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Abstract

The coherent nuclear π0 photoproduction reaction is sensitive to the nuclear

matter form factor i.e. the distribution of matter within the nucleus. Ac-

curate measurements of the nuclear matter distribution as charaterised by

the r.m.s. radius are important for applications to nuclear theories, neutron

stars, atomic parity non-conservation and heavy ion collisions.

This thesis presents the results from a new experiment to measure coherent

π0 photoproduction on 208Pb, 40Ca, 16O and 12C. The ultimate goal of the

research programme is to make a high precision measurement of the nature

of the neutron skin of 208Pb. The first major step in this direction is to

achieve an accurate data set of coherent pion photoproduction which is

presented in this thesis.

The experiment was performed in the A2 hall of the MAMI electron acceler-

ator facility at the Institüt fur Kernphysik, Mainz, Germany. An 883 MeV

beam of electrons was directed on to a 10µm nickel radiator producing a

Bremsstrahlung photon beam which was then ’tagged’ with a resolution

of 2 MeV using the Glasgow Photon Tagging Spectrometer. The photon

beam was incident on one of the 4 experimental targets inducing the re-

action A(γ,π0)A. The neutral π0s were then detected via their two photon

decay in the newly installed 4π Crystal Ball and TAPS detector systems.

The results from all four targets are presented as differential and total

cross sections covering the energy range Eγ=(135-300) MeV and covering

the full 180◦ of the pion polar angle. Comparisons have been made with

previous data and with the latest theoretical calculations of Dreschel et. al.

which employ detailed pion optical potentials in describing the pion-nucleus

final state interaction. It is concluded that the 208Pb cross sections show

good agreement with the calculations indicating that the pion-nucleus FSI

distortions are well accounted for by the model. A pleasing reduction in

statistical and systematic uncertainties from previous measurements is also

observed. While the 208Pb cross sections are finalised it is suggested that

the 12C and 16O data would benefit from a further analysis utilising the



coincident detection of nuclear decay photons to isolate incoherent events

and allow a more detailed comparison with theory.

A first comparison of the theoretical model with the new high quality data

gives first indications of a neutron skin on 208Pb. A future scheme for the

full detailed extraction of the matter distribution from the new data set is

also suggested.
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Chapter 1

Overview

1.1 Introduction and Overview

The size and shape of a nucleus are among its most fundamental properties. Since the

discovery of the atomic nucleus at the beginning of the 20th century, investigations

of these quantities have formed the basis of one of the most active areas of research

in physics. The distribution of protons (charge) within the nucleus is now established

to accuracies of ∼0.01%, thanks to a series of experiments including electron scatter-

ing, muonic x-rays and optical and x-ray isotope shifts[1,2]. However, none of these

techniques provide information on the distribution of neutrons within the nucleus. In

fact, an accurate measurement of the nuclear matter distribution (both protons and

neutrons) has so far proven to be elusive. This can largely be attributed to the signifi-

cant uncertainties associated with the theoretical description of the strongly interacting

probes which are generally used to give sensitivity to the neutron distribution.

For light, stable nuclei, where the number of protons is similar to the number of

neutrons, little difference between the r.m.s. charge and matter radii are predicted. For

heavier nuclei, such as 208Pb (N=126, Z=82), where the number of neutrons greatly

exceeds the number of protons, theories predict the neutrons form a skin of thickness

∼ 0.1 - 0.3 fm. The neutron skin thickness is defined as:

∆R = rn − rp (1.1)

where rn and rp are the r.m.s. neutron and proton radii respectively e.g.

r2
p =

4π

Z

∫ ∞

0

ρ(r)r
4dr (1.2)

ρ(r) is the charge density distribution and Z is the atomic number. Most modern

nuclear theories give predictions for ∆R and as a result, this experimental observable

can act as a powerful test of nuclear models. A first accurate determination of the
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1. OVERVIEW

neutron skin thickness of 208Pb, will however have a much wider reaching impact with

applications in the study of parity violating electron transitions in atoms, heavy ion

collisions, the nuclear equation of state in the neutron rich region and predictions of

the properties of low mass neutron stars. It is extraordinary that one measurement

can have importance to such a wide range of fields.

Coherent π0 photoproduction provides a novel and elegant means of probing the

matter distribution within a nucleus, although in the past, experimental difficulties

have limited the success of this technique. Nuclear π0 photoproduction takes place

when a high energy photon couples to the electromagnetic current of a nucleon and

emits a neutral pion. The process is termed coherent when the target nucleus is left in

the ground state following the reaction and incoherent when this is not the case. The

experiment described in this thesis builds on the experiences of previous measurements

and uses the recent advances in photon beam quality and the availability of 4π detector

systems to make measurements of the differential and total coherent π0 cross sections

on 208Pb, 40Ca, 16O and 12C. The first major step in using this reaction to measure

the matter distribution is to obtain a high quality data set which is presented here. A

preliminary value for the r.m.s matter radius of Pb is presented and an outline for the

extraction of the matter distribution and more accurate r.m.s. radius determination is

described.

This thesis continues in chapter 2 with a description of coherent pion photopro-

duction including details of a theoretical description and a summary of previous mea-

surements. Chapter 3 is given over to a brief review of the impact accurate neutron

skin measurements will have, particularly those of 208Pb, and a summary of our present

knowledge of the matter distribution. The experiment and data analysis are detailed in

Chapters 4 and 5. The experimental results and conclusions are presented in Chapters

6 and 7.
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Chapter 2

Coherent π0 Photoproduction

2.1 The Photon Nucleus Interaction

The mechanism of nuclear photon absorption is strongly dependent on the energy

(i.e. wavelength) of the incident photon. Consider figure 2.1(a) showing the total

photoabsorption cross section. Below Eγ ∼100 MeV ( λ
2π

∼2 fm), the nucleons are seen

to act with collective motion producing the giant nuclear resonances. At Eγ ∼300 MeV

the photon wavelength is comparable to the size of the nucleon ( λ
2π

∼0.65 fm) and

hence nucleon resonances dominate the cross section. The peak in the cross sections

at ∼300 MeV corresponds to the first nucleon resonance - the ∆(1232). The peaks

at higher energies correspond to further ∆ and N∗ resonances and at higher energies

still, the many overlapping resonances form a continuum. This work uses photon

energies within the region Eγ = 135-300 MeV, for which only the excitation of the ∆

plays an important role. The total photoabsorption cross section of course includes

contributions from meson photoproduction as well as single and double nucleon knock

out reactions. Below Eγ = 500 MeV however the cross section is dominated by single

pion production (figure 2.1(b)).

2.2 Overview of Coherent π0 Photoproduction

The pion occupies a unique position in nuclear and particle physics being the mediator

of the long range part of the nucleon-nucleon force. In addition it has been used

extensively in pion scattering experiments as a nuclear probe. Yukawa first proposed

the existence of a meson with a mass of ∼100MeV as the mediating particle of the

strong internucleon force in 1935. This was confirmed in 1947 when the charged pions

were detected in the photographic emulsion plates of cosmic ray experiments. It is by

far the lightest hadron at only ∼100MeV compared to the ∼1GeV mass scale of the

3



2. COHERENT π0 PHOTOPRODUCTION

(a) Total photon absorption cross section on

different nuclei. Taken from reference 4.

(b) Photoabsorption cross section on the pro-

ton and decomposition into meson produc-

tion channels. Small open circles: photoab-

sorption from all meson production channels.

Solid circles: single π
+ production. Open cir-

cles: π
0 production. Solid squares: π

+
π
−

production. Downward solid triangles: π
+
π

0

production. Upward open triangles: π
0
π

0

production. Taken from reference 3.

Figure 2.1: Photoabsorption on the nucleon and on the nucleus.
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2.2 Overview of Coherent π0 Photoproduction

nucleon and has 3 charge states: π0 , π+ and π−. Collectively, they can be thought of

as a single isotriplet state, i.e. one particle (the pion) under rotation in isopin-space.

Further pion properties are listed in table B.1 [5].

Pion photoproduction on the nucleon takes place when a high energy photon couples

to the electromagnetic current of a nucleon causing it to radiate pions. The reaction

can proceed via 4 channels:

γ + p → p+ π0 (2.1)

γ + p → n+ π+ (2.2)

γ + n → p+ π− (2.3)

γ + n → n+ π0 (2.4)

Nuclear pion photoproduction takes place when the nucleon is embedded within a nu-

cleus. The nuclear process can take place coherently, when the target nucleus is left

in its ground state, A(γ,π)A, or incoherently when the final state differs, A(γ,π)A∗.

Charge conservation rules out the possibility of the coherent production of a single

charged pion (consider p(γ,π+)n or n(γ,π−)p), leaving only coherent π0 production.

The neutral pion photoproduction process takes place with similar probability on neu-

trons and protons alike (figure 2.6). In the case of coherent production from a nucleus

the amplitudes from all nucleons add coherently. The resulting differential cross section

scales with the square of the mass number (A) and the matter form factor as a function

of the momentum transferred to the nucleus (Fm(q)) i.e.

A(γ, π0)A :
dσ

dΩ
∝ A2F 2

m(q) (2.5)

The matter form factor is the fourier transform of the matter density distribution and

its presence leads to a diffraction pattern in the differential cross section. In this way

the reaction is analagous to elastic scattering experiments, in particular elastic electron

scattering where:

A(e, e)A :
dσ

dΩ
∝ Z2F 2

c (q) (2.6)

and Fc(q) is the charge form factor as a function of momentum transfer to the nucleus

and Z is the atomic number. Indeed, the coherent channel can be thought of as the

elastic π0 production channel.

The use of the electromagnetic probe (real or virtual photons) in nuclear studies

offers several advantages over strongly interacting probes, namely:

• The electromagnetic interaction is well understood via the formalism of Quantum

Electrodynamics (QED).

5



2. COHERENT π0 PHOTOPRODUCTION

• The photon is weakly interacting - only single interactions in the nucleus need

to be considered for the reactions studied here i.e. it does not suffer from initial

state interactions (ISI).

• The mean free path of the photon (both for real and virtual photons) is large

i.e. it probes the entire nuclear volume as opposed to strong probes which are

predominantly absorbed at the nuclear surface.

It should be noted that the weak strength of the photon-nucleus interaction results

in the typically small photonuclear cross sections. One of the main challenges in this

field over the past 50 years has been to provide photon and electron beams of sufficient

quality and intensity to make these experiments feasible.

Although nuclear pion photoproduction experiments are not complicated by ISI,

the produced pion is strongly interacting and therefore can suffer final state interac-

tions with the nucleus (FSI). These effects manifest themselves as shifts in the pion

emission angle to smaller angles and a reduction in the outgoing flux. However, the

strength of the FSI is highly dependent on the pion energy. The pion-nucleus scatter-

ing cross section is dominated by the excitation of the ∆(1232) resonance which is at

its maximum for pion energies of Tπ ∼165 MeV (figure 2.2). Low energy pions have

a much smaller probability of interacting with the nucleus following their production.

The implication for coherent π0 experiments where the aim is to extract the matter

form factor, is that low energy measurements (Eγ < 300MeV i.e. below the ∆(1232)

resonance) where the FSI effects are reduced, are most important.

As mentioned, the ∆(1232) resonance plays an important role in the π-nucleus

interaction as the pion energy increases. The modelling of pion photoproduction in the

∆ region is further complicated by the strong interaction of the ∆ resonance itself as

it propagates through the nucleus. Simpler models assume that the properties of the

resonance taking part in the pion production process are the same as those of the free

∆. However, strong evidence exists to suggest that the interaction of the ∆ with the

nuclear medium alters both its width and effective mass [6].

While the presence of final state interactions complicate the extraction of the matter

distribution, they present a unique opportunity to study the π-nucleus interaction itself.

The majority of data on this topic are the result of charged pion scattering experiments

which predominantly sample the nuclear surface. Because of the pions short lifetime,

it is not possible to scatter pions with Tπ < 30MeV. With coherent π0 production,

the interaction can in principle be sampled throughout the entire nuclear volume and

for pion kinetic energies approaching 0 MeV. The modification of ∆ properties of

nuclear resonances when embedded in the nuclear medium can also be constrained by

comparison with high energy data.
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2.2 Overview of Coherent π0 Photoproduction

Figure 2.2: Cross section for elastic π+ scattering on the nucleus. The data are over-

layed with two theoretical calculations. The solid line contains a correction for the

pion-nucleus FSI, the dashed line does not. From reference [7].

Given the varied applications of pion photoproduction it has been the subject of

many theoretical investigations over the past 50 years. The elementary amplitude for

pion photoproduction can be separated into a spin-dependent and spin-independent

part (section B.2). In the case of coherent π0 production from closed shell nuclei,

no spin information is carried to the final state since the nucleus is spin-0 and the

pion is pseudoscalar (Jπ = 0−). As a result, this process is only sensitive to the spin-

independent part of the amplitude and the theoretical description is therefore greatly

simplified [4]. The coherent process is therefore an important test of this specific part

of the amplitude.

The motivation to study coherent nuclear pion photoproduction can be summarised

thus:

• To investigate the matter distribution of nuclei.

• As a precise test of the spin independent part of the elementary pion production

amplitudes.

• As a probe of π-nucleus interaction.

7
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2. COHERENT π0 PHOTOPRODUCTION

The primary motivation of the experiment described in this thesis is to investigate

coherent π0 production as a tool for probing the nuclear matter distribution, the im-

portance of which is presented in Chapter 3. The remainder of this chapter will be

devoted to a discussion of the available theoretical models of the coherent π0 process

as well as a summary of previous measurements.

2.3 Theoretical Description of Nuclear Pion Pho-

toproduction

As the energy scale changes and the photon becomes sensitive to different degrees of

freedom, the theoretical models used to describe the interaction of the photon with the

nucleus must also adapt. The structure of hadrons (bound states of quarks) at their

fundamental level is governed by the theory of Quantum Chromo Dynamics (QCD).

QCD describes strongly interacting particles in terms of quarks and gluons, however,

the wavelengths associated with this work are too large to resolve the internal quark

structure of the nucleons. Here the internal structure is included via the pion and

nucleon form factors. Instead of the quarks and gluons of QCD, the appropriate degrees

of freedom for the theoretical models are pions and nucleons and models are formulated

explicitly in terms of pions, nucleons and nucleon resonances [6]. QCD is not completely

forgotten however, the underlying symmetries of that theory are still applicable and

any theory of hadron interactions must inherit the symmetries of QCD.

The construction of a model to describe nuclear pion photoproduction is almost

universally approached as follows:

1. Construct the elementary pion photoproduction amplitude on the nucleon.

2. Adapt the single nucleon case to the nucleus via the impulse approximation.

3. Include terms to account for the pion-nucleus FSI and the medium modification

of the ∆(1232) resonance.

A brief desciption of each of these ingredients now follows with particular emphasis on

the techniques used in the model of Dreschel et. al. [8,9]. Dreschel’s model will be

used in Chapter 6 as a comparison to the new experimental data and as a means of

making some preliminary conclusions regarding the matter distribution of 208Pb.

8



2.3 Theoretical Description of Nuclear Pion Photoproduction

2.3.1 π0 photoproduction on the nucleon

Formalism

A schematic of the pion photoproduction process is shown in figure 2.3. The nucleon

is considered to be an isodoublet i.e. one particle with two isospin states (p,n) and the

pion an isotriplet (π±, π0). The transition matrix element for pion photoproduction,

N

γ

N

π

µ∈, 
µ

k
µq

i
χ, µ

i
p

f
χ, µ

f
p

 = photon 4-momentum
µ

k

 = pion 4-momentumµq

 = initial nucleon 4-momentumµ
i

p

 = final nucleon 4-momentumµ
f

p

 = initial nucleon isospinorµ
i

χ

 = final nucleon isospinorµ
f

χ

Figure 2.3: Single pion production on the nucleon.

Tfi, has the form:

Tfi = εµJ
µ (2.7)

Jµ = uf (pf , sf )j
µui(pi, si) (2.8)

The nucleon electromagnetic current is given by jµ and ui and uf are the nucleon

Dirac spinors. ε is the photon polarisation vector. The transition operator in its

most general form is a linear combination of scalar amplitudes Ai and all independent

Lorentz invariants, Mi (listed in appendix B.2):

T =
∑

i

AiMi (2.9)

and the matrix element becomes:

Tfi = uf (pf , sf )εµj
µui(pi, si) (2.10)

=
∑

j

Ajuf (pf , sf )Mjui(pi, si) (2.11)
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2. COHERENT π0 PHOTOPRODUCTION

This can also be expressed as:

Tfi = 〈f |
N
∑

l=1

Fiθi|i〉 (2.12)

where the amplitudes Fi are linear combinations of Ai. Furthermore, Fi can be ex-

panded in contributions from channels with oribital angular momentum l and total

angular momentum J. The result is a multipole expansion in terms of energy dependent

multipoles Ml± and El± (appendix B.2). This decomposition allows greater physical

insight into the reaction process. For example, the M1+ multipole corresponds to a

magnetic transition to an intermediate state with total angular momentum J= 3
2

i.e.

the ∆(1232) resonance would have a strong contribution in this partial wave.

The differential cross section is calculated as a sum of the transition matrix elements

over all polarisation states [4]:

dσ

dΩ
=

q

k

( mN

4πW

)2 1

4

∑

ε

∑

mi,mf

|Tfi|2 (2.13)

The simplest calculations of the pion photoproduction amplitudes are made using the

Born approximation where only the lowest order Feynman diagrams are considered.

That is, only processes with single particles in the intermediate state and no excited

states or loops. These are shown in figure 2.4. For π0 photoproduction, the Kroll-

Ruderman term (figure 2.4(d)) does not contribute since the photon can not couple

directly to the π0 and diagrams 2.4(a) and 2.4(b) have opposite signs and almost

cancel. Therefore diagram 2.4(c) dominates the neutral pion production channel in

the Born approximation. Although calculations of this sort have been shown to agree

well with experimental data at photon energies close to pion threshold, the predictions,

as may be expected, completely break down towards the first resonance region. The

Born approach is not wrong as such; all theories agree on the structure of the Born

amplitudes, it is however incomplete. To successfully describe pion photoproduction

at higher photon energies requires treatment of the higher order diagrams (e.g. the

diagrams of figure 2.5), in particular those involving the excitation of the ∆.

The calculation of photoproduction amplitudes beyond the Born approximation can

be broadly split into two categories:

• Dispersion Theoretical Models.

• Field Theoretical Models.

Chew et. al. [10] constructed the first set of amplitudes of note in 1957 by extending the

Born approximation via the application of dispersion integrals, a technique pioneered

10



2.3 Theoretical Description of Nuclear Pion Photoproduction

by Kronig and Kramers in their work on optics. This method exploits the intrinsic

relationship between pion photoproduction and pion scattering expressed in Watson’s

theorem [11]. Conservation of flux demands that the scattering matrix (S-matrix) must

be unitary i.e.

SSᵀ = 1 (2.14)

Because of unitarity (i.e. conservation of flux), pion photoproduction is related to pion

scattering, compton scattering of photons on nucleons and to radiative pion capture.

The scattering matrices of the individual processes should therefore be considered as

part of an enlarged S-matrix.

S =

(

Sγγ Sγπ

Sπγ Sππ

)

(2.15)

Watson’s theorem can be derived from the unitarity of this S-matrix and the result

is that the multipole amplitude phase for pion photoproduction matches that of pion

scattering. Further references to unitarity reflect the requirement that the multipole

amplitudes be of the correct phase.

Berends et. al. [12] continued the work of Chew et. al. in 1967 performing sim-

ilar calculations but in far greater detail. The dispersion integrals approach is most

successful for Eγ < 500 MeV and becomes increasingly difficult at higher energies. A

complication arises when using the dispersion relations for nuclear calculations. Be-

cause of the Fermi momentum of the nucleons within the nucleus, the amplitudes must

be transformed to an invariant form causing mathematical complexities and a loss of

physical information.

In 1977 Blomqvist and Laget [13] introduced a field theoretical model based on

the use of an effective Lagrangian. This involves the explicit evalutation of the Born

Feynman diagrams as well as those of higher order processes. In this way, different

processes, such as the excitation of the ∆ resonance can be included in an ad hoc

fashion. This technique is also heavily reliant on input from π-scattering, for example

the coupling constants for the interaction vertices are taken from fits to pion scattering

data. The effective lagrangian approach can be extended beyond Eγ >500 MeV by the

addition of further diagrams including higher order N∗ and ∆ resonances. Furthermore

it can be directly applied to any frame of reference.

2.3.2 Unitary Isobar Model of Dreschel et. al.

The unitary isobar model of Dreschel et al. [9] is based on the construction of an effective

Lagrangian to model pion photo- and electroproduction i.e. it is a field theoretical

11
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N
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N

π

N
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N

γ

N

π
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(b)
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π

π

(c)

N

γ

N

π

(d)

Figure 2.4: Diagrams (a)-(c) are the Born terms for pion photoproduction, (d) is the

Kroll-Ruderman or seagull diagram.
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2.3 Theoretical Description of Nuclear Pion Photoproduction

N

γ

N

π

∆

(e)
N

γ

N

π

∆

(f)

N

γ

N

π

ω,ρ

(g)

Figure 2.5: Feynman diagrams of resonant and heavy meson pion production mecha-

nisms.
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Figure 2.6: MAID calculations of π0 photoproduction on the nucleon [9].
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2. COHERENT π0 PHOTOPRODUCTION

model. The model was designed with nuclear applications in mind and the adaptation

of the single nucleon case to the nuclear case will be discussed in the next section. The

non-resonant contributions to the pion production amplitude e.g. diagrams (a)-(d)

of figure 2.4 are described using standard Born terms with a mixed pseudovector-

pseudoscalar πNN coupling. The resonant contributions are assumed to have Breit-

Wigner forms and are included while taking into account unitarity.

2.3.3 Nuclear π0 photoproduction

The process of adapting the single nucleon pion photoproduction operator of sec-

tion 2.3.2 to the nuclear case is complicated by several factors, namely:

• The Fermi momentum of the nucleons.

• Pion-nucleus final state interactions.

• The modification in the medium of the ∆(1232) resonance.

The Dreschel model [8] gives predictions for nuclear pion photoproduction with different

levels of complexity in the theoretical description. The plane wave impulse approxi-

mation accounts for effect (1). The distorted wave impulse approximation accounts for

both (1) and (2). The full calculation accounts for (1), (2) and (3), supplementing the

optical potential (used to account for (2)) with a term to account for medium modifi-

cations of the ∆ resonance. Each of these calculations are discussed in more detail in

the following sections.

Figure 2.7: Diagram (a) is the sum of (b) and (c), the two main mechanisms con-

tributing to the excitation of the ∆ and the corresponding medium effects. (b) direct

excitation of the isobar, (c) the ∆ is excited via pion rescattering. Diagram from [8].
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2.3 Theoretical Description of Nuclear Pion Photoproduction

2.3.4 Plane Wave Impulse Approximation

The simplest model of nuclear pion photoproduction is the plane wave impulse ap-

proximation (PWIA). The impulse approximation treats the interaction between the

photon and the nucleus as a sum of two body interactions i.e. the photon couples to

one nucleon and the interactions with the other constituent nucleons are ignored. For

the weakly coupled electromagnetic interaction, this is a good approximation. The nu-

clear transition operator is then calculated as a linear sum of the elementary transition

operator over all constituent nucleons i.e.

