
COMPUTER STRUCTURES FOR DISTRIBUTED SYSTEMS

LIAM MAURICE CASEY

C 	DOCTOR OF PHILOSOPHY

UNIVERSITY OF EDINBURGH

1977.

- ABSTRPCI: A building block approach to configuring large corruter.
iEerns is attractive because the blocks, either primitive

processors or small computers, are daily becoming cheaper and
because this approach alloiis a close match of the pcwer required
to the pciler supplied. This thesis addresses the design goal
of an expandable system where there is no premium paid for a
minimal configuration and the cost of extra units of capacity
is constant. It is shoiin that a distributed system, a system
of homogeneous canputers loosely coupled by a cartmunication
subsystem, is likely to be the best approach to this design
goal. Some consideration is given to the form of the canmunication
subsystem but the rain research is directed to.ards the software
organisation required to achieve efficient co-operation between
the canputers constituting the distributed system. An organisation
based on the domain structures of protection schenEs is found to
have advantages. Hitherto dcirtain management using capabilities
has been centred around systems with shared. primary memory. This
is because central tables have been required to implement the
capability rrechanism. A model is developed which, by restricting.
the sharing of some items and providing a 'global object'
managerrent scheme to cover essential sharing, enables central
tables to be dispensed with and dcmain managenent to be
distributed. The main goal in achieving this extension is to
facilitate dynamic and efficient load sharing but the model
could equally well be used to provide, in distributed systems,
the protection normally associated with danains. This thesis
also considers the wider ramifications of distributed systems.
A simulation program is described and results fran it are analysed
to give sate insights into factors affecting distributed system
stability and performance. It is concluded that the above design
goal of linear expandibility can be attained for a moderate range
of systems sizes (perhaps fran 1 to 20 canputers).

and Phrases: distributed computer system, multiple
computer system, load sharing, homogeneous, domain, capability,
simulation.

ENEIS:

Acknowledgement is due to the New Zealand Epartment of

Scientific and Industrial Research whose generous financial support-

made this work possible. I' wish to thank the supervisors of my

study, Professor Sidney Michaelson and Nick Shelness. Also a

word of thanks is due to Lee Smith who has assisted with the

proof reading of this thesis. Finally I would like to thank my

wife Hilary who has borne her . 'Ph. D. widcx'fnood' well.

This thesis is dedicated to my son Martin. If it were not

for his habit of waking early this thesis would not be canpieted

yet.

DEtIRlTI:

I hereby declare that this thesis has been canposed by myself

and that the work reported is irrj cwn.

18 January 1977

Ca\'TENTS

Chapter PROLOGUE 1

Chapter MERITS OF VARIOUS HARDWARE OIANISATICNS 12

Chapter CWICTTICS 41

Chapter .OPEPTING SYSTEMS A}HIECTUPE 62

Chapter THE Da2ELORENT OF 	DQ'4AIN CQCE'T 81

Chapter OUR MODEL 	 S 106

Chapter DISTRIBUTED SYSTEM METHOtYJLLXY 141

Chapter DCI'4AIN MANNT 176

Chapter DESCR=ICN OF SIULECXT 198

Chapter RESULTS OF OUR SBV1UTLATICN 230

Chapter EPILOGUE 256

Appendix A 	 A-i

Bibliography 	 B-i

CHAPTER 1

PROLOGUE

All our yesterdays:

In 1954, a decade after the first digital computer was

built, workers at the National bureau of Standards, USA,

connected together two computers, SEAC and DYSEAC,

forming the first multiple computer 	system* 	The

resulting 	system was capable, so they claimed, of

handling efficiently problems which the two component

computers could scarcely have handled if each were

working alone (CODD2]. 	This led them to produce the

first published proposal 	for the construction of a

multiple computer system LLEIN58,CURT63I. 	The proposed

system, PILOT, consisted of three computers: a primary

computer, a clerical or secondary computer and an I/O

computer. To quote: 'These computers intercommunicate in

a way that permits all three to work together

concurrently on a common problem' and 'The system can be

used in conjunction with other digital computer

facilities forming 	an 	interconnected 	communication

network in which all the machines can work together

collaboratively on large scale problems that are beyond

the reach of any single machine'.

11

Despite the confident use of the present tense above

PILOT did not achieve its design goals. 	It 	was

decommissioned in the mid sixties, 	its construction

(started in 1956) never fully cornpleteci although the

hardware had been working well enough for 'continuing

difficulties in using primary and secondary (computers)

together, particularly in program debugging' to be

experienced (PYKE74]

This thesis addresses some of the problems involved in

getting computers to work together.

before PILOT the sole approach to achieving more

computing power than that provided by a single machine

was to build a faster machine. In a 1953 paper Grosch

wrote: 'I believe that there is a fundamental rule, which

I modestly call Grosch's law giving economy only as the

square root of the increase of speed - that is to do a

calculation ten times as cheaply you must do it one

hundred times as fast' LGROS531 and Grosch's law, re-cast

in the positive form as 'the power of a computer is

proportional to the square of its cost' has in no small

way encouraged this approach against that of trying to

form multiple computer systems.

Grosch's low did not go unchallenged (ADAi62J but some

ten years later it was given an impressive validation in

the study of 225 American computers by Knight (KiIG661.

In a debate on the architecture for large computer

2

systems in 1967 Amdahl, quoting Knight but conveniently

ignoring a proviso he made about large systems in his

work, exhorted everyone to 'Keep the faith, baby' in the

single processor approach (AMDA67I. 	Amdahl has kept his

faith to this day as has Grosch URUS761. 	Some of the

points we raise later (in chapter 2) suggest that there

is considerable justification for their steadfastness.

What tomorrow may bring:

Nevertheless since PILOT there has been an increasing

number of multiple processor architectures proposed and

built. These architectures are justified as

circumventing the current technological limits on the

power of single processor systems, providing facilities

to remote users (when the constituent processors are

situated at geographically different sites)

(3ERN73,BLAN73,CRAI741, or providing more cost effective

computing than single processors of equivalent power.

This thesis is chiefly concerned with multiple computer

architectures that may provide cost effective computing.

The imminent prospect 	of 	cheap 	but 	primitive

microprocessors and 'free' memory (tNITH75J has led to an

explosion in the size of proposed systems; systems '(of)

over one hundred active processors' [G00D73J, 'having not

tens or hundreds of processing elements but many

thousands' (IRC75) and '(forming) a network of thousands

3

or millions of microcomputers ...0 a range of network

sizes from 100 to 1,000,000,000 computers' (iJITT76i.

In 	chapter 2 it is shown that queueinq theory

mitigates heavily against large numbers of low powered

processors providing a service equal to that of a single

processor with 'equivalent' power. Other chapters

describe some of the mechanisms required for running

programs on systems with modest numbers of identical

computers, the overhead these mechanisms produce in each

computer is shown, at best, to be proportional 	to the

number of computers in the system. 	Thus the day of the

million co-operating computers is never likely to arrive.

Perhaps the most 	telling criticism that can 	be

levelled both at PILOT and these later extravagant

architectures is that the designers have concentrated

only on the hardware requirements and given no thought to

the software required to achieve co-operation among the

processors. Anyone attempting to implement one of these

over-blown systems would also experience 'continuing

difficulties' in achieving co-operation between

processors. 	The mechanisms for co-operation have to be

formulated prior to detailed hardware design. 	The main

research reported in this thesis has been on the software

structures required to enable separate computers to

collaborate to form a single operational entity, a

distributed system.

4

Cost effectiveness:

This thesis describes a system that could consist from

I to perhaps 20 identical computers. trie feel that such a

system may prove cost effective. For a given cost the

system might provide more power than a single computer

system or alternatively a given power might be provided

by the multiple computer system more cheaply than by a

single computer.

We have used the word 'power' several 	times now

without giving a definition, no satisfactory definition

exists 	(FULL76J. 	The concept is meant to express the

overall speed of a computer, how much work it can perform

in unit time. 	Likewise satisfactory definitions of cost

are impossible to formulate. 	So we will not add another

deficient metric of cost effectiveness to the large

number already in existence. Instead, we instance below

recent examples of computer use that indicate that today

Grosch's law is not valid and indeed may have been only a

self—fufilling prophesy used by computer manufacturers to

price their products.

In 1973 Heart and others studied possible replacements

for the I1P machines in the ARPA network tHEAR73,UR1iS75J,

The IMP machines perform a single function, namely the

control of packet switching in the ARPA network. [he

amount of computing power this function requires varies

depending on where the IMP is situated in the network.

61

Heart and his coworkers, after performing smulations,

concluded that systems constructed from upto 14 simple

minicomputers would be cheaper than using a single faster

machine. Using a multiple computer system they could

also vary the number of computers in each IMP system to

match the intended load, thus providing even greater

savings*

Schaeffer (SCHA75J has reported on a costing exercise

that resulted in a chemistry department shifting its

computing load away from a centrally run large machine to

a 24 bit word minicomputer. The department's computing

allowance bought them 32 hours of CPU time a year on a

CDC 7600. The rate structure of the CDC 7600 reflected

simply the cost of operation of the machine, its purchase

price having been paid by an outside agency. Schaeffer

found that the same annual budget would, over 4 years,

pay the purchase price and running costs of a 16K word

minicomputer. The minicomputer was purchased and the

department's programs were founa to run, on average, 35

times slower on the minicomputer than on the CDC 7600.

Twenty hours a day operation of the minicomputer was

achieved so that the department's annual budget

purchased, in effect, 200 hours of CL)C 1600 time instead

of 32.

Fuller (FULL76) has attempted a detailed comparison of

the price/performance ratio of a PDP 10 and C.mmp, a

system of up to 16 minicomputers (tJULF721. He

encountered problems in defining performance and cost.

He used two physical characteristics as measures of

performance: instructions executed per second and

processor memory bandwidth. The former is biased towards

primitive machines that do little work with each

instruction, while the latter is biased towards large

machines which may in each memory cycle be fetching more

data than they use. Therefore Fuller claimed, the two

measures provided bounds for performance estimates and he

calculated a factor of 4 in cost effectiveness of C,mmp

against the most cost effective POP 10 configuration.

There 	have 	also 	been 	reports 	of 	commrcial

applications being mounted on systems of minicomputers at

considerable savings over using single higher powered

computers. A hospital in the USA has an operational

system of 10 Data General Novas to perform all its data

processing (CARR751. Jagerstrom has described plans for

a company to computerize by putting each application on a

separate minicomputer [JAGE71. He claims that the end

system will be cheaper than if a single computer was

used, with the added advantages that the computer power

for each application need be acquired by the company only

when it is ready to mount the application and, as in the

case of the hospital above, some processing can proceed

when one of the minicomputers has failed.

It is not difficult to give reasons for the increasing

hegemony of small computers. 	Large computers 	are

7

characterized 	by 	low 	volumes 	of 	production and

significant 	manufacturer 	commitment 	to 	software.

Successful small computers sell in much larger quantities

and 	their 	software 	support 	is 	lower, sometimes

nonexistent. 	Software production is a fixed overhead

independent of the volume of sales. 	Expected sales

volume dictates the fraction of this and other overheads,

such as design cost and tooling up Cost, which will be

included in the individual selling price. Volume of

production also affects the Construction cost of each

unit, greater volumes mean that more automated methods of

production will be cost effective. The low volume of

sales of large systems means that the same technology has

to be retained over a long period to recoup the original

investment, but older technology is more expensive per

Se, and also in assembly 	costs 	because 	of 	the

proportionally higher component counts LI3LAK751. Ut

course the cheaper computers are, the more will be sold.

Overall there is a cascade of effects making small

computers cost effective for more and more applications.

The big question is whether or not small computers can

be tied together to make more powerful systems that still

retain their cost effectiveness. Does the overhead

produced in amalgamating small machines into a larger one

swamp the cheapness of the small machines?

A building block approach 10AV1721, where identical

computers are added to a system until the required power

8

is achieved would be beneficial both to manufacturers and

users. 	Manufacturers are often required to produce a

range of computers of 	identical 	architecture 	but

differing 	power. 	Each type of computer requires

designing afresh and may be implemented using different

semiconductor technology from the other types, thus

negating many of the benefits of large 	production

volumes. 	Using a number of low power computers to

fabricate the computers at the high power end of the

range means that only one design is needed and this will

be produced in extra large volumes. The user, unless he

buys a computer for a single static task, has to be aware

of the cost of obtaining an increase in capacity as his

requirements increase. This usually leads him to

purchase 	a system with capacity in excess of his

immediate needs and may later involve him in having to

dispose of some hardware and buy a more powerful system

if his requirements grow too large. 	Buying a system

exactly matched to his needs and expanding it 	(or

contracting it) when those needs change, by altering the

number of building blocks, can provide obvious economies

for the user.

Both manufacturers and users would be looking for

systems with low initial cost and linear expansion costs.

If, because of the requirement of being expandable, a

small system costs a lot more than an equivalent

non-expandable system then it will be difficult to sell

the expandable system. Likewise a system where added

IN

building blocks become less and less cost effective

because overall performance diminishes as extra building

blocks are added, would be limited in usefulness. 	What

is required is a fixed cost/performance ratio. 	The

marginal 	increase in power with the addition of an extra

computer should be constant (or nearly so) no matter how

many computers there are already in the system. There is

often an expectation of general synergism in multiple

computer systems, that is the total power in the system

is expected to be somehow greater than the sum of the

individual computers' powers. thile there can be limited

synergistic effects as a system expands, overall the

total 	power available is just 	that provided by the

constituent computers. it is impossible to provide

indefinitely a diminishing cost/performance ratio as the

number of computers in a system grows.

In the next chapter we look at the two basic ways of

amalgamating computers: multiprocessor systems, where

primary memory is shared between all processors, and

distributed systems, where computers are kept separate

but interact with one another using some form 	of

communication system. 	e describe the drawbacks of both

multiprocessor architectures and single processor

architectures compared to distributed systems and the

rest of the thesis concentrates on distributed systems.

Chapter 3 examines the various forms the communication

system can take and chapter 1 looks at operating systems

10

structures suitable for distributed systems. 	Une of

these operating system structures, the kernel/domain

architecture is further described in chaoter 5, ihe rest

of the thesis then details facets of the design of a

distributed system using the kernel/domain structure and

describes a simulation program that was used to study

some performance questions that arise concerning the

design.

11

CHAPTER 2

MERITS OF VARIOUS HARD.IARE ORGANIZATIONS

A useful taxonomy of computer architectures has been

defined by Flynn (FLYN72I. He divides systems into 3

types:

SISD: (single instruction acting on single 	item of

date) the conventional uniprocessor system.

SIMD: 	(single 	instruction acting on multiple data

items) systems with vector hardware, 	associative

and parallel processors.

MIND: 	(multiple 	instructions acting on multiple data

items) 	multiprocessor 	systems 	and 	computer

networks.

(For completeness there is also the MISD type, which

others have taken to denote instruction pipelining

machines (HIG373,THUR751).

Systems 	of 	the SIM) type have been the chief

candidates for solving large scale problems beyond the

limit of conventional machines. They have always been

"one-off' and economics would seem to be a secondary

consideration in their construction. It is now generally

conceded that there are some special problems, weather

forecasting being the most often quoted example, for

which these architectures are the most appropriate but

12

'these are special-purpose machines and any attempt to

apply them to an incorrectly sized, or designed, problem

is an exercise in futility' (IHURI5J.

There is a spectrum of 	iIMD systems, 	ranging from

tightly coupled multiprocessors systems to trans-world

networks. The system that is described in this thesis is

a network that lies towards the multiprocessor end of the

M1MD spectrum. It consists of a number of homogeneous

(that 	is 	highly compatible, 	if 	not 	identical) sites

connected by a communications subsystem. [he whole

system is envisaged to be local in extent, fitting into a

cabinet, a room or, at most, a building. Each site is

assumed to consist of a single processor with its own

memory soace. 	The term 'distributed system' has been

arbitrarily appropriated to denote this. 	There is no

logical 	reason why the sites in a distributed system

should not each consist of multiprocessor systems, but to

avoid confusion we do not consider such a case here.

To place distributed systems in context we examine the

benefits and drawbacks of MIlt) systems compared to $150

systems, particularly in relation to time sharing.

13

SECTION 1: QUEUEING THEORY CONSIDERATIONS

In order to gain mathematical tractability, queue

theoretic models are always idealized abstractions that

omit many of the details of reality. The results of

queueing analysis nevertheless often indicate fundamental

constraints that cannot be breached by any strategy.

Organizations:

In a queueing theory approach to hardware organization

the differences between architectures are represented by

replicating servers and by having different queueing

mechanisms. Figures 2.1 to 2.7 give the representation

of various systems each having a total service capacity

of C operations per second and each having an overall

arrival rate of jobs, requests for service, of X requests

per second. We assume that the mean number of operations

requested by each job is l/M. To ensure that the systems

have the capacity to ultimately deal with all jobs

arriving the further assumption is made that X/}'C < 1.

The ratio A/j.iC is called p , the utilization, as it gives

the ratio of the mean number of operations requested of

the system per second V/A to the number of operations the

system can perform per second, C.

The SISO architecture, the single processor system is

represented by figure 2.1. This is the classical single

server queueing system, the backbone of queueing theory.

14

A

Single processor
Figure 2.1

1

Multi processor
Figure 2.2

Distributed system with intantneouS jockeying
Figure 2.3

Analytic expressions for the mean response time, It 	that

is the average elapsed time between job arrival and job

completion, have been found for large classes of

probability distributions of the arrival rate and service

times of jobs, and for a number of queueing disciplines

such as first come first served, round robin and so on

(see for example KLEI75,KLE176). The simplest case is

for first come first served systems where both the

inter-arrival times between jobs and the size of jobs

have 	(negative) 	exponential 	distributions. 	The mean

response time is given by

1/VC-X)

The tightly coupled multiprocessor system, 	with i%J

processors is represented by figure 2,2. in the

multiprocessor system it is assumed that service of jobs

is from a common core queue. Analytic results are known

for T only when the service time is exponentially

distributed (KL1174i. For the case of '2 with

exponential arrival times the result is

T 	2fiC/((pCf)J(jUC'X))

Figure 2.6 gives graphs (adapted from (KLEI74)) for the

normalized response time (when,u,C1) for 'J1, the single

processor 	case, N2 and N10, assuming exponential

arrival and service times. 	There is an approximate

solution, 	Kinqman's 	conjecture, 	for I for general

distributions of arrival times and service times, 	for

when P is close to It given by

I 	Np/A+(C+ptC)/2A(1P)

16

where CC4 is the squared coefficient of variation of the

inter-arrival times and C is the squared coefficient of

variation for the number of operations required by a job

(KLEJ7Li

Figure 2.3 shows a queueing system that has separate

queues for each server but is subject to instantaneous

jockeying. The last entry in a queue moves

instantaneously to another queue if that queue becomes

shorter than the queue it is in. This represents the

ideal, 	physically 	unattainable, 	for 	load 	levelling

distributed systems. Because such systems do not share

core they do not have a common queue of jobs, but if the

distributed system wants to keep the load on all

processors the same, then jobs will be moved around to

try to attain this. 	In the real world moving jobs will

take some time, 	during which the load situation could

change again. 	Instantaneous jockeying means that no

processor is idle when another server has jobs waiting

for service. It has been shown that because the idle

time of servers is the same as in the common queue system

above that the mean service time will be the same as well

(LEEAÔbJ

We make a distinction between load levelling, where

jobs are moved aoout from queue to queue, and load

balancing where the system attempts to even out the load

on each server solely by directing incoming jobs to the

queue of the server that is most likely to be able to

17

ki

/

Distributed system: go to shortest queue
Figure 2.4

H
AJ

Distributed system order of arrival
Figure 2.5

serve them first. 	Figure 2.4 depicts the system where

incoming jobs are allocated to the processor with the

shortest queue, and the job remains in that queue.

Obviously in this situation it is possible for one server

to be idle while another server has jobs waiting, hence

the utilization of servers will be lower than in the

common queue or instantaneous jockeying system, and the

average response time will be higher. Definite formulae

for I have not been derived.

Figure 2.5 represents the situation where arriving

jobs are allocated to each server in turn, 	irrespective

of load. 	We would expect this to give worse response

times than the case above where jobs go to the processor

with the shortest queue. 	The arrival rate of jobs at

each server in this case is A/N and the 	squared

coefficient 	of 	variation of the arrival times is

In the case of exponential arrival 	times the effective

arrival 	time distrioution for each server is N stage

Erlangian, a situation that has been solved analytically

when there is exponential service times. Niore generally

if we consider Kingman's approximation we have

I 	Np/)+(C+NfC)/2Xç1p)

Thus the increase in response time over the common queue

system is confined to the term N C and so depends on

the number of servers and the coefficient of variation of

the number of operations required for each job. If each

job requires exactly the same number of operations (i.e.

CO) then there would be no increase in response time

19

using this allocation of jobs to each server in turn

instead of using a common queue. Unfortunately in

computer systems the coefficient of variation of service

times is likely to be large.

Figure 2.6 represents the extreme situation of no

coupling at all between systems. The population of jobs

is divided into N categories a priori so that the arrival

rate at each server is)/ti and the squared coefficient of

variation remains C. This type of system can arise when

the users are divided into N equal groups and each group

is permanently assigned to one computer. It also arises

when functionally specialized computers are used so that

each server can only handle one type of job. We assume

here that there are N types of job and that the overall

average number of each type of job is the same. 	In this

case the response time is exactly N times what 	it would

be for the single server with capacity C because each

server is an independent server with capacity C/N. 	For

the case of exponential 	arrival and service times the

average response time is given by

T = N/(pC-)J

If the average fraction of jobs going to each server is

not identical for all servers then the same mean response

time (but not the same variance) will be obtained if the

capacity of each server is adjusted to be in proportion

to the average number of requests received by that server

(keeping the overall capacity equal to C).

20

I . 	 I
I 	 I

	 I

I 	 •

AN
	

I

Separate
Figure

__

systems

2.6

Pipeline
Figure Figure 2.7

Figure 2,7 shows a pipeline or N stage tandem system.

Here we assume that each job requires an average service

of 11Np operations from each server in turn. In the case

of exponential arrival and service times Burke's theorem

(KLEI75J states that the mean response time is given by

I

which is the same as the completely decoupled system

above.

Implications

Our excursion into queueing theory results has shown

that the various ways of configuring systems to give a

capacity of C operations per second do not all give the

same response times. Figure 2.8 shows the deterioration

in response time (normalizing ^C to unity) as the

capacity C is divided among 1,2 and 10 servers, the 2 and

10 server systems either taking jobs from a common queue

or havinq instantaneous jockeying. These response curves

were drawn under the assumption of negative exponential

arrival and service times, but similar curves could be

drawn using the Kingman approximation. They

unequivocally show that unless the utilization p is very

close to 1, when response times are very long anyway,

having a single server gives better response times than

dividing up the capacity among N servers. For batch

processing systems it is possible to attain a processor

utilization close to 1. 	To attain reasonable response

times for time shared systems an operational 	range of

22

.. 	. ___________ :;;:t 	::; 	•-. 	:::1.::.:: 	:::l:: • 	;.::::..l • 	:: 	:t'.:: 1 :;:;';FTT: 	: 	 ' j: 	.: 	:::. j l 	. 	I , 	 I . 	 .. 	I • 	 I 	. 	.•j 	 •. 	• 	:. 	!'.,• 	•,•. 	• 	•

4[

HIJ±T1III1TIH±

--1- --- - - 	 -

ftLJEF45

LEL4i:iz :

_

Ht±tH±ZfL 1:pI I
H - 	-1 HH*

11
- H- 	 --

---4- --

-I 	

I •_

--_-_r

I_ -_--

•

H 	r
T-5

:::::1: .::: 	.:::::::H:. 	: • 	1 	. • 	N 	 • 	 N1 	:::- 	: 	:. 	::. 	: 	•.: 	t 	•:::. 	I.:.::
ii-=____
::::::::::::::i::.::: LH:t__ 	 i :: 	••• 	r, 	••' 	:. .•

• 	••''•' 	 •••' ;:: ••o ,

-------I- -I 	O__i 123_4Q 5 	_s 	7_8_ 	pJ 	--- 	
H

iiLii lilt
--_ - 	 F i 	r 4p9 	 - - - -- -

t 	 I 	I I j 	 f ••.•••• 	. 	.: 	:: 	:• 	• 	• 	. 	:.: 	•,•• 	.. 	:. 	• 	• 	: ' 	: 	1••••• 	•• j • 	:• 	• : .!: 	. ••••H . • 	:••••I :::::::t

iiCZpropoLttonot to Ni 	T 	---- 1Ij

:i: 	 111 I I 	ii 11 I I ---I1-±iir-

• 	::: 	• 	•::. 	;::. 	.:::: 	•:: 	 ; 	:j 	::. ::: 	: 	:. 	I 	I 	. 	• 	.. 	:....

	

- 	- 	-
:::::::i::r:.:t.::::::1:::::::

_si—I

- I 	I -

::::::t ::r:::L:;
-r 	-10 :.

_•::!:• - ::: - r:: -
----- -------- t- 	1-----T- 	–I ---I • 	•:;• ::. 	:::: 	•::.,:: •::::t::::.::::::.:::::. 	:: - ::I:.. 	I:. 	j 	.' 	:::::::- 	•!: 	•: 	-
;:::::::t:::;:EE:] 	.:::. : 	:- 	•-::!:. 	:: 	:;-I---_•:,,:_:.,_._ 	:::::t:::::::: 	:- 	:• 	: 	::.::::::::r:t::.:::r- 	:: :j: ::::::::

--'4 	 E H

IHh — _____ -
' - 	i-----r--Th- 	N2HJ 	 - 	-

LL_L 2 	
_ LLJ jLL*LI_1I' I 	LL_L L 	L_ 	-

:tftt'h t ii I±:EILffztt

I I I 	i I 	j 	J 	I 	I 	If 	I 	I 	Iii 	I 	I 	I 	I

utilizations 	is 	likely to be in the region of 0.6<p<0.9

(E3ELL701. For such an operational range replacing a

single large processor by a number of microprocessors,

say, of the same total power (ignoring overheads) is

going to result in worse response times.

If other considerations lead to the adoption of multiple

servers then the results presented above indicate that an

effort should be made to maximize the utilization of

servers. Systems where no server can be idle while there

are jobs waiting for service, the common queue and

instantaneous jockeying systems above, have a better mean

response time than systems where there is a possibility

of servers being idle while there is outstanding work.

Specialization of servers so that each can only serve a

subset of jobs, or so that every one of them has to be

involved in the service of all jobs, gives the worst

response time. 	Thus the above analysis indicates that

there are increasing gains to be made by

accepting any job at any server (processor)

attempting to load balance by directing incoming jobs

to the shortest queue

attempting to load level 	by shifting jobs from the

ends of queues to shorter queues.

As 	we 	stated 	in 	chapter 	1, 	the 	expansion

characteristics of a system are important. 	Figure 2.9

depicts the normalized response time for three systems,

each with exponential arrival and service times. The N1

24

system has a single server of capacity C and an arrival

rate of requests X. The i'J2 and 110 systems have 2 and

10 servers respectively, each server having a capacity Cr

and the arrival rates at 'th.ese systems are assumed to be

2.1 and bA respectively. (Again equivalent curves could

be drawn using the Kingman approximation). Figure 2.9

shows a pleasing feature of expansion of the number of

servers while keeping the load per server constant; in

the time sharing operational range mentioned above there

is a decrease in response time. Ihe minimum possible

mean response time is simply the mean service time and

this is attained, for all values of ,P<1, when there is an

infinite number of servers. So the decrease in response

time, as another server is added, tends to zero as the

number of servers becomes large.

Queueing networks and bottlenecks:

A closed network queueing system consists of a finite

number of jobs (customers) that cycle around queueing for

service at a number of nodes. After a job has received

service at a node it moves to another node to queue there

for service. Closed network queueing systems can model

the behaviour of time sharing systems better than the

models we discussed above. Ihe fixed number of jobs

represents the restrictions in time shared systems on the

total number of concurrent users. Resources other than

the central processor, such as disks, from which there is

25

a requirement for service can be represented as nodes in

the network system.

After Moore IMDOR711 analysed the P1TS time sharing

system using a closed network queueing model, a rash of

papers appeared applying closed network queueing models

to the study of time sharing systems. These efforts are

surveyed by Kleinrock (KLEI76I. We will not discuss them

further except to examine the concept of the

'bottleneck'.

tNhen a system has more than one type of resource in

demand, then as the load on the system is increased (by

increasing the number of jobs in the system), 	the

utilization of the resources will increasee 	eventually

the utilization of some resource will get very close to

100 	so 	that 	the 	utilization 	cannot 	increase

significantly as the load increases. 	At this stage a

long queue containing almost all 	of the jobs in the

system will build up waiting to use the resource. 	This

resource is a bottleneck and the overall response time of

the system becomes completely dominated by the response

time of the bottleneck. (The response time analyses we

gave above are valid therefore when processing power is

the bottleneck in a system). 	A system where the

utilization of all resources approach 	10070 together is

called a balanced system.

26

Memory requirements:

Recently borgerson (130NG76J has examined another facet

of -replacing a single processor with N slower processors

to give the equivalent capacity. He considered a single

processor system that achieved adequate processor

utilization when it had enough primary memory to sustain

a multiprogramming level of K (that is K jobs, or working

set, could reside in the primary memory at once). by a

very simplistic analysis 	he 	determined 	that 	the

'equivalent 	multiprocessor system (with N processors)

would require enough primary memory to contain N1-c1 jobs

to achieve the same processor utilization. 	Certainly .

processors cannot all be gainfully employed processing K

jobs if K is less than N. The longer response times of

processor systems translate into longer job residency in

primary memory.

Adequacy of queueing theory models:

Queueing theory does give some very useful insights

into how various systems will 	behave. 	But there are

restrictions 	placed on service times, queueing and

service disciplines, and particularly interactions

between different resources in the system (e.g. queueing

theory cannot model the constraint that both primary

memory space and a processor have to be available before

a job can be executed). In consequence queue theoretic

27

approaches cannot be used for detailed analysis of

systems. Perhaps the last word should go to Kleinrock,

whom we have used as a source for many of the results

quoted in this section.

'The mathematical structures ... created in attempting

to describe real situations are merely idealized

fictions, and one must not become enamoured with them

for their own sake if one is really interested in

practical answers' (KLEI76J.

SECTION 2: PHYSICAL AND COST CONSIDERATIONS.

There are of course many

theory predicted performance to

considering an architecture.

paramount factor. 	Ne now look

that 	affect 	the 	cost 	or

architectures.

factors besides queueing

be taken into account in

Cost effectiveness is the

at a number of factors

performance of various

Overheads:

The computation required to manage a list or queue

grows at a faster than linear rate as the size of the

list or queue grows (HANS73I. Thus the overheads in

managing a system with a large number of users are

28

proportionally much greater than for a system with a

small number of users because the former will have longer

queues. 	A multiprocessor system and a single processor

system of equivalent power will 	have approximately the

same management overheads (but there will be some added

complexity in dealing with multiple processors). However

in a distributed system some of the lists and queues are

partitioned amongst the sites so that there is a

reduction in the overheads of managing thorn.

Some port, perhaps all, of an operating system must be

resident in the primary memory of a computer at all

times, using up memory space that would otherwise be

available to user programs. In a system with multiple

servers which are not completely independent, extra

operating system software is required to achieve the

necessary cooperation among the servers (t3ORG76J.

However in a multiprocessor system only one copy of an

operating system is shared among all the processors.

This impacts favourably on the expansion characteristics

of a multiprocessor system because added memory can he

almost entirely dedicated to user programs. In all

multiple computer systems that we know of that do not

have shared memory, apart from the system we develop in

this thesis, each computer has its own complete, or

nearly complete, operating system. One of our chief aims

has been to make as much software as possible shared

among all the sites in our distributed system so that

increasing the size of system means that proportionally

29

more primary memory space is available for useful work.

Parallelism:

If in the queueing theory analysis above each and

every job presented to a multiserver system could be

split into exactly N parallel phases of equal duration,

one phase for each server, then the response times of the

multiserver system would be equal to that of the

equivalent capacity single server. 	However, apart from

such operations as overlapping 1/0 with processing,

parallelism in general purpose computing is difficult to

find, both at the macro level 	and the micro level

ETJAD70). 	Examples of programs decomposed into parallel

modules [THOM72,FULL76J 	seem to us 	to 	be 	rather

contrived. vie do not think that parallelism can be

relied upon as a factor to bring the performance of

multiple orocessor systems up to that of single processor

systems.

Functional specialization

Many 	designs 	for 	distributed 	systems 	and

multiprocessor systems utilize 	functionally specialized

processors 	[JUSE74,COL076,AE75,FAR7,LYL74,SEL1 7

Computer networks of large machines, usually at separate

locations, 	are 	often 	justified 	by the differing

30

characteristics, hardware or software, of each computer,

or host, in the network (FW8E70,GHEL73,CULE73J.

In the case of networks joining together already

existing machines, functional specialization does offer

potential for increased throughput and perhaps reduced

response times compared to the original situation of not

having a network at all. [his is because if each host is

offered highly conformable work it can process it faster

than if it has to process all types of job. Forms of

close co-operation, such as load levelling or balancing,

although often cited as design goals for 	networks

LR08E70, HU'JE72] have yet to be realized. 	basically the

overheads in achieving closer co-operation 	LHICK71,

SMIT7,FRD73i outweigh the benefits. t4e feel functional

specialization will continue to be the raison d'etre of

geographically dispersed networks of large computers.

In the case of distributed systems and multiprocessors

the gain in effective capacity 	through 	functional

specialization has to be very large to offset the

queueing theory gains in response time that can be

achieved by making all processors capable of executing

all jobs. Functional specialization often gives rise to

very simple forms of operating systems, usually of the

hierarchic (REYL74,RUJA74Ll or pipeline variety LFAR874).

But—the overall 	system can be very inefficient. 	Ihe

average response times we quoted above for functionally

specialized servers are valid only when the distribution

31

of 	server 	capacities 	exactly 	matches 	the 	load

characteristics. 	If there is a mismatch then the average

response times will be worse. 	Thus there is the problem

of determining the exact characteristics of the workload

on a system and making sure that it stays stable over

time. 	Obtaining a balanced system and expanding it in a

balanced fashion is not easy for small systems. 	For

small 	hierarchical, 	or star, 	systems 	the 	central

supervisory 	processor 	which allocates work to the

specialized servers is likely to be underutilized (if

there is to be any slack capacity for expansion) making

the system non cost-effective. For large systems where

each type of server is replicated many times balance is

easier to achieve and the theoretical response time

approaches that of a system with homogeneous servers,

because the overall load at any particular instant does

not vary far from the average load IKLEI74J. In

hierarchical systems though, the central node is likely

to run out of processing power so that it cannot handle

the allocation of work to specialized servers fast enough

to keep them busy.

All 	hierarchically 	organised 	multiple 	processor

systems, ones with a supervisory processor, suffer from

the twin oroblems of underutilization of the supervisory

processor, 	and hence diminished cost effectiveness, in

small systems, and eventual 	debilitating inadequacy of

supervisory processor capacity as the system grows large.

Since our stated aim is 	low cost small systems with

32

linear expandability we do not consider hierarchical

systems further in this thesis.

As 	for functional specialization, we believe that the

types of processor that will be manufactured in the

greatest volumes will be general purpose processors.

Referring back to our discussion of manufacturing costs

in chapter 1, general purpose processors therefore will

cost the least. So, because of their likely low cost and

definite advantages in small systems, we concentrate on

systems containing homogeneous processors and ignore

functional specialization, it so happens however that

the design we develop in this thesis can quite naturally

handle functional specialized computers, as we show in

chapter 7 when we discuss peripheral handlers.

Availahi I ity:

In theory both multiprocessors and distributed systems

should be capable of graceful degredation as components

fail. In practice, for general purpose systems, this is

likely to be translated into high availability; a failing

component need only be isolated, not repaired, before the

system, with reduced capacity, can be used again. The

single processor system is completely unusable in the

event of a processor fault until the fault nas been

repaired.

33

In the production of highly reliable 	computers,

distributed systems and multiprocessors can be used more

effectively than double or triple replication of a single

processor system. 	There are however special 	techniques

involved 	in the attainment of high reliability tSCO174l,

which we are not going to pursue in this thesis.

Large single processor systems:

From the queueing theory results above a single fast

processor system would seem to be the best choice. there

are however two points that need considering in relation

to the queueing analysis:

Frequently large computer systems cannot be reasonably

modelled as a single queue for processor service.

Often channel 	capacity is a restricting factor and

even if the system is balanced it is unlikely that

there will be a single channel of sufficient capacity,

rather there will be a number of channels (probably

specialized) of lesser capacity so the poorer response

characteristics of multiple servers could occur

anyway.

The initial assumption in the comparisons was that the

single processor was uniformly N times as fast as each

processor in an N processor system. 	However it is

unlikely that the single processor will be N times as

fast at context switching. As a processor gets faster

it uses more and more fast registers which will have

34

to be saved (or drained when pipelines are used) on

context switching. To avoid too frequent context

switching large systems use peripheral processors,

communications processors and/or front end processors;

hence incurring some of the disadvantages associated

with multiple servers and functional specialization.

Even with these aids a greater proportion of computing

capacity is still likely to be wasted by context

switching in the single processor environment than

with slower processors where the 'opportunity' loss on

a context switch is much smaller.

If 	it maintains its single server characteristics the

large scale single processor system offers superior

performance in general purpose computing compared with

other architectures of equivalent capacity. but when the

above factors are combined with the cost considerations

we described in chapter 1, and the poor availability and

expansion characteristics of single processor systems we

see that the case for overall superiority is not so clear

cut. Considering that they give relative ease of

expansion, 	high availability and the possiblity 	of

achieving a capacity not technically feasible with a

single processor, multiprocessor systems and distributed

systems are certainly worth investigating.

35

Distributed systems versus multiprocessors:

The distinguishing characteristic of a multiprocessor,

its 	shared 	memory, 	gives 	the multiprocessor its

advantages over distributed systems. these advantages

are greater speed of interprocessor communication and

larger size of contiguous memory. In a distributed

system the various sites can only co-operate by sending

messages to one another, which takes a longer time than

using shared tables and semaphores in multiprocessor

systems. (But since, for example, the processors in a

distributed system do not have to co-operate over the

management of shared primary memory, the inter processor

communication mechanisms will be invoked less frequently

than in multiprocessor systems). 	A large contiguous

memory usually 	leads to greater efficiency in handling

large problems (VflTTbBi. The packing problem, fitting

complete jobs or working sets into available memory

(AGRA75], is obviously less severe for one large memory

than for a number of small memories.

Shared 	memory is also responsible for the poor

features of multiprocessor systems: expensive and

expansion limiting memory access circuitry, contention

and software lockout.

In a multiprocessor system more hardware is required

to provide access to shared memory (and to peripherals).

The access speeds to memory will be slowed either by the

inclusion of 	a crossbar switch (with high initial cost

and inflexible limit to expansion) or a bus 	for which

processors have to bid. 	Alternatively the memory units

can be multiple ported making them more expensive and

again limiting expansion ISEAR751.

Memory contention occurs in multiprocessor systems

when a processor cannot access a word of memory because

some other processor is using the access circuitry. 	The

partial solution to this can be expensive; 	replicating

the access circuitry by providing storage in modules and

then providing interleaving circuitry so that accesses

are 'random'. Jith random access in a system where the

number of processors is equal to the number of memory

modules the utilisation of processors and memory falls

quickly to 50% as the number of processors is increased

U3HAN73a,BHAI\173b, bURN73,BASK761. However if the access

time for a word is far shorter than the average time to

process the word, as is likely to occur if MO5/LSI

microprocessors are used LNEYL74J, then the effects will

not be as severe as this. with high pertormance

processors obtaining the necessary extra memory bandwidth

to reduce contention could be costly. Cache design for

multiprocessors 	is difficult 	(IANGIbJ 	and of dubious

efficacy. 	In contrast caches can easily be employed in

the 	single 	processor 	computers that constitute a

distributed system, if they are required.

37

In multiprocessor systems software lockout occurs

(MADN68J. Processors executing certain parts of the

operating system will need to alter tables or have unique

access to some resource. Other processors executing the

same code will have to wait for the previous processor to

finish. This problem can be ameliorated by setting many

locks, each held for very short periods of time but then

the cost of setting the locks begins to erode efficiency.

The two most publicised multiprocessor systems with

more than two or three processors are C.mrnp 	LvULF7,

INULF74aI and Pluribus (HEAR73,OR'JS75). Both these

systems try to circumvent the problems of shared memory

by providing all processors with private memory as well.

Pluribus is a special purpose system and the decision as

to what goes into shared memory and what goes into

private memory is a static one taken at design time. In

the case of the general purpose C.mmp system there does

not seem to be any methodology developed for using

private memory. 	Private memory is only a partial

solution to the above problems anyway, 	it lessens the

amount of contention but does not significantly affect

software lockout or the cost of the access circuitry.

A system developed to work where there is no shared

memory could easily be adapted to a situation where some

of the memory is shared, but the converse is not true.

So it makes sense to develop a distributed system and

38

then see if some form of shared memory will 	improve

Performance 	while 	not 	degrading 	the 	expansion

capabilities of the system. 	ive raise this topic again in

chapter 11.

With an appropriate communication 	subsystem 	and

software organization a distributed system can exhibit

most of the advantages a multiprocessor system has over a

completely decoupled system of computers, while avoiding

the limiting effects of shared memory. the next chapter

examines the required features of a communication

subsystem and chapters 14 to ti are devoted to the

development of the software organization.

Features of the distributed system we propose are:

It is a unified system with respect to peripherals.

Each memory is private to one processor. Low speed

memory, matched to processor speed, can be used and

there will not be any contention, bus or switch

delays.

Less memory is required than for the same number of

independent computers because one copy of most of

the operating sytem is required for the whole

system.

Li) It 	is very modular, easily expandable and has high

availability.

5) A form of software lockout will occur but 	it will

probably involve less wasted processor capacity

than software lockout in a multiprocessor system.

39

Delays will arise when a component of the operating

system that 	is shared between sites is required

simultaneously at two sites. 	However the waiting

time need not be unproductive; the waiting site can

do other work if there is any outstanding, in

contrast to the'busy' wait required at the low

levels of multiprocessor operating systems.

Some of the management software will be as simple

as that required if each site were an independent

single computer, although other software will be as

complex as that in multiprocessor systems.

There will 	be a communications overhead, which is

not present in multiprocesor systems.

The response characteristics will be almost 	those

of a multiprocessor system because the software

structure 	comes 	close 	to 	implementing

'instantaneous jockeying'.

all

CHAPTER 3

COMMUNICATIONS

A distinguishing feature of distributed systems is

that co-ordination and control of processors is performed

by messages rather than by the use of common tables.

Since we wished to study the software structures needed

to ensure co-operation between the sites in a distributed

system, our initial reaction was that the form of

communication subsystem for passing messages between the

sites was immaterial to our problem. However we soon

came to realize that the properties of certain types of

communication subsystem could have a significant effect

on the nature and efficiency of some of the software

mechanisms required. This chapter investigates what kind

of interconnection Structures, communication subsystems,

are appropriate for distributed systems.

In a distributed system there are two types of

communication, one, which we refer to as a message, is

intended for one site only while the other, which we call

a broadcast, is received by all sites in the system.

Messages arise chiefly in the transmission of data and

code between Sites. Broadcasts can be used to propagate

information about the overall state of the system.

41

First, we examine types of communication subsystem and

then, 	in 	section 2, we examine how the type of

communication subsystem impacts upon 	the 	flow 	of

information in the distributed system.

SECTION 1: COMMUNICATION SUBSYSTEMS.

There are a number of criteria that we can use to

distinguish 	the 	various 	types 	of 	computer

interconnections, 	existing or planned 	(ANI)E75,CHOU75,

SEAR751. 	For our distributed system we are looking

primarily 	for 	low 	initial 	cost 	and expansion costs

directly proportional to the number of sites in the

system. 	Since we propose our computers to be separated

by physically short (although electrically long)

distances we do not require the existence of alternative

routes between sites, Nevertheless we do not want the

failure of a site to disrupt the communications between

other sites. It is also desirable that the logic

required 	for 	directing 	messages 	to 	their final

destination be simple.

Centralized (star) communication systems (figure 391)

undoubtedly offer easy routing but their cost is not

42

Site I 	 ISite

entrat
witch

Site I 	 ISite

Star Communication System
Figure 3'l

Goodwin's Hierarchical. System
Figure 32

proportional to the size of the network. 	ihe central

switch, be it a processor or other device (CULU76], is

required whether there are two or twenty computers in the

system. Further if this switch is going to have

sufficient capacity to allow for reasonable expansion

then it is going to be underutilized for small systems,

probably making the small distributed system unattractive

compared with an equal Cost single processor system. One

method of expanding the capacity of the central switch

has been proposed by Goodwin (G00073 1 ANL)E751, He wanted

to replace the centre switch by a whole tree of lower

capacity switches (figure 3.2), expanding the size of the

tree to give greater capacity when required, the cost is

logarithmically proportional to the number of leaves (the

computers doing the useful work) and the message

direction algorithm is simple. but unless (undesirable)

measures are taken to confine most communication to be

between leaves that are close to each other, on average

(n-fl/n of the messages will pass through the root switch

when there are n nodes connected to it. Thus for message

transmission at least, a tree structure gains little over

a star network in capacity ana introduces substantial

delays to achieve this.

Of 	the non-centralized interconnection schemes a

distinction can be drawn between those where the message

travels directly to its destination without being copied

and retransmitted, and those where a message travels in

stages. The latter is often the preferred method in

44

trans-world type networks 	[ROjE70,KLEI70,PDUZ73,HINC7 4 l

where the complexity of 	routing is justified by the

reduced cost and enhanced reliability of transmissions.

The only simple structure of this type is the loop and as

this meets the criteria of expandaoilitv and linear cost

we will study it further, along with the two kinds of

direct distributed communication subsystem: complete

connection and shared bus.

Complete connection:

A complete connection communication subsystem (figure

3.3) was proposed for the Karoline network (MADS7). For

small systems it has favourable features. Most computers

have a few unused peripheral slots and simple links are

cheap and quite easy to construct LUND/li making initial

cost low. There are no routing problems. Flow control,

ensuring that there are not too many messages in the

communication subsystem simultaneously, is not required

as each link involves only two computers. An inoperative

computer does not affect the links between the remaining

operational computers. 	The total bandwidth grows as the

number of computers in the system grows. 	Lxpansion is

not directly limited but it does get progressively more

expensive. The nth computer added requires n-i links.

Karoline being a network of 8 machines required 28 links.

Bearing in mind that the links are probably quite cheap

compared with other resources in the network, 28 links

45

Completely Connected
System
Figure :3•3

Site I. 	 ISite

lu) 	U
0

[Uinterfcce unit

IU) 	(IU

Site I 	 ISite

Ring System

Figure 3.4

could well be the best form of communication system.

broadcasting however, will usually consist of separate

sequential transmissions to each of the other sites.

This will present a greater load on the sending site than

systems where a broadcast involves only one transmission.

Loop:

The DCS system (FAR872aI, the initial version of the

Maryland DCN project (LAYM74J and the waterloo Mini-net

(MANN75) 	all use a loop or ring communication subsystem

as depicted in figure 3.. 	In a simple form a ring

system 	is 	a 	cheaper alternative to the complete

connection system. 	For n sites n links are required and

each site requires only one send slot and one receive

slot. 	A site sends a message to its neighbour which

decides if it is the message's aestination or not. 	If it

is not, then the message is passed on to the next

neighbour. 	1ihen a message has reached its destination it

can be removed from the system (Maryland DC) or marked

as received, 	a copy kept, and allowed to circulate back

to the sender (DCS). 	This later option provides an

automatic though expensive acknowledgement. 	Given that

this comolete loop traversal 	is to take place, 	a

broadcast involves the same overheads as a message.

47

A message however causes interruptions to all sites it

travels through and so sophisticated ring systems such as

DCS use special units, ring interfaces, one for each

site. 	Each interface unit buffers messages and only

interrupts 	its site if the message is for it [REAM76J.

With intelligent design, the ring 	interface units also

overcome 	the 	problem 	of the whole loop becoming

inoperative should one computer in it fail: in such

circumstances the ring interface unit can simply pass all

messages ono The use of special units means that

beneficial features, discussed in section 2, can be

added.

The total 	bandwidth of a loop system is fixed. 	As

more computers are added the bandwidth available to each

decreases and the average time for a message to reach its

destination increases. Since there can be a number of

messages in the loop the question of flow control arises.

If a site puts a new message in the loop without regard

for messages that may arrive and require retransmission,

messages will have to be destroyed. Simple forms of flow

control can involve considerable loss of bandwidth. The

flow control schemes of some loop systems have been

evaluated by Reames and Liu IREAM76J. The Newhall loop

uses a round robin, token to send new message, scheme. A

site can only introduce new messages into the loop when

it has the token, it sends the token onto the next site

in the loop at the end of its new messages. 	The Pierce

loop divides the bandwidth 	into fixed sire slots or

'message Crates' and a site can send a new message if an

empty crate is passing through its interface unit.

Unless messages are all the size of slots or less, they

have to be broken into packets with all the attendant

problems 	of 	disassembly, sequencing, buffering and

reassembly LFRAN72J. The DCL1J loop of Reames and Liu

uses buffers in the interface unit to hold incoming

messages (that have to be retransmitted) while new

messages are introduced into the loop. Thus any site,

providing its buffer has space equivalent to the length

of the new message, can introduce a new message almost

immediately. Although transmission time around the loop

is increased it is shown by Reames and Liu that, overall,

messages arrive faster than in the other two schemes

because they do not have to wait so long to enter the

loop.

If it is desired to stop an errant computer from

monopolising the available bandwidth 	a 	distributed

control scheme leads to further loss of bandwidth. In

the OCS system control over runaway sites takes the form

of the ring interface units permitting each site one

outstanding message at a time (FAR872cJ.

Shared bus:

The KOCOS system (A1S0751 uses a conventional 32 bit

wide bus while Ethernet 	(METC761 	is a serial bus of

particularly simple construction. 	For the distriouted

49

Site kIU

Site =UU

Site I=(IU

Site 1(IU

LU:interface unit

Shared Bus System
Figure 3•5

use of a bus some interfacing unit is mandatory (figure

3.5). KOCOS uses one which also aids in controlling

interprocess communication IALD71.

The Ethernet interface does not have extra functions

but would, with the addition of an associative memory

function, come closest to what we think would be the

ideal type of communication subsystem for a distributed

system. As it stands it is an adaptation of a type of

ALOHA net (A8NA70,BIND75J with 'radio' transmission

constrained to be along about 1 Km of co-axial cable.

The interface units have a policy of deferment; they will

not start transmitting a message if they detect a

transmission is in progress. This means that collisions

(and subsequent aborting of transmissions) can only occur

in the first part of a transmission, in the period equal

to the round trip time - for Ethernet less than 8

microseconds. With long packets, 4096 bytes, and the use

of a 'quadratic back-off' policy when transmitting after

collisions, 	a utilization of the communication subsystem

of over 95% is expected when it 	is heavily loaded.

(METC76]. 	Unlike KOCOS which has a round robin policy

for control of the bus, in Ethernet any site can send a

message immediately if the communication subsystem is not

already in use.

The total 	bandwidth of a bus is limited but, unlike

the loop, there is not 	an 	increase 	in 	message

transmission time as more sites are added. 	Flow control

51

in KOCOS is provided by the round robin scheme while in

Ethernet it is done by a 'back-off' policy whereby if

messages collide retransmission is not attempted for a

random period, the mean of which increases with the

recent collision rate.

A broadcast in a shared bus system can he effected

with a single transmission. Suitable design of interface

units can ensure that the bus is not brought down by the

failure of a site.

SECTION 2: INFORMATION GATHERING.

Global object management:

As will be described 	in detail 	in 	later chapters,

there are certain objects in the distributed system that

are global; any site must be able to 	locate the sites

where these objects currently reside. 	As the size of a

distributed system goes up the movement of global objects

between sites will increase. Thus we need to be

concerned with the efficiency of management of global

objects. There are several ways that the location of

global objects can be determined.

52

Continuous updating: Every time a global object moves

a broadcast of the form ,'X has moved to site I" 	is

performed. 	Each site has a directory of global

objects which it updates when it 	receives 	the

broadcast.

Central directory: Une site is specially designated as

a directory site. Each time an object moves a message

of the form "X has moved to site I" is sent to the

directory site. 	To determine the location of an

object a site sends a "Vuhere is X" message to the

directory site which sends a return message "X is at

I'. So one message is sent every time an object moves

and two are required to determine its location. 	A

central directory is in some sense antithetical 	to a

distributed system. 	However there exist schemes for

nominating a new site as the directory holder should

the old one fail (tY1E711 and a directory can quickly

be reconstituted with a broadcast of "What global

objects do you have". tve cannot escape the fact that

part of the directory site's workload will be

inherently different from the rest of the distributed

system (perhaps causing problems with load balancing).

Should this workload prove to be a bottleneck then a

hybrid system with a number of directory sites using

continuous updating amongst themselves can be used.

Each directory site would service a different set of

non—directory sites. So an object move generates a

message 	to 	one directory site and a 'limited'

53

broadcast 	from that directory site to all 	other

directory sites.

3) Search: No directories are held at any site and there

are no updating messages or broadcasts when a global

object moves. Instead, in this scheme every time a

site wants to know where an object is it broadcasts

"where is X". The site where the object resides

replies with a message "X is at my site".

14) Associative: The only reason a site can have for

wanting to know the location of a global object is so

that it can send a message (related to the object) 	to

the site the object is at. 	An alternative form of the

search scheme is simply to broadcast the relevant

'message' and have each site decide if the broadcast

is related to any global object currently residing at

it. Although this form of search involves less

messages than the other, the length of the broadcast

is likely to be a lot longer. Hence direct

broadcasting is only appropriate when a broadcast

involves the same load on the communication subsystem

as does a single message, namely when systems have

interface units. A direct broadcast scheme can be

made most attractive by the use of extra hardware in

the interface units. If an associative memory,

containing the names of all the global objects at a

site, is attached to the message receiver at each site

then the decison to accept a broadcast can be made

54

without reference to the main processor tFAR872cJ.

There is no need for directories to be kept, or

updating information broadcast, when objects move.

There is no delay when a message has to be sent to

(the site at which resides) a global object and sites

are not continually being interrupted-to answer "where

is X" broadcasts. Whether an associative memory is

used or not, direct broadcasts require care with

synchronization; the global object may be in transit

between sites when the broadcast is made so that no

site picks up the message. -

To compare the schemes outlined above we assume that

each site requires to know the whereabouts of a global

object 0 times a second. ve further assume that a fixed

fraction r of these seekings of global objects results in

the object being moved. lhis fraction r is substantially

less than 1. These figures are assumed to be independent

of N the number of sites in the distributed system.

Of the above schemes the search method is definitely

inferior to continuous updating. The computation

required to update a directory may be equivalent to that

required to determine if a global object is resident but

not all requests for the location of an object result in

the eventual moving of the object. Hence the continuous

updating method involves fewer broadcasts, and does not

involve the extra "X is at my site" message nor the

enforced delay while the information is gathered; all for

55

the cost of memory space to hold a directory at each

site. In the distributed system we are proposing the

number of global objects is likely to be of the order of

10 to 50 so the cost of holding a directory at each site

is not great.

The 	evaluation 	of 	the 	other schemes requires

consideration of the form of broadcasting. We have seen

that for the bus and the DCS type loop a broadcast costs

the same as a message in terms of the use made of the

total bandwidth. Also the work done by the sender is

identical for either. (The total work done by the

receivers of a broadcast will always be N-i times that

for a message). For simple complete connected schemes a

broadcast will use N-i times the bandwidth that a message

uses, and the sending site will probably have to do N-i

times the work. For either type of communication

subsystem the total number of messages (related to global

object management) received per second for the whole

system will be N(N1)Qr when using continuous updating.

When using a central directory scheme (N-1)Ur update

messages will be received by the directory site per

second, (N2)Q messages will be received by the directory

site requesting the whereabouts of a global object and

the same number of replies will he received at the non

directory sites, making a total of

0((N-1)rF2N4) messages per second.

Thus, considering only the minimization of work done

receiving messages for a value of r = U (which turns out

56

to be a high value, see in the sample outputs of appendix

A the ratio of TRANSFERRED DOMAINS to TRANSFERRED

PROCESSURS), the number of sites, N, would have to be

greater than 203 for a central directory to perform

better than continuous updating. hen a directly

connected communication subsystem is used, the number of

transmissions is the same as the number of receptions.

But for a communication subsystem where a broadcast costs

the same as a message then the overall work done using

continuous updating is 	less, so that 4 will have to be

even larger before break-even point is reached. 	6y the

time we quantify the inconvenience of having to wait

before a global object's location can be retrieved, it is

obvious that a central directory is inferior to

continuous updating.

We have already mentioned that an associative scheme

is not appropriate for a system with a directly connected

communication subsystem. So, for such a system,

continuous updating of directories held at every site is

the best scheme.

In an associative scheme there are no management

messages sent whereas, for a loop or oust a continuous

updating scheme gives NOr broadcasts per second resulting

in N(N-1)Or messages received. The fraction of total

available 	processor 	power used in maintaining the

updating is directly proportional 	to N. 	For either

scheme the fraction of processing power used in actually

57

shifting global 	objects is 	constant. 	Hence 	the

associative scheme is preferable to continuous updating,

at least when large scale sites are envisaged. The

interface units required for an associative scheme may

not be cost effective for a distributed system of very

low powered computers.

Status updating:

We show later (in chapter 7) that there is a need for

each site in a distributed system 	to 	have 	some

information about the status of other sites. vhile the

information each site requires about the others is not

very much, it must be reasonably up to date. The ideal

is that every site has completely accurate information

about every other site, but finite communication

bandwidth makes its achievement impossible. A

distributed system can tolerate some misinformation, but

the more inaccuracies there are the less efficient the

system will become. Below we discuss four ways that

sites can interchange information.

1) Broadcasts at regular intervals: This policy has the

obvious disadvantage that the number of broadcasts

will go up in direct proportion to the number of

sites. 	Since every site will have to be interrupted

to receive its message from every other site, 	the

fraction of computing power in the distributed system

58

dedicated to updating this information 	will 	be

directly proportional 	to the number of computers in

the system.

