used with permission. 
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Species Database Name ,  URL 

Fundulus Heteroclitus FunnyBase  http://genomics.rsmas.miami . 
(fish) edulfunnybase/super_craw4/ 

Gallus gallus 
(chicken) ChickEST http://www.chick.umist.ac.uki  

Many Plants OpenSputnik http://sputnik.btk.fi/ 

Nematoda (37 species) NemBase 	, http://www.neniatodes.org  

Nematoda (37 species) NemaGene http://www.nematode.net  

Reference 
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Table 1.2 

Examples of online resources for EST projects. 

1.3 The phylum Nematoda 

Nematodes (or round worms) are abundant and diverse in terms of biology and ecology [281. 

As individuals, nematodes account for an estimated four out of every five animals on earth 

[29]. There are approximately 25,000 described nematode species [30,31], and while the 

estimates for the true species count range from 100,000 to one million [32], it is likely that 

the upper estimate is too high [33]. Nematodes are ubiquitous members of the meiofauna, 

found in all but the most and soils. They can be found in immeasurable numbers in all sorts 

of sediments [34] and play a core role in the recycling of nutrients. Probably most famously, 

it was the free-living bacteriovore nematode Caenorhabditis elegans that provided the first 

genome sequence for a multicellular organism [35]. This has since been complemented by a 

draft sequence for its sister species Caenorhabditis briggsae [36]. Understanding the 

genomic sequence of C. elegans has motivated the development of a startling array of 

analysis tools and the integration of experimental data, much of which is stored and curated 
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at Worm Base [37]. Most of what is known about the molecular and developmental biology 

of nematodes is a consequence of the study of C. elegans. However, despite the wealth of 

information for C. elegans, relatively little is known about other species in this phylum. 

Another well known feature of the Nematoda is the large diversity of parasitic species which 

can be found within it. Nematodes infect humans, domestic animals and food crops 

[38,39,40]. The diseases caused by nematodes are extremely varied including; anaemia 

(hookworm - Ancylosloma ceylanicum), and filariasis related pathology such as African 

river-blindness (Onchocerca volvulus) and elephantiasis (Brugia malayi). An estimated 2.9 

billion people are infected by nematodes, primarily in tropical regions of Africa, Asia and 

the Americas [41]. Closely related species of human parasites are also responsible for 

substantial loss in livestock animals. The root-knot nematodes (Meloidogyne spp.) are major 

pathogens of crop plants throughout the world, impacting both the quantity and quality of 

marketable yields, causing an estimated $80 billion in damage annually [42]. In addition, 

root-knot nematodes interact with other plant pathogens, resulting in increased losses due to 

secondary infections. 

1.3.1 Nematode systematics 

The field of nematode systematics is in a state of flux. As with many early classifications, 

nematode relationships were delineated with morphological characteristics. The 

classification of the multitude of nematode species has been difficult, as most nematodes, 

whether free-living or parasitic, are small and their morphological distinctness is in 

structures observed only with higher power microscopy. Nematodes share a similar body 

plan, although they vary in length from --100 m to more than 6 m. The organisation of the 

phylum has undergone some major adjustments through the work of Blaxter and colleagues 

[40,28]. On the basis of small subunit ribosomal RNA (SSU rRNA) phylogenetics, the 
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nematodes can be divided into three major clades: Dorylaimia, Enoplia and Chromadorea 

(Figure 1.4). This framework points to parasitism of both animals and plants arising multiple 

times during nematode evolution [40, 43]. 

The reorganisation suggested that to gain an insight into the molecular physiology and 

evolution of parasitic traits, elaborate strategies would be required. The comparison of a 

small number of sequences from a few parasitic worms with the genome of a model species, 

C. elegans, is insufficient. The desire for more sequence led to the initiation of two 

collaborative projects to generate ESTs for nematode parasites spanning the phylogenetic 

disparity of the phylum [44]. By March 2005, a total of 341,008 sequences had been 

generated from 37 different species of nematode, the largest collection of ESTs spanning the 

diversity of a single phylum. Such a collection has provided the opportunity to identify 

sequence features that are species- and phylum-specific and present them in the context of C. 

elegans biology. 

The analyses of the datasets from 39 species raised an important consideration - at what 

levels of the taxonomy should the nematodes be compared. Species level comparisons are 

typical, however there is much to be gained from taking a step back' in the nematode tree 

and identifying patterns at various nodes. Ideally combined data from one nematode family 

should be compared with data from another family. The separation for such taxonomic ranks 

is often up to the taxonomist and therefore subjective. The taxonomic rankings detailed in 

Figure 1.4 are not always identical, however it is convenient for this thesis to consider the 

penultimate ranking (e.g. Spiruromorpha and Rhabditoidea) as orders. 
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Figure 1.4 

The nematode species from which expressed sequence tags were generated. 

Species are grouped into major taxonomic groups based on SSU rRNA phylogeny (see 

1.3.2). The trophic biology of each targeted species is indicated by a small icon. 

This figure was created by Mark Blaxter and used with permission. 
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1.3.2 Comparative studies of the Nematoda 

There are currently more than a dozen species or family specific published analyses of the 

nematode EST datasets. They cover parasites of humans (e.g Hookworms [45], Brugia 

malayi [46] and Strongyloides stercoralis [47]), animals (e.g. Strongyloides ratti [48]),  and 

plants (e.g. Meloidogyne incognita [49] and Tylenchida [50]). The first meta-analysis which 

considered ESTs from across the phylum Nematoda used 265,000 sequences from 30 species 

[51]. The ESTs were processed using the PartiGene system [21] and are available from 

NEMBASE [26]. A total of 93,645 gene clusters were assembled which could be assigned 

into approximately 60,000 families. Cross-species BLAST comparisons revealed that 30-

70% of each species dataset shared no significant similarity (BLAST bit score less than 50) 

with another sequence either within or outwith the sampled nematodes. A similar 

comparison between the genus Caenorhabditis, between C. briggsae and C. elegans, for 

which all the genes are available [36], showed that 10% of their genes were not shared. The 

data presented by Parkinson and colleagues [51] suggests that this level of novelty may be 

universal across the phylum. 

These findings raise the question: what are these new genes? Of the novel sequences 

identified in the hookworm Nippostrongylus brasiliensis, 32% were predicted to contain a 

signal peptide [52]. There are reports of genes in other mammalian nematode parasites where 

a gene has a predicted signal peptide which is absent in the putative C. elegans homologue 

[53,54]. Therefore, there is a suggestion that the conversion to a secretory function for 

certain gene products is an adaptive strategy embraced by a number of parasitic nematodes. 

It should be noted that the mechanism of acquisition of the signal peptides is not clear; have 

they evolved from mutation in the 5' UTR of the gene or been gained from the insertion of a 

peptide from another gene? 
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Study of the expression profiles of transcripts has uncovered a number of striking findings. 

The two largest clusters (greatest number of ESTs) in the EST dataset for Haemonchus 

contortus, an important parasite of sheep and goats, belong to two proteins that shared 68% 

identity to each other in the amino acid sequence; they were named nim-1 and nim-2 [16]. 

Putative homologues were identified in the free-living C. elegans and C. briggsae as well as 

in the EST collections for the parasitic Parastrongyloides trichosuri and Ostertagia 

ostertagi. The genes' presence in the nematode orders Strongyloidea (0. ostertagi, H. 

contortus), Rhabditoidea (C. briggsae, C. elegans) and Panagrolaimomorpha (P. trichosuri) 

suggest that the gene emerged before the split of the Rhabditina and Tylenchina. These other 

nim genes have significantly fewer ESTs assigned to them, suggesting that they are 

expressed at low levels, which was supported by serial analysis of gene expression (SAGE) 

analysis on C. elegans [55]. The protein NIM-1 was localised by immunohistochemistry to 

the hypodermis in the anterior of the worm. Use of RNA interference (RNAi) on the C. 

elegans homologues produced no visible phenotypes. The striking expression level in H. 

contortus suggests that the nim genes have an important role in the life strategy of H. 

contort us. 

Such analyses allow the identification of new targets for anthelmintic drugs. A high-

throughput molecular technique which has recently been used to study gastrointestinal 

nematodes is SAGE [56,57]. This method generates data that are both qualitative and 

quantitative, hence complementing the EST resources being developed [58]. Computational 

analysis of the EST datasets is one step of a genomic filtering approach that can be supported 

by scalable functional studies. Such studies, including two-hybrid interactions and RNAi, are 

currently a focus in C. elegans [59]. Use of a large number of BLAST searches and RNAi 

has already revealed a small number of promising drug targets [59]. It is important to remain 

cautious when extrapolating findings from C. elegans onto parasitic nematodes. While the 

29 



free-living bacteriovore may possibly be a model for closely-related hookworms (both in the 

Rhabditina [40]), similarities diminish with evolutionary distance [51,59], thus reducing the 

relevance of C. elegans biology for the Dorylaimia. Indeed great differences between 

nematodes species exist and include: the presence of the Wolbachia endosymbiont in filarial 

nematodes [60,61]; evidence for horizontal gene transfer between Rhizobia bacteria and 

tylenchid worms [62]; and use of the anaerobic electron transport chain by some strongylid 

nematodes [63]. 

1.4 Summary of thesis: ESTs to proteinspace 

Alongside the more traditional uses of the ESTs for gene finding, expression studies and 

SNP identification, there is an opportunity to perform comparative analyses previously 

confined to those working with complete genomes. The work described in this thesis is the 

identification of sequences and sequence features that have patterns of interest to nematode 

biology. Such patterns include proteins that are unique to a parasitic feeding strategy, and 

protein domains that have been lost in certain nematode lineages. This involves not only 

global comparisons of the proteomes, but also delineating the protein domain complement of 

each species. Therefore it is imperative that the proteome is used as the unit for comparison. 

The polypeptide sequence presents a better template for almost all annotation, including 

domain determination, as well as construction of more accurate multiple sequence 

alignments and structural threading and modelling to provide secondary and tertiary 

structures. A proteome also allows studies into metabolic and other characterised pathways. 

In the rest of this section I present a summary of this thesis; more detailed introductions are 

provided at the start of each chapter. 
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1.4.1 Identification of coding regions 

Before any functional annotation can be sought, the coding region of the EST, or of a 

clustered consensus, must be identified. Accurate reconstruction of the coding region will 

permit post-genomic study in a manner similar to that for complete genomes. Prediction of 

the correct polypeptide from ESTs is not trivial: 

The inherent low quality of EST sequences may result in shifts in the 

reading frame (missing or inserted bases) or ambiguous bases. These errors 

impede the correct recognition of coding regions. 

ESTs are often partial segments of a mRNA, and as most cloning technology 

biases representation to the internal parts of the genes, the initiation 

methionine codon may be missed. 

While using consensus EST contigs from a clustered dataset may improve sequence quality, 

this approach will not address the whole problem. Poor quality EST sequences may not yield 

high quality consensuses and for smaller volume projects, most genes only have a single 

EST representative. 

There are a number of methods available for coding region identification: based upon direct 

amino acid similarity, probabilistic characterisation of a sequence composition and 

rudimentary mRNA structure. Each of these presents benefits and specific limitations. 

Benchmarking of the approaches led to the development of a hierarchical system combining 

some of the algorithms into a standalone program, prot4EST. 

In Chapter Two I describe, in more detail, the problems that need to be overcome when 

translating ESTs, especially those from neglected genomes. I show the prot4EST translation 

pipeline to be the most accurate system for identifying coding regions in ESTs. Highlighted 

in the chapter are important considerations for users to ensure they produce the best 
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translations. 

1.4.2 Deriving nematode proteomes 

The development of prot4EST and creation of nematode proteomes was tightly interwoven. 

Translations of the nematode EST contigs were used to identify and overcome problems with 

the program, which I address in Chapter Three. One issue was assembling adequate training 

sets for the probabilistic models used in part of prot4EST. This involved identifying coding 

regions based on the sequence composition of known coding regions for a particular species. 

An internal bootstrapping approach was applied where the most robust translations were 

used to generate the training set. 

The first analyses performed on the proteome collection, NemPep, considered many of the 

raw features, accuracy of translation, length of coding regions, and the effect of cluster size 

and method of library construction. A small number of cDNA libraries were identified that 

provided a disproportionate number of ESTs that could not be robustly translated. These 

sequences were not used in subsequent analyses. 

1.4.3 Phylogenomics of nematodes 

Annotation of gene products generally relies upon nearest-neighbour strategies, and it has 

been estimated that all current annotations are derived from around 5% of proteins, whose 

function has been experimentally determined [64]. Assignment of annotation is usually 

performed through BLAST searches where the sequence returned as most significant donates 

its description line. The opportunity for a snow ball effect miss-annotating sequences is a 

major concern. The PartiGene developers are helping address this problem by incorporating 

annotation tools into the set-up that can be readily used by researchers. The additional 

resources available, named Annot8r, include Gene Ontology, structural predictions and 
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metabolic pathway assignment (Schmid unpublished). 

To identify nematode proteins that may be of interest in nematode biology, I performed 

cross-species BLAST searches, which could then be mapped onto the nematode phylogeny. I 

describe the findings in Chapter Four. The analyses are a progression of the work presented 

in the first meta-analysis [51], with the inclusion of seven species (including one new order), 

and the full incorporation of the caenorhabditid proteomes. The rate of new protein 

discovery has not slowed, even though some of the new species are closely related to 

previously studied datasets. Global comparisons between proteomes have been used to try to 

resolve important phylogenetic questions, such as the organisation of deep metazoan 

branches [65,66,67,68]. These studies involved the generation of protein families by various 

methods. One was the use of symmetrical BLAST hits to. assemble clusters of euKaryotic 

Orthologous Genes (KOGs) [69]. A major concern with the original analysis was that C. 

elegans proteins may be unassigned to a KOG due to a higher rate of evolution, a trait that 

has been observed in C. elegans [70,71,72,73]. Also, extensive gene loss in the C. elegans 

lineage could therefore misrepresent the true phylogenetic relationship [74]. The availability 

of NemPep3 allows a larger protein complement from the Nematoda to be considered. 

1.4.4 Nematode protein domains 

The decoration of polypeptide sequences with protein domains is one of the most popular 

forms of annotation. There are a number of databases, or libraries, of protein domains which 

habour a wealth of information, from proposed function to species distribution, about each 

domain. Assigning domains to the proteins of NemPep3 is an excellent way to identify 

sequences that are fundamental for nematode survival. Finding domains on EST-derived 

proteins presents a major problem; only a small section of the domain may be present due to 

the incomplete nature of ESTs. Using standard domain models the domain would therefore 
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normally go undetected. However, in Chapter Five I describe the creation of NemDom3, a 

protein domain resource to complement the proteome data being generated through the 

Annot8or modules. To ensure maximum and robust coverage of domain annotation I have 

explored the effect of using both global and local alignments between the domain model and 

protein sequences, as well as different scoring thresholds. 

A combinatorial approach was adopted to assign Pfam-A domains to NemPep3, creating the 

NemDom3 collection. Species distribution of previously characterised metazoan-wide and 

nematode-restricted domains [75] was investigated, identifying domains that have been lost 

in the caenorhabditid lineage but found throughout the rest of the phylum. Domains unique 

to Caenorhabditis elegans were still identified, suggesting that they have been acquired in 

that lineage or that the domain models are restricted in their predictive power. 
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Chapter Two - Predicting coding regions from 

ESTs 

2.1 Abstract 

The genomes of an increasing number of species are being investigated through generation 

of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and 

typically define incomplete transcripts, making downstream annotation difficult. Annotation 

would be greatly improved with robust polypeptide translations. Many current solutions for 

EST translation require a large number of full-length gene sequences for training purposes, a 

resource that is not available for the majority of EST projects. 

To aid the investigation of these 'neglected' genomes, I have developed a polypeptide 

prediction pipeline, prot4EST. It incorporates freely available software to produce final 

translations that are more accurate than those derived from any single method. I show that 

this integrated approach goes a long way to overcoming the deficit in training data. prot4EST 

can, therefore, be usefully applied to > 95% of EST projects to improve downstream 

annotation. 

2.2 Introduction 

Nematode species are responsible for a large slice of the expressed sequence tags (ESTs) 

available in dbEST [9]. However, they represent only 38 out of approximately 430 species 

for which at least 1,000 ESTs are available. Individual groups or small collaborations 

motivated many of these projects to generate molecular sequence data for their organism(s) 

of interest. To date the primary uses of the generated ESTs have been: 
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I. gene finding in complete genome, 

expression studies, either microarray or serial analysis of gene expression 

(SAGE), 

identification of single nucleotide polymorphisms. 

However ESTs also present an opportunity to perform comparative analyses previously 

confined to those working with complete genomes. Many of these studies use complete 

proteomes as the unit for comparison. The polypeptide sequences present a better template 

for almost all annotation, including domain determination with Interpro [76] and Pfam [77], 

as well as construction of more accurate multiple sequence alignments, the creation of 

protein-mass fingerprint libraries for proteomic studies and structural threading [78,79] and 

modelling [80] to provide secondary and tertiary structures. A partial proteome will also 

allow studies into metabolic and other characterised pathways. This work is of particular 

relevance to the parasitic nematodes, as it offers a promising identification screen for new 

anthelmintic drug targets. 

Before any functional annotation can be sought, the coding region of the EST must be 

identified. Accurate reconstruction of the coding region will permit post-genomic study in a 

manner similar to that for complete genomes. Such a resource would compliment those 

analyses currently under way, especially expression studies [57,16,81]. 

2.3 Translating Expressed Sequence Tags 

The structure of mature mRNA is consistent throughout the Eurkaryota. A typical mRNA 

can be divided into a 5' cap, a 5'-untranslated region (5'UTR), a protein coding region, a 

3'UTR and a poly(A) tail. The coding region, almost always, begins with the codon AUG 
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and continues in the same reading frame up to one of three possible stop codons, UAA, UAG 

or UGA. For reasons discussed in detail in Chapter One, ESTs present low quality copies of 

mRNA, often only covering part of the sequence. This makes prediction of the correct 

polypeptide from an EST not a trivial undertaking: 

The inherent low quality of EST sequences may result in shifts in the reading 

frame (missing or inserting bases) or ambiguous bases. These errors impede the 

correct recognition of coding regions. The initiation site may be lost, or an 

erroneous stop codon introduced to the putative translation. 

ESTs are often partial segments of mRNA; as most cloning technology biases 

representation to the internal parts of the genes, the initiation methionine codon 

may be missed. This is a problem for some of the de novo prediction programs 

that use the initiation methionine to identify the coding region (described 

below). 

A BLAST comparison of ESTs from C. elegans against the species coding regions (CDS) 

showed that the mean number of frame-shifts in ESTs was 1.5 and the error-rate, with 

respect to the nucleotide sequence, was 1.1% (Wasmuth unpublished). Sequence quality can 

be improved by clustering the sequences based on identity. For each cluster a consensus can 

be determined [82]. This however, will not address the whole problem as poor quality EST 

sequences may not yield high quality consensuses and with smaller volume projects, most 

genes have a single EST representative. This is true for 67% of nematode clusters. Therefore 

additional methods must be applied to provide accurate polypeptide predictions. These may 

be split into three broad categories: similarity-based methods, de novo predictors and ab 

initio approaches. Each is now considered in more detail. 

2.3.1 Similarity-based methods 

A robust method to determine the correctly encoded polypeptide is to map a nucleotide 
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sequence onto a known protein for which there is statistical evidence for homology. This 

concept is the basis for BLASTX [13], FASTX [83,84] and ProtEST [85]. BLASTX and 

FASTX use the six-frame translation of a nucleotide sequence to seed a search of a protein 

database. These programs produce alignments from regions of local similarity, called high 

scoring segment pair (HSP). The alignment generated for a significant hit provides an 

accurately translated region of the EST. BLASTX is extremely quick. However the presence 

of a frame-shift terminates the local alignment, shortening the predicted polypeptide. FASTX 

is able to identify possible frame-shifts, but its dynamic programming approach is slower 

than BLASTX. 

ProtEST [85] uses a slightly different similarity-based approach. A protein sequence is 

compared to an EST database. The phrap program [82] is used to construct a consensus 

sequence from the cluster of ESTs detected to have similarity. The consensus is then 

compared to the original EST using ESTWISE (Birney unpublished, 

http://www.ebi.ac.uk/Wise2)  giving a maximum likelihood position for possible frame-

shifts. The system is accurate but not readily adaptable to the high-throughput approach 

necessary when dealing with very large numbers of ESTs. More crucially, an EST that does 

not show significant similarity to a known protein is ignored from the study and not 

translated. All these methods require that the nucleotide sequence shares detectable 

similarity with a protein in the selected database. Many genes, from both well-studied and 

neglected genomes, do not share detectable similarity to known proteins, making these 

approaches redundant. For example, the latest analysis of the Caenorhabditis elegans 

proteome shows that only —50% of the 22,000 proteins contains any Pfam-annotation, and 

43% share no detectable similarity (using BLAST) with non-nematode proteins in the 

UniProt database (Wasmuth unpubl.) This feature is not unique to the phylum Nematoda, 

and is likely to be more extreme for neglected genomes, given the phylogenetic bias of most 
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protein databases (Table 2.1). Finally if the EST contains a known protein domain that has a 

high copy number in the proteome, so called promiscuous domains, any region of similarity 

is likely to be localised around these, often short, domains and so excluding the coding 

potential of the remaining transcript. 

Taxonomic Group fraction of unique clusters 

Annelida (phylum) 0.66 

Chelicerata (subphylum) 0.54 

Heliconius (genus) 0.40 

Mollusca (phylum) 0.63 

Nematoda (phylum) 0.43 

Tardigrada (phylum) 0.45 

Table 2.1 

Genetic novelty in neglected genomes. 

The fraction of clusters in various EST projects for which there is no significant detectable 

similarity. A BLASTX search against UniProt [86] was performed in all cases except the 

tardigrade ESTs, where the SWISSProt database [87] was used. 

Source: NEMBASE, LumbriBase, MolluscDB, ButterflyBase, ChelDB, TardiBase (all 

available from http://www.nematodes.org ). The rank names are those provided through the 

NCBI taxonomy server [88]. 
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2.3.2 de novo predictions 

To overcome the reliance upon sequence similarity, de novo approaches based on the 

recognition of potential coding regions within poor quality sequences have' been developed. 

The programs work by taking known full-length coding regions and characterising their 

properties in a probabilistic model. To maintain integrity prior data typically comes 

exclusively from the species under study. The three most widely used methods are DIANA-

EST [89], ESTScan2 [90] and DECODER [91]. Each method has a different implementation 

of characterisation, and are described here with comments upon their relative strengths and 

perceived weaknesses. This section ends with likely problems the methods share with regard 

to their training requirements. 

ESTScan2 

Hidden Markov models (HMM) can describe a sequence of characters in a probabilistic 

manner [92]. In molecular sequence analyses, HMMs are useful to characterise the defining 

features of a group of aligned sequences [93]. Variations in the group are interpreted 

statistically. A sequence of interest can be compared against a number of models, with the 

model producing the highest likelihood score best describing the input. For a more detailed 

description see Durbin et al. [94] and Krogh [92]. This has been exploited recently in 

applications to find genes in genomic sequence [95, 96, 97, 98], predict domain composition 

in protein sequences [77,99] and align multiple sequences [100] 

ESTScan2 uses a HMM to predict the most likely coding region in an EST. The probabilities 

are based on the species-dependent bias in codon usage and amino acid frequencies. All the 

potential nucleotide strings of size n (n-tuples) have a particular distribution in coding 

regions. Therefore, the probability that a region is coding, or its coding potential, can be 

calculated based on its adherence to this distribution. This approach is used by both GenScan 
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[95] and GenMark [97], and is formalised as a 3-periodic inhomogeneous fifth-order 1-1MM. 

This means that the probability of each position in the codon is considered given the five 

previous positions (nucleotides). The architecture used by ESTScan2 is a modification of 

these previous methods, allowing write only and read only states in the model that represent 

-the possible insertion/deletion events in the EST. 

Using log-odds for hexamers (n-tuples = 6) to generate emission probabilities of the hidden 

Markov model, ESTScan's algorithm computes a cumulative score for the coding potential 

along each sequence. The algorithm considers all frames and possible frame-shifts in parallel 

and determines the most likely path. The first version of ESTScan [101] was able to 

correctly identify 78% of coding nucleotides, but detection of the boundaries of coding 

regions was often inaccurate [90]. This led to the attempt to model the complete structure of 

the mRNA, that is the 5' and 3' UTRs as well as the start and stop codons (Figure 2.1). The 

most optimal path through the model, the most likely coding region, is calculated with the 

Viterbi algorithm. These changes were incorporated into ESTScan2. 

Training ESTScan 

There are two sets of model parameters that need to be calculated. 

First, emission probabilities are determined by counting the n-tuples in full-length mRNA 

entries. Typically these are from the EMBL nucleic acid database or, for model organisms, 

RefSeq [102]. This approach models the coding and untranslated regions. For the start and 

stop positions there is not enough data for high order dependencies; the environment around 

these positions is extremely bias so many possible n-tuples do not exist. For these positions 

therefore, position specific scoring matrices are used. 

The second are transition probabilities, which are responsible for: 

1. where the model moves from a match state to an insertion or deletion state and 
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Figure 2.1 

A Markov model of mRNA structure. 

This is a third order model, therefore the first three nucleotides in the coding region must be explicitly modelled, hence the states 'Start', 'Start +1' and 

'Start +2'. A fifth order model would include additional states: Start-5, Start-4, Start+3, Start+4, F4, F5, Stop-3, Stop-4, Stop+4, Stop+5. 

This model was adapted for ESTScan2. The coding region section (F0-FN) included insertion and deletion states to overcome frame-shifts in the coding 

region [90]. 

B - begin state; E - end state. 



For the calculation of the emission probabilities the amount of data available for training is 

the foremost consideration. A tuple size of 6, Markov chain order 5, has been shown a 

number of times as the optimal trade-off between a sensitivity and selectivity and was shown 

to be the order which gave the smallest percentage of false positives for ESTScan [104]. The 

minimum number of nucleotides necessary to train ESTScan is the number of parameters (n) 

in the model, described in Equation 2. 1, where the order is of the Markov chain is the length 

of the tuple minus one. 

Equation 2.1 

Therefore the absolute minimum number of nucleotides needed for a 5' order Markov chain 

is over 15,000 (Claudio Lottaz, pers. comms and see Table 2.2). Without this level of 

training data the order of the Markov chain must be reduced, which will increase the number 

of nucleotides incorrectly classified as coding (false positives). This problem of a reduction 

in training data for most EST projects was considered in the construction of ESTScan2. 

Pseudocounts were added to introduce a priori knowledge into the learning procedure [104]. 

The authors recognised that while many full-length mRNA entries exist for human and 

mouse, most other species have much less information available. With small amounts of 

data, perfectly acceptable tuples that occur in nature may not be observed in the training 

data. The algorithm used to calculate the emission probabilities would set these instances to 

zero and so exclude them from the analysis. Using Bayes' rule and applying the Dirichlet 

distribution a priori knowledge derived from single nucleotide probabilities is calculated. 

When the effect of pseudocounts was evaluated it was shown to weakly influence the 

discrimination potential of the model. There were some improvements for the performance 

of very high order models (eight and nine), but as these models suffered from over fitting of 

the data, the improvement was merely to bring performance in line with other models. 

44 



Order 1  Number of parameters2  

1 48 

2 192 

3 768 

4 3072 

5 12288 

6 49152 

Table 2.2 

Model accuracy against training set requirements. 

The order of the Markov model (1) refers to the number of previous positions in the string 

(here nucleotides) are considered when determining the probability of the current nucleotide 

occurring. For example, consider the sequence ACTACTAC in a 5' order Markov model, 

the probability of the sixth nucleotide, G (underlined), is conditional on the previous 

ACTAC. 

The number of parameters (2) is in essence the minimum number of nucleotides required to 

hold the all possible nucleotide combinations that the model will search over. In practice this 

number could be significantly larger. 
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One final consideration for estimating emission probabilities is the redundancy in the 

training data. Redundancy is predominantly caused by: evolutionary mechanisms and the 

behaviour of researchers. The effect upon hidden Markov models is to introduce a bias 

towards well known sequences. The consequence is that the model will fail to 'recognise' 

new coding tuples. The training algorithm for ESTScan reduces redundancy by scanning the 

training data, remembering tuples of a certain size, typically larger than that used for 

estimating the emission probabilities. Reoccurring large tuples which overlap are masked 

from the calculation of emission probabilities. Experimental results of masking redundant 

stretches have so far shown to have little influence on the models discrimination potential, 

highlighting the HMM's robust power. 

DIANA-EST 

To characterise the properties of true mRNA DIANA-EST combines three artificial neural 

networks (ANN). An ANN is a program that detects patterns and correlations in data [89]. 

The underlying mechanism is that the ANN learns to recognize a sequence pattern by 

increasing the emphasis placed upon important information and ignoring irrelevant 

information. The training of an ANN uses both positive and negative examples. The set-up 

of ANNs allows high-order correlations in patterns. In comparison to hidden Markov 

models, this means that correlations are not limited to frequency of information at certain 

positions. 

The three ANNs used by DIANA-EST and their respective training requirements are 

described here. The training data for each network comes from flu-length cDNA. 

The Consensus-ANN classifies the nucleotides of the translation initiation site (TIS). A 

twelve nucleotide window surrounding the ATG start codon is used. The training sequences 

46 



provide one positive example each, with negative information provided from UTR and 

coding sequence. 

The Coding-ANN was trained to recognise the coding region. The scanning window is 

increased to 54 nucleotides. The measure used to classify the coding regions is the codon 

usage of the window. The frequency of the 64 possible codons is transformed into a vector of 

64 units. Positive training is provided by annotated coding regions in their correct frame. 

There are two sets of negative training, one extracted from non-coding sequence, a second 

from coding regions which are out of frame (they start with the second or third nucleotides 

of a codon). 

The third network is the Frame-ANN, which identifies potential frame-shifts in the 

nucleotide query. The set-up is the same as the Coding-ANN, except that the negative 

training data is only coding regions taken out of frame. When the Frame-ANN is applied to 

the sequence with errors the output will be a high score every third position, representing the 

first base of the codon. If this periodicity is interrupted then a possible frame-shift has been 

identified. 

By combining these three ANNs, DIANA-EST correctly identified 86.5% of known coding 

nucleotides in the test set. In a comparison of start site prediction with ESTScan1.0 [101], 

DIANA-EST correctly predicted 76 (from 107) to 37 by ESTScan. 

Similar to ESTScan the performance of DIANA-EST is dependent upon the amount of data 

available for training. The more data available the better the correlations the ANNs can 

deduce regarding what makes a coding region. 

DECODER 

The DECODER program was developed to define start codons and open reading frames in 

full length cDNA sequences [91]. It uses a rule-based method to identify possible indels in 

the nucleotides sequence, as well as finding the most suitable initiation site. The program 
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exploits quality scores for the sequence produced from base-calling software, such as phred 

[17,18] and additional text-based information from the rare sequence. In regions of low 

sequence quality up to two nucleotides are removed or inserted; these represent possible 

frame-shifts. A likelihood score is calculated for each possible coding sequence (CDS). The 

candidate CDS with the lowest score is chosen to represent the sequence. A penalty term 

limits the number of indel corrections in the CDS. The score is computed from the 

probability of generating a random sequence with a better Kozak consensus (the nucleotide 

sequence surrounding the initiation codon of eukaryote mRNA) [105], ATG position and 

codon usage. DECODER requires a codon usage table, which is used to determine the 

putative coding regions' optimal codon usage. 

Training DECODER 

The lone source of training required by DECODER is a codon usage table for the species 

under study. The codon usage of the potential coding regions proposed by DECODER is 

compared to that 'known' for the organism and a likeliness score calculated. 

Potential problems with training 

All of the three methods described in this section make use of full-length cDNA from the 

species under study. Properties of these sequences are, in some way, characterised to predict 

the coding region in the error-prone EST. The effectiveness of the training sets is a 

consequence of primarily two factors. One is the amount of data available, the second how 

representative it is of the studied species transcriptome. 

To make use of ESTScan's optimal architecture of a order Markov model, at least 16,000 

nucleotides are required. Even at this level it is unlikely that all possible 6-tuples would 
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present in the dataset, therefore any model would depend upon pseudocounts in the transition 

probabilities (see 'Training ESTScan'). Pseudocounts have been shown to have little affect 

on ESTScan's predictive power; relying upon them is inadvisable, meaning substantially 

more than the theoretical minimum amount of training data is necessary. The ANNs used by 

DIANA-EST also need as much data as possible. In benchmarking the Consensus-ANN the 

325 sequences used to give TIS information were considered "only a relatively small amount 

of data." This number of sequences is considerable more than is available for the majority of 

EST projects and all the nematode species, excluding those for which complete genomes are 

available (Figure 2.2). The amount of data available for EST projects is actually reduced 

when redundancy is considered. If redundant stretches of sequence are not removed then the 

models can become over-trained. That is they are very good at recognising 'a small subset of 

possibilities but ineffective with a more natural population of sequences. 

These problems are expected to influence DECODER's performance, despite its simpler 

model. DECODER uses a set of rules to identify all potential coding regions and the codon 

usage of the species to score them. Randomly selecting a reduced set of mRNA to build a 

codon usage is likely to give a similar codon usage. However the protein membership 

available for neglected genomes is rarely stochastic. The sequences have been selected for a 

reason and the set is often redundant therefore the codon usage is unlikely to be suitable to 

represent the taxa. 
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Figure 2.2 

The training set deficit for EST projects. 

Around 85% of species with representation in dbEST (>500 ESTs) have less than 100 

complete CDS entires in the EMBL database. These species comprise 45% of all ESTs. 

Sixty-six species, with 246,263 dbEST sequence have no full-length CDS. Source dbEST 

and EMBL database (July 2004). 
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2.3.3 ab initlo method 

One final method, commonly used, requires nothing more than some of the basic principals 

of biology; the coding region of the mRNA starts with a methionine and terminates with a 

stop codon. Applied to this problem, the nucleotide sequence is first translated in all six 

frames, then the longest open reading frame - the region between a methionine (or start of 

the sequence) and nearest downstream stop codon (or end of sequence) - is considered as the 

putative coding region. This approach is naïve as the assumption is made that the nucleotide 

sequence is error-free. The very nature of obtaining ESTs means that they are prone to 

frame-shifts and ambiguous or incorrect bases, as explained previously. Therefore erroneous 

stop codons are present and the true start methionine disguised, if it was every part of the 

sequence inserted into the vector originally. 
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2.4 New solution - prot4EST 

Prior to this project, nematode ESTs available through NEMBASE had been translated using 

DECODER. A preliminary study suggested that it outperformed other available methods 

(DIANA-EST and ESTScanI) (Parkinson pers. comm.). Of the 40,000 or so nucleotide 

consensuses held in the database at the time, 7,388 were likely to be poorly translated (<30 

amino acids in length), and I suspect many more contained considerable errors. This 

motivated the creation of a solution using several methods to enhance the quality of the 

polypeptide predictions, exploiting their strengths while recognising their shortcomings. 

prot4EST is an EST translation pipeline, written in Perl, with a user-friendly interface, that 

links some of the described methods together. It carries out retrieval and formatting of files 

from databases for the user. It has been designed as a stand-alone tool, and can be integrated 

in the PartiGene system. 

prot4EST is a hierarchical system using BLAST, ESTScan, DECODER and the longest open 

reading frame method to predict polypeptide sequences from the error-prone nucleotide 

sequences. The latter three methods are implemented as described above; how their 

predictions are assessed is scrutinised below. However a modification to the BLAST output 

parsing has been adopted to improve its accuracy and is described here. 

2.4.1 HSP tiling 

The BLAST programs detect local regions of significant sequence similarity. High scoring 

segment pairs (HSP) are identified that maximise a bit score derived from an amino acid 

substitution matrix. If an indel is present in the query sequence, causing a frame-shift, the 

HSP usually terminates around this site. Downstream of this frame-shift the remaining 

portion of the query may result in another significant HSP to the same protein, perhaps in a 

different frame from the first HSP. Simple extraction of the best BLAST HSP has been 
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frequently used by those assembling EST datasets and has recently formed the basis for 

published software [106,20]; however, it will lose additional robustly predicted coding 

nucleotides. prot4EST implements a rule-based method that considers all the HSPs between 

the query nucleotide sequence and the protein hit and determines whether a frame-shift can 

be identified. Where a frame-shift is identified the HSPs are joined. Where two HSPs 

overlap the sequence with the better score is used (Figure 2.3). 

2.4.2 Polypeptide extension 

The true polypeptide for the EST may share significant sequence similarity across only part 

of its length. To rely exclusively on the BLAST report is to miss potential coding 

nucleotides. An extension process is applied in which a coding region is continued in both 5' 

and 3' directions. The goal is to identify possible initiation methionine and/or a likely stop 

codon. A set of restrictions are imposed to ensure this less conventional approach is robust 

while retrieving as much potential coding sequence as possible. Recently, a similar approach 

has been used in the program ORFPredictor [106]. 
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2.5 The prot4EST pipeline 

The architecture of prot4EST was finalised after the analysis described later in this chapter. 

ESTScan2 and DECODER were selected for incorporation into the pipeline, as they are 

available as stand-alone programs. This allows retraining of the models for different species. 

Unfortunately DIANA-EST is not available for download and training the various ANN 

seems a considerable undertaking. 

Here I shall describe the implementation of each individual step. Figure 2.4 presents one 

particular arrangement that was considered. 

2.5.1 Step 1: Identification of ribosomal RNA (rRNA) genes 

The protein databases contain (probably spurious) translations of rRNA genes and gene 

fragments (Blaxter, unpublished). Thus it is important to identify and remove putative 

rRNA-derived sequences before further processing. A BLASTN search is performed against 

a database of rRNA sequences obtained from the European Ribosomal RNA database [107]. 

A BLAST expect value cut off of e-65 is used to identify matches. The cut off was chosen 

according results of preliminary testing and is conservative to reduce the number of false 

positives. Those nucleotide sequences with significant matches are annotated as rRNA genes 

and take no further part in the translation process. 

2.5.2 Steps 2 and 3: Similarity searches 

The second and third stages are closely affiliated. A BLASTX [13] search is performed 

against proteins encoded by mitochondrial genomes (see 2.6.1 for details on construction of 

the database). Any sequences with significant BLAST hits are annotated as mitochondrial-

encoded genes for the remainder of the process, permitting the use of a mitochondrial genetic 

code for translation. Sequences that do not have significant similarity to mitochondrial 
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proteins are compared using BLASTX to a nuclear protein database. Sequences that continue 

to yield no similarity to known proteins are moved onto step 4 of the process. 

For those sequences that show significant similarity to a protein sequence from either 

database a HSP tile path is constructed (2.4.1). prot4EST then considers whether the nascent 

polypeptide can be extended at either end in the same reading frame (2.4.2). 

2.5.3 Steps 4 and 5: de novo methods 

The final arrangement of ESTScan2 and DECODER is described in section 2.7.3 

ESTScan2 prediction 

The training sets, used to generate the emission and transition probabilities for the HMM, are 

constructed from full-length CDSs present in the EMBL database. The entires for the 

organism of study are downloaded by prot4EST. The available data is then used as the input 

for the 'build—models' program, part of the ESTScan distribution. The emission probabilities 

are estimated as described above (2.3.2). The transition probabilities are left as the default 

minimum. This is necessary because it is unlikely that the data will be available for these 

probabilities to be reliably calculated. ESTs must be aligned to mRNA and the transitions 

determined from here. This was primarily designed for UniGene clusters [104], which are 

not available for neglected taxa. The step is also considerably slow. 
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All the nucleotide sequences that have yet to be translated are passed through ESTScan. The 

predicted coding regions are then subject to checks to ensure their robustness. A pair of 

length threshold criteria is applied to each putative polypeptide before it is accepted. The 

polypeptide must be at least 30 amino acids in length and cover at least 10% of the input 

sequence. Finally the number of potential frame-shift corrections is limited to 5% of the 

length of the sequence. Polypeptides that satisfy these controls undergo the extension process 

described above; sequences that fail any of the criteria are passed onto the next step. It is 

possible that ESTScan predicts a possible coding region on both the positive and negative 

strand of the nucleotide. This is rare, but in such a circumstance both translations are 

accepted, if they pass checks described above. 

