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ix 

. s tract 

This thesis is concerned with the Ultimate load behaviour of Composite 

steel-concrete bridge dcck structures and the application of yield-line theory 

to assess their ultimata capacity. The yield-line theory was applied success-

fully to analyse the reinforced concrete slabs but its extension to the 

analysis of structures, whore T-boan action is present, is still under explor-

atory stage. In the introduction, the relative merits of elastic and plastic 

methods of analysis and their complementary nature are discussed. 

A brief review of yield-line theory is given in Chapter 2. It includes 

an account of the historical development of yield-line tbeory and the assump- 

tions and the important thcorer's on which the theory is based. 

A theory for the ultimate strength of a Composite beam is developed in 

Chapter 3. Formulae allowing for strain-hardening of steel and ignoring the 

same are derived. There is a close agreement between the theory and experiment. 

Upper bound solutions by consideration of collapse mechanisms arc 

developed in Chapter 4. Rnching shear failure and the effect of composite 

action on punching load arc discussed. 

General formulae for the ultimate load of simply supported Composite bean 

bridges by two alternative methods namely (i) the Equivalent orthotropic slab 

method and (ii) the Bean and Slab Method are derived. 

In order to check the validity of the above theory, eight model bridges 

along with control beaus were built and tested to destruction. The test 

results are discussed in Chapter 7. The theoretical results compare well with 

the experimental values. 

The conclusions iridicat 	that yield-line theory can be a satisfactory 

basis for the ultimate load analysis of Composite beam bridge deck structures. 
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[.fIk34. I 
1.1 INTRODUCTION 

The subject of thiz thcjs is the invcsti:aticn of thi 	 Load 

Behaviour of Composite Steel-Concrete Bridge Deck Structures subjected to 

one or several concentrated loads. The ultimate load analysis is of recent 

origin and is being put forward as an alternative approach in design. 

In the past, the structural engineering design has been based principally 

on elastic analysis in which the design criterion is the permissible stress at 

the adversely stressed part of a structure. The "Safety Factor" which is 

the ratio of ultimate stress to permissible stress is, no doubt, a measure of 

the safety of a structure against failure, but it does not indicate precisely 

how safe is a structure. In other words, it is nct possible to calculate r 

the elastic analysis how much load a structure will carry before it coUcre' 

because the structure, no longer, behaves elastically at higher stresses 1er 

collapse. The designers were aware of the illogical nature of this design 

criterion in the orthodox elastic design but did not come forward with an 

alternative design method until Baker and colleagues (1 ,2) published their 

investigations relating to steel structures. 

When the ultimate load method is adopted, the structure is analysed 

when it is in plastic state and when it is about to fail. It is, therefore, 

pessible by this method to predict the load at which a structure will fail 

and design it to carry the working load, which is a chosen fraction of the 

failure load. Thus, in the ultimate load method, the ratio of loads rather 

than stresses, is considered and the ratio of the failure load to the working 

load is called the "load factor" rather than the "safety factor". The load 

factor, as defined above, is a real guide to the true safety of the str:crore5. 
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and can be chosen depending on the degree of safety needed for a particular 

structure. Apart from the relief from the fundamental defect inherent in 

elastic method, the advantages claimed for the ultimate load method are its 

simplicity, the relative ease with which it can be applied to analyse even 

the most comDlicated structure and the relative unimportance of such items 

as sn.kin of supports, the presence of residual stresses and the worst 

loading patterns, which cause complications in eLastic design. However, 

it should b admitted that utimate load analysis has not yet been universally 

accepted and it is likely to remain complementary and not competitive to the 

elastic analysis. 

The ideal method of design would be first to design the structure with 

a specified lo:d factor and then to ensure that under working load conditions 

the deflection, crack widths, steel and concrete stresses are satisfactory. 

Alternatively the structure might be designed by elastic method and then 

checked by the ultimate load analysis to find if the load factor is satis-

factory. Whichever of these two alternatives is adopted, the ultimate load 

analysis has to be applied to assess the collapse load of a structure which 

is essential for the following reasons: 

to give the true safety of a structure under specified loads, 

to enable safe designs to be prepared for complicated structures, 

'here a simple design procedure is not available. 

aril (iii) to assist in an improved understanding of the behaviour of a 

atructure under service conditions, which may lead to a greater 

economy of design. 

1.2 imj1e plastic theory. 

In a simply supported beam loaded to failure in flexure, a "plastic 
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hinge" or a rgion in which the ultimate moment is developed and rotation 

takes place at a sensibly constant moment, will develop at some point within 

the span. At this point, the curvature becomes relatively much greater than 

at other points and hence, for purposes of analysis, the curvature can be 

assumed to be concentrated at the hinge end the remaining portions of the 

beam may be assumed straight. An analogouu behaviour can be observed in the 

case of a slab loaded to failure; the curvature tends to be concentrated along 

a series of straight lines 1i which the ultimate moment is developed and the 

remainin portions of the slab remain plane. Since, at ultimate load 

conditions, some or all of the steel reinforcement is yielding, the lines 

along which the ultimate moment is developed are referred to as yield lines. 

Thus, the 1Dlastic theory applied to slabs is called "yield-line theory't. 

1 .2.1 The simple plastic theory well-established for steel structures had 

been described in many texts (2,3,4). The assumptions and theorems on 

which this theory is founded, are briefly stated here so that they could 

readily be compared with those of "yield-line theory" which is an extention 

of the plastic theory for the analysis of reinforced concrete slabs but which 

has been developed independently by Johansen (5,6). 

(a) The assumptions made in simple plastic theory are as follows: 

(i) The idealised moment-curvature relationship is as shrn in Fig. 1.1 

The stress-strain relationship is also idealised on the same lines. 

The properties in compression are assumed to be the same as those 

in tension. .Ihen the moment at a cross section is sufficiently 

Lrge so that the material there yields completely, very large 

deflections occur without increase in bending moment and the cross 

section behaves as a hinge. Collapse of the structure occurs 



Fig.1.1 Idealised Moment-curvature relationship for steel 
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when a sufficient number of plastic hinges has formed to transform 

the structure into a mechanism. 

The deformations are small implying unaltered geometry, which does 

not invalidate the equilibrium equations. 

The redistribution of moment 'ii11 occur from the more heavily stressed 

sections of the structure to the less heavily stressed ones. 

The effects of axial force, shear, instability, repeated loading and 

brittle fracture nay be neglected. 

(b) The following are the theorems: 

As stated by I 1ejJ. (3), the "Static t1iorms" is 

"For a given frame and loading, if there exists any distribution for bending 

moment through out the frame which is both safe and statically admissible with 

a set of loads W. the value of J must be less than or equal to the collapse 

load We." 

This theorem defines what is iinovin as "lover bound" to the collapse load. 

The "kinematic theorem" as stated by Neal (3) is 

"For a given frame subjected to a set of loads W, the value of which is found 

to corresfond to any assumed mechanism must be either greater than or equal to 

the coll'-.pse lord Jc". 

This theorem defines the "upper-bound" to the collapse load. These 

theorems have been proved by Greenberg and Prager (7) 

The "Uniqueness theorem" which is a combination of the previous two theorems 

is 

?If for a given frame and loading at least one safe and statically ad.rissible 

bending moment distribution can be found and in this distribution the bending 

moment is equal to the fully plastic moment at enough cross sections to cause 
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failure of the frame as a mchonism "due to rotations of plastic hinges at 

these sections, the corresponding load. will be equal to the collapse load. Tc". 

form-,-I proof of this theorem is given by tlorne (8). 

Prom the assumption (±) it is obvious that the material of which the struc-

ture is made should have constant yield point nd should be capable of sus-

taining the yield stress up to several times the elastic strain at first yield, 

especially when there arc extensive collapse mechanisms. Only mild steel 

satisfies 11iiis requirement. As a matter of fact it is tha ductile or plastic 

property of steel observed in tests that had prompted the pioneers in the 

field to think on these lines and develop a theory ideally suited to steel 

structurus. however, there is a growing tendency to apply this theory to 

reinforced concrete structures (9,10) on the assumption that reinforced con-

crete can have or cnn be designed to have sufficient rotational capacity. 

Tests carried by rnst (ii) seem to indicate that sufficient rotation will 

always be achieved with reinforced concrete sections.Corley (12) points out 

that the ultimate curvature and inelastic rotation occuring in the hinging 

region near the section of maximum moment of a reinforced beam provided with 

binding steel in compression zone could be much greater than those calculated 

on the asumtion of a maximum concrete compressive strain of 0.003. But still 

there exists doubt as to whether or not sufficient rotation can be obtained 

from a reinforced or prestessed concrete structure to allo. all the plastic 

hinges to form before failure of one of these hinges occurs. 

A heavily reinforced concrete section brings much more of the concrete 

into play and fails by crushing of concrete, which is a sudden failure. This 

is true in the case of beams and frames which are likely to be reinforced with 

a more percentage of steel than slabs. A lightly reinforced slab, on the 



other hand, is assumed to fail in tension, the steel reinforcement following 

the stress-strain pattern required for the plastic theory, thus allowing the 

whole pattern of yield lines to form before its collapse. There is sufficient 

test data to indicate that it is a satisfactory assumption, on which Johansen 

(6), who did the main pioneer work for the development of plastic design fOr 

reinforced concrete slabs, has based his "Yield-line theory". 

1.3 ocope of the present investigation 

This investigation forms part of a programme to apply simplified yield-

line theory to obtain upper-bound sr- lutions for simply supprr ted Composite 

steel-concrete Bridge deck structures. A comprsite structure as cited in 

the thesis, is a reinforced concrete slab resting on and acting compositely 

with longitudinal steel girders; The steel girders are designed as T-beams in 

which the slab also acts as a compression flange of the beam. Jones and hood 

(13) elaborate on the main problem that centres round the permissible use of 

T-beams in Lhe plastic theory of bending. They add that, though at first the 

excess of concrete in what is termed the beum seems hardly conducive to ideal 

plasticity, such T-beams are likely to be "under-reinforced" when they form 

part of a slab, the prcidorninating failure (apart from shear failure) being 

tension failure of the steel, so that the moment of resistance is sensibly 

held constant at failure. They further point out that the ultimate moment of 

resistance is not very sensitive to the assumed width of "flange" and from this 

point of view there would seem to be little objection to the careful use of 

T-beams within yield-line theory. They further state that whilst it is admit-

ted that idealised plastic theories for slab and T-beam action combined are 

open to criticism, nevertheless the hidden effects of membrane action are 
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likely to cover up the defects of the theory. 

10 attempt is made to take advantagc of membrane action in this inves-

tigation, which is mainly concerned with the study of collapse mechanisms 

involving the supporting beams in which case no beneficial membrane action 

(apart from P-beam action) is lilc€.ly to develop (13). 

Lower-bound solutions are not attempted since it is extremely difficult 

to find satisfactory stress fields to conform to the rigorous rules of Limit 

Analysis. 

The litir.ture on unching shear failure is revie'rad and the effect of 

composite action of beams on punching load is discussed. 



W-6m. ox  
REV1I O YIELD-LThIE THEORY 

The reason for the growing international popularity of yield-line 

theory, perhaps, lies in the fact that it is basically an engineers' intuitive 

approach to a problem, based on results of repeated experiment. It has been 

accepted without 311 exhaustive study of some of its foundations because it 

is attractively simple end matches well established, solutions in extremes of 

its range of application. It should be of interest to biow its historical 

development in relation to other tecThiues for assessing the ultimate 

strength of slabs. 

2.1 Resuny, of previous work 

As earl: s 1890, Bach (14) advanced a simplified theory of failure and 

a corresponding method of calculation has been given by Suonson (15). In 

1922,   Ingerslav (1 6) introduced the simplified yield-line theory for thin plafos 

and derived for the first time the correct solution (worst case) for the 

collapse load of a rectangular slab. But he gave thG shear forces in the 

yield lines zero value and so the method could not be applied to all cases. 

The acnoledged pioneer of yield-line: theory is Johansen (5,6)  who extended 

the theory to cover much more general cases and provided an immense number of 

practical examples. He developed the "i(ork" method for calculating the 

collapse load and an alternative "Equilibrium method involving nodal forces, 

which gave the same collapse load but which provided additional information. 

A rcviear of the work carried out by Ingerslav (16) was published in 

1953 by iiognostad (17). In 1957, ansfield (18) employed the calculus of 

variations and found the worst lay ou for a system of yield-lines involving 

non-circular "fans" of any shape. His intentions behind this approach were 



ingenious in that if the gravest possible upper-bound solution was found, then 

that would be the solution without being concerned with lower-bound solutions. 

But he was unaware that Johansen (5) in 1 %3 had achieved similar solutions 

using the nodal force theory. The inference is that nodal force theory 

(equilibrium method) and the calculus of variations applied directly to the 

work equation ar absolutely eqvalent (13). 

Until th rigorous rules for Limit Analysis of wager (19,20) were dis-

covered, there was a doubt as to the nature of the solutions obtained from b' 

the rk and Equilibrium methods. I'Teither of the two methods produced a unic 

pattern of yield lines, which yielded the lowest failure load. The above ru] 

indicated that the ltest collapse load had been reached, if one could find a 

coincidental "upper" and "1oer" bound solution. The conditions required to 

establish an upper or lower-bound solution were essentially as follows: 

(s.) upper-bound solution - which gives an unsafe or else correct value 

of the collapse load. 

1 • il valid mechanism of collapse must be found which satisfies t 

mechanical boundary conditions. 

The internal dissipation of energy on yield lines must equal 

the expenditure of energy due to the external loads (Xlork 

Equation). 

Either the material stays rigid or else deforms platicaJ1:T 

)4.. here deformations take place the direction of the strains is 

defined by the mechanism. The direction of the strains must in 

turn define the yield stresses required to calculate the 

dissipation of energy. (This is mown as the yiele en tci ior 
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(b) Lo7er-bound solution - 7hich gives an oversafe or else correct 

value of the collapse load. 

complete stress field must be found everywhere satisfying the 

differential equation of equilibrium. 

The forces and moments at the edges must satisfy the Loundary 

conditions. 

At ne point can the principal stresses violate the yield Criterion. 

From these rules, it was discovered that, though a lower-bound technique 

was also based on equilibrium, Johansen' s so-called "Equilibrium" method was 

not a lo.tr-bound solution since his method specified the stress state only 

along the yield lines and not everywhere in the slab, as required by iter: 5. 

Wood (21) proved the equivalore of nodal force theory to the work equation 

plus differentiation. The work of Kemp (22), norley (23) and 1 iood (2L) also 

showed that it was thoretically possible to transform the latter into the 

language of the former, though in some cases the transformation was extreme 

laborious. It now becomes clear that the two methods given by Johansen are 

the alternative forms of only one method namely the 1ork Equation plus dif-

ferentiation, though as claimed by ood (21) and Zones (25), the Equilibrium 

Method is much simpler to apply in certain cases. 

Thus, yield line theory, whichever technique is used, should only be 

regarded as an upper-bound solution. It may be mentioned in this context 

that, by zmr'loying simplified strss fields and satisfying items 5 and 6, 

Hillcrborg (26) produced a rival and relatively simple method (Strip liethod), 

which is not discussed hero. 
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All that remains nov is to see whether it is possible to produce 

coincidental upper-bound and lower-bound solutions, which conform to the 

rules of Limit nalysis. 7iood (21), a-: -, czuk and Jaeger (27) in spite of 

an inturnationally sustained effort could collect only a very few such 

solutions. Zones and wood (13) point out that so far, trivial cases excepted, 

there is no inon coincidental upper and lower-bound solution for orthotropic 

slabs. They further point out that any hopes of establishing such solutions 

for all cases hav. to be abandoned, if the stringent rules of Limit Analysis 

hv. to be applied and that yield-line theory must be accepted for what it 

is. i?nis has led to a newly proposed "normal moment" yield criterion (22,2) 

in rhich only th value of the normal rrment on yield linus is specified, 

ithout rfercncc to the principal moments, which means that yield-line 

theory and Limit analysis must go their own separate ays, since they can not 

yet oaploy a common yield criterion. ?h indications arc; th t a new yield 

criterion such as that proposed by Baus and Tolaccia (28) might more easil 

be built into yield-line theory than into a rigorous Limit nalysis. AL.1thouPh 

much has been written (29 to 35) and discussed recently on a general yield-

criterion for reinforced concrete sL..bs, Johansen' s original "stepped" yield 

criterion is still in common use. How this criterion has been adapted to the 

analysis of slabs in the thesis uill be discussed later in this chapter. 

2.2 	rimcnt al Confirmation 

Analysis of extensive test results crrid out bj Johansen (6), Jood (21) 

and 3awczuk and Jaeger (27) reveals a conservatism about yield-line theory, 

especially in the cases where strong forces (membrane action) are developed i 

the plane of the slab (36,37), though occasionally (38) suggestions have beeni 

made to reduce slightly th required moments of resistance on account of 
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membrane stresses. Recent tests in Holland (39) have also shown that yield-

line eheory is reliable even for irregularly shaped slabs. Nylander (40) 

studied the cases vvhere, with heavy point loads or column reactions, punching 

shear is encountered. 

2,3 assumptions, Definitions and Notation and Theorems 

t the outset, it must be admitted that "yield-line theory" is indeed a 

great simplification of the true behaviour of a reinforced concrete slab. If 

a compictely accurate assessment of the failure load of a slab is to be made, 

it is necssary to laio -.; the complete stress and deformation relations, which 

occur un(Lr any combination of force and moment, which is out of the scope of 

this thesis. The alternative to an exact solution is to evolve one in which 

certain simplifying assumptions are made. 