Exchanges between 	neighbours: 	To 	mitigate 	the

interruptions caused by receiving broadcasts from

every site, each site could be arbitrarily assigned

several neighbours with whom they exchange tables of

the supposed state of the whole system, similar to the

way routing information is updated in the ARPA network

(MCQU72]. The neighbour relationship would have to be

intransitive so that information about every site in

the system would work its way through to all other

sites. 	The items of 	information built up from

exchanged tables will be of different vintages. There

can be no guarantee that sites will confine their

normal transactions to their neighbours; the frequency

of exchange of information will have to be high if a

good proportion of the information is not to be

hopelessly out of date.

Appended to normal messages: Since the amount of

information each site would want to propagate about

its state is quite small, perhaps 2 bytes worth, 	it

can be appended to normal messages between sites

without increasing overheads significantly. 	Indeed in

systems such as Ethernet (NEJC76J 	there is a fixed

minimum length message and since many control messages

could be shorter than this length, the information

about the sender's site Could be carried for free.

The sending of messages is likely to be correlated

59

with changes of state of the site, and hence with the

need to update the information held at other sites.

When to sites are interacting heavily they would have

their information about each other updated frequently.

When a site is idle and not 	interacting with other

sites, 	its status would not be changing, so it would

not interrupt other sites to give them information

they already have.

4) Eavesdropping: 	In 	a 	system that appends state

information to messages and has associative interface

units, such as loop or bus systems, the interface

units can take over the 	intelligence 	gathering

function. 	Further 	they need not use messages

addressed tojust their site, but can pick the state

information (and, 	of course, source) of all messages

that pass on the loop or bus. 	The interface unit

would maintain a status table so as not to interrupt

the kernel too frequently. The kernel could consult

the table when required.

Compared 	with 	the first two methods, appending

information to normal messages has the obvious advantages

in the conservation of bandwidth and minimization of

interruptions to sites. The differences between

information gathered from all messages transmitted and

from only the messages received at one site will be minor

if broadcasts are a frequent occurance. Thus when a

directory update scheme of global object management is

being used (with its broadcasts of changed object

60

location) the information contained in only the messages

received at a site will probably be sufficient. However,

because there are few or no universally received

broadcasts, eavesdropping will probably be required in a

system with a bus or loop type communication subsystem

(that used an associative scheme for managing global

objects). There is nothing to stop a site performing a

dummy broadcast when it felt its status had reached some

critical 	point and this would help homogenize the

information held at all the sites. 	whether or not the

extra hardware complexity of eavesdrooping would be

justified requires investigation.

In the simulation of a distributed system described

subsequently we assume a completely connected system.

Continuous updating is used to locate global objects and

status information is appended to normal messages. This,

we considered, would represent a practical implementation

at the present time. However we feel that any major

implementation in the future should involve the

construction of an Ethernet type of bus with associative

recogniton of addresses and perhaps an eavesdropping

mechanism to gather status information. Distributed

control serial buses, like Ethernet, offer ultimately

very high bandwidths using very cheap materials (ADArl7ôJ,

the transmitting media (coaxial cables, twisted wire

pairs or optical fibres) are passive giving immensely

enhanced reliability compared to schemes involving a

complex of electronics in the transmission.

61

CHAPTER 4

OPERATING SYSTEMS ARCHITECTURE

The designer of an operating system for a distributed

system has two alternatives: he can attempt to

'distribute' some form of existing single site operating

system architecture or he can invent something completely

new. 	Lacking the required inspiration for the latter

approach we have chosen the former. 	Consequently, to

decide on an appropriate architecture for an operating

system, in a distributed system we now look first at

those for single or multiprocessor/shared memory systems.

SECTION 1: SINGLE SITE SYSTEMS ARCHITECTURE.

Apart from manufacturer's monolithic monstrosities,

operating systems can be classified into four types of

architecture. The classification is made according to

how users, resource allocators and other operating system

services are permitted to interact. A goal of all

architectures is to make interactions between functions

'clean'. Ideally each function does not have to make any

assumptions about how other functions are realized. he

emphasize before we describe the categories that they are

not mutually exclusive.

62

Hierarchical:

Dijkstra 	is the initial proponent and publiciser of

the strictly 	hierarchical 	architecture 	(L)1JK68,DIJKI1,

PARN74a). 	Each function of an operating system is

statically assigned a unique 	level. 	The 	first 	level

function is programmed to work on the bare hardware. The

second level 	is programmed for a system consisting of

hardware plus the first level. 	It should not have direct

access to the resources controlled by the first 	level,

rather it should invoke the primitives provided by the

first level. 	Likewise the second level 	provides the

environment in which the third level is programmed and so

on. 	Each layer 'rebuilds' the machine into a more

attractive machine. 	In Dijkstra'S view an operating

system should be regarded as a sequence of layers, built

on top of each other and each of them implementing a

given imorovement (DIJK71J. implementing a strictly

hierarchical system requires a firm belief that functions

can be totally ordered, a foreswearing of co-routine type

interactions between functions, and skill in determining

the correct ordering. Interactions between functions can

be one way only.

Virtual machines:

Variants of the virtual machine architecture form the

largest class of extant structured operating systems.

63

Basically 	every 	user has his access to resources

(including core and CPU time) 	controlled ty a single

virtual 	machine monitor or kernel (we prefer the later

term). 	This kernel is entered, perhaps by instruction

traps, every time the user wishes to acquire or release

resources and it ensures a 'fair' distribution of the

resources. The user is encapsulated. He cannot

communicate or interact with other users, he is to all

intents and purposes using a private computer, a virtual

machine.

The pure virtual machine variant provides no more

facilities to the user than the bare underlying hardware

(or the hardware of another machine)

[MEYE70,PARM72,13UZE73,GOLD73J. 	The user has to provide

himself with an operating system to run 	in his virtual

machine. 	This can lead to horrendous inefficiencies

(GOLD741. 	The kernel knows nothing of the behaviour of

the operating systems in the virtual machines, nor are

the operating systems aware that there is a kernel

beneath them. The advantages claimed for this kind of

virtual machine are that it provides absolute security

because there is no interaction between virtual machines

(POPE74I (which security has proved elusive (ATIA761) and

allows for the development of new versions of operating

systems concurrently with the useof previous versions.

In other virtual machine type operating systems such

as EMAS 14HIT731 or MULFICS (C0Rb72), the kernel 	(called

64

Supervisor in EMAS) provides a number of services, such

as managing paging and dispatching, to enhance the bare

machine. The individual 'operating systems' (Directors

in the case of ElAS) are integrated with this kernel.

They do not duplicate the provided facilities and they

could not run on the bare machine. Tuning of integrated

systems does not present the same dificulties as does

tuning a pure virtual machine system. The harsh

principle of the user having access to his virtual

machine, and nothing else, can be softened by kernels

that allow limited interaction with other virtual

machines, usually via the filing or I/O subsystems.

Intercommunicating processes:

Process orientated systems have received a Jot of

attention in the literature (KNOF74] and are exemplified

by the RCOOO system of brinch Hansen LHANS7OJ • 	The

kernel, 	the basic addition to the hardware, provides the

primitives for process management, creation, deletion and

intercommunication. 	The rest of the system is a set of

processes. 	In particular, resources are identified with

the processes that control them. 	Processes are capable

of 	interacting with any other process, which is a

considerable difference 	from 	the 	virtual 	machine

situation. This interaction is accomplished using

messages. The kernel provides primitives such as 'send',

'receive' and 'wait for answer' which buffer messages and

65

suspend processes. The 	kernel normally 	implements an

addressing 	scheme that 	gives processes unique names and

allows messages 	to be addressed using these 	names. In

some 	systems 	extra refinements are added, 	such 	as ports

(bALZ71], 	so 	that 	a process does not 	even 	have 	to he

aware 	of 	the 	name of 	the 	process with 	which 	it is

communicating.

Parallel execution of a program is catered for in a

process orientated system. A subroutine call can be

implemented as a message (containing the parameters) to a

processr this process returning a message when it is

finished. Thus systems often provide for the creation

and destruction of processes and the placing of processes

in a hierarchy of ownership (parenthood). This feature,

although used by Brinch Hansen in RC4000, has recently

been criticized by him as being very costly in runtime

checking of the validity of process interactions

(HANS74,HANS75I. He advocates that an operating system

should consist of a fixed number of processes, at least

for a given configuration with fixed resources.

Hansen is also critical of messages passing systems

because they create an artificial 	resource, message

buffers [HANS73). 	Message buffers require management;

their allocation has to be carefully controlled 	if

deadlock, through insufficient message buffers, is to be

avoided. 	Transmission of messages involves copying

messages into and out of buffers, 	which is highly

wasteful 	of processing power, 	at least in single site

systems. (One message passing architecture, that of the

GEC 4050 [GECC75), has microprogrammed functions to help

with message passing, making it more efficient). Larnpson

(L1MP71] feels that message systems are not convenient to

the user; elaborate conventions, or contortions

(SPI73b), are required to find out the unique names of

the operating system facilities the user requires.

Kernel/domain architectures:

Maintaining effective control 	in operating systems

that permit general 	interactions has been likened to

'running a three ring circus, in one ring, in the dark'

(METC72a). 	Capabilities are the basis of a mechanism

that allows general interactions to be controlled.

Capabilities allow each computation access to all the

resources it needs at a particular time. All resources

are intrinsically shareable, but the computation is not

permitted access to resources that, at its current stage,

it does not require. Strictly speaking a computation has

access to all resources, and only those, for which it

possesses a capability (DENf6) the assumption being

made that the ownership of capabilities is so organised

to reflect the current requirements of the computation.

The set of resources that, at any time, a computation

has access to is called a domain 	1LANP71,NEEO74J, also

67

sphere of protection (DENN66J, parameter space [LVAN67J,

NCP [5P0071], local name space (LJS) (ULF7), protected

subsystem [SALT74) and domain incarnation ESPIE73aI.

Should a computation prove erroneous its effect is likely

to be limited to the current set of resources. The

resources are enclosed in a 'firewall' and incorrect

operations are contained and do not affect the rest of

the system. Capabilities normally restrict the type of

access a computation has to its resources; for example a

segment may be accessed as read/write, read only or

execute.

The basic function of a kernel in a capability system

is twofold:

It enforces, or assists the hardware (NEED74,ENGL741

to enforce, the restrictions on the type of access to

resources, 	including null 	access to resources for

which no capability exists. For example the kernel

should detect and disallow a destroy operation on a

file when the computation only has the capability to

read from the file.

The kernel assists computations to change the set of

resources that they have access to (when this function

is not carried out entirely by the hardware). Ne call

this operation an interdomain jump. 	The kernel, 	in

giving and removing access to resources, can control

allocation of resources if it wishes.

Process dispatching is usually included in the kernel

also, 	either for operational 	efficiency or to ensure

WQ

fairness in the allocation of 	processing 	capacity

(WULF75b)

Resource management in capability systems is performed

in two different manners. Either a computation is given

direct access to a resource by being given a capability

for the resource, or the computation is given just a

capability for the execution of a piece of code that

manages the resource. In the latter case, to execute the

code, the computation changes its domain, or protection

environment, and the resource becomes available to it.

But the resource is available to the computation only for

as long as it executes the appropriate code.

In many capability systems the kernels provide the

facilities by which a computation can create, delete,

copy, contract the types of access, or expand the types

of access (FERR741 of a capability. 	These facilities are

appropriate when the type of dynamic creation 	and

deletion 	of processes (and accompanying resources),

mentioned above in relation to message passing systems,

forms the underlying philosophy of the system. Ne have

adopted the same attitude as 3rinch Hansen and tried to

do without such dynamic behaviour. There are unsolved

problems in combining copying of capabilities with the

ability to delete them LREDE741 and we think these

problems would only be exacerbated 	in 	a 	network

environment.

SECTION 2: DISTRIt3UTED OPERATING SYSTEMS.

One of our goals in designing a distributed system is

that there should be as little as possible duplication of

operating systems functions at different sites. We want

the normal work of the system to be uniformly distriouted

across the system and, following the philosophy of

Spooner LSP0071J and others that the constituents of the

operating system should not be specially privileged, we

determined that the ideal is to have systems functions

spread across the system as well.

Another 	goal, 	derived from the queueing theory

considerations expressed in chapter 2, is to have no site

idle while there is work waiting to be performed at other

sites. This implies that load le veiling or balancing

operations must occur frequently, and that the overhead

of these operations is an important factor in the success

of a distributed system.

With these two goals in mind we now examine the four

types of operating system architecture, outlined above,

for their suitability for extension to distributed

systems.

Viol

Hierarchical:

The hierarchical 	scheme is superficially the most

attractive of the architectures to extend to a

distributed system. The 'only' requirement is to provide

a bottom layer that somehow melds the different machines

in the systems into a 'more attractive' single macnine

upon which Dijkstra's or any other operating system can

be placed. Goodwin (G00D731 has tried to take this

approach with his tree structured distributed system.

The basic layer provides for communication between

physical 	processors 	and 	a tree structured naming

mechanism. On top of this was planned a process

communication system; the bottom layer taking care of

messages for processors that do not belong at the same

site as the sender process. be have already criticized

Goodwin's proposals because of the likelihood of half, or

more, of the messages travelling through the root node.

A further criticism, stemming from adherence to

hierarchical layering, is that there can be no migration

of load from overworked sites to idle sites. Ihe bottom

layer has no concept of processor allocation, that

belongs to higher levels. 	The higher levels do not know

that the underlying machine is 	in fact a distributed

system, for that is against the rules of the game. 	Also

the assigning of processes to sites has to be done

outside the system and would have to be done every time

the system was reconfigured.

71

The difficulty with 	incremental 	layered 	machine

improvements in a distributed system is that in order to

load level and balance the use of resources, there has to

be some two way interactions. Structuring systems into

layers is a good technique but a practical system must

have many interacting functions in each layer.

Virtual machines:

It is pertinent to enquire, 	if one is adopting a

strict 	virtual machine architecture, whether it is worth

having a distributed system at all. 	The purpose of the

virtual 	machine architecture is to create a set of

private 'bare' machines. 	Uuite possibly all the kernel

for a distributed system would be doing is tying together

a number of physical 	machines just so that 	it can

simulate the same number of virtual machines. 	Ihus if

the division 	of 	virtual 	machines 	is 	fairly 	static,

greater efficiency would be obtained by not integrating

the physical 	machines together, dispensing with the

virtual machine monitor, ano putting the virtual 	machine

operating systems onto the physical machines.

When there is intended to be a multiplicity of virtual

machines at each site in the distributed system then a

distributed system could be justified by the possibility

of load levelling. A kernel would reside at each site

and manage all the virtual machines at that site, 	as it

72

would in a single site system. 	But, somehow, a load

levelling apparatus could be incorporated so that the

kernels could cooperate in moving virtual machines (by

copying their total memory space) away from busy sites to

idle sites. Problems arise both at the level of

determining opportune times to shift virtual machines and

then of handling peripheral 	devices after a virtual

machine has been shifted. 	The kernels would probably

waste a lot of time time polling each other to see how

busy they all were and would be likely to grow rather

large to handle the intricacies of shared peripheral

devices.

Karolir,e 	[MADS723 	was planned to have 8 virtual

machines at each of 8 sites, but proposals for load

levelling, if they were considered, were not published.

For the less strict virtual machine architecture where

the virtual 	machine monitor or kernel 	provides many

services, and sharing of files is permitted, there have

been at least two implemented distributed systems, RSEXEC

1T110M73,COSE751 and SBS 14KO72,AKKO74,AKKU75i . These

systems take what might he called the hypervisor

approach. Each site maintains a full operating system or

supervisor and extra facilities are added, often at a

user level, to form the hypervisor, integrating the site

into the distributed system. So far these extra

facilities 	have just 	implemented network wide file

systems so that files (and peripherals) can be accessed

73

by a user from any site in the

feature has been exploited, at

to attempt load balancing at

time by directing users to the

mechanism has been developed

to site once its execution has

distributed system. 	ihis

least in RSEXEC 	(COSE751,

'log in' or job initiation

least utilized site. No

for moving a job from site

begun.

The advantage of these types of system is that they

can be built on top of existing operating systems, or at

least those that have been sympathetically designed

(METC72b,ZELK74,RETZ75). The disadvantages are the

duplication of operating systems at each site and the

inability to load level, except crudely as above, because

these operating systems are really autonomous units.

Intercommunicating processes:

The Distributed Computer System (UCS) being developed

by Farber and colleagues 	1FARB72a,b,c,d,FARb7,ROJE73J1

is 	the archetype of process orientated distributed

systems ELAYM741. We have already mentioned two features

of the DCS system in chapter 3. 	It has integrated its

hardware 	into 	the 	system design by employing an

associative mechanism in its communication system for

direct addressing of global objects. 	The global objects

in this case are processes. 	Also OCS broadcasts are as

efficient in the use of bandwidth as are single messages.

74

The kernel at each site is extended (from single site

form) to place any interproceSs messages that it cannot

deliver at 	its own site onto the network communication

loop. 	There they will be picked up by the appropriate

kernel 	(because it has set the names of all resident

processes in the associative memory of its interface

unit) and eventually delivered to the correct process.

The other major change in making a distributed system is

in resource allocation. Resources, we said, were

identified with processes in process orientated systems.

The management of these resource controlling processes

can be carried out by allocator processes. DCS has one

allocator per site (though not necessarily residing at

that site). The interaction between users and allocators

is modelled on microeconorniC theory and is the basis of

load balancing in DCS.

hen a user requires a service, the execution of a

particular type of process (such as a text editor), which

will use resources (memory and perhaps peripherals), he

(his agent process) sends a message to all allocators

requesting a 'bid' for the provision of the service

required. The allocators all answer to a common name so

that only one message on the communication loop is

required to ask for bids. Allocators return bids and

after a fixed period of time the user evaluates the bids

he has received and chooses the allocator with the

smallest bid. 	He sends this allocator a 'contract'

message. 	The allocator can then create a process of the

75

required type at its site and return the process name to

the user, but bids are not binding and so an allocator

could have allocated elsewhere some of its resources in

the time taken to evaluate bids, in which case the

'contract' is spurned and the user has 	to 	start

requesting bids all over again.

Thus DCS load balances basically at a job-step or

complete command level. From the above description, for

an N site system, 1+(N1)1-2 messages on the communication

loop are required for a first time successful allocation

of a process to a user (when the allocated process is at

a different site from the user's agent process). Thus it

would seem that the overhead would be too great for

attempting finer load balancing.

There are other process orientated distributed systems

under development, DCN (LAYM74,ILL76J is one, POGLJS

(DUVA75] is another. But, as far as we are aware, a load

balancing or load levelling strategy has not been

published for any but OCS, and there has been no

published evaluation of the operation of OCS. We have

been told however that for POGOS, a network of 16 or more

identical minicomputers, attempts at load levelling

produced instability and were abandoned. Processes were

being transferred around the system too fast to do any

useful work between moves. Unfortunately, no details

have been published. A very recent paper L1ILL76J states

that load levelling mechanisms are still to be developed

for DCN. 	 0

Finally one other feature of DCN, PODS and OCS is the

duplication of non-kernel code at all sites. In OCJ all

functions, that is the code for the processes that

implement these functions, reside at each site.

Migration of a function involves shifting only the port

name of the process to a new site (LAYM74]. Primary

memory space has been permanently traded for decreased

traffic on the communication loop. In P(JGOS a copy of

the whole POGOS operating system, which admittedly is

quite small and primitive, resides at each site. OCS

does have duplication for fail-soft reasons but it is

required also because any site, if underloaded, has to be

able to create (almost) any process.

Kernel/domain architectures:

The functions of a kernel 	in a single site domain

system are to multiplex ready-to-run computations on the

physical processor and to handle the interdomain jumps.

We emphasize again that when a computation has entered a

domain it accesses resources within the domain and no

others. Thus in a distributed system a process will be

able to execute unimpeded when all the components of a

domain are at one site. If there is a kernel at each

site and it provides a distributed interdomain jump which

ensures all the components are at one site, the rest of a

77

single site domain system can run with no alterations,

just as an interprocess Communication system can run once

the communication primitives have been extended.

The distributed interdomain jump is the key to the

operation of a distributed kernel/domain system. A

process wishing to change domains notifies its local

kernel (that is the kernel at the site where it was

executing in the domain it now wishes to leave). This

kernel has to locate the new domain (domains are the

global objects in this system) and in co-operation with

other kernels, choose a site at which the process is to

enter the new domain. 	The kernels then have 	to

co-operate, by sending messages to each other, in

shifting the domain components to that site, if any need

shifting. When all the components of the domain are at

the chosen site the kernel there schedules the process

for execution again. The distributed interdomain jump

allows load balancing, as distinct from 	load 	levelling,

to be performed at quite a fine level. Nork is not

arbitrarily moved around to level the load at each site,

but each request to enter a domain is taken as an

opportunity to shift the components of the domain to

another site if the current status of all the sites

indicates that this is desirable. Every time an

interdomain jump occurs there is an opportunity for the

system to move towards balanced loading. The occasion of

an interdornain jump is also optimum with respect to the

volume of data that has to be moved if the computation

78

changes site. 	At most, all components of the new domain

will 	have to change site; 	frequently some of the

components will already he at the new site. The choice

of new site can be made to minimize traffic on the

communication subsystem.

Synopsis:

In this chapter we have examined various types of

operating system architecture and their suitability for

extension to distributed systems. 	We have shown that a

strict 	one function per level hierarchical system is not

suitable because load balancing cannot take place. Those

systems that have kernels at the lowest level that

implement several co—operating functions, can be more

readily extended to distributed systems. The

inefficiencies of 	strict 	virtual machine architectures

seem likely to be increased but, logically at least, both

process orientated systems and domain 	systems 	are

suitable for extension to distributed systems. Ne have

indicated areas that are considered by some to be

drawbacks of process intercommunication systems per Se,

and we have stated what we consider to be the drawbacks

of process intercommunication systems as a basis for

distributed systems. A change in emphasis away from

processors towards domains, away from managing messages

towards managing environments, provides, we feel, the key

to a successful distributed system. A distributed

79

operating system based on the kernel/domain architecture

offers great potential both for minimizing the

duplication of code and for fine grain load balancing.

The rest of this thesis describes more thoroughly the

kernel/domain architecture, outlines strategies and

mechanisms that could be employed in implementing the

distributed interdomain jump, develops some of these

mechanisms, describes a simulation program that

'exercised' these mechanisms and analyses the results of

this simulation.

CHAPTER 5

THE DEVELOPMENT OF THE DOMAIN CONCEPT

Introduction and terminology:

This chapter presents a survey of the development of

the domain concept. We show the connection between

segments and capabilities and show how capabilities are

used to define domains. Our intention is to demonstrate

that domains can be considered to be the predominant

structure in a computer system.

The concept of a segment dates back at least to the

Burroughs 135000 U3URR61I. A segment's attributes are

some form of identification or name, and a length or

total number of data objects (normally computer words,

bytes or instructions). Elements of a segment are

accessed by identifying the segment and specifying an

offset within the segment. it is assumed that the

segment's elements are stored contiguously or, as in a

paged system, discontinuities are taken care of by

subsidiary addressing mechanisms. If ambiguity of

addressing is to be avoided a segment needs a name unique

to all the possible environments in which it will be

used. 	If addressing is to be controlled, as in a

protection scheme, then the generation of segment names

has to be controlled. Both the method of naming segments

81

and the mapping of segment names into hardware segment

starting addresses have been the subject of a great deal

of study.

	

Dennis and Van Horn LD1N661 	are generally credited

with being the pioneers of protection schemes and being

the first to use the term 'capability'. 	A capability is

essentially a name, 	or a pointer; a computation that

possesses a capability can access the item 	named.

Capabilities 	can name general 	objects or resources

(LAMP711. 	The capaoility concept has oeen formalized by

recent 	writers 	(biULF74,FERR74,LAMP76l 	so 	that 	a

capability consists of three items:

a type denoting the class of object named (of which

segment is one such class)

a value being the name or identification of the

object

a set of rights indicating how the named objects

may be manipulated by the holder of the capability

	

(the available set of 	rights will depend on the

type of the object).

We discuss later how resources can be associated with

segments 	so we restrict our interest 	initially to

capabilities for segments only (PARAI7I4bJ 	(and 	later 	to

entry capabilites which are capabilities 	for special

groups of segments). 	The type of access permitted to a

segment is not really germane to the development of the

domain concept. 	Hence we will consider a capability to

82

be synonymous with the name of a segment or a pointer to

a segment. So, in tracing the development of the concept

of a domain, we concentrate mainly on models of computer

operation where the only resources in a domain are

segments. lye are interested in the segments accessible

to a computation as the computation proceeds.

Of particular importance is the sharing of segments

between different domains or environments. When it is

desired to shift a computation from one site in a

distributed system to another then all the segments

currently accessible to the computation (i.e. its domain)

have to be collected together at the new site. This

operation will be considerably complicated if some of the

segments are simultaneously accessible to other

computations.

Before we go on to examine various models we attempt

to clarify some of our terminology. The term 'process'

in Computer Science has collected many different shades

of meaning. Spier (SPIE73aJ makes a cogent case for

using the term 'virtual processor' to denote the idea of

execution of a user's sequential computation. A virtual

processor is in a one to one relationship with a user,

and the user's computation proceeds only when a physical

processor is allocated to the virtual processor. A

virtual processor executes 	(potentially) 	all 	the code

that defines a user's computation but neither code nor

state space (DIJK71] define a virtual 	processor. 	The

83

virtual 	processor is an agent acting on behalf of the

user. It is the pseudo-processor of Seltzer [SALTbbJ.

In the following sections we have altered the notation of

the original descriptions when these used the term

'process' to mean no more than virtual processor as we

have defined it above. ne have retained the term

'process' however when there are other connotations; for

example when a segment of code defines a process and a

subroutine call implies a change of processr or when user

level parallelism permits a user to 'own' many processes

at oncer or when resources are managed by processes.

The Evans and LeClerc model:

Although Evans and LeClerc ftVAN671 did not use the

term 'capability' (using the term 'parameter instead),

they seem to be the first to describe a computation as

progressing through different (protection) environments,

in each of which the computation possesses different

capabilities. 	They concerned themselves solely with

segments 	and they made a procedure activation, or

deactivation, the occasion of altering the environment.

when a computation enters a new procedure some (at least)

of the segments it accesses 'will be different. in

particulari if we identify each procedure with a separate

code segment, then the code segment from which

instructions are fetched will be different. 	Evans and

84

LeClerc recognised the importance of the code segment in

delimiting an environment and celled the code segment the

'root' segment of an environment (which they called a

parameter space). An environment is defined by an

ordered 	list 	of 	capabilities 	for segments, this list

being 	called 	a 	c-list 	by 	most 	writers

(DENN66,LAMP71,tULF74,COHE75J. 	The first capability in

the list is for the code segment. 	The segments referred

to by the the other capabilities are of three sorts:-

fixed: 	the segment does not change with each entry

into the environment

dummy: 	a different segment can be used every time

the procedure is entered (the conventional

parameter)

scratch: the system will 	supply a fresh temporary

segment for every procedure activation and

will reclaim the segment when a return is

made from the procedure.

Any of these other segments may be root segments of other

environments, 	leading 	to 	a 	nested 	structure of

environments as depicted in figure 5.1. 	Any segment may

be in many environments simultaneously.

A user formulates addresses by specifying the number

in the c-list of the capability for the segment, plus the

offset within the segment. Thus programs do not have to

worry about segment names or hardware addresses and are

not allowed to use them directly. Addresses are taken

relative to the current protection environment as defined

An environment hierarchy of Evans

and LeClerc.

Figure Si

by the clist.

for addressing

so that the

under a 'rings

Procedures hi

lower down.

Evans and LeClerc also present mechanisms

items that are in subsidiary environments,

whole system structure is not unlike that

of protection' regime 	LGRAH68,SCHR721.

h up the hierarcny can access everthing

A procedure call or subroutine call 	is implemented

simply enough, 	as the address it is desired to transfer

to can, and must, be 	generated 	in 	the 	calling

environment. That is, all subroutines that can be called

directly from an environment have their code segments as

part of that environment. The transmission of arguments

is envisaged to be of three kinds:

Entire segments: The calling routine presents the system

(kernel or hardware) with a list of segment capability

numbers indicating what positions they should occupy

in the c-list of the called subroutine. The system

makes copies of these capabilities in the new c-list.

Portion of a segment: The calling routine gets the system

to create a capability for part of a segment and this

is placed in the new c-list.

Individual values: The values of simple variables have to

be stored in a stack segment and the capability for

this segment passed to the called subroutine.

Unfortunately, procedure or subroutine returns cannot

be handled using just an index into the current c-list,

because the code segment from which the call originated

87

is not 	likely to be part of the called environment and

therefore there is no w ay for a transfer instruction to

formulate the return address. 	This is where the unique

names of the segments should come into operation. 	Evans

and LeClerc use a variation in that they give system wide

unique names to every environment. Hence a return link

consists of the unique name of the calling environment,

which is the same name as the root segment, plus, of

course, an offset for that segment. They have then to

introduce a protected stack segment attached to each

virtual processor to store links.

The application of unique names to environments rather

than segments does not appear to be a felicitous choice.

By considering every non-root segment in an environment

to be a potential root segment of another environment, as

Evans and LeClerc do, all segments can be given at 	least

one unique name. 	Confusion will arise however when the

same root segment is part of two different environments.

Evans and LeClerc would have been oetter advised to

recognise that a c-list defining an environment can be

stored as a segment, and give unique names directly to

each segment including the c-list segment.

The Spooner model:

Spooner (SPOU71I also proposes a segment based model

and he seems to the first ot use the actual term 'kernel'

and define in detail the functions of the kernel He

again attaches great importance to code segments. A code

segment defines an operation to be performed by the CPU

on an operand area. The same (compound) operation can be

performed on different operand areas corresponding to

different, but possibly concurrent, 	activations of the

procedure defined by the code segment. 	Spooner uses the

term 'operand area' as he envisages 'windows over core'

(SP1E73a), that is segments are permitted to overlap so

that the same data item may belong to many segments.

However a change of procedure is held to be a possible

change of environment and is managed by the kernel.

Spooner introduces a third type of memory area, an

activity base. The activity base, as well as providing

space for dumping working registers when the virtual

processor is suspended, records permitted connections',

that is capabilities for combinations of code and operand

areas (see figure 5.2). 	rhese are the forerunners of

entry capabilites (NEED72]. 	Spooner rightly recognises

that access rights, or capabilities, should be a function

both of the virtual 	processor and the code it 	is

executing. The possibility exists for a virtual

processor to acquire totally new rights when entering a

routine, in comparison with the scheme of Evans and

I
-S

-S

-S

S.
-S

-S

-Si
operand
areas

II

I 	I 	I 	 I

I 	 I
III 	I 	I
I 	 I
I 	, 	 I

S 	I • 	I
I 	p 	I 	I) 	(N 	I 	I

I

/

/
/

/

code
segments

activity
bases

SpOoner's model showing 2 possibte

'permitted connections'

Figure 5.2

LeClerc where the capabilities are confined to the

hierarchy of segments of which the routine is part

(figure 5.1).

Spooner also makes the use of protected entry points

or gates mandatory. Earlier work described protected

entry points for code, the restriction of jumps into the

code from other procedures to a number of fixed

locations, but the use of them was not thought to be

necessary all the time. but without protected entry

points no guarantees can be made about the operation of a

code segment,

The Spier model:

Spier, working from the ideas of Spooner, and Evans

and LeClerc, developed a model for quite a Comprehensive

protection system [SPE173aJ and also implemented a

restricted verson of it [5PL174J. The following

discussion relates primarily to the implemented version,

while adopting some of the terminology of the former

paper.

Spier identifies five different kinds of memory area

(segment). These are:

91

A body of a pure re-entrant procedure. 	This segment

is potentially shareable by 	all 	virtual 	processors..

It is called the procedure segment.

A protected data base whose information is managed by

an associated Procedure. 	Again the single physical

COPY of 	this segment 	is shared by 	(all) virtual

processors. It is called the domain own segment.

A working storage area for permanent 	local 	values,

values preserved from one procedure invocation to the

next. These segments are unshareable so that there is

one for every procedure that has been executed by each

virtual 	processor. 	These 	segments 	are 	called

incarnation own permanent segments.

LI) A 	temporary 	segment 	which 	contains a virtual

processor's execution stack and 	other 	temporary

variables for the invocation of a procedure. Again

not shareable, this segment is called the incarnation

own temporary segment.

5) A 	communication area for transferring parameters

between procedures. 	There is one 	per 	virtual

processor which is accessible by that virtual

processor no matter what procedure it is executing.

This segment is called the argument segment.

In the above the importance of a procedure as defining

an environment is again seen. A procedure segment,

together with its domain own segment, forms the basis of

a domain, a 'firewalled' group of segments. A total

domain consists of the procedure segment, the domain own

92

segment and all 	the incarnation own segments (both

permanent and temporary) related to the procedure

segment. None of these segments belongs to more that one

domain. The argument segment is associated with a

virtual processor and is carried along with it as the

virtual processor progresses from domain to domain. Thus

each 	argument segment is shared, serially, between

domains. 	Figure 5.3 shows the relationships of segments

to two domains and two virtual processors.

A virtual processor always enters a domain by a kernel

controlled interdomain jump to a protected entry point,

or return point. The set of segments that the virtual

processor may access while in the domain is called the

domain incarnation for that virtual Processor. There are

five segments that the virtual processor may access: the

procedure segment and the data base or domain own segment

of the domain, the two incarnation own Segments that

relate to both the virtual processor and the domain, and

the argument segment. 	These five segments form the

environment of the virtual processor. 	Until the virtual

processor invokes the kernel to change domains it cannot

access any other segments. After such a change, it

cannot access any of the segments of the original domain

incarnation save for the argument segment.

	

For each virtual processor the kernel 	maintains an

activation area, containing chiefly information about the

domain 	incarnations 	that the virtual 	processor is

93

I

Virtual processor 1 11 Virtual processor 2

Domain A procedure and domain own
shared by virtual processors 1 & 2

Incarnation Al Incarnation A2
own permanent own permanent r.

Incarnation Al Incarnation A2 Cq

own temporary own temporary
0r3

bOO bOO 0•0
U) Incarnation Si Incarnation B2 Cfl

.0 own permanent own permanent .0

SO
Incarnation 31 Incarnation B2

. own temporary own temporary

Domain B procedure and domain own
shared by virtual processors 1 & 2

Segment access in

Spier's model

Figure 5.3

r.

I

permitted to access. 	This is, in effect, in the form of

sets of four capabilities, 	for the four segments that

together with the argument segment constitute each domain

incarnation. A current domain pointer indicates the set

of capabilities that define the domain incarnation the

virtual processor is currently in. The kernel also

maintains a hidden stack so that interdornain procedure

returns can be controlled. The kernel's action for an

interdomain transfer consists essentially of correct

handling of the stack and repositioning of the current

domain pointer so that the correct environment will be

invoked when processing proceeds.

Spier (SPIE74J describes briefly a mechanism whereby a

virtual 	processor's activation area need not contain, at

virtual 	processor 	initiation 	time, 	all 	the 	domain

incarnation capabilities 	it 	will need as a computation

proceeds. This involves domains having unique names

within the system and being objects in the filing system.

When a call to the kernel requests entry to a domain that

has not been entered before, the domain procedure and

data base segments are copied into active storage (i.e.

given hardware addresses). 	The first time a particular

virtual 	processor requests entry to the domain the

incarnation own segments are created in active storage as

well 	as 	the 	set of capabilities for the domain

incarnation being placed in the virtual 	processor's

activation area. No description of the reverse processes

of unloading domains from active storage and removing

95

capabilities from a virtual processor's activation area

is given.

The weakest details of Spier's implementation are a

consequence of his having just five segments (one of each

kind) per domain incarnation. Firstly, the possibility

is denied of segment structure reflecting any underlying

divisions of the procedure's variables (other than the

permanent/temporary 	division). 	Secondly, 	parameter

transmission can become very inefficient. Nhen a few

simple items are the only arguments that pass between

domains then the overhead of copying these into the

argument segment and copying them back again is not too

great. But, as Spier's model stands, the accessing of a

whole segment's worth of data from more than one domain

can be done in one of only three fashions, all

unsatisfactory.

The data can be made a permanent part of the argument

segment thus voiding any claim of confining data to

the environments in which it is used.

The data can be copied in and out of the argument

segment as required.

An entry point of the calling procedure can be made

available to be used by the called procedure to access

items 	of 	data as they are required (cf Algol

'thunks'). 	This 	involves a 	domain 	call/return

sequence for every item of data LSPEI73aJ.

96

The Cosserat model:

Cosserat [CUSS74J proposes a process orientated system

where the number of segments accessible to a process is

varied. His model is based on an actual hardware

architecture, 	that 	of 	the 	Plessey 	250

LCOss72,ENGL72,LNGL7$). 	Cosserat, 	following 	Fabry

[FABR74), makes capabilities into data objects which can

be copied and overwritten in normal segments by user

programs. Cosserat identifies three types of segment:

Procedure segments: Cosserat allows his procedure

segments to be impure so that they can store data

items and/or capabilities for other segments. 	Thus

Cosserat's proceciure segment 	subsumes 	both 	the

procedure segment and the data base or domain own

segment of Spier. 	The capability for a procedure

segment is a type of entry capability. Outwith the

procedure the only form of access to the segment is

transfer of control to the procedure. When the

procedure is being executed then other forms of access

are permitted so that data within the segment can be

read and written.

Data segments: These contain general bit patterns and,

as 	mentioned 	beforer 	can 	also 	contain other

capabilities (which the hardware always recognises as

such). The capabilities for these segments are freely

copiable so that the same segment may belong to more

97

than one protection environment simultaneously. 	Vhen

a segment is destroyed some (unspecified) procedure

has to be carried out to alter all capabilities for

that segment to 'null' capabilities.

3) Process base segments: then a process is created (see

later) it owns one segment, a special process base

segment. This segment contains the capability for the

procedure being executed and can Contain parameters

passed to the orocedure. The segment also contains a

dump area for temporary storage of working registers

by the system and a return link to the calling

procedure (see later).)he capability for this

segment is not explicitly available to the process.

It is available to the creating process (with access

rights such that the creating process can block and

unblock the process but cannot access its data) and it

is used by the system in its scheduler table entries.

In Cosserat's model 	transfers of control 	to new

procedure segments result in the execution of 	new

processes. 	A GUTO type instruction results in the

kernel/hardware placing the capability for the 	new

procedure segment (which the old process must have

possessed in order to formulate the address correctly) in

a new process base segment and then deleting the old

process base segment. Thus processes are truly

identified with code sequences. 	A CALL type transfer

results in the creation of a new process base segment

but, this time, the old process base is not de-allocated

rather the capability 	for 	it, 	suitably protected, is

placed in the new process base. 	Hence a 	RETURN

instruction can formulate the correct address to which

control 	should be transferred. 	The newly 	entered

procedure is not allowed to access the calling

procedure's process base in any other fashion however.

The creation of parallel processes is accomplished using

a transfer instruction, but not de-allocating the process

base of the creator and not removing it from the the

scheduler.

All 	these forms of transfer of control permit the

transfer of parameters. 	The same convention is used in

all 	cases: 	a 	list of data objects (which could include

capabilities) in the current process base segment is

specified by the appropriate instruction, and these are

copied into the target process base. Since a process

executing in one procedure segment does not have access

directly to other procedure segments or to earlier

process bases the only information that can be shared

between procedures is that which is pointed to by

capabilities embedded in the procedure at compile time,

or that which is passed as parameters during a transfer

of control.

Cosserat effects the analogue of Spier's incarnation

own segments by a modification of the transfer of control

mechanism. He allows an 'indirect' transfer, a transfer

to a segment which contains a number of capabilities.

One of these capabilites is for the procedure segment,

and the rest, which are made accessible to the processes

executing the procedure, are capabilities for data

segments. If each user accesses the code segment through

different 'indirect' segments then the effect of

incarnation own segments is achieved.

Thus the following description of general 	resource

handling could be applied to Spier's model if his concept

of domain own segment were to be replaced by both domain

own segment and domain own resource.

All resources require code to manipulate them and if

this code is gathered into a procedure segment then

access to the code is equivalent to access to the

resource. 	This is the representation of resources as

segments mentioned earlier. 	Some resources, such as

semaphores, can be represented in core so that data space

associated with the code is all that is required to make

the code segment a resource manager. 	Other resources,

such as 	line printers, require special I/O instructions

to manipulate them and the use of these instructions has

to be confined to the code segment that manages the

resource, ;Jhen the control registers for the device are

treated by the hardware as memory locations (as in the

PDP 11 series and the Plessey 250) the.n this confinement

can be achieved using the capability mechanism

unmodified.

100

For many types of resource a data area for each user

of the resource has to be kept. 	This area could contain

buffer space and/or status information such as, 	in the

case of 	a fil.ehandler, the names of the files currently

opened by the user. 	Management of this information is

facilitated by keeping it in separate segments, separate

both from the common data and from the information

related to other users. This is the function that the

'indirect' entry segments serve. This method of resource

management has been successfully used on the Plessey 250.

Other Protection Schemes:

We have not dealt with all the protection schemes that

have been proposed, concentrating on those that emphasise

the code segment as the basic unit. Our chief omissions

are CAP and HYDRA, both of which are being implemented,

and the Chicago Magic Number Computer, CAL and SUE, the

implementations of which were terminated prematurely.

CAP 	is a machine with special capability manipulation

hardware being developed at Cambridge 	li'JLE072,NEEL)74J.

The main objects in the system are segments and processes

and it is similar in many ways to the model of Cosserat.

However the concept of a domain own segment, in Spiers

terminology, 	that is a shareable data base, does not

exist. 	Further the system is formulated in the context

101

of a hierarchy of processes and the accessing of all

capabilities through indirection tables to a master

capability segment. A master process in the process

hierarchy can treat its slave processes' capabilities as

simple data. this produces reliability compared with

single level capability systems LLAMP74J but we feel it

is too general a mechanism to be incorporated in a

distributed system.

The Chicago Magic Number Computer 	LFAR74.1 	was the

first 	attempt at 	incorporating capabilities 	into a

hardware architecture. 	Capabilities were for a single

type namely those for segments. 	The resulting machine

would, it seems, have been similar to the Plessey 250 but

less efficient in its handling of alterations to

capabilities when segments change location.

The HYDRA system 	(tNULF7 14,!JULFi5b,LEVI15,CtJHE75J 	is

being mounted on the multiprocessor C.mmp machine. 	It

allows an unlimited set of types of capability. 	Every

object in the system, not just processes or domains, has

an associated c-list so that arbitrarily complex objects

can be built up, HYDRA is also process orientated

allowing for the dynamic creation of processes. One type

of object in HYDRA is the procedure. Entering a

procedure involves the creation of a new protection

environment.

102

CAL 	[LAMP76J was an attempt to put a capability based

system on a Control Data 6400 computer. 	It again had a

multiplicity of types of object but c-lists belonged only

to domains, and it would appear that the number of

virtual processors in the system was fixed. The domains

in this system were rather static objects compared with

the equivalent in HYDRA. Domains existed for long

periods of time so that a change of procedure involves a

change of domain rather than the creation of a new

domain.

Project SUE was to result in a capability based

operating system for an IBM 360 computer (SEv'C7,SEVC74].

Again the system had many types of objects, and

capabilities 	for them, 	and it was also organized to

support hierarchical processes. 	Processes were created

with an environment that basically did not change. 	All

resources were handed out along the arcs of the process

creation tree. Capabilities for the resources were

considerably extended from the three fiela sort described

earlier, to contain five fields including a count field.

In SUE a capability not only gave access to a resource or

object but specified how many times or how much of it

would be accessed. It is interesting to note that the

nucleus of an operating system for SUE was provided with

about 10 orocesses, that is 10 protection environments,

together with the kernel.

103

Summary:

The use of a code segment, containing a procedure or

group of related procedures, to define a protection

environment or domain, pervades almost all the models we

have mentioned. 	The remaining contents of the domain

vary from model 	to model but the idea of global data,

accessible to all 	virtual 	processors that enter the

domain, 	and local 	data that 	is different 	for each

processor entering the domain, 	is common to several

models. 	The models also differ in the latitude given to

segments to belong to more 	than 	one 	environment

simultaneously, or even sequentially. As we implied at

the beginning of this chapter, in a distributed system

the less sharing there is of segments the easier

management of domains is likely to be.

The entering of a new procedure is usually the

occasion of changing a virtual processor's protection

environment. Details of this change of domain vary from

model 	to model, 	particularly in regard to parameters

passed to the new environment. We have indicated that

some movement of segments as parameters to new domains is

essential if gross inefficiencies are to be avoided.

This, of course, conflicts with our desire to have no

sharing of segments between domains.

The fact that the domain is the key concept in all the

proposals and systems we have mentioned in this chapter,

104

supports our assertion that the domain can be considered

the paramount structure in computer systems. However

with the successful implementations of capability based

systems being so thin on the ground the kernel/domain

architecture could hardly be called an established

technology. But we believe it to be a viable

architecture and in the next chapter we propose a

kernel/domain architecture suited to distributed systems.

Our enthusiasm for the kernel/domain architecture is

tempered, we admit, by one consideration. The size of

domains is a question of vital importance to us, and one

on which there has been no published information, both

CAP and the Plessey 20 use hardware to effect the

interdomain jump so that the overheacis of using small

domains, with frequent domain changes, are small. HYDRA

has a software scheme to handle interdomain jumps and so

requires largish domains, as a distributed system

probably will, to avoid the interdornain jump overheads

swamping the useful computation. As yet there has been

no indication as to whether the HYDRA implementors have

succeeded in generating large domains. vie return to this

question in chapter 7 when we look at how programming

language structures relate to domains.

105

CHAPTER 6

OUR MODEL

In 	this 	chapter 	we 	propose 	a 	kernel/domain

architecture suited to a distributed system. 	First we

give a brief discription of its structure and then give a

detailed description of how 	the 	model 	could 	be

implemented using capabilities. 	Finally we relate our

model to those discussed in the previous chapter.

SECTION 1: THE BASIC CO'IPOI'JEiTS.

The purpose of all the models we have looked at in the

previous chapter has been to enhance systems reliability,

both by enforcing the run time protection rules of the

model and, as Spooner and Spier stress, by the modular

structure of software resulting from the desiqn of

domains or protection environments. iihile we do not want

to dispense with these aids, our chief reason for wanting

a computation divided into a sequence of incarnations of

different domains is to allow the computation to be

performed at different sites in a distributed system

106

when, 	for resource 	utilization 	reasons, 	this 	is

desirable.

Much of the thrust of recent research on capabilities

and domains has been to generalize their properties to

cover every conceivable type of computational

requirement. 	By analogy with the full flexibility of the

Von Neuman architecture often being restricted (without

real 	loss of 	function) 	in order to achieve efficiency

[L3URR61,FEUS73,DORA75], we have sought a minimal set of

capability and domain properties that can be realized

efficiently in a distributed system and at the same time

cover normal computational requirements. because Spiers

model had the highly desirable property, for us, that no

segment ever belongs to more than one domain at oncer it

made a good starting point for the model we have

developed to meet the requirements for 	distributed

systems. 	We give a concise description of the model

before expanding on 	its 	features 	and 	giving 	a

justification for them.

The basic components of the model are:

A 	reference space of segments, spread over and

interchangeable between a number of sites.

A number of virtual 	processors; 	relationships or

associations, alterable in time, exist between virtual

processors and segments (and also between segments

themselves).

A kernel, a software extension of the basic machine,

107

exists at each site and manages virtual processors and

segments. 	Kernels communicate with one another to

effect this management. 	All 	transfers of segments

between sites are performed oy kernels.

A segment that contains pure reentrant code is called

a code segment 	and is potentially executable by all

virtual processors. 	A code segment forms the basis of a

domain, 	together 	with an associated public 	(data)

segment, if one exists. 	A public segment consists of

data that 	is usable by all virtual processors but only

when they are executing the related code segment. 	Local

segments constitute the rest of a domain. 	There are

local segments associated with every virtual 	processor

that executes (the code) in the domain, 	they hold data

relevant only to the associated virtual 	processor. 	A

domain, then, is a group of segments which cannot be

accessed by any virtual processor not executing the code

segment of the domain. The entry to and exit from

domains by virtual processors is carefully controlled by

kernels. At the time of virtual processor entry or exit,

local segments related to the virtual processor

(parameters) may be transferred between domains.

For each virtual processor there exists an associated

segment, the processor base segment, which is accessible

to only that virtual processor. 	It is accessible at all

times, 	no matter which domain the virtual processor is

executing in. 	This processor base segment, the code

108

segment and the public segment of the domain the virtual

processor is in, and the related local segments together

form a domain incarnation (see figure 6.1). It is

sufficient condition for a virtual processor to proceed,

on entering a domain, if all the components of the domain

incarnation are at the same site. A domain that does not

have a public segment is called a pure (code) domain. A

domain incarnation of a pure domain may include a copy of

the associated code segment rather than the code segment

itself. A domain that does have a public segment is

called a monitor (see later).

The Entry Capability:

Capabilities are the normal 	mechanism 	used 	to

implement domains. 	Cosserat's model assumes a tagged

architecture (FEUS73I and allows capabilities for

segments to reside in normal data segments. However, the

implementation from which his model was derived, on the

non-tagged architecture of the Plessey 250P insists that

capabilities reside in separate segments from data so

that appropriate protection of capabilities can be

applied [ENGL74J. Either approach means that at a change

of domain the identity of all the segments that belong to

the new environment is not immediately obvious. 	When

capabilities are kept in separate segments a 	tree

scanning operation is required to determine all segments

in the environment. 	For Cosserat's model the problem is

109

CODE SEG.

PUBLIC SEG.

LOCAL SEG. 1

LOCAL SEG.. n

I PROCESSOR BASE SEG.

A DOMAIN INCARNATION

Figure 6.1

an order of magnitude worse 	every segment must be

systematically searched to make sure that no possible

branch in the tree structured environment is overlooked.

Only if we did not require to know what segments

constitute the new environment at the time of a domain

change could we use Cosserat's scheme (if we had a tagged

architecture) or allow some 	local segments to contain

capabilities only. 	But since, as we will explain, it is

necessary to know what segments constitute a new domain

incarnation, we have to forego the not 	inconsiderable

advantages of list structured addressing LFAbR74). 	This

necessity arises in a distributed system because space

has to be allocated for segments of a domain incarnation

that are not at the site chosen for the domain

incarnation, and these segments have to be brought to

that site. 	This can be done at the time of domain entry

(pre-loading) 	or the first time a capability is used in

the new domain (demand loading). 	In paging systems

pre-loading pages from backing store has been shown to

involve less overheads than demand paging LADA115J. 	As

we show later, 	fetching a segment from another site is

likely to involve almost as much work as fetching a group

of segments together so that a similar trait with respect

to segments is likely in distributed systems.

Accordingly in our model 	the capabilities for all the

segments that will 	be involved in 	a 	new 	domain

incarnation are placed in a single list, so that they can

be quickly scanned to determine the requirements for the

111

new environment.

segments making

entry capability.

This list 	of capabilities for 	the

UP 	a domain incarnation 	is called 	an

e have found the entry capability to be a very useful

concept. The interdomain jump can be thought of as a

validation of the entry capability for a new domain

incarnation. As its last action in the old domain a

virtual 	processor 	places the capabilities 	for the

segments of the new domain incarnation into a list

(details about how this is done are given later on). 	We

call this list a c-list. 	The virtual processor calls the

local 	kernel 	passing 	it 	the c-list 	it 	has 	just

constructed. The kernel scans all the capabilities on

the new c-list and if they all refer to segments resident

at that site it (normally) will mark the clist as a

valid entry capability and place it in a queue of ready

to run domain incarnations. If all the segments are not

resident 	at 	the site then the cJist is sent to the

kernel where the code segment resides. 	This kernel

calculates what 	it considers to be the 'best' site for

the domain incarntion to take place at, and passes the

clist, suitably marked, to this site. 	The kernel at the

'best' site could decide that 	it did not want the

incarnation at its site in which case it passes on the

c-list 	to another site, but generally it will accept the

clist, go through it, and request kernels that have the

segments in the c-list 	to send those segments to its

site. 	hen all the segments have arrived at its site the

112

kernel marks the C-list as a valid entry capability and

schedules the domain incarnation for execution (see

figure b.fl.

The above is a very skimpy descriptions but it does

show the importance of the entry capability in defining

the domain incarnation in a compact form. The

interdomain jump involves up to three scans, at different

sites, of all capabilities for the domain incarnation.

This shows the infeasibility of having a more general

distribution of segment capabilities if oreloading of

segments is to take place. defore we give details on how

segment capabilities are initially placed in c-lists we

discuss the differences between the management of

capabilities for code and public segments, processor base

segments and local segments.

Local segments:

We mentioned that where capabilities were freely

copiable the deletion, or even change of address, of a

segment required that all copies of the capability be

altered. In practice, in single site systems, all such

capabilities 	are 	pointers 	to 	a 	master 	table

[NEED14,ENGL741 so that all that is required is the

alteration of the master entry to reflect the new

situation, coupled oerhaps with a usage count so that the

master entry can be dispensed with when no capabilities

point to it. in distributed systems we are, of course,

113

STAGE 1

AT LOCAL SITE 	 Send entry capability
to code segment site.

STAGE 2

AT CODE SITE 	 Perform 'best' site
calculation and send
entry capability there.

STAGE 3

AT 'BEST' SITE 	 Request other kernels
to send component
segments and then
schedule for execution.

BASIC ACTIONS PERFORMED FOR AN INTERDONAIN JUMP

Figure 6.2

denied 	the 	luxury 	of a central 	master table of

capabilities. For local segments a master table could he

kept in each processor base segment but this would

complicate any interprocess communication involving the

passing of segments. 	Hence we make capabilities for all

local segments 'transfer only' (GNAH72]. 	This is a step

better than Spier's completely static, 	no transfer,

scheme for his incarnation segments. Only one capability

for each local 	segment exists and this is passed from

environment to environment as required. 	The only time a

local 	segment is shifted between sites is at the time of

domain incarnation entry. 	This is when the kernels have

the entry capability 	list and so can easily modify the

information in the relevant capability.

A entry capability 	may 	sometimes 	hold 	pseudo

capabilities 	instead of capabilities for local segments.

These are of the following types:

Transient: This pseudo capability just specifies a length

so that the system can Create 8 scratch segment for an

incarnation at the site chosen for the incarnation to

take place. When the segment is created a genuine

capability replaces the transient one.

Null: 	To facilitate the transmission of 	parameters

between 	domain incarnations a slot in an entry

capability may be empty.

On disk: The segment is in a disk buffer.

115

Descriptor: Used when a segment is not intended to be

accessed by the current domain but to be passed on to

another domain.

The last two types have been introduced for reasons of

operational efficiency and will not be mentioned again in

this chapter.

Code and oublic segments:

Domains, as we have already stated, can be identified

with their code and public segments. Entering a domain

implies execution of the code in the code segment.

Logically many virtual processors can be executing in a

domain simultaneously (although, when there is one

physical orocessor per site and only one copy of the

code, only one virtual processor can be progressing

through the code). Thus the code and public segments can

form part of many different environments at the same

time. We cannot make rules which would restrict these

segments to single domain incarnations and not, at the

same time, so emasculate the distributed system as to

make it useless. Therefore to handle code and public

segments a distributed equivalent for a master table of

capabilities is required. we make the code and public

segments of domains global objects (as discussed in

chapter 3), the only ones in our System. We assume that

at any time the kernels in a system can between them

locate the code and public segment of a domain. Chapter

116

3 detailed how this might be done. 	This means that

domains must have system wide unique names and every

program must be appraised of the names of the domains it

wishes (is permitted) to enter. Ihus a capability for

code and public segments is simply a name, it does not

have any address information. Ihe kernels have to

translate this name into an address.

Processor ease Segment:

The management of the processor base segment is the

easiest of the three types of segment. Its capability

need never be made explicitly available to a user, nor

does it make sense for a processor base segment to be

simultaneously part of more than one environment. ahen a

kernel is requested to perform an interdomain jump it can

take the processor base segment from the entry capability

of the requesting domain incarnation and place it in the

new entry capability. The kernel may have to modify the

processor base segment itself to fix up return links.

Spier's model 	uses the argument segment simply for

carrying parameters between domain incarnations.

Information about virtual processors is held in a special

area in the kernel. Cosserat holds this information in

his process base segment. This is the solution we prefer

as then the information moves from site to site as the

virtual processor moves from site to site. The processor

117

base segment 	in our model is thus slightly anomalous in

construction, consisting of quite separate sub-segments.

These sub-segments contain:

1) simple variable values being passed as interdomain

parameters

entry capabilities for the domains

processor has entered

other information about domains

processor is permitted to enter

general management 	information,

parameters and accumulated run time.

that 	the virtual

which 	the virtual

e.g. 	scheduling

SECTION 2: ENTRY CAPABILITY STRUC1URE AND MANAGEMENT.

Vie have detailed how once a putative entry capability

(clist) is presented to a kernel, the kernels go about

gathering all 	the segments together and schedule the

execution of the new domain incarnation. 	We now look at

the process of creating the entry capability list in the

first place. Spier's distinction of two types of local

segment, incarnation own permanent and incarnation own

temporary, gives a starting point 	for identifying the

mechanisms required. 	Since we permit local segments to

pass as parameters between domain incarnations we require

three categories of local segments: temporary, permanent

118

and 	argument. 	4e suppose that the local segment

capabilities in an entry capability each belong to one of

three sublists

the temporary list or 1-list

the permanent list or P-list

the argument list or A-list

Stack organization of entry capabilities:

Consider first a system in which all 	local 	segments

are of the temporary type. On a computation's entry to a

domain the local segments required are created. They

exist while the computation proceeds in the domain and

while calls are made to other 'inner' domains, to which

they may be passed as parameters. They are deleted when

the computation exits from the domain. For such a system

it is appropriate that skeleton c-lists be kept in a

stack in the processor base segment.

