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Abstract

Thig thesis is concerned with the Ultimate load behaviour of Conposite
steel-conercte bridge deck structurcs and the application of yicld-linc theory
to assess their ultimate capacity. The yield-linc thcory was applied succcss-—
fully to analysc the rcinforced concrete slabs but its cxtension to the
analysis of structurcs, where T-bean action is present, is still under explor-
atory stagec. In the introduction, the rclative nerits of clastic and plastic
nethods of analysis and their conplenentary naturc arc discussed.

A brief review of yield-linc theory is given in Chapteor 2. It includes
an account of the historical developnent of yiecld-line theory and the assunp-
tions and the inportant thcorens on which the theory is based.

A theory for the ultinate strength of a Composite bean is developed in
Chapter 3. Fornulac allowing for strain-hardening of stecl and ignoring the
sane arc derived. Therc is a close agreenent between the theory and experinent,

Upper bound solutions by considcration of collapsc nechanisns are
developed in Chapter . Punching shcar failure and the effect of conposite
action on punching load are discusscd.

General formulac for the ultinate load of sinply supported Composite bean
bridges by two alternative ncthods nanely (i) the Equivalent orthotropic slab
nethod and (ii) the Bean and Slab Method are derived,

In order to check the validity of the above theory, eight nodel bridges
along with control beans wore built and tested to destruction. The test
results are discussed in Chapter 7. The theoretical results conpare well with
the experinental values,

The conclusions indicatec that yield-line theory can be a satisfactory

basis for the ultinate load analysis of Composite bean bridge deck structures.



Notation

Ao =Area of flange of steel section,sa.in,

AL —Area of reinforcement in slab per unit width,sq.in,
g —Ares of steel section,sg.in,

A

&5

A =Area of steel section in compression,sq.in,
A =Area of web of steel section,sq.in,

a =8ide length of loaded area,in,

ae,ap,as as shown in Fig.3.5,
a —

& =Component of vector"a" in X-direction,
ay =Component of vector"a" in Y-direction,
aW =AW/AS )

B =Width of flange of Composite beam,in,

Be =Effective width,in,

=Width of slab,in,

=Comp6nent of vector"b" in X-direction,

b =Component of vector"d" in Y-direction,

¢ =Total compressive force,tons,

Cc =Coumpressive force due to concrete only,

C_ =Compressive force due to reinforcement of slab,

Cube strength of concrete,psi,

Depth of steel section, in,

C

D = Depth of Composite section,in,
d

d

Effective depth,in,

-
I

Diameter of shear connector,in,

Il

Young's Modulus of steel,

o =Strain-hardening modulus of steel,

d

E

E

e = Strain,
® o =Concrete edge strain at_maximum moment,
e =Steel edge strain at maximum moment,

e = Strain in steel at first yield,

e' = Strain at top of steel section,

€

s = Strain at beginning of strain-hardening ,



x1

Fl,P2 ¢ Quantities defined in Computer programre,
I = Ratio of depth of Composite section to depth of steccl section,

& Cylinder strength of concrete,psi,

&

Strain-hardening stress,

-
Il

Ultimate stress,

Yield stress,

Stess a2t top of steel section,

= Ratio of thickness of"slab‘to depth of Composite secion,
Width of bridge deck,
Ecuivelent width of bridge deck,

o R
nn

5
]

Spacing of beams,in,

=
Il

Height of shear connector,in,
i,,i, ; Coefficients indicating the variation of momcunts,
jd = Lever arm,in, :

k,kl : Quantities defined in Computer programme,

K =Cauge factor,

L = Span. of bridge, in,

1 = Length of yield line,

11 = Longest side length of 2 rectangular loaded aree,
1_ =Distance of load point from the face of the coluxn.
lx = Projection of 1 on X-axis,

1l = Projection of 1 on Y-axis,

hc = Ultimate moment of Composite beam,ton—in;

Kce = Ultimete moment of outer Composite beam, ton-in,
Rx = max,

M =syma

A s

R —_m1

Lx =m bx,

vt T

iy =Hm bx,

= Ultimate transverse +ve moment per unit width of slzb, ton-in,

-~

o' = Ultimate transverse -ve moment per unit width of slebd

Magnitude of a typical moment key line,
Normal moment per unit length of yield line at = point

mns = Twisting moment per unit 1edgth of yield line 2t a point



xii

N = Nunber of shesr connectors, -
= Retio of neutral axis depth to depth of Compositie & ction,

= Sensitivity Factor,

P = Ultim=te load, tons,
Pl’PZ : Quantities defined in Computer programme,
PA’PB etc.? Collapse loads from Modes A,B etc.,
P Collapse lozd at flexural failure, tons,
Pnin. = Minimum collapse load, tons,
PPunch = Punching load, tons,
PTest = Ultimate lozd obtained from test, tons,
p = Ar/d1=Proportion of reinforcenent,
P, =pBelanced propertion of reinforcement,
QC =Ultimate capacity of one shear connector in Push-out Test,
Quc = Useful capacity of one shear connector,lbs,
R = V:lue of Resistance of &Strain Gauge,
= Value read from Graph in Fig.2.4,
r =es/ey’
T 100/dC
s =E/Esh,
8, = Shortest length of loaded rectangular area,in,
¥ = Total tensile force,in steel,
T = Thickness of slab,in,
U = Input voltage,
u =ecu/ O
vy =Ultimate sheer stiress at a distance equal {o effeciive depln,
Vs =Ultimate shear stress at a distance ecual to half effeciive

depth of slab,

=Ultimate shear stress gt zero distance from loaded area,

Vo

W = Load,

wd = Collapse load,

W = Load per unit area,

X = Distance from the lozd point to the negative yielc line

parallel to to the bean.,



xiii
bols

=

Sy

& =Flexural parameter defined in reference(92)

e'=Coefficient given by Eo0.(2.2) or read from Fig.2.3,

/5> =Coefficient given by Eq.(2.3) or read from Fig.2.3,

=Torsional parameter defined in reference(92),

ﬁ%:Coefficient indicating the reduction in compressive sirerg:
of concrete due to in-plane shear stresses,

4 = Deflection at the'poinf XSa:

V: Poisson's ratio,

Am XS

P =h/L,

9n=hormal rotation of yield line at apoint,

W =Componeny of @, ;. X-direction,

9y=Component of Gn in Y-direction,

§ =Ratic of distance between the loads to the span,in,
ﬂ4=Ratio of +ve longitudinal to transverse moment,
/[:Ratio of -ve longitudinal to transverse moment,
}béas given by Eq.(4.3)
= gt )/ (1)

Ms=C Ay +1 00/ (1+4,)

¢,§}are angles made by yield lines,

d;: Deflection under the load.



CHAPTER 1

1.1 INTRODUCTION

The subject of thic thesis is the investigation of ths Ultirate Load

Behaviour of Composite Steel-Concrete Bridge Deck Structures subjected to

one or several concentrated loads. The ultimate load analysis is of recent
origin and is being put forward as an alternative approach in design..

In the past, the structural engineering design has been based principally
on elastic analysis in which the design criterion is the permissible stress at
the adversely stressed part of a structure. The "Safety Factor" which is
the ratio of ultimate stress to permissible stress is, no doubt, a measure of
the safety of a structure against failure, but it does not indicate precisely
how safe is a structure. In other words, it is not possible to calculate by
the elastic analysis how much load a structure will carry before it collavpses
because the structure, no longer, behaves elastically at higher stresses near
collapse. The designers were aware of the illogical nature of this design
criterion in the orthodox elastic design but did not come forward with an
alternative design method until Baker and colleagues (1,2) published their
investigations relating to steel structures,

When the ultimate load method is adopted, the structure is analysed
when it is in plastic state and when it is about to fail. It is, therefore,
possible by this method to predict the load at which a structure will fail
and design it to carry the working load, which is a chosen fraction of the
failure load. Thus, in the ultimate load method, the ratio of loads rather
than stresses, is considered\a.nd the ratio of the failure load to the working
loed is called the "load factor" rather than the "safety factor". The load

factor, as defined above, is a real guide to the true safety of the structures.



=
and can be chosen depending on the degree of safety needed for a particular
structure. Apart from the relief from the fundamental defect inherent in
elastic method, the advantages claimed for the ultimate load method are its
simplicity, the relative ease with which it can be applied to anslyse even
the most complicated structure and the relative unimportance of such items
as sinking of supports, the prescnce of residunl stresses and the worst
loading petterns, which cause complications in elastic design. However,
it should be admitted that ustimate load analysis has not yet been universally
accepted ond it is likely to remain complementary and not competitive to the
elastic analysis.

The ideal method of design would be first lo design the structure with
a specified lozd factor and then to ensure that under working load conditions
the deflection, crack widths, steel =nd concrete stresses are satisfactory.
Alternatively the structure might be designed by elastic method and then
checked by the ultimate load analysis to find if the load factor is satis-
factory. Whichever of these two alternatives is adopted, the ultimate load
analysis has to be applied to assess the collapse load of a structure which
is essential for the following reasons:

(i) to give the true safety of a structure under specified loads,

(ii) to ensble safe designs to be prepared for complicated structures,

where a simple design procedure is not availsble.
ard (iii) to assist in an improved understanding of the behaviour of a
structure under service conditions, which may lead to a greater

cconomy of design,

1.2 Simple plastic theory.

In 2 simply supported beam loaded to failure in flexure, a "plastic
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hinge" or a region in which the ultimate moment is developed and rotation
tekes place at a sensibly constant moment, will develop at some point within
the span. At this point, the curvature becomes relatively much greater than
at other points and hence, for purposes of analysis, the curvature can be
assumed to be concentrated at the hinge =nd the remaining portions of the
beam may bé assumed straight. An analogous behaviour can be observed in the
case of a slab loaded to failure; the curvature tends to be concentrated along
a series of straight lines in which the ultimate moment is developed and the
remaining portions of the slab remain plane., Since, at ultimate load
conditions, some or all of the steel reinforcement is yielding, the lines
along which the ultimate moment is developed are referred to as yield lines,

Thus, the plastic theory applied to slabs is called "yield-line theory".

1¢2 The simple plastic theory well-established for steel structures had
been described in many texts (2,3,4). The assumptions and theorems on
which this theory is founded, are briefly stated here so that they could
readily be compared with those of "yield-line theory" which is an extention
of the plastic theory for the analysis of reinforced concrete slabs but which
has been developed independently by Johansen (5,6).
(2) The assumptions made in simple plastic theory are as follows:
(i) The idealised moment-curvaturc relationship is as shown in Fige 141
The stress=-strain relationship is also idealised on the same lines.
The properties in compression are assumed to be the samec as those
in tension. When the moment at a cross section is sufficiently
lerge so that the material there yields completely, very large
deflections occur without increase in bending moment and the cross

scction behaves as a hinge., Collapse of the structure occurs



Moment

Curvature

Fig.l.l Idealised Moment-curvature relationship for steel
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when a sufficient number of plastic hinges has formed to transform
the structure into a mechanism,

‘(11) The deformations are small implying unaltered geometry, which does
not invalidate the equilibrium equations,
(iii) The redistribution of moment will oceur from the more heavily stressed
sections of the structure to the less heavily stressed ones.
(iv) The effects of axial force, shear, instebility, repeated loading and
brittle fracture nay be neglected,
(b) The following are the theorems:
As stated by Neal (3), the "Static theorems" is
"For a given frame and loading, if there exists any distribution for bending
moment through out the frame which is both safe and statically admissible with
a set of loads W, the value of W must be less than or equal to the collapse
load Wel"
This theorem defines what is known as "lower bound" to the collapse load-.'
The "kinematic theorem" as stated by Neal (3) is
"For a given frame subjected to a set of loads W, the value of which is found
to correspond to any assumed mechenism must be either greater than or equal to
the coll-pse ;I_o:;d We".
This theorem defines the "upper-bound" to the collapse load., These
theorems have been proved by Greenberg and Prager (7)
The "Uniqueness theorem" which is a combination of the previous two theorems
is
"If for a given frame =nd loading nt least one safe and statically adrissible
bending moment distribution can be found and in this distribution the bending

moment is equal to the fully plastic moment at enough cross seotions to cause
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failure of the frame as a mechanism(aue to rotations of plastic hinges at
these sections, the corresponding load will be equal to the collapse load fle",

A formel proof of this theorem is given by Horne (8).

From the assumption (i) it is obvious that the material of which the struc-
ture is made should have constant yield point and should be capable of sus=
taining the yield stress up to several times the elastic strain at first yield,
especially when there are extensive collapse mechanisms, Only mild steel
satisfiea this requirement., As a matter of fact it is the ductile or plastic
property of steel observed in tests that had prompted the pioneers in the
field to think on these lines and develop a theory ideally suited to steel
structures. However, there is = growing tendency to apply this theony.to
reinforced concrete structures (9,10) on the assumption that reinforced con-
crete can have or can be designed to have sufficient rotational capacity.

Tests cerried by Trnst (11) seem to indicate that sufficient rotation will
always be achieved with reinforced concrete sections.Corley (12) points out
that the ultimate curvature and inelastic rotation eccuring in the hinging
region near the section of maximum moment of a reinforced beam providea’with
binding steel in compression zone could be much greater than those caiculated
on the sgsumption of a2 meximum concrete compressive strain of 0,003, But still
there cxists doubt as to whether or not sufficient rotation can be obtained
from o rcinforced or prestessed concrete structure to allow all the plastic
hinges to form before failure of one of these hinges occurs..

A heavily reinforced concretc section brings much more of thc concrete
into play snd fails by crushing of concrete, which is a sudden failure., This
is true in the case of beams and frames which are likely to be reinforced with

a more percentage of steel than slabs., A lightly reinforced slab, on the
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other hand, is assumed to fail in tension, the steel reinforcement following
the stress-strain pattern required for the plastic theory, thus allowing the
whole pattern of yield lines to form before its collapse. There is sufficient
test data to indicate that it is a satisfactory assumption, on which Johansen
(6), who did the main pioneer work for the development of plastic design fer

reinforced concrete slabs, has based his "Yield-line theory".

1.3 BScope of the present investigation

This investigation forms part of a programme to apply simplified yield-—
line theory to obtain upper-bound snlutions for simply supported Composite
steel-concrete Bridge deck structures.s A compnsite structure as cited in
the thesis, is a reinforced concrete slab resting on and acting compositely
with longitudinal steel girders; The steel girders are designed as T-beams in
which the slab also acts as a compression flange of the beam._ Jones and Wood
(13) elaborate on the main problem that centres round the permissible use of
T-beams in the plastic theory of bending, They add that, though at first the
excess of concrete in what is termed the beam seems hardly conducive to ideal
plasticity, such T-beams are likely to be "under-reinforced" when they form
part of a slab, the predominating failure (apart from shear failure) being
tension failure of the steel, so that the moment of resistance is sensibly
held constant at failure. They further point out that the ultimate moment of
resistance is not very sensitive to the assumed width of "flange" and from this
point of view there would seem to be little objection to the careful use of
T-beams within yield-line theory. They further state that whilst it is admit-
ted that idealised plastic theories for slab and T-beam action combined are

open to criticism, nevertheless the hidden effects of membrane action are
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likely to cover up the defects of the theory.

o attempt is made to take advantage of membrane action in this inves-
tigation, which is mainly concerned with the study of collapse mechanisms
involving the supporting beams in which case no beneficial membrane action
(apart from T-beam action) is likely to develop (13).

Lower-bound solutions are not attempted since it is extremely difficult
to find satisfactory stress fields to conform to the rigorous rules of Limit
Analysis.

The literature on punching shear failure is reviewed and the effect of

composite action of beams on punching load is discussed.
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CHAPTER 2
REVIEW OI' YTELD-LINE THECRY

The reason for the growing internétional populerity of yield=-line
theory, perhaps, lies in the fact that it is basically an engineers' intuitive
approach to a problem, based on results of repeated experiment. It has been
accepted without an exhaustive study of some of its foundations because it
is attractively simple and matches well established solutions in extremes of
its range of application. It should be of interest to know its historical
development in relation to other techniques for assessing the ultimate

strength of slabs.

2,1 Resume of previous work

As early an 1890, Bach (1)) advaenced a simplified theory of failure and
a corrcsponding method of calculation has been given by Suenson (15). In
1922, Ingerslav (16) introduced the simplified yield-line theory for thin plates
and derived for the first time the correct solution (worst case) for the
collapse load of a rectangular slebs But he gave the shear forces in the
yield lincs zero value and so the method could not be applied to all cases.
The acinmowledged pioneer of yield-line theory is Johansen (5,6) who extended
the theory to cover much more general cases and provided an immense number of
practical examples. He developed the "Work" method for calculating the
collapse load and an alternative "Equilibrium" method involving nodal forces,
which gavc the same collapse load but which provided additional informatione

A review of the work carried out by Ingerslav (16) was published in
1953 by Hognestad (17). In 1957, liansfield (18) employed the calculus of
variations and found the worst lay out for a system of yield-lines involving

non-circular "fans" of any shape., His intentions behind this approach were
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ingenious in that if the gravest possible upper-bound solution was found, then
that would be the solution without being concerned with lower-bound solutions.
But he wag unaware that Johansen (5) in 1943 had achieved similar solutions
using the nodal force theory. The inference is that nodal force theory
(equilibrium method) and the calculus of variations applied directly to the
work cquation arc absolutely equivalent (13).

Until the rigorous rules for Limit Analysis of Prager (19 ,20) were dis-
covered, therc was a doubt as to the nature of the solutions obtained from be’™
the ‘ork and Equilibrium methods. Neither of the two methods produced a unic™
pattern of yield lines, which yielded the lowest failure load. The above rule-
indicated that the lowest collapse load had been reached, if one could find a
coincidental "upper" and "lower" bound solution. The conditions required to
establish an dpper or lower-bound solution were essentially as follows:

(a)_ upper-bound solution = which gives an pngé.fe or else correct value

of the collapse load, |

1 A valid mecha.niém of collapsé must be found which satisfies t™c
mechanical boundary conditions.

2., The internal dissipation of energy on yield lines must equal
the expenditure of energy due to the external loads (Work
Equation).