T =
N
∑

t(γ,π0) (2.16)

No attempt is made to account for the pion FSI or any in-medium effects and the pion

leaves the nucleus as a plane wave. The resulting differential cross section for coherent

production can be expressed as [8]:

dσPWIA

dΩ
(Eγ, θπ) =

s

m2
N

A2dσE

dΩ∗
(E∗

γ , θ
∗
π)F 2(q), (2.17)

where, q(Eγ,θπ) = momentum transfer to the nucleus

A = atomic mass number

s = invariant mass of the photon nucleon pair

Eγ = incident photon energy

θπ = pion polar angle in the photon-nucleus cm frame

mN = average nucleon mass

E∗
γ = incident photon energy in the photon-nucleon cm system

θ∗π = pion polar angle in the photon-nucleon cm system

F(q) = matter form factor

q = the momentum transfer to the nucleus

In the case of spin-zero nuclei the spin-dependent terms in the cross section cancel and

the elementary cross section is equivalent to the spin independent cross section, given

as equation 2.18. It uses the standard CGLN amplitude F2 (appendix B).

dσE

dΩ∗
=
dσNS

dΩ∗
(E∗

γ , θ
∗
π) =

1

2

q∗π
k∗

|F2(E
∗
γ , θ

∗
π)|2 sin2(θ∗π), (2.18)

where, k∗ = photon momentum in the photon-nucleon cm frame

q∗
π = pion momentum in the photon-nucleon cm frame
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2. COHERENT π0 PHOTOPRODUCTION

The factorisation approximation (equation 2.19) is used to account for the Fermi mo-

mentum of the nucleon i.e. the dependence of the elementary amplitude on the nu-

cleon’s initial momentum. pN is the average momentum of the nucleon and follows

from the momentum transferred to the nucleus:

pN = −q

(

(A− 1)

2A

)

, (2.19)

Krusche [14] showed that the PWIA calculation gives an approximate description of

the coherent π0 process at low photon energies close to pion production threshold. As

expected, at higher photon energies when the produced pion becomes more energetic

the role of pion FSI increases and the PWIA approach breaks down.

2.3.5 Distorted Wave Impulse Approximation

The distorted wave impulse approximation (DWIA) goes beyond the PWIA calcula-

tions by attempting to model the pion-nucleus FSI. Like the PWIA calculations, the

model takes the elementary pion production operator and adapts it to the nuclear

case via the impulse approximation. The pion FSI is included as a distortion of the

outgoing pion plane wave by a complex pion-nucleus optical potential. In physical

terms this has the effect of changing the wavelength and reducing the amplitude of

the pion plane wave. The earliest calculations accessed the distorted pion wave in

coordinate space by solving the Klein-Gordon equation with an optical potential for

each of the contributing partial waves. More recent calculations have been performed in

momentum space making it easier to include the Fermi motion of the nucleons and sim-

plifying transformations between π-nucleon and π-nucleus centre of mass systems [7].

Momentum-space formulations also allow easier cross referencing between pion pho-

toproduction and pion scattering. The parameters for the optical potential are fixed

from fits to pion scattering data.

For the calculations presented here, the distortions of the outgoing pion waves are

introduced via a second order pion-nucleus optical potential formulated in momentum

space [7]. The first order potential is constructed microscopically and is parameter free.

Physically, this corresponds to the interaction of the pion with a single nucleon. This

is supplemented with a second order phenomenological term with energy dependent

free parameters which are fitted to pion scattering data on 12C, 6Li, 16O, 28Si, and 40Ca

and were found to be consistent for all nuclei. This takes account of the interaction of

the pion with a pair of nucleons [15].
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2.3 Theoretical Description of Nuclear Pion Photoproduction

2.3.6 Delta Resonance Energy Model of Dreschel et. al.

In the DWIA model, the pion-nucleus FSI are introduced by a pion-nucleus optical

potential. The assumption is that the pion is created by the interaction of a photon

with a single nucleon and once produced, the pion moves in a mean field due to the

presence of the other constituent nucleons. However, as the pion momentum increases

and the role of intermediate ∆ excitation increases, the pion-nucleus optical potential

is no longer enough to account for the pion-FSI effects. The effect of the creation and

propagation of the ∆ resonance in the nuclear medium must also be explicitly included

(figure 2.7). The full Dreschel calculation [8] which will be referred to as the Delta

Resonance Energy Model (DREN) attempts to do just that.

The elementary pion photoproduction amplitude is incorporated into the nuclear

environment as described for the PWIA and DWIA calculations. However, a phe-

nomenological ∆ self energy is also introduced which modifies the effective mass and

width of the ∆. The ∆ self energy parameters are fitted to pion photoproduction data

on 4He and 12C [8]. The similarity of the self energy for the two cases was taken as

evidence that the ∆ self energy saturates quickly with increasing nuclear mass, and

the parameters fitted to low mass nuclei should suffice for heavier nuclei [8].

2.3.7 Coherent π0 Photoproduction in the DREN model

Presented in this section are the predicted total and differential cross sections for co-

herent π0 photoproduction in the framework of the PWIA, DWIA and DREN models.

Comparisons of the predictions give an indication of the role of π-nucleus FSI to the

coherent production process. The PWIA, DWIA and DREN calculations require the

input of the matter form factor (e.g. see equation 2.17) which is the Fourier transform

of the matter density distribution, ρ(r). The calculations assume that the matter distri-

bution matches that of the charge distribution which is parametrised as a symmetrised

Fermi function:

ρ(r) = ρ0
sinh(c/b)

cosh(c/b) + cosh(r/b)
(2.20)

ρ0 =
3

4πc3

[

1 +

[

πb

c

]2
]−1

(2.21)

where c is the half height radius and b controls the diffuseness of the edge of the

distribution. The r.m.s. radius of this distribution is calculated as:

rr.m.s =
3

5
c2

[

1 +
7

3

(

πb

c

)2
]

(2.22)
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The matter distributions used in the calculations are shown in figure 2.8. On the same

figure, the charge density distributions taken from elastic electron scattering are shown.
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Figure 2.8: Blue line: charge distribution from elastic electron scattering [2]. Red line:

symmetrised Fermi function used in Kamalov’s DREN calculations.

The calculations were made using the theoretical code made available to us by

S. Kamalov [17] which was run for discrete values of the incident photon energy, Eγ, in

0.5 MeV steps and then averaged to correspond to the experimental photon energy bins.

Figure 2.9 shows the total cross sections for all four nuclei under investiagtion in this

thesis. Figures 2.10(a) to 2.11(b) show the differential cross sections as a function of

outgoing pion angle for two incident photon energies, Eγ = 150 MeV and Eγ = 200 MeV.

For the total cross sections, below Eγ = 180 MeV, the difference in the PWIA,

DWIA and DREN calculations is small. However, at higher incident photon energies

as the outgoing pion energy approaches those near the peak of the ∆ resonance, the

importance of including the pion FSI and medium modifications is very apparent.
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2.3 Theoretical Description of Nuclear Pion Photoproduction

The effect on the differential cross sections of the pion FSI is complex. The pion

distortion modifies the interference between the competing partial waves which alters

the angular dependence of the differential cross sections. The gross shape of the cross

section however is still controlled by the form factor. For the PWIA calculations, the

cross sections are simply proportional to the square of the form factor which is the

Fourier transform of the density distribution. While the diffraction pattern is still

present in the DWIA and DREN calcualtions, in general, the minima are moved to

smaller angles as a result of the attractive pion-nucleus potential. For a heavy nucleus

like 208Pb, the movement in the first minimum is however relatively modest. The pion

distortions also have the effect of ’filling in’ the minima due to the smearing effect on

the pion angle caused by the pion-nucleus interaction as the pion leaves the nucleus.
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Figure 2.9: Comparison of PWIA, DWIA and DREN calculations of total cross sections.

Red line: PWIA. Green line: DWIA. Blue line: DREN.
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Figure 2.10: Comparison of PWIA, DWIA and DREN calculations of differential cross

sections. Red line: PWIA. Green line: DWIA. Blue line: DREN.
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Figure 2.11: Comparison of PWIA, DWIA and DREN calculations of differential cross

sections. Red line: PWIA. Green line: DWIA. Blue line: DREN.

2.4 Previous Measurements

It was recognised as early as 1958 that coherent π0 photoproduction could be a useful

tool in determining the nuclear matter distribution [18]. However, the difficulty in

detecting π0 mesons with sufficient accuracy and producing a suitable monochromatic

photon beam meant experimental progress was slow. The inherently small photonuclear

cross sections demand high beam intensities, however, with high intensities comes an

increased rate of random coincidences. The ratio of real to random events can be

minimised by increasing the duty factor of the beam (section 4.2). Only in the past

10-15 years have suitably high duty factor accelerators become available.

The detection of neutral π mesons is more complicated than for charged π mesons

which deposit energy readily in electromagnetic calorimeters or can be momentum

analysed in a magnetic spectrometer. The detection of neutral π mesons is more

complicated. The π0 decays predominantly to two photons in 10−18s which, for a

stationary π0 are almost back to back in the lab frame.

The photoproduction of pions from a nuclear target can proceed via a range of

processes. The coherent channel of interest occurs with a background of incoherent

processes which must be separated out. The separation of coherent and incoherent π0

events can be done two ways:

• A missing energy analysis which, for a known incident photon energy, Eγ, com-

pares the detected pion energy with the calculated energy for a coherent reaction

(section 5.7.1).
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2. COHERENT π0 PHOTOPRODUCTION

• By exploiting the kinematics of the π0 decay (appendix A) i.e. that each pion

energy has a corresponding minimum opening angle Ψmin between its decay pho-

tons. For a given incident photon energy, the energy of an incoherent π0 will

always be less than that of a coherent one. Therefore: Ψincoh
min > Ψcoh

min.

Both techniques require accurate determination of the incident photon 4-momentum

and accurate reconstruction of the pion 4-momentum. Experimentally this translates

to excellent energy and angular resolution in the photon detectors.

Thus for accurate reconstruction of the π0 4-momentum and isolation of coherent

events, large acceptance photon spectrometers with excellent energy and angle reso-

lution are preferred. These are technically challenging and expensive and even today

only a few detector systems meeting these specifications are in operation.

For these reasons the first detailed measurement of the differential cross section for

coherent π0 photoproduction were not made before the 1990s. These experiments are

discussed in section 2.4.1. Earlier measurements dating back to the 1950s had much

lower quality, although they did identify the main qualitative features of the coherent

π0 reaction, confirming the forward bias of the π0 angular distribution as well as the

diffraction structure in the cross sections. Schrack et. al. went as far as to extract an

r.m.s. matter radius for 12C, however both the pion energy and angular resolution was

poor and at best the uncertainty in the radius was ∼20% [19]. For a complete review of

these early measurements the reader is directed to reference [20] and references therein.

2.4.1 TAPS Measurements

The most recent coherent π0 photoproduction measurements have been made using the

TAPS spectrometer. TAPS (section 4.7) is comprised of several hundred BaF2 crystals

which together form a highly segmented photon spectrometer (figure 2.12). The design

is deliberately flexible, allowing for multiple different configurations. In 1998, Krusche

et. al. [21,14] made measurements on 12C, 40Ca, 93Nb and natPb at MAMI with 320 of

the TAPS crystals arranged as shown in figure 2.12 and with incident photons in the

energy range Eγ = 200-400 MeV.

In 1999, a group from Glasgow University used an improved TAPS setup of 512

BaF2 crystals in a similar configuration to figure 2.12, to make measurements on 12C,
16O, 40Ca and 208Pb [20]. Using a lower beam energy, they were able to sample the

reaction from Eγ = 135-380 MeV i.e. from threshold right the way through the ∆

region.

Unfortunately, the improved statistical accuracy and more detailed analysis of the

latter TAPS measurements uncovered a significant failing in the detector’s response to
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Figure 2.12: TAPS configuration for Krusche measurement. Extracted from [21].

photons. Photons deposit their energy in TAPS via an electromagnetic shower in a

cluster of crystals and their energy and angle are inferred from a weighted sum of the

individual crystal energies. After anomolies were observed in the data, Monte-Carlo

simulations highlighted systematic effects in the TAPS reconstruction of the photon

momenta. When aimed directly at the centre of a TAPS block the photon momentum

was found to be reconstructed accurately. As photons were aimed towards the edge

of a block, parts of the electromagnetic shower were lost out the sides and back of

the crystals. The flat surface of the TAPS blocks also presents a problem as away

from the centre of the blocks, the photons are no longer incident perpendicular to the

crystal faces and the distribution of energy to the crystals in the shower is no longer

symmetric.

As a result, the reconstruction of the pion 4 momentum suffered large unsystematic

and unpredictable variations with angle (∼5 MeV variations in the pion energy) intro-

ducing significant ambiguities into the separation of coherent and incoherent processes

via the missing energy method. This was a significant effect given the typically small

energy gaps (<5 MeV) between the ground and excited states of a nucleus. The effect

of this on the differential cross sections was difficult to quantify. Furthermore, the π0

detection efficiency was in the range 2% to 5% and was strongly dependent on the pion

angle and incident photon energy (figure 2.13) necessetating a very accurate determi-

nation of the efficiency by the monte carlo simulation software. While these data are

certainly the most complete study of coherent π0 production to date, it remains un-

published. These issues can be avoided by using a large acceptance symmetric detector

such as the Crystal Ball (section 4.6). A comparison of the present Crystal Ball data
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to both TAPS experiments and some further discussion will be presented in Chapter

7.

Although the Krusche TAPS data cover the incident photon energy range where

FSI effects are relatively large (for example see figure 2.9(a)) and is therefore not ideal

for probing the matter distribution, it has been used to extract a matter radius of
208Pb. The value obtained results in a negative neutron skin thickness i.e. the r.m.s.

neutron radius is smaller than the r.m.s. proton radius. This is very surprising and

contradicts all predicted values of the 208Pb neutron skin from theory and supports the

need for new, more accurate measurements with reduced systematic uncertainties.

Figure 2.13: π0 detection efficiency for 16O (left) and 208Pb for Glasgow TAPS data.

Extracted from [20].

2.5 Incoherent π0 photoproduction

In the same way that coherent π0 photoproduction is analagous to elastic electron

scattering, an analogy can be made between incoherent π0 photoproduction (where

the nucleus is left in an excited state) and inelastic electron scattering. In particular,

the differential cross section of incoherent π0 photoproduction where the final state

of the nucleus is known gives access to the matter transition form factor between the

ground state and that excited state. Investigations of matter transition form factors

via incoherent π0 photoproduction from complex nuclei would make an interesting

complimentary study to that of charge transition form factors in inelastic electron

scattering.

No measurements of incoherent π0 production from complex nuclei have been made

to date where the final excited state of the nucleus was cleanly isolated. The Krusche

TAPS experiment (section 2.4.1) published an incoherent differential cross section from
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12C [21], however, the cross section was taken for all combined incoherent processes and

no final excited nuclear state was isolated. No information on the matter transition

form factor can be extracted without isolating a specific incoherent process. This will

be possible in the future with the new Crystal Ball data described in this thesis. The

coincident detection of π0 s and low energy photons from the deexcitation of an excited

nucleus will allow certain specific final state to be cleanly identified.

While coherent π0 production has been the subject of a variety of theoretical inves-

tigations in the past 40 years, the incoherent process has not benefitted from the same

scrutiny. The theoretical treatment is more complicated than for the coherent channel

where only the nuclear ground state is needed for the initial and final state. The most

recent models of the incoherent process within complex nuclei are transport models or

mean free path monte carlo models [22,23].

2.6 Current Work

The data presented in Chapter 6 was taken over 6 weeks in March and April 2005 at

the MAMI facility in Mainz, Germany. The experiment is one of the first to exploit

the Crystal Ball detector’s new home in the A2 hall at MAMI, combining it for the

first time with the Glasgow Tagged photon beam. Data has been taken on four spin-0

targets: 208Pb, 40Ca, 16O and 12C over the energy range 135 MeV < Eγ < 300 MeV.

The ultimate goal of this research program is to make an accurate measurement of the

neutron skin on 208Pb, the importance of which is discussed in the next chapter. Both

differential and total cross sections have been obtained and compared to the previous

TAPS data of both Krusche and the Glasgow group. A comparison has also been made

with the DREN model of Dreschel et. al. A preliminary evaluation of the nature of

the neutron skin on 208Pb has been made via comparison with the DREN calculations.
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Chapter 3

The Nuclear Matter Distribution

3.1 Overview

The nuclear matter radius is a fundamental nuclear observable and yet there is a

wide gap between the exceptional accuracy with which the nuclear charge radius is

known and the present knowledge of the matter radius. This is justification enough

for new investigations of the nuclear matter distribution, however, a new matter radius

measurement of 208Pb has further implications. Since the ultimate goal of the detailed

coherent π0 measurements presented in this thesis is a precise measurement of the

nuclear matter distribution, it is important to stress the wide ranging implications the

measurement will have. In particular, recent publications have shown the link between

the neutron skin thickness of 208Pb and the structure of neutron stars, the properties

of heavy ion collisions and atomic parity non-conservation.

3.2 Nuclear Theories

In principle, the modelling of a nucleus should be straight forward: solve the many

body Schrödinger equation with a suitable nucleon-nucleon potential. In practice how-

ever this is almost impossible for anything but the lightest nuclei as we cannot solve

the many body problem analytically. In recent years there has been much success

using Green’s function and variational monte carlo techniques which uses a stochastic

refinement of a wave function to predict the energy level structure of nuclei based on

the basic interactions of the nucleons [24]. This is computationally very intensive and

is presently limited to nuclei of A < 12. Instead, for heavier nuclei, models which sim-

plify the many body problem to nucleons moving in mean field potentials are employed.

These models can be broadly split into two categories:

• Models based on the Skyrme interaction.
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3. THE NUCLEAR MATTER DISTRIBUTION

• Relativistic mean field theories.

The first category employs a non-relativistic framework with the effective Nucleon-

nucleon interaction potential constructed to fit experimental nucleon-nucleon scattering

data. Relativistic mean field theory (RMF) calculations model the nucleon-nucleon

interaction as an exchange of ω, ρ and σ mesons. The RMF models are fully relativistic

and the parameters of the meson exchange are fitted to observable saturation properties

of nuclei. Both methods use Hartree-Fock iterative procedures to obtain a solution for

the nuclear wavefunction.

There now exists a wealth of models that fall into these two categories which re-

produce bulk nuclear observables such as charge radii, binding energies, spin-orbit

splitting, etc. consistently. The same models, however, offer widely varying r.m.s.

neutron radius values [25,26]. Figure 3.1 demonstrates the power a measurement of

∆RPb could have in discriminating between different models. The filled markers rep-

resent typical relativistic mean field theory calculations (RMF) and the open markers

signify calculations based on a Skyrme type interaction. The sole circular data point

shows how a 1% measurement of the neutron skin on 208Pb can be used as a calibration

point for nuclear models.

Moreover, the uncertainty in the neutron radius of stable nuclei produce large un-

certainties in the extrapolation of the model predictions to the neutron and proton drip

line. These extrapolations are important for nuclear astrophysics applications[27].

3.3 The Nuclear Equation of State

The equation of state (EOS) of nuclear matter is defined as the energy per nucleon in

infinite nuclear matter as a function of both density (ρ) and isospin asymmetry (α):

E

A
(ρ, α) (3.1)

where the isospin asymmetry is defined as:

α =
N − Z

A
(3.2)

with N,Z and A the neutron number, proton number and the atomic mass number

respectively. From this all infinite nuclear medium parameters can be calculated. One

of the first and most successful equations of state was the semi-empirical mass formula

(SEMF) [28] arising from the liquid drop model of the nucleus:

E

A
= avol − asurfA

−1/3 − asym
(N − Z)2

A2
− ... (3.3)
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3.3 The Nuclear Equation of State

Figure 3.1: Figure taken from reference [25]. Filled markers correspond to relativistic

mean field theory calculations, while open markers correspond to calculations based on

a Skyrme interaction. Further details of the models can be found in reference [25].

If one considers the above equation when multiplied by A, then the first term is pro-

portional to A (∝R3) and is therefore called the volume term. The second term is

proportional to A2/3 (∝R2) and is therefore the surface term. The third term is re-

ferred to as the symmetry energy and will be discussed in more detail in the next

section. By design the SEMF provides a good description of symmetric nuclear matter

at nuclear densities, however at higher densities or for more asymmetric matter the

model breaks down. One of the most active current areas of research in nuclear physics

is concerned with developing a microscopic theory allowing the EOS to be extended

into uncharted regions of density and asymmetry e.g. the neutron star regime.

3.3.1 The Nuclear Symmetry Energy

Without the electromagnetic interaction, stable nuclei would have an equal number

of protons and neutrons and the valley of stability on the familiar N-Z plot of iso-

topes could be fitted with a straight line of gradient 1. The presence of the long range

repulsive electromagnetic force in the nucleus and the short range nature of the nucleon-

nucleon force however make this situation energetically unfavourable. As more protons

are added to the nucleus an excess of neutrons is found to give the most stable config-

uration. Although the additional strong force extended by the extra neutrons helps to

overcome the Coulomb repulsion, this move away from symmetric matter where N=Z

29

Motivation/MotivationFigs/Ring_SkinCalcs.eps


3. THE NUCLEAR MATTER DISTRIBUTION

incurs an energy penalty i.e the binding energy per nucleon increases. Figure 3.2(b)

shows this as a function of nucleon density for several different models. This extra en-

ergy is referred to as the symmetry energy or more accurately, the isospin asymmetry

energy and reflects the isospin dependence of the nucleon-nucleon interaction - that

the nn and pp interactions are less attractive than the np interaction. Its presence is

evidenced in nature by the fact that symmetric matter is bound whereas pure neutron

matter is unbound e.g. the deuteron is bound and the dineutron is not. The symmetry

energy is an important feature underlying a wide range of physics from nuclei to neutron

stars as discussed by Steiner et al. in their review of the subject [29] and summarised in

Figure 3.3. A measure of the symmetry energy (around the nuclear saturation density)

has been made from data on binding energies of nuclei and giant dipole resonances.

However, the symmetry energy has only been restricted to (27-36) MeV [30] (Atomic

Data and Nuclear Data Tables give this value as (30±4) MeV [31]). Given its far

reaching influence, it is perhaps surprising that the symmetry energy and its density

dependence are so poorly known, however, Furnstahl [32] using a variety of mean field

models, has shown that a measurement of the neutron skin thickness in 208Pb could be

used to calibrate these quantities at nuclear densities.

(a) (b)

Figure 3.2: Figure is taken from reference [29]. (a), the energy per particle for nuclear

matter and pure neutron matter as a function of density for 3 different models. (b),

the symmetry energy as a function of density i.e. the energy per particle for nuclear

matter minus the energy per particle for pure neutron matter.

The energy per particle of nuclear matter can be expanded in a Taylor Series about

the nuclear saturation density, ρ0 and α=0 i.e. the case of symmetric matter at nuclear
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3.3 The Nuclear Equation of State

Figure 3.3: The extensive influence of the nuclear symmetry energy. Figure from

reference [29].

densities [32]:

E(ρ, α) = E(ρ, 0) + S2(ρ)α
2 + S4(ρ)α

4 + ..., (3.4)

E(ρ, 0) = −av +
K0

18ρ2
0

(ρ− ρ0)
2 + ..., (3.5)

S2(ρ) = a4 +
p0

ρ2
0

(ρ− ρ0) +
∆K0

18ρ2
0

(ρ− ρ0)
2 + ..., (3.6)

(3.7)

where ρ is the density, α is defined in equation 3.2, K0 is the compression modulus of

nuclear matter and ∆K0 the correction to the incompressibility. S2 is the symmetry

energy and p0 is its first derivative with respect to density evaluated at the nuclear

saturation density:

p0 =
∂S2(ρ)

∂ρ
|ρ=ρ0 ≡ S

′

2(ρ0) (3.8)

The Taylor series expansion of equation 3.5 can be truncated after just one term for

the cases of 208Pb and neutron star matter as further terms become negligible [30].