Assumptions 

(a) The concrete slab is so lightly reinforced that failure occurs in tens 

the reinforcing steel following the stress-strain relation required for simple 

plastic theory. The stress-strain curves for steel and concrete are shown in 

Fig. 2.1 and the cross section of slab in Fig. 2.2 	The ultimate moment pci 

unit 'iidth of slab is given by 

or 

ryr 
r y\l 	a. 1 f '  

3Af 
M 	.h 

f ('d - r yr 
r y 	

114-CU 
 

. . . . . . . . . . . . (2.1) 

(2.la) 

where 	Ar  = ..rea of steel per unit width of slab in sq. in. 

f 	= Yield stress of reinforcing steel in p.s.i.
yr  

f 1  = Cylinder strength of concrete in p.s.i. 
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Effective depth of section in inches 

Cu = Cube strngth of concrete in p.s.1. 

a1  and p are coefficients obtained from the graph originally given by 

Hognestaci. (i) and reproduced in fig. 2.3, or from the expressions 

3900+O.35f  
CL 	= . . . . . . . . . . . . . . . . . . . 	(2.2) 

3200 + f 
C 

f 
C = 0.5 - oco 	• • • • • • • • • • • • . . . . • . • '. 	(2.3) 

when it is assunxd that f = 085 Cu,  both Equations (2.1) arid (2.1 a) give 

values of in which are more or less the same. When the slab is reinforced 

with high tensil steel without definite yield point (4.2)  the ultimate moment 

per unit width is given by 

___ 	.2 
M = - 	ct 

I- 
b0d 	 . . .. . . . . . . . 	2.1b 

Where Cub = Ultimate strength of concrete in bending in p.s.i. 

CL C, = average concrete strength at failure and is given by the 

following expressions, 

- 	(O• 	
- Obi 

0 <C 	0300 	 I.-' 

'ub - c 	 1000 

3000 - i C 	7000 , 	o.C 	 = C (0.62 - 0.027 C11

ub 

C > 7000 , 	a. C ub 
= 0.44 C 

R 	
i read from the graph reproduced in Fig. 2.4.,  knowing the value of 

a Cub  
100 

r dhcre 	r = 
d.. a Cb 
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ultimate or collapse load can be arrived at by consideration of 

bending action only, the actions of all other stress components having been 

neglect-,-.d. 

Ihe elastic deformations are small compared to plastic ones and are 

ignored. 

The rnomnt-curvature relationship is idealised as shown in Pig. 2.5. 

It follows "rigid-plastic" theory, which means that, the elastic deformations 

having been neglected, the material stays rigid (no deformation) or else goes 

plastic. 

ihe Plastic deformations occur only along yield lines where the rein-

forcoinent :'ielded, while the parts into wi.ch the slab is divided by yield 

line r--main plane. 

The commnts on the assumptions are as foflews: 

hre the concrete is overreinforced or where high tensile steel without 

definite yield point is used as reinforcement, the plastic theory for 

simple structures may still be permissible but it can not be on par with 

the excellent response of steel structures to idealised plastic theory, 

with quite extensive mechanisms (21). 

It may not be worth while to attempt to obtain an exact solution for the 

value of th; failure mornnt since it involves writing down and solving the 

relevant equilibrium equations compatible with the deformation system as 

well as satisfying the boundary conditions, which is prohibitive. 

Fortunately, the test results indicate that the ultimate moment calculated 

assuming bending action only is conservative and hence is on the safe si3e. 

As observed by Liorice (4.3) in his discussion on test results some 

elastic deformations do take place in the areas between yield lines and 
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so thusc areas do not, in fact, remain plane as assumed. AU the 

rotation does not occur on the assumed yield lines and other cracks form 

near the main ones. He attributes these as the probable reason for the 
- 1k - 

formation of curved yield lines in places where straight ones are 

pr.-dicted. 

(a) From the assumption (e), it follows that the deformed slab usually con-

sists of . series of irlined planes and since inclined pianos meet in 

straight lines, it is obvious that yild lines are straight. A curved 

yield lint, may be looked upon as the limiting case of yield lines form-

in, a polygon. 

Definitions and rotation 

Isotrqpic ally reinforced slab is one in v.'hich the ultimate moment per 

unit length is the sam. in two orthogonal directions. It also i n&!.cate  

that mc.•ment can be taken to be the same in any direction. 

OrtLotropicaily reinforced slab is one in which the ultimate moment per 

unit i.rth is different in tio orthogonal directions. 

The terms isotropic and orthotropic may be applied to either top or 

bottom reinforcement, 

A normal moment is that moment which is normal to the yield line or 

.;Lich acts on a section parallel to yield line. 

(a) A twisting moment is that moment which is tangential to the yield line or 

which acs on a section perpendicular to yield lineo 

(e) Moient iey notation (Pig.. 2.6) 

Th, moment iey line at the side of the slab is an abbreviated form of the 

statement "the normal moment per unit length on a yield line in this 
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direction is the value given". 

A solid "key line" implies positive bending strength (i.e.) it refers 

to tension reinforcement in the bottom of the slab and a "broken key 

line" for negative strength (i.e.) top reinforcement in tension. 

Sign Convention for moments (Pig, 2.7) 

The sign convertion for normal and twisting moments is that the moments 

acting on a region in the direction given in Fig. 2.7 (b) are regarded 

as j'ositivc. Thus the normal moment m , when the bottom of the slab is 
n 

in tension (sagging moment) is positive. The moment vector notation 

used i an anti-clockwise notation. 

General Convention (Fig. 2.8) 

The pcneral convention that will be adopted to indicate the type of 

support and type of yield line is shown in Fig. 2.8. 

24 Johansen's "stepped" yield criterion (Fig. 2.9) 

(a) The basic assumptions underlying it are as follows: 

(±) The normal and teisting moments on a yield line can be obtained by 

considering each band of reinforcement in turn and adding the 

individual effects. 

For each bantl of reinforcement taken on its oii, the yield line 

may be considered to be divided into small steps parallel to, and 

at rijht angles to the rinforcement as shown in Fig. 2.9. 

All reinforcement crossing the yield line is assumed to yield. 

All reinforcement is assumed to stay in its original straight line 

±en the steel yields (i ihere is no cinicing or change in 

horizontal direction of steel crossing the yield line. 



-17- 

hen each band of reinforcement is considered on its own, on small 

steps at right angles to the reinforcement there is only a normal 

moment per unit length ' 1mg' whose value is given by equation (2.1), 

(2.1 a) or (2.Th), while on th steps parallel to the reinforcement, 

there is neither normal nor twisting moment. 

The values of normal and twisting moments on the yield line are such 

that they are equivalent to components of the normal moments on the 

steps. 

(b) Evaluation of normal moment rn and twisting moment rn. 
ns 

The normal and twisting moments per unit length of yield line are 

given by 

	

M 	= m Cos 0 	• - • • • . . a • • • . . . . . • 	• . . 	( 2.4.) 

	

Ill 	= in sin 10  cos 0 . . ......... . . . . . . . . . 	( 2.5)
ns  

There in = 1oment as shown by Moment key line in Fig. 2.6 

= imgle measured clockwise from in on tc the yield line. 

	

.Ihen th 	re several sets of reinfocement crossing a yield line, the 

total value of m and m will be the sum of th, separate effects of 
n 	ns 

rinforceicnt so that in general 

M 	
= 	

in. cos 0. 	. • ........... • . . . . 	( 2.4.a) 

11 
rn. sin 	Cos Ø. 	...... ........ . 	(2.5a) 

Where in. is the magnitude of a typical moment key line and 0 is the angle 



measured clockwise from the moment key line m. mn to the yield line. In 

applying the above equations, only the m values having the same sign as 

that of the yield line are considered. 

2.5 General discussion on yield criterion 

Jh: yield criterion (13) that has already been established for rein-

forced concrete, namely 

n 
AI 	= 	rn. Cos -0i n 

is quit.. sufficient as the definition of the yield criterion so long as it 

is courle3 iIth the statement that only normal rotations Gn are allowed. 

The value indicated for the twisting moment on yield lines, 

n 
fli 	= 	E m. sin 0. cos ns 	 •1 	'1 

± =1 
is not, a necessary part of yield-line theory. 

In the present investigation, neither "square" criterion for isotropic 

reinforcement nor the "stepped criterion for orthotropic reinforcement 

will be adopted in their entirety. The value of the normal moment m will 

be accepted as reliable frr a designer. 

2.6 Irceortant Theorems on yield lines 

Theorem I 	The yLld line between two parts of a slab must pass through the 

point of intersection of their axis of notation, which usually lie along 

lines of su;,port or pass over any columns. 

Theem II The yield pattern is det.rmiricd by the axes of rotation of the 

various parts of the slab and the ratios between thorn. 
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Thcorm III The yield pattern corresponds to a maximum absolute value of 

the ultimate moment per unit length. 

The proofs of the above theorems are given by Johansen (6). 

2.7 Affinity or Transformation_Theorems (Fig. 2.10) 

The affinity theorems are applicable only to slabs which ar reinforced 

such that the upper and the lower reinforcements run in the same directions. 

If these directions are chosen as co-ordinate axes, the ultimat moments 

m and -m' ill be in sections parallel to the X-,-.xis, with ,14m  and -, 1 i in 

sections parallel to the Y-axis. Fig. 2.10 shovis an arbitrary part of a slab 

in which the resultant of the positive ultimate moments is so determined by 

the vector "a' that the components parallel to the axis arc 	ma, 

M 
y I 

= ii ma 
	 x 

a , in which a and a
y  are the conçonents of '!a" in the direction 

of the axes. in the same way, the resultant of the negative ultimate moments 
I 	I 	 I 	p1 

is det:rencd by the vector "b" the components being M = m b x and Jy = Mm b 

Theorem IV is applicable in the cases where MS M and also to slabs with 

simple reinforcement in which in' and P 0m' = 0. 
Theorem V requires that a b for every part of the slab but it is possible 

for,t' 	/.1 
Tir 

In an orthotropic slab with the ultimate moments per unit length m,/.m 

for tie bottom reinforcement and -in', -nm'  for the top, the directions of 

reinforcement being the same for top and bottom, in and m' can be calculated 

y transforming the orthotropic slab to a corresponding isotropic slab; the 

vix-insifrqi cC isotropic slab in the dir..ctions of vectors in and -in' arc obta d 

from those of the orthotropic slab by dividing by 
J 
	The load per unit 

is the ewe for both slabs and the yield patterns correspond. 
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A single force P may be looked upon as being a load concentrated over 

a small area 	For the trnsforrned slab, the corresponding area will be 

/ 	and the force P 

Theorem V 	In an orthotropic slab with the ultimate moments per unit length 

M, ,m for the bottom reinforcement and 	/'a' for the top, the directions 

of r.inforconient being the same for top and bottom, and in which the rosultant'i 

of .he positive and negative ultimate moments for each part of the slab can 

be drfinod by one and the same vector, m and -m' can be calculated as for an 

isotropic transformed slab as in Theorem IV except that 	rcpl.cos 14,  vrhcre 

- 	 __ 

rn + m' 	• • . . . . . 	. . . * . . 	. 	(2.6) 

The load per unit area is the same for both slabs, and the yield patterns 

again correspond. 

2.8 The Joric Egution 

"If a displacement system is given to a slab having a valid failure 

mechanism, then the work done by the external loads is equal to the work done 

in the ild lines in taking up the displacement system." 

Ti. athematical form of the above staterrnt is called the Uork Equation 

and is given by the expression 

	

Y[fJwAdxdy] = Z[fmds] . . . . 0 . . . . . . . . 	( 2.7 

	

Each region 	Each line. 

1hcrc 17 is the load/unit area at the point x,y on a rigid region and 
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A ib th deflection at the same point 

M is the normal moment/unit length at a point on a yield line, 

Gn  is th~ normal rotation of thL yield line at that point 

and ds is a short length of yield line at that point. 

The rotation Q along a straight yield line is constant and m, until 

specifically stated othervise, is assumed constant along a yield line. 

Therefore cuation (2.7) :in reduce to 

dx dy] = 	M . 
. . . . . . . . . . . . . . . 

	 (2.7a) 

Each region 	Each line 

where 1 is the length of a yield line. 

Using vector component method (13), the equation (2.7a) can be rewritten a s  

c cly] = E [z 
( m lx 	) + ( m l Q)] . . . . . . . 	 (2. m) 

Each region 	 Each region 

where (mlQ)A implies that the quantity (mlQ) is calculated for 

each line round the boundary of rigid region it and the values so calculated 

are summed after assigning the correct sign. The expressions in y are 

similar and the lctLr suffixes B .... N refer to other rigid regions. 

(Lt) 	= moment/unit Lngth, in the direction of the X-axis chosen for 

rigid region A, for a yieli line on the boundary of region A. 

(l)A = projection of that yield line on to the chosen X-axis for rigid 

region t, 

z rotation of rigid region J about the X-axis. 
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CEPTR 3 

LTL•2 SGTH OF OO1vtFOSIT BEJI 

3.1 LTTiCDUCTIOI 

A composite beam bridge can be looked upon as a structure (Fig. 3.1) 

consisting of a numb--r of single composite beams jointed together and made to 

interact by the continuity of transverse reinforcennt through the flange slab. 

If, therefore, the ultimate strength of a single composite beam subjected to 

longitudinal bending is determined, it can be related to the ultimate strength 

of th. bridge as 2. lzhol.. The behaviour of a composite bcm, when it is part 

of a bridge is complex and can be simplified by using the concept of "effective 

width", .ihic}i ill be discussed later. 

Tests indicate that strain-hardening (ii to 52) v:here occurs, results in 

a considerable increase of collapse load and so it is proposed to also allow 

for its effct on meximum moment. 

Before a general formula for ultimate moment of resistance of a composite 

beam is derived, it is necessary to investigate, 

the secondary modes of failure and their prevention in order to 

realise the full theoretical maximum moment. 

the state of deformation in concr... to and steel at or near collapse. 

the effect of slip on the maximum moment. 

and (a) the effective width of slab acting :ith the beam. 

(a) the possible socond.ary modes of failie incl ude , 

longitudinal splitting of slab along the shear connectors. 

vertical separation of the slab and beam. 

lateral buckling of the joist. 
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Tic failurL.. of typo (i) was observed by dekola (53), Barnard and Johnson 

(5') 	md 3iss (55). dekola pointed out that the cause of this fo.iluro was the 

transverse tensile stress along the length of the baxn and suggested that a 

minimum transverse reinforcement of 0.4% with adequate bond length was 

sufficient to prevent such failure at working load. The author tested composite 

beams with the ratio of flange width to span equal to 0.4 and 0.167, the trans- 

verse reinforcement being the same in both cases. The forriir developed longi- 

tudinal crac 	(Fig. 3.2) before the collapse load reached where as they were 

completely absent in the latter (Fig. 3.3), which indicates that a proper 

choice of idth to span ratio, for a given percentage of transverse reinforce-

ment is also essential to prevent this type of failure. 

The failure of type (ii) can be prevented by proper design nd proportion- 

ing of shear connectors. Headed studs and other types of shear connectors 

have been standardised (56) to have sufficient horizontal projection to prevent 

the slab from lifting up. 

The type of failure (iii) does not appear serious in the case of simply 

supported structures sance the entire flange which is in compression, acts with 

the steel member up to its failur;. 

i) The StaLa of deformation at ornr ccllLpst... 

almost all beams tostud by Chapman and Balakrishnan (57) have exhibited 

strain-hardening. The experimental moments exceeded the theoretical moments 

calculated using CP.11 7 (modified) by 10 to 3C. The measured concr..te strains 

at or near collapse vre about 20 to 60,c greater than those at spalling of con-

crete ".nd the corresponding loads were about 5 to 12.5p7  greater. Chapman (58) 

observ..d that when the strain at the top surface of the concrete slab reached a 

value of about 0.385c., spalling of concrete began and the ultimate strength of 



'NOVEL- OISE 

Eli 

FIG-3.2 Part of Control Beam BICB after failure 
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Longitudinal crack first observed at 5.5tons. 
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the sction;as then almost fully mobilised. s the curvature of the section 

was further increased, the load carried remained approximately caistant and 

the crushing of the slab extended downwards whilst strain-hardening began in 

the bottom flange of the beam. The present tests confirm this observation 

particularly in the cases where strain-hardening is found to have occurred. 

The bnis tsted by Barnard and Johnson (5)+) did not reach the strain-

haonin st 	at collapse. They observed that the shape of the stress-strain 

curve for concrete had virtually no effect on the value of maximum moment but 

had an im.ortant effect on the valu•. of e Cu, the concrete edge strain at which 

maximum moment was reached. They further observed that when the neutral axis 

was in the slab at maximum moment, the assumption that steel was fully plastic 

had led to over-c stiination of maximum moment by a maximum of 11%; but in most 

practical cases the error ras less than . 	 OR 

(c) Effect of slip 

3.:rnard and Johnson (54-) pointed out that the theory for maximum moment 

provided a safe estimate even when large slip strains were present. Slutter 

and Driscoll (59) stated that if the sum of the ultimate strengths of all 

shear connectors in the shear span was sufficient to satisfy the equilibrium 

conditions at ultimate load, then the theoretical ultimate moment could be 

obtained, which ixiplis that the effect of slip can be ignored, if sufficient 

shear connection is provided. 