3, Either the material stays rigid or else deforms plastically

4o Where deformations take place the direction of the strains is
defined by the mechanism. The direction of the strains must in
turn define the yield stresses required to calculate the

dissipation of energy. (This is known as the yield eriterion

~
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(b) Lower-bound solution = which gives an oversafe or else correct
value of the collapse load,
5. A complete stress field must be found everywhere satisfying the
differential equation of equilibrium.
6. The forces and moments at the edges must satisfy the boundary
condi tions, ‘
7o At ne point can the principal stresses violate the yield criterion,

From these rules, it was discovered that, though a lower-bound technique
was also bused on equilibrium, Johansen's so-called "Equilibrium" method was
not a lower-bound solution since his method specified the stress state only
along the yield lines and not everywhere in the slab, as required by item 5, _
Wood (21) proved the equivalence of nodal force theory to the work equation
plus differentiation. The work of Kemp (22), Morley (23) and Wood (24) also
showed that it was theoretically possible to transform the latter into the
language of the former, though in some cases the transformation was extremel
laborious. It now becomes clear that the two methods given by Johansen are
the alternative forms of only ons method namely the Work Equation plus dif-
ferentiation, though as claimed by ilood (21) and Zones (25), the Equilibrium
Mcthod is much simpler to apply in certain cases.

Thus, yield line theory, whichever technique is used, should only be
regarded as an upper-bound solution. It may be mentioned in this context
that, by cmploying simplified stress fields and satisfying items 5 and 6,
Hillerborg (26) produced a rival and relatively simple method (Strip Method),

Which is not discussed here,
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All that remains now is to sec whether it is possible to produce
coincidental upper-bound and lower-bound solutions, which conform to the
rules of Limit Analysis. Wood (21), S-wezuk and Jaeger (27) in spite of
an internationally sustained effort could collect only a very few such
solutions, Zones and Wood (13) point out that so far, trivial cases excepted,
there is no known coincidental upper and lower-bound solution for orthotropic
slebs. They further point out that any hopes of establishing such solutions
for all cases have to be abandoned, if the stringent rules of Limit Analysis
have to be applied and that yicld-line theory must be accepted far what it
ise This has led to a newly proposed "normal moment" yield criterion (22,2,)
in which only thc value of the normal moment on yield lines is specified,
without rcference to the principal moments, which means that yield-line
theory end TLimit Analysis must go their own scparate ways, since they can not
yet cmploy a common yield criterion., The indications are thet a new yield
criterion such as that proposed by Baus and Tolaccia (28) might more easily
be built into yicld-line theory than into a rigorous Limit 4nalysis. Although
much has been written (29 to 35) and discussed recently on a general yield-
criterion for reinforced concrete slubs, Johansen's original "stepped" yield
ceriterion is still in common use. How this criterion has been adapted to the

analysis of slabs in the thesis will be discussed later in this chapter,

2.2 Lxperimental Confirmation

Analysis of cxtensive test results carried out by Johansen (6), Wood (21)
and 3awczuk and Jacger (27) reveals a conservatiam.about yield-line theory,
especially in the cases where strong forces (membrane action) are <_ieveloped in
the plane of the slab (36,37), though occasionally (38) suggestions have been

made to reduce slightly the required moments of resistance on account of
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membrane stresses. Recent tests in Holland (39) have also shown that yield-
line thcory is reliable even for irregularly shaped slabs. Nylander (40)
studied the cases where, with heavy point loads or column reactions, punching

shear is encountered.

2,3 Assumptions, Definitions and Notation and Theorems

at the outset, it must be admitted that "yield-line theory" is indeed a
great simplification of the true behaviour of a reinforced concrete slab, If
a completely accurate assessment of the failure load of a slab is to be made,
it is neccssary to know the complete stress and deformation relations, which
occur under any combination of force and moment, which is out of the scope of
this thesis. The alternative to an exact solution is to evolve one in which
certain simplifying assumptions are made.

Assumptions

(a) The concrete slab is so lightly reinforced that failure occurs in tensi-
the rcinforcing steel following the stress-strain relation required for simple
plastic theory. The stress-strain curves for steel and concrete arc shown in
Fig, 2.1 and the cross section of slab in Fig., 2.2, 'The ultimaete moment per

unit width of slab is given by

Xt la :Lfﬂ\ s i (258
m = r Ty \ 1 - ” f1 /.: T 8 4 & ® s s a2 8 s e & = .
C
5 5Ar f e
or o= A T (d ot N S 2.5 \ ® e * 2 s e s e s e s e @ (201 a)
Bk 1 e r .
u

where = .rea of steel per unit width of slab in sq. in.
= Yield stress of reinforeing steel in p.s.i.

= Cylinder strength of concrete in p.s.i.

H
oF WP
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4, Effective depth of section in inches.

Cy = Cube strength of concrete in p.s.is
0.1 and § arc coefficients obtained from the graph originally given by

Hognestad (41) and reproduced in fig, 2.3, or from the expressions

3900 + 0,35 £,

a = N -o.oonoaoovooo‘oooooo(202)
3200-4-fc
s
B:O'S-W ¢ 8 ¢ o % 8 6 0 0 0 0 e e e o' e s s’e (205)

1
when it is assumed that £ = 0485 G, , both Equations (2.1) and (2.1a) give
valuecs of m which are more or less the same., When the slab is reinforced
with high tensile steel without definite yield point (42) the ultimate moment

per unit width is given by

R s 2
m—aqlb G%'aﬂ.....'..-.‘...'*'.;-....,..(2.1b)
Where C; = Ultimate strength of concrete in bending in pes.is
a CLb = Average concrete strength at failure and is given by the
following cxpressions,
: o 1 C
o - R 0,02
3000 < Gy < 7000 , aCy = G (0,62 --—762—00911
Ca = 7000 , a.Cub_= O-MCu
is read from the graph rcproduced in Fig. 2.4, knowing the value of r1 F
Q Cub
’ Ar 100
fhere P =
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(b) The ultimate or collapse load can be arrived at by consideration of

bending action only, the actions of all other stress components having been

neglected,.

(¢) 'he clastic dcformations are small compared to plastic ones and are

ignored,

(d) The moment-curvature relationship is idealised as shown in Pig. 2.5.

It follows "rigid-plastic" theory, which means that, the elastic deformations

having been neglected, the material stays rigid (no deformation) or else goes

plastic,

(e) The plastic deformations occur only along yield lines where the rein-

forcement yielded, while the parts into which the slab is divided by yield

lines remain plane,
The comments on the assumptions are as folluws:

(a) Where the concrete is overreinforced or where high tensile steel without
definite yield point is used as reinforcement, the plastic theory for
simple structurcs may still be permissible but it can not be on par with
the cxcellent response of steel structurcs to idealised plastic theory,
with quite extensive mechanisms (21),

(b) It may not bc worth while to attempt to obtain an exact solution for the
value of the failure moment since it involves writing down and solving the
relevant equilibrium equations compatible with the deformation system as
well as satisfying the boundary conditions, which is prohibitive.
Fortunately, the test results indicate that the ultimatc moment calculated
assuming bending action only is conservative and hence is on the safe side,

(¢) As obscrved by liorice (43) in his discussion on test results some

elastic deformations do take place in the arcas between yiecld lines and
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so these arcas do not, in fact, remain plane as assumed. All the
rotation does not occur on the assumed yield lines and other cracks form
near the main ones., He attri1b’utes these as the probable reason for the
formation of curved yield l-i-ne; :-L-n places wherce straight ones are
predicted,

(d) TFrom thc assumption (e), it follows that the deformed slab usually con-
sists of 2 series of inclined planes and since inclined planes meet in
straight lines, it is obvious that yicld lines are straight. A curved
yicld linc may be looked upon as the limiting case of yield lines form-

ing a polygon.

Definitions and Notation

(a) Isotropically reinforced slab is one in which the ultimate moment per
unit length is the same in two orthogonal directions. It also ind . cates
that moment can be taken to be the same in any direction,

(v) Orthotropically reinforced glab is one in which the ultimate moment per

unit longth is different in two orthogonal dircctions.
The terms isotropic and orthotropic may be applied to either top or
bottom reinforcement.

(c) & normal moment is that moment which is normal to the yield line or
which acts on a scotion parallel to yield line.

(a) A twisting moment is that moment which is tangential to the yield line or
which acls on a section perpendicular to yield lines

(e) Moment key notation (Fig. 2.6)

The moment key line at the side of the slab is an abbreviated form of the

statement "the normal moment per unit length on a yield line in this
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(a)

o> A6 =
direction is the value given",
A solid “key line" implies positive bending strength (i.e.) it refers
to tension reinforcement in the bottom of the slab and a "broken key
line" for negative strength (i.s,) top reinforcement in tension.

Sign Convention for moments (Pig. 2.7)

The sign convertion for normal and twisting moments is that the moments
acting on a region in the direction given in Fig, 2,7 (b) are regarded
as positive. Thus the normal moment m s when the bottom of the slab is
in tension ( sagging moment) is positive. The moment vector notation
used i. an anti-clockwise notation.

General Convention (Fig. 2.8)

The gencral convention that will be adopted to indicate the type of

support and type of yield line is shown in Fig, 2,8.

J chansen'sb "stepped" yield criterion (F:_inga 2:9)

The basic assumptions underlying it are as follows:

(i) The normal and tizisting moments on a yield line can be obtained by
considering each band of reinforcement in turn and adding the
individual effects,

(ii) For each band of reinforcement taken on its own, the yield line
may be considered to be divided into small steps parallel to, and

at right angles to the rcinforcement as shown in Fig. 2.9.

(iii)  All reinforcement crossing the yield line is assumed to yield.

(iv) an1 reinforcement is assumed to stay in its original straight line

when the steel yields (ie) therc is no kinking or change in

horizontal direction of steel crossing the yield line,
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#hen each band of reinforcement is considered on its own, on small
steps at right angles to the reinforcement there is only a normal
moment per unit length "m" whose value is given by equation (2.1),
(2.12) or (2.1b), while on the steps parallel to the reinforcement,
there is neither normal nor twisting moment.
The values of normal and twisting moments on the yield line are such
that they are equivalent to components of the normal moments on the

steps.

(») Evaluation of normal moment m, and twisting moment m__.

-

The normal and twisting moments per unit length of yield line are

given by

m
n

m
ns
where m

#

When thcr

mcoszﬁ ol S a el TR e s wg e TR )

" in B ot o e aee. vicel e PR ARELE vl s we & (245)

Moment as shown by Moment key line in Fig., 2.6.
= angle measured clockwise from m on tc the yield line.

e are several sets of reinfocement crossing a yield line, the

total value of m and m oo will be the sum of the separate effects of

reinforce

ns

Where m.
-

ment so that in general

n 2 i

= o5 m.COSﬂ. ® & ® s 8 s+ e o e s s s e w s s s e (204—3)
I &
n

= msmﬂCOSﬁ. e ® 8 & ° 8 s & s % s s 8 * a (2-5a)
{ 3 aha-nt 3

is the magnitude of a typical moment key linc and @ is the angle
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measurcd clockwise from the moment key line m, on to the yield line, In
applying the above equations, only the mi values having the same sign as

that of the yield line are considered.

2.5 General discussion on yield criterion

The yield criterion (13) that has already been established for rein-

forced concrete, namely
B
. 2
n = :
0 Z m ces ﬂi

e 1

is quite sufficient as the definition of the yicld criterion so long as it

is couplecd with the statement that only normal gotations ©n are allcwed.

The valuc indicated for the twisting moment on yield lines,

n
m.= & m, sin ﬂi cos ﬂi
i=1

is not a necessary part of yield-line theory.

In the present investigation, neither "square" criterion for isotropic
reinforcement nor the "stepped" criterion for orthotropic reinforcement
will be adoptcd in their entirety. The value of the normal moment m will

be accepted as reliable for a designer.

2,6 Important Theorems on yield lines

Theorem I The yicld line between two parts of a slab must pass through the
point of interscction of their axis of notation, which usually lie along
lines of support or pass over any columns.

Theorem IT The yicld pattcrn is dectcrmined by the axes of rotation of the

verious parts of thc slab and the ratios between them.
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Theorem IIT  The yicld pattern corrcsponds to a maximum absolute valuc of
the ultimatc moment per unit length.
The proofs of the above theorems are given by Johansen (6).

2,7 Affinity or Transformation Theorcms (Fig. 2.10)

The affinity theorcms arc applicable only to slabs which arc reinforccd
such that thc upper and the lower reinforcements run in the same dircctions.

If thesc dircctions arc chosen as co-ordinatc axes, the ultimate moments
m end -m' will be in sections parallcl to the X-axis, with Aym and -'q'm' in
sections parallel to the Y~axis. Fig. 2,10 shows an arbitrary part of a slab
in which the resultant of thc positive ultimatc moments is so dectermined by
the veetor "a" that the components parallel to the axis arc Mx = ma_,

M = Mma_ ,in which a_and a_ are the components of "a" in the direction
4 b X J.
of thc axcs. In the same way, the resultant of the negative ultimate moments

' ' 1 !
is determined by the vectar "b", the components being M _=mb, and My = ,q'm b,

Theorem IV is applicable in the cases where M' = X and also to slabs with
simple reinforcemcnt in which m' and A’m' =0,
Theorem V requircs that a = b for every part of the slab but it is possible
for Iu'#: M
Theorem IV

In an orthptropic slab with thc ultimatc moments per unit length m, jam
for he bottom reinforcement and -m', -4ym' for the top, the directions of
reinforcement being thc same for top and bottom, m and m' can be calculated
by” transforming thc orthotropic slab to a corresponding isotropic slab; the
r‘iimnsims of isotropic slab in the dircctions of vectors m and -m' arc obtaimed
from thosc of the orthotropic slab by dividing by \//-‘: . The load per unit area

is the samc for both slabs and the yield patterns correspond.
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A single force P may be lookcd upon as being a load concentrated over
a small arca Ah. For the transformed slab, the corresponding arca will be

A‘L"/ f,& end the force P/m .

Thecorem V In an orthotropic slab with the ultimate moments per unit length
My A4 for the bottom reinforcement and -m', M'm' for the top, the dircctions
of reinforcement being the same for top and bottom, and in which the resultants
of the positive and negative ultimate moments for each part of the slab can

be defined by onc and the same vector, m and -m' can bc calculated as for an

isotropic transformcd slab as in Thcorcm IV exccpt that . rcplaccs s Where
P g FOP

Nizgﬁ-ﬁffﬁl ‘e T ab s N it L 256)

The load per unit arca is the samc for both slabs, and the yicld pattcrns

again corrcspond.

2,8 The Work Equation

"If = displacement system is given to a slab having a valid failurc
mechanism, then the work donc by the external loads is cqual to the work donc
in thc yicld lincs in taking up thc displacement systcm."

The mathematical form of the above statoment is called the Work Equation

and is given by the cxpression

2[]]77 Adx dy] = Z[On[mndS] e o o s & a2 & & @ ® ° s = (2-7\
Each rcgion Each line,

Wherc w is the load/unit arca at the point x,y on a rigid region and
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A is the deflcction at the same point
m is thc normal moment/unit length at a point on a yield line,
Qn is thc normal rotation of the yicld line at that point
and ds is a short lcngth of yicld linc at that point,
The rotation Gn along a straight yicld linc is constant and m s until
specifically stated otherwise, is assumed constant along a yield linec,

Therefore ccuation (2,7) will reduce to

= I"{- P
ZLJ)(WAdxdy] E[(mnlgn)]...-........... (2.7&)
Each region Each linc
where 1 is the length of a yicld line.

Using veetor component method (13) » the equation (2.7a) can be rewritten as

N - N .
i [fjwddxd;:j}: i[z(mx1x0x)+2(myly0y)] b5 iy a-w LESTD)

Each region Each region

wherc E(mxlex) , 1impliecs that the quantity (mxlex) is calculated for
each linc round the boundary of rigid region 4 and the values so calculated
are summcd af'tur assigning the corrcct sign, The cxprecssions in y arc
similar and the lettor suffixes B .... N refer to other rigid regions,.

(Mx) " moment/unit length, in thc dircction of the X-axis chosen for

1

rigid rcgion 4, for a yicld linc on the boundary of region A,
(1x) 4 = Projoction of that yicld linc on to the choscn X-axis for rigid
region A,

(Ox) 4 = rotation of rigid region A about the X-axis.
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CHAPTER 3
ULTIMATE STRENGTH OF A COMPOSITE BEAM

3e1 INTRODUCTION

A composite beam bridge can be looked upon as a structure (Fig. 3.1)
consisting of o numbcr of single composite beams jointed together and made to
interact by the continuity of transverse rcinforcement through the flange slabe
If, thercfore, the ultimate strength of a single composite beam subjected to
longitudinsl bending is determined, it can be related to the ultimate strength
of th: bridge as a wholce The behaviour of a composite beam, when it is part
of o bridge is complex and can be simplified by using the concept of ;'effective
width", which will be discussed later.

Tests indicate that strain-hardening (44 to 52) where occurs, results in
a considerable increase of collapse load and so it is proposed to also allow
for its effect on maximum moment,

Beforc o general formula for ultimate moment of resistance of a composite
beam is derived, it is nccessary to investigate,

(a) the secondary modes of failure and their prevention in order to

realise the full thecoretical maximum moment,

(b) the state of deformation in concrcte and steel at or near collapse,

(c) the effect of slip on the meximum moment,
and (d) the effective width of slab acting with the bcam.

(a) the possible sccondary modes of failure include,

(i) longitudinal splitting of slab along the shear conncctors.
(ii) wvertical separation of the slab and beam.

(iii) 1lateral buckling of the joist.
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The failurc of type (i) was observed by 4 dekola (53), Barnard and Johnson
(54) and Sicss (55). Adekola pointed out that the catse of this failure was the
transverse tensile stress along thc length of the boam and suggested that a
minimum transverse rcinforcement of 0,4% with adequate bond length was
sufficient to prevent such failure at working load., The author tested composite
beams with the ratio of flange width to span equrl to Q.4 and 0,167, the trans-
verse reinforcement being the samec in both cases. The former developed longi-
tudinal cracks (Fige 3.2) beforc the collapse load rcached where as they were
completely sbsent in the latter (Pig. 3.3), which indicates that = proper
choice of width to span ratio, for a given percentage of transverse reinforce-
ment is also cssential to prevent this type of f‘ailure.

The feilure of type (ii) can be prevented by preper design and proportion-
ing of shear connectors, Headed studs and other types of shear connectors
have been standardised (56) to have sufficient horizontal projection to prevent
the slab from lifting up,

The type of failure (iii) does not appear serious in the case of simply
supported structures since the entirc flange which is in compression, acts with
.the steel member up to its failure.

(®) The Statc of deformation at or ncar collapse.