E(ρ, α) = E(ρ, 0) + S2(ρ)α
2, (3.9)

31

Motivation/MotivationFigs/Steiner_review_diag.eps


3. THE NUCLEAR MATTER DISTRIBUTION

This approximation is widely used in neutron star calculations [33,34,35] and has been

shown to be a good approximation of nuclear matter. Thus S2, the symmetry energy

can be expressed as:

S2(ρ) =

(

1

2

d2(E)

dα2

)

|ρ,α=0 (3.10)

Furthermore, the pressure of cold, beta stable nucleonic matter, P, can be expressed

as:

P (ρ, α) = ρ2[E ′(ρ, 0) + S ′
2(ρ)α

′], (3.11)

where primes indicate first order derivatives with respect to density. As a result the

EOS is often expressed as P(ρ,α) as opposed to E(ρ,α) particularly for neutron star

applications.

Neither av, K0 or ρ0 show any correlation with the neutron skin thickness. However,

as can be seen in Figure 3.4, the symmetry energy at saturation density, S(ρ0) = a4,

is tightly correlated with the neutron skin thickness and this correlation shows little

dependency on the type of nuclear model employed. This is also the case for p0, the

linear density dependence of the symmetry energy. Thus an accurate determination of

the neutron skin thickness will constrain the symmetry energy and its first derivative

at saturation densities, S
′

2(ρ0).

Figure 3.4: Both figures from reference [32]. Left: the neutron skin in 208Pb against

symmetry energy for a variety of models. Right: Correlation between neutron skin

in 208Pb and the linear density dependence of the symmetry energy. Notation as in

equations 3.5-3.11.
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3.3 The Nuclear Equation of State

3.3.2 208Pb and Neutron Stars

The connection between a heavy nucleus such as 208Pb and a neutron star is not

immediately obvious. The difference in size is a massive 18 orders of magnitude and

the central density of a neutron star is around 5 times greater than the central density

of the lead nucleus. However, recent studies have shown surprising correlations between

the two reflecting their shared dependence on the equation of state and particularly

the symmetry energy.

Neutron stars are some of the most dense objects in our universe. Formed when a

massive star (> 8M¯) undergoes a type II supernova explosion and the core collapses

under gravity, neutron stars were first theorised in the 1930s and observed for the

first time in the 1960s. A typical star resulting from the core collapse is ∼12km in

radius and has a mass on the order of 1.5M¯. A simple calculation of mass over

volume shows the high average density of the body (about twice the nuclear saturation

density, ρ0 = 0.16fm−3) however, the central density of the star, ρc is thought to be

even greater - about 5-10 times that of ρ0 [36]. Conservation of angular momentum

during the core collapse leads to extremely fast rotation speeds, the maximum detected

frequency of rotation is 700 Hz. They are also characterised by their large magnetic

fields (Bmax ∼ 1018gauss).

During and after the supernova explosion, large numbers of neutrinos are emitted.

The loss of neutrinos forces electrons and protons to combine, ultimately resulting in

very neutron rich matter. A schematic of the possible composition of a neutron star is

shown in figure 3.5. ’Normal’ neutron stars are thought to have a solid crust of non-

uniform neutron rich matter sitting on a liquid core. Within this extemely dense core it

is possible that another phase transition takes place to an exotic state such as hyperon

matter, strange quark matter or kaon or pion condensates. Some models predict the

existence of strange quark stars composed entirely of deconfined strange quark matter

(SQM stars) with a bare quark surface [37]. These models reflect predictions that

normal hadronic matter composed of up and down quarks may not be the absolute

ground state of matter and that when exposed to sufficiently high densities matter

undergoes a phase trasnsition to deconfined quark matter. If this quark matter was

degenerate enough it may then try to use another degree of freedom, strangeness, to

lower its overall energy. This strange quark matter would then be the ground state of

hadronic matter. Thus neutron stars offer a unique opportunity to study matter under

extreme conditions and to probe the QCD phase diagram in the low temperature, high

density regime (figure 3.6). This study gives complimentary information to the high

temperature search for a quark-gluon plasma using relativistic heavy ion collisions at

RHIC facility at Brookhaven National Laboratory.
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3. THE NUCLEAR MATTER DISTRIBUTION

Figure 3.5: Left: Schematic showing possible composition of a normal matter neutron

star. Figure from reference [36]. Right: The pulsar at the centre of the Crab Nebula.

Figure 3.6: Figure from reference [41]. The QCD phase diagram.
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3.3 The Nuclear Equation of State

3.3.3 Neutron Star Structure

The relationship between observable properties of neutron stars, their mass and radius,

and properties resulting from the interactions between the constituent nucleons can be

expressed in the Tolman-Oppenheimer-Volkov (TOV) equations (equations 3.12, 3.13),

for a spherical object in hydrostatic equilibrium.

dP

dr
=

G(m(r) + 4πr3P/c2)(ρ+ P/c2)

r(r − 2Gm(r)/c2)
, (3.12)

dm(r)

dr
= 4πρr2 (3.13)

where G is the gravitational constant, P is the outward pressure resulting from the

internucleon forces, m is the mass of the neutron star and r is the radius. Specifically,

the TOV equations show the correspondence between the mass-radius relationship

and the equation of state of a neutron star i.e. between m(r) and P(ρ). Equations

of state based on different neutron star models thus lead to different M-R relations

and it follows that accurate mass and radius observations provide information on the

underlying interactions between neutron star matter. This can be seen in figure 3.7

where the M-R relationships calculated for models of neutron stars containing only

normal matter are shown as black curves and those including some exotic matter are

shown as green curves.

The variation in the normal star M-R curves can in part be attributed to the un-

certainty in the symmetry energy (equation 3.11) [29,36]. As discussed in section 3.3.1,

a sufficiently accurate measurement of the neutron skin of 208Pb will further constrain

the symmetry energy and its density dependence.

Recent studies by Brown [38] and Horowitz [39,40] have also shown empirical re-

lationships between the skin thickness of 208Pb and neutron star properties. Brown’s

results are based on a wide range of calculations encompassing both non-relativistic

Skyrme interactions and relativistic mean field calculations and show a tight correla-

tion between the neutron skin thickness in 208Pb and the derivative of the equation

of state with respect to density at ρ=0.1fm−3 (Figure 3.8). In particular, the neutron

skin thickness constrains the pressure of neutron star matter i.e. the equation of state

at a density of ∼0.1fm−3 (equation 3.11). With the same models Brown investigated

the neutron skin thickness of other heavy nuclei as a function of the skin thickness in
208Pb and shows a linear relationship. Thus a measurement of a single nucleus should

be sufficient to constrain the pressure of nuclear matter just below saturation density.

Investigations by Horowitz et al. have shown the linear dependence of the neutron

skin thickness and the density at which the solid to liquid phase transition between

neutron star crust and interior take place (Figure 3.9). A general trend is also presented
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Figure 3.7: MR curves representing different equations of state. Black curves are for

normal matter neutron stars, green curves represent strange quark matter stars. The

red, blue and green shaded areas show the regions eliminated by rotation, general

relativity and causality considerations respectively. Figure from reference [30].

Figure 3.8: Left: The neutron equation of state for 18 different Skyrme parameter sets,

taken from reference [38]. Right: The derivative of the neutron equation of state at

ρ = 0.10neutrons/fm3 vs the skin value in 208Pb for 18 Skyrme parameter sets (filled

cirlces) and for six relativistic models (squares). Figure taken from [42].
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showing models that produce a large neutron skin thickness, produce large neutron star

radii. Furthermore, for stars of ∼0.5M¯ the relationship between the neutron star ra-

dius and the neutron skin thickness has been shown to be relatively model independent

(Figure 3.10). This could prove particularly useful in discriminating between different

equations of state. As shown in figure 3.7 observations of both high and low mass

neutron stars are required to pin down the equation of state. 0.5M¯ neutron stars

may not exist in nature and if they do, they would be very difficult to observe because

of their small luminosity. A measurement of the neutron skin in 208Pb could act as a

substitute for a radius measurement of a low mass neutron star.

Figure 3.9: Figure from reference [39]. The transition density in a neutron star (taken

to be the density at which the phase transition from crust to liquid interior takes place)

vs the neutron skin thickness of 208Pb.

3.3.4 Neutron Star Cooling

Once formed, neutron stars begin to cool rapidly by the emission of neutrinos. The

process driving this neutrino loss was until recently thought to be the modified URCA

process:

n+ n→ n+ p+ e− + νe (3.14)

Some recent observations however have uncovered neutron stars that appear to cool

faster than expected by matter undergoing the relatively slow modified URCA pro-

cess [36]. This could be an indication that there is some exotic matter present within

the star and that energy is being taken away by neutrinos from the weak decay of
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Figure 3.10: Figure from reference [40]. Predicted radius of a 0.5M¯ neutron star vs

the neutron skin thickness in 208Pb.

pion or kaon condensates. Another possibility is that the star is cooling via the direct

URCA process:

n→ p+ e− + νe (3.15)

e− + p→ n+ νe (3.16)

Energy and momentum conservation require that for this process to dominate the

proton fraction (x = Z/A) within the star must be relatively high [43]. It has been

shown that the proton fraction is dependent on the nuclear symmetry energy [36],

specifically:

x ∼= 0.048

[

S2(ρ)

S2(ρ0)

]3(
ρ0

ρ

)

(α)3 (3.17)

Horowitz et al. [43] have investigated the relationship between x and density, again

using a wide variety of relativistic mean field theories. Their results are presented in

figure 3.12 which shows the threshold density of nuclear matter for the direct URCA

process as a function of the neutron skin thickness of 208Pb. They conclude that a

measurement of ∆RPb < 0.2 fm would not lead to a high enough proton fraction for

the direct URCA process to be a viable means of neutron star cooling. However, a

measurement > 0.25 fm would imply the direct URCA process is possible. If the direct

URCA process is ruled out, this could provide additional evidence for the presence of

exotic matter at the centre of neutron stars.
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Figure 3.11: The skin thickness value for 208Pb versus skin thickness for 132Sn (filled

cirlces and squares) and 138Ba(crosses and triangles) for 18 Skyrme parameter sets

(filled cirlcles and crosses) and six relativistic models (squares and triangles). Taken

from [38].

Figure 3.12: Figure from reference [43]. Critical density for direct URCA process to

be viable vs the neutron skin thickness in 208Pb.
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3.3.5 Heavy Ion Collisions

Theoretical investigations have also recently uncovered relationships between the ex-

perimental results of intermediate energy heavy ion collisions and the neutron skin

thickness of 208Pb. In particular, the skin thickness is related to the isospin diffuseness

in a heavy ion collision, reflecting their shared dependence on the symmetry energy.

In a heavy ion collision, isospin diffusion is the net exchange of isospin (the exchange

of neutrons and protons) between the target and the projectile (figure 3.13(a)).

To quantify the isospin diffusion of a reaction A+B, two further reactions must be

measured, A+A and B+B. The diffusion is then measured via the isospin diffusion

parameter, Ri [44]:

Ri =
2XA+B −XA+A −XB+B

XA+A −XB+B
(3.18)

where X is an isospin sensitive observable. Given a particular equation of state, Ri

can be calculated for a reaction using transport models. Using the same underlying

equation of state, Steiner and Li [44] have made calculations of the diffusion parameter

for the reaction (112Sn + 124Sn) as well as the neutron skin thickness of 208Pb. The

results are shown in figure 3.13(b). The different data points result from variations in

the transport model used to calculate Ri. Thus a measurement of the neutron skin of

lead can be used as a constraint for the theories behind heavy ion collisions and vice

versa.

3.4 Atomic Parity Non-Conservation

Atomic electrons undergo transitions between energy levels primarily through the elec-

tromagnetic exchange of photons with the nucleus. Transitions can also proceed via

the exchange of Z0 bosons and the weak interaction, which unlike the electromagnetic

process does not conserve parity. Parity violation by the weak force manifests itself

as a change in an experimental result under reflection of all three spatial co-ordinates.

For example, within the atom, these effects can be seen by observing the 6s→7s elec-

tron transition in 133Cs. Without the presence of the weak neutral current (i.e. the Z0

boson) the 6s→7s transition is highly forbidden. By placing the atoms under electro-

magnetic fields however, the optical signature from this transition can be seen and if

the handedness of the fields are switched, a modulation in the signal is observed [45].

Data from these experiments observing atomic parity non-conservation are signicant

since they can be used to extract the weak nuclear charge, Qw, which is used as a

fundamental low energy test of the standard model. Specifically, the observable parity
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(a) Diagram of a heavy

ion collision. (a) Pro-

jectile and target before

collision. (c) Recoiling

projectile and target with

some isospin diffusion.

(b) Taken from reference 44. The relationship

between the skin thickness of lead and the

isospin diffuseness parameter Ri.

Figure 3.13: Isospin diffusion in heavy ion collisions.
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non conserving effects are related to the matrix element between the two atomic states,

i and j:

〈i|HPNC,1|j〉 =
GF

2
√

2
Cij(Z)N[Qw + ∆Qn−p

w ], (3.19)

where:

Qw = (1 − 4sin2θw)Z −N, (3.20)

∆Qn−p
w = N(1 − qn/qp), (3.21)

qn =

∫

ρn(r)f(r)d3r (3.22)

Cij contains all atomic structure effects, GF is the weak coupling constant, α is the

fine structure constant, N is a normalisation factor, ρn(p) is the nuclear neutron(proton)

distribution, f(r) is a folding function determined from the radial dependence of the

electron transition matrix element and θw is the weak mixing angle. ∆Qw contains

a correction because the proton and neutron distributions are not the same. If they

were, ∆Qw would be zero.

The observed quantity is therefore 〈i|HPNC,1|j〉 and from this a value for Qw is

to be extracted. At present the uncertainty in the extraction of Qw is dominated

by uncertainties in atomic theory contained within Cij (uncertain to ∼1% compared

with experimental errors of 0.3%) and to a lesser extent the poor knowledge of the

nuclear matter distribution, ∆Qw [46]. Advances in atomic structure calculations are

dramatically reducing their uncertainties and the lack of information on the nuclear

matter distribution is expected to soon become the limiting factor through ∆Qw [47].

Calculations by Pollock et al. [47] have shown how a measurement of the r.m.s neutron

radius of 208Pb can help constrain these errors and this is shown in figure 3.14.

3.5 Previous Matter Distribution Measurements

The most comprehensive investigations of matter distributions to date have been car-

ried out using elastic proton scattering, notably at TRIUMF and Saclay. The analysis

of proton scattering data is far from simple and suffers from large theoretical uncertain-

ties in the description of the strongly interacting probe. The strength of the interaction

is such that the contribution from processes where the proton scatters more than once

cannot be neglected and leads to complications in the analysis. Ray and Hoffman [48]

performed a detailed analysis of elastic proton scattering data to extract values for the

r.m.s. neutron radius of 48Ca and 208Pb in the framework of the relativistic impulse

approximation (RIA) and the non-relativistic multiple scattering approach of Kerman,
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Figure 3.14: Correction to the weak charge of Cs due to differences between neutron

and proton spatial distributions as a function of ε = R2
n/R2

p - 1. The line and different

data points represent calculations using different types of neutron density distributions.

The vertical error bar to the side of the plot shows just the uncertainty in the standard

model prediction of Qw. Figure taken from [47].

McManus and Thaler (KMT). Their results for 208Pb are shown interpreted as neu-

tron skin thickness measurements in figure 3.15. Despite their thorough analysis, the

results still show an unphysical dependence on the proton beam energy with a sys-

tematic variation of ∼0.5fm. The variation is much larger than the skin thicknesses

predicted from the various nuclear theories. New analyses of these data have recently

been carried out, prompted by renewed interest in neutron distribution measurements

from the fields detailed in sections 3.2 - 3.4. Using different theoretical models values

of ∆RPb were calculated of 0.097±0.014 fm for the 0.5-1.04 GeV data [49] and 0.17 fm

for the 40 MeV, 65 MeV and 200 Mev data. The energy dependence of the results

was not addressed. Furthermore, a recent recent detailed study of the field by Piek-

erawicz [50] has concluded that the proton-nucleus scattering cross section is in fact

insensitive to the neutron radius of 208Pb. A series of calculations for different neu-

tron densities were performed using the impulse approximation with a KMT multiple

scattering optical potential. The resulting calculations all showed excellent agreement

with the proton-nucleus scattering data.

While elastic proton scattering has been the main tool for investigating the matter

distribution, there have been parallel research programmes utilising pion scattering [51],

α scattering as well as neutron and proton pick up reactions. Pion- and α-scattering

largely suffer from the same theoretical uncertainties in descibing the strongly inter-
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3. THE NUCLEAR MATTER DISTRIBUTION

acting probes as proton scattering [52]. The latest result from neutron and proton pick

up reactions is a value for the neutron skin of 208Pb of 0.51 fm, which is larger than

almost all theoretical predictions of the value.

At best, the overall uncertainty in the present knowledge of the neutron skin of
208Pb could be placed at ∼0.2fm , however, others are not so optimistic. Fortson et

al. [46] in their review of the current accuracy of the radial neutron distribution give a

value of ∼10% or ∼0.5fm.

Figure 3.15: Taken from [53].

3.6 Summary

To summarise, the r.m.s matter radius is a fundamental nuclear quantity which at

present can not be accurately calculated from experimental data or theory. New,

accurate matter radius measurements, particularly of a heavy nucleus such as 208Pb

will have an impact on a wide range of physics including nuclear structure theory,

atomic parity violation, heavy ion collisions and the predictions of the properties of

neutron stars.
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Chapter 4

Experimental Details

4.1 Introduction

The neutral pion is the lightest bound state of quarks and as such cannot decay via the

strong force to another hadron. Instead it decays (with a branching ratio of ∼99%[5])

via the electromagnetic interaction to two photons i.e. π0 → γγ. Since this decay takes

place in 10−18s the π0 is too shortlived to detect directly. Instead, the presence of a

neutral pion can be inferred by measuring the 4-momenta of the decay photons which

combine to give the 4 momentum and rest mass (within experimental resolutions) of

the π0 . In the pion’s centre of mass frame, the decay photons are produced back to

back and to ensure a high detection efficiency, a large acceptance photon spectrometer

is required. One of the few π0 detectors of this sort in the world currently resides in the

A2 hall at MAMI in the shape of the newly installed Crystal Ball and TAPS detector

system. The experiment described in this thesis made use of this apparatus over 6

weeks in March and April 2005.

Briefly, a beam of electrons from the high duty factor Mainz Microtron [54,55] was

directed onto a thin metal foil generating (via a bremsstrahlung process) a beam of

high energy photons. The corresponding bremsstrahlung electrons were momentum

analysed in the Glasgow Photon Tagging Spectrometer [56,57] and the photon beam

was directed towards one of four nuclear targets at the centre of the Crystal Ball. The

neutral pions created in these reactions were detected by measuring their decay photons

in two highly segmented photon spectrometers - Crystal Ball and TAPS. Charged

particles were identified and tracked using multi wire proportional chambers (MWPCs)

and plastic scintillators, and their total kinetic energy was measured in the two large

calorimeters. The following sections describe each component of the experiment in

more detail.
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4.2 The Mainz Microtron

Housed in the Insitüt fur Kernphysik at Johannes Gutenberg Universität, the Mainz

Microtron is an intense, stable, continuous wave electron accelerator. The accelerator

in its current configuration was constructed in 3 stages - MAMI-AI, MAMI-AII and

the present facility, MAMI-B. Comprised of a linear accelerator and one race track

microtron, MAMI-AI came into operation in 1979, producing electrons of up to 14 MeV

at a maximum intensity of 25µA. That machine was upgraded in 1983 with the addition

of a second microtron accelerating the electrons from 14 MeV up to 183 MeV and above

production threshold for the first time. A third microtron was added in 1990, taking

the maximum electron energy up to 855 MeV. At these energies the photon has a

spatial resolution of ∼0.23fm, and sufficient energy to produce both π and η mesons.

A fourth, double-sided microtron (MAMI-C) has just been completed and now delivers

beam energies up to 1.5GeV, crossing the reaction threshold for the production of

particles containing strange quarks.

4.2.1 Race Track Microtrons

RF Linac

Magnets

Figure 4.1: Typical microtron schematic.

Electron scattering has been the work horse of nuclear and particle physics for over

50 years now. The discoveries made using this technique are remarkable, ranging

from some of the first measurements of nuclear shapes and sizes to the discovery of

partonic degrees of freedom within the nucleon [58,59]. Almost all electron scattering

experiments done until the early 1980’s were of the inclusive variety where only the

scattered electron was detected and the physics of the reaction inferred from that

one measurement. While the results from these inclusive reactions were impressive it

was realised that exclusive measurements, where a specific final state can be isolated,

would give new information. For these to be possible, coincidence measurements of

the scattered electron and other reaction products are necessary. However, coincident
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4.2 The Mainz Microtron

measurements placed new constraints on the necessary beam quality, introducing the

need for continuous beams. The finite time resolution of any detector system means

that while trying to detect two or more particles in timing coincidence, it is always

possible that one of these particles is uncorrelated, having originated from a reaction on

a different nucleus. This is particularly a problem for ’bunched’ beams where the event

rate in the bunch is very high. It is possible to reduce the probability of random events

by making the time window within which they can occur as large as possible relative

to the time resolution of the detector i.e. by utilising a continuous wave beam. One

possible way of achieving this high duty factor beam is by using race track microtrons.

The basic design of a microtron is shown in figure 4.1. A relatively short linear

accelerator (LINAC) with a small accelerating gradient is placed between two 180◦

bending magnets. A beam of electrons is passed through the LINAC where it is accel-

erated through a series of standing wave cavities powered by radio frequency klystrons.

Its path is then deflected through 360◦ by the large magnets, returning the electrons

to their starting position. This race track formation means the field in the two dipole

magnets can be kept constant - there is no need to ’ramp’ them up as in a storage ring.

The electrons pass through the radio frequency LINAC section many times, each time

returning to their starting position via orbits of steadily increasing diameter. As the

beam is passed repeatedly through the LINAC, high energies can be achieved with a

relatively modest accelerating gradient. Crucially, as the accelerating gradient is small,

the LINACS can be operated in continuous wave mode, giving a 100% duty electron

beam. This design also naturally ensures excellent energy resolution as electrons whose

energy is too high will have a slightly larger orbital radius and be out of phase with

the RF accelerating field therefore undergoing smaller accelerations until the phase is

restored.

4.2.2 MAMI-B

A floorplan of the MAMI facility is included as figure 4.2. Electrons are boiled off

a 100keV electron gun via thermionic emission and passed into 3 successive LINAC

sections where they are accelerated to 3.46 MeV. They then enter race track microtron

1 (RTM1) where they undergo 18 recirculations gaining 10.93 MeV in kinetic energy.

Upon entering race track microtron 2 (RTM2) they make 51 passes through a linac

and are extracted with an energy of 179.8 MeV. The final microtron (RTM3) has the

potential to accelerate the electrons up to 883 MeV in steps of 15 MeV depending on

how many recirculations are chosen through its 5 RF cavities. As has been noted the

energy resolution of the microtron design is inherently good and the small variation

in the MAMI-B energy (∼50keV at 855 MeV) is mainly due to synchrotron radiation
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4. EXPERIMENTAL DETAILS

effects. A maximum beam intensity of 100µA can be achieved. After extraction from

the final microtron the beam is passed through a series of dipoles and quadrupoles

directing it into one of 4 experimental halls labelled A1, A2, A4 and X1 in figure 4.2.

MAMI−C

MAMI−B

Figure 4.2: Floorplan of the MAMI facility.

4.3 Glasgow Photon Tagging Spectrometer

This experiment was performed in the A2 hall of MAMI where the high quality electron

beam was directed on to a 10µm thick nickel radiator. A fraction of the electrons in

the beam were accelerated in the Coulomb field of the heavy Ni nuclei and radiated

photons via the bremsstrahlung process: e− + N → e− + N + γ. The energy spectrum

of bremsstrahlung radiation is approximately E−1
γ and is produced in a forward directed

cone of half angle me

Ee
where me and Ee are the mass and initial energy of the electron

respectively.