(i) 	ffctive Jidth 

Th analysis of a Conpositc beam and slab system is rally a three-

dimensional roblcm. In this investigation, the three-dimensional nature of 

the probl.m is by-passed by treating the slab as a thin plate forming the 

compression flange of the steel joist, which is analysed by the theory of 
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simple bending. In a compound structure of beams made integral w-ith a slab, 

under transvrse load, the free bonding of the beams is to some extent 

reduced both by the brting of the sin :-nd .1  whn the nutral plane of the 

slab does not contain th neutral axes of the taeins, by forces induced in 

the plane of the slab as a result of bonding. Sow authors (60,61) have sug-

gestod that this rustriotion an free bonding of a beam can be simulated by 

introducing the concept of "effective width' in which a certain proportion 

of the slab acts, in bending, with the beam. The fivantago of this artifice 

is that, if the magnitude of the effective width is found, the rust is 

analysod by the simple bending thoory. It is probably true to say that the 

need for such a concept has been felt because the amount of conutation 

required in the rational design of a composite structure was otherwise 

prohibitive. Allen and Severn (62) suggested that a basis for calculation 

of effective width could be the equality of maximum deflection or of the 

maximum stress in the beam..dekoLa (53) defined the effective width of a 

slab cs that width of the slab .hich would sustain . force equal to the 

actual force in the slab, if the longitudinal stress across the slab were 

constant and, equal in magnitude to the theoretical longitudinal stress at 

middle ourfaco of the slab at its junction with the studl joist. By 

Harmonic nalysis, he obtained the effective widths of slab at mid span for 

a, sinl composite beam and for a slab continuous over many steel joists as 

0.303 and  0.308  of span respectively. He also pointed out that the effective 

width was about 12 times the thickness of the slab, in which case the shLar 

lag effCt (63) was negligibly small. Timoshenko (64) defined the effective 

width of compression flange as that width which replaced the actual width 

such that the elementary thc.ry of bonding applied to such a transformed beam 
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cross section gave the correct value of maximum bending stress which was uni-

form across the effective width. He obtained the expression for the effective 

width B as 
C 

L 
B-- 	 (.31) 
c - 11(1.5 -V -)..'/2 	S S 	 S 	S 

here 	V = Poisson' s ratio 

L = Span of the beam 

Taking V = 0 for concrete, it can be shoi that 

L 
B 	4..17 	• • S • S 	• • • • . . . . . . . . . • • • 	3.2 

dekola and Timashenko derived their values assuming that the structure is in 

elastic st:.te end so they are not strictly applicable at or near ultimate load 

conditions. 

ien (65) defined th effective width under ultimate load conditions as 

that width which, in stress block analysis with ultimate compressive stress 

of 0.74 c, resulted in the some concrete force with the seine line of action 

as vs found from his more complex theoretical model of the behaviour of the 

beam. He made simplifying assumptions in order to make alloja.nce for the 

variation of neutral axis depth 'cross the breadth of the slab due to in-

plane shear forces and transverse bending and for the reduction in the com-

pressive strength (66,67) due to longitudinal crackzing and to shear stress 

on tranvorsc planes and derived the effective width as 

B 	= (i - 0.96 B1) 	when B 	< 0.31 . . . . S.. • • 	( 3•3) 

where B = - c tual width of flange. 

ISemp's formula can be expressed in a more general form as 



B={i_O.625(1_P)]B... 	 () 

when B/L ( 	0.80 	 • 	• • • • 	( 3 . 5)  
(1 + 

There a' and P are coefficients read from graphs based on Hogiestad's stress 

block (ii ,68) reproduced in Fig. 2.3 or calculated from the expressions (2.2) 

and (2.3) respectively and ft is the coefficient which takes account of the 

reduction in compressive strength of concrete due to in-plane shear stresses 

and is derived elsewhere (66,67). 

If P, = 024 , the equation (3.4) will reduce to 

B 	= (i -0.525-)B 	. . ............• . • 
e . 	 ( 3.6) 

	

when B/L 	0.57 	. . . . . . . . . . . . . . . . . . . . 	(.7) 

Kemp's formula (Equation (3.3)) is a particular case of general equation (3.4-) 

whn  a ' 0.4. and 	/ = 1 .85, which nearly corresponds to a value of 

f = 2000 PSI. 

Joimson (69) suggests a sinpier formula, Be = 	- B/L)B, . ( 3.8) 

C'P'117 part 2 (70) gives the fofloiing formula for effective width: 

B 
0 	

= 	
,Ji+ 12)2 	

. * . . . . . . . S 5 0 S • 	( 9) 

LL  

The equations (3.6), (3.8) and  (3.9) are plotted in Fig- 3.4... It will be 

interesting to note that they all give reasonably close values in the range 

of B
/L values encountered in practical bridge problems. 

ACI-LcE Committee 333 ( 71  ) recoiaend the effective width of concrete 

flange should not exceed one-fourth of the span length of the beam, and the 
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overhanging width on either side of the prefabricated b(-am should not exceed 

8 times the thickness of the slab nor one-half the clear distance to the 

next beam. 13rendi (72) presents in his paper the code requirements for 

effective '.idth that arc in force in European and other countries. From all 

these formulae, one point emerges out that the effective width is a function 

of either s .- '-_n length, thicciess of slab or both. The proposed formula 

(Equation (3.7)) is mainly a function of B/L  but takes into account the 

variation in strength of concrte. 

3,2 	ssuiitions 

In the light of above discussion and from other considerations, the 

following assumptions are made in deriving a formula for ultimate moment of  

resistance of a composite beam: 

The moment of resistance is provided by two stress blocks 
CI)in which tao conorete above neutral axis is stressed to the 

crusaiag strea6tla of Vie Lmteriai and t4e ,  steel ia stressed 
to its yiolu 

strains produced by welding of shear connectors, shrinkage of con-

crete, creep under load and terperature changes arc nr)t considered. 

In practice, they are quite uncertain and can not easily be pro-

dieted. 

the strcsz-strain properties of steel are obtained from tensile tsts 

on specimens. Steel has the saia. properties in tension and com-

pression. ?h ultimate load characteristics of stress block for 

concrete in flexural compression are as given in Fig. 2.3. 

the ultimate moment is mobilised when the maximum edge strain 

reaches the value obtained from Fig.2.3 or givun by 

= 0. Oa - c/65 x 10 	 • • . . . . . . . . . . . 
	(3.10) 
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the shear connection boteen the slab and the joist is rigid so 

that there is no distortion of strain distribution at the interface. 

In other words, the slip between the slab and the joist is neglected. 

the effective ,iidth of slab acting with the beam is equal to the 

value given be equation (3.)  or  (3.9). 

the steel joist is represented by three reactangular areof steel 

to calculate tensile forces and the flange are concentrated at 

points "ci" apart whore ci is the depth of the steul section. Vida 

Fig. 3.5(a). 

concrete below neutral axis is ignored. 

(xi) the longitudinal reinforcement at bottom of slab is ignored as it is 

not likely to yield, being nearer the neutral axis. The longitudinal 

reinforcement at top of the slab yields and contributes to the 

ultimate moment of the beam. 

3.3 Derivation of formulae allodiig for strain-hardening 

ssuming the idealised strain and stress distribution shown in Fig. 3.5 

and Fi,. 3.6, general formulae for the ultimate moment are derived. 

Case (i) i\Teutral  axis u thin th slab and steel section partly elastic 

Vide Fig. 3.5(b)  and Pig. 3.5(c) 

The monnt of resistance is given by 

i = 	f(D_d/2)+a J f D + a a f 	s (i -D 
c 	s y 	 f s a 	w s 	a- 	3) 

y2 	
(-rD+t) 

O'BflDf3nD-4 f, 	. 	. . . . . . • . . . • 	• • . 	(,ii) 
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The nutra1 axis depth nD is given by 

2_i n-P2  = a  

whore, 

2ui 1 	-j's - (a 	+ a 	f)(u + ii r) - s(i + u)(af  - af g)1 L" ' 

- - 

L af 4 rf f72J 
2 

• 	• 	• 	• 	• 	• 	• 	• 	. 	. 	(3.I4) 
2su - af 	[(u + r) 2  - s(1 	+ u) 2 ] 

ecu 
U 	= n(u + r) =1 - 

U 

/f = n(r-1) 
= U 

o'B 	D f 

A uf 	 Y 
ryr 

a'B 	D f f s 	= j - (u + r)] 

f 	=/d ' and 3 are obtained fromCL 

g = t/D 	 Fig. 2.3 or from equations 

af = 	 (2.2)  

a.  
= 

C = cLBfl D f 
C 

r f 3 
C 	C +0 

C 	r 

r 
C 

S/cy=  

= 
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Case (ii) Nuutral axis within the slab and steal fully plastic. 

Vide Fig. 3.6(b) and 3.6(c) 

= 	f (D - 
	

+ af 	f D + a a f ks 's D(1 - S) 

- a' B nD f
c  1 rID - i yr ar  ..............(. 1 5) 

The neutral axis depth nD is given by 

	

2
-Fl  n-F2  = o 	. . • • . 	. . . . • 	. . . , . . • 	( 3,16) 

where 	 k 
2ul

F 	
I1: 	)s - ( 	+ a f )(u + r)J 	• • . . . . . . . . 

	(3.1) 
2su. 

- 	f k (u + r) 
Vi 

ICU  2 (2af  + a f) 
F 	

w 

2 2su - a f k (u + r)2 	
• 	( 3,18) 

VI 

Case (iii) Neutral axis in the steel beam. 

This case is not considered heru, as in such cases, the strain-hardening 

effect canbe safly ignored. 

3 -4. Comutcrjrograntio. 

program" for it.D.1.9 C.orrçuter (ppendix I gives a copy of programme in 

L.tlas utccode) was prepared to calculate L and other quantities for the 

above two cases. .:hen steel does not r:ach the strain-hardening stage at 

viaximum rionrt which develops when the maximum concrete edge strain reaches 

the value specified in assumption (iv), the programme automatically ignores 

the strain-hardening. This occurs when, 

a 	0 

	

S 	'- 

U 
or 	

(u + r) 	
• 	a . • 	• . . . . * . S 	• S • 	( 3,19) 
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3,5 	rison_with test rsults. 

In order to check the validity of above formulae, the programme was run 

using this test data published by Chapman and Balakrishnan(57). The theoretical 

and experimental results are compared in Table 3.1. There is a very close 

aecint. Tic ultimate moments for beams 1. and L, are overestimated, the 

reason being thr.t they are not provided eith sufficient shear connection to 

develop full theoretical ultimate moment. Tie collapse of beam 1, 
6' 

as a 

matter of fact, is caused by stud failure. 

3.6 Derivation of formulaL,vzithout allowing for strain-hardening 

Case ) lcutral axis within the slab and steel partly elastic 

substituting s 	>00 and f 5  = 0 in equations (3.11) to (3.14), 

If - f\aD 
M =J f (D_d/2)_a  j,- (f -  f)t --a a f. 

C 	c y 	 f a y- 	y 	z 	Is 	2 	3 

-c'B riD f 
C 
 3 nD - Lr fyr a 	• • . • . . . . . . . . . . . . 	(3.20) 

C  

The neutral axis depth is given by 

2- P1  n - P2  = 0 	. . . . . . . . . . . . . . . . • • . 	(3.21 ) 

2uk[(1 	1) (i + u)(af - 	g)] 
where P1  = - 	k 

2u+afk(i +u) 

Ig (2a - 
f 	

f g) = 
P 	P 

2 	2 	2u + a. f k (i + 

Case (ii) Neutral axis within the slab and steel fully plastic (Fig. 3.7) 

substituting s -a'- 00 and f 2  0 in equations (3.15) to (3.18), 

M 	1. f (D_d/2)_cLB  nDf 	 .'.'... 
C 	 e 	C  
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TabIL3 3.1 Comparison of Test Results. 

Chapman and Balakrishrjant s Experimnts, 

Beam  

Typo of loading 	 point icad at mid span 

Connector design 
4.2 4.7 	- 57 72 99 

Type of connectors Headed studs 

6" cube stranth 
4.270 4.960 3560 4560 5900 5930 

of steel 	 15.35 14.,74. 1 6,95 16.36 14.,87 

r 	 11.3 1 1 2.4 4.6 1 

s 	 .1 17.7 21.15 10.66 10.66 17.7 

observed 
concrete strain 	 .0038 .0041 • 003 .000 .000 • 004.5 at sfaalin, of 
concrete 

observe ,,", concrate strain 	
0004913 .006863 .0041 3 .004756 .005175 .004.26 at or nr--,-,Lr collapse 

52 4.7 42.5 ExptaJ. ulti.loa1 (tons) 	4.3 4.5 4.5 

Theoretical c oncro te 
.00344 .00335 .00353 .0034.0  .00323 .00322 

at maximum monLnt 

Theoretical 
ultimat.loM t,r&r 	 4-0.53 44.25 4.5. 20 53.81 56.71 4.9,62 

U1tLOad 	 108 102 0,998 0,970,83 .86 
Theoretical lcad 

Exptal concrete strain -. 
at spaiiin; of ccncrt,te 	

1.1 1.22 1 S 22 1,18  1 	' 1 40 Theetica1 concrete 
edge strain 
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The neutral axis depth nD is given by 

A 	A  
r4]J 	= 	— : 	• • . . . . . ....... . . . . . 	( 3- 25)  

&B f 
cc 

The formula (3.24) can be re-written as 

M = 	f (d/ + t —  p nD) + r 5r (p nD 	a) . . . . . . . .  

If longitudinal reinforcement in slab is ignored (r = a), the usual formula 

is obtained. 

A  
M=f 	' 	-. /2+t 	S.y 

a'B f 
CC 

a • . . . . . . . . . . . . . 	( 3. 24..b) 

Barnard (54.)  r.ssumes a minimum value of 0.54  for the coefficient 

Slutter (59) and ACI-ISM,  Committee (71) assume p/a' = 0.59. 

Viest (56) assumes P/at = 0.5. 

If the cylinder strength f.= 0.85 Cu  where c = cube strength, the formula 

(3. 2 b) can 1c re-written as, 

[+ 	A f 	- 
M 	= 	f 	t- 	 I 	 (3.24.c) c 	 0.85ci'B 

C 
C U J 

In C'P117 part 1 (7), the coefficient 
0-85a' 

 is replaced by a 

conservative value of 0.75  i.e. p/a' = 0.6375- In addition the cube strength 

is rduced b; a further factor 213 and a nominal yield stress is assumed for 

steel. 

In the present investigation, it is proposed to use the formula (3.24.) 

obtaining the values of a' and p from the graph in Fig. 2.3 or from equations 

(3.5) and (3.6). In other Niords,, CL' 
/P 

 is variable and takes the value from 

0.54. to o,668 corresponding to the value of f 	2000 to 8000 PSX. 
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CasçjiiijNeutraJ. axis in the steel beam. 

This case is more complex than other cases and further assumptions have 

to be made • JLS suggcstd. by Barnard (74.), the maximum moment can be calculated 

with sufficient accuracy for practical purposes, if it is assumed that steel 

is plastic in tension and coriiprission and the concrete force, with its line of 

action at t/2 from top of slab, is equal to 

0c = 0.8 B t 	 . . . . . . . . . . • . . . . . . . . 	( 3.26) 

The assumed distribution of stress is sham in Fig. 3.8. 

Re solvini longitudinally, 

f, 	= 2 - 	f 	+ 0.8 B 	t I 	+ L., f 	. 	. 	. 	. 	. . 	. 	. 	. 	. 	. 	(3.27) 

This 	ua iort vivcs 	area of stool in compression and hence d 
0 

and nfl 

since the dimensions of steel are lcriovm. 

Takin: moments about the neutral axis, 

\I=i0f(D'/2-nD) + 	fd+O.8B.. tf(nD .t/2 ) 

+ 	f •yr (nD - a ) 	• • • • • • • • • . • • • . • , , • • 	(3.28) 
r 
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CH.P]ER 4. 

UPPER-BCUiD SOLUTIONS BY CONERiTIOI OF COLLhPSE MECH.NISMS. 

£4.1 	Introduc tion 

An upper-bound solution provides either the correct collapse load or 

else prudicts too high a collapse lod. The basic conditions of an upper-

bound solutions arc: 

valid mechanism which will satisfy the boundary conditions is 

presupposed. 

The work done by :tern.l lods :ust equal the internal ;ork 

dissipated. 

The stress-strain relationship of material follows "Rigid-plastic" 

theory. 

The deformations are defined such that the system must obey the 

yield criterion. 

The condition (ii) does not llow constant collapse loads with strain-

hardening stccls or materials with no well-defined yield point, i.e. Limit 

Lnalysis (19) is then not applicable but the results arc no doubt safe as 

long as the yield stress is well defined for the material. 

several alternative yield-line patterns are considered and the lowest 

value of collapse load obtained is taken as the "upperbound" value. Using 

the .ork .cu.tion presented in the previous chapter, upper-bound solutions 

	

will now 	derived for certain simply supported composite Beam arid Slab 

Bridges, tr.ating each of thorn as (a) Equivalent orthotropic slab and 

(b) Be'm and slob system. 

(a) E:uivaLnt orthotropic slab method 

The ultimate load analysis of a composite beam and slab system presents 
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problems :hich a-c far moru complex than thos of simple slabs. The failure 

mode is greatly influenced by the geometrical arrangement of beams. No 

exact method has yet been developed for its analysis. The Equivalent slab 

method is a great simplification of the behaviour of the structure and has 

been employed (75,76,77) successfully in the elastic analysis of bridge 

decks. 3a.iko and Saha (78)  have extended the same to calculate collapse 

load on a grillage tested by Reynolds (79) and demonstrated the simplicity of 

this approach compared to the alternative plastic hinge analysis (79). They 

pointed out that an open grillago was an extreme case and an actual bridge 

deck would approach the behaviour of the cthotropic slab with smaller rib 

sizes and he above method would be even more justified 

The transformation of a Beam and Slab Bridge to an equivalent orthotropic 

slab for yield-line analysis is done as follows: 

The total actual width B of a bridge deck is replaced by an equivalent 

width (Fig. L.i) given by 

21:h 
H 	= (n - 2)h + . 

c c. 
 C 

C 

here 	n = total number of composite beams including,  outer ones, 

Li = ultimate moment of an inner beam (T-beam), 

M = ultimate moment of an out.r beam (L-beam),cc  

h = spacing of beams 

In the equivalent slab the and supports of beams are rwplaced by point 

supports (Fig. 4.2). The positive (s agging) ultimate moments of beams and 

slab are replaced by an equivalent ultimate moment /4 0 M per unit width of slab 

as indicLted by the moment key line in Pi 	4.. 2(b). he value Of/(4efll 

for a bridg ~ deck with Ibeams at edges (Fig. 4.1) is given by 
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ii + (h-B )m 

h 	 S 5 	 • 3) 

-. 

If all the beams 

are identical T-beams, the equivalent width equals actual width (Fig. 4.3) 

(b) Beam and slab :Iethoa. 

In this method the structure is divided into individual longitudinal 

members and transverse slab each possessing the appropriate ultimate strength. 

The longitudinal members consist of (i) composite Beam with an effective width 

of slab acting with it and (ii) longitudinal strip of slab in excess of the 

effective width (rig. 4.3). Th slab is assumed continuous over several line 

iipports povi.od by the beams. The modes of collapse involve plastic hinges 

in th. b2ams4 wheh a plastic hinge iovolops in a beam, the beam is ignored 

except that its end supports still act as point supports to the slab which 

now spans betviecn the adjacent beams (Fig. 