DECODER predictions 

The only readily altered parameters for DECODER are the codon usage table and sequence 

quality scores. Within the environment of prot4EST, the codon usage table can either be 

constructed by the user or downloaded from CUTG, the codon usage table database [108]. 

The quality files associated with each sequence are not always available. In such 

circumstances a uniform quality score is used. By default DECODER only processes the 

forward strand of each sequence. To improve the performance of this component the reverse 

complement of each sequence is taken and processed through DECODER. Two putative 

polypeptides are generated for each nucleotide sequence. The longer polypeptide is selected 

as the more probable translation. The resulting polypeptides are checked using the same 

length threshold criteria applied to ESTScan (above). 

2.5.4 Step 6: Longest ORF 

This last attempt to provide a putative polypeptide translation determines the longest string 

of amino acids uninterrupted by stop codons from a six-frame translation of the sequence. If 
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a methionine is present in this string it is flagged as a potential initiation site. 

2.5.5 Output 

The primary output from prot4EST consists of the putative polypeptides in FASTA format. 

These are complemented with files containing information describing the translated 

sequences. This information includes: position of the translation with respect to the 

nucleotide sequence, the genetic code used for translation, position relative to query 

sequence and BLAST statistics of HSPs used in the tile path. All this information is stored in 

two CSV format files, permitting parsing and simple insertion into a database. 

2.6 Benchmarking EST translation methods 

I have compared six translation methods to test their relative and absolute performance. 

DECODER is designed to consider only the forward strand of the nucleotide sequence, as it 

was originally designed for full-length CDSs. When applied to ESTs it is imperative that 

both strands are analysed. Therefore the reverse complement of each nucleotide consensus 

was also searched. DECODER—default (1) considers only the prediction from the forward 

strand, whilst DECODER—best (2) considers both predicts accepting the longest. ESTScan 

(3) considers both strands of the nucleotide sequence and was run as a stand-alone process 

with default settings. To identify the longest open reading frame (Longest_ORF - 4), each 

consensus was translated in all six frames and the longest string of amino acids uninterrupted 

by a stop codon was considered the correct coding region. 

Two arrangements of components within prot4EST were tested. prot4EST_ed (5) 

implements ESTScan before using DECODER on remaining untranslated sequences. 

Conversely, prot4EST_de (6) uses DECODER first followed by ESTScan. The DECODER 
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module in prot4EST considers potential translations on both strands of the query sequence. 

2.6.1 Data Sets 

All the datasets and BLAST databases described here are available on the project web-site: 

www.nematodes.org/thesis/james/supp.  

Test EST dataset for translation 

I randomly selected 4,000 Caenorhabditis elegans ESTs from dbEST. To reduce 

redundancy, the ESTs were clustered using CLOBB. phrap [82] was used to derive 

consensus sequences for each cluster. This resulted in 2,899 consensuses. To ensure that the 

consensuses corresponded to a known coding region, I carried out a BLASTN search for 

each consensus against the complete C. elegans cDNA dataset available from WormBase 

(version 117). A match was considered significant if the HSP covered 75% of the 

consensus and there was 90% percentage identity between the two regions of the HSP. 

Significant matches were found for 2,372 consensuses. Finally, this set was compared 

(BLASTX E value cut off e-8) to the C. elegans protein dataset (WormPep version 117), 

thus associating each nucleotide sequence with a corresponding reference polypeptide. A 

final test set of 2,316 consensus sequences was produced. 

Training datasets 

Caenorhabditis elegans: 

Both ESTScan and DECODER require previously annotated full-length coding sequence. 

Properties of these sequences are used to build the models implemented by these programs. 

The C. elegans RefSeq collection contained 21,033 entries (December 2003). A Perl script 

built random training sets ranging in size from 5,000 to 350,000 coding nucleotides. Four 

sets were assembled for each level to allow replication of performance. The build —model 
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script (part of the ESTScan2 package) was used to build the emission probabilities used by 

ESTScan's HMM. 

The same training sets were used to build the codon usage tables required by DECODER. 

The EMBOSS program CUSP was used to build the tables, and a separate Perl script written 

to convert the output to that required by DECODER. For each run of prot4EST the codon 

usage tables were built from the same partition of RefSeq. 

Prokaryote genomes: 

GenBank entries from 167 complete genomes were obtained (May2004). A Perl script was 

written to extract the CDS entries and construct a RefSeq-style resource for each prokaryote 

species. If a taxon's genome consisted of more than one megaplasmid the sequences were 

combined. CDS annotation was not available for 11 genomes. We used the CDS collections 

for 156 taxa to determine AT content and construct codon usage tables for ESTScan's 

HMMs. 

Arabidopsis thaliana: 

28960 complete CDS entries for A. thaliana were obtained from the RefSeq database. 

Spirurida (Nematoda): 

I queried GenBank for all complete CDS entries from species in the Nematoda order 

Spirurida. 

BLAST databases 

Nuclear proteins.' 

SwissProt (release 42.7) and TrEMBL (release 25.7) were combined to give a well annotated 
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protein database. To recreate the situation facing neglected genome analysis, the accession 

numbers for all proteins from species in the nematode order Rhabditida were retrieved from 

the NEWT taxonomy database [109]. These entries (23,000) were removed from the larger 

database, leaving sequences in size. 

Mitochondrial proteins: 

this protocol was provided by Martin Jones (Edinburgh) - 

Download metazoan mitochondrial genome sequences from GenBank .using the 

search terms "txid33208 [Organism:exp] AND mitochondrion". 

For each GenBank entry extract the list of features, then for each feature, 

if (feature type == CDS AND feature has a 'gene' tag) 

then extract the gene name; 

extract the translation; 

Ribosomal RNA: 

The rRNA genes were supplied by the European Ribosomal RNA database [107]. 

2.6.2 Data collection and analysis 

Comparison ofpredicted polyp eptides to the 'true' polypeptide 

I compared each putative polypeptide predicted from the C. elegans test dataset to its 

cognate reference protein using bl2seq (NCBI distribution). Default parameters were used 

except for the theoretical database size (-d), which was set to 1,300,000, the size of 

SwissProt. The blast reports were parsed using BioPerl modules. Each reference C. elegans 

reference protein was also compared to itself, with bl2seq. This gave a maximum bit score 

for each protein. 
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Calculation of comparison statistics 

The score used to compare the methods was normalised for length and theoretical maximum 

using Equation 2.2, where: normBits is the normalise bit score; BITlocal is the bit score of 

the BLAST alignment between the predicted polypeptide and its WormPep reference 

protein; 

BITmax is the bit score for the alignment between the reference protein and itself; WPlength 

is the length of the WormPep reference protein; and ESTlength is the length of the nucleotide 

consensus that has been translated. 

The fraction coverage (fracCov) of the reference protein was calculated directory from the 

blast report file (Equation 2.3), where lenOfAin is the length of the HSP alignment between 

the sequences and lenOfiVP is the length of the WormPep protein matched. 

normB its -- ( 
BITlocal  )( 3WPlength ' 

	Equation 2.2 
BITmax ESTlength/ 

fracCov= lenOfAin Equation 2.3 
lenOjWP 
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2.7 Results and Discussion 

To measure the accuracy of translation two statistics were derived from the comparison of 

the predicted and reference polypeptides. The coverage is the fraction of the peptide that 

aligns with the reference. This is a relative measure and gives an indication of the methods' 

performance in identifying frame-shifts. If a frame-shift causes the polypeptide to be 

prematurely terminated then the coverage is reduced. The bit score represents the total of the 

alignment's pair-wise scores, normalised with respect to the substitution matrix used to 

calculate these scores. In this study the bit score was itself normalised to compensate for 

EST length and maximum possible bit score for each comparison (see Methods, Equation. 

2.2). The number of consensuses translated that had a significant match (E value <e-3) to 

their cognate C. elegans protein was also recorded for each run. 

2.7.1 The influence of number of training codons 

Both variants of DECODER were unable to produce robust translations of over half the 

nucleotide sequences no matter how many nucleotides were in the training set (Figure 2.5). 

As expected, the inclusion of the reverse complement in the DECODER analysis improved 

its performance. The more accurate translation occurred on the negative strand in almost 

20% of consensuses. The inability of DECODER to translate more than 50% of the 

polypeptides can be traced to its core assumptions. One criterion used is the identification of 

the most likely initiation methionine. While this is almost always present in full-length 

cDNAs, the occurrence of any ATG codon is less certain. I noted that DECODER will try 

any ATG codon to start its prediction, even if this results in a polypeptide of two amino acids 

in length. 

The size of the training set used to build the codon usage table had no influence upon the 

accuracy of the translations produced by DECODER. This is a consequence of the stochastic 
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nature used to build the training sets. Random sampling from the complete proteome of C. 

elegans is likely to give mRNA whose average codon use is similar to that of the entire 

proteome. If the codon usage used was considerably different from that of C. elegans I 

would expect its performance to decline. However unless the consensus nucleotide query 

contained alternative features, such as Kozak sequence and initiation methionine, the codon 

usage is irrelevant as there is only one candidate translation. Another influence upon coding 

region recognition is the identification of the most likely Kozak sequence. The translation 

initiation site is well characterised in vertebrates [105]; however, it has been shown to differ 

significantly from other taxonomic groups [110]. Unfortunately DECODER implements a 

regular expression devised from the vertebrate distribution, a situation explained by the 

mammalian-based research of the RIKEN Institute. The differences may contribute towards 

the low number consensuses for which a coding region was predicted (Figure 2.5a). 

Compounding the lack of discriminatory power is that the original sequence quality files are 

not available, the ones used are produced by phrap in the consensus building step. That said, 

this is a situation facing many people who would wish to use prot4EST, so I consider the 

analysis relevant. 

The effect of the number of training nucleotides on ESTScan performance is pronounced. 

For the majority of training data sets the fraction of predictions that have significant matches 

to their reference protein was 75-90%. The number of translations fell significantly when the 

number of nucleotides in the training set dropped below 100,000. Models trained with 

10,000 or less nucleotides produced at most two translations from 2,316 input sequences. 

This is the result of undertraining the HMM used by ESTScan. There are 4,096 possible six-

tuples, so in a three-periodic inhomogeneous HMM at least 12,288 nucleotides are required. 

Even with this number of nucleotides not all six-tuples will be present, even those that 
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appear within the natural distribution for C. elegans complete mRNA complement. The 

HMIvI will not recognise real coding six-tuples in the consensuses and therefore penalise 

their occurrence. This also explains the obvious differences between replicates for training 

sets smaller that 100,000. Random selection of mRNA gives some sets that do not accurately 

represent the frequency of six-tuples for C. elegans. As mentioned in section describing the 

training of ESTScan (Methods 2.3.2) pseudocounts are used to try and overcome this 

problem, but their effect is limited with small amounts of data [104]. 

There is no further improvement in ESTScan's performance once the training sets reach 

150,000 nucleotides. This is equivalent to -150 full-length coding sequences. In a genuine 

situation, when a small number of full-length CDS exist in the public databases it is probable 

that they were generated by a few surveys, designed to focus upon a particular subset of the 

proteome. Often these CDS will be from a few gene families and / or highly expressed genes 

with atypical codon usage and structure. The method used here for training set construction, 

random selection of CDS from a complete proteome, will provide a more natural frequency 

matrix of coding signatures. Therefore I suspect that the performance of ESTScan trained 

with datasets less than 250,000 nucleotides to be inflated in this study. 

When the training sets contained a large number of non-redundant nucleotides (>150,000), 

prot4EST_ed and ESTScan performed equally well (Figure 2.5a). When the number of 

coding nucleotides available for training and codon usage determination were reduced, 

prot4EST translations still showed significant similarity to their reference protein in at least 

80% of instances. 
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Performance of polypeptide prediction methods under different training regimes. 
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Figure 2.5 

Performance of polypeptide prediction methods under different training regimes. 

Predicted polypeptides were compared to their reference protein from WormPep. The 

methods tested were ESTScan, DECODER—default (standard settings), DECODER —best 

(considers both frames), longest_ORF (open reading frame) and two architectures of 

prot4EST. See section 2.6 for more details. 

Four independent replicates of each training set size were used. (A) Proportion of predicted 

polypeptides having a significant BLASTP match to their reference protein. (B) The mean 

proportion of each sequence covered by a predicted polypeptide. (C) The mean relative bit 

score of each predicted polypeptide compared to its reference protein. 

The scores in B and C are the mean of the sequences translated by each method. The high 

scores shown by ESTScan at 5,000 and 10,000 non-redundant cosing nucleotides is due to 

the method returning at most one polypeptide out of the 2,316 nucleotides provided. 

The translations produced by prot4EST_ed were the most robust across all training data sets, 

for both coverage and bit score (Figures 2.5b&c). As the size of training set decreased, both 

measures show slight reductions. 

The ab initio Longest_ORF method does not require any training, instead using rules that 

describe mRNA structure as its guide. It provided translations for 80% (1,859) of the 

consensuses (E value cut off e-3). The relative coverage of these translations was 35%, and 

the normalised bot score was 0.33. Many of the predictions were much longer than the 

region that matched their cognate WormPep entry; using the Longest_ORF failed to identify 

frame-shifts and so identify the correct stop codon. This method also fails to correct for any 

incorrect base-calls, which result in the wrong nucleotide or ambiguous base 'N' being used. 
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2.7.2 Performance of similarity search 

Seven sequences out of 2,316 were identified as rRNA in step 1. Steps 2 and 3 of prot4EST 

exploit any significant sequence similarity between the query sequence and known proteins 

for coding determination. This approach identified coding regions for just under half of the 

consensus, 1,131. Nineteen were identified as derived from the mitochondrial genome. Three 

mitochondrial genes (ATPase 6, cytochrome oxidase subunits 2 and B) genes each had a 

representative in the test set and two query sequences matched cytochrome oxidase subunit 

1. To compare the similarity approach against the other component methods, thus test its 

position at the top of the hierarchy, the 1,131 consensuses were passed through DECODER. 

ESTScan and Longest_ORF and their accuracy measured as before. Translations predicted 

from the BLAST module were more accurate than those from the other methods (Figure 

2.6). 

2.7.3 Performance of alternative prot4EST architectures 

prot4EST_ed produced more robust translations for larger training sets. However when 

smaller totals of training nucleotides were used the translations produced by the alternative 

architecture prot4EST_de were slightly better (see Table 2.3). The differences in 

performance between the two set-ups were examined by following the fate of individual test 

sequences through the prot4EST pipeline. Once the 1,131 nucleotides with significant 

sequence similarity are removed from the process, the remaining sequences are passed to 

DECODER and ESTScan. Of these 67% can be translated by DECODER to satisfy the 

quality controls (Figure 2.7). The accuracy of these translations does not change, regardless 

of the size of the sampling set used to build the codon usage table (discussed above). 

ESTScan's poor performance when trained with small data sets has also been discussed (see 

section 2.7.1). For architecture comparison, no polypeptides are predicted by ESTScan with 

these small training sets, so its relative placement in the hierarchy is irrelevant. 

69 



Size of dataset 
(coding nucleotides) 

mean bit score (averaged over 
all four replicates) 

prot4EST_ed prot4EST_de 

5000 0.6509 0.6510 

10000 0.6507 0.6509 

20000 0.5037 0.5617 

30000 0.5556 0.5880 

40000 0.5873 0.6021 

50000 0.6003 0.5994 

Table 2.3 

Performance of two architectures of prot4EST with small training sets. 

_ed: ESTScan was used first first then DECODER; _de : DECODER first then ESTScan. 
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Figure 2.6 

Comparison of HSP tiling, ESTScan and DECODER performance. 

The accuracy of translation was compared for the 1,131 consensuses that prot4EST 

translated using similarity criteria. 
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The relative efficiency of different organisations of DECODER and ESTScan in the 

prot4EST pipeline. 

The proportion of consensus sequences produced by each part of the pipeline for each level 

of training is shown. 

Bold bars: prot4EST_ed - ESTScan translations were considered before those from 

DECODER. 

Hashed bars: prot4EST_de - robust DECODER translations were used in preference to those 

from ESTScan. 

73 



2.7.4 Effect of training set and target set sequence composition 

As a significant proportion of any EST set will not share similarity with known sequences, 

de novo translation methods need to be trained to as accurate a level as possible. The 

question is how this should be done given the paucity of prior sequence data available for 

individual species. Should CDS from species considered phylogenetically related be 

combined or should a large set from a model organism be used? A recent study of gene 

finding in novel genomes has shown a significant effect of sequence composition upon gene 

structure prediction, with more closely related model genomes providing poor training 

models if the codon usage differs significantly from the genome of interest [96].  This 

behaviour is expected in ESTScan; the six tuple signatures are affected by codon usage, 

implying a consequence to the parameters used in the HMMs. In the absence of robust 

methods for global codon usage comparisons, I examined the effect of AT content on the 

accuracy of translation. The complete CDS complements of 156 prokaryotes were assembled 

as described in the Methods. This gave a range of AT contents from 28% (Streptomyces 

coelicolor) to 78% (Wigglesworthia glossinindia). The rationale behind using prokaryote 

genomes is the removal of any bias due to the organisms' relatedness to C. elegans. The 

lowest number of non-redundant nucleotides was 461,299, in excess of the minimum number 

suggest for robust training. To introduce a phylogenetic signal training datasets from more 

closely related organisms were built. All available CDS entries of the nematode order 

Spirurida, last common ancestor with C. elegans was 475-500 MYA [111], and the model 

Viridiplantae Arabidopsis thaliana were collected as described in the Methods (2.6.1). 

This selection of training data was used to estimate emission probabilities for the HMM 

employed by ESTScan. These models were then used to predict the open reading frames 

from the 2,309 C. elegans consensuses used earlier (the putative rRNA genes were 

removed). 
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There was significant correlation between AT content of the training set and the coverage by 

the putative polypeptides of their reference C. elegans proteins (r = 0.49; P> 0.001) (Figure 

2.8). The most robust predictions were produced by HMMs trained on datasets with an AT 

content similar to that of C. elegans. For the prokaryote training sets the number of 

nucleotides available for training had no significant effect upon the performance. I accept 

that the some prokaryote training sets with AT contents close to C. elegans performed 

poorly; homogeneity of AT content is thus not a panacea. The best performance was 

obtained using the A. thaliana training set, with significantly better coverage than achieved 

with the more closely related Spirurida. As the plant dataset was two orders of magnitude 

larger than the Spirurida, four A. thaliana training sets of comparable size to the Spirurida 

were randomly built. These smaller training sets still performed better than the Spirurida 

training set but are now indistinguishable from the prokaryote. Whether this reduction is 

performance is due to a bias in the six-tuple signatures detected in the new training sets is 

unclear. A decrease in the amount of untranslated region is likely to have an effect on the 

models which characterise the start and stop points of the coding region, therefore affecting 

the length of the prediction. 

The size of these eukaryote training sets, '-230,000 nucleotides, is at least half that of the 

smallest prokaryote proteome. This level is in excess of the minimum requirement shown 

previously. 
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Effect of AT content of training set upon translation accuracy. 

Each purple diamond represents a complete CDS set from a prokaryote genome. The orange 

square represents all CDS available from the nematode order Spirurida (-230,000 non-

redundant coding nucleotides). The green triangle symbolises the complete Arabidopsis 

thaliana RefSeq collection (-30,000,000 non-redundant coding nucleotides). The green 

circles are training sets of A. thaliana CDS Ref Seq entires randomly selected to total 

—230,000 non-redundant coding nucleotides. The AT content of C. elegans is shown by the 

vertical dashed line. 
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2.8 Conclusion 

prot4EST is the most accurate coding region prediction tool available. It outperforms all 

other standalone methods by combining methods and ensuring they are used to their fullest 

potential, while recognising each method's shortcomings. This is particularly important when 

the nucleotide sequences are form a species for which there are few or no full-length cDNA 

information available. Such situations are common for EST projects. 

2.8.1 Recent developments 

Since the benchmarking of prot4EST a number of other coding region prediction methods 

have been published. Nadershahi and colleagues compared a number of approaches for the 

correct identification of the translation initiation sites [112]. It was found that ATGpr [113], 

a program that considers up to six discriminative features of the EST sequence, could 

identify 76% of true start codons while keeping the number of false positives to a minimum. 

Features considered by ATGpr include, hexanucleotide frequencies and a position scoring 

matrix for the region immediately surrounding putative start codons. The approach is similar 

to that used by ESTScan2 to locate the correct start of the coding region. Unfortunately 

ESTScan2 was not available at the time of this study, forcing ESTScanI to be used as a 

comparison with the expected poor performance. With the new architecture of ESTScan2 I 

would expect a much improved attainment for finding the true initiation methionine. 

While the study highlighted many of the problems with finding the correct start codon, most 

of the methods considered are of limited value for coding region prediction. With the 

exception of ESTScan1, none attempt to correct for frame-shift errors or try and find the end 

of the coding region. 
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The motivation behind predicting the coding regions from error-prone sequences is to 

provide a platform for high quality annotation. The AutoFact system endeavours to deliver 

functional annotation from ESTs is a hierarchical manner [20]. BLAST is used to identify 

significant sequence similarities with annotated protein sequences. The description lines 

attributed to the proteins are parsed for common, informative terms and, if in agreement, 

they are assigned to the EST. This allows more detailed characterisation with COG functions 

[69], KEGG Pathways [114] and Gene Ontologies 115]. RPS-BLAST searches [13] against 

the Pfam [77] and SMART [99] databases are performed against the remaining, unannotated, 

ESTs in an attempt to assign a protein domain. Remaining ESTs are classified as 'unassigned 

protein', 'unknown EST' and 'unclassified'. Such a system is effective for the study of those 

ESTs with meaningful annotation, however there is little benefit for the remaining 

sequences. As there is no prediction of the location of coding region it is not possible to 

perform many of the analyses which may elucidate a putative function. As a consequence the 

group have begun to use prot4EST for the large number of Protist ESTs (Liisa Koski, pers.. 

comm.). 

2.8.2 Future Work 

The hierarchical pipeline has been shown to perform best in finding the coding regions. Such 

approaches are now common in the field of bioinformatics. Using a number of methods and 

considering all the possible results, with the possible inclusion of a ranking system, have 

been developed for problems such as gene finding [36] and 3D structural prediction [79]. 

The relative dependence upon the components is vital to the accuracy of such methods and 

should be explored empirically, rather than rely upon widely held opinions. Once correctly 

optimised one would expect improved results over an individual component, 
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The modular form also permits upgrade of the system to be relatively simple. If prot4EST is 

to be taken forward then possible improvements include the incorporation of more accurate 

prediction algorithms. Currently there is nothing to challenge the current set-up, except for 

the possible incorporation of ATGpr [113] to identify the most likely start codon. 

Comparisons between ATGpr and ESTScan2 are needed, as is ATGpr's prediction if there is 

no true start codon present, not uncommon given ESTs' error-prone infamy. 
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Chapter Three - Construction and preliminary 

analysis of a pan-nematode protein database, 

NemPep 

3.1 Abstract 

Protein database resources are under continual development for those metazoan species with 

completely sequenced genornes. They present a superb opportunity to study the proteome of 

each organism through both bioinformatic and more traditional experimental technologies. 

Thus the majority of comparative genomic studies involving C. elegans use the collection of 

protein predictions held in the genome database WormPep. 

In this chapter I describe how protein sequences were predicted for 37 nematode species 

using the translation software prot4EST. The use of simulated full-length mRNA for training 

set construction is explored and justified. The result is NemPep3, a collection of 

approximately 122,000 polypeptide sequences robustly translated from EST datasets from 

the phylum Nematoda, excluding Caenorhabditis species. I present an initial survey of 

compositional features for each proteome as well as a comparative review of their content. 

The problem of usefulness of unclustered expressed sequence tags and identification of 

sequences with features of experimental error is also investigated. 

3.2 Introduction 

3.2.1 Available protein resources 

The completely sequenced genome of an organism potentially provides, the amino acid 
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sequence of all protein gene products. The field of proteomics aims to elucidate a function 

for each protein through large-scale systematic analysis. A database of gene products can be 

be used to coordinate the findings from any number of functional genomic techniques, 

including 2-D electrophoresis, SDS-PAGE, microarray analysis and detection of single 

nucleotide polymorphisms. Such database resources have been developed for many 

completed genomes, especially the model eukaryotes. Perhaps the most complete is that for 

Caenorhabditis species. WormBase is the major repository for C. elegans information: 

sequence, cell and gene expression, anatomy and literature [37]. Much of this information is 

linked allowing the user to move from a genomic region to the genes contained therein and 

subsequently to details of gene expression and the anatomy of RNAi phenotypes. Of 

particular interest to my analyses is WormPep, the nonredundant set. of predicted proteins 

from the C. elegans genome. Updated at regular intervals, the current version of WormPep 

(140 - March 2005) contains 22,240 entries. The data contains identifiers which links each 

entry to WormBase and UniProt, brief annotation, and the amino acid sequence. 

3.2.2 Studying proteomes 

The majority of comparative metazoan genomic studies focus upon species with complete 

genomes [3,65,116]. One reason for this is the availability of predicted protein collections. 

However an increasing number of projects have produced expressed sequence tags (ESTs), 

focusing on species for which little or no genomic sequence is available. To date the 

majority of analyses have focused on using ESTs in expression studies, and there has been 

little direct use of polypeptide sequences derived from the ESTs. Once the coding regions of 

an EST dataset are identified, it is possible to perform the sorts of comparative analyses 

previously confined to complete genomes. The polypeptide sequences present a better 

template for almost all annotation, including domain determination with Interpro [76] and 

Pfam [77], as well as construction of more accurate multiple sequence alignments, the 
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creation of protein-mass fingerprint libraries for proteomic studies, structural threading and 

modelling to provide secondary and tertiary structures. A partial proteome also allows 

analysis of metabolic and other characterised pathways. This work is of particular relevance 

to parasitic nematodes, as it offers a promising identification screen for new anthelmintic 

drug targets. 

It was this need for robust identification of coding regions from error-prone sequence that 

led to the development of prot4EST (see Chapter Two and Wasmuth & Blaxter [8]). It was 

designed for neglected genomes, those with few previously identified full-length mRNA for 

model training. prot4EST derives partial proteomes from EST datasets, facilitating 

proteomic research both within and between species datasets. 

3.2.3 Analyses of the nematode (partial) proteome 

All the expressed sequence tags (ESTs) studied in the analyses described here have been 

passed through the Edinburgh EST-pipeline, PartiGene [21]. The sequences are first 

processed by trace2dbEST. Any sequence that resembles a vector, bacterial contamination or 

poly(A) is trimmed. These sequences are then clustered into putative gene objects using 

CLOBB [15]. Consensus sequence(s) are assembled from each cluster by phrap [17,18]. It is 

these consensus sequences that form the basis for subsequent studies [51,47,117,49,48,16]. 

The primary focus of recent studies has been the identification of genes restricted to specific 

taxonomic groups. As there are over 200 cDNA libraries for the 37 species, genes whose 

expression appears to be limited to a particular life-cycle stage or tissue type are also 

attracting a lot of attention. The interest in these clusters is motivated by the search for new 

anthelmintics, as well as insights to the evolution of the Nematoda. 

prot4EST (version 0.9) was used to derive a collection of translated coding regions, 
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NemPep, for the EST datasets from the 30 species of nematodes. The properties of NemPep 

(version one) were subject to preliminary analysis in the first pan-phylum transcriptomic 

study of the Nematoda [51]. As part of the analysis, putatively nematode-specific proteins 

were clustered into families using Tribe-MCL [118]. The families were then mapped to the 

phylogeny to identify when they arose. In this analysis the size of each species' datasets 

affected the number of gene families, though no statistical analysis was performed. Most 

events of origin of nematode-unique genes were mapped to early in the phylogeny, with 

approximately 6,500 genes unique to the three clades of the Rhabditida and almost 2,000 

genes whose phylogenetic distribution suggests that they were present in the ancestral 

nematode. The inclusion of additional species datasets and improvements to prot4EST led to 

the update of NemPep (version two). 

However, there are a number of reasons for caution in accepting this high estimate of genic 

novelty found in the phylum Nematoda. 

Limitations ofprot4EST 

Close examination of NemPep versions one and two revealed some limitations in the 

implementation of several concepts in prot4EST version 0.9. These mostly stemmed from 

high-complexity repetitive nucleotide sequence, which were problematic for the BLAST 

parser and extension processes. Other problems were caused by limitations of the ESTScan 

code, leading to incorrectly translated coding regions. prot4EST has since been updated 

(version two) to manage these problem sequences, and corrects the ESTScan code. 

Training sets 

Version one of NemPep was created without fully optimising the training of ESTScan. Thus, 

the estimation of emission parameters for the hidden Markov models may not have 
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accurately reflected the hexamer frequency of each species. Techniques have now been 

devised to overcome the problem and are described in this chapter. 

Confidence in coding regions 

Ideally, functional analysis should only be performed upon those sequences with a coding 

region. Spurious polypeptides that have been included in an analysis may, through weak 

similarity, be assigned some functional remark. Such errors can be propagated through the 

database. prot4EST produces a coding region prediction for every sequence presented. 

However, the hierarchical ranking of incorporated methods allows one to make an informed 

decision about the quality of each translation. I have shown, in the previous chapter, that 

when sufficiently optimised, BLAST-based similarity and ESTScan predictions are superior 

to those using DECODER or the longest open reading frame (longest_ORF). In analyses 

such as that performed by Parkinson and colleagues, the method of translation should be 

considered. This is particularly important when searching for novelty. 

Singletons 

From the 341,000 ESTs produced for nematodes other than Caenorhabditis, approximately 

80,000 (24%) were not assigned to a cluster containing another EST. These singletons share 

no significant sequence similarity within the parameters of CLOBB [15] and represent 

almost two-thirds of distinct gene objects. A singleton may represent a gene with a very low 

level of expression or a sequence segment with no coding potential. In the original pan-

Nematoda study the bulk of the genes considered unique to the nematodes were singletons. 

However it has yet to be determined whether these singletons are indeed real transcribed 

sequence or not. Without a qualitative exploration testing the biological meaning of 

singletons, any study performed where singletons are included in the proportion of novel 

genes [48,47,117,49,7] may be considered with a degree of skepticism. 
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Concerns regarding valid training sets and confidence in the coding region have been 

overcome by the development of prot4EST and investigating bootstrapping methods, 

respectively. This has informed subsequent releases of NemPep, with versions one and two 

being retired. Version three (July 2005), incorporates 119,668 clusters from the 37 species; 

the original phylum wide analysis considered 93,645 clusters from the 30 species. I have 

used NemPep3 to perform a series of analyses. These include examining the validity of a 

consensus given its coding region prediction with particular reference to singletons and 

method of translation used. These analyses are described in this chapter, with commentary 

on their usefulness in downstream analyses. Later chapters describe evolutionary studies 

performed upon NemPep3. 

3.2.4 Foreseen problems with generating NemPep 

The methods used by prot4EST that provide the most accurate coding region predictions are 

BLAST-similarity and ESTScan. The performance of both approaches is dependent upon the 

information used to characterise the coding regions. The BLAST component uses a database 

of protein sequences to compare against all possible translations of the contig. Any regions 

of significant sequence similarity are used to identify the coding region of the contig. It is 

vital, therefore, that the database only contains accurately reported protein sequences. The 

UniProt database is a comprehensive catalogue of protein information [86]. 

Preliminary analysis of the nematode EST datasets show that between 40-60% of contigs 

share significant sequence similarity to a protein in UniProt. For the remaining contigs there 

is a reliance upon de novo programs to identify the coding regions. The ESTScan algorithm 

combines hidden Markov models (HMMs) to characterise the structure of a representative 

mRNA molecule for a particular species. The principal feature used is the n-tuple nucleotide 
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frequency for the translated region of the mRNA. The optimal size for n is six (a dicodon) 

and it is the distribution of all possible hexamers in the coding region of fill-length mRNA 

that is used to estimate the HMM probabilities. This reliance upon sequence composition 

means that the hexamer frequency of the mRNA training set should correspond closely to 

that of the species providing the EST contigs. Full-length coding sequences (CDS) are not 

readily available for many species that are the subject of EST sequencing efforts. The 

nematode species studied in this work are no exception (Table 3.1). 

In Chapter Two, I showed that the accuracy of coding region prediction by ESTScan is 

extremely sensitive to sequence composition (section 2.3.2). The measure of composition 

was the AT content of the training sequences, which dictates, and/or is a consequence of, 

codon usage [119]. Differences in AT content between two species will lead to variation in 

their observed hexamer frequency. This suggests that the use of a large number of full-length 

CDS from another, better-studied species, even if closely related, as a training set may 

generate HMMs that do not identify genuine coding regions. Reliance upon a small, yet 

authentic, training set leads to poorly paranieterised HMMs. Both, I have shown, have 

drastic and deleterious effects upon the predictive power of ESTScan. 

In summary, to ensure that the estimation of HMM probabilities is as robust as possible, data 

must be available that accurately reflects the hexamer frequency of each species. To achieve 

this I have used the almost unique advantage the phylum Nematoda has over other groups of 

neglected genomes, the presence of a well-studied model organism. The free-living 

rhabditine nematode, Caenorhabditis elegans was the first multicellular organism for which 

a complete genome sequence was available [35,37]. The non-redundant collection of 

predicted proteins for C. elegans, WormPep, forms the basis for the generation of large 

training sets for each nematode species by back-translating using specific codon usage 
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tables. It is expected that these artificial training sets will improve the performance of 

ESTScan to identify coding regions in genes which do not share similarity with characterised 

proteins. This portion of the transcriptome is likely to contains many nematode-specific 

genes, so the robust identification of their encoded polypeptide sequence is an important 

issue. 
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Species Number of 
CDS 

Ancylostoma caninum 52 

Ascaris suum 167 

Brugia malayi 200 

C'aenorhabditis briggsae' 13,258 

Caenorhabditis elegans 22,992 

Globodera rostochienesis 40 

Haemonchus contortus 184 

Heterodera glycines 176 

Heterodera schachtii 9 

Meloidogyne hap/a 13 

Meloidogynejavanica 21 

Necator americanus 43 

Nippostrongylus brasiliensis 11 

Parastrongyloides trichosuri 3 

Pratylenchus penetrans 10 

Pristionchus pacjflcus 24 

Trichi ne/la spiralis 74 

Trichuris muris 1 

Toxocara canis 33 

Wuchereria bancrofti 31 

Zeldia punctata 2 

Table 3.1 

Number of CDS available for nematode species. 

With only a small number of CDS available for the parasitic nematodes, the need for 

developing prot4EST is evident. Only the caenorhabditid species would provide enough 

sequence data for adequate training sets for the ESTScan algorithm. 

(1) C. briggsae actually has —19,500 CDS, but many of these have yet to be incorporated 

into the EMBL database. 
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3.3 Methods 

3.3.1 Building synthetic training sets 

All the consensuses from each species' dataset were searched using BLASTX against the 

UniProt protein database. Potential coding regions were identified with a slightly modified 

version of the tile_path algorithm used in prot4EST (B value cut off: e-8). The codon usage 

for these regions was then calculated with a Perl script. 

The proteome of C. elegans (WormPep140) was used as the template for the simulated 

transcriptomes. To reverse translate the proteome the following pseudo-code was 

implemented in a Perl script: 

foreach (protein) { 

split—into—amino—acids 

foreach (amino—acid) 	{ 

pick codon from corresponding distribution 

return codon 

} 

I 

This gives a transcriptome based on the C. elegans proteome with the codon usage of the 

particular species. Any CDS available for a species were downloaded from EMBL using the 

following search terms: 

Organism - as required 

Molecule 	'RNA I mRNA' 

Description - 'complete CDS' 

These were added to the corresponding simulated-transcriptome. This training set was used 
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as the input for the build—model script (available with ESTScan installation) which estimates 

the emission probabilities populating ESTScan's HMM. Default parameters were used. The 

resultant matrix file (.smat) was applied to prot4EST for the translation of that species' EST 

contigs. 

3.3.2 prot4EST 

Version 2.2 of prot4EST was used to generate polypeptide predictions of EST contigs of 37 

species of nematode. 

All the BLAST searches were performed separate from prot4EST. 

rRNA database 

The sequences were.obtained from the European rRNA database [107]. The E value cut off 

for the BLASTN search was e-65. 

Mitochondrial database 

All available proteins of mitochondrial genomes from metozoan lineages were extracted 

from GenBank using a script written by Martin Jones. This set of sequences was reduced to 

so that no two sequences shared more than 70% identity. This was done to considerably 

speed up search time. The E value cut off for the BLASTX search was e-8. 

Protein Database 

The UniRefi 00 database (v4 Feb 2005) available through UniProt knowledgebase was used 

for the BLASTX searches. The E value cut off was e-8. 

ESTScan and DECODER requirements 

Codon usage tables for each species were generated as described in 3.3.1. The ESTScan 

matrix files were generated as described in 3.3.1. 
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3.3.3 AT content of coding regions 

Only the coding regions predicted by BLAST-similarity were used for calculating the coding 

AT content using a Perl script. As the translations predicted by ESTScan used a matrix that 

was generated with the codon usage from BLAST-similarity matches, they would provide no 

additional information and were not used here. 

3.3.4 Spliced leader library study 

Information about cDNA libraries is stored in the NEMBASE database. ESTs generated 

from SL libraries were identified, and the proportion of SL-library derived ESTs within each 

cluster was calculated. Singletons were not analysed. Comparisons between the lengths of 

coding regions in different subsets was performed using a t-test carried out in the R-statistics 

package [120]. Homogeneity of variance was tested, again with R. Due to the large 

population sizes, the variances of some pair-wise comparisons were heterogeneous. There is 

a debate as to the validity of this assumption for t-tests; I chose to use p-values as a guide to 

biological relevance. Due to the large number of test performed, the Bonferroni adjustment 

was used to correct for multiple testing [121]. 

3.3.5 Non-coding singletons v library comparison 

Identifying singletons and mapping them to specific cDNA libraries was carried out using 

Perl scripts that performed SQL queries against NEMBASE. For singletons, only coding 

regions detected by either BLAST-similarity or ESTScan components were considered. 

The proportion of non-coding singletons in the cDNA libraries for a single species were 

compared for Brugia malayi and Onchocerca volvulus. A G-test was used to test whether the 

distribution of non-coding singletons was random between the cDNA libraries. 
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3.3.6 Distance measure for amino acid usage 

A discussion regarding the use of distance measures and the chi-squared statistic is given 

later in this chapter and considered in Echols et al. 2002. In Equation 3.1 AF(A,B) is the 

difference in the frequency of feature I observed between species A and B. This represents 

the contribution to the distance between A and B made by feature i. 

In Equation 3.2, D(A,B)  is a measure of the total distance between A and B, for a set of 

features of size N. For this analysis the features are amino acids, therefore N20. The 39 

species were compared in a pairwise manner, producing a matrix of distances. 

L FJ(A B)1F1(A)F1(B)I 	Equation 3.1 

N 

D(A = 	kF,(A,B)I 2  

I 	
Equation 3.2 

i= 1 

These formulas were implemented in a Perl script. 
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3.4 Results and Discussion 

prot4EST (version 2.2) was used to predict the coding regions for EST contigs from 37 

species of the phylum Nematoda as described above. To improve the performance of 

ESTScan, simulated training sets were used to estimate emission probabilities for the hidden 

Markov model (HMM). For each species a synthetic-transcriptome was assembled by the 

reverse-translation of the WormPep protein set using the distribution of codon usage for the 

particular species (see Methods 3.2.1). The synthetic-transcriptome was complemented by 

full-length CDS available for each species. 

A total of 121,694 polypeptide sequences were produced. Combined with the complete 

proteomes of C. elegans and C. briggsae and previously characterised proteins from other 

nematode species, NemPep3 includes 167,126 polypeptides available for nematode species. 

3.4.1 AT content 

The mean AT content of coding regions within a species' datasets ranged from 0.674 

(Strongyloides ratti) to 0.466 (Rhadopholus similis) (Table 3.2). The average across all 

species' means was 0.552. There is little divergence of AT content within ordinal level 

taxonomic groups. The outlying position of Nippostrongylus brasiliensis (j.v0.491) within 

the Strongyloidea (p.=0.520) may be due to the small number of clusters available. However, 

given its basal position in the SSU rRNA phylogeny, it could be a true reflection of 

divergence. The two dade III orders, the Spiruromorpha (p.=0.582) and Ascasidomorpha 

(.t=0.516), show significantly different AT contents. Within the Tylenchomorpha, the AT 

content of coding regions shows a wide variation, but is less variable in more terminal 

taxonomic groups. The Meloidogyne species have a higher AT content (j.0.624) than 

members of the subfamily Heteroderinae (Heterodera glycines, H. schachtif, Globodera 
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pallida and G. rostochiensis; t0.486). Species belonging to the family Pratylenchidae 

(Pralylenchus vulnus, P. penetrans and Rhadopholus similis), display surprisingly large 

variation in coding AT content. These differences may be the consequence of low sequence 

sampling for this group (only 418 - 856 contigs are available depending on the species). 