Llmost all beams tested by Chapman and Balakrishnan (57) have cxhibited
strain-hardcning. The experimental moments cxceeded the theoretical moments
calculatcd using CeP117 (modificd) by 10 to 306. The measured concrcte strains
at or near collapse wecre about 20 to 60/ greater than those at spalling of con-
cretc nnd the corrcsponding loads were sbout 5 to 12,54 greater. Chapman ( 58)
observcd that when the strain at the top surface of the concrete slab reached a

value of about 0.38%, spalling of concrete began and the ultimate strength of



FIG.3.2 Part of Control Beam BICB after failure
Span=2'-6"
Width=1-0"
Maximum Load(Central )=6.8tons
Longitudinal crack first observed at 5.5tons.
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the scetion was then almost fully mobilised. 4s the curvature of the section
wag further increased, the load carried remained approximately constant and
the crushing of the slab extended dovmwards whilst strain-hardening began in
the bottom flangc of the bcams The present tests confirm this observation
particularly in tﬁe cases where strain-hardening is found to have occurred.

The beams tested by Barnard and Johnson (54) did not rcach the strain-
hardening stagc at collapse. Thcy observed that the shape of the stress—strain
curve for concrcte had virtually no effect on the valuc of maximum moment but
had an important effcect on the value of ecu, the concrete edge strain at which
maximum momcnt was reached. They further observed that when the neutral axis
was in thc slab at maximum moment, the assumption that steel was fully plastic
had led to over-cstimetion of maximum momcnt by a maximum of 11%; but in most
practical cases the error was less than e 3

(¢) Effcct of Slip

Barnard and Johnson (54) pointed out that the theory for maximum moment
provided a safc cstimate even when large slip strains wecre present. Slutter
and Driscoll (59) stated that if the sum of the ultimate strengths ef aJl -
shear conncctors in the shcar span was sufficient te Batisfy the equilibrium
conditions at ultimate load, then the thecoretical ultimate moment could be
obtained, which implics that the effect of slip can be ignored, if sufficient
shear conncetion is provided,

(d) Effcctive Width

The analysis of a Compositc becam and slab system is rcally a threc-
dimensional problem, In this investigation,thc three-dimensional nature of
thc problcem is by-passcd by treating thc slab as a thin plate forming the

compression flange of the steecl joist, which is analysed by the theory of
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simplc bending. In a compound structure of beams made integral with a slab,
undcr transverse load, the frec bending of the beams is to some extent
rcduced both by the bending of the slab and, when the ncutral plane of the
slab docs not contain thce neutral axes of the beams, by forces induced in
the planc of the slab as a result of bending. Some authors (60,61) have sug-
gested that this rcstriction on free bending of a beam can be simulated by
introducing thc concept of "effective width" in which a certain proportion
of the slab acts, in bending, with the beam. The alvantage of this artifice
is that, if thc megnitude of the effective width is found, the rest is
analysed by the simple bending theory. It is probably true to say that the
need for such a concept has been felt because the amount of computation
required in the rational design of a composite structure was otherwise
prohibitive. Allen and Severn (62) suggested that a basis for calculation
of cffcective width could be the cquality of maximum deflection or of the
maximum strcss in the bcam. adckole (53) defined the effective width of a
sleb s that width of the slab which would sustain a force equal to the
actual force in the slab, if the longitudinal stress across the slab were
constant and equal in magnitude to the theoretical longitudinal stress at
middlc surface of the slab at its junction with the stecl joist. By
Harmonic .nalysis, he obtadined the cffective widths of slab at mid span for
a singlc composite bcam and for a slab continuous over many steel joists as
0,303 and 04308 of span respectively. He also pointed out that the effective
width was sbout 12 times the thickness of the slab, in which case the shecar
lag cffect (63) was ncgligibly small. Timoshenko (6)) defined the effective
width of compression flange as that width which replaced the actual width

such that the clementary thcery of bending applied to such a transformed beam
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cross section gave the correct value of maximum bending stress which was uni-
form ccross the effective width., He obtained the expression for the effective

width Bc as
—— L .
e = -'T(1.5 _y _v72 e ® o ® 8 8 * s = o W' W e e ® (301)

B

Poisson's ratio

g
H
o
R
1

L = Span of the beam

Taking ) = O for concrete, it can be shown that

Be='l’-.—1.‘7 ® & 'S 8-V o & § ere-e N SF s W 4R ¥ e (302)

Adekols snd Timoshenko derived their values assuming that the structure is in
elastic stote and so they are not strictly applicable at or near ultimate load
conditions,.

Lemp (65) defined the effective width under ultimate load conditions as
that width which, in stress block anelysis with ultimate compressive stress
of Ou7k cyy, resulted in the same concrete force with the same line of action
as s found from his more complex theoretical model of the behaviour of the
beam. He made simplifying assumptions in order to make allowance for the
veriation of neutral axis depth ncross the brcadth of the slab due to in-
plane shear forces and transversc bending and for the reduction in the com=
pressive sgrength (66 ,67) due to longitudinal cracking and to shear stress

on transverse planes and derived the effective width as

1"

(1 - 0.96 B/I..) B when B/L < 0.31 e % 8 o ®.e s o (3.3)

where B = .4ctual width of flange.

B
e

Kemp's formula cen be expressed in a more gerneral form as
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.3 Bup <
when /IJ O. N W . T RN S T Y T T e e e (305)
Z1+B1Sa.'

Where a' and B are coefficients read from graphs based on Hognestad's stress

B = [1-0.625%'- (1-;312)%}13 A T . ¢

block (41,68) reproduced in Fig, 2.3 or calculated from the expressions (2.2)
and (2.3) respectively and [31 is the coefficient which takes account of the
reduction in compressive strength of concrete due to in-plane shear stresses

and is derived elscwherc (66,67).

If B, = Os4, the cquation (3.4) will reduce to
s a'B : a5
BC = (1 - O’.525 B L)B S ¢ B & & 8 8 6w B e o W VW BB (3.6)

W'hCnB/L<0557B/Q«' ® & & 2 0 s e e v e 0 0 0 s e q e e s e (307)
Kemp's formula (Equation (343)) is a particular case of gencral equation (3.4)

1
when }31 =  Qsly - and W /(3 = 1.85, which nearly corresponds to a value of

f‘c = 2000 PSI.

B
Johnson (69) suggests a simpler formula, B, = (1 - /0)0 o . {3,8)

CeP+117 part 2 (70) gives the following formula for effcctive width:

B=’“"B ooooooo.ocoocolo.ooli (309)

The equations (3.6), (3.8) and (3.9) arc plotted in Wig. 3.4. It will be

interesting to note that they all give rcasonably close values in the range
of B/L valucs encountered in practical bridge problems.
LCI-ASCE Committec 333 (71) recommend the effective width of conercte

flange should not exceed one-fourth of the span length of the beam, and the
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overhanging width on either side of the prefabricated becam should not exceed
8 times thc thickness of the slab nor one-half the clear distance to the
next beam. Brendel (72) presents in his paper thc code requirements for
effective width that are in force in European and other countries. From all
thesc formulsc, one point emerges out that the effective width is a function
of either span length, thickness of slab or both. The proposed formula
(Bquation (3.7)) is mainly a function of ?/L but takes into account the
variation in strength of concretee.
342 Assumptions
l In the light of above discussion and from other considerations, the
following assumptions are made in deriving a formula for ultimatc moment €

resistance of a composite beam:

;j‘!ho moment of :c-istanéo 1s-pkovid§d:57’t§6 ﬁtf&#é-blaékilr
éﬁ)in,whioh the concrete above neutral axis is stressed to the

crushing strength of the material and the steel is stressed
to ite yiela strengti.

(i4i) strains produced by welding of shear connectors, shrinkage of con-
crete, breep under load and temperature changes arc mot considered.
In practice, they are quite uncertain and can not easily bc pre-
dicted.

(4ii) the stress-strain propertics of steel are obtained from tensile tests
on specimens, Steecl has ti’le same properties in tension and com=
pression, The ultimate load charscteristics of stress block far
concretc in flexural compression are as given in Fig. 2,3.

(iv) the ultimate moment is mobilised when the maximum edge strain

rcaches the valuc obtained from Fig.2,3 or given by

!
B~ MO SELL R W E PR i (3410
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(v) the shear connection between the slab and the joist is rigid so
that therc is no distortion of strain distribution at the interfacc.
In other words, the slip betwcen the slab and the joist is neglected.
(vi) the effective width of slab acting with thc beam is equal to the
valuc given bc cquation (3.4) or {349).
(vii) the stecl joist is reprcsented by three reactanguler aresgof steel
to calculate tensile forces and the flange are concentrated at
points "d" apart where d is the depth of the steel section. Vide
Fig. 3.5(a).
(viii) concrete below neutral axis is ignored.
(xi) the longitudinal reinforcement at bottom of slab is ignored as it is
not likely to yield, being nearer the neutral axis. The longitudinal
reinforcement at top of the slab yiclds and contributes to the

ultimate moment of the beam,

3¢3 Derivation of formulac allowing for strain-~hardening

assuming the idealised strain and stress distribution shown in Fig. 3.5
and Fig. 346, general formulac for the ultimatc moment are derived.

Case (i) Neutral axis within thc slab and steel section partly elastic

Vide Fige 345(b) and Fig. 3.5(c)

The moment of resistance is given by
d : %5
- oy ' ;i i e
My =h f{D-%/2) +a b £.D+a a Th e (1 : )D

]
f -f y') a
- afits(fy - f;)t -a.a, f As (—x-—z—-— <-3£ D + t)

: :
-Q'BeancﬁnD-frfyr% @« o & © 8 o ® s & ® & s a2 e » (3'11)
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The neutral axis depth nD is given by
2
n—P1n-P2=O © % e 8 8 s @ 8 & B e s e s e 0 s s = (}.12)

where

i
1

[\1-. s-—(a +a f)(u+r)-s(1+u)(af-afg):l (}13)
— v ! .

b e

- m——— .

2su-a £k Ru+r) -1+ u) ]

5 Lmz[(zaf-n»awf) + gs(Zaf —awfg)] ( )
= i i : ) T T S - S 30110-
2 2su - a f k [(u + r)2 - s(1 + u)2]

-~ Fay e
where e cu b ES 2

Il

F s
& g /gfx' ap =n§r—12
a'B- ‘bt
c . n (f X f')
A P e Y ¥y
k, = — £
Y [u
a'B, D T £y = === [-5 ~(u+r):|
D
£ = “/a a' and B are obtained from
%
g = /D Pige 2.3 or from equations
B = 74 (242 and (2.3).
a = '[N'/Aa

1
- '
C—aBeanc

'
E

Q
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Case (dii) Neutral axis within the slab and stecl fully plastic.

Vide Pig. 346(b) and 3.6(c)

M =4_ TF (D-d/2)+a B N O f'ésfs D(1 --&zé)
C o y f 8 3 w s "—2 3

'
-G.'BeancBnD-urfyrar......-....--. (3.15)
The neutral =xis depth nD is given by

2
n"F1n-F2=O @ ® & o @ & & © © e o s © 8 e @ e s @ (3’16)

where

k, .
el A le Ve Ry )] = e ol |
1 2 - - - . L] .
2su-awfk (u+r)

2.

ku (2af+awf)
P, = D AR TS s W W ST G W e e 8 A e (3.18)
Zsu-awfk(u-orr)

Case (4ii) Neutral axis in the stecl beam.

This casc is not considered here, as in such cases, the strain-hardening

effect can be safely ignored.

3e4 Computer programme.

L "program" for K.D.F.9 Computer (lLppendix 1 gives a copy of programme in
Litlas \utocode) was prepared to calculate I\.ic and other quantities for the
above two cases. +hen steel does not recach the strain-hsrdening stage at
Maximum moment which dcvelops when the maximum concrete edge strain reaches
the value specificd in assumption (iv), the programmc automatically ignores

the strain-hardening, This occurs when,

or nzw&,“..................- (5019)
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3.5 Comparison with test results.

In order to check the validity of sbove formulae, the programme was run
using the test data published by Chapman and Balakrishnan(57). The theoretical
and experimental results are compared in Table 3.1. There is a very close
agreemcnt. ‘The ultimate moments for becams A5 and A6 are overestimated, the
reason being that they arc not provided with sufficient shear connection to
develop full theoretical ultimate moment, ‘he collapse of bcam As, as a

matter of fact, is caused by stud failure,

346 Derivation of formulae, without allowing for strain-hardening

Case (i) Neutral axis within the slab and steel partly elastic

substituting s——> 00 and f =0 in equations (3411) to (3.14),

g s
f =flalb
o d . : ( c
M, = byt (D-/2) o, h(f, - £)t - o a £4 J——Xzz =+ t)
]
-O.'B/‘ancﬁnD-ArfyTar0000000000000-00 (3.20)

The neutral axis depth is given by

2
n-P1n"P2=O e ® o 8 5 e & 8 * e T 8 ° ® s o ° = @ (3.21)

2uk [(1 -i_;c)- (1 + u)(af »a & g)]

where P1 —
2u + a fk(1+u)2
W
2
lcug(Zaf-a f g)
W
oo . ¥y = 2
2u+awf'k(1+u)

Case (ii) Neutral axis within the slab and stecel fully plastic (Fige 3.7)

substituting s > 00 and fg = 0 in equations (3.15) to (3.18),

M =1L3fy(D-d/2)-G.'Bean;ﬁnD-%f"r" e . o o 0. 0 @ (3.21#)

c i 4
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Comparison of Test Results.

Chapman and Balakrishnan's Experiments,

Be am E L1 ‘ A2 .‘.1.3 jxl', J’& 5 AG
Type of loading } point lcad at mid span
- |

Conpector design 38 52 %7 57 72 99
% ge

Type of conncctors Headed| studs

ool 4270 | 4960 | 3560 | 4560 | 5900 | 5930
yicld stross TeSels

= 15435 Ly 16495 16436 15434 14,87
r 4143 4e6 1 1 1 24
s 2.1 177 21415 10.66 10.66 177
obscrved ¥
concrete strain j

at spalling of .0038 .mzlj .00&-3 .0@;.0 .MO .00!;,5
concrcte

observed conercte strain I ‘
st Gribeareciitapes +004913 1,006863 |o0Q413 |+004756 [+005175 | «004262
Exptal ulti.load (tons) L3 45 45 52 47 4245
Theorctical concrete _ -

straine- ecu ® .00544 .00335 .szj 000314.0 .00323 000322
at maximum moment :

Theoretical +

ultimate lond temn 40,53 4h e 25 45420 53481 56471 49462
r— - -

Exptal ulti. .load
| Theorotical Icad 1,08 1,02 0,998 | 0,97 0.83 0,86

Exptal concrote strain

at spalling cf concrete 40

e e et 4 1522 1.22 1,18 1o 140
edge strain !
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The necutral axis depth nD is given by

As{y-A.rfyr
nD: 'B'f' @ ® & & © o e e © & © ® 6 © e & * o ® (3.25)
G'CC

The formulz (3.2,) can be re-written as

M, = Anfy(d/2+t-ﬁxm)+Arfyr(pnn-ar) SCE T RIS (-

If longitudinal recinforcement in slab is ignored (l;r = O), the usual formula

is obtained,

ﬁ £
M, = ag Oy Lo + oty (3.24b)

. R TR oy R
G,'Be fc

Barnard (5) sssumes a minimum value of 0.54 for the coefficient B/a.'

Slutter (59) and ACT=ASCE Committee (71) assume P/a' = 0.59.

Viest (56) assumes B/a.' = 0s5

If the cylinder strength f; = 085 c, where e, cube strength, the formula

(3424b) can be re-written as,

3T

- A 2 d ﬁ 8 .Y
Mc~Aafy[/2+t—o.85a'Becu] ® & ® ® @ @ ° & 0o ° w e @ (3024-0)

In C*P*117 part 1 (73), the coefficient -O—Bg—.a_.? is replaced by a
conservative value of 0475 i.e. B/a.' = 00,6375, In addition the cube strength

o

is rcduced by a further factor 2/3 and 2 nominal yield strcss is assumed for
steel,

In the present investigation, it is proposed to use the formula (3.24)
obtaining the values of a' and B from the graph in Fig, 2.3 or from equations
(345) and (3.6). In other words, cz.'/‘3 is varisble and takes the value from

0.54 to 0,668 corresponding to the value of f; = 2000 to 8000 PSI-
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Case (iii) Neutrsl axis in the steel beam.

Thig case is morc complex than other cases and further assumptions have
to be made. As suggcested by Barnard (7), the meximum moment can be calculated
with sufficient accuracy for practical purposes, if it is assumed that steel
is plastic in tension and compression and the concrete force, with its line of
action at t/ 2 from top of slab, is cqual to

* 1 : 26)
Cc—:O.BBetfc o % ® o .0 ¢ 9 ® & 6 _# e & PN O 9.0 (30

The assumed distribution of strcss is shown in Fig. 3.8.
Resolving longitudinally,

1
Asfy-'-'- 2.". +0.8Betfc+lxz,fyr o ¢ & @ & ‘9§ Teo_4 e (3.27)

os f}'
This cquation gives .isc, area of steel in compression and hence dc and nD
since thc dimensions of steel are knoim,.

Taking moments about thc neutral axis,

B = a b ' %

M, = Ay fy(D - /2 =) + b, rgd, + 0.8 B, t £, (nD = /2)

+-‘.Tf.yr(nD"ar) o B @ WS GEow e e & RS (5028)
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CHAPTER L
UPPER-BOUND SOLUTIONS BY CONSIDERLTION OF COLLAPSE MECHANISMS.

4.1 Introduction

An upper-bound solution provides either the correct collapsec load or
elsc predicts too high a collapse loade  The basic conditions of an upper-
bound solutions are:

(i) 4 valid mechanism vwhich will satisfy the boundary conditions is

presupposcds

(ii) The work done by external loads must equal the internal work

dissipated.
(iii) The stress-strain relationship of material follows "Rigid-plastic"
theory. 3

(iv) The deformations are defined such that the system must obey the

yield criterion,

T he condition (ii) does not allow constant collapsc loads with strain-
hardening stcels or materials with no well-defined yicld point, i.e. Limit
inalysis (19) is then not applicable but the results arc no doubt safe &s
long as the yield stress is well defined for the material.

Several altcrnative yicld-linc patterns arc considered and the lowest
value of collapse load cbtained is taken as the "upper-bound" value. Using
the .ork Foustion presented in the previous chapter, upper-bound solutions
will now bec derived for certain simply supportcd composite Beam and Slab
Bridgcs, troating cach of them as (2) Equivalent orthotropic slab and

(b) Beam and slab system.