).. 2 Punching Shcar. 

fore moment type failures based on yield-line theory rre considered 

it is necessrry to investigate punching shear failure which has been of 

frequent occurance in laboratory tests (80 to 8). Since the provision rf 

shear reinforcement is not always practicable in slabs, the practice is to 

minimise the chances of punching shear failure by proper proportioning d 

detailing of members Of a atruoturc, 
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Punching shear is a complcx phenomenon involving a three dimensional 

criterion of failure. Most of the formulae in use at pr-sent are empirical 

based on experiments. 

Base (82) tested slabs 24." x 24." x 3"  vith a central punch 4." square. 

The ultimate shear stress v based on a critical section at a distance of half 
C 

th slab ticbss outside the loaded area was found to depend on the per-

centa of iinforccment. Thus, when the percentage of reinforcerrnt varies 

from 0.5 to 2.4.6, it was observed that 

V c =220 to 300 lb/in 	....... . . . . 	 . . . 	
(.4.) 

foychenne (85) gave a formula for thL. modulus of rupture for sand ind 

gravel concrt;s as 

v 	8.3 'tcubc strength . • 

where v = ultimate shear stress at zero distance from the punch. 

The tests of Richart and Kluge (81) indicated that 

v = 0.081 f for 6" dia. disks 

0.079 f for 2" dia, disks  

v±ro v = ultimate shear str ss at a critical section at a 

distance equal to the effective depth of the slob 

outside the loaded area. 

.hithey (86) who investigated thu ultimate shear strength of flat 

slabs, Footings, Beams and Frame members, sugcsted a formula, which included 

the cffct of the flexural strength of slab and which shaved an excellent 

a'ecment aith the results calculated from both the slab and footing tests. 
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His formula is 

v 
C 	

jl.s 
= 100 + 0.75 

 
S • • • • • • . .......( 4..7) 

where m = Moment capacity per inch width of slab 

di  = Effctivo depth of slab 

= Distance from the face of the column to load position. 

V c = ultimate shear stress at a distance 
d1/2 

 from the loaded ar. 

Yitahaid (87)  developed a formula for evaluating the punching strength of 

reinforced ccncrete related to the flexural strength of slab. 

= (19.3 + 0.164 p f) 	. . . . . 	• • • . . • . . . . 	(4.8) 

MV 

	

punch 	pfd1 	(a+8d1 ) . . . . . . . . . . . . . . . . 	( 4.9) 

.Lr where p = 	/a1  = proportion of reinforcement. 

a = side length of loaded area of square shape. For round and 

rectangular shapes, a is taken as the side Lngth of a square 

shape having the same er 

v1  = Ultimate shear stress at a critical section at a distanc. equal 

to d1  from the loaded area. 

punch = Eunchiiig load. 

The punching failure can be avcidcl. by satisfying the condition that 

P 	= P 	in which case, the balanced reinforcement strength should 
flex 	punch 

beequalto 	11fl7(4 
L4- 7 	 1 J.) 	

) 

f
y  = 
	 d1 	• • . . . . . . . . . . 	(4.10) 

1 —0.164( 1  + 0.5-s  ) 
1 
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whore P 
flex = co1lape load at flcxural failure 

P 	= Balanced proportion of rL.inforccment. 

100t (88) empirical formula for the ultimate shear stress is 

15 	(i - O.O75-) 	

(i.ii) 
1 + 21 ad •f' 

flex 

where Ppunch = 4ad1 V0 	• , . . . . . . 	. . 	. . . I  • • • (. 12) 

a = side 1ngth of loaded area of square shape. 

For rectangular shapes, 

a nom = 11[i _.!-(i -)  

r:spcctivcly the lengths of the longest and shortest 

ular ar(-a. 

his recouunondations rtrc 

1.12t) 	for - 

 

- 

. I • • • I S S S 	(4.14.) 

V 	= ( 2.5 	io--)  F 	I 
 for > 

L7 	Strictly speaking the above formulae are applicable to the slabs which 

do not at compositely ith the beams. Test (so) indicated that the punching 

load per panel is found to be 20 to 25/F/o larger for the composite than for the 

non-composite brids. This may be explained like this. ..hon the slab is 

horc l and s1  arc 

sides of the rcctan, 

For design purposes 

v = (9.23 - 

in direct compression, as it is at mid span of a composite bears bridge, the 

neutral axis for local bending under the load is at a lovier level than normal 
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and there is a larger :trJa available to resist shear; consequently the 

punchir load is higher. Thcs tests also indicate that the resistaioo to 

punchinL4 increases with restraint to rotation at the edges of the punched 

panel. i-sts of short and Thomas (83) also confirm this increase of punching 

load, LicL varied from 40 to 50 percent. There is no satisfactory theory 

at present to account for the increases of punching load caused by the 

composite action. 

In the present investigation, it is proposed to adopt Moe's (88) 

recorrutondations and increase the punching load by 20'o to allow for the 

coinposiLe action. 
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4-.3 solutions by Equivalent Slab ::ethoa. 

4-.3.1 Thr ,.c-lonjtudinal composjt. 3om Bridge with point load at mid span 

of innr loEl6itudirial  

The outer beams are free to rotate about their own axis and their ends 

are not hold dorm. Thcrefnr -. it is rsurcd th t no moment is developed along 

the negative yield lins oitcof sIö(.1i-4uic. 2h. self weight of the 

bridge is ignarud. 	Tc. possibl :odo ci: collapse arc considered below,*  

Mode A (FIL. ),-.6) 

Il! this mode, Iailurc taus place across the whole ;idth of the -bridge 

deck. For a vertical displacement of unity along the yield line DE the .ork 

uationicic1s the following expression for collapse load: 

= 	12 	 . ............ 

hcre F = h/L 

Mode B (Fi,. 4- 7) 

For a unit displacement under the load, the iiork Equation yields, 

B/m = 	2(1 + 
	tan+ 2 sec(- 0/2{/c 	/2 Sin / - Sin 

+ 2i2 
Cos 	/2 COSCC(f/ q3in21J + Cos 2\y?-i.2.  

where 0 and 	arc the parameters which defin the yield-line pattern. 

,Li' 4" 	end 12  are the coefficients indicating the variation of ultimate 

moment in (reinforcement) as shown by the moment key lines. 

From the geometry of the yield line potter-n, it can be shocn that 

cot 	
4 tan  '/2 = 	. . . . . . . . . 	. . . . . . . . . 	(4-17) 
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where 	= 
L 

x = Distance of yield line BB from the lo. -A. 

L = span of the bride. 

substituting for T from Equation (4.- 1  7) in Equation (4.i 6) and simplifyinL,, 

- 2i2))112 + 	+ 12) 	 + (*C. 
	 + 

d( Bt) 	
L_LtCT4/2]  

= 0 1ads to 

( 212 - 1I+ 1 ) 
tan 	=- 	 - 	. . . . . S • • t • • • S • S • S • • 	(. 19) 

/ 	14X(1 + i2 ) 

U\ D// = 0 loads to 

12 	
=1 + i2) 	/2 + 	+ i2 ' ) 	........... 	(-.2) 

substituting fromEq. (.20) for 	inEq. (4.19), 

Ji 
tan 0/2 = 	

1 	2 	1- 	
.2 	-. • . S  • S S S  • S S S  • S • 

 
)4 (i + 
	'

2 - 11t3r21 

+ 
wherL M . M. = 

	' 214 
f 

( 1 + 12) 

ubtitutinj frori Eqution (4.21) for t.n ' /2 	
Eqution (4.20), 

+ i) i - i4-3+Z1 
i 	2 	 • . . . . . . . . . . . . . . . . . . 	(4. 22 ) 

+ 

substitutin:, for tan /2  and 
A in Equation ()+.18), 
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= 	 (i + 1) 2 - i+3.*ZL}. • 	0 • • E • • . . • 	 (. 23) 

As pr bh. r, ssumption math. in this particular bridge deck, the negative 
ABa 

yield linsBB do not develop any moment ..hich means that i1 ia = 

Substituting: i$ 0, th fol3n equations applicable in this case are 

obtain-d: 

tan 10 = 	 3 

where 	= ,e + 

(+ 12) 

. . S • • S S • • • • S • • S S S • • 	()+. 24.) 

ieodo C (Pig. 4.8) 

This is a punchin shear failure and should not occur if there is 

perfect intraction between the steel joist end the slab at ultimate load 

conditions and both of them fail simultaneously. If there is not sufficient 

shear connection to prevent slip end uplift between the steel joist and the 

slab at mid span the slab will get separated from the joist which would have 

failed 

 

n-ri,  ultimate load and will span between the outer girders. Thus, there 

is a chnc of the load punching through the slab. 

From Loe' s empirical formulae (4.12 to 4.14.), 

punch = 4.aä v 
1 	o 	. . . S S S • S S • • • S S S • 	• • • . . 



- 2.6 - 

Incr-- ,asinL the purchin lo-.d of slab by 20 

P
14... 	

+ 	1,2 P 	. . . . . . . . . . . . 	. . . . . 	(i..25) c — 	 punch 

Maximum efficiency of a duck is achi.uved .then the failure of mode takes 

place, provided mode C is prevented by proper design. 

Mode pr codes mode B if 

B 

which iv:z 

p < Ji /i 	
26 S S 	S 	 . . . . . ' S 	S 5 5 	 (1P 	) 

The equation (4.26)  is plotted in Fig. )f.9 from which it is 

possih1 	rcdict the mode Of failure for the given values of P and 

or to choose their values for a failure mode which results in 

maximum fCiciency of the deck. 

4.3.2 Throe-lon4tudinal composite bu':.:bridc :ith a pair of point loads on 

outer 10nthdinal (Fig. 4 - 1 0 )  

The unlo:xled beams •r free to rot.te about their own axes but their ends 

ere h.ld down in order to prevent their lifting off the supports under the 

eccentric loading. It is assumed that moments are developed '1on the 

negative yield lin pA tUr toj Gft 	Qb - 

iode  

For a vurtuel displacement of unity along the yield lines DE, 

1211 m 
P A  = 	C 	 ( 27) 

(i_,) 	
S S S S S • S • • • S S • • S • S • • • • • 



Ile,. 

/ 
1/  

/ 

CT. 10 



AV 	

,__S L___,_ 	U-) L/'_ 

£ 

h 
	 Tn 

oil 
D 	 p 

F1 6.4-11 !4ODEA 
Yield line 	Pomeri 

1. 
	

08 	 In 

h 
	 - 	

I. 
,jj...m 

AB 
I. 

FIG. 4.12 MODED 



1:15 

1•5 

125 

O533J 

lue 

1•o 

Ate 	 MODEA  

VL 

05 	 din 

 
0•4 	

MODE A 

0•3 

MODE B
Ii4j)1 

o.I[ 

0 	 f3 	 I 

MODE B 



-47 - 

Mode B (Fig. .12) 

For a unit displacennt along the yield lines 00, 

2 (i + ____ 	
+--- 	sec 

P3/ 	2J4F + 2(1 + i1 ) ten /2 	 /2 cosec cos(%jJø/2) rn 

+ 2 sec (j) 0/2LMo 
cos 

/2  sin i - sin 0/2 Cos )/J 

2 	2 

	

+ 2i2  COS /2 Sec( 	- /2 cosoc J jsin u1, + cos 	. . . . (4.28) 

Noting th.t from the gome'y of the yield line pattern, 

	

(I -T)cot kf/+tfl0/2 = 	2;\ 	.. . . .. .... •.. . . 	(. 29) 

Tquetion ().28) can b reviritten in terms of parameters 0 and 

= 2MF 	 (1 +.) +,i1  - i2 ) 
ft-s) - 	- 'I tan 0/2 	

2 

	

+ 	+ 

f.P / \ 

	

&' "rn 	= 0 loads to 
dO 

____ 
+ 	. (i + '2 

	
2 

tan 012 	. . . . . . . 
	(4,30) 

= (2i 2 -i1 )(1 —1) 
(4.31) tan 0/2 	

4(1 + '
2 	• . . . 

d(B/ ) m = 0 lead sto 

2 	
= 4(/j0 +1M) 	+ 	

(.32) 

taft Ø/2(1-)(2L 2-Aj )/i+i )(i2'-ij- 	 5  (4.33) 
substitutin from Equation 	or t /2  In Equation (4.31), 

(i + 
'l2 	

- j (i - s) 

+ 12) 

	(4-30 



substitutin for tan /2 and in Equation (4.30), 

2f + 	 4(i + i1)( 12 +) - ± (i_). • e 	(4.35) 

Note: - 	Purhing failure is not likely to occur for this type of loading. 

.ihen the loaded beam fails, it will try to separate from the 

adjacent parts, resulting in i:ode B or Mode L depending on the 

rclative strengths of slab and beams. 

Mode A precedes B if 

PA < PB 

which gives 

f <i 	
+ i1  )( 	+) - ±(i -) 	m 	• . . . 	(4.36) 

when i = 	= 1 end 3 1/61 

0. 533T 
	

(4-36a) 

This equation is plotted in Fig. 4.13. 

4.3.3 17 cur-lun4tudina1 composite beam brid.e with two pairs of central point 

loads on 	 ms (Fig. 4.10. 

The unloaded beams are free to rotate about their own axes and their 

ends arc not held down. Therefore it is assumed that no moment is developed 

in negative yield lins ontO øf the 5b(iijy:o) 

i.:oae L. (Fig • 4- 1 5) 

For a vcrtual disp1accimnt of unity along the yield lines DE, the .:ork 

Equation yields, 
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= 	(i-j) 	 . . . . . 	 S S S • 4 • • • . 

Mode B (Fi,g. 4.16) 

This mode is repetition of Mode B shown in Fig. 4.12 except that no 

moment is developed along the negative yield line BB. 

substituting i 1  = 0 2nd multiplying Equation '4.35) by 2, 

+ 
• • . . . . . . . . 	. . . 	.

(4.38 ) 

From 	ua Lion 	.33) and Equation ( 24- 34.) 

tan 	= 	___________________ 	 . • • 	( 4.39) 
/ V'-4---  -s)3 --i 

	

. . . . . . . . . . . . . 	(4.40) 
4 	)j 	

. 	(44°) Lc4'/: 	 o-r4 	
- 

Mode C (Fig. 4.17) 	 ,j 4(t) 1 

The punching load is calculated using the formulae ()+.12 to 4.14.) 

noting that they arc applied to each loaded area and the values are added up. 

Provided that iido C is eliminated by proper design, Mode i. precedes Mode B 

If 

which iV a 

16/ < 	+ 4; (3-43)  

M0*mfl9 th& 3. 0 •139; o  

P<o. 	i 	• . . . . • . . , • • . . • . • • . . , . . 	( 4.24-1 a) 

TTI 
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This euctic;n is plotted in Fig. 4.18. 

4.3.4. Four-longitudinal composite Beam Bridge rith to pairs of eccentric 

point loads on bans (Fig. 4.19) 

The unloaded beams arc; free to rotate about their ovm axes and their 

ends are not held. down. Therefore it is assumed that no moment is developed 

along the ncative lines n t 	epofthe.to( iiv 1O) 

Mode A (Fig. 4.20) 

For unit displacement along the yield lines DE, the Iork Equation yields, 
144,  

= 	(l5) 	 ' 	S 	• 	• • • • • • • . . . . 	( 4. 1+2) 

Mode B (Fig. 4.21) 

This mode is similar to Mode B shown in Fig. 4.1 2 except that thre is 

no moment developed along the yield linesBB nd the length of yield line CC 

now ecuals - (x-n cl there cue octctorJ otve jte'd (in€S Ac'. 

Frowt the t'ostu1ct.4 9ie14 Mtern, ft can be shown tkcr 

- AiF 	a. 	—4s) 

- 	' . 	. . . S 	 . . . 

The values of 0 and >, are respectively determined from equations (4.39) and 

(4..4o). 

Note: -  enching failur is not likely to occur in this case for the reasons 

stated in section 4.3.2. 

Mode . precedes Mode B if 

PA<PB 

which gives 
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i'cz 

 

C3  —43)  

14(1 ) A4. 
whej= o.i, 

. 	 . 	 C  

This 	uation is plottd in Fig. 4.22. 

4.3•5 Four-longithdinaloornposito Beam Bridge with four pairs of eccentric 

poi.t1oadssismlatinj the \rheel loads of IB vhicle (Fin. 1.23). 

The unloaded beams are free to rotate about their ovm axes and their 

ends are not held down implying: that no moment is developed along the 

negative yield lines on - t0p. Of the slab. 

Only tio lines of loads 	considered. These correspond to the tao 

axles of the abnormal vehicle crossing the bridge deck. For short spans thl5 

ifli prociuce th most adverse condition and for long spans the other axles 

can be treated in an identical way. The four pairs of loads are placed 

symrntrical to the mid span section but eccentric to the longitudinal central  

lin. of th. bridge vrith the first pair on outer longitudinal. 

ioieh (Fig. 4.24) 

For unit displacement along the yield lines DE, the iork Equation yields 

i6,ta p 
At. 	= 	 . 	 ...... . . . . . . . . . . . . . . 

Ld'oq~~ _jj(Fig. 4.25) 

This mode is the same as Mode B shorn in Fig. (4. 21 ) except that the 

displacement under the loads 7 and 8 is not unity and is equal to Cr 

For unit displacement along the yield lines CO, 
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The values of /5 and A are determined respectively by the equations (4.39) 
a (.io). 

Note:- unching f,2dluru is not likely to occur in this ce for rosons 

explalried in section 4.3. 2 . 

Mode L jreccdes todo B if, 

P. <P 
i. 	B 

which Lives 

D 	

Ccf+ 3) 	
+ 	'Z (34].  . . . . . . . 

14(l  —S)3-1 

li 

4 

4.4 Solutions by Beam and Slab Method 

4.4.1 Three lop4tudinoJ. composite Beam Bride with point load at mid span. 

(Pig. 

The assumptions are the same as those made in section 4.3.1. 