3.4.2 rRNA and mitochondrial genes 

A total of 482 ribosomal RNA genes were identified, representing between 0 and 1.4% of 

any species collection (Table 3.3). Proteins encoded by genes found on the mitochondrial 

genome contributed an average of 0.4% towards each dataset (Table 3.3). The species for 

which the proportion of clusters representing mitochondrially-encoded proteins was very 

high (>2%), such as N brasiliensis (2.7%) and P. vulnus (5.0%), were generally those with a 

small number of clusters. This skew was most likely down to the stochastic sampling of 

clones chosen for sequencing, and the high representation of mitochondrial transcripts in 

cDNA libraries. In absolute terms there were a high number of putative mitochondrial genes 

in the datasets of Brugia malayi and Ancylostoma caninum, with 159 and 111 contigs 

respectively matching mitochondrial gene products. The nematode mitochondrial genome 

has between 15 and 16 genes [122,123]. Manual examination of the BLAST reports revealed 

only three to be spurious matches. However, the number of clusters represented by these 

contigs is low. The B. malayi contigs come from only 48 clusters, a redundancy of 3.75. 

Similarly, the 111 contigs from A. caninum represent only 43 clusters, which is slightly 

under 3 contigs per cluster. Across the other species' mitochondrially-encoded proteins the 

redundancy is typically less than two. When all clusters are considered the mean number of 

contigs varies from 1.01 to 1.14 depending upon the species. The high redundancy in the 

mitochondrial complement of certain species is probably due to the genetic heterogeneity in 

the starting populations of nematodes sampled. A recent study on an EST dataset from 

Fundulus heteroclitus, showed that there were 10 clusters which represented the cytochrome 
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oxidase I gene [22], showing that this problem is one indicative of EST analyses. 

3.4.3 Polypeptide length 

The mean length of translations produced by prot4EST was 136.52 amino acids (s.d.64.35), 

or 410 base pairs (Table 3.3). The proteins in WormPepl40 have a mean length of 443.78 

amino acids, or 1,300bp. The difference is certainly due to the length of the EST contig, the 

mean of which is 496bp. There was a substantial range of mean lengths per species from 

105.3 amino acids (Brugia malayi) to 185.1 (Globodera pal/ida). There were no significant 

correlations between average length of translation and size of the dataset or AT content. Any 

influence by phylogenetic relatedness is difficult to test statistically, but seems absent. 

Of the four methods used by prot4EST, prediction of coding regions through similarity with 

a known protein provided the longest polypeptide sequences for most species; notable 

exceptions where ESTScan predictions are longer include G. pal/ida, Litomosoides 

sigmodontis and Pratylenchus penetrans. Translations by DECODER and longest ORF are 

substantially shorter than those from BLAST-similarity and ESTScan. Across the entire 

collection of EST contigs, slightly more than half have significant sequence similarity to a 

protein in UniProt. Even ignoring the very small datasets, the use of BLAST-similarity 

ranges from 37.2% (B. malayi) to 65.3% (Haemonchus contortus). The overwhelming 

majority of remaining contigs are translated using the ESTScan component (86%). 
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Table 3.2 

AT proportion of coding regions for 39 species of nematodes. 

Species Code (lade Taxonomic Order' AT prop. 

Strongyloidesraiti SRC TV Panagrolaimornorpha 0.674 

Strongyloides stercoralis SSC IV Panagrolaimomorpha 0.661 

.t/cliJog/k ..Jiitivoodi \ICC 1\ I 	Ienchomoip!w 0.637 

i%4eloidogyne hap/a MHC IV Tylenchomorpha 0.629 

Afeloidogyne arenaria MAC IV Tylenchomorpha 0.625 

AIe/oidogynejavanica MJC IV Tylenchomorpha 0.620 

11e1oidogyne incognita MIC IV Tylenchomorpha 0.618 

Me/oidogyne paranaensis MPC IV Tylenchomorpha 0.617 

Dirofi/aria i,nmilis DIC III Spiruromorpha 0.601 

Brugiama/ayi BMC III Spiruromorpha 0.591 

Onchoer.'a vu/vu/us 0 V ( III Spiruromorpha 0.583 

Paras/rongyloides trichosuri PTC IV Panagrolaimomorpha 0.580 

Zeldiapunctata ZPC IV Cephalobornorpha 0.580 

Trichi ne//a spiralis TSC I Trichinellida 0.574 

Wuchereria bancrofti WBC Ill Spiruromorpha 0.572 

Caenorhabdiiis e/egans V Rhabditoidea 0.571 

Lit osomosides sigmondontis LSC III Spirurornorpha 0.564 

Caenorhabditis hriggsae V Rhabditoidea 0.558 

Pratylenchuspenetrans PEC IV Tylenchomorpha 0.540 

Hae,nonchus cont or! us HCC V Strongyloidea 0.534 

Vecator arnericanus NAC V Strorigyloidea 0.530 

Xiphinema index XIC I Dorylaimida 0.526 

Pralylenchus vulnus PVC IV Tylenchornorpha 0.524 

Ascarissuum -- ASC Ill Ascaridomorpha 0.523 

.4ncy/ostona caninum ACC V Strongyloidea 0.522 

Te/adorsagia circumcincta TDC V Strongyloidea 0.520 

O,'ILrtagia 	.1cr1agi OOC V Strongyloidea 0.520 

Toxocara can/s TCC III Ascasidomorpha 0.516 

irichuris vu/pis TVC I Trichinellida 0.516 

Ascaris /u,nbricoides ALC III Ascasidomorpha 0.508 

iJeierodeu schachüi HSC IV Tylenchornorpha 0.505 

Trichuris muris TMC I Trichinellida 0.504 

.-lncvlusioma ceIwiicwn .AVC V Strongyloidea 0.500 

Heteroderaglycines HGC IV Tylenchomorpha 0.490 

Continued overleaf.. 
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Species Code Clade Taxonomic Order AT prop. 

Nipposirongylus brasiliensis NBC V Strorigyloidea 0.49 

Globoderapallida GPC IV Tylenchomorpha 0.486 

Globodera rosiochiensis GRC IV Tylenchomorpha 0.485 

PristionchuspacJicus PPC V Diplogasteromorpha 0.484 

Rhadopholus similis RSC IV Tylenchomorpha 0.466 

Table 3.2 

AT proportion of coding regions for 39 species of nematodes. 

The coding regions used are those identified with the BLAST component of prot4EST, 

expect for C. elegans and C. briggsae where WorrnPepl40 and BrigPep2 are used, 

respectively. The colours reflect those used in Figure 1.4. 

(1) The taxonomic ranks are those used Parkinson et al. 2004. See Introduction 1.3.1 for an 

explanation for this choice. 
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Table 3.3 

Summary of NemPep3. 

Species' 
Number 

of 
Contigs 

Mean 
length2 

Mitochondrial' 
BLAST-similarity 

________ _________ 
ESTScan 

_______ _________ 
proportion 

produced by 
BLAST or 
ESTScan 

DECODER Longest_ORF 

number mean len4  number mean len4  number mean len4  
I 

number mean 
ien4 

XIC 4616 170.7 59 2804 190.6 1551 154.8 0.943 126 58.0 175 70.2 

TSC 3765 133.4 40 1760 140.5 1845 132.2 0.958 96 64.8 64 78.4 

TVC 1265 112.8 17 499 128.9 621 113.7 0.885 44 47.3 101 56.3 

TMC 1591 134.1 15 478 147.6 664 136.8 0.718 84 59.8 95 74.9 

ALC 875 116.8 26 401 106.7 445 129.0 0.967 10 58.8 19 73.1 

ASC 8761 135.9 89 4195 139.3 4397 135.9 0.981 52 53.9 117 48.7 

ICC 1562 135.2 45 817 147.4 651 131.2 0.940 33 73.3 61 47.9 

OVC 5109 123.3 84 2249 153.0 1720 135.8 0.777 238 60.7 902 42.1 

LSC 1651 149.7 34 888 141.8 751 160.3 0.993 4 50.2 8 76.1 

BMC 9845 105.3 159 3659 143.0 3312 109.4 0.708 806 52.3 2068 52.5 

WBC 2252 123.1 36 1008 166.3 534 146.1 0.685 122 67.2 588 39.6 

DIC 1796 116.2 14 761 118.7 1014 116.1 0.988 4 37.5 17 28.8 

ZPC 210 154.1 4 179 160.3 27 123.8 0.981 2 52.5 2 109.0 

SSC 3721 142.2 46 2419 151.5 1244 128.0 0.984 12 47.2 46 63.5 

SRC 3988 136.4 34 2238 149.8 1700 121.6 0.987 10 84.7 40 29.8 

PTC 3162 116.6 30 1735 136.7 1085 105.4 0.892 90 51.1 252 49.9 

PVC 856 136.8 43 401 162.9 391 121.8 0.925 0 N/A 54 65.4 

PEC 418 158.3 2 274 153.8 143 165.9 0.998 0 N/A 1 285.0 
C9nUfluea overleaJ... 



Species' 
Number 

of 
Contigs 

Mean 
length2  

. 	 .n  Mttochondal 
BLAST-similarity 

_________ 
ESTScan 

_______ _________ 
proportion 

- 

BLAST or 
ESTScan - 

produced by  
DECODER Longest ORF 

- ________ 

number mean len4  number mean len4  number mean len4  number mean 
 1en4  

HSC 1370 149.6 12 772 161.4 557 139.1 0.970 11 86.5 30  

HGC 9256 155.3 51 4884 166.8 4291 144.2 0.991 19 61.2 62 37.8 

GPC 2569 185.1 21 1350 175.8 1091 206.8 0.950 47 79.0 81 109.3 

GRC 2885 154.2 30 1607 154.6 1265 154.8 0.995 2 94.0 11 39.9 

RSC 597 106.5 6 276 125.7 256 98.9 0.891 25 52.8 40 56.4 

MCC 3811 117.1 35 1744 136.3 1787 109.4 0.927 54 48.6 226 45.6 

MJC 3496 123.3 16 1422 131.5 2019 119.6 0.984 16 59.1 39 42.1 

MPC 1644 138.8 11 843 163.4 634 128.1 0.898 50 57.6 117 54.5 

MHC 6984 126.2 33 3266 141.7 3293 121.1 0.939 95 51.3 330 46.7 

MIC 6062 146 47 3120 153.8 2869 140.3 0.988 18 53.8 55 36.1 

MAC 2659 123.2 15 1256 141.5 1165 119.1 0.910 39 43.0 199 46.8 

PPC 4306 146.5 55 2580 154.8 1649 137.1 0.982 36 71.4 41 68.2 

HCC 5265 155.4 68 3440 165.6 1754 139.0 0.987 27 95.0 44 45.9 

AYC 3720 149.8 35 2402 158.6 1293 135.2 0.993 10 56.2 15 56.1 

ACC 4368 125.8 111 2144 131.4 2210 120.9 0.997 3 43.0 11 50.3 

NBC 773 137.9 21 465 135.5 308 141.6 1.000 0 N/A 0 N/A 

NAC 2327 152.5 24 1157 135.6 1168 169.3 0.999 1 34.0 1 91.0 

OOC 2566 127 49 1556 133.7 970 119.3 0.984 18 56.4 22 51.2 

TDC 1874 147.2 31 1075 152.0 789 140.8 0.995 0 N/A 1 48.0 

Table 3.3 
Summary of NemPep3. 
legend overleaf.. 



Table 3.3 

Summary of NemPep3. 

Each species dataset is broken down to show the components used in the prot4EST pipeline. 

The percentages are the number of sequences translated by that method relative to the 

available contigs for that species. For more details on prot4EST components see the 

accompanying text and Chapter Two. 

species codes - see Table 3.2 

mean length of all coding regions predicted by prot4EST. 

contigs that are predicted to represent genes that are encoded for by the mitochondrial 

genome. 

the mean length of the coding regions predicted for a particular component of prot4EST. 
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3.4.4 Spliced leader libraries 

Nematodes modify pre-mRNA precursors through trans-splicing to generate mature mRNA 

[124,125]. The most common trans-spliced exon is a non-coding 22 nucleotide sequence 

known as the splice-leader 1 or SL1. It is highly conserved across many species and is 

spliced to the 5' end of pre-mRNAs. Use of the SL  transcript is estimated to be 80% of 

mRNAs in C. elegans [126], more than 80% in Ascaris suum [127] and approximately 60% 

in Globodera rostochiensis [49]. A second spliced leader exon family has also been 

identified [128]. The SL2-like spliced leader family is the predominant spliced leader found 

trans-spliced to downstream genes in operons of many nematodes (Blaxter in prep.). The 

widespread occurrence of these spliced leaders on nematode mature mRNAs has been used 

in the construction of several cDNA libraries, where only full-length cDNAs should be 

found. A total of 67 cDNA libraries from 23 species were constructed using PCR primers 

designed against either SL 1 (62) or SL2 (five) sequences. 

I examined the relationship between SLI/SL2 PCR-derived cDNAs. Clusters were split into 

four groups: those which contained only ESTs from SL-libraries; those where 50% of ESTs 

were from SL-libraries; remaining clusters with ESTs from SL-libraries; and those clusters 

without any SL-library ESTs (Table 3.4). Three species with ESTs from SL-libraries 

(Meloidogyne arenaria, P. penetrans and Zeldia punctata) did not provide clusters for all the 

categories, so were excluded. The translations from clusters that contained only ESTs from 

SL-libraries were significantly shorter than those clusters with no SL-primer ESTs for 14 

species (Table 3.4). It is expected that ESTs in exclusively SL-library clusters derive 

exclusively from the 5' end of the putative mRNA thus reducing the total coverage. There 

was no detectable difference in the methods used to translate these clusters, so there is no 

variation in the accuracy of the translations. When SL-primed ESTs comprised the majority 

of a cluster's membership, the coding regions were shorter in seven species but longer in six 

101 



(Table 3.4). Strikingly, where ESTs from SL-libraries make up less than half  cluster's total, 

the average length of coding region was greater for 13 species, compared to clusters with no 

SL-library ESTs. These clusters are further advantaged with an increased proportion of 

coding regions predicted by the BLAST-similarity component of prot4EST. Extensive 

benchmarking of prot4EST has shown this method to be the most accurate for predicting 

coding regions. 

Clusters containing a mix of ESTs from both SL-primer and more conventional primer-

ligation based libraries, provide longer and more robust coding regions. There was a clear 

benefit in being able to anchor the cluster at the 5' end of cognate mRNA with SL-primed 

ESTs and improve the overall coverage with the other ESTs. 
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Species5  All SL' >50% SV SL3  None' 

ACC 93.38 127.07 148.46 153.82 

ASC 127.19 166.74 219.19 164.18 

AYC 119.26 146.31 19016 209.64 

BMC 79.86 112.87 157.32 144.18 

DIC 112.64 139.78 169.59 138.36 

HCC 144.05 160.22 192.86 192.17 

HGC 127.21 144.28 162.29 193.30 

HSC 119.90 143.80 205.57 173.32 

MAC 149.00 nia ri/a 150.95 

MCC 124.51 167.00 	-- 163.46 136.55 

L 	MHC 143.69 173.17 180.63 143.39 

MIC 157.60 174.08 183.81 163.87 

MJC 134.13 153.07 178.26 146.82 

MPC 149.76 155.44 213.55 143.97 

OOC 123.30 &. 	168.69 198.41 144.92 

PEC 175.80 n1a iia n/a 

PPC 157.41 166.41 194.89 182.51 

PTC 139.46 167.53 199.53 137.70 

RSC 124.06 152.00 128.00 51.12 

SRC 114.50 148.48 250.88 169.65 

TCC 142.46 151.30 223.40 156.78 

TSC 155.87 185.50 255.43 157.41 

ZPC 185.62 n/a n/a n/a 

Table 3.4 

Effect of SL-primer libraries on coding region length. 

A total of 67 cDNA libraries were generated using PCR primers against the splice leader 

exons. These libraries are from 23 species. All the clusters from these species were split into 

four categories: 1) all the ESTs in the cluster are from SL-primer libraries, 2) over 50% are 

from SL-primer libraries, 3) there are ESTs from SL-primer libraries, but less than 50% and 

4) the cluster contains no ESTs from SL-primer libraries. 

The average length of each group of clusters was calculated. Groups 1-3 were, in turn, 

compared to the more orthodox group 4 using a t-test to identify whether differences in 

length of coding regions were significant (p <0.05; coloured red). 
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3.4.5 The effects of cluster size and singletons 

Three quarters of the largest clusters (> 21 ESTs) were translated using the BLAST 

component of prot4EST (Table 3.5), a proportion similar to that in the C. elegans proteome. 

For clusters containing two or more ESTs, 97-99% of coding regions were identified with 

BLAST-similarity or ESTScan. There was a noticeable skew in this pattern when the cluster 

contains only one EST. Singletons may be genes with very low levels of expression, or an 

artefactual string of nucleotides, due to technical errors. Seven percent of singletons cannot 

be robustly translated. This may be due to a number of reasons: 

The coding region contained within the singleton has a sequence composition 

significantly different from that detected in approximately 50% of contigs that 

used to generate the simulated transcriptome. 

The singleton does not contain a coding region, and is entirely made up from 

either 5' or 3' untranslated regions. 

The singleton does not contain a coding region, and is a contaminant or artefact 

of the sequencing process or subsequent quality controls. 

In the absence of complete genomes, it is difficult to determine the precise reasons why 

ESTs cannot be translated. However, with the forthcoming release of the genome for the 

filarial nematode Brugia malayl [129], further investigation is possible. The genome for B. 

malayi is still in a draft stage and so there are as yet unsequenced regions. There have also 

been issues with assembling the AT-rich genome. Gene identification is an ongoing process, 

benefited by coding region identification in ESTs. The 26,000 ESTs generated for B. malayi 

were an integral part of gene prediction in the raw genome sequence. To date 11,894 coding 

genes have been identified from the genome. It is unlikely that this number is exhaustive, but 

it is close to the estimated gene count [130]. All the singleton contigs were compared to the 

first release of the B. malayi proteome using BLASTX. A little over half of these sequences 
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(3,596 out of 7,085) had a significant match to a B. malayi protein (E value cut off e-3). The 

majority of these contigs (84%) contain coding regions which are identified by the BLAST 

or ESTScan component of prot4EST. Surprisingly only half of the singleton contigs which 

were translated by ESTScan had a significant hit to the B. malayi proteome. There were no 

detectable differences in length between those contigs that do match B. malayi CDS and 

those without hits. As these contigs have stretches of nucleotides which share hexamer 

frequencies with B. malayi mRNA, it can be argued that many of these represent genes that 

have yet to be identified from the raw genomic sequence, or that were from genomic regions 

yet to be assembled to the current draft. 

Over 2,500 singletons did not have coding regions that could be detected by BLAST 

searches or ESTScan. Of these only 300 (12%) had a significant match to the B. malayi 

proteome. The remaining 2,200 singletons could derive from genes that have yet to be 

identified in the draft genomic sequence. However, as they seem to lack the B. malayi coding 

signal characterised by ESTScan, their validity is doubtful. If this skepticism was applied 

across the nematode datasets, it would remove approximately 7,000 contigs, 6% of the total. 

This level should be kept in mind when the level of novelty in a dataset is announced. 

Additional peculiarities of the EST dataset from B. malayi are investigated below. 
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Cluster size BLAST-similarity ESTScan DECODER Longest_ORF 

1 0.45 0.46 0.02 0.07 

2 0.56 0.41 0.01 0.02 

3 0.64 0.34 0.01 0.01 

4 0.68 0.31 0.01 0.01 

5 0.68 0.31 0.00 0.01 

6-10 0.72 0.27 0.00 0.01 

11-20 0.74 0.25 0.00 0.01 

21+ 0.75 0.23 0.01 0.01 

Table 3.5 

The distribution of method used depending on the size of the cluster. 

The number of ESTs which constitute a cluster (its size) is a measure of how valid the cluster 

is. The larger clusters are more likely to share significant BLAST-similarity with a 

characterised protein. Singletons make up, relatively, the largest proportion of clusters for 

which a coding region cannot be accurately predicted. 
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3.4.6 Focus on the Spiruromorpha 

For most nematode species over 90% of contigs were translated by BLAST-similarity or 

ESTScan. Noticeable exceptions were three species from the Spiruromorpha, B. malayi 

(71%), Onchocerca volvulus (78%) and Wuchereria bancrofli (68%). Between a fifth and a 

quarter of coding regions were predicted using the longest ORF method (Figure 3.1). Little 

confidence can be attached to polypeptide sequences produced by this method due to its 

rather basic assumptions on coding region identification. These three datasets are not the 

only ones from members of the Spiruromorpha and thus to distinguish them from 

Litomosoides sigmondontis and Dirofilaria immitis, I shall hereafter use the abbreviation 

'BmOvWb'. 

The proportion of BmOvWb contigs that shared significant BLAST-detected similarity with 

a protein from the UniProt database was below average. In fact B. malayi had the lowest 

proportion of the 37 collections studied (Figure 3.1). The number of contigs translated with 

ESTScan was also below average. Datasets of other species, for example Haemonchus 

contortus and Strongyloides stercoralis, had a comparable proportion of contigs translated 

by ESTScan, but these usually complemented a large proportion of coding regions predicted 

by BLAST-similarity. The most striking feature was the proportion of contigs in which 

ESTScan could identify a coding region regardless of its accuracy. Across all datasets 95% 

of contigs without BLAST-similarity have some sort of predicted coding region, although 

approximately 10% of these are later removed by prot4EST's quality filters. For BmOvWb 

datasets approximately 60% of contigs have an ESTScan-determined coding region, before 

the use of filters. The poor performance of ESTScan can be attributed to two potential 

sources of error. The first is the composition of the training data, the second, the quality of 

the sequences under analysis. 
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Figure 3.1 Problems in detecting coding regions in the Spiruromorpha. 

There is a striking increase in the over-reliance on DECODER and Longest_ORF 

components for three species of Spiruromorpha. This suggests that a large number of EST 

contigs from these species contain no coding region, or one that cannot be characterised. 

108 



Training set fidelity 

The training set for each species was made by reverse translating WormPep using a species-

specific codon usage table. The codon usage was determined from those coding regions 

determined from BLAST-similarity. One of the primary assumptions with this method was 

that these coding regions would provide an accurate distribution of the hexamer frequency 

for each species. Translation efficacy from other species datasets suggested that this 

assumption was legitimate. It was possible that a low proportion of coding regions detected 

by BLAST-similarity could have had a deleterious effect upon the hexamer frequency. 

However this was not seen in datasets with a similar proportion of BLAST-translated 

contigs, such as Trichuris vuplis and Meloidogynejavanica. 

The nucleotide hexamer frequency is heterogeneous across the transcriptome of a single 

species [131,132]. This is typically true in highly expressed genes, and is one reason why 

small training sets have previously produced poor results for ESTScan. The variation could 

be such that certain genes could not be recognised by an algorithm trained with supposedly 

representative information. It is unlikely, however, that such a large number of unrelated 

genes would display this behaviour. To explore this issue further, I used mRNAs predicted 

from the draft B. malayi genome. These sequences formed the training set from which the 

HMM emission probabilities were estimated. Despite this bootstrapping procedure the 

number of B. nalayi contigs without any ESTScan prediction was unchanged. This confirms 

the lack of a coding signal in these contigs and supports the use of a pseudo-transcriptome as 

the training set for HMM parameter estimation. 

Sequence quality 

The majority of sequences without a detectable coding signal are singletons. The BmOvWb 

datasets did not have a greater proportion of singletons relative to other nematode taxa. 
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However they were less likely to contain a detectable coding region. One possible source of 

this disparity is the quality of the cDNA library from which the ESTs were selected, and the 

technology used for sequencing. The library information for each EST is stored within 

NEMBASE [26]. The proportion of ESTs without a detectable coding region were compared 

between libraries to identify libraries that contained an elevated level of such ESTs. Of 25 

libraries for B. malayi five had more low quality ESTs than would be expected by random 

sampling (G-statistic = 682; p<<O.00l) (Table 3.6). The proportion of low quality ESTs 

found in libraries for other nematode species varies between 1-5% and only once was found 

to be above 10%. Two libraries from the eight available for 0. volvulus were shown to 

contain an excessive number non-coding ESTs. A statistical comparison for W. bancrofli 

libraries was not possible due to the small number of libraries. However it is obvious that 

some of these libraries contain a large number of ESTs without a detectable coding region 

(Table 3.6). The information provided in the library reports offers plausible explanations for 

the low quality of sequences. The libraries highlighted were made in the mid 1990s, and 

were constructed and sequenced using methods and technologies that have improved greatly 

in the last few years. The W. bancrofti libraries were made from a small number of 

nematodes, which increases the relative concentration of artefacts in the library. Finally there 

may have been lab-specific technical issues for many of the highlighted libraries. 
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Species Library Title' lib_code2  Poor clusters' 

Brugia malayi Brugia malayi infective L3 JHU93SL-BmL3 279 14% 

Brugia malayi Brugia malayi adult male cDNA (SAW94NL-BmAM) 281 13% 

Brugia malayi Brugia malayi infective larva cDNA (SAW94WL-BmL3) 282 13% 

Brugia malayi Brugia malayi microfilaria cDNA (SAW94LS-BmMf) 283 13% 

Brugia malayi Brugia malayi L4 larva (JHU93SL-BmL4) 389 40% 

Onchocerca volvulus Onchocerca volvulus adult male cDNA (SAW98MLW-OvAM) 1375 11% 

Onchocerca volvulus 0. volvulus adult female cDNA 26 h following ivermectin (PF99PF-OvAF26) 3756 18% 

Wuchereria bancrofti Wuchereria bancrofti microfilaria eDNA (SAW95SjL-WbMf) 518 18% 

Wuchereria bancrofti Wuchereria bancrofli L3 cDNA (SAW96MLW-WbL3) 1630 10% 

Table 3.6 

cDNA libraries for the Spiruromorpha that contain a disproportionate number of clusters for which no coding region can be detected. 

These libraries were identified using a G-test to compare the fraction of "non-coding" clusters across all the cDNA libraries of each species. The 

fraction of "non-coding" clusters for libraries across all nematode datasets is 1-5% 

taken from NEMBASE - http://www.nematodes.org  

the unique identifier for the library in question 

those clusters which did not have a coding region identified by either the BLAST-similarity or ESTScan components of prot4EST. 



3.4.8 Number of robustly translated ESTs? 

The data so far presented authenticates nearly all coding regions are predicted by either the 

BLAST-similarity or ESTScan components of prot4EST. However there are serious doubts 

over the validity of those EST contigs whose coding region must be identified by other less 

accurate methods. Validation of these contigs is not possible without the complete or robust 

draft genome sequence. As these do not exist for most of the species under study, in the 

subsequent analyses I have used only those polypeptides predicted by the preferred first two 

components of prot4EST. The dataset thus comprises 158,349 polypeptide sequences from 

the 39 species of the phylum Nematoda (Table 3.7). NemPep3 now allows a number of 

comparative studies to be undertaken on a scale that have to date only been performed across 

bacterial species and yeast proteomes. Subsequent chapters will describe analysis of protein 

relationships and an in depth protein domain comparison. 

3.4.9 Effect of AT content and amino acid usage - global 

The amino acid composition for each proteome has been calculated (Table 3.8). To 

investigate whether there is any correlation between these amino acid frequencies and the 

AT content of each species, a series of statistical analyses were performed. A global 

comparison of amino acid frequency between nematode species was conducted. However, 

94% of the variation observed was between the amino acid frequency within each species. 

No significant difference was found for the variation of each amino acid between the said 

species (two-way ANOVA, p=1.0). To detect any trend it was necessary to conduct a series 

of pairwise comparisons. These comparisons at first appeared to demand a chi-squared test. 

However the scale of the analysis renders the chi-squared statistic ineffective [133]. With the 

large sample sizes used here, approximately 1.5 million amino acids for Heterodera glycines 

to 32,000 for Zeldia punctata, the chi-squared value would be extremely high even with only 

a slight compositional difference. This would have resulted in a highly significant statistic 
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even if frequencies were indistinguishable on a plot. This problem confronted Echols and co-

workers, when comparing features of genes and pseudogenes [133]. To quantitatively 

evaluate differences, the datasets for comparison were treated as an N-dimensional vector 

and the distance between the two calculated. See section (Methods 3.3.6) for a detailed 

description of the calculation. Pairwise distance calculations were performed for all 

combinations, including the proteomes of C. elegans and C. briggsae (Figure 3.2). There is 

no statistical correlation between the number of contigs that comprise a dataset and its 

average distances (Spearman's rank; rho=-0.24; p>0.5). The scale of this analysis is 

sufficiently large to ensure that any bias in composition is real rather than random. 

Unsurprisingly the pairwise distances are lowest between closely related organisms, such as 

the Meloidogyne species. As the AT content difference between species increases, the trend 

is for the distance to increase. It is difficult to separate AT content from phylogenetic 

relatedness, because, as mentioned earlier, closely related species have a similar AT content. 

A method called comparative analysis of independent contrast (CAIC) finds and calculates 

phylogenetically independent contrasts in one or more variables enabling hypotheses of 

correlated evolution to be tested [134]. Unfortunately, the method should not be applied to 

the relative data that is under scrutiny here. It is striking that the different families 

comprising the Tylenchomorpha have contrasting AT contents. For example, there is a 13% 

difference in AT content between the Heteroderidae and the Meloidogynidae but their 

average amino acid composition distance is only 2.4% (expected distance would be 

approximately 3.5%). A similar pattern is observed when comparing the Pratylenchidae with 

other tylenchomorph groups. 
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Taxon Total Translated EST 
contigs UniProtJSP2  UniProt/TrEMBL 2  Others 

Dorylaimia (dade I) 10,745 10,583 6 156 0 

Enoplia (dade II) 0 0 0 0 0 

Spirurina (dade III) 28,226 27,289 165 772 04 

Tylenchina (dade IV) 52,706 52,039 15 652 0 

Rhabditina (dade V) 67,956 25,363 2,749 20,510 19,334 

Table 3.7 

Taxonomic distribution of NemPep3. 

NemPep3 (21/08/05) combines the predictions offered by prot4EST 1  and the complete 

Caenorhabditis genome projects, with all other nematode proteins available from the 

UniProt database. 

only using translations from BLAST-similarity and ESTScan components of prot4EST. 

as described by the NEWT database(http://www.ebi.ac.uklnewt/display)  

not all of the predicted proteins from C. briggsae are available in UniProt. I have included 

BrigPep2 from WormBase. The C. elegans proteome (WormPepl40) is included in UniProt. 

the predicted proteome for the Brugia malayi draft genome is not yet publicly available, 

so is excluded from NemPep3. I anticipate its inclusion at a later date. 
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Table 3.8 

Amino acid usage across nematode species. 

spID ATprop' Ala Cys Asp Ghi Phe GI y His Ile Lys Leu Met Mn Pro Gln Arg Ser Thr Val Trp Tyr 

SRC 0.674 0.058 0.020 0.055 0.065 0.047 0.062 0.021 0.072 0.079 0.086 0.024 0.056 0.042 0.034 0.045 0.070 0.054 0.060 0.011 0.037 

SSC 0.661 0.060 0.020 0.056 0.069 0.042 0.065 0.022 0.069 0.078 0.084 0.023 0.054 0.043 0.036 0.049 0.069 0.054 0.060 0.011 0.035 

MCC 0.637 0.060 0.021 0.051 0.067 0.049 0.061 0.023 0.069 0.074 0.093 0.023 0.052 0.043 0.041 0.054 0.068 0.049 0.057 0.012 0.032 

MHC 0.629 0.061 0.021 0.050 0.067 0.0541 0.064 0.022 0.066 0.070 0.092 0.023 0.051 0.046 0.041 0.053 0.066 0.048 0.058 0.013 0.032 

MAC 0.625 0.062 0.020 0.051 0.068 0.049 0.064 0.022 0.067 0.070 0.092 0.022 0.051 0.044 0.041 0.053 0.068 0.052 0.058 0.013 0.033 

MJC 0.620 0.062 0.020 0.051 0.067 0.049 0.062 0.023 0.065 0.073 0.092 0.024 0.049 0.045 0.041 0.055 0.066 0.050 0.058 0.012 0.033 

MIC 0.618 0.063 0.020 0.051 0.067 0.048 0.062 0.022 0.063 0.071 0.091 0.023 0.051 0.046 0.043 0.055 0.069 0.051 0.058 0.012 0.031 

MPC 0.617 0.062 0.021 0.051 0.067 0.047 0.065 0.022 0.0641 0.075 0.089 0.023 0.051 0.046 0.043 0.054 0.067 0.051 0.059 0.011 0.031 

DIC 0.601 0.064 0.023 0.052 0.065 0.044 0.056 0.027 0.066 0.069 0.092 0.025 0.047 0.042 0.038 0.061 0.068 0.051 0.061 0.012 0.036 

BMC 0.591 0.064 0.022 0.050 0.061 0.046 0.062 0.024 0.063 0.065 0.091 0.027 0.044 0.045 0.038 0.056 0.068 0.052 0.062 0.013 0.034 

OVC 0.583 0.066 0.020 0.052 0.061 0.045 0.064 0.023 0.063 0.066 0.088 0.026 0.044 0.046 0.038 0.058 0.066 0.051 0.061 0.014 0.033 

PTC 0.580 0.069 0.020 0.053 0.063 0.044 0.068 0.024 0.062 0.078 0.083 0.023 0.048 0.044 0.035 0.053 0.066 0.054 0.064 0.011 0.036 

ZPC 0.576 0.075 0.015 0.051 0.058 0.043 0.069 0.025 0.061 0.080 0.086 0.019 0.048 0.046 0.037 0.055 0.056 0.056 0.066 0.0111 0.038 

TSC 0.574 0.065 0.023 0.052 0.063 0.048 0.059 0.024 0.059 0.065 0.093 0.027 0.046 0.044 0.037 0.056 0.070 0.051 0.067 0.013 0.034 

WBC 0.572 0.067 0.021 0.050 0.063 0.043 0.066 0.025 0.058 0.069 0.088 0.025 0.041 0.047 0.037 0.061 0.066 0.050 0.062 0.014 0.032 

CAEEL2  0.571 0.064 0.020 0.054 0.066 0.047 0.054 0.023 0.061 0.064 0.086 0.026 0.049 0.049 0.042 0.052 0.081 0.059 0.062 0.011 0.031 

LSC 0.564 0.068 0.020 0.052 0.063 0.043 0.064 0.023 0.060 0.067 0.087 0.027 0.043 0.048 0.038 0.062 0.069 0.053 0.068 0.013 0.032 

CAEBR3  0.558 0.063 0.020 0.053 0.068 0.047 0.054 0.023 0.060 0.064 0.085 0.026 0.048 0.050 0.041 0.054 0.080 0.058 0.061 0.011 0.031 

PEC 0.540 0.071 0.018 0.054 0.069 0.040 0.068 0.023 0.056 0.080 0.083 0.025 0.045 0.044 0.044 0.063 0.062 0.050 0.060 0.011 0.030 

HCC 0.534 0.074 0.022 0.055 0.065 0.043 0.066 0.024 0.0541 0.066 0.085 0.026 0.041 0.049 0.036 0.059 0.066 0.052 0.068 0.013 0.033 

Continued overleaf.. 



spiD 	AT_prop' Ala 	Cys Asp Gin 	Phe 	Gly 	His 	lie 	Lys 	I cu Met Asn 	Pro 	Gin 	Arg 	Ser 	Thr 	Val 	Trp 	Tyr 

NAC 	0.533 	0,072 0.022 0.057 0.062 0.044 0.066 0.023 0.054 0.066 0.084 0.025 0.042 0.049 0,038 0.063 0.068 0.053 0.067 0.012 0.037 

XIC 	0.526 

PVC 	0.524 

ASC 	0.523 

ACC 	0.522 

TDC 	0.520 

OOC 	0.520 

TCC 	0.51.6 

TVC 	0.516 

ALC 	0.508 

HSC - 	0.505 

TMC 	0.504 

AYC 	0.500 

HGC 	0.494 

NBC 	0.491 

GPC 	0.486 

GRC 	0.485 

PPC 	0.484 

RSC 	0.466 

0.072 0.021 0.055 , 0.059 0.043 0.069 0.024 0.053 0.062 0.089 0.026 0.042 0.050 0.042 0.056 , 0.068 0.055 0.068 0.013 0.033 

0.065 0.019 0.048 , 0.060 0.058 0.065 0.025 0.058 0.060 0.101 0.028 0.044 0.048 0.042 0.051 0.069 0.048 0.062 0.014 0.032 

0.075 0.025 0.049 0.065 0.042 0.064 0.025 0.053 0.060 0.084 0.022 0.043 0.052 0.036 0.066 0.071 0.051 0.065 0.014 0.033 

0.073 0.0201 0.054 ,  0.063 , 0.044 0.065 0.025 0.056 0.065 0.087 0.027 0.042 0.046 0.036 0.057 0.067 0.053 0.068 0.013 0.034 

0.077 0.025 0.053 0.062 0.043 0.066 0.024 0.052 0.068 0.086 ,  0.027 0.042 0,049 0.036 0.057 0.066 0.052 0.067 0.013 0.033 

0,075 0.022 0.055 , 0.064 0.043 0.069 0.026 0.053 0.066 0.084 0.026 0.041 , 0.051 0 03N ,  0.060 0.064 0.051 0.068 ,  0.012 0.032 

0.072 0.027 0.050 ,  0.061 0.045 , 0.069 , 0,025 0.051 0.065 0.083 0.025 0.041 , 0.051 0036 0.061 0.067 0.055 0.066 , 0.013 0.032 

0.068 0.026 0.052 0.061 0.044 , 0.064 0.024 0.053 0.064 0.092 0.029 , 0.042 ,  0.047 0,037 0.057 0.069 0.053 0.068 , 0.014 0.035 

0.078 0.021 0.044 0.059 0.043 , 0.070 0.021 0.049 0.062 0.081.0.021 0.045 0.060 0.035 , 0.067 , 0.075 0.047 0.067 0.01 7, 0.034 

0.071 0.020 0.052 ,  0.071 0.048 0.063 , 0.025 0.055 , 0.067 0.092 0.025 0.044 0.044 0.044 0.061 , 0.065 , 0.050 0.062 , 0.012 0.027 

0.071 0.028 0.052 0.063 0.044 0.067 0.023 0.052 0.065 0.088 0.027 0.040 0.049 0.037 0.060 0.066 0.050 0.066 0.012 0.033 

0.080 0.021 0.055 , 0.068 0.041 0.069 0.024 0.052 0.066 0.083 0.025 0.040 0.050 0.038 0.061 0.066 , 	, 0.052 0.067 0.012 0.030 

0.074 
0.02010.0530.064.0.048.0.06410026,0.053 ' °'°L 0.093 0.025 0.043 0.049 0.043 0.061 0.069 0.051 0.063 0.012 0.027 

0.080 0.019 0.055 0.064 0.042 0.073 0.025 0.051 0.070 0.081 0.026 0.039 0.047 0.035 0.062 0.066 0.051 0.071 0 .012 0.029 

0.073 0.022 0.052 0.062 0.046 0.071 0.026 , 0.052 0.062 0.091 0.024 0.043 0.050 0.043 , 0.059 0.066 , 	, 0.050 0.065 0.012 0.030 

0.074 0.020 0.052 0,062 0.048 0.068 0.025 0.055 ' 0.061 0.093 0.025 0.041 0.047 0.041 0.061 , 0.067 0.051 0.065 1 , 0.012 0.029 

0.076 0.019 0.0541 0.069 0.041 ' 0.069 0.024 0.054 0.067 , 0.084 0.025 , 0.039 0.048 , 0.034 0.062 , 0,070 0.053 0.065 , 	, 0.013 0.029 

0.076 0.021 ' 0.048 0.064 0.039 0.069 0.026 0.053 0,081 0.083 0.024 
- - 

0.041 0.044 
- 	.1 

0.045 0.073 0.054 	0.047 0.066 
 _ 

0.012 0.030 

Table 3.8 

Amino acid usage across nematode species. 

legend overleaf.. 