The bremsstrahlung electrons were momentum analysed in a large momentum ac-

ceptance magnetic spectrometer - the Glasgow Photon Tagging Spectrometer (fig-

ure 4.3) [56]. By detecting an electron in timing coincidence with particles from a

photonuclear reaction in the experimental detectors, the energy of the photon induc-

ing the reaction was dedcuced or ’tagged’. Before traversing the radiator, the mixed
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4.4 Photon Beam Collimation and Tagging Efficiency

beam of electrons and photons emitted from the radiator passed through a quadrupole

magnet, focussing the electron beam in the vertical direction. The electrons were then

momentum dispersed via the ∼1T field of the tagger dipole magnet and directed on

to a detector residing in the focal plane of the spectrometer. Electrons that did not

radiate and therefore still had maximum energy were bent at shallower angles onto a

beam dump. The bremsstrahlung photons of course passed unhindered through the

magnetic field and continued on to impinge on the experimental target. Using energy

and momentum conservation, and neglecting the relatively small kinetic energy of the

recoiling nucleus (a few keV), the photon energy is simply:

Eγ = E0 − Ee (4.1)

where E0 is the electron beam energy and Ee is the bremsstrahlung electron energy.

The focal plane electron detector (FP) [57] was constructed from 353 overlapping,

2mm thick, plastic scintillators (type NE 111) oriented at ∼90◦ to the electron tra-

jectories. Each scintillator was viewed by a Hamamatsu R1635 phototube, the signal

from which was sent to timing and coincidence electronics. The complete spectrometer

is capable of tagging photons in the range 40-800 MeV with an energy resolution of

∼2 MeV at the highest electron beam energies. The maximum flux of photons was

constrained by the rate limitations of the Hamamatsu PMTs and results in a maxi-

mum rate of 1MHz per channel. For this experiment, in order to maximise the flux

of photons on the target, the channels corresponding to the lowest photon energies,

where the count rates were largest, were switched off and only photons in the range

(120-800) MeV were tagged.

If the amorphous nickel radiator is replaced with a diamond radiator, it is possible

to produce a polarised beam by correctly orienting the planes of the crystals with

respect to the electron beam. A high degree of linear photon polarisation (75%) or,

when a polarised electron beam is used, cirular photon polarisation (85% ) can be

achieved [60].

4.4 Photon Beam Collimation and Tagging Efficiency

To ensure the beam spot size on the target and the resulting uncertainty in the reac-

tion vertex position was small, the photon beam was collimated after passing through

the tagger. The collimator consisted of 4 lead cylinders each 20mm long and with a

4mm diameter hole bored through the centre, aligned on the beam axis. To normalise

the measured cross sections, an estimate of the absolute beam luminosity was made.

Without collimation, this would relate directly to the rate of electrons detected in the
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Figure 4.3: Tagger schematic

tagger focal plane. With collimation, however, the number of photons lost in the colli-

mater must be taken into account. This was done by measuring the ’tagging efficiency’

which for each focal plane detector element is defined as:

εtagg =
Nγ

Ne

(4.2)

where Nγ is the number of photons after collimation and Ne is the number of electrons

detected in the tagger focal plane element. The tagging efficiency was obtained in

separate experimental runs using an almost 100% efficient Pb-Glass detector placed

downstream of the collimator in the beam line to measure Nγ. Ne was taken as the

number of tagged electrons measured in coincidence with the Pb-Glass. A reduced

beam current was used firstly to protect the Pb-Glass detector and secondly to ensure

the contribution from random coincidences was negligible.

4.5 Targets

Details of the 4 targets used are given in Table 4.1. The thickness of each of the targets

was chosen as a compromise between having a surface density large enough to give a

sufficient π0 yield and having sufficiently little material so that photon conversion in

the target was not above 0.1 radiation lengths. natC and natCa are both sufficiently
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4.5 Targets

close to isotopic purity (98.90% 12C and 96.94% 40Ca respectively [61]) that they make

suitable targets. natPb on the other hand is only composed of 52.4% 208Pb and an

isotopically pure target from ISOFLEX (Moscow) was employed in the measurement.

The oxygen content of water is composed of 99.75% 16O which makes water an ideal
16O target. To hold the water, a simple target cell made of perspex, aluminium and

two thin Melinex windows was designed and constructed (Figure 4.4).

Table 4.1: Experimental Targets

Target Thickness Atomic Mass Surface Density

(mm) ma

u
(gcm−2)

12C 15 ±0.5 12.01 2.55
16O 31.4 ±0.5 15.9994 3.52
40Ca 10 ±0.5 40.07 1.55
208Pb 0.52 ±0.01 207.977 0.8369

The targets were placed in an evacuated, carbon fibre tube at the centre of the

particle detectors. The Pb, Ca and C targets were held in place in the tube by thin

rohacell holders and the water target was designed to fit in the target pipe without

fixings. The carbon fibre pipe stopped 14.5cm downstream from the geometric centre

of the particle detectors and a thin (100µm) kapton window sealed the downstream

end of the pipe.

(0.6mm thick)

Perspex

Melinex Window

H20

Aluminium

Side View

24mm

Front View

66mm 43mm

Figure 4.4: Water Target Schematic.
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4. EXPERIMENTAL DETAILS

In the vacuum within the target pipe the melinex windows of the water cell ex-

panded outwards, effectively increasing the surface density of the target. To accurately

measure the increase in target thickness, the target was subjected to an overpressure of

3He gas equivalent to the difference in pressure during the experiment. The expansion

of the window was then measured with a pair of digital calipers. This expansion was

found to be ∼10%.

4.6 Crystal Ball

The Crystal Ball was designed in the 1970’s as a means of detecting high energy pho-

tons from the decays of hadrons produced in e+e− collisions at the Stanford Linear

Accelerator (SLAC). For this, a large acceptance photon spectrometer with excellent

energy and angular resolution across the range Eγ= (1-1000) MeV was required. In

fact the detector was proposed only a few months before the discovery of the J/ψ par-

ticle in 1974 (jointly at SLAC and Brookhaven National Laboratory) and was perfectly

timed to make some of the first and most accurate measurements of the J/ψ and its

excited states. The design and construction of the ball was a joint project between the

High Energy Physics Laboratory (HEFL, Stanford), Caltech and the Universities of

Harvard and Princeton and was completed in 1978 when it began taking data at the

Stanford Positron Electron Accelerator Ring (SPEAR) at SLAC. The Crystal Ball re-

mained in place there for 3 years continuing spectroscopy of the J/ψ [62] and its excited

states. From 1982 to 1987, the ball was used at the Deutsches Elektronen-Synchrotron

(DESY) and during that time it was again involved in a program of meson spectroscopy,

specifically investigations of b-quark physics [63]. After a period in storage at SLAC,

the detector was moved in 1995 to the Alternating Gradient Synchrotron (AGS) at

Brookhaven National Laboratory. Its use with secondary pion and kaon beams from

AGS facilitated studies of strange and non-strange baryon resonances [64], and these

studies continued until 2002. In November of that year the ball returned to Germany,

this time to Mainz and the MAMI facility. A major upgrade of the detector’s electron-

ics was completed before an experimental program covering a wide range of physics

topics was embarked upon in May 2004. This first round of experiments using MAMI-B

was completed in April 2005, however a new program of experiments with MAMI-C is

already underway after an accelerator and tagger upgrade were completed at the end

of 2006.
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4.6 Crystal Ball

4.6.1 Crystal Ball Design

The geometry of the crystal ball is based on the structure of a 20 sided polyhedron - an

icosahedron. Each triangular face of the icosahedron is divided in to 4 smaller triangles

which in turn contain 9 modules (figure 4.5). The smallest triangular surface represent

the base of a NaI(Tl) crystal shaped into a truncated pyramid. When stacked together

in this way, a near spherical shell of 720 elements is formed. By removing 24 crystals

from opposite poles of the sphere a tunnel is created through the centre allowing space

for the beam and target holding structures.

Each of the remaining 672 crystals (figure 4.6) are 40.6cm in length (or 15.7 radi-

ation lengths). The side of the inner face is 5.1cm in length and the side of the outer

face is 12.7cm. The ball has an outer radius of 66.0cm and an inner radius of 25.3cm.

The crystals are individually wrapped in reflecting paper and aluminized mylar to en-

sure optical isolation and viewed, via a glass window and a 5cm air gap, by their own

ZXRC L50 B01 photomultiplier tube. NaI(Tl) is hygroscopic and will therefore dete-

riorate when it comes into contact with moisture in the atmosphere. For this reason,

the crystals were hermetically sealed in 2 separate hemispheres made of 1.5mm thick

stainless steel which were studded with glass windows as part of the optical coupling

between the scintillator and phototubes. This mechanical separation of the ball into

two parts also allows for easy mounting and maintenance of the targets and detectors

in the tunnel region. The pressure within the steel casing as well as the environment

in the A2 hall in general must be closely monitored.

Figure 4.5: Crystal Ball Geometry.
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4. EXPERIMENTAL DETAILS

Figure 4.6: NaI(Tl) Crystal

During the experiment, photons deposited energy in the NaI(Tl) via the develop-

ment of electromagnetic showers originating from the initial interaction of the incident

photon. The size of the electromagnetic shower was dependent on the energy and type

of particle, for example a photon below 10 MeV will typically only deposit energy in

one or two crystals. However for photons up to ∼400MeV, 98% of the deposited energy

is contained in a cluster of 13 crystals. Energy deposits in the crystals from hadrons

tend to involve fewer crystals. For example, protons generally only deposit energy in

one or two crystals.

The energy and direction of particle events in the Crystal Ball were then recon-

structed by analysing the cluster of NaI crystals in the resulting shower. The choice

of a scintillator with high light output (NaI(Tl)) ensured good energy resolution for

photons over a wide range. The thickness of the crystals was enough to stop 245 MeV

pions, 340 MeV kaons and 425 MeV protons and the high granularity provided ex-

cellent angular resolution. Some of the detection properties of the Crystal Ball are

summarised in Table 4.2 [65].

Table 4.2: Principle Characteristics of Crystal Ball

Angular Acceptance

Azimuthal coverage 0 ◦ < φ < 360 ◦

Polar coverage 20 ◦ < θ < 160 ◦

Angular Resolution

Azimuthal resolution ∼ 2◦

sinθ

Polar resolution ∼2-3 ◦

Photon Energy Resolution
σ

Eγ
∼ 1.7%

Eγ
(GeV)0.4
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4.6 Crystal Ball

As a large acceptance, high granularity photon spectrometer, the Crystal Ball is

first and foremost ideally suited to the detection and measurement of neutral mesons

(π0, η) which decay to photons. However, by utilising the free space in the beam

tunnel around the target and including detectors for charged particle identification

and tracking, the Crystal Ball has become an excellent detector for multiple charged

and uncharged particles in the final state.

4.6.2 Particle Identification Detector

The Crystal Ball’s particle identification detector (PID) is a dE/dx detector and used

in conjunction with the ball provided particle identification of protons and charged

pions via the ∆E-E technique. Located in the tunnel region of the ball, the PID

was comprised of 24 (2 x 300 x 12)mm EJ204 plastic scintillators forming a cylinder

around the beam axis centred on the target (figure 4.7). The cross section of each

detector element is right-angled trapezium, ensuring that the gaps between the detector

elements when forming the barrel were minimised. Each scintillator was individually

wrapped in foil to ensure optical isolation and the entire detector was lightproofed via

a covering of black Tedlar (PVF). The scintillators were viewed via perspex light guides

by 24 Hamatsu R1365 photomultiplier tubes. The barrel design of the PID allowed for

full 360◦ coverage of the azimuthal angle and the length of the scintillators provided

coverage between (20 to 160)◦ of the polar angle matching the coverage of the Crystal

Ball.

Figure 4.7: Crystal Ball and sub detectors schematic [66].
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4.6.3 Multi Wire Proportional Chambers

Surrounding the PID within the tunnel region of the ball was a high resolution tracking

detector comprised of two multi wire proportional chambers (MWPCs - figure 4.7).

This sub-detector system was originally part of the DAPHNE [67] detector system and

has been used in that setup for a number of years with great success. Both chambers

were constructed from three layers - the inner and outer layers acted as cathodes for

the proportional counter and were formed from 1mm thick rohacell, laminated with

0.1µm thick, 4mm wide aluminium strips. The anodes were sandwiched between these

two cathode layers and consisted of 20µm diameter Tungsten wires running parallel

to the beam axis. A separation of 2mm was allowed between each of the wires and

4mm between the aluminium strips which were wound helically in opposite directions

at an angle of ±45◦ with respect to the wires (figure 4.8). The ionising gas used to fill

the chambers is a mixture of 74.5% Argon, 25% ethane and 0.5% freon. Once again

the barrel design ensured coverage of the full 360◦ of φ and the total length provided

coverage in θ between 21◦ and 159◦.

Figure 4.8: Diagram showing relative positions of strips and wires in one of the two

MWPCs.[68]

By combining information from all 6 layers, the tracks of charged particles through

the detector were reconstructed. First and foremost this provided an improved angular

resolution on charged particles than that provided by the Crystal Ball alone. An

important application for the coherent π0 experiment is the ability to reconstruct from

the wire chamber the vertex position of multiple charged particle events. In this way,

it was possible to very accurately pin down the target position within the Crystal Ball.

Some of the detector properties are summarised in Table 4.3.
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4.7 TAPS Forward Wall

Table 4.3: Principle Characteristics of MWPCs

Angular Acceptance 0 < φ < 360◦

21 < θ < 159◦

Angular Resolution

Azimuthal resolution 1.8◦

Polar resolution 2◦

4.7 TAPS Forward Wall

As has been noted, the Crystal Ball was designed for colliding beam experiments at

SLAC. For experiments involving colliders, the lab frame is essentially the centre of

mass frame and the reaction products are produced isotropically about the reaction

vertex. However, for fixed target experiments like those carried out at MAMI, the

reaction products are Lorentz boosted forward in the lab frame. To improve detection

efficiencies at forward angles and compensate for the forward gap in the Crystal Ball

coverage necessitated by the beam exit tunnel, a forward wall detector was introduced

- TAPS.

TAPS[69] is a highly segmented photon spectrometer comprised of 522 BaF2 crystals

that can be configured into a variety of different geometries. Like the Crystal Ball,

TAPS was proposed as a means of detecting primarily neutral mesons via their photon

decays. The acronym TAPS was originally assigned to stand for Two/Three Arm

Photon Spectrometer reflecting the geometric setup used in its first experimental run

in 1990. Since that time, the detector system has been used all over Europe and the

acronym is now more commonly taken to stand for the Travelling Around Photon

Spectrometer. For this experiment all 522 crystals were located in a single plane, 1.5m

downstream from the reaction vertex (Figures 4.10 and 4.11) covering the angular range

0◦ < θ < 20◦. This combined setup of Crystal Ball and TAPS covered 93% of the 4π

sr of solid angle.

4.7.1 TAPS Design

BaF2 has a significantly lower scintillation light output than NaI(Tl) (about 29% of that

produced by NaI [69]), however, its high density(4.89g/cm3) and high atomic number

(56Ba) ensure that it maintains a high detection efficiency. Its scintillation light is made

up of two different components - one with a very fast decay time (∼ 0.6ns) and another

slower one (∼ 620ns) both in the UV range (220nm and 310nm respectively). The fast

component provides very accurate timing information on detected signals. The energy
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resolution for photons is also similar to that of the Crystal Ball: σ
Eγ

∼ 0.59%
Eγ

(GeV)−1/2

+ 1.9%.

(a) (b)

Figure 4.9: Left: Technical drawing of one BaF2 crystal. Right: Photograph of the

dismounted TAPS veto wall showing the veto detectors and light guide fibres.

Each BaF2 crystal is hexagonally shaped with a cylindrical end part, the dimensions

of which are shown in Figure 4.9. They were individually wrapped in 8 layers of

38µm thick UV reflecting PTFE and one layer of 15µm thick aluminium foil. The

crystals were viewed via a coating of silcone grease by their own Hamamatsu R2059

photo tube. The phototubes and cylindrical part of the crystals were surrounded by

a magnetic shield to protect the tubes from stray electromagnetic fields in the close

packed detector.

Mounted in front of the crystals were an equal number of 5mm thick NE102A plas-

tic scintillators of the exact same granularity. Their scintillation light was collected

in Valvo XP2972 phototubes by way of an optical fibre light which can be seen in

Figure 4.9. Particle identification in TAPS can be done by several different methods.

Firstly the plastic scintillators are used as veto detectors separating out charged and

uncharged particles. The excellent timing resolution provided by the fast decay com-

ponent of the BaF2 also allows separation of the slower protons and neutrons from the

relativistic photons, electrons and pions via time of flight. Finally, the fraction of light

deposited in the slow component of the BaF2 light output is mainly dependent on the

energy loss of the detected particle. By placing both a short and long gate on the BaF2

QDC, it is possible to separate particles via an analysis of the ratio of energy deposited

in the fast and slow components i.e. a pulse shape analysis.
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4.7 TAPS Forward Wall

Figure 4.10: Diagram of TAPS forward wall looking downstream from the target.

Figure 4.11: Photograph of A2 hall from tagger wall (far right) to TAPS (far left) [70].
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4.8 Data Acquisition

The analogue signals from all detectors were digitised and read by the data acquisition

system (DAQ). In most cases, the signals were fed to both a charge to digital converter

(QDC) and, via a discriminator, to a time to digital converter (TDC). The QDC

returned a value which was proportional to the amount of energy deposited in the

detector by integrating over a sample of the pulse. The TDCs required both a start

and a stop signal above the discriminator threshold. The start signal was provided

by the experimental trigger while the stop came from the relevant detector signal.

The timing of a signal in a particular detector is then relative to the other detectors.

The QDCs were gated by triggering electronics which determined whether or not that

’event’ was read out and stored.

4.8.1 Tagger Electronics

The energy of the detected bremsstrahlung electrons in the Tagger was determined by

its hit position on the focal plane. When a signal from a focal plane detector element

passed the discriminator threshold, a logic pulse was sent to the relevant TDC which

started counting, it was stopped by a logic pulse from the triggering electronics. The

logic pulses from the discriminators were also fed to FASTBUS scalers which are not

gated by the trigger, and were used to obtain a measurement of the electron event rate

in the detectors which is eventually used to calculate the photon flux in the experiment.

4.8.2 TAPS Electronics

The signals from the BaF2 PMTs were passed through a splitter producing 3 outputs

(Figure 4.12) [72]. The first was sent to a leading edge discriminator (LED) and used

for triggering information. The second output went, via a delay to two QDC’s with

different integration times: a long gate (200ps) and short one (40ps). This facilitated

pulse shape analysis. The third output was sent to a constant fraction discriminator

(CFD) and a TDC providing accurate timing information on the pulse.

The signals from the TAPS veto counters were sent to an LED, with a threshold

calibrated to lie between the background signal noise and the energy of a minimum

ionising particle incident on the detector. Any signal which passed this threshold was

considered an indication of a ’hit’ in that veto detector and the selection of detectors

that had fired within that event gate was recorded by a pattern unit and recorded in

the data stream for every event.
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Figure 4.12: Diagram of TAPS read out electronics.

4.8.3 Crystal Ball and sub-detector Electronics

With its arrival in Mainz the Crystal Ball electronics underwent a total upgrade [71, 72].

Central to this upgrade were new discriminators, an active splitter and new multi sam-

pling Flash ADCs (FADCs) and CATCH TDCs. The signals from the NaI PMTs were

thus sent to the active 1:1 splitter, producing 3 matched outputs (Figure 4.13). One

branch was sent via a delay to a Flash ADC (section 4.8.4), the second, via discrim-

inators to a CATCH TDC (Compass Accumulation, Transfer and Control Hardware,

section 4.8.5) and the final branch was used for triggering electronics (section 4.8.6).

4.8.4 Flash ADC modules

The FADCs used here were designed for the WASA detector at CELSIUS in Upsala

and sampled the shape of the signal with a sampling frequency of 40MHz. They are

also capable of returning multiple integrated values. In principle the sampled shape

of each pulse could be recorded but to reduce readout time for this experiment only

integrated pulse amplitudes were recorded. Three samples of the signal were taken -

over the pedestal, signal and tail region of the pulse. In this way a measure of the

residual charge in the ADC and remnant light in the crystals (the pedestal) was made

for every event and was dynamically subtracted from the signal. This improves the

attainable energy resolution of the crystals.

4.8.5 CATCH TDC modules

The new CATCH TDC modules used here were developed at Freiburg University for

the Compass experiment at CERN. Standard TDCs like those used in the Tagger
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are started/stopped by a hit in the corresonding detector and stopped/started by

a logic pulse from triggering electronics. The CATCH TDCs used here work quite

differently. They each have a ∼10GHz oscillator which essentially acts as a free running

clock and results in a standard channel to time conversion of 117ps/channel. The

synchronicity of the TDCs is ensured by a CERN-standard trigger control system

(TCS). One TDC is set aside as a reference TDC and is attached to the trigger.

When an event passes each level of the triggering electronics a logic pulse is sent to

the reference TDC which stores the oscillator value. When a hit is recorded in any

of the TDCs, they simply store the oscillator value. To convert this to a time the

value in stored in the reference TDC simply has to be subtracted and the standard

117ps/channel conversion used. They are capable of storing multiple hits as well as

running at a higher time resolution, ∼75ps/channel, although this higher resolution

was not exploited during the experiment described here.

4.8.6 Triggering Electronics

While the DAQ is reading out an event the electronics are blind to any further hits in

the detectors - this is known as dead time. To minimise this dead time, the triggering

electronics were made as selective as possible.

In the current CB-TAPS setup, the trigger was determined by two LeCroy LRS

4805 logic units (Figure C.2) i.e. for an event to be read out and stored, it must satisfy

two sets of conditions. For each experiment the trigger must be optimised and the

two programmable logic units can be programmed in a variety of ways to reflect this.

For the experiment described in this thesis, the first level trigger was satisfied if a sum

of the energy deposited in all 672 elements of the CB was more than 50 MeV. If so,

the second level trigger was initialised, otherwise the triggering electronics were reset.

For the second level trigger, the energy in the individual NaI crystals were summed

together in groups of sixteen elements. If 2 or more of these trigger sections contained

a crystal with more than 13 MeV deposited in it and a hit had been recorded in the

Tagger, the second level trigger was satisfied. The QDCs and TDCs were then gated,

the event read out and the triggering electronics reset.

4.8.7 Analysis Software

Online data monitoring and offline data analysis are done using a new object oriented

analysis package written specifically for the new Crystal Ball experiments at MAMI -

AcquRoot [73]. Written in C++, it is based heavily on the ROOT analysis package

from CERN [74] and provides a framework of classes that can be extended and inherited
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Figure 4.13: Simplified view of the Crystal Ball front end electronics [76].

from to meet the needs of the individual user. The experiment described in this thesis

was one of the first to be performed with the Crystal Ball at MAMI and as such there

was no developed analysis code in place. As a result the code for the analysis presented

in the next chapter was largely written from scratch.
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Chapter 5

Data Analysis

5.1 Overview

The process of translating the raw data stored by the experimental data acquisition

into an experimental cross section is summarised in the sequence below. Each of the

steps will be discussed in more detail later in this section.

• The first step in the analysis is the conversion of the raw QDC and TDC values

for each detector element to real physical quantities by way of a calibration. The

values recorded by the QDCs were thus converted to energies in MeV and those

recorded by the TDCs were converted to times in ns.

• Cluster finding algorithms were applied to data from the Crystal Ball and TAPS

to group together detector hits originating from the same incident particle.

• The ’tracks’ of charged particles incident on the Crystal Ball were extracted from

the MWPC data.

• The information from the PID, MWPC, CB and TAPS was combined to carry out

particle identification for each event. This procedure comprised ∆E-E tehniques

in the Crystal Ball and Pulse Shape Analysis (PSA) in TAPS. Knowledge of

the particle type (i.e. its mass) and the energy deposited by the particle in the

detector apparatus allows the 4-momentum to be obtained for each particle.