Iiod 	(Fi,. 4.26) 

12M 	12Mm(h.B ) P. 	= 	c + 	 . . . .. . . . . . . . . . . . . • 	(4. .14-8) 
L 	 L 
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or P.L. = 124mj 	. . . . . . . . . . . . . . . . . . . . . 
	( .4.ba) 

iode B (Fig. 4.27) 

= 4ii 	 12 
B 	 + 	2( 1 - 212) tn /2 * 	+ 	+ 

+ 	tan2  2-  ¼_2 	Qr'a 

= o leads to 

( 2±2 - 
tan 0/2 = 4>( 1  +I) 

. . . . . S • • S • • • • • 	. S • • 	(... 5o) 

=0 loacLs to 

=-(M+121Li +4.(i 	tan 0/2 	S S  • • • S S  • • • • 

subsituting from EQuation (4.51) for 	in Equation (4.50), 

2'2 - 

tan )1/2 
	 - 	• • • • • • • , • • . 	• . 	(4--5 2 )  

± -1) 12 

+ ±2/LI' 
whore L4 = is 	( 1 ± 12) 

ubstittir: for tan /2 	
Equation (4.50), 

() 53) 

+ '2 M5 

where 0 	$ f 



• 	p 	= 	+ 	
1+i1) 2 - 	++ zx3 	. . 	( 4.•54.) 

since ik 0 .1 

	

Lc 	+ 	 • 	
(4..54.a) 

v:hun > > f take ) 
=() since ) can not exceed the value of P for the 

assumed yield pattrn. 

• 	Tan / 2 	-:: p 	 .................( 
	55) 

substituting for > and tan /2 in Equation (4.49) and putting i 1  = 0. 

PB = 
	

+  
Stu  

+ 	 . . . 	. . . . . • . . . • . . 
	(4..56) 

4.4.2 Thre longitudinal composite Beam Bridge v.ith point loads on outer 

lonUtudinal (Pig. 2 4 . 10) 

The assumptions are the same as those made in section 4.,3.2. 

::ode 	(Fit. 4.,28) 

21 11 	 12,A4rn(hBe ) 
p 	= + 	(1-)L 	

• ......... • • • 	(• 57) 

l2,L 	m 
or 

	

(4,57a) 
PL 

i:oac B (Pig. 1;-. 29) 

	

141.1 	 '2 	
- i2) 

+ C 

	

PB = 1 - 	
+ [2( ii - 	tan /2 + 
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+ 
- 	+ 	(i + 12) tan2O/21 m 	• . . . . 

	 (.58) 

m 	= 0 loads to 
dØ 

(21 -±)(i- - ) 
ta.flO/2 

= 	(i + 12) 	................. . 	(.59) 

a 
1 r:l 1 	= 0 loads to 

+ 	- 	
- 	 Ai + 12M) 	+ 

	

- 	 (i -fl - + (i) 	tan 0/2.. 	+.60) 

substituting from Equation (4.60) for in Equation (1.59), 

tan 12 
=)(2i2 - 
 F

A  I  S-(  i  -- ~  

+ 	 --1l  (i_fl 
 

substituting for tan 0/2 in iuotion (2.59), 

10 + '12 	- i (i) 
= 	- 	

. 	 ..... 	 ( 4 .6 2) 

whcrc 0 X'c f 

PB = (1-)L 
+ 	

i(i + ii )( 12 ~ ) _±(i-) 	. . 	(.6) 

hon ;\  > F, 	)' = p 
From E - uation (4.59), 
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(2±2 - 
tan ø 2 = / 	i+.p(i + 	• . . . . . . . . ....... . 

	64) 

+ 
(1-)L + [( 
	) + 	- 12) 	+ ( M 	2M5P 

( 1 -s) 

- i1)2(i_y) 1 
 -(i +

jm 	. . . . . 	(4.65) 

or 

	

1431 C 	( 2 	+j- (±1 ) 	4(l + 

PB 
= 	

+ L 

 

(2±2 - ji)2(i_) 1 
- 	l(1+i2) 	

_jm 	

..... 	(1.66) 

4.14.3 Four longitudinal composite Beam Bridge with point loads at mid span 

of inner longitudinals (4.14.). 

The assumptions are the same as those made in section 4.3.3. 

Modc i (Fig. 4.0) 

	

1 6 	16,Lrn(h-B 

(1-ç)L 	+ 	(l_ 	 )L 	. . . . . . . . . . . 	. . . . 

or 	= 16/..0rrip . 	( 4.66a) 

1.odc B (Fig. 4.31) 

This mode is repetition of :ode B shouni in Fi. 4.29 except that no 

mom:nt is cLv:iopcd rlonc th n.n'tive yicld lir ABan4 BB 	cLthere are 

o44Itiotoi 'osttivegief4 hneAO.Fc , r unt dis')&ce'te't 0J0n9 00, 

+ 4i (3 	 (.67) 

fl 	3  
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From 	quctir (ii.9) nd Equator, (4..40), re 4o.ct'n 	( p 

trtØ j . 	 . 	 . . . . . . . . . . . 	(68) 

-' 
- 	- 	..__..-.-_ 	 . . S S I S • I S • • S • S • • • . 

 

(4.69) 

where 0 > 

when )¼>j, \ 

From Equatir:rL (t4.1jq) substituting 	=Pq  

I 
tflflØ/ 	

4 	 . 	 . . 
	(. 7o) 

vsms the ct'oVe V6IL7ES of A C*I1 tA.C/ it CCXVI hc 5kWP1 tkt, 

P 	
L 	 - ___ ____ j-S)L 	u-s) 	P 	2 P6-s) 

	

I • • I S • I S 	(4..71) 

4..24 .4 Four 1orjitudinal composit€. Beam with eccentric loading (Fii. 4..1 9 

The ozsLunptions are the same as those made in section 4..4.. 

•:a .h.. 	(Fit. )+.32) 

16,Lrr(h._B ) 

+ 	(1-5)L 	. . ....... . . . . . . 

or 	16L4m P. = 	/ e 
At 	

O-TTL 	
• • • • • • • • 	. . . . . . . . . .. 	, 4.. 72a)  

1;oae B (Fig. 4.33) 

This macla is similar to Mode B shown in Pig. 4..29 except that there is 

1• 



D 	 0 

FIG. 4L-32 P4ODEA 

3L 	 (H3)L/2  

h 

h 

/ 

h 

a 	Hifljfltoe-am 



h 

h 

A 

B 	 B 

- 

- 

	

1
3

6-0 	60 

4 

tr 

	

C; 	 C. 

(i_3)L 	 SL 	 (Is)L,L  

&ie/d line 	mome?, 

06 	 tn 
oc- 

SB 	 d 

A8 

Hlfl€ATtbe-cm 

FIG. 4.33 MODE 

U 



no moment devclopud along thL. yild lines BB and the length of yield line 

DC now equals}3  and t1re cie 	tiol tostive jiek4 tines Ao. 

Substitutin. i = 0 and multiplying th first n of Equation (4-. 63) by 2, 

	

Wr 
C 	 44  (3-4r) 

	

\ 	 - 	..............(.7i) 
¼1 	I 	44(i)i 

From 	j.tiari (.61) and Equ:tion (4.62), 

tan
- 	

. , . S • S 	S S ...... . . 
/ 	J'1 (t _)3_j 

- A-0 - -r)3-. I --

A 	4(1i)1M5 

where 0 > 

when> 	, 

From Equation (4.40a) 

tan /2 = 

	

. . . ....... . . . . . . 	(4.75) 

	

. S • S S • S • S • • • • • • S • S • 	( 1.76) 

Vsi%A ,3 t%'e o.bGve 'dOiIUQS of ). and ciw4/ it can be shown that, 

- I MP+i-_ I 	-+ I 
'B 	(I-r)L 	(! - J) 	p 	2p6_s) 	4p(s)3J 

. S S S • • • 	(477) 

4.4.5 Four icn;itudjnaJ Composit. Boam uith point loads simulating BB vehicle 

(FL;. 4.2j 

The assumptions and conditions are the same as described in section 4.3.5. 

Lodc 	(Fig. ),.3 2  with additional point loads at points 3, 4-, 7 and 8). 
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iGM 6/m (h-B) 

P.ktT)i_ + 	(i_3)] 	
•.............. 	(i.78) 

16 M 
or 	

= _______ 

c 	
• 	 • • . 	(4. 78a) 

I.odc B (Figs 433 with additional point loads at points 3, 4, 7 and 8) 

In this case, th displacement under thc lc's 7 and 8 is not unity 

and is eoual to 

For unit displacement along the yield lines CO, the total collapse loa1 

is given by 

zj,7 (3 -43)ml 

• • 	. • 
S 	 (79 

when O> 	, the values of ten 	 CLlCUltd from the cauai.en 

74.) 	(4-75) respectively- 

when>>, 	\ = 	
and tan 	is given by Equ;.tion (4.76) 

-A--

- 

 + 1 

( c~3) 	L L 	Zf'(I s) 	4r c 3)3J YY' 	 • 

• S 	 • • • -' 	 • • 	(4.8o) 
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TT PROGRAivlE 

51 Object of tests 

ny new application of simplified yield-line theory has to be supported 

by experiment. Because of the complexity of a composite beam bridge structure, 

the applicability of the analysis can be determined only by comparing the 

behaviour of actual structure with that predicted by the analysis. The object 

of tests in this investigation was twofold (i) to determine the ultimate-

capacity of the bridges and their manner of fmi lure and. (ii) to provide further 

information on the behaviour of the composite beam and the slab which con-

stituted the bride. 

•5.2 Outline cf Test 1-rorexa:ie 

Laboratory tccts rc made on eight composite beam bridges. All of 

them .rer. aaall-scale models of simple span right bridges. The variable in 

atch group of 
.u:cnly the t3pe of loading which consisted of concentrated loads. 

Preceding the test on each model were Control Tests. 

The tests .iere divided ino two groups designated here as A-series and 

B- series. The specimens of A-series had a span of 72" and a slab width of 

36". In th specimens of B-series, the span was kept the same but the slab 

width was 48". The loading for each model was as described below: 

5.2,1 A-series with three 1cngitudins 

Model A I 
and 	: single point load at mid span of inner beam (Fig. 4.5). 

Model A II 

Model A III A pair of point loads on outer beam (Fig. 4.10) 

Model A IV 	A pair of point loads on inner beam (Fig. 6.15c) 
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5.22 B-series with four longitudinals 

Model B I 	: Four pairs of eccentric point loads simulating the wheel 

loads of EB vehicle (Fig. 4.23) 

Model B II : Two pairs of eccentric point loads on beams (Fig. 4.1 9) 

Model B III 	Two pairs of central point loads on beams (Fig. 4.14) 

Model B IV : L pair of point loads on inner beam (Fig. 4.30) 

5.2.3 Control Tests 

long with each model a single composite beam which was identical in 

properties and six strips of slab, three representing the slab in transverse 

direction and three in longitudinal direction, were also cast. Also three 

4" cubes and three 6" cubes were cast, 

The Control Beams were tested under similar loading as the model. The 

slab strips vrere tested under central point loading.. 

5.3 Definition of terms 

The transverse reinforcement of the slab is in the direction perpendicular 

to the beDms. 

The lor{itudinalrcinforcemet c'f the slab is in the dirocticn parallel 

to the bex:s. 

The value of 	expresses the ratio of the transverse sparing of the 

beams, h, to the span of the bridge, L. 

shear connector is a device which acts to transfer horizontal shear 

across the plane between the beam and the slab. In these tests, the shear 

connectors ccnisted of headed studs welded to the top flange of the beam. 

Composite action is the interaction between the beam and slab In the 

models tested, complete composite action was assumed to exist upto failure. 
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5.4. Diicriteria for tst specLemens 

¶Jhe models were designed with the object of keeping their size within 

prctical limits and the cost minimuri. The smallest structural steel sections 

available nrily 3"  x 1" x 4. lbs I-sections were used for the longitudinals. 

jr.cthp of beans 

Th:; rati: of transverse spacing of beams to span was chosen to be one-

sixth of the span for the follng reasons: 

(i) to keep it close enough to the usual value adopted in bridge design, 

and (ii) to minimise the effect of shear Lag (63) so that the effective 

compressive flange width provided by the slab would be nearly 

ecival to the actual width avrdaable. 

5.14 .2 Thickness of slab and reinforcement 

The nrin consideration in deciding the thickness of the slab is to see 

that the rneximum efficiency of the &ck is achieved. The slab performs the 

dual function of distributing the loads transversely and acting as the corn-

pression flange of the been. In th former function it should be made as 

stiff as possible but in th. latter function its thickness has to be 

proportioned to suit the dimensions of the beam. 

fhc yield-line pattern and the collapse lo i. of a bridge deck are largely 

influnccd b th r'.tis of ultinatc mc::ients in lonhitudinal rid transverse 

d.irccti as. By choosing a critic-_1 ratio of thLsu racnients, a desirLd node 

of friulur2 for given gel )rneay and leading can be obtained. 

For a cesen value of h,, the graphs shown in Figs.  

raid 4..22 can be used to obtain the optimum ratio of 
	

Jk 
based on the Equivalent slab cthcd, from which a. suitable value of a for any 
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given value 	can be adopted. Similarly thc Beenpid slab 11, 0thcd, can be 

used to obtain the above values, if the latter mod is chosen for the 

analysis, 

5.4.3 i.herr Connectors 

fle spac%n9 of sher cor%v%ectors wCrv.c our to he 2.4' centre to 

eei'tTe aS per C-P.t7,ti(73). gut -  & S1cr.CtYI9 of 2."  WCAS cdtô'tEc 

to 	fVfY't fc 	i4it1 tke s poc iwq of wetc.'td mtst 	4oycew( 
of S41. The VEtIInt4 	cit74 of one shear cnvteetcY 	Lii- 

determined, from push-out tests. i typical push-out T est ..rrangement is 

shown in Fig. 5.1. The results of the test and the load-slip curve are 

given in Table 5.1 and Fig. 5.2 respectively. .ssu.ming that steel section 

is fully plastic at maximum moment, the nuinbr of shear connectors is 

computed from the formula 

	

= -.1- 	 ..• • 	• • . • • 	. . . . . 	(. i) 
C 	QC  

where Y = Number of shear connectors between the points of maximum and 

zero moments, 

T = 	f = Tensile force in steel section, 
s  

Q = Design value of one sheer connector which is taken as 80 per cent 

of its ultimate capacity in push-out test. 

5.5 Description of Mcdols 

The t. st speciernens may be considered as one-sixth models of short span 

conosite beam bridges. .0 the beams .:cre equally spaced. The models were 

not scaled doin from full-si zcd bridges but were themselves designed. The 

design dot- us are given in Table 5.2 and the typical sections arc shovin in 

Fig. 5.3. 

5,6 Materials 

The physical properties of the steel used in the beams were obtainedfran 
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tension tests on coupons /8" x /16" in cross section cut from the flanges 

The coupons wore 8" long and were tested on 2" gauge length using "flSThON" 

machine which has bull --in Electrical Resistance Gauges to measure the strains.. 

The results crc given in Table 5.. and the typical stress-strain diagrams are 

shown in Fig. 5.4.(a). 

lso bending test to destruction were conducted on 3"  x 1k" x )- lbs R.S. 

joists with two-point loading. The load-strain curves are given in Fig. 5,5. 

The slab reinforcement consisud of w 	 In welded 	mesh of 	daa. bars. lhcsL. 

bars had a high yield strength and low elongation. The properties obtained froiii  

tests arc given in Table 5,. . typical strss-strain digram is given in 

Fig. 5.4(b). 

The slabs wore made from a concrete mix of proportions I cement, 2 fin. 

sand and 3 coarse sand by weight with a water-cement ratio of 0.60 by weigh 

hc properties of concrete used in the various spe-cimons ore given in Tahe 5.5. 

TI.BLE 5.1 

typicai push-out Test on " din studs 

Lad per stud Tons slip 
(in.x1o4)1 

	

0, 21) 	 2.0 

	

C.,5C 	 45 

-7,5 

	

i 011) 	 1 9,0 

	

i25 	 25.0 

	

1.50 	 57.0 

	

1.75 	 130.0 

	

2.00 	 326.0 

	

— 2.10 	 550.0 

.vorag. failure load = 2.05 tons per stud. 
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LBLE 5 .  2 

Design Details for all Molel Bridges 

SpL4fl 	in. 72 

spacing of beams, in. 12 

size, in. 3 x 112 

.eight, lbs/Ft. 4 
sto1 it ist 

crss sectirnal area, sq. in. 1.18 

Modulus of section, in3  1 .11 

Type 	 - Headed stud 

Diameter, in. -- - 

shear cnnoctr Height, in. 1 	1/8 

spacing, in. 2 

Total number in span 36 

Depth of slab, in. 

'dl bars 
1/8e1 diameter slab reinfcrcerrnt 

Bottom 
spacing, in. I 

percent 01091+ 
Trnsvr so 

spacing, in. 1 
Top 

percent 0.92 

spacing. in. 3 
Bottom 

porcent 0.31.. 

Lngituclinal 
spacing, in. 3 

Top 
percent 0.34- 



Table 5.3 

Phy 	 es of st eel in am 

yield ultimate 
percent percent 

size I'To. point strength 
strain strain E Eh 

series of 
• S • L •  p.S.i. 

at first at strain p.s.i. 
p.s•1 •  

s r 
beam tests 

f f 
yield hardening 

U e e 

A 3" x 1k" x 4  lbs 6 45000 69000 0.15 0.15 30 x 106 1 x 
10  
 30 1. 

B 3" x 1k"  x 	lbs 6 35000 6:000 0.118 1.53 6  29.5 x i 6  0.73 x i 62.5 13 
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TLBT2 5.4 

Prcperti: of 1/8" dia. reinforcing brs 'btained from Tensile Tcsts on 

2" G.L. spec—rams. 

Nc 	of 
yield point ultimate 

series tts 
p.s.i. strength 

(approx.) p.s.i. 