Table 3.8 (previous page) 

Amino acid usage across nematode species. 

The frequency of each amino acid was calculated for all nematode proteomes. These metrics 

were used to calculate pairwise distances between species and identify significant 

correlations between the AT content of a species coding regions and the usage of certain 

amino acids. Both significant positive (red) and negative (blue) correlations are highlighted. 

The proportion of adenine and thymine found in the species' coding regions 

Coding regions from WormPep 140 

Coding regions from BrigPep2 

Figure 3.2 (next page) 

Pairwise comparisons of amino acid distances. 

A distance measure of amino acid usage was calculated for all possible pairs of species (see 

Methods 3.3.6). The species are ranked according to AT content (see Table 3.8). 

The species codes are available from Table 3.2. 
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Figure 3.2 
Pairwise comparisons of amino acid distances. 
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3.4.10 Effect of AT content and amino acid usage - local 

It is clear that there are obstacles to performing pairwise species comparisons of amino acid 

frequencies. A simpler comparison tests the association between AT content and frequency 

of individual amino acids. The usage of nine amino acids show very strong correlations 

(Spearman's rank; p<0.001) with the coding AT content of species (Figure 3.3). The 

directions of the correlation (3 positive and 6 negative) are as expected given the AT 

proportion of the codons for the corresponding amino acids. With the exception of 

tryptophan (Trp), all amino acids with a clear bias in their codons' AT content showed a 

significant correlation (p<0.05). Tryptophan is the rarest amino acid, which may explain why 

there is no fluctuation in its frequency between species. The strong correlation shown in the 

inter-species frequency of glycine (Gly) was a surprise, despite the very low AT content of 

its codons. Glycine is the smallest amino acid and tends to terminate rigid secondary 

structure elements because of the entropy cost of restraining its flexibility. Glycine also 

allows backbone angles, seen on a Ramachandran plot, which cannot be taken on by other 

amino acids. Any amino acid replacing glycine must be small and avoid physio-chemical 

properties that conflict with the local environment. The most curious usage profiles are those 

for valine (Val) and histidine (His), which both showed a significant negative correlation. 

These two amino acids have no bias in AT content in their codon sets. The increased 

frequency in species with low coding AT content may be compensation for other amino 

acids which have an increased abundance in high AT species. Valine may replace isoleucine 

(lie) for internal packing in the protein. Histidine can substitute for a number of amino acids 

depending on their role: indeed it can substitute for tyrosine (Tyr) in its function as a 

nucleophile and lysine (Lys) for protonation. However there are no correlations in frequency 

between amino acid pairs. To investigate these trends further, comparison within 

homologous, preferably orthologous, protein families is required. On a small scale this is 

eminently possible and the focus of future work. However a larger analysis is dependent 
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upon the accurate automated classification of these orthologous relations, a task that is 

described in the next chapter. 
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Figure 3.3 

Amino acids: their AT content and usage 

For each amino acid two metrics were calculated: the mean AT content of its codons, and the 

correlation between the usage of the amino acid (green) and the coding AT content across 

nematode transcriptomes (magenta). Significant correlations are denoted by a star. The trend 

is for amino acids with a high AT content to be more frequently used in species with high 

proportion of A and T nucleotides in their coding regions. Similarly the usage of amino acids 

with low AT contents across their codons is higher in species with a low proportion of 

coding AT. 

Standard three letter amino acid codes are used. 
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3.5 Conclusions 

I have presented NemPep3, a robust collection of proteins predicted from EST contigs, 

predominantly from parasitic nematodes. These partial proteomes have been combined with 

the complete proteomes from C. briggsae and C. elegans. The nematode datasets were the 

motivation behind the creation of the translation pipeline prot4EST, as they offered problems 

that had not been considered with other EST translation solutions, but problems that were 

pertinent to the overwhelming majority of EST projects. The most important was creating a 

training set for ESTScan so those EST contigs that did not share similarity with a known 

protein could be translated accurately. Training sets of sufficient size were created using a 

reverse-translation approach to generate a simulated transcriptome. I took advantage of 

availability of the C. elegans proteome and while, I accept that assumptions were made, they 

are valid and the method enabled better coding region prediction. Using simulated training 

sets, while powerful should be done with care, especially in the choice of proteome used as a 

template. 

ESTs that pass through the PartiGene system are subjected to a number of routines that 

remove sequences of low 'quality'. These include nucleotides at the 5' or 3' termini of a 

sequence with low phred scores, and BLAST comparisons with bacterial sequences to 

highlight probable contaminants. In addition, prot4EST identified EST contigs which 

putatively lacked coding regions. It is possible that some of these are simply untranslated 

regions (UTRs), probably from the 3', although for the datasets from B. malayi, 0. volvulus 

and W. bancrofli the number of untranslated sequences was too high to be simply a 

consequence of UTR sequence. Regardless of the reason for not identifying a coding region, 

such sequences should not be included in subsequent analyses, as they would inflate the 

number of species-specific proteins in certain proteomes. Therefore the search for coding 

regions presents another opportunity to 'clean' the datasets and ensure only high quality 
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sequence is analysed. 
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Chapter Four - Exploring nematode proteinspace 

4.1 Abstract 

Diversity between organisms can be explored through any number of avenues. On way is to 

compare the proteomes of each species, whose individual proteins can be though of as 

occupying proteinspace. The creation of NemPep3 permits such comparisons between 

nematode species. Of importance is the level of novelty in nematode proteinspace; what is 

the proportion of proteins restricted to the phylum, or to parasitic lineages? In this chapter I 

report that approximately 70,000 proteins (46% of NemPep3) share no detectable (BLAST) 

similarity to a sequence outside the Nematoda, and that there is no slowing down in new 

protein discovery as more nematode species are added. The extent of gene loss in 

Caenorhabditis elegans is also investigated, as NemPep3 provides a more robust picture of 

nematode evolution. In addition NemPep3 was used to update a popular form of generating 

protein families. The consequence of which is to alter the previously reported dynamic of 

metazoan relationships in the dataset. 

4.2 Introduction 

4.2.1 Proteinspace 

The different proteins that comprise a species' proteome can be thought of as occupying a 

slice of proteinspace, defined here as the composite of properties for all proteins. The 

relative position of two proteins, either within or between organisms' proteomes, is defined 

by their possession of features, such as domain architecture, sequence divergence and protein 

biochemistry. The proteomes of species with more complex genomes usually occupy a larger 

region of proteinspace, with a phylum containing the proteinspace that is the union of the 

constituent species' proteinspace. 
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As additional sequence becomes available, the area in proteinspace occupied by an 

organism's proteome grows, until its genome has been completely sequenced. Sequence data 

from a related species will show significant overlap, but it is likely that there will be some 

region of proteinspace that the two will not share. As related species adapt to distinct 

ecological niches the selective pressures upon their proteomes will alter, changing their 

position in proteinspace. This concept can be applied to the nematodes, with species 

evolving a range of diverse life-cycles and alternative feeding strategies. How disparate is 

nematode proteinspace? Do species which have independently evolved similar feeding 

strategies [43] share regions of proteinspace to the exclusion of more closely-related taxa. 

An analysis of proteomes from complete prokaryote genomes showed that sequencing 

additional species has produced diminishing returns in terms of novelty in proteinspace 

[135]. If the proteinspace of nematodes is similarly restricted then, given the completely 

sequenced genomes of two Caenorhabditis species, further sampling will result in a reduced 

rate of protein discovery. 

The determination of a protein's relative position is reliant on annotation being assigned. In 

this age of high-throughput sequencing, annotations of protein function are derived from a 

small set of proteins, perhaps less than 5% of the total number of known protein sequences, 

whose function has been determined experimentally [64,136]. In the absence of experimental 

data, protein function is inferred by sequence similarity to a protein of known function. This 

is certainly the situation that confronts the analysis of EST datasets. 

4.2.2 Annotating gene products 

There are common features in publications describing the completion of a eukaryote genome 

sequence [35,137,138,139]: 

genome sequencing - techniques and type of clones used, 
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assembly - software, parameters, number of scaffolds and contigs, 

gene finding - both coding and non-coding, 

gene annotation - functional assignment. 

Each step has its own problems and controversies, but the work presented in this and the next 

chapter is concerned only with annotation of putative gene sequences, in particular, their 

evolutionary origin (this chapter) and their function (Chapter Five). Each month sees more 

publications describing the annotation of individual species' EST datasets, and occasionally 

comparative analysis across several related species (Table 4.1). 

All these studies describe high-throughput, automated annotation processes which attempt 

the assignment of various functional classifications. These include: 

protein domains or motifs identified through Pfam [77] or Interpro[76], 

Gene Ontology (GO) terms [115], 

comparison to the KEGG metabolic pathways database with KEGG [114], 

assignment of functional description from similarity to another sequence. 
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Species / taxonomic group Additional information Reference 

Mesocricetus auratus Hamster testis 140 

ambystomatid salamanders Two related species 141 

Apis mellfera Honey bee 142 

Fundulus heteroclitus Mummichog fish 22 

Solanaceae Six related species 143 

Xenopus laevis Detail HOX gene study 144 

Daphnia Water flea (crustacean) 145 

Gal/us gal/us With genome paper 24 

Ancylostoma Two related species 146 

Strongyloides ratti nematode 48 

Meloidogyne incognita nematode 49 

Table 4.1 

Recent examples of analyses on species EST datasets. 
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4.2.3 Detection of patterns of evolution using BLAST 

The assignment of functional description is often carried out using BLAST search algorithms 

to detect significant sequence similarity. Often in the analyses the entire complement of gene 

objects (clustered or individual ESTs) is compared to two or more model species or 

taxonomic groupings. For example, BLAST searches were used to search for similarity 

between the EST dataset for the Cnidarian Acropora millepora and model metazoan species 

(Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens) [74]. This type of 

global analysis is often used to summarise how closely related genes of one species are to 

those of other species with the data displayed through Venn diagrams, or more elegantly 

with an interactive program [44]. The general trend of the analysis is frequently predictable 

depending upon the taxa compared. Occasionally; however, unexpected patterns are 

reported. Comparison of EST contigs from the honey bee, Apis mellfera,  to complete 

genomes uncovered 23 contigs that were more similar to human proteins than the fellow 

neopterans D. melanogaster and Anopheles gambiae [142]. The authors propose that these 

putative genes have diverged less in honey bee and mammals, possibly due to selective 

pressures. The more likely explanation is that the orthologues for these proteins have been 

lost in the dipteran lineage of the two other insects in the study, and hence the comparison 

was between paralogues. Gene loss specific in the D. melanogaster lineage is well reported 

[147,148,149]. The effect of gene loss is further highlighted by analysis of ESTs from the 

cnidarian Acropora millepora, which revealed that 12% of EST clusters had a putative 

homologue in human but not in D. melanogaster and C. elegans [74]. These studies show 

how a series of BLAST searches can, when carefully considered, uncover interesting 

evolutionary patterns, but can also generate ill-considered hypotheses for protein evolution. 

A further feature often investigated in EST analyses is the identification of genes that are 

thought to be novel to a species or particular monophyletic taxonomic group. These are the 
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so-called orphan proteins [36]. There are two slightly different definitions of an orphan 

protein: 

A protein that shares no significant similarity to sequence in other taxa (putative 

homologue) or other proteins from the studied taxon, i.e. a gene duplication event 

restricted to that species, an inparalogue [75]. 

A protein that shares no significant similarity with a sequence in another taxon 

(putative homologue). 

I favour the second definition as it includes species-specific expansions of protein families 

that are an important mechanism for the evolution of new or modified protein functions. 

Comparing the level of novelty across different organisms' transcriptomes is difficult 

because each analysis varies BLAST parameters and other criteria, most notably E value cut 

off. However, it is clear from a number of studies on different species that searches have 

identified a noteworthy proportion of lineage-restricted genes (Table 4.2). 
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Taxonomic Group Number of orphan genes Reference 

Ambystomatid salamanders 3,273 contigs (-17% of EST contigs generated). 150 

Solanaceae 10-15% of contigs were specific to each species. 151 

Legume 5.5% EST contigs restricted to legumes. 152 

Nematodes 
7-46% of contigs were specific to each species. 
Across all datasets 23% of nematode proteins were 
species-specific. 

153 

Helicosporidium 299 (43%) of contigs were orphans. 154 

Table 4.2 

Studies into lineage-restricted genes. 
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Of course the proportion of orphan genes in a genome is dependent upon a number of factors 

aside from search parameters. The depth of sequence survey from each species and the 

presence of datasets from closely-related species will have an effect. The proportions of 

orphan genes from the solanaceous species were the lowest reported from a comparative 

analysis of EST datasets [143]. The six species analysed belong to the same family and, 

while phylogenetic rank assignment is not equivalent throughout taxonomy, the rank of 

family usually designates a closely related group of species. Therefore, the expectation is for 

lower sequence divergence and hence fewer orphan genes. The number of EST contigs 

assembled for each species is also relatively high (4,466-38,239 contigs). For the larger 

solanaceous datasets, the majority of that species' transcriptome is represented. This 

increases the likelihood that similar sequences from closely-related species are present in the 

EST dataset and so detection of the homologue is more probable. The Parkinson et al. pan-

nematode study presented data that pointed to a greater diversity in the combined 

transcriptome, with up to 46% of the EST contigs in an individual species' dataset restricted 

to that species [51]. Drawing general conclusions based on the relative diversity of the 

solanacean and nematode transcriptomes is not entirely appropriate, as the latter study 

represents a wider spectrum of species, and few nematode transcriptomes have been 

surveyed to the same depth as those of the Solanaceae. 

Not only is there a large number of nematode species for which EST datasets are available, 

but they have been selected to span the phylogenetic diversity of the phylum [155,51]. This 

coverage has been made possible by the resolution of nematode phylogeny based upon small 

subunit ribosomal RNA gene alignments [28,40]. The presence of a robust molecular 

evolutionary framework has allowed the data generated to be mapped onto the nematode tree 

and evolutionary-informed hypotheses proposed and tested. The original pan-nematode 

study was able to identify not only genes that were specific to a particular species but also 
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genes whose presence was restricted to lineages with a deeper last common ancestor. The 

work presented in this chapter updates the initial study with an additional seven taxa, which 

increases the number of nematode orders examined. The rigorous examination of NemPep3, 

described in Chapter Three, led to the removal of many EST contigs because a coding region 

could not be robustly assigned, the effect of which is discussed here. Proteins lacking any 

detectable homologue outwith the Nematoda are identified. Taken together with the 

phylogeny, these BLAST comparisons allow relationships between proteins to be considered 

and both the shared and unique diversity to be examined. 

4.2.4 Orthology and Paralogy 

The concepts of orthology and paralogy have become two of the most essential and 

controversial in post-genomic molecular biology [156,157,158,159,160]. The history, 

definition, classification, and exploitation of orthologues and paralogues is described at 

length in a recent review by Koonin [161]. However the principles are important and their 

application to the work in this thesis is described here. 

A popular way to determine the function of a new protein is to identify orthologues in other 

genomes. The assumption is that orthologous proteins will have equivalent functions. 

Proteins whose relationship is due to a gene duplication event (paralogues) can evolve to 

perform distinct, if related, functions. One copy of the gene is free to evolve, altering its 

function to one that was not performed by the ancestral gene, this is termed 

neofunctionalisation. It is obvious that the use of similarity to an annotated protein as a way 

of assigning function must be based on a correct phylogenetic reconstruction. Herein lies the 

problem: all, except two, of the nematode proteomes that contribute to NemPep3 are 

incomplete. To illustrate these potential problems consider a gene that has been duplicated in 

Haemonchus contortus. The stochastic sampling of cDNA clones may only generate an EST 
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for one of the genes. The inferred polypeptide is compared to the C. elegans proteome and 

similarity detected. A simplistic analysis would assign the function from the C. elegans 

protein to that of H contortus. Across multiple datasets, even restricted to a closely-related 

subset, there could be a complex relationship of proteins that cannot be determined from the 

partial sequence. Throughout the rest of this thesis I will presume that orthology cannot 

easily be determined for a given pair of proteins. It is certainly safer to assume that 

seemingly related proteins are in- and outparologues and that functional assignments should 

be considered tentative. 

4.2.5 Creation of protein families with BLAST 

A powerful method to ascribe functional annotation to gene/protein sequences is to assemble 

them into related groups, often called families. Family classifications provide a higher level 

of function designation that can be more informative than simple pairwise annotation 

transfer. A further advantage is the reduction in sequence redundancy offered by families; a 

large number of proteins are contained within a small number of families [162]. There have 

been several attempts to assemble proteins into related families, with an emphasis on large-

scale automation [163,164,118,135,165]. Currently the most widely cited, and accessible, is 

the COG system (Clusters of Orthologous Genes) [135,165], which was updated to include 

euKaryotes in the KOG database [69]. The procedure for K/COG construction relies upon 

symmetrical best BLAST hits and consists of the following steps [161]: 

All-against-all comparison of protein sequences encoded in multiple genomes using 

the BLAST algorithm. 

Detection and clustering of obvious inparalogues. 

Identification of triangles of mutually consistent, genome-specific best hits. The 

previously detected inparalogues are treated as a single entity. 

Merging triangles with a common side to form K/COGs. 
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Further manual steps are used in the construction of KOGs: 

Detection of distant homology using PSI-BLAST. 

Splitting of KOGs containing proteins linked through different subunits of multi-

domain proteins. 

Assignment of proteins to KOGs based upon 'common domain architecture.' [69]. 

A simple examination of metazoan contributions to each KOG showed that Homo sapiens, 

D. melanogaster and C. elegans shared 3951 KOGs [65]. The number shared between only 

two of these species differed depending upon the combination: H. sapiens and D. 

melanogaster but not C. elegans shared membership of 311 KOGs, while 261 KOGs 

contained proteins from only C. elegans and H. sapiens (206) or with D. melanogaster (55). 

The protein families derived by this method have been used for many studies, including the 

controversial question of deep metazoan phylogeny [65,66,67,68]. 

One traditional view of metazoan phylogeny, based upon morphology, divides the Metazoa 

into three groups; Coelomata, Acoelomata, and Pseudocoelomata. Under this hypothesis 

humans and D. melanogaster are more closely related to each each other than either is to C. 

elegans. Small subunit ribosomal RNA phylogeny suggested a new arrangement: a dade 

Protostomia, linking D. melanogaster and C. elegans in Ecdysozoa and the Deuterostomia 

(including humans) [166,167]. This view has been adopted by the developmental biology 

community as it divides those species for which the mouth develops first (protostomes) from 

those in which it develops second (deuterostomes). The last three years have seen a series of 

publications which support one or other arrangement of the Metazoa (see 168 for a review of 

the current state of play). Proponents of both hypotheses agree that increased taxonomic 

sampling is vital if a robust topology is to be recovered. The additional sampling must cover 
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species in already surveyed phyla, such as the nematodes, as well as including sufficient 

sequence data from poorly represented taxonomic groups. Including protein sequences from 

a diverse selection of nematodes will go some way to overcoming the phylogenetic bias 

caused by accelerated evolution within the phylum that has led to gene loss and rapid 

divergence. In this chapter I present an initial assignment of proteins from NemPep3 to the 

KOG system and highlight changes to the phylogenetic distribution of the generated clusters. 

4.3 Methods 

4.3.1 BLAST analyses 

All-against-all BLASTP searches were performed on the combined nematode proteome, 

NemPep3. This dataset contains only those polypeptide sequences whose coding regions 

were identified by the BLAST or ESTScan components on prot4EST (Chapters Two and 

Three). Unless otherwise stated later, the E value cut off was e-5 and bit score threshold was 

50. The number of reported alignments was set to 250 which was sufficient for all queries. 

The default values were used for all other BLAST parameters. 

NemPep3 was compared to the protein database UniProt_minusNema, in which nematode 

sequences were removed from the UniProt database using in house Perl scripts. Parameters 

for these searches are described above. 

4.3.2 Collectors curve 

The proteome of Caenorhabditis elegans was screened for redundancy. To maintain 

consistency across the study any two sequences that shared significant sequence similarity (E 

value < e-5 and bit score> 50) were clustered. 

The other proteomes were then sequentially added based upon the species' phylogenetic 
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distance from C. elegans at order level (see Table 2.1 for species codes). 

Rhabditoidea: 	 CBP 

Strongyloidea: 	ACP AYP - HCP - NAP 	NBP 	OOP - TDP 

Diplogasteromorpha: 	PPP 

Panagrolaimomorpha: 	PTP - SRP 	SSP 

Tylenchomorpha: 	GPP - GRP - HGP 	HSP 	MAP 	MCP 

RSP 

Cephalobomorpha: 

Ascaridomorpha: 

Spiruromorpha: 

Trichinellida: 

Dorylaimida: 

zPP 

ALP ' ASP - TCP 

BMP 	DIP 	 LSPOVPWBP 

TMP 	TVP - TSP 

xIP 

For example when the proteome of Necator americanus (NAP) was added, a protein with a 

significant hit to any of the previous proteomes (C. elegans, C. briggsae, A. caninum and H. 

contortus) was not counted. Any novel protein was added to the curve. Similarity to proteins 

outwith the phylum was detected through similarity to a member of the UniProt_minusNema 

database (see above). 

4.3.3 KOG analysis 

The KOG clusters (organisation and sequences) used were obtained from the NCBI tip 

server: ftp://ftp.ncbi.nih.gov/pub/COG/KOG/  

KOGs with the required phylogenetic distribution were identified and their sequences 
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collected. 

NemPep3 sequences were assigned to a KOG by symmetrical best BLAST hits with 

sequences from at least two species in a particular KOG. 

4.3.4 Mapping orphan lineages on the phylogeny 

Each node in the rooted phylogeny can be defined by the orders that are descended from it. 

All other species (including the UniProt_minusNema database) are considered as outgroups. 

The phylogenetic distribution of proteins with significant BLAST similarities for each 

nematode protein was examined. If a protein shared similarity with a sequence from a 

species from a different order, but descended from the node in question, without matching 

one from an outgroup species it was considered to be restricted to that node. For example, to 

be considered restricted to the Strongyloidea / Rhabditoidea node, proteins from the 

Strongyloidea must have similarity outside the order exclusively to a rhabditoidid species, 

and the converse is true. 
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4.4 Results and Discussion 

4.4.1 Genes and proteins 

It is important to define whether the analysis described below considers gene or protein 

sequences. Expressed sequence tags can be from any region of mRNA that were 

incorporated into the cDNA library. The mRNA structure comprises a 5' cap, 5' untranslated 

region (UTR), coding region, 3' UTR and poly-adenine tail, all of which could be found in an 

EST. In this sense, analysis on an EST (or clustered EST contig) considers the evolution of 

the gene it tags. One problem with such analysis is that it is unclear exactly what part of the 

gene is being studied. These components of mRNA are subjected to different evolutionary 

constraints [169]. The development of prot4EST to identify the coding region of an EST 

contig and produce the polypeptide sequence, has permitted these issues to be overcome. 

There has been no attempt to robustly extract ESTs' coding regions in many of the published 

studies I have mentioned. In this chapter, I refer to sequences derived from the coding region 

identification as 'proteins', and use the term 'gene' to describe those ESTs for which no 

attempt at coding region has been made. 

4.4.2 Nematode proteinspace 

To reveal the extent of nematode proteinspace, NemPep3 was compared to itself and to the 

UniProt database [86], edited by the removal of nematode proteins, through a series of 

BLAST searches (see Methods). The proportion of species-specific, or orphan, proteins in 

the partial proteomes, excluding Zeldiapunctata, varied between 18-45%, and the proportion 

of a species' proteome with no non-nematode homologue was 35-62% (Table 4.3). The 

proportion of orphan proteins from the tylenchid Z. punctata is considerably lower than that 

of other partial proteomes. The transcriptome of Z. punctata was not sampled to the same 

depth as other species (only 390 ESTs) and a critical assessment of the quality of the 

libraries has not been carried out. These numbers were similar to those presented in the first 
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pan-nematode study [51]. The only striking difference was the drop in the number of 

proteins that were unique to either Brugia malayi or Onchocerca volvulus. The majority of 

these 'missing' putative genes (-98%) were removed from the B. malayi or 0. volvulus 

proteomes during the creation of NemPep3, because they appeared to lack a coding region 

(Chapter Three). That most of those removed did not share significant similarity with any 

reported sequence supports the assumption that the EST contigs are devoid of any coding 

region. 

The proportion of orphan proteins from the two caenorhabditids was much smaller than that 

of other species (both —9%). These proteomes are effectively complete and, given the 

relatedness of the two species, the likelihood of a protein from one species having a 

homologue in the other is considerably greater. The completion of genome sequences from a 

further three Caenorhabditis species [170], will probably result in further decline in the 

proportion of orphan proteins. Comparing the recently released proteome of Brugia malayi 

to both C. elegans and C. briggsae revealed 84 and 57 putative homologues, respectively, 

that were present in the the spirurid but not in the sister caenorhabditid. 

By way of a contrast, for other closely related groups, such as the Meloidogyne species, a 

large fraction of the proteomes were species-specific. One would expect a relatively low 

proportion of proteins restricted to each species at this taxonomic level. This is seen in the 

study on the solanaceae family, where between ten and fifteen per cent of the partial 

transcriptomes (coding regions were not identified in the study) were species-specific [143]. 

However, for the Meloidogyne, up to 28% of the proteome is made from orphan proteins. 

Scholl and Bird have used ESTs from Meloidogyne species to reconstruct the phylogeny of 

the Tylenchomorpha [50]. Putative gene families were constructed (with the C. elegans 

proteome) using the COG system (symmetrical best BLAST hits), which resulted in 47 
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groups. This number of shared genes is relatively small given the number of sequences 

available, although there is nothing currently available with which to compare this finding. 

The increase in proposed novelty may be a reflection of the diversity within the genus; the 

Meloidogyne, as a group, has a broad plant host range, but individual species are more 

limited in host preference [171]. Despite this, the number of orphan proteins is likely to be 

an over-estimate; the stochastic sampling of the cDNA library and analysis of only part of 

the coding region inflates the level of novelty. This hypothesis will soon be testable; in 

addition to B. malayi, low coverage or complete genome sequences are to be made available 

for a number of parasitic nematode species: Haemonchus contortus, Trichinella spiralis and 

Meloidogyne hap/a. Once completed, these genomes will act as models for their 

representative taxonomic orders, and I expect the proportion of orphan proteins to decline for 

the taxa in the orders that contain one of these models. 
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Table 4.3 

Contribution by each species to the novelty in the nematode proteome. 

Species Clade 
Total number of 

EST contigs 

Polypeptides unique to the 
species 

Polypeptides unique to 
phylum Nematoda 

Number Proportion Number Proportion 

TMIP I 1,410 471 0.33 649 0.46 

TSP I 3,586 1,647 0.46 1,814 0.51 

TVP I 1,112 453 0.41 586 0.53 

XIP I 4,286 1,328 0.31 1,502 0.35 

ALP IH 839 238 0.28 468 0.56 

ASP III 8,472 3,041 0.36 4,789 0.57 

TCP III 1,426 416 0.29 739 0.52 

BMP III 6,812 2,396 0.35 3,674 0.54 

DIP III 1,754 699 0.40 1,065 0.61 

LSP III 1,616 455 0.28 850 0.53 

OVP In 3,915 1,274 0.33 1,936 0.49 

WBP III 1,494 364 0.24 615 0.41 

GPP IV 2,392 738 0.31 1,137 0.48 

GRP IV 2,861 814 0.28 1,417 0.50 

HGP IV 9,064 3,070 0.34 4,608 0.51 

HSP IV 1,305 323 0.25 616 0.47 

MAP IV 2,358 446 0.19 1,194 0.51 

MCP IV 3,429 907 0.26 1,826 0.53 

MI-IP IV 6,419 1,792 0.28 3,372 0.53 

M1P IV 5,914 1,325 0.22 3,022 0.51 

MW IV 3,359 952 0.28 2,020 0.60 

MPP IV 1,437 262 0.18 666 0.46 

PEP IV 415 81 0.20 166 0.40 

PVP IV 776 304 0.39 416 0.54 

RSP IV 525 185 0.35 265 0.50 

ZPP IV 205 14 0.07 36 0.18 

SRP IV 3,901 1,174 0.30 1,825 0.47 

SSP IV 3,621 811 0.22 1,409 0.39 

PT? IV 2,758 693 0.25 1,217 0.44 

CAEBR V 19,220 1,808 0.09 8,754 0.46 

CAEEL V 22,296 1,866 0.08 9,899 0.44 

Continued overleaf.. 
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Species Clade 
Total number of 

EST contigs 

Polypeptides unique to the 
species 

Polypeptides unique to 
phylum Nematoda 

Number Proportion Number Proportion 

AYP V 3,660 887 0.24 1,698 0.46 

ACP V 4,294 1,704 0.40 2,621 0.61 

HCP V 5,157 1,263 0.24 2,348 0.46 

NAP V 2,318 902 0.39 1,427 0.62 

NBP V 770 206 0.27 385 0.50 

OOP V 2,509 642 0.26 1,339 0.53 

TDP V 1,868 516 0.28 1,052 0.56 

PPP V 4,197 1,356 0.32 1,877 0.45 

Table 4.3 

Contribution by each species to the novelty in the nematode proteome. 

NemPep3 was subjected to all-against-all BLASTP searches and against the 

UniProt_rninusNema database (see Methods). The species are arranged into major 

taxonomic groups. The number of contigs of each species are those for whom a coding 

region is predicted by the BLAST or ESTScan components of prot4EST (see Chapter 

Three). 

A polypeptide is considered unique to a the phylum if it shared no significant similarity to 

any proteins from the database UniProt_minusNema (see Methods). The proportion of 

novelty is with respect to the total number of contigs from that particular species. 
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4.4.4 Rate of Gene Discovery 

The cumulative number of different protein groups, those with no significant sequence 

similarity to any other protein, was compared to the number of proteins added by the 

inclusion of each new nematode proteome (Figure 4.1). The starting point was C. elegans, 

with further species added according to their phylogenetic distance. The addition of new 

proteomes increased the number of protein groups. The linear increase seen (Figure 4.1) 

shows that the rate of discovery of novel proteins in the phylum Nematoda has not yet 

started to decline with the inclusion of new proteomes. It is not clear whether this is an 

accurate indication of nematode proteinspace, or a consequence of stochastic incomplete 

sampling. If the former were true I would expect to see local plateaus within certain 

taxonomic levels (for. example order), but these are absent suggesting that sampling may 

have an affect. The number of nematode-specific protein groups is 44,000. As the number of 

EST generation projects increase, I expect homologues for many of these groups to be found 

in other species, particularly protostomes. However, a large proportion are likely to be 

genuinely restricted to the Nematoda, and these should form the basis for more in depth 

protein family analysis. 
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Figure 4.1 

Gene discovery and proteinspace in the phylum Nematoda. 

The cumulative number of different proteins (those with no significant similarity to any other 

gene) is compared to the total number of proteins. Starting with Caenorhabditis elegans 

subsequent nematode proteomes (yellow circles) are added in order of the species 

phylogenetic distance from C. elegans. The proteome of C. elegans was screened for 

redundancy, yielding a starting figure of 12,000 proteins 

The black dashed line shows the number of distinct proteins from C. elegans that have 

matches in proteomes of non-nematode taxa. The black solid line indicates the cumulative 

number of nematode protein groups from each species that share similarity with sequences 

from non-nematode taxa. 

Area 'A' represents the proportion of nematode protein types not found in the C. elegans 

proteome but are found in other non-nematodes. This represents possible lineage-specific 

gene loss in C. elegans. Area 'B' indicates those proteins which are specific to the Nematoda. 
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44.5 Origin of novelty in the nematode proteomes 

A total of 41,564 proteins (-27%) shared similarity to a protein from species covering all 

four available clades. The majority of the these (39,740 proteins; 96%) also had significant 

similarity to a protein outside the Nematoda. Of the 71,016 proteins for which no putative 

homologue exists outside the phylum, 32,911 had significant similarity with a protein from 

another nematode species. Mapping these onto the robust nematode phylogeny showed the 

evolutionary origins of nematode-specific proteins (Figure 4.2). A similar analysis was 

performed in the earlier pan-nematode study; the data presented here includes 7 additional 

species and fully incorporates the C. elegans and C. briggsae proteomes. Within each order, 

the majority of proteins were orphans to individual species (Figure 4.2 and Table 4.3). As the 

number of species datasets within an order increased, so did the proportion of proteins shared 

between these species. Some of these orphans may be novel proteins that have been derived 

in a specific (terminal) lineage. However, I suggest that many of the putative orphans are not 

species-specific, but are either the product of pseudogenes that are still transcribed or are the 

product of genes that have diverged so quickly that the search algorithms cannot detect 

significant similarity. 

The reduced proportion of species-specific proteins from the caenorhabditids is shown again. 

There were 7,306 proteins in their shared proteome that do not share similarity with another 

sequence outwith the Rhabditoidea, even from within the phylum. This number is likely to 

decline as additional nematode genomes are completed. More striking is the abundance of 

nematode proteins that do not share similarity with a sequence from either Caenorhabditis 

species. Even relatively closely related taxa have many new proteins, for example 

Pristionchus pacflcus has 1,356 species-specific proteins. 
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Figure 4.2 

Evolutionary origins of lineage-specific proteins in the phylum Nematoda. 

The positions inferred by all-against-all comparisons were mapped across the robust SSU 

rRNA phylogeny. Each node provides the number of proteins whose putative homologues 

are restricted at that node. The most terminal nodes provide additional information. The 

upper number is the number of proteins restricted to that level (order) and shared by at least 

two species. '0 shows the percentage of all NemPep3 proteins that are restricted to that 

order. The lower number, in parentheses, shows the number of proteins shown to be species-

specific. Similarly 'S' highlights the percentage of proteins in in that order that are species-

specific. 
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Most of the events of gene origin appear to have occurred early in nematode evolution, with 

for example, 7,501 mapping to an origin at the base of the Rhabditida and 2,811 proteins 

with an inferred origin in the last common ancestor of all Nematoda. Of those mapping to the 

base of the Nematoda, 1,824 (65%) are members of related groups represented in each of the 

four available nematode clades. These proteins may have roles specific to the nematode body 

plan and life cycle, including feeding strategy and, for parasitic species, immune response 

evasion. However, given that certain feeding strategies have seemingly evolved multiple 

times [43], de novo generation or accelerated evolution of proteins underpinning these 

mechanisms are more likely to be restricted to more recent lineages. 

The addition of seven species has, as expected, pulled the point of origin for many proteins 

towards the base of the tree. The principal cause is the inclusion of the dorylaim Xiphinema 

index, which, with a relatively large dataset, contributes as much to the pan-phylum novelty 

as do the three trichinellids, its sister taxon. The extra tylenchomorphs (Meloidogyne 

paranesis, Radophulus similis, Heterodera schachtii and Pratylenchus vulnus) are all closely 

related to a species already present in the analysis. However there is no reduction in the 

proportion of novel proteins in the tylenchids with —1,100 proteins per species. Despite the 

inclusion of two additional spirurids (Litomosoides sigmondontis and Wuchereria bancrofli), 

the number of unique proteins has decreased, a consequence of removing those EST contigs 

without detectable coding regions (see 3.4.6). 

Many of these points of origin may not reflect the creation of completely novel proteins. 

Instead they may signify an event that has forced a protein along a different evolutionary 

trajectory from that of its orthologous partners. These events could result from, or be 

consequent to, gene duplication or speciation events. Changes in functional constraint can 

result, over time, in related sequences not sharing detectable similarity. Alternatively, the 
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novel protein may be the result of domain rearrangements between two loci in the genome. 

Domain rearrangements are thought to be important for the evolution and adaptation of new 

functions [172,173]. Domain rearrangements comprise domain duplication (A - AA), 

swaps (AB - BA), domain deletion (ABC —*AC), circular permutations (ABCD - CDAB) 

and addition (AB -p ABC) [174]. Any of these events, especially after a gene duplication 

event could produce a lineage of seemingly novel proteins. 

4.4.6 Discussion on the expansion of Nematode proteinspace 

The collectors curve presented in Figure 4.1 shows that the rate of gene discovery in 

nematode species has not begun to slow, and as new species are added a relatively constant 

proportion of previously unseen proteins are discovered. This rate is influenced by two, 

potentially contrasting, factors. As more nematode species are surveyed through EST 

projects, the number of species-specific proteins is likely to increase further. Projects under 

way for previously unsampled nematode species include: Dityocaulus (Strongylomorpha), 

Steinernema and Rhabditophanes (Panagrolaimomorpha), and the chromadorid Stilbonema 

(Mark Blaxter pers. comm.). Although these species, with the exception of Stilbonema, are 

closely related to taxonomic groups which already have representative sequencing projects, 

the evidence presented here does not suggest this will slow the rate of new gene discovery. 

The second factor is deeper sampling of the transcriptomes of species with sequence already 

available. This is possible in two ways. The first is generation of additional ESTs, which is 

happening for Ascaris suum (Ascaridomorpha) and the hookworms Ancylostoma (caninum 

and ceylanicum) and Necator americanus. Secondly, there will soon be genome sequences 

available for at least eleven species of nematode (Table 4.4). The effect this increase in 

sequence on new gene discovery will depend upon the status of closely-related species. The 

additional caenorhabditid proteomes are likely to reveal a relatively low number of orphan 
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proteins, although they may further highlight lineage-specific gene loss or protein family 

expansions. Performing the analyses presented here with the inclusion of the complete 

proteomes of parasitic species will reduce the numbers of orphan proteins found in EST 

datasets. However, the forthcoming proteomes are from a diverse range of species, so I 

expect a bounty of newly discovered proteins with no detectable similarity. 

Species Trophic ecology Status 

Caenorhabdilis elegans Bacteriovore Full sequence complete 

Caenorhabditis briggsae Bacteriovore Draft sequence complete 

Caenorhabditis remanei Bacteriovore Draft sequence complete 

Caenorhabditisjaponica Bacteriovore Draft planned 

Caenorhabditis sp. Bacteriovore Draft planned 

Pristionchus pacflcus Bacteriovore Draft in progress 

Brugia malayi Vertebrate parasite Draft assembly in progress 

Haemonchus contortus Vertebrate parasite Draft in progress 

Meloidogyne hapla Plant parasite Pooled BAC sequence planned 

Trichinella spiralis Vertebrate parasite Draft in progress 

Heterorhabditis bacteriophora Insect pathogen Draft planned 

Table 4.4 

Status of nematode genome projects (August 2005). 
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4.4.7 Protein loss in C. elegans 

A total of 7,953 protein groups were shared between the nematodes and other phyla. The C. 

elegans proteome contributes 5,048 of these, suggesting that the remaining 2,905 have been 

lost in the C. elegans lineage (Figure 4.1). Gene loss in C. elegans is well reported 

[175,176,177,178,179,180] and may represent a simplification of the Caenorhabditis 

genome. There is evidence that some of this "streamlining" occurred after the divergence of 

Caenorhabditis from other nematodes; for example the orthologues of Antennapedia and 

Hox3 are absent in C. elegans but present in B. malayi [176]. 

The C. elegans-C. briggsae comparison [36] showed that there were a large number of 

proteins in each species that could not be matched to a gene in the other taxon. Updating this 

analysis with the current caenorhabditid proteomes revealed the number of orphan proteins 

to be 2,041 for C. elegans and 2,117 for C. briggsae. The inclusion of nematode partial 

proteomes and an updated UniProt database reduces the number of orphan proteins in the 

caenorhabditids to 1,846 and 1,961, respectively (Table 4.5). Of proteins that were no longer 

specific to a caenorhabditid (195 and 156), 40% share similarity only with sequences from 

outside the phylum. There were putative homologues from metazoan proteomes for all these 

proteins, suggesting that their absence from other nematodes is a consequence of the 

incomplete nature of the sequencing survey, rather than the less parsimonious explanation of 

protein loss in multiple independent lineages. There is a steady increase in the number of 

nematode. proteins with putative homologues in UniProt, with the inclusion of each 

nematode proteome. There are two equally valid explanations for this observation: 

There has been protein family loss in each nematode lineage. 

A protein has undergone accelerated evolution; as a result sequence similarity to 

its orthologues is undetectable. 