(a) Euivalent orthotropic sleb method
The ultimate load analysis‘ of a composite beam and slab system presents
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problems which ¢ far more complex than thosc of simple slabs. The failure
mode is greatly influenced by the geometrical arrangement of beams. No
exact method has yct been developed for its analysis. The Equivalent slab
method is a great simplification of the behaviour of the structure and has
been employed (75,76,77) successfully in the clastic analysis of bridge
decks, Sawko and Saha (78) have cxtended the same to calculate collapse
load on o grillage tested by Reynolds (79) and demonstrated the simplicity of
this approach compared to the alternative plastic hinge analysis (79). They
pointed out that an open grillage was an extreme case and an actual bridge
deck would approach the behaviour of the arthotropic slab with smaller rib
sizes and fie above method would be even more justifieds

The transformation of a Beam and Slab Bridge to an equivalent orthotropic
slab for yicld-line analysis is done as follows:
The total actual width B of a bridge deck is replaced by an equivalent

width (Fig. 4e1) given by

2Mceh -
ch(n—Z)h-i-M oc.o.o‘coloovao',ol (}4-01)
c
where n = total number of composite beams including outer ones,
i = ultimate moment of an inner beam (T-beam),
Mcc_ = ultimate moment of an outcr beam (L-bcam),
h = spacing of bcams

In the equivalent slab the end supports of beams are replaced by point
supports (Fig., 4.2). The positive (sagging) ultimate moments of beams and
slab arc replaced by an equivalent ultimatc moment /uem per unit width of slab
as indicated by the moment key linc in Pigs 442(b). ‘he value of A m

for a bridgc deck with L-beams at cdges (Fige 4e1) is given by
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(n-2) M+ 2Mce + (n~1)(h=-B ) 4Ym
A= - OV WP

H
c

For a bridge dcck with a1l identical T-bcams,

Mc + (h—Bc),um

Mo = T et LA S e e [

- Sk ML o vy -

atoc] sestice, VP a1l the beams

arc identical T-beams, the equivalent width cquals actusl width (Fige 4.3)

(b) Bcam and slab liethod

In this method thc structure is divided into individual longitudinal
members and transverse slab cach posscssing the appropriate uli;imate strength.
The longitudinal members consist of (i) composite Beam with an effective width
of slab acting with it and (ii) longitudinal strip of slab in excess of the
effcetive width (Pige 4e3)s Thc slab is assumed continuous over several lire
supports providcd by the beams, The modes of collapsc involve plastic hinges
in thc beams: When a plastie hinge dovelops in a beam, the beam is ignored
except that its cnd supports still act as peint supports to the slab which

now spans botween the adjacent beams (Fige liek)e

4«2 Punching Shear.

Before moment type failurcs based on yield-line theory are considered
it is nececssary to investigate punching shear failurc which has been of
frequent occurance in laboratory tests (80 to 84). Since the provision of
shear rcinforcement is not always practicable in slabs, the practicc is to
minimisc thc chances of punching shcar fallure by proper proportioning and

detailing of members of a struoture,
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Punching shear is a complcx phenomenon involving a three dimensional
criterion of failure. Most of the formulae in use at present are cmpirical
based on expecriments, |

Basec (82) tested slabs 24" x 24" x 3" with a central punch A" squarc.

The ultimatc shear stress vc bascd on a critical section at a distance of half

the slab thickness outside the loaded arca was found to depend on the per-
centegc of ruinforcement. Thus, when the percentage of reinforcement varies

from 0,54 to 2,46, it was obscrved that

vc=220t030041b5/in?..............- (ll-oll-)

Teychenne (85) gave a formula for the modulus of rupture for sand =nd

gravcl concretcs as

VO = 83 \[cubcstrengfh ® & o e & * 4 e & o o e e = (405)

wherc ek ultimnte shear stress at zero distance fromthe punch.

The tests of Richart and Kluge (81) indicated that

'
v = 0.081 f‘c for 6" dia, disks
]
= 00079 fC fOI‘ 2" .{l. diSkS e o & 8 e © o ® 85 e ® (h-.6)
where v, = ultimate shear stross at a critical section at a
distance equal to the effective depth of the slab

outside the loaded arca,

‘hitney (86) who investigated the ultimate shear strength of Flat

slabs, Footings, Beams and Frame members, suggested a formula, which included

the cifeet of the flexural strength of slab and which showed an excellent

agrecment with the rcsults calculated from both the slab and footing tests..



His formula is

d
N 5 W
Vc—1CX)+O.752 1 ¢ -4 &.8 @ © 0 e o 5 & N B B (L|-07)
d 8
.1
where m = lMoment capacity pcr inch width of slab

d, = Effcctive depth of slab

1 = Distance from the face of the column to load position.

v_ = ultimate shear strcss at a distance d1/ 2 from the loaded arca.
Yitshaki (87) developed a formula for evaluating the punching strength of

rcinforced concretc related to the flexural strength of slab.

V1 =(149'5+00161“Pfy) ® 6 % 8 8 & & e & e 08 & = 8 8 @ (4.8)

mv.

Ppunch='5"i.,_'a1-(}.,.a+8d1)o.occoooooo-oooo (20-.9)
¥

Ar/d = proportion of reinforcement,

wherc p 1

a = side length of loaded area of square shape. For round and
rectangular shapes, a is taken as the side length of a square
shapc having the same arca,

v, = Ultimate shear stress at a critical section at a distancc cqual
to d1 from the loadcd arca.

sunch = Punching load.

The punching failurc can bc avoided by satisfying the condition that

P = P in which casc, the balanced reinforcement strength ghould
flex punch

be equal to 149.3 (1 + 0.52)
d

POfy= 1a ® s © 8 8 & 2 e s 8 e = (14..10)
1 = 0.164(1 + 0,53 )
1




O

wherc Pflex = collapse load at flcxural failurec

b

" Balanced proportion of rcinforccement.

loc's (88) cmpirical formula for the ultimate shear stress is

: :
15 | £, (1 - 0.075 %)
1

h'd =
(o] 1 booooo-oooo-(ll-011)
1+ 21a.d.1 I_f
o4 c
Pflox
\fhcrc Ppmch = Lpad1vo i I At S I SR S LR TR T S N S N O (4012)
a = side length of loadcd arca of squarc shape.
For rcctangular shapes,
s s
= L1 1 1
anom 1[1 -T.(1 -.l_)] 2 & e 09 @ S 9P A WS &al¥ (2‘-,13)

1

Where 11 and s, arc rcspeetively the lengths of the longest and shortest
sides of the rcctangular arca.

For design purposecs his rccommcendations arc

<
1
Ll

a . a
A (9:23 - 1.1231-) ! . for-a1— =3
looo.o..(l’-.Jll}.)

<
n

(2.5+1Oi—1-) F; for-%;- S 3
Strictly specaking the above formulac arc applicable to thc’ fiz}‘g_s_whioh
do not act compositely with tho beams. Test (80) indicated that the punching
load per pancl is found to be 20 to 256 larger for the composite than for the
non-compositc bridges. This may bc cxplained like this, ‘hen the slab is
in dircet comprcssion, as it is at mid span of a composite beam bridge, the

neutral axis for local bending undcr the load is at a lower level than normal
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and there is a larger arca available to resist shear; consequently the
punching load is higher. These tests also indicatc that the resistance to
punching incrcascs with restraint to rotation at the edges of the punched
pancl, Tcsts of short and Thomas (83) also confirm this increase of punching
load, which veried from 40 to 50 percent. Therc is no satisfactory thecory
at prescnt to account for the increascs of punching load causcd by the
composite action,

In thc present investigation, it is proposed to adopt loe's (88)

recommendations and increcasc the punching load by 204 to allow for the

composite action,
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4.3 Solutions by Equivalent Slab lethod

he3e1 Thrce-longitudinal composite Beam Bridge with point load at mid span

of inncr longitudinal (Fig, 4.5)

The outer beams arc frce to rotate about their own axis and their ends
arc not held down. Thoreforc it is assumcd that no moment is developed along

the negative yicld lincs Wshb@jplpu). The sclf weight of the

bridge is ignorcd. The possibl: modes of collapse arc considered belows

Mode & (Fig. 4e6)
In this mode, failurc takecs place across the whole width of the *bridge
deck. Tor a vertical displacement of unity along the yicld linc DE the work

Buation yiclds the following expression for collapse load:

B, = 12 ynmp ST - s S e PN S SR e . L

where P = h/L

lode B (Fig. 4.7)

For a unit displaccment under the load, the Work Equation yiclds 3
PB/m = A1« i,) tan ﬁ/2 + 2 Sec(\r"ﬂ/Z){He cos ¢/2 siny - sin ﬁ/zcosgy}
+ 2i, cos ﬁ/z soc(\V—- ,6/2) cosecyy {ﬂls'inz\f' ¥ cosz\’/}-ri coty] vo(4e16)

where § and \}/ are the parameters which define the yicld-line pattern,.
ﬂe » /H" :i.1 end i2 arc the coefficients indicating the variation of ultimate
moment m (rcinforcement) as shom by thc moment key lines.

From the gcometry of the yicld line pattern, it can be showm that

\/’cot\}/-t—tan[é/z-—-%; £ o @ Spetin TR BRI s . o » & UhetD)
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where ) = X

x = Distance of yicld line BB from the load.
I, = span of the bridge.

substituting for from Equation (4.17) in Equation (4,16) and simplifying,
Y q q

) . 2 . dog i
PB/m= 2[2(11 - 212) tanﬁ/z-t-h.(‘l +12) ton ¢/2+4(/-(e+12}45 +-X2A -
+-\7\.—7_tcm<r/1] o s« +(4:18)

P i
d( B/ m) = 0 lcads to

(21, - i 1)

t&np = = g e & ® e & 8 ® o ® ® % ® & ° ©°© e e = ® (#019)
& Rl . i,) .
r
a B/m) = 0 leads to
di
3 . 2 iy
I = 24.(1 + 12) tan ﬂ/2+k-(MC + lZH) e ® & & ® 8 e ® a s @ (2{-.&)
substituting from Eq., (4e20) for in Eq, (4e19),

J;‘-T(ﬁz'i‘lﬂ)
oI = = E?———o—.c--o.-.-ooooou (10-021)
. ¢/2 Ji k1 » i) %, = i43ral

< /
__)ue - 12‘4

where 'qi s 12

Substituting from BEquation (4.21) for ton B /2 in Equation (4.20),

_sz +i1)i2-i12+3+21 (il
. Y, -

substituting for tan ,0/2 and )\ in Equation (4.18),



-~ 45 =

g

= zc/,(,(l {4(1+i1)12-i12-0_-3ftzi}........ i P e w Xb32)

As per the :J‘Lissumption made in this particular bridge deck, the negative
AB an

yield lincstB do not devclop any moment which means that i1m = 3*1:0

Substituting i1=i==_ 0, the folloMng equations applicable in this case are

obtaincds

PB/Zl = & M;* B :

e LY
A —-__J—S_:-‘_‘* :o.oo-.ooouo'-'{o.o-oc (2;..21;.)

A f::‘.' &[Z‘: :

e i M

b o, (4 +45)

Mode C (Fige L4.8)

This is a punching shear faoilure and should not occur if there is
perfect intcraction between the stcel joist and the slab at ultimate load
conditions and both of them fail simultancously. If there is not sufficient
shear comnection to prevent slip and uplift between the steel joist and the
sleb at mid span the slab will get separated from the joist which would have
foiled ncar ultimate load and will span bectween the outer girders. Thus, there
is 2 chencc of the loed punching through the slab.

From lice's cmpirical formulae (4«12 to 4elk),

P 3 : _
punCh_l‘-ad1vo TSNS & ¥R GRS RS e SRS 6.0 0 & @ (4‘24')
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Increeasing the punching load of slab by 20%

Pcz_lfi‘ﬁ +1.2Ppunch ® @ © 0 ® e © & O @ ® e * e e & 0 e = (4’25)

Maximum cfficiency of o deck is achicved when the failure of mode A takes
place, provided mode C is prevconted by proper design.

Mode - procedes mode B if
i< B

which gives

P<J§ __.___“"1_
M

|, ®he cquation (4.26) is plotted in Fig, 4.9 from which it is

SR TIPSR A & B SRR TP e W e

possible to predict the mode of failure for the given values of P and

“/(fi or to choosc their wvalues for a failure mode which results in

Me

maximum cfficiency of the decks .

he3.2 Threc-longitudinal composite beam bridge with a pair of point loads on

outer longitudinal (Fig, %4.10) :

The unlocded beams are frec to rotatc about their own axes but their ends

are hcld down in order to prevent their lifting off the supports under the
eccentric loading. It is assumed thot moments are developed aolong the

negative yicld lincs pwhhEtops %ﬁ‘nh-

liode Ae (Fige Lha11)
For a vertusl displacement of unity along the yield lines DE,
PA = 12/"’0 mP

(1-3)

T e R S S s s o s et LB
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Mode B (Figs he12)
For o unit displacement along the yield lines OC,
2 (1 + i1)

PB/ =2NCP+2(1+i)tanﬂ + —
= T=5) O

see ¢/2 cosec \y cos('f '¢/2)

+ 2 sec (Y '¢/2){/‘*4e cos ﬁ/z sin g - sin ﬂ/z cos\f/}

‘ i 2 2
+ 2i, cos }25/2 sec( \l/ -ﬂ/z) cosce {Msin y + cos \V} e . x KipeD)
Noting that from the geometry of the yield line pattern,

-3
cot\’,+ tanﬂs/z % ‘IZL)\—I .......... “ s 8 8 e (4.29)

Bquetion (1-e28) can be rewritten in terms of parameters B and A
2

2 (i, +3) +3(4, =1,)
PB/m =-(;—‘J_—§i—o)--2(212—i1)tan¢/2+ 2 . . iy
M, + 3pM) ) T |
+ (1_5) + (111.3.) (1 -+ 12) tan ¢/2 ------- ()4-030)
i, -4, )(1.=3

d(PB/m) = O leads to tan ﬂ/z = (212 1)( SN (ke31)
—ag kA(1 + 1,)
d(PB/m) = 0 1leads to
TR

: - . 4 + i I) K1+ 4,)
(12 "'I) ;5(11 g 12.). = T/C{Tg:})—z-tJ— + T_—-fzr tanzﬂ/z . .- (4-32)

tan ¢/2=“,U‘(1-!)(212-i1 )//:Md ) (i +y‘—iz(1-—$} s (4.33)
substituting from Eqfiation (4.33) ’or t 2{/2 }n Equation (4.31),

>\=J(1-{) (1 + 1)1, +3) - if (1-3)
Y (1 + 1)
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substituting for tan ;6/2 and in Equation (4.30),

T/ = 2HeP 2%, $301 ¢ 1)1, +3) =22 (1)) o o (4e35)
=37 " fimw

Note: - Punching failure is not likely to occur for this type of loading.

“/hen the loaded beam fails, it will try to separate from the
adjacent perts, resulting in llode B or Modc 4 depending on the
relative strengths of slab and bcams.

Mode A preccdes B if

é o " < PB

which givcs

P<‘//4i 5(“3) (b1 + 101, +3) =400 =X)Em o u e (4e36)
Me

. 1
1=12=‘l:,mc’13'= /6,

0.533%y,
Tie

This equation is plotted in Fig. L4.13.

when i

P e By e e P - Clpedbe)

Le3+3 Four-longitudinal composite beam bridge with two pairs of central point

loads on beams (Fige Lhell)e

The unloaded beams arc free to rotate about their own axes and their
ends arc not held down. Thercfore it is assumed that no moment is developed
in negative yicld lincs gp 0P’ of the stab(im=im=0)

Mode 4 (Fige 4e15)
For a vertual displacement of unity along the yield lines DE, the work

Equation yiclds,



Pofie Ko




2L

E £
f
} - —
{
P
O N a
- ‘

/P4

?0
1744

P

(-3 e -3ty "

FIG.4:15 MODE A




'
o
{
“S
r~
N
™

(P (1-3)Ls,

LL.

LLL

22L.

L
1
I

e dd

F1G /46 MODE B

yreld line

oB
00

88

AB

moment
m

Mem

Lm

otm
|

Am

i
14 U




(-5)l% et N (-3
1

=

Ll

Ll

2L

FIG.4:17 MODE C




N

175

1O

125

10

075

o5
o9
o3

< 280T
o2

wer

NN

Py
FIG. 418

MODE B




o
16~emf7

PA='(1—_I—)—— o s MRl eie BiE v w e b v e Wb ey AT

Modec B (Fige L.16)
This mode is rcpetition of Mode B showm in Fige. 4.12 except that no
moment is developed along the negative yield line BB.

substituting i, = O and multiplying Equation '4.35) by 2,

By . baeP o _ALE(3-45)
i (‘#3—5 m 5 & 9.0 & & 8 0.0 o o 8 9 @ (14-038)

From Equation (4.33) =nd Equation (4e34),

R
tan B,, = R ¢ 1, )
2 ZQ.-5)

VA(-5)54, 7

X
4 ‘:5‘) ‘//‘_4_1 T [26-3)=1 ‘e

t-C\'h(F - ‘—T_‘_ Q'f\d cCot -
Mode c/l(Fig.‘ 401% ‘f m

The punching load is calculated using the formulac (4.12 to L.14)

(4.40)
v oo o (4°40q)

noting that they arc applicd to cach loaded area and the values are added up.
Provided that liode C is climinated by proper design, Mode A precedes Mode B
if

B K5

which gives

L —————

SUEP o HMEL | A B
(1=3) (1-3) 1-3 rP-1

i e ai s o o o ALY

Neting that ¥ = 0.139, or
P 0.66 VM 3 T S T 7 0 1Y
Mo
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This equetion is plotted in Fig. )4.18.

4e3s4 Four-longitudinal composite Beam Bridge with two pairs of eccentric

point loads on beams (Fige 4e19)

The unloaded beams are free to rotate about their own axes and their

ends arc not held down. Therefore it is assumed that no moment is developed
along the ncgative lines mm;rﬂpl*ﬂl‘fﬁhb(iﬂlziznzo)

Mode & (Fig. 4.20)

For unit displacement along the yield lines DE, the Work Equation yields,

16 4y.m
PA=—('1/i_IC?76 s e e W s e AR s s v D)

Mode B (Pig. 4.21)

This mode is similar to Mode B shown in Fig. 412 except that there is

ABand
no moment developed along the yield linestB and the length of yield line OC

nov equals -3-213 and there are additional positive yield lines Aa.

From the postvlated yield pattern , it can be shown that,

Py SALP 3 afl; (3-45)- —

R e s e

The values of @ and )\ are respectively determined from equations (L4.39) and

- JAPTRSEC S i§ 5§

(4440)4

Note:= Punching failurc is not likely to occur in this case for the rcasons
stated in section L.3.2.