To enter a new domain a virtual processor executes the

code in the old domain to cause the name of the new

domain, that is the name of the code and possible public

segments, to be placed in a new c-list which will

eventually be placed at the top of the stack of entry

capabilities. This name will normally have been embedded
a

in the code at compile time but exceptionally could have

been passed as a parameter to the old domain incarnation.

The desired entry point is also stored with the domain

119

name.

We could use compile time information and have the

code of the old domain specify pseudo capabilities (of

the transient type) for the local segments that are to be

created for the new domain incarnation. The alternative

is to have a template [COHE15] associated with the code

segment and have the kernel at the code site create the

pseudo capabilities before it does its'best' site

calculation. This second alternative is to be preferred

because the data about the internal structure of a domain

is held in just one place, which is in accordance with

the principle of information hiding (PARN72i, and it

leads to less duplication of code.

Parameter handling

In the case where the domain name is known at compile

time then the number and type of any parameters taken by

the domain can also be specified at compile time. When

these parameters are simple variables they can be loaded

into an argument stack or area in the processor base

segment.

When the parameters are for local segments (which must

form part of the old domain incarnation) there are two

approaches that can be taken.

1) Domains can be oermnitted to shift capabilities between

120

the 1-list and A-list. 	The code in the old domain can

specify the transfer of the segment's capabilities

from the 1-list of the old domain incarnation to its

A-list. The local kernel then transfers the old

A-list to the A-list of the new entry capability when

invoked to perform the interdomain jump.

2) Only 	the 	kernel 	is 	permitted 	to 	manipulate

capabilities and it transfers the entries direct 	to

the new A-list. 	In this case the code places pointers

in 	the new A-list back to entries in the full list of

local segments in the old entry capability (see figure

6.3). 	When the interdomain jump request is made the

local 	kernel 	can 	transfer 	the 	'pointed 	at'

capabilities to the new A-list, 	noting in 	the old

c-list to where they were transferred (see figure

The former of these two approaches is the more

flexible but is likely to be less efficient and less

secure. For in this approach the A-list becomes simply a

receptacle for parameter capabilities at the time of

interdomain jumps. The entered domain has to transfer

the capabilities for the parameters back to a T-list

before it can safely access them. Although it saves the

kernel a jab, this transferring of capabilities back and

forth between 1-list and A-list could be error prone.

Hence we prefer the second approach which leads to more

compact entry capabilities at the cost of slightly more

work done by the kernel at domain call and return time.

121

Then the Aljst always contains the parameters passed to

the domain. It has no special relation to parameters

passed from the domain to inner domains.

When the name of the new domain is not known at

compile time, the same action as above can be taken if

some form of parameter specification has been given (and

checked) at compile time. Otherwise the kernel can

accept the parameters as given but, before permitting

entry to the new domain, it would have to perform a check

to ensure that they corresponded to those expected by the

new domain. Such a dynamic check could turn out to be

both more costly EHANS74I and coarser [IIANS731 than one

provided at compile time.

Figure 6.3 gives an example of the old and new c-lists

just before the local kernel is invoked to perform the

interdomain call. Figure 6.4 shows the transfer of

capabilities made by the local kernel before it sends the

c-list off to the site of the code segment (or deals with

it itself if the new code segment is already resident at

its site). Figure 6.5 shows the situation just prior to

the 'best' site calculation and figure 6.6 gives the

final form of the entry capability stack when the called

domain incarnation is ready to run.

122

[T] 	LOCAL SEG.D

[T] 	LOCAL SEG.0

[T] 	LOCAL SEG.B

[T] 	LOCAL SEG.A

CALLING
DOMAIN 	ADDRESS

PROCESSOR BASE

c

/

[A] #4//

[A] #2/f

CALLED
DOMAIN

ENTRY
POINT

SLOT FOR
PROCESSOR BASE

NEW C-LIST

parameter
segments

) specified

Notes: [T] indicates that the
segment belongs to the T-list
etc.
Local seg A is segment 1 in
the c-list, B is 2 etc

STACK OF C-LISTS

START OF INTERDOMAIN CALL
Figure 6.3

[A) 	LOCAL SEG.D

[A] 	LOCAL SEG..B

CALLED
DOMAIN

ENTRY
POINT

PROCESSOR BASE

NEW C-LIST
[T] 	#211

(T) LOCAL.SEG.0

[T] 	#111

[T] LOCAL SEC.,A

CALLING/ RETURN
DOMAIN /ADDRESS

SLOT FOR
PROCESSOR BASE

STACK OF C-LISTS

TRANSFER OF CAPABILITIES
TO NEW C-LIST
Figure 6.4

[T] size100

[T] size=267

[T] size=900

[Al LOCAL SEG..D

[A] LOCAL SEG.B

CALLED ,f ENTRY
DOMAIN /ADDRESS

PROCESSOR BASE

NEW C-LIST

NEW C-LIST AFTER
- INFORMATION FROM
CODE SEGMENT TEMPLATE

HAS BEEN ADDED

Figure 65

[T] LOCAL SEG..G

[TI LOCAL SEG.F

[T] LOCAL SEG.E

[A] LOCAL SEG.,D

[A] LOCAL SEG.B

CALLED
DOMAIN ADDRESS

• 	 PROCESSOR BASE

[T] 	#211

[T] LOCAL SEG.0

[TI 	11111

[T] LOCAL SEG.A

CALLING/RETURN
DOMAIN 	 DDRESS

SLOT FOR
PROCESSOR BASE

c
STACK OF C-LISTS

COMPLETED INTERDOMAIN CALL
Figure 6.6

[TI LOCAL SEG.G 	DELETED

3 LOCAL SEC. F, 	DELETED

L -------- -
t DELETED

I 	
(

i 	.1..

K
I

[TJ 	LOCAL SEG..D

[T]LOCAL SEG.,C

[T] 	LOCAL SEG.B

[TI 	LOCAL SEG.A

CALLING 	RETURN
DOMAIN 	ADDRESS

PROCESSOR BASF

$

STACK OF C-LISTS

TRANSFER OF CAPABILITIES
AT INTERDOMAIN RETURN

Figure 6.7

Other interdornain jumps

A return to a domain is also performed by 	an

interdoinain jump. 	If the slots where parameters were

passed to were noted (see figure 6,4) then the top two

entry caoabilities in the entry capability stack contain

all the information the kernels require to effect a

return. 	(Except that any simple values to be returned

must be placed in the parameter area). 	When the

interdornain jump is requested the local kernel shifts

back the processor base segment and all the parameter

segment's capabilities (i.e those in the A-list) to the

clist for the domain incarnation being returned to.

Then the kernel deletes all segments whose capabilities

are in the T-list. The entry capability for the domain

being returned to is then validated as before except that

there is no requirement for the code segment to supply

details of the structure as this is known already.

Figure 6.7 depicts the movement of capabilities effected

by the local kernel when requested to perform an

interdomairi return.

Unfortunately not all computations proceed in the

nested fashion mirrored by a stack implementation. One

simple example of this is where a computation moves

serially through domains. If the first domain in the

sequence was passed parameters in a normal call, then all

domains in the sequence must maintain the same parameters

so that the final domain in the sequence can perform a

128

correct return. Aithin the sequence of domains a virtual

processor wishing to jump to the next domain loads the

name (and entry point of the domain) into a new c-list

and requests an interdomain jump. The kernel then copies

the processor base capability and the capabilities in the

called domain incarnation's A-list into the c-list 	and

dispatches the c-list to the code segment site. 	It also

deletes all the local segments whose capabilities remain

in the old top of stack entry T-list and removes this

entry capability from the stack. The rest of the

interdomain jump proceeds as before.

Retaining permanent segments between calls:

Greater complications arise when it 	is desired to

retain local segments between calls on the domain.]his

arises when, for example, there is a co-routine structure

between two or more domains, or generally in the handling

of peripherals which requires the maintenance of buffers

and status information, Although it is quite straight

forward to devise rules for kernels to know when t place

local segment capabilities in the P-list, so that they

will 	not be deleted at domain exit time, it is more

difficult to devise satisfactory rules 	for kernels to

know when to eventually delete segments in the P-list.

Consequently we allow a virtual processor to move any

local 	segment in its current domain incarnation between

the P-list 	and the T-list. 	ihis gives a greater

129

flexibility than could be achieved by automatic rules.

It shifts the responsibility for deleting permanent

segments to the programmer.

In order to use the local segments whose capabilities

are stored in the P-list when a domain is re-entered

again, the P-list, or the whole c-list with appropriate

empty slots, has to be preserved when 	the 	entry

capability is removed from the top of the stack. 	The

following is a list of options available:

Abandon the stack of c-lists altogether, 	keeping a

simple table of c-lists for all domains entered or

known about, and maintain a separate stack of return

links and a pointer to the Current domain incarnation.

With appropriate organisation this gives quick access

to the c-list, which includes at least the P-list, 	of

any domain. 	This is the approach taken by Spier

[5PjE74]. 	It restricts all entry points of the domain

to taking the same number of argument segments and

using the same number of temporary segments (althougr,

null segments could be used sometimes). Further it

does not allow recursion of any form.

Maintain the stack but use another area of the

processor base segment for storing Plists of exited

domain incarnations. 	Together with each P-list, an

indication must be kept of the domain to which it

belongs. 	For every call on a domain this area has to

be checked to see whether there are local permanent

segments for the new domain or not. 	Also for domains

130

with multiple entry points the sequence of calling

these has to be controlled, or all entry points must

use the same structure of permanent local segments.

Recursion using the same instance of permanent

segments is possible.

3) A variation on the previous option is to store the

P-list with the code segment templates and maintain

separate templates for every virtual processor that

has previously entered the domain. This could provide

more flexibility than option 2 in the arrangement of

P-lists for different entry points but otherwise the

properties of the two options are similar, 	but this

is not a good solution. 	The altering of data

associated 	with 	the code segments inhibits the

duplication of code at different sites. Also error

recovery is made more difficult; information about the

resources a virtual processor has (defined by the

permanent local segments it owns), is spread

throughout the distributed system rather than being

concentrated in the processor base segment (which will

always be at the scene of any error).

LI) Change the stack to a tree arrangement similar to that

used in quasi-parallel programming systems IDAHL72J

and some forms of parallel processing (LJRGA73I. when,

at the first domain exit time, the kernel detects that

the P-list is not empty it 'splits' the stack. The

c-list being exited from is linked, by the kernel,

into the tree as a sibling of the original calling

domain. Provided that kernels can distinguish first

131

time entry requests from re-entry requests, 	full

dynamic recursion is possible. 	In the case of

re-entry, a search up the tree may be required to

locate the correct- c-list. 	Again care will 	be

required with multiple entry point domains. This

option also permits an obvious rule for the ultimate

deletion of permanent segments, namely deletion is

performed and the tree pruned, when control returns to

the parent domain incarnation. But this option

confines 	interdomain 	calls 	to 	conform 	to 	a

hierarchical structure. Also if two or more P-lists

for the same domain incarnation exist with the same

parent then some further mechanism is required to

identify which P-list is to be used in a domain

incarnation.

5) Retain the stack and introduce labels, that 	is names

for c-lists. 	These named c-lists are stored in a

separate area in the processor base segment and

contain at least the domain name and entry address,

and incarnation P-list. They could also contain slots

for parameters and pseudo capabilities for the

temporary segments (see figure 6.6). 	These c-lists

are put together by a kernel 	request during the

virtual 	processor's execution in the domain to which

the segments pointed to by the c-list belong. 	The

kernel returns a label which can be passed as a simple

parameter. 	The main use of this is to preserve the

P-list of a called domain. 	Before it exits the

virtual 	processor in this domain sets up the label

132

[T] size=900

[TI size=200

[P] PERMANENT
- LOCAL 	SEG.

[A] SLOT FOR
PARAMETER

[A) SLOT FOR
PARAMETER

DOMAIN 	ENTRY
NAME ADDRESS

SLOT FOR
PROCESSOR BASE

EXAMPLE OF A
LABEL C-LIST

Figure 6.8

c-list and then returns with the label to the caller.

For 	subsequent 	re-entry the caller requests an

interdomain jump to the 	label. 	The 	local 	kernel

retrieves the c-list and validates it as usual. [he

order of calls to multiple entry points is dictated by

the called domain by way of the labels it returns at

the end of each call. The label mechanism can also be

used to implement 'call by name' parameter passing,

but this is not something to be encouraged in a

distributed system. 	As the connotations of label

would suggest, this option is rather primitive. 	Out

it can permit full recursion as well as distinguishing

easily between multiple uses of the same domain by the

same virtual processor. To enter a domain a first

time a virtual processor presents an initial 	entry

capability; 	for subsequent re-entry it presents the

label returned from the previous entry. If the

virtual processor wants to use the same domain for a

different purpose (e.g. if it is a file handler oomain

and the virtual processor wants to open a second file)

then it presents an initial entry capability again and

will be returned a new label. This is the only option

proposed so far that can handle this multiple use

situation.

6) Abandon 	the concept of permanent local segments

altogether. Instead generate temporary local segments

at an outer level and pass them as parameters through

all inner levels to the domain that requires to use

them. Also, the public segment of the domain could be

134

used 	. L.1
	

4k
a

	

U 	 wou, '.. 	 I., 	 I 	 I a

been kept 	in permanent 	local 	segments, this

solution,as well as 	violating 	protection 	principles,

could involve a 	huge 	increase 	in 	the number and/or

size 	of segments that 	would have 	to 	be 	shifted from

site 	to site 	at each 	interdomain 	jump.

We feel that the fifth option is the best. 	It could turn

out 	in practice though that the features this option

provides are not required, that permanent segments form

such a tiny fraction of the total number of segments that

the second or sixth arrangements would be better.

Creating and deleting local segments:

One other topic concerning local segments is their

creation and deletion during execution within a domain.

We permit virtual processors to make kernel calls to

delete local segments in the domain they are in, at any

time. The capability in the c-list is replaced by a null

capability. 	A null 	capability may be passed as a

parameter. 	This is particularly appropriate in 	a

producer/consumer situation; the producer transmits a

full segment to the consumer as a oarameter in an

interdomairi call. At the return no useful purpose is

served by transmitting back the segment so the consumer

can delete the segment when it has finished with it.

135

The creation of local segments is more difficult as it

involves the allocation of a resource, namely memory

space, so it could be subject to delays or even the

shifting of the domain incarnation to another site. The

best time to create new segments is at domain entry time.

This is why we provide templates attached to the code

segments so that space requirements for a new domain

incarnation can be determined before the 'best' site

calculation is performed. If it is absolutely necessary

for a domain to be able to create segments once its

execution has begun, then its request to the kernel to do

this is treated as an interdomain jump back to itself.

We assume that capabilities for newly created segments

belong originally to the Tlist.

SECTION 3: COMPARISONS.

In this chapter we have proposed a domain architecture

suitable for distributed systems. 4e have detailed how,

despite the fact that no copying of capabilities is

allowed, a quite powerful 	capability system can he

constructed. 	Uur system does not suffer from revocation

of capability problems because 1) 	it 	is not process

orientated and) only one capability exists for each

segment (other than code and public segments). 	If

136

present domain systems

then our system is

distributed system.

between those domain

chapter and our model,

been made.

are viab

powerful

We now

systems

and show

1e on single site systems

enough to be viable on a

identify common points

we discussed in the last

where improvements have

Evans and LeClerc identified three types of local

segment making up a domain; fixed, dummy and scratch.

These correspond to the segments whose capabilities are

kept in our P-list, Alist ana 1-list respectively, by

allowing segments to be moved between P-list and T-list

we cater for domain initialization and allow more

flexible deletion of segments.

ve have already mentioned what we consider to be the

main inadequacy of Spier's model, the fixed number and

type of segments in a domain incarnation. 	Our model

allows any number of local segments, 	the equivalent of

Spier's incarnation own temporary segments. 	Ne permit

local segments to be passed as parameters between domain

incarnations. This eliminates much of the potential

inefficiency of Spier's model arising from copying whole

segments into and out of the processor base (argument)

segment. ae are also far more flexible in our handling

of permanent segments. Using labelled entry

capabilities, our scheme will support a virtual processor

having two or more different sets of segments in a

domain.

137

I-
I 	 I I 	- 	u 	 ufl

of code and public (domain own) segments, which we have

adopted, and having them mixed together as Cosserat

allows, provided that a domain which does not have any

public data is identifiable as such. In our previous

discussion above, and our subsequent discussion of the

implementation of our model, we always treat the two

segments, when they both exist, as a single entity. If

however a system had plenty of active storage but was

lacking in communication bandwidth it is conceivable that

the code segment would be treated differently from the

public segment; copies of the code segment being

permitted. There is no point in having copies of public

segments because the machinations required to keep them

consistent would far outweigh any advantage gained in not

having to shift segments around from site to site to form

domain incarnations.

We were not aware of Cosserat's work when we undertook

the definition of our model, working, as we mentioned

before, more from the papers of Spier. There are however

quite a few points of similarity between Cosserat's model

and ours. 	Both permit any number of segments to be part

of a domain incarnation. 	Both use the processor base

segment for several purposes. 	Although in çosserat's

model a local segment can be part of many domains at once

it is very unlikely in reality that these domains will

all be accessing the segment at once (unless the segment

is a segment of semaphores). Thus we loose little, if

138

anything, by making our local segments accessible in one

domain at a time. Cosserat's indirect entry mechanism is

a generalization of our label mechanism. 	;e only permit

a 	labelled c-list to be built up by the domain to which

the segments in the c-list belong. 	But again we feel

that we cater for the major use of the mechanism (the

handling of permanent or own data) and that further

generalization is not required.

Cosserat's rule of creating a new base segment for

every change of domain brings undoubted advantages when

it comes to creating new processes, but its efficacy is

more open to question when the number of virtual

processors in a system is fixed (a feature we shall

expound upon further in the next chapter). There is very

little information that can be left behind in the old

base segment and not transferred to the new base segment.

If the simple parameter area is organised as a set of

stack frames then only the frame for the parameters being

carried to the new domain need be put in the new base

segment. Otherwise the only item not required in the new

base segment is the old domain's return link. Since

processor base segments are the most frequent movers

between sites in a distributed system (see the sample

results in appendix A) it is important that they be

small. But there is a definite trade off between the

transmission time saved on one hand and, on the other

hand, the extra copying involved. Splitting up the

processor base segment may also cause the occasional

139

delay, when doing a return, when all 	the required

segments save the old processor base are at one site.

Only experimental evidence from real implementations can

resolve questions such as this and th e questions we will

be raising in the next chapter as we examine more facets

of distributed Systems.

140

CHAPTER 7

DISTRIBUTED SYSTEM METHODOLOGY

The last chapter presented a model for a distributed

system in terms of segments, capabilities and domains.

We did not specify what was to be the function of any of

the domains, nor did we indicate how a programmer might

go about constructing a domain. 	We now direct our

attention to these and similar topics. 	This chapter is

concerned with the wider perspective of distributed

system design.

SECTION 1: RESOURCE ALLOCATION.

For some years now there has been a school of thought

that advocates the limitation of forms of dyrnanic

behaviour in operating systems ('1ANS73,HAS74,HOAR74a,

HOAt74h,HANS761. The THE operating system (DIJKbB] has a

fixed number of virtual processors. The recently

completed SOLO system 	1HAtJS761 	has not only a fixed

number of virtual processors but is conceptually

comoilable as a single program, so that all interactions

within the system are able to oe checked at compile time.

We concur with such sentiments, as they lead to a fresh

view of resource allocation which we believe is suitable

141

for distributed systems.

Systems with dynamic creation 	and 	deletion 	of

processes 	usually 	handle resource allocation on a

hierarchical basis. All the system resources are

initially vested in an ultimate ancestor [HANS73,SEVC74J.

Whenever a process is created it is given some of the

resources of the creator process; if not 'consumed', the

resources are returned to the creator process when the

new process is deleted. The ultimate ancestor represents

a potential bottleneck since it has to deal with all 	the

systems resources. 	In our distributed system resources

are associated with domains, 	allowing control 	to be

spread throughout the system. Each virtual processor can

enter any domain (known to it) and access the resources

in it. 	But the virtual processor must execute the code

of the domain while accessing the resource. 	Thus the

domain can control all its resources, all of the time.

This form of distributed control does not preclude the

use of process hierarchies but it does remove a lot of

the justification for them. Ability to freely create

processes could also be troublesome if it is desirea to

limit the total resources available, at any one time, to

a user. 	If we were to allow a process to control 	the

progress of another and even destroy it, as is permitted

in many process orientated systems 	U<W0T741, then a

process would have to be a global object. 	This follows

from the requirement to locate the process that is to be

142

controlled or destroyed. 	The management of global

objects is relatively expensive. The number of processes

would grow in proportion to the number of sites,

presenting larger and larger directory or associative

memory requirements.

Overall, considerable simplicity and efficiency 	is

gained by having a fixed number of virtual processors

(which are not global objects), one virtual processor per

user. If some form of parallelism is required a user can

be permanently allocated more than one virtual processor;

In the SOLO system he is given three, one to handle

input, one for computation and one for output.

Domains:

Since a system is 	likely to have a fixed maximum

number of resources for long periods of time it 	is

logical to have a fixed number of domains to manage these
iL

resources. 	We include as resources compl4'ers, editors

and anything usable by more than one user. Using a fixed

number of domains confers two advantages:

1) Every kernel, as part of the management of global

objects, needs to keep information about every domain.

With a constant number of domains, fixed space for

this information can be allocated inside kernels,

leading to more efficient operation of the kernels.

Of course when there is an increase in the number of

143

resource types in the system a recompilation of the

kernel will be required.

2) The finding of a domain is considerably simplified if

it always exists. 'Jhen a kernel receives a message

related to a domain that does not reside at its site,

it need only pass the message on to the site where it

believes the domain to be. Provided that the message

travels faster than the domain (see chapter 8) it will

eventually reach the correct site. 	If domains were

dynamically created and deleted then the kernel 	would

have to decide whether to pass the message on to

another site, or initiate the creation of the domain,

or regard the message as being for a deleted domain

and hence erroneous.

Having a fixed number of domains in a system is not an

absolute fiat. Arrangements could be made for the

locating and loading of some domains from a file store

when required (an obvious exception is the basic domains

that manage the file store), in a similar fashion to

Spier's implementation. As well as the added complexity

in domain management described above, knowing when to

unload the domains again is likely to be a tricky

problem.

144

SECTION 2: HANDLING USER PROGRAMS.

So far we have been careful to avoid mentioning user

code. fie have adopted the attitude of Hoare [HOAR74b]

towards user code. He believes that all user code should

be interpreted by the operating system. He reasons that

a user cannot compromise the security and robustness of a

system if all (sensitive) operations are vetted by the

operating system.

Our adoption of this philosophy allows us to have a

fixed number of domains in our distributed system since

users do not generate their own domains. 	04e provide a

user supervisor domain. 	One, or more, of the local

segments in an incarnation of this domain is user code.

The user supervisor'interprets' this code. In practice

this would mean that the user code is directly executed

but the domain fields any supervisor calls, which it

translates to interdornain calls.

There is no compelling reason why the appearance, to a

user, of a system should bear any relation to the

structure used to implement the system. Placing user

code in a supervisor cocoon means that the ordinary user

need not be appraised of domain structures when it comes

to writing his own programs. Interpretation also

provides a hook uoon which can be hung such facilities as

execution time limits, error diagnostics and recovery,

and console generated interrupts.

145

Unfortunately this approach also rules out the sharing

between users of the same copy of user code. If some

user program is in such demand that the likelihood of two

or more people using it simultaneously is significant

then the program could be incorporated into the operating

system, either directly as a single domain, or, in a

rewritten form, as several domains.

SECTION 3: ADDRESSING.

Addresses in capabilities:

Another topic we have not yet touched upon is the form

of addresses stored in capabilities. 	Capabilities always

reference segments residing at some 	site 	in 	the

distributed system. When a segment is said to reside at

a site we mean that the segment is stored in the private

active storage of that site. The active storage may be

simply primary memory or could consist of backing store

as well, provided that the backing store is controlled

solely by the site. (In the later section on peripheral

handling we show that problems can arise with shared

control of backing store devices).

A segment's address, as stored in a capability, 	is

assumed to be in two parts. The first part specifies the

146

site where the segment resides. 	The second part is some

form of address to be interpreted by the kernel at that

site, 	this second part could consist of:

a segment starting address (only suitable for one

level memory and not allowing any repacking of memory)

a segment table offset 	(allowing backing store and

repacking)

a key for a segment hash table (also permitting

backing store and memory repacking).

The third approach is likely to be the best 	in a real

system because it gives more compact segment tables and,

if the keys are made unique system wide LFA8R74J, it

provides a useful robustness (LAMP741.

Moving segments between sites:

A capability for a segment also has a length field and

both this field and the segment address play a role in

the movement of segments between sites. Ahen a kernel

has accepted a domain incarnation c-list, it initiates

the transfer to its site of all segments of the domain

incarnation. The kernel scans each capability in the

c-list and determines the location of each segment from

the first part of the segment address. From the length

field the kernel determines how much memory space each

segment will require when it arrives. [he kernel could

allocate the space there and then. 	The Kernel sends a

message to each site that has one or more of the segments

147

it 	requires, specjIying each relevant second part of the

segment address and requesting the segment be sent to it.

When each segment finally arrives, its capability in the

c-list is altered to reflect its new address. When all

the segments whose capabilities are in the c-list are at

the kernel's site, then the c-list is marked as a valid

entry capability and the domain incarnation is ready to

run.

The action taken is slightly different in the case of

code and public segments, for the capability for these is

just a name (see chapter 6, section 1). [he kernel which

wants the segments sends a message to the site where the

segments are residing (located with the aid of tables or

associative mechanism in the communication subsystem).

The segments are sent to the requesting site when they

are no longer required at their current site, and action

is taken to appraise all the kernels of the new site for

the segments. (More details are given in chapter ii).

The advantages of pre-loading all segments of a domain

incarnation, rather than requesting segments piecemeal

from other sites as they are required, can be deduced

from the above description. Firstly, all segments

required from a particular site can be requested with a

single message, saving some communication 	bandwidth

usage, 	and, far more importantly, interrupting that site

only once, rather than for every segment. 	Secondly, the

total (extra) space requirement of the domain incarnation

148

can be determined before any segments are requested from

other sites. Thus if the site has insufficient space for

the domain incarnation the appropriate action, normally

sending the c-list to another site, is taken before any

segments have been transferred to the site.

Capability hardware:

The generation 	of 	addresses 	within 	a 	domain

incarnation must be in the form of an index into the

c-list to select a capability for a segment followed by

an offset within the segment to select the required item.

This obviously enforces the confinement of all accesses

to be within the domain incarnation.

It depends on the hardware facilities as to how the

physical processor uses capabilities. 	Since each domain

incarnation's capabilities are stored in the 	entry

capability or c-list 	for the incarnation the use of a

fixed, and reasonably modest, number of 	capability

registers is one option available. 	This is the approach

used in the Plessey 250 (COSS72,ENGL74). 	When a domain

is ready to run, the kernel loads the hardware capability

registers 	with 	the capabilities in the c-list, suitably

translated to hardware addresses. Since we have

postulated that a domain incarnation should last for some

appreciable time, the overhead of loading perhaps 16

registers at the start of a domain incarnation and

149

unloading 	them 	again when an interdomain jump is

requested, should not be too large. This is provided

that these registers do not have to be unloaded and

loaded again every time the kernel receives an interrupt

of any sort. As we indicated in chapter $, the volume of

interrupts will grow as the size of the distributed

system grows and the preservation of context could

quickly become a dominant unproductive factor. The

operation of the Plessey 250 has been described by the

phrase "Don't interrupt me, I'm computing" [HAYN73]

because external interrupts have been abolished [ENGL72J.

This extreme philosophy need not be employed in a

distributed system provided that kernel operation is

clearly differentiated from execution in 	a 	domain

incarnation, 	and simpler context switching is provided

for the kernel.

	

Alternatively 	a 	set 	of 	associative 	capability

registers similar to those used in the CAP system

(NEED72] could be employed. 	This would allow entry

capabilities of arbitrary 	(or near arbitrary) length,

that is large numbers of segments in a domain incarnation

could be accomodated, but not all of them could be

accessed quickly. The whole c-list need not be loaded at

the start of a domain incarnation, entries would be added

to the associative registers the first time the

capability was used. 	Further, appropriate design could

ensure that the contents of the associative capability

registers remained usable after the handling of an

150

interrupt 	and 	even after an interdomain jump and

subsequent return (assuming the entered domain did not

require the use of all the registers for its own clist).

SECTION 5: PROGRAMMING LANGUAGES.

Constructing domains:

The code that constitutes code segments has to be

written by someone. 	We now look at how appropriate

present languages are for the task. Our particular

interest is in the representation of segments and their

manipulation to form domains.

High level languages offer the programmer segments in

many guises. In arrays the offset within a segment at

which a data item resides is obviously specified by the

index. Other structures (e.g. RECORDS in the IMP

language (STEP741) have symbolic names for the various

data items in segments, it being one of the functions of

compilers to map these names into offsets.

Most languages however do not offer the programmer any

means of specifying domains. Automatic rules could be

devised for constructing domains from programs in many

languages, but the efficiency, particularly in our

151

distributed system, of such automatically created domains

is open to question. Such domains are likely to be so

small that the overheads involved in domain changing will

dominate the useful work done in the domain.

For example, 	in ALGOL 60 the only two possible

automatic rules are to make the whole program into one

domain or to make every procedure the basis of a domain.

In the 86700 system (ORGA731 the code for every ALGOL

procedure is put in a separate segment. A recent study

(t3ATS76I suggests that the average number of instructions

executed from each code segment each time it is entered

is of the order of 50 to 100. this is too few

instructions to carry the overheads of domain entry so

the ALGOL procedure is not a suitable basis for a domain

in our system.

FORTRAN does provide a way of generating larger

domains than just individual subroutines. The CLJElUVl

block is a suitable structure to be made into a segment.

Sometimes it may be possible for all subroutines to be

divided into disjoint sets accessing different CUM1101I

blocks in which case domains can be constructed with a

code segment containing the set of subroutines, and with

local segments containing the mutual COMMON block(s), all

other local data, and arrays. when it is not possible to

form disjoint sets of COMMON block accessors then some

sort of programmer intervention is required to identify

which CO1MOI blocks are to be used as the basis of

152

domains and which should be passed as parameters between

domains. This requires the same sort of techniques that

are used to identify overlays (SELI12).

SI"IULA 67 	(DAHL66,DAHL72,ICH671) 	provides 	in 	its

'class' concept a programming analogue to domains. 	A

class defines both data objects and the operations, 	in

the form of procedures, to be performed upon them in the

same way that the code segment of a domain incarnation

defines the operations that are performed on local

segments. However in programs these procedures are

likely to be very short so that domain changing to enter

a class may have unacceptably high overheads. Further in

SIMULA 67 access to the data (attributes) of a class is

permitted directly without executing one of the class

procedures. Nevertheless a restricted form of SIMULA 67

could provide a suitable basis for developing a language

for domain handling.

Quite a number of languages provide facilities for

separate compilation of parts of a program. There are

variations on how much compile time or link time checking

is performed. 	Complete checking is feasible when there

is no recursion between separately compiled parts. 	In

some circumstances it is reasonable to assume that these

'external' portions constitute the basis for a domain in

that they perform a definite part of a computation. Of

course, often these separately compiled sections provide

a service environment for the rest of the program so that

153

the frequency of use of the separate sections is high and

the duration of residency is low. but, again with

appropriate discipline, the separate compilation facility

does provide a basis for the construction of domains.

To 	summarise, 	our desiderata for a programming

language in which to write domain structured programs

include provision for the manipulation of segments as

basic items, and structuring rules that 	lead to easy

specification of appropriately sized domains. 	The entry

points to a domain must he obvious. This can be achieved

by specifying routines to be 'external [STEP741, or

negatively by employing the 'hidden' feature proposed for

SIMULA 67 (HOAR74bJ

Language restrictions:

So far we have looked at features that would - be

conducive to efficient domain structure. Attention is

now turned to two language features, the usual generality

of which would have to be severely restricted in a domain

system. These are parameters and pointers.

The parameter passing mechanisms of many high level

languages are too sophisticated for our 	model 	to

implement efficiently. The model provides in effect the

same parameter passing mechanisms as FORTRAN: call by

value (with possible copyback) for simple variables and

call by reference for arrays (segments). that this, in

154

some way, 	is sufficient 	is demonstrated by the large

number of running FORTRAN programs in existence. If, as

we would wish, domains embody some complete and quite

substantial function then the dictates of good design

suggest that the number of parameters to he passed

between domains should be small and that possible

complexities of side effects and so on should be avoided

(PANN72]. Hence we feel our model's mechanism to be

adequate; the type of parameter passing employed within

domains need not be restricted to that possible between

domains.

Pointers, 	that 	is stored memory addresses, have

recently fallen into disfavour with some programming

experts [WIRT71 because they lead to an item having two

or more names, and hence detract from program clarity.

In our distributed system any pointer to an address in

another segment would cause immense difficulties. 	There

would he two ways of storing such a pointer. 	One way

would be to store the full 	capability of the segment

(plus offset) which violates our principle of having only

one capability in existence 	(for local segments) and

keeping that capability in a fixed location. 	The second

method would be to store the c-list offset of the segment

(and offset within the segment). Problems would arise if

the segment containing the pointer was passed to another

domain incarnation because then the pointer would be

incorrect. Thus in capability systems such as ours the

use of intersegment pointers cannot be supported.

155

SECTION 6: MONITORS

Ue made no mention of public segments 	in 	our

discussion of programming languages. Only twolanguages,

that 	we know of, embody such a concept directiy.

Concurrent 	Pascal 	[HANJS74,HAsJS75) 	is 	the 	original

language of these two. Details of the second language

SIMUNE, which is similar to Concurrent Pascal, have been

published very recently (KAU8761. One of the elements of

these languages is a 'monitor'. Monitors, before being

incorporated in Concurrent Pascal, were developed by

Hoare (HOAR73,HOAR74a) and Hansen (HANS731. A monitor

consists of some data, and procedures to manipulate the

data. Monitors have the following properties:

the data of a monitor is global in the sense that only

one instance of the data exists, thus corresponding

directly with data in a public segment.

the monitor data is only accessible to the monitor

procedures; all manipulation of the data is by calling

these procedures, just as a domain must be entered to

access its public segment.

at any one time, at most one virtual processor can be

progressing 	in a monitor; it will maintain exclusive

access to the monitor's data until it exits from the

code (or suspends itself on an internal queue), thus

allowing guarantees to be made about the integrity of

the monitor's data.

156

The finer details of monitors' properties have yet to

be agreed upon. For example Hansen has his monitors

contain global data only (HANS151 while Hoare's monitors

contain both global data and multiple copies of user data

(equivalent to local data) IHUAR71IbJ. It is on the basis

of Hoare's type of monitor that we named domains having a

public segment 'monitors'.

Exclusive access and the condition queue:

Another undecided property of monitors is that of how

long exclusive access to a monitor should prevail.

Obviously when a virtual processor finally exits from a

monitor access can be given to another virtual processor.

The problem arises when the virtual processor makes a

call to another domain. Should all other virtual

processors be denied access while this call 	is in

progress? 	To do this poses far more management problems

(LIST7] 	than the approach we have adopted which is that

whenever a virtual processor executing in a monitor makes

a call on the kernel (as it will to change domains) it

looses kernel guaranteed exclusive access.

To allow longer periods of effective exclusive access

and to facilitate certain forms of virtual 	processor

interconirnunication, 	monitors 	have to provide a facility

whereby a virtual 	processor can suspend itself while

waiting for some condition to be fulfilled (by some other

157

virtual processor). 	Jhen it suspends itself the virtual

processor looses exclusive access to the monitor. Hansen

provides a general queueing mechanism in a monitor so

that other virtual processors can manipulate the queue

(called the condition queue) in any desirable fashion.

Hoare is more strict condition queues have to be served

either 'first in first out', or in order of a priority

specified when joining thequeue.

We stated in chapter 6 that kernels kept validated

entry capabilites in some form of 'ready to run' queue.

The running domain incarnation is at the top of the queue

so that its suspension involves removing its entry

capability and storing it in the condition queue of the

monitor. 	The condition queue has to be part of the

public segment. 	It is no good making it part of a kernel

area unless the monitor is to be tied to a particular

site. No major problems arise with entry capabilities

being moved, undetected by kernels, from site to site.

When another virtual processor, executing in the monitor,

wishes to release a suspended virtual processor it

removes the entry capability from the condition queue and

passes it to the local kernel which re-validates it.

Eventually the domain incarnation will be scheduled for

execution again.

One difficulty in following Hansen's approach of

allowing general manipulation of the condition queue is

that suitable constructs must be provided for the domain

158

code to examine the capabilities in the condition queue.

We cannot see any neat way of providing these.

Secretary processors:

The original impetus for monitors came from DijkstraTh

'secretary' concept [DIJK71J. In a process orientated

system a secretary process maintains global data, all

requests to manipulate it being sent as messages to the

secretary. In a monitor type system virtual processors

can enter the monitor themselves to manipulate the data.

However, particulary when dealing with peripherals,

situations could arise where the kernel cannot know which

virtual processor should be dispatched, to answer an

interrupt, for example.

Thus in our model we make provision for some monitors

to have secretary processors (or daemons 	(SALT56i)

associated with them. 	These special virtual processors

execute only in the monitor and may use different code

from the normal 	monitor user. 	Their purpose is to

provide general housekeeping functions on the 	data

structure 	that 	constitutes 	the 	public 	segment.

Secretaries have a special 	relationship with 	kernels.

Peripheral 	interrupts 	are 	associated 	with unique

secretaries. 	When a kernel 	recognises a peripheral

interrupt 	it 	schedules 	the 	approoriate secretary

processor to run. 	iAJhen this secretary processor runs it

159

can manipulate the queue of the monitor to which it

belongs to have the correct virtual processor scheduled.

While 	this 	arrangement 	C ertainly gives flexibility in

handling I/U devices we are not so sure 	of 	its

efficiency. 	We postpone discussion of this to chapter

11.

SECTION 7: PERIPHERAL HANDLING

We have just shown how the secretary processor concept

can aid in the management of peripherals. Using

secretary processors however is just one approach to

managing peripherals in a domain structured distributed

system. 	There are a number of possible approaches

depending on the functional 	capabilities of peripheral

controllers.

In 	this section we propose various schemes for

handling disk operations, predicated on the intelligence

of the disk controller. We have chosen disks as an

example because:

they could be quite heavily used so that 	inefficent

operation is less tolerable than for some other

peripherals.

disk usage involves reading and writing, a read

possibly being of something previously written.

The 	second point has ramifications for distributed

control which we point out later. 	T4e assume that 	the

160

unit 	of 	reading 	and writing is a segment, more

specifically a local segment used as a parameter. 	A

write involves passing the segment to the disk handling

domain which on exit returns a null 	segment. 	A read

involves simple parameters and a null segment being

passed to the disk handling domain and a full segment is

returned.

The workstation aoproach:

Undoubtedly the neatest scheme is to assume that the

disk controller or other peripheral controller is a site

in its own right, fully integrated into the communication

system. When using a bus type communication subsystem,

which does not require more links as more sites are

added, a network architecture such as depicted in figure

7.1 can be achieved. With the advent of microprocessor

controllers the workstation concept, as embodied in the

CDC 7600 system 1ELR070,J0'lE71J, is becoming practicable

for more modest sized systems. Of course, in a

distributed system, 	the workstations do not serve a

single 	large processor but rather interact with all the

general purpose sites in the system.

The workstation must, to all 	intents and purposes,

behave like any other site in its interactions with other

sites (internally it could be rather different in

structure). This site will have only one domain but must

be capable of handling entry capabilities correctly.

161

A DISTRIBUTED SYSTEM USING WORKSTATIONS

Figure 7.1

Thus for example a request for a disk read would be

programmed as an interdomain 	call 	on 	the 	'disk

controller' domain. The entry capability would arrive at

the disk controller which would validate it as usual and

queue it in an equivalent of the 'ready to run' queue

(but presumably so as to optimise disk accesses). When

the read had been performed the disk controller would

initiate an interdomain return, with the read data oeing

an argument segment to be returned to the calling domain

incarnation.

This approach can be viewed as multiplexing virtual

processors on the physical processor of the disk

controlling site. One requirement of this appraoch is a

large buffering capacity at the controller site because

the argument and processor base segments do not

immediately leave the site when the incarnation has

terminated (i.e. the disk operation has been completed).

They stay there until a site has been determined for the

resumption of the calling domain incarnation and the

kernel of this site then requests the segments to be sent

to it.

One objection to this scheme

that the general purpose po

being dedicated to a single job

considerably underutilized.

processing power is general and

is 	a valid objection. 	But

that could be raised is

er of a microprocessor is

in which it could be

In so far as the the

being underutilized this

the architecture of a

163

peripheral controller is likely to be 	rather different

from a general purpose computer and since the capacity of

a peripheral can be quite easily determined, the power of

the 	controller 	can 	be 	matched to the capacity.

Substantial underutilization of peripherals may be

unavoidable in small systems but for larger systems it is

an indicator of bad design.

Limited capacity controllers:

This is the scheme that we chose to simulate (see

chapter 9). 	basically it supposes that a controller will

not be designed specifically to fit 	into a domain

orientated system but will 	be capable of using the

communications subsystem to transmit segments and a

limited repertoire of control messages to and from other

sites. 	A domain, the disk handler domain, is required to

reside at some site to assist the disk controller in 	its

work. ohether this domain is tied down or not aepends on

the sophistication of the controller, the communication

system and the kernels in handling interrupt type signals

from the controller. The disk handler domain needs to be

a monitor with an associated secretary processor, so

there are fewer problems when it is tied to one site.

This approach assumes that the disk controller has a

number of buffers for holding segments and that it sends

a message to the controlling site (i.e. the site where

164

the disk handier domain resides) whenever one of its

buffers becomes free. This message is interpreted, by

the receiving kernel, as the secretary processor's entry

capability for the disk handler domain. The kernel duly

validates this entry capability and so eventually the

secretary will run. It will initiate a read or write if

there are any outstandingp or set a flag to indicate to

any other virtual processor that subsequently enters the

domain that it may initiate its own read or write because

there is a buffer available.

It was to avoid congestion at the disk handler site

that we introduced the pseudo capability states of

'ondisk' and 'desc' (chapter). Nhen a virtual

processor wishes to write a segment to disk, it transfers

as a paramter to the disk handler incarnation simply a

descriptor of the segment, not the segment itself. 	This

descriptor 	is placed in a queue of descriptors of

segments waiting to be written to disk and the virtual

processor exits 	immediately from the domain (unless the

Queue is full). 	4hen the disk controller has a free

buffer into which it can receive the segment a request

for the segment to be dispatched direct to the disk

controller is sent to the kernel of the site where the

segment is still residing.

Normally reads are executed before writes. 	A virtual

processor enters the diskhandler domain with simple

parameters decribing the read. 	insteaa of the processor

165

suspending itself to wait for the segment to be read then

returning to the calling domain the entry capability for

the return is prepared, including one segment capability

marked 'ondisk'. This entry capability is not validated

until the disk read has taken place into a buffer in the

disk controller. (In fact this invalid entry capability

could be sent to the disk controller as the read request

and be returned to the controlling site when the read is

complete, whence the kernel there starts to validate it.).

When a site has been chosen for the incarnation of the

calling domain to resume, then the kernel of that site

sends a request for the read segment direct to the disk

controller. The disk controller dispatches the segment

from one of its buffers.

Notice that in a real system a check, on the queue of

descriptors of segments that are waiting to be written to

disk, will have to be made before a read is performed. A

situation could easily arise where a virtual processor is

trying to read a segment that it had previously written

(that is called the diskhandler domain and returned) but

which segment has not in fact got as far as being written

on the disk. This is one reason why it is not possible

to have every site control the same disk (perhaps as a

kernel function). Unless a virtual processor is going to

be held up until a disk write is acknowledged as

completed, a single list of outstanding writes for each

disk is required. Thus notification of writes to a

particular disk must pass through a single site.

166

The other reason that all sites could not control 	a

shared disk is related to buffer management. 	there is a

limited number of buffers in the disk controller, the

freeing of one of these buffers indicating that the

controller is capable of accepting another request.

Although conceivably the disk controller could broadcast

that the buffer was free, all the sites would have to

agree on which site was permitted to make the next

request. The necessity of having all sites in agreement

is something that we have studiously avoided, it can be a

very time wasting function in a distributed system.

Plain dumb controllers:

It could be that 	the peripheral 	requires direct

attachment to a central processor for control and has no

buffers so that it must transfer directly to or from the

main memory of the controlling site. 	tying the domain

that uses the peripheral to the site, and utilizing the

secretary concept to handle completion interrupts and

general housekeeping, may well be acceptable when the

peripheral is lightly used. But if the peripheral is

heavily used, as might be the case for a disk, then the

controlling site is likely to become very congested.

Before data can be written to disk it has to be moved to

the controlling Site where it is queued to be written.

Data read from disk will initially 90 to the controlling

site where it will exert an influence on the domain that

167

ultimately uses 	the data, so that that domain will tend

to migrate to the controlling site as well.

Alternatively the controlling site could be 	'split'

into two sites, partitioning the memory and sharing the

physical orocessor. One site would have a normal kernel

and the other would perform the disk controller function

we described in the independent workstation section.

This scheme, although it would involve extra software to

share the computer between two 'logical' sites might be

ideal for a small system that was going to expand. As

the use of peripherals grew they could be given their own

independent sites, freeing the original sites to

concentrate on the expanded workload. This is analogous

to conventional small computers doing their own terminal

handling but as a system grows this function is taken

over by front end processors.

Efficiency:

The schemes we have described illustrate the dichotomy

of dedicating processor power to a single task and

risking underutilization of the processor, versus doing

the task with a processor at a general site ,but, because

of the special nature of the task, distorting the loading

of the site. All the schemes we proposed however suffer

in comparison with message passing schemes employed in

process orientated systems when we consider the loading

168

on the communication subsystem. For in a message passing

system a peripheral 	is viewed as a sink or source of

messaaes. 	No domain incarnation is required at the

peripheral 	controller or handler site, saving at least

the movement of the processor base segment from the

controlling site to the peripheral controller or handler

site and back again. Of course the validation of the

returning domain incarnation gives an opportunity for it

to move to another site to help load balance. There is

no equivalent opportunity in a message passing system.

Whether this offsets the extra communication costs we do

not know. We raise the question again in chapter 11.

SECTION 8: FUNCTIONAL SPECIALIZATION.

The workstation approach to handling peripherals can

be extended to cover any functionally specialized site.

If the site behaves as if it had a (basic) kernel and a

single domain which implements the special function then

it can easily be integrated into our distributed system.

A frequently proposed form of distributed system

(FU5172,5EL172,COLO76I gives, in our terms, every domain

a site of its own. The physical processors at these

sites 	(inevitably microprocessors) 	are tailored to the

domain resident at them.

We have already indicated, 	in 	chapter 	2s, 	our

scepticism of the effectiveness of modest sized systems

169

of functionally soecialized processors. 	We concede that

because of the smooth demand presented by a very large

number of users, functionally specialized sites may be

appropriate for large systems. this is providing that

the overall system is balanced for the load applied.

However systems such as ours necessarily precede the

implementation of such large systems because, for these

large systems, good estimates are required of the usage

of each domain. iithout this information bottlenecks are

almost certain to be designed into any such system built.

Our system could also mature into a system of

functionally specialized sites as it grew in size;

specialized sites could be added if they proved cost

effective.

SECTION 9: DEADLOCK AND DISTRIBUTED CUNIRUL.

Spier, when discussing requirements for code segments,

stated that they must be re-entrant so as to avoid

deadlock between two sequences of jnterdomain calls, such

as A->8->C and C>B->A [SPIE73aJ • i0en used for pure

domains and monitors that do not have condition queues

re-entrancy will indeed permit deadlock to be avoided.

However there is no such guarantee when dealing with

monitors that have condition queues. if a virtual

processor in a monitor wishes to retain, in effect,

exclusive access while it calls another monitor, it needs

to set a public variable so that other virtual processors

170

enter'iriy the monitor will test the variable and suspend

themselves on a condition queue. In such a situation two

virtual processors attempting the call sequences A>b and

8->A respectively, 	where A and E3 are monitors that have

condition queues, can be deadlocked. 	The banker's

algorithm for avoiding deadlock, of dubious usefulness in

single site systems because of computational overhead

tHANS731, is useless in a distributed system because it

requires that allocation of resources be centralized.

Thus to avoid deadlock of interdomain calls, we require a

hierarchical ordering of monitors that have condition

queues. A virtual processor that has entered, but not

exited, a monitor at a given level can only call monitors

at hioher levels. 	Thus the circular calling sequence

required for deadlocks is broken. 	Checks that monitors

obey this calling rule can be applied at compile time.

Unfortunately, 	it 	is not only when dealing with

interdomain 	calls 	that 	deadlock 	can occur in a

distributed 	system. 	Implicit 	over-allocation 	of

resources leads to deadlock. 	For example, if too many

virtual processors are permitted to operate in a

distributed system then there will not be enough memory

space at any site for an interdomain call to proceed. If

no interdornain calls can proceed then no virtual

processor can finish its work and release memory space.

The system will be deadlocked.

171

Since allocation of resources can be performed at any

site in a distributed system then over-allocation could

easily result. 	Allowing each site a fixed quota of the

system resources is one obvious method of control. 	But

to fix quotas that ensure over-allocation never occurs is

to condemn a system to almost' constant under-utilization

of resources and negates the purpose of joining the sites

of the system together in the first place. Resource

allocation can be done more intelligently 	if 	the

allocator 	has some knowledge of the state of the

distributed system. To this end we advocate the exchange

between kernels of a couple of carefully 	selected

parameters of the load at each site. 	We have already

outlined, in chapter 3, the mechanisms that can be used

to effect this exchange of information.

Ours is a pragmatic approach to deadlock avoidance.

Providing information about global status cannot negate

the possibility of deadlock occurring. But the frequency

of deadlock can, by altering appropriate 'twiddle

factors', be brought down to an acceptable level. 	In

this context it is worth quoting Hoare, 'There is no a

priori reason why the attempt to split the functions of

an operating system into a number of isolated disjoint

monitors should suceed....' Ll1OAR74a). The question is

just how much information do isolated monitors (kernels)

need in order to compete with hierarchically controlled

systems, often silted up with too much information, and

subject to the delays of bureaucracy, ae believe that

172

just a few bytes of information about the global state of

a distributed system will suffice.

SECTION 10: SUMMARY.

This chapter has presented a miscellany of items

connected with the implementation and operation of a

distributed system. Not every function required for a

distributed system needs to he developed from scratch.

Those functions of a single site system that do not, or

need not, rely on system wide shared memory can be

adapted, with little, if any change, for distributed

systems. Addressing is modified by the addition of a

site identifier, indicating where in the dispersed memory

of a distributed system the address refers. The concepts

of semaphores and conditional critical regions, which

require common memory and a central queue of suspended

virtual orocessors respectively, cannot be readily used

in distributed systems, but monitors, with condition

queues, can be used, because they localize the management

of waiting virtual processors to single domains. Again

the bankers algorithm is unsuitable 	for 	deadlock

avoidance in distributed systems but the hierarchical

ordering of calls, enforceable at compile time, can be

adopted without change for a distributed system.

Our requirements for language development stem from

the particular form of distributed system, domain based,

173

that we have chosen. 	Jhile developments in programming

languages, particularly recent developments in

programming concepts for handling concurrency, mirror

many of the features of our model for a distributed

system, languages developed so far are wedded to single

site systems. They offer no help in constructing

reasonable sized domains, their Parameter passing

mechanisms are too general to be efficient and many of

them permit references or adoresses to be program data

which is only feasible when the whole program resides in

the same address space. But the requirements for a

language for writing distributed systems are not esoteric

and we do not think the design of a suiteole language

will be difficult.

However 	distributed systems do require some new

techniques. One example is peripheral handling, when

peripherals are considered as free standing entities not

controlled by one particular site. Another example is

the need to encode the state of each site into a few

bytes of information and exchange this information

between sites so that resource allocation decisions can

be made with reference to the global state of the

distributed system. The whole technique of managing

domains is of course different for distributed systems.

Although we presented the basics of domain management in

chapter 6 there are still 	some important aspects of

domain management to be dealt with. 	Having presented a

picture of some of the wider operational aspects of a

1 74

distributed system in 	this chapter, we return, in the

next chapter, to the narrow details of domain management.

175

CHAPTER 8

DOMAIN MANAGEMENT

This chapter is concernea both with the protocol 	for

the movement of code and public segments and with the

determination of where domain incarnations should take

place, 	it continues the development, started in chapter

, of the mechanisms required for handling interdomain

jumps in a distributed system.

To aid the clarity of the following description we

have altered our use of the term 'domain'. Ne have

stated before that the code segment and possible public

segment identify a domain. 	ve now actually equate the

domain with these segments. 	Thus when we write of

domains being at a site or being moved from site to site,

what we mean is that the code segments and possible

public segments are at a site, or are being moved.

1 76

SECTION 1: MOVEMET OF L)OMA1sJS.

Introduction:

Code and public segments are the only segments shared

between virtual processors and hence greet care must be

exercised in moving them from one site to another.

Problems that could arise include the moving of segments

away while they are being used, moving them away after an

entry capability referencing them has been put in the

'ready to run' queue or never moving them because there

is always some entry capability in the 'ready to run'

queue which references them. Management of domains then

requires tnat they are not moved prematurely and that all

sites will get access to them within a reasonable period

of time.

A kernel of a site can receive three typos of message

or request related to a domain

A request, in the form of a putative entry capability,

to 	perform 	a 	'best' 	site calculation for an

incarnation of the domain; called a crequest.

A request, also in the form of a putative entry

capability 	(but 	with a suitable distinguishing tag

from the above c-request), to execute a 	aomain

incarnation. 	That 	is, the site has, been chosen as

the 'oest' site. 	This we call an e-request 	in this

chapter.

177

3) A request to transfer the domain (the code and

possible public segments) to another site, called a

t-request.

A site will only receive these requests if it is supposed

by other sites to have the domain resident at its site,

we call a site which is supposed to be the site of

residence of a domain, the target site for the domain.

The correspondence between target and reality depends on

the method of global object management (chapter 3), 	In

an associative scheme the target 	is the same for all

sites. Also if the updating of the associative memory in

the interface unit is performed as soon as a domain

arrives then the target site will (almost) always be the

correct site. in a system that employs the updating of

directories the target for a request could be quite out

of date; the directory entry could be changed after the

request was addressed ana put in a queue for

transmission, the message to update the directory could

be delayed. In what follows, we assume a distriouted

system using directory updates, as it is obviously the

more difficult case, and we make our strategies robust

against old information.

178

Pure domains:

The management of pure domains is easier than dealing

with monitors so we describe a strategy for pure domains

first.

In our distributed system there is one 'original' of a

code segment of a pure domain and possibly many copies.

Whenever a kernel receives a trequest for the code

segment of a pure domain, 	the original 	of which is

residing at its site, 	it sends off the code segment

immediately but keeps a copy. 	The kernel then decides

what to do with the retained copy:

If the domain was being used when the t-request

arrived, or there is some 'ready to run' incarnation

of the domain then the copy is kept.

If the domain is not required and the kernel is short

of memory space then it deletes the copy to free

space.

If the domain is not required but 	there is already

sufficient space at the site then the copy is kept so

that there is no need to fetch the original 	from

another site if the kernel's site is subsequently

chosen as 'best' site 	for 	another 	incarnation

involving the same domain.

The original 	is sent 	from site to site because the

sending site may have no use for the code and so could

reclaim the space occupied by it immediately, whereas the

179

requesting site obviously always has a reQuirement for

the code. Immediately prior to sending the code segment

to the new site the kernel broadcasts the identification

of the new site so that other sites can update their

directories. The other sites sending messages related to

the domain will, eventually, having updated their target

site, send the messages to the new site.

If a t-request arrives when either there is only a

copy or no segment at the site then it is passed on to

the target site for the original. but if the kernel has

itself sent off a t-request then it 'reserves' the domain

for the site of the incoming t-request. The kernel sends

off the original of the code segment, keeping a copy, as

soon as it arrives. 	If a trequest arrives after the

kernel 	has reserved the code segment for another site

then it sends the t-request off to that other site. 	A

chain of sites, 	each having reserved the domain, could

build up if there were delays in the segment being

transmitted from site to site.

When a c-request, a request to have a 'best' site

calculation performed, arrives at a Site the kernel

follows one of the following courses of action.

If the original 	of the code segment is present then

the 'best' site calculation is performed and the entry

capability validated as usual.

If a copy of the code segment is present then the

'best' site calculation is performed. 	If the kernel's

180

own site is chosen as 'best' site then the entry

capability is validated as usual, but if another site

is chosen then the crequeSt is sent off to the target

site of the original 	for the calculation to be

repeated. 	Ihis is done to encourage the aggregation

of all 	incarnations of a particular domain to be at

one site (see later).

3) If, when the c-request arrives, the kernel is already

expecting the original from another site (that is it

has dispatched a trequest), then the c-request is put

in a queue to await the arrival of the coae segment.

When it arrives the 'best' site calculation is

performed as usual for all entries in the queue.

L) if none of the above conditions prevail 	then the

kernel 	passes on the c-request to the site it

considers to be the target site for the domain.

Figure 8.1 is a state diagram for the management of

pure domains. 	It details the various transitions and

actions (outputs) that can occur 	when 	c-requests,

t-requests and domains arrive at a site.

181

STATE DIAGRAM FOR MANAGEMENT OF PURE DOMAINS.

STATES: -

0 original of domain is at site 0 original resides elsewhere
C a copy of domain is at site C no copy held at site
T domain requested but not arrived T no outstanding t-request
R domain reserved for 'next site' R not in chain of sites
'W outstanding work for domain Ti no work for domain

Inputs are given in lower case, outputs are given in upper case.
When an input causes no change of state and no output it is omitted.