To confirm and subsequently characterise protein loss events in any detail requires complete 
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proteomes; this would make the identification of orthologous relationships easier. 

Orphan after comparison with: Caenorhabditis elegans Caenorhabditis briggsae 

Sister caenorhabditid 2,041 2,117 

Strongylids + diplogasteromorpha 1,963 2,055 

Other nematodes 1,924 2,023 

Metozoan proteomes 1,846 1,961 

Table 4.5 

Number of orphan proteins in two caenorhabditids. 

Comparisons of the caenorhabditid proteomes against the partial proteomes of other 

nematodes resulted in a reduction in the number of proteins previously shown to be unique to 

each species. Serial BLAST searches were performed. Reported is the number of proteins 

without a significant hit to the collection of proteomes under consideration or the previous 

searches. The comparisons were with the proteomes of: (1) the sister caenorhabditid; (2) 

closely-related Rhabditoidea (A. caninum, A. ceylanicum, H contortus, N. americanus, N. 

brasiliensis. 0. ostertagi, P. pacflcus,  T. circumcincta); (3) remaining nematode species; (4) 

the Metazoa - collected from UniProt. 
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4.4.9 KOG analysis of NemPep3 

Protein families have been used to explore metazoan phylogeny, in particular the 

relationships between human, Drosophila melanogasrer and C. elegans. There are several 

studies that consider molecular data that provide conflicting conclusions [166,181,65]. Wolf 

and colleagues selected candidate proteins from families derived from the KOG 

classification [69] to explore this question. KOGs (clusters of euKaryote Orthologous Genes) 

are built from seven eukaryote proteomes, using symmetrical BLAST hits to derive 

orthologous relationships. Patterns of presence and absence of proteins from KOGs formed 

part of the evidence for the Coelomata (wherein Homo sapiens and D. melanogaster are 

more closely related than either is to C. elegans). A character matrix for all KOGs was 

generated and the Dollo parsimony method applied. The method assumes irreversibility of 

character loss, so once a KOG is lost from a species' repertoire it cannot be regained. 

Examining the species contributions to each KOG showed that H sapiens, D. melanogaster 

and C. elegans shared membership of 3,951 KOGs. The number shared between only two of 

these species differed according to the combination (table 4.6). The number of protein 

families shared by D. melanogaster and H. sapiens to the exclusion of C. elegans was the 

larger than other combinations. A major concern with the original analysis was that C. 

elegans proteins may be unassigned to a KOG due to a higher rate of evolution, a trait that 

has been observed in C. elegans [70,71,72,73], or that extensive gene loss in the C. elegans 

lineage would misrepresent the true phylogenetic relationship [74]. The availability of 

NemPep3 allows a larger protein complement from the Nematoda to be considered. Through 

the use of symmetrical BLAST searches, non-caenorhabditid proteins were assigned to 279 

KOGs that did not contain a protein from C. elegans (Table 4.6). The most striking change 

was the reduction in KOGs that contained D. melanogaster and H sapiens to the exclusion 

of C. elegans. By adding nematode proteins the phylogenetic distribution of KOGs with only 

two Metazoa shifted, leaving the most frequent pairing as C. elegans and H. sapiens. 
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Shortcomings with the symmetrical BLAST detection 

It would be foolhardy to repeat the Dollo parsimony analysis upon these new clusters. Both 

H. sapiens and D. melanogaster will show lineage-specific gene loss [74,182], therefore an 

honest study should include proteomes from additional vertebrates and arthropods. As the 

newly incorporated nematode datasets (and any subsequent vertebrate or arthropod) are 

incomplete, there will be some doubt over orthologous relationships determined by 

symmetrical BLAST analysis. It is assumed that symmetrical best BLAST hits are most 

likely to be found between orthologues [161], but in the partial dataset the true orthologue 

may not have been sequenced. These problems need to be overcome in any detailed study of 

phylogenetic relatedness within protein families. Careful consideration of the data allows 

certain lineage-specific gene losses to be uncovered. For example, as sequence data exists for 

"all" C. elegans proteins, if a protein from a metazoan species shares similarity with 

sequence from a parasitic species but not C. elegans, the simplest - most parsimonious - 

explanation is that the protein has been lost at some point in the lineage between the last 

common ancestor of the two nematodes and C. elegans. The data presented here highlights 

how gene loss in one nematode lineage (C. elegans) can affect an analysis considering the 

phylogenetic position of the entire phylum. 

This view is supported by an analysis of ESTs from the cnidarian Acropora millepora [74]. 

The gene clusters were compared to the transcriptomes of human, D. melanogaster and C. 

elegans. The results showed that 12% of clusters shared similarity with human but not the 

model invertebrates. Contrast this with only 1% of clusters matching D. melanogaster or C. 

elegans and not human. All three model species provided putative homologues for 87% of A. 

millepora gene clusters. However for 41% of these the coral gene had significantly higher 

levels of similarity to human, while only 8% were more similar to a model invertebrate. 
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To prevent the reconstruction of erroneous relationships, more species must be considered. 

Without consideration of proteomes, even partial, from other species, the trees provide no 

information regarding missing taxonomic groups [168]. Thus, current genome-scale analyses 

do not include any members of the Lophotrochozoa, which includes Mollusca and Annelida. 

More importantly, if a species' proteome or genome is rapidly evolving, algorithms for tree 

reconstruction can be misled by long branch attraction. This phenomenon describes the 

problem that arises when the probability that closely-related taxa share character states due 

to common ancestry is surpassed by the probability that more distant relatives share those 

states due to convergent changes (homoplasies) [183,184,38]. Studies that only consider 

complete genomes must currently use a distantly-related organism, a yeast, as the outgroup. 

The rapid evolution of C. elegans means that the number of protein families that have been 

lost or changed beyond detection is increased when compared to more slowly evolving 

organisms. If a protein family is also missing in yeast then the change is misconstrued as a 

shared derived change (synapomorphy) pulling C. elegans to a basal position in the 

metazoan dade. To break these long branches more sequence from additional taxa are 

required [185,186]. By using manually assembled gene families from 35 species, 

representing 12 animal phyla, Philippe and coworkers found convincingly for a dade 

containing Ecdysozoa and Lophotrocozoa to the exclusion of the Deutrostomia and thus 

rejecting Coelomata [187]. There were, however, a number of unresolved problems with the 

analysis (reviewed in Jones and Blaxter [168]], which must be overcome. Despite these 

problems, the study has shown that greater sampling of species and molecular sequence 

diversity is required to answer robustly some of the major phylogenetic questions. 
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Dme+Hsa+ Nem+ Dme+ Hsa+ Nem- Dme+ Nem+ Hsa- Nem+ Hsa+ Dme- 

NemPep3— 3,951 331 55 206 

NemPep3+ 4,171 111 59 261 

Table 4.6 

Reconstructing KOGs with NemPep3. 

The inclusion of NemPep3 (+) increases the number of protein families (KOGs) with a 

nematode sequence (Nem+). Symmetrical BLAST searches were performed with the original 

KOG datasets and NemPep3. 
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4.5 Further Work 

The identification of proteins restricted to certain, particularly parasitic, lineages is an 

exciting development. However this work represents only the first step in identifying the 

biological relevance of the data. A primary focus must be to determine possible functions of 

these protein groups. Discussed in the next chapter is the use of protein family and domain 

databases to provide possible functional clues. Unfortunately the phylogenetic bias present in 

primary sequence databases that results in a large number of proteins without putative 

homologues in other phyla is also present in the domain databases. Therefore it is unlikely 

that many of the nematode-specific proteins will be in receipt of such annotation. One 

avenue is to identify distant homology undetected by the BLAST algorithm. The current 

trend is to move away from sequence-sequence comparisons and use more sensitive profile 

or profile-based methods [188,189]. These methods are more powerful because they 

implicitly characterise both the pattern of conserved residues and then distribution of 

variation with a proposed protein family. Such an approach requires organisation of proteins 

into related families which is discussed in the next chapter. 

Detecting homology in the 'twilight zone' of weak sequence similarity [189], will only 

provide a hint at possible function. Experimental data are required to assign more 

information about a protein's function. There are a number of useful procedures including 

localisation of gene expression (e.g., promoter- GFP report transgenesis), co-expression 

studies with microarrays, protein-protein interactions (e.g., yeast two-hybrid) and gene 

knock down studies using RNA interference (RNAi). The advantage with the nematode 

datasets are that there is a vast amount of experimental data available for C. elegans. If 

similarity were shared between a parasitic protein of interest and a protein from C. elegans a 

link could be drawn. However this would conceal any adaption in the protein's biology. Its 

important to consider experimental data from other, more closely related species. 
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Experimental models for parasitic nematodes include Brugia malayi, Litomosoides 

siginondontis, fleligmosomoides polygyrus, Strongyloides ratti, Haemonchus contortus and 

Globodera rostochiensis. Unfortunately a central repository for parasitic nematode data does 

not currently exist. 

4.6 Conclusions 

The work performed in this chapter highlights the diversity of the combined nematode 

proteome. Use of the robust nematode phylogeny has permitted the identification of lineage-

specific novelty with the possibility of protein family expansion and subsequent 

neofunctionalisation. There exist a large number of proteins that have no putative homologue 

outside the Nematoda. These proteins have probably arisen from domain shuffling events or 

gene duplication followed by divergence. Both of these events can produce proteins whose 

function is biologically distinct, whether mechanistically related or not, from the ancestral 

gene. These proteins offer promising targets for anthelmintic drugs and are worthy of further 

study [59]. From a evolutionary perspective the coverage of sampled species across the 

phylum offers an excellent opportunity to study a number of features in restricted lineages, 

including structural similarity, relative gene expression, rates of substitution and codon 

usage. 

As the EST projects continue to generate more survey sequence and the complete genomes 

are assembled and annotated for representative species, the number of lineage-specific 

proteins will increase, and their taxonomic distribution will reveal evolutionary markers for 

the species adaptation to new trophic niches. 
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Chapter Five - Nematode protein domains, 

NemDom 

5.1 Abstract 

The decoration of polypeptide sequences with protein domains is one of the most popular 

forms of annotation. There are a number of databases, or libraries, of protein domains which 

harbour a wealth of information, from proposed function to species distribution, about each 

domain. Assigning domains to the proteins of NemPep3 is an excellent way to identify 

sequences that are fundamental for nematode survival. Finding domains on EST derived 

proteins presents a major problem; the incomplete nature of ESTs means that only a small 

section of the domain may be present, which would normally go undetected using standard 

domain models. To ensure maximum, and robust coverage of domain annotation I have 

explored the affect of using both global and local alignments between the domain model and 

protein sequences, as well as different scoring threshold. A combinatorial approach was 

adopted to assign Pfam-A domains to NemPep3, creating the NemDom3 collection. Species 

distribution of previously characterised metazoan-wide and nematode-restricted domains 

was investigated, identifying domains that have been lost in the caenorhabditid-lineage but 

found through the rest of the phylum. There were also domains that were still only found in 

Caenorhabditis elegans, suggesting that they have been acquired, by some mechanism, in 

that lineage or that the domain models are too restrictive in their predictive power. I also 

search for domains that may be present in the domain repertoire of certain nematodes as a 

consequence of convergent evolution or horizontal gene transfer (HGT). 
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5,2 Introduction 

5.2.1 Protein domains 

The term "protein domain" is used to describe the structural, functional or evolutionary units 

of proteins. These definitions are, in essence, separate but overlap for many characterised 

domains. The assignment of a protein's function is often dependent upon the division of its 

structure or sequence into domains. Whatever the variation of definition, it is notable that a 

relatively small number of domains are used in a large number of proteins [162]. The 

analyses performed and described in this chapter are predominantly based upon sequence 

comparison, and thus the domains used are considered from that perspective and described 

as regions of proteins sharing sequence similarity that are often present in different 

molecular contexts [190]. 

Delineating the proteins from the major sequence repositories into their constituent domains 

has led to the creation of domain libraries - collections of protein domains with functional 

annotation and meta-data attached. These domain libraries have become important tools for 

sequence analysis; in fact it has become standard procedure when reporting the completion 

of a genome to infer general annotation based on high-throughput domain prediction. Most 

domain libraries are constructed in a similar fashion; for each characterised domain the 

protein sequences are aligned, and the alignment is described by a number of methods, 

including position-specific scoring matrices (PSSM) [13,191], hidden .Markov models 

(HMM) [94,93] and profiles [192]. These techniques are more sensitive than single-sequence 

comparisons, as they identify both more and less highly-conserved positions within the 

protein, thus summarising the evolutionary history of the domain family [188,193]. 

5.2.2 Protein families 

Here it is appropriate to clarify the differences between domain and protein families, and to 
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justify my decision to concentrate exclusively on domain families. It is well known that 

members of the same protein family share similar, if not identical biochemical functions 

[194]. A protein family can be defined as a group of polypeptides that are demonstrably 

related to each other [195]. The metric most widely used to cluster these families has been 

sequence similarity [196,197,135,165,69,198,118,199]. A protein family differs from a 

domain family in that it contains the full-length polypeptide sequences rather than conserved 

fragments from within the sequences. Similarity is usually detected using the BLAST 

algorithm [13], primarily because the heuristic search strategy employed is computationally 

very fast. There are two approaches that have become commonplace in molecular biology 

research. The COG system uses symmetrical BLAST hits to delineate relationships and is 

available through the NCBI [135]. TRIBE-MCL uses Markov flow clustering to group 

similar sequences (Box 5.1) [118,200] and is the algorithm of choice for a number of 

genome projects, including Caenorhabditis elegans (Daniel Lawson pers. comm] and 

Plasmodiumfalciparum [201]. 

One problem that clustering methods face is that many proteins consist of multiple 

independently evolving domains [172,194]. Using BLAST,. which detects local regions of 

similarity, can result in links forged between unrelated proteins [202]. This applies not only 

to formally classified protein domains, but to any shared motif of sufficient similarity and 

size to be considered significant. The COG system, the authors state, overcomes this 

problem by manual inspection of multi-domain proteins. However such an approach is 

labour-intensive and not transferable to the majority of research groups. The TRIBE-MCL 

program 'does not require any explicit knowledge of protein domains to detect protein 

families', but clusters on the observed relationships through the entire similarity graph [118]. 

However, the performance of the Markov flow clustering algorithm is dependent upon the 

inflation parameter, whose value should vary to assemble different protein families correctly 
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[203]. 

A recent investigation has shown that both these methods fail to correctly assemble the 

eukaryote hemoglobin protein family [Wasmuth, Elliot, Schmid and Blaxter in prep.). In the 

eukaryote COG database (KOG), the initial symmetrical BLAST searches failed to assemble 

the family, but over 30 C. elegans proteins were subsequently added based on manual 

assessment of PSI-BLAST searches. Many of these proteins do not contain the necessary 

number of a-helices or invariant residues characteristic of globins. The TRIBES database 

[204] separated related globins into many families, some containing a single member. The 

similarity statistic used to decorate the edges of the graph to be clustered is the E value, and 

is transformed (-logio(Evalue)) for the MCL algorithm. While this is acceptable for very 

large databases such as UniProt, it is probably inefficient when clustering smaller datasets. 

This was observed in an attempt to divide a collection of chelicerate mitochondrial proteins; 

the unrelated proteins were aggregated into two large groups containing non-homologous 

proteins, and many single-member families (Jones and Wasmuth unpublished). It is likely 

that using a similarity statistic independent of the size of the database would yield more 

faithful families, but this has yet to be assessed. 

Given the uncertainty over the robust clustering of full-length protein sequences I considered 

it more expedient to focus on an investigation of the protein domain complement of the 

nematode proteomes. 

5.2.3 Domain Databases and Pfam 

A number of similar domain databases exist, each with their own specialties (Table 5.1). The 

TIGRFAMs [164] and SMART [99] databases are libraries of HMMs, which focus on 

prokaryote and eukaryote domain families respectively. Domains delineated on structural 
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similarity are contained within SCOP [205], which focuses on evolutionary classification, 

and CATH [206], constructed through manual and automatic methods. Searching SCOP and 

CATH is usually done with BLAST, although a library of HMMs is available for SCOP 

entires [207]. The limitation of these two databases is that they only contain known three 

dimensional structures, and therefore reflect the taxonomic bias of currently available 

structures; that is mammalian and bacterial. There are also Internet accessible resources 

which combine some of these libraries to permit simultaneous searching. These include 

InterPro [76] and CDD [208]. However at time of writing, neither of these meta-servers 

provided stable stand-alone analysis tools, for annotation of a dataset as large as NemPep. 

Of the resources. available, the Pfam database [77] is probably the most comprehensive 

domain database currently available. There are two divisions of Pfam, Pfam-A, which 

includes some manual curation and Pfam-B, an automatic classification. Each domain family 

for Pfam-A is constructed by the manual creation of a seed alignment of UniProt sequences 

considered representative for a domain. Care is taken in this step to identify potential 

sequence or alignment errors. The alignment is then converted into a profile-HMM using the 

HMMer software package [209] which is used to search the sequence database for additional 

members. Pfam-B is derived from the ProDom database [210] and includes those sequences 

not assigned to a Pfam-A family. The current release of Pfam-A (version 17 - June 2005) 

contains 6190 domain families, which match 75% of sequences in UniProt [77]. The addition 

of Pfam-B increases this coverage to 82%. The online version 

(http://www.sanger.ac.uk/Pfam)  provides a number of analysis tools, which include 

searching by viewing taxonomic distribution; examining the evolution of domain 

combinations with NIFAS [202] and cross-referenced structural information provided by the 

SCOP [211] and CATH [206] databases. All Pfam-A and Pfam-B models are available for 

download, and can be used for sequence searches with the HMMer software. This is gives 

Pfam a substantial advantage over other methods, and was one of the reasons it was chosen 
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for this analysis. 

An assumption in annotating protein sequences with Pfam models is that domains do not 

overlap. However nested domains are permitted - one domain that is interrupted by the 

insertion of another. An example is the IMPDH domain (PF00478), which in many instances 

is continuous, but in a few cases is broken by the insertion of one CBS domain (PF00571). 

All Pfam-A families contain curated functional information. This includes two classes of 

functionally uncharacterised domains, known as Domains of Unknown Function (DUFs) and 

Uncharacterised Protein Families (UPFs). DUFs are the families created within the Pfam 

project while UPFs are those generated by UniProt and subsequently incorporated into Pfam. 

Release 10.0 of Pfam-A contains 1,004 DUF and UPF families, representing 16% of Pfam-

A. Bateman et al. observed a tendency for completely undescribed families to be small and 

taxonomically restricted [77]. The wealth of information present, and availability of 

integrated analysis tools, makes Pfam the best resource for domain annotation. I have used 

the Pfam-A domain library to annotate the sequences of NemPep3, and thus created the 

NemDom3.0 resource that is available through the NEMBASE server 

(http://www.nematodes.org ). 
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Database URL  Description Reference 

Hidden Markov models 

Pfam www.sanger.ac.uklSoftware/Pfam 
covering many common protein 
domains and families - manual 77 

curation 

Structural classification of 

SCOP scop.mrc-lmb.cam.ac.uk/scop/  
protein domains. Includes 
assumptions of evolutionary 

205 

relationships  

Hierarchical domain 
CATH cathwww.biochem.ucl.ac.uk  classification of protein 206 

structures 

SMART smart.embl-heidelberg.de/ 
Sequence-based classification: 99 
eukaryote focus 

TIGRFam www.tigr.org/TIGRFAMs  
Sequence-based classification: 
prokaryote focus 

164 

ProDom protein.toulouse.inra.fr/prodom/cu  
Automatically generated from 
the SWISS-PROT and 210 

rrentlhtml/home.php TrEMBL sequence databases. 

http://supfam.mrc-  
HMMs of all protein sequences 

SuperFamily Imb.cam.ac.uk/SUPERFAMILY/  
with a PDB entry - classified at 207 
SCOP superfamily level 

Interpro www.ebi.ac.uk/interpro/  
Meta-site integrating several 76  
methods 

CDD http://web.ncbi.nlm.nih.gov/Struct  Meta-site integrating several 208 
ure/cddlcdd.shtml methods 

Table 5.1 

Protein domain resources available. 
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5.2.4 Domain models 

Domain v model 

When discussing Pfam annotation in this chapter it is important that I distinguish between 

the terms 'domain' and 'model'. A domain I have defined already as a functional or 

evolutionary unit shared by a number of proteins; it is the actual amino acid sequences. The 

model is the probabilistic characterisation of a domain, so in Pfam it is the profile-HMM 

built for a given protein alignment. 

Local v global models and their scoring thresholds 

Every domain in Pfam-A has two models built from the same multiple sequence alignment, 

the global model (Is) and local model (fs). When searches are performed with global models 

a potential match must start with the first match state of the model and finish with the last. 

For the profile-HMM architecture implemented in by HMMer (Plan 7), this is from the first 

column of the alignment to the final column. Matches to a local model can, in principle at 

least, start at any point in the model and terminate anywhere downstream. To scpre the 

matches (E value) the HMMer program uses Extreme Value Distribution (EVD), to which 

the scores from local models fit well. However global models are known not to produce such 

well fitted scores [212]. HMMer implements an approximation of the EVD fit, which 

empirically at least tends to be accurate at the critical region. 

When a Pfam model is built three bit-score thresholds are assigned which describe the 

parameters used in its creation and hence how to optimise the search for that particular 

domain (taken from Eddy 2003): 

Gathering cut-offs (GA) : these scores are the primary ones in construction of Pfam 

models. Matches to the model that satisfy these cut offs are included in the full 
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domain alignment. 

Trusted cut-offs (IC) the scores of the lowest-scoring hit that were curated as a 

member of the particular Pfam family. 

Noise cut-offs (NC) : the scores of the high-scoring hits that were considered not part of 

the Pfam family. 

In addition an E value cut-off can be used and so the bit-score is not directly queried, 

although the E value is intrinsically linked to the bit score calculated for the model aligned to 

the query sequence. 

5.2.5 Difficulties with assigning domains to EST sequences 

Decorating predicted gene products with Pfam-A domains is now standard procedure on the 

completion of an organism's genome. The choice of scoring cut-offs is often not reported, 

but some simple analyses suggests that the gathering cut-off or E value threshold are most 

popular. It is almost certain that the annotation is performed with global models from the 

Pfam-A collection as they are assumed to be complete functional units. The evolutionary 

constraints on the amino acids across the entire domain are often responsible for a domain's 

identification in several proteins, therefore protein domain searches should use global 

models. This approach is the one implemented in nearly all annotation efforts of newly 

sequenced genomes. However the annotation of EST-derived proteins presents a problem. 

ESTs are between 200-900 nucleotides in length, therefore cover only part of the messenger 

RNA (mRNA) for a given gene. While sequence clustering may increase the coverage, a 

large proportion of ESTs remain singletons and there are no guarantees that a cluster will 

completely cover the mRNA. It is therefore a possibility that a protein domain that is present 

on the mature mRNA will be incomplete or missing from the EST-derived protein sequence. 

If the EST could be extended then the domain would be easily found with current 

technologies (Figure 5.1). There is nothing that can be done about absent domains; however, 
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partial domains could be identified if 'local' models were carefully used. A further problem is 

the quality of the sequence being annotated. Despite EST clustering and robust coding region 

prediction, it is likely that some of the nucleotides have been mis-assigned or are ambiguous 

(N). If such changes are non-synonymous (at the amino acid level) it is possible that the 

correct model may not score sufficiently to be assigned to that sequence, which is 

particularly likely if the altered amino acid is invariant in the model's alignment. 

The problem of partial domains due to a prematurely terminated EST could be overcome 

using local domain models. As only part of the local model needs to align to the query 

sequence to be considered as a possible match (given a sufficiently high bit score), the model 

introduces the possibility of finding partial domains. However, it is also possible that by 

accepting partial matches the number of incorrectly assigned partial domains will increase. 

This is more of a concern in protein regions which do not have a significant match to a 

global Pfam-A model. 

To ensure that NemPep3 is robustly decorated with Pfam-A annotation, I have benchmarked 

the use of global and local models for domain identification using the C. elegans EST and 

WormPep resources. The different classes of score thresholds are examined to ensure that as 

many true domains are returned while reducing the number of false positive identifications 

which may lead to erroneous theories of parasitic nematode biology. 
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Figure 5.1 

The generation of partial domains in an EST dataset. 

The partial nature of ESTs, an inherent feature of the experimental design, implies that a protein domain may be incomplete. In this cartoon, the 

GLOBIN domain (red), spans exons two, three and four. Only the last two exons are present in the sequenced EST, therefore excluding the 5' region of 

the GLOBIN domain. Standard annotation strategy uses domain models that must align the entire model to the query sequence (global). This approach 

would probably fail to identify the GLOBIN domain. 



5.2.6 Nematode protein domains 

There are 2,439 distinct Pfam-A protein domains found in proteins from a nematode species, 

of which 2,428 are present in the proteome of Caenorhabditis elegans. The eleven domains 

not found in C. elegans are, for the most part, well characterised and are the results of 

specific, targeted studies. Of these eleven Pfam-A domains not found in C. elegans half are 

restricted to the plant parasitic Tylenchomorpha. These domains are either responsible for 

either the breakdown of the cell wall components cellulose and pectin [213], or interfere with 

the plant's Shikimate pathway which produces aromatic amino acids and derivative 

compounds that are involved in growth and defence mechanisms [214,215]. The origin of 

some of these domains is unclear. There is some preliminary evidence that the chorismate 

mutase protein (PF01817), a cellulase, found in Meloidogyne javanica is the result of a 

horizontal gene transfer (HGT) from bacteria [214]. However similar assumptions have been 

made for the glycosyl hydrolases Family 9 found in Globodera rostochiensis and 

Heterodera glycines [216], and have been recently refuted by Davison and Blaxter, who 

showed that this family of cellulases has an ancient origin in the metazoan lineage [217]. The 

'Myogenic Basic' domain (PFO 1586) found in Trichinella spfralis is contained within a 

myogenic transcription factor that may involved in the invasion of the skeletal muscle [218]. 

The absence of these eleven domain families from C. elegans underlines the frequency of 

lineage-specific sequence loss, of both gene and protein domains. This is further highlighted 

by the existence of 84 Pfam-A domains which are found only in nematodes, 83 of which are 

only found in C. elegans. With genome sequencing projects producing an exuberance of 

data, methods were being developed to analyse all the proteins encoded in a genome. One 

such method was Pfam, whose breakthrough coincided with the completion of the C. 

elegans genomé [35]. This enabled Sonnhammer and Durbin to take a closer look at the 
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nematode's proteome with systematic functional classification, clustering of protein domains 

and comparison to other organisms [75]. The regions of sequence that did not match a Pfam-

A domain were clustered, generating 1,516 clusters of between two and 58 members, along 

with 8,602 unclustered segments. Using consensus sequences to search proteins from other 

(non-nematode) species, ten domain families were shown to be nematode-restricted. The 

completion of the C. elegans and other metazoan genomes [35,219,139,220] has led to some 

of those domains once classified as nematode-specific being reclassified as widespread 

throughout the Metazoa, for example Copine (PF07002), a Ca(2+)-dependent phospholipid-

binding protein involved in membrane trafficking. There has also been an increase in the 

number of protein domains found (so far) only in nematodes. Of the 84 Pfam-A domains 

found exclusively in nematodes only seven are found in non-caenorhabditid species, with 

their expanded membership usually a consequence of studies targeted at specific genes (table 

5.2). For example, the 'Chromadorea ALT proteins' (PF05535) alt-i and alt-2 are restricted 

to the Spiruromorpha, and undergo elevated expression while the organism resides in the 

mosquito vector and are thus possible candidates for vaccine targets [221]. 
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Pfam Description Pfam Clade Species Distribution 
Accession Distribution 

Nematode cuticle collagen N- PFO 1484 III, VI, V 
BMC, BP, GPC, MIC, MJC, 
ASC, TDC, HCC, CAEEL, 

terminal domain CBP 

DUF 148 PF02520 III, IV, V 
MIC, ASC, TDC, OOC,
NBC, CAEEL 

Transthyretin-like 	family PFO 1060 IV, V HGC, AYC, CAEEL 
(DUF290)  

Nematode fatty 	acid 	retinoid 
WBC, LSC, BMC, BP, OVC,  

binding protein (Gp-FAR-1) PF05 823 III, IV, V 0G, OD, A V, LL, GPC, 
OOC, HP, AYC, CAEEL 

Pepsin inhibitor-3-like repeated PF06394 iii, IV, V 
OVC, DIC, A V, ASC, PL, 

domain  OOC, TF, CAEEL 

Tas 	retrotransposon 	peptidase PF05585 HI, v ALC, CAEEL 
A16  

Chromadorea ALT proteins PF05535 HI OVC, WBC, BMC, DIC, A V 

Table 5.2 

Nematode-restricted Fw-A dwiiains found in non-caenornalxlitid nematodes 

The Pfam database was searched with taxonomic queries: 

"Caenorhabditis elegans AND (Tylenchida OR Enoplea OR Strongylida OR 

Panagrolaimoidea ORspirurida OR Ascaridida) AND NOT (Bacteria OR Archaea OR 

Viruses OR Vertebrata OR Arthropoda OR Fungi OR Viridiplantae)" 

"Nematoda AND NOT (Caenorhabditis elegans OR Bacteria OR Archaea OR Viruses 

OR Vertebrata OR Arthropoda OR Fungi OR Viridiplantae OR Dictyostelium discoideum )" 

The species identifiers are described in table 3. 1, except for: BP - Brugiapahangi (III); OG 

- Onchocerca gutturosa (III); OD - Onchocerca dukei (III); 00— Onchocerca ochengi (III); 

AV - Acanthocheilonema viteae (111); LL - Loa ba (III); HP - Heligmosomoides polygyrus 

(V); FL - Parelaphostrongylus tenuis (V); TF - Trichostrongylus colubrformis (V); 
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Of the 77 Pfam-A domains that are found only in C. elegans (and/or C. briggsae), perhaps 

the most well-known nematode-restricted protein domain family is the chemoreceptors. 

These seven-transmembrane G-protein-coupled receptors (7TM GPCR5) comprise 

approximately 1,280 intact genes, 6% of the total gene count for C. elegans, as well as 420 

pseudogenes. The eighteen classes of chemoreceptor genes can be split into three 

superfamilies [222], each comprising a number of related families, although the domain 

annotation assigned to these families is not entirely congruent with Roberston and Thomas' 

divisions. The annotation available through WormBase assigns seventeen classes of genes to 

one of nine Pfam domains (Table 5.3), all of which are found only in C. elegans. The 

original prediction of their chemosensory function was founded upon transgene expression 

patterns in one or more known pairs of chemosensory neurons [223]. The global RNAi 

screening initiative failed to assign a phenotype to nearly all these genes [224]; however, 

targeted RNAi studies and cellular expression studies have begun to shed some light, with 

many genes expressed only in chemosensory neurons [225,222]. Taken together with 

multiple alignments of families, the information suggests chemosensory function for the 

majority, if not all of the genes. Whether these genes are found in other nematodes is 

unclear. An attempt to identify orthologue pairs with C. briggsae were confounded by the 

highly dynamic gene number with frequent duplications and gene loss, permitting only 7 

pairs of orthologues to be robustly resolved [226,222]. The use of symmetrical BLAST 

searches identified more putative pairs, but their divergent protein sequences suggested that 

they were in fact paralogues produced prior to the elegans-briggsae speciation followed by 

gene loss in both species [227]. Early analysis of the Brugia malayi genome has revealed a 

number of genes containing chemoreceptor domains, but not in similar numbers to the 

Caenorhabditis species. The availability of EST-derived polypeptide sequences from such a 

wide distribution of nematodes may lead to the identification of chemoreceptors, although it 

is important to note that these proteins are expressed at low levels - often from a small (2-5) 
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number of cells. 

There are other examples of caenorhabditid-restricted Pfam-A domains which are present in 

large copy number. Most of these 77 Pfam-A domains were identified by automated sweeps 

through the C. elegans proteome, and a similar approach is necessary if these domains are to 

have a more species-rich membership. The availability of NemPep3 permits this kind of 

systematic search. However, caution must temper visions of wholesale expansion of 

previously caenorhabditid domain families; returning to the chemoreceptors, previous EST 

data has been of little assistance, with only 81 from —160,000 C. elegans ESTs from 

chemoreceptor genes [222]. That said, when NemPep3 is decorated with Pfam-A domains, I 

would still expect a large number of domain families to increase 'their taxonomic 

membership. 
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Superfamily Family(ies) Pfam-A domain' 

Str 
sir, srd, sr/i, sri, srm PFO 1461 

srn 1PR000168 

Sra 

sra PF02117 

srb PF02 175 

sre PF03 125 

Srg 

srg PF02118 

sri PF01748 

sru PF02688 

srv PF03375 

srxa 1PR000276 

srw srw 1PR000276 

Table 5.3 

Domain classification of chemosensory receptors. 

The Pfam-A accessions were taken from WormBase (WS 140) annotation. 

(1) Where no Pfam-A domain was assigned the Interpro accession was recorded. 
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5.2.7 Domain loss and gain 

It is pertinent at this point to define one of the evolutionary considerations than underpins my 

analysis, that of domain loss or gain (adapted from [207]). As with most protein domain 

studies a domain found in one proteome and not in another is considered to have been gained 

by one or lost by the other. This should not be confused with gene loss [147] or acquisition. 

The modification of a gene may change the protein domain affecting the score calculated 

when the sequence is passed through a domain model. Thus, a small number of amino acid 

changes in a protein sequence can lead to loss of a domain unit. That is to say, that the 

domain's function may be altered or removed. Such changes in the amino acid sequence may 

prevent the identification of the domain with current technologies, especially profile 

searches. 

One of the more noteworthy analyses performed on NemDom3.0 is the identification of 

protein domains with restricted taxonomic distributions that previously did not include the 

Nematoda. These domains would be absent from the proteome of the free-living C. elegans, 

and as such may represent an adaptation to parasitism. The domains may be a modification 

of a pre-existing protein which results in a new, if only slightly varying, function such as 

regulating a metabolic or immune-response pathway. It is plausible that a duplicated domain, 

free of the original functional constraints, could adopt a similar local structure to an 

important protein from the host species. Such cases of convergent evolution are rare, but 

using tertiary structure has detected instances of convergent evolution. The best-known 

example of this is the Ser/His/Asp catalytic triad [228]. There is precedent for nematode 

proteins converging their structure and I or primary sequence to affect the host's metabolic 

pathways [229]. A dorsal gland polypeptide (HgCLE) taken from Heterodera glycines shares 

regions of similarity to a plant ligand involved in intercellular signalling (CLV3) [230], 
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suggesting that the nematode ligand is used for parasitic modification of plant cells. The 

amino acid features shared by the plant and nematode sequences appear targeted to 

functionally important positions, suggesting a convergent evolutionary origin rather than 

HGT. There is also evidence for localised convergent evolution in two proteins from filarial 

nematodes. A gene duplication of the B. malayi homologue of the Human cytokine 

macrophage migration inhibitory factor (MIF) (PFO 1187) has resulted in nematode proteins 

that have been shown to be hemotactic for human monocytes and activate them to produce 

the cytokines IL-8 and TNF-u [231,232], thus influencing the host's immune system. 

Additionally, a cysteine protease from B. malayi (Bm-CPI-2) was shown to block the activity 

of an asparaginyl endopeptidase (AEP) necessary for maturation of the MHC class II 

receptor [233]. A multiple sequence alignment of the human cysteine protease and nematode 

homologues highlighted a single amino acid in the region responsible for AEP inhibition, 

shared between human and B. malayi proteins and not the other nematode homologues. Site 

directed mutagenesis showed that this residue was necessary for the B. malayi protein to 

inhibit AEP. The mode of convergent evolution described for H. gylcines' HgCLEs differs 

significantly from the example of the filarial nematodes. The former involves a protein from 

a lineage separate to the sequence it mimics, while the latter proteins share relatively recent 

ancestry. 

Another mechanism for adaptation of a proteome for parasitism is the acquisition of genes 

from other species, HGT, and is a means for rapid diversification' in the proteomes of both 

prokarya and unicellular eukarya [234,235]. The extent of HGT in the Metazoa is intensely 

disputed, with many cases of HGT refuted by later studies [236,237,238,239]. The focus of 

HGT in nematodes has been on the plant parasites, with possible bacterial origin for genes 

identified in Meloidogyne javanica, Heterodera glycines and Globodera rostochiensis 

[214,213,216,240]. These findings were the result of single gene studies. The availability of 

EST data for plant parasitic nematodes enabled a sweep of the transcriptomes of three 
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Meloidogyne species [62]. Serial BLAST searches identified six candidate genes whose 

presence in the nematode genome was confirmed through cloning. Phylogenetic analysis 

advocated rhizobial bacteria, with which the nematodes share atrophic niche, as donors of 

the genes. 

Confirmation of the candidate genes as present in the nematodes' genomes was an important 

step. There are many sources of potential contamination - both bacterial and human. This 

poses a problem when identifying protein domains previously absent from nematode 

proteomes. Bacterial contamination, in particular Escherichia coli and Pseudomonas species 

[241], can be prevalent in cDNA library construction and has been highlighted in Chapter 

Three. An additional source of contamination is from obligate bacteria; symbionts such as 

the Wolbachia found in filarial nematodes [242,243,244], and Candidatus 

Xiphinematobacter, which is found in the gut epithelium and ovaries 'of the dorylaim 

Xiphinema americanum group [245]. In the construction of the cDNA library it is practically 

unavoidable that bacterial mRNA will be included [246], therefore it is important to consider 

this problem when drawing conclusions from data analysis. 

To explore domain dynamics in the Nematoda I have extracted those domains that were 

previously absent from the phylum, in particular those that were candidates for HGT or 

putatively involved in regulating some part of the host species metabolism or immune / 

defense response. Each candidate was examined throughly to determine whether it was a 

consequence of contamination or worthy of further investigation. 

5.2.8 Domain family expansion 

Coupled to domain loss and gain is lineage-specific expansion of a domain's frequency. If a 

particular domain is found to represent a greater proportion of one species proteome than 
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that of another, it is likely to be a consequence of positive selection on one lineage. If such 

expansion was seen in a parasitic nematode compared to the free-living C. elegans, it may 

represent a promising drug target. However such a comparison is dependent upon a 

proteome derived from a complete genome sequence. EST data is influenced by the level of 

expression for mRNA. Even the creation of clusters does not guarantee non-redundant gene 

sets, which has been observed both in the nematode dataset (Parkinson, Blaxter and 

Wasmuth unpublished) and published for the Fundulus heteroclitus EST set, with 15 clusters 

for the apolipoprotein and 10 for cytochrome oxidase [22]. With EST data it is possible to 

highlight those domains that come from highly expressed genes in particular species 

datasets. This approach led to the identification and characterisation of two novel proteins 

(NIM- I and NIM-2) in the nematode Haemonchus contortus [16]. Comparisons between the 

proportion of ESTs in a dataset and expression measured through SAGE (Serial Analysis of 

Gene Expression) has shown high positive correlation [58,57], supporting the use of ESTs in 

this way. 
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Box 5.1 The MCL algorithm and TRIBE-MCL 

The graph clustering paradigm postulates that natural groups in graphs have the following 

property (adapted from van Dongen [200]): a random walk in the graph that visits a dense 

cluster is unlikely to leave that cluster until many of its vertices have been visited. The 

Markov Cluster (MCL) algorithm simulates flow within a graph, and promotes flow where 

the 'current is strong', and downgrades flow where the 'current is weak'. According to the 

above paradigm, if natural groups are present in the graph, then current between different 

groups will wither and reveal the cluster structure of the graph. The transformation of a 

graph into a Markov graph, where all the edges sum to one, and hence a Markov matrix is 

necessary for this flow process. The MCL algorithm simulates flow within the graph by 

alternating two operators called expansion and inflation. Expansion calculates the power of 

the Markov matrix (matrix squaring) with the inflation step taking the Hadamard power of 

the matrix. This alters the relative probabilities of within-cluster and between-cluster random 

walks, and is the parameter by which the users can alter the tightness (granularity) of 

clusters. Higher inflation is more conservative, yielding more clusters. 

The concept of graph clustering is one readily adapted in the search for protein families. The 

MCL algorithm has been incorporated into the TRIBE-MCL program, where the origin 

graph represents similarity between proteins. The vertex connecting the proteins (nodes) is 

weighted by a similarity measure, here a log transformed BLAST E value (Figure 5.2). 