• π0 meson candidates were then identified by reconstructing the invariant mass of

photon pairs detected in the calorimeters.

• Coherent and incoherent π0 photoproduction events were separated by combining

the π0 and photon tagger information in a missing energy analysis. The coherent

π0 yield was then determined from a fitting procedure to the missing energy

spectra.
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• Detection efficiencies and photon beam properties were assessed to allow the

detected yield to be normalised into differential and total cross sections.

The Crystal Ball, TAPS and Photon Tagger comprise a large scale detector system

with almost 3000 individual elements requiring calibration. As a result, the calibrations

were shared between a number of students within the A2 collaboration. A description of

each calibration stage follows. Any calibrations performed by colleagues are explicitly

referenced below.

5.2 Tagger Calibration

5.2.1 Photon Beam Energy Calibration

Unlike the closely monoenergetic electron beam produced by MAMI-B, the energy

of the resulting photon beam has a flux curve over a range of energies with an in-

tensity which closely follows the E−1
γ (figure 5.2(a)). The tagged photon energy was

inferred from the incident electron beam energy and the measured energy of the recoil-

ing bremsstrahlung electron in the tagger focal plane detector (equation 4.1). Accurate

determination of the photon beam energy therefore requires accurate knowledge of the

incident electron beam energy which is set by the number of recirculations of the beam

around the microtron. Accurate energy measurements were performed by the MAMI

operators at intervals of a few days, however the electron energy was not constantly

monitored. Instead, the magnetic field of the final microtron dipole (which is pro-

portional to the electron energy) was tracked. Figure 5.1 shows the dipole strength

in RTM3 over a period of ∼ 2 1
2

weeks during the course of the experiment. The

two spikes are a result of the MAMI procedure for optimising the beam. Away from

these events during normal running conditions the variation in the field strength cor-

responds to a variation in beam energy of <0.05 MeV. A beam energy measurement

of E−
e = 883.24 MeV was made just prior to the start of the graph.

The energy of the bremsstrahlung electron was determined from its hit position in

the tagger focal plane detector. The relationship between hit position, beam energy and

tagger dipole field strength is parametrised by the tagcalv6 cern computer program [75].

The magnetic field strength of the tagger was determined and monitored using an NMR

probe. The calculated relationship between electron energy and focal plane detector

delement for an NMR value of 1.049T is shown in figure 5.2(b).
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Figure 5.1: Field strength in the third MAMI microtron as a function of time [77].
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Figure 5.2: Tagger energy calibration.
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5. DATA ANALYSIS

5.2.2 Tagger Timing Alignment and Tagger Random Subtrac-

tions

Along with the recoiling bremsstrahlung electron corresponding to the photon produc-

ing the reaction in the target, there is always additional background of electron hits in

the tagger focal plane. These are associated with photons that pass straight through

the target without an interaction, non-radiative processes in the radiator (Möller Scat-

tering), photons that were stopped in the collimator system or background as a result

of the beam hitting the beam pipe structure or beam dump. As a result, for each

’event’ in the Crystal Ball and TAPS, there may be several associated electron hits in

the tagger focal plane introducing an ambiguity as to which electron corresponds to

the photon which interacted.

The background events in the tagger are accounted for by studying their relative

timing with respect to the experimental trigger. The time recorded by the TDC for

each element of the focal plane corresponds to the time difference between the hit

in the tagger element and the experimental trigger (section 4.8.1). Events which are

associated with the photon causing the trigger will have a constant time difference

which is simply related to the time of propagation of the photon to the target and the

time taken for the produced particles to make the experimental trigger. This results

in a ’prompt’ peak in each of the tagger TDC spectra. Electrons which were not

associated with the photon producing the experimental trigger form a flat ’random’

background (figure 5.3). It is not possible to determine which electron (and therefore

which photon energy) is the correct one on an event by event basis since even when

selecting the prompt region (blue on figure 5.3) there is clearly still some random

background underneath the prompt peak. To account for this a sample of both prompt

and random events must be taken when looking at any observables which require

knowledge of the photon energy. Then an appropriately weighted sample of the random

events (pink in figure 5.3) can be subtracted from the prompt events.

To facilitate uniform cuts on the combined timing spectrum from the complete

focal plane array, the individual tagger TDCs were aligned such that the prompt peaks

of all elements were coincident (figure 5.4). This procedure was carried out using

experimental data from separate runs where the Crystal Ball and TAPS were left out

of the DAQ and the experimental trigger was made by an ∼100% efficient Pb-Glass

detector placed in the photon beam downstream of the target (section 4.4). Because

of the low intensity electron beam, the number of random coincidences in the tagger

focal plane was small and the timing spectrum was dominated by the prompt peak.

The lack of background greatly simplified the alignment process. The channel to time
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conversion for the tagger TDCs is set by the TDC modules and has been established

as 0.18ns/channel [57].
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5.3 Crystal Ball Calibration

5.3.1 Photon Cluster Algorithm

Accurate determination of the π0 4-momentum from the π0 → γγ decay requires accu-

rate knowledge of the photon direction and energy. As has been noted (section 4.6) ,

photons deposit energy in the Crystal Ball via the development of an electromagnetic

shower. In ∼98% of events the energy deposited is contained within a cluster of 13

NaI crystals. The cluster algorithm attempts to identify groups of crystals with en-

ergy deposited originating from the same incident photon. In analysing a shower the

cluster algorithm first finds the crystal with the largest energy deposit then considers

additionally its 12 neighbouring crystals (figure 5.5). The deposited energy in any

cluster is then taken as the sum of the energies in each of the 12 crystals. If the energy

sum did not exceed 25 MeV then the cluster was rejected. The position of the ‘hit’

was calculated as a weighted sum of each of the cluster elements. For example, the

reconstructed hit position, Xrec was calculated as:

Xrec =

∑

i

√
Eixi

∑

i

√
Ei

(5.1)

where xi is the x-coordinate and Ei the energy deposited in the i-th crystal.

Figure 5.5: A NaI cluster. Each triangle represents the triangular face of a NaI crystal.

The cluster finding algorithm searches for the highest energy crystals and sums that

crystal with its 12 nearest neighbours.

5.3.2 Crystal Ball Energy Calibration

The energy calibration procedure converts the QDC values from each CB element into

an energy. This was taken to be a linear relationship as possible energy dependent

corrections such as scintillation light collection efficiency and shower loss effects were
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5.3 Crystal Ball Calibration

found to have small effects for the photon energies used in this experiment. In general

for a linear energy calibration, two known parameters are needed:

Energy (MeV ) = offset+ gain × QDC(channels) (5.2)

As the Flash ADCs used with the Crystal Ball NaI detectors employ dynamic pedestal

subtraction (section 4.8.4) the ’offset’ can be taken to be zero.

5.3.3 Crystal Ball Low Energy Photon Calibration

An initial calibration of the NaI crystals was performed by colleagues from the Univer-

sity of Mainz and UCLA [78,79] using the 4.4MeV gamma decay from an AmBe source

as the sole energy point.

The analysis of the present experimental data has been used to improve this low

energy photon calibration of the Crystal Ball using a new nuclear decay photons tech-

nique. The gains were aligned using the 4.4 MeV photon decay from the reaction
12C(γ,π0)12C∗, where the nucleus is left in its first excited state. Figure 5.6 shows the

4.4 MeV peaks in the energy deposition spectra of a selection of NaI crystals. These

peaks were fitted with an exponential and a Gaussian function. The centroid of the

gaussian was then used to extract the magnitude of the gain as defined in equation 5.2.

5.3.4 Crystal Ball High Energy Calibration

The low energy photons described in section 5.3.3 are not typical of the photons pro-

duced in a meson decay which generally have energies above 40 MeV. Therefore a

calibration of higher energy photons is required and for this purpose, the π0 → γγ

decay proves an excellent source of high energy photons.

Three cuts were applied to the data to better select π0 → γγ events suited to the

calibration procedure:

1. Events were rejected if the energy deposited in the central detector of the cluster

was less than 80% of the total cluster energy.

2. The energy difference between the two decay photons was required to be small

such that |E1 − E2| < 1
4
(E1 + E2).

3. The tagged photon energies were restricted to Eγ < 180 MeV, resulting in π0

decay photons with energies between 40 - 125 MeV.
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The first cut was employed to ensure the cluster energy was dominated by an energy

deposit in a single central cluster element. This is desirable as we need to obtain a

calibration on a crystal by crystal basis. The second cut limited the energy difference

between the two decay photons so that for any single event the photons used in the

calibration had a similar energy. The third cut ensured that the π0s were low energy.

This gives a larger contribution of π0 events where the opening angle between the

decay photons is large and therefore the photons are produced almost back-to-back.

The restriction to lower incident photon momenta results in a more isotropic angular

distribution for the π0 decay photons in the lab than observed at higher energies and

the crystals were therefore sampled more evenly. Additionally, the application of cut

(3) ensured the range of π0 decay photon energies was limited. This was employed to

minimise any energy dependent variations in shower loss effects or losses of scintillation

light due to collection effects in the crystals. Restricting the range of photon energies

effectively places a restriction on the position of the shower within the crystals which

is desirable for the gain matching process.

The procedure can be summarised as follows.

• Decay photon pairs from the reaction 12C(γ,π0) were selected with the appli-

cataion of cuts (1) to (3) and their invariant masses reconstructed.

• The invariant masses were then histogrammed, using information only from the

central (or largest energy) crystal of the two photon clusters (figure 5.7(a)).

• The 2D histogram was projected into 672 individual invariant mass spectra (one

per crystal). Each histogram represented the sum of all photon pair combinations

where that crystal was one of the central cluster elements.

• The invariant mass peaks were fitted with an asymmetric Gaussian and the fitted

peak values, mγγ , used to calculate new MeV/channel gains i.e.

MeV

channel
(new) =

(

mγγ

mπ0

)

MeV

channel
(old) (5.3)

This process was repeated 3 times with a new set of gains for each iteration.

5.3.5 NaI(Tl) Timing

The design of the CATCH TDCs used with the Crystal Ball is such that the channel to

time conversion is fixed at 117ps/channel (section 4.8.5). The timing of each of the NaI

TDCs was aligned to a reference crystal (figure 5.8) by a colleague from the University

of Mainz [76].
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Figure 5.7: NaI high energy calibration.

74

DataAnalysis/DataAnalysisFigs/cal_1stiter.eps
DataAnalysis/DataAnalysisFigs/cal_3rditer.eps


5.3 Crystal Ball Calibration

Time [ns]
0 20 40 60 80 100 120 140 160 180

Cr
ys

ta
l E

le
m

en
t

0

100

200

300

400

500

600

700

1

10

210

310

410

510

CB Timing Alignment

Figure 5.8: Aligned CB TDCs.

The slow timing response of NaI is well known [80] (NaI signals have a typical rise

time of 250ns) and as a result the times recorded by the TDCs must be corrected for

time walk effects. Time walk is introduced by leading edge discriminators whereby

a signal with a small amplitude will take longer to reach the discriminator threshold

than a signal with a large amplitude (figure 5.9). Low energy pulses therefore appear

to have a later timing than high energy pulses. With the assumption that the pulse

shape can be approximated as a parabola, the following parameterisation can be used

to correct for the walk effect:

T
′

= T − r

√

a0

a
(5.4)

where T
′

is the corrected time, T is the uncorrected time, a is the pulse height, r

is the rise time and a0 is the discriminator threshold. The product of rise time and

Figure 5.9: Time walk.

discriminator thresholds (ra0) were obtained from fits to time vs energy plots using

functon 5.4. Figures 5.10(a) and 5.10(b) show the effect of the resulting walk correction

on the NaI timing versus energy.
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Figure 5.10: NaI timing as a function of energy.

5.3.6 Crystal Ball Particle Identification Detector Calibra-

tions

The CB particle identification detector (PID) was equipped with the same CATCH

TDCs as the Crystal Ball. As such the time/channel conversion was also fixed at

117ps/channel. The timing alignment of each of the 24 PID elements was performed

by R.Codling at the University of Glasgow [81]. Colleagues at Glasgow University also

performed an energy calibration of the PID via a comparison of the experimental data

with data from a Geant3 Monte Carlo simulation (for more details of the simulation see

section 5.8). Briefly, a simulation was performed to test the response of the Crystal Ball

and PID detectors to protons, charged pions and electrons. The energy deposited in the

PID (∆E) was plotted against the energy deposited by the particle in the Crystal Ball

(E). The resulting spectra showed the characteristic curves associated with particles

of differing masses (figure 5.11(a)). Figure 5.11(b) shows the PID energy depostion

spectrum corresponding to an energy in the Crystal Ball between 38 and 42MeV. There

are two distinct peaks: the lower one corresponding to charged pions and the higher

one corresponding to protons. Gaussians were fitted to the two and a similar procedure

was followed for the experimental data. The PID QDC gains for each element were

adjusted so that the pion and proton peak positions lay at the same energy in MeV as

those of the simulated data.
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Figure 5.11: CB particle identification

5.3.7 Crystal Ball MWPCs

The two multi wire proportional chambers used in the present experiment were in-

herited from the DAPHNE [67] experiment, along with the analysis code developed

to extract information on the track of charged particles from the anode and cathode

signals. The MWPC fortran code was translated to C++ for use with the new Ac-

quRoot analysis package by S.Schumman at the University of Mainz [82]. The same

colleague has also produced a calibration of the relative position of the two proportional

chambers via the analysis of cosmic ray events in the chamber.

5.3.8 CB Particle Identification

The Crystal Ball is ideally suited to detecting photons but is also capable of stopping

up to 245 MeV pions, 340 MeV kaons and 425 MeV protons. The correlation of

energy deposited in the PID and the Crystal Ball for each charged particle was used

to distinguish between different particle species via a ∆E-E analysis.

The particle identification procedure starts by initially assuming all particles de-

tected in the ball are photons. If there was a hit in the PID correlated in φ (azimuthal

angle) with the Crystal Ball hit, the particle was identified as charged. The azimuthal

correlation has to be within ±15◦ of the centre of a PID element. A comparison of the

energy deposited in the PID with that in the ball results in the characteristic curves

on the ∆E-E plots corresponding to different particle types (figure 5.11(a)). Particles

were identified as protons or pions if they fell within the regions shown on the figure.
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5.4 TAPS Calibration

5.4.1 BaF2 Energy Calibration

The energy response of the BaF2 detectors over the energy range used in the exper-

iment described here is closely linear [69] and can be described by an offset and a

gradient. The offset corresponds to the pedestal position which is the amount of back-

ground charge recorded by the QDC under the real pulse. The pedestal shows up in

the energy deposition spectra as a single channel peak with a height several orders

of magnitude larger than the genuine signals, and can be seen at the most left hand

point of figure 5.12(a). The second point for the calibration was taken from the mini-

mum ionising muon peak at 37.7 MeV (figure 5.12) from cosmic rays passing vertically

through the TAPS detector. The cosmic ray data were accumulated during separate

calibration runs before and after the experiment. The TAPS energy calibrations used

in this work were performed by B. Boillat of the University of Basel [83].

(a) Cosmics energy spectrum in TAPS in-

cluding the pedestal.

(b) Example of a fit to the minimum ionis-

ing muon peak (cosmic rays) in TAPS.

Figure 5.12: TAPS Energy Calibrations [83].

5.4.2 BaF2 Timing Calibration

The timing alignment of the BaF2 TDCs was performed by F. Zehr from the University

of Basel [84] and was done relative to the trigger arising from signals in the Crystal Ball.

Signals from the BaF2 crystals were fed to TDCs via constant fraction discriminators

(CFD - section 4.8.2). Unlike leading edge discriminators, CFDs do not suffer from

large walk effects as they only produce an output logic pulse after the leading edge

of the signal has reached a constant fraction of the signal’s peak height. This time is

virtually independent of the amplitude of the signal.
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5.4 TAPS Calibration

5.4.3 TAPS Particle Identification

The procedure for identifying particles in TAPS initially also assumes all particles

are photons. The TAPS veto detectors served to distinguish between charged and un-

charged particles. If a pulse from one of the detectors passed the relevant discriminator

threshold a logic pulse was passed to the DAQ. The selection of vetoes that fired for

any event was then recorded by a pattern unit. The threshold for the TAPs vetoes

was set to be between the noise and minimum ionising peak of the energy deposition

spectrum.

The BaF2 scintillation output contains both a fast component with a decay time

of 0.6ns and a slow scintillation component with a decay time of 620ns. The presence

of the two components make possible pulse shape discrimination techniques to identify

different particle types. The signals from the BaF2 were read out by two QDCs: one

with a short integration gate and one with a long integration gate (section 4.7.1). The

gates were timed such that most of the energy from the fast component was deposited

within the timing of the short gate, while the energy from the slow component was

deposited within both gates. For hadronic particles which have high rates of energy loss

(protons, pions) the relative contribution of the fast component to the slow is lower than

for relativistic particles (electrons, photons). Thus in a plot of the energy deposited

in the fast component vs the energy deposited in the slow component (figure 5.13(a))

one sees a narrow band at an angle of 45◦ corresponding to relativistic particles and

a band at smaller angles corresponding to heavier particles. In order to apply more

conventient particle selection cuts to the data the BaF2 energies were re-plotted as a

function of r and angle as defined in equation 5.5 and 5.6 (figure 5.13(b)).

r =
√

E2
short + E2

long (5.5)

angle = arctan

(

Eshort

Elong

)

(5.6)

where Eshort and Elong are the energies integrated over the short and long gate. This

2D histogram was then projected along the x-axis into separate histograms of the angle

variable for different values of r. Each individual angle histogram was fitted with two

Gaussians (one corresonding to relativistic particles and one to hadronic particles).

The fitted parameters were used to define data cuts separating photons and electrons

from pions and protons. These data cuts were supplied by R. Gregor and S. Lugert

from the University of Giessen [85,86].

The excellent timing resolution of the BaF2 also facilitates particle identification by

time of flight. However this analysis method was not exploited for the current analysis

where only photon events will be analysed.
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Figure 5.13: TAPS pulse shape analysis.

5.5 Target Position Correction

Precise knowledge of the reaction vertex position along the z-axis (parallel to the

photon beamline) is vital to reconstruct the photon (and therefore the π0 ) polar

angle accurately. The MWPCs were used to accurately determine the target position

(relative to the wire chambers) by analysing events in which two charged tracks were

produced from the target, such as A(γ,pp)A-2. The reaction vertex position with

respect to the centre of the wire chambers were reconstructed from the intersection

point of the tracks. The reconstructed z vertex positions from double charged tracks

are presented in figure 5.14(b). These spectra were used to extract the position of the

four targets relative to the wire chambers. The small peak at ∼100mm downstream

from the centre of the MWPCs corresponds to events produced on the kapton exit

window of the target vacuum pipe.

To extract the position of the target with respect to the Crystal Ball the further

step of determining the relative position of the wire chambers and the Crystal Ball

is necessary. Every care was taken during the installation of the MWPCs within the

Crystal Ball to place them as close to the geometric centre as possible. A further

check of the wire chamber position was done by looking at charged particle events in

the Crystal Ball and plotting the corresponding z intersection point on the outer wire

chamber (figure 5.14(a)). Any offset of the wire chambers from the centre of the CB

would see this spectrum shifted along the z axis. The distribution is symmetric about

the zero position of the wire chamber to an accuracy of ∼0.5mm. The data shown in
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figure 5.14(a) were taken with the 208Pb target and the dip in the spectrum at z=0mm

can be attributed to a loss of flux for charged particles when travelling along the target.

It can be seen from figure 5.14 that the water target has the largest offset from the
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(b) Charged particle reaction vertices.

Figure 5.14: target positioning

centre of the crystal ball and is positioned ∼9mm downstream. The target offsets

were accounted for by correcting the 3-momenta of the detected particles. For targets

centered in the CB the momentum of a photon detected in the Crystal Ball was set as:

p =
Edet

√

x2 + y2 + z2
(x, y, z) (5.7)

where x, y, and z were the reconstructed x, y and z positions of the centre of mass

of the cluster (section 5.3.1) and Edet was the energy deposited in the cluster. For

non-central targets the corrected momentum is:

p =
Edet

√

x2 + y2 + (z − zoffset)2
(x, y, z − zoffset) (5.8)

where zoffset was taken from the difference between the reconstructed target position

and the centre of the CB.

5.6 Selection of π0s

As has been noted, the π0 cannot be detected directly and its presence and properties

must be inferred by measuring the 4-momenta of its decay photons. Once the calibra-

tion and charged particle identification process had been completed events where fewer
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than two photons had been detected were rejected from the analysis. The invariant

mass of all detected photon pairs was reconstructed via the relation (Appendix A):

mγγ =
√

2E1E2(1 − cosψ) (5.9)

where, ψ = The opening angle between the two photons.

E1= The energy of photon 1.

E2= The energy of photon 2.

A photon pair resulting from a π0 decay should have an invariant mass of 134.98 MeV

within the experimental resolutions (figure 5.16). Photon pairs were identified as re-

sulting from a π0 decay if their invariant mass was between mγγ = (117-150)MeV.

Photons from the same π0 decay should also show a strong timing correlation.

The timing of each photon cluster was taken as the time returned by the TDC of

the central cluster element. A cut was placed on the relative timing between the two

photon clusters (figure 5.15). For candidates passing the mγγ and timing constraints,

the π0 4-momentum in the lab frame was set as:

pµ
π = pµ

1 + pµ
2 (5.10)

where, pµ
1 and pµ

2 are the 4-momenta of the decay photons:

pµ
1 = (E1,p1) (5.11)

p1 is the 3-momentum of one of the decay photons and is fixed as in equation 5.8.
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Figure 5.15: Time difference between two π0 photon clusters detected in the crystal

ball. Lines indicate the data cut applied to select π0s.
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Figure 5.16: Invariant masses all energies Eγ=(135-400) MeV.
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5.6.1 Empty Target Subtraction

The four targets were supported in the Crystal Ball within an evacuated carbon fibre

pipe (section 4.5) which was sealed at the downstream end by a 100µm thick kapton

window (figure 4.7). π0s can of course be photoproduced on this extra material in the

beam line as well as from the target of interest. To sample this background 3 hours

of data were taken with just the rohacell target holder in the vacuum pipe. As the

water target contained additional 60µm melinex windows, 2 hours of data with just

the empty water target were obtained . Figure 5.17 shows the reaction vertex positions

of charged particles reconstructed by the MWPCs for the two empty target data sets

and illustrates the presence of background contributions from the kapton and melinex

windows. In accounting for the target out contribution to the π0 yield, the target-out
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(a) Reaction vertex position for empty tar-
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holder was in the beam pipe.
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ture was in the beam pipe.

Figure 5.17: Empty target data.

data were subjected to the exact same analysis procedure as the target-in data and

then subtracted off. The number of π0s relative to the target of interest can be seen in

figure 5.18.

5.6.2 TAPS data

Once the detector calibrations were completed and a preliminary analysis of the π0

yield had been performed a problem with the TAPS data was identified. Initially the

number of π0s detected in TAPS appeared lower than had been simulated prior to the
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(c) 16O data
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Figure 5.18: Effect of empty target. Light blue filled histogram: invariant mass spec-

trum (2 photons) for all events. Purple filled histogram: invariant mass spectrum

resulting from empty target. Black markers: with empty target data subtracted. The

red lines indicate cuts applied to the data.
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experiment running. After some further analysis it has been shown that the photon

detection rate in TAPS was much lower than anticipated. Figure 5.19 shows the angular

distribution of all π0 decay photons in Crystal Ball and TAPS. This distribution should

be forward biased reflecting the isotropic π0 decay in the centre of mass frame. (The

regular structure arises from the cluster finding algorithm and the segmentation of the

Crystal Ball and is reproduced by GEANT3 simulations). However, the sharp drop

off observed in the region of phase space covered by TAPS (θ <22◦) is not expected.