A 3 63000 71000 

B 3 65900 95700 

ThBLE 5.5 

PrcDertics of concrete obtained from tests 

on 

4." Lmd 6" cubes 

Nc.of 
ge at 	 vorage 

1.7c/ 	
tests cn

el 	Test 	cube 	6" cube 	
cube sergth 

days 	 p.s.i. 

All 	4.0 	3 	 3 	 5227 

All 	4.7 	3 	 3 	 5096 

AIlI 	5, 	3 	3 	 6290 

L. IV 	56 	3 	3 	 3280 

BI 	30 	3 	3 	 5130 

BlI 	37 	3 	3 	 6270 

Bill 	44 	3 	 3 	 5600 

BIV 	44 	13 	 3 	 5600 
L 	 I- 
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5.7 Ccnetruction of Test specimens 

Plywood forms for the bottom and sides of the slab were constructed 

around the steel beams after the shear connectors were welded to their upper 

flanges. The top and bottom Layers  of reinforcement for the slab of each 

model were cut to the required size out of a welded mesh of 3" x 1" openings. 

The two layers were spaced at the proper distance by a number of 1 
if square 

steel spacar bars containing two notches to receive the reinforcing bars of the 

two layers. The notches were spaced so as to provide a depth of cover equal to 

bctreen the transverse bars and the surf ,--.C ,-: of the slab. The views of 

the form work for control beams, models of -sories and. B-series with steel 

joists and reinforcement arranged in thorn arc shown in Fig. 5.6, Fig. 5.7 and 

Fig. 5.8 r•spectively. The form work of each model was supported on two 

rigid supports 72" apart. Th.- ccnere :e was placed in and vibrated. During 

the operation, L,hc entire weight of the forms and of the slab was carried by 

the I-beams. The curing of the slab in the forms carried out with wet sacking. 

The forms acre removed after 12 days. 

5.8 Loading pparatUs 

preliminary xarnination of the test programme indicated the need for 

a loading frame with an arrangement to vary the position of the point of 

application of the load. 71th this obj;ct in view, the frame shown in Fig. 

5.9 was built for a capacity of 20 tons. The frame consisted of three portals 

placed parallel to each other at 3' -0" intervals and bolted dccvn to the strong 

floor by 1" din, bolts. Each portal was made up of 12" x 4." channels bolted 

together by 	din, bolts and braced by " x 4" angles. The models were 

supported on end portals which were 6'-0" apart and 5'-0 11  high to permit accc 
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FIG.5.6 Form work for i Control Beam 



FIG-5-7 Form work for a 3-Longitudinal Bridge 
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to the underside for strain measuremrits and for observing the development of 

crack patterns. Thèdrizontal channel of the central portal, which was at 

91-0 11  height and which provided the reaction to the loading jack (of Loseii-

hausenwcrk) was strengthened by another channel of the same dimensions bclte 

to it. The jack could be moved and fixed along the channel at 6" intervals. 

The jack as ccnnected to the LoscnhauscnvTerk Testing iiachine vith a maximum 

loading capacity of 20 tons. 

Point loading was applied, by the jack through mild, steel distribution 

plates 4" x 4." x " size on model i. I and. . II and " x 3" x " on other mcaei s. 

They wore bedded on rubber pads. dhen more than one load was applied simul-

tancously a distributing beam s ased to transmit the load from the jack to 

the other loading plates. The bearings were designed to satisfy the require-

ment that the models should be freely Elupported.. The beams were supported on 

steel rollers at one end and on hexagonal bars at the other. The experiments 

were limited to short-term loading tests with ?cncentrated leads. 

The control beams and slab strips were tested on .vcry Testing Liachi' 

of 50 tons capacity in bending tests and of 100 tons capacity in tension and 

comparison tsts (Fig. 5.10). The concrete cubes were thsted on Denison 

achine of 250 tons capacity. 

5.9 	train MeasurLraents and iouipr.ient 

The trains •erc mesurcd across the depth of tha composite beams at 

mid span and quarter span using it  gauge length Sanders Roe Foil type 

Electrical R.sistance Gauges and 10 mm. gauge length Y.L.10 type Japanese m 

Resistance Gauges, both of 120 ohms resistance. The latter gauges were 

capable of recording strain in steel up to 7 per cent well into the stage of 

strain-hardening, which was found in some of the steel beams. The usual 
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50—way strain Recorder and 
Avery Testing Machine 
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procedure for sticking the stra-fl gauges was followed. In 
polishing the meta-1. 

surfaces, care was taken to keep the amount of material removed to a minimum,  

Jralditc was used to stick the Sanders Roe Gauges and C.. Adhesive for Y.L. 10 

gaug s. 

The strain me a
surements on concrete surface at mid span and quarter span 

were c-rriod out with 20 mm. gauge length PC-20 Japanese made Resistance 

Gaui s. The P. . Adhesive was first coated on the concrete surface to obtain 

a level surface. 	
fter it has set, P-2 dhesive was used to stick these gauges. 

The strains in so
me of the tests arero recorded by "Savage and Parsons" 

5way 
strain Recorder (Fig. 5.10) and in scir by "Data Logger" (Fig - 

5.11), 

The working of Savage and Parsons Recorder (89) is as follows: 

The active and dummy Resistance Gauges are connected in a MultiyTh Strain 

Gauge Bridge Circuit with a gauge selector switch as 
shown in Fig. 5.12. The 

Bridge is initially balanced bj using the potentiameter 1ovm as Apex Resis-

tance since it is impossible to manufacture strain gauge elements to have 

exactly the seine resistance to within, say, 0.001 ohm. 

T chang; in resistance of an active strain gauge caused by its cicn-

ation or con traction dflccts the Galv,anc,ncter. Measurements are obtecd by 

re-balancing the brid.g.c as in ordinary :htstone Bridge practice by using the 

Slider lire-- calibrated in trras cf strain. The quantity measured is 

G = n 100 	. . . . . ............ . • . 
	(5e2) 

and the 	z'in c is related to the 
change in resistanC by thu or-SS10 

- 	1 	6 
= 	

. . . . . . . . . . . . . . . . . . . . 

where n = scnsititY Factor which c,-,xi be given the values 10, 2 and 1
7  

the maximuin sensitivity being obtained when n = 10, 

AR = change in resistance of the strain gauge, 
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R = Resistance of the strain gauge, 

and K = Gauge Factor. 

The measurement of strain with 1. 2 can be made to an accuracy of 

5 x 10
-6 	

i , though t can be increased by intcrpoth.tic.n. The principle on ehich 

the DalaLogger works (90) is different. Instead of change in resistance, 

change in voltage cn - ci by the change in resistance of an active strain gauge 

is read or printed, out. This equipment provides the quickest means of record-

ing a number of straTh radings. The Data Logger that vIas fabricated in the 

Laboratory could record the strains from 100 channels at a time. The strain 

is calculated using the re- !, ion 

- 	Un 	.......... . .......... . . 

LW = change in voltage 

U = Input voltage 

n = Sensitivity Factor, which can take a maximum value of 1000-. 

The measurement of strain to an accuracy of one-third microstrain is rojb1e 

on this apparatus. 

8 11  and 2 11  gaug length "Damec" Gauges wcrc also used to measure the cea---

crct:r'erf Ce srir et sc-ac cin'. in orLr e check the reliability of P.0.20 

Resistance rues, 

rJ,l}e daflections at rr.ids 1:ari rid U:-ter  sn of th. bams Jere measured 

nsing Baty Dial Cauges reading to 0.001 and 0.0001 ".. These 'eerc mcuntad 01'-

magnetic bases for easy adjustment and wore supported on a "Dexion" frame 

which spanned between the tvic end portals supporting the model (Fig. .13), 

The actual locations of strain and deflection measurements are given 

each test sot-up described later, 
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CH1YTER 6 

DEEXRIETICN OF T-- ".0S 

6.1 Test Procedure 

The sequence of t'. -ting operation was ft to test the control beam, ' 

the slab strips and the concrete cubes belonging to each model which was tested 

last. The results of Control Tests enabled to have an estimate of the 

ultimate capacity and the deformations at corresponding points of bridge riodels. 

The entire testing operation of any one model and its control specimens was 

completed in tcc, days. 

6,2 Tests on Control Beams 

Each Control Beam viih its cross section as shown in Fig. 5.3(c) was 

:id. by v ry T'-sting Laciine on a span cf 72". 	typical test set-up is 

Ia Pig. 5.11. Th. usual procedure vas to apply the load in increments 

r'P 0.5 tons and to measure the strains and deflections for each increment of 

lead until the ultimate load was raehed. 1. compression failure on the top of  

the slab at mid span or between the load, points occurred in all the boa-as. 

There were no signs of longitudinal tension cracks on top of the slab • 

of the Control Beams were cut into tio halves and each half was tested under 

a central load, on a reduced span of 30". Longitudinal tension cracks were 

observed on the top of the slab before a compression crack formed across the 

;:idth under the load ;, -icn it finally collapsed (Pig. 3.2). 

The test results ana curves of (-aeh control beam are presented ith te 

of the corrcsponcling Bridge liodel. 

63 Tcsts on slab strips 

The slab strips E,and 2 with their cross sections as shown in Fig. 5-3(d) 

and 5.3(e) rcspectivc:y were tested under a central point load on a span of Il". 
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A typical slab strip si 
 after failure is shown in Fig. 6.1 	typical Load- 

Deflection curve is given in Fig. 6.1 (b). The ultimate moments per unit 

width obtained from the tests are presented in Table 6.1. 

T;3IZ. 6.1 

Ultimate moimnts cbtaintd from tt 	on slab strips s i and 

iodcl 
Average moment 

per unit .ridth, Ton.in. 

M Mm 

A I 0.57 0.33 

A II 0.58 0.31 

A III 0.64. 0.32 

&. IV 0.4.5 0. 24- 

B I 0.58 0.3 1 5 

B II 0.63 0.35 

B 111 0.63 0.35 

6.4. Tests on Model Bri&ces 

Each model brido 	placed on the leading frame and centered so that 

the hydraulic jack could apply the load where required. The jack was con-

nected to the Losenhauscnvrerk Tc stang Machine which c ould be operat to apply 

the load 'adually and held it where ncccssry. 	test set-up of Iviodl A I 

is shaczn in Fig. 5.9. Thu range of loading was decided after computing the 

ultimate load by ylu id-line theory using the theoretical as weli as experimental 

ultimate moments of Slab and Boom elements. To overcome any initial effects 

due to bedding of packing pLates etc., a load approximately equal to 
2/3  of the 
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bed that would cause first yield was appliecl and removed thrice. 

641 Model Al 

Load position 	 Fig. 

cross section 	: 	Fig. 5.3(s) 

Control Be-in, LICB : 	 I ior.ne nt-De f 2 e c t T o-h curve Fig, 6.1(c) 

icmon-strain curve Fig. 6,2 

View aftir failure Fig ,  3.3 

Load-Deflection curve : Fig 6.3(b) 

Loed-train curve 	Fig. 6.4.(  a) 

Strain Distribution 	: 	Fig. 6.4(b)  and 6.2(b) 

Crack patterns 	 Fig. 6.10(a) 

as model 1"i. II) 

joint load, was applied at mid span on the central been.. Yielding of th 

Jo'decl I-bci occurred in the lower flange at mid span at a load of cut 

4.8 tons. The deflection had strated to increase non-linearly after thin ioosL 

There were tension cracks at the bottom of the slab parallel to and at about 

4 from the centre line of the loaded beam on either side at mid span. M the 

load was increased., these cracks became wider and deeper and. spread tc.a'ris 

the ends gradually taking a turn towards the ends of cut.r beams. 

At 8 tons, the yielding had penetratcd. to about 
3/4 of he depth of the 

steel section of the loaded beam while strain-hardening was taking place in it5 

lower flange. The tension cracks at the bottom of the slab formed closer to 

the loaded beam. Its curvature at mid span began increasing at a much fter 

rate than that of the slab indicating their imminent separation. 

Yielding had conmenced in the bottom flanges of outer beams at mid span 

and their deflections there had begun to show slight non-linearity. Thoy had 
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rotated slightly towards the central beam. (n the top of the slab tension 

cracks appeared roughly in the form of an ellipse with its minor axis nearly 

equal to two panel widths and major axis equal to the span of the beam, (Fig. 

6.10a). 	t 8.5 tons the outer beams were still strong engough to act as 

supports to the slab. The bridge deck took the shape of a pyramid with its 

vcrtex at the load point, when the distribution plate punched through the 

slab and the load had fallen. The maximum load recorded was 8.5 tons. 

6.).2 Modcl L. II 

Lo!---d osition 
	 Fig. 6.7(a) 

cross section 
	 Fig. 5.3(a) 

Control Beam IICB 
	

Moment-Deflection curve Fig. 6,5 

1.'I-Strain curve Fig. 6.6 

View after failure Fig. 66(a) 

Load-Deflection curves 	Fig. 6.7(b), 6.8 and 6.9 

Load-strain curve 	: Fig. 6.10 

Strain Distribution 	Fig. 6.7(c) 

Crack pattern 	 Fig. 6.10(a) CL A4 

Model J. II was a Companion Specimen to Model A I and was subjected to the 

same type of lo--ding. The behaviour observed was similar and the final failure 

was by punching of the slab as in Medal w I. The maximum load recorded was 

9,15 tons. The strain-hardening of steel in the bottom flange of the loe1 

been was more pronounced in this case and the strains well into this stage were 

recorded. 

6.4.3 MccLl III 

Loaci positions 	: Fig. 6.1() 

Cross section 	 : Fig. 5.3(a) 
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Control Beam AIIICB :Moment-Deflection curve Fig. 6,11 

Moment-Str1n curve Fig. 6.12 

View after fai..lure Fig. 6.1 2(a) 

Load-Deflection curve : 	Fig. 6.13(b) 

Load-Strain curve 	Fig. 6.14 

Strain Distribution 	Fig. 6.15 

Crack patterns 	: 	Fig. 6-15(a)  and 6.15(b) 1,  CIO 

The model was subjected to two-point loading on outer beam. The ends of 

other tvro beams wore anchored do'.in in order to prevent their lifting up due 

to eccentricity of the loading. 

The non-linearity of strain had commenced at 5.2 tons in the bottom flange 

of the loaded beam and at 7 tons in the central beam. Tension cracks at the 

bottom of the slab emanated from the load points and spread at an inclination 

of about 45 to the axis of the beam. .Lt about 9.5 tons, they had penetrated 

deep into the slab and crushing of concrete had taken place on the top of slab 

along these lines. -Jso on the tcp of slab, a large tension crack accompanied 

by smallor cracks on either side developed roughly in the form of a parabola 

with its vertex touching the central beam at its mid span and passing through 

the ends of the loaded beam. Ls the failure load was approached, the deflections 

at mid 32'z1 of the t'oil.oaded beams have started decreasing. .Lt collapse, the 

outer (unloaded) beam had actually deflected upwards to a considerable c:tcnt, 

The failure lc -  i -.s 9.85 tons. Strain-hardening of steel was also observed 

in this case. 

6.2..4. Model_. IV 

Cross section 	Fig. 5.3(a) 

Crack patterr. 	Fig. 6.15(c) 
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FIG.6.15(a) Crack Pattern of Model Alli after failure 
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It was another companion specimen to Model L I but was subjected to two 

point loads 10 apart in place of a single point load at mid span. Since the-

quality of concrete used was poor, it failed by developing a longitudinal tension 

crack along the loa&d beam. There was extensive spalling of concrete at the 

bottom of thc slab tefore failure occurred. 	These 1as no punching of the 

distribution plates through the slab. t mid span, a compression crack almost 

across the whole width of the bridge ha formed. The failure load was 8.5 tons. 

64.5 Model B I 

Load position 
	

Fig. 6.18(a) 

Cross section 
	Fig. 5.3(b) 

Control Beam BICB 	Moment-Deflection curve Fig. 6.1 6 

Moment-strain curve Fig. 6.17 

View after failure Fig. 6.1.7(a) 

Load-Deflection curve 	Fig. 6.18(b) 

Load-Strain surve 	Fig. 6.19 

Strain Distributic.n 	Fig. 6,20 

Crackpattern 	: Fig. 6.2 a) 3' 

This test \Tas planned to simulate the wheel loads of HB vehicle on bridge 

decks. The eight-point loading was applicC.. by distributing the rack load by 

means of rigid stool blocks resting on rollers at load, points. Yon-lineerity 

of load-deflection and load-strain behaviour was noticed in the bottom flange 

of loaded beams I and II, when the total load reached a value of 4.5 tons. 

the bottom of the slab, tension cracks which originated at the load positicns 

spread towards the ends of the beams III and IV. On the top of slab, tension 

cracks appeared along the beam III at mid span. They extended on either side 

to a length equal to about one-third span and turned towards the ends of the 
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loaded beams I and II. On the top of slab, crushing of concrete took place 

parallel to the line of loads. As the load was increased, the separation of 

the two loaded beams from the rest of the system became more evident as shown 

by the tansion crack lines on the top of the slab. The bridge failed at 9.5 

tons. The strain gauge radi..ngs indicated strain-hardening in the web of the 

beam and the bottom flange of the beam II. 

The strain readings in the control bean as well as in the beams of the 

model (Fig. 6- 1 7 and 6 . 19) show that there was compression in the top flanges 

cf tliu booms. in elastic range indicating less compositc action perhaps caused 

by slip greater than expected at interface. This has slightly reduced th 

tltimate capacity of the control beam as well as the model. 