178 



FInputSequenc 

Figure 5.2 
Schematic of the TRIBE-MCL process. 
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5.3 Methods 

5.3.1 EST datasets for domain assignment 

Four independent sets of 4,000 C. elegans ESTs were randomly selected from dbEST. These 

sets were clustered using CLOBB, and phrap used to derive a consensus contig for each 

cluster. To ensure that each EST contig corresponded to a known C. elegans coding region, I 

carried out BLASTN searches against the WormPep cDNA collection (version 140). A 

match was considered significant if the HSP covered -75% of the EST contig. The 

significant matches were then compared to the WormPep protein set (BLASTX E> e-8), 

thus associating each EST contig with a WormPep sequence. The size of the test sets ranged 

from 2,316 to 2,346 sequences. The coding regions for these EST contigs were predicted 

using prot4EST version 2.2. To simulate the situation facing the majority to EST projects the 

codon usage table and HMM matrix were those assembled from 50,000 coding nucleotides, 

as described in Chapter Two. 

5.3.2 Assigning protein domains 

All the domain assignments from WormPep and the EST-derived proteins, were stored in a 

custom postgreSQL database, to facilitate searching. 

The Pfam-A domain models (version 17 - June 2005) were downloaded from the Sanger 

Institute's ftp server (flp.sanger.ac.uk ). These models are formatted to be used with the 

hmmpfam program, part of the HMMer software suite [209]. There are in fact two search 

programs in HMMer - hmmpfam was used because the E value calculation uses the size 

(length) of the domain library opposed to hmmsearch where the database is considered the 

query sequence file. Using hmmpfam ensures that E values are comparable across a range of 

different sized replicates. 
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Pfam-A domains in WormPep 

Pfam-A domain assignments are available from both the Pfam database and WormBase. To 

ensure data provenance the WormMart facility at WormBase was used. Surprisingly, there 

were a small number of conflicts between WormBase and Pfam, where in one database a 

protein was assigned a particular domain but was absent from the other. Where a 

disagreement occurred, I accepted the positive domain annotation. 

Measuring accuracy 

As the alignment between the EST contig and its cognate WormPep sequence was known, 

the location of the domain assignments could be transferred between sequences. The 

performance of domain annotation was evaluated with regard to specificity (Equation 5.1) 

and sensitivity (Equation 5.2). Figure 5.3 shows how classifications were assigned. 

7W 
specificity = 	- -. 

(TN +FP) 	Equation 5.1 

TP 
sensitivity = (TP + FN) 
	Equation 5.2 

5.3.3 Taxonomically-restricted Pfam-A collections 

Unless otherwise stated the identifiers of taxonomically-restricted Pfam-A identifiers were 

obtained from the Pfam website using the taxonomy query facility. 

1. C. elegans and at least one other nematode to the exclusion of all non-nematodes 

"Caenorhabditis elegans AND (Tylenchida OR Enoplea OR Strongylida OR 

Panagrolaimo idea OR spirurida OR Ascaridida) AND NOT (Bacteria OR 

Archaea OR Viruses OR Vertebrata OR Arthropoda OR Fungi OR 

Viridiplantae)" 
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Only non-caenorhabditid nematodes 

"Nematoda AND NOT (Caenorhabditis elegans OR Bacteria OR Archaea 

OR Viruses OR Vertebrata OR Arthropoda OR Fungi OR 

Viridiplantae)" 

Only Metazoa 

"Metazoa AND NOT (Bacteria OR Archaea OR Viruses OR Fungi OR 

Viridiplantae)" 

Only Prokaryote 

"Bacteria AND NOT (Eukaryota OR Archea)" 

Found in Vertebrates but not nematodes or arthropods 

"Vertebrates AND NOT (Nematoda OR Arthropoda)" 
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Figure 5.3 

Categories for testing accuracy of domain model assignment 

Thp hluip nnrl rd hrvec define different domains. Thus. if an EST contig is annotated with a 

red domain when a blue one was expected, it is considered a false positive. 
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5.4 Results and Discussion 

5.4.1 Accuracy of domain identification in translated EST 

contigs 

Before the proteins of NemPep3 could be decorated with Pfam annotation two potentially 

confounding effects had to be explored. One was how scoring thresholds affected the 

assignment of protein domains to polypeptides derived from EST contigs. The second was 

whether correct Pfam annotation is possible for partial protein sequences that cover only part 

of a protein domain (Figure 5.1). The test set comprised four independent replicates of 4,000 

randomly selected ESTs from C. elegans. Each set was clustered, and polypeptides derived 

by prot4EST, as described in the Methods (5.3.1). Each polypeptide from a C. elegans EST 

contig, (known as a 'CXP'), was mapped to its cognate WormPep sequence. The CXPs were 

searched with the Pfam-A library using four scoring thresholds, three bit score cut-offs 

(trusted, gathering and noise) and one E value cut-off (<0.1) recommended by Eddy [209]. 

The accession and location of each assigned protein domain in a CXP was compared to the 

annotation of the cognate complete protein in WormPep (see Method 5.3.2). This was 

performed for both the global and local models. 

Definitions of coverage and measuring accuracy 

The coverage of a protein domain is the proportion of a domain's length that is covered by 

the CXP when aligned to its cognate protein in WormPep. 

To evaluate how accurate the assignment of domain annotation on CXPs I used a binary 

classification; each domain was considered to be present in a certain location on the protein 

or not. The performance was tested using specificity and sensitivity (see the Methods (5.3.2) 

for how each is assigned). The higher the specificity the less often a domain was incorrectly 
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assigned to a region of the protein. The higher the sensitivity the fewer true domains were 

not identified. 

Performance ofglobal and local Models 

The differences in model scoring parameters between global and local HMM suggests that 

their performances would differ. As local models permit matches that cover only part of the 

domain, it is likely that a region with no domain could be erroneously assigned Pfam-A 

annotation, increasing the number of false positives. However if the EST-derived 

polypeptide contains only part of a protein domain, it is unlikely that a global model will 

score sufficiently to cause a domain assignment, thus inflating the number of false negatives 

and decreasing the sensitivity of the search. 

As expected, whether a model was local or global affected the accuracy of domain 

identificfinn (Pig'!r 	54a&b). Theecificity Cf din aiiicit was  

higher using the global models (j.t=0.97±0.009) than local models (t=0.93 ± 0.011). The 

proportion of domain coverage made little difference to the specificity because the regions 

that were of lower coverage usually did not return any domain. An increase in domain 

coverage led to a reduction in incorrectly assigned domains (false positives). Relatively few 

domains (<0.5%) were assigned to regions of the CXP proteins where no domain was 

expected, this number decreased as the domain coverage increased. The difference in the 

sensitivity of the searches was more pronounced. Searching with local models saw the 

sensitivity reach a plateau when the match between the model and a CXP covered 40-50% of 

the domain (Figure 5.4b). Similar performance was achieved with the global models only 

when almost all of the domain was covered by the model-CXP alignment (Figure 5.4a). Use 

of the local models identified the majority of the domains predicted from the WormPep 

annotation which overlapped with the EST-derived polypeptides. Many of these domains 
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overlapped only part of the CXP proteins; from a total of 21,153 Pfam domains assigned to 

CXP proteins, 3,876 domains were found at the 5' end of the CXP protein, 3,799 on the 3' 

end and 3,412 domains covered the entire CXP protein without either boundary found in the 

polypeptide (Figure 5.5). 
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Figure 5.4 

Specificity (dashed line) and Sensitivity (continuous line) of assigning Pfam-A domains 

to EST-derived proteins. 

Legend overleaf 
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Figure 5.4 (previous page) 

Specificity (dashed line) and Sensitivity (continuous line) of assigning Pfam-A domains 

to EST-derived proteins. 

ESTs from C. elegans were clustered, their coding regions predicted and a cognate full-

length C. elegans protein assigned. The hmmpfam program was used to assign Pfam-A 

domain models to each sequence. The domain annotation was compared to the reference set 

from WormPep. 

Two model architectures were used, (A) global Pfam models, where an alignment must be 

global with respect to the model but local for the query sequence, and (B) local Pfam 

models, in which the alignment may be local for both the model and sequence. See Methods 

and Figure 5.3 for categories measuring accuracy of assignment. Some of the data points for 

the specificity are hidden behind the Gathering cut off. 

Figure 5.5 (overleaf) 

Assigning partial domains to EST-derived proteins. 

The numbers correspond with the number of times this type of assignment was made. Total 

of 21,153 local models were assigned. The black bar refers to the model; the continuous 

section is the part of the model that aligns with the query sequence and the hashed region is 

the remainder of the domain model that does not match the query sequence 

the Pfam-A domain overlapped with the 5' region of the EST contig. 

there was a significant match with the Y region of the query sequence. 

the model covers the entire EST contig. Usually seen for short EST-derived proteins. 

the local model matches an internal region of the query sequence. These were not 

included in NemDom. 
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Scoring thresholds 

The choice of cut-off for bit scores (IC, GA or NC) made a nugatory difference to the 

performance of searches. The trusted cut-off (most conservative), missed several domains 

when the coverage was less than 90%, as the insertions introduced into the model-CXP 

alignment caused a drop in the bit score. When the domain coverage was maximal, use of the 

noise cut-off resulted in a reduction in the sensitivity of the search. The poorer performance 

was predominantly caused by the incorrect identification of the 'IMP dehydrogenase / GMP 

reductase' domain (PF00478) when another domain was anticipated. The expected domain 

varied in these circumstances, and for many there was no feature (e.g. sequence similarity or 

transmembrane regions) explaining the erroneous assignment. PF00478 belongs to the 

'common phosphate binding-site TIM barrel superfamily' (CL0036) that contains 27 Pfam-A 

domains, but none of the related domains were an expected domain. An explainable miss-

annotation was PFOO 153, where 14 of the expected 31 'mitochondrial carrier protein' were 

attributed to PF00478. Both domains contain transmembrane regions, which are 

predominantly hydrophobic and so explain the small regions of similarity. It is likely that the 

CXP domains are sufficiently different to their cognate protein and the domain model, 

prohibiting correct assignment of the model. The bit score cut-offs for the PF00478 domain 

are extremely low (-186 to -195), therefore encouraging miss-assignment in the absence of 

another domain match. It should be noted that the E values awarded for these spurious 

matches were many orders of magnitude greater than those for the correctly assigned 

PF00478 domains (cf. e-17 and e+3). Altering the bit score threshold did little to resolve the 

annotation as the differences between thresholds is often relatively small, for any given 

model the score rarely varies by more than 5 bits. This fine tuning is crucial for separating 

domains from a closely related group, or 'clan', for example the V. elegans chemosensory 

receptor' clan (CLO 138) [223,247,222], but probably less consequential when distinguishing 

between unrelated domains. 
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There was a much more marked effect upon classification of domains when an E value 

threshold (<0.1) was used. The specificity was reduced, with an increase in the number of 

domains incorrectly assigned to the CXP proteins. The E value approximates how significant 

a match is given the size of database searched, and, when used as the cut-off, the search 

program (HMMer) ignores the bit score threshold assigned to each Pfam-A model. This was 

most striking for the local models (Figure 5.4a), where domains were erroneously assigned 

due to partial hits to the domain's model which satisfied the E value cut-off. The bit score 

thresholds, curated by Pfam, overcome this error as they are frequently higher than the 

corresponding global model thresholds, making the identification of a partial hit, at the level 

of individual amino acids at least, more conservative. In contrast, the sensitivity of the 

searches were improved with the E value cut-off. This was most striking at low levels of 

domain coverage. The data suggests that the use of E value as . a score threshold is less 

conservative than the Noise bit score cut-off curated for each model. Hence, the increase in 

the proportion of correctly assigned protein domains was a consequence of this relaxation. 

Finding domains in NemPep3 

Taken together, these results supported a combinatorial approach to identifying protein 

domains in the partial proteins of NemPep3. Global models should be used to identify full-

length protein domains in the EST-derived polypeptides, as the number of false positive 

predictions would be lower. Next, partial domains identified by local models would only be 

accepted into NemDom3.0 if they resided at either terminus of the polypeptide. 

The choice of scoring threshold was less clear. An E value cut-off of <0.1 correctly 

identified a greater proportion of domains when the coverage was reduced (sensitivity). 

However, such searches also returned a greater proportion of domains when, according to 

WormPep annotation, none existed. For global models the number of false positives had to 
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be kept to a minimum, and therefore I selected the gathering (GA) bit score cut-off. The 

local Pfam models were to be used to find domains at the termini of the polypeptides, and 

could involve low domain coverage. Once again, reducing the number of false positives was 

important, so the gathering bit score threshold was used. For local models, this decision 

would mean the failure to identify true domains at the protein's termini. However, 

subsequent de novo protein domain identification would hopefully cluster these regions that 

could then be manually annotated. 

Number of Domains per CXP 

To provide an expectation for the number of Pfam-A domains assigned to EST-derived 

proteins, the number of domains assigned to each CXP was compared to the annotation for 

the full-length WormPep proteins (Figure 5.6). The most striking contrast was that, 

regardless of the type of models used, more than half of CXP polypeptides had no Pfam 

domain assigned, compared with 38% for the full-length WormPep proteins. The number of 

domains per protein then followed a similar distribution to the WormPep annotation. The 

CXP polypeptides which were annotated with at least one domain were significantly longer 

(m164; sd=56.1) than CXPs without a domain (m105; s.d.51.8) (t = 46.7039, df = 

4803.55, p-value < 2.2e-16). There is also a sigOificant difference between the lengths of 

CXPs with one domain and two (t = -7.9429, df= 266.055, p-value = 5.591e-14), but there 

were no significant difference for further increments in domain complement. The CXPs with 

more than two domains generally contained short, tightly-packed, homogeneous repeats, e.g. 

the 'tetratricopeptide repeat' (PF005 15) or 'WD-40' (PF00400). This is verified by manual 

inspection of the domain annotation. Searching with the local models assigned at least one 

Pfam-A domain to a higher proportion of CXP polypeptides. 
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Figure 5.6 

Number of domains found per protein in the EST-derived collections and 

WormPep140. 

The effect on the number of domains assigned by using two model architectures (global and 

local) and varying the score cut off was investigated. 

Use of the local models annotated more EST-derived contigs with Pfam-A domains than 

global models. This was expected as partial matches are permitted with this architecture. A 

domain was more likely to be assigned if an E value cut off (<0.1) was used. However it 

should be noted that there was no assumption that the assignments were correct. 

The cut offs used were: Ev - E; TC - Trusted cut off; GA - Gathering cut off; NC - Noise 

cut off. For clarity these are absent in some positions, but the order remains consistent. 

In the box and whisker plot the following is presented: mid-line is the median; the box 

boundaries are the upper and lower quartiles; and the whiskers are the outlying (extreme) 

values. 
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IC 
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5.4.2 Annotating NemPep3 

The HMMs from the Pfam-A database were used to search NemPep3 to identify known 

protein domains, creating the NemDom3.0 collection. Between 36.5% (Ascaris suum) and 

41.4% (X index) of the partial proteomes (excluding Zeldia punctata) were decorated with at 

least one Pfam-A model (Table 5.4), in agreement with earlier expectations (Figure 5.5). The 

mean protein length (MLP) varied between the proteomes (Table 3.2), which suggested a 

positive correlation between MLP and domain content. The correlation was rho=0.51, which 

was significant (t = 3.416, df = 34, p-value = 0.0017). There was a negative relationship 

between the size (number of proteins) of the proteome (modified from Table 3.2) and the 

proportion of unique (non-redundant) Pfam domains (rho-0.8089218; t = -8.0229, df= 34, 

p-value = 2.375e-09). This is a logical consequence of the random nature of EST sampling. 

As anticipated from the work described earlier in this chapter, the polypeptides derived from 

ESTs were assigned fewer protein domains than the full-length caenorhabditid proteins 

(Figure 5.6 and Table 5.5). Selective use of the local models in the searches added a further 

15,514 protein domain annotations. Almost 900 domains, present in caenorhabditid proteins, 

were not found in the EST datasets. This absence of many of these was a consequence of the 

incomplete sampling of the proteomes of the parasitic species. 

194 



Table 5.4 

Summary of Pfam-A domain assignment by species. 

Species' # domains2  # unique3  
Number of proteins with X domains 

Mean3  
Standard 

deviation Model  
x=0 X=1 X=2 X=3 X ~ 4 

ACP 5,492 672 7,166 3,348 902 59 31 0.48 0.71 0 

ALP 1,003 124 1,466 698 131 10 3 0.43 0.64 0 

ASP 10,871 789 14,496 6,668 1,587 185 100 0.47 0.72 0 

AYP 5,240 749 5,490 2,463 1,021 126 71 0.57 0.85 0 

BMP 8,927 896 11,552 5,253 1,527 122 56 0.48 0.71 0 

CAEEL 36,559 2,297 9,216 17,180 3,085 989 1,166 1.16 3.00 1 

CBP 28,173 2,741 8,928 15,975 1,768 729 862 1.00 1.87 1 

DIP 2,175 340 2,991 1,406 332 18 11 0.46 0.67 0 

GPP 3,449 545 3,750 1,619 681 89 43 0.56 0.82 0 

GRP 3,896 623 4,438 1,988 770 75 30 0.53 0.77 0 

HCP 7,359 928 7,664 3,358 1,581 164 73 0.57 0.82 0 

HGP 12,109 1,217 14,642 6,615 2,174 229 94 0.51 0.76 0 

HSP 1,744 334 2,019 975 273 46 19 0.52 0.77 0 

LSP 2,155 381 2,555 1,161 420 31 14 0.52 0.74 0 

MAP 3,078 449 3,902 1,852 503 43 19 0.49 0.71 0 

MCP 4,518 662 5,689 2,622 810 57 24 0.49 0.71 0 

MHP 8,313 879 10,783 4,968 1,406 111 43 0.48 0.7 0 

MIP 7,860 914  9,572 4,323 1,459 138 42 0.51 0.74 0 

Continued overleaf... 



Species' # domains' # unique' 
Number of proteins with X domains 

Mean' Standard 
deviation Mode5  

X=0 x=i X=2 X=3 X?4 

MJP 4,293 553 5,753 2,667 699 50 17 0.47 0.68 0 

MPP 2,048 417 2,209 983 419 47 20 0.56 0.79 0 

NAP 2,997 440 3,870 1,764 488 45 23 0.48 0.74 0 

NBP 1,058 241 1,156 514 236 14 7 0.55. 0.77 0 

OOP 3,446 511 3,850 1,755 672 65 32 0.54 0.79 0 

OVP 5,298 742 6,403 2,794 1,034 103 28 0.51 0.74 0 

PEP 633 151 594 237 149 22 7 0.63 0.88 0 

PPP 5,790 811 6,506 2,862 1,219 107 37 0.54 0.77 0 

PTP 3,906 585 4,150 1,888 812 86 28 0.56 0.80 0 

PVP 1,060 189 1,261 567 186 23 11 0.52 0.77 0 

RSP 763 176 823 330 181 15 5 0.56 0.81 0 

SRP 5,305 760 6,168 2,822 936 119 55 0.53 0.78 0 

SSP 5,183 789 5,446 2,415 1,071 115 57 0.57 0.83 0 

TCP 2,015 320 2,196 988 408 53 12 0.55 0.78 0 

TDP 2,556 381 2,879 1,282 524 42 23 0.54 0.77 0 

TMP 1,956 365 2,164 982 369 34 27 0.55 0.82 0 

TSP 4,618 636 5,836 2,730 763 67 34 0.49 0.72 0 

TVP 1,423 235 1,804 852 227 26 9 0.49 0.71 0 

WBP 2,197 419 2,265 936 475 68 24 0.58 0.84 0 

XIP 6,575 954 6,106 2,562 1,394 243 106 0.63 0.91 0 

ZPP 346 131 220 84 107 14 1 0.81 0.96 0 

Table 5.4 
Summary of Pfam-A domain assignment by species - legend overleaf 



Table 5.4 (previous page) 

Summary of Pfam-A domain assignment by species. 

For species codes see table 3.1. 

The total number of non-overlapping instances of Pfam-A domains assigned to each 

species' proteome. This includes the global and local models. 

The number of matches between proteins in a species' proteome to Pfam-A domains that 

are restricted to the Nematoda. 

The mean average of domain instances in a given species' proteome. 

The mode average of domain instances in a given species' proteome. 

caenorhabditids NemPep3 incl. 
caenorhabditids 

NemPep3 excl. 
caenorhabditids 

Total # of proteins 41,754 155,128 113,374 

# of proteins with domain >= 1 24,281 (58.1%) 62,725 (40.4%) 
1 	38,444(33.9%) 

Total # of domains 46,588 101,500 54,912 

Global Models 46,588 85,986 (84%) 39,398 (72%) 

Local Models 0 15,514 (16%) 15,514 (28%) 

Unique Pfarn accessions 2,877 3,241 2,361 

Table 5.5 

Differences in domain assignment between complete and partial proteomes. 

The incomplete nature of EST-derived proteins means that the proteomes of parasitic 

nematodes have a smaller proportion of Pfam-A assignments, compared to the full-length 

proteins from C. elegans and C. briggsae. However the use of local models has increased the 

number of domain matches, and the parasitic species' domain complement includes 364 

domains not found in currently surveyed caenorhabditid proteomes. 
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5.4.3 Phylogenetic distribution of Pfam domains 

There are 3,730 domain models in the Pfam database that are derived from proteins from at 

least one metazoan species, 2,543 of which are found in NemPep3. The presence of these 

metazoan domains were mapped onto the Nematode phylogenetic tree (Figure 5.7). Half 

(1,222) of the metazoan domains found in the Nematoda appear to be widespread throughout 

the phylum, although only 883 were identified in each of the four clades. As expected from 

previous analyses presented in this thesis (Chapter Four), the complete proteomes for C. 

elegans and C. briggsae accounted for the majority of diversity in the datasets. The most 

striking feature of the distribution was that 228 domains were not found in either of the 

Caenorhabditis sp. proteomes (see project web-site: www.nematodes.org/thesis/james/supp) . 

Previous analyses on the datasets suggest that experimental contamination is a very real 

possibility, and is examined later in this chapter. However, by considering only those 

domains that are found in proteomes from two distinct orders, the likelihood of being misled 

by a contaminant is much reduced. A total of 31 domains matched this criteria. Many of 

these domains are from ancient lineages, whose last common ancestor are deep taxonomic 

divisions: Eukaryota plus Prokaryota (11), Eukaryota plus Archea (2), Eukaryota (11), 

Metazoa (5). The most parsimonious explanation is that these domains were present in the 

last common ancestor of all nematodes, and have since been lost in the C. elegans lineage. I 

note that "loss" could be through rapid divergence of the domain sequence so it is no longer 

recognised by the Pfam-A model or through deletion of the gene. 

Two of the domains are worthy of a brief description. The Phage minor tail protein L 

(PF05 100) domain had previously only been found in proteins from proteobacteria and 

viruses. It was identified in three proteins, occurring once in Haemonchus contort us, 

Nippostrongylus brasiliensis and Wuchereria bancrofti. The three proteins are all derived 
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from singleton ESTs (unclustered) and, given that there is no obvious role for the protein in 

the nematodes, it is likely that they represent contaminants. The BESS motif (PF02944), a 

domain of unknown function and named after the proteins in which it is found (BEAF [248], 

Suvar [249] and Stonewall [250]), was thought to be specific to Drosophila, although Pfam 

annotation identified matches in the proteomes of Anopheles gambiae and Xenopus 

tropicalis. Identification of the BESS domains in two distantly related nematodes 

(Pratylenchus vu/nw and H. contortus) suggests a more ancient origin for the domain. It 

must be noted that while both nematode proteins (PVP00645 and HCP07484) match the 

model with relatively poor E values (0.12 and 0.046), the bit scores awarded to the protein-

model alignment exceed the conservative trusted cut-off. The function of this domain 

remains unknown [251], but inclusion of representatives from additional species may yield 

testable predictions. If the BESS domain was lost in the ancestral mammal then given the 

taxonomic bias in sequencing towards mammals and the reported high level of gene loss in 

C. elegans, it easy to understand why the domain's lineage was miss-classified. 

Four hundred and sixty-four domains that are restricted to a single nematode order but also 

found in animals outside the phylum were identified. Many of these were found in only one 

species and are therefore possibly the result of contamination. Each domain must be 

considered in turn, a project that is currently underway. Despite this, it is 'note worthy that 

the dorylaim, Xiphinema index, was the only nematode in which 25 metazoan domains were 

found. It is likely that a proportion of these are present in other nematodes but have yet to be 

sequenced. Some may derive from plant host material or from Xiphinema's symbiont - 

Xiphinematobacter (see Introduction). However, some may reflect the life-cycle and feeding 

strategy of this plant parasite. An example is the "dihydrodipicolinate synthetase family" 

(PF00701), a domain that forms a TIM barrel structure and is a key enzyme in the 

diaminopimelate pathway (lysine biosynthesis) of higher plants and prokaryotes [252,253]. 

If this protein is from the Xiphinema genome, its evolutionary origin is of obvious interest; 
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this issue is discussed in more detail later in this chapter. 

Figure 5.7 (overleaf) 

Distribution of metazoan protein domains in the phylum Nematoda. 

The tree represents the phylogenetic relationships of the Nematoda as presented by Mark 

Blaxter [40]. There are a total of 3,730 Pfam-A domains that are found in a metazoan 

species, of which 2,543 are present in NemDom3. It can be inferred that these are ancient 

domain families. The distribution of these domains have been mapped onto the tree, with 

each node detailing the number of domains that are distributed in the daughter taxa. That is, 

each protein domain has been assigned to the most recent common ancestor of the taxa in 

which is found. The numbers are mutually exclusive. This allows one to surmise in which 

lineage a domain has been lost or modified beyond detection. For example, two domains 

were found in both a trichinellid and a dorylaimid; 1,222 domains had representation in the 

Dorylaimida and at least one order of the Rhabditida. 
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5.4.4 Nematode Specific Pfam Domains 

There are 84 protein domains in the Pfam-A database that are exclusive to the Nematoda. All 

are found in C. elegans (see later regarding the ALT protein), while only seven are found in 

non-caenorhabditid species (see Table 5.2). Considering these seven domains first, six were 

identified in the domain complements of non-caenorhabditid nematodes, expanding their 

taxonomic distribution (Table 5.6). The Nematode cuticle collagen domain (PF01484) and 

transthyretin-like family (PFO 1060) were found to be distributed throughout the phylum 

Nematoda, including the Dorylaimia (dade I). The first of these was expected to be present 

in all nematodes, given its role in the core structure of the cuticle, one of the defining 

morphological features of the Nematoda [254,255]. The second domain has weak similarity 

to hormone transport protein, and although the function of this domain in nematodes is 

unknown, its ubiquity may aid annotation. Three of the domains (PF02520, PF0583 and 

PF06394) are seemingly restricted to a broad cross-section of species from the Chromadorea 

(Clades III, IV, V). Two possibilities for the origins of these domains are that they arose in 

the ancestral Chromadorea, or that they were present in an earlier nematode and 

subsequently lost after the separation of Dorylaimia and Chromadorea. Ideally, EST data 

generated from enoplid nematodes (dade II) would go a long way towards confirming one of 

these hypotheses. 
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Pfam Description Pfam Clade Species Distribution' __________________________ 
Accession Distribution' Previously known Acquired Missing 

ALP, AYC, DIP, HGP, HSP, LSP, 
Nematode cuticle collagen PFO 1484 1, III, VI, V ASP, BMP, BP, CAEEL, CBP, MAP, MCP, MHP, MPP, NAP, NBP, 
N-terminal domain GPP, HCP, MIP, MR, TDP OOP, OVP, PEP, PPP, PTP, RSP, SRP, 

SSP,_TCP,_TMP,_WBP,_XIP, ZPP 

DUF 148 PF02520 III, IV, V ASP, CAEEL, OOP, TDP 
ACP, AYP, CBP, GRP, HCP, PEP, 

PPP, PIP, SSP, TCP 
MIP, NBP 

ACP, ALP, ASP, BMP, CBP, DIP, 
GPP, GRP, HCP, LSP, MAP, MCP, 

Transthyretin-like family PFO 1060 IV, V , 	 , AYP, CAEEL, HGP 
MHP, MIP, MR, MPP, NAP, NBP, 

(DUF29O) OOP, OVP, PEP, PPP, PTP, PVP, RSP, 
SRP, SSP, TCP, TDP, TMP, TSP, 

WBP, XIP, ZPP 

Nematode fatty acid AV, AYP, MBP, BP, CAEEL, 
ACP, ALP, ASP, CBP, DIP, GRP,
HCP, HGP, MAP, MCP, MHP, MIP, 

retinoid binding protein PF05823 III, IV, V GPP, HP, LL, OD, OG, OOP MW, MPP, NAP, NBP, PPP, PIP, LSP 
(Gp-FAR-1) OVP, WBP PVP, SRP, SSP, TCP, TDP, ZPP 

ACP, ALP, AYP, BMP, CBP, HCP, 
Pepsin inhibitor-3-like PF06394 III, IV, V 

ASP, A V, CAEEL, DIP, OOP, HGP, LSP, MAP, MCP, MHP, MIP, 
repeated domain OW, PL, TF MW, MPP, PEP, PPP, PTP, SSP, TCP, 

TDP 

Tas retrotransposon PF05585 III, V CAEEL CBP ALP 
peptidase A16 

Chromadorea ALT PF05535 III AV, BMP, DIP, OVP, WBP ALP, LSP 
proteins 

I  

Table 5.6. 

NemDom3.0 update: Nematode-restricted Pfam-A domains found in non-caenorhabditid nematodes. 

Legend overleaf 



Table 5.6 (previous page) 

NemDom3.0 update: Nematode-restricted Pfam-A domains found in non-

caenorhabditid nematodes. 

The taxonomic distribution of the seven domain-subset of nematode-restricted Pfam-A 

domains was queried using the NemDom3.0 annotations. 

Nematode clades not previously known to contain the domain but now found in 

NemDom3 are in blue. If a domain is characterised in a dade but not found in NemDom3, 

the dade is in red. 

Previously known are those species associated with the domain in the Pfam database, 

and the domain is found in NemDom3. 

Acquired are species for which the domain is assigned in NemDom3, but had not 

been previously characterised 

Missing are those species associated with the domain in the Pfam database, but 

which is not found in NemDom3. 

The species identifiers and Pfam descriptions are available from Table 3.1 and Table 5.3, 

respectively. 
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The DUF148 (PF02520) domain is found in 32 C. elegans and 22 C. briggsae proteins, but 

relatively fewer EST-derived proteins. This may be a consequence of an expansion in the 

caenorhabditid lineage or a reflection of low expression level of this protein. The C. elegans 

proteins that contain the DUF 148 domain are represented by a mean of seven ESTs per gene, 

and 0.09% of available C. elegans ESTs. The expression of EST contigs in non-

caenorhabditid nematodes is variable (Table 5.7), but, strikingly, is two orders of magnitude 

greater in A. suum and Toxocara canis (both ascaridomorphs) compared to C. elegans. For 

these two species the ESTs were predominantly expressed in the adult stage, although this 

may reflect a bias in the type of cDNA library. No DUF 148 domains were identified in the 

five spiruromorph species, from the sister order to the Ascaridomorpha. Comparison of the 

DUF148 containing proteins to the draft B. malayi proteome revealed a number of proteins 

which shared sequence similarity, especially for the DUF 148 region, and the domain could 

be identified 15 times in the B. malayi proteome with a Pfam-A search. It is probable, 

therefore, that the gene encoding this protein in the spiruromorphs is expressed at levels too 

low to be detected through an EST survey. The absence from the Dorylaimia of the 

nematode fatty acid retinoid binding protein (PF05823) and Pepsin inhibitor-3-like repeated 

domain (PR06394) also warrants inspection and demands more robust functional annotation 

and explanation of their role in the evolution of parasitism. 
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Species 
Number of 

EST contigs 
Number of 

ESTs 
ESTs per 
protein 

Proportion of total 
EST collection 

ACP 6 15 2.50 0.0016 

ASP 20 737 36.85 0.0192 

AYP 5 28 5.60 0.0026 

CAEEL 32 228 7.13 0.0009 

CBP 22 N/A N/A N/A 

GRP 1 2 2.00 0.0003 

HCP 10 35 3.50 0.0016 

HGP 1 8 8.00 0.0003 

OOP 8 26 3.25 0.0039 

PEP 1 9 9.00 0.0047 

PPP 3 4 1.67 0.0047 

PIP 3 5 1.67 0.0007 

SSP 2 6 3.00 0.0005 

TCP 1 64 64.00 0.0138 

TDP 2 9 4.50 0.0021 

Table 5.7 

Expression profiles of proteins containing the domain DUF148. 

The EST to protein mappings for C. elegans were extracted from WormBase, and those for 

the parasitic nematodes from NEMBASE. 
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There is one domain that, according to the Pfam database is restricted to the filarial 

(spiruromorph) nematodes. The ALT domain (PF05535) has an unknown function but has 

been shown to be a possible vaccine candidate. Its expression is primarily in the L3 larval 

stage while developing in the mosquito vector. The domain was first characterised through 

an abundant mRNA in B. malayi [256], and homologues were found in Dirofilaria immitis 

[257], 0. volvulus [258], Acnthocheilonema viteae [259] and W. bancrofli. Use of the EST 

datasets has identified a large number of alt genes in B. malayi, of which seven have been 

confirmed through cDNA cloning. A BLAST search against the C. elegans genome provided 

a match in which the C. elegans sequence shared the 'core' region in the third and fourth 

exons [221]. This region did not correspond to a characterised gene in the WormBase, but 

has been confirmed as a cDNA and the missing 5' end has been sequenced using 5' RACE 

PCR (William Gregory pers. comm) and is awaiting inclusion in the C. elegans proteome. 

The lack of a WormPep sequence meant that the Pfam curators could not include C. elegans 

in the family, thus restricting it to the Spiruromorpha. Mining NemDom3 revealed the ALT 

domain in B. malayi (27 clusters), 0. volvulus (19 clusters), D. immitis (one cluster) and W. 

bancrofti (6 clusters), as well as Litomosoides sigmodontis (two clusters) which was 

expected. Four ALT containing clusters had previously been identified through BLAST 

searches in Ascaris lumbricoides (one cluster) and A. suum (three clusters). Of these only 

ALP00802 has been assigned the ALT domain. A detailed search of the clusters from A. 

suum showed that they share similarity with the spiruromorph alt genes and, more critically, 

when the bit score threshold for a HMM search was relaxed, the Pfam-A model was found in 

all three, with highly significant c-values (e-7 to e-14). The matches were all the 'core' 

region, with upstream region of the domain absent from the ascarid proteins. Inspection of 

the alignment between the protein and EST contig showed that the translations for 

ASP12236 and ASP00978 cover the 5' end of the contig, starting at nucleotide positions 94 

and 62 respectively. These proteins were not assigned an ALT domain because the 

PF005535 model is built from an alignment of only five spiruromorph proteins and the 'core' 
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region is invariant in many positions (Figure 5.8). The problem of restrictive models is 

discussed below (5.4.5). It is hoped that once an alignment using the recently characterised 

alt genes is ready, a more representative domain model can be built and additional ALTs 

entered in a future a release of NemDom. 

Figure 5.8 (overleaf) 

Pfam-A ALT domain. 

The ALT protein domain was first characterised in filarial nematodes but was recently been 

found as a mis-identified in C. elegans. 

The alignment used by Pfam curators to build the Pfam-A model for the ALT domain. 

The domain regions are mapped according to Gregory et al. [221]. 

A HMM logo easing visualisation of the variation in the model alignment (position: 

105aa to 176aa). The graphic shows only the conserved core region of the domain, and is 

intended to highlight why this model fails to identify ALT domain characterised in non-

filarial nematodes. The tall letters show that these positions are, in practice, invariant in the 

model. Therefore if they differ in the query sequence a punitive score is calculated, and the 

domain is not assigned. 

Species key: WUCBA - Wuchereria bancrofli; ACAVI - Acnathocheilonema viteae; 

BRUMA - Brugia malayi; DIRIM - Dirofilaria immitis; ONCVO - Onchocerca volvulus 
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Figure 5.8 

Pfam-A ALT domain. 

legend on previous page 
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5.4.5 Caenorhabditid-restricted domains 

A large number of protein domains were originally found exclusively in C. elegans, and 

latterly C. briggsae. Given the expansion in taxonomic membership described above for a 

subset of domains it was likely that these caenorhabditid-restricted domains would be found 

in other nematodes. It was therefore a surprise when only 24 domains with this profile were 

found in non-caenorhabditid proteomes (Figure 5.9). There are three possible explanations 

for the presence of so many domains specific to one genus of theNematoda: 

It is a true reflection of taxonomic distribution. The domains 'arose' after the 

Rhabditoidea - Strongyloidea split. An alternative, though less parsimonious 

explanation, is that some of the domains were present in an older lineage but 

subsequently lost multiple times. 

Incomplete sampling of non-caenorhabditid nematodes has missed those 

sequences which contain the domains. This is especially likely to be the case 

if the protein domains are in genes that are expressed at low levels. 

The models which characterise the domain alignments are too specific. 

Caenorhabditid-restricted domains were identified by comparing proteins 

within the C. elegans proteome [75]. The alignments in these models may 

contain a large proportion of invariant positions, and thus not reflect any 

deep evolutionary variation in the domain. This is especially likely to be true 

if the domain family contains a large number of inparalogues. 

The most probable scenario is that all three possibilities contributed to this observation. 

However, only the third could be tested readily. To investigate whether proteins from non-

caenorhabditid proteomes could be assigned to these domains, the caenorhabditid proteins 

from each domain family were used as a query sequence in BLAST searches of the partial 
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proteomes. The sequence coordinates of any significant matches were then compared to the 

location of the domains on the query proteins. 

A domain of unknown function (DUF225), PF02795, is found in seven caenorhabditid 

proteins, repeated up to five times. The domain contains 4 conserved cysteine residues which 

presumably form disulphide bridges, suggesting an extracellular role for proteins with this 

domain. The domain model was constructed from an alignment that contained both C. 

briggsae and C. elegans proteins. Only one protein from the partial proteomes met the 

criteria to be considered as a new member to this domain. NAP003 85_I was from the human 

hookworm and sister taxa to the Rhabditoidea, Necator americanus. It had strong BLAST 

similarity to two PF02795-containing proteins, one from each caenorhabditid, with the 

conserved cysteines present. The N. americanus protein could be aligned to the model for 

PF02795 but the bit score for the alignment was -16.9, below the Gathering threshold (GA) 

applied to searches to construct NemDom3. The Noise cutoff (NC) for the model was -27.8, 

suggesting that this domain was in fact present on the protein NAP00385_1. 

It is important to retain a level of skepticism when assigning function in an automatic 

fashion. The criteria described above (using an E value cut off) that putatively added 

NAP00385_1 to the family PF02795, thus widening its taxonomic distribution, identified six 

proteins from parasitic species that may contain the DUFI28O domain (PF06918). However, 

for all six the region identified as DUF 1280 overlapped with another predicted domain, 

PF03357. The 'ESCRT-III complex subunit' is implicated in protein sorting and transport 

from the endosome to the vacuole or lysosome in eukaryotic cells. The BLAST alignments 

between the caenorhabditid-restricted domain and the proteins from other nematodes had a 

high proportion of identical and positive positions (41-60% and 66-76%). I, therefore, 

suggest that DUF 1280 is related to, and possibly a divergent form of ESCRTIII. 
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Distribution of nematode-restricted Pfam-A domains. 
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Figure 5.9 (previous page) 

Distribution of nematode-restricted Pfam-A domains. 