PASS TO TARGET
-request

ELETE COPY OF DOIAIfl
---,^c--request
PASS TO TARGE

e-red'uest

T-REQUEST
ISS1Ei)

cPASS TO NEXT SITE-
1

f
'NEXT

._3
	c-reque4st

TINQUEUE
	

CPUT IN QUEUE
dorain 	 • 	 do -iain
arrives 	 arçives I 	 . 	DO CALCULATION

DO CALJLATION 	 ON QUiJE OF
ON QE OF 	 C-REQUESTS
C-REQUESTS

0 C T R J

wdtk
finished

0 r
ORIGINAL

ASS TO TARGE
t-reques t

_-t-requcs t___j' OFF ORIGINAL' - 	c KEEPING COi'I
-request 	 c-request

CALCULATIONJ 	
cIO.

CALCULATIONJ
ASS TO TARGET

WOrK
finished

e-r ëa ue St

- 	 ASS TO T

t request 	SEND OFF ORIGIN
t-request

	

c-request-- 	
KEEPING COPY 	 0 C T R W

CALCULATION 	 Q requeSt
O CALCULATION! 	

sho

	

ifsite not 	
PASS TO TARGET'S 	of

rt
space

Figure 8.1

Monitors:

When we are dealing with monitors we cannot make

copies of the segments involved and send off 	the

originals when t-requests arrive. 	Basically what the

kernel does in this Situation is to reserve the domain

for the Site that issued the t-request. It refuses to

process any more c-requests for the domain, sending them

on to trie site that requested the domain, where they are

queued uo. Eventually there will be no more work

outstanding at the site where the domain resides so the

kernel can then send the domain off to the requesting

site. For the sake of efficiency we introduce a

modification to this strategy depending on the type of

work outstanding.

When a kernel sends off requests to other kernels for

the segments required to make up a domain incarnation it

notes, amongst the information it keeps about every

domain, that there are some 'external segments'

outstanding. 	Also, 	every time a domain incarnation is

placed on the 'ready to run' queue this is noted against

the relevant domain. 	Ahenever segments arrive at the

site, 	or domain 	incarnations 	finish execution, 	this

information is amended appropriately. Thus kernels can

tell whether outstanding work is all at the site or some

of it is awaiting the arrival of segments from elsewhere.

183

In tne case where some of the outstanding domain

incarnations are awaiting segments from other sites, 	the

kernel 	will 	still evaluate incoming c-requests after it

has reserved the domain for another site. If all the

segments specified in a c-request are at the local site

already, then that domain incarnation is placed in the

'ready to run' queue but otherwise that c-request is

passed to the next site, to be queued for re-calculation.

Once there are no outstanding external segments all

c-requests are passed to the next site regardless. 	1- his

modified policy means that a kernel 	can perform useful

work while waiting for a segment to arrive from another

site, but it cannot hold onto a monitor indefinitely.

Any t-request that arrives after the domain has been

reserved for another site is sent to that site, ihe site

which has requested the domain reserves it for the first

site from which it receives a t-request, 	by setting a

'next site' pointer to the requesting site. 	Thus, again,

a chain of sites wanting the domain could be built up.

However, because no c-requests (except those involving

only segments at the local site) are processed after the

first t-request is received, 	the chain must terminate

quite quickly. 	ithen the monitor arrives at the first

site that it was reserved for, there may be a queue of

c-requests waiting to be dealt with. One policy with

respect to these is to process them irrespective of

whether or not there is a subsequent outstanding

t-request. Figure 8.2 gives a state diagram for managing

184

monitor
arrives

I
DO CALCULATION

ON QUEUE
OF C-REQUESTS

monitor
arrives

I
DO CALCULATION

ON QUEUE
OF C-REOUESTS

STATE DIAGRAM FOR THE MANAGEMENT OF MONITORS

STATES:
11. monitor at this site 	 H
T monitor requested but not arrived 	I
R monitor reserved for 'next site' 	R
U outstanding work for monitor 	U
E 	segments still to arrive 	 E

Inputs are given in lower case, outputs are
When an input causes no change of state and

monitor at another site
no outstanding t-request
not in chain of sites
no more work at this site
no external segments

given in upper case.
no output it is omitted.

-EQUEST ISSUED 	e_reques,_ 	
TO NEX PASS

t-request est
-request-SET 'NEXT SITE

_reque
—

LPUT IN QUEUEJ I
-,4c -reque s t -'
UT IN QUEUBs

it T R W E

(PASS TO NEXT SITE \
Lt_reques

 'NEXT SITE'-4(MT R W E 'I E _ reques—t-req uest—SET

~cDO
-request
 CALCULATION! 	I I CALCU LATION-' 	

PASS TO NEXT SI TE ,/'
e-request last 	 - e-reques t
involving external 	 involving
external 	segment 	 last x ernal external
sempts 	arr4yes 	 segment arrives 	segments

TO NEXT SITE C1ASS
t-requ es

t—SET 'NEXT SITE
-request

ELCULATIO
(-c-reques

DO '-PASS TO NEXT SITE

6-r quest work
with all work finished
segments finished

here SEND MONITOR TZ TO NEXT SITE

DO CALCULATION 	 PASS TO TARGET 	J
Lt_reques t

T R ~1 ED t request
-

 SEND OFF MONITOR 	11 T R U E
c-reques t

* 	 '-PASS TO TARGET1
D PASS O NEXT SITE.if any external segment woui 	e involvea in incarnation.

Figure 8.2

monitors hieh embodies this policy.

Observations:

It remains to be shown that the two strategies we have

outlined above give rise to desirable behaviour.

Firstly, domains are not removed prematurely from sites

in the following sense: if there are any segments being

fetched from another site for an incarnation of the

domain or any incarnations at the site are ready to run,

or indeed running, then the code and possible public

segments for the domain incarnation will not be moved

until the relevant domain incarnations have run.

Secondly, because either the domain is dispatched to the

next site in the chain immediately, in the case of a pure

domain, or as soon as all outstanding work is completed,

in the case of a tnonitor, the domain will not remain at a

site indefinitely once a t-request has been received

(assuming that domain incarnations are of limited

duration).

Showing that all 	sites 	which 	issue 	trequests

eventually receive the domain, requires more formalized

argument. 	Our first concern is to show that a trequest

never gets lost 	in a closed loop of reservations (each

site reserving the domain for its successor with the last

site reserving the domain for the first site). We make

the following assumptions.

186

Assumption 1: No site issues a repeat of a t-request

until it has actually received the domain and passed

it on to another Site.

Assumption 2: After a domain has left a site, the target

of that site for the domain, can be any of tree sites

subsequently visited by the domain. The target cannot

be any site not visited by the domain since it was

last at the particular site.

Assumption 3: The relative speeds of 	movement 	of

t-requests (and c-requests) from site to site and of

domains from site to site is such that a domain cannot

always stay one step ahead of a t-request (or

c-request).

By assumption 1 there can be no loops in the chain of

reservations whose head is the Site where the domain is

currently resident (we call this the main chain), because

a site that is in this chain has not received the domain

and so does not send out extra t-requests. Nor does a

site produce forks in the chain by reserving the domain

for two or more other sites.

It is possible for temporary independent chains to

form. 	A site issues a t-request and before it becomes

part of the main chain a second site, 	having the first

site as its target, 	sends it a t-request so that the

second site is duly noted as 'next site' 	for the first

site. 	But 	since the 	first 	site is a target for the

second Site then, by assumption 2, the set of possible

187

targets, direct and indirect, for the trequest of the

first site cannot include the second site. This argument

can be extended to any other site that subsequently joins

the independent chain, so that it is impossible for the

outstanding t-request of the first site to arrive at any

site in the independent chain and so form a- closed loop.

By assumption 3 the outstanding trequest of the head of

this indeoendent chain will eventually reach the main

chain and the whole independent chain will be appended to

it.

Now that we have shown that no closed loops form we

can state that every trequest issued results in a site

reserving the domain for the issuer of the t-request.

Since, once a domain has arrived at a Site where it has

been reserved for another site, it is eventually

dispatched to that site, by 	induction the domain will

eventually arrive at every site that issues a trequest.

The validity of the above conclusion, that every site

that issues a trequest 	will 	eventually receive the

domain, 	depends 	on 	the correctness of the three

assumptions listed above. 	Assumption 1 is a matter of

the policy implemented in each kernel. 	In a directory

update system, assumption 2 requires that no update

messages issued prior to the domain arriving at a site

are accented by the site after the domain has left the

site. This could be ensured by affixing a generation

number to each update message and allowing a site to

188

accept an update message only if its generation number is

greater than that of the previous update message it

received. But we feel that in a real system it is very

unlikely that messages will get that out of date before

being acted upon. Likewise we feel that in a real system

no special precautions would be needed to ensure that

assumption 3 is correct. A monitor, when it arrives at a

site, must have some work to perform before it can move

again. The original code segment of a oure domain can

move as soon as it arrives at a Site, but as it leaves

behind a copy it would soon run out of sites where it was

required. Also communication subsystems may well

transmit c-requests and t-requests with higher priority

than whole code and public segments because the former

are likely to be very short.

It might be supposed that it would be better for a

kernel to broadcast the identity of the next site in the

chain as soon as it had made the reservation of the

domain for that site. Subsequent t-requests could then

be sent to the end of the chain with considerable savings

in overheads compared with the strategy we have outlined,

where normally t-requests will arrive at the top of the

chain and have to be passed through every site on the

chain to the end of the chain. Disregarding the

likelihood of long chains building up as being very

small, an equivalent scheme would indeed be possible for

associative type global management. But in the case of

updating 	directories, 	such a scheme leaas to the

189

violation of our assumption 2 and could give rise to a

self-contained loop of reservations for a domain. So the

extra overhead of passing t-requests down each site in

the chain is unavoidable if we are to use a directory

update scheme for locating domains.

SECTION 2: THE 'BEST' SITE CMLCULF1Og.

In the first part of this chapter our concern has been

to show that, once it has been decided that a domain

incarnation will take place at a particular site, the

domain will actually move to that site. Ne now look at

the decision procedure for determining at what site a

domain incarnation will take place.

The determination of where the next domain incarnation

is to take place is the keystone of our distributed

system. If domain incarnations are moved around the

system too frequently, virtual processors will be subject

to extra transmission time delays and the communication

subsystem may become overloaded. If movement is too

infrequent then the loading at different sites can be

become seriously unbalanced, some sites idle while others

are choked with work.

In discussing the OCS system in chapter 	4 	we

criticized open bidding for work by all sites as taking

too long and putting too great 	a 	load 	on 	the

190

communication subsystem. 	Our approach can be likened to

a single tender policy. 	An attempt is made to identify a

Site that will 	run a domain 	incarnation quickly and

preferauly 	with 	minimum 	demands 	olacea upon the

communication subsystem. This site, the 'best' site, is

passed the entry capability for the domain incarnation.

The situation at this site, and to a lesser extent in the

rest of the distributed system, may have altered

significantly between the time of generation of the

information upon which the decision was made, and the

time when the kernel examines the newly arrived entry

capability. 	So if the 'hest 	site, on the information

available to it, calculates that another site would be a

substantially better choice, then it sends off the entry

capability to that site. 	This site also has the freedom

to accept or reject the domain incarnation. 	(A maximum

number of transfers can be set to stop the domain

becoming a hot potato).

So there are two types of calculation to be described,

one to nominate the initial 'best site and the other to

decide to accept or reject the nomination. be assume

that each site has a table of the number of virtual

processors at each site in the ready to run' queue, or

some similar measure of outstanding work, and a table of

the amount of free memory at each site. This information

would oe gathered from the exchange of status information

described in chapter 3.

191

The initial calculation:

The 	initial 	calculation at 	the code site considers

(normally) only three possible sites as candidates for

'best' site.

the site of the code and possible public segment

the site of the processor base segment and any

local segments that are parameters; since they were

part of the domain incarnation being exited, 	the

parameters 	will 	be at 	the same site as the

processor base segment

the site of any other local segments which, 	since

they were all last used in the previous incarnation

of 	the domain being entered, will all 'be at one

site.

If the code segment cannot move because it is 'tied

down' to drive a peripheral attached to a particular site

then that site is chosen as 'best' site, Otherwise the

basic policy is for the code site kernel to consider the

total size, at each distinct site, of segments for the

domain incarnation. 	The site with the largest aggregate

size is chosen as the 'best' site. So, when all the

segments are at the same site that site is chosen, and

otherwise transmission on the communication links is

minimized.

Minimization of communication bandwidth requirements

is only one of a number of criteria that can be

192

considered. 	before the aggregate sizes are compared

there are a number of biases that can be applied to them.

Since the calculation takes place at the code segment

site it is possible to know how many other virtual

processors are using the domain (i.e their domain

incarnations are in the 'ready to run' queue). if the

domain were to go to another site then either these

domain incarnations would have to follow (if they are

re-entered again) or the domain must return to the

original site. Hence the size of the domain (the code

and possible public segments) can be biased upwards by

a 	factor 	representing 	its 	outstanding 	work,

encouraging incarnations for the same domain to be all

at the same site.

The load, that is the number of ready to run domain

incarnations, 	at each of the three possible sites can

be taken into account. 	if the domain incarnation is

sent 	to a 	lightly 	loaded site it will oe executed

quicker than at a heavily loaded site. And if

transmission times are less than average execution

times, substantial advantages accrue by choosing an

idle site rather than a site with even one other

domain incarnation to run. Thus sizes can be biased

downwards by a factor representing the overall load at

a site.

A kernel 	is 	likely 	to spend a lot of its time on

memory management if it has very little free memory

left. 	Not only should attempts be made to balance

193

I oads at sites but alSO an attempt should be made to

ensure that a site does not run out of memory space

when other sites have plenty available. So the sizes

of segments can be biased upwards proportional to the

amount of free memory at their site. This will

encourage migration away from sites with little free

space.

L) A good part of a computation may consist of repeated

calls between the same pair of domains, or, more

generally, a repeated sequence of calls. If the

domains reside at different sites and all are larger

in size than the processor base segment then the

processor base segment could continually travel

between the sites concerned. Obviously the

computation would oroceed faster if all the domains

were at one site. If a 'shadow' stack is kept with

the processor base segment it is easy to generate a

count of how many consecutive interdomain jumps have

been made in the same sequence of calls. If this

count is used to bias upwards the size of the

processor base segment then eventually all the domains

involved will come to the same site. In particular

domains that call 	'tied down' peripheral 	handler

domains will 	tend to migrate to the site of the

handler domain. 	Of course, if a computation uses two

or more perioherals controlled from different sites

then the processor base segment, together with

parameter segments, is doomed to traverse back and

forward between sites. This observation lends weight

194

to the desirability ot 	the workstation approach to

controlling peripherals (chapter 7).

The effects of the first stage calculation can oe

summarized as follows:

It effects at most three sites and it tends to balance

the load and free memory of these sites.

It tends to aggregate all incarnations of one domain

at one site.

It tends to localize to one site domains that are used

together.

Other things being equal, it minimizes the load on the

communication subsystem.

The second stage calculation:

The first stage calculation we have described above

only takes into consideration a maximum of three sites,

and nominates one of them 'best' site. A site that is

completely idle would have no way of breaking into the

circle of the elect if only this calculation were used.

The criteria we use for accepting or rejecting the entry

capability at the 'best' site overcomes this problem.

Assuming that the domain is not 	'tied down 	at its

site, 	the 'best' site kernel scans the table it has of

the loads at other sites and if some other site is

substantially 	less busy than itself (and, according to

195

the free space table, has the space to accomodte the

domain incarnation) then that site will be nominated as

'best' site. If the kernel does not find a suostantially

less busy site then it checks to see if its own site has

enough space not only for the incoming segments but also

for any temporary local segments that have to oe created.

If it does have the space it accepts the entry

capability, requests any external segments to be sent to

it, and eventually schedules the domain incarnation ready

to run.

If the kernel does not have enough space then a

second, less critical, scan of the load and free memory

tables is made to find a site that does have enough

space. If no such site can be found, or the domain is

tied down to the present site, then the incarnation is

placed in a queue of incarnations waiting for space. It

is when the distributed system has sites that have

reached this stage that the danger of deadlock becomes

real. 	In the case of an incarnation of a domain that is

tied down, 	the kernel could scan its ready to run queue

and invalidate the entry capaoility of an incarnation of

a domain that is not tied down, in the hope that this

incarnation will move to another site and so release

space for the tied down domain incarnation.

The effects of the second stage calculation can be

summarized as follows:

At low loading of the system it 	has 	little effect,

196

there is no point in moving computations to idle sites

if they leave an idle site behind.

At moderate loading of the system the policy is to try

to keep all sites busy.

At heavy loading of the system the concern is more

with finding space for incarnations.

SECTION 3: REMARKS ON DOMAINS IN 0ISTNIUIED SYSTEMS.

This chapter concludes the 	description 	of 	our

kernel/domain model for distributed systems presented in

chapter 6. 	Together these two chapters extend the field

of application of domains. 	Hitherto domain management

using capabilities has been centred around single site

systems. 	This is because central 	taoles have been

required to implement the capability mechanism. dy

restricting the sharing of segments and providing a

global object management scheme to cover the essential

sharing required, we have been able to dispense with

central tables and hence distribute domain management.

Our main goal 	in achieving this extention has been to

facilitate dynamic and efficient 	load sharing but our

model can equally well be used to provide, in distributed

systems, the protection normally associated with domains

in single site systems.

197

CHAPTER 9

DESCRIPTION OF SINULATIU

The developers of the DELTA language, a successor to

SIMULA 67, say in an introduction to a definition of the

language,

'Computer simulation has become 	an 	important

methodological tool in the study of systems. luite

often, 	the actual 	simulation model 	runs on the

Computer provide useful 	information. 	What 	is

nearly 	always useful, 	however, 	is the effort

invested in writinq the simulation program. 	This

work requires a careful attention to both the main

structure of a system and to its details. 	The

result 	is often an understanding which makes the

later 	computer 	analysis 	less 	important 	in

comparison.' EHOL8751

We have written a simulation of a distributed system.

Our main ourpose in writing it was to make sure that our

concept of the requirements for a distributed system was

complete. Our major interest was to learn more of the

problems 	of 	distributed 	computing rather than to

accurately predict performance. 	i'evertheless there were

two 	semi-quantitative 	questions 	of 	considerable

importance that we wished our simulation to provide

198

guidance upon. These were;

What would be an adequate bandwidth, approximately, to

support what could be a considerable movement of

segments?

Would increasing the number of sites in the system

give close enough to a linear increase in power, or

would overheads swamp the modest decrease in response

time predicted in chapter 2 (figure 2.9)?

but perhaps the question of greatest concern to us was

that of stability. We wanted to determine if we would

achieve stable load balancing using the various

strategies we have outlined for distributed control. The

demonstration that stability could he achieved in a

simulation would bode well for its achievement in an

actual implementation.

The system we simulated uses directory updating for

global object management and appends status information

to each message (see chapter 3). 4e discuss the results

of our simulation in chapter 10. 	The actual 	simulation

program 	and some sample outputs are reproduced as

appendix A.

199

Choice of language:

live chose SIMULA 67 [DAHL72J as the language in which

to write our simulation program. The CLASS concept of

this language allows for the easy and flexible definition

of objects in the simulation, 	the built-in CLASS of

Simulation provides 	facilities for linking objects into

lists and primitives for handling the flow of time.

These features are expanded upon in a tutorial paper by

Ichbiah and Morse LICI-4B74i. We assume familiarity with

the language in the rest of the chapter.

When we came to use SIMULA 67 we found it had a number

of drawbacks. 	The first 	is 	that 	it uses a single

precision real variable for representing time. In a

computer system's simulation the span of times that are

of interest ranges from instruction execution times, of

the order of one microsecond, to say a total simulation

time of two hours. With 7 digits significance, as for

the IBM 360 version of SIMULA, lack of differentiation

(HUTC68I of events would occur after the simulated time

reached 10 seconds. in fact in our simulation the

smallest period of interest was around 100 microseconds

and, because of the expense of computer time to run the

simulation, its duration (in simulation time) was around

1000 seconds, so we just avoided the problem.

Our second problem arose from a language rule that

classes can only be used as a prefix at the level 	at

200

which they are declared (or in the case of system classes

at the level enclosed by the simulation block).

Declarations of the form

Simulation BEGIN

Process CLASS communication—system;

• . . .

CLASS site;

Process CLASS kernel; 	... ;

Process CLASS clock; ...

. . . .

EAJO of class site;

. • . .

END of simulation block;

are illegal!

All objects that make up a site have to be declared at

the outer level, including all objects that are linked

into queues inside the kernel. This has produced a large

separation in the program between the declaration of

objects and their use. The program structure is not

clarified by this separation.

Another problem was that none of the implementations

of SIMULA 67 that we had access to, IBM SJMULA versions

02.03 and 014.00 on IBM 360/65 and IbM 370/168 under US,

and Oec-10 SIMULA KA version 1C, could garbage collect

correctly. This meant that the creation of new objects

during the simulation had to be severely curtailed so

that ciarbage collection would be invoked infrequently;

201

thus lessening the chance of garbage collection being

invoked in a situation that the implementation could not

handle. 	This restriction, while perhaos aiding the run

time of the simulation, 	has 	led 	to 	considerable

artificiality in the program. For example, instead of

control messages being created when required, acted upon

and. abandoned (to be garbage collected) instances of

every type of control message have to be created at the

start of the simulation and the same instance altered for

each individual message.

The implementations had other faults also and we

finally abandoned work with the I3M versions. We should

note however the high compatibility between the languages

accepted on the various machines. lrIe moved our program

from IBi to Dec versions and it immediately compiled. We

also performed the reverse move at a later date, and with

the assistance of a short conversion program, again

achieved immediate compilation.

The basic structure of the simulation:

SINULA 	67 simulations use the Process class to

describe entities in the simulation that are active. 	in

our simulation there are six types of process. 	Each

process is activated by some process 	(except 	for

initiation), performs some actions, which can include the

activation 	of other processes, and then passivates

202

itself. 	The activation of a process by another can be

specified to take place immediately, or after the actions

of the activating process are complete, or with a

simulated time delay. Figure 9.1 depicts this simple

description. The six types of process are:

Process CLASS kernelc;

(lines 573 to 1918 in the program in appendix A).

Each kerneic instance simulates the behaviour of a

site and its kernel.

Process CLASS clockc; 	(lines 3112 to 3139).

For each site there is a clock 'ts.,clock, 	which can

be set to interrupt the site.

Process CLASS s_channelc; 	(lines 299 14 to 3029).

Each site has one s_channelc instance to handle the

transmission of messages to other sites.

14) Process CLASS consolec; 	(lines 3035 to 30914).

This class simulates the action of a user, presenting

the distributed system with work, waiting for the work

to be performed, waiting for a 'thinktime' period and

then presenting another request for service from the

system.

Process CLASS diskc; 	(lines 3271 to 3319).

There is a instance of this class for every disk in

the distributed system being simulated. 	the function

of this class is to define the delays in accessing

information on a disk.

Process CLASS disk..,controllerc 	(lines 3151 to 3263).

There is one instance of this class for every disk.

It deals with communication between the disk and

203

Sequencing in a quasi-parallel process

Figure 9.1

sites, and does Some buffering of requests for use of

the disk.

Segments:

The basic entity of the domain oriented system we have

described in the previous chapters is the segment. The

simulation however uses more basic entities than this.

All objects that are to be queued in the system have to

be Link CLASS objects. All objects that are transferred

between sites, that is inter-kernel control messages and

segments, belong to the Link CLASS contentc (line 530).

The attributes of a contentc object are a length, an

origin site, a destination site and status information of

the origin (for the updating of the destination network

status tables described in chapter 3).

A segment is one of the subclasses of the contentc

class (line 546). 	Additional attributes include site and

key to the hash organised segment 	table at that site.

Each of the types of segment in our model are represented

as subclasses of the segment class. 	Ihus we have:

segmentc CLASS domainc; 	(line 2061).

The 	extra 	attributes 	of this class are an

identification number or name (did) and an indication

(tied) as to whether or not the domain must remain at

one site always. This class also defines a set of

kernel calls such as requests for interdomain jumps.

205

domainc CLASS rnonitorc 	(line 21i)

This class distinguishes the sizes of the two

segments that make up the basis of a monitor, c...size

being the size of the code segment and db,size being

the size of the public segment. The two segments are

always treated as a single unit in the simulation.

monitorc CLASS secretaryc; 	(line 2172).

This class corresponds to monitors with condition

queues (chapter7). Its extra attribute is a queue,

myq, and it provides procedures for 'first in first

out' manipulation of the queue. It also provides

procedures for the creation of a secretary processor

and control procedures for it.

segmentc CLASS virtuaprocessor 	(line 2227).

The attributes of this class 	include information

for the kernel, 	such as priority, a stack of entry

capabilities and space for parameters.

segmentc CLASS locaL.seq 	(line 2328).

This class includes a procedure for moving local

segments from entry capabilities to Alists. 	The

handling of 	local 	segment capabilities is not as

general as the description given in chapter 7, mainly

because of difficulties arising from not being able to

dynamically create and delete either local segments or

entry capabilities.

206

The relationship of the various classes in the simulation

is depicted in figure 9.2.

The action of the kernel:

The basic action of the kernel is to examine entries

one at a time from the 'ready to run' queue, called

driverq in the simulation (line 1623). Its action

depends on the type of the entry. tJhen driverq is empty

the kernel is idle and so passivates some other process

class object, usually in the communication subsystem, has

to activate the kernel again, which is done by calling

the procedure switch—context (line 1528) when it has

placed a new entry in driverq.

The queue driverq has in fact 4 priority levels;

'high', 'monitor', 'medium' and 'low'.. The class

definition and associated procedures are given in lines

217 to 284. At each priority level entries are queued

first 	come 	'first 	served. 	Entries at the 'high' level

pre-empt kernel attention 	from 	lower priority 	levels.

After execution of all tasks at the 'high' priority

level, execution of the the first entry in the next

highest priority, non empty queue takes place. Since all

entries to 'monitor', 'medium' and 'low' are the result

of executing 'high' priority tasks the effect is that

each 	level 	preempts lower levels. 	The use of the

various levels is as follows:

207

rtk

contentc 	 Profess

segmentc 	kerñelc clo'ckc s_charne1c cons1olec dikc disk_coiitro11erc

Virtual_p ràcessorc 	local—sag dominc

	

monitorc tye1 	compiler 	user supervisor

secrEtaryc 	tye2

command 	diskhnd1er

THE CLASS HIERARCHY OF OUR SIMULATION

Figure 9.2

high: All messages requiring kernel 	attention 	including

putative entry capabilities for domain incarnations,

but excluding valid ready to run domain incarnations,

are queued at this level. Any entry arriving on this

queue preempts kernel attention from lower priority

levels, by executing the switchcontext procedure if

necessary.

monitor: All valid (i.e. ready to run) 	incarnations of

monitors are queued here. 	Since this is the highest

level of valid domain incarnations once an incarnation

is at the top of this queue it will remain there until

it gives up control to the kernel, ensuring the

exclusive access we discussed in chapter 7. 	For

although any high priority 	message 	will 	cause

execution 	of 	the 	monitor 	incarnation 	to 	be

interrupted, there is no way to put a valid

incarnation ahead of the interrupted one in driverq.

So when the interruption has been dealt with the

original monitor incarnation will be resumed.

medium and low: All other valid domain incarnations are

queued at these two levels. 	hen a virtual processor

has 	had 	a 	period 	of 	service 	greater 	than

'longtimeslice' 	since 	it 	last 	interacted with 	a

console, 	it 	is moved from medium priority to low

priori ty.

Although we have not used such a category we suspect

that 	in a real system a 'top' priority may be required

for 	initial 	loading and dealing 	with 	catastrophic

209

fai lures.

The kernel contains some general sections of code to

assist it in handling the various driverq entries. These

sections are:

Memory management. 	(lines 640 to 776)

The program does not simulate any particular memory

management policy. It just keeps count of how much

free space there is and increases the simulated time

taken to grant space when there is not much free

space. The memory management section handles the

possible queue of domain incarnations waiting for

space. Two queues are kept, one for small requests

which are given priority, and one for larger requests.

Included also in this section is the procedure

'make—space' which scans information about domains to

delete copies of pure domain code segments when space

is scarce.

Segment management. 	(lines 778 to 846)

This 	section 	provides procedures for adding,

deleting and retrieving segments at a site. A hash

function is used on the unique identifiers of segments

(key) so that the segment table at each site can be

kept reasonably compact. The simulation blurs the

distinction between a capability for a segment and the

segment itself. A capability contains all the

attributes of a segment and thus is analogous to an

210

instance of the class seqmentc, which contains all the

attributes of a segment as well. Thus, for example,

there are always exactly two references pointing to an

instance of a local_seg. One, stored in an entry

capability, represents the capability for the local

segment, the other one, stored in a segment table

(except when the segment is being moved from site to

site), represents the segment itself.

Communications interface. 	(lines 648 to 941)

This section of the kernel 	interacts with the

communication subsystem. 	INhen a message arrives the

status information it contains about the sender is

examined and the message is placed in driverq. in the

case of the message being a segment, the segment is

registered in the segment table.

The kernel places all messages it wants to send to

other sites in one of two queues. The higher priority

queue is for short control messages, the other is for

segments. 	Each time the s_channelc process has

finished transmitting a message it 	interrupts the

kernel, by placing a message in driverq and calling

switchcontext. The kernel releases the space the

message occupied (except perhaps when the message was

a pure domain code segment) and initiates the

transmission of another message if there are any to be

sent.

Broadcasting is performed by placing individual

messages for all the other sites in the send queue and

211

transmitting them serially.

Load monitoring. 	(lines 9143 to 1025)

Part 	of the heuristics for avoiding deadlock

(chapter 7) are contained in this section. 	Its main

purpose is to monitor the amount of free memory at all

sites, including its own, and maintain a boolean

'overload' which it sets when the free memory in the

total system has diminished past a critical amount.

The procedure 'ootimum_site' is used to assist in the

second stage 'best' site calculation for domain

incarnations.

Domain management. 	(lines 1027 to 1526)

The various procedures in this section implement

the strategies outlined in chapter 8.

The 	other 	main 	procedures 	in the kernel are

switch—context, which we have already described, and

execute. The procedure execute (line 15143) simulates the

execution of a domain incarnation. Since domain

incarnations can be interrupted the simulation of their

execution requires some care. Our simulation program

allows the action of each domain to be broken into as

many as five steps, and associates with each step an

execution time. The kernel process passivates itself for

the execution time of the step and then 'instantaneously'

executes the step. If the action of the step does not

result in the termination of the domain incarnation (that

212

is 	its 	removal 	from driverq) 	the kernel process

passivates for the duration of the execution time of the

next step after which it 'instantaneously executes that

step, and so on. 	During any period of the kernel being

passivated 	it can be activated by another process

executing the switch context procedure. 	Since the

interruption may result 	in another domain incarnation

being placed in driverq at 	higher priority than the

incarnation whose simulated execution was interrupted,

the name of the next step and the time remaining until it

was due to be executed (runtt) are stored with the entry

capability for the domain incarnation. Thus simulated

execution of the domain incarnation can take place at any

time.

The entries in driverq:

We now describe in more detail what actions the kernel

takes for the various sorts of messages it finds in

dri verq.

Entry capabilities. 	(line 1633)

The kernel 	checks to see if the entry capability

has been validated, 	if so, control is passed to the

code segment of the domain (simulated by invoking the

procedure execute). 	If the entry capability is not

valid the kernel 	initiates action to make it valid

using the procedures in the domain management section.

213

Time slice interrupt. 	(line 1676)

Virtual processors are subject 	to time slicing.

hen a timer interrupt occurs the kernel continues

with the current domain incarnation (giving it a new

quantum of processing time) only if the domain is a

monitor or the kernel has no other work to do and the

domain has not been reserved for another site.

Otherwise the entry capability is invalidated so that

the domain incarnation will end up last in the medium

or low queue (perhaps at a different site), depending

on how much service time the virtual processor has

received since it last interacted with a console.

Message from a console. 	(line 1705) 	 -

If the secretary processor for handling console

input 	(see later) is not already scheduled then it is

placed in driverq. 	the message is placed in a special

queue for the attention of the secretary processor

when its incarnation is run.

Request to transfer a domain to another site.

(line 1719)

The kernel carries out the action described in the

section on domain management in chapter 8. If it has

the domain, and has not reserved it for another site,

it reserves the domain for the requesting site and

checks if it can send the domain off immediately. If

the domain is already reserved then the request is

sent on to the site that has the reservation,

214

otherwise the request is sent to the site supposed by

the kernel to have the domain.

Arrival of a domain. 	(line 1750)

A domain is placed in driverq when it arrives from

another site having been previously requested (except

for initial program loading). The kernel places into

driverq all entry capabilities that were waiting for

the arrival 	of the domain so that their 'best' site

calculation could be performed. 	It also checks to see

if the domain is the last outstanding external segment

for any domain incarnation otherwise ready to run. If

so, that incarnation is also placed in driverq, at the

appropriate priority level.

Domain change of site update. 	(line 1796)

The kernel 	registers the changed site in the

information it keeps about every domain.

Request for local segments. 	(line 1801)

The kernel prepares to send the segments off

immediately.

Request for processor base segment and parameters.

(line 1814)

Again the kernel sends off the required segments

immediately.

215

End of message interrupt from s_channeic. (line 169)

The kernel 	initiates the transmission of the next

message if there are any queued. 	If the previous

message was a segment it frees the space occupied by

it. In the case of pure domain code segments a test

is carried out to see whether to keep a copy or not.

Arrival of processor base or local segment.

(line 1853)

The arrival 	is always the result of a previous

reciuest, made to another site, 	that the segment be

sent. 	The domain incarnation to which the segment

belongs is determined, and if it is the 	last segment

required 	for 	the domain incarnation the domain

incarnation is placed in driverq.

Hopefully we have built up a picture of how kernels

co-operate to make the distributed system run. Their

chief action is of course to execute domain incarnations

but such executions give rise to many different types of

messages to be passed between kernels. Kernels deal with

incoming messages as fast as they can so that other sites

will not be held up unduly.

216

Action of domains;

Kernels do not provide most of the facilities of an

operating system, 	that 	is the function of the various

domains in the system. 	In our program we have simulated

the action of four areas of an operating system; command

analysis, 	diskhandling, compiling and 	user 	program

supervision. 	Ne have also provided some unspecified

domains and monitors 	that 	simulate 	the 	resource

requirements 	of 	other operating system facilities.

Details of the domains are as follows:

dornainc CLASS typel 	(line 2408)

This class has no specific purpose. 	Its possible

actions 	(determined on a probabilistic basis) are to

call another domain of this or the type2 class 	(see

below) 	and to call the diskhandler domain to read a

buffer from disk. An incarnation of a domain of typel

class has two local segments, one of which is passed

as a parameter to the diskhandler domain, in our

simulation we used ten instances of this class of

domain intending to represent areas of an operating

system that handle various sorts of trivial requests

(c.f. the number of domains in the SUE system nucleus

(SEVC72I, chapter 5).

montorc CLASS type2; 	(line 2493)

The function of this class 	is 	similar 	to 	typel.

Instances of 	this class handle trivial requests that

211

involve the use of system wiae tables. 	Its action is

simpler than typel, Consisting of processing followed

by a return. 	Each incarnation has one local segment.

The 	simulation 	program in appendix A has five

instances of this class of domain.

domainc CLASS compiler; 	(line 2530)

The system we simulated is assumed to have two

compilers. The compiler class of domain makes

substantial demands for processing power and makes

large transfers to and from disk. It has two local

segments, one of which is used as a buffer for disk

transfers.

domainc CLASS user—supervisor; 	(line 2569)

This class simulates the 'interpretation' of user

programs. 	We use one instance of this class in our

simulation, 	but multiple instances could be used to

simulate different supervisors available to different

users. The supervisor domain has three local

segments, one for user code, one for data and the

third is a disk buffer for reads and writes to disk.

The action of a user program is assumed to consist of

a cycle of processing followed by disk request.

secretaryc CLASS command; 	(line 2886)

Each virtual processor has a random number seed

associated with it. This seed is used (and updated)

by the code of domains when it is desired to simulate

218

different behaviour for different users. 	The command

domain is entered when a request for service is

received from a console. It determines, using the

random number seed, what domain (from a choice of

user-supervisor, 2 compilers or any of the trivial

command domains) the virtual processor will enter

next.'When execution in the chosen domain is complete

the virtual processor returns to this domain whence

the controlling console is notified that service is

finished, and the virtual processor is suspended until

another request is received from the console.

The secretary processor associated with this domain

executes different code from all 	other 	virtual

processors. 	Its function is to choose the correct

virtual processor, 	from among thdse suspended, to

respond to a request for service from a console. 	The

kernel 	at the site that 	receives messages 	from

consoles 	(assumed 	always to be the same site)

schedules the 	command 	secretary 	processor 	for

execution on receipt of a console message. Once it

runs, the secretary processor schedules an incarnation

of the command domain by the virtual processor

associated with the console.

The command domain is tied down so that it can

communicate with consoles. it does not have any local

segments but does, of course, have a public segment.

This domain is one of the two types in our simulation

that co-operate with the kernels to try to ensure

stability and freedom from deadlock in the system.

219

Since aM virtual processors pass through this domain,

a count is maintained of how many there are active in

the total system. if this number exceeds a certain

figure or the 000lean 'overload' at the local site is

set, then only trivial commands are allowed to

proceed. 	The rest are held up until the number of

virtual processors is reduced. 	This scheme is similar

to that described by itdlkes (ILK73J, where processes

have to move from a waiting list to an accepted list

before they are eligible to be considered for running.

Our scheme, in examining the nature of a request for

service before placing it 	in an 	'accepted' 	or

'waiting' state, produces better response time

characteristics for requests that are known to be

small because they involve specific domains.

secretaryc CLASS diskhandler 	(line 261)

This domain is quite complex. 	In conjunction with

its associated diskcontrollerc process it performs

the actions described in chapter 7, in the Section on

limited capacity controllers. All requests for reads

or writes for the disk belonging to the diskhandler

domain are programmed as interdomain jumps to the

diskhandler domain. In the domain, writes to the disk

are dealt with immediately, the descriptor type

capability for the segment to be written is placed in

a queue (wq) and the return to the calling incarnation

is made. If wq is full then the incarnation is

suspended instead, on a condition queue, wql or wqh,

220

depending on the priority of the virtual processor.

As wq empties, by segments being transferred to the

disk, entries are removed from wqh first, since it has

incarnations of medium priority virtual processors,

and then from wql. The virtual processors are allowed

to resume their incarnations in the calling domains.

Thus there is limited buffering of disk writes, but a

virtual processor cannot fill up the distributed

system with segments destined for the disk.

Since a virtual 	processor doing a write is not

usually held up, a virtual 	processor entering the

domain to read from disk is normally given priority.

As we mentioned in chapter 7, the entry capability for

the resumption of the calling domain is prepared so

that there will be no delay when the read has been

performed. This entry capability is stored in either

the rqh or rql queues depending on whether the

priority of the virtual processor is medium or low.

If the boolean 'transferin..progress' is false then

the virtual processor can initiate its own read or

write operation. 	otherwise this is the function of

the secretary processor. 	Its incarnation of the

domain is made ready to run every time the kernel

receives a message from the disk.sontrollerc process

indicating that 	it has a free buffer (so that a read

or write can take place). 	Actually the form of this

message is simply the secretary's entry capability for

the domain.

The diskhendler domain also contributes to the

221

maintainence of system stability 	lf the 'overload'

boolean at its site is set true then the normal

ordering of reads before writes is reversed to free

space. Also virtual processors that have low priority

(i.e. have been running for a long time since their

last console interaction) will be suspended after a

write request (in my—q) until the overload conditon

has been overcome, whence they will be released one at

a time.

We should ooint out that the fixed number of

buffers in the disk controller together with the fixed

amount of memory in the system could be a fertile

source of deadlocks. One of the segments (with status

'ondisk') of a domain incarnation being resumed after

a disk read, occupies a disk buffer. Free space at a

site is required before the segment can be transferred

to the site, the buffer freed and the domain

incarnation permitted to proceed. The incarnations of

other virtual processors occupy memory at sites and,

if they need to do a disk read or write, require a

disk buffer to be free before they can proceed.

Statistics:

SI14ULA 67 is well suited for the gathering of relevant

statistics in a simulation. The procedures we used are

defined in the statistics section of the program (lines

286 to 528). These procedures were designed so that

222

whatever the number of sites, 	users, 	disks etc. 	in a

system the program would automatically generate correctly

annotated statistics. 	Most of the last part of the

program (line 3321 onwards) is concerned with the setting

up of these statistics. 	An example of the output

produced is given at the end of appendix A. 	The

simulation was allowed to run for a simulated time of

'settle,time' 	after which all the statistic counters and

timers were set 	to zero. 	Then the simulation was

continued for a period sim_time' when all the

accumulated statistics were output and the simulation

terminated. !he amount of CPU time used on a Dec-10 KA

system varied between about 10 and 50 minutes per

simulation run, depending on how many consoles and how

many sites were being simulated.

Performance parameters:

	

We complete 	this 	chapter 	by 	summarizing 	the

configuration we simulated and giving figures for the

simulated load presented by consoles. 	rhe simulated

distributed system consists of IN sites directly

interconnected andy for the transmission of segments,

directly connected to the one or several disks in the

system. Each site has primary memory only. All consoles

(i4 of them) are controlled from one site and each disk,

when there is more than one, is controlled from a

separate site.

23

Adams and Mjiiaid have published figures for the load

presented to ERAS (ADAM75i. They give distributions for

the service times required for important classes of work;

compilations and the running of compiled programs. We

arbitrarily decided that each site in our distributed

system would execute programs at one quarter of the speed

of the EMS central processors. So the times we give

here are quadruple those given in AL)AM75.

EMAS has two different compilers in common use so we

used two instances of the compiler class 	in 	our

simulation. The mean time for a compilation is 20

seconds. (The complete histogram of compilation times is

defined by the arrays A, cumulative probability, and 8,

compile time, at line 2580 of the program).

The mean execution time for a user program is 24

seconds. 	(The histogram is given by the arrays ueserp,

cumulative probability, and usert, 	execution time, 	at

line 1E1 of the program), in this case we did not quite

follow the distribution given by Adams and Millard.

Their distribution was biased by a few long execution

times and would have required us to cater for executions

of up to 480 seconds. 	Ne imposed a Cut off at 180

seconds. 	The pragmatic reason for this is that 480

seconds is about the duration of a simulation run so that

the statistics from a run including such a request would

be considerably distorted. 	But there is also a deeper

justification 	for our action. 	Je believe 	that 	the

224

performance of a system affects the characteristics of

the 	load offered to it. 	The person who submits the

equivalent 120 second job to EMAS probably runs it at

times of slack demand so that a high fraction of total

processing power is devoted to the job and the resulting

response time is satisfactory. in our distributed system

the best that can be done with a 4€0 second job is to

dedicate one site to executing it so that the response

time is necessarily much longer than 120 seconds. Users

will thus be discouraged from running long jobs.

Seventy four percent of all commands issued to EMAS

are of the trivial kind. 	This high proportion of trivial

requests 	in EMAS also supports our assertion that

performance affects the load presented. 	E1AS responds

well to short commands (and our simulation is designed to

give good response to them also). if everyone had to

wait an average of say 40 seconds to find out how many

users were logged into the system, or to have the time

printed out, then they would not make such requests very

often. 	Adams and Millard do not give distributions for

trivial command execution times. 	The strategy we picked

for the operation of typel and type2 domains (see above)

was chosen more to exercise the interdomain call

mechanism than reflect reality. A trivial command in our

simulation can involve up to iJ interdornain jumps. The

execution time of a trivial command averages almost 200

milliseconds and is approximately negative exponentially

distributed.

225

The following table gives, 	for Our 	simulation, 	the

number of each type of console request as a percentage of

the total number of requests for service (see lines 2905

to 2909). 	It also shows how 'useful' physical processor

time 	(i.e. 	ignoring 	overheads and idle time) 	is

distributed among the categories.

Distribution of command types

Type 	 relative frequency 	Z cpu time

Compilations 	 9 	 31

User executions 	17 	 67

Trivial 	 74 	 2

Table 9.1

The overall average time to execute a command is just

over 6 seconds.

Although the average think time (including console

output and input time) is reputed to be 35 seconds on

EMAS, which agrees exactly with that reported elsewhere

on other interactive systems LSCHE67,ES1R671, we have

used a negative exponential think time with a mean of 30

seconds. 	vle wanted to include each interaction with a

text editor as a trivial 	command by itself and so

shortened the average think time to compensate for a

higher interaction rate for editing.

The 	other 	timings in the simulation have been

arbitrarily chosen. 	by and large we assumed that the

226

hardware constituting a distributed system would be

efficient at performing domain management type tasks.

When it came to specifying the 	other 	resource

requirements of domains, namely the amount of space they

require and the number and frequency of disk requests, we

had no guiaance from published sources. 	Agrawala and

colleagues have recently published a study 	LAGRA76I

correlating Cpu demands with memory requirements and I/I)

to disk (among other factors) but there is no way of

deducing from the categorization of jobs (done by cluster

analysis) which domains would belong to what category.

Each site in the simulation is assumed to have 126,000

bytes of memory, 4,O00 bytes of which is occupied by the

kernel. This amount of memory at a site could be

considered large, but there is no point in simulating the

addition of extra sites to a distributed system when the

addition of extra memory at each of the existing sites

would produce the same results. The size of a processor

base segment is made to be 200 bytes.

The 	following table (9.2) lists the size (or range of

sizes) in bytes, of incarnations of the various domains

(assuming 20 users, as some public segment sizes are

determined by the number of users).

227

Sizes of Domain Incarnations

Incarnation 	of 	.., 13ytes

typel 14803144

type2 14303950

command 3122

diskhandler 2760

compiler 17632-17760

user 	supervisor 13192-36392

Table 9.2

The total size of all domains and processor base

segments, before any virtual procesor enters any domain

is 52,032 bytes for a twenty user system.

If a trivial request goes to the maximum depth of 4

typel domain calls and performs a disk read at each level

it will require about 20,000 bytes of memory in total for

all 	its domain incarnations, and will invoke a kernel to

change domains 18 times. 	Thus even trivial requests can

place quite substantial demands on the resources of the

simulated distributed system.

When it came to disk usage we arbitrarily decided that

one in four calls of typel domains would involve a disk

read. For compiling we assumed an average compiling

speed of 12 lines a second and, relating this to the size

of buffer used, fixed the I/O to disk as a pair of

requests, a write followed closely by a read, on average

once a second. the assumed distribution of the interval

228

between the write/read pairs is 6 stage Erlang (line

2556). 	For user programs the mean headway between disk

I/U requests, 	roughly two thirds reads and one third

writes, was assumed to be 250 milliseconds. [his is

twice what the equivalent rate on EIMS is thought to oe.

This is to compensate for the fact that a user program in

a distributed system that had only primary memory, would

probably be restricted in size (in the simulation 32,000

bytes is the largest size that user code, data and

buffers can occupy) and so would make more transfers to

disk than in EMAS, which is a virtual memory system with

drum backing store.

We 	freely 	admit 	that many of our performance

parameters have been rather arbitrarily chosen. 	but we

are 	in 	neither the business of detailed workload

construction 	nor 	of 	high 	resolution 	performance

evaluation. 	As we have indicated we believe the

characteristics of a distributed system will affect the

nature of the workload presented to the system. 'Ihe only

way to accurately estimate the workload, as well as

determine the number and size of domains, is to actually

implement such a system. ide feel that the results we

present in the next chapter show the practicality of

building a domain orientated distributed system that will

perform useful work.

CHAPTER 10

RESULTS OF OUR SIMULATIU1

General experience:

The main result of 	our 	simulation, 	a 	deeper

understanding of the requirements of distributed systems

has, we hope, oeen displayed in the earlier chapters.

One lesson that was quickly brought home to us by runs of

early versions of our simulation program was the

necessity to keep all sites as busy as possible. Since

for many types of communication subsystem the total

bandwidth does not increase as the number of sites in the

system qoes up, our original 'best' site calculation used

minimization of segment transmission between sites as its

main criterion, so as to conserve bandwidth. However

simulation 	runs 	showed 	that this produced widely

disparate utilization of processors, 	with consequent

longish queues at the well patronised sites. 	oe quickly

introduced a factor in the initial 'best' site

calculation so that a site with no work to do would

almost always be chosen as 'best' site when the other

sites involved had other work. This, of course, accords

with the ideal of instantaneous jockeying and

considerably narrowed the range of physical processor

utilizations, as shown, for example, in the 'IDLE IIMI'

figures in the example outputs at the end of appendix A.

230

Another notion of which we were quickly disabused was

that keeping copies of pure code domains would not result

in significant gains. There is a lot of extra work

required to treat pure domains differently from monitors.

However, simulations with and without the sharing of pure

domain code segments showed substantially decreased loads

on the communication subsystem when the segments were

copied. also since there were only three domains, the

two compilers and the user supervisor, that received

really heavy usage the existence of copies meant that the

load could be spread more evenly when there was more than

three sites in the network.

The accidental retention of some tracing statements in

a full simulation run led us to restrict the number of

times an entry capability could be passed from site to

site before actually resulting in a domain incarnation.

The simulation was of a three site system and the trace

output degenerated to a constant pattern towards the end

of the simulation. Investigation revealed that the

status information that each site held had become so

arranged that all messages flowed one way around the

communications system (see figure 10.1). The information

each site had about the succeeding site was well out of

date and indicated, falsely, that the site was

underutilized. So all requests for a domain incarnation

to take place at the site were refused, the succeeding

site was nominated as best site and the request passed

to it. ae were aware of the possibility of such a loop

231

SITE 1

SITE 2
	

SITE 3

OUTSTANDING
	

OUTSTANDING

	

WORK TABLE
	

WORK TABLE
Site 	Jobs
	 Site 	Jobs

1 	3
	

1 	0
2 	3
	

2 	3
3 	0
	

3 	3

Note: Each site's own entry of its own outstanding
work is the correct value. This value is appended
to all messages sent from the site.

OUTSTANDING WORK TABLES
IN A 3 SITE SYSTEM

GIVING RISE TO A SITUATION
WHERE ALL MESSAGES TRAVEL

IN ONE DIRECTION

Figure 10.1

forming, though we considered it 	highly unlikely.

assumed that the completion of a domain at a site would

probably result in a message being 	sent 	in 	the

counter-flow direction. This message would have update

information about the sending site so that the loop would

be broken. 4hat appeared to be happening though, was

that the kernels were so busy pushing around their

rejected domain incarnations that they had no time to do

any useful work, and so complete any domain incarnations

already running at their sites. Ihe forcing of a site to

accept a domain incarnation after it has been through a

fixed number of sites has its unfortunate aspects but it

does lead to the quick breakdown of any loops.

These few examples suffice to show the qualitative

benefits of the simulation program. ie now go on to

present and discuss the semi-quantitative aspects of the

simulation.

Performance measures:

The initial simulation runs were to determine suitable

values for the various 'twiddle factors' to ensure both

system stability and high throughput. That such values,

valid for a wide spread of system sizes and loads, did

indeed exist is very encouraging. 	After these tuning

runs 3 series of simulation runs were performed. 	The

233

load characteristics were varied by using a different

random number seed for each series. In each series of

runs the number of users (consoles), il, was varied from 4

to 24 in steps of 4 and the number of sites, i, was

varied from 1 to 6. 	One disk was simulated in all these

runs. 	The configuration that was simulated is depicted

in figure 10.2. 	In one series of runs the simulation

time, T (sim.time in the program), was 1000 seconds, with

a prior settle—time of 200 seconds. 	In the other two

series the simulation time was 500 seconds, 	with a

settle—time of 200 seconds in one series and 300 seconds

in the other. (The extra 100 seconds did not make any

noticeable difference to the results so we assumed that

200 seconds was sufficient to aemp clown transients caused

by there being no work outstanding in the distributed

system when simulation started).

The chief measurements made during the simulation were

response time and service time. 	Each virtual 	processor

corresponding 	to 	a 	user (i.e. not the secretary

processors associated with console serving and disk

handling) 	kept 	a tally of how much service time it

received and how long it was active in the system, 	the

total time F less all periods of 'thinking time'. 	These

tallies were zeroed at the start of the period I and were

recorded at the end of the period.

234

M 	 N 	commdnicctt ion
consoles 	sites 	system 	disk

INITIAL SIMULATED CONFIGURATION
Figure 10.2

Thus the statistic total 	service 	time 	(1.5.1) 	can be

defined by

T.S.T 	fs(t).dt

1 if any domain incarnation of virtual
where s(t) 	processor i is being executed at time t f 0 otherwise
(this is printed as GRAND TOTAL OF SERVICE lIMES in the

output example in appendix A).

The total response time (T.R.T) is similarly defined by

T.R.Ijri(t).dt

10 if the console associated with virtual
where r;(t) 	. 	processor i is in the thinking state

t1 otherwise

(this is printed as GRAND 	IUTAL OF RESPONSE TINES in

appendix A).

From these two statistics were calculated two more;

a response factor, RE, given by

RF = T.R.T /

that 	is the overall 	ratio of response time to service

time, whicn is also the ratio of the mean response time

236

to mean service time (this is given as PLRFU1MANC

MEASURE in appendix A).

an average processor utilization, U, given by

U = T.S.T /(J x T)

Since there are overheads 	associated 	with 	kernel

operations and secretary processors which do not appear

in T.S.T a value of 1 for U is impossible. Table 10.1

gives the overall response factor for the three series of

simulations and figure 10.3 depicts this information

graphically (T.R.T and T.S.T were both totalled over the

3 runs before their ratio was taken). table 10.2 gives

the overall 	average 	useful 	work 	done 	in 	each

configuration, U*N (again with the numerator and

denominator of U being separately totalled first) and

figure 10.4 gives a graphical representation of the

i nforrnat i om.

237

RE5POSE f- A('

Consoles

Sites 4 8 12 16 20 24

1 1.82 3.65 7.38 11.55 15.50 19.32

2 1.45 1.80 2.71 4.34 5.51 8.25

3 1.35 1.52 1.80 2.51 3.02 4.02

4 1.33 1.42 1.59 1.98 2.25 2.74

S 1.33 1.39 1.50 1.74 1.95 2.29

6 1.33 1.37 1.46 1.53 1.78 2.01

Fable 10.1

1ORK DUNE - EQUIVALENT NUMBER OF PROCESSUFS

Consoles

Sites 14 8 12 16 20 24

1 0.60 0.94 0.98 0.98 0.91 0.91

2 0.71 1.30 1.70 1.89 1.94 1.96

3 0.73 1.39 1.99 2.48 2.68 2.83

'4 0.74 1.42 2.05 2.71 3.05 3.42

5 0.74 1.43 2.09 2.84 3.23 3.71

6 0.14 1.44 2.11 2.91 3.35 3.85

Fable 10.2

238

RESPONSE FACTOR
AS A FUNCTION OF
THE NUMBER OF SITES

AND CONSOLES

6

5
R
E

6

0
N
S 	3
E

F
A 	2
C
T
0
R 1

CON

6

5

3

2

1

S

Figure 10.3

I.,
0
U
6
H
P
U
T

THROUGHPUT
(as the fraction of the capacity of one site)

AS A FUNCTION OF
THE NUMBER OF SITES

AND CONSOLES

Figure 10.4

The not three tables give some other figures derived

from the simulations.

Table 10.3 shows the number of bytes transmitted per

second over all communication links, including those to

disk.

Table 10,4 gives the number overall, and per site, of

control messages transmitted per second for the various

configurations.

Table 10.5 gives the utilization of the disk, that is the

ratio of the total time it was carrying out a read or

write (including seeking) to the overall simulation time.

DANL)tJ1DTH - Kilobytes per second

Consoles

Sites 4 8 12 16 20 214

1 13 21 23 25 27 26

2 18 33 149 56 59 58

3 19 42 614 39 95 105

4 20 144 72 105 125 142

5 19 43 73 112 131 165

6 19 41 73 1114 139 114

Table 10.3

241

99 95 05

cg 95 6t7

09 cc /ti

Os
	

9,7 	dl

t7
	

tic: 	7c

91
	

61 	91

t7 2
	

02 	91

qd ti2 21

cc: 1i2 21

21

cc: 2 21

92 12 21

11 51 11

?1 9 t7

so iosuo

9

S

'7

2

I

seuc

11:99 L'7 s7 :172

ç:ç9 6:c17 s:ti2

t7 	:Lc ot:tp 9 t7

91:i'7 Sc21: L:22

Sj:0c 2152 g:j.j

9:9 L:L L

91 21 9

so osuO3

9:c6 c1:bL

Lt:99 cI:t7L

6T :rL gj:çg

61:95 Li:oc

91:25" ci:ic

t7' 02

2:11

2:11
	

S

s: TI
	

tl

ti•:

2

t7 t7
	

I

'7

cot agej

NOhlVZflhifl sIO Z

t70t oqej

f-J I TO MIA : I UNnJs ?fld S51' 1OiNO

Analysis;

tlueueing 	theory 	considerations 	LKLEI8,KLE176J

stipulate that the response factor curve must lie above

and to the left of two asymptotes;

RF = 1 	 for M << '1'

and

RF = 1 + (M 	M)/N 	for I >> M'

where M' is the saturation number of consoles, given by

M'/N

(mean service time + mean think time)/(mean service time)

From the figures given in chapter 9, M' is 6*N.

Figure 10.5 is a re-presentation of the data in table

10.1 for N = 1, 2 and 3, with the corresponding

asymptotes. The correct position and indeed close

fitting to the asymptotes gives us confidence that our

simulation is not wildly erroneous.

The tables and diagrams we have presented show that

* increasing the number of sites increases the

throughput and reduces the response factor for a fixed

number of consoles but both effects level off (when

there are so many sites that all requests from

consoles can be met without any queues forming).

* increasing the number of consoles without increasing

the number of sites leads to greater throughput and a

higher response factor, the response factor grows very

fast when the throughput approaches the total capacity

243

RESPONSE CURVES AND ASYHPTOTES

NUMBER OF CONSOLES

Figure 10.5

RESPONSE
FACTOR

RESPONSE
FACTOR

RESPONSE
FACTOR

of 	the sites and the throughput actually drops

slightly when the system is 	grossly 	overloaded

(presumably 	because 	'wasted' processor power is

required to cope with the congestion).

* 	for a constant ratio of consoles to sites the number

of control messages (indicative of general network

management overheads) increases at a greater than

linear rate with increasing size of system.