Mode i prcecedes Mode B if

PA - PB

which gives
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et Yu: -3 (3-a3)

BT Al m:)—,'_—( e T R

wWhen 3= 0.139,

f’<o.395‘_/_/_4_z ¢ o AR R e 6 e PR . . (3RS
Mo

This cquation is plotted in Fig. 4.22.

4.3.5 Four-longitudinal Composite Beam Bridge with four pairs of eccentric

point loads similating the wheel loads of HB wehicle (Figs 4.e23).

The unloaded beams arc frce to rotate about their own axes and their
ends arc not held down implying that no moment is developed along the
negative yicld lincs ow-top. of the slab.

Only two lines of loads arc considered., These correspond to the two
axles of the abnormal vchicle crossing the bridge deck. For short spans this
will produce thc most adverse condition and for long spans the other axles
can be trcated in an identical way. The four pairs of loads are placed
symmctrical to the mid span section but eccentric to the longitudinal central

linc of the bridge with the first pair on outer longitudinal.

Mode 4 (Fige 4a24)

For unit displaccment along the yield lines DE, the Work Equation yields
16 gy m
P o Hc P L . - - - L] LJ Ll . - . - > o - Al - . - - o - (#.45)
A (1=3) !
Miode B (Fige 4e25)
This mode is the same as Mode B shown in Fig. (4.21) except that the

displacement under the loads 7 and 8 is not unity and is equal to C( "

1
.;""fm‘;\“\
For unit displacement along the yield lines CO, R
i )
3 JL:.
'\f‘:‘; L \Infj
\r.‘s'»a":w



FIG.4-23




% N
] B
% %

S

(1-¥)y

' D
¥
o

B v (-3,

FIG.4-24. MODE A

MeM

99



/L

vy

LeL

R A

LLL

A

]
A
-

e

(1-3) e (-3

FlG4-25 MODE B

ahe

g[e/d //'ng
o8
oc

(o]0

B8

- AB

moment.




u52-

6 AL,
PB/m - TZ%TT -('#0?’; -l-ﬂ?—’—(‘—-(_l__!i}-q}) R v v (La46)

H(1-3 )34
v:hercd: = (1 -%)

The values of 0 and >\ are determined respcctively by the equations (4439)

and (4.4.0).

Notet- Funching failure is not likely to occur in this case for reasons
explained in secction 4e3¢2.

Mode i preccedes Mode B if,

P
PA< B

which gives

16 6 ) e
(1_/_"/;)P <~(J4+ B)A (ﬁ(}f; + zrgi_(m). A et (el 7)

hok Solutions by Beam and Slab Mcthod

hole1 Three longitudinal composite Beam Bridge with point load at mid span,

(Fig. ’-5-05)
The assumptions are the same as those made in section Le3.1.
Mode & (Fige 4e26)

P i 12Hm(h-BC)

B s I e e N o s o ae w KL NE)
" L
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OrPA=12%mP a0 W 4 @ e B &6 % B 8 o & 6 6 3¢ eiF & & 0 (4.14-88)

Mode B (Fige 4427)

TS — mA"lc - . 12 -+ A
B g . .| 2(11-212) tanﬂ/z-b-i- +l+(/q+12/.'))\

S BN (1 #1,) tan® B4 % ~2tam gy, Jm -(ee)
ae,)

= 0 leads to

(21, = i,41)
tanp/2=z—>\72—1—r1i—2) g L Sl B ke (D)

B = 0 leads to

=z,-(/.4+i2}4')+4(1+12)tan2¢/2 TP GRS s, (T

subsituting from Equation (4.51) for in Equation (4.50),
YAl (24, - 1,%1)
tanﬁ/zz ‘ 2 1 ‘llto..C.l...... (4052\
(1 +4i,) i, - i, #3+24
K 1
. Agk
+* X
where = H 2“
Ms = 773

substituting for tan }5/2 in Equation (4.50),

A \/—-'1+1)1_ 43-&21
- #(1-*12)\[,_4__ =0 .0 B F dne

s
where O$>\$P

e G |




- Bl -
LT 8
= = +Jfqu (a1 + 1) 4, - LFaeaifm, L. (ues)

.
d
Ll

since izi= O,

chMc*4‘/;’—5‘3_3“.......,..........(A.qu.a)

when A > P take ) =P since )\ can not exceed the value of P for the

assumed yield pattern.

. [
..Tan;é/2=—4—,,‘ ! N . . . o, i (40

0.

substituting for >\ and tan ¢/2 in Equation (4.49) and putting i,'

= Moo 3 <56
g = =2 [QMF*-;T,-M R FN L (456)

Leyoe2 Three longitudinal composite Beam Bridge with point loads on outer

Qongitudinal (Fige 4.10)

The assumptions arc the same as those made in section Le3.2.

liode & (Fige 4+28)

121 1244m (b —Be) A
PA =-(-T__—ﬂi + (1_3_)1' SRR s s e e R e b (4-57)
s 12,('ch

PA——W - T~ o o - ¢ el A 11, T WU T (4--573)

Yode B (Fige 4.29)

i ey A (4, - i,)

PB =m + [2(11 - 2i2) tan ¢/2 + X -+
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WAL+ 4 )
& - 1_3'2‘4 + z—%; (1 + iz) tan2 ﬂ/z]m ..... (4458)
d(PB/m) = 0 1leads to
(21, - 1,)(1-3)
Yo ;6/2 3 % R i A A SRR L (459)
a( "8/ < el A
T

(4, #2) + Fl1, 1) WA+ i 0 (1 + 4,)
: )31 e IS C =5 By e (60)

substituting from Equation (4.60) for in Equation (4.59),

_“/(‘fs (1-;)(212-:[1)

tan B, = —_—————— L. ... 4461

72 (i +.i1)(iz+3‘)-i12(1-3') v
substituting for tan § )/, in Equation (4.59),
V(1-3) 00, o s Y 1

A=t 3 b b b R i (4.62)

Wy (14 dp)

where O$)\S P

IBY 2y
B, o= S 2 V(1 + i), +3) -?(1- )m. . (4.63)
B (1-3 )L W : b 1 'y
when)\>P, >\=P

From Ecuation (4.59),




- B
(21, - 1,)(1-3)

tan ¢/2 - l*'P(1 + 12) e R el s A A% e (24--64—)
l"Mc i, + + 4 =
- [u rioity -4, ¥ Sleouie
(21, - 1,)%(1-3)
N -Jm oxs B nt as TEha08)
b Z'MC (12 +3) +](i1 - i2) M1+ 12)/(/_3_.6
S-S ¢ = P i (-3)

(21, - 1,)%1-3)
T 7 5,)p

}m ' w wowt Bhetl)

hele3 Pour longitudinal composite Beam Bridge with point loads at mid span

of imner longitudinals (L.14).

The assuiptions arec thc same as those made in section 4e3.3.

Mode L (Fige 4e30)

1 6MC 1 6/4m(h-Bc)
PA = (T—J)L ¥ (1_3 )L s s e & 6 ® @ % 8 @ s s » e °« o (1«}—-66)
s = 16“CIHP e & o ® e o o o e ® o & e ® s s & s o . 0668-
B — (4.662)

liode B (Fige 4.31)
This mode is rcpetition of ilode B shown in Fige 4.29 except that no
moment is developed along the negative yicld linc ABand:gBiamdithere are

wmaw'hﬂm»yiddi&qg'g}&mfor unit displacement along 00,
Py = AL L Ay (3-45)m e TRy X

(1-3)E JAO-37-,
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From Equation (4.89) and Equation (4..40), Ye qucmg M L, M

tan @ 2{,(7 (4968)
/o me—a oo o i e oo R S Ly

A_f;ﬁ-s-)z‘—,a.f
4(1*;)% Sl iy ek 5 s a0 W s v e b e
where OS )\ < P

When>\>F, >\=P'

From Equation (lhlﬂ‘) substituting ) = Py

(4.69)

1
tanﬁ/2=4f,7‘_sr Alg W & & & 9 B ¢ " 9 O # 8 & 8 e o & (14-070)

Using the above values of ) and l‘uvuf/z LIt can be shown Chat,

. &M aup
= Tt 2Les

: +'____],,, i U
2P0-3) 4P G-5)3

g
P

R R AR § T

Laoyo Four longitudinal composite Beam with eccentric loading (Fig. 4.19)

The assumptions are the same as thosc made in section le3ek.

Mode & (Fige 4e32)

———————

161 164m(h=B )
PA: .:I.-:}W +T‘1—:}Tf‘— TS T AP S VI S S S R e (R (4072)
or P 3 16Hem

A W PR PRl o e R e o P Ry

Hode B (Fige l4e33)

This mode is similar to lMode B shown in Fig. 4«29 except that there is
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o B =
no moment developed along the yield lines BB and the length of yield line
0C now cquals % and there are additional pesitive yield lines Ao.

Substituting i‘l = 0 and multiplying the first 4erm of Equation (4.63) by 2,

B afy. (3-43)

P = [

B 1-I)L+m_i © o 85 & e ° o & 8 s e ® e ®

From Bquation (4.61) and Equation (4.62),

(4e73)

tanﬁ/2=—~—~-——5—-'\'""‘ B ey i) e $ s x h e R

v J4(1-3)3- s
Y/

where O K AX P
vhen A>F A=F.
From Equation (4.”&)

!
4P4-3

PP S S ' DT RIS, Y

tan¢/2 ‘o-no-oc..oo.oo...oo (h-.?é)

Using the above values of X and tand; it can be shown that,

- $Mc AMP 1 _ 1 ! ]
= (1-3L i -3 P  2P(-3) * 4P@-3)3 o
A e e CheT)

helhe5 TFour longitudinal Composite Beam with point loads simulating HB vehicle

(Fige Le23 )

The assumptions and conditions arc the same as described in section l4e3e5e

liode & (Fige Le32 with additional point loads at points 3, 4, 7 and 8).
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16M_ 16fqm (b-B_)
A:—C‘_r)L-!r (1"3)14 e ®« & & © & ® % © © s ° o o o (4.78)

16~m
or —(———)- ey ST | e PR | P e e (4.782)

Mode B (Pigs L33 with additional point loads at points 3, 4, 7 and 8)

In this case, the displacement under the lc-ds 7 and 8 is not unity
and is cqual to J1.

For unit displacement along the yicld lines CO, the total collapsc load

is given by

81".'10 lm (3:15 )m

D = -..;..)‘*‘ - . : : )
“B = —(J:l“l“5) (1-571‘ + —TA——('-;—:T_ e o 5 e ® @ (24-079/

when 0 >\$P the values of tan ﬂ/Z and >\ arc calculated from the equations

(4e7h) and (4.75) respectively.

”_1’_1_“12\_>E_., ')\ = P and tan ¢/2 is given by Equ~tion (14..76)9

Sy | M, Eg_ ; ¥
P1?~'@‘+3) (-S)L 2p(1-3) 4?(!-3)3] } S

Sree i =g - Ol B
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CHAPTER 5
TEST PROGRAMME

5¢1 Object of tests

Any new application of simplified yield-line theory has to be supported
by experiment, Because of the complexity of a composite beam bridge structure,
the applicability of the analysis can be determined only by comparing the v
behavicur of actual structure with that predicted by the analysis. The object
of tests in this investigation was twofold (1) to determine the ultimate
capacity of the bridges and their manner of failure and (ii) to provide furthker
information on the behaviour of the composite beam and the slab which con-

stituted the bridge.

52 Outline of Test Programme

Laboratory tests were made on eight composite beam bridges. All of
them were small-scale models of simple span right bridges. The variable in
each 9roup of ‘

xthe tests was only the type of loading which consisted of concentrated loads,
Preceding the test on each model were Control Tests.

The tests were divided into two groups designated here as A-series and

B— series. The specimens of A-series had a span of 72" and a slab width of

36", In the specimens of B-series, the span was kept the same but the slab

width was 48", The loading for e ach model was as described below:

He2e1 A-series with three longitudinals

Model A T
and : single point load at mid span of inner beam (Fig. 4.5).

Model i II

Model 4 IIT : A pair of point loads on outer beam (Fige 4.10)

Model A IV : A pair of point loads on inner beam (Fig. 6.15¢c)



o

5¢2,2 B=geries with four longitudinals

Mcdel B I : Four pairs of eccentric point loads simulating the wheel
loads of HB vehicle (Fige 4¢23)

Model B II : Two pairs of eccentric point loads on beams (Fige 419)

Model B III : Two pairs of central point loads on beams (Fig. 4.14)

Model B IV : A pair of point loads on inner beam (Fig. L. 30)

5¢2.3 Control Tests

Along with each model a single composite beam which was identical in
properties and six strips of slab, three representing the slab in transverse
direction and three in longitudinal direction, were also cast., 4ilso three
4" cubes and three 6" cubes were cast.

The Control Beams were tested under similar loading as the model. The
slab strips were tested under central point loading.

5¢3 Definition of terms

The transverse reinforcement of the slab is in the direction perpendicular

to the beams,

The longitudinal reinforcement of the slab is in the direction parallel

to the beams,
The value of h/L expresses the ratio of the transverse spacing of the
beams, h, to the span of the bridge, L.

L shesr connector is a device which acts to transfer horizontal shear

across the plane between the beam and the slab. In these tests, the shear
comnectors consisted of headed studs welded to the top flange of the beam.

Composite action is the interaction between the beam and slabe In the

models tested, complete composite action was assumed to exist upto failure.
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5e¢4 Design eriteria for test speciemens

The models were designed with the object of keeping their size within
practical limits and the cost minimum, The smallest structural steel sections

available nomely 3" x 1%" x 4 1bs I-sections were used for the longitudinals,

S5tel Spacing of beams

The ratio of transverse spacing of beams to span was chosen to be one-
sixth of the span for the following reasons:
(i) to keep it close encugh to the usuel velue sdopted in bridge design,
and (i) to minimise the effect of shear lag (63) so that the effective
compressive flange width provided by the slab would be nearly

equal to the actual width available,

Belte2 Thickness of slab and reinforcement

The main consideration in deciding the thickness of the slab is to see
that the moximum efficiency of the deck is achieved. The slab performs the
dual function of distributing the londs transversely and acting as the com-
pression flsnge of the beam, In the former function it should be made as
stiff as possible but in the latter function its thickness has to be
proportioned to suit the dimensions of the beam.

The yield-line pottern and the collepse load of a bridge deck are largely
influenced by the ratio of ultimete moments in longitudinal end transverse
dirccticns., By choosing a critical ratio of these moments, 2 desired mode
of failurc for given geometry and loading can be obtained.

For a chosen value of h/L, the grophs shown in Figse 4.9, 4.13, 4.18
and L+22 c¢on be used to obtain the optimum ratio of ‘/,‘—‘-::/Me

based on the Equivalent sl=b Method, from which a suitable value of m for any
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given yalue of Mc can be adopted, Similarly the Beam and slab Method, can be

used to obtain the above values, if the latter method is chosen for the

analysis,

S5elte3 Shear Comnectors
“The spaeing of shear conmnectors wWerked cut to be 24" centre to
eemtre as per C-P-117 parti(73y. gut a Spacing of 2" Was adopted

te prevent foulimg with the spacing of welded mesth remfovcement
of Slab- The vltimate capacity of one shear Conneetoy WoS
determined from push-out tests. 4 typical push-out Rzst irrangement is

shown in Fige 5e1. The results of the test and the load-slip curve are
given in Table 5.1 and Fige 5.2 respectively, :ssuming that steel section
is fully plestic at maximum moment, the number of shear connectors is
computca from the formula

N'—‘--QT"‘ .8 S e s e s e Ee. e U E TEL s W SRS b (501)

S c
where Nc = Number of shear connectors between the points of maximum and
zero moments,
T = g fy = Tensile force in steel section,

Q_ = Design value of one shear connector which is taken as 80 per cent

of its ultimate capacity in push-out test.

5.5 Description of Models

‘The tcst speciemens may be considered as one-sixth models of short span
composite beam bridges. 411 the beoms were equally spaced. The models were
not scnled dovm from full-siged bridges but were themselves designed. The
design deteils orc given in Table 5.2 and the typical sections are shown in
Fige 543.

506 Materials

The physical propertics of the steel used in the beams were obtainedfrom



Fig.5.1 View of Push-out Test Arranges
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tension tests on coupons %/8" x ?/16" in cross section cut from the flanges.
The coupons were 8" long and were tested on 2" gauge length using "INSTRON"
machine which hag buil:-in Electrical Resistance Gauges to measure the strains,
The results are given in Table 5.3 and the typical stress-strain diagrams are
shown in Mig, 5.4{a).

Also bending test to destruction were conducted on 3" x 1%“ x ). 1bs ReS.
Jjoists with two-point loading, The load-strain curves arc given in Fig. 5.5.

The sleb reinforcement consistcd of welded mesh of 3" dia. bars. These
bars had o high yicld strength and low elongation. The properties cbtained from
tests arc given in Table 5.4. 4L typical stress-strain diagram is given in
Fig. 5.4(b).

The slabs were made from a concrete mix of proportions 1 cement, 2 finc
sand and 3 coarsc sand by weight with a water-cement ratio of 0,60 by weight.

—

The propertics of concrete used in the various specimens are given in Table 5.5.

DMBIE 5.1
L typical push-out Test on =" dia. studs
Load per stud Tons slip (in. x 10"#)
0.25 2.0
C.50 b5
Ca'is 7s5
1,00 19.0
1625 25,0
1.50 57,0
1475 130.0
2,00 326.0
2,10 550.0

average failurc load = 2,05 tons per stud.
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TLBLE 542
Design Details for all Model Bridges
span, in. 72
spacing of beams, in, 12
size, in. 3x 1%
weight, 1lbs/Fi. 4
steel joist
cross secticnal area, sq. in. 1418
Modulus of section, ':‘Ln'3 1.11
Type Headed stud
Dismeter, ins z
shear ccnnector Height, in. 1 1/8
spacing, in. 2
Total number in span 36
Depth of slab, in. 1%
: A1l bars
slab reinforcement 1/8" diameter
spacing, in, 1
! Bottom
percent 04 9%
Trensverse
spacing, in. 1
Tcp
percent 0.9
spacing. in. 3
Bottem
percent Oe 34 -
Lengitudinal
spacing, in. 3
Top
percent O, 34




Table 5.3

Physical Properties of steel in beams

J ’ percent | percent

size No. yi;i% zi§:$atﬁ strain strain E Esh
series of of P S x f at first |at strain Da8el, gy s 1

beam tests p'f' . P'f° * | yield |hardening i

y u e e
Y S

A 3" x 13" x 4 1bs 6 45000 69000 0.15 0.15 30 x 106 i 106 30 !
B 3" x 15" x L 1bs 6 35000 6000 0.118 155 29.5 x 106 0.473 x 106 62.5| 13

= gg =
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TLBIE 5,

Prcpertice of 1/8" dia. reinforcing bars cbtained from Tensile Tests on

2" G,L. spec:mens

¥ yield point ultimate
» Coe Of .
series PeSels strength
tests .
(approx.) PeSeie
4 3 63000 71000
B 5 65900 95700
T4BLE .