6 ,4 r 6 Model B II 

Load posiioris 

cross section 

Control Beam BIICB 

Load-Deflection curve : 

Load-Strain curve 

i?ig. 6.23(a) 

Fig. 5.3(b) 

Mcment-Deflcction curve Fig. 6.21 

Moment-Strain curve Fig. 6.22(a) 

View after failure Pig. 6.22(c) 

Fig. 6.23(b) 

Fig. 6,2 

Strain Distribution : 	Fig. 6.22(b) 

Crack patterns 	 Pig. 6.4(a) 

The loading is similar to that of Model B I except that the point loads 

over pane-Is are omitted. The deformations and the manner of f allure near 

ultimate load were alnost identical to those of Model B I. though in the 

elastic range, its behaviour as revealed by the Load-Strain curves (Fig-6 24) 
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was slightly different. In th absense of slip measurements, this might be 

attributed to the different amounts of sup that might have occurred in the 

two models, 

6.4.7 Model B III 

Load positions Fig. 627(a) 

Cross section Fig. 5.3(b) 

Control Beam BIIICB 	: Icment-Defloction curve Fig. 6.25 

,ioment-Strain curve Fig. 6.26 

View after foilure Fig. 6.26( a) 

Load-Deflection curve : 	Fig. 6.27(b) 

Load-Strain curve 	: 	Fig. 6.28(a) 

Strain Distribution 	Fig. 6.28(b) and 6.29 

Crack pattern 	 Fig. 6.29(a)  and Fig. 6.29(b) 

The four-point loading was smmetrically applied over the central boom- 

The crack pattern is partly conarablc with that of Model I or II. Punching  

through the slab did not occur in this case due to increased area provided by 

four distribution plates under the point loads. The loaded (inner) beams 

failed first transferring more load to the outer ones, which have also failed 

as t he load was increased. t conrcssion crack C armed almost across the whole 

width of the bridge as seen in Fig. 0,29(b). Crushing of concrete was more 

pronounced on one side of the bridge than the othtr. 

This might have been caused by loss of symmetry due to 

(i) slight error in positioning the loads, 

(n) small variations found in the dimensions of the steel beams 

used in this model. 
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(iii) strain-hardening of steel that had dove loped to cliffcrent de'ucs 

in diffrent bens. 

However, for practical purposes it can be assumed that the bridge deck 

had failed across its whole width, resulting in Mode L., which is the desired 

one for macirm.m efficiency of a brida dock. The failure load was 13.85 tons, 

the highest fcr all models tested. 

6,,8 Model B IV 

cross section 	Fig. 5.3(b) 

crack pattern 	Fig. 6,30 

This test was planrid to inve3tigatc if the punching of slab that had 

been observed in the tests on Models Al and. II could be prevented by two-

point loading. Two point loads 1011  apart were applied symmetrically at 

mid span of th inner beam as marked in Fig. 6.30. The crack pattern 

developed at failure was similar to that observed in Model A I uid 	II. 

The failure load was 8,6 tons. 

This model was cast using the concrete from the same batch as Model Bill 

Therefore the sectional properties of Model B III are used in calculating 

the ultimate load of Motel B IV. 
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CH1YT 2 

DISCUSIOT OF ST PiSULI 

7,1 Introduction 

The (.pplicbilit'T cC yield-line icir to a composite steel-concrete 

structure iminly depends on the uality of stcl used. The quality of the 

concrete has no mer'.surrble effect since the slabs have to be lightly reinforced 

so th..t only the yield point of the steel is the decisive fcetor. However, it 

should he kept in view that the concrete should not be too weak to affect the 

load-slip characteristics of the shear connectors (89), which may result in 
splitting along the line of the connectors. This had boon observed in 
Model IV which was cast in concrete of lower strength. 

The steel used in beams of Models of L-series, had developed strain-

hordeningta a considerable extent as shown in Fig. 5.a). Tests indicate 

that strain-hardening has a beneficial effect on the ultimate capacity of a 

structure, though it complicates the analysis. 

For high strength steel withoi.it brke4 	(4 Point; the stress-strain 

curve as seen in Fig. 5.b) has riatively shorter horizontal portion than 

ordinary mild steel. This curve, of course, represents an extreme case 

because steel, which is more work-hardened than the steel mesh used. in the 

tests, is not used in practice. In such cases, an ultimate load analysis for 

simple structures is, no doubt, permissible, though this is not on a par with 

the response of steel structures to idealised plastic theory (21). 

6 	The pattern of icld lines that may develop in beam end slab system 

largely rlepc-nds on 

(±) System of reinforcement, 

(ii) Spacing of beams, 



(lid) Support conditions, 

and (iv) type of loading. 

In the pr;sent tests, the 3ytem of reinforcement, spacing of beans and 

support conditions are kept the same in every model, the only variable being 

the type of loading. Therefore the whole discussion ncv; cnes round the 

behaviour of the test specimans under different loading conditions. 

7.2 	 composite pction 

In the present investigation, it is assumed that complete interaction 

between the berm and slab up to failure is achieved by the provision of 

adequate number of mechanical shear connectors. it is important at the outset 

to verify hci fr this assurtion is realised in the tests since the entire 

theory for predicting the maximum ultimate moment of a composite bcm is 

simplified by this basic assumption. 

Tho usu1 ultimate capacity of ,i stud shear connect (56) ccn 

also be computed from the following formula: 

For 	h 
s/cl 

Q = 33 	 . . . . . . . . . . . . . . . . 	7. 
uc 	 s 	c 

For 	h, id 

where 	Q 	= useful ultinatc capacity of one stud, lbs. 

ci = stud diameter, in. 
S 

h s = stud height, in. 

For a stud. connector used in the Test Specimens, the rnninimum value of 

useful ulteuate capacity works out to be 3200 .lbs or 1.43  tons- 

Th... sign value of one shear connector as per C.P117, part 1 (73) 
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-orks out I .62 tons, for the ultimate capcit of 2.05 tcm found from th.. 

tests (Tablo 5.1). Using the formula (5.1) 	d the details given in Tables 

5.2 and 53, the actual maximum shear force to which a shear connector is 

likely to b subjected works out to he 1.32  tons. The slip corresponding to 

this load from the graph given in Fig. 5.2 is 26 x 10 in. This is much less 

than the suggested safe value (91) at which full interaction could be assumed 

without introducing any appreciable error in the calculation of maximum moimnt, 

73 Behaviour of Control Brio :iid. Slob S. -tr ipS 

Tctof all the Control •orns, except the Control Beam B I CB, gave the 

values of ultimate moments higher than the theoretical ones. The gap betveei 

theory and test was as high as 30 per cent in the beams of A-series and 20 

per cent in B-series, oven after allowance was made for the effect of strain--

hardening in the theory. This was expected because of the limit put on the 

maximum value  of concrete edge strain c, at maximum moment (Equation 3-10"CU  

e theoretical values of Cc  vriea from 0.3 to  0-334  per cent for dif 

foront strengths of concrete used against the experimental values which 

varied from 0.35 to 0.50 por cent, 

Permitting higher values of 0cu 
 observed in tsts, this gap cou]Zt be 

made as srnr.11 as possible, but how far this is justified is in doubt because 

of many uncertainties inherent in the strain-hardening nature of steel and the 

strain-softening nature of c oncr - t 

In the case of control beam B I CE, the experimental value is slightly 

less than the theoretical one. This might bc. attributed to the presence of 

slip greater than expected, possibly caused by defective welding of shcar 

oonncctors in this particular beam. 



The ultiwatc moments of slab strips obtained from tests generally agree 

with theoretical values which were on safe side. 

74 Behaviour of beams in mclels 

First yielding of the beams is ch racterisd by an abrupt change in 

the slope of load-strain curves. Yielding occurred first in the loaded beam 

and was shortly followed by large deflections. With further increase of the 

load, yielding penetrated deeper into the steel section of the loaded beam 

and sprea tc the adjacent beams. 

In the case of Model J I and Model L II, yielding did not reach through 

the entire cross-section of the loaded beam, though strain-hardening had com-

menced in the bottom flange and deflections were increasing fajt. Yielding 

occurred in the bottom flanges of outer beams but did not penetrate deeper 

intc the steel sections. Their deflections at mid span were just beginning 

to increase non-linearly. In other words, the outer beams were still 'ct.g 

as strong supports to the slab, when the failure of to bridge occurred. 

In the case of Model i III, yielding reached through the entire cross-

section of the loaded (outer) beam while strain-hardening was taking place in 

the bottom flange and web. Yielding had penetrated nearly half the depth of 

the steel section of central been. The outer (unloaded) beam vms far from  

yielding stage and deflected uprrdis at mid span, hinging on ipports which 

were anchored dc en. 

The behaviour of individual beams in B-series was similar to that in A-

series, under similar loading but the behavicur of the Models was, to some 

extent, different in some cases. 

In the Models B I and B II which are comparable tc the Model III in 



MOOM 

the type of loading, th outer beams (unloaded) were far from yielding stage 

and deflctd upwards as in Model L III. In the Model B I, which is comparable 

to the lode1s . I and A II in the type of loading, there was no punching of slab 

and the beams (unloaded) have also failed at ultimate load which was not the 

case with the Models I. I and ; II. This will be further discussed in section 

7.6. 

The notable feature in all the models tested was that the outer beams, 

when loaded, produced relatively larger strains - nl deflections than the loaded 

central beams at their corresponding scctions&failure. Thc.loaded beams. 

whether inner or outer, had tended to separrte from the rest of the bridge 

deck near ultimate load. In all the tests, the loaded beams had failed first 

and the beams inmediately next to them had failed or nearly failed. The beams, 

two spacings away from the loaded ones, wore not much affected. 

7.5 Behaviour of Slab in Flexuro 

The cracks in the slabs in majority of the tests, were not wide open 

since the reinforcement in the slab consisted of steel with high yield strength / 

and low elongation. There were rrany small cracks by the side of larger ones. 

The assumption that full moment of resistance is devoipped along the yield 

lines was not realised in some tests nrly on the models where th0 ends of 

unloaded beams were not anchored down to prevent their lifting up due to 

eccentricity of the load applied. Even ;:hero the ends of a beam were anchored 

down, there was rotation of its cross section at mid span as the I-section is 

torsionally,A_-,k. Only in Licdel A III, wher. the two unloaded beams were 

firmly anchored dovm, there was a negative yiold line along which full moment 

could be assumd to have bo€n developed. The positive yield lines were also 
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well formed in this c.se s soon in Fig. 6. 1 5(c.)- 

7.6 -Punching of slab 

The lo:.rl distribution plate 4" x 4." x 111 size had punched through the 

slab in Model I and L II, where the loading consisted of a point load 

applied at mid span over the central berm. The probable causes for this 

punchin 

(±) jnidequate size of distribution plate under the point load, 

(ii) stress concentration under the loaded area subjected to high 

vertical shear, 

MCI (iii) any vertical separation of the slab from the steel joist. 

In Later tests, the causes (i) and (ii) were removed by applying two-

point loading, which was distributed, over a relatively larger area and 

provided a region of no shear between the load points. There was no punching 

of slab in 1cdcls IL IV and B IV, which were subjected to similar loading. 

The size of the distribution plate was determined from the condition 

that th punching load computed using the formula (4. 25) was not less than 

the maxireuni ultimate load of the bridge deck in floxure. 

Lboratcry tests (81 , 83) indicate that v,hen a single load was placed 

over a panel, failure occurred s a result of punching shear, i.e. by 

separation from the slab of 	-uncated conical section. In Model B I, the 

loads ovar the panels wero accompanied by loads over the joists and there was 

no punching of slab. 

7.7 Sectional Properties 

7.7.1 Control beans 

The sectional properties of control beams calculated using the formulae 
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derived in Chapter 3 re presented in Table 7.1. 

7.7.2 Model bridges tested by the author 

The properties of model bridges calculated using the theoretical ultimate 

moments of haams and slab elements nrc presented in Tabl 7,2. The values 

of m anc' 	ni r're computed from the formula (2.1 b). 

7.7.3 J0l bridF'o tested b; others (Moaet SG,) 

The properties of a cornpoisitu beam. bridge tested by Short and Tharnas (83) 

arc calculated assuming a cube strength of 5000 p.s.i. for the concrete and. 
4 

yield point of 140000 p.s.i. for the steel. They are presented in Table 7.3. 

7.8 Calculation of ultiimte loads of Bridge models 

The Figur.s shcwing the môdes of col1apo considered for each model and 

the appropriate formulae derived in Chapter 4 are presented in Table 7.24  for 

ready refLrence. 

7.8.1 Formulae for Model L IV and B IV 

For Model J IV and B IV, the formulae fcr ultimate leads are obtained 

by modifying the expressions derived for Model B III to suit the loading con-

dlitions and the number of longituclinals. 

Model A IV 	i1  = 0, '2 = 0 and 3 = /36. 

Equivalent slab 

rn  = 1A-i0 m 	
• • . . . . ...... . . . . 	. . . . . . L (i-p) 

= 	 .. . . . . 	(7.2) 

Bean and slab Method 
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TLBLE 7,1 

Sectina1 Prcportius cf Ccntr1 Beams 

Ccno1 J I CB II CB I L III CB B I CB B II CB B III CB 
Boer. 

Cube strength 
5227 5096 	6290 5130 6270 5600 

_u •••  

cylin"cr 
strength, f 14450 	4.320 	5340 4.370  5310 4.750 
p.s. 1. 

Efftctiv 
iiLth, B, 1 0.32  1 0031  1 0.36 	1 0.3 1  1 0.36  1 0.33 
inches 

Neutral axis 
cicpthfrcm top 1.29 1,30 1.21 	1.31 1.01 1.10 
C-f slab 
inches 

concrete oF.ge 
Strain, 	cu 0 .332 0,34 0.318 	0,333 0.318 0.3 27 
(107  2  in/in)  

stool edgo 
strain C 0,828 0.822 0.865 	0.992 1 .097 1.016 
(io 	in/in)  

Curvature 
t r.ud span 25.77 25.68 26.29 29.4.5 31.4.6 29.85 

(in 	x 	1  

2.87 2.55 2.57 2.53 
inches 

-_2.9)4
- 

_2.96 

strain- 
harden-', rig 3.03 3.00 3.19 0 0 0 
stross, f , 

s 	Tsi 

stool force, 20.12 19.89 21.4.9 17.93 18.4.1  18.4.1  
T, 

Ultimtiant 
59.22 58.81 61.75 4.5.89 4.7.32 46.57 Ton-in, 

ccnaibon of  partly partly partly partly Fully Fully 
stool su 	o ctin elastic elastic elastic plastic 

 
elastic plastic plastic 

at failur 

E%.perimentod  
timctc 10a4 i.oi 

iO7 41 .2.-% 3-7 

Pmr, tcys  



T-ABLE 7.2 

rtieS of Model brkd&e_ 

Model 
M 

Ton-in. 

m 
Ton-in/in 

m 
  Ton-in/in 

1- 

 	/P  
e 

 (Eq.  	3)'s 
 14   + 

  = 
  Me   fl JAI 

 1Li 

A I 59.22 0.557 0.315 0.566 8.969 0.566 4..77 2.18 3.21J 

A II 58.81 '.555 0.309 J,557 8.878 0.557 4.72 2.17 0.24.5 

A iii 61.75 0.61 0.328 0.539 8.474 0.539 4.51 2.12 0.25 

A IV L8.69 0.445 0.252 0.567 9.18 0.567 4.87 2.20 0.239 

B I 45.1.9 i.556 0.313 0.563 6.95 '.563 3.76 1.94 0.278 

B II 4.7.32 0624 0,335 0.535 6.38 0.535 3.46 1.86 0.29 

B III 46.57 0,580 0.319 0.55 6.77 0.55 3.66 0.282 

B IV 46.57 0.580 0.319 0.55 6.77 0.55 3.66 1.91 0.282 

TABLE 7.3 

pertiesof .odelbride tested LShort and Tiomcs 

Model u C 

Ton-in. 
ce 

Ton-in. Ton-in/in 
A4m 

Ton-in/in 
Ton-in/in 

 A3 	2 e p.3.i. 

S G 5000 582 4.35 1,2 0.54 0.22 0.317 13.6 2.62 

F. 



ThBLE 7.4- 

Modes of coll. se  and formulae for ultimate loads 

Model 
'2 

Equivalent slab 
Method 

Bean and slab 
Method 

Modes shown Formulae 
. Modes shown Formulae 

in Figures given in 
section in 	Figures given in 

sections 

A I 0 0 C 4.6 to 4.9 4.3.1 4.2 6, 4.27 

A II C) 1 4.6 to 4.9 4.3. 4.26, 4.27 4.4.1 

A III 1 a 1/6 L-11 - th L-11-t 	 4.13 4.3.2 4.28, 4.29 4.4.2 

B I 0 0 1/6 4.24 to 4,25 4.3.5 4.32, 4.33 4.4.5 

B II 0 0 5/36 2L.20 to 4.22 4.5.4 4.32, 4.33 

B III 0 0 5/36 4.15 tc 	4.18 4.3.3 4.30, 4.31 4.4.3 
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12 	21 

li. 	S 	 7-3 

[4' 1 c,P  
(1-sL (1) + 

	 _____ 	
. 

Model B IV 	i = 0. 1 2 0, 3 	/36 

Equivalent sl Heth. 

16,(j m
(S7. 

( 1 _s) 

- 	j1J3_43 	
( 6' B 

	
-- 	 ......... • 	• 	• • 5 5 • S S 

B ms 2nd sib Iicthcd 

1/4  6 m 
= 	 C 	 . . . . . . . . , . • ............ 

41 	14,qP 	I 	I 
pp = 	 +2. [(i 	

+ 	p 	
6)(,]1 (7 

7,9 Cej1!)risca CI ter 	nd t:sts 

-7- 1 Ccntrci Beams 

The ultimate moments and the corresponding concrete edge strains ' 

Shape Factcrs o. Control Beams obtained fro21 theory and tests are comp-rc 

Tables 7.5 end 7.6 respocively. 

7.9.2 Model brid;s 

Th thcoretic.-.i nd expriontnl u1tinito lc - , .(-Is of i'icdel Bridges ore 

cor red in T -.bL 7.7. 1'ke v.Iues of /U 	4 	 f,t-t-er' 

ae Compared fK 74b!( 7'7()('77h) 
7,10 7tios cf :4- id iod to ultimate 1c. --.d cf Lcde1 brHpes 

The ratics of yield itc ultimate lc 	of Lcdel bridges for the given 

loo1dLng conditions are calcul.td from theory using Harmonic L.na1ysi (92) 
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A the lo.d t first yield. In applying the :bcv rn.lysis, zero 

torsional rigidity for all models except Model i III -.i:-s assumed nd the 

meter "a," "a" for th transformed section ina evaluated using the modular ratio 

equal to 500/jr  (70). The average value el "a" for all the models was found 

to be 1 2. For model III, torsional rigidity wzi.s considered ('" = 1 .22) 

since the two unloaded bers were firmly anchored down at the supports. 