* at the size of systems considered, control messages

(each 32 bytes) account for less than 2 of the total

bandwidth. titherwise use of the available bandwidth

grows linearly with increasing size of the system

(except, obviously, for the jump from one site to two

sites because a system with one site only uses the

communication subsystem for accessing the disk).

* disk usage is correlated with throughput, which is to

be expected; roughly 6 seconds of processing gives

rise to 1 seconds worth of disk utilization.

Response factors:

The presentation of data in figures 10.1 and 10.2 is

too coarse to determine the effect that the number of

sites 	has on the relation between utilization, or

throughput, and response factor. 	Figure 10.1 gives the

response factor as a function of average processor

utilization for two series of simulation runs with 3, 	6

and 9 sites and overall 4, 6 and B consoles per site.

245

These simulation runs differed from the previous runs in

that firstly, there was 1 disk per 3 sites for each

system and secondly, the period of simulation depended on

the number of consoles being simulated (see lines 131 and

158 of the program in appendix A). [he reasons for the

differences can be appreciated by referring to figure

10.6 which is an equivalent graph of response factor

versus utilization for 1 and 6 sites, derived from the

data from the first series of simulations (augmented by

more runs for the N1 case to give the low utilization

figures). The N6 curve starts to break away upwards

from the N=I curve when the utilization is only 0.6,

This is because with 6 sites the single disk is the

'bottle neck' in the system, rather than the processors,

so that the response factor is predicated by the disk

utilization. One disk per three sites is adequate disk

capacity so that processor utilization is the the chief

determinant of the response factor in the later series of

simulations. Also notice that the variance, or spread,

of points from the i1 curve is large in figure 10.6.

This we realized, was because the number of console

interactions in a fixed perioo of simulation is smaller

when there are few consoles and sites than when there are

many consoles and sites, and consequently the variance of

estimates made from the results of the interactions must

be larger. Hence, to get equal variance independent of

the number of sites, the simulation should be conducted

for the same number of interactions, which is roughly

proportional to the number of consoles.

246

EEIE
Tfl i: Lt .t:i tfi iti

IrI*

tt 	i
H

hL
- H- +

J14 .LH. i.1t11.1 Jjj.! ii.iJ .ili111i 1 1 J ;Ll:J iTf?i! TtTfl .

-

14
- - - T
-:--H-
_i— :

5O

-777

_N1(+)
1

1°h
overaLL

1 	'
N6(o)

-- — 	-
--

-
r-

-- -
i- H --- 4t+ -J- H1 -

HT

J1 rr
-H--H-

i

•i
i19iSk - .77 +1 1 - H

F::ytII1
:•:•. TT*t HH TTH: :

-------3O—

:4:J: ,TT

- -

Tki:

—--

;, 	.: 	. :. 	:
- 	t___

l
__l_j___

:

I
'

:L.
-1

-

::
L

H

:4:f-.

H --*- :

-:

-

;-. 4 •

-

- 4j:;4_,/

A

;: :r
-I-

r
iHN6

 IL 	H :T H
4 1

j

77

EH14± H Hm - nH r T rTr !,.OuI . - p o.., .ou. .04 P.5,Lo..b ... p/ . ..i .. p. 1.0
_ .

tH F H
777

I __ L JLL!1 J 'LJLL1JL±j
. l ..iI .

I___

-
77

T
': • I 	

-

:: :J
H
F

 :

-

L: :?

:

 ::: 	 j::

)

	 ::: .:-::. 	

-

::..

J 	

:

-
* 	: L

:::

T

:

i 	: 	 H-LI 1

2d,* 	t

:
t

I

-7 -

 i1:

- N=9 &3dis)

:1

_-

--

_-

IL

__ _

77

-

j

:-

t_
tJ

:L

-

::£

-

 :: :

-

:: 	:

H

L

F

-:L

:i

: ; 	 :-:: 	 :

::'I

H

Ij

:r

:3

::k

&&
:

l

'
1

	

ks(x)di

LH

't

-

:

rL;T

j63

1

J

F

-

___-_-

___H

i

-

_

-

_

-

_-i _

I
EL

!

:

N
N

:

L

:r

::J
 S

-L-

JJ

[

It
-

 o f 8

_

'

1

	

F

i

 _

' -

-J 1

4

-I

jr

7.7 -
I

2 	04

 00

_
- i ILIzArIoN- L

LL j I
i_LLLiJ_Z

fLfL
_ti1j

Returning to figure 10.7 we see that there is a slight

decrease in response time in the region of processor

utilization, 0.6 to 0.9, most likely to be operated in.

(The cross-over of the fU9 and i46 curves, when the

utilization is 0.9, is a reflection of the proportionally

higher overheads in the 9 site system; see later). Ihe

gain predicted in chapter 2 (cf figure .9) occurs even

though the simulated service time is not exponentially

distributed and the service discipline is not first come

first served from a common queue. However this gain will

only occur provided that no other resource, such as

available bandwidth, saturates as the size of the

distributed system is increased. 	Given this constraint

though, the behaviour of the system is very encouraging.

The system builder has some leeway to use strategies that

involve overheads at each site that 	increase with the

number of sites, and jet still 	attain approximately

linear increases in throughput (for a constant response

factor) with system expansion. 	There must be a limit to

this process however because the response time 	is

ultimately constrained to be at least the service time.

Bandwidth requirements:

As we mentioned earlier the simulated communication

subsystem is a directly connected one but each site can

only transmit to one other site at a time. Hence the

effective bandwidth available in the system increases

249

linearly with the number of sites (including disks). 	In

both the sets of simulations runs described aoove the

capacity of the links from each site was fixed at 1 MHZ

or, equivalently, 125 Kilobytes per second.

Another series of simulations were run for a system of

three sites, 18 consoles and one disk, and a system with

nine sites, 54 consoles and three disks, 	when the

capacity of the links was varied, 	in powers of ten,

between 0.01 MHz to 10 MHz.]able 10.6 gives figures

from this series for the response factor, 	average

throughput per processor (as a fraction of the

theoretical maximum) and the bandwidth used, both in

absolute terms and as a fraction of the available

bandwidth.

EFFECTS OF VARYING bADUDTH

Link Response Processor bandwidth frraction
MHz Sites factor utilization used 	(MHz) of 	total

10.0 3 2.27 0.81 0.763 0.019
9 1,15 0.86 2.468 0.021

1.0 3 2.66 0.83 0.793 0.198
2.26 0.79 2.494 0.208

0.1 3 36.3 0.13 0.16 0.389
9 23.7 0.16 0.583 0.486

0.01 3 338 0.02 0.016 0.396
9 218 0.02 0.087 0.565

Table 10.6

250

Table 10.6 shows that 1 NIHz available bandwidth per

site is adequate but that anything less leads to a severe

degradation of response factor and throughput. An

increase in available bandwidth, above 1 MHz per site,

gives a small increase in performance. Note that

directly connecting sites is a relatively inefficient way

of using bandwidth at 0.01 Mhz per link the

intercomputer links in the 9 site system are only 57

utilized even though the communication subsystem is a

substantial bottleneck. Indeed the same argument we used

for processors in chapter 2, that it is desirable to have

1 server with capacity C rather than N servers with

capacity C/N applies to communication subsystems as well.

So a bus or loop communication subsystem will have a

lower 	total 	bandwidth requirement 	than a directly

connected subsystem because of the 	more 	efficient

utilization of the available bandwidth.

Extrapolations-.

Lack of memory space on the computer used to perform

the simulations prevented simulating systems with more

than 9 sites. Vie would have liked to increase the number

of sites further to determine if there is a practical

upper limit to the system size after which the throughput

drops or even becomes zero. Ne suspect that there is

such a limit.

251

From the data given in table 10.4 for systems with a

r-atio of 14 consoles to a site (i.e the diagonal 	of 	the

table) 	the best fit quadratic for the number of messages

as a function of the number of sites, N, is

control messages/sec. = 1.1 	10.4 ; - 6.1

For a system of twenty sites and eighty consoles we could

predict 650 control messages a second, presenting a

communication bandwidth requirement of 20 Kilobytes per

second. A one hundred site system with four hundred

consoles would require a bandwioth of approximately 400

Kilobytes per second (3.2 Mrlz) just to the control

messages. 	Each site in such a system would receive a

control message on average every 8 milliseconds. 	The

gain shown in figure 10.6 for increasing sizes of system

Cannot offset this squared growth. Fhe overheads

associated with dealing with the control messages would

substantially reduce the capacity of each site to perform

useful work so that saturation, defined above, would

occur with fewer consoles and the response factor would

be increased. As the throughput falls at each site so,

in general, will the number of control messages issued by

the site. Ihus it is possible that some form of

equilibrium state will be reached wnere the adding of new

sites has no effect on the total throughput of the

system. but equally it is possible that distributed

system management will take up more and more of the total

processing power of the system as sites are added, until

eventually the whole system is just dedicated to managing

itself and can do no useful work.

252

Examining the total bandwidth used as presented in

table 10.3, we see that after subtracting the load due to

control messages (each 32 bytes long) the growth of

bandwidth used is reasonably constant at 35 Kilobytes per

second for each increment, after the first, of one site

and four consoles. Thus the bandwidth used by a system

with 20 sites and 80 consoles would be around 700

Kilobytes per second or 5.6 MHz. From table 10.6 a total

bandwidth available of 25 Hz would be adequate to

support this loe, probably a lot less would be required

if a bus or loop type communication subsystem is used.

One hundred sites would use a bandwidth of 35 MHz. the

designers of Ethernet (ME1C761 anticipate no problems in

increasing the present capacity from 3 MHz to 15 FlHz,

sufficient probably for a 20 site system, but still

totally inadequate for a 100 site system. Indeed

probably the only way of realizing the required bandwidth

for a 100 site system is to directly connect the sites

which requires 4950 links, rather impractical.

To our knowledge, in our simulation of up to 9 sites,

no domain became a bottleneck. 	Aonitor domains can only

be at one Site at a time, 	the larger the system, the

greater the risk that one of them will be in continuous

demand and so hold back the whole system. Predictions as

to when this will 	occur require figures on the use of

individual domains. 	In a hundred site system no monitor

can have an overall average use of more than 1% of

processor time if bottlenecks are to be avoided.

253

There is another reason to think that a distributed

system of 100 sites would never be implemented along the

lines we have described in this thesis. 	With 1400 to 600

active consoles, 	by the law of large numbers, the load

presentea to the system would be very smooth, 	thus

functional 	specialization 	of sites 	is appropriate.

Throughout this thesis we have upheld the principle of

keeping processors general purpose so that they can oeal

with random variations in the nature of the 	load

presented. 	But when the load is almost deterministic

this principle does not apply, provided that the relative

numbers of each type of functional unit matches exactly

the characteristics of the load. Functional

specialization should reduce the management overheads

(EYL714J. As we showed in chapter 1 functional

specialization does slot neatly into our system as the

size of the system goes up.

So for both technical reasons and theoretical reasons

we feel that the ultimate size of a distributed system

based on the kernel/domain architecture will be around 20

or so sites. Based on the results we have obtained

simulating systems with up to 9 sites, we make the

prediction that a system of 20 sites will have 20 times

the throughput of a system with 1 site and will be able

to maintain the same response time characteristics.

254

Summary:

The simulation program achieved it goals, as outlined

in chapter 9.

* In writing the program and analysing the results we

gained a deeoer knowledge of the requirements of

distributed computing.

* ihe existence of results shows that it is possible to

define control strategies that minimize the chances of

deadlock, eliminate load levelling thrashing and yet

permit useful work to be done.

* The simulation results show that the ondwidth used oy

our distributed system is in the order of 3 MHz for

the larger systems simulated, which is about that

provided in other local 	networks 	such 	as 	LICS

LFAR872c]. 	Thus the bandwidth requirements are not

impossibly high.

* Within the range of 	1 	to 9 sites, and over the

operational 	range of processor utilizations, 	ti'e

simulation results show that there is a modest

decrease in response time with increasing number of

sites. This leads us to predict that expansion will

be approximately linear up to about 20 sites.

255

CHAPTER 11

EPILOGUE

SECTION 1: ACHIEVEMENTS.

In this thesis we have presented a philosophy for the

software design of a distributed system, by choosing to

concentrate on the domain concept, rather than being

process orientated, we have arrived at a system with the

following properties:

The opportunities for load balancing occur frequently,

every time there is an interdomain jump. 	These load

balancing points are optimal 	in the sense that the

minimum possible context is involved. 	This is because

computations 	are 	changing 	their 	(protection)

environment at times of load balancing.

There is no duplication of code except when efficiency

considerations dictate that there should be. 	Since

domains are identified with functions, all users of a

function will use the same copy of the code for the

function when memory space is short. 	This is in

contrast to process orientated systems where either

functions have to be statically allocated to sites or

all sites have to have the code for all functions.

The domain mechanism neatly handles the control of

operating system tables, allowing a single system wide

256

operating system. 	This frees the maximum amount of

primary 	memory 	for use by non-operating system

programs.

We have incorporated naturally into our system the

present state of the art with respect to protection.

Domain structured systems have been shown to be more

versatile than message passing systems in the kind of

protection they can offer.

The philosophy we have adopted leads, 	in Spier's

experience (SPIE74], to better structuring of software

and greater reliability.

In this thesis we have detailed the special mechanisms

required to handle domains in a distributed system.

These mechanisms have been incorporated into a simulation

program which demonstrated that it is possible to achieve

stable operation of a load balancing distributed system.

Further, the statistics derived from the simulation show

that the design goal we set in chapter 1, a system with

low initial cost and nearly constant cost/performance

ratio with increasing size, can be achieved.

257

fLliUI\I 	: FURTHER RESEARCH.

vie feel that this thesis raises more questions than it

answers. The following is an incomplete list of research

topics that we think could be profitably pursued.

Communication between virtual processors:

In chapter 7 we expressed some concern about the

efficiency of transferring local segments between two

virtual processors. This arose in the context of passing

buffers to and from peripheral controllers, but the

problem is the same for any form of communication between

virtual processors. The processor base segment has to be

carried along with the buffer, increasing the load on the

communication subsystem. 	vie would like to investigate

whether a mechanism similar to ports 	16ALL71,MKK075J,

used in process orientated systems, can be incorporated

into our kernel/domain model. A virtual processor would

pass a message, addressed to a port, to its local kernel

and the kernels will ensure that the message is delivered

to the aporopriate place.

The use of ports would also affect the concept of

secretary processors. The secretary processor would be

the sole virtual processor to execute in domains handling

peripherals.

258

Of course it may turn out that the management of ports

involves more overheads than carrying the processor base

segment along with all messages. Research is required to

ascertain whether this is so.

Implementation:

In chapter 9 we pointed out that we had no real idea

of the characteristics both of user behaviour and program

behaviour upon which to base simulation parameters.

This, of course, is the lot of all simulators of unbuilt

systems, but it is a particularly severe problem for us

because our system is quite different from any actually

in existence. building and operating a distributed

system would enable research to oe carried out in these

areas of behaviour. It would also help identify what

hardware or firmware features would assist the domain

management function.

Spier did not publish any performance figures for his

implementation 	of 	a 	single 	site 	kernel/domain

architecture. He contented himself with saying The

operating system is within the realm of the possible,

contingent only upon the emergence of next-generation

domain-orientated hardware machines' [SPIL74J.

Undoubtedly domain management could oe very expensive in

systems with inappropriate hardware. The severity of the

problem can only be gauged by implementing the system.

259

Only then can a realistic determination be made as to

whether our system belongs to the class of toy operating

systems or is a viable technique for building large

systems out of small scale computers. As we have stated

before, one very important determinant of viability is

the size of domains.

Many of the algorithms used in our simulation program

could be simply transliterated to a real implementation,

(Indeed one of our main reasons for simulating a directly

connected system with directory updating, rather than a

bus type system with an associative mechanism, is that

the former architecture could be immediately implemented

whereas the later would require development of the

communication subsystem). The figures derived from the

-real implementation could be fed back to the simulation

program to validate it and enable it to be used to

predict the performance of bigger configurations.

Programming languages:

Building an actual 	system would also assist 	in

evaluating the requirements of a programming language for

domain based systems. 	An easy to use programming

language would be of widespread benefit. 	ve have been

told the implementors of the CAP machine have found it

difficult to link segments into domains. 	Also once a

language had been developed it would be of assistance in

260

gaining an idea of the natural 	size for domains (when

domains are 'glued together' from some present language

code they will probably be made large enough to be

efficient irrespective of underlying structure).

Communication subsystems:

The area of computer communications is one where there

are still 	plenty of 	research problems [0P0E75J. 	Of

particular 	interest 	to us 	is the design of 	local

communication subsystems. 	vIe would like to know if

transmission schemes such as that employed in Ethernet

are stable 	(KLEI76] 	and if they can be married with

intelligent interface units. 	Functions of the interface

units could include error control, 	the global object

management we have outlined (including ensuring that no

messages get lost when a global object changes sites) and

intelligence gathering. The intelligence gathering, or

eavesdropping, function needs researching to determine

how effective it is. Some evaluation of its

effectiveness could be performed using our simulation

program.

261

Alternative archi tectures

Our distributed kernel/domain scheme need not be

confined to distributed systems. vie mentioned in chapter

2 that a scheme devised for a system without shared

memory may well be appropriate for a system with shared

memory. A knowledge of which segments a computation will

access could be used to place the segments so as to

reduce or even eliminate memory contention.

One kind of architecture that could be investigated is

that of PRIME EBASK72,FABR73I, but without a supervisory

processor. 	In PRIME memory modules (and backing store

units) are switchable between processors. 	Once switched

to a processor, a memory module is accessed privately by

that 	processor. 	The switching of modules can be

considered as a high speed method of 	transferring

segments between processors. 	The frequency of.switching

is intended to be very infrequent compared to the

frequency of memory accesses.

Perhaps the most promising alternative architecture to

consider is a system where each processor has its own

primary memory but where relatively high performance

secondary memory is shared between all processors as a

replacement for, or supplement to, the communication

subsystem. Fuchel and Heller IFUCH681 have proposed a

system of two CDC 6600 computers sharing extended core

store (ECS). The ECS was to contain a common job queue

262

and core images of all swopped out jobs. 	At the other

end of the power scale, Nens1y [triENS751 proposes a system

with small computers sharing an electronic disk. Arden

and Berenbaum (ARDE751 have given consideration to the

type of access circuitry neeaed for this shared second

level of memory. This kind of architecture can be

regarded as a multiprocessor system with a cache for each

processor. But with the type of system we have proposed,

based on domains, there is a massive simplification of

the operation of the cache. 	If the cache holds all 	the

segments of a domain incarnation then it can be

guaranteed a priori that there will not be a Consistency

problem. There will he no need to check every cache

write operation tTANG76I to make sure that the altered

word is not also in another cache, it is interesting to

note the direction 	being 	taken 	by 	the 	Minerva

multiprocessor system [JIDD76]. Cache memory is being

introduced to save loading on the shared bus to main

memory. The implementors plan to use Concurrent Pascal

as their programming language so that a write operation

to a shared memory location can be detected at compile

time and the consistency problem eased.

263

Parting remark:

One day soon some microcomputer is going to become the

'de facto' industry standarc. 	Abundant software will be

produced for this microcomputer, locking all

manufacturers into producing compatible architectures.

If these architectures do not have have the capability

for easy integration into multiple computer systems then.

a great and irreversible loss will have occured. but the

requirements for multiple computer working have yet to be

generally delineated. Our research is a small step

towards this goal, a lot more work is needed quickly.

2614

APPENDIX A

SIMULATION PROGRAM

PROGRAM LISTING
	

A2

CROSS REFERENCE TABLE
	

A77

SAMPLE OUTPUT LISTINGS
	

A'85

Al

!Simulation of a Domain Based Distributed System

!Written by: L. Casey 	Date:Oct 76 Version: PRINT;
5

!The aim of this program is to simulate the operation of;
!a network of n computers.;

!Each computer has a kernel whose functioning is modelled in; 	10
!the class kernelc. The basic operation of the;
!kernel is to examine entries in a prioritized queue (driverq);
!and take appropriate action (see around line 1350).;

!The basic structure of the program is as follows; 15
!lines 41 to 173 declare and define constants and parameters;
!of the simulation. 	Two values, the number of sites and the;
!number of consoles, are read as input data.;
!lines 180 to 528 declare 	some primitives for controlling
!errors,queues and the gathering of statistics; 20
!lines 530 to 556 declare the basic classes.(contentc and segnentc);
!lines 573 to 1918 declare the kerneic class, defining the action;
!of each computer in the network;
dines 1920 to 2989 declare the classes required for the;
!manipulation of domains; 25
!lincs 2991 	to 3319 declare the other process classes (s_channelc,
!consolec,clockc,disk_controllerc and diskc);
!from line 3320 onwards is mainly initialization code for the;
!running of the simulation;

30

35
!After the program a cross reference listing is given.;
!The letter D after a line number indicates that the variab.leis;
!declared at that line while H indicates that it occurs more than;
!once.;

40

A-2

1!!1!1!!constants of the simulation run! !! !!!!!! !!!

BEGIN
INTEGER 	 45
n;
!the number of sites in the network (maximum=128);

INTEGER msize; 	 !size of primary memory at each site;
50

INTEGER
fixed—domains, 	 !no of operating system domains;
max—consoles,
!no of active consoles attached to system (< max_processors);
ipid, 	 !no of domains existing at ipi time;
max—disks, 	 !number of disks (not greater than n);
max_disk_bufs,
!number of buffers for each disk controller;
max_writes_pending, 	!a control factor for access to disks;
compi, 	 !no of domains that are compilers; 	60
ddl,ddu,mntrl,mntru,diskl; 	 !for naming domains;
!diskhandler domains numbered from diskl to diskl+max_disks-1;

REAL
contextdelay, 	 65
!the time to preserve context on accepting an interrupt;
timeslice, !intervals for user processes;
longtimeslice,
mesdelay; 	 !the physical delay/byte in sending;
!a message from one site to any other; 	 70
BOOLEAN
running, 	 !genra1ly true;
full_diags,q_trace,nem_trace;

INTEGER max_local_segs, 	 75
!the number of local segments in an incarnation;
max_param_segs, 	 !number of parameter segments permitted;
stack—depth; 	 !for number of incarnations;

INTEGER low,medium,monitor,high; 	 !priorities; 	80
TEXT ARRAY priority_text(1:4);
INTEGER null,incore,ondisk,trans,desc; 	 !status;
INTEGER supern, 	 !domain number for user supervisor;
commandn,
!domain number for interpreting commands; 	 85
cnsl_site; 	 !site where all consoles are attached;
INTEGER size—divider, 	!constant used in memory management;
t_length; 	 !length of hash table at each site;
INTEGER load _shed;
!factor deciding when to migrate processors; 	 90
INTEGER max—shifts;
!another factor for migrating when space is tight;
INTEGER chopfactor,chopsize;
!global constraints on number of active processors;
INTEGER i_chopf; 	 95
!desirable limit on processors at individual sites;
REAL ARRAY userp,usert(1:7);

A-3

!constants defining user progralu behaviour;

INTEGER wait _ for _d,seekdsite,seek choice,spaceclaimed ,valid; 100
!constants used in domain—incarnation class;
INTEGER random _seed;
REAL sim_time,settle_time;
!duration of simulation;
REF (Printfile) results; 	!file for results of simulation; 	105-

Outtext("NUMBER OF SITES*"); Breakoutimage;
n : =Inint;
mesdelay:=80; 	 !microsecs;
contextdelay: =200; 	 microsecs; 110
tiinesl ice :=100000;
longtimeslice:=500000; 	!half a second;
running: =TRUE;
low:=1; 	medium:=2; 	monitor:=3; 	high:=4;
priority_text(low) 	:- Copy("LOW t '); 115
priority_text(medium) 	:- Copy("MEDIUM")
priority_text(monitor) 	:- Copy("HONITOR");
priority_text(high) 	:- Copy("FIIGI-I");
incore:=1;ondisk:=2;trans:=3;desc:=4;
Outtext("NUHBER OF CONSOLES*"); 	Breakoutimage; 120
max consoles: =Inint;
max_local_segs : =2;
max _parani_segs: =1;
stack_depth: =5;
msize:=128000; 	 !bytes; 125
size_divider:=1024; 	!bytes;
t_length:=20+(max_consoles*(6+n))//n;
supern 	:= 2;
commandn 	:= 1;
cnsl_site 	:= 1; 	 e 130
max disks :=1+(n-1) /13;
ipld:=2;
!two 	special domains (supern and commandri);
compl:=2; 	 !number of compilers;
ddl:=ipld+compl+1; 	 !first ordinary domain; 135
ddu:ddl+9; 	 !10 typel domains;
mntrl:=ddu+1;
mntru:=mntrl+4; 	 15 	'ordinary' monitors;
diskl:=mntru+1;
fixed_domains:=mntru+max_disks; 140
!each disk has itS own handler domain;
max_disk_bufs :=3;
max _writes_pending: =n+1+niax_disk_bufs;
wait—for—d:=1;
seek_d_site:=O; 145
seek_choice:=2; 	 !for domain_incarnationc;
spaceclaimed :=3;
valid:=4;
load_shed: =2;
max_shifts:=n-1; 150
chopfactor:=n*4;
i_chopf:=(3chopfactor)//2+1;
!allow individual sites 50% more than average load;
chopsize :32000+(max_consoles//4) *500;

A-4

!a stab at a formula; 	 155
random_seed: =787;

sirn_time := 12000/max—consoles;
!simulation over a constant number of interactions;
settle—time := 30+2400/max—consoles; 	 !seconds; 	160"
userp(1):=0; userp(2):=0.37; userp(3):=0.5; userp(4):=0.64;
userp(5):0.86; userp(6):0.92; userp(7):1.0;;
usert(1):=0.5; usert(2):=4; usert(3):=8; usert(4):20;
usert(5):=40; usert(6):=80; usert(7):180;
!last value shoUld be 480; 	 165

full_diags : =FALSE;
mem_trace: =FALSE;
q_trace:=FALSE; 	 !à lot of output produced when true;

results :- NEW Printfile("RESULT/A:APPEND");
results. Open(Blanks (132))

INSPECT results DO 	 175

Simulation BEGIN

!some utility functions; 	 180

PROCEDURE ptine;
BEGIN 	 !print the 	time;

Outfix(Time,'0,12); 	Outtext(Blanks(2));
END; 185

PROCEDURE error(t);
VALUE t;TEXT t;
BEGIN

INSPECT Sysout DO BEGIN 190
Outtext("ERROR OCCURED"); Outimage;

END; 	 !notify terminal user;
Outtext(">>>>>> ERROR IN MODEL AT TIME");
ptime; 	Outtext(Blanks(10)); 	Outtext(t);
Outimage; 195
IF NOT fuli_diags THEN audit;
!done automatically otherwise;
running: =FALSE;
REACTIVATE Main; 	!continue execution of main block;

END; 200

TEXT PROCEDURE fillin(string,i);
VALUE string;
TEXT string;
INTEGER i; 	 205
BEGIN
!returns a text 3 longer than, string with i edited into space;
TEXT t;
t :-Blanks(string .Length+3);
t:=string; 	 !in left most part; 	 210
t.Sub(string.Length+1,3).Putint(i);

A-5

!add integer at end;
fillin:-t;

END;
215

CLASS qheadc;
BEGIN 	 !queueing system with 4 priority levels;

REF(Head) ARRAY q(low:high);
INTEGER i; 	 !work count; 	 220
REF(Link) PROCEDURE first;
BEGIN

i:=high;
WHILE (IF i<low THEN FALSE ELSE q(i).Empty) DO i:=i-1;
IF i<low THEN first:-NONE ELSE first:-q(i).Suc; 	 225

END;

INTEGER PROCEDURE total—entries;
BEGIN

INTEGER t; 	 230

FOR i:=low STEP 1 UNTIL high DO t:t+q(i).Cardinal;
total_entries: =t;

END;
235

INTEGER PROCEDURE b_entries;
b_entries:=q(low).Cardinal+q(medium) .Cardinal;

BOOLEAN PROCEDURE qempty;
BEGIN 	 !true when nothing in queueing system;

i:=low;
W11 9 ILE (IF i>high THEN FALSE ELSE q(i).Empty) DO i:i+1;
IF i>high THEN qempty:=TRUE;

END;
245

FOR i:=low STEP 1 UNTIL high DO q(i):- NEW Head;
END of class qheadc;

PROCEDURE queue(qhead ,entry,priority);
REF(qheadc) qhead; REF(Link) entry; INTEGER priority; 	250
IF priority GE low AND priority LE high THEN
entry. Into(qhead . q(priority))
!insert behind all entries of same priority;
ELSE error("WRONG PRIORITY USED IN QUEUE COMMAND");

255

PROCEDURE q_analysis(qhead,heading,items);
VALUE heading;
REF(qheadc) qhead;
TEXT heading; 	 260
TEXT PROCEDURE items;
!to map ref type variables into descriptive text;
BEGIN
REF(Link) ptr; INTEGER i;
Outimage; 	 265
ptime;
Outtext(heading); Outtext(" TOTAL NUMBER OF ENTRIES =
Outint(qhead.total_entries,3);

A-6

Outimage;
IF NOT qhead.qempty THEN 270
FOR I 	:= high STEP -1 UNTIL low DO
BEGIN

Outtext(priority_text(i)); Outimage;
ptr 	:- qhead.q(i).Suc;
!pick off each member of queue; 275
WHILE ptr 	/ 	NONE DO
BEGIN

Out text (items (ptr));
!returns a text value 12 characters long;
ptr:-ptr.Suc; 280

END;
Outimage;

END;
END of procedure qanalysis;

285

A-7

'****'**'****statistics section***********************;

Link CLASS statistic(heading);
VALUE heading; TEXT heading; 	 290
VIRTUAL: PROCEDURE clear, print;
THIS statistic.Lnto(statistic_list);

REF(Head) statistic—list;
REF(Head) grand_t_list; 	 295

statistic CLASS groupheading;
!this helps format output;
BEGIN
PROCEDURE clear; ; 	 300
PROCEDURE print;
BEGIN

Outimage;
Out text(heading);
Outimage; 	 305

END;
END of class groupheading;

statistic CLASS counter; 	 310
BEGIN

INTEGER count; 	!counts occurences;
PROCEDURE clear;
count: =0;

315
PROCEDURE print;
BEGIN
Outtext(" 	NUMBER OF
Outtext(heading);
Outtirit(count,IF count<1000 THEN 4 ELSE 	 320
IF count<10000000 THEN 8 ELSE 12);

END;

PROCEDURE incr;
count:=count+1; 	 325

PROCEDURE add(number);
INTEGER number;
count: =count+number;

330
END of class counter;

statistic CLASS timer(master);
REF(grand_total) master;
!this class is for accumulating times of operations; 	 335
!the timer is 'turned on' by procedure start and;
!'turned off' by procedure stop;
!the final value is added into master;
BEGIN

REAL start—time, total; 	 340
BOOLEAN keeping; 	!true when in action;

A-8

PROCEDURE start;
IF NOT keeping THEN BEGIN
!multiple calls o.k.; 	 345
keeping: =TRUE;
start_time:Time;

END;

REAL PROCEDURE stop; 	 350,
!in simula can call without using returned value;
IF keeping THEN BEGIN !multiple calls o.k.;

total: =total+(Time-start_time);
keeping:=FALSE;
stop:=Time-start_tirne; 	 355

END;

PROCEDURE clear;
BEGIN

total:=O; 	 360
IF keeping THEN start_time:=Time;
!reset-and start timing from now;

END;

365
PROCEDURE print;
BEGIN

REAL t;
Outtext(" 	TOTAL ");Outtext(heading);
t:=(total+(IF keeping THEN Time-start—time ELSE 0))*&_6; 370
Outfix(t,1,7);
!printing in seconds;
IF master=/=NONE THEN master.add(t); 	!update grand total;

END;
375

• keeping:FALSE; total:=0;
!default values anyway;

END of class timer;

statistic CLASS time _average;
	

380
!for non-negative numbers;
BEGIN

REAL initial _time,start_time,total
INTEGER val,max;

385
PROCEDURE chahge_value(level);
INTEGER level;
BEGIN

total: =total±val (Time-start_time);
val : =level;
	 390

IF val>nax THEN max := val;
start_time:Time;

END;

PROCEDURE clear;
	 395

BEGIN
total: =0;
max: =val;
initial_time: =start_time: =Time;

A-9

400

PROCEDURE print;
BEGIN
Outtext(" 	AVERAGE !t); Outtext(heading);
Outfix(IF Time-initial_tirne>O THEN 	 405
(total+val* (Timestart_time)) /(Time-initial_time)
ELSE 0,0,9);
Outtext(" 	MAXIMUM"); Outint(rnax,8);

END;
410

END of class time—average;

statistic CLASS grand_total;
BEGIN 	 415

REAL total;
PROCEDURE clear;
total:=0;

PROCEDURE print; 	 420
BEGIN

Ou ttext("GRAND TOTAL OF
Outtext(heading);
Outfix(total ,O, 7);
Outimage; 	 425

END;

PROCEDURE add(t);
REAL t;
total:=total+t; 	 430

THIS grand—total. Into(grandt_list);
!ov&rrides statistic—list;

END of class grand_total;
435

statistic CLASS regression(heading2);
VALUE heading2;TEXT heading2;
BEGIN

INTEGER n; 	 440
REAL sx,sy,sx2,sy2,sxy;

PROCEDURE data(x,y);
REAL x,y;
BEGIN 	 445
n:=n+1; sx:=sx+x; sy:=sy+y;
sx2:=sx2+x*x; sy2:=sy2+y*y;
sxy : sxy+x*y;

END;
450

PROCEDURE clear;
BEGIN

n : =0;
sx:=sy:=sx2: =sy2: =sxy:=0;

END; 	 455

A-10

PROCEDURE print;
BEGIN
REAL aO,al,d,sd,r2;
Outinage; 	 460
Outtext("REGRESSION ANALYSIS OF
Outtext(heading); Outtext(" VERSUS
Outtext(heading2); Outirnage;
IF n>5 THEN BEGIN

!convert data to seconds; 	 465
sx:=sx*&6; sy: =sy*&_6;
sx2:=sx2*&_12; sy2:=sy2&-12; sxy:=sxy*&_12;
d :=n*sx2_sx*sx;
al : =(n*sxy_sx*sy) Id;
aO:=(sysx2_sx*sxy)/d; 	 470
sd =Sqrt((sy2_aO*sy_al*sxy) /(n-2));
!standard deviation of y;
r2: =(n*sxy_sx*sy)**2/(d*(n*sy2_sy*sy));

Outtext("NUMBER OF DATA POINTS"); Outint(n,4); Outimage;
Outtxt("MEAN OF ");Outtext(heading); Outfix(sx/n,1,7);
Outtext(" MEAN OF "); Outtext(heading2); Outfix(sy/n,1,7);
Outtext(" 	RESIDUAL STANDARD DEVIATION");
Outfix(sd,2,6); Outimage;
Outtext("ESTIt1ATE OF REGRESSION COEFFICIENT"); 	 480
Outfix(al, 2,7);
Outtext(" INTERCEPT"); Outfix(aO,2, 7);
Outtext(" STANDARD DEVIATION OF REGRESSION COEFFICIENT");
!has a students t distribution with n-2 degrees of freedom;
Outfix(n*sdfSqrt((n_2)d),2,6); 	 485
Outtext("CORRELATION COEFFICIIENT");
Outfix(Sqrt(r2) ,3,5);

END ELSE Outtext("INSUFFICIENT DATA");
Outirnage;

END ;of procedure print; 	 490

END of class regression;

PROCEDURE outputstatistics; 	 495
BEGIN
REF(statistic) ptr;
ptr:-statisticlist.Suc QUA statistic;
WHILE ptr =1= NONE DO
BEGIN 	 500

ptr.print; 	 !call virtual procedure;
ptr :- ptr.Suc;

END;
Outinage;
Eject(Line+3); 	 505
ptr:-grand_t_list.Suc QUA statistic;
IHILE ptr=/=NONE DO BEGIN
ptr.print;
ptr:-ptr. Suc;

END; 	 510
END;
PROCEDURE clearstatistics;
BEGIN

A-il

REF(statistic) ptr;
ptr:-statisticlist.Suc QUA statistic; 	 515
WHILE ptr / NONE DO BEGIN
ptr.clear;
ptr:-ptr. Suc;

END;
ptr:-grand_t_list.Suc QUAstatistic; 	 520
WHILE ptr =/= NONE DO BEGIN

ptr .clear;
ptr:-ptr. Suc;

END;
END; 	 525

************end of statistics section***************;

A-1 2

Link CLASS coutenLc; 	 530
VIRTUAL: TEXT PROCEDURE dump;
BEGIN

INTEGER size; 	 !in bytes;
INTEGER orgn,dest;
!for use only when being transfer betweeen sites by; 	535
!communication sub—system;
INTEGER mem,qf; 	!used for kernel to kernel updating;
TEXT PROCEDURE dump; 	!for diagnostics;
dump:_Copy("* * * * *
!always 12 characters; 	 540

END of class contentc;

545
contentc CLASS segmentc(site);
INTEGER site; 	 !where segment resides;
BEGIN

INTEGER key; 	 !for segment hash table at site;
INTEGER default,status; 	 550
!take values of null,thcore,ondisk,trans;
INNER;
IF status=incore AND key>fixed_domains THEN INSPECT k(site) DO
add_seg(THIS segmentc);
!after key has been set; 	 555

END; 	 -

REF(kemnelc) ARRAY k(1:n);
REF(grand_total) usage, !for total service time of system; 	560
total—response; 	 !for total of all response times;
REF(counter) xfered_donains ,xfered_processors,
!couning how many domains and processors shift site;
xfered_locals,
new incarnations, 	 565
migrations,
short _commands ,over2 , over5,
!for analysing response times;
chopcount,spacecount; 	!for counting blocked processors;
REF(regression) non—trivial; 	 570
!for response times to substantial commands;

- 	 A-13

Process CLASS kcrnelc(id);
INTEGER id;
BEGIN 	 575

REF(qheadc) driverq, 	!all ready to run tasks held in it;
spaceq;
!for incarnations waiting only for primary memory space;
REF(domain_incarnationc) cu,
!pointer to current domain incarnation; 	 580
d_secretary, 	 !pointer to process handling disk;
c_secretary; 	 !ditto for consoles;
BOOLEAN
naskf,
!true when process switching is not permitted; 	 585
i flag;
!raised when an interrupt has caused the kernel to switch task;

REF(clockc) 	ts_clock;
590

INTEGER mfree,
!size of.current free primary memory at this site;
copySpace;
!amount of memory used holding code copies;
BOOLEAN spaceqempty, 595
!true when no one at this site is waiting for space;
(=spaceq.qempty);

deadlock warning;
!true when printed a warning about possible deadlock;

600
REF(schannelc) 	s_channel;
!for communicating with other sites;
REF(timer) 	idle _timer;
!for collecting statistics;
REF(time_average) memory_use; 605
REF(;contentc) ARRAY space situation(1:n);

PROCEDURE initialization;
BEGIN
driverq :- NEW qheadc;
	

!set up task queue;
spaceq :- NEW qheadc;
!set up blocked on memory space queue;
spaceqenpty: TRUE;
iflag := FALSE;
rnaskf := TRUE;
	

615
s_channel:-NEU s_channelc(id);
cq:-NEW Head;
sq:-NEW Head; 	!queues for messages being sent;

ts_clock :- NEW clockc(id);
	

620
idle—timer :- NEW tirner("IDLE TIME",NONE);
memory—use:-NEW time _average("MEMORY USE");
rnfree: =msize-4000;
!4000 bytes is assumed size of the kernel code;
rn_max: =m --min: =id;
	

625
rnemory_use.change_value(rnsize-rnfree);
FOR w:=1 STEP 1 UNTIL n DO m_use(w):mfree;
!first estimate;
FOR w:=1 STEP 1 UNTIL fixed—domains DO

A-14

dmn_info(w):-NEW dmninfoc; 	 630
!for handling information about domains;
FOR w:=1 STEP 1 UNTIL n DO BEGIN

space—situation(w) :-NEW contentc;
!for warning other kernels that near dadlock;
!or that have backed of again; 	 635
space_situation(w).size:32;

END;
END;

A-iS

tuIIPIIlIlIIIIIIII!I 	 .- 	JItIIIItIIIIIII!P. • 	IIUlll.JLy 	 • 	• 	•

routines to be used by the kernel only 	 !;
contains some assumed timings 	 1;
memory management policy is not actually simulated,

I just arithmetic count kept of free memory. 	 !;

PROCEDURE claim(size,success);
NAME success;
BOOLEAN success;
INTEGER size; 	 !of block of memory required; 	650
BEGIN
Hold(200+(2000*size/(size+mfree)));
!reflects the assumption that as;
!space gets tighter more time is required to find free space;
IF spaceqempty THEN BEGIN 655
WHILE (IF size GE mfree THEN make—Space ELSE FALSE) DO

END;
!delete enough code copies to give space if possible;
IF. size < mfree THEN
BEGIN 660

mfree: =mfree-size;
!nfree always greater than 0;
register _n_use(id,mfree+copyspace);
!alter status information of site;
memory_use.change_value(msize-mfree); 665
!statistic;
success: =TRUE;
IF men—trace THEN BEGIN
Outint(nsize-mfree, 10);
Outchar('>'); 	Outint(id,1); 670

END;
END
ELSE success:=FALSE;

END of procedure claim;
675

PROCEDURE q4space(inc);
REF(domain_incarnationc) 	mc;
BEGIN

!assume that claim has been called immediately before; 680
!i.e. do not check if really has to queue;
spaceqempty : =FALSE;
overload: =TRUE;
queue(spaceq,inc, IF inc.extra_space>size_divider THEN
low ELSE medium); 685
!small requests have priority over large ones;
IF mfree>size_divider THEN BEGIN
inc.extra_space:=inc.extra_space-(mfree-size_divider);
claim(mfree-size_divider ,running);

END; 	 !stake claim to available space; 690
Hold(2000); 	 Ito sort things out;
IF full_diags THEN BEGIN
ptime; Outtext(inc.dump);Outtext(" IN SPACEQ AT SITE");
Outint(id,3); 	Outimage;

END; 695
spacecount.incr; 	!statistic;

A-16

END;

PROCEDURE release(size); 700
INTEGER size;
BEGIN 	 !giving back a block of memory;
REF(domain_incarnationc) 	sr;
BOOLEAN more;
flold(50); 705
mfree : =mfree+size;
register_m_use(id,mfree+copyspace);
memory_use.change_value(msize-mfree);
IF mem_trace THEN BEGIN
Outint(msize-mfree,10); 710
Outchar('<'); 	Outint(id,1);
!diagnostic message;

END;
IF NOT spaceqempty THEN BEGIN
sr:-spaceq.first; 715
more: =TRUE;
WHILE sr=/=NONE AND more DO
BEGIN
!see if can run incarnation waiting for space;
claim(sr.extraspace,more); 720
IF more THEN BEGIN

sr stage: =spaceclained;
queue(driverq,sr,high);
!place freed entry capability back in driverq;
sr:-spaceq.first; 725
IF deadlock_warning THEN BEGIN

ptine;
Outtext(fillin(" 	DEADLOCK AVERTED AT SITE",id));
Outimage; 	!because removed something from spaceq;
deadlock warninc:=FALSE: 730

END;
END ELSE
IF mfree > size—divider THEN
BEGIN

sr.extra_space := sr.extra_space -(mfree-size_divider);
claim(rnfree-size_divider ,running);
!try to keep size-divider of memory;
!to be available for small requests;

END;
END; 	 740
IF sr==NONE THEN spaceqempty:TRUE;

END;
END of procedure release;

745

BOOLEAN PROCEDURE make—space;
IF copyspacc>O THEN BEGIN

leach site can keep copies of shared re-entrant code; 	750
!the least recently used is deleted;
!(only done when spaceq empty);
INTEGER i,j;

A-1 7

REAL iru;
iiold(400); 	 755
lru:=Time;
FOR i:=1 STEP 1 UNTIL fixed domains DO
IF drnn info(i) .copy THEN BEGIN

IF dmn_info(i) .work.Empty AND 	 -
dmn_info(i) .external_segs.Empty 	 760
AND NOT dmn_info(i) going
THEN BEGIN

IF iru > dmn_info(i) .lasttime THEN BEGIN
lru:=dmn_info(i) .lasttiine;

765
END;

END;
END;
IF j>0 THEN BEGIN 	!found a segment to delete;

delete _domain_copy(j); 	 770
• make_space:=TRUE;
END;

END of make—space;

775
!***************end of memory management**************!;

A-18

- 	 ..II,IIIIIII!I,Iu,I.
begIL!eLtL mdtLdelneuL. 	 . . •

780

REF (segmenrc) ARRAY segtable(0:t_length-1);
INTEGER ARRAY st(0:t_length-1);

INTEGER PROCEDURE hash(key); 	 785.
INTEGER key;
hash:=2*Mod(key,t_length//2)+(IF key>16384 THEN 1 ELSE 0);
!small numbers will predominate;

INTEGER PROCEDURE add(key); 	 790
INTEGER key;
BEGIN

INTEGER hk,i;
hk:=hash(key);
IF st(hk) NE 0 THEN 	 795
BEGIN

!if first slot not free then search table;
i:=hk;
FOR hk:=Mod(hk+1,t_length) WHILE i NE hk AND st(hk) NE 0
DO; 	 800
IF i=hk THEN error (fillin("HASR TABLE FULL AT SITE",id));

END;
st(hk):=key;
add:=hk;

END; 	 805

INTEGER PROCEDURE retrieve(key);
INTEGER key;
BEGIN

INTEGER hk,i; 	 810
hk:=hash(key) ;

IF st(hk) NE key THEN
BEGIN

i =hk;
FOR hk:=Mod(hk+1,t.jength) WHILE i NE hk AND st(hk) NE key
DO;
IF i=hk THEN
error ("ITEM NOT FOUND IN HASH TABLE");

END;
IF segtable(hk)=NONE THEN error("BAD SEGMENT MANAGEMENT");
retrieve:=hk; 	 -

END;

PROCEDURE addseg(s);
REF (segmentc) s; 	 825
BEGIN
segjable(add(s.key)):-s;
S .status :=incore;
s.site:=id;

END; 	 830

PROCEDURE delete_seg(s);
REF (scgmentc) s;
BEGIN

A-19

!this may be called after segment has arrived at another site;
INTEGER i;
i :=retrieve(s. key);
st(i) :=0;
IF ssite=id THEN s.status:=null;
!not gone anywhere else yet; 	 840
segtable(i) :-NONE;
release(s.size); 	!give back space;

END;

845
!*****************end of segment management************!;

F

A-20

1!!!!!! 1! communications section 1!!!!!! 	! ! ! 1!

850
!Communication interface - receiving messages;
!Reception of messages takes place in three stages:-;
11) The message arrives - call on procedure int..;
!2) The message is stored and the kernel notified by placing;
Ian entry in driverq - call on queue.; 	 855
13) When dri'verq entry is examined action is taken on entry.;

PROCEDURE int(m);
REF(contentc) m;
BEGIN

IF NOT in IS contentc THEN BEGIN
!not an empty message;
IF m IN segmentc THEN BEGIN

IF in QUA segmentc.key LE fixed—domains THEN
dmn_info(m QUA segmentc.key).d:-m QUA domainc

	
865

!domain kept separate from other segments;
ELSE
add_seg(m QUA segmentc);
!it is assumed that space has already been claimed;
queue(driverq,rn,high);
	

870
END ELSE
IF in IS donain_incarnationc THEN BEGIN

IF in QUA domain _incarnationc.stage=valid
THEN queue(driverq,m,ionitor) ELSE
!unless it is a secretary being used as an interrupt;
Ia domain incarnation can not be valid at this stage;
BEGIN
queue(driverq,m,high);
qfs(id) :=qfs(id)+1;
!more work at this site;

END;
END ELSE queue(driverq,m,high);
!other message types;
switch—context; 	!notify kernel;

END;
IF m.orgn LE n AND m.orgn > 0 THEN BEGIN

register_m_use(m.orgn,m.mem);
!update memory utilization table;
qfs(rn.orgn) :=m.qf;

END;
END;

Wo

.:

land size of queues;
890

!communications interface - sending messages;

REF(Head) cq, 	 !for high priority control messages;
sq; 	 !for segments;
BOOLEAN channel—busy;

PROCEDURE send_message(dest ,contents);
INTEGER dest; REF(contentc) contents;
IF dest NE id THEN
BEGIN
contents.orgn:=id;
contents .dest:=dest;

A-21

IF channel_busy THEN 	 905
contents.Into(IF contents IN segientc THEN sq ELSE cq)
ELSE signal _channel(contents);
!wait if busy else send message straight away;

END ELSE
BEGIN 	 !short circuit; 	 910

contents .orgn: =id;
queue(dri-verq,contents ,high);
!do not send secretaries/interrupts to oneself;

END of send—message;
915

PROCEDURE broadcast(contents);
!to all other kernels; 	-
!must have a different object to go to each site;
REF(contentc)ARRAY contents;
BEGIN 920

INTEGER i;
FOR i:= 1 STEP 1 UNTIL n DO
IF i NE id THEN send_message(i,contents(i));

END of broadcast;
925

PROCEDURE signal_channel (contents);
REF(contentc) 	contents;
BEGIN

channel_busy:=TR'JE;
!channel deals with one message at a time; 930
contents.mem:=m_use(id);
IF contents IS donain_incarnationc THEN qfs(id):=qfs(id)-1;
!if monitors with condition queues moved sites;
!then this would have to be altered;
contents.qf:=qfs(id); 935
!information for receiving kernel;
contents.Out; 	!if 	in cq or sq;
s'channel.initiate(contents);

END of signal—channel;
940

!end of communications interface;

A-22

!****** 	 load monitoring

BOOLEAN overload; 945
!If kernel detects that no site has chopsize of free memory;
!or that some site (probably) 	has entries in its spaceq;
!i.e. when its free memory is less than size —divider;
!then overload is set 	true.;
!Overload is used by secretaries to modify their behaviour.;

INTEGER ARRAY m_use,qfs(l:n);
!tables of (supposed) 	utilization of memory and number of;
!domain incarnations at each site;

955
INTEGER m_max,rn_rnin; 	!sites with most and least free memory;

PROCEDURE register_m_use(site,nem);
INTEGER site,mern; 	!the amount of free memory at the site;
BEGIN BOOLEAN sort—required; 	INTEGER j; 960
lFn> 1 THEN
BEGIN

IF site NE rn_max AND site NE m—min THEN
BEGIN

IF rnern>rn_use(m_rnax) 	THEN rn_max:=site 965
ELSE IF mern<m_use(m_rnin) THEN mniin:=site;

END
ELSE
sort_required:=(site=m_rnax AND mem<m_use(m_max)) OR
(site=m_min AND mern>rn_use(rn_rnin)); 970

END;
muse (site) :=mern;
IF sort—required THEN
BEGIN
m_max:=m_min:=1; 975
FOR j:=2 STEP 2 UNTIL n DO
!never sort required when n=1;
IF m_use(j)>m_use(m_max) THEN m_max:j ELSE
IF rn_use(j)<rn_use(m_nin) THEN m_rnin:=j;

END; 980

IF m_use(rn_max)<chopsize OR m_use(rn_min) LE size—divider THEN
BEGIN

IF site=id AND NOT overload THEN
broadcast(space_situation); 985
!this site has been cause of pushing network into overload;
!so it notifies the other sites;
overload: =TRUE;

END
ELSE 990
BEGIN

IF site=id AND overload THEN broadcast(space_situation);
!first site out of overload - tell others;
overload: =FALSE;

END; 995
END of register—m—use;

A-23

INTEGER PROCEDURE optimum _site(size,qf_miri,qt_taax); 	L000
INTEGER size,qf_min,qf_max;
!Returns the identity of the site with minimum current work;
!load (between qf_min and qf_max-1) and free space greater;
!than size. Where there is more than one site at the level the;
!one with the most space is chosen.; 	 1005
!If there are no sites satisfying the conditions returns zero.;

IF m_use(mjnax)>size THEN
BEGIN 	 !worth looking;

INTEGER i,j,k; 	 1010
k: =qf_min-1;
FOR k:=k+1 WHILE k<qf_nax AND j=0 DO
FOR i:=1 STEP 1 UNTIL n DO
IF qfs(i)=k THEN
BEGIN 	 1015

IF m—use(i) GE size THEN
BEGIN

j :=i;
size :=m_use(i);

END; 	 1020
END;
optimum_site:j;

END of optimum_site;

end of load monitoring

A-24

!!!!!!!!!!1!!!!!!!!!domainmanagement!!!H!!!!!!!!H!!!!!;

1030
REF(dmn_infoc)ARRAY dmn_info(1:fixed_domains);

BOOLEAN PROCEDURE validated(dmn_rqst);
REF(domain_incarnationc) dnn_rqst; 	 1035
!this procedure handles most of the stages of transferring;
!a pocessor to a new domain
!it checks if the entry capability - dnin_rqst - is valid;
!if not it takes steps to make it valid;

1040
IF dmn rqst.stage=valid THEN validated:=TRUE
!ready to run;
ELSE
BEGIN

Hold(200); 	 !calculation overhead; 	 1045

IF dmn_rqst.stagc=seek_d_site OR dmn_rqst.stage=wait_for_d
THEN
INSPECT dnn_info(dmn_rqst.did) DO
BEGIN 	 1050
!must have entry capability at the site of domain before;
!can work on it;
IF NOT (here OR-coming OR (copy AND NOT overload)) THEN
send_message(d_loc ,dmn_rqst)
ELSE do_domain_calculation(dmn_rqst); 	 1055

END;

IF dmn rqst .stage=seek_choice THEN
BEGIN

IF dmn_rqst.choice NE id THEN 	 !at wrong site; 1060
send_message(dmn_rqst.choice,dmn_rqst)
ELSE
examine_choice(dnn_rqst);

END;
!dont set validated so that incarnation goes to end of queue;
IF dmn_rqst.stage=spaceclaimed THEN bringtogether(dmn_rqst);

END of procedure validated;

1070
REAL PROCEDURE cost_formula(site,size);
INTEGER site,size;
!attempt to give a factor corresponding to congestion;
BEGIN

REAL d; 	 1075
d:=qfs(site);
IF d=0 THEN d:=0.01; 	 !no work at site;
cost_formula:=size*(m_use(site)/(d*(msize_m_use(site))));

END;
1080

PROCEDURE do_domain_calculation(dmn_rqst);
REF(domain_incarnationc) dmn_rqst;

A-25

!this procedure calculates the 'best' site for the domain;
!incarnation to take place; 	 1085
INSPECT dmn_rqst DO
INSPECT dmn_info(did) DO BEGIN

INTEGER big_d_size,big_p_size;
REAL d_cost,l_cost,p_cost;
INTEGER i; 	 1090
IF coming THEN
BEGIN

stage:=wait_for_d;
!note that has waited;
dmn_rqst.Into(rqst_list); 	 1095

END
ELSE
BEGIN

!first sort out where all the segments are;
1site:=0; 	 1100
!until determined that local segments exist;
total_size: =1_size: =0;

d_site:=id;
d_size:=dmn_info(did) .d.size; 	 1105
big_d_sizc:=IF d IN monitorc THEN
d_size* (1+work. Cardinal+external_segs. Cardinal)
ELSE d_sizc;
!try to form a clumping of virtual processors using;
!particular monitors; 	- 	 1110

INSPECT processor DO
BEGIN

p_size: =size;
FOR i:=1 STEP 1 UNTIL max_param_segs DO 	 1115
IF params(i).status=incore THEN
p_size:=p_size+parans(i) .size
ELSE IF params(i).status=trans OR params(i) .status=ondisk
THEN total _size:=total_size+params(i) .size;
p_site:=site; 	 1120
big_p_size :=p_size*sameness;
!an agregating factor;

END;
total_size: =total_size+p_size;
!so far size of processor and all parameter segments; 1125

!assume all 'local segments at same site;
FOR i:=1 STEP 1 UNTIL max_local_segs DO
IF locals(i) .status=incore THEN BEGIN

l_site:=locals(i) .site; 	 1130
l_size:=l_size+locals(i) size;

END
ELSE
IF locals(i) .status = trans THEN
!to be created; 	 1135
total_size:=total_size+locals(i) size;

IF 1—site NE 0 THEN
BEGIN 	 !some local segments involved;

total_size :=total_size+1_size; 	 1140

A-26

END;

!now choose site domain incarnation is to take place;

IFd.tied NE 0 THEN 1145
BEGIN !domain cannot move;
choice:id;
stag:=seek_choice;

END
ELSE 1150
BEGIN

d_cost: =cost_forrnula(id ,b ig_dsize+
(IF p_siteid THEN bip_size ELSE 0)+
(IF l_siteid THEN 1—size ELSE 0));
IF p_site NE id THEN 1155
p_cost: =cost_forrnula(p_site,big_p_size+
(IF 1_sitep_site THEN 1—size ELSE 0));
IF 1—site NE0 AND 1—site NE id AND 1—site NE p_site THEN
1_cost:=cost_formuia(l_site,1_size);

1160
choice:= IF d_cost GE p_cost AND d_cost GE 1—cost THEN id
ELSE IF p_cost GE 1—cost THEN p_site
ELSE 1—site;

!now check that choice is o.k.; 	 1165

!first check that if domain is going to move;
!from this site that it is not already promised;
!elsewhere or only a copy exists here;
IF choice NE id THEN 1170
BEGIN

IF next—site NE 0 THEN
send _message(next_site ,dmn_rqst)
ELSE
IF copy THEN 1175
send_message(d_loc ,dmn_rqst)
ELSE
!no objections to domain moving;
stage: =seck_choic e;

END 1180
ELSE
BEGIN

!this site has been chosen;
if a monitor that has been promised to;
!another site is involved, the incarnation will; 1185
!only take place if

the incarnation was waiting before the
monitor arrived at this site;
(stage = wait—for—d);

!or; 1190
all required segments are at this site;
and other incarnations have outstanding;
requests for segments from other sites;

IF next—site NE 0 AND stage NE wait—for—d THEN 	1195
BEGIN

IF external _seg.Empty OR p_site NE id OR

A-27

NOT (l_siteO OR l_site=id)
THEN send_message(next_site,dmn_rqst)
ELSE 	 1200
stage: =seek_choic e