At 10◦ this drop in photon yield could be conservatively estimated to be ∼70%. A

similar effect has also been seen for proton events detected in TAPS. There is as yet

no satisfactory explanation for this reduced rate from the groups who setup TAPS and

the TAPS data acquisition system. A possible cause unfortunately is the development

of electronic deadtime in the TAPS electronics at high event rates. Because of this

presently unsolved problem with the TAPS data, TAPS has been removed from the

analysis to avoid any ambiguities in the results. As TAPS only covers a small part of

the phase space this will not have a large effect on the quality of the data set in the

photon energy region of interest for extracting the matter distribution.
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Figure 5.19: Angular distribution of π0 decay photons in both the Crystal Ball and

TAPS.

5.7 Selection of Coherent Events

The photoproduction of π0 mesons from nuclei can proceed by a variety of channels.

The coherent π0 yield of interest occurs with a background of incoherent proceses

(where the nucleus is left in a discrete excited state), quasifree processes (where a

neutron or proton is knocked out of the nucleus) and double π0 production. Two
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methods have been attempted to separate out coherent π0 events from these background

processes:

• Missing energy analysis.

• Coincident detection of the decay gammas from a nuclear excitation.

The first technique exploits the different threshold energies for each background chan-

nel (table 5.1) and makes explicit use of the π0 4-vector and the incident photon energy

determined by the tagger. The second technique was used to study incoherent events

where the nucleus was left in a specific excited state which subsequently gamma de-

cayed. Only the first technique was used to extract the cross sections presented in

this thesis. However, preliminary studies of the suitability of coincident π0 and nuclear

decay photon detection in the CB are presented in Appendix D and will be the topic

of future additional work.

Table 5.1: Extra energy required (in MeV) for non-coherent processes.

Nucleus Nuclear Proton Neutron Double π0

Excitation Knockout Knockout Production
12C 4.4, 15.0... 16.0 12.5 134.98
16O 6.05, 6.13... 12.1 15.7 134.98
40Ca 3.7, 4.5... 12.5 9.9 134.98
208Pb 2.61,3.20... 8.0 7.4 134.98

5.7.1 Pion Missing Energy

The pion missing energy, ∆Eπ is defined as:

∆Eπ = Ecm
π (Eγ) − Ecm

π (γ1γ2) (5.12)

where Ecm
π (Eγ) is the pion energy in the pion-nucleus centre of mass frame calculated

using the incident photon energy and assuming a coherent event:

Ecm
π (Eγ) =

s+m2
π −M2

2
√
s

(5.13)

and Ecm
π (γ1,γ2) is the detected pion energy Lorentz transformed to the pion-nucleus

centre of mass frame. The terms in the above equations are defined as:
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Eγ = the incident photon energy.

s = the invariant mass of the photon-nucleus pair.

mπ = the pion mass.

M = the mass of the relevant nucleus.

The detected energy of the π0 (in the lab frame), Eπ, can most simply be taken as:

Eπ = E1 + E2 (5.14)

where E1 and E2 are the detected energies of the two photons. However, this method

does not use all the information from the detector system. Better energy resolution can

be obtained if angular information is used as well. The pion energy in the lab frame

was therefore calculated as [16]:

Eπ =

√

2m2
π

(1 −X2)(1 − cosψ)
(5.15)

where,

X =
E1 − E2

E1 + E2

(5.16)

and ψ is the opening angle between the two π0 photons. The Lorentz transformation

of the lab pion energy to the centre of mass is given by:

Ecm
π = γ (Eπ − β (E1cosθ2 + E2cosθ2)) (5.17)

where θ1 and θ2 are the polar angles of the two pion decay photons, Eπ is the pion

energy in the lab frame and β is known from the incident photon energy and recoil

mass:

β =
Eγ

Eγ +M
(5.18)

A more detailed derivation of formulae 5.13 to 5.18 is included in appendix A.

For the coherent process the calculated pion energy, Ecm
π (Eγ) should match the

detected pion energy, Ecm
π (γ1,γ2). For incoherent and quasifree events however, less

energy is available for the pion since energy can be taken away by other particles or

left as excitation energy in the recoiling nucleus. Incoherent events should therefore

have pion missing energies at negative values. Figures 5.20(a)- 5.20(d) show the pion

missing energy averaged over all pion angles and for the incident photon energy range

Eγ = (135-300) MeV. The peak arising from coherent π0 production is clearly visible

near to ∆Eπ = 0 for all nuclei. To extract the coherent π0 yield, these spectra were
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split into 18 incident photon energy bins ranging from (135-300) MeV and up to 180

pion angular bins (θπ) ranging from (0-180)◦. Each of the resulting ∼2000 pion missing

energy spectra were then fitted with one or more functions to represent the coherent

and background contributions so that the coherent π0 strength for each chosen Eγ, θπ

bin could be extracted.
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(a) Pion missing energy for 208Pb data
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(b) Pion missing energy for 40Ca data
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(c) Pion missing energy for 16O data
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(d) Pion missing energy for 12C data

Figure 5.20:

Our existing knowledge of the general features of the coherent and incoherent cross

sections can be used to guide the fitting procedure. For example, it is known that the

coherent cross section is forward peaked due to its scaling with the square of the matter
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5. DATA ANALYSIS

form factor. This is in contrast to the combined incoherent processes which vary much

more slowly with pion emission angle [23]. As a result, for coherent θπ regions, the

pion missing energy spectrum can be completely dominated by the coherent peak and

it is therefore possible to exclusively determine the width and position of the missing

energy distribution for the coherent process. This information can then be used for

the fits in regions where there is a larger incoherent contribution to the pion missing

energy.
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Figure 5.21: 208Pb data. Pion missing energy vs pion polar angle. The diffraction

structure in the differential cross section is evident in the angular distribution.

The fitting procedure employed to extract the yield of the coherent process from

the data is outlined below:

1. 2D spectra of pion missing energy versus pion angle were accumulated for Eγ=(135-

300) MeV (examples are given in figure 5.21).

2. These 2D spectra were then projected along the y axis into individual 1D pion

missing energy spectra in as small angular bins as permitted by the statistical

accuracy of the data. The θπ bin size ranged from 1◦ to 5◦.

3. To sample the shape of the coherent peak (its width and position), either a single

Gaussian or the upper half of a Gaussian was fitted to the 1D pion missing energy

spectra for θπ regions corresponding to the coherent maximum. For example

between θπ = (24-36)◦ in figure 5.21(b).

90

DataAnalysis/DataAnalysisFigs/pimissen_theta_eg4_arrows.eps
DataAnalysis/DataAnalysisFigs/dpimissen_theta_pb_eg6.eps


5.7 Selection of Coherent Events

4. With the width and position of the coherent Gaussians constrained from the pro-

cess described in (3), a second iteration of fits was performed for all pion missing

energy spectra including additional functions to fit the non-coherent background.

During the second iteration of fits each 1D spectrum was fitted with one of three

functions corresponding to coherent alone ( 5.19), coherent plus a Fermi function ( 5.20)

and coherent plus incoherent plus a Fermi function ( 5.21):

f(x) =
A1√
2πσ

e−
(x−xc)2

2σ2 (5.19)

f(x) =
A1√
2πσ

e−
(x−xc)2

2σ2 +
Hσ

√
2π

1 + e
2.4(x−xc+Eav)√

2σ

(5.20)

f(x) =
A1√
2πσ

e−
(x−xc)2

2σ2 +
A2√
2πσ

e−
(x−xc+Eex)2

2σ2 +
Hσ

√
2π

1 + e
2.4(x−xc+Eav)√

2σ

(5.21)

where A1 = area of the first Gaussian.

A2 = area of the second Gaussian.

σ = width of Gaussians.

xc = coherent peak offset from zero.

Eex= energy of first excited state of nucleus e.g. 4.4MeV for 12C.

Eav= average q-value required for neutron/proton knockout.

H = height of the Fermi function.

In all three functions, the coherent contribution is accounted for by a Gaussian function.

The Gaussian shape of the coherent contribution was confirmed by fits in the regions

of θπ and Eγ where the coherent process dominates.

In equation 5.20 the quasi-free background is fitted with a Fermi function and in

equation 5.21 the quasi-free plus incoherent background is approximated by a Fermi

function plus a Gaussian respectively. The Fermi function represents the fall off of the

distribution from the quasi-free process below its average threshold energy, Eav due

to the experimental resolution (table 5.1). The second Gaussian fit in function 5.21

contains an offset, Eex, at the energy of the first excited state of the nucleus under study.

The analysis of the coincident nuclear decay photons (Appendix D) suggest dominant

populations of only the lower lying excited states for the reactions on the light targets

and tend to indicate less relative incoherent strength for the heavier targets.

The widths and positions of the coherent Gaussians were constrained according

to the first iteration of fits where no attempt was made to fit the background. The

fitted widths from the data (σ) give good agreement with the widths extracted from
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the Geant3 simulated data which included the experimental resolution of the incident

and detected photons. These comparisons are shown in figure 5.22 and give improved

confidence in the validity of the fitting procedure. For more details of the simulation

see section 5.8.

The coherent π0 yield for each Eγ, θπ bin was then taken as the fitted area of the

Gaussian associated with the coherent peak (A1). The error in A1 is given by the

results of the fit. Table 5.2 lists the functions used to fit the data for each incident

photon energy bin. Given the small energy gaps between the first excited state of a

nucleus and its ground state, it is clearly a difficult task to cleanly separate coherent and

incoherent events from fits to the missing energy spectra, especially at higher energies

as the absolute energy resolution of the detector worsens and for heavier targets where

the first excited state is very close to the ground state. Because of this, fit function 5.21

was only applied to the lighter targets.
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Figure 5.22: The simulated pion missing energy peaks were fitted with a Gaussian to

extract the width which was averaged over all pion angles. The red markers correspond

to the width of the Gaussian fitted to the pion missing energies (from the experimental

data) in the coherent maxima. The widths are averaged over all pion angles and the

error bars give the spread between targets.

5.7.2 208Pb

The 208Pb data would be expected to be the simplest case of the 4 targets to extract

the coherent strength as the A2 factor in the cross section gives an expectation of the

largest relative contribution from coherent events. It was found that attempting to
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5.7 Selection of Coherent Events

Table 5.2: Pion Missing Energy Fitting Methods

Eγ (MeV) 208Pb 40Ca 16O 12C

140-145 5.19 5.19 5.19 5.19

145-150 5.19 5.19 5.19 5.19

150-160 5.19 5.19 5.19 5.19

160-160 5.20 5.21 5.21 5.21

170-160 5.20 5.21 5.21 5.21

180-160 5.20 5.21 5.21 5.21

190-200 5.20 5.21 5.21 5.21

200-220 5.20 5.21 5.21 5.21

220-240 5.20 5.21 5.21 5.21

240-260 5.20 5.21 5.21

260-280 5.20 5.21

280-300 5.20

300-320 5.20

fit the incoherent contribution from low lying excited states made little difference to

the extracted cross section (an example is shown in figure 5.25). For the final analysis

this was therefore neglected. Fitting the quasi-free background is however necessary as

can be seen in figure 5.24(b). Below Eγ=160 MeV the contribution from background

processes was small and the data were well described by function 5.19.

At photon energies greater than 160 MeV an increased background was observed

in the pion missing energy spectra and it was appropriate to account for this in the

fitted function. The entire data set above Eγ=160 MeV was therefore fitted with

function 5.20 i.e. a Gaussian fitted to the coherent peak and a Fermi function to

approximate the slowly increasing quasifree processes. Examples of the 208Pb fits are

shown in figures 5.23 and 5.24.

5.7.3 40Ca, 16O and 12C

For the lighter targets the A2 dependence of the coherent cross section gives expecta-

tion that the relative contribution of incoherent to coherent events may be increased

compared to 208Pb. Clear evidence of this can be seen in the pion missing energy

spectra for 40Ca, 16O and 12C shown in figures 5.28 to 5.30 where function 5.20 can

be seen to no longer provide a good description of the shape of the data. For these

nuclei function 5.21 was used to fit the data. This function includes a second Gaussian

to account for the pion missing energy contribution where the nucleus is left in its
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(b) Example of pion missing energy
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Figure 5.23: 208Pb data
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(b) Example of pion missing energy

spectrum in the coherent minimum.

Figure 5.24: 208Pb data
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Figure 5.25: 208Pb data. Black markers: cross section where equation 5.20 was fitted

to the pion missing energy. Red markers: cross sections where equation 5.21 was fitted.

first excited state. The stronger role of incoherent events is also suggested from the

preliminary nuclear decay gamma analysis (appendix D) where the first excited states

for all three lighter nuclei appears to be the most strongly excited and appears more

prominentley than in 208Pb.

While for 208Pb the cross sections suffer only small variations depending on what

function is fitted (figure 5.25), for the lighter nuclei the choice of function is more

important. Figures 5.26 and 5.27 show the effect of changing the fitted function on

the calcium and oxygen cross sections. In this case, fitting function 5.21 to account

for incoherent strength to the lowest states brings out features of the diffraction pat-

tern not present in the simpler fits. The fitted function also looks to have a better

agreement with the pion missing energy spectra (figures 5.28 and 5.29). For certain

spectra, the more complicated fits were not well constrained by the low statistics in

the diffraction minima and because of this satisfactory fits were not possible. These

cases are illustrated in the results presented in the next chapter.

The 16O data have an added complication in that for certain combinations of pho-

ton energy and pion angle a peak was observed at negative missing energy values,

attributable to π0 production from the hydrogen in the H2O target (figure 5.31). Since

the coherent cross section scales approximately with A2, it is clear that the pion yield

will be dominated by those produced on oxygen. However, it is also possible to exploit

the reaction kinematics to enhance the contributions from events originating on 16O.

For example, a neutral pion produced coherently on oxgen and detected at a particular

angle will have a different energy than one produced by the same photon on hydrogen

and detected at the same angle. This is demonstrated in figure 5.32. The energy dif-
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Figure 5.26: 40Ca data. Black markers: cross section where equation 5.20 was fitted to

the pion missing energy. Red markers: cross sections where equation 5.21 was fitted.

]° [πθ
0 20 40 60 80 100 120 140 160 180

b/
sr

]
µ [

Ω
/dσd

1

10

210

 = (200-220)MeVγE

Figure 5.27: 16O data. Black markers: cross section where equation 5.20 was fitted to

the pion missing energy. Red markers: cross sections where equation 5.21 was fitted.
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(a) Example of pion missing energy

in the coherent minimum where a

single Gaussian plus a Fermi func-

tion were fitted (i.e. equation 5.20)
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in the coherent minimum where 2
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fitted (i.e. equation 5.21)

Figure 5.28: 40Ca data.
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(a) Example of pion missing energy

in the coherent minimum where a

single Gaussian plus a Fermi func-

tion were fitted (i.e. equation 5.20)
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fitted (i.e. equation 5.21)

Figure 5.29: 12C data.
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in the coherent maximum.
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in the coherent minimum.

Figure 5.30: 16O data.
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Figure 5.31: 16O data. Hydrogen peak at ∆Eπ = -35 MeV
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5.8 π0 Detection Efficiency

ference is small at forward angles and is generally larger than the energy resolution of

the detector. At the higher photon energies and at forward angles the hydrogen con-

tribution is likely to be difficult to separate. However, away from these regions good

separation is expected. When the Hydrogen peak fell within the range of the fit, it was

fitted with the same background function as the rest of the data i.e. function 5.21.
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Figure 5.32: Calculations of the difference betweeen the centre of mass pion energy of

a pion produced coherently on oxygen and one produced on hydrogen from the same

energy photon and detected at the same pion angle.

5.8 π0 Detection Efficiency

Monte Carlo simulations are vital in the analysis and understanding of data from com-

plex nuclear and particle physics experiments. Geant3 [87] is a Monte Carlo package

that provides Fortran routines for tracking particles through detectors in order to sim-

ulate the detector response. For this analysis, a Geant3 Monte Carlo simulation [88]

was used to calculate the efficiency of the experimental setup as a whole for detecting

neutral pions. Figure 5.33 shows the geometry of the Crystal Ball and TAPS system

as programmed in the simulation.

26 million A(γ,π0)A events with a phase space distribution of energy and momenta

between the π0 and the recoiling nucleus were simulated for each target covering the

energy range Eγ = (135-400) MeV. The simulated data were then run through the

same analysis code as the real data. Figure 5.34 shows the good agreement between
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Figure 5.33: Crystal Ball and TAPS geometry in the Geant3 Monte Carlo simulation.
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Figure 5.34: Data compared with the monte carlo simulation.
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5.9 Tagging Efficiency

the simulated and real data for the π0 invariant mass peaks. For each Eγ, θπ bin, the

π0 detection efficiency was calculated as:

εdet(Eγ, θπ) =
No π0s detected in that Eγ, θπ bin

No π0s thrown in that Eγ, θπ bin
(5.22)

A selection of the pion detection efficiencies as a function of Eγ and θπ for each of the

targets is shown in figure 5.35. At higher energies as the opening angle between the π0

decay photons decreases, it becomes increasingly likely that both π0 photons will go

into TAPS. With TAPS removed from the analysis because of the presently unresolved

issues with the readout electronics (section 5.6.2) it is not surprising that the detection

efficiencies drop to zero at the most forward angles. The detection efficiencies for 208Pb

are at most 20% lower than the highest efficiencies (for 12C) and this can be explained

by the significant rise of photon interactions in the target because of the high density

and atomic number of lead. The effect is exacerbated for θπ = 90◦ as this presents the

largest path length for the decay photons in the target material.

5.9 Tagging Efficiency

An accurate deterimination of the photon flux incident on the target is needed to

normalise the π0 yield into a cross section. This incident flux is inferred from the

number of electrons detected in the photon tagger. For each tagger channel the number

of electron hits is recorded by the tagger scalers. This number must be adjusted, to

account for the photons subsequently removed from the beam by the collimator. This

correction is known as the tagging efficiency.

As has been noted the photon beam tagging efficiency was measured in separate

data runs with a lower beam intensity (section 4.4). A separate tagging efficiency was

measured for each target. This is presented as a function of tagger channel (effectively

photon energy) in figure 5.36. At most the spread in tagging efficiency over the entire

beam period was ∼2%. Theses small variations are likely due to slight variations in

electron beam divergences or alignment.

5.10 Cross Section Calculations

At its most basic, the cross section of a reaction A(a,b)B is given by:

σ =
Nb

NaNA

(5.23)

where Nb is the number of particles emitted, Na the number of particles incident per

unit area and NA the number of target nuclei visible to the beam. The differential cross
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Figure 5.35: Dependece of π0 detection efficiencies on incident photon energy and π0

emission angle. Detection Efficiencies: black markers are 208Pb, pink markers are 40Ca,

blue markers are 16O, green markers are 12C.
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Figure 5.36: Tagging Efficiencies as a function of tagger channel. Channel 206 corre-

sponds to a photon energy of 400 MeV, channel 312 corresponds to a photon energy

of 135 MeV.

section is then the derivative of σ with respect to solid angle. For this experiment, Na

corresponds to the π0 yield and Nb the incident photon flux. Na is thus the π0 yield as

calculated in section 5.7 corrected with the π0 detection efficiency from section 5.8. Nb

is the number of hits in the tagger scalers corrected with the tagging efficiency from

section 5.9.

So the differential cross section for a given photon energy and pion angle in terms

of measured quantities becomes:

dσ

dΩ
=

Nπ0

εtaggεdetNsρΩΓγγ

(5.24)

where Nπ0 = number of π0 s detected in that Eγ, θπ0 bin.

εtagg = tagging efficiency for that Eγ bin.

εdet = pion detection efficiency for that Eγ, θπ0 bin.

ρ = target density [nuclei/cm2].

Ns = number of tagger scalers in that Eγ bin.

Ω =
∫ φ2

φ1

∫ θ2

θ1
dφsinθdθ [sr].

Γγγ = branching ratio of the decay.

5.11 Error Evaluation

This section will outline the sources of statistical and systematic errors in the measured

cross sections and include estimates of the total magnitude where appropriate.
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5.11.1 Statistical Uncertainties

There are 3 sources of statistical error in the cross section calculations described in the

previous section:

• The statistical error associated with determining the number of π0 events in each

Eγ, θπ bin.

• The statistical error arising from the attainable event sample simulation of the

detection efficiency.

• The error associcated with the tagging efficiency measurements.

For all three of these cases, the statistical error simply reflects the fact that the exper-

iment is measuring a probability. As such, as the number of measurements increases,

the statistical error decreases following Poisson statistics. The first error has the largest

contribution. The number of coherent π0s for any Eγ, θπ bin was taken from a fit to

the pion missing energy spectra in which each data point has a statistical error arising

from the number of π0 events detected and also the statistical accuracy of the tagger

random subtraction (section 5.2.2) used in the photon energy selection. The π0 detec-

tion efficiency was calculated from a Monte Carlo simulation. The number of events

simulated was chosen to keep the statistical error for εdet at ∼1%. The statistical un-

certainty in the tagging efficiency for each individual tagger channel is also ∼1% for

all targets.

5.11.2 Systematic Uncertainties

The largest systematic uncertainties in the current measurements arise from:

• The uncertainty in the target surface density.

• Systematics arising from the ∆Eπ fitting procedure.

The first of these is simple to calculate from the uncertainty in the measurement of the

target thickness. This is ∼5% for both 40Ca and 12C, ∼1% for 16O and ∼2% for 208Pb.

It is more difficult to quantify the systematic error arising from the pion missing

energy fitting procedure. A simple method to test the stability of the fits is to vary

the fitting constraints within reasonable limits and observe the effect on the extracted

cross sections. For the fitting procedure described in section 5.7.1, the widths of the

Gaussians and Fermi functions fitted were allowed to vary within the limits shown

as red error bars in figure 5.22. These widths were shown to be in good agreement

with the simulated data. The largest difference between the widths fitted for the
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experimental data and the simulated data was ∼10%. As a conservative estimate

of the systematic error associated with constraining the fitted resolutions, the fitted

widths were increased by 20% then decreased by 20% and the effect on the cross sections

quantified.

Investigations of the effect of varying the centroid of the coherent gaussian were

also carried out. For the data analysis the centroids of the coherent Gaussians were

fixed at a position determined by the first iteration of fits described in section 5.7.1.

A conservative estimate of the error in the determination of this position is ∼0.5 MeV

indicated by the error in the centroids extracted from the fit in the coherent maxima.

As such, the coherent offsets were set at 0.5 MeV higher and 0.5 MeV lower and the

effect on the cross section observed. To summarise:

1. The resolutions (widths) were increased by 20% (red markers on subsequent

plots).

2. The resolutions (widths) were decreased by 20% (green markers on subsequent

plots).

3. The coherent peak was fixed at a pion missing energy 0.5 MeV higher than the

best peak position (blue markers on subsequent plots).

4. The coherent peak was fixed at a pion missing energy 0.5 MeV lower than the

best peak position (pink markers on subsequent plots).

The variation with fitting technique is small for 208Pb, as illustrated by the sample

figure 5.37. The height of the first maximum varies by at most ∼(3-6)% over the energy

range shown. For 40Ca, 16O and 12C the variation in height of the first maximum is

slightly larger at ∼10%.
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Figure 5.37: 208Pb data. Black markers: final cross section. Red makers: widths

increased by 20%. Green markers: widths decreased by 20%. Blue markers: coherent

peaks offset by +0.5MeV. Pink markers: coherent peaks offset by -0.5MeV.
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Chapter 6

Results and Discussion

Presented in this chapter are the differential and total cross sections for the A(γ,π0)A

reaction on 208Pb, 40Ca, 16O and 12C. Comparisons are made between the current data

and measurements by the Glasgow group using TAPS (section 2.4.1)and those by Kr-

usche using TAPS (section 2.4.1). The data are compared with the DREN theoretical

calculations by Kamalov (section 2.3.6). Some preliminary conclusions about the na-

ture of the neutron skin on 208Pb are made before an outline is presented of the future

work planned to use this comprehensive new data set for a full extraction of the matter

distribution.