Properties of concrete obtained from tests

on

L" and 6" cubes

Nec, of
v Ai:sit L culi(;zSts%g'1 cube Cub:v:ﬁgig%h
e PeSeie
ATT 40 3 3 i
A II 47 3 3 5096
A IIT 5l 3 3 4260
L IV 56 3 5 st
BI 30 3 3 t138
L 37 3 3 6270
B III Wy 3 3 285
B IV Ly B 3 5600
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5.7 Consgtruction of Test specimens

Plywocd forms for the bottom and sides of the slab were constructed
around the steel beams after the shear connectors were welded to their upper
flonges. The top 2nd bottom layers of reinforcement for the slab of each
modcl were cut to the required size out of a welded mesh of 3" x 1" openings.
Phe two layers were spaced at the proper distance by a number of 1/1;." square
steel specer bars containing two notches to receive the reinforcing bars of the
two layers. The notches were spaced so as to provide a depth of cover equal to
L /8" between the transverse bars and the surface of the slab. The views of
the form work for control beams, models of h-scries and B-serics with steel
joists =nd rcinforcement arranged in them are shown in Fig. 5.6, Fige 5.7 and
Fig. 5.8 rcspectively. The form work of each model was supported on two
rigid supports 72" spart. The cencrete was placed in and vibrated., During
the operation, thc cntire weight of the forms and of the slab was carried by
the I-bcams. The curing of the slab in the forms carried out with wet sacking.

The forms were removed after 12 dayse.

5.8 Loading [pparatus

A preliminary examination of the test programme indicated the nced for
a loading framc with an arrangement to vary the position of the point of
application of the load. With this object in view, the frame shown in Pig.
5.9 was built for o capacity of 20 tons. The frame consisted of three portals
placed parallcl to cach other at 3'-0" intervals and bolted down to the strong
floor by 1" diae bolts. Each portal was made up of 12" x 4" channcls bolted
togcther by 7/8" dia. bolts and braced by 4" x 4" angles. The models were

supported on c¢nd portals which were 6'-0" apart and 5'-0" high to permit access
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FIG.5.6 Form work for & Control Beam
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FIG.5.7 Form work for a 3-Longitudinal Bridge
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to the undcrside for strain measuremcnts and for observing the development of
crack patterns. Thé Horizontal channel of the central portal, which was at
9'-0" height end which provided the resction to the loading jack (of Losen—
hausemvcrk) was strengthened by another channel of the seme dimensions bolted
to it. The jack could be moved and fixed along the channel at 6" intervals.
The jack was conmnectcd to the Loscnhausenwerk Testing Machine with a maximum
loading capacity of 20 tons.

Point loading was applied by the jack through mild steel distribution
plates 4" x 4" x A" size on model A I and A IT and 4" x 3" x " on other mcdels.
They were bedded on rubber pads. When more than one load was applied simul-
tancously o distributing bcam was used to transmit the load from the jack to
the other loading plates. The bearings were designed to satisfy the require-
ment that the models should be freely supported. The beams were supported on
steel rollcrs at one end and on hexagonal bars at the other., The experiments
were limited to short-term loading tests with doncentrated loads.

The control beams and slab strips were tested on Avery Tcsting Machir
of 50 tons capecity in bending tcsts and of 100 tons capacity in tension end
comparison tcsts (Fig. 5.10). The concrete cubes were tested on Denison

Machine of 250 tons capecitye.

5.9 Strain Measurcments and Eouipment

The strains were measured across the depth of the composite beams at
mid span ond quarter span using " gauge length Sanders Roe Foil type
Elcctricsl Rosistance Geuges and 10 mm. gauge length Y.L.10 type Japanese made
Resistance Gauges, both of 120 ohms resistance., The latter gauges were
capable of rccording strain in steel up to 7 per cent well into the stage of

strain-hardcning, which was found in some of the steel beams, The usual
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FIG.5.10 View of Savage&Parsons Ltd
50-way strain Recorder and
Avery Testing Machine
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procedure for sticking the stra.n gauges was followed. In polishing the metal.
surfaces, care was taken to keep the amount of material removed to a minimum.
Lraldite was used to stick the Sanders Roe Gauges and C.N. Adhesive for Y110
gaugess

The strain measurements on concrete surface at mid span and quarter span
were corricd out with 20 mm. gauge length PC=-20 Japanese made Resistance
Gaugese The P.i. Adhesive was first coated on the concrete surface to obtain
a level surfeaoce. LPter it has set, P-2 idhesive was used to stick these gauges.

The strains in some of the tests were recorded by "Savage and Parsons"
50-way strain Recorder (Fige 5.10) and in some by "Data Logger" (Fig. 5.11) .
The working of Savage and Parsons Recorder (89) is as follows:

The active and dummy Resistance Gauges are connected in a Multiple Strain
Gauge Bridge Circuit with a gauge selector switch as shown in Fig. 5.12, The
Bridge is initially balanced by using the potentiameter known as Apex Resis-
tance since it is impossible to manufacture strain gauge clements to have
exactly the same resistance %o within, say, 0.001 ohm.

The change in resistance of an active strain gauge caused by its eleng-
ation or contraction deflects the Galvanometers Measurements are obtained by
rebalaneing the bridge as in ordinary Vhcatstone Bridge practice by using the
g1ider Wire calibrated in terms of strain. The quantity measured is

AR
G-=n100i“ o-oooooo-oco-oooo‘oo (5:2)

and the strain e is related to the change in resistance by the expression
O = -;{-% . . Ll . - . . - . . . Ld o - - - . hl . Ld (5.3)
where n = sensitivity Factor which can be given the values 10, 2 and 1,

the maximum sensitivity being obtained when n = 10,

AR = change in resistance of the strain gouge,



FIG.5.11 View of Data Lpgger and a Controi Beam
ready for loading on Avery Tésting Machine
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Resistance of the strain gauge,
and K = Gauge Pactor.

The measurement of strain with Kk :+ 2 can be made to an accuracy of
5 % 10—6, though it can be incrcased by interpolation. The principle on which
the DatnLogger works ( 90) is different, Instcad of change in resistance,
change in voltage ce= -d by the change in resistance of an active strain gauge
is read or printed out. This equipment provides the quickest means of record-
ing a number of stra’n readings. The Data Logger that was fabricated in the

Laboratory could rccord the strains from 100 channcls at a time. The strain

is calculated using the relntion

eng{%r o Tl i B x4 o o B N R e - L SR
wherc AV = change in voltage
U = Input voltage
n = Scnsitivity Factor, which can take a maximum value of 1000

The measurcment of strain to an accuracy of one-third microstrain is possible
on this apparatus.

8" ond 2" gouge length "Demec" Gauges werc also used to mcasure the con-
crete surfoce strain at some points in order to check the reliability of P.C.Z20
Resgistancc Gauges.

The dcflections at midspan and cuartcr spen of thce beams were measured
nsing Baty Dial Gauvges reading to 0,001" and 0,0001". These were mounted on
magnetic bases for easy adjustment ond were supported on a "Dexion®™ frame,
which spanned between the two end portals supporting the model (Fig. 5.13).

The nctual locations of strain and deflection measurements are given

in cach tust set-up described later.



FIG.5.13 View of Loading Frame showing Deflection Dial Cauges
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CHLPTER 6

DESCRIPTION OF TESTS

6.1 Test Procedurc

The scquence of 1. “2sting operation was firmt to test the control beam, I~
the slab strips snd the concrecte cubes belonging to cach model which was tested
last. The rcsults of Control Tests enabled to have an estimate of the
ultimate capacity and the deformations at corresponding points of bridge models.
The entirc testing operation of any cne model and its control specimens was

completed in two days.

6.2 Tecsts on Control Beams

Tach Control Beam with its cross section as shovn in Fig. 5.3(c) was
tested by Avery Testing Machine on a span of 72", A typical test sct-up is
shovm in Pig. 5.11. The usual procedure was to apply the load in increments
~f 0.5 tons and to measurc the strains and deflections for each increment of
lond until the ultimate load was rcached. 4 compression failurc on the top of
the slab at mid span or between the load points occurred in all the beams.
Therc were no signs of longitudinal tonsion cracks on top of the slab. Soms
of the Control Beams were cut into two halves and each half was tested under
a central load on a rcduccd span of 30", Longitudinal tension cracks were
obscrved on the top of the slab beforc a compression crack formed across the
width under the load vien it finally collapsed (Fige. 3+2).

The tcst results and curves of each control beam are presented with the

of the corrcsponding Bridge lModel.

6,3 Tcsts on slab strips

The slab strips & and S5 with their cross sections as shown in Fig. 5.3(d)

and 5.3(e) respectively were tested under a central point lond on a span of 12"
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A typical slab strip s, after failure is shown in Fig. 5,1&)- A typical Load-

1
Deflection curve is given in Fig. 6.1 (b). The ultimate moments per unit

width obtoined from the tests are presented in Table 6.1,

TABIE 6.1

Ultimnte moments obtained from tests on slab strips 8, and Sp

Model | . :;;’i‘;‘%iafﬁ’fe’%ﬁnm
m Mn = ,u’m

i 0.57 0.33

A II 0.58 L

A TIT 0.6l 0.32

A IV 0u45 Qe

BI 0,58 0.315

B II 0.63 0.35

B ITT Q.63 0.35

6. Tests on Model Bridges

Each model bridge was placed on the londing frame and centered so that
the hydraulic jock could apply the lond where required. The Jack was con-—
nected to the Losenhousenerk Testing Machine which c ould be operated to apply
the lo~d gradually -nd hold it where necessary. A test set-up of Model A I
is shown in Pig. 5.9. The range of loading was decided after computing the
ultimate load by yiecld-line theory using the theoretical as well as experimental
ultimntc moments of Slab and Beam elements., To overcome any initial effects

2 :
due to bedding of packing plates etc., a load approximately equal to /3% of the



Fig.s.la Slab strip S1 after failure
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load that would cause first yield was applied and removed thrice,
. 6sle1 Model A T
Load position : Fig, 6.3(2)
cross section : Figs 5.3(2)

Control Beam AICB

Moment-Deflection curve Fig, 6.1(e)
Momens-strain curve Fige 6,2
View after failure I'ig. 343

Fig. 6.3(Db)

Fig. 6.4(2)

" Fig. 6.4(b) and 6.D)

Fige 6.10(a) ¥ b-10sb,y

Load=Deflection curve .

Load=Strain curve

s

Strein Distribution

Crack patterns
(smume ns model A IT)

”"”

A point load was applied at mid span on the central beame. Yielding of the
londed I-beam occurred in the lower flonge at mid span at a load of about
4.8 tons,. The deflection had strated to increase non;linearly after this load.
There werc tension cracks at the bottom of the slab parallel to and at about
L" from the centre line of the loaded beam on either side at mid span. As the
load was inercased, these crncks became wider and deeper and spread tcmards
the ends grodually toking = turn towards the ends of cutcr beams.

At 8 tons, the yielding had penetrated to about 3/4 of e depth of the
steel scction of the lo~ded beam while strain-hardening was taking place in its
lower flange. The tension cracks at the bottom of the slab formed closer to
the londed besm, Its curvature at mid span begen increasing at a much faster
rate than that of the slab indicating their imminent separatiocn.

Yielding had commenced in the bottom flanges of outer beams at mid span

and their deflections there had begun to show slight non-linearity. Thcy had
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rotated slightly towards the central beam. On the top of the slab tension
cracks appeared roughly in the form of an ellipse with its minor axis nearly
equal to two panel widths ond major axis equal to the span of the beam, (Fig.
6.10a). Lt 8,5 tons the outer beams were still strong engough to act as
supports to the slab., The bridge deck took the shape of a pyramid with its
vertex at the load point, vhen the distribution plate punched through the

slab and the lcad had follen, The maximum load recorded was 8.5 tons.

6else2 Model A IT

Load position : Fig. 6.7(2)
cross scction 2 Fig. 503 2)
Control Beam ATICB Moment-Deflection curve Fig. 645

Moment-Strain curve Fig. 646
View after faoilure Fig. 6+6(2)

Lond-Deflection curves : Fig. 647(b), 648 and 6,9

Fig, 6.10
Fig. 6.7(c)
Fig. 6.10(2) and ¢-10¢p)

Load=Strain curve

Strain Distribution

]
Creck pattern

Model 4 IT was a Companion Specimen to Model A I and was subjected to (the

same type of lo~ding, ‘The behaviour observed was similar and the f].nai failure
was by punching of the slab as in Model 4 I. The maximum load recérded was
9,15 tons., The strain-hardening of stecl in the bottom flange of the loaded

beam wos more pronounced in this case and the strains well into this stage were

recorded,

6Je3 Modecl A IIT
Fig. 6.1(2)

Fige 5.3(2)

Load positions

Cross section



Moment ton-in atmidspan

80

70

to

50

§

4
36" (? 36" I
Mmax = 73-5 ToN-IN
TeEsST oN
ConTRrROL BEAM AxcB
( ]
o lc.>o zloo 3<]>o 1-30 _5:96 6loo 720 aéo lcl>oo 1200 1400 1600 1800 2000

veflection (nx13’)

FlG 65




4 =
bt S B M e SR B Ry
278" &

— tocation of Resistance gavges
at mid span of
Control Beam Axmcs

100 |-

%0

v

xR
o
T

-J
(8}
T

o
Qo
T

Gauge (D

W
O
i

Moment ron-m at mid span
NN
o

G
O

20 Mmax = 735 TON-IN

o 5_'1‘ 1 ' t 1 1 g 1 1 ] 1 . 1 L . 1 1 ! 4
co 0G0 iS00 2000 2600 3000 3500 4000 4500 Sooo 6000 7009 8000 Soco loocoo l1ooo drl_t-_goo

Strarn (16 m)in)

FlG 66




FIC.6.6(a) Control Beam AIICB after failure
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Control Beam ATIICB Moment=Deflection curve Fig, 6,11

Moment=Strain curve Fig, 6.12

View after failure Fig. 6.1 a)

Load-Deflection curve : Fig. 6.13(b)

Load=-Strain curve :  Tig. 6.14

Strain Distribution : Fige. 6415

Crack pattcrns :  Tig. 6.15(2) and 6,15(b) ¥ 6-10(b)

The model was subjected to two-point loading on outer beame The ends of
other two beams were ancho;red down in order to prevent their lifting up due
to eccentricity of the loading,

. The non-linearity of strain had commenced 2t 5.2 tons in the bottom flange
of the loadcd beam nnd at 7 tons in the central beam., Tension cracks at the
bottom of the slab emanated from the load points and spread at an inclination
of about 45° to the axis of the beam. At sbout 9.5 tons, they had penetrated
deep into the slab and crushing of concrete had taken place on the top of slab
along these lines. 4lso on the top of slab, a large tension crack accompanied
by smaller cracks on either side developed roughly in the form of a parsbola
with its vertex touching the central beam ot its mid span ond passing through
the ends of the londed beams As the fadlure load was approached, the deflections
at mid span of the twounlonded beams have started decreasing. At collapse, the
outer (unlonded) beam had actually deflected upwards to a considerable extent,
The failure load wos 9.85 tons. Strain-hardening of steel was also cbserved

in this casc.

6ulely Model A IV
Figo 503(8')

Fig. 6415(c)

Cross section

Crack pattern
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FIG.6.12(2) Control Beam AIIICB after failure
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(i) Top

FIG.6.1 !
5(a) Crack Pattern of Model AIII after failure.compare With FiG-é1o(b).



(ii) Bottom

FIG.6.15(a) Crack Pattern of Model AIII after failure
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It was another companion specimen to Model A I but was subjected to two
point loads 10 " apart in place of a single point load at mid span. Since the
quality of concrete used was poor, it failed by developing a longitudinal tcnsion
crack along the loaded beam, There was extensive spalling of concrete at the
bottom of the slab before failure occurred. Thesec was no punching of the
@istribution plates through the slab., At mid span, a compression crack almost

scross the whole width of the bridge hod formed., The failure load was 8.5 tons.