END
ELSE stage:=seek_choice;
!no objection to its staying;

END; 	 1205..
END;

END;

END of procedure do_ domain _calculation;
1210

PROCEDURE examine _choice(dmn_rqst);
REF(domain_incarnationc) dmn_rqst;

INSPECT dnn_rqst DO
BEGIN 	 1215

BOOLEAN spacefound,
!true if this site has-enough space for incarnation;
tied, 	 !true if domain tied down here
gone; 	 !set if incarnation sent elsewhere;
INTEGER opt_site,i; 	 1220

PROCEDURE send off;
BEGIN

choice: opt_site;
send_message(opt_site,dnn_rqst); 	 1225
gone: =TRUE;
shifts:=shifts+1;
migrations. incr;

END;
1230

tied:=IF dmn_info(did).here THEN dmn_info(did).d.tied NE 0
ELSE FALSE;

!first see if some other site is under—utilized while this;
!site is overbusy; 	 1235
IF NOT(tied OR shifts>max shifts OR
(overload AND dmn_info(did).here AND shifts>0)) THEN
BEGIN
•opt_Site
o ptimum_site(total_size+d_size,O,qfs(id)//load_shed); 1240
IF opt_site NE 0 THEN send—off;
!substantially less busy;

END;

IF NOT gone THEN 	 1245
BEGIN
!now claim the extra space required and make up lists;
!for requesting segments;
'processor.Into(dmn_info(did) .work);
!mark domain as used; 	 1250

IF NOT (dmn_info(did) .coming OR dmn_info(did) .here OR
dmn_info(did) .copy) THEN
extra_space:=d_size ELSE extra_space:=O;

A-28

!it is possible that domain is no longer at 4—site; 1255
extra_space:=extra_space+totalsize -
(IF p_site=id THEN p_size ELSE 0) -
(IF l_site=id THEN 1—size ELSE 0);

IF extra_space>0 THEN 1260
claim(extra_space,spacefound) ELSE spacefound:=TRUE;

IF NOT(spacefound OR tied) THEN
BEGIN 	 !see if another site is suitable;

IF shifts LE 1265
(IF dmn_info(did).here AND overload THEN 0
ELSE max—shifts)
TI-LEN BEGIN

opt_site: =optimum site
(total _size+d_size,qfs(id)//load_shed,i_chopf); 1270
IF 	opt_site NE id AND opt_site NE 0 THEN BEGIN

send—off;
processor. Out;
!reverse marking of domain;

END; 1275
END;

END;

IF NOT gone THEN INSPECT dmn_info(did) DO
BEGIN 	 !sort out domain whereabouts; 1280
count:O; 	- 	 -

IF NOT (coming OR here OR copy) THEN BEGIN
count:1;
!keep count of segments required from other sites;
processor.d_transfer.did :=did; 1285
processor .d_transfer rqstor: =id;
coming:TRUE;
!so as subsequent dmn_rqsts dont claim extra space;

END;
1290

IF spacefound THEN stage:=spaceclaimed ELSE
q4space(dmn_rqst);
!wait until space is available;

IF tied AND NOT spacefound THEN BEGIN 	 1295
IF (IF dmn_info(did).here THEN
dmn_info(did).d.tied NE 0
ELSE FALSE)
THEN BEGIN

!if the domain is genuinely tied here then; 	1300
!see if there is a non-tied domain whose incarnation;
!can be moved away;
!in a really tight situation most incarnations;
!will he shifted around;
!however this will stop when there are none; 	1305
!left that have not been shifted;
REF(domain_incarnationc) ptr;
BOOLEAN found;
ptr:-driverq.q(low) .Pred;
UHILE ptr=/=NONE DO 	 1310
!work backwards along low priority queue;

A-29

BEGIN
IF dmn_info(ptr.did).d.tied=0 AND
ptr.shifts<max_shifts THEN
BEGIN 	!domain not tied here; 	 1315

opts it e: =
optimum—site
(ptr.total_size+ptr.d_size,O,i_chopf);
IF opt_site NE 0 AND opt_site NE id THEN
BEGIN 	!found somewhere to go; 	 1320

found: =TRUE;
retire(ptr);
queue(driverq,ptr,high);

!since there is no space here this incarnation;
!will go to another site;

END;
END;
IF found THEN ptr:-NONE ELSE ptr:-ptr.Pred;

END; 	 1330
END;

END;

END;
END; 	 1335

END of examine—choice;

PROCEDURE bring_togcther(dnn_rqst) . ;
REF(domain_incarnationc) dmn_rqst; 	 1340
!now request other sites to send segments; -
!and create temporary ones;
INSPECT dmn_rqst DO
INSPECT processor DO BEGIN

INTEGER i; 	 1345
IF count=1 THEN BEGIN

send_message(drnn_info(did) .d_loc,d_transfer);
!domain at another site;
count:=O; 	 !and not currently requested;

END; 	 1350

IF site NE id THEN
BEGIN 	 !processor not here;

count: =count+1;
p_segjist.rqstor:=id; 	 1355
FOR i:=l STEP 1 UNTIL max_param_segs DO
IF params(i)..status=incore THEN
BEGIN

count: =count+1;
p_segj:Lst.a(i):=params(i).key; 	 1360

END
ELSE
p_seg_list.a(i) :=0;

send_message(site,p_seg_list); 	 1365
END;

FOR i:=1 STEP 1 UNTIL max_param_segs DO

A-30

BEGIN
IF params(i) .status=trans THEN add_seg(params(i)). 	1370
!work segment created;

• 	 ELSE IF params(i).status=ondisk THEN BEGIN
count:=count+1;
disk_read.rqstor:=id;
!can only be one read at a time;
	

1375
disk read.key:=params(i) .key;
send_message (pa rams(i) .site,disk_read);
!'site' is a diskcontroller;

END;
END;
	

1380

FOR i:=1 STEP I UNTIL max_local_segs DO
IF locals(i) .status=incore THEN
BEGIN

IF locals(i).site NE Id THEN BEGIN
	

1385
count:=count+1; 	 -
l_seg_list.a(i) :=locals(i) .key;

END;
END
ELSE BEGIN
	

1390
l_seg_list.a(i) :=O;
IF locals(i).status=trans THEN add_seg(locals(i));

END;

IF 1—site NE 0 AND 1—site NE id - THEN
	

1395
BEGIN

1_seg_list .rqstor:=id;
send_nessage(1_site,1_seg_list);

END;
1400

IF count>O OR dmn_info(did) .coming THEN
dmn_rqst.Into(dnn_info(did) .external_segs)
ELSE put_in_ready_state(dmn_rqst);

END of procedure bring together;
1405

PROCEDURE put_in_ready_state(inc);
REF(domain_incarnationc) mc; 	 1410
BEGIN

!assumes that all segments are at site;
inc.site:=id; 	!give site of execution;
Inc .stage :=valid;

1415
inc.processor.Into(dmn_info(inc.did) .work);
!keep track of run state work;

inc.domain:-dmninfo(inc.did) .d;
!domain must be here;
	

1420
IF inc.domain==NONE THEN
error("ATTEMPT TO RUN WITHOUT DOMAIN");
IF incdomain IN monitorc THEN BEGIN

!not going to be there long so give favourable priority;
inc.processor..rts:=timeslice; 	 • 	 1425

A-31

queue(driverq,inc,monitOr);
END
ELSE
queue(driverq,inc,iflCPrOCeSSOr.Pri0ritY)
!the invalid form of Inc had high priority; 	 1430
!an alternative would be to schedule into medium or;
!low depending on rts, the remaining time slice;

END of procedure put_in_ready_state;

1435

PROCEDURE retire(inc);
REF(domain_incarnatiOnc) mc;
BEGIN
!called when an incarnation is removed from driverq;
inc.processor.Out; 	!of dmn_info work list; 	 1440
action_transfer(dmn_info(inc.did));
!does domain want to go to another site?;
inc.Out;
removed from driverq completely;
inc.stage:seek_d_site; 	 1445
!set entry capability back to base state;
inc.shifts:=0; 	!start counting forced migrations again;

END of procedure retire;

1450
PROCEDURE action_transfer(h);
REF(dmn_infoc) h;
BEGIN

PROCEDURE send—domain;
BEGIN 	 1455

broad cast (h upd ate)
!tell other sites that domain is going to next —site;
h.here:=FALSE;
send_message(h.next_site,h.d);
h.next_site:0; 	 1460

END;

IF h.next_site NE 0 AND h.here THEN
BEGIN 	 !domain wanted elsewhere;
IF hd IN monitorc THEN 1465
BEGIN 	 !must wait until domain is free;

IF h.work.Empty AND h.external_segs.Empty THEN
send—domain;

END
ELSE 1470
BEGIN 	 !can send domain and keep copy;
h.going:=h.copy:TRUE;
copyspace:copyspace+hd.size;
!going = true protects copy from being deleted;
!unil it is transmitted; 1475

send—domain;
!decide after actual transmision if want to keep copy;

END;
END

1480
ELSE IF h.copy THEN BEGIN
!domain is not wanted elsewhere;

A-32

!see if want to delete copy;
IF h.work.Empty AND hexternal_segs.Empty THEN BEGIN

IF NOT (spaceqempty OR h.going) THEN 	 1485
deletc_domain_copy(h.d.did) 	 !tight for space;
ELSE h.lasttime:=Time;

END;

END;
	

1490
END of procedure action—transfer;

PROCEDURE domain _copy(domain);
REF(domainc) domain; 1495
!this procedure is called by communication section;
!when it has completed the transmission of a domain;
BEGIN
xfered_domains.incr; 	 !statistics;
IF domain IN monitorc THEN BEGIN 1500

release(dornain.size);
!never keep copies of monitors;
dmn_info(domain.did) .d :-NONE;

END
ELSE 1505
INSPECT dmri_info(domain.did) DO BEGIN

going: =FALSE;
IF ((NOT spaceqempty) AND work.Empty
AND external_segs.Enpty)
THEN delete_domain_copy(d.did); 1510

END;
END of procedure domain—Copy;

PROCEI)UREdclete_domain_copy(diRI); 	 1515
INTEGER did;
!this interacts with memory management;
INSPECT dmn_info(did) DO BEGIN

copy: =FALSE;
copyspace:copyspace-d.size; 	 1520
release(d.size); 	!give hack space;
d:-NONE; 	 !domain deleted;

END of delete—domain—copy;

1525
!**********end of domain management*****************;

.

A-33

PROCEDURE switch—context;
!this procedure is only ever called from outside the kernelc;
IF Idle THEN ACTIVATE THIS kerneic DELAY 0 	 1530
!assume no switching delay;
ELSE
IF NOT maskf THEN BEGIN .

!when executing a domain incarnation;
iflag := TRUE; 	!have raised genuine
maskf := TRUE; 	!but dont want to be
REACTIVATE THIS kerneic DELAY 0;

END;

interrupt; 	1535
interrupted now;

1540

PROCEDURE execute(x);
REF.(domain_incarnationc) x;

!This procedure is the simulation of execution of;
!a domain incarnation.;
!Although an actual domain incarnation would be;
!interruptable at any point of execution of the;
!domain code it is assumed that the domain code;
!is divided up into at most five steps and;
!interrupts occur between these steps. The passage;
!of time is simulated by 'hold' for the assumed;
!execution time of a step;
!followed by the 'instantaneous' execution of the;
!step.;
!The context of a domain incarnation is thus preserved;
!by noting how long it has to remain in the 'hold';
!state, 'runtt', and which step it must execute;
!next, 'next—step'.; 	 1560
!Steps, which are virtual procedures of the class domainc,;
!have the following properties:;
!1)at end must set the next set of values for runtt;
!and next_step.;

can call kernel primitives, which may remove this; 	1565
!incarnation from driverq by manipulating Cu.;

should exercise care in calling more than one kernel;
!primitive in a step.;
BEGIN

REAL finisht; 	!work variable;
	

1570
IF x.domain==NONE THEN
error("ATTEMPT TO MAKE SKELETON LIVE");
IF x.runtt NE 0 THEN
BEGIN
maskf:=FALSE;
	

1575
!normal domain execution is interruptable and pre-emptable;
finisht :=Time+x.runtt;
x.processor.service_timer.start;
!statistics collection;
Hold(x.runtt); 	!simulate time to complete action; 1580
!when the next instruction is executed either the;
!processor has 'finished' or it has been interrupted;
x . processor. service_timer, stop;
x.processor.ctime:=

1545

1550

1555

A-34

x.proccssor.c_time±xriintt-(fi'nisht-Time); 	 1585
x.runtt:=IF iflag THEN finisht-Time ELSE 0;
maskf:=TRLJE; 	!no longer permitted to interrupt;

END;

IF NOT iflag THEN 1590
BEGIN
!perform, 	step whose execution time has just been simulated;
SWITCH s:=stpl,stp2,stp3,stp4,stp5;
!a case statement;
IF x.next_step<1 OR x..next_step>5 THEN 1595
error("DOMAIN NOT FORMULATED CORRECTLY");
GOTO s(x.next_step);
stpl: 	x.domain.stepl(x); 	GOTO esac;

x.domain.step2(x); 	GOTO esac;
x.domain.step3(x); 	GOTO esac; 1600

stp4:x.domain..step4(x); 	GOTO esac;
stp5: 	x.domain.step5(x);
esac:

END;
END of procedure execute; 1605

REF(Link) ptr; 	 1610

initialization;

WHILE running DO
BEGIN 	 1615

IF iflag THEN BEGIN
!simulate time to switch from user process;
Hold(contextdelay);
iflag := FALSE; 	 1620

END;

ptr :-driverq.first;
!examine top entry of driverq;

1625
IF qtrace AND ptr=/=NONE THEN
BEGIN

Outtext(" 	("); Outint(id,2); Outchar(')');
ptime; Outtext(dissect(ptr));

END; 	 1630

!determine type of entry;
IF ptr IN domain incarnationc THEN
BEGIN

!cu always points to the current domain incarnation which;
!keeps its place in driverq unless a kernel primitive;
!removes it;
cu :- ptr;

IF validated(cu) THEN BEGIN 	 1640
!continue if valid entry capability;

A-35

ts_clock.set(cu. processor. rts);
!for remaining timeslice;

execute(cu);
	 1645

!A step of the domain code - consisting in fact;
!of a 'hold' followed by 1 of the virtual;
!procedures stepi. . tep5 - is performed;
or;
!an interrupt, during the 'hold' section, has occurred;
!when control returns here.;

ts_clock.halt(cu.processor.rts); 	!stop clock;

!after higher priority entries in driverq have; 	1655
!been examined, execution of the remaining part;
!of an interrupted step or the next step;
!will take place.;

IF NOT iflag THEN cu:-NONE; 	 1660
!clearing cu is indicative of the succesful completion;
!of a step;

END
ELSE cu:-NONE;
!incarnation not executed because invalid; 	 1665

END

ELSE
	

1670
BEGIN
• IF ptr=/=NONE THEN ptr.Out;
INSPECT ptr

1675
WHEN clockc DO IF ptr==ts_clock THEN
BEGIN
!end of time slice for current domain incarnation;
IF cu =1= NONE THEN BEGIN

IF NOT cu.domain IN monitorc THEN BEGIN 1680
IF cu.processor.ctime GE longtimeslice THEN BEGIN
cu.processor.rtslongtimes1ice
cu.processor.priority:low;

END ELSE cu.processor.rts=timeslice;
cu.Out; 1685
IF driverq.bentries=O AND
dmninfo(cu.did) .next_site=0
THEN
!no other work and domain not wanted elsewhere;
queue(driverq,cu,cu.processor.priority) 1690
ELSE BEGIN
!redetermine best location for domain incarnation to;
!continue - gives domain chance to go to other sites;
retire(cu);
queue(driverq,cu,high); 	 • 1695

END;
END ELSE cu.processor.rts:=timeslice;
!give processor time to get out of monitor domain;

A-36

rMl
LL'LJN

END 1700

WHEN consolec DO 	 1705
BEGIN 	 !input has arrived from a console;

IF c_secretary.Prev == NONE THEN 	!see if in a queue;
BEGIN

!assume that it is not in driverq.;
!note this means domain must be tied; 	 1710
queue(driverq,c_secretary,medium);
c_sec retary.stage :=valid;

END;
ptr.Into(c_arrival_list);
!messages from all consoles kept in one list; 	1715

END

WHEN dmn_transfer DO
BEGIN 	 !request to transfer domain has arrived;

IF dmn_info(did) .next site NE 0 THEN
!domain promised to someone else;
send_ncssage(dmn_info(did). next_site,ptr)
!pass on the request;
ELSE IF NOT 	(dmn_info(did) .here OR dnn_info(did) .coming)
THEN 	 !domain already gone elsewhere;
send _message(dmn_info(did) .d_loc ,ptr)
ELSE 	 !domain is here or coming;
IF rqstor NE id THEN BEGIN

INSPECT dmn_info(did) DO BEGIN 1730
d_loc =next_site: =rqstor;
!prepare for updating broadcast;
IF update(1)==NONE THEN
BEGIN 	!update not initialized;

FOR w := 1 STEP 1 UNTIL n DO 1735
update(w) :-NEW d_loc_update(did,rqstor);

END
ELSE
FOR w:=1 STEP 1 UNTIL n DO
update(w) .new_site:=rqstor; 1740

END;
action_transfer(dmn_info(did));
!see if domain can be sent off immediately;

1745
END ELSE error("DO?IAIN MANAGEMENT HAS FAILED");

END

WHEN domainc DO 	 1750
BEGIN 	 !domain has arrived from another site;

site :=id;
INSPECT dmn_info(did) DO
BEGIN

REF(domain_jncarnatjonc) dr,f; 	 1755

A-37

IF NOT coming THEN
BEGIN 	 !arrival unexpected e.g. from ipi;

claim (size , running)
!memory space;
IF NOT running THEN 1760
error("NO ROOM FOR A NEW DOMAIN");
FOR w:=1 STEP 1 UNTIL n DO
update(w) :-NEW d_loc_update(did,id);
broadcast(update);
!tell other sites it is here; 1765

• d_loc:=id;
END;
coming: =FALSE;
here:=TRUE; 	!alter state;
WHILE NOT rqst_list.&pty DO 1770
BEGIN 	 !examine list of waitng domain requests;
• dr:-rqst_list.Suc;
queue(driverq,dr,high);

!have chosen a strategy such that a request that;
!is not going to be filled at this site is not acted;
!upon if domain has been promised elsewhere;

END;
dr :-external_segs . Suc;
WHILE dr=/=NONE DO 	 1780
!check incarnation(s) that have been waiting for;
!domain to arrive to see if any are ready to run;
BEGIN

f:-dr.Suc;
IF dr.count=0 THEN 	 1785
BEGIN

dr.Out;
put_in_ready_state(dr);

END;
dr:-f; 	 1790

END;
END;

END

1795
WHEN d .joc_update DO
BEGIN 	 !a domain has changed sites;

dmn_info(did) .d_loc:=new_site;
END

1800
WHEN l_seg.jistc DO
BEGIN
!request to transfer a list of local segments;
INTEGER i;
REF (segmentc) s; 	 1805
FOR i:=1 STEP 1 UNTIL max_local_segs DO IF a(i) NE 0 THEN
BEGIN

s:-seg_table(retrieve(a(i))); 	!fetch segment;
xferedlocals.incr; 	 !update statistics;
send_message(rqstor,$); 	 transmit; 	1810

END;
END 	 •

A-38

WHEN p seg_listc DO
BEGIN 	 1815

!request to transfer processor segment and;
!possible parameters;
INTEGER 1;
send_message(rqstor,seg_table(retrieve(p_key)));
xfered_processors.incr; 	 1820
!send processor segment;
FOR i:=1 STEP 1 UNTIL max_param_segs DO
IF a(i) NE C) THEN BEGIN
send_message(rqstor,seg_table(retrieve(a(i))));
xfered_locais.incr; 	 1825

END;
END

WHEN s_channelc DO
BEGIN 	 !transmission to another site completed;
REF(contentc) m;
m:-ptr QUA s_channelc.m;
!retain reference to message just sent;

!now see if more messages to be sent; 	 1835
IF NOT(cq.Empty AND sq.Enpty) THEN
signal _channel 	 -
((IF cq.Empty THEN sq.Suc ELSE cq.Suc) QUA contentc)
ELSE 	 !none left;
channel_busy:=FALSE; 	 1840

!now free space from previous message;
!(could be time consuming);
IF m IN domainc THEN domain_copy(rn QUA donainc)
!determine if keeping a copy of domain code; 	1845
ELSE IF m IN segmentc THEN delete_seg(m QUA segmentc);
!return space;
!short control messages are assumed not to interact with;
memory management;

END 	 1850

WHEN segmentc DO 	! domainc already dealt with;
BEGIN 	 !processor or local segment has arrived;

1855
INTEGER new did;
REF(virtual_processor) p;
REF(domain_incarnationc) f;
IF ptr IN virtual_processorc THEN BEGIN

p:-ptr; 	 1860
new _did:=p.e_stack(p.stackp) .did;

END
ELSE BEGIN

!assume that it is local segment;
p:-ptr QUA local_seg.pr; 	 1865

new_did:=ptr QUA local_seg.did;
END;

A-39

!locate incarnation, they belong to; 	 1870
f:-dmn_info(new_did) .external_segs. Suc;
WHILE (IF fN0NE THEN FALSE ELSE f.processor=/=p) DO
f:-f. Suc;
!search for incarnation record;
IF f==NONE THEN error("SEGMENT HAS LOST ITS DOMAIN") 1875
ELSE
BEGIN

f .count: =f count-i;
!one more segment has arrived;
IF f.count=0 AND (dnn_info(new_did).here OR 	1880
drnn_info(new_did) .copy) THEN
BEGIN

f.Out; 	!of external_segs list;
put_in_ready_state(f);
!can run - because all segments here; 	 1885

END;
END;

END

1890

OTHERWISE BEGIN
IF NOT spaceqempty THEN
BEGIN 	 1895
!have processes waiting for space but.none running;
IF spaceq.total_entries=qfs(id) AND
NOT deadlock warning
THEN
BEGIN 	 1900

ptime;
Outtext("POSSIBLE DEADLOCK AT SITE
Outint (Id, 2);
Outtext(" 	NUMBER WAITING");
Outint(spaceq.total_entries,2); 	 1905
Outimage;
deadlock _warning: =TRUE;

END;
END;
idle_timer.start; 	 1910
Passivate;
idle—timer. stop;
!accumulate idle time;

END;
END; 	 1915

END;
error("KERNEL HAS STOPPED RUNNING");

END of class kernelc;

A_-40

!declarations related to domain management; 	 1920

CLASS dmn_infoc; 1925
!this class is a data structure holding all information that the;
!kernel needs to know about a domain;
BEGIN
REF(domainc) 	d; 	!actual reference to domain;
BOOLEAN 1930
copy,
true if only a copy of the domain is here;

coming,
!true when this site has requested domain to be sent here;
here, 1935
!true when domain is actually at this 	site;
going;
!true when domain is in transit between sites;
INTEGER
d_loc, 	 !estimate of site of original domain;
next—site;
!non-zero when domain reserved for another site;
REF(Head)
work, 	 -
!list of all 'ready-to run' 	incarnations of domain; 1945
external_segs,
!list of all incarnations waitingfor segments;
!from other sites;
rqst_list;
!list of all rqsts to have optimum site calculation performed;
REAL lasttime; 	 !for copies last time it was used;
REF(d_loc_update) ARRAY update(1:n);
!kept for efficieny reasons;

work:-NEW Head; external_segs:-NEW Head; rqst_list:-NEW Head;.
copy: =FALSE;
corning: =FALSE;
here: =FALSE;
next_site: =0;

END of class dmn_infoc; 	 - 	1960

contentc CLASS dmn transfer;
BEGIN 	 1965

INTEGER did,rqstor;
!for requesting the transmission of code and possible public;
!segments to another site (rqstor);
size :=32;

END of class dmn_transfer; 	 1970

contentc CLASS d_loc_update(did,new_site);
INTEGER did,new_site;
!for informing sites of new domain locations; 	- 	 1975
BEGIN

A-41

TEXT PROCEDURE dump;
dump:-Copy("D_LOC_UPDATE t');

size :=32;
	

1980
END;

contentc CLASS domain_incarnationc(processor);
REF(virtual_processorc) processor; 	 1985
!this is basically an entry capability;
!the data it contains is fleshed out by various procedures;
!in the kernel to make the capability valid;
BEGIN

INTEGER stage; 	 1990
!progress indicator in making capability valid;
INTEGER did;
!identity o 	(going to be) entered;
REF(domainc) domain; 	!set just before entering domain;

1995
REF (local_seg) ARRAY locals(1:max_local_segs);

INTEGER choice;
!site calculated as 'best' for incarnation;

2000
INTEGER shifts;
!count of number of times incarnation forced to another site;

INTEGER next—step; 	!entry point information;
REAL runtt; 	 2005

REAL local _data;
!required to simulate data stored in local_segments;

!the above are all that are strictly necessary; 	 2010
!the rest aid computation;
INTEGER d_site,p_site,l_site;
!sites of domain, processor and parameter, and local segments;
INTEGER d_size,p_size,l_size;
!size of code (& data-base), processor (& parameter); 	2015
!and local segments;

INTEGER total—size,
!of all segments except domain segments but including those;
!that are to be created and on disk; 	 2020
extra—Space;
!size of segments not resident at chosen site or to be created;
INTEGER count;
!number of segments required from other sites;
INTEGER site; 	 2025
INTEGER 1;

PROCEDURE re_ initial ization (did n);
INTEGER didn;
BEGIN 	 !sets capability back to base state;

stage: =seek_d_site;
runtt:0; next_step:1;
did: =didn;

A-42

FOR i:=1 STEP 1 UNTIL max_local_segs 1)0
1ocals(i).status:=locals(i).default:rnull; 	 2035

END of re initialization;

TEXT PROCEDURE dump;
BEGIN 	 2040
!for diagnostic identification - 12 chars long;
TEXT dumpy;
dumpy :- Copy("DI P= D=
dumpv.Sub(6,2).Putint(processor..pid);
dumpv.Sub(I0,2) .Putint(did); 	 2045
dump: -dumpy;

END;

size :=32;
!for transmission over communication links; 	 2050
FOR i:1 STEP 1 UNTIL max_local_segs DO
locals(i) :-NEW local_seg(O,processor);
!instead of creating a new local segment every time one is;
!used the same template is used;

2055
END of domain_incarnationc;

2060
segnentc CLASS domainc(did);
INTEGER did; 	 !identification number;
VIRTUAL: PROCEDURE
stepi, 	 !executed on entering a domain;
step2,step3,step4,step5; 	

0 	
2065

!optional extra 'instructions';
BEGIN

INTEGER
tied; 	 !if non-zero fixed site for domain;
INTEGER i; 	 2070

PROCEDURE interdomain_call(x,new_did);
REF (domain _incarnationc) x;
INTEGER new_did;
BEGIN 	 2075
interdmn_jump(x,x.processor.fetch_c(new_did));
!set up new entry capability;

END;
PROCEDURE return(x);
REF(domain_incarnationc) x; 	 2080
INSPECT x DO BEGIN

INTEGER i;
FOR i:=I STEP 1 UNTIL max_local_segs DO
IF locals(i) . status= incore THEN
BEGIN 	 2085

!determine what to do with local segments;
• IF locals(i) .default=null
THEN
INSPECT k(x..site) DO delete_seg(locals(i));

END; 	 2090

A-43

interdmnjump(x,processor.return);
!retrieve previous entry capability;

END of return;

PROCEDURE interdmnjump(x,y); 2095
REF (domain _incarnationc) 	x,y;
!set in train the transfer of virtual processor;
!from incarnation x to y;
BEGIN

FOR i:=1 STEP 1 UNTIL max_pararn_segs DO 2100
x..processor.params(i) .did:=y.did;
!mark parameter segments as belonging to new domain;
INSPECT k(x.site) DO BEGIN

retire(x);
!remove current domain incarnation from driverq; 2105
queue(driverq,y,high);

END;
new incarnations.incr; 	 !statistic;

END Of interdmn_jump;
2110

REF(domain_incarnationc) PROCEDURE putative_return(x);
REF(domain_incarnationc) 	x;
BEGIN

!gives the entry capability for a return but does not;
!instigate the return; 2115
return(x); 	-
x.processor.Current.Out; 	 !ofdriverq;
putative_return:-x.processor.Current;

END;
2120

PROCEDURE setup_disk_read(x,size);
REF(domain_incarnationc) x; INTEGER size;
!for preparing the parameters of a disk read; 	 2125
x.processor.simple_parameter:=size;
!considerably simplified;

TEXT PROCEDURE dump; 	 2130
BEGIN 	 !diagnostic;

TEXT t;
t:-Copy("DOIIAIN
t.Sub(7,2) .Putint(did);
dump:-t; 	 2135

END; 	 -

key 	did;
default:=status :=incore; 	 !always; 	2140
INNER;
INSPECT k(site) DO int(THIS don-iainc); 	!instal itself;

END;
2145

CLASS formatc(did);
INTEGER did;

A-44

!for handling 'compile-time' information about domain structure;
VIRTUAL: PROCEDURE format;

2150
BEGIN
PROCEDURE format(l); REF(local_seg)ARRAY 1;
!default; 	-
dp(did) :-THIS formatc;
!make universally available; 	 2155

END;

REF(formatc) ARRAY dp(1:fixed_domains);

2160
domainc CLASS monitorc;
BEGIN

INTEGER c_size, 	!size of code segment;
db_size; 	 !size of public (data base) segment;
!n.b. db_size can not be zero.; 	 2165

INNER;
size :=c_size+db_size;

END of class monitorc;
	

2170

monitorc CLASS secretaryc;
BEGIN

!in this simulation all the monitors that have condition;
!queues also have secretaries; 	 2175
REF(head) my—q; 	!coriditon queue;

Ia virtual processor can suspend
!itself on the condition queue; 	 2180
PROCEDURE suspend;
k(site) .cu.Into(my_q);
!this assumes that the domain is tied down;

V.

PROCEDURE restart_processor; 	 2185
!removes the first processor from condition queue;
!because still at same site could be ready to;
!continue in monitor;
INSPECT k(site) DO
BEGIN 	 2190
REF(domain_incarnationc) mc;
inc:-my_q.Suc;
IF inc=/NONE THEN queue
(driverq,inc,IF inc.stage=valid THEN monitor ELSE high);

END of procedure restart_processor; 	 2195

PROCEDURE wait—for—signal;
k(site) .cu.Out;
!secretary processor removed from driverq;

2200
PROCEDURE create_secrctary(secretary,u);
NA1E secretary;
REF(domain_incarnationc) secretary;
INTEGER u;

A-4 5

BEGIN 	 2205
REF(virtual_processor) pr;
INSPECT k(site) DO
BEGIN
pr:-NEW virtual_processorc(site,max_consoles+did,u);
claim(pr.size,running); 	 2210
pr serv ice timer .Out;
!not giving user service;
secretary: -pr. f etch_c(did)
secretary.domain:-THIS domainc;
secretary.stage:=valid; 	 2215
!always ready to run;

END;
END;

rny_q :- NEW Head; 	 2220
tied :=site;
!because secretary is only known at one site;

END of class secretaryc;

2225

segmentc CLASS virtual_processor (pid,u);
INTEGER pid, 	 !identification number;

!random number seed to determine execution path; 2230
BEGIN

INTEGER priority; 	!determines scheduling;
REAL rts, 	 !remaining time slice;
C_time;
!processing time received since last command started; 2235
REF(local_seg) ARRAY params(1 :max_paran_segs);
!there is one A_list for the virtual processor;'
!local segments are moved to and from it if necessary;
INTEGER simple_parameter;
!for non array type data; 2240
INTEGER unique;
INTEGER PROCEDURE uniquenumber;
BEGIN

unique: =unique+1;
IF unique < 	16rffff 	!16bits; 2245
THEN uniquenumber:=unique
ELSE error("PROCESSOR HAS RUN OUT OF UNIQUE NUMBERS") ;

END;

REF(domain_incarnationc) ARRAY e_stack(1:stack_depth); 	2250
!for keeping control of sequence of domains visited
INTEGER stackp;
INTEGER sameness;
!counts how many times processor on same domain call sequence;

2255
REF(domain_incarnationc) PROCEDURE Current;
!the incarnation the processor is in or will be in when;
!it next executes;
Current :-e_stack(stackp);

2260
REF(domain_incarnationc) PROCEDURE fetch_c(did);

A-46

INTEGER did;
IF stackp < stack depth THEN
BEGIN 	 !set up incarnation template;
stackp:=stackp+1; 	 2265
IF e_stack(stackp).diddid Ti-LEN 	 !ghost; 	-
sameness: =saiaeness+1 ELSE sameness: =1;
e_stack(stackp) .re_initialization(did);
dp(did) .fornat(e_stack(stackp) .locals);
!set up temporary space etc; 	 2270
fetch_c:-e_stack(stackp);

END
ELSE error(fillin('STACK OVERFLOW FOR PROCESSOR",pid));

REF(domain_incarnationc) PROCEDURE return; 	 2275
IF stackp>1 TI-LEN
BEGIN

stackp:=stackp-1;
return:-e_stack(stackp);

END ELSE error(fillin(' tSTACK UNDERFLOW FOR PROCESSOR",pid));

REF(timer) service timer;

!the next 4 items do not logically belong here;
!i.e. not part of processor base segment; 	 2285
!they are included for program efficiency;
REF(dnn transfer) d_transfer;
REF(p_seg_listc) p_seg_list;
REF(1_segjistc) 1_seg_list; 	-
REF(diskrqst) disk—read; 	 2290

priority :=medium;
rts:=timeslice; 	 2295
service _timer :- NEW timer('SERVICE TIME",usage);
size := 200;
key: =pid+fixed_domains;
status : =defaul t : =incore;
FOR w:=1 STEP 1 UNTIL stack depth DO 	 2300
e_stack(w):-NEW dornain_incarnationc(THIS virtual_processorc);
FOR w:=1 STEP 1 UNTIL max_param_segs DO
params(w):-NEU local_seg(site,TI-LIS virtual_processorc);
d_transfer: -NEW dmn_transfer;
p_seg_list:-NEW p_seg_listc(key); 	 2305
1_seg_list :-NEW l_seg_listc;
disk—read:-NEW disk_rqst;

END of class virtual_processor;
2310

contentc CLASS p_seg_listc(p_key);
INTEGER p_key;
BEGIN

!carries kernel request for processor and parameter segsments;
INTEGER rqstor;
INTEGER ARRAY a(1:max_param_segs);
size:=32;

A-4 7

END;
2320

contentc CLASS l_seg_listc;
BEGIN 	 !for requests for local segments;

INTEGER rqstor;
INTEGER ARRAY a(1:max_local_segs);
size:=32; 	 2325

END;

segmentc CLASS local_seg(pr);
REF(virtual_processor) pr;
BEGIN 	 2330

INTEGER did;
INTEGER PROCEDURE setkey;
setkey: =pr. pid*l6rfffff+site*l6rffff+pr.uniquenumber;
!created before use and reused for sake of program efficiency;
!site, size and key have to be given each time; 	 2335

PROCEDURE make_workspace(d_id,newsize);
INTEGER did,newsiz2;
BEGIN
did:=did; 	 2340
key: =setkey;
status:=trans; 	!so as created on domain entry;
size:=newsize;

END; 	 -
2345

PROCEDURE make _ disk _read(newsize);
INTEGER newsize;
BEGIN

!for setting up the parameter segment for a disk read;
key:=setkey; 	 2350
status: =ondisk;
size :=newsize;

END;

TEXT PROCEDURE dump;
	

2355
dump: -fill in("L_SEG * P",pr.pid);

END of class local_seg;

PROCEDURE move(lfrom,lto); 	 2360
REF(local_seg) lfrom,lto;
!for transferring a segment into or out of A_list;
BEGIN

!an error in simula runtime system prevents swopping 'REFs';
INSPECT ifrom DO BEGIN 	 2365

lto.pr:-pr;
lto.size :=size;
ito .site: =site;
lto..key:=key;
lto.default:=default; 	 2370
lto .status : =status;
lto.did :=did;
!assume that ito previous status not incore;
IF status=incore OR status=desc THEN INSPECT k(site) DO
seg_table(retrieve(key)) :-lto; 	 2375

A-48

END;
Ikeep the same number of segment templates in the system;
if rom status: =nuii;

END;
2380

A-49

PROCEDURE ipi;
BEGIN INTEGER ul,nn,j;
ul:=random_seed; 	!random number seed;

NEW user_supervisor(1,supern); 	 2385
!simulate part of ipi;
NEW comrnand(cnslsite,comrnandn);
FOR nn:=1 STEP 1 UNTIL max disks DO
NEW diskhandler(nn*(n//max_disks) ,diskl+nn_1,n+nn,ul*(2*nn+1));
!spread handlers around to different sites; 	 2390

FOR nn:=ipld-4-1 STEP 1 UNTIL ipld+compl DO
NEW compiler(?bd(nn,n)+1,nn);
FOR nn:dd1 STEP 1 UNTIL ddu DO
NEW type1(1od(nn,n)+1,nn); 	 2395
FOR nn:=rnntrl STEP 1 UNTIL mntru DO
NEW type2(Mod(nn,n)+1,nn);

FOR nn:=1 STEP 1 UNTIL max consoles DO
BEGIN
	

2400
console(nn)
	

NEW consolec(nn, (2*Randint(1, 1000,ul)+1));
ACTIVATE con 3ole(nn) DELAY 5000;
!give system time to settle down;

END;
END of procedure ipi; 	 2405

A-50

domainc CLASS typel;
BEGIN

!this class simulates trivial commands;
!overall about half the commands make at least I disk transfer;
!the average processor time is around 200 msec;

PROCEDURE stepl (x);
REF(domainincarnationc) x;
BEGIN 	 2415

IF full_diags THEN BEGIN
TEXT t;
t:-Copy("PROCESSOR 	ENTERS DOMAIN 	AT SITE
t.Sub(11,2).Putint(x.processor.pid);
t.Sub(28,2).Putint(did); 	 2420
t. Sub(39, 2) .Putint(x.site);
ptime; Outtext(t);

END;
x.nextstep:=2;
x.runtt:Negexp(1/100000,X.proCeSSor.U); 	 2425

END of procedure stepl;

PROCEDURE step2(x);
REF (domain—incarnation) x;
BEGIN 2430

IF Draw(0.25,x.processor.u) 	THEN
BEGIN 	 - 	!going to rake a disk transfer;

setup_disk_read(x,512); 	 !read 512 bytes;
interdonain_call(x,diskhandlern(x. processor.pid));
x.next_step:=5; 	x.runtt:200; 2435

END ELSE BEGIN
x .next_step: =3; 	x runtt : =0;

END;
END of step2;

2440
PROCEDURE step3(x);
REF(dornain_incarnationc) 	x;
!determine next domain to be entered;
BEGIN
REF(virtual_processor) 	p; 2445
INTEGER new did;
p : -x. processor;
IF Draw(0.5,p.u)
AND p.stackp<stack_depth THEN BEGIN

new did 	:= Randint((did+1),mntru,p.u); 2450
IF full_diags THEN BEGIN
ptime; Outint(p.pid,6); 	Outtext(" 	CHOOSES");
Outint(new_did,6);

END;
2455

interdornain_call(x,new_did);
END;
x .next_step: =4;
x .runtt =100;

END of procedure step3; 2460

PROCEDURE step4(x); -
REF(domain_incarnationc) x;

A-51

BEGIN
IF full_diags THEN BEGIN 	 2465
ptime; Outint(x.processor.pid,6);
Outtext(" RETURNS TO/REMAINS AT");
Outint(did,4); Outimage;

END;
return(x); 	 2470

END of procedure step4;

PROCEDURE step5(x);
REF(domain_incarnationc) x;
BEGIN 	 !completed a disk read; 	 2475
move(x.processor.params(1),x.locals(2));
x.next_step:=3; xruntt :0;

END of stepS;

2480
size :=1024;
NEW typelf(did); 	!to set up domain correctly;

END of class typel;

formatc CLASS typeif; 	 2485
BEGIN
PROCEDURE format(1);
REF(local_seg) ARRAY 1;
1(1).make_workspacc(did,(ddu+2_did)*128);
!different size for each domain to get different behaviour;

END of typeif;

A-52

monitorc CLASS type2;
!this class simulates actions involving the use of global tables;
BEGIN 	 2495

PROCEDURE step 1(x);
REF(domain_incarnationc) x;
BEGIN

IF full_diags THEN BEGIN 	 2500
TEXT t;
t:-Copy("PROCESSOR 	ENTERS MONITOR 	AT SITE
tSub(11,2).Putint(x.processor..pid);
t.Sub(29,2).Putint(did);
tSub(40,2).Putint(x.site); 	 2505
ptime; Outtext(t);

END;
xnext_step : =2;
x.runtt:=Negexp(i/100000,x.processor.u);

END of stepl; 	 2510

PROCEDURE step2(x);
REF(dornain_incarnationc) x;
return(x);

2515
C size :=400;
db_size : = (nntru-did+1) *nax consoles*3 2
!expect global tables to be bigger the more users there are;
NEW type2f(did);

END of type2; 	 2520

formatc CLASS type2f;
BEGIN
PROCEDURE format(l);
REF(local_seg) ARRAY 1;
	

2525
1(1) .make_workspace(did,10*did);
!space for a small stack;

END of type2f;

A-53

domainc CLASS compiler; 	 2530
!this domain interacts only with the diskhandler and makes large;
!computational demands;
BEGIN

REAL ARRAY a,b(1:7);
PROCEDURE stepl(x); 	 2535
REF(domain_incarnation) x;
BEGIN

IF full_diags THEN BEGIN
TEXT t;
t:-Copy("PROCESSOR 	ENTERS CO1PILER"); 	 2540
t.Sub(11,2).Putint(x..processor.pid);
ptime; Outtext(t);

END;
x .next_step : =2;
x.localdata:=Linear(a,b,x.processor.u)* 1.0&6; 	 2545

END of step I;.

PROCEDURE step2(x);
REF(domain incarnation) x;
BEGIN 	 2550
IF x..processor.params(1).statusincore THEN
INSPECT k(x.site) DO delete_seg(x.processor.params(1));
!free previous buffer;
IF x.local_data > 0 THEN
BEGIN 	 2555
x.runtt:Erlang(1.0&-6,6,x.processor.u);
!we assume an average of 12 lines/sec compilation speed;
!with 2 disk transfers for every 12 lines;
x.local_data:=x.local_data-x.runtt;
setup_disk_read(x,4096); 	 2560
interdomain_call(x,diskhandlern(x.processor.pid));
x .next_step =3;

END
ELSE
return(x); 	 2565

END of step2;

PROCEDURE step3(x);
REF(domain_incarnatioric) x;
BEGIN 	 !disk write;. 	 2570
x.processor..params(1).status:=desc;
interdomaincall(x,diskhandlern(x. processor. pid));
x .next_s tep: =2;
x.runtt:=500;

END of step3; 	 2575

size :=I2000;
a(1):=0; a(2):=0.27; a(3):=0.54; a(4):=0.78; a(5):=0.88;
a(6):=0.93; a(7):1.O; 	 2580
b(1):=0.5; b(2):=4; b(3):=8; b(4):=16; b(5):=40;
b(6):=80; b(7):=200;
!cumulative density function for cpu times;
NEV] type lf(did);

2585
END of class compiler;

A-54

BLANK

PAGE

A-55

domainc CLASS user—supervisor;
BEGIN

2590
!supervise the 'interpretation' of users code;
!can soak up a lot of cpu time;

PROCEDURE stepl (x);
REF(domain_incarnationc) x; 	 2595
BEGIN

IF full_diags THEN BEGIN
ptime; 	Outtext(fillin
("EXECUTION OF USER CODE BY PROCESSOR",x.processor.pid));

END; 	 2600
x.local_data:=Linear(userp,usert,x.processor.u)*&6;
setup_disk_read(x,Randint(300,I6000,x.processor.u));
!for code from disk;
interdomain_càll(x,diskhandlern(x.processor.pid));
x.next_step:=2 	 2605

END of stepl;

PROCEDURE step2(x);.
REF (domain_incarnationc) x;
BEGIN
	

2610
move(x.processor.params(1),x.locals(2));
!code lives in local segment 2;
x.runtt:=200;
x.next_step:=3; 	 -

END of step2; 	 2615

PROCEDURE step3(x);
REF(domain_incarnationc) x;
IF x.local_data>O THEN BEGIN
x.runtt:Negexp(1/250000,x.processor.u); 	 2620
!mean headway between disc operations is 250msecs;
!this is twice the equivalent emas rate but we must allow for
!overlays or equivalent;
x .local_data =x .local data—x. runtt;
INSPECT x.processor DO 	 2625
BEGIN

IF Draw(0.5,u) AND params(1).status=incore THEN
BEGIN
params(1).status:=desc; 	 !for write;

END 	 2630
ELSE

BEGIN
IF params(1).status=incoreTI-IEN INSPECT k(x.site) DO
delete_seg(params(1)); 	 2635
simple_paramater:=8192; 	 !for read;

END;
END;
interdomain_call(x,diskhandlern(x.processor. pid));

END 	 2640
ELSE
BEGIN

IF x.processor.params(i).status=incore THEN
INSPECT k(x.site) DO delete_seg(x.proàessor.params(1));

A-56

return(x); 	 !supervisor finished; 	 2645
END of stcp3;

size :=4000;
NEW supervisorf(did);

END of class user—supervisor; 	 2650

forrnatc CLASS supervisorf;
BEGIN
PROCEDURE format(l);
REF (local_seg) ARRAY 1; 	 2655
BEGIN
l(1).make_workspace(did,Randint(500,8000,1(1).pr.u));

END;
END;

2660

A-S 7

secretaryc CLASS diskhandier(disk,u);
INTEGER disk,u;
BEGIN

!This domain handles both writes to and reads from disk.;
!Requests are queued depending on the priority-of the; 	2665
!processors making the request.;
!When in overload situation low priority processors are;
!suspended after they have issued write requests until;
!situation improves.;

2670
REF(virtual_processor) pr;
REF(domain_incarnationc) next mc;

BOOLEAN transfer_in_progress,
read—next, 	 !true if previous operation was a write;
overload;
!set to give priority to writes to free memory;

REF(Head) wfreeq,wq;
!used to manage limited read before write scheme; 	 2680
REF(Head) wql,wqh;
!low and high priority write queues feed into wq;
REF(Head) rql,rqh; 	!read queues;
REF(l_seg_listc) disk_write_rqst;
REF(Link) trans_seg; 	 2685
BOOLEAN warning, message.
!true when printed warning about deadlock possibility;

PROCEDURE signal—disk—write;
BEGIN 	 2690
!the kernel where the segment to be written resides is;
!requested to send the segment straight to the disk;

disk_write_rqst.a(1):=wq.Suc QUA segmentc.key;
INSPECT k(site) DO
send_raessage(wq.Suc QUA segrnentc.site,disk_write_rqst); 2695
trans_seg:-wq.Suc; trans_seg.Out;
IF NOT(wqh.Empty AND wql.Empty) AND NOT wfreeq.Enpty THEN
BEGIN
!move another write request into pipeline;

next_inc:-IF wqh.Empty THEN wql.Suc ELSE wqh.Suc; 	2700
move(next_inc.processor.parains(1),wfreeq.Suc
QUA local_seg);
wfreeq.Suc.Into(wq);

IF next_inc.processor.priority=low THEN 	 2705
BEGIN

IF overload OR NOT my_q.Empty THEN
BEGIN

next _inc. Into(my_q);
!hold back to allow other processors to complete; 2710
IF overload THEN next_inc:-NONE
ELSE next_inc : -ny_q . Suc;

END;
END;
IF next_inc=/=NONE THEN 	 2715
INSPECT k(site) DO queue(driverq,next_inc,monitor);
!in monitor and still valid;

A-58

END;
END;

2720

BOOLEAN PROCEDURE initiate—read;
!if there is a read to be done, starts it and returns true;
BEGIN

initiate_read:=NOT(rqh..Empty AND rql.Empty); 	 2725
IF NOT rqh.Empty THEN
k(site).send_message(disk,rqh.Suc QUA contentc)
ELSE
IF NOT rql.Empty THEN
k(site)..send_message(disk,rql.Suc QUA contentc);

	
2730

END of initiate—read;

PROCEDURE stepl(x)
REF(domain_incarnationc) x;
	

2735
BEGIN

IF full diags THEN BEGIN
ptime;
Outtext(fillin("DISK
x.processor.pid));
Outimage;

END;
x.runtt :=200;
x .next_step: =2;

END .of stepi;

HANDLER ACTIVATED FOR PROCESSOR",
2740

2745

PROCEDURE step2(x);
REF(doinain_incarnationc) x;
!for a disk write parans(1) has a segment desc(riptor) while;
!for a read simple_parameter describes the requirements; 	2750

IF x.processor.params(1).statusdesc THEN
BEGIN 	 !write;

IF NOT wfreeq.Enpty THEN
BEGIN 	 !go straight into delay line buffer;
move(x.processorparams(1),wfreeq.Suc QUA local—se,-);
wfreeq. Suc. Into(wq);
IF NOT transfer_in_progress THEN
BEGIN

!can use disk straight away;
	

2760
signal_disk_write;
transfer_in_progress: =TRIJE;

END;
END ELSE BEGIN

!delay line full so processor has to wait;
	

2765
IF x.processorpriority=low THEN x..Into(wql)
ELSE x.Into(wqh);

END;
x..next_step:=3;
x runtt : =400;
	

2770
END
ELSE
BEGIN

!entered to do a disk read;

A-59

x.processor.params(1).make_ disk _read 	 2775
(xprocessor.simple_parameter);
x.processor..params(1).site:disk;
!identify disk that will read segment;
next_inc:-putative_return(x);
!prepare entry capability for when read complete; 	2780
IF transfer—in—progress THEN
next_inc.Into(IF x.processor.prioritylow THEN rql ELSE rqh)
!suspend for secretary to look after;
ELSE
BEGIN 	 2785

transfer_in_progress: =TRUE;
INSPECT k(site) DO send_message(disk,next_inc);

END;
END of step2;

PROCEDURE step3(x);
REF (domain_incarnationc) x;
BEGIN

return(x);
END of step3;

PROCEDURE step4(x);
!executed by secretary processor;
REF(domain_incarnationc) x;
BEGIN

!in a normal situation read done
!unless wq is full in which case
!arid turn about;

before writes;
done turn;

2800

!in overload situation all writes and high priority reads;
!are done turn and turn about; 	 2805

IF trans_seg=/=NONE THEN BEGIN
trans_seg : -NONE;
read_next :=TRUE;

END ELSE read_next:FALSE; 	 2810

IF read—next THEN overload:=k(site).overload;

IF overload THEN
BEGIN 	 2815

IF NOT((read_next AND NOT rqh.Empty) OR wq.Empty) THEN
signal—disk-write
ELSE
IF NOT initiate—read THEN
BEGIN
	

2820
transfer _in_progress :=FALSE;

!could be in trouble here as nothing to do yet;
!system close to deadlock;

IF NOT warning_message THEN BEGIN
ptime; Outtext("DISKHANDLER IMPOTENT"); Outimage; 2825

warning_message:=TRUE; END;
END

END
ELSE
IF NOT(wqLEmpty AND wqh.Empty) THEN
	

2830
BEGIN

2790

2795

A-60

IF NOT read—next OR (rql.Empty AND rqh.Empty) THEN
signal_disk_write
ELSE initiate—read;

END 	 2835
ELSE
BEGIN
!the normal situation - reads before writes;
IF NOT initiate—read THEN
BEGIN 	 2840

IF NOT wq.Empty THEN signal_disk_write
ELSE
BEGIN

!nothing to do;
transfer_in_progress: =FALSE; 	 2845
IF NOT my_q.Empty THEN BEGIN

restart_processo r;
!judge it safe to release one held up processor;
warning_message: =FALSE;

END; 	 2850
END;

END;
END;
wait—for—signal;
x.runtt:=200+300*(ny_q.Cardinal+rql.Cardinal); 	 2855
the bigger the disk queues the more time spent;
!manipulating them;

END of step4;

c_size 	:= 512; 	db_size:=2048; 2860
wq:-NEW Head;
wfreeq:-NEW Head;
wqh:-NEW Head;
wql :-NEU Head;
rqh:-NEW Head; 2865
rql:-NEW Head;

write-NEW l_selistc; disk_ 	 g_
disk _write_rqst .rqstor:=disk;
FOR w:=1 STEP 1 UNTIL max _writes_pending DO
NEW local _seg(O,NONE) .Into(wfreeq); 2870
NEW formatc(did);
INSPECT k(site) DO BEGIN
create_secretary(d_secretary,u);
d_secretary .next_step: =4;
d_secretary.runtt:=200; 2875

ACTIVATE NEW disk_controller(disk,site,d_secretary) DELAY 0;
END;

END of diskhandler;
2880

INTEGER PROCEDURE diskhandlern(pid);
INTEGER pid;
!rule for associating virtual processors with disks;
diskhandlern:=diskl+Mod(pid,max_disks);

2885

A-61

secretaryc CLASS command;
!this domain analyses console input - in a random fashion;
BEGIN
REF(virtual_processor) pr;
REF(Head) c_ wait _list; 	 2890
INTEGER active_processors;

PROCEDURE step 1(x);
REF(domain_incarnationc) x; 	 2895
BEGIN

x.next_step :=2; x.runtt :=200;
END of stepi;

PROCEDURE step2(x); 2900
REF(domain_incarnationc) x;
BEGIN 	 -
REAL r; INTEGER new did;
r:=Uniform(O,1,xprocessor.u);
new_did:= 2905
IF r<009 THEN Randint(ipld+1,ipld+compl,x.processor.u)
ELSE IF r<0.26 THEN supern 	 !user program;
ELSE Randint(ddu,mntru,x.processor.u); 	!typel or type2;
interdomain_call(x,new_did);
!choose new domain; 2910
IF new did < ddl THEN
BEGIN

!see if can accept another incarnation of a large domain;
-IF k(site) .overload OR active_processors>chopfactor OR
NOT c_wait_list.Enpty THEN BEGIN 2915
x.processor.Current.Into(c_wait_list);
chopcount.incr; 	!statistics;
IF active_processors<chopfactor AND NOT k(site) .overload
THEN
queue(k(site) .driverq,c_wait_list.Suc,high) 2920
!free first in queue if nothing overloaded;
ELSE
BEGIN

active_processors: =ac tive_processors-1;
k(site).qfs(site):k(site).qfs(site)-1; 2925
!taken out of driverq to wait until system is;
less congested;

END;
END; 	 -

END; 2930
x.next_step:=3; 	x.runtt:=50;

END of step2;

PROCEDURE step3(x);
REF(domain_incarnationc) x; 	 2935
BEGIN 	 !executes here when finished processing;
ACTIVATE console(x.processor.pid) DELAY contextdelay;
!notify console that service is complete;

xnext_step:l; x..runtt:=0; 	 2940
active_processors: =active_processors-1;
k(site).retire(x); 	!in theory should go in my q;

A-62

k(site)..qfs(site):k(site).qfs(site)-1;
!see if any chopped processors can run;

	

IF (IF c_wait_list.Empty THEN FALSE ELSE 	 2945
active_processors=O OR (active_process .or<chopfactor AND
NOT k(site).overload)) THEN
BEGIN

INSPECT k(site) DO BEGIN

	

queue(driverq,c_ wait _list.Suc,high); 	 2950
qfs(id):=qfs(id)+1;
active_processors: =active_processors+1.;

END;
END;

END of step3; 	 2955

PROCEDURE step4(x);
REF(domain_incarnationc) x;
!this is the code executed by the secretary processor;
BEGIN 2960

REF(linkage) 	ptr;
ptr:-c_ arrival _list;
FOR ptr:-ptr.Suc WHILE ptr=/=NONE DO BEGIN

pr:-ptr QUA consolec.pr ;
INSPECT k(site) 	DO BEGIN 2965
queue(driverq,pr.e_stack(pr.stackp),high);
!removes from rny_q (if there);
active_processors :=active_processors+1;
qfs(id):=qfs(id)+1;

END; 2970
END;
c_arrival_list Clear;
!all outstanding inputs dealt with;
wait—for—signal;
x.runtt:200; 2975

END of step4;

!initialization;
NEW formatc(did); 	 2980
c_size:=512; db_size:=120*max_consoles; 	!buffer space;
INSPECT k(site) DO BEGIN
create_secretary(c_secretary, 1);
c_secretary .next_step: =4;
c_secretary.runtt:200; 	 2985

END;
c_arrival_list:-NEW Head;
c_wait_list:-NEW Head;

END of class command;
2990

A-63

REF(counter) channel _use;
REF(counter) control—count;

Process CLASS s_channelc(orgn);.
INTEGER orgn; 	 2995
!it is assumed that each site can transmit to only one other;
site at a time but that a site can receive many;

!messages simultaneously;
BEGIN

REF(contentc) m; 	!all messages are of type contentc; 3000

PROCEDURE initiate(message);
REF(contentc) message;
BEGIN
m:-message; 	 3005
!channel deals with one message at a time;
ACTIVATE THIS s_channelc DELAY(m.size*mesdelay);
!time to transmit;

END;
3010

WHILE running DO BEGIN
channel_use.add(m.size); 	 !update statistics;
IF m.size=32 THEN control_count.incr;
IF m.dest LE n THEN 	 3015
BEGIN

k(m.dest).int(rn) 	!message arrival is signalled;
END
ELSE dsk(m.dest) .int(m);

3020
INSPECT k(orgn) DO BEGIN

queue(driverq,THIS s_channelc,high);
switch—context;
!interrupt kernel to notify end of transmission;

END; 	 3025
!dealt with message;
Passivate;

END;
END of s_channelc;

3030

A-64

REF(Head) c_ arrival _list;
!part of the public segment of the command domain;

Process CLASS consolec(userid,u);
	

3035
INTEGER userid,
u; 	 !random number seed;
BEGIN

REF(.virtual_processor) pr;
REF(counter) completed _commands;
	

3040
REF(timer) response_timer,think_timer;
REAL rt;
REAL PROCEDURE thinktime;
thinktime:= Negexp(1/30,u)*&6;

3045
NEW groupheading(fillin("CONSOLE",userid));
think timer : - NEW timer("THINKING TIME" ,NONE);
response—timer :- NEW timer("RESPONSE TIME",total_respons);