The above ratios obtained from the tcts are presented along with the 

theoretical ones in Table 7.8 far redy corrLrison. 
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TkBLE 	7.5 

Comparison cf theory anui tusts on ccntrcl bns 

ultimate Maximum  
rn rnents 	M , 

concrete edge 

Control C  
. I strain ., 

' 	 Cu' Ton-in. -2 (io 	in/in.) 
Beam 

_____ 

Theory 

____ 

Test Test 
Thocry Test Test 

ThLry Theory 

A I GB 59.22 72.6 1 	1.22 0.332 0.4.03 1.22 

A II CB 58.81 73.5 1.25 0.33. 0.34 1 .06 

A III CE 61.75 81.32 1.32 0.318 0.50 1.57 

B I CB 4.5,89 44.5 0.97 0.333 048 1,144 

B II CB 4.7.32 57.3 1,22 0,318 0.50 1.57 

B III GB 4.6.57 54..1 1.16 0.327 0.4.0 1.22 

TABLE 	7.6 

Cernpariscn of theoretical and experimental shape factors 

Theoretical - Experimental 

Control Beem M y 
Shape Factor  M

Y  
Shape Factor 

Ton-in. IVII 

C~ Ton-in. 

A I CE 4.0.0 1 48 J1 .0 1 .76 

A II CE 4.14 1.4.2 4.1 ,0 1,79 

A III GB 4.2.0 1,47 4.3.0 1.87 

B I CE 31.1 1.48 23.0 1.94. 

B II CE 32.5 146 31,0 1 1,85 

B III CE 32.5 1.44 32.0 1.69 



TABLE 

CcDmpariscn of Theory and 'Lsts cn Model bridges 

Equivalent slab Meth( ci Beam cn(l slab method  

Mcdel r L PBP 
test 

test .& test 

(tons) (t ns) (tens) (tons) 

A I 9.98 8.5 1.01 9.98 2.72 0.7 

A II 9.85 7.9 9 9 15 1.16 9.85 9.69 1.05 

A III 1 2.40 10,31  9.85 0.96  12,40 8.54. 1.15 

A IV 9.4-5 7.63 8.5 1.12- 9.14.5 1.78 1.10 

L I 1 2,33 10.10 9.5 0.4 12.33 10.40 0.91 

B II 12.36 9.7 1.06 12.36 9.23 105 

B III 12,10 11.68 13.85 1,18 12.10 11 .15 1.14 

B IV 9.45 9.65 8.6 0.99 9.4.5 9.13 0.94 

S G - 27.5 35.0 1.27 - 34.15 1.01 

TABLE 	7.8 

Rati s cf yioi1 l:,.: 	tc ultinrt•. load cf m(dcl bridgçs 

Th c ry 7xperiment 

yield 	Ultimate yield ultimz-Au 
Model load, Load tVP load 	Load 

tons P 	to P , tcns P , t.- 
" 
ns 	P 	tons. 

U' y , U y 

A I 5.57 7,4-8 1.31 4.8 8,5 1.77 

All 5.57 7.34 1.29 5,0 9,15 1,83 

A III )+.85 8.54. 1,76 5,2 9,85 1.89 

B I 4..58 9.87 2. 1 5 4.5 9.5 211 

B II 4,00 8.83 2.20 4,5 9,7 2,15 

B III 6.38 11,05 1.73 5.6 13.85 2 . 14.7 

B IV 5- 24 7.99 1.52 4.2 8.6 2,02 
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CHLPT!. 8 

CONCLUSIONS 

6.1 	lirilnary Rerirrks 

The fcllcaring cenclusins dra'rn frcn the results of tests on eight small 

scale models may be considered in general as qualittivc. Ein the few 

quantitative statements should b. censiderc-d .6 tentative in 7ievi cf the 

ch'racter and limitatic.xB of the test programae. It was not expected that the 

tests rould yield definite ans,ers to the many questions rcgrding the 

behaviour cf Composite Beam and slab structures near collapse. It was hoped 

that the szeall-scale models could more conveniently be fabricated and tested 

within the limits of time and would provide further insight into the nature of 

the problem, though full-size tests of bridges are desirable for many reasons 

For one thing, the stress-strain properties of steel used in small-size rein 

forcemont and joists -'re not the same as those of steel used in large-size 

sections of a full-size structure • 'e self ;:eight in a small-scale model is 

small and is often ignored in the analysis whereas in a full-size bridge :i. i 

ccnse'rble -nc9 may influence the mode of failure. Obviously tests of full-

sze brigos would provide more conclusive evidence regarding the validity of 

the theoretical analysis. However, it is believed that the test progrcrnn 

reported herein has yielded much useful infcrm.on, It may be mentioned 

here that in postulating different collapse eachnisms, only straight line 

yield patterns are considered in order to simplify the theory. Experience 

shows (21) that curved yield line patterns dc not change the nitimate load te 

any great extent and any small gain of accuracy is not worth the labour 

involved in solving the complicated algebraic expressions especially in  

analysis of orthotrcpic slabs. 



.. 

8.2 Composite Beams and slab 

(±) hcre strain-hardening of steel is negligibly small, the theory 

based en the assumption that cencrete attains 213 cube strength or 

the vaJuc given by Hegnestd  s stress block (Fig. 2.3) at maxiri':i 

i mont, prodicte a suff ciontly accurate value of 	.t ccr-arod 

with test results The ultimate mcme-it calculated on the basis of 

4/9 cube strength (C.P.117, part 1, 1965) is conservative. 

(ii) where strain-hardening of steel is present, a theory is developeJ 

in Chpter 3 to predict the ultimate moment of a composite be--, ..,  

This proclictian is in close agreement with the test results (Ta': 

3.1), provided the correct values of r and s are well ascertainJ by 

tensile tests cn steel specimens. The control tests in the prest 

investigation indicate that there is wide variation in the valiw 

r and s for the specimens cut from the some steel section. 

) The strains measured show that the strain distribution is more or 

less linear across the depth of the ccmposite socticn inlyin that 

any slip present at interface can be ignored. 

(iv) The longitudinal strain distribution across the width of the slab 

shc.m in Fig. 6.2(b) aees well with the theory behind the ccn'mept 

of effective width of slabs. 

' 	In the teats the extreme fibre strain in cc.ncrete at maximum moment 

varied from 0.0033 to 0.005. The formula (3.10) gives a safe 

estimate of the value of this strain. 

(vi) In _a11 the booms tested, the nutral axis moved upwards after the 

bottom flange of the beam yielded and was in the slab at maxirrum 

moment. The strain distribution shows that the longitudinal reipi.. 
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forcemcnt at the top of the slab has yielded, as assumed, at maximum 

moment. It also shows that at maximum moment the secticn was fully 

Plastic in beams where strain-hardening of steel was not appreciable. 

In b.ams where strain-hardening of steel was appreciable, the steel 

secticn was net fully plastic, the neutral axis bin relatively 

nearer the top flange of the steel joist. 

(vii) The Shape Factor determined from the tests varied from 1.69 to 1.94. 

Thu theoretical shape factor varied from 1.42 to 1 .24-8. 

8.3 Bridie models 

(i) The test results show pie evidence of the real nature cf the 

yield lines and the validity of the theory. 

(ii) The differences between the theory and test results were of minor 

importance and on the conservative side, with a few excepticns. Th: 

tendency of the tests to give greater ultimate loads than the yb 1  

linc theory may be attributed mzinly to 

membrane effect inherent in T-bcam action. 

strain-hardenin of stool, .?here it occurred. 

(iii) Of the bic methods of analysis, (i) Equivalent slab Method and 

(ii) Been and slab Mthcd, the former gave lcwer values of ccliapsc 

lead for all the models under invcstigatic.n. The patterns of yield 

lines calculated from bc th the methods did not differ much. Thou 

more oxperimnja] evidence is needed before the relative merits of 

the two methods ar iecidcd, it can be stated that the fcrmer meth- - . 

in ncrc zuitcd to tnalyj3 ct abrjde deck with qm&J_L,_r_r16 s ize s 

which voui 	rcnoh the 1,eh1s,1r of an thbtropic r3ü, ana the 
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lattr methcd t: a bridgc deck with larger rib sizes. The steel 

b:,-ms in this case w ul ,7  obv-i i usly act as strc rig supports to the slab. 

The observed yield patteis generally corresponded to the theoretical 

patterns. When trio pattcns gave m:re or less the same ultimate 

load, br th the yield pattrns Jere observed as in Jodei B III 

(Fig. 6.29b). 

The strains and tho'Thzflccticns mesured in the beams of the model 

brids nero similar to those of c ntrcl beams, although slightly 

smaller in magnitude. It is therefore sufficiently accurate tc use 

the sectional properties of the separate elements in analysing the 

cmplete system. 

Th ratios of yield to ultimate load obtained from test results 

varied from 1-77  to 1.89 in models of li-series and. from 2.11 to 2.47 

in those of B-series. The steel used in beams of £.-serics had higher 

strength at first yield than the steel used in beams of B-series. 

The theoretical values of the above ratios varied from 1.29 to 1.76 

in models of L-sries and frcm 1.20 to 2.20 in those of B-series 

(Table 7.8). It is therefore suggested that due ci nsideraticn 

shuld be given t., the yield strcagth of steel in choc sing a load 

factor. 

8.4 Punching Failure 

(i) The chances of failure cf a brige .1 ccx due tc punching of the slab 

are loss if the point leads over a panel cf panels re accompanied 

by other point loads over the beams as in a multi.pcint loading 

simulating the heel leads cf a HB vehicle. 



S. 

Under a nnilti.pcint 1oxIing, menticned above, it is possible to 

prvcnt -altogether, a punching filure if the relative strengths 

of bam and slab and the geome try f their arrangement are properly 

designed. 
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APPEDIX 1 

Computer Drorrnme for calculetinL Fitimate I.o:,r.t  
Beam all 	 arderIEL  
Notation 
As = Area of steel section,sc.in , 

af = Itio of flange area to area of steel section, 

aw = Ratio of web area to are of steel section, 

Depth of Composite section,in, 

= Thickness of slab,in, 

= Width of flanLe,in, 

L = ength of span of bearn,in, 

fy = Yield stress of steel in beams, tsi, 

E = Young's Modulus, tsi, 

r = Ratio of strain at strain-hardening to strain at first yild, 

s = Ratio of Younrls Yodulus E to strain-hardening modulus 

Ar = Area of longitudinal reinforcement at top of  

fyr= Yield stress of reinforcing steel, tsi, 

= Cover to the centre of longitudinal reinforcemt, 

c= Cylinder strength of concrete,psi, 

ecu= Concrete edge strain, 

vi =c('as given by Eo.(2.2), 

v2 =j3as given by Eq.(2.3) 

be = Effective width, in, 

= Depth of neutral axis from top of slab, in, 

= CLrvature,in 1 , 

n = Ratio of N.A. Depth to depth of Composite section, 

fyy= Stress at top of steel section, tsi, 

is = Strain-hardening stress, tsi, 

ae,as as shown in Fig.3.5, 
eyy= Strain at top of steel section, 

ey = Strain in steel at first yield, 

cC = Strain at bottom of steel section at Ultimate mc.. 

C = Total compressive forc€,tons, 

= Total tension in steel, tons, 

1 = Distance of 2 from interface,in, 

zp = Distance of C from interface,in, 

jd = l+zp =Lever arm, in, 

:p =XU = Ultimate moment, ton-in, 
WIJ = Ultimate load at mid span, tons. 
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PROG 1AI4EE 

CI :,7  

r1JUP1JT 
0 LrnE PRTifl iOO() LIfB.S 
i:crcirrIiir 3 IUE 
crTpII4BR M 

bei n 
real A;,af ,nw,a,np,ae,D,d,t ,fy,T,r, r,,Ar,fyr,fc,fcc,c 

,g ,ee , ey , eyy ,ti, f , 
fyy , P1, C 

P2,Fi,F2,np,nf,C,T, i,zp,MU,flJ,n,C 
A1,B1 ,cr,Mp, jct, cu,nl 

intot3r r1 9 1 

read (An,af ,aw,fl, t,B,L) 
1:read(:Py,E,r,a,rLr,fyr,cr) 

ii--m+ 1 
)lowpage 
caption beavi+A 
print (n,2 ,o) 
caption 
iiewliiie (z 
1=0 

2:1=1+1 
read (foe) 
if fce=-i than ->1 

if fcc=-9) then 21a 
if i=i then ->21 
if 1=2 then -)22 
read(ecn,vi , v2) 

21: cci i= 004-fco/6. 5e6 
v2. 5-fcc/1(y)50 
vi=(3;7~ .3fcc)/ (3200+fcc) 

->3 



1.11 

wtti(ifl jj)=4 

print 0,2,2) 
caption $+ fee 1* 
print (fcc,4,O) 
caption 	ecu 
Print (ecu,i,5) 
caption 	vi =t 
print (vi,1,3) 
caption 	.$ 112 .4=$ 
print (v2,1,3) 
fc=fcc/2240 
Be=(1-.525"vifl/ ( r2r14 ) )*fl 

k=Af y/ (vjBe*fl'fc) 
ki=Aryr1' (vjq3e*1)fc) 

ffl/d ; ey=fy/1 ; u=ecu/ey ;g=t/1) 

A1=P-  

np= (p i~sqrt  (p it2+4P2) )/z 
fyy=u/np* (g-np) fy 
B1=2*H*n_aw*f*k (u-+.r) $2 

	

' ('• f--a 	f ) /131 
nf= (F1~ qrt(112+4'F2) )/2 
if fyy>fy -the" ->4 

caption teei4is$partia11y Wa s tic*  
->5 
"=n'L   
fyy=:Py 
caption 	tee1ifuiiy4131atic 
fs=fy/'(u/n-(u+r)) 
a=1_nIc (u+r)/u 
if f>fl then ->55 

s=() 
a s=O 

5 :ap=n*(r_i)/u 
ae=n* (fy..4vy)/(u*fy) 

oyy=fyy/13; ee=ocu* (i-n) /n 
cai)tlon 	Bt; $=$ 
print (130,2,2) 
n.L=n*fl 
cu=ecu/ni 

caption ** ni 
print(ni. ,2 ,z) 
caption .4 cu*=$ 
I)riflt (cu,o,7) 
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_aw*Asae*f (fyfyy)12ae*113)/T 

j(I=1+Z1) 
1=T"t jcl 
1J1MtJ4/L 
Mp=Afy (D_11/2)-af *As 	f!/2' (D_as*D/3 ) c 

_v113e*Jcr'4nD_Ar*fyr*cr 
caption  
priiit(71,1,3) 
Ca)tiofl 44 fYY 4=4 
print (fyy,2,2) 
oajt1 	4$ f s 4=4 
print (f;,2,2) 
caption 43 ac 4=4 
print (ae,1,3) 
caption3$ as 4=4 
print (a;,1,3) 
caption $4 eyy 4=4 
print (eyy,1,5) 
caption 43 ey 4=4 
Print (oy,1,) 
caption 43 ec 4=4 
print  
newlines (2) 
caption 44 C 4=4 
print (C,5,2) 
caption 44 T 4=4 
print  
caption 43 1 4=4 
print  
caption +4 zp 4$ 
print (zp,i,2' 
caption 4$ jd  .4=4 
Print (j(1,2,2) 
Caption $4 MIT 3=3 
print (141,6,2) 
caption 43 M 4=4 
print (14p, 6, z 
caption 44 TU 3=4 
print (lm ,3,2) 
new1ine (2) 
->2 
end of program 
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DATA FOR hEAY Al 
 ) A6 (Table .1) 

-. 
15.34 

•.- 
13000 

.J 
11.3 	21 	3.07 1.25 	1.313 

3635 
3635 • 0031 i 
3635 • oo3fl .1)25 	•5 
3635 .0u3 •5 	•5 	-1 
14.74 13300 4.6 	17.7 	.306 15.25 	1.16 
4220 
4220 • 003 1 	.5 
422" • 0 .1)25 	,5 s 

1. 21.15 	.306 15.25 	1.156 
3031) 
3030 . ()()3 ,9  .5 
3030 .O03 .1)25 	.5 
3030 .0O33 .95 	.5 	-1 
16.36 1341)0 1 	io.66 	.306 15.25 	1.156 
3 930 
3990 .0039 i 	.s 
3,110 .0039 4025 	.5 
3220 .0032 • 8 	,ç 	- 

15.34 13300 1 	1 	6 	.306 15.25 	1.156 
5010 
5010 .0039 1 
5010 . 003-9  .1)25 	.5 
5010 .0032 .95 	.5 	-1 

1370() 2.4 	17.7 	.306 	1,5.2.5 	1.156 
5040 

040 .0039 1 	. 
5040 .0039 .1)25 	.5 
5040 .0039 .25 	.5 	-1)1) 
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DA1A FOR JiEA'.S AICB TO BIIICB (Table 7.1) 

4490 
4430  •5 
4430 .003% .925 • 
4450 .0033 . 35 	•5 .-1 
20.0() 1340() 1 	30 .0492 	t6. , i 	.3123 
4320 
432() .0033 1 	.5 
432() . 003 3 • 123 	5 
4320 • 003 .5 	.5 -1 
20.00 1340() 1 	30 	.041)2 26. 	.3123 
334() 
3340 .003% :1 	.5 
534() .0033 .023 	.3 
3340 .0033 .39 	.9 -1 
15.6) 1320() 13 	2.5 .0492 	26.3 	.3125 
4370 
4370 .0033 1 	.5 
4370 .01)33 .25 	.3 
4370 .0033 .39 	.5 -1 

1 5. (Y) 13200 13 	(%.9 .0402 	26.3 	.3125 
53.10 
9310 •Q( 

5310 -c - 
531() • 1' -1 
1 .5. (Y) 1 .9 • 04(}5 	2b. 	.3125 
4750 
4730 .0033 1 	.5 
475() .003 .1125 	.5 
4'/50 • ut,3o .35 	.5 -99 