6olre5 Model B I
Load position : Fig, 6.18(a)

Cross scction Fig. 5¢3(b)

Control Beam BICB

Moment-Deflection curve Fig. 6,16
Moment-strain curve Fig. 617
View after failure Fig. 6.17(2)

Load-Deflection curve : Fig. 6418(Db)

Lond=Strain surve : Fig. 6,19

Strain Distribution : Fig. 6,20

Crack pattern : Pig, 6.20() & 6-20() "

This test was planned to simulate the wheel loads of HB vchicle on bridge
decks. The cight-point loadifig was applied by distributing the jack load by
means of rigid stecl blocks resting on rollers at load points. Non-linearity
of load-deflection and load-strain behaviour was noticed in the bottom flange
of londed beams I and II, when the total load reached a value of 4.5 tons.
the bottom of the slab, tension eracks which originated at the load positions
spread towards the ends of the beams III and IV, On the top of slab, tension
cracks appeared along the beam III ot mid span., They extended on either side

to a length equal to about cne-third span and turned towards the ends of the
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FIC.€.17(2) Control EBeam BICB after failur



MopeL BI
(LoADS SIMULATING HB VEHICLE

LoAD TONS

(Loaded

18

COLLAPSE LOAD =95 TONS

= PSS Sr—

(b)

1000 1200

veflection (in«) at mid span

G G

geamt (Loaded)




LOAD ToNs

S
1

® @ l 1’@ 1 l@
o B BRI e . e
™ ) l.+l
2 N‘l@ I“n ml —;lé]}vs ;l {PS'
® .
— Location of Resistance gauges at mid span of d
Mode/ Bz

1

L 1 1

CotrArse toAp=3-5rons

1 1 1 1 1 1 1 1

§00

000

IS00 2000 2500 3000 3E00 4000 4500 5000 5500 6000 6500 7ooo 7500

FIG.619

+ Tension
- Compresson

Strain (16 mfin)

=1000

-2000

-3000

4000




1%

AB - Deduced from strains onsleel seetion assuming Full interaction

/
AB - Measured on surface of concrele

0-5% 0-34% 0195%
IFb B’ 1'-8 & A 2”»r* B Q’ A 1r
'(9) :g T b4
<= l: ‘g
N.A.
N.A. el o
A \
;}terfue
il s s & i
&
m N
3
a
L———————-—- >4 | v o
-08% 123% 0:56% " 0255%
Control Beam - BeamI BeamI BdeamIl
at a moment “at 9-0TONS at s-otons atsorons

of 42-6 Ton-In

strain distribution mear collapse in Model 81

FIG. 6-20




(ii) Bottom
FIB.6.20(2)Crack Pattern of Model BI after fzilure.cCompare With
FIG-6-200)
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loaded beams I and II, On the top of slab, crushing of concrete took place
parallel to the line of loads. As the load was increcased, the separation of
the two loaded beams from the rest of the system beceme more evident as shown
by the tcnsion crack lines on the top of the slab, The bridge failed at 9.5
tons. The strain gauge rcadings indicated strain-hardening in the web of the
beam and the bottom flange of the beam II,

The strain readings in the control beam as well as.in the beams of the
model (Pige 6417 ond 6.19) show that there was compression in the top flanges
of the beams in clastic range indicating less composite action perhaps caused
by slip greater than expected at interface. This has slightly reduced the

vltimate capacity of the control beam. as well as the model,

6.6 Model B II
Fig, 6.23(a)
Fig. 5.3(b)

Moment~Deflection curve Fig., 6.21

Load positioms.

cross section

Contrecl Beam BIICB

Moment-Strain curve Fig. 6.22(a)
View after failure Fig. 6.2 c)
Load-Deflection curve : Fige. 6.23(b)
Load=-Strain curve : Fig, 6,24

Strain Distribution Fig, 6.,22(b)

Crack patterns : Pig, 6.2(=2) ¥ 6-20by

The loading is similer to that of Model B I except that the point loads
over panels are omitted. The deformations and the manner of failurc near
ultimate load were alnost identical to those of Model B I, though in the

elastic range, its bechaviour as revealed by the Load-Strain curves (Fig-¢-24)
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(ii) Bottom

FIG.6.24(2) Crack Pattern of Model BII after failure:compare with
Pig-6-20h).



was slightly different, In the absense of slip measurements, this might bc
attributcd to the different amounts of slip that might have occurred in the

two models.
602{-'7 Model B ITIT
Fig. 6327(&)

Fig, 5.3(b)
Moment-Deflcction curve Fig. 6425

Load positions

Cross scction

LAl

Control Beam BIIICB

Moment-Strain curve Fig. 6.26
View after failure Fig. 6.26(2)
Pig. 6.27(Db)

Load=~Strain curve :  Pig. 6.28(a)

Load~Deflection curve

Strain Distribution Fig. 6.28(b) =nd 6.29

Crack pattern :  PFig. 6.29(2) ond Fig. 6.29Db) & 629 ()

The four-point loading was symmetrically applied over the central beam=
The crack pattern is partly comparasble with that of Model A I or A II, Punching
through the slab did not occur in this case due to incrcased area provided by
four distribution plates under the point loads. The losded (inner) bezms
failed first transferring morc load to the cuter ones, which have also failed
as the losd was incrcascd. A compression crack formed almost across the whole
width of the bridge as scen in Fig. 6,29(b). Crushing of concrete was more
pronounced on ocne side of the bridge than the other,

This might have becn caused by loss of symmetry due to

(i) slight crror in positioning the loads,

(ii) small variations found in the dimensions of the steel beams

used in this model,
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FIG.6.26(2) Control Peam BIIICB after failure
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FIG.6.29(b) Top of Model BIII after failure
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(did) strain-hardening of steel that had developed to different degrees
in diffcrent beanms,
However, for practical purposes it can be assumed that the bridge deck
had failed across its whole width, rcsulting in Mode A, which is the desired
one for maximum efficiency of a bridge deck. The failure load was 13,85 tons,

the highest for all models tested, .

6elte8 Modecl B IV
cross scction :  Fig.' 5.3(b)

crack pattern : TFig, 6,30

This test was planmed to investigate if the punching of slab that had
been observed in the tests on Models AT and 4 IT could be prevented by two-
point loading, Two point loads 10" apart were applied symmetrically at
mid span of the inner beam as merked in Fige 6.30. The crack pattern
devcloped at failure was similar to that obserwed in Model A I mand A IT.

The failure load was 8,6 tons.

This model was cast using the conercte from the same batch as Model BIIL.

Thercfore the scctional properties of Model B III are used in calculating

the ultimatc load of Model B IV,
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CHLPTER 7
DISCUSSICON OF TEST RESULTS

7.1 Introduction

The sppliccbility of yield-line theory to o composite steel=concrete
structure muinly depends on the quality of stecl useds The quality of the
concrete has no mensursble effect since the slabs have to be lightly reinfoarced
so th.t only the yield point of the stecl is the decisive foctor, However, it
should be kept in view that the concrete should not be too weck to affect the
load=-slip characteristics of the shear connectors (89), which may result in
ol ke e Gt n aorcrtte oF Tower stcongbie . o T

The steel used in beams of Models of lL=-scries, had developed strain-
herdening to a considerable extent as shown in Fig. 5.i(a). Tests indicate
that strain-hardening hes o beneficial effect on the ultimate capacity of a
structurc, though it complicates the analysis.

For high strcngth steel vdthwt o marked yield poing the stress-strain
curve as sccn in Fig, 5.4(b) hns relatively shorter horizontal portion than
ordinsry mild stcel, This curve, of coursc, reprcsents aon cxtreme case
because steel, which is more work-hardened than the steel mesh used in the
tests, is not used in practice. In such cases, an ultimate load analysis for
simple structures is, no doubt, permissible, though this is not on a par with
the rcsponse of steel structures to idenlised plastic theory (21).

6 The pattern of yield lines that may develop in a beam and slab system
largely dcpends on

(i) System of reinforcement,

(ii) Spacing of beams,
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(iii) Support conditions,
and (iv) type of loading,
In the present tests, thc system of rcinforcement, spacing of beams and
support conditions are kept the same in every model, the only variable being
the type of londing. Therefore the whole'discussion now centres round the

behaviour of the test specimens under different loading conditions.

7.2 Degrce of composite gction

In thc present investigntion, it is assumed that complete interaction
betwecn the berm ond slab up to failure is achieved by the provision of
adequnte number of mechanical shear connectors. It is important ot the outset
to verify how for this assumption is realised in the tests since the entire
thetry for predicting the maximum ultimate moment of a composite beam is
simplificd by this basic assumption.

Tho useful ultimate capacity of ~ stud shear connectar (56) cen

nlso be computed from the following formula:

For hﬁ/ds > L2,

B DR L . aa i 45 i e~ R
For hs/ds - le2,
where Quc = usecful ultimate cepacity of one stud, lbs.

ds = stud diameter, in,

hS = stud height, in.

For » stud connectar used in the Test Specimens, the minimum value of
useful ultimntc capacity works out to be 3200 .1bs or 143 tons,.

The design value of onc shear connector as per C.P.117, part 1 (73)
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works out 1.64 tons, for the ultimate capacity of 2,05 tons found from tho
tests (Toble 541). Using the formula (5.1) and the details given in Tables
502 and 5.3, the actual meximum shear force to which a shear connector is
likely to bc subjected works out to be 1.32 tons. The slip corresponding to
this load from the graph given in Fig. 5.2 is 26 x 10-2* in, This is much less
than the suggested safe value (91) at which full interaction could be assumed

without introducing any appreciable error in the calculation of maximum moment,

7.3 Bchaviour of Control Beams and Slab Sgprips

Tecstfof all the Control Beams, except the Control Beam B I CB, gave the
valucs of ultimate momcnts higher than the theoretical ones, The gap between
theory and tcst was as high ns 30 per cent in the beams of A-series and 20
per_cent in B-series, even af'ter cllowance was made for the effect of strain-
hardening in the theory. - This was expectcd because of the limit put on the v
moximum vaélue of concrete edge strain € at maximum moment (Equation 3.10)
The theoreticsl values of ] varied frrom 0.3'8 to 0.334 per cent for dif
ferent strengths of concrete used against the cxperimental values which
varied from 0.35 to 0.50 per cent,

Permitting higher values of ®u observed in tcsts, this gap could be
mode as small as possiblc, but how far this is justified is in doubt because
of many uncertainties inherent in the strain-hardening nature of steel and :bhe
strain-sof'tening nature of concrcte.

In thc case of control beam B I CB, the cxperimental value is slightly
less than the theorctical one. This might be attributed to the presence of
slip grecater than expected, possibly caused by defective welding of shear

connectors in this particular beam.,
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The ultimnte moments of slab strips obtained from tests generally agree.

with theoretical values which were on safc side,

74+ Behaviour of becams in models

First yielding of the beams was characterised by an abrupt change in
the slope of lond-strain curves. Yielding occurred first in the looded beam
and was shortly followed by large defleetions. With further increase of the
load, yiclding penetrated decper into the steel section of the loaded beam
and sprcacd to the adjacent bcams.

In the casec of Model A I and Model A II, yieclding did not reach +hrough
the entire cross-section of the loaded beam, though strain-hardening had com-
menced. in the bottom flange and deflections were increasing fast. Yielding
occurrcd in the bottom flanges of outer beams but did not penetrate deeper
intoc the stcel scctions. Their deflections at mid span were Jjust beginning
to incresse non-linesrly. In other words, the outer beams were still ecting
as strong supports to the slab, when the failure of té bridge occurred,

In the casec of Model A III, yielding reached through the entire cross-
section of the loaded (outer) beam while strain-hardening was taking place in
the bottom flange and web. Yielding had penetrated nearly half the depth of
the stec¢l scction of central beam, The outer (unlo:_ﬂ.ded) beam wyas far fron
yielding stoge and deflected upwerds at mid span, hinging on suppor ts which
were anchorcd down. i

The behaviour of individusl beams in B-scries was similar to that in A-
serics, undcr similar loading but the behaviour of the Models was, to some
extent, diffcerent in some cases,

In the Models B I and B II which are comparable tc the Model A TIT in
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the type of londing, thc outer beams (unloaded) were for from yielding stage
and deflccted upwards as in Model A IIT. In the Model B I, which is camparable
to the liodels 4 I and A IT in the type of londing, there was no punching of slab
and the beoms (unlonded) have also foiled at ultimate load which was not the
case with the Models 4 I and 4 IT, This will be further discussed in section
Tsbs

The notable feature in all the modcls testcd was that the outer beams,
lwhen loaded, produced relatively larger strains and dcflections than the loaded
central bcams at their corresponding sectionsefifailurc. The.loaded beanse.
whether inncr or outer, had tended to separate from the rest of the bridge
deck near ultimatc load. In 21l the tests, the loaded beams had failed first
and the beoms immedintely next to them had failed or nearly failed, The beams,

two spacings away from the loaded ones, werc not much affected.

75 Behaviour of Slab in Flexurc

The cracks in the slabs in majority of the tests, were not wide open
since the reinforcement in the slab consisted of steel with high yicld strength &
and low clongation., There were many smell cracks by the side of larger ones.
The ossumption that full moment of resistance is developed along the yield
lines was not realised in some tests namely on the models where the ends of
unloaded bcams were not anchored down to prevent their 1lifting up due to
eccentricity of thc load applied. Even where the ends of a beam were anchored
dowvn, therc was rotation of its cross section at mid span as the I-section is
torsicnally wecks Only in Model 4 IITI, wherc the two unloaded beams were
firmly anchored down, therc was a negative yield line along which full moment

could be assumed to have becrdeveloped. The positive yield lines were also
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well formed in this cnse c.s scen in Fig, 6.15(2).

7o6 Punching of slab

The lo-d distribution plate 4" x 4" x 2" size had punched through the
slab in Model i I and L II, wherc the losding consisted of o podnt load
applied ~t mid sprn over the central bezm, The probable causes for this
punching are:

(i) 4nndequate size of distribution plate under the point load,
(ii) stress concentration under the loaded area subjected to high
vertical shear,
and (iii) any vertical sepcration of the slcob from the steel joist.

In later tests, the canses (i) and (ii) were removed by applying two-
point loading, which was distributed over a relatively larger area and
provided n rcgion of no shear between the load points.. There was no punching
of slab in Models 4 IV and B IV, which were subjected to similar loading.

Thc size of the distribution plate was determined from the condition
that the punching load computed using the formula (4.25) was not less than
the maxinum ultimnte load of the bridge deck in flexure.

Loboratory tests (81 - 83) indicate that when o single load was placed
over a prnel, failurc occurred as a result of punching shear, i.e. by
separation from the slab of a truncated conical section. In Model B I, the
loads over the panels were acccompanicd by loads over the joists and there was

no punching of slob,

7e7 Scctional Properties

7e7s1 Control beams

The scctional properties of control besms calculated using the formuloe
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derived in Chapter 3 arc presented in Table 7.1.

7e7.2 Model bridges tested by the author

The properties of model bridges cslculated using the theoretical ultimate
moments of beams and slab elements are presented in Table 7.2. The values

of m and ,q m arc computed from the formula (2.1b).

Te7.3 Model bridge tested by others (Model SG,)
The properties of a composite beam bridge tested by Short and Thomeas (83)
arc calculated assuming a cube strength of 5000 p.s.i. for the concrete and

4
yield point of 40000 p.s.i. for the steel. They are presented in Table 7.3.

78 Conlculation of ultimate loads of Bridee models

The Figurcs showing the m6des of collapse considered for each model and
the appropricte formulae derived in Chapter )4 are presented in Table 7.4 for

ready rcfirence.

7+8¢1 Formulac for Model A IV and B IV

For Model 4 IV and B IV, the formulae for ultimate loads are obtained
by modifying the expressions derived for Model B ITITI to suit the loading con-
ditions and the number of longitudinalse.

Model A IV i, =0, i,=0 ond &= 5/3;6.

(a) Equivalent slab Method

P1=12N0m ...0‘0.-.oon.oo.tioco'o.t (7"1)

1-3___.,..-.
P, B I 01
JEA-3)21

(b) Beam and slob Method
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TLBLE 71

Sccticnal Properties of Contrcl Beams

Control
Beam

4 I CB

4 TT CBl 4 ITT CB

B ICB

B IT CB

B III CB

Cube strcngth
Cu, p'S.i.

5227

5096

6290

}
|
|
|
|

J

5130

6270

5600

cylinder '
strength, fc
PeSele

450

4320

l
5340

4370

5310

4750

Effective
width, B ,
v e
inches

10.32

10, 31

10.36

10.36

10.33

Neutral axis
depth frcm top
of slab,
inches

1250

122

1.01

1l ©

concrecte cdge
gtraing e
£ “eu

(1072 in/in)

0.332

Oe 334

0.318

0.333

0.318

0.327

stecl edge
strain e

(102 1n/in)

0.828

0.822

o. 865

0.992

1.097

1.016

Curvaturec
at mid span

(in-1 x 1th)

2571

25.68

26,29

29.45

3146

29.85

Lever arm,
inches

242

2,96

2:.87

2.55

2:57

2453

strain-

hardening

stress, T 2
S8y 1g? Tai

3.03

3.00

3419

steel ferce,
T, Tcus.

20,12

19.89

2149

17.93

18.41

1841

Ultimatc moment

Hc s Tﬂn"irlo

59.22

58,481

61.75

45.89

47,32

46,57

condition of
steel scetion
at failure

partly
clastic

partly
elastic

partly
elastic

partly
elastic

Fully
plastic

Fully
plastic

Experimental
vlitimate load
PM,L’OT\S

4-04

4-07

5-41

2-96

37

35




Properties of Model bridges

TABLE 7.2

! 2 i T |, Mot | | Sk
c s D= Mm 2 14 e MM _Me 5
Model Ton-in, Ton~in/in Ton-in/in M=M (BEq. haB)MS ez me My = e Hi Me
AT 59.22 0,557 0.315 0.566 8.969 0.566 L.77 2,18 | 3.243
A II 58.81 2.555 0.309 9,557 8.878 0.557 L.72 2,171 0.245
ATII | 61.75 | 0.6 0.328 | 0.539 | 8.7 | 0.539 451 | 2.2 0,25
ATV | 48.69 0.445 0.252 0.567 | 9.18 0.567 4.87 2,20} 0,239
BI L5.69 ).556 0.313 0.563 6.95 .ok 3.76 1.94 | 0.278
BII | 47.32 0,624 0.335 0.535 6.38 0.535 3.46 1.86 | 0.29
B III | 46.57 0,580 0,319 0.55 6.77 0.55 3 .66 1.1 ] 0,282
B IV 46,57 0,580 0.319 0.55 6.77 0.55 3.66 1.91 | 0,282
TABLE 7.3
Properties of liodel bridge tested by Short and Thomas
¢ ! M n Atl
liodel | -2 . i ot Mo .. [Mg = /
iing BoBads Ton-in, | Ton-in, | Ton-in/in | Ton-in/in Ton-in{;i'n - . Me |YM1
S GS 5000 582 435 1.2 0.5 0.22 0.317 13.6|2,62

"'68"



TABLE 7.L

Modes of collapse and formulae for ultimate loads

Equivalent slab Beam and slab
Method Method

Model i 12 5 Modes shown zgzzﬁlig Modes shown z;?_i:ﬁl?z

IR vapes section i sections
AT 0 ] [ L.6 to 4.9 Le3d1 he26, 427 Lolpod
A IT 0 1 o L6 te 4.9 b3t 4,26, 4,27 leeiliel
A IIT 1 0 1/6 L1l D 413 g 4428, 4.29 Lly2
B I 0 0 1/6 o2l to 14,25 L.3.5 .32, 4433 Lolps5
B II 0 Q 5/36 4.20 to 4.22 Le3al L.32, 4.33 Loliol
B III 0 o 5/36 4.15 to 4.18 Le3.3 4.30, 4.31 Lhoko3
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7.9 Comparison of theory and tests

7.9.1 Control Beams

The ultimate moments and the corresponding concrete edge strains a»?
Shape Foctors of Control Beams obtained from theory and tests are comparc”
Tables 7.5 ond 7.6 respccively.