6.1 Comparison to Previous Data and Theory

The new data are compared to the previous data taken with TAPS which is described

in section 2.4.1. As already discussed the data are unpublished and the analysis was

affected by strong angle dependent variations in the π0 detection properties of the

apparatus which led to systematic effects in the extracted coherent strength which

were difficult to predict. However, the Glasgow TAPS data remain the best available

previous measurement of the coherent process. The symmetric composition of the

Crystal Ball crystals means the problems suffered by TAPS are negligible in the present

data. Furthermore, the π0 detection efficiency of the CB detector setup is increased by

a factor of ∼25 compared to TAPS (for example compare figure 5.35 to figure 2.13).

The data will be compared to the DREN calculations of the coherent π0 photo-

production process (described in section 2.3.6). The calculations are not yet available

folded with the experimental resolutions but presently these effects are being included

in the theoretical predictions and will be available for use in the later final extraction

of the 208Pb matter radius based on the data set presented in this thesis. It is expected

that the main effect of this smearing will be a filling in of the predicted minima in

107



6. RESULTS AND DISCUSSION

the theoretical predictions, particularly the steep minima in the cross section at higher

energies.

The differential and total cross sections for the 4 targets are presented in figures 6.1 -

6.28. The data have been split into a range of incident photon energy (Eγ) bins ranging

in width from 5 MeV to 20 MeV and the cross sections are presented on both a linear

(upper) and log (lower) scale. The present data are overlayed with the appropriate

Glasgow TAPS results when available (red markers) as well as the appropriate DREN

calculation (blue line). The Krusche TAPS data covers a higher incident photon energy

range and as such there is only one overlapping energy bin at Eγ = 200 MeV and this

comparison is presented in section 6.2.2.

6.1.1 208Pb

Total Cross Section

The total cross section (figure 6.1) rises rapidly from the reaction threshold and reaches

a maximum near Eγ=220 MeV. The shape of the new data is similar to the Glasgow

TAPS data, although the new data show cross sections ∼10-15% higher than the pre-

vious measurement. At incident photon energies greater than 180 MeV there is some

discrepency in the total cross section with the Glasgow TAPS data which are ∼25%

lower than the current data.

The present data are described well by the DREN calculation over the entire Eγ

range - at most the discrepency between theory and experiment is ∼10% at Eγ =

(220-240) MeV. This suggests that the treatment of the pion photoproduction process

and the pion FSI are well under control in the theory. At Eγ = 300 MeV there is a

difference of almost an order of magnitude between the PWIA calculation (i.e. where

there are no FSI effects included in the calculation) and the DREN calculation (the full

model). This highlights the strong FSI effects as the outgoing π energy increases, but

illustrates the smaller role of distortions in the Eγ <200 MeV range. The difference

between the DREN and the DWIA indicates the importance of a detailed treatment of

effects arising from the production and propagation of the ∆ in the nucleus particularly

at the higher incident photon energies. It is also clear that there is better agreement be-

tween the present data set and the theory than between the TAPS data and the model.

Differential Cross Sections

The differential cross sections (figures 6.2 - 6.8) have a diffraction pattern structure

of maxima and minima due to the presence of the matter form factor in the cross

section. In the lowest energy bins a single minimum is seen, however at higher incident

photon energies (Eγ >160 MeV), the accessible momentum transfers to the nucleus
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become sufficient to see higher order minima in the form factor. For a derivation

of the relationship between Eγ , θπ, and the momentum transfer to the nucleus, see

Appendix A. Above Eγ > 240 MeV the minima at larger pion angles become less well

resolved although the first maximum and minimum are still clear and a drop of over

two orders of magnitude in the cross section between θπ = 0◦ and θπ = 180◦ is still

evident.

The Glasgow TAPS data are shown in the same figures. The new data show a

significant improvement in statistics which makes possible the use of finer angular bins

and expands the angular range of the data. The reduced binning will allow a more

accurate determination of the diffraction minima positions. Below Eγ = 180 MeV the

cross section of the Glasgow TAPS data in the first maximum is consistently higher

than the new data by ∼20-28%. Also for most of the Eγ bins the apparent position

of the first maximum is different in the two data sets, with the Glasgow data showing

a clear tendency to have first maxima positions at lower θπ. Similar tendencies are

observed for the higher maxima. It would also appear that the first minimum of the

Glasgow TAPS data is consistently shifted to smaller angles than in the present data

although the larger angular bins make the determination of the minimum position more

difficult.

Figure 6.9 overlays the 208Pb data at Eγ = 200 MeV with the only matching Krusche

TAPS cross section. The first maximum position of the Krusche data occurs ∼1.5◦ to

the right of the current data, a shift in the opposite direction to the Glasgow TAPS data.

Similar shifts appear in the first minimum. The origin of the systematic shifts in the θπ

spectrum are difficult to pin down and could arise from systematic effects in the fitting

procedure, in determining the angular dependence of the π0 detection efficiency or in

the target positioning. The systematic effects in fitting the TAPS data have already

been highlighted. During the TAPS experiment, the target was placed in an evacuated

pipe at the centre of the particle detectors and the target position had to be measured

with a ruler over a distance of around one metre. With the direct measurement and

monitoring of the target position with the new data using the MWPCs (section 5.5), it

is expected that the current data have smaller systematic uncertainties than the TAPS

data. The new CB data also have π0 detection efficiencies ∼25 times larger than the

previous measurements.

The theoretical calculations from the DREN model are also presented in figures 6.2

- 6.8. In general, the new experimental data are well reproduced by the DREN

calculations. In particular in the incident photon energy range Eγ = (160-300) MeV

there is good agreement and the height of the first maximum agrees to within ∼7%.

Below 160 MeV there is some discrepency in the magnitude of the cross section in

first maximum which at most is ∼30% for Eγ = (145-150) MeV. The minima in the
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theory tend to be deeper than observed in the data. This can at least partly be

accounted for by the fact that the calculations have not yet been folded with the

experimental resolutions, but could also arise due to some incoherent or quasi-free

background remaining in the data.
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Figure 6.1: 208Pb. Total cross section. Black markers: CB data. Red markers: Glasgow

TAPS data. Blue Line: DREN calculation. Green line: DWIA calculation. Red line:

PWIA calculation.

6.1.2 40Ca

Total Cross Section

The total coherent cross section for 40Ca (figure 6.10) shares a similar overall shape

as observed for 208Pb. There is a fast rise in the cross section above threshold with a

maximum around Eγ = 210 MeV. The new data are in good general agreement with

the previous Glasgow TAPS data albeit with a cross section typically ∼10% lower.

The DREN calculation reproduces the total cross section quite well indicating the

model gives a good description of the pion photoproduction process and the FSI of the

outgoing pion. The largest difference between data and theory occurs at Eγ = (240-

260) MeV where the DREN model overpredicts the present data by ∼10%. As with

the 208Pb data, the PWIA and DWIA calculations give a poor description of the data,

grossly overestimating the cross sections above Eγ = 200 MeV where the effects of the

pion FSI become large.

Differential Cross Sections

The differential cross sections for 40Ca (figures 6.11 - 6.15) contain clear diffraction
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Figure 6.2: 208Pb differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.3: 208Pb differential cross sections. Black markers: CB data. Red markers:

Glasgow TAPS data. Blue Line: DREN calculation.
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6.1 Comparison to Previous Data and Theory
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Figure 6.4: 208Pb differential cross sections both on linear (a and b) and log (c and

d) scales . Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.5: 208Pb differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.

114

Results/ResultsFigs/pb208_final/pb208_eg8.eps
Results/ResultsFigs/pb208_final/pb208_eg9.eps
Results/ResultsFigs/pb208_final/pb208_eg8_log.eps
Results/ResultsFigs/pb208_final/pb208_eg9_log.eps


6.1 Comparison to Previous Data and Theory
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Figure 6.6: 208Pb differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.7: 208Pb differential cross sections. Black markers: CB data. Red markers:

Glasgow TAPS data. Blue Line: DREN calculation.
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6.1 Comparison to Previous Data and Theory
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Figure 6.8: 208Pb differential cross sections both on linear (a) and log (b) scales. Black

markers: CB data. Red markers: Glasgow TAPS data. Blue Line: DREN calculation.
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Figure 6.9: Comparison of 208Pb data to Krusche TAPS measurement. Black markers:

present data, weighted average of cross sections for Eγ = (190-200)MeV and Eγ =

(200-220)MeV. Pink markers: Krusche TAPS data.

patterns reflecting the effect of the matter form factor in the cross section. Because

of the smaller radius of 40Ca (compared with 208Pb), the first minimum occurs at a

larger momentum transfer, resulting in the absence of a minimum below 160 MeV until

suitably large momentum transfers can be reached.

The general agreement between the angular distribution of the present data and

the Glasgow TAPS data is quite good. However, there are differences in the height of

the first maxima (up to∼30%) and the position of the first maxima (and higher order

maxima) appear shifted to the left compared with the new measurements. These effects

were also seen in 208Pb. Between 180 MeV and 260 MeV the coherent contribution

extracted from the fit tends to be ill defined at the very bottom of the minima. The

statistical accuracy appears to be insufficient to accurately constrain the fits in this

region. However, the overall shape of the minima are more clearly visible in the new

data set compared with the Glasgow TAPS data.

The 40Ca cross sections are generally well reproduced by the DREN theory and

over the entire energy range, the largest difference in the height of the first maxi-

mum is ∼10%. At backwards angles between 160 MeV and 200 MeV the data are

underpredicted by the theory calculations. The next step in exploring these possible

discrepencies is to include a more realistic shape for the matter distribution in the

calculations as discussed in secion 2.3.7.
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6.1 Comparison to Previous Data and Theory

It can be seen that the predicted shape of the maxima tend to follow more closely

the new CB data. In particular, the Glasgow data show a less symmetrical shape than

predicted by the theory for the first maximum.
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Figure 6.10: 40Ca. Total cross section. Black markers: CB data. Red markers: Glasgow

TAPS data. Blue Line: DREN calculation. Green line: DWIA calculation. Red line:

PWIA calculation.
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Figure 6.11: 40Ca differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.12: 40Ca differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.13: 40Ca differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.

122

Results/ResultsFigs/ca40_final/ca40_eg6.eps
Results/ResultsFigs/ca40_final/ca40_eg7.eps
Results/ResultsFigs/ca40_final/ca40_eg6_log.eps
Results/ResultsFigs/ca40_final/ca40_eg7_log.eps


6.1 Comparison to Previous Data and Theory

]° [πθ
0 20 40 60 80 100 120 140 160

b/
sr

]
µ [

Ω
/dσd

0

50

100

150

200

250

300

350

 = (190-200)MeVγE

(a)

]° [πθ
0 20 40 60 80 100 120

b/
sr

]
µ [

Ω
/dσd

0

100

200

300

400

500

 = (200-220)MeVγE

(b)

]° [πθ
0 20 40 60 80 100 120 140 160

b/
sr

]
µ [

Ω
/dσd

1

10

210

 = (190-200)MeVγE

(c)

]° [πθ
0 20 40 60 80 100 120

b/
sr

]
µ [

Ω
/dσd

1

10

210

 = (200-220)MeVγE

(d)

Figure 6.14: 40Ca differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.15: 40Ca differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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6.1 Comparison to Previous Data and Theory

6.1.3 16O

Total Cross Section

The total cross section for 16O (figure 6.16) shares the same general shape as for the

other targets, but has a maximum at a higher photon energy of Eγ = 250MeV. The

new data are in agreement with the Glasgow TAPS measurement up to Eγ = 190 MeV

however, for higher Eγ there is a clear discrepency between the current data set and

the Glasgow TAPS data of up to 25%. The full calculation (DREN) does not describe

the magnitude of the present data well although it gives a good description of the

shape. The DWIA calculation is seen to give a better description of the magnitude

but disagrees with the shape since it does not reproduce the fall off in the cross section

above Eγ ∼240 MeV. The DREN model gives closer agreement in magnitude with the

previous Glasgow TAPS data.

Differential Cross Sections

The differential cross sections for 16O are shown in figures 6.17 - 6.22. Due to the

small size of 16O the first minimum in the form factor does not come on scale until

Eγ ∼ 200 MeV.

In terms of the magnitude and shape of the cross sections the CB and TAPS data

sets are in relatively good agreement below Eγ = 200 MeV. The position of the first

maxima still tends to appear at smaller angles in the Glasgow TAPS data than the

present data, as observed for the other targets. Above these photon energies, there is a

divergence between the data sets which is most obvious in the heights of the first and

second maxima. The TAPS data are consistently lower, and the difference increases

with increasing photon energy up to a maximum of ∼25% in the height of the first

maximum.

The present 16O data are not as well described by the DREN model as the 208Pb

and 40Ca data. Above Eγ = 200 MeV there is a divergence between the data and

the model and in fact the model is in close agreement with the magnitude of the

TAPS cross sections in this energy region at least in terms of the height of the first

maximum. However, the predicted position and shape of the first and second maxima

show much better agreement with the new CB data. The predicted heights of the

higher order maxima may well be modified with the planned inclusion of more realistic

matter distributions in the model (at present a symmetrised Fermi function is used in

the model - figure 2.8). However, the discrepency could also point to the contribution

of incoherent background to the cross sections at high Eγ .

It is expected that the nuclear decay gamma analysis currently being developed

(Appendix D) would help in establishing the angular shape and strength of the inco-
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6. RESULTS AND DISCUSSION

herent contribution from low lying nuclear states. This additional information could

help to improve or confirm the coherent cross sections presented here.
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Figure 6.16: 16O. Total cross section. Black markers: CB data. Red markers: Glasgow

TAPS data. Blue Line: DREN calculation. Green line: DWIA calculation. Red line:

PWIA calculation.
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Figure 6.17: 16O differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.18: 16O differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.19: 16O differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.20: 16O differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.21: 16O differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.22: 16O differential cross sections both on linear (a) and log (b) scales. Black

markers: CB data. Red markers: Glasgow TAPS data. Blue Line: DREN calculation.
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6.1 Comparison to Previous Data and Theory

6.1.4 12C

Total Cross Section

The total cross section for 12C (figure 6.23) shows a similar shape and magnitude to

the 16O data. The new 12C measurement has a lower cross section than the Glasgow

TAPS data (up to ∼25%). While the Glasgow TAPS data are not closely reproduced

by the DREN theory curve, there is a much better agreement between the current data

and the DREN calculation.

Differential Cross Sections

The differential cross sections for 12C are presented in figures 6.24 - 6.28. As already

noted for the total cross section, the present data have a smaller cross section than the

previous Glasgow TAPS data. Below Eγ = 200 MeV, and for θπ greater than 90◦ the

two data sets show similar cross sections . For smaller θπ and at higher energies the

Glasgow TAPS data are consitently higher than the new data. There are indications

of unphysically sharp changes in the cross sections around this point in the Glasgow

TAPS data (e.g. figure 6.27(b)) which may point to some systematic effects in the

fitting procedure in the older data.

Above Eγ = 200 MeV as the first coherent minimum comes on scale the cross

sections extracted from the new data drop to being consistent with zero in the minima.

This effect was already seen in 40Ca and suggests that the coherent strength and

background is not being well constrained by the fitting procedure when the statistical

accuracy of the data worsens and the coherent contribution becomes small compared

to the incoherent.

The magnitude of the differential cross sections is not as well described by the

DREN model as the 208Pb and 40Ca data. The magnitude of the data and model

are in good agreement below Eγ = 200 MeV however, above that energy there is a

divergence between the data and model. At those energies the predicted heights of

the first and second maxima are consistently below the data. It is clear that the

DREN code provides a much better description of the present data than the Glasgow

TAPS data. As discussed for 16O, the DREN calculations could be improved with

the inclusion of realistic matter distributions and from figure 2.8 it is clear that the

charge density distribution is not well approximated by a symmetrised Fermi function.

This is currently in progress. Future analysis of the nuclear decay gammas may help

to establish the background incoherent contribution, which will help to improve or

confirm the coherent cross sections presented here.
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Figure 6.23: 12C. Total cross section.Black markers: CB data. Red markers: Glasgow

TAPS data. Blue Line: DREN calculation. Green line: DWIA calculation. Red line:

PWIA calculation.

6.1.5 Summary of Results

To summarise, the present 208Pb and 40Ca data are in good overall agreement with

the magnitude of both the previous data sets and the DREN theoretical calculations.

There is an improvement of around a factor 4 in the statistics from previous measure-

ments. The DREN code reproduces the 208Pb cross sections to within 10% implying

that the model gives a good description of the coherent pion production process, and

importantly that the pion FSI are under control. The cross sections for the lighter

nuclei show larger discrepencies with the theory code, although the gross features of

the cross sections are reproduced. The theoretical model is presently being improved

to include more detailed matter distributions for light nuclei. However, the discrepency

may also arise due to remaining incoherent π0 production that has not been adequately

supressed by the pion missing energy fitting procedure. It is suggested that the 16O

and 12C data sets would benefit from exploiting the observed nuclear decay photons

from incoherent events to evaluate and subtract the incoherent contribution further.

This will involve a detailed study of low energy photon interactions in the Crystal Ball

and is beyond the scope of this thesis.
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Figure 6.24: 12C differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.25: 12C differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.26: 12C differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.
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Figure 6.27: 12C differential cross sections both on linear (a and b) and log (c and

d) scales. Black markers: CB data. Red markers: Glasgow TAPS data. Blue Line:

DREN calculation.

138

Results/ResultsFigs/c12_diags_corrsurfacedensity/c12_eg8.eps
Results/ResultsFigs/c12_diags_corrsurfacedensity/c12_eg9.eps
Results/ResultsFigs/c12_diags_corrsurfacedensity/c12_eg8_log.eps
Results/ResultsFigs/c12_diags_corrsurfacedensity/c12_eg9_log.eps


6.1 Comparison to Previous Data and Theory
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Figure 6.28: 12C differential cross sections both on linear (a) and log (b) scales. Black

markers: CB data. Red markers: Glasgow TAPS data. Blue Line: DREN calculation.
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6. RESULTS AND DISCUSSION

6.2 Preliminary Evaluation of the Neutron Skin of
208Pb

In this section an attempt is made to draw some preliminary conclusions regarding the

nature of the neutron skin on 208Pb via a comparison with the DREN calculations for

the low energy cross sections where the FSI effects are not as strong. The comparisons

made in sections 6.2.1 and 6.2.3 are not intended as a rigorous examination of the

matter distribution of 208Pb. This will be done in a future analysis using the data set

described in this thesis. An outline of the possible procedures for this next step are

given in section 6.3.

6.2.1 Comparison with DREN Calculations

The first evaluation of the 208Pb matter distribution was made via a comparison with

the DREN calculations. In order to produce a differential cross section, the DREN

code reads in the matter form factor of the nucleus. The form factors used are fourier

transforms of the matter density distributions as approximated by symmetrised Fermi

functions (equation 2.20). In the previous section, the DREN calculations used matter

distributions where the distribution of neutrons matched that of the protons i.e. with

no neutron skin. For the comparison shown in figure 6.29, the DREN calculations were

run several times using different density distributions which include different neutron

skin thicknesses.

The neutron skin is defined as the difference between the r.m.s. proton and neutron

radii:

∆R = rn − rp

The incorporation of different skin thicknesses into the model required the construction

of a new matter distribution from the weighted addition of the charge distribution (ρc),

and a neutron distribution (ρn):

ρm(r) =
Z

A
ρp(r) +

N

A
ρn(r) (6.1)

where ρm(r) is the matter distribution. The half height and diffuseness parameters

(b and c in equation 2.20) for the charge distribution were fitted to elastic electron

scattering data. The neutron distribution was given the same diffuseness (i.e. shape)

and only the half height radius was increased to increase the r.m.s. radius.

The 208Pb cross sections for two incident photon energy bins are shown in figure 6.29

overlayed with the DREN calculations with no neutron skin, a 0.1 fm neutron skin, a
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6.2 Preliminary Evaluation of the Neutron Skin of 208Pb

0.2 fm neutron skin and a 0.3 fm neutron skin. Only the first minimum position of the

calculations and the data were compared. To pin down the first minimum position,

the data were fitted with a Bessel function in the first minimum region:

f(x) = a+
bsin(cx− d)

cx− d
(6.2)

where a, b, c and d are fitted parameters. The first minimum position was taken as

the minimum of the fitted function. An estimate of the error in this value was made

by varying the range of the fit within reasonable limits. The error in the minimum of

the present data is placed at ±0.2◦. The dotted lines in figure 6.29 marks the fitted

minima positions. From this simple comparison, the neutron skin thickness that gives

the best match to the data is ∼0.15 fm. While this is clearly a very basic preliminary

analysis it is a worthwhile comparison to make. At the very least it shows that the first

minimum position in the matter form factor appears shifted to a higher momentum

transfer than the first minimum in the charge form factor. This implies that the r.m.s

radius of the matter distribution is larger than the r.m.s. charge distribution i.e. there

appears to be a non-zero neutron skin on 208Pb.
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Figure 6.29: Comparison of 208Pb data to DREN calculations. Solid black line: fitted

Bessel function to minimum of cross section. Dotted black line: minimum of fitted

function. Red line: no neutron skin. Green line: 0.1fm neutron skin. Blue line: 0.2fm.

Pink line: 0.3fm.
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6. RESULTS AND DISCUSSION

6.2.2 Krusche TAPS data

The Krusche TAPS results (section 2.4.1) sample the coherent reaction in the ∆ res-

onance region where the pion FSI effects are significant. At these energies the energy

resolution of TAPS is also significantly reduced compared with the resolution near to

the pion production threshold, making the separation of coherent and incoherent pro-

cesses via the missing energy method increasingly difficult. The Krusche experiment

also used a similar TAPS setup as the Glasgow experiment and as such it is prone

to the same inconsistencies in the reconstruction of the detected pion 4-momentum

(section 2.4.1).

Nevertheless, this data set has been analysed to extract a value for the r.m.s. matter

radius of 208Pb [89] and was found to be smaller than that of the charge distribution

known from electron scattering leading to a neutron skin of ∼-0.1 fm. This negative

neutron skin is in disagreement with all Skyrme and RMF predictions of the 208Pb

neutron skin. Given the previous result from the Krusche TAPS data it is informative

to compare the new and old data sets. This is outlined below.

6.2.3 Comparison to Krusche TAPS data

The Krusche data has been separated into three energy bins and only the lowest one,

centred at Eγ=200 MeV, overlaps with the current data set. To compare the consis-

tency of the data sets in the minima, the first minima were again fitted with equa-

tion 6.2 (figure 6.9). An estimate of the error in this value was made by varying the

range of the fit within reasonable limits. The error in the minimum of the present data

is placed at ±0.2◦ compared with (+0.8, -0.3)◦ for the Krusche TAPS data. There is

a discrepency in the minima position of ∼1◦. From the DREN predictions shown in

figure 6.29, for this Eγ bin a 1◦ shift in the minimum to smaller θπ corresponds to a

difference in skin thickness of ∼0.2 fm. With the assumptions of this simple analysis

the new data therefore are not expected to confirm the negative neutron skin thickness

of the old TAPS data.

6.3 The Way Forward to the Matter Distribution

of 208Pb

The various techniques that will be used in the near future to obtain the matter dis-

tribution from the new data set will be outlined in this section.