The tree represents the phylogenetic relationships of the Nematoda as presented by Mark 

Blaxter [40]. There were 84 Pfam-A domains that, at the time of writing, were found only in 

the nematodes, mostly in C. elegans. The creation of NemDom3 allowed me to ask how 

widespread these domains were in the phylum. At each node is described the number of 

domains shared by daughter taxa. A domain may be described in more than one node, which 

differs from previous uses of this visualisation approach (e.g. Figure 5.6). For example, the 

10 domains shared by the Tylenchina are included in each order's haul of 15 domains. The 

ALT domain has been identified in C. elegans as a PCR clone and therefore the 

Rhabditoidea should contain all 84 domains. However the C. elegans ALT protein is absent 

from the current release of gene models, and is therefore excluded from the C. elegans 

proteome (WormPep). It is because of this, and a desire for continuity of data that the ALT 

domain is considered missing from the Rhabditoidea in this figure. 
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5.4.6 Domains not previously found in nematodes 

The complete proteomes of C. elegans and C. briggsae are the source of 95% of nematode 

protein sequences in the major databases. Therefore, the majority of inferences of protein 

evolution in the Nematoda are based solely on this lineage. The analysis of NemPep3 in 

Chapter Four revealed that almost 3,000 nematode protein groups (putative families) did not 

have a match from the C. elegans proteome but shared similarity with a sequence from a 

non-nematode species. I argued that some of these represented gene loss events in the 

caenorhabditid lineage. Turning to protein domains, it is clear that there has been domain 

loss or modification in C. elegans; before this study eleven domains, found in multiple 

phyla, were already known to be present in nematodes excluding C. elegans. This number 

was increased to 31 domains, and possibly 200 plus, with the first sweep of NemDom3.0 

annotation (see 5.4.3). There were, however, some domains whose taxonomic distribution 

did not suggest that they were present in an older lineage and subsequently lost in certain 

nematodes. These domains present the possibility that other genetic mechanisms were 

responsible for their presence in the organism. In this section I describe an analysis on the 

presence of two groups of Pfam-A domains in the nematode proteomes - those thought to be 

specific to bacteria and those previously found in vertebrate species. 

Prokaryote-restricted domains 

The are 2,090 Pfam-A models found exclusively in bacterial proteomes. Their presence in 

the proteome of a nematode would be a consequence of either: (1) bacterial contamination in 

cDNA library construction, (2) cloning of sequences from a symbiont of the nematode (e.g. 

Wolbachia in spiruromorphs or Xiphinematobacter in Xiphinema), (3) convergent evolution 

of a nematode gene or (4) horizontal gene transfer (HGT). These have been introduced 

earlier in the chapter (5.2.6). Horizontal transfer of a gene from a bacterium to a metazoan is 

extremely rare [260], so a confirmed instance would be an exciting find, as the fixation of 
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the gene into the genome suggests that it would provide a necessary function. If the function 

was linked to the organisms parasitic life-cycle it would be a putative target for anti-

nematode drugs. Therefore, it is important to distinguish between those NemPep3 proteins 

that habour a prokaryote dOmain due to HGT and those which are a result of contamination, 

either as an experimental artefact or from an obligate symbiont. 

Fifty-one models of the 2,090 bacterial-specific domain models were found in 56 proteins 

from non-caenorhabditid species. Forty (78%) of the models were identified in just two 

species, B. malayi (7 models) and 0. volvulus (35 models). It was striking that the remaining 

three spiruromorphs, Litomosoides sigmodontis, Dirofilaria immitis and W. bancrofli, 

contained only three prokaryote restricted domains (LSC - 1, WBC - 2), which are described 

below. To identify the possible sources of these domains, serial BLAST searches were 

performed against different protein databases. The nematode proteins were compared to 

sequences from species of Wolbachia, Escherichia and Pseudomonas. All 56 sequences had 

a significant match to Escherichia co/i proteins, with 34 producing significant alignments 

with Pseudomonas. However, only seven NemPep3 sequences shared significant similarity 

with a protein from a Wolbachia species, of which six were more similar to Pseudomonas 

and E. co/i proteins. This suggests that 55 proteins are derived from contamination during 

cDNA library construction. There was one protein from B. malayi that was most similar to a 

sequence from the Wolbachia symbiont of B. malayi. A search against the draft B. malayi 

nuclear proteome failed to record a match, affirming that the ESTs in that cluster are derived 

directly from the symbiont. 

Level of bacterial contamination 

The difficulties compromising the search for horizontally transferred genes highlighted the 

high level of bacterial contamination in the 0. vo/vulus dataset. To examine whether there is 
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widespread contamination, BLAST comparisons between NemPep3 and the UniProt 

database were examined closely in an attempt to identify how many EST contigs are of 

bacterial origin. For most species, the proportion of proteins with an apparent bacterial origin 

was one to six percent (table 5.8). For C. elegans, 2%, and C. briggsae 3% of proteins 

yielded a putatively bacterial source identification. However the level of bacterial proteins in 

both A. suum (10%) and 0. volvulus (15%) datasets were significantly greater (t-test; df = 

38, p-value <2.2e-16). E. co/i was a major contaminant in the datasets of both species, 

although the A. suum proteome also contained a large number of sequences very similar to 

Mycoplasma penetrans and Campylobacter jejuni. The majority of contaminated A. suum 

sequences were derived from seven of the 24 libraries available for A. suum, of which six 

are from a common source. The contaminant protein sequences found in 0. volvulus were 

derived from the same two cDNA libraries that were responsible for EST contigs with no 

detectable coding region (see table 3.5). 
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Table 5.8 

Level of prokaryote contamination of NemPep3. 

legend overleaf 

Species Dataset 
EST contigs 

Number Proportion 

ACP 43 0.026 

ALP 3 0.008 

ASP 380 0.103 

AYP 36 0.018 

BMP 136 0.043 

CAEEL 240 0.019 

CBP 305 0.029 

DIP 30 0.044 

GPP 35 0.028 

GRP 26 0.018 

HCP 38 0.013 

HGP 162 0.036 

HSP 22 0.032 

LSP 53 0.069 

MAP 30 0.026 

MCP 27 0.017 

MI-IP 80 0.026 

MIP 77 0.026 

MW 32 0.024 

MPP 11 0.014 

NAP 12 0.013 

NBP 0 N/A 

OOP 34 0.029 

OVP 302 0.152 

PEP 8 0.032 

PPP 54 0.023 

PTP 31 0.020 

PVP 4 0.011 

RSP 3 0.012 

SRP 35 0.017 

SSP 38 0.017 

TCP 23 0.033 
continued overleaf.. 
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Species Dataset 
EST contigs 

Number Proportion 

TDP 9 0.011 

TMP 9 0.012 

TSP 42 0.024 

TVP 5 0.010 

WBP 51 0.055 

XIP 51 0.018 

ZPP 5 0.030 

Table 5.8 

Level of prokaryote contamination of NemPep3. 

A BLAST search of NemPep against UniProt was performed. Those nematode proteins that 

matched only prokaryote proteins (E <c- i 0) were considered contaminants. 
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Vertebrate domains 

Nematode parasites of mammals survive in extracellular locations such as the lymphatic 

system, gastrointestinal tract and blood stream. In these exposed locations the nematode 

must divert, suppress or subvert the host's immune response through regulation [261]. 

Research into how the parasite down modulates the immune system has usually been 

performed at the individual gene level [262,263], but EST data has presented a large number 

of potential immunomodulators [51]. So far all parasite encoded immunomodulators 

discovered have been homologues of mammalian genes, and are thus regarded as ancient 

families. There are cases where a gene duplication in the nematode lineage has permitted one 

copy to undergo convergent evolution to mimic the function of the host gene. 

Many of the protein domains specific to vertebrates identified in the nematode ESTs are 

involved in the immune system, such as the class II histocompatibility antigen (PF00969), 

cytokines like Interleukin-1 (PF00340) and certain receptors like the one for Interferon 

gamma (PF07 140). It is the function of these molecules that the nematode must copy if it is 

to modulate the immune response of its host. One mechanism to achieve this is the 

convergent evolution of a nematode protein to a mammalian one. To detect such instances I 

generated a sub-set of Pfam-A domain models that were found in vertebrate species to the 

exclusion of the Arthropoda and Nematoda. It is not sufficient to restrict the collection to 

vertebrate-only models because certain domains integral to immune regulation (e.g. Class I 

Histocompatibility antigen (PFOO 129), are found in viruses which have been acquired from 

the vertebrate host [264] 

NemDom3.0 contained 34 domains that are otherwise vertebrate restricted from 57 separate 

proteins. Excitingly, the matched domains included a number involved in the immune 

system, such as histocompatibility antigens, intercellular adhesion molecules and 

immunoglobulin constant chain domains. It was also striking that 23 (40%) of the proteins 
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were from the filarial nematodes, for whom immunomodulation is the subject of intense 

study. The analysis of HGT.candidates (above) showed that contamination accounted for all 

the putatively interesting findings. Therefore, it was imperative that each instance in this data 

set be considered in detail. The model-sequence alignments were inspected, in conjunction 

with BLAST similarity searches of the UniProt database. Finally, the sequences were 

compared to both the C. elegans and (draft) B. malayi proteomes. Only four domain families 

could be confidently confirmed in the nematode proteomes (Table 5.9), none of which are 

annotated as involved in the immune response. Three of these domains (PF07967, PF04970, 

PF07092) had been identified as part of an ancient family lost to C. elegans, but finding 

similarity to the B. malayi proteome confirms their validity. For domain PF07967, the 

parasitic nematode representatives share weak similarity (e-5 to e-6) with a protein from C. 

elegans, C49H3.9, which has no Pfam-A annotation. This C. elegans protein shares 

significant similarity with a human sequence (UniProt ID: Q86WBO) which is annotated as a 

Zinc finger C3HC-type protein. This domain is found in NIPA proteins (Nuclear interacting 

partner of anaplastic lymphoma kinase), and the protein from Schizosaccharomyces pombe 

containing this domain has been shown to be involved in mRNA export from the nucleus 

[265]. The region of similarity between the human and C. elegans proteins includes the 

domain, suggesting that the domain sequence has been modified, either by positive selection 

to a new function or by neutral drift, as the function is now redundant in C. elegans. This 

would also explain why the protein from Meloidogyne incognita does notshare significant 

similarity with the B. malayi proteome. The Tat binding domain was found only in 

Ancylostoma caninum, and shares similarity with a protein from B. malayi in the region 

covered by the domain. 
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Pfam-A accession Pfam-A description NemPep ID B. malayi match' C• e1eans 
match 

PF07106 
Tat binding protein 
1 -interacting ACP05087_I 
protein (TBPIP)  

BmaPep - 14992_i 1292 none 

PF07967 C3HC zinc finger- 
like 

M11P0528 i_i none C49H3.9 

WBP02124_1 BmaPep— 14972_7621 C49143.9 

BM1P10466_2 BmaPep - 14972_762i C49143.9 

D1P00043_l BmaPep - 14972_762i C49H3.9 

HGP1 1288_1 BmaPep— 14972_7621 C49H3.9 

LSP00284_1 BmaPep - 14972_7621 C49143.9 

PF04970 NC domain 

MiI-1P00115_i BmaPep-14972_7019 none 

MJP0056I_1 BmaPep-14972_7019 none 

PTP00339_1 BmaPep-14972_70i9 none 

ACP03654_1 BmaPep—i4972_7019 none 

BMP15955_1 BmaPep - 14972_7019 none 

MCP04473_1 BmaPep - 14972_7019 none 

HCP04887_2 BmaPep - 14972_7019 none 

PTP00339_1 BmaPep-14972_7019 none 

ACP03654_1 BmaPep - 14972_7019 none 

PF07092 DUF1356 

TSP04007_i BmaPep - 14990_8051 none 

XIPO1189_1 BmaPep-14990_8051 none 

HCP03094_1 BmaPep - 14990_8051 none 

Table 5.9 

Are the vertebrate restricted domains really found in nematodes? 

The NemPep3 proteins that were decorated with vertebrate domains not previously identified 

in nematodes were compared to the draft B. malayl proteome and WormPep (C. elegans). 

Those proteins that had a significant match are reported in this table and described in the 

accompanying text. 
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5.5 Further discussion and conclusion 

This chapter describes the robust annotation of NemPep3 with protein domain annotation 

from the Pfam-A database to create NemDom3.0. This involved exploring the parameter 

space offered by the profile HMM searches to ensure that domains were assigned correctly 

to sequences which contain a number of ambiguous or erroneous characters. The problem of 

domain identification was compounded two-fold. If, as was predicted to be frequently the 

case, the EST contig did not cover the mature mRNA, the derived protein would be 

incomplete. This meant that in annotating NemPep3, I had to be mindful of regions at the 

termini of the sequence that had matches which were local with respect to the domain model. 

Benchmarking of the process suggested that a combination of Pfam-A global and local 

models would produce optimal results. 

NemDom3.0 is the first attempt at carefully identifying protein domains in EST-derived 

sequences, and also represents the largest collection of domain annotation for a restricted 

taxonomic group. Combining NemDom3.0 with the nematode phylogenetic tree identified 

domains found throughout the Nematoda but absent in the Caenorhabditis proteomes. 

One branch of research into the nematodes that parasitise mammals looks at the organisms' 

ability to modulate the response of their hosts immune system. To date, the discovery of such 

genes has identified homologues between nematode and host where the parasite's protein has 

undergone convergent evolution. It was hoped that using Pfam-A annotation would identify 

candidate proteins that perhaps shared no direct ancestry with the host protein and arose due 

to convergent evolution. Unfortunately, no such domains were found, with many hopeful 

annotations likely to be due to contamination. Given that convergent evolution usually 

affects a small number of key, often enzymatically important residues, it was perhaps 
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unsurprising that models built from taxonomically restricted alignments, likely to lack much 

variation, failed to identify candidate proteins. 

The presence of domains from contaminating organisms resulted in a large number of 

prokaryote-specific domains in the datasets, highlighted in the search for possible 

horizontally transferred proteins. The issue of identifying true contamination is a difficult 

one to satisfactorily overcome. In Chapter Three, I identified 8,072 EST contigs, 7% of all 

non-caenorhabditid ESTs, whose coding region could not be identified through BLAST 

similarity or hexamer-frequency characteristic of that species. These ESTs were probable 

contaminants and removed from further analyses. However, given the number of EST 

contigs that shared similarity only to prokaryote proteins without tell-tale signs of HGT, the 

original estimate of contamination was too low. Possible improvements to screening 

methods are discussed in the next chapter. 

Between 30-40% of EST-derived amino acids were covered by a Pfam-A domain. It is likely 

that there are other evolutionary conserved units present in these sequences that have yet to 

be discovered; in particular those specific to the nematodes. Several future improvements for 

subsequent releases of NemDom are possible. The SuperFamily domain library [266] stores 

HMMs for structural inference and, it is hoped, will provide a more powerful way to detect 

localised convergence of structural (functional) motifs. To identify these domains, 

polypeptide regions not covered by a Pfam-A domain and longer than 30 amino acids will be 

passed through the ProDom software [210]. These resulting clusters will be aligned and used 

to build profile HMMs, which can be used to search the proteomes of other organisms to 

determine their taxonomic distribution. It will be important to repeat such a search on a 

regular basis as more sequence becomes available from previously neglected taxa, especially 

EST data. 
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Chapter Six - Summary Discussions 

The work described in this thesis not only explores the diversity of the nematode proteome, 

but also provides a framework for other comparative studies involving EST data and 

provides a clear direction for future work to ensure robust analysis of partial proteomes. 

6.1 Getting more from an EST analysis 

It is common practice to reduce the redundancy of an EST dataset by clustering the 

sequences and performing analysis on the consensus-contigs of each cluster. Contemporary 

analysis of an EST dataset then involves performing BLAST searches against popular 

databases such as GenBank and UniProt, and the most significant hit providing annotation in 

the form of a description line and frequently a gene ontology (GO) term. EST contigs are 

highlighted if they lack similarity to another sequence (species-specific), or are high-

expressed (containing many EST5), or are made up by ESTs exclusively from a single cDNA 

library. Published reports often conclude proposing the future direction of the project, which 

is inevitably towards microarray experiments. In my opinion this represents a missed 

opportunity to ensure robust annotation of the dataset thus promoting better targeted, 

hypothesis-driven studies. One aspect of the work presented in this thesis was a technical 

appraisal to improve sequence annotation and reduce the possibility for erroneous 

interpretation to be propagated through the database. The study of multiple datasets in this 

thesis made it imperative that I establish robust annotation of the EST contigs, through the 

recognition of their shortcomings and implementing biologically relevant processes. Here I 

outline a framework for a comparative phylogenomic approach of EST data. 
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Identification of the coding region 

The protein sequences present a better template for almost all approaches of assigning 

annotation, including domain determination, construction of more accurate multiple 

sequence alignments, the creation of protein-mass fingerprint libraries for proteomic studies 

and structural threading and modelling to provide secondary and tertiary structures. It is 

necessary to identify the coding region of an EST contig, which is complicated by frame-

shifts, ambiguous nucleotides and the presence of untranslated regions. Previously published 

software that corrected for these errors require a level of species-specific training data that is 

unrealistic for the majority to EST projects. In Chapter Two, I described prot4EST, an EST 

translation program that implemented several algorithms to achieve the most accurate coding 

region predictions. Benchmarking prot4EST with ESTs from Caenorhabditis elegans 

highlighted that the performance of the ESTScan algorithm was the most variable, and 

dependent upon the sequence composition of the training set. I showed that training 

ESTScan with mRNA from a plant or bacterium with a similar sequence composition to C. 

elegans produced better predictions than a training set from another nematode. This 

observation prompted the use of simulated training sets (Chapter Three) in which the C. 

elegans proteome, WormPep, was reverse-translated using the codon distribution for the 

nematode under study. Thus it provided the minimum number of nucleotides in the training 

set required by ESTScan. This approach should be adopted for other species, though the 

choice of model proteome is still a matter of debate. 

Probable contamination 

The identification of EST contigs, whose presence in the dataset is a consequence of 

contamination, is paramount to avoid large scale errors in analysis. There are two, relatively 

simple approaches to uncover such contigs. First, in depth analysis of NemPep3 showed that 

those EST contigs which were translated using either BLAST-similarity or ESTScan 
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(hexamer composition) components of prot4EST could confidently be assigned to the 

transcriptome of the organism. If a coding region could not predicted by either of these 

stages, it was likely that the EST contig represented contamination in either cDNA library 

construction or a sequencing artifact. It was noteworthy that nearly 90% of EST contigs in 

this second category were singletons, compared to 65% across the entire nematode EST 

dataset. Secondly, inspection of BLAST search reports is likely to reveal bacterial 

contamination. The criteria for such a search depends predominantly on the species being 

studied. For example, the nematode EST contigs that shared very high level of sequence 

identity (<95%) with proteins from bacteria known to contaminate cDNA libraries 

(Escherichia coli, Shigella sp. and Pseudomonas sp.) without similar or better matches to 

eukaryote proteins were probably not of nematode origin. 

3. Protein domains 

The delineation of protein sequences into conserved building blocks, or protein domains, is 

an exceedingly useful template from which putative function and evolutionary histories can 

be elucidated. I have explored the effect of using two representations of the domain model, 

one which forms alignments which are global with respect to the model (and local to the 

query sequence), and one whose alignments are local for both the model and query. Standard 

analysis, using full-length protein sequences, favours searches performed with more accurate 

global models, but EST-derived proteins are likely to be incomplete sequences, and as such 

contain only part of the domain. Comparing EST contigs from C. elegans with WormPep 

advocated a hierarchical approach, in which the results from a search with global models are 

acceptable matches and alignments formed with local models are only approved if they occur 

at either the 5' or 3' end of the proteins sequence. The inclusion of partial domains led to a 

18% increase in the number of sequence regions annotated, corresponding to an additional 

10% of Pfam identifiers. 
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4. Confirmation of observations 

Comparative studies often point to the absence or acquisition of a protein or domain from 

one particular lineage over another, or the difference in expression level (EST number). Such 

observations are usually the most interesting and passionately reported. However, 

occasionally, such observations in the nematode EST datasets have been a consequence of 

contamination. It is therefore critical that the comparative study is supplemented by 

experimental verification, such as isolation and cloning of a particular gene or by expression 

studies, e.g. SAGE or real time PCR. Once a gene has been identified, elucidating its 

function becomes the next task. There are a number of methods available such as: RNAi; 

yeast 2-hybrid to look at interactions, knock out studies, enzyme assays and replacement / 

rescue of genetic defects in yeast. It may be possible to predict the three dimensional 

structure of the protein, and thus allow comparisons to other protein structures along with 

studies of the structure to identify possible catalytic binding sites. Additionally if the 

encoded protein was possibly involved in a metabolic pathway, then the organism could be 

fed radiolabelled substrate, and the fate of the products assayed. 

6.2 ESTs of the Nematoda 

The development of the protocol outlined above has been motivated by the study of multiple 

EST datasets from predominantly parasitic species of nematodes. Over 340,000 ESTs had 

been clustered into approximately 120,000 gene objects These had been a source of intense 

study, predominantly at an individual species level. There were a handful of comparative 

studies on the taxonomic slices of the dataset [47,117,50], and a comparative investigation 

across 30 non-caenorhabditid species [51]. The focus of my work has been to concentrate on 

the proteomes generated from, an expanded set of 37 species, with particular reference to 

creating a resource that benefits future exploitation of the data. To this end I created 
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prot4EST, a software pipeline to predict the coding regions from error-prone EST contigs. 

The shortfall in training data experienced by all the taxa was overcome by creating simulated 

transcriptomes. This was achieved by reverse translating WormPep with the organism's 

codon usage table. The collection of partial proteomes, combined with those from C. elegans 

and C. briggsae, formed NemPep3. This step provided the basis for a number of analyses, 

enabling comment to be passed on both technical aspects of the dataset and biological 

rationale. 

A total of 67 eDNA libraries exploited the nematode-specific phenomenon of a 5' spliced 

leader (SL) motif, on which the PCR primers are designed. I have shown that coding regions 

from EST contigs containing sequences from a mixture of SL-primer and more conventional 

primer-ligation based libraries were significantly longer and, frequently, better quality, than 

contigs made exclusively from one type. This should guide future nematode EST sequencing 

strategies to ensure that the maximum coverage of a tagged genes coding region. The poor 

quality of many translations from spiruromorph species, detected by a lack of sequence 

similarity or matching nucleotide hexamer frequency, suggest a high level of sequencing 

artifacts in a number of cDNA libraries. Comparison between the Brugia malayi EST contigs 

and the organism's draft genome lent support to the dubious nature of these sequences. I 

therefore considered that there was sufficient doubt to exclude approximately 8,000 contigs 

(7,100 singletons) that were not translated by BLAST or ESTScan algorithms. 

All-against-all BLAST analysis revealed that between 18 and 45% of partial proteome was 

species-specific (orphan proteins), which was significantly greater than that for the fully -

sequenced caenorhabditids (-9%). As sequencing surveys generate more ESTs for currently 

described datasets or commence for other nematode species more putative homologues will 

be identified, reducing the proportion of orphan proteins. A small proportion of proteins 
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from partial proteomes shared significant similarity with caenorhabditid sequences 

previously characterised as orphans, pointing to gene-loss after the elegans-briggsae split 

and that the figure of 9% is likely to be an upper-bound on the level of species-specificity 

from the currently sampled species. Mapping the similarity searches onto the nematode 

phylogenetic tree revealed two important features of nematode proteinspace. The first was 

that 44,000 groups of proteins were seemingly unique to the Nematoda and, secondly, the 

great extent of gene-loss in certain lineages. The level of novelty in proteinspace will 

certainly fluctuate in the near future; additional sequencing from nematodes, both ESTs and 

complete genomes (Table 4.4), will, given the current rate of gene discovery (Figure 4.1), 

reveal more nematode-specific contigs. This will be offset by the inclusion of non-nematode 

EST projects in the comparative studies. The assembly of partial genomes for —300 

eukaryotic organisms is currently underway (http://www.partigenedb.org ). The next step in 

the process is to automate creation of simulated training sets for prot4EST to ensure robust 

coding region predictions. There were almost 3,000 proteins with putative homologues from 

outside the Nematoda without a match within the C. elegans proteome, promoting these as 

candidates for gene-loss. The collectors curve indicates that such lineage-specific gene-loss 

is widespread throughout the phylum, but it can only be tested in those proteomes considered 

complete. This was applicable for the protein domain studies, where 31 domains (possibly as 

high as 228), were identified in a number of nematode orders but absent in the 

caenorhabditid proteomes. The mechanisms for gene-loss and gain can differ to those for 

domain modification, and the work I have presented here should be continued and include 

the forthcoming C. remanei and B. malayi proteomes, thus offering insights into C. elegans 

evolution. 

6.3 Protein families 

It is well known that members of the same protein family share similar, if not identical 
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biochemical functions [194]. A protein family can be defined as a group of polypeptides that 

are demonstrably related to each other [195]. The criteria most widely used to assemble these 

families has been sequence similarity, and subsequent clustering [196,197,165,118,199]. A 

protein family differs from a domain family in that it contains the entire polypeptide 

sequence rather than inter-sequence conserved fragments. Similarity is usually detected 

using the BLAST algorithm, primarily because its heuristic search is very fast. There are two 

approaches that are used throughout molecular biology. The COG system uses symmetrical 

BLAST hits to delineate relationships [135] and is available through the NCBI. TRIBE-MCL 

uses Markov flow clustering to group similar sequences [118,200], and is the algorithm of 

choice for a number of genome projects, including Caenorhabditis elegans (Daniel Lawson 

pers. comm ) and Plasmodium falciparum [201]. 

One problem that the clustering methods face are that many proteins consist of multiple 

independently evolving domains [172,194]. Using BLAST, which detects local regions of 

similarity, can result in links forged between unrelated proteins. This applies not only to 

formally classified protein domains, but any shared motif of sufficient size and similarity to 

be considered significant. The COG system, the authors state, overcomes this problem by 

manual inspections of multi-domain proteins. However such an approach is labour-intensive 

and not transferable to the majority of research groups. The TRIBE-MCL program 'does not 

require any explicit knowledge of protein domains to detect protein families', rather clusters 

on the observed relationships through the entire similarity graph [118]. However the Markov 

flow clustering algorithm is dependent upon the inflation parameter, whose value should 

vary to assemble different protein families correctly [203]. 

A recent investigation has shown that both these methods fail to correctly resolve the 

eukaryote hemoglobin protein-family (Wasmuth, Elliot, Schmid and Blaxter in prep). 
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Symmetrical BLAST searches failed to assemble the family, but over 30 C. elegans proteins 

were assigned by the COG curators based on the manual assessment of PSI-BLAST 

searches. Many of these proteins did not contain the necessary number of a-helices or 

invariant residues characteristic of globins. The TRIBES database [204] separated related 

globins into many families, some containing a single member. The similarity statistic used to 

decorate the edges of the graph is the E value, which is transformed (-log) for the MCL 

algorithm. While, this is acceptable for very large databases such as UniProt, it is probably 

inefficient when clustering small datasets, as observed when Chelicerate mitochondrial 

proteomes were clustered (Jones and Wasmuth unpublished). It is likely that using a 

similarity statistic independent of the size of the database would yield more faithful families, 

but this has yet to be assessed. 

Given the uncertainty over the robust clustering of full-length protein sequences I considered 

it more expedient to focus on an investigation of the protein domain complement of the 

nematode proteomes. 

6.4 Future work 

At time of writing, a number of analyses have been initiated, which primarily focus around 

NemDom3: 

Other domain model libraries, including SUPERFAMILY and SMART, are being 

searched to identified additional, characterised domains. 

The Pfam-A models containing whose membership is increased by nematodes, will 

be rebuilt to include the additional information and used to search NemPep3 for any 

more diverged members. 

Regions of NemPep3 proteins which are not decorated with domain annotation and 

longer than 30 amino acids are passed through the ProDom program to identify 
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conserved polypeptide regions, akin to nematode-restricted domains. Such an 

undertaking for the ALT domain will aid the discovery of this domain in other 

nematode species. 

NemDom3 will be integrated into NemBase with the inclusion of analysis tools, 

similar to xdom [267]. 

The identification by rigourous analysis of domains whose copy number or 

expression levels (EST number) differ from other species. 

Completion of these studies will further phylogenomics for the Phylum Nematoda, and 

identify proteins who should be investigated for their biological relevance, thus providing a 

promising avenue for the identification for anthelmintic drug targets. 
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ABSTRACT 
Expressed sequence tags (ESTs) offer a low-cost approach to 
gene discovery and are being used by an increasing number of 
laboratories to obtain sequence information for a wide variety 
of organisms. The challenge lies in processing and organiz-
ing this data within a genomic context to facilitate large scale 
analyses. Here we present PartiGene, an integrated sequence 
analysis suite that uses freely available public domain software 
to (1) process raw trace chromatograms into sequence objects 
suitable for submission to dbEST; (2) place these sequences 
within a genomic context; (3) perform customizable first-pass 
annotation of the data; and (4) present the data as HTML 
tables and an SQL database resource. PartiGene has been 
used to create a number of non-model organism database 
resources including NEMBASE (http://www.nematodes.org ) 
and LumbriBase (http://www.earthworms.org/) . The packages 
are readily portable, freely available and can be run on simple 
Linux-based workstations. 
Availability: PartiGene is available from http://www. 
nematodes.org/PartiGene  and also forms part of the EST 
analysis software, associated with the Natural Environmental 
Research Council (UK) Bio-Linux project (http:llenvgen.nox.ac. 
ukIbiolinux.html). 
Contact: jparkin@sickkids.ca  

INTRODUCTION 
The advent of low-cost, high-throughput sequencing has per-
mitted the generation of fully sequenced genomes of a number 
of model organisms including 122 prokaryotic and 17 euk-
aryotic species (http://wit.integratedgenomics.com/GOLD/) . 
For these fully sequenced genomes, integrated data-
bases are used to contextualize sequence data within 
a rich biological information environment. An increas-
ing amount of sequence data is being generated from a 
range of other, non-model organisms. For eukaryotic spe-
cies, these sequence data are typically in the form of 
expressed sequence tags (ESTs). Dátasets range from just 

*To whom correspondence should be addressed at Programs in Genetics and 

Genomic Biology & Structural Biology and Biochemistry, Hospital for Sick 
Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. 

a few hundred to as many as several hundred thousand 
sequences. There are over 180 species, with more than 
1000 entries, in the database for ESTs (dbEST, http:// 
www.ncbi.nlm.nih.gov/dbEST/index.html)  (Boguski et al., 
1993). In general, these data are not well organized and are 
difficult to interpret in a genomic context. 

Common problems include significant redundancy in the 
datasets (some genes may have been sequenced multiple 
times) and a lack of consistent annotation between pro-
jects. An effective way to overcome these problems is to 
group ESTs into clusters that represent genes and to provide 
annotations for the clusters. Since ESTs provide only a 
fraction of the available genes for a particular organism, 
we refer to these analysed datasets as partial genomes. 
Informatic solutions to produce partial genomes or 'gene 
indices' have been developed by several groups (Adams 
et al., 1995; Boguski and Schuler, 1995; Sutton et al., 1995; 
White and Kervalage, 1996; Christoffels et al., 2001; Pertea 
et al., 2003). The analysis of partial genomes has ten-
ded to involve complex integrated database solutions and/or 
a large amount of manual sequence annotation, both of 
which require a considerable investment in bioinformatic 
resources and make cross-species and between-lab integration 
difficult. 

Our involvement in a wide range of different EST projects 
(Allen et al., 2000; Daub et al., 2000; Blaxter et al., 2002; 
Kenyon et al., 2003; Parkinson et al., 2003) has led us to 
develop a generic, automated software pipeline, PartiGene, 
that handles an EST project from raw trace data through to 
a partial genome database ready for data mining. In this it 
goes beyond a simple EST-focussed LIMS system and other 
solutions to EST processing such as that of Paquola et al. 
(2003). PartiGene consists of three integrated scripts, based 
on the PERL scripting language, which rely on freely avail-
able public domain software. PartiGene is readily portable to 
most UNIX-based operating systems and is freely available 
from our Web server (http://www.nematodes.orglPartiGene ). 
We have designed PartiGene to be freestanding, permitting 
installation and operation with a minimum of background 
expert knowledge. In addition to being portable and customiz-
able, PartiGene offers further advantage over similar pipelines 
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in that it allows incremental updates to established partial 
genome datasets. 

METHODS 
Software and hardware tools 
The creation and presentation of partial genomes described 
here was undertaken on an Intel workstation (Dual Processor 
Pentium III, 750MHz) running Red Hat Linux 7.1. Parti-
Gene has also been tested on more recent versions of Red 
Hat Linux (8.0 and 9.0) and is expected to be fully portable 
to most UNIX distributions and hardware architectures. Parti-
Gene uses the PERL scripting language, installed as default 
on most systems: a PERL interpreter of version 5.005 or later 
is required. In addition to the scripts presented here, PartiGene 
requires the installation of a number of other publicly avail-
able tools (freely available unless otherwise noted): phred, 
phrap and cross—match (http://www.phrap.org ; a license is 
required for commercial users); DECODER (contact the 
authors, rgscerg@gsc.riken.go.jp ; a license is required for 
commercial users); ESTscan (http://www.isrec.isb-sib.ch/ftp-
serverlESTScan/);  postgreSQL (http://www.postgresql.org ); 
NCBI BLAST (http://www.ncbi.nlm.nih.g0vIBLAST/);  
Bioperl (http://www.bioperl.org ); and EMBOSS (http://www. 
hgmp.mrc.ac.uk/SoftwareIEMBOSSI).  

Overview 
We were concerned with producing a software solution 
that provided ease of use while maintaining best practice 
for EST analysis. Therefore we have written a pipeline 
that takes raw sequence trace (chromatogram) data, per-
forms base calling and vector and low quality sequence 
removal, preparation of dbEST submission files, clustering 
into putative genes, consensus sequence prediction, peptide 
prediction and sequence similarity annotation. The ana-
lysed data can be viewed as flat files (in HTML format) or 
as a standard-format SQL database. Throughout, we have 
implemented 'best practice' based on our experience with gen-
erating and analysing EST sequences. PartiGene is divided 
into three segments that process the raw sequence traces 
(trace2dbest), generate the partial genomes (PartiGene) and 
derive peptide predictions (prot4est). The input may be in 
the form of raw sequence chromatographic trace data, pro-
cessed sequence data or more simply the name of the target 
species for which EST data are available in dbEST. The 
output can include dbEST submission files, HTML tables 
describing each putative gene object and/or a set of SQL 
database tables that may be readily queried using the SQL 
interpreter. 

Process 1: from raw trace data to dbEST 
submission 
The first script, trace2dbest, is an interactive pipeline script 
that takes raw sequencer trace data and converts them into 

formatted dbEST submission objects. The script first asks 
the user for cDNA library-specific information, which may 
be entered interactively or recalled from a previous ses-
sion. The program offers two levels of vector elimination 
stringency via cross—match (P.Green, unpublished data) and 
also offers the opportunity to add some primary annotation 
to the dbEST submission in the form of the best similar-
ity match found in a chosen protein database. After spe-
cifying a directory containing sequence traces, the process 
uses phred (Ewing and Green, 1998; Ewing et al., 1998) 
to perform base calling. Any vector-derived sequence is 
removed, and user-specified leader/adaptor sequences may 
also be trimmed. Poly(A) tails are identified and deleted, 
and sequences that have more than 150 high-quality bases 
are used to create submission files. At this stage, a BLAST 
similarity search may be performed against a user-defined 
database to provide some preliminary annotation ('Similar 
to xyz. . .', with appropriate BLAST scores). Finally, the user 
is given the option to automatically submit the sequences to 
dbEST. 

Process 2: creating partial genome databases 
An overview of the construction of a partial genome as 
implemented in the PartiGene script is given in Figure 1. 
The script operates as a series of menu-listed steps. Each 
step may be interrupted at any time and the process 
can simply be restarted from where it left off. The first 
step collates the sequences in fasta format. PartiGene is 
able to download complete species-specific datasets from 
dbEST. When databases are updated, downloaded sequences 
are compared against the existing database and only new 
sequences are extracted. As not all database sequences will 
necessarily have been processed through trace2dbest (e.g. 
ESTs submitted by other research groups), these ESTs 
are first screened for any possible contaminating vector 
sequence, poly(A) tails, quality (presence of N bases) and 
size. Non-insert sequences are trimmed, and only those 
sequences >100 bases in length are used in subsequent 
processing. 

The next step involves clustering the sequences on the basis 
of sequence similarity into groups that putatively derive from 
the same gene using our freely available program, CLOBB 
(Parkinson et al., 2002). CLOBB has an advantage over other 
clustering solutions in that it readily performs incremental 
updates of datasets maintaining previous cluster identities. 
Clusters that contain more than one sequence are then used to 
derive a consensus sequence (putative gene sequence). This 
assembly step, based on phrap (RGreen, unpublished data), 
offers the user the ability to incorporate sequence quality 
information (produced by the base calling package, phred, 
in the trace2dbest script). We have used phrap in preference 
to the alternative cap3 because phrap creates fewer contigs 
for large clusters and includes the 'single-stranded' regions 
at the ends of contigs (which are therefore longer). Our 
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Fig. 1. An outline of the whole PartiGene process. (1) Sequences are collated either from local sources or via automatic download from 
GenBank dbEST. (2) Sequences are clustered on the basis of sequence similarity using CLOBB into groups that putatively derive from the 
same gene. (3) Clusters containing more than one sequence are assembled into consensus sequences. (4) The partial genome consists of 
these consensus sequences along with those clusters that contain only one sequence (termed singletons). (5) Putative genes are annotated by 
performing custom BLAST searches, peptide predictions, etc. and collated in a central database. 

analysis of the recent releases of phrap have not identified 
the issues of base insertion and non-majority base calls iden-
tified in earlier publications. PartiGene offers three options in 
building consensus sequences: (1) use no trace quality data; 
(2) use quality data (if available) only for clusters containing 
two sequences; and (3) use quality data (if available) for all 
clusters. If no traces are available locally, sequences are given 
a default, modifiable phred score of 15 for each base posi-
tion. Our preliminary analyses suggest that option 2 yields 
the fewest, high-quality contigs per cluster in mixed-source 
datasets. 

The collection of clusters that contain only one sequence 
(termed singletons) and the sequence consensuses created in 
the assembly step above form the partial genome of the selec-
ted organism. A first-pass annotation of these putative genes 
is afforded by customizable BLAST similarity analyses. The 
user may select up to five different searches against locally 
available databases. As performing a large number of BLAST 
searches can be time-consuming, the user may halt the Parti-
Gene process and perform such analyses independently: the 
search results can be imported. 

To view and review these analyses, PartiGene offers two 
levels of access. For smaller datasets, a series of HTMIL sum-
mary tables can be written that provide information on each 
cluster including constituent members and summary BLAST 
output (Fig. 2). It is recommended that this be only under-
taken for smaller datasets (less than 1000 clusters). The final 
step of the PartiGene script involves importing the data into a 
local database. PostgreSQL is implemented for its availability, 
functionality, development and support. If a database has not 
yet been created, PartiGene will automatically generate appro-
priate tables. Sequence, cluster and annotation data are then 
automatically imported. 

Process 3: predicting protein translations 
In current EST datasets, a small majority of the putative 
genes will have a BLAST similarity match to a database 
protein. However, a significant minority (up to 45%) will. 
remain 'novel'. The majority of ESTs derive from protein-
encoding genes, but translation of the putative genes identified 
by the PartiGene script is not trivial. Sequencing errors are 
commmon within ESTs and can lead to frameshift errors, 
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Results Page 
Page I 	Page 2 	Page 3 	Page 4 	Page 5 

ister IF No. 

fl Ust of sequences 	 BLASTX vrx C. elegans 	
[—EASTX vrx Swiss Prot - nematode 

proteins 

042846 60S ribosomal protein L34. 
1.14 CE269I I status:Confirmed Schizosaccharomyces pombe (Fission 

ZPC0000I 2 AW773324 

AW783 743 
95X53 protein_id:AAK72292.1 rR yeast). 

122 2e-29 122 7e-28 
AW773326 
AW77333 3 

AW77334t 

AW773348 T25C8.2 CE 16463 locus:act-5 Actins P53470 Actin I. Schistosoma mansoni 
ZPC00003 1 1 

AA'773415 
AW773500 

status:Conlirmed TR:0458 15 (Blood fluke). 
AW773506 protein_id:CA 805817.1 336 8e-92 
AW783696 338 9e-94 
AW7 83 744 

A WI 83 767 

AW783 803  

ZK20.5 CE06608 Iocus:rpn-12 
vegetative protein X like P48556 26S proteasome regulatory 

ZPC00004 AW773327 status:Partially_conitrmcd SW:Q23449 subunit S14 (P Homo sapiens (Human). 
. AW783688 

protein_id:CAA93778. I 131 5e-30 
204 3e-53  

ZPC00007 2 Aw713330 

AW77346 I 

Y48B6A.2 CE221 17 locus:rpl43 
status:Confirmed TR:Q9U2A8 

protein_id:CAB54440.1 
125 4e-30 

Q9VMU4 CG5827 protein (RH41593p) 
(RE23595p). Drosophila inelanogaster 

(Fruit fly). 
129 7e-30 

ZK72I .2 CEO5 106 locus:unc-27 
• Q9VWY3 CG7178 protein. Drosophila 

Fig. 2. HTML summary table for displaying cluster and associated BLAST annotation for ESTs derived from the nematode Zeldia punctala. 