Pr:- NEW virtual_processor(cnsl_site,userid,u); 	 3050
pr.fetch_c(commandn);
initialize virtual processor to serve console;

completed_commands: -NEW counter("COMPLETED COMMANDS");

INSPECT k(cnsl_site) DO 	 3055
BEGIN
clain(pr.size,running);
!space for process base;

WHILE running DO 	 3060
BEGIN

think _timer, start;
Hold(thinktine);
think _timer .stop;
queue(drivàrq,TUIS consolec,high); 	 3065
switch—context;
IF full_diags THEN BEGIN

Outimage;
ptime; Outtext("INPUT FROM CONSOLE 1/"); Outint(userid,3);

END; 	 3070

rt :=Time;
pr.c_time:=0;

response_timer.start; 	 3075
Passivate; 	!wait until processing finished;
response_timer.stop;
!accumulate response times;
rt:=Time-rt;
IF pr.c_time<longtirneslice THEN
	

3080
BEGIN 	 !analyse response to trivial command;

short_commands. incr;
IF rt>2..0&6 THEN over2.incr;
IF rt>5.0&6 THEN over5.incr;

END ELSE non_trivial.data(pr.c_time,rt);
	

3085
completed_commands. incr;
!another command completed;

A-65

IF full_diags THEN BEGIN
ptime; Outtext("OUTPIJT TO CONSOLE #"); Outint(userid,3);
Outimage; 	 3090

END;
END;

END;
END of class consolec; 	 -

3095

REF(consolec) ARRAY console (1:max_consoles);

PROCEDURE thinking consoles;
BEGIN 	 3100

INTEGER i,j;
Outtext(" NUMBER OF CONSOLES IN THINKING STATE");
FOR i:=1 STEP 1 UNTIL max—consoles DO
IF NOT console(i),Idle THEN j:=j+1;
Outint(j,4); 	 3105
Outtext(" NUMBER AWAITING ENTRY TO SYSTEM");
Outint(k(cnsl_site) .c secretary.domain QUA
command .c_wait_list.Cardinal ,4);
Outimage

END; 	 3110

A-66

Process CLASS clockc(id);
INTEGER id; 	 !site it belongs to;
BEGIN
PROCEDURE set(interval); 	 3115
REAL interval;
REACTIVATE THIS clockc DELAY interval;

PROCEDURE halt(remaining);
NAME remaining; 	 3120
REAL remaining; !time of processors time slice;
IF THIS clockc=/=Current AND NOT THIS clockc.Idle THEN
BEGIN
!called when want to suspend flow of time;
remaining:THIS clockc.Evtime-Time; 	 3125
Cancel(THIS clockc);

END ELSE remaining:0;

WHILE TRUE DO BEGIN
INSPECT k(id) DO BEGIN 	 3130
queue(driverq,TRIS clockc,high);
swi tch_context;

END;
IF full _diags THEN BEGIN
Outint(id,2); Outchar('!'); 	 3135

END;
Passivate;

END;
END of class clockc;

3140

A-67)

REF(diskcontrollerc) ARRAY dsk(n+1:n+max_disks);

Link CLASS disk buffer;
BEGIN 	 !data structure;

REF(segmentc) seg; 	!space for data; 	 3145
REF(domain_incarnationc) mc;
!control information;
BOOLEAN read; 	 !true when read false when write;

END; -
3150

Process CLASS disk_controllerc(id,handler_site,d_secretary);
INTEGER id,handler_site;
REF(domain_incarnationc) d_secretary;
BEGIN
REF(Head) sq, 	 !for messages sent to kernels; 	3155
freeq, 	 !for free buffers;
xferq, 	 !for actual disk reads and writes;
matchq; 	 !for holding reads until claimed;

REF(diskc) disk; 	!associated disk; 	 3160
REF(contentc) message;
REF(Link) ptr;
REF(disk_buffer) buf; !pointer to current buffer;

PROCEDURE int(m); 3165
REF(contentc) 	in;
INSPECT in

WHEN disk_rqst DO
BEGIN
!required segment has already been read from disk; 3170
buf:-matchq.Suc; 	!and is waiting in matchq;
WHILE IF buf==NONE THEN FALSE ELSE buf.seg.key NE key DO
buf:-buf.Suc;
IF bufNONE THEN error("DISK READS OUT OF SEQUENCE")
ELSE BEGIN 3175

buf .seg .dest : =rqstor;
buf.Into(sq);
IF THIS disk_controllerc.Idle THEN
ACTIVATE THIS disk_controllerc DELAY 0;

END; 3180
!send segment away;

END

WHEN domain •incarnationc DO
BEGIN 	 !request to read from disk; 	3185
buf:-freeq.Suc;
IF buf/NONE THEN BEGIN
buf..read:=TRUE;
buf.seg:-processor.params(1); 	 !set up information;
buf.inc:-m QUA domain_incarnationc; 	 3190
bufInto(xferq); 	land put into fifo queue for disk;
IF disk.Idle THEN disk.transfer;
IF NOT freeq.Empty THEN signal _free _buffer;

END ELSE error("DISK MANAGEMENT MESSED UP");
END 	 3195

WHEN segmentc DO

A-68

BEGIN 	 !segment to be written to disk;
buf :-freeq.Suc;
IF buf=/=NONE THEN BEGIN 	 3200

buf.read :=FALSE;
buf. inc :-NONE;
buf.seg:-m QUA segmentc;
buf. Into(xferq);
IF disk Idle THEN disk.transfer; 	 3205
IF NOT freeq.Empty THEN signal _ free _buffer;

END ELSE error("DISK MANAGEMENT MESSED UP");
END

OTHERWISE error("UNRECOGNISED MESSAGE TO DISK"); 	 3210

PROCEDURE signal—free—buffer;
BEGIN
!this is only executed when d_secretary is not scheduled;
d_secretary .dest =handler_site; 	 3215
d_secretary.Into(sq);
IF THIS disk_conrollerc.Idle THEN
ACTIVATE THIS disk_controllerc DELAY 0;
!equivalent to send_nessage(handler_site,d_secretary);

END; 	 3220

PROCEDURE signal_read_complete(buf);
REF(disk_buffer) buf; !holding read data;
BEGIN
buf.Into(matchq); 	!to await incarnation claiming it; 3225
buf .inc .dest : =handler_site;
!where process base is;
buf.inc. Into(sq);
IF THIS disk_controllercIdle THEN
ACTIVATE THIS disk_controllerc DELAY 0; 	 3230

END of signal_read_complete;

sq:-NEU Head; freeq:-NEW Head; xferq:-NEW head;
matchq:-NEW Head;
dsk(id) :-THIS disk_controllerc; 	 3235
disk:-NEW diskc(TFIIS disk_controllerc);
FOR w:=1 STEP 1 UNTIL max_disk_bufs DO
NEW disk_buffer.Into(freeq);
ACTIVATE disk DELAY 0; 	 !initialize;

3240
WHILE running DO
BEGIN
WHILE sq.Suc =1= NONE DO
BEGIN

ptr:-sq.Suc; 	 3245
ptr. Out; 	 !of sq;
IF ptr IS disk buffer THEN message:-ptr QUA disk_buffer.seg
ELSE message:-ptr;
message .orgn : =id;
Hold(message.sizc*mesdelay); 	 3250
channel_use . add (message . size)
IF message.size32 THEN control_count.incr;
INSPECT k(message.dest) DO int(message);
IF ptr IS disk buffer THEN

A-69

BEGIN 	 3255
IF freeq.Empty THEN signal—free—buffer;
ptrInto(freeq);

END;
END;
Passivate; 	 !no more messages to send; 	 3260

END;

END of class disk_controllerc;

3265

contnntc CLASS -disk rqst;
BEGIN

INTEGER rqstor,key;
END;

3270
Process CLASS diskc(controller);
REF(diskcontrollerc) controller;
BEGIN
REF(disk_buffer) buf;
INTEGER u; 	 !random number seed; 	 3275
REF(timer) idle—timer;
REF(counter) transfers ,bytes;

PROCEDURE transfer;
BEGIN 3280

!called by controller to initiate transfer;
buf:-controller.xferq..Suc;
idle timer.stop;
REACTIVATE THIS diskc DELAY
(Ahs(Randint(1,20,u)_Randint(1,20,u))*2000 3285
!find track 2msecs intertrack time;
+Uniforrn(0,50000,u) 	150 nsec rotation;
+buf.seg.size*2); 	!0.5 mbytes/sec transfer rate;

END;
3290

u:=3031;
NEV groupheading("DISK PERFORMANCE");
bytes:-NEW counter("BYTES TRANSFERED");
transfers:-NEW counter("COMPLETED TRANSFERS");
idle_timer:-NEU timer("DISK IDLE TUIE",NONE); 3295
idle_timer .start;
Passivate;
WHILE running DO BEGIN 	-

transfers.incr;
bytes.add(buf.seg.size); 3300

IF buf.read THEN controller.signal_read_complete(buf)
ELSE BEGIN 	 !write so buffer is free;
buf.seg Into
(controller.d_secretary.domain QUA diskhandler.wfreeq);
!a big fix to keep number of segment objects constant;
IF controller..freeq.Empty THEN
controller, signal_free_buffer;
buf.Into(controller.freeq);

END; 	 3310
IF controller.xferq.Empty THEN

A-70

Lii

BEGIN
idle_timer. start;
Passivate;
	!no more disk transfers to perform;

END
	

3315
ELSE transfer;
	

!another segment;

END;
END of class diskc;

3320

IN

A-71

PROCEDURE system—initialization;
BEGIN

INTEGER i;
statistic_list:-NEW Head;
grand _t_list:-NEW Head;
!initialize statistic lists;
total—response:-NEW grand_total("RESPONSE TIMES");
usage :- NEW grand _total("SERVICE TINES It);

NEW groupheading("UTILIZATION OF PROCESSORS");
FOR i:=1 STEP 1 UNTIL n DO
BEGIN

NEW groupheading(fillin("SITE" ,i));
k(i) :- NEW kernelc(i);
ACTIVATE k(i);

END;
NEW groupheadirig(");
new_incarnations:-NEW counter("CHANGES OF DOMAIN");
xfered_domains:- NEW counter("TRANSFERED DOMAINS");
xfered_processors:-NEW counter("TRANSFERED PROCESSORS");
xfered_locais:-NEW counter("TRANSFERED LOCAL SEGMENTS");
migrations : -NEW counter("FORCED MIGRATIONS");
c hopc oun t : -
NEW couater("PROCESSORS BLOCKED ON ENTRY TO NETWORK");

spacecount : -
NEW counter("INCARNATIONS BLOCKED WAITING FOR SPACE");
NEW g rouphead ing("RESPONSE TIMES");
short commands:-NEW counter ("COMPLETED SHORT COMMANDS");
over2:- NEW counter("RESPONSE TIMES OVER 2 SECS");
over5:-NEW counter("RESPONSE TIMES OVER 5 SECS");
non trivial:- 	 3350
NEW regression("NON TRIVIAL SERVICE TIMES" ,"RESPONSE TIME");
NEW g rouphead ing (" COMMUN ICAT IONS SUBSYSTEM");

channel—use:-NEW counter("BYTES TRANSFERED");
control_count:-NEW counter("CONTROL MESSAGES (32 BYTES) SENT");

END; 	 3355

INTEGER w;
	 !work variable;

TEXT PROCEDURE dissect(p); 	 3360
REF(Link) p;
!gives a text description of a class;
IF p IN contentc THEN dissect:-p QUA contentc.duinp
ELSE dissect:- Copy(" - LINK -

3365
PROCEDURE audit;
BEGIN
!examines various queues to check on operation of system;

INTEGER i,j,size;
REF(Link) ptr; 	 3370

thinking_consoles;
FOR i:=1 STEP 1 UNTIL n DO
INSPECT k(i) DO
BEGIN

q_analysis(driverq,filliri('DRIVERQ",i) ,dissect); 	 3375
q_analysis(spaceq,"SPACEQ",dissect);
size:=0;

3325

3330

3335

3340

3345

A-72

Outtext("DOMAINS"); 	Outirnage;
FOR j:=1 STEP 1 UNTIL fixed—domains DO
IF dmn_info(j).here OR dmn info(j).copy THEN 3380
INSPECT drnn_info(j) DO
BEGIN

size:=size+d.size;
!keep track of all space actually being used;
Outint(j,6); 3385
IF here THEN Outtext(" HERE") 	ELSE Outtext(" COPY");
IF NOT external_segs.Enpty THEN
BEGIN

Outchar(' (');
ptr : -external_segs. Suc; 3390
WHILE ptr/=NONE DO
BEGIN

Outint(ptr QUA domain_incarnationc.processor.pid,3);
ptr:-ptr. Suc;

END; 3395
Outchar(')');

END;
IF NOT work.Empty THEN
BEGIN
Outtext(" PROCESSOR LIST("); 3400
ptr:-work.Suc;
WHILE ptr/NONE DO
BEGIN
Outint(ptr QUA virtual_processor.pid,3);
ptr:-ptr.Suc; 3405

END;
Outchar(')');

END;
END 	of looking at domains;
Outimage; 3410
Outtext("OUTSTANDING MESSAGES
Outint
((sq..Cardinal+cq.Cardinal+
(IF s_channel.Idle THEN 0 ELSE 1)),3);
Outimage; 3415
FOR j:=1 STEP 1 UNTIL n DO BEGIN

Outint(ni_use(j) ,8);
Outchar(':');
Outint(qfs(j) ,2);

END; 3420
Outtext(" 	ACTUAL FREE HE?1ORY");
FOR j:=0 STEP 1 UNTIL t_length-I DO
IF segtable(j)/NONE THEN size:=size+seg_table(j).size;
Outint(rnsize-4000-size , 8);
Outtext(" 	COPYSPACE"); 	Outint(copyspace,8); 3425
Outimage;

END;
Outimage;
Outtext("NUNBER QUEUED FOR DISK READS");

3430
FOR i:=1 STEP 1 UNTIL max—disks DO
INSPECT k(i*(n//ma_disks)) .d_secretary.domain
WHEN diskhandler DO
j :=j+rql.Cardinal+rqh.Cardinal;

A-73

!could be a transfer in progress;
	 3435

Outint(j ,3);
Outimage;
Eject(Line+6);

END;
3440

A-74

statistic list:-NEW Head;
grand _t_list :- NEW Head;
!for keeping control of statistics;
Ej ect(Line+4);
Outtext(" 	 SIMULATION OF NETWORK WITH"); 	 3445
Outint(n,IF n<10 THEN 2 ELSE 3); Outtext(" SITES AND WITH");
Outint(max_consoles,3); Outtext(" CONSOLES");
Outimage; Eject(Line+3);

FOR w:= 1 STEP 1 UNTIL 132 DO Outchar('*'); Outimage; 	3450
Outchar(-
Outtext(" 	DIRECTLY CONNECTED SITES AND DISK: ");
Outtext(" COPYING OF CODE PERFORMED:");
Outtext(" BIAS TOWARDS PROCESSOR UTILIZATION");
Image.Setpos(132); Ou tchar('*'); Outirnage; 	 3455

Outtext("* PERIOD OF SIMULATION (SECS) II);

Outf ix(sin_time, 0, 4)
Outtext(" 	NUMBER OF SYSTEM DOMAINS =");
Outint(fixed_dornains,3); 	 3460

Outtext(' 	NUMBER OF COMPILERS ="); Outint(compl,2);
Image.Setpos(132); Outchar('*'); Outirnage;

Ou ttext("* 	IIEMORY SIZE ="); 	Ou tint (nsize,7);
Outtext("BYTES 	SIZE DIVIDER CONSTANT=");Ou tint (size divider,S)

Outtext(" 	LOAD SHEDDING FACTOR="); Outint(load_shed,2);
Outtext(" 	MAXIMUM MIGRATIONS="); Outint(max_shifts,2);
image.Setpos(132); 	Outchar('');Outnage;
Ou ttext("* LARGE DOMAINS NOT ALLOWED TO START WHEN");
Outtext(" GREATEST FREE MEMORY IS LESS THAN "); 3470
Outint(chopsize,8);
Outtext(" OR NUMBER IN SYSTEM IS GREATER THAN
Outint(chopfactor, 2);
Image.Setpos(l32); 	Outchar('*');Outioage;
Outtext("* CONSOLE CONTROL SITE="); 	Outint(cnsl_site,2); 3475

Outtext(" 	NUMBER OF DISKS="); 	Outint(maxdisks,2);
Outtext(" 	DISK BUFFERS="); Outint(max_disk_bufs,2);
Outtext(" 	DISK SITE(S)=");
FOR w:=1 STEP 1 UNTIL max—disks DO
Ou tint(w*(nI!max_disks) ,3); 3480
Image. Setpos(132);Outchar('*'); 	Outimage;
Ou ttext("* TIME SLICE ="); 	Outfix(timeslice*1&_3,0,3);
Outtext("MSECS 	LONG TIME SLICE
Outfix(longtimeslice*1 &-3, 0,4);
Outtext("?ISECS. 	COMMUNICATION FREQUENCY (MHZ) ="); 3485
Outfix(8/nesdelay,2,5);
Outtext(" 	RANDOM NUMBER SEED ="); Outint(random_seed,5);
Image. Setpos(132) ; 	Outchar('*');
Outimage;
FOR w:=1 STEP 1 UNTIL 132 DO Outchar('*'); Outimage; 3490

system _initialization;
	 3495

ipi;
Hold(settie_time*&6);

A-75

clear statistics;
Outtext("START OF RUN ti); thinking_consoles;

IF full _diags THEN audit;
IF running THEN Hold(sim_time*&6)
Outtext("END OF RUN "); thinking_consoles;
!a check that system has not seized up;
IF running THEN BEGIN
outputstatistiCS
Out text ("P ERFORHANCE MEASURE");
Ou tfix (to tal_res po flSe.total/Usage.t0ta1,2,8);
Outiniage;
Outtext("FRACTION USEFUL PROCESSOR UTILIZATION");
Ou tfix (usage.total/(n*sim_time) ,3,6);
Outirnage;

END;

3500

3505

3510

END;
results. Close;

END;

!of simulation block;

!'of program;
3515

A-76

CROSS REFERENCE TABLE

a 1360 1363 1387 1391 1806 1808 1823 1824 23170 23240
2534d 2545 25801 258214 2693

al! 4591) 470 471 482
al 459!) 469 471 481
abs 3285
action trans 1441 14511) 1743
active proce 28910 2914 2918 292414 294111 294614 295214 296814
add 3273) 373 4280 7901) 804 827 3013 3251 3300
add seg 554 8243) 868 1370 1392
audit 196 33661) 3500
b 25340 2545 258314 258414
bigd size 10880 1106 1152
big_p_size 1088D 1121 1153 1156
blanks 173 184 194 209
breakoutlmag 107 120
bring_togeth 1066 13390
broadcast 9161) 985 992 1764
buf 31631) 3171 317214 317314 3174 3176 3177 3186 3187 3188

3189 3190 3191 3199 3200 3201 3202 3203 3204 32220
3225 3226 3228 3274D 3282 3288 3300 330211 3304 3309

bytes 32770 3293 3300
b_entries 236!) 237 1686
cancel 3126
cardinal 232 23714 110711 285511 3108 341314 343414
change_value 386D 626 665 708
channel busy 8970 905 929 1840
channel7_use 29910 3013 3251 3353
choice 1060 1061 1147 1161 1170 1224 1998D
chopcount 5690 2917 3342
chopfactor 930 151 152 2914 2918 2946 3473
chopsize 930 154 982 3471
claim 6470 689 720 736 1261 1758 2210 3057
clear 2910 3000 3130 3580 3950 4170 4510 517 522 2972
clearstatist 5120 3498
clockc 589 620 1676 31120 3117 312214 3125 3126 3131
close 3515
cnsl site 860 130 2387 3050 3055 3107 3475
coming 1053 1091 1252 1282 1287 1401 1725 1756 1768 19330

1957
command 2387 28860 3108
commando 840 129 2387 3051
compiler 2393 25300
compi 60!) 134 135 2392 2906 3461
completed Co 30400 3053 3086
console 2401 2402 2937 30970 3104
consolec 1705 2401 2964 30350 3065 3097
çontentc 5300 546 606 633 859 861 900 919 927 1831

1838 1964 1973 1984 2312 2321 2727 2730 3000 3003
3161 3166 3266 336314

contents 8990 903 904 90614 907 911 912 9160 923 9260
931 932 935 937 938

contextdelay 650 110 1619 2937
controller 32710 3282 3302 3305 3307 3308 3309 3311
control coun 29920 3014 3252 3354
copy 	- 115 116 117 118 539 758 1053 1175 1253 1282

1472 1481 1519 1881 19310 1956 1978 2043 2133 2418
2502 2540 3364 3380

copyspace 5930 663 707 749 147314 152014 3425
cost formula 10710 1078 1152 1156 1159
count 3120 314 32014 321 32511 32914 1281 1283 1346 1349

1354m 1359m 137314 1386M 1401 1785 187814 1880 20230
counter 3100 562 2991 2992 3040 3053 3277 3293 3294 3337

3338 3339 3340 3341 3343 3345 3347 3348 3349 3353
3354

cq 617 8950 906 1836 183814 3413
create secre 22010 2873 2983
cu 	- 5790 1638 1640 1642 1645 1653 1660 1664 1679 1680

1681 1682 1683 1684 1685 1687 1690M 1694 1695 1697
2182 2198

current 2117 2118 2256!) 2259 2916 3122
c_arrival_li 1714 2962 2972 2987 30310
c_secretary 5820 1707 1711 1712 2983 2984 2985 3107
c size 21630 2169 2516 2860 2981
ctime 1584 1585 1681 22340 3073 3080 3085
c wait list 28900 2915 2916 2920 2945 2950 2988 3108
d 4590 468 469 470 473 485 865 10750 1076 107714

1078 1105 1106 1145 1231 1297 1313 1419 1459 1465

A-77

1473 1486 1503 1510 1520 1521 1522 19290 3383
data 4431) 3085
db size 2164!) 2169 2517 2860 2981
ddi 61D 135 136 2394 2911
ddu 611) 136 137 2394 2489 2908
deadlock war 5981) 726 730 1898 1907
default - 5501) 2035 2087 2140 2299 237011
delete domai 770 1486 1510 15150
delete seg 832D 1846 2089 2552 2635 2644
desc 8211 119 2374 2573 2629 2752
dest 53411 899D 901 90411 3015 3017 3019 3176 3215 3226

3253
did 1049 1087 1105 123111 1237 1249 125211 1253 1266 1279

1285m 1296 1297 1313 1347 1401 1402 1416 1419 1441
1486 1503 1506 1510 15150 1518 1687 1721 1723 172511
1727 1730 1736 1743 1753 1763 1798 1861 1867 19660
1973d 1992d 2033 2045 20610 210111 2134 2139 21460 2154
2209 2213 22610 226611 2268 2269 233111 2340 237211 2420
2450 2468 2482 248911 2504 2517 2519 252611 2586 2649
2657 2871 2980

didn 20280 2033
disk 26610 2727 2730 2777 2787 2868 2877 31601) 319211 320511

3236 3239
diskc 3160 3236 32710 3284
diskhandler 2389 26610 3305 3433
diskhandlern 2434 2561 2574 2604 2639 288111 2884
diskl 610 139 2389 2884
disk buffer 3143D 3163 3223 3238 3247M 3254 3274
disk control 2877 3141 31510 3178 3179 3217 3218 3229 3230 3235

- 3236 3272
disk read 1374 1376 1377 22900 2307
disk_rqst 2290 2307 3168 32660
disk write r 26840 2693 2695 2867 2868
dissect 1629 33600 3363 3364 3375 3376
den info 630 758 759 760 761 763 764 865 10310 1049

1087 1105 123111 1237 1249 125211 1253 1266 1279 1296
1297 1313 1347 1401 1402 1416 1419 1441 1503 1506
1518 1687 1721 1723 172511 1727 1730 1743 1753 1798
1871 1880 1881 338011 3381

den infoc 630 1031 1452 19250
den

-
 rqst 10340 1041 104711 1049 1054 1055 1058 1060 106111 1063

1066m 1082d 1086 1095 1173 1176 1199 12110 1214 1225
1292 1339d 1343 1402 1403

den transfer 1719 19641) 2287 2304
domain 1419 1421 1423 14940 1500 1501 1503 1506 1571 1598

1599 1600 1601 1602 1680 19940 2214 3107 3305 3432
donainc 865 1495 1750 184411 1929 1994 20610 2142 2161 2214

2407 2530 2589 -
domain—Copy 14940 1844 	-
domain incar 579 678 703 872 873 932 1035 1083 1212 1307

1340 1410 1437 1 .544 1633 1755 1858 19840 2073 2080
2096 2111 2112 2124 2191 2203 2250 2256 2261 2275
2301 2414 2429 2442 2463 2474 2498 2513 2536 2549
2571 2595 2609 2618 2672 2735 2748 2792 2799 2895
2901 2935 2958 3146 3153 3184 3190 3393

do_domain_ca 1055 10820
dp 2154 21580 2269
dr 17550 1772 1773 1779 1780 1784 1785 1787 1788 1790
draw 2431 2448 2627
driverq 5760 610 723 870 874 878 882 912 1309 1323

1426 1429 1623 1686 1690 1695 1711 1773 2106 2194
2716 2920 2950 2966 3022 3065 3131 3375

dsk 3019 314111 3235
dump 5310 5380 539 693 197711 1978 20390 2046 21300 2135

2355d 2356 3363
dunpv 20420 2043 2044 2045 2046
d cost 10890 1152 116111
did 23370 2340
dloc 1054 1176 1347 1727 1731 1766 179& 19400
dlocupdate 1736 1763 1796 1952 19730
dsccretary 58111 2873 2874 2875 2877 31510 3215 3216 3305 3432
d site 1104 201211
dsize 1105 1107 1108 1240 1254 1270 1318 20140
dtransfer 1285 1286 1347 22870 2304
eject 505 3438 3444 3448
empty 224 242 759 760 1197 146711 148411 1508 1509 1770

1836m 1838 269711 2700 2707 272511 2726 2729 2754 281611
2830m 2832m 2841 2846 2915 2945 3193 3206 3256 3307
3311 3387 3398

entry 2490 252

erlang 2556
error 187D 254 801 818 820 1422 1572 1596 1746 1761

1875 1917 2247 2273 2280 3174 3194 3207 3210
esac 1598 1599 1600 1601 16031)
evtime 3125
examine chol 1063 1211D
execute 15430 1645
external sag 760 1107 1197 1402 1467 1484 1509 1779 1871 19460

1955 3387 3390
extra space 684 68811 720 73511 125411 125611 1260 1261 20211)
e stack 1861 2250D 2259 2266 2268 2269 2271 2279 2301 2966
f 175511 1784 1790 18581) 1871 187211 187311 1875 187811 1880

1883 1884
fetch c 2076 2213 2261D 2271 3051
filli7n 2020 213 728 801 2273 2280 2356 2598 2739 3045

3332 3375
finisht 15701) 1577 1585 1586
first 2211) 22511 715 725 1623
fixed domain 521) 140 553 629 757 864 1031 2158 2298 3379

3460
format 2149D 21521) 2269 24871) 25241) 26540
formatc 2146D 2154 2158 2485 2522 2652 2871 2980
found 13081) 1321 1329
freeq 31561) 3186 3193 3199 3206 3233 3238 3256 3257 3307

3309
full diags 730 168 196 692 2416 2451 2465 2500 2538 2597

- 2737 3067 3088 3134 3500
going 761 1472 1485 1507 1937D
gone 121911 1226 1245 1279
grand total 334 41411 432 560 3327 3328
grand t list 295D 432 506 520 3325 3442
groupheading 2971) 3046 3292 3329 3332 3336 3346 3352
h 14510 1458 145911 1460 146311 1465 146711 147211 1473 1481

1484m 1485 1486 1487
halt 1653 31191)
handler site 315111 3215 3226
hash 	- 7850 787 794 811
head 219 246 294 295 617 618 895 1943 195511 2176

2220 2679 2681 2683 2861 2862 2863 2864 2865 2866
2890 2987 2988 3031 3155 323311 3234 3324 3325 3441
3442

heading 25711 267 28911 304 319 369 404 423 462 476
heading2 437D 463 477
here 1053 1231 1237 1252 1266 1282 1296 1458 1463 1725

1769 1880 193511 1958 3380 3386
high 8011 114 118 219 223 232 242 243 246 251

271 723 870 878 882 912 1323 1695 1773 2106
2194 2920 2950 2966 3022 3065 3131

hk 7930 794 795 798 79911 801 803 804 8100 811
812 814 81511 817 820 821

hold 652 691 705 755 1045 1580 1619 3063 3250 3497
3501

I 202D 211 22011 223 22411 22511 23211 241 24211 243
246m 264d 271 273 274 75311 757 758 759 . 	 760
761 763 764 765 793D 798 799 801 8100 814
815 817 83611 837 838 841 92111 922 92311 10090
1012 1013 1015 1017 1018 10901) 1115 1116 1117 111811
1119 1128 1129 1130 1131 1134 1136 122011 134511 1356
1357 1360m 1363 1368 13701.1 1372 1376 1377 1382 1383
1385 1387m 1391 139211 1804D 180611 1808 18180 1822 1823
1824 2026drn 2034 203511 2051 2052 207011 208211 2083 2084
2087 2089 2100 2101 310111 3103 3104 332311 3330 3332
3333m 3334 33691) 3372 3373 3375 3431 3432

id 5730 616 620 625 663 670 694 707 711 728
801 829 839 87911 901 903 911 923 931 93211
935 984 992 1060 1104 1147 1152 1153 1154 1155
1158 1161 1170 1197 1198 1240 1257 1258 1270 1271
1286 1319 1352 1355 1374 1385 1395 1397 1413 1628
1729 1752 1763 1766 1897 1903 295111 296911 31121) 3130
3135 3151d 3235 3249

Idle 1530 3104 3122 3178 3192 3205 3217 3229 3414
idle timer 60311 621 1910 1912 32760 3283 3295 3296 3313
Iflag 58611 614 1535 1586 1590 1617 1620 1660
image 3455 3462 3468 3474 3481 3488
inc 677D 68411 68811 693 14090 1413 1414 14161.1 14191! 1421

1423 1425 1426 142911 14360 1440 1441 1443 1445 1447
2191d 2192 2193 219411 3146D 3190 3202 3226 3228

incore 82!) 119 333 828 1116 1129 1357 1383 2084 2140
2299 2374 2551 2627 2634 2643

incr 324D 696 1228 1499 1809 1820 1825 2108 2917 3014

4-79

3082 3083 3084 3086 3252 3299
mint 108 121
initializati 6081) 1612
initial time 3830 399 405 406
initiate 938 30021)
initiate rca 272211 2725 2819 2834 2839
let 8581) 2142 3017 3019 31651) 3253
lnterdmnjum 2076 2091 209511
interdomain 2072D 2434 2456 2561 2574 2604 2639 2909
interval 31151) 3117
into 252 292 432 906 1095 1249 1402 1416 1714 2182

2703 2709 2757 2766 2767 2782 2870 2916 3177 3191
3204 3216 3225 3228 3238 3257 3304 3309

ipi 23810 3496
ipid 5511 132 135 23928 2906M
items 2570 278
i_chopf 95D 152 1270 1318
j 75311 765 769 770 960D 976 9788 9798 10090 1011

1017 1021 238211 3101D 310411 3105 3369D 3379 338011 3381
3385 3416 3417 3419 3422 34238 3430 343411 3436

k 553 5591) 100911 1010 10118 1013 2089 2103 2142 2182
2189 2198 2207 2374 2552 2634 2644 2694 2716 2727
2730 2787 2812 2872 2914 2918 2920 29258 2942 2943M
2947 2949 2965 2982 3017 3021 3055 3107 3130 3253
3333 3334 3373 3432

keeping 3410 344 346 352 354 361 370 376
kerneic 559 5731) 1530 1537 3333
key 54911 553 78511 78711 79011 794 803 80711 811 812

815 827 837 864 865 1360 13768 1387 2139 2298
2305 2341 2350 236911 2375 2693 317211 32681)

1 215211 248711 2489 25240 2526 2654D 26578
lasttime 763 764 1487 195111
length 209 211
level 3860 390
lfrom 2360D 2365 2378
line 505 3438 3444 3448
linear 2545 2601
link 221 250 264 	- 289 530 1610 2685 3143 3162 3361

3370
linkage 2961
load shed 8911 149 	, 1240 1270 3466
beaTs 1129 1130 1131 1134 1136 1383 1385 1387 13928 199611

2035m 2052 2084 2087 2089 2269 2476 2611
local data 20071) 2545 2554 255911 2601 2619 26248
localseg 1865 1867 1996 2052 2152 2236 2303 2328D 2361 2488

- 2525 2655 2702 2756 2870
bongtimeslic 680 112 1681 1682 3080 3484
low 80D 114 115 219 224 225- 232 237 241 246

251 271 685 1309 1683 2705 2766 '2782
iru 75411 756 763 764
Ito 236011 2366 2367 2368 2369 2370 2371 2372 2375
1-cost 1089D 1159 1161 1162
1scg_list 1387 1391 1397 1398 22890 2306
1_seg_listc 1801 2289 2306 232111 2684 2867
1-site 1100 1130 1138 1154 1157 115811 1159 1163 11988 1258

1395m 1398 20120
1-size 1102 113111 1140 1154 1157 1159 1258 20140
In 8580 861 863 864 86511 868 870 872 873 874

878 882 88611 88711 88911 183111 183211 184411 184611 300011
3005 3007 3013 3014 3015 301711 30198 3165D 3167 3190
3203

main 199
make—disk—re 234611 2775
make—space 656 74811 771
make workspa 233711 2489 2526 2657
maskf 5840 615 1533 1536 1575 1587
master 33311 37311
matchq 315811 3171 3225 3234
max 384D 39111 398 408
max—consoles 5311 121 127 154 158 160 2209 2399 2517 2981

3097 3103 3447
max—disks 5611 131 140 2388 2389 2884 3141 3431 3432 3476

3479 3480
max disk buf 5711 142 143 3237 3477
max_local_sc 7511 122 1128 1382 1806 1996 2034 2051 2083 2324
max parani so 7711 123 1115 1356 1368 1822 2100 2236 2302 2317
max shifts 91D 150 1236 1267 1314 3467
max writes p 590 143 2869
medium 8011 114 116 237 685 1711 2294
mom 5371) 887 931 958D 965 966 969 970 972

memory use 6051) 622 626 665 708
mom trace 73D 169 668 709
mesdelay 69D 109 3007 3250 3486
message 30021) 3005 31611) 3247 3248 3249 3250 3251 3252 3253M
rafree 591!) 623 626 627 652 656 659 6618 663 665

669 687 688 689 7068 707 708 710 733 735
736

migrations 566!) 1228 3341
mntrl 611) 137 138 2396
mntru 611) 138 139 140 2396 2450 2517 2908
mod 787 799 815 2393 2395 2397 2884
monitor 80!) 114 117 874 1426 2194 2716
monitorc 1106 1423 1465 1500 1680 21611) 2172 2493
more 7041) 716 717 720 721
move 2360D 2476 2611 2701 2756
msize 49!) 125 623 626 665 669 708 710 1078 3424

3464
my __q 21760 2182 2192 2220 2707 2709 2712 2846 2855
in max 625 956D 963 96511 9698 975 97811 982 1007
cimin 625 . 	 956D 963 96611 9708 975 97911 982
muse 627 931 9521) 965 966 969 970 972 9788 97911
- 982m 1007 1015 1018 107811 3417
n . 	 46!) 108 1278 131 143 150 151 440D 4468 453

464 468 469 471 4738 475 476 477 48511 559
606 627 632 886 922 952 961 976 1012 1735

1739 1762 1952 23898 2393 2395 2397 	. 3015 31418 3330
3372 3416 3432 3446?! 3480 3510

negexp 2425 2509 2620 3044
mewsize 23370 2343 2346D 2352
new did 1856!) 1861 1867 1871 1880 1881 2072D 2076 2446!) 2450

- 2453 2456 29031) 2905 2909 2911
new incarnat 565D 2108 3337
new site 1740 1798 1973!)
next inc 2672D 2700 2701 2705 2709 2711 2712 2715 2716 2779

2782 2787
next site 1172 1173 1195 1199 1459 1460 1463 1687 1721 1723

1731 1941d 1959
next step 159511 1597 20040 2032 2424 2435 2437 2458 2477 2508

2544 2562 2575 2605 2614 2744 2769 2874 2897 2931
2940 2984

no 23821) 2388 238911 2392 23938 2394 239511 2396 2397M 2399
2401m 2402

non trivial 5701) 3085 3350
null 820 839 2035 2087 2378
number 327D 329 -- 	 -.

ondisk 821) 119 1118 1.372 2351 	-
open 	. 173
optioum_site 9981) 1021 1240 1269 1317
opt site 1220!) 1224 1225 1239 1241 1269 1271M 1316 131911
orgn 5341) 8868 887 889 903 911 29940 3021 3249
out 937 1273 1440 1443 1672 1685 1787 1883 2117 2198

2211 2696 3246
outchar 670 711 1628 3135 3389 3396 3407 3418 3450 3451

3455 3462 3468 3474 3481 3488 3490
outfix 184 371 405 424 476 477 479 481 482 485

487 3458 3482 3484 3486 3507 3510
outimage 191 195 265 269 273 282 303 305 425 460

463 475 479 489 504 694 729 1906 2468 2741
2825 3068 3090 3109 3378 3410 3415 3426 3428 3437
3448 3450 3455 3462 3468 3474 3481 3489 3490 3508
3511

outint 268 320 408 475 669 670 694 710 711 1628
1903 1905 2452 2453 2466 2468 3069 3089 3105 3107
3135 3385 3393 3404 3412 3417 3419 3424 3425 3436
3446 3447 3460 3461 3464 3465 3466 3467 3471 3473
3475 3476 3477 3480 3487

outputstatis 4951) 3505
outtext 107 120 184 191 193 1948 2678 273 278 304

318 319 3691! 4048 408 422 423 461 4628 463
475 476m 47711 478 480 482 483 486 488 69311
728 1628 1629 1902 1904 2422 2452 2467 2506 2542

2598 2739 2825 3069 3089 3102 3106 3378 33868 3400
3411 3421 3425 3429 3445 3446 3447 3452 3453 3454
3457 3459 3461 3464 3465 3466 3467 3469 3470 3472
3475 3476 3477 3478 3482 3483 3485 3487 3499 3502
3506 3509

nver2 5671) 3083 3348
overS 567!) 3064 3349
overload 683 9451) 984 988 992 994 1053 1237 1266 2676!)

270 2711 28128 2814 2914 2918 2947

on

p 18570 1860 186111 1865 1872 24450 2447 2448 2449 2450
2452 3360d 336311

params 1116 1117 11181! 1119 1357 1360 13701! 1372 1376 1377
2101 2236d 2303 2476 2551 2552 2573 2611 2627 2629
2634 2635 2643 2644 2701 2752 2756 2775 2777 3189

passivate 1911 3027 3076 3137 3260 3297 3314
pid 2044 22271) 2273 2280 2298 2333 2356 2419 2434 2452

2466 2503 2541 2561 2574 2599 2604 2639 2740 2881D
2884 2937 3393 3404

pr 1865 22061) 2209 2210 2211 2213 23281) 233311 2356 236611
2657 2671d 2889D 296411 296611 30391) 3050 3051 3057 3073
3080 3085

pred 1309 1329
prey 1707
print 291D 3011) 3161) 3661) 402D 420D 4571) 501 508
printfile 105 172
priority 2490 25111 252 1429 1683 1690 2232D 2294 2705 2766

2782
priority_tex 810 115 116 117 118 273
process 573 2994 3035 3112 3151 3271
processor 1112 1249 1273 1285 1286 1344 1416 1425 1429 1440

1578 1583 1584 1585 1642 1653 1681 1682 1683 1684
1690 1697 1872 19841) 2044 2052 2076 2091 2101 2117
2118 2126 2419 2425 2431 2434 2447 2466 2476 2503
2509 2541 2545 2551 2552 2556 2561 2573 2574 2599
2601 2602 2604 2611 2620 2625 2639 2643 2644 2701
2705 2740 2752 2756 2766 2775 2776 2777 2782 2904
2906 2908 2916 2937 3189 3393

ptime 1821) 194 266 693 727 1629 1901 2422 2452 2466
2506 2542 2598 2738 2825 3069 3089

ptr 2641) 274 276 278 28011 4971) 498 499 501 502M
506 507 508 50911 5140 515 516 517 51811 520
521 522 52311 13070 1309 1310 1313 1314 131811 1322

1323 1329m 16100 1623 1626 1629 1633 1638 167211 1673
1676 1714 1723 1727 1832 1859 1860 1865 1867 29610
2962 2963m 2964 31620 3245 3246 324711 3248 3254 3257
3370d 3390 3391 3393 339411 3401 3402 3404 3405M

putative ret 2111D 2118 2779
putint 211. 2044 2045 2134 2419 2420 2421 2503 2504 2505

2541
put in ready 1403 14090 1788 1884
p cost 10890 1156 1161 1162
pkey 1819 23121)
pseglist 1355 1360 1363 1365 22881) 2305
pseglistc 1814 2288 2305 2312!)
P site 1120 1153 1155 1156 1157 1158 1162 1197 1257 20120
psize 1114 111711 1121 1124 1257 2014!)
q 2190 224 225 232 23711 242 246 252 274 1309
q4space 677D 1292
qempty 239D 243 270
qf 5370 889 935
qfs 87911 889 93211 935 9520 1013 1076 1240 1270 1897

2925m 2943m 295111 296911 3419
qfmax 998D 1011
qfrnin 9981) 1010
qhead 2491) 252 2570 268 270 274
qheadc 217D 250 259 576 610 611
queue 2490 684 723 870 874 878 882 912 1323 1426

1429 1690 1695 1711 1773 2106 2193 2716 2920 2950
2966 3022 3065 3131

q_analysis 2570 3375 3376
q_trace 73D 170 1626
r 29030 2904 2906 2907
r2 	. 4590 473 487
randint 2401 2450 2602 2657 2906 2908 328511
random seed 102D 156 2383 3487
read 31481) 3188 3201 3302
read next 26750 2809 2810 2812 2816 2832
registermu 663 707 887 9581)
regression 4370 570 3351
release 7000 842 1501 1521
remaining 31191) 3125 3127
response_tim 30410 3048 3075 3077
restart proc 2185D 2847
results 1051) 172 173 175 3515
retire 1322 1436!) 1694 2104 2942
retrieve 8070 821 837 1808 1819 1824 2375
return 20790 2091 2116 2275!) 2279 2470 2514 2566 2645 2794
re initializ 2028!) 2268
rq—h 26830 2725 2726 2727 2782 2816 2832 2865 3434

on

rql 26830 2725 2729 2730 2782 2832 2855 2866 3434
rqstor 1286 1355 1374 1397 1729 1731 1736 1740 1810 1819

1824 1966d 23161) 23231) 2868 3176 32680
rqst list 1095 1770 1772 19490 1955
rt 30420 3072 30791) 3083 3084 3085
rts 1425 1642 1653 1682 1684 1697 22330 2295
running 721) 113 198 689 736 1614 1758 1760 2210 3012

3057 3060 3241 3298 3501 3504
runtt 1573 1577 1580 1585 1586 20051) 2032 2425 2435 2437

2459 2477 2509 2556 2559 2576 2613 2620 2624 2743
2770 2855 2875 2897 2931 2940 2975 2985

S 8240 8271! 828 829 8321) 837 83911 842 15930 1597
1805d 1808 1810

sameness 1121 22530 22671)
sd 4590 471 479 485
secretary 22010 2213 2214 2215
secretaryc 21721) 2661 2886
seek choice 100!) 146 1058 1148 1179 1201 1203
seek d site 1000 145 1047 1645 2031
seg 31450 3172 3176 3189 3203 3247 3288 3300 3304
segmentc 5460 554 782 825 833 863 864 865 868 906

1805 1846m 1853 2061 2227 2328 2693 2695 3145 3197
3203

seg table 7820 820 827 841 1808 1819 1824 2375 3423M
send domain 14540 1468 1476
send—message 8990 923 1054 1061 1173 1176 1199 1225 1347 1365

1377 1398 1459 1723 1727 1810 1819 1824 2695 2727
2730 2787

send off 1222D 1241 1272
servicetime 1578 1583 2211 22821) 2296
set 1642 31150
setkey 23320 2333 2341 2350
setpos 3455 3462 3468 3474 3481 3488
settle—time 103D 160 3497
setup_diskr 21231) 2433 2560 2602
shifts 12271) 1236 1237 1265 1314 1447 20010
short comman 567D 3082 3347 -

— 	signal chann 907 9260 1837
signal disk 26890 2761 2817 2833 2841
sigilal free 3193 3206 32120 3256 3308
signal_read 3222D 3302
simple param 2126 22390 2636 2776
simulation 178
Sim

—
time 1030 158 3458 3501 3510

site 5460 553 829 839 9581) 9631! 965 966 969 970
972 984 992 1071D 1076 107811 1120 1130 1352 1365

1377 1385 1413 1752 2025D 2089 2103 2142 2182 2189
2198 2207 2209 2221 2303 2333 236811 2374 2421 2505
2552 2634 2644 2694 2695 2716 2727 2730 2777 2787
2812 2872 2877 2914 2918 2920 292511 2942 294311 2947
2949 2965 2982

size 5330 636 6470 6521) 656 659 661 7000 706 842
998d 1007 1015 1018 10711) 1078 1105 1114 1117 1119

1131 1136 1473 1501 1520 1521 1758 1969 1980 2049
2123d 2126 2169 2210 2297 2318 2325 2343 2352 236711
2481 2580 2648 3007 3013 3014 3057 3250 3251 3252
3288 3300 33690 3377 33831) 34231) 3424

size divider 870 126 684 687 688 689 733 735 736 982
3465

sort require 9600 969 973
spaceclaimed IOOD 147 722 1066 1291
spacecount 5690 696 3344
spacefound 12160 12611) 1263 1291 1295
spaceqempty 595D 613 655 682 714 741 1485 1508 1894
spaceq 5770 611 684 715 725 1897 1905 3376
space situat 6060 633 636 985 992
sq 618 8960 906 1836 1838 31550 3177 3216 3228 3233

3243 3245 3413
sqrt 471 485 487
sr 7030 715 717 720 722 723 725 7351) 741
St 783!) 795 799 803 812 815 838
stackp 1861 22520 2259 2263 226511 2266 2268 2269 2271 2276

2278m 2279 2449 2966
stack depth 780 124 2250 2263 2300 2449
stage 722 873 1041 10471! 1058 1066 1093 1148 1179 1195

1201 1203 1291 1414 1445 1712 19900 2031 2194 2215
Start 343!) 1578 1910 3062 3075 3296 3313
start time 3400 347 353 355 361 370 3830 389 392 399

406
statistic 289D 292 297 310 333 380 414 437 497 498

success
supern
supervisorf
suspend
switch conte
sx
sx2
sxy
sy
sy2
sysout
system_initi
s_channel
schanneic
t

506 514 515 520
292 2941) 498 515 3324 3441
5500 553 828 839 1116 111811 1129 1134 1357 1370
1372 1383 1392 2035 2084 2140 2299 2342 2351 237111
2374m 2378 2551 2573 2627 2629 2634 2643 2752
1598 20641) 24131) 24971) 25351) 25941) 2734D 28941)
1599 20651) 24281) 25121) 25481) 26081) 27471) 29001)
1600 20651) 2441D 25701) 2617!) 27910 29340
1601 20650 24620 27970 2957!)
1602 20650 24730
3500 355 1583 1912 3064 3077 3283
1593 15981)
1593 15990
1593 16000
1593 16010
1593 1602D
2020 209 210 211
211 2044 2065 2134 2419 2420 2421 2503 2504 2505

2541
225 274 280 498 502 506 509 515 518 520
523 1772 1779 1784 183811 1871 1873 2192 2693 2695

2696 2700m 2701 2703 2712 2727 2730 2756 2757 2920
2950 2963 3171 3173 3186 3199 3243 3245 3282 3390
3394 3401 3405.
6471) 667 673
830 128 2385 2907

2649 26520
21810
884 1528D 3023 3066 3132
4410 44611 454 46611 46811 469 470 473 476
4410 44711 454 46711 468 470
4410 44811 454 46711 469 470 471 473
4410 44611 454 46611 469 470 471 47311 477
4411) 4471! 454 46711 471 473
190

33210 3495
6010 616 938 3414
601 616 1829 1832 29940 3007 3022
1870 194 2080 209 210 211 213 2300 231 23211
233 368d 370 371 373 4280 430 21320 2133 2134

2-135 2417d 2418 2419 2420 2421 2422 25010 2502 2503
2504 2505 2506 2539D 2540 2541 2542
30990 3371 3499 3502
30430 3044 3063
30410 3047 3062 3064
1145 1218D 123111 1236 1263 1295 1297 	. 1313 20690 2221
184 347 353 355 361 370 389 392 399 405
406m 756 1487 1577 1585 1586 3072 3079 3125
3330 603 621 2282 2296 3041 3047 3048 3276 3295
671) 111 1425 1684 1697 2295 3482

380D 605 622
3401) 35311 360 370 376 3830 38911 397 406 416!)

418 424 43011 350711 3510
2280 233 268 1897 1905
5611) 3048 3327 3507
1102 111911 112411 113611 114011 1240 1256 1270 1318 20180
820 119 1118 1134 1370 1392 2342

3192 3205 32791) 3316
32770 3294 3299
26740 2758 2762 2781 2786 2821 2845
2685D 269611 2807 2808
5890 620 1642 1653 1676

2395 24070 -

2482 24851) 2586
2397 24931)
2519 25220

881) 127 782 783 787 799 815 3422
22010 2209 22270 2425 2431 2448 2450 2509 2545 2556
2601 2602 2620 2627 2657 26610 2873 2904 2906 2908

3035d 3044 3050 32750 328511 3287 3291
23820 2383 2389 2401
2904 3287
22420 2246 2333
22410 224411 2245 2246
1733 1736 1740 1763 1764 1952D
560D 2296 3328 3507 3510

30351) 3046 3050 3069 3089
970 16111 16211 2601
97!) 16311 1641! 2601

2385 2589D

statistic ii
status

stepi
step2
step3
step4
stepS
stop
stpl
stp2
stp3
stp4
stp5
string
sub

S UC

thinking_con
thinktime
think t jeer
tied
time

timer
time Si ice
time-average
total

total entrie
total respon
total_size
trans
transfer
transfers
transfer in
trans_seg
t sc lock
type 1
typelf
type 2
type 2 f
t_iength
U

U
uniform
Un iquenumber
unique
update
usage
userid
userp
us or t
use r supe rv i

val. 3841) 389 390 39111 398 406
valid 1000 148 873 1041 1414 1712 2194 2215
validated 1034!) 1041 1640
virtual proc 1857 1859 1985 2206 2209 2227!) 2301 2303 2329 2445

2671 2889 3039 3050 3404
w 62711 629 630 632 633 636 1735 1736 1739 1740

1762 1763 2300 2301 2302 2303 2869 3237 33581) 3450
3479 3480 3490

wait ford 1001) 144 1047 1093 1195
wait for sig 21970 2854 2974
warning mess 2686D 2824 2826 2849
wfreeq 26791) 2697 2701 2703 2754 2756 2757 2862 2870 3305
work 759 1107 1249 1416 1467 1484 1508 19441) 1955 3398

3401
wq 26790 2693 2695 2696 2703 2757 2816 2841 2861
wqh 2681!) 2697 270011 2767 2830 2863
wql 26811) 2697 2700 2766 2830 2864
x 4431) 446 44714 448 15431) 1571 1573 1577 1578 1580

1583 1584 15851! 1586 159511 1597 159814 15991! 16001! 160114
1602m 2072d 207614 2079D 2081 2089 2091 20951) 2101 2103
2104 2111d 2116 2117 2118 21231) 2126 24131) 2419 2421
2424 2425m 2428!) 2431 2433 2434M 243514 2437!! 24411) 2447
256 2458 2459 2462!) 2466 2470 24731) 2476M 247714 24971)
2503 2505 2508 250911 25120 2514 2535!) 2541 2544 254514
2548d 2551 255214 2554 255614 2559M 2560 256114 2562 2566
2570d 2573 257414 2575 2576 25941) 2599 260114 260211 260414
2605 2608d 261111 2613 2614 26170 2619 26201! 26201 2625
2634 2639m 2643 264414 2645 2734!) 2740 2743 2744 27471)
2752 2756 276614 2767 2769 2770 2775 2776 2777 2779
2782 2791d 2794 27970 2855 2894D 289714 2900D 2904 2906
2908 2909 2916 293111 29340 2937 29401! 2942 2957D 2975

xfereddomai 5621) 1499 3338
xfered local. 564!) 1809 1825 3340
xfered proce 5620 1820 3339

- xferq 3157D 3191 3204 3233 3282 3311
y 4431) 446 44714 448 20950 2101 2106

A-85

SIMULATION OF NETWORK WITH 1 SITES AND WITH 6 CONSOLES

* ** * * * * * ** * * * * * * * * **
* 	DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 *

• PERIOD OF SIMULATION (SECS) =2000 	NUMBER OF SYSTEM DOMAINS = 20 	NUMBER OF COMPILERS = 2 	 *

• MEMORY SIZE = I28000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 0 	 *

• LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	32500 OR NUMBER IN SYSTEM IS GREATER THAN 4 	*

• CONSOLE CONTROL SITE= 1 	NUMBER OF DISKS= 1 	DISK BUFFERS= 3 	DISK SITE(S)= 1 	 *

• TIME SLICE 100MSECS. 	LONG TIME SLICE = 500MSECS. 	COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED 	787 	 *
* ** ** * * * * * * * * * * ** * * * * * * * * * * * ** ** * *** ** * * * * * * * * * * ** * * *

113397709 DISKHANDLER IMPOTENT
START OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 4 NUMBER AWAITING ENTRY TO SYSTEM 0

00 	 END OF RUN NUMBER OF CONSOLES IN THINKING STATE 4 NUMBER AWAITING ENTRY TO SYSTEM 0
ON

UTILIZATION OF PROCESSORS

SITE 1
TOTAL IDLE TIME 372.1 	AVERAGE MEMORY USE 	84780 	MAXIMUM 123850

NUMBER OF CHANGES OF DOMAIN 	11656 NUMBER OF TRANSFERED DOMAINS 	0 NUMBER OF TRANSFERED PROCESSORS 0 NUMBER OF
TRANSFERED LOCAL SEGMENTS 	1941 	NUMBER OF FORCED MIGRATIONS 	0 NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 12

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0
RESPONSE TIMES

NUMBER OF COMPLETED SHORT COMMANDS 182 	NUMBER OF RESPONSE TIMES OVER 2 SECS 	2 NUMBER OF RESPONSE TIMES OVER 5 SECS 0
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME
NUMBER OF DATA POINTS 65
MEAN OF NON TRIVIAL SERVICE TIMES 	21.5 MEAN OF RESPONSE TIME 	61.0 	RESIDUAL STANDARD DEVIATION 35.42
ESTIMATE OF REGRESSION COEFFICIENT 	2.33 INTERCEPT 10.90 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.16
CORRELATION COEFFICIENT 0.883

COMMUNICATIONS SUBSYSTEM
NUMBER OF BYTES TRANSFERED 	42470472 	NUMBER OF CONTROL MESSAGES (32 BYTES) SENT 	12823

DISK PERFORMANCE
NUMBER OF BYTES TRANSFERED 	42060136 	NUMBER OF COMPLETED TRANSFERS 	5569 	TOTAL. DISK IDLE TIME 1702.8

CONSOLE 1
TOTAL THINKING TIME 1219.0

CONSOLE 2
TOTAL THINKING TIME 1033.6

CONSOLE 3
TOTAL THINKING TIME 1097.3

CONSOLE 4
TOTAL THINKING TIME 1405.4

CONSOLE 5
TOTAL THINKING TIME 848.2

CONSOLE 6
TOTAL THINKING TIME 1636.0

TOTAL RESPONSE TIME 781.0

TOTAL RESPONSE TIME 966.4

TOTAL RESPONSE TIME 902.7

TOTAL RESPONSE TIME 594.6

TOTAL RESPONSE TIME 1151.8

TOTAL RESPONSE TIME 364.0

TOTAL SERVICE TIME 282.3 NUMBER OF COMPLETED COMMANDS 40

TOTAL SERVICE TIME 322.5 NUMBER OF COMPLETED COMMANDS 40

TOTAL SERVICE TIME 338.9 NUMBER OF COMPLETED COMMANDS 39

TOTAL SERVICE TIME 147.1 NUMBER OF COMPLETED COMMANDS 46

TOTAL SERVICE TIME 382.1 NUMBER OF COMPLETED COMMANDS 21

TOTAL SERVICE TIME 144.4 NUMBER OF COMPLETED COMMANDS 61

GRAND TOTAL OF RESPONSE TIMES 4760
GRAND TOTAL OF SERVICE TIMES 	1617
PERFORMANCE MEASURE 	2.94
FRACTION USEFUL PROCESSOR UTILIZATION 0.809

co

SIMULATION OF NETWORK WITH 6 SITES AND WITH 48 CONSOLES

03
03

It 	 DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 *
* PERIOD OF SIMULATION (SECS) = 250 	NUMBER OF SYSTEM DOMAINS = 21 	NUMBER OF COMPILERS = 2 	 *
* MEMORY SIZE = I28000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 5 	 *
* LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	38000 OR NUMBER IN SYSTEM IS GREATER THAN 24 	*

CONSOLE CONTROL SITE= 1 	NUMBER OF DISKS= 2 	DISK BUFFERS= 3 	DISK SITE(S)= 3 6 	 *
* TIME SLICE =1001ISECS. 	LONG TIME SLICE = 500NSECS. 	COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED = 787
* ** ** * ** ** * ** * * ** * * * * * * * * * * * * * * * * * *
START OF RUN NUMBER OF CONSOLES IN THINKING STATE 34 NUMBER AWAITING ENTRY TO SYSTEM 0
END OF RUN NUMBER OF CONSOLES IN THINKING STATE 26 NUMBER AWAITING ENTRY TO SYSTEM 0