The next step will be to plot the data as a function of momentum transfer, q,

instead of θπ. The small statistical errors achieved in the new measurement will allow
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the photon energy bins to be reduced to the smallest binning allowed by the resolution

of the tagger (2MeV). For each of the 90 photon energy bins, the form factor will be

extracted in the plane wave impulse approximation (equation 2.17) such that:

F 2(q) =
dσexp

dΩ
s

m2
N

A2 dσE

dΩ∗ (E∗
γ , θ

∗
π)

(6.3)

The PWIA is not a good approximation of the data and some correction is required

for in medium effects (section 2.3.3). This correction will be applied by multiplying

the extracted PWIA form factor from the experiment by the ratio of Kamalov’s DREN

and PWIA calculations for that bin. The corrected form factor is in principle then the

Fourier transform of the matter distribution:

F (q) =

∫

ρ(r)eiq·rd3r (6.4)

Once the form factors have been corrected for FSI, all 90 will be combined into the

same plot to improve statistical accuracy. The accuracy of the correction for pion

distortion can be guided by looking at the consistency of the form factors extracted for

the different incident Eγ bins.

In principle, the measured form factor is the fourier transform of the matter den-

sity distribution, although the transformation is not straight forward. Firstly, the form

factor extracted from the experimental data is a series of data points and not a contin-

uous function. Furthermore, the form factor is measured over a finite range of q. This

introduces ambiguities in the density distribution for small values of r corresponding to

the undetermined form factor at large q. It is of course possible to make an assumption

about the shape of the matter distribution e.g. approximate it as a Fermi function,

and calculate the corresonding form factor via a direct Fourier transform. The cal-

culated form factor can then be compared to the data. Krusche employed a similar

technique in determing a value of the 208Pb r.m.s. radius and compared his measured

form factors to form factors calculated in the Helm model [90]. This parametrised the

density distribution as the convolution between a hard sphere density distribution and

a Gaussian. The resulting radial distribution is similar to a Fermi function with a flat

central part and a diffuse edge. The minima positions of the extracted form factor

were compared with the minima positions of the Helm model form factors to find the

best r.m.s. radius. However, this is far from ideal since it makes an assumption about

the shape of the density distribution.

This is in fact the same problem that arose in the 1970s in the interpretation of

elastic electron scattering data. Several techniques were developed to extract the charge

distribution in a model independent way from measured charge form factors and these
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same techniques can be applied to the present data. In particular, it is anticipated

that the Fourier-Bessel analysis of Dreher et. al. [91] will be used. Dreher’s method

approximates the density distribution as a sum of Bessel functions:

ρ(r) =
∞
∑

ν=1

aνj0(qνr) for r≤R (6.5)

= 0 for r>R (6.6)

j0(qνr) is a Bessel function of the zeroth order. If F(q) is measured up to the momentum

transfer qmax, the first N coefficients aν can be calculated directly from the measured

form factor values such that:

aν =
1√
πR3

1

j2
1(qνR)

F(qν) (6.7)

where F(qν) is the form factor at the momentum transfer qν . With these N values of

aν , the series expansion of ρν can be calculated.
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Chapter 7

Conclusion

One of the most interesting and active areas of research in nuclear physics at present is

the investigation of the equation of state of nuclear matter. In particular investigations

of how the equation of state can be extended to highly dense and highly isospin asym-

metric regimes, where the equation of state is not well known. Recent publications have

shown that experiments on nuclei in the lab can be used to constrain the equation of

state at supra-nuclear densities. Specifically, it has been shown that an accurate mea-

surement of the size of the neutron skin of 208Pb would constrain the equation of state

and its density dependence at nuclear densities. Furthermore, a precise measurement

could be used to constrain nuclear models, will be important for the interpretation of

experiments measuring parity non-conserving electron transitions in atoms, and for a

deeper understanding of heavy ion collisions.

The coherent π0 photoproduction differential cross section contains information on

the matter distribution within the nucleus since in the plane wave impulse approxima-

tion the cross section contains the matter form factor. As the first step in making an

accurate measurement of the nuclear matter distribution of 208Pb, a measurement of

coherent π0 photoproduction on 208Pb was made using the newly installed ∼4π Crys-

tal Ball and TAPS detector system at the MAMI electron accelerator facility. This

experiment was one of the first to exploit the Crystal Ball’s new home in the A2 hall

of MAMI utilising the Glasgow tagged photon beam. Although the main physics goal

of the experiment lies in the 208Pb cross sections, data were taken on 3 lighter nuclear

targets as a test of the experimental techniques and the theoretical model.

Differential and total cross sections for coherent π0 photoproduction on 208Pb, 40Ca,
16O and 12C have been obtained in the energy region Eγ = (140-300) MeV. The cross

sections have smaller statistical and systematic uncertainties than previous measure-

ments and have been extended to larger angles in smaller angular bins. As such the

cross sections presented in this thesis set a new standard for coherent π0 photoproduc-

tion measurements.
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7. CONCLUSION

In the reaction A(γ,π0)A, the pion is strongly interacting in the final state and this

can lead to pion-nucleus final state interactions. These pion FSI must be modelled

before the matter form factor can be extracted from the differential cross section. As

such the cross sections for all nuclei were compared to the latest theoretical calculations

of Dreschel et. al. which describe the pion photoproduction process in the unitary

isobar model and which use detailed pion optical potentials to describe the pion-nucleus

FSI.

The theoretical calculations reproduce the 208Pb and 40Ca cross sections very well

suggesting that the pion-nucleus FSI is well described by the model. An initial com-

parison of the 208Pb differential cross secttions to the calculations of Dreschel et. al.

as well as to the previous Krusche TAPS data have shown the first hints of a neutron

skin on 208Pb via the shift of the coherent minima to smaller angles. Given the good

agreement between the DREN model and the 208Pb data it appears to be realistic to

use the DREN calculations in the detailed analysis of the nuclear matter distribution

using this new data. There is some discrepency between the theoretical calculations

and the data from the lighter nuclei at higher Eγ where the experimental energy resolu-

tion worsens. There are improvements that can be made to the theoretical calculations.

Specifically, the inclusion of realistic form factors based on realistic density distribu-

tions is necessary. For better comparison with the data, the calculations must also be

folded with the experimental angular resolutions. Additionally it may be possible to

improve or confirm the coherent sample by studying incoherent events which are tagged

by the observation of a nuclear decay gamma. This work gives the first indications of

the possibility for coincident detection of a nuclear decay photon in the same detector

as the high energy products of photoproduction. Future study of the nuclear decay

γs from 12C and 16O will facilitate one of the first studies of exclusive incoherent π0

photoproduction where the excited state of the residual nucleus is identified.
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Appendix A

Kinematics

A.1 Pion Decay

For the π0 → γγ decay, the invariant mass of the two photons should equal the rest

mass of the π0 . The invariant mass can be calculated via:

m2 = E2 − p2 (A.1)

m2
γγ = (E1 + E2)

2 − (p1 + p2)
2

= E2
1 + E2

2 + 2E1E2 − (p2
1 + p2

2 + 2p1p2cosψ)

= 2E1E2(1 − cosψ) (A.2)

where the notation matches that of figure A.1. In the case of photon pairs resulting

from a pion decay, mγγ = mπ, the mass of the neutral pion, and equation A.2 can be

rewritten as:

cosψ = 1 − m2
π

2E1E2

(A.3)

or alternatively:

sinψ =
mπ

2
√
E1E2

(A.4)

It is clear that there is a maximum value that
√
E1E2 can take when E1 = E2 = (Eπ/2).

At this value sinψ is also at a minimum and has a magnitude given by:

sin
ψmin

2
=

mπ

Eπ

(A.5)

The opening angle between the two photons is plotted versus photon energy in fig-

ure A.2 for the 208Pb experimental data. As the pion energy increases with Eγ the
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plot gives indication of how the range of pion opening angle varies. In particular, the

predominantly back to back photon emission for low pion energies is apparent as well

as the small range of opening angles for high energy pions caused by the Lorentz boost.

A.2 Pion Energy

Consider figure A.3 which shows the coherent photoproduction of a π0 from a nucleus

(i.e. the target and recoiling nucleus are both in the ground state). If the incident

photon energy is known, and the mass of the target nucleus is known, then the energy

of the created pion can be calculated. The total energy in the CM frame of the incoming

photon and target nucleus (
√
s) can be calculated as:

s = (Eγ + EA)2 − (pγ + pA)2 (A.6)

= (Eγ +M)2 − (Eγ + 0)2 (A.7)

= E2
γ + 2EγM +M2 − E2

γ (A.8)

= 2EγM +M2 (A.9)

Similarly, the total energy available in the CM fame of the produced pion and target

recoil pair can be calculated as:

s = (Ecm
π + Ecm

A )2 − 02 (A.10)

= (Ecm
π + Ecm

A )2 (A.11)
√
s = Ecm

π + Ecm
A (A.12)

The difference in the invariant masses of the recoil nucleus and pion is:

M2 −m2
π = (Ecm2

A − pcm2

) − (Ecm2

π − pcm2

) (A.13)

= Ecm2

A − Ecm2

π (A.14)

= (Ecm2

A + Ecm
π )(Ecm

A − Ecm
π ) (A.15)

=
√
s(Ecm

A − Ecm
π ) (A.16)

Rearranging A.16 the difference between the recoil energy and the pion energy is:

Ecm
A − Ecm

π =
M2 −m2

π√
s

(A.17)

Subtracting A.12 from A.17 is then:

2Ecm
π =

√
s− M2 −m2

π√
s

(A.18)

Ecm
π =

s−M2 +m2
π

2
√
s

(A.19)
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A.2 Pion Energy

Substituting A.9 into A.19 the energy of a coherently produced pion in the pion-nucleus

centre of mass frame in terms of the incident photon energy and the pion and recoil

masses is thus:

Ecm
π =

2EγM +m2
π

2
√

EγM +M2
(A.20)

CM LAB

β
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1

θ = ψ
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Figure A.1: The π0 two photon decay in the pion centre of mass frame and in the lab

frame.
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Figure A.2: π0 photon opening angle as a function of incident photon energy (effectively

a measure of the π0 energy).
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Figure A.3: Pion photoproduction on the nucleus.

A.3 Pion Missing Energy

The pion missing energy used to separate coherent and incoherent events in chapter 5

is defined as:

∆Eπ = Ecm
π (Eγ) − Ecm

π (γ1γ2) (A.21)

Ecm
π (Eγ) is defined as in equation A.20. Ecm

π (γ1,γ2) is the detected pion energy trans-

formed to the pion-nucleus centre of mass frame i.e.

Ecm
π = γ(Eπ − βpzπ) (A.22)

where Eπ is the detected pion energy and pzπ is the component of the pion momentum

along the beam direction.

β =
Eγ

Eγ +M
(A.23)

γ =
1

√

1 − β2
(A.24)

Via momentum conservation, pzπ is just the sum of the z components of the two decay

photon momenta:

pzπ = pz1 + pz2 (A.25)

= E1cosθ1 + E2cosθ2 (A.26)

The detected pion energy in the lab frame is simply:

Eπ = E1 + E2 (A.27)

However, this does not use any of the angular information recorded by the particle

detectors. If we define the energy sharing parameter, X, as:

X =
E1 − E2

E1 + E2

(A.28)

=
E1 − E2

Eπ

(A.29)
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From this, E1 and E2 are:

E1 = E2 + EπX (A.30)

= (Eπ − E1) + EπX (A.31)

2E1 = Eπ(1 +X) (A.32)

E1 =
Eπ

2
(1 +X) (A.33)

E2 =
Eπ

2
(1 −X) (A.34)

The product of A.33 and A.34 is then:

E1E2 =

(

Eπ

2

)2

(1 +X)(1 −X) (A.35)

=
E2

π

4
(1 −X2) (A.36)

Rearranging A.36 gives:

E2
π =

4E1E2

1 −X2
(A.37)

Combining this with A.2 gives:

E2
π =

4

1 −X2

m2
π

2(1 − cosψ)
(A.38)

=

√

2m2

(1 −X2)(1 − cosψ)
(A.39)

The detected pion energy transformed to the pion-nucleus centre of mass frame now

becomes:

Ecm
π (γ1, γ2) = γ

(
√

2m2

(1 −X2)(1 − cosψ)
− β(E1cosθ1 + E2cosθ2)

)

(A.40)

A.4 Momentum Transfer to the Nucleus

N.B. in this section, the pion and photon 4-momenta are represented by Pγ and Pπ

respectivley. The corresponding 3-momenta will be lower case and in bold i.e. pγ and

pπ.

The 3-momentum transfered to the nucleus, q, in the reaction A(γ,π0)A in terms

of experimental observables is a function of Eγ, θπ, M and mπ. The Lorentz invariant
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4-momentum, Q, is defined as:

Q2 = (Pγ − Pπ)2 = (P cm
γ − P cm

π )2 (A.41)

= PγPγ − PπPπ − 2PγPπ (A.42)

= E2
γ − p2

γ − (E2
π − p2

π) − 2(EγEπ − pγpπ) (A.43)

= (Eγ − Eπ)2 − (pγ − pπ)2 (A.44)

= (Ecm
γ − Ecm

π )2 − (pcm
γ − pcm

π )2 (A.45)

The 3-momentum transferred to the nucleus in the pion-nucleus centre of mass frame

is defined as:

qcm2

= (pcm
γ − pcm

π )2 (A.46)

From equation A.45 this is then:

qcm2

= (Ecm
γ − Ecm

π )2 − (Eγ − Eπ)2 + (pγ − pπ)2 (A.47)

= (Ecm
γ − Ecm

π )2 − E2
γ − E2

π + 2EγEπ + p2
γ + p2

π − 2pγpπcosθ (A.48)

= (Ecm
γ − Ecm

π )2 −m2
π + 2EγEπ − 2Eγpπcosθ (A.49)

= (Ecm
γ − Ecm

π )2 −m2
π + 2Eγ(Eπ − pπcosθ) (A.50)

= (Ecm
γ − Ecm

π )2 −m2
π + 2Eγ(Eπ −

√

E2
π −m2

πcosθ) (A.51)

Ecm
γ is the incident photon energy in the centre of mass frame. This is simple to

calculate via:

Ecm
γ = γ(Eγ − βpzγ) (A.52)

pzγ the photon’s momentum component in the beam direction of course is equal to Eγ .

β and γ are the same as in equations A.23 and A.24. The pion energy in the centre of

mass frame, Ecm
π is given by equation A.19. The pion energy in the lab frame can be

calculated via the Lorentz transform of Ecm
π :

Ecm
π = γ(Eπ − βpπcosθπ) (A.53)

where pπcosθπ is the z component of the pion momentum in the lab frame. This

becomes:

(Ecm
π − γEπ)2 = γ2β2(E2

π −m2
π)cos2θπ (A.54)

Therefore,

Ecm2

π + γ2E2
π − 2Ecm

π Eπγ − γ2β2(E2
π −mπ2)cos2θπ = 0 (A.55)
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Which leads to the quadratic in Eπ:

γ2(1 − β2cos2θπ)E2
π − 2Ecm

π Eπγ + γ2β2m2
πcos

2θπ + Ecm2

π = 0 (A.56)

Solving this quadratic for Eπ gives:

Eπ =
Ecm

π ±
√

Ecm2

π − (1 − β2cos2θπ)(γ2β2m2
πcos

2θπ + Ecm2

π )

γ(1 − β2cos2θπ)
(A.57)

which relates the pion energy in the CM frame to measurable quantities. There is an

ambiguity in the solution of equation A.57 i.e. for each possible pion angle there are

two possible pion energies. This can be resolved by considering pion production at

threshold where only the positive solution to equation A.57 is physically meaningful.

The momentum transfer to the nucleus in the pion-nucleus centre of mass frame

as derived here has been plotted in figures A.4(a) and A.4(b) as an illustration of its

behaviour as a function of Eγ and θπ.
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Figure A.4: The momentum transfer to the nucleus in the pion-nucleus centre of mass

frame for the reaction 208Pb(γ,π0)208Pb.
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Appendix B

Pion Photoproduction

B.1 Properties of the Pion

Table B.1: Properties of the π meson [5].

π0 π+ π−

Jπ(spin,parity) 0− 0− 0−

IG(isospin,G-parity) 1− 1− 1−

Iz 0 +1 -1

Mass [MeV/c2] 134.97 139.57 139.57

Decay modes γγ (98.78%) µν (∼100%) µν (∼100% )

e+e−γ (1.98%)

B.2 Pion Photoproduction Amplitudes

The Lorentz invariants for pion photoproduction are an expression of the momentum

and energy conservation of the process [10]:

M1 = iγ5εk (B.1)

M2 = 2iγ5(P · ε/εq · k − P · kq · ε) (B.2)

M3 = γ5(εq · k − k · q · ε) (B.3)
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Figure B.1: Meson nonet

M4 = 2γ5(εP · k − kP · ε− iMεk) (B.4)

where P = (pi + p2)/2 and the notation matches that of section 2.3.1. /ε is the scalar

product γ · ε etc.

The differential cross section for a transition from an initial state, i, to a final state,

f can be expressed as:

dσ

dΩ
=

q

k
|〈χf |F |χi〉|2 (B.5)

where χi is the two component Pauli spinor. These Pauli amplitudes takes the general

form [6]:

F = iF1~σ · ~ε+ F2(~σ · ~q)(~σ · (~k × ~ε)) + iF3(~σ · ~k)(~q · ~ε) + iF4(~σ · ~q)(~q · ~ε) (B.6)

~σ are the nucleon spin matrices. The Pauli amplitudes can be further expanded into

electric (E) and magnetic multipoles (M) and in terms of channels with orbital angular

momentum l and total angular momentum J. These are the CGLN amplitudes [10]:

F1(θ) =
∞
∑

l=0

(El+ + lMl+P
′

l+1)(cosθ) + (El− + (l + 1)Ml−)P
′

l−1(cosθ) (B.7)

F2(θ) =
∞
∑

l=1

(l + 1)Ml+ + lMl−P
′

l−1(cosθ) (B.8)

F3(θ) =
∞
∑

l=1

(El+) −Ml+P
′′

l+1(cosθ) + (El− +Ml−)P
′′

l−1(cosθ) (B.9)
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B.2 Pion Photoproduction Amplitudes

F4(θ) =
∞
∑

l=2

(Ml+) − El+ −Ml− − El−P
′′

l (cosθ) (B.10)

Pl are Legendre polynomials, P
′

l and P
′′

l their first and second derivatives. l is the

orbital angular momentum of the emitted pion, the ± subscript when considered with

l gives the total angular momentum of the intermediate state. For example, E1+

describes the electric absorption of a photon with the emission of a p-wave pion and

the intermediate state would have a total angular momentum of 3
2
. Similarly, M1−

refers to the magnetic absorption of a photon, the emission of a p-wave pion and an

intermediate state of total angular momentum 1
2
.

For s- and p-wave pions the CGLN amplitudes reduce to:

F1(θ) = E0+3(M1− + E1+)cosθ (B.11)

F2(θ) = 2M1+M1− (B.12)

F3(θ) = E1+M1+ (B.13)

F4(θ) = 0 (B.14)

The second term in equation B.6 can be rewritten as [92]:

F2(~σ · ~q)(~σ · (~k × ~ε)) = (~q(~k × ~ε) + i~σ(~q × (~k × ~ε))) (B.15)

This allows the Pauli amplitudes (equation B.6) to be split into a spin-dependent and

a spin-independent term such that:

F = L+ i~σ ~K (B.16)

L = ~q(~k × ~ε)F2 (B.17)

K = ~εF1 + (~q × (~k × ~ε))F2 + ~k(~q~ε)F3 + ~q(~q~ε)F4 (B.18)

If only s- and p-wave terms are considered, it follows that the spin-independent cross

section becomes:

dσ

dΩ
=

1

2

q

k
|2M1+ +M1−|2sin2θ (B.19)
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Appendix C

Triggering Electronics

Detailed diagrams of the experimental trigger are included overleaf.
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Figure C.2: Trigger diagram [93].

161

Appendix3/Appendix3Figs/CbTriggerL1L2edt.eps


C. TRIGGERING ELECTRONICS

162



Appendix D

Nuclear Decay γs from 12C and 16O

D.0.1 Nuclear Decay γs

Incoherent π0 photoproduction is an interesting reaction in its own right (section 2.5).

An incoherent π0 event can leave the target nucleus in an excited state which can

subsequently gamma decay. If these low energy photons are detected in coincidence

with a π0 they can be used to identify incoherent events where the nucleus was left in

a specific excited state. In a first attempt to identify these nuclear decay photons, a

second iteration of the cluster finding algorithm was performed for events where a π0

was detected. The second iteration employed a lower cluster threshold (0.8 MeV) and

used the low energy photon calibration of the Crystal Ball (section 5.3.3). The same

particle identification procedure for the high energy clusters employed.

A significant source of low energy background in the ball arises from split-off clus-

ters. These occur when the energy from a high energy photon is not completely con-

tained within the 12 surrounding crystals that are grouped together by the cluster

finding algorithm. The resulting split-off clusters appear as low energy clusters which

in a large fraction of cases maintain an angular correlation with the initial high energy

photon. To suppress split-offs, a cut was placed on the angle between the π0 decay

photons and any low energy clusters. The distribution of these angles for the CB data

is shown in figure D.3(a). Low energy clusters were only accepted if the event had an

angle greater than 35◦. A further cut was placed on the timing between the π0 and

the low energy clusters (figure D.3(b)) to select prompt events.

The resulting spectra of low energy photons for each of the 4 targets is shown in

figure D.4. The spectra from the light nuclei show clear peaks on top of a decreasing

background. As a first attempt to interpret the spectra, they have been fitted with a

Gaussian and an exponential background. For the 12C data a clear peak can be seen at
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Figure D.1: Decay scheme for 12C [94]
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Figure D.2: Decay scheme for 16O [94]
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D. NUCLEAR DECAY γS FROM 12C AND 16O
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(a) Angle between π
0 decay photon and co-

incident low energy photons. The red line

at 35◦ indicates the cut placed on the data

to eliminate split offs.
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Figure D.3:

4.4 MeV corresponding to a gamma decay from its first excited state. In 16O there are

4 energy levels between 6 MeV and 7 MeV, 3 of which gamma decay. A clear peak can

be seen in the 16O spectra at the average of these energies. For the 40Ca data there is a

small peak at ∼4MeV consistent with a population of the first excited state at 3.7 MeV.

but the relative contribution of the peak to the approximately exponential background

is much smaller than for 12C or 16O. This is also true for 208Pb: any peak due to the

lowest excited state of 208Pb has a negligible area compared to the background.

This remaining low energy electromagnetic background could arise from a variety

of sources including split-off photons from the π0 photon clusters that are not removed

by the angular cut, Compton background in the Crystal Ball or the detection of elec-

trons/photons from interactions of the photon beam in the target.

The shape of the uncorrelated background was investigated by cutting on the timing

between the π0 and the low energy photons away from the coincident peak. This timing

spectrum is plotted in figure D.5 with the chosen uncorrelated area shown by the pink

shaded area. The shape of this uncorrelated background is shown in figure D.5. The

background is compared with the experimental data in figure D.6. In this comparison

the background was scaled up by a factor of 10. This discrepency may indicate that the

majority of the background arises from prompt events. The uncorrelated background
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Figure D.4: Energy deposition spectra for low energy photons detected in the CB in

coincidence with a π0 .
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D. NUCLEAR DECAY γS FROM 12C AND 16O

does not show the simple exponential shape assumed in the fits of figure D.4.

Clearly a full and detailed study of the sources of the background in the Crystal

Ball as well as the response of the Crystal Ball to low energy photons are the necessary

next step. However, this study represents the first proof of principle for ∼4π detec-

tion of nuclear decay photons in the same detector as the high energy products from

photonuclear reactions. With a better understanding of the source of the background,

the information from the nuclear decay photons can be used to isolate the incoherent

strength to discrete states or groups of states in the residual nucleus. As well as ob-

taining some of the first information on the incoherent process, with understanding of

the low energy detection efficiency the incoherent strength could be assesed and sub-

tracted to obotain improved samples of the coherent process. This work is presently

under way.
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Figure D.5: Low energy background in the Crystal Ball - uncorrelated in time with

the π0 .
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Figure D.6: 12C data, cut on decay gammas. Black markers: decay gammas correlated

in time with the π0 . Blue markers: decay gammas uncorrelated in time with the π0 .
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