7.9.2 Model bridges

Thc theoretical nnd experimental ultimate loads of Model Bridges are

compared in Table 7.7. The valves of ¢, ¢ and X fox yteld patterns
are compared m Table 7-7@y{P 77;)
710 Rotios of yicld load to ultimate load of Model bridges

The ratios of yield logdtc ultimate load of Model bridges for the given

loading conditions are calculnted from theory using Harmonie Analysis (92)
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determine the load at first yield. In applying the above aonalysis, zereo
torsionnl rigiddty for 21l models excecpt Model A III was assumed and the para-—
meter "a" for thc transformed section wms’ evoluated using the moduler ratio
equal to BOQ/JE— (70)« The average value of "a" for all the models was found
to be 12, For ;odel A TITI, torsional rigidity was considered ("g" = 1,22)
since the two unloaded beams were firmly anchored down at the supports.

The nbove ratios obtained from the tests arc presented along with the

theorcticel ones in Table 7.8 for rcady comparison.
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TABIE 7.5

Comparison of theory and tests on ecntrol beams

moments, Mc ’

ultimate

Maxrimum

concrete edge

Control et ( j;fgl;:/:!c:;

o Theory Test V"g::s)g ] Thcory— Test T_ITlZ-%
A I CB 59.22 72.6 1e22 0.332 0.403 1.22
A II CB 58.81 7345 1.25 0.334 0.354 1.06
LAIIICB | 61.75 81.32] 1432 | 0,318 | 0.50 1,57
BICB 45.89 4he5 0.97 0.333 0.48 1ol
B II CB L47.32 573 1422 6.318 0.50 1587
B III CB | L6.57 5l o1 1416 0.327 | 0.40 1422

TABIE 7.6
Compariscn cf thecoretical and experimental _shape factors
Theoretical Exp—e;imental ]
o e My Shs.pﬁ Pactor My Shaplc/aI Factor
Ton-in, % ; Ton=-in, /My
Sk i

A ICB 40,0 148 41,0 1.76

A IT CB 4.l Telp2 41.0 179

4 ITIT CB 42,0 147 43.0 1.87

B ICB i % 148 23,0 149

B II CB 32.5 146 31.0 1.85

B III CB { 3245 14 32,0 1.69
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TABIE .7

Compariscn of Theory and TRsts on Model bridges

Equivalent slab Mcthod Beam and slab method
¥ ns) ( tons) ¥
AT 9.98 8.4 8.5 1.01 9.98 g.72 0.97
A II 9.85 7.95 9,15 | 1.98 9.85 g.69 1.05
A IIT | 12,40 10, 31 9.85 | 0.96 12,40 8.5 1015
A IV 9ehs5 7.63 8.5 | .12 9.45 7.78 1.10
y /1 12433 10.10 9.5 0.94 12.35 |8.40 0.92
B II 12,36 9.9 9.7 | 4.06 | 12.36 9.25 1.09
B IIT | 12.10 11.68 13,85 | 1418 12,10 12.15 1.14
B IV 945 §.65 8.6 0.99 9445 9.13 0.94
S G_ - 27.5 35.0 1.2¢ - 33.15 1.01
TLBIE 7.8
Ratios of yield load to ultimate load of model bridges
Theory Txperiment

gk bE | Teat 1 Pamliee | e | el
P, tms | B, tcns ¥ P, toms| By, tons. J

41 5457 7.48 1431 4.8 8.5 1.77
A IT 557 T3k 1.29 5.0 9.15 1.83
A IIT 1.85 8,5k 1476 5¢2 9.85 1.89

BI 4.58 9.87 2,15 45 9.5 2.1
B II 4,00 8.83 2,20 Le5 2.7 2,15
B III 6.38 11,05 173 5¢6 13.85 2.47
B IV 5e2 7.99 1452 4.2 8,6 2,02
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CHAPTFR 8
CONCLUSIONS

8s1 Prelimin-ry Rem~rks

The following conclusicns drcwn from the results of tests on eight gmall-
scale modcls moy be considered in generrl os qualitative. Faen the few
quontitotive stotements should be considered ns tentative in view of the
choracter and limitotiors of the test programme. It was not expected that the
tests sould yicld definite answers to the many questicns rcgording the
behaviour of Compositc Beam and slab structures near collapse, It was hoped
that the snall-scole models could more conveniently be fabricated and tested
within thc limits of time and would provide further insight into the nature cof
the problem, though full-size tests of bridges are desirable for many rcasons
For one thing, the stress-strain propertics of steel used in small-size rein-
forcement ~nd joists ~re nct the same as those of steel used in lorge~size
sections of a full-size structure. 'The self weight in 2 small-scale model is
small and is of'ten ignored in the analysis whereas in a full-size bridge it is
considerable rnd may influence the mode of failure. Obviously, tests of full-
size bridges would provide more conclusive evidence regarding the validity of
the thecrctical analysis. However, it is believed that the test programme
reported hercin has yielded much useful informatian, It may be mentioned
here thnt in postulating diffcrent collapsc mechanisms, only straight line
yield patterns are considercd in order to simplify the theory. Experience
shows (21) that curved yield line patterns do not change the wnltimate load +c
any great cxtent and any small gain of accuracy is not worth the labour
involved in solving the complicated nlgebraic expressions especially in the

analysis of orthotropic slabs,
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8.2 Composite Beams and slob

(1)

(1) '

? < . -
(4d4)

(iv)

87

(vi)

Yhere strain-hardening of steel is negligibly small, the theory
based on the assumption that ccncrete attains 2/3 cube strength or
the value given by Hognestad's stress block (Fig. 2.3) at maximm
moment, predicts a sufficiently accurate value of monm:_*.t compared
with test results. The ultimate ﬁoment caiculated on the basis of
#/9 cube strength (C.P.117, part 1, 1965) is ccnservative.

where strain-hardening of steel 1s present, a theory is developed
in Chapter 3 to predict the ultim~te moment of a composite beam
This prediction is in close agreement with the test results (Tar
3.1) , provided the correct values of r and s are well ascertaincd by
tensile tests on steel specimens, The control tests in the present
investigntion indicate that there is wide variaticn in the value

r and s for the spccimens cut from the same steel section.

The strains measured show that the strain distribution is more or
less linear across the depth of the ccmposite secticn implying that
any slip present at interfacc can be ignored,

The longitudinal strain distribution across the width of the slab
shc.&l in Pig, 6.2(b) agrces well with the thecry behind the ccnecept
of eff'éctive width of slabs.

In the tcsts the extreme fibre strain in concrete at maximum moment
varied frem 0,0033 to 0.005. The formula (3.10) gives a safe
cstimnte of the value of this strain.

In "ZL’L the beams tested, the ncutral axis moved upwards after the
bottom flange of the beam yiclded and was in the slab at meximym

mcment, The strain distributicn shows that the longitudinal rein-
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forcement at the top of the slab has yielded, as assumed, at maximum
mcment, It also shows that at maximum moment the secticn was fully
plastic in beams where strain-hardening of steel was not appreciable,
In beams where strain-hardening of steel was appreciable, the steel
scction was not fully plastic, the neutral axis being relatively
ncarcr the top flange of the steel joist.
The Shape Factor determined from the tests varied from 1.69 to 1.9,

The thecretical shape factor variecd from 1.42 tc 1.48.

8.3 Bridgc models

(1)

(i)

(iii)

The test results show ~rple evidence of the real nature of the
yicld lines and the validity of the theory.

The differences betwecen the theory and test results were of minor
importance and on the conservative side, with a few excepticns, Ths
tendency of the tcsts to give greater ultimate loads then the yiel”
line theory may be attributed mainly to

(2) membranc cffect inherent in T-beam action.

(b) strain-hardening of steel, where it occurred,

Of the two methods of analysis,b(i) Eguivalent slab Method and

generally
(ii) Beam and slab Methced, the beMErxgave lower values of ccllapse

lcad for all the models under investigation. The pattcrns of yield
lines calculated from bcth the methods did not differ much, Thou_’
more experimental cvidence is nceded before the relative merits of
the two methods arc decided, it can be stated that the former meth-”.

is more suited to th>analysis of a-bridse deck with smaller.rlb sizes

which would sgpreaooch the behoyiour of an arthetropic olabd, and the
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latter methed to 2o bridge deck with larger rib sizes. The steel
beams in this case would cobvicusly act as strong supports tc the slab.
The observed yield patterms generally correspconded tc the theoretical
patterns. When two patteyns gove more or less the same ultimate
lond, bcth the yield patterns werc cbserved as in Model B IIT
(Fig. 6.29b).
The stroins ond the deflecticns measurcd in the beams of the model
bridges were similar to these of contrel beams, although slightly
smaller in magnitude., It is therefore sufficiently accurate tc use
the seeticnal properties cof the separate elements in analysing the
ccmplete system.
The ratics of yield tc ultimate lcad obtained frem test results
voried from 1.77 to 1.89 in models of A-series and from 2.11 to 247
in those of B-series, The steel used in beams of A-series had higher
strength at first yield than the steel used in beams of B-series.
The thecretical values of the sbove ratios varied fiem 1,29 to 1.76
in mcdels of L=-scries and from 1,20 to 2,20 in thcse of B-serics
(Toble 7.8). It is therefore suggestced that due ccnsideraticn
shculd be given tc the yield streggth of stecl in chocsing a load

factor,

8.4 Punching Failurc

(1)

The chances of failure of a bridge deck due to punching of the slab
arc lecss if the pcint loads over a panel of panels are accompanied
by other pcoint loads over the beams as in a multi.point leading

simulating the wheel loads cf a HB vehicle,



(ii) Under a multi.point londing, menticned above, it is possible to
prcvent altogether, a punching failure if the relative strengths

of beam and slab and the geometry ¢f their arrangement are properly
dceigned,
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APPEDIX 1

Computer programme for czlculating Ultimate Mouent of Composite
Beam allowing for strain-hardening

Notation .

As = Area of steel section,so.in,

af = Ratio of flange area to area of steel section,
aw = Ratio of web area to arez of steel section,

D = Depth of Composite section,in,

t = Thickness of slab,in,

B = Width of flange,in,

L = Length of span of beam,in,

fy = Yield stress of steel in beams, tsi,

E = Young's Modulus, tsi,
r = Ratio of strain at strain-hardening to strazin at first yield,
S =

Ratio of Young's Modulus E to strain-hardening modulus Esh
b

Ar = Area of longitudinal reinforcement at top of slab,=sc¢.in,
fyr= Yield stiress of reinforcing steel, tsi,
cr = Cover to the centre of longitudinal reinforcement, i:,

¢cc= Cylinder strength of concrete,psi,

L2

ecu= Concrete edge strain,

vl =cCas given by Eq.(2.2),

v2 =3 as given by Egi(2.3),

Be = Effective width, in,

nl = Depth of neutral axis from top of slab,in,
eu = Curvature,in-l,

n = Ratio of N.A,Depth to depth of Composite‘section,
fyy
Is = Strain-hardening stress, tsi,

Stress at top of steel section, tsi,

ae,as a8 shown in Fig.3.5,

- eyy= Strain at top of steel section,

ey = Strain in steel at first yield,

€e = Sirain at bottom of steel section at Ultimate mome:
C = Total compressive force, tons,

T = Total tension in steel, tons,

1 = Distance of T from interface,in,

zp = Distance of C from interface,in,

o
2
I

l+zp =Lever arm,in,
Fp =MU = Ultimete moment, ton-in,
WU = Ultimate load at mid span, tons.
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Rt Y 3
CIE 015/0000 0006 MU REDDY
OUTPUT

0 LINE PRINTER 1000 LINES
EXECUTLIN 3 MINUTES
COMPILER AA

begin
real As,af,aw,as,ap,as,D,d,t,fy,B,r,s,Ar,fyr,fc,fcc,c
ecu,vi,v2,B,Be,L,k,k1,f,g,08,0y,8yy,u,fs,fyy,Pl,c
P2,F1,F2,np,nf,C,T,1,zp,MU,WU,n,c
Al,B1,cr,Mp,jd, cu,ni
integer m,i
n=0
read(As,af,aw,D,t,B,L)
13read(fy,E,r,s,Ar,fyr,cr)
m==mek 1
newpage
caption dbeam$A
print(n,2,0)
ca_Etinn A==
newlines (2)
i=0
2:i=i+1
read (fee)
if fee=-1 then ->1
if fee=-0g then stop
if i=1 then ->21
if i=2 then ->22
read(ecu,vl,v2)
..>3
21:ecu=,004~fce/6,5046
v2=,5~-fcc/ 79950
v1=(38g7+.35*fcc) /(3200+fce)
—)3
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22:read{ecu,vi,v2)
Jicaption hDé=4
print (D,2,2)
caption $4 fcc $=%
print (fee,4,0)
caption $444 ecu $=4
print (ecu,1,5)
caption 448 vi $=#
print (vi,1,3)
caption $$4% v2 $=4
print (v2,1,3)
fe=fee/2240
Be=(1~,525%v1*B/ (v2*<L))*B
d=D-%t
k=As*fy/(virBe*=fc)
ki=Ar*fyr/(vi*Be*xD=fc)
f=n/d;ey=~Ly/Bj;u=ecu/ey ;g=t/D
Al=2%g*u~- aw*£xlcc( (usrr)$2-5*(1+u) ¥2)
Pi=2*u*k* ((1-ki/k)*s-(uir)*(af+awrf)c
~g%* (l+u) * (af-awki*g) ) /AL
pP2=lkufg* ((2rafraws ) +gxs* (Zraf-awsf*g) ) /AL
np=(Pl+sqri(P1$2+4%P2) ) /2
fyy=u/np*(g-np)*Lfy
Bl=2*sg*u~-aw*L¥lce(usr) ¥2
Fl=zruxke((1-k1/k)*s=(u+r)*(af+aw*t) ) /B1
Fe=lk*uz*(2=afsaw*?) /Bl
nf=(Fissqre(®itz14-v2)) /2
if fyy>fy then =>4
n=np
caption hsteelbis$partiallvielastich
=
4 :n=if
fyy==_y
caption Asteel$isffullysplastich
5:fs=Ffy/a*(u/n-(usr))
as=1-n*(u+r) /u
if £s>0 then ->55
£8=0
as=0
55 :ap=n*(r-1)/u
pe=n*(fy-Lyy) /(u*fy)
eyy==fyy/E; ee=ecu*(1l-n)/n
caption 44 Be &=4
print(Be,2,2)
ni=n*pn
cu=scu/nl
caption $% ni #=#
print(ni,2,2)

caption $$ cub=$
print Zcu,O.?)
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C=vi*Be*fc*n*DiAr*fyr

T=As*fy+af*As*israwrAs*as*infs/2-af*As*(fy-fyy)e
~awsAs*ae*f* (fy-Lfyy) /2
1=(A5*fy*d/2+af*Aa*fs*d+aw*hs*as*f*fs/z*(d-as*D/s)g
-awkAs*ae* £ (Ly-fyy) /2%ae*D/3) /T
zp=(v1*Be*fe*n*D*(g*D=vZ2*n*D) +Ar*Lyr*(g*D-cr) ) /C
Jjd=1l4+zp
MU=T* jd
WVU=MU*4,/ L.
Mp=As*Ly*(D-d/2)+af*As*fs*DrawkAs*ras*f *£5/2*(D-as*D/3)c
~af *As*(Ly-Lyy)* t-awsps*ae*f* (fy-Lyy)*(ae*D/3+t) /2¢
~v1*Be*n*D*fexv n*D-Ar*fyr*cr

caption jttnt:t

print(n,1,3)

caption #4 fyy $=4

print (fyy,2,2)

caption 44 £s5 d=4

print (£5,2,2)

caption $% ae $=$

print (ae,1,3)

caption$s as #=4

print (as,1,3)

caption $4 eyy #$=#

print (eyy,1,5) :

caption 44 ey #=#

print (ey,1,5)

caption 44 ee $=§

print (ee,2,5)

newlines (2)

caption $f C =%

print (C,5,2)

caption 44 T $=4

print (7,5,2)

caption $§ 1 4=4

print (1,2,2)

caption &4 zp $=%

print (zp,1,2)

caption $$ jd 4=4

print (jd,2,2) :

caption $4 MU $=$ '

print (MU,6,2)

caption 4§ Mp $=$

print{ip,6,2)

caption $4 WU #=% -

print (Wu,3,2) : j

newlines(2)

->2

- end of program
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DATA FOR BEAMS A, TO A (Table 3.1)

13 .333 .333 18 6 48 216
15.35 13000 11,3 21 3,07 15,25 i,3i3
3635
3635 .0038 1 .5
3635 .0033 .925 .5
3635 .0038 .85 .5 -1
14.74 13300 4.6 17.7 .306 15.25 1,156
4220
4220 ,0033 1 .5
4220 ,0033 ,025 .5
4220 ,0038 .85 .5 -1
16,095 13200 1 21,15 .306 15,25 1,156
3030
3030 ,0033 1 .\
3030 ,0038 .925 .35
3030 ,0038 .85 .5 -1
16'.386 13400 1 10,66 ,306 1¥5.25 1,156
33« "
3380 ,00383 1 .3
3830 ,0038 .925 .5
3330 .0038 .83 .5 -1

it

15.34 13300 1 10,66 “ ,306 15.25 1,156
5010
5010 ,0038 1 .5
5010 ,0038 .925 .5
5010 ,0033 .85 .35 -1
14.87 13700 2.4 17,7 .306 15,25 1,156
5040
5040 L0033 1 .5
5040 ,0033 .925 .5
5040 0038 .35 .5 M —99
w7 R |
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DATA FOR BEAMS AICB TO BIIICB (Table 7.1)

1.13 .333 .333 4.5 1.5 12 72

20,00 13400 1 30 ,0492 26,8 ,3125
4450 ;

4450 .0038 1 .5

4450 .0033 .925 .5

4450 003! 35 .5 -1

20,00 13400 1 ..\ 30 .04092 /26,8 ,3125
4320

4320 ,0038 1 .5

4320 ,0038 .925 .5

4320 ,0038 .85 .3 -1

20,00 13400 1 30 ,0492 26,8 .3125
5340

5340 .0038 1 .5

5340 .0038 .025 .5

5340 ,0033 .35 .5 -1

15,60 13200 13 62.5 .0402 26,8 ,3125
4370

4370 .0033 1 .5

4370 ,0038 .025 .5

4370 .,0038° U85 .5 =1

15,00 13200 13 02,5 .0402 20,8 ,3125
5310

5310 ,0038 1 .5

5310 .003¥ .0925 .5

5310 L0038 .85 .5 -1

15.60 13200 13 02,5 .04082 20,8 ,3125
4750

4750 ,0038 1 .5

4750 L0038 L,025 .5

4750 J0u3s L85 .5 =00

Rt AN ALY