UTILIZATION OF PROCESSORS

SITE 1
TOTAL IDLE TIME 22.8 AVERAGE MEMORY USE 85923 MAXIMUM 127961

SITE 	2
TOTAL IDLE TIME 11.8 AVERAGE MEMORY USE 85319 MAXIMUM 126082

SITE 	3
TOTAL IDLE TIME 6.9 AVERAGE MEMORY USE 88036 MAXIMUM 127633

SITE 	4
TOTAL IDLE TIME 15.3 AVERAGE MEMORY USE 77067 MAXIMUM 127356

SITE 	5
TOTAL IDLE TIME 12.3 AVERAGE MEMORY USE 78316 MAXIMUM 126079

SITE 	6
TOTAL IDLE TIME 4.8 AVERAGE MEMORY USE 81423 MAXIMUM 126745

NUMBER OF CHANCES OF DOMAIN 	9896 NUMBER OF TRANSFERED DOMAINS 61 	NUMBER OF TRANSFERED PROCESSORS 	6369 NUMBER OF
TRANSFERED LOCAL SEGMENTS 	5187 	NUMBER OF FORCED MIGRATIONS 	1461 	NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 0

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0
RESPONSE TIMES

NUMBER OF COMPLETED SHORT COMMANDS 187 	NUMBER OF RESPONSE TIMES OVER 2 SECS 2 NUMBER OF RESPONSE TIMES OVER 5 SECS 0
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME
NUMBER OF DATA POINTS 59

MEAN OF NON TRIVIAL SERVICE TIMES 	16.4 MEAN OF RESPONSE TIME 	49.7 	RESIDUAL STANDARD DEVIATION 13.50
ESTIMATE OF REGRESSION COEFFICIENT 	2.92 INTERCEPT 	1.68 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.11
CORRELATION COEFFICIENT 0.965

ol
10

COMMUNICATIONS SUBSYSTEM
NUMBER OF BYTES TRANSFERED

DISK PERFORMANCE
NUMBER OF BYTES TRANSFERED

DISK PERFORMANCE
NUMBER OF BYTES TRANSFERED

CONSOLE 1
TOTAL THINKING TIME 242.8

CONSOLE 2
TOTAL THINKING TIME 204.4

CONSOLE 3
TOTAL THINKING TIME 	24.3

CONSOLE 4
TOTAL THINKING TIME 124.2

CONSOLE 5
TOTAL THINKING TIME 204.9

CONSOLE 6
TOTAL THINKING TIME 98.8

CONSOLE 7
TOTAL THINKING TIME 169.2

CONSOLE 8
TOTAL THINKING TIME 208.7

CONSOLE 9
TOTAL THINKING TIME 248.8

CONSOLE 10
TOTAL THINKING TIME 235.3

CONSOLE 11
TOTAL THINKING TIME 225.6

CONSOLE 12
TOTAL THINKING TINE 	23.3

CONSOLE 13
TOTAL THINKING TIME 158.6

CONSOLE 14
TOTAL THINKING TIME 	77.7

CONSOLE 15
TOTAL THINKING TIME 216.3

CONSOLE 16

55422984 	NUMBER OF CONTROL MESSAGES (32 BYTES)

18885714 	NUMBER OF COMPLETED TRANSFERS 	2563

15662283 	NUMBER OF COMPLETED TRANSFERS 	2116

TOTAL RESPONSE TIME 	7.2 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 45.6 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 225.7 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 125.8 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 	45.1 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 151.2 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 80.8 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 	41.3 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 	1.2 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 	14.7 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 	24.4 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 226.7 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 91.4 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 172.3 	TOTAL SERVICE TIME

TOTAL RESPONSE TIME 33.7 	TOTAL SERVICE TIME

ENT 	29604

TOTAL DISK IDLE TIME 115.2

TOTAL DISK IDLE TIME 138.9

4.4 NUMBER OF COMPLETED COMMANDS ' 5

	

17.6 NUMBER OF COMPLETED COMMANDS 	6

	

63.4 NUMBER OF COMPLETED COMMANDS 	1

	

33.4 NUMBER OF COMPLETED COMMANDS 	4

18.9 NUMBER OF COMPLETED COMMANDS 13

	

37.2 NUMBER OF COMPLETED COMMANDS 	5

	

31.6 NUMBER OF COMPLETED COMMANDS 	6

	

9.4 NUMBER OF COMPLETED COMMANDS 	8

0.3 NUMBER OF COMPLETED COMMANDS 5

3.5 NUMBER OF COMPLETED COMMANDS 10

	

5.7 NUMBER OF COMPLETED COMMANDS 	7

	

91.0 NUMBER OF COMPLETED COMMANDS 	1

30.6 NUMBER OF COMPLETED COMMANDS 9

	

45.2 NUMBER OF COMPLETED COMMANDS 	2

11.9 NUMBER OF COMPLETED COMMANDS 8

TOTAL THINKING TIME 146.4 TOTAL RESPONSE TIME 103.6 TOTAL SERVICE TIME 25.5 NUMBER OF COMPLETED COMMANDS
CONSOLE 17

TOTAL THINKING TIME 238.8 TOTAL RESPONSE TIME 11.2 TOTAL SERVICE TIME 3.5 NUMBER OF COMPLETED COMMANDS
CONSOLE 18

TOTAL THINKING TIME 243.7 TOTAL RESPONSE TIME 6.3 TOTAL SERVICE TIME 2.7 NUMBER OF COMPLETED COMMANDS
CONSOLE 19

TOTAL THINKING TIME 59.0 TOTAL RESPONSE TIME 191.0 TOTAL SERVICE TIME 52.8 NUMBER OF COMPLETED COMMANDS
CONSOLE 20

TOTAL THINKING TIME 230.0 TOTAL RESPONSE TIME 20.0 TOTAL SERVICE TIME 8.9 NUMBER OF COMPLETED COMMANDS
CONSOLE 21

TOTAL THINKING TIME 214.0 TOTAL RESPONSE TIME 36.0 TOTAL SERVICE TIME 13.4 NUMBER OF COMPLETED COMMANDS
CONSOLE 22

TOTAL THINKING TIME 76.6 TOTAL RESPONSE TIME 173.4 TOTAL SERVICE TIME 49.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 23 -

TOTAL THINKING TIME 249.0 TOTAL RESPONSE TIME 1.0 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 24

TOTAL THINKING TIME 236.8 TOTAL RESPONSE TIME 13.2 TOTAL SERVICE TIME 2.4 NUMBER OF COMPLETED COMMANDS
CONSOLE 25

TOTAL THINKING TIME 248.8 TOTAL RESPONSE TIME 1.2 TOTAL SERVICE TIME 0.7 NUMBER OF COMPLETED COMMANDS
CONSOLE 26

TOTAL THINKING TIME 2.2 TOTAL RESPONSE TIME 2478 TOTAL SERVICE TIME 69.3 NUMBER OF COMPLETED COMMANDS
CONSOLE 27

TOTAL THINKING TIME 0.0 TOTAL RESPONSE TIME 250.0 TOTAL SERVICE TIME 70.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 28

TOTAL THINKING TIME 235.1 TOTAL RESPONSE TIME 14.9 TOTAL SERVICE TIME 4.3 NUMBER OF COMPLETED COMMANDS 	.11
CONSOLE 29

TOTAL THINKING TIME 83.3 TOTAL RESPONSE TIME 166.7 TOTAL SERVICE TIME 47.8 NUMBER OF COMPLETED COMMANDS
CONSOLE 30

TOTAL THINKING TIME 190.3 TOTAL RESPONSE TIME 59.7 TOTAL SERVICE TIME 16.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 31

TOTAL THINKING TIME 167.1 TOTAL RESPONSE TIME 82.9 TOTAL SERVICE TIME 24.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 32

TOTAL THINKING TIME 219.3 TOTAL RESPONSE TIME 30.7 TOTAL SERVICE TIME 8.8 NUMBER OF COMPLETED COMMANDS
CONSOLE 33

TOTAL THINKING TIME 184.3 TOTAL RESPONSE TIME 65.7 TOTAL SERVICE TIME 26.9 NUMBER OF COMPLETED COMMANDS
CONSOLE 34

TOTAL THINKING TIME 211.1 TOTAL RESPONSE TIME 38.9 TOTAL SERVICE TIME 10.3 NUMBER OF COMPLETED COMMANDS
CONSOLE 35

TOTAL THINKING TIME 236.9 TOTAL RESPONSE TIME 13.1 TOTAL SERVICE TIME 5.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 36

TOTAL THINKING TIME 230.8 TOTAL RESPONSE TIME 19.2 TOTAL SERVICE TIME 4.5 NUMBER OF COMPLETED COMMANDS

5

8

6

4

8

8

2

'.0

CONSOLE 37
TOTAL THINKING TIME 	67.8

CONSOLE 38
TOTAL THINKING TIME 	61.2

CONSOLE 39
TOTAL THINKING TIME 113.3

CONSOLE 40
TOTAL THINKING TIME 160.5

CONSOLE 41
TOTAL THINKING TIME 231.5

CONSOLE 42
TOTAL THINKING TIME 	66.2

CONSOLE 43
TOTAL THINKING TIME 110.9

CONSOLE 44
TOTAL THINKING TIME 	15.6

CONSOLE 45
TOTAL THINKING TIME 138.8

CONSOLE 46
TOTAL THINKING TIME 	51.1

CONSOLE 47
TOTAL THINKING TIME 181.2

CONSOLE 48
TOTAL THINKING TIME 133.4

TOTAL RESPONSE TIME 182.2

TOTAL RESPONSE TIME 188.8

TOTAL RESPONSE TIME 136.7

TOTAL RESPONSE TIME 89.5

TOTAL RESPONSE TIME 18.5

TOTAL RESPONSE TIME 183.8

TOTAL RESPONSE TIME 139.1

TOTAL RESPONSE TIME 234.4

TOTAL RESPONSE TIME 111.2

TOTAL RESPONSE TIME 198.9

TOTAL RESPONSE TIME 68.8

TOTAL RESPONSE TIME 116.6

TOTAL SERVICE TIME 59.3 NUMBER OF COMPLETED COMMANDS 2

TOTAL SERVICE TIME 50.3 NUMBER OF COMPLETED COMMANDS 1

TOTAL SERVICE TIME 55.1 NUMBER OF COMPLETED COMMANDS 5

TOTAL SERVICE TIME 28.8 NUMBER OF COMPLETED COMMANDS 5

TOTAL SERVICE TIME 5.8 NUMBER OF COMPLETED COMMANDS 6

TOTAL SERVICE TIME 66.1 NUMBER OF COMPLETED COMMANDS 4

TOTAL SERVICE TIME 45.7 NUMBER OF COMPLETED COMMANDS 2

TOTAL SERVICE TIME 98.2 NUMBER OF COMPLETED COMMANDS 0

TOTAL SERVICE TIME 34.1 NUMBER OF COMPLETED COMMANDS 10

TOTAL SERVICE TIME 58.6 NUMBER OF COMPLETED COMMANDS 1

TOTAL SERVICE TIME 18.7 NUMBER OF COMPLETED COMMANDS 5

TOTAL SERVICE TIME 30.0 NUMBER OF COMPLETED COMMANDS 7

GRAND TOTAL OF RESPONSE TIMES 4502
GRAND TOTAL OF SERVICE TIMES 1403
PERFORMANCE MEASURE . 3.21
FRACTION USEFUL PROCESSOR UTILIZATION 0.935

SIMULATION OF NETWORK WITH 9 SITES AND WITH 54 CONSOLES

*
* 	DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 *
* PERIOD OF SIMULATION (SECS) = 222 	NUMBER OF SYSTEM DOMAINS = 22 	NUMBER OF COMPILERS = 2 	 *

* MEMORY SIZE = 128000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 8 	 *

* LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	38500 OR NUMBER IN SYSTEM IS GREATER THAN 36 	*

* CONSOLE' CONTROL SITE= 1 	NUMBER OF DISKS= 3 	DISK BUFFERS= 3 	DISK SITE(S)= 	3 	6 	9 	 *

* TIME SLICE =IOOMSECS. 	LONG TIME SLICE = 500MSECS. COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED = 	787 	 *

*
START OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 41 	NUMBER AWAITING ENTRY TO SYSTEM 	0

END OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 36 	NUMBER AWAITING ENTRY TO SYSTEM 	0

UTILIZATION OF PROCESSORS

SITE 	1
TOTAL IDLE TIME 	60.8 	AVERAGE MEMORY USE 71696 	MAXIMUM 	121965

SITE 	2
TOTAL IDLE TIME 	41.6 	AVERAGE MEMORY USE 65136 	MAXIMUM 	126458

SITE 	3
TOTAL IDLE TIME 	23.8 	AVERAGE MEMORY USE 71719 	MAXIMUM 	115889

SITE 	4
TOTAL IDLE TIME 	46.8 	AVERAGE MEMORY USE 62161 	MAXIMUM 	112435

SITE 	5
TOTAL IDLE TIME 	46.7 	AVERAGE MEMORY USE 62969 	MAXIMUM 	112889

SITE 	6
TOTAL IDLE TIME 	20.7 	AVERAGE MEMORY USE 70847 	MAXIMUM 	120689

SITE 	7
TOTAL IDLE TIME 	40.0 	AVERAGE MEMORY USE 66601 	MAXIMUM 	119485

SITE 	8
TOTAL IDLE TIME 	42.8 	AVERAGE MEMORY USE 68012 	MAXIMUM 	123993

SITE 	9
TOTAL IDLE TIME 	18.3 	AVERAGE MEMORY USE 68560 	MAXIMUM 	108749

NUMBER OF CHANGES OF DOMAIN 	11139 	NUMBER OF TRANSFERED DOMAINS 	69 	NUMBER OF TRANSFERED PROCESSORS 	7626 	NUMBER OF

TRANSFERED LOCAL SEGMENTS 	6768 NUMBER OF FORCED MIGRATIONS 	2999 NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 0

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0
RESPONSE TIMES

	

NUMBER OF COMPLETED SHORT COMMANDS 211 	NUMBER OF RESPONSE TIMES OVER 2 SECS 0 NUMBER OF RESPONSE TIMES OVER 5 SECS 0
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME
NUMBER OF DATA POINTS 65
MEAN OF NON TRIVIAL SERVICE TIMES 	17.2 MEAN OF RESPONSE TIME 	39.6 	RESIDUAL STANDARD DEVIATION 9.19
ESTIMATE OF REGRESSION COEFFICIENT 	2.26 INTERCEPT 	0.70 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.07
CORRELATION COEFFICIENT 0.975

COMMUNICATIONS SUBSYSTEM

	

NUMBER OF BYTES TRANSFERED 	66558763 	NUMBER OF CONTROL MESSAGES (32 BYTES) SENT 	38987
DISK PERFORMANCE 	S

	

NUMBER OF BYTES TRANSFERED 	13383539 	NUMBER OF COMPLETED TRANSFERS 	1910 	TOTAL DISK IDLE TIME 123.8

DISK PERFORMANCE

	

NUMBER OF BYTES TRANSFERED 	14095901 	NUMBER OF COMPLETED TRANSFERS 	1915 	TOTAL DISK IDLE TIME 122.3
DISK PERFORMANCE

	

NUMBER OF BYTES TRANSFERED 	10538990 	NUMBER OF COMPLETED TRANSFERS 	1447 	TOTAL DISK IDLE TIME 146.8
CONSOLE 1

	

TOTAL THINKING TIME 215.6 	TOTAL RESPONSE TIME 	6.6 	TOTAL SERVICE TIME 	4.9 	NUMBER OF COMPLETED COMMANDS 	5
Li 	

CONSOLE 2

	

TOTAL THINKING TIME 184.4 	TOTAL RESPONSE TIME 	37.9 	TOTAL SERVICE TIME 	17.6 NUMBER OF COMPLETED COMMANDS 	6
CONSOLE 3

TOTAL THINKING TIME 	28.6 	TOTAL RESPONSE TIME 193.6 	TOTAL SERVICE TIME 	73.8 NUMBER OF COMPLETED COMMANDS 	2
CONSOLE 4

	

TOTAL THINKING TIME 128.5 	TOTAL RESPONSE TIME 93.7 	TOTAL SERVICE TIME 33.2 NUMBER OF COMPLETED COMMANDS 	4
CONSOLE 5

	

TOTAL THINKING TIME 185.9 	TOTAL RESPONSE TIME 	36.4 	TOTAL SERVICE TIME 	18.3 NUMBER OF COMPLETED COMMANDS 11
CONSOLE 6

	

TOTAL THINKING TIME 113.9 	TOTAL RESPONSE TIME 108.3 	TOTAL SERVICE TIME 38.8 NUMBER OF COMPLETED COMMANDS 	5
CONSOLE 7

	

TOTAL THINKING TIME 159.6 	TOTAL RESPONSE TIME 62.6 	TOTAL SERVICE TIME 31.6 NUMBER OF COMPLETED COMMANDS 	6
CONSOLE 8

	

TOTAL THINKING TIME 195.4 	TOTAL RESPONSE TIME 26.8 	TOTAL SERVICE TIME 	9.0 NUMBER OF COMPLETED COMMANDS 	6
CONSOLE 9

	

TOTAL THINKING TIME 222.0 	TOTAL RESPONSE TIME 	0.3 	TOTAL SERVICE TIME 	0.2 NUMBER OF COMPLETED COMMANDS 	4
CONSOLE 10

	

TOTAL THINKING TIME 215.9 	TOTAL RESPONSE TIME 	6.3 	TOTAL SERVICE TIME 	2.9 NUMBER OF COMPLETED COMMANDS 	9
CONSOLE 11

	

• TOTAL THINKING TIME 220.3 	TOTAL RESPONSE TIME 	2.0 	TOTAL SERVICE TIME 	0.5 NUMBER OF COMPLETED COMMANDS .7
CONSOLE 12

4:-

3

9

2

9

6

7

5

4

4

7

4

2

3

7

0

0.

9

5

6

3

8

TOTAL THINKING TIME 33.6 TOTAL RESPONSE TIME 188.7 TOTAL SERVICE TIME 102.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 13

TOTAL THINKING TIME 155.4 TOTAL RESPONSE TIME 66.9 TOTAL SERVICE TIME 30.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 14

TOTAL THINKING TIME 82.8 TOTAL RESPONSE TIME 139.4 TOTAL SERVICE TIME 50.4 NUMBER OF COMPLETED COMMANDS
CONSOLE 15

TOTAL THINKING TIME 196.8 TOTAL RESPONSE TIME 25.4 TOTAL SERVICE TIME 11.9 NUMBER OF COMPLETED COMMANDS
CONSOLE 16

TOTAL THINKING TIME 147.2 TOTAL RESPONSE TIME 75.0 TOTAL SERVICE TIME 27.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 17

TOTAL THINKING TIME 212.8 TOTAL RESPONSE TIME 9.4 TOTAL SERVICE TIME 4.4 NUMBER OF COMPLETED COMMANDS
CONSOLE 18

TOTAL THINKING TIME 214.4 TOTAL RESPONSE TIME 7.9 TOTAL SERVICE TIME 4.7 NUMBER OF COMPLETED COMMANDS
CONSOLE 19

TOTAL THINKING TIME 64.5 TOTAL RESPONSE TIME 157.7 TOTAL SERVICE TIME 63.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 20

TOTAL THINKING TIME 204.4 TOTAL RESPONSE TIME 17.9 TOTAL SERVICE TIME 7.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 21

TOTAL THINKING TIME 201.6 TOTAL RESPONSE TIME 20.7 TOTAL SERVICE TIME 9.0 NUMBER OF COMPLETED COMMANDS
CONSOLE 22

TOTAL THINKING TIME 86.1 TOTAL RESPONSE TIME 136.1 TOTAL SERVICE TIME 56.8 NUMBER OF COMPLETED COMMANDS
CONSOLE 23

TOTAL THINKING TIME 221.9 TOTAL RESPONSE TIME 0.3 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 24

TOTAL THINKING TIME 222.0 TOTAL RESPONSE TIME 0.2 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 25 .

TOTAL THINKING TIME 220.6 TOTAL RESPONSE TIME 1.6 TOTAL SERVICE TIME 0.7 NUMBER OF COMPLETED COMMANDS
CONSOLE 26

TOTAL THINKING TIME 7.7 TOTAL RESPONSE TIME 214.5 TOTAL SERVICE TIME 77.3 NUMBER OF COMPLETED COMMANDS
CONSOLE 27

TOTAL THINKING TIME 0.0 TOTAL RESPONSE TIME 222.2 TOTAL SERVICE TIME 79.5 NUMBER OF COMPLETED COMMANDS
CONSOLE 28

TOTAL THINKING TIME 216.8 TOTAL RESPONSE TIME 5.4 TOTAL SERVICE TIME 2.9 NUMBER OF COMPLETED COMMANDS
CONSOLE 29

TOTAL THINKING TIME 99.1 TOTAL RESPONSE TIME 123.1 TOTAL SERVICE TIME 48.6 NUMBER OF COMPLETED COMMANDS
CONSOLE 30

TOTAL THINKING TIME 178.7 TOTAL RESPONSE TIME 43.5 TOTAL SERVICE TIME 16.2 NUMBER OF COMPLETED COMMANDS
CONSOLE 31

TOTAL THINKING TIME 160.1 TOTAL RESPONSE TIME 62.2 TOTAL SERVICE TIME 24.3 NUMBER OF COMPLETED COMMANDS
CONSOLE 32

TOTAL THINKING TIME 220.4 TOTAL RESPONSE TIME 1.8 TOTAL SERVICE TIME 1.0 NUMBER OF COMPLETED COMMANDS

'.0
LI'

CONSOLE 33
TOTAL THINKING TIME 168.8 TOTAL RESPONSE TIME 53.4

CONSOLE 34
TOTAL THINKING TIME 216.8 TOTAL RESPONSE TIME 5.4

CONSOLE 35
TOTAL THINKING TIME 210.9 TOTAL RESPONSE TIME 11.4

CONSOLE 36
TOTAL THINKING TIME 209.4 TOTAL RESPONSE TIME 12.8

CONSOLE 37
TOTAL THINKING TIME 67.8 TOTAL RESPONSE TIME 154.4

CONSOLE 38
TOTAL THINKING TIME 67.0 TOTAL RESPONSE TIME 155.3

CONSOLE 39
TOTAL THINKING TIME 118.9 TOTAL RESPONSE TIME 103.3

CONSOLE 40
TOTAL THINKING TIME 164.9 TOTAL RESPONSE TIME 57.3

CONSOLE 41
TOTAL THINKING TIME 210.8 TOTAL RESPONSE TIME 11.4

CONSOLE 42
TOTAL THINKING TIME 70.4 TOTAL RESPONSE TIME 151.8

CONSOLE 43
TOTAL THINKING TIME 110.9 TOTAL RESPONSE TIME 111.3

CONSOLE 44
TOTAL THINKING TIME 21.1 TOTAL RESPONSE TIME 201.1

CONSOLE 45
TOTAL THINKING TIME 144.6 TOTAL RESPONSE TIME 77.7

CONSOLE 46
TOTAL THINKING TIME 51.1 TOTAL RESPONSE TIME 171.1

CONSOLE 47
TOTAL THINKING TIME 186.8 TOTAL RESPONSE TIME 35.4

CONSOLE 48
TOTAL THINKING TIME 145.1 TOTAL RESPONSE TIME 77.1

CONSOLE 49
TOTAL THINKING TIME 34.9 TOTAL RESPONSE TIME 187.3

CONSOLE 50
TOTAL THINKING TIME 221.5 TOTAL RESPONSE TIME 0.7

CONSOLE 51
TOTAL THINKING TIME 168.5 TOTAL RESPONSE TIME 53.7

CONSOLE 52
TOTAL THINKING TIME 216.9 TOTAL RESPONSETIME 5.3

CONSOLE 53

TOTAL SERVICE TIME 26.9 NUMBER OF COMPLETED COMMANDS 6

TOTAL SERVICE TIME 	2.3 NUMBER OF COMPLETED COMMANDS 	6

TOTAL SERVICE TIME 	5.6 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 	4.5 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TINE 68.5 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 62.8 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 55.1 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 	18.3 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 	5.6 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 66.1 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 48.6 NUMBER OF COMPLETED COMMANDS

TOTAL SERVICE TIME 111.3

TOTAL SERVICE TIME 	31.8

TOTAL SERVICE TIME 	65.8

TOTAL SERVICE TIME 	12.4

TOTAL SERVICE TIME 	30.1

TOTAL SERVICE TIME 100.8

TOTAL SERVICE TIME 0.6

TOTAL SERVICE TIME 23.6

TOTAL SERVICE TIME 3.2

4

8

2

1

5

4

5

4

2

NUMBER OF COMPLETED COMMANDS 0

NUMBER OF COMPLETED COMMANDS 10

NUMBER OF COMPLETED COMMANDS 1

NUMBER OF COMPLETED COMMANDS 5

NUMBER OF COMPLETED COMMANDS 7

NUMBER OF COMPLETED COMMANDS 0

NUMBER OF COMPLETED COMMANDS 7

NUMBER OF COMPLETED COMMANDS 6

NUMER OF COMPLETED COMMANDS 6

TOTAL THINKING TIME 190.6 	TOTAL RESPONSE TIME 31.6 	TOTAL SERVICE TIME 	15.4 NUMBER OF COMPLETED COMMANDS 11
CONSOLE 54

TOTAL THINKING TIME 151.6 	TOTAL RESPONSE TIME 70.6 	TOTAL SERVICE TIME 23.6 NUMBER OF COMPLETED COMMANDS 	8

GRAND TOTAL OF RESPONSE TIMES 3834
GRAND TOTAL OF SERVICE TIMES 	1633
PERFORMANCE MEASURE 	2.35
FRACTION USEFUL PROCESSOR UTILIZATION 0.817

BIBLIOGRAPHY

ABRA70 	A3rAMSUN N. 'The ALOHA system 	another
alternative for computer communications' AFIPS
FJCC Vol 37 1970 pp d81-285

ADAM62 	ADAMS C.IJ. 'Grosch's law repealed' Datamation
Vol B No 7 Jul 1962 pp 36-39.

ADA1475 	ADAMS J.C.& MILLARD G.E. 'Performance
measurements on the Edinburgh multi-access
system' E'1AS Report 1, Dept of Computer Science
Univ. of Edinburgh 1975 14pp.

AOAM76 	At)A1S C. 'Over the horizon: a report on the June
1915 computer elements technical committee
workshop' Computer Vol 9 No 2 Feb 1916 pp 8-11.

AGRA75 	AGAJALA A.K. & BRYANT R.M. 'Models of memory
scheduling' Proc 5th Symp. on U.S. principles
(Texas) SIGOPS Vol 9 i4o 5 Nov 1915 pp 211-222.

AGRA76 	AGRAALA A.K., MUHN J.M. & BRYANI R.M 'An
approach to the workload characterisation
Problem' Computer Vol 9 No 6 Jun 1976 pp 1832.

A15075 	AlSO H. et al. 'A minicomputer complex - KL1COS'
Proc 4th Data Communications Symp. (Uuebec) IEEE
Catalogue 75 CH1001-7DATA, Oct 1975 pp 5.7-5_12,

AKK072 	AKKUYUNLU E. et al. 'An operating system for a
network environment' Proc. Symp. on Computer
Communications Networks and leletraffic
(Brooklyn) Apr 1972 pp 59538.

AKK074 	AKOYUNLU E. et al. 'Interprocess communication
facilities for network operating systems'
Computer Vol 7 Wo 6 Jun 1974 pp 46-55.

AKK075 	MKKOYUNLU E.A. et al. 'Some constraints and
tradeoffs in the design of network
communications' Proc. 5th Symp. on U.S.
Principles (Texas) Nov 1975 pp 6774.

AMDA67 	AMDAHL G.M. 'Validity of the single processor
approach to achieving large scale computing
capabilities' AFIPS SJCC Vol 30 1967 pp 483°485.

ANDE75 	ANDERSON G.A & JENSEN E.O. 'Computer
interconnection structures: taxonomy,
characteristics and examples' Computing Surveys
Vol 7 No 14 Dec 1915 pp 197-213.

B-i

ARDE75 	ARDEN 13.4 G & 6ENENBAUM A.D.
'A multimicroproCeSSOr computer system
architecture' Proc. 5th Symp. on U.S. principles
(Texas) SIGUPS Vol 9 No 5, Nov 1975 pp 114-121.

ATTA76 	ATTANASIU C.R., MARKSTEIN PHILLIPS R.J.
'Penetrating an operating systern a study of
Vl/370 integrety' IBM Systems Journal Vol 15
No 1 1976 pp 102-116.

BALZ71 	BALZAR R.M. 'Ports 	a method for dynamic
interprogram communication and job control'
AFIPS SJCC Vol 35 1971 pp 485'489.

8A8K76 	BASKETT F. & SMITH A.J. 'Interference in
multiprocessor computer systems with interleaved
memory' CACM Vol 19 No 6, Jun 1976 pp 32133 11,

BASK72 	BASKIN H.B., BORGERSON B.R. and ROBERTS N.
'PRIME - A modular architecture for terminal
orientated systems' Proc AFIPS SJCC Vol 40 1972
Pp 431-437.

13ATS76 	BATSON A.P., BRUNDAGE R.L. & KEARNS J.P. 'Design
data for ALGOL 60 machines' Proc 3rd Annual
Syrnp. on Computer Architecture, as SIGARCH Vol 4
No LI Jan 1976 pp 151-154.

BELL70 	BELL C.G. et al. 'Computer Networks' Computer
Vol 9 No 5 Sept/Uct 1970. pp 13-23

BERN73 	BER\JARi) D. 'Intercomputer networks - an overview
and bibliography' Masters Thesis Pennsylvania
Univ. May 1973 as- Microfiche AD-769 232.

6HAN73a BHANDAKKAR D.P. 'Analytic models for memory
interference in multiprocessor computer systems'
Ph.D. Thesis Computer Science Dept.
Carnegie-Mellon Univ. Sept 73.

BHAN73b 6HANI)ANKAR O.P. 6 FULLER S.H. 'Markov chain
models for analysing memory interference in
multiprocessor computer systems' Proc. 1st
Annual Symp. on Computer Architecture (Florida)
i)ec 1973 pp 1-6.

BIND75 	BINDER R. et al. 'ALOHA packet broadcasting - a
retrospect' AFIPS NCC Vol 44 1975 pp 203-215.

BLAK75 	BLAKESLEE T.R. 'Digital Design with Standard MSI
& LSI' John Ailey and Son (New York) 1975,

BLAN73 	BLANC N.P. et al, 'Annotated Bioliography of the
Literature on Resource Sharing Computer
Networks' National Bureau of Standards - NBS
Special Publication 384, 1973.

8-2

	

80RG76 	8ORGERSON t3.R. 'The viability of
rnultjmcroorocessor systems' Computer Jan 1976
pp 26-30.

	

13URN73 	3UR1ET S.J. & COFFMAN E.G. 'Combinatorial
problem related to interleaved memory systems'
JAC1 Vol 20 No 1 1973 pp 3945.

	

BUfR61 	3LJROUGHS CORP. 'The descriptor 	a definition
of the 85000 information processing system' The
Burroughs Corp. (Detroit) No 5000-20002-P, Feo
1961. 	 -

	

UZE73 	bUZEN J.P. & GAGLIARDI U.U. 'The evolution of
virtual machine architecture' AFIPS NCC Vol 42
1973 pp 291-299.

	

CARR75 	CARREN D.M. 'Multiple minis for information
management' Datamation Vol 21 No 9 Sept 1975 pp
54-58.

	

CHOU75 	Ct-IOU 4. 'Computer communication networks - the
parts make up the whole' AFIPS NCC Vol 44 1975
op 119-128. 	 -

	

C0D062 	COL)D E.F. 'Multiprogramming' in AL] F.L
RU13INUFF M. (eds) 'Advances in Computers' Vol 3
Academic Press CNe York) 1962 pp 77-153.

	

CUHE75 	COHEN L. & JEFFERSON 0. 'Protection in the HYDRA
operating system' Proc. Sth Symp. O.S.
Principles (Texas) Nov 1975 pp 11160.

	

COLE73 	COLEMAN M.L. 'ACCNET - a corporate computer
network' AFIPS NCC Vol 42 1973 pp 133-140.

	

COL076 	COLON F.C. El ALIAS 'Coupling small computers
for performance enhancement' AFIPS NCC Vol 4
1916 pp 755-764.

	

CORB72 	cURBAru F.J,, 5ALrZER J.H. & CLINGEN C.T.
'Multics - the first seven years' AFIPS SJCC Vol
40 1972 pp 571-583.

	

COSE75 	CUSELL B.P. et al. 'An operational system for
computer resource sharing' Proc. 5th Symp. on
D.S. principles (Texas) Nov 1975 pp 75-81.

	

CUSS72 	COSSERAT D.C. 'A capability orientated
multi-processor system for real-time
applications' Proc 1st mt. Conf. on Computer
Communication (trashington D.C.) Oct 1972 pp
282-289. 	-

COSS74 	COSSERAT D.C. 'A data model based on the
capability protection mechanism' HIA
International iorkshop on Protection in U.S.
(Paris) Aug 1974 pp 3553.

CRAI7I4 	CRAIG D. & GRCJCHS D. 'Computer Networks. A
Bibliography with Abstracts' NTIS (Springtield)
TIS/IN 74 081, Oct 1974 169pp

CURT63 	CUTIN W.A. ',ultiple computer systems' in ALT
F.L. & RUBIAJOFF M. (eds) 'Advances in Computers'
Vol 4 Academic Press (New York) 1963 pp 245-303.

DAHLbb 	DAHL U.J. and NYGAAND K. 'SIMULA - an
ALGOL-based simulation language' CACM Vol 9 No 9
Sept 1966 pp 671-678. 	-

DAHL72 	OAHL O.J., MYHRHAUG B. & NYGAARD K. 'Common Base
Language' Norwegian Computer Center Oslo
Publication No 3-22, 1970.

DAVI72 	t)AVIS N.L., ZUCKER S. & CAMPBELL C.M. 'A
building block approach to multiprocessing'
AFIPS SJCC Vol 40 pp 685-703.

DENN66 	DENNIS J.B. & VAN HORN E.C. 'Programming
semantics for multiprogrammed computations' CACM
Vol 9 No 3 Mar 1966 pp 143-155.

DIJK68 	DIJKSTRA E.A. 'The structure of the THE
multiprogramming system' CACM Vol 11 sà 5 May
1968 pp 341-346.

DIJK71 	DIJKSTRA E.J. 'Hierarchical ordering of
sequential processes' Acta Informatica Vol 1
No 2 1911 op 115-138

D0R475 	DORAN R.N, 'Architecture of stack machines' in
CHU Y. (Ed) 'High-level Language Computer
Architecture' Academic Press (New York) 1975 pp
63-108.

DUVA75 	DUVALL A.S. 'POGUS - An Operating System for a
Network of Small Machines' Private Communication
1975.

ELR070 	ELRUD T.H. 'The CDC 7600 and SCOPE 76'
Datan,ation Vol 16 No 4 April 1910 pp 80-85.

ENGL72 	ENGLAND 0.1. 'Architectural features of system
250' infotech State of the Art Report 14;
Operating Systems, 1972.

ENGL74 	ENGLAND D.i. 'Capability concept mechanism and
structure in system 250' IRIA International
i'Jockshop on Protection in 0.5. (Paris) Aug 1974
pp 63-82. 	 -

8 _14

ESIR6Y 	ESTRIN G. & KLLINROCK L. 'Measures, models and
measurements for time-shared computer utilities'
Proc. 22nd Nat. Conf. of ACA 1961 pp 85-96.

EVAN67 	EVANS D.C. & LECLERC J.Y. 'Address mapping and
the control of access in an interactive
computer' AFIPS SJCC Vol 30 1961 pp 23-30.

FABR73 	FAbRY R.S. 'Dynamic verification of operating
system decisions' CACM Vol 16 No 11 Nov 1913 pp
559-688.

FA8R74 	FA8RY H.S. 'Capability-based addressing' CACM
Vol 17 No 7 Jul 1974 pp 403-412.

FAR1372 a FANi3ER D.J. et al. 'the distriouted computer
system' Compcon 12 - Proc. 7th mt. Computer
Soc. Conf. 1972 pp 31-34.

FAR372 h FARSEN D.J. and HEINRICH F.R. The structure of
the distributed computer system - the
distributed file system' Proc 1st hit. Conf. on
Computer Communication (Washington) Oct 1972 pp
31,4-370.

FAR672 c FARBER D.J. & LARSON K.C. 'The system
architecture of the distributed computer system
- the communications system' Symp.
Computer-Communications Networks and Teletraffic
(New York) Apr 1972 pp 21-27.

FAR672 d FARBER D.J. & LARSON K.0 'The structure of a
distributed computing system - software' Proc.
Symp. Compu ter-Communications Networks and
Tel et raff Ic (New York) Apr 1972 pp 539-545.

FAR1374 	FAR8ER D.J. 'Software considerations in
distributed architectures' Computer Vol 1 No 3
.Aar 1914 pp 31-35

FAR875 	FAR8ER D.J. 'A ring network' Datamation Vol 21
No 2 Feb 1975 pp 44-46.

FERR74 	FERRIE J. et alia. 'An extensible structure for
orotected systems design' IRIA International
iorkshop on Protection in Operating Systems
(Paris) Aug 1974 pp 83-105.

FEUS73 	FEUSTAL E.A. 'On the advantages of tagged
architectures' IEEE trans. on Computers Vol C-22
No 7 July 1973 pp 644-656.

FLYN72 	FLYNN N.J. 'Some computer organizations and
their effectiveness' IEEE trans. on Computers
Vol C-21 No 9, Sept 1972 pp 948-960.

8-5

FUST72 	FOSTER C.C. 'A view of computer architecture'
CACM Vol 15 No 7 Jul 1972 pp 557-565.

FRAN72 	FRANK H,, KAHN R. & KLLINUCK L. 'Computer
communication network design experience with
theory and practice' AFIPS SJCC Vol 40 1972 pp
255-270.

FRLO73 	FLDERICKSEJ D.H. 'Describing data in computer
networks' IBM Systems Journal Vol 3 No 3 1913 pp
257-282.

FUCH68 	FUCHEL K. & HELLER S. 'Considerations in the
design of a multiple computer system with
extended core storage' CAC1 Vol 11 No 5 May 1968
PP 334-34,

FULL76 	FULLER S.H. 'Price/performance comparison of
C.mmp and the POP-10' Proc 3rd Annual Symp. on
Computer Architecture, as SIGARCH Vol 4 No LIP

Jan 1976 pp 195-202.

GECC75 	GEC COMPUTERS LIMITED 'GEC 4080 Technical
Description' (borehemwood England VDb 1RX) June
1975.

GHEZ73 	GHEZZI C. et al. 'Introduction to PULl computer
network design' Proc ACM Int. Computing Symp.
(Davos) 1973 pp 271278.

G0L073 	GOLDBERG R.P. 'Architecture of virtual machines'
AFIPS NCC Vol 42 1973 pp 309316.

GOLD7I1 	GOLDBERG R.P. & HASSINGEN R. 'The double paging
anomaly' AFIPS NCC Vol 43 1974 pp 195-199.

G00D73 	GUUDJIN R.J. 'A Design for a Distributed Control
Multiple-Processor Computer System' Masters
thesis: Naval Postgraduate School Ulonterey,
Calif.) as Microfiche AD 722 883, 1973 42pp

GRAH72 	GRAHAM G.S. & DE1'JNING P.J. 'Protection -
principles and practice' AFIPS SJCC Vol 40 1972
pp 417-1429. 	 -

GRAHbB 	GRAHAM R.M. 'Protection in an information
orocessing utility' CACM Vol 11 'Jo 51968 pp
365-369.

GRUS53 	GROSCH H.R.J. 'high speed arithmetic: the
digital computer as a research tool' Journal of
the Optical Society of America Vol 43 No

2
 Apr

1953 pp 306-310.

GR0576 	GR3SCH H.R.J. 'Distributed intelligence'
Computer Aorld Vol 10 No 23 June 7th 1976.

8-6

HAN870 	HANSEN P.S. 'The nucleus of a multiprogramming
system' CACM Vol 13 No 4 Apr 1970 pp 236241 and
o 20.

HANS73 	HANSEN P.S. 'Operating System Principles'
Prentice-Hall (Englewood Cliffs) 1973.

HANS74 	HANSEN P.S. 'A program methodology for operating
system design' IFIP Congress (Stockholm) 1974 pp
394-397.

HANS75 	HANSEN P.S. 'The programming language Concurrent
Pascal' IEEE Trans. on Software Engineering Vol
SE-1 Na 2 June 1975 pp 199-207.

HANS76 	rIANSEN P.B. '"The SOLO papers"' Software
Practice and Experience Vol 6 No 2 1976 pp
139-205.

HAYN73 	1-IAYNES J. 'Please don't interrupt me while I'm
computing!' Computer Vol 6 no 12 Dec 1973 pp -
45-47.

HLAR13 	HEART F.E. et a1.
'A new minicomputer/multiprocessor for the /thPA
network' AFIPS NCC Vol 42 1973 pp 529-531.

HICK71 	HICKEN G.M. 'Experience with an information
network' Digest Proc. IEEE Conf. on Hardware
Software Firmware Trade-offs (Boston) Sep 1971
pp 169-170.

H1G673 	HIG6IE L.C. 'Supercomputer architecture'
Computer Vol 6 No 12 Dec 1973 pp 46-58.

HIRC74 	HIRCH P. 'SITA: rating a packet switched
network' Datamation Mar 1974 pp 60-63.

I-10AR73 	HOARE C.A,R. 'A structured paging system'
Computer Journal Vol 16 No 3 1973 pp 209-215.

HOAR74 a Hl)ARE. C.A.R. 'Monitors: an operating system
structuring concept' CACM Vol 17 No 10 Oct 1974
pp 549-551.

HUAR7I4 b HOARE C.A.R. 'A structured operating system'
Presented at SRC Summer School on Computer
Architecture and Operating Systems (Cambridge)
Sep 1974. 	 -

t-iOL875 	HOLSAEK-HANSSEs\1 E., HANDLYKKEN P. & NYGAARD K.
'System Description and the OLLTA Language'
DELTA Project Report No 14, Norwegian Computing
Center (Oslo) 1975.

3-1

HUIrdE72 	11OiELL R.H. 'The integrated computer network
system' Proc 1st mt. Conf. on Computer
Communication (fiJashington) Oct 72 pp 214219.

HUTC68 	HUTCF1INSOI'l G.K. 'Some problems in the simulation
of multiprocessor systems' in SUXIUN J.N. (Ed)
'Simulation Programming Languages' North-Holland
(Amsterdam) 1966 pp 305324.

ICH874 	ICHt3IAH J..D & MORSE S.P. 'General concepts of
the SIMULA 67 programming language' in HALPER et
al. (Eds) 'Annual Review in Automatic
Programming' Pergamon Press (Oxford) 1914 pp
55-93. 	 -

JAGE74 	JAGERSTRO.1 J. 'A multi mini system' Proc.
European Computing Congress May 1974 pp 717-725.

JUNE71 	JONES P.1)., LINCOLN N.R. & THORNIUN J.E.
'Lihither computer architecture' IFIP Congress
(Ljubljana) 1971 pp 729736.

JOSE74 	JOSEPH E.C. 'Innovation in heterogeneous and
homogeneous distributed function architectures'
Computer Vol 7 No 3 Mar 19714 pp 17-24.

KAU876 	KU13ISCH ti.H,, PERROF R.H. & HOARE C.A.N.
'uasiparallel programming' Software - Practice
and Experience Vol 6 No 3 1976 po 341-356,

K1M675 	KI:6LETUN S.R. & SCHNEIDER G.M. 'Computer
communication networks: approaches, objectives
and performance considerations' Computing
Surveys Vol 7 No 3 Sep 1975 pp 129-173.

KLLI68 	KLLINRUCK L. 'Certain analytic results for
time-shared processors' IFIP Congress
(Edinburgh) 1968 pp 836845.

KLEI70 	KLEINNUCK L. 'Analytic and simulation methods in
computer network design' AFIPS SJCC Vol 36 1970
pp 569-579.

KLE174 	KLEINROCK L. 'Resource allocation in computer
systems and computer-communication networks'
IFIP Congress (Stockholm) 1974 pp 11-18.

KLE175 	KLEINRUCK L. 'Queueing Systems- Volume 1:
Theory' John Ailey (New York) 1915.

1<LEI76 	KLEINRUCK L. 'Queueing Systems - Volume 2:
Computer Applications' John Liley (New York)
1976. 	 -

KNIGbÔ 	KNIGHT K.E. 'Changes in computer performance'
Datamation Vol 12 No 9 Sep 1966 pp 40549

AM

KNOT74 	KNOTT G.U. 'A proposal for certain process
management and intercommunication Primitives'
SIGI)PS Vol 8 No 4 Oct 1974 pp 744, continued in
Vol 9 No 1 Jan 1975 pp 2041.

LAMP71 	LAMPSOi 8'J, 'Protection' Proc. 5th Princeton
Conf. on Information Sciences and Systems, mar
1971 pp 437-443, reprinted in SIGOPS Vol 8 No 1
Jan 1974 pp 1824.

LAMP7I4 	LAPSON B.A. 'Redundancy and robustness in
memory protection' LFIP Congress (Stockholm)
1974 pp 128132. 	 - 	 -

LAMP76 	LAPSON B.N. & STURGIS H.E. 'Reflections on an
operating system design' CACM Vol 19 No 5 May
1976 pp 251265.

LAYM74 	LAY I.M., MILLS D.L. and LELKOJIFZ M.V.
'Operating systems architecture for a
distributed computer network' Computer Networks:
Conf. IEEE Computer Soc. andNbS, (Gaithersburg)
May 1974 pp 3944. 	 -

LEEA66 	LEE A.M. 'Applied Oueueinq Theory' Studies in
.4anagement Series, tacmillan (London) 1966.

LEIN58 	LEINER A.L. et alia 'PILOT, the N8S
'nulticomouter system' Proc. Eastern Joint
Computer Conf. (Philadelphia) 1958 pp 7175.

LEVI75 	LEVIN R. et ella 'Policy/mechanism separation in
HYDRA' Proc 5th Symp. on O.S. Principles (Texas)
Nov 1975 pp 1321110.

LIND71 	LINDSAY P.J. 'A simple asynchronous interface
for linking small computers' Proc DECUS Cont.
1971 pp 253-256. 	 -

LIST76 	LISTER A.M. & MAYNARD K.J. 'An implementation of
monitors' Software 	Practice and Experience
Vol 6 No 	1976. pp 377-385.

MAUN68 	MADNICK S.E. 'Multi-processor software lockout'
Proc 23rd National Conf, ACM 1968 PP 19-4.

MADS72 	4AUSEN O.B. 'Karoline: a network computer
project' RECAU-72-14, University of Aarhus,
Denmark 1972.

MANN75 	MANNING E. and PEE13LES R.W. 'Segment transfer
protocols for a homogeneous computer network'
ACM Operating Systems Review Vol 9 No 3 Jul 1975
op 65-73.

13-9

MCOU72 	McUUILLAN J.M. et alia.'Improvements in the
design and performance of the ARPA network'
AFIPS FJCC Vol 141 1972 pp 7141754.

METC72 a MEICALFE R.M. 'Strategies for interprocess
communication in a distributed computing system'
Synip. on Computer-Communications Networks and -
Teletraffic (Brooklyn) Apr 1972 op 519-526.

METC72 b METCALFE .1. 'Strategies for operating systems
in computer networks' Proc. of 25th Annual Cont.
of ACA (Boston) 1912 pp 218-281.

METC76 	METCALFE R.M. & BOG(S D.H. 'tthernet:
distributed packet switching for local computer
networks' CACM Vol 19 Jul 1976 pp 395-40 14.

MEYE70 	.VIEYLR H.A. & SEAiRIGHT L.H. 'A virtual machine
time-sharing system' IBM Systems Journal Vol 9
No 3 1970 pp 199-218.

M1LL76 	MILLS D.L. 'An overview of the distributed
computer network' AFIPS E'JCC Vol 45 1976 pp
523-531. 	-

MUUR71 	MOORE C. 'Network Model of Time Shared Computer
Systems' Ph.D. Thesis Univ. of Michigan (Ann
Arbor) Microfiche AL) 727 206, 1971.

NEED72 	NEEDIIAM R,M. 'Protection systems and protection
implementations' AFIPS FJCC Vol 41 1972 pp
571-578.

NEED74 	NEEDHAM R.M. 8. tPULKES M.V. 'Domains of
protection and the management of processes']he
Computer Journal Vol 17 No 2 May 1974 pp
117-120.

OPDE75 	OPDERBLCK H. 'Problems in the design of control
procedures for computer networks' ACM Computer
Communication Review Vol 5 No 2 Apr 1975 pp 1-7.

ORGA73 	URGANICK E.I. 'Computer System Organization -
The o5700/B6700 Series' ACM Monograph Series,
Academic Press (New York) 1973.

ORNS75 	ORNSTEIN S.M. et alia, 'PLURIBUS 	a reliable
multiprocessor' Proc AFIPS NCC Vol 84 1975 pp
551-559. 	 -

PANM72 	PAN1LEE R.P. et alia 'Virtual storage and
virtual machine concepts' IBM Systems Journal
Vol 11 No 2 1912 pp 99-130.

PARN72 	PAR'JAS D.L. 'On the criteria to be used in
decomposing systems into modules' CACM Vol 15 No
12 L)ec 1972 pp 1053-1058. 	 -

-10

PARN74 a PARNAS D.L. 'On a "buzzword": hierachical
structure' IFIP Congress (Stockholm) 1974 pp
336-339.

PARN74 b PARNAS D.L & PRICE N.E. 'Using memory access
control as the only protection mechanism' IRIA
Int. sorkshop on Protection in Operating
Systems, (Paris) Aug 1974 pp 177-181.

POPE74 	PUPEK G.J. & KLINE C.S. 'Verifiable secure
operating system software' AFIPS NCC Vol 43 1974
pp 145-151. 	 -

PYKL74 	PYKE T.N. Private communication, 1974.

PUUZ73 	POUZIJ L. 'Network architectures and components'
Proc of 1st European 'Jorkshop on Computer
Networks (Aries) Apr 1973 pp 227-266.

REAl76 	REAMES C.C. & LIU M.T. 'L)esign and simulation of
the distributed loop computer network (DLCN)'
Proc 3rd Annual Symp. on Computer Architecture,
as SIGARCH Vol 4 No 4 Jan 1976 pp 124-129.

REDE74 	REDELL D.D. 'Naming and Protection in Extensible
Operating Systems' Ph.D. Thesis M.I.T., Project
MAC Report MACTR140, Nov 1974.

RETZ75 	RETZ D.L. 'Operating system design
considerations for the packet-switching
environment' AFIPS NCC Vol 44 1975 pp 155-160.

RLYL74 	REYLING G. 'Performance and control of multiple
microprocessor systems' Computer Design Vol 13
No 3 Mar 1974 pp 81-87.

ROBE70 	'ROBERTS L.G. and WESSLER 8.0. 'Computer network
development to achieve resource sharing' AF1PS
SJCC Vol 36 1970 pp 543-549. 	-

RUA74 	RL)IAN J.l1., SMITH U.A. & SJENSEN M.D. 'Towards
the design of a network manager for a -
distributed computer network' in FENG I. (Ed)
'Parallel Processing' Lecture Notes in Computer
Science No 24, Springer Verlag (Berlin) 1974.

RUtriE73 	RUE L.A. et al. 'Software methods for achieving
fail-soft behaviour in the distributed computer
system' IEEE Symp. on Computer Software
eliaoility (New York) 1973 pp 7-11.

SALT66 	SALTZE J.H. 'Traffic control in a multi-plexed
computer system' MiIT Technical Report MAC-T-30
Jul 1966. 	 -

8-il

SALT74 	SALTLAR J.H. 'Protection and control of
information sharing in Multics' CACM Vol 17 No 1

Jul 1914 pp 388'402.

SCHA75 	SCHAEFER H.F. 'Are minicomputers suitable for
large scale scientific computations?' 11th IEEE
C omp. Soc. Conf., Fall Cornpcon75 (aèhington)
Sep 1975 pp 6164. 	 -

SCHE67 	SCHERR A.L. 'An Analysis of lime-Shared Computer
Systems' 	Research Monograph No 36, The
.I.T. Press ("lassechusettS) 1961.

SCHR72 	SCHUEDER A.D. & SALIZAR J.H. 'A hardware
architecture for implementing protection rings'
CACM Vol 15 No 3 Mar 1912 pp 157-110.

SCOT74 	SCUTT C.T. 'An annoted bibliography on computer
systems reliability' Infotech State of the Art
Report 20, 1974.

SEAR75 	SEARLE B.C. & FNEBERG U.E. 'Microprocessor
applications in multiple processor systems'
Computer Vol B No 10 Oct 1975 pp 22-30.

SELI72 	SELIGMAN L. 'LSI and minicomputer system
architecture' AFIPS SJCC Vol 40 1972 pp 767-773.

SEVC72 	SEVCIK K.C. et alia. 'Project SUE as a learning
experience' AFIPS FJCC Vol 41 1912 pp 331338.

SEVC74 	SEVCIK K.C. & TS1CHRITZIS D e c. 'Authorization
and access control within overall system design'
IRIA mt. 4orkShop on Protection in Operating
Systems (Paris) Aug 174 pp 211224. 	-

SMIT72 	SMITH B.T. 'Mixed computer networks: benefits,
problems and guidelines' Proc. 1st Int. Conf. on
Computer Communication (ashinqton) Uct 1912 pp
201-20.

SPIE73 a SPIER M.J. 'A model implementation for
Drotective domains' mt. Journal of Computer and
Information Sciences Vol 2 No 3 Sep 1913 pp
201-229.

SPIE73 b SPIER M.J. 'Process communication prerequisites
or the IPC-setup revisited' Proc of the 1973
Sagamore Computer Conf, on Parallel Processing,
IEEE publication 473 CH08128 C Aug 1973 pp
79-513.

SPIE74 	SPIER M.J. f HASTINGS T.N. and CUTLER O.N. 'A
storage mapping technique for the implementation
of protective domains' Software - Practice and
Experience Vol 4 No 3 1974 pp 215-230.

B-12

spoull 	SPUUNE C.R. 'A software architecture for the
10's: part 1 	the general approach' Software
Practice and Experience Vol 1 No 1 pp 5-37.

STEP74 	STEPHENS P.D. 'The IMP language and compiler'
The Computer Journal Vol it 'o 3 1974 pp 	-

216-221.

TAJG76 	TANG C.K. 'Cache system design in the tightly
coupled multiprocessor system' AFIPS NCC Vol 45
1916 pp 749753.

THUM72 	THOMAS N.H. & HENDENSUN U.A. '1cNOSS - a
multi-Computer programming system' AFIPS SJCC
Vol 40 1972 pp 281-293

THOM73 	THOMAS R.H. 'A resource sharing executive for
the ANPANET' AFIPS p4CC Vol 42 19/3 pp 155-163.

THUR75 	IHUR8EN K.J. & AJALI) L.D. 'Associative and
oarallel processors' Computing Surveys Vol 7 No
4 Dec 1975 pp 215-255.

TJAD70 	TJADE11 G.S. & FLYNN M.J. 'Detection and parallel
execution of independent instructions'. IEEE
Trans. on Computers Vol C19 No 10 Oct 1910 pp
889-895.

TYME71 	TYMES L.R. 'TYMi'JEI - A terminal orientated
communication network' AFIPS SJCC Vol 38 1971 pp
211-216. 	 -

WAL072 	1ALDEJ D.C. 'A system for interprocesS
communication in a resource sharing computer
network' CACM Apr 1912 pp 221-230

WENS75 	aENSLY J.H. 'The impact of electronic disks on
system architecture' Computer Vol 8 No 8 Feb
1975 pp 44-48.

WHIT73 	4HITFIELD H. & I1GHT A.S. 'EMAS - the Edinburgh
1ulti-access system' The Computer Journal Vol 16
No 4 1973 pp 331-3146.

JIDD76 	JIDDOES L.C.Jr. 'The Minerva multi-processor'
Proc 3rd Annual Symp. on Computer Architecture,
as SIGARCH Vol 14 No '4 Jan 1976 pp 34-39.

tJILK13 	AILKES M.V. 'The dynamics of paging' The
Computer Journal Vol 16 No 1 1973 pp 4-9.

tJIRC75 	JIRCHING J.E. 'Computer of the 1980's - is it a
network of microcomputers' Proc Fall Compcom15
(;dashington)' IEEE. publication 75CH09886C, Sep
1975 pp 23-26.

8-13

iIRT74 	JIRTH N. 'On the design of programming
languacies' IFIP Congress (Stockholm) 19714 pp
3.393•

tITH75 	JITHINGTDN F.G. '3eyond 198 14: a technology
forecast' Datamation Vol 21 No 1 Jan 1975 pp
5 1473. 	-

ITT68 	AITT B.I. 'M651P: an experiment in OS/360
multiprocessing' Proc 23rd Nat. Conf. of ACM
1968 pp 691703. 	 -

viITt76 	IiIITTIE L.D. 'Efficient message routing in
mega-micro-computer networks' Proc 3rd Annual
Symp. on Computer ArchiteCure, IEEE publication
76Ct110435C, Jan 1976 pp 136140.

NULF72 	JULF V.A. and BELL C.G. 'C.mrnp 	a
multi-mini-processor' AFIPS EJCC Vol 41 1972 pp
765-777.

WULF74 	4ULF W.A. et al. HYDRA the kernel of a
multiprocessor operating system' CACM Vol 17 No
6 Jun 1974 pp 337-345.

VJULF75 a 4ULF W.A. & LEVIN R. 'A local network'
Datamation Vol 21 No 2 Feb 1975 pp 14750.

!4ULF75 b NULF .A., LEVIII R. and PIERSON C. 'Overview of
the HYDRA operating system development' proc 5th
Syrnp. U.S. Principles (Texas) Nov 1975 pp
122-131.

ZELK714 	ZELKW11TZ M.V. 'Structured operating system
organization' Information Processing Letters Vol
3 No 2 Nov 1974 pp.

8-114