'For each cluster, the number and list of ESTs are provided, along with a brief description of the top hit from a BLAST search to a list of user 
defined databases (in this instance Caenorhabdities elegans proteins and SwissProt, with nematode proteins extracted, were selected). The 
page features links to individual and cluster consensus sequences and the detailed BLAST output for each cluster. 

which may not be corrected by consensus sequence predic-
tion. We have therefore developed prot4est, which combines 
state of the art programs to produce accurate protein pred-
ictions from PartiGene-processed ESTs (Fig. 3). prot4est 
is a six tier system of prediction. The first three tiers 
involve the use of BLAST annotation. First, potential RNA 
genes are identified, tagged and removed from the data-
set. Second, all remaining sequences are searched using 
BLASTX against a protein database of choice [we recom-
mend SwissProt; Boeckmann et al. (2003)]. If a sequence 
is found to share significant sequence similarity (expecta-
tion (E)-value <e 20) to a database protein, the frame of 
translation used to resolve the match is assumed to be the cor-
rect frame of translation. The frame of translation for local 
regions within each of these sequences is determined, and 
using transeq (part of the EMBOSS package) a robust tiling 
path determined. A series of rules (see supplementary data 
on Web site) are then invoked to determine which, if any, 
potential start codons should be used. Potentially incorrect 

stop codons caused through errors in the sequencing process 
are identified through comparison of the high-scoring pairs 
(HSPs) and may be ignored. Third, potential mitochondrial 
proteins are identified, and for these, further processing imple-
ments translations using the relevant mitochondrial genetic 
codes. 

Many sequences will not share significant similarity to a 
database entry. In such cases, de novo prediction software 
must be employed. prot4est combines two of the more suc-
cessful programs, DECODER (Fukunishi and Hayashizaki, 
2001), and ESTScan (Iseli et al., 1999), to obtain accurate 
peptide predictions. Both require training sets, in the form 
of annotated complete coding sequences and codon usage 
tables, to identify coding regions. prot4est will automatically 
download this information from the relevant Web-based 
resource. DECODER uses codon bias tables (http://www. 
kazusa.or.jp/codoni)  and coding sequences, while ESTScan 
relies on the availability of protein coding sequences (typically 
available from EMBIJGenbank, e.g. http://srs.ebi.ac.uk/).  
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Fig. 3. How prot4est derives peptide sequence from low-quality 
EST data. Partial genome sequences derived from the PartiGene pro-
cess are fed through a six tier system. (I) RNA genes are identified 
by BLASTN matches to a RNA gene database. (2) and (3) Nuclear 
and mitochondrially encoded protein-coding genes are identified on 
the basis of BLASTX similarity to known proteins. The BLAST 
output is analysed to allow extensions beyond the high scoring pairs. 
Sequences with significant sequence similarity to a known protein 
use the frame of translation designated by their common alignment to 
obtain an accurate peptide prediction. Peptides from sequences with 
no significant sequence similarity to a known protein are determ-
ined de novo using either DECODER (4) or ESTScan (5). If neither 
program predicts a peptide above a tunable length cutoff, six-frame 
translations of the sequence are identified (6) and the longest open 
reading frame extracted. Results each stage are collated in a central 
database. 

We have determined that, for both these programs, reduced 
prior information significantly impacts translation quality 
(data not shown). If the acquired information is likely to 
be insufficient for accurate translations (less than 50 cod-
ing sequences for DECODER and less than 125 sequences 
for ESTScan), then the user is warned and the altern-
ative of using data derived from a related species is 
offered. 

In the fourth step, then, sequences are passed through 
DECODER, which requires the availability of quality files. 
These are generated as part of the PartiGene process above. 
For sequence consensuses, the phrap derived quality file is 
used. For singletons the original trace quality file is used, 
or if this is not available, then as above, sequences are 
given a default, modifiable score of 15 for each base posi-
tion. As DECODER only makes a prediction in the forward 
strand, a reverse complement of each singleton and con-
sensus sequence is created to ensure that all frames are 
considered. DECODER was originally written for use on 
complete cDNAs, and it expects a start methionine, which 
may not always be present in incomplete EST sequences. 
prot4est therefore appends any peptide sequence upstream of 
the prediction made by DECODER, provided that no stop 
codons are encountered. If the peptide is less than 30 amino 
acids in length, the sequence is passed to the fifth step, 
ESTScan. 

ESTScan builds hidden Markov models based on cod-
ing sequence nucleotide patterns to derive peptide sequence. 
prot4est takes these predictions and again adds upstream 
and downstream in-frame ORE translations. A 30-residue 
cutoff is again applied. The sixth step takes the remaining 
sequences, generates a six-frame translation and identifies 
the longest open reading frame (ORE). If the length of this 
ORE is less than 30 residues, the sequence is deemed to be 
non-coding. 

prot4est peptide predictions may be imported into the 
SQL database created by PartiGene. Further annotation of 
these protein data, including p1, molecular weight and putat-
ive location, may then be generated and imported. Com-
ments on the accuracy of translation for certain regions 
within the sequence are also passed by prot4est to the 
database. 

Presentation of the partial genome 
Although PartiGene offers the ability to view results in the 
form of simple HTML tables (Fig. 2), the creation of a 
local database provides a powerful resource for querying 
and presenting the data. PostgreSQL is based on the popu-
lar SQL syntax and provides an easily accessible interface 
to perform complex queries on the data. Alternatively, the 
user may wish to consider the use of Web-based forms to 
allow remote users, and those less experienced in com-
puting, access to the data (Fig. 4). We have created a 
number of Web-accessible sites for presentation of our partial 
genome data including NEMBASE (http://www.nematodes. 
org/nematodeESTs/nembase.html),  LophDB (http://www. 
nematodes.org/Lopho/LophDB.php)  and LumbriBase (http:// 
www.earthworms.org). Each site utilizes the Apache Web 
server (http://www.apache.org ) to serve pages created using 
the PFIP Web scripting language, which features a database 
interpreter (http://www.php.net ). Examples of these scripts 
may be obtained from the authors. 
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Total 
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Sequence 	
EST:6 	 MEMMMIT.M. 	Mr. rMT71111111 Mr. 	 blasin vrs dbesl 

ontig_O]_.A59287 myosin heavy chain - fluke (Schistosoma una 

Types (1) [ontig_OL (N}4_072693) myosin [Caenorhabditis elegans] 5e-09 

Number of contigs : I Contig_Ol_ (AJ306290) myosin heavy chain tToxocara canis] 
ontig_Ol_ (AR015484) myosin heavy chain (Dugesia japonica] 

Library 	 Contig_OL... (U40036) myosin heavy 'chain [Mytilus edulis] 5e-08 

ID 	
Stage Number ontig_01_(AJ249991) myosin heavy chain (Mytilus galloprovin 

6252 	 AD 6 

6252 - AD: 	BU585672 / BU585852 / B1J5861 18/ BU586385 / BU587028 / BU587052 / 

Download sequences associated with this 

Fig. 4. Screenshots from NEMBASE showing Web pages created using the php scripting language to submit user queries to the underlying 

postgreSQL database. (A) Annotation search page. This form may be used to retrieve individual clusters by their unique ID (I) or groups of 
clusters by keywords associated with their BLAST annotation (2). (B) Detailed cluster page. This page provides information on a single cluster 

including the number and source of constituent sequences (I), summaries of BLAST annotation (2) and graphical views of the alignment of 
individual sequences to the cluster consensus (3). For details on the interpretation of this information, please see the NEMBASE help pages. 
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Abstract 
Background: The genomes of an increasing number of species are being investigated through 

generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and 

typically define incomplete transcripts, making downstream annotation difficult. Annotation would 

be greatly improved with robust polypeptide translations. Many current solutions for EST 

translation require a large number of full-length gene sequences for training purposes, a resource 

that is not available for the majority of EST projects. 

Results: As part of our ongoing EST programs investigating these "neglected genomes, we have 

developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to 

produce final translations that are more accurate than those derived from any single method. We 

show that this integrated approach goes a long way to overcoming the deficit in training data. 

Conclusions: prot4EST provides a portable EST translation solution and can be usefully applied 

to >95%  of EST projects to improve downstream annotation. It is freely available from littpLL 
www.nematodes.org/PartiGene.  

Background 
The need for more sequence 
Complete genome sequencing is a major investment and 
is unlikely to be applied to the vast majority of organisms, 
whatever their importance in terms of evolution, health or 
ecology. Complete genome sequences are available for 
only a few eukaryote genomes, most of which are model 
organisms. The focus of eukaryote genome sequencing 
has been on a restricted subset of known diversity, with, 
for example, nearly half of the completed or draft stage 
genomes being from vertebrates. While Arthropoda and 
Nematoda have two completed genomes each, with a 
dozen others in progress, compared to predicted diversity 
(over a million species each) current genome sequencing 
illuminates only small parts of even these phyla. The dis- 

parity between sequence data and motivation for biologi-
cal study is significant. Allied to this bias in genome 
sequence is a bias in functional annotation for the derived 
proteomes: a vertebrate gene is more likely to have been 
assigned a function due to the focus of biomedical 
research on humans and closely related model species 
such as mouse (1. 

Shotgun sample sequencing of additional genomes 
through expressed sequence tags (EST) or genome survey 
sequences (CSS) has proved to be a cost-effective and 
rapid method of identifying a significant proportion of 
the genes of a target organism. Thus many genome initia-
tives on non-traditional model organisms have utilised 
EST and GSS strategies to gain an insight into "wild" 
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biology. An EST strategy does not yield sequence for all of 

the expressed genes of an organism, because some genes 

may not be expressed under the conditions sampled, and 

others may be expressed at very low levels and missed 

through the random sampling that underlies the strategy. 

However the creation of EST libraries from a range of con-

ditions, such as different developmental stages or envi-

ronmental exposures, promotes a closer examination of 

the biology of these species. 

The well documented phylogenetic sequence deficit 121 
has led us to coin the term 'neglected genomes'. Cur- 

rently many groups are sequencing ESTs from their cho-

sen species to perform studies in a wide-range of 

disciplines, from comparative ecotoxicology 1 3 1 to high-

throughput detection of sequence polymorphisms 14,51. 
The contribution of EST projects for neglected but biolog-

ically relevant organisms is highlighted in Figure 1. As 

with all sequence data, obtaining high quality annotation 

requires prior information and is labour intensive. The 

"partial genome" information that results from EST data-

sets presents special problems for annotation, and we are 

developing tools for this task. 
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Figure I 
The training set deficit for EST projects. Around 85% of species with representation in dbEST (>100 ESTs) have less than 

IOU complete CDS entries in the EMBL database. These species comprise —45% of all ESTs. Sixty-six species, with 246263 
dbEST sequences, have no full-length CDS. Source: dbEST and EMBL database (July 2004). 
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The need for high quality translation 
The PartiGene software suite 161 simplifies the analysis of 
partial genomes. ESTs are clustered into putative genes 
and consensuses determined. All the data is stored in a 
relational database, allowing it to be searched easily. 
While preliminary annotation based on BLAST analysis of 
nucleotide sequence can be performed, more robust 
methods are needed to allow high-quality analysis. The 
error-prone nature of ESTs makes application of most 
annotation tools difficult. To improve annotation, and 
facilitate further exploitation, a crucial step is the robust 
translation of the EST or consensus to yield predicted 
polypeptides. The polypeptide sequences present a better 
template for almost all annotation, including InterPro 1 7 1 
and Pfam [81, as well as the construction of more accurate 
multiple sequence alignments, and the creation of pro-
tein-mass fingerprint libraries for proteomics exploita-
tion. High quality polypeptide predictions can be applied 
to functional annotation and post-genomic study in a 
similar way to those available for completed genomes. 

Translating Expressed Sequence Tags 
Prediction of the correct polypeptide from ESTs is not 
trivial: 

The inherent low quality of EST sequences may result in 
shifts in the reading frame (missing or inserted bases) or 
ambiguous bases. These errors impede the correct recogni-
tion of coding regions. The initiation site may be lost, or 
an erroneous stop codon introduced to the putative 
translation. 

ESTs are often partial segments of a mRNA, and as most 
cloning technology biases representation to the internal 
parts of genes, the initiation methionine codon may be 
missed. This is a problem for some of the de novo pro-
grams which use the initiation methionine to identify the 
coding region (described below). 

Sequence quality can be improved by clustering the 
sequences based on identity. For each cluster a consensus 
can be determined [ 9 ]. This approach, however, will not 
address the whole problem as poor quality EST sequences 
may not yield high quality consensuses and for smaller 
volume projects, most genes have a single EST representa-
tive. Therefore additional methods must be applied to 
provide accurate polypeptide predictions. 

Similarity-based methods 
A robust method to determine the correct encoded 
polypeptide is to map a nucleotide sequence onto a 
known protein. This concept is the basis for BLASTX 1101, 
FASTX 1111 and ProtEST 1121. BLASTX and FASTX use the 
six frame translation of a nucleotide sequence to seed a 
search of a protein database. The alignments generated for 

each significant hit provide an accurately translated region 
of the EST. BIASTX is extremely rapid, but the presence of 
a frameshift terminates each individual local alignment, 
ending the polypeptide prematurely. FAST( is able to 
identify possible frameshifts, but its dynamic program-
ming approach is significantly slower than BLASTX. These 
methods require that the nucleotide sequence shares 
detectable similarity with a protein in the selected data-
base. Many genes from both well studied and neglected 
genomes do not share detectable similarity to other 
known proteins. For example, the latest analysis of the 
Caenorhabditis elegans proteome shows that only "50% of 
the 22000 predictions contain Pfam-annotated protein 
domains 18,131, and 40% share no significant similarity 
with non-nematode proteins in the SwissProt/trEMBL 
database 1141. This feature is not unique to the phylum 
Nematoda, and is likely perhaps to be more extreme for 
neglected genomes, given the phylogenetic bias of most 
protein databases. 

ProtEST uses a slightly different similarity-based approach 
1121. A protein sequence is compared to an ES'!' database. 
phrap 1 9 1 is used to construct a consensus sequence from 
the ESTs found to have significant similarity. These con-
sensuses are then compared to the original sequence using 
ESTWISE (E. Bimey, unpublished 1151) giving a maxi-
mum likelihood position for possible frameshifts. The 
system is accurate but is not readily adaptable to the high-
throughput approach necessary when dealing with very 
large numbers of ESTs. More crucially, an ES!' that does 
not show significant similarity to a known protein is not 
translated. 

'de novo' predictions 
To overcome the reliance upon sequence similarity, de 

novo approaches based on recognition of potential coding 
regions within poor quality sequences, reconstruction of 
the coding regions in their correct frame, and discrimina-
tion between ESTs with coding potential and those 
derived from non-coding regions have been developed 
116-181. 

DIANA-EST 1161, combines three Artificial Neural Net-
works (ANN), developed to identify ,  the transcription ini-
tiation site and the coding region with potential 
frameshifts. ESTScan2 [181 combines three hidden 
Markov models trained to be error tolerant in their repre-
sentations of mRNA structure (modelling the 5 and 3 
untra,nslated regions, initiation methionine and coding 
region). DECODER 1171 uses an essentially rule-based 
method for identifying possible insertions and deletions 
in the nucleotide sequence, as well as the most likely ini-
tiation site, and was developed for complete cDNA 
sequence translation. 
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Each of these methods has different strengths in their 
attempt to identify the precise coding region; all require 
prior data to train their models. Published descriptions of 
their utility are based on training with human full length 
coding sequences (mRNAs), and thus tens of thousands of 
training sequences (many million coding nucleotides) 
were used to achieve optimum results. As stressed above, 
this amount of prior data is not available for the vast 
majority of EST project species (Figure 1). 

New solution - prot4EST 
Prior to this project, nematode ESTs available through 
NEMBASE [19J had been translated using DECODER, as a 
preliminary study had suggested that it outperformed the 
other available methods (DIANA-EST and ESTScan1 (201) 
(Parkinson pers. corn.). 7388 out of the 40000 resulting 
predicted polypeptides were likely to be poorly translated 
(<30 amino acids), and we suspected many more con-
tained errors. This motivated the creation of a solution 
using several methods to enhance the quality of the 
polypeptide predictions, exploiting their strengths while 
recognising their short-comings. prot4EST is an EST trans-
lation pipeline, written in Perl, with a user-friendly inter -
face, that links some of these described methods together. 
It carries out retrieval and formatting of files from online 
databases for the user. It has been designed to be used as 
a stand-alone tool, or as an integral part of the PartiCene 
process 161. 

Implementation 
DECODER 
The DECODER program 1171 was developed to define 
start codons and open reading frames in full-length cDNA 
sequences. It exploits the quality scores for the sequence 
produced from base-calling software, such as phred 
121,221, and additional text-based information to identify 
all possible coding regions. In regions of low sequence 
quality up to 2 nucleotides are removed or inserted, repre-
senting possible frameshifts. A likelihood score is calcu-
lated for each possible coding sequence (CDS), and the 
one with the lowest score is chosen as the correct CDS. 
The score is computed from the probability of generating 
a random sequence with a better Kozak consensus (the 
nucleotide sequence surrounding the initiation codon of 
a eukaryotic mRNA), ATC position and codon usage. 
DECODER requires a codon bias table, which is used to 
determine the putative coding regions optimal codon 
usage. A penalty term limits the number of insertions/ 
deletions in the corrected CDS. 

ESTScon2.O 
Hidden Markov models (HMM) can represent known 
sequence composition in a probabilistic manner 1231. 
This has been exploited recently in applications to find 
genes in genomic sequence 124,251, predict domain com- 

position in protein sequences 1261, and align multiple 
sequences 1271. ESTScan 1181 exploits the predictive 
power of Hidden Markov models by combining three 
models: 

Modeling mRNA structure: ESTScan separates the prob-
able CDS from the untranslated regions (IJTRs). The core 
of the coding sequence is represented by a 3-periodic 
inhomogeneous hidden Markov model. Flanking this 
core model are start and stop profiles for the codons 
observed at these positions. The profiles for untranslated 
regions flank the start and stop states. 

Error tolerance: ESTScan allows insertions and dele-
tions (indels) in the EST sequence. For example, if it is 
more probable that a particular nucleotide is the result of 
an insertion event then it is omitted from the 'corrected' 
sequence. Conversely, if the HMM probability scores sug-
gest that a nucleotide has been deleted then the model 
inserts an X into the 'corrected' sequence to denote this 
prediction. 

EST structure: ESTScan recognises that the EST may be 
composed of a combination of 5' UTR, CDS and 3' UTR. 

ESTScan's hidden Markov models are trained using com-
plete CDS entries from either the EMBL or RefSeq data-
bases. Scripts included with the distribution parse the data 
files, extracting the necessary sequence information to 
produce the model files. The major issue considered at 
this point is redundancy. If the training data is internally 
redundant then the resultant model will be fully success-
ful only in finding what is known and will have reduced 
power in detecting novel transcripts. Default parameters 
were used in FSFScan for building the HMM and in pre-
dicting polypeptides. 

HSP tiling 
The BLASTX program 1101 allows a nucleotide sequence to 
be searched against a protein database. The nucleotide 
query is translated in all six frames and these are used as 
the query sequences for a BLASTP search. High scoring 
segment pairs (HSP) are identified that maximise a bit 
score derived from an amino acid similarity matrix. If a 
single indel occurs in the nucleotide sequence, causing a 
frameshift, the HSP is either terminated at this position or 
continues out of frame. Downstream of this frameshift the 
query sequence may be long enough to result in another 
significant HSP to the same protein sequence, this time in 
a different frame. Simple extraction of the best BLAST HSP 
will miss such features. prot4EST implements a rule-based 
method that considers all the HSPs for a match to a data-
base sequence and considers whether a frameshift can be 
identified. Where a frameshift is identified the HSPs are 
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joined. Where two HSPs overlap the sequence with the 
better bit score is used. 

The prot4EST pipeline 
prot4FST is an integrated pipeline utilising freely available 
software in a tiered, rule-based system (Figure 2). 

Tier I: Identification of ribosomal RNA (rRNA) genes 
The protein databases contain (probably spurious) trans-
lations of ribosomal RNA genes and gene fragments, and 
thus it is important to identify and remove putative rRNA 
derived sequences before further processing. A BLASTN 
search is performed against a database of rRNA sequences 
obtained from the Ribosomal Database II (Table 1; 1281). 
A BLAST expect value cutoff of e-65 is used to identify 
matches. The cutoff is a conservative one to reduce the 
number of false positives. Those nucleotide sequences 
with significant matches are annotated as rRNA genes and 
take no further part in the translation process. 

Tiers 2 and 3: Similarity search 
The second and third stages are similar. First a BLASTX 
search is performed against proteins encoded by mito-
chondrial genomes. The mitochondrial protein database 
is obtained from the NCBI ftp site (Table 1). Any 
sequences with significant hits (cutoff e-8) are annotated 
as mitochondrion-encoded genes for the remainder of the 
process, and the relevant mitochondrial genetic code is 
used for translation. Sequences that do not have signifi-
cant similarity to mitochondrial proteins are compared 
using BLASTX to the SwissProt database 1141. Sequences 
that yield no significant similarity are moved onto tier 4 
of the process. 

For those sequences that show significant similarity to a 
protein sequence from either database a HSP tile path is 
constructed. prot4EST then considers whether the nascent 
translation can be extended at either end in the same read-
ing frame. 

Tier 4: ESTScan prediction 
The hidden Markov models used by ESTScan to identify 
the coding region are constructed from EMBL format files 
for complete CDS using scripts supplied with the package. 
Preprocessing is integrated within prot4FST, including the 
downloading of the EMBL files. A pair of length threshold 
criteria are applied to each putative polypeptide before it 
is accepted. The open reading frame must be at least 30 
codons in length, and cover at least 10% of the input 
sequence. Polypeptides that satisfy these criteria undergo 
the extension process described above, sequences that fail 
any of the criteria are passed onto the next tier. The exten-
sion process is carried out on those sequences that exceed 
the thresholds. 

Tier 5: DECODER prediction 
The DECODER program is used to predict CDS and thus 
polypeptide translations for the remaining nucleotide 
sequences. For each sequence a quality file in phrap for-
mat is required. When a quality file is unavailable a file 
with quality values of 15 is generated for each sequence. 
The codon usage table required by DECODER can be 
specified by the user or downloaded from CUTC, the 
codon usage table database 1291. By default DECODER 
only processes the forward strand of each sequence, and 
therefore the reverse complement of each sequence is 
taken and processed through DECODER. Two putative 
polypeptides are generated for each nucleotide sequence. 
The longer polypeptide is selected as the more probable 
translation. The polypeptide predictions are checked 
using the same length threshold criteria as for ESTScan 
(above). 

Tier 6: Longest OI.F 
This last attempt to provide a putative polypeptide trans-
lation determines the longest string of amino acids unin-
terrupted by stop codons from a six-frame translation of 
the sequence. If a methionine is present in this string it is 
flagged as a potential initiation site. 

Output 
The primary output from prot4EST consists of the putative 
polypeptides in FASTA format, complemented with files 
containing information describing the translated 
sequences. This information includes: 

position of the translation with respect to the nucleotide 
sequence, the genetic code used for translation, 

position and BLAST statistics of HSPs used in the tile path. 

All this additional information is stored in two CSV for -
mat files, permitting parsing and simple insertion into a 
database. 

Speed 
This is highly dependent upon the composition and size 
of the dataset. As a guide, each prot4EST run carried out in 
the benchmarking (below), took less than an hour for a 
2316-sequence input with an Athlon 1400 Mhz processor. 
The BLASTX searches were carried out separately and used 
as input to prot4EST (for details see the userguide, availa-
bile from the program web page). 

Benchmarking EST translation methods 
We benchmarked five translation methods to test their rel-
ative performance. DECODER is designed to consider 
only the forward strand of the nucleotide sequence, as it 
was originally designed for full-length CDSs. When 
applied to ESTs it is imperative that both strands are 
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The prot4EST pipeline. 
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Table I: Description of databases used for similarity searches. 

Source 	 Tier* 	 Database 	 Link 

ribosomal RNA 	 I 	 RBP II 	 http://rdp.cme.msu.edu  

mitochondrial proteins 	 2 	 NCBI 	 ftp:I/ftp.ncbi.nih.govlblast/db/ 

protein sequences 	 3 	 SwissProtITrEMBL 	 httpl/ca.expasy.orglsprotl 

"the stage in which the database is used in prot4EST pipeline (see Figure 2). 

analysed, as both 5' and 3' ESTs are generated. Therefore 
the reverse complement of each nucleotide consensus was 
also analysed. DECODER _default (1) considers only the 
prediction from the forward strand, whilst 
DECODER _best (2) uses the more accurate prediction. 
ESTScan (3) considers both strands of the nucleotide 
sequence, and was run as a stand-alone process with 
default settings. 

Two arrangements of components within prot4EST were 
tested. prot4EST_ed (4) implements ESTScan before using 
DECODER on any remaining untranslated sequences. 
Conversely, prot4EST_de (5) uses DECODER first fol-
lowed by ESTScan. The DECODER module in prot4EST 
considers translations on both the foward and reverse 
strands of the query sequence. 

I Data Sets 
Test EST dataset for translation 
We randomly selected 4000 Caenorhabditis elegans ESTs 
from dbEST 1301. To reduce redundancy, the ESTs were 
clustered using CLOBB 1311. phrap 191 was then used to 
derive a consensus sequence for each cluster. This resulted 
in 2899 nucleotide sequences. To ensure that the 
consensuses corresponded to a coding region, we carried 
out a BLASTN search for each consensus against the com-
plete C. elegans cDNA dataset available from Wormbase 
(version 117) [321. Significant matches were found for 
2372 consensuses. Finally, this set was used to query the 
C. elegans protein dataset (Wormpep version 117), thus 
associating each nucleotide sequence with a correspond-
ing reference polypeptide. A final test set of 2316 consen-
sus sequences was produced. 

Training datasets 
I: Caenorhabditis elegans 
Both ESFScan and DECODER require prior gene 
sequence. The C. elegans RefSeq collection was obtained, 
comprising 21033 entries (December 2003; 1331). A Perl 
script constructed random training sets giving differing 
totals of coding nucleotides from 10000 to 350000. Four 
sets were assembled for each level. The build _tables script 
(part of the ESTScan package) was used to filter out 
sequences 1181. 

We used the same training sets to build the codon usage 
tables required by DECODER. CUSP from EMBOSS 13 4 1 
was used to build the tables, and a separate Perl script 
written to convert the output to that required by 
DECODER. For any given run of prot4ESl' the ESTScan 
HMM training set and codon usage table used were 
derived from the same training set of C. elegans cDNAs. 

Prokaryote genomes 
GenBank entries from 167 complete prokaryote genomes 
were obtained (May 2004). A Perl script was written to 
extract the CDS entries and construct a Refeq-style 
resource for each prokaryote species (available upon 
request). If a taxon's genome consisted of more than one 
megaplasmid the sequences were combined. CDS annota-
tion was not available for 11 genomes. We used the CDS 
collections for the 156 taxa to determine AT content, con-
struct hidden Markov models and codon usage tables. 

Arabidopsis thaliana 
28960 complete CDS entries for A. thaliana were obtained 
from the RefSeq database 1351. 

Spirurida (Nemotoda) 
We queried CenBank for all complete CDS entries from 
species in the nematode order Spirurida. 

BLAST databases 
SwissProt (release 42.7) and TrEMBL (release 25.7) [141 
were combined to give a SwissAll database. To recreate the 
situation facing neglected genome analysis, the accession 
numbers for all proteins from species in the nematode 
orderRhabditida were retrieved from the NEWT taxo-
nomic database 1361 and these entries (.23000) were 
removed from SwissAll. 

2 Data collection and analysis 

Comparison of predicted polypeptides to the 'true' polypeptide 
We compared each putative polypeptide predicted from 
the C. elegans test dataset to its cognate reference protein 
using bl2seq from the NCBI distribution. Default param-
eters were used except for the theoretical database size (-
d), set to 130000, the size of SwissProt. The blast reports 
were parsed using BioPerl modules 1371. Each C. elegans 
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reference protein sequence was also compared to itself 
using bl2seq with default parameters. The raw and bit 
scores were recorded. 

Calculation of comparison statistics 
The raw and bit scores were normalised for length and 
against their theoretical maximum using equation 1, 
where: 

BiTlocal is the bit score of the local alignment between the 
predicted polypeptide and its cognate reference protein, 

BiTmax is the bit score for the alignment between the ref-
erence protein and its self, 

WPlength is the length of the wormpep protein that is the 
reference of the nucleotide consensus translated, 

ESTlength is the length of the nucleotide consensus that 
has been translated. 

Bfllocal 3 x WPlength 
Normalised Bit Score = 	x ( 	 ) BITmax 	ESflength 

(equation 1) 

Results and discussion 
To measure the accuracy of translation two statistics were 
derived from the comparison of the predicted and refer-
ence polypeptides. The coverage is the percentage of the 
predicted polypeptide that aligns with the reference. The 
bit score represents the total of the alignment's pair-wise 
scores, normalised with respect to the substitution matrix 
used to calculate these scores. In this study the bit score 
was itself normalised to compensate for EST length and 
the maximum possible bit score for each comparison (see 
Methods, equation 1). The number of consensuses trans-
lated that had a significant match to their cognate refer-
ence C. elegans protein was also recorded for each run. 

The Influence of number of training codons 

Both variants of DECODER were unable to produce 
robust translations for over half the nucleotide sequences 
no matter how many nucleotides were in the training set 
(Figure 3). As expected, the inclusion of the reverse com-
plement in the DECODER analysis improved its perform-
ance. The inability of DECODER to translate more than 
50% of the polypeptides can be traced to its core assump-
tions. One criterion used is the determination of the most 
likely initiation methionine. While this is almost always 
present in full length cDNAs (for which it was designed), 
the occurrence of any ATG codon in EST consensuses is 
less certain. We noted that DECODER will try any ATC 
codon to start its prediction, even if this results in a 
polypeptide of 2 amino acids in length. 

The effect of the number of training nucleotides on ESTS-
can performance is pronounced. For the majority of the 
replicates, at each training set size the fraction of predic-
tions that have significant matches to their reference 
sequence was around 75%, but the number of transla-
tions dropped significantly below 250000 training nude-
otides. However, for 10000 coding nucleotides or less no 
robust translations are produced. Additionally, there was 
variance in the performance of ESTScan when there were 
between 20000 and 50000 training nucleotides. Examina-
tion of these training sets showed no difference in AT con-
tent compared to larger training sets, but did suggest that 
fluctuations in codon usage bias might be involved. The 
replicates that performed less well comprised sequences 
with shorter mean length, and had codon biases that were 
at the extremes of the distribution (not shown). This vari-
ation in sequence composition clearly has an effect on the 
probabilities that populate the HMM used by ESTScan. 
We suspect that the ability of ESTScan to predict robust 
translations when trained by datasets of 150000 to 
200000 coding nucleotides is inflated as a consequence of 
the random selection of the training set from the complete 
C. elegans transcriptome. In a genuine situation, when 
only a small number of full-length CDS exist in the public 
databases, a significant number .will be from highly 
expressed genes with atypical codon bias and structure. 
This bias will be evident in real-world CDS sets with fewer 
than 200 members (150000-200000 coding 
nucleotides). 

When the training sets contained a large number of non-
redundant coding nucleotides (> 150000), prot4EST_ed 
and ESTScan performed equally well (Figure 3a). When 
the number of coding nucleotides available for training 
and codon bias determination were reduced, prot4EST 
translations still showed significant similarity to the cor-
rect protein in at least 80% of instances. 

The translations produced by prot4ESTed were the most 
robust across all totals of coding nucleotides, for both cov -
erage and bit score (Figures 3b & 3c). As the number of 
coding nucleotides used in training decreased, both meas-
ures showed slight reductions. 

Performance of alternative prot4EST architectures 

prot4EST_ed produced more robust translations for 
higher numbers of training sequences. However when 
smaller totals of training nucleotides were used the trans-
lations produced by the alternative architecture, 
prot4EST_de, were slightly better (Figure 3c), although a 
smaller proportion of translations were produced with 
this setup (Figure 3a). 
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Figure 3 
Performance of polypeptide prediction methods under different training regimes. Predicted polypeptides were compared to 
their reference. Four independent replicates of each training set size were used. a) Proportion of predicted polypeptide pep-
tides having a significant BLASTP match to their reference protein. b) The mean proportion of each sequence covered by a 
predicted polypeptide. c) The mean relative bit score of each predicted polypeptide compared to its reference protein. The 
scores in b) and c) are the mean of the sequences translated by each method. The high scores shown by ESTScan at 5000 and 
0000 non-redundant coding nucleotides is due to the method returning at most one polypeptide out of the 2316 nucleotides 

provided. 
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Figure 4 
The relative efficiency of different organisations of DECODER and ESTScan in the prot4EST pipeline. The pro-

portion of consensus sequences translated by each part of the pipeline for each level of training is shown. bold bars: 
prot4EST_ed - ESTScan translations were considered before those from DECODER. hashed bars: prot4EST_de - Robust 
DECODER translations were used in preference to those from ESTScan. 

The better performance of prot4EST_ed was examined by 

following the fate of individual test sequences through the 

prot4EST pipeline. By employing ESTScan before 

DECODER, larger training sets allowed the deployment of 

well trained HMMs (Figure 4). All predictions satisfied 

length and quality filters, and so were accepted as robust. 

The corresponding DECODER predictions, while satisfy-

ing length filters, were not as robust. As the training sets 

decreased in size, the ESTScan predictions failed the filters 

and so were ignored. and DECODER used instead. 

Performance of similarity search 

Seven sequences out of 2316 were identified as rRNA in 

tier 1. Tiers 2 and 3 of the prot4EST pipeline exploit any 

significant sequence similarity between the query 

sequence and known proteins for coding region determi-

nation. This approach identified coding regions from just 

under half of the consensuses, 1131. Nineteen were iden-

tified as mitochondrial genome derived. To benchmark 

the similarity approach against the other probabilistic 

methods, the accuracy of predictions from 1131 consen-

suses were compared. Translations derived from prot4EST 

tiers 2 and 3 were more robust than those from ESTScan 

or DECODER (Figure 5). 

Given that an increase in the number of non-redundant 

coding nucleotides used to train ESTScan produces more 

robust translations, we attempted to use coding regions 

determined thus far to create larger training sets, with the 

expectation of improved translations. The results from the 

Page 10 of 14 

(page number not for citation purposes) 



BMC Bioinformatics 2004, 5.187 	 http://www.biomedcentral.com/1471-2105/5/187  

A 	A 	A 	A 	A 	A 

0 

	

0.8 
	 S 	S 	S 	• 	S  

0 

0.6- C 

41 	

. 	 . 	 . 	 . 	 . 

0 

a 0.4 

> 
0 

I 	 I 

I A significant similarity I 

	

0.2 	 DECODER 

I I& ESTScan 	 I 
E 

0 
0 	50000 	100000 	150000 	200000 	250000 	300000 	350000 

number of non-redundant coding nucleotides in training set 

Figure 5 
Comparison of HSP tiling, ESTScan and DECODER performance in translating the 1 13 1 consensuses that prot4EST translated 
using similarity criteria. 

BLASTX search against the SwissAll database were checked 
for matches where the alignment included the start of the 
protein sequence. These results contained the information 
required to construct pseudo-CDS entries which can be 
added to the training set for populating the HMMs of EST -
Scan. In this study there were only six BI.ASTX alignments 
that provided suitable pseudo-CDS, failing to provide any 
significant increase in the level of non-redundant coding 
nucleotides. However other species we study have pro-
duced higher numbers of pseudo-CDS which prot4EST 
uses to give improved translations (data not shown). 

Effect of training set and target set sequence composition 

As a significant proportion of any LiST set will not share 
similarity with known sequences, de novo translation 
methods need to be trained to as high a level as possible. 
The question is how this should be done, given the pau- 

city of prior sequence data for individual species. Should 
CDS from species considered phylogenetically related be 
combined or should a large set from a model organism be 
used? A recent study of gene finding in novel genomes has 
shown a significant effect of sequence composition upon 
gene structure prediction, with more closely related model 
genomes providing poor training if the codon bias differs 
significantly from the genome of interest 1251. The per-
formance of ESTScan was affected by even slight fluctua-
tions in sequence composition. We examined the effect of 
AT content on the accuracy of translation. The complete 
CDS complements of 156 prokaryotes were assembled as 
described in the Methods. This gave  range ofATcontents 
from 28% (Streptomyces coelicolor) to 78% (Wigglesworthia 
,1ossinidia), independent of any bias due the organisms 
relatedness to C. elegans. The lowest number of non-
redundant coding nucleotides was 461,299, in excess of 
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Figure 6 
Effect of AT content of training set upon translation accuracy. Each purple diamond represents a complete CDS set 
from a prokaryote genome. The orange box represents all CDS available from the nematode order Spirurida (-230000 non-
redundant coding nucleotides). The green triangle represents the complete Arobidopsis thohana RefSeci collection (-30000000 
non-redundant coding nucleotides). The green circles are training sets of A. tha!iana CDS RefSeq entries randomly selected to 
total —230000 non-redundant coding nucleotides. The AT content of C. elegons is shown by the vertical dashed line. 

the minimum number suggested for robust training. To 
explore datasets from more closely related sources all 
available CDS entries for the nematode order Spirurida 
(last common ancestor with C. elegans was 475-500 MYA 
(381), and the plant Arabidopsis thaliana 1391 were 
obtained. 

There was a significant correlation between AT content of 
the training set and the coverage by the putative 
polypeptides of their reference C. elegans proteins (r = 
0.49 P> 0.001) (Figure 6). The most robust predictions 
were produced by HMMs trained on datasets with an AT 
content similar to that of C. elegans. For the prokaryote 

training sets, the number of nucleotides used had no sig-
nificant effect upon performance (data not shown). We 
note that some prokaryote training sets with AT contents 
close to C. elegans performed poorly: homogeneity of AT 
content is thus not a panacea. The best performance was 
obtained using the A. thaliana training set, with signifi-
cantly better coverage than achieved with the more closely 
related Spirurida. As the plant dataset contained 130 
times as many coding nucleotides as did the Spirurida 
training set, four random A. thaliana training sets of com-
parable size to the Spirurida were built. These smaller 
training sets still performed better than the Spirurida 
training set, though not as well as the full CDS collection. 
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Conclusions 
prot4EST is a protein translation pipeline that utilises the 
advantages of a number of publicly available tools. We 
have shown that it produces significantly more robust 
translations than single methods for species with little or 
no prior sequence data. Around three quarters of current 
EST projects are associated with training sets of < 50000 
coding nucleotides (Figure 1). Thus prot4FST offers signif-
icant improvement in this real world situation. Even with 
substantial numbers of coding nucleotides, the use of sim-
ilarity searches means prot4EST is able to outperform the 
best de novo methods. Given the increase in protein 
sequences submitted to SwissProt/TrEMBL, prot4ESrs 
ability and accuracy can only increase over time. These 
more accurate translations provide the platform for more 
rigorous down-stream annotation. Currently we are using 
the prot4EST pipeline to translate n95000 nematode con-
sensus sequences from 30 species. These translations will 
then be passed onto other tools we are developing for EST 
analysis and annotation (see http://www.nematodes.org/ 
Parti Gene). 

Availability and requirements 
Project name: prot4EST 

Project home page: http://www.nematodes.org/Parti  
Gene 

Operating system(s): Fully tested on Linux - Redhat9.0, 
Fedora2.0. 

Programming language: Perl 

Other requirements: 

ESTScan2 .0 http://www.isrec.isb-sib.ch/ftp-server/ESTS  

DECODER rgscerg@gsc.riken.go.jp  

BioPerl 1.4 http://bioperl.org  

Transeq http://www.hgmp.mrc.ac.uk/Software/EMBOSS/  

License: GNU GPL 

Any restrictions to use by non-academics: None for 
prot4ESl' source code. DECODER requires a license. See 
User Guide. 
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