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Abstract 

This study investigates the genetic structure of natural populations of the nematode 
parasite of rats, Strongyloides ratti. S. ratti has an unusual life-cycle that may be 
wholly asexual, or include a free-living adult phase where conventional sexual 
reproduction occurs. The population genetic structure of S. ratti was investigated i) in 
relation to the partitioning of parasites within and between hosts, within and between 
different geographical locations and ii) in relation to the intensity of infection of 
different hosts. In this manner, the extent of population subdivision was characterised 
and the breeding structure measured. 

A combination of molecular biological methods was used to isolate markers of 
genetic variation in S. raSh. Surveys of anonymous nuclear DNA loci resulted in 
several restriction fragment length polymorphisms. Attempts to use polymerase chain 
reaction amplified microsatellites were unsuccessful, and attempts to utilise 
mitochondrial DNA found levels of diversity that were not appropriate for use in this 
study. 

S. ratti was sampled from rats from 11 sites in England and Scotland, there being 
123 rats in total. 76 were infected giving an overall prevalence of infection of 62%. 
Small numbers of rats were also sampled from sites within Germany, 16% of which 
were infected. 1472 infective larvae were collected from these rats and the genotypes 
determined for each polymorphic locus. Analysis of variance and F-statistics were 
used to measure genetic variation at the following hierarchical levels; within parasites, 
within hosts, between hosts and between samples from spatially separated 
geographical areas. Mixed-genotype infections were common with 76% of rats 
containing two or more parasite genotypes. A large proportion of the total genetic 
diversity was found within single rats (96%). Rats with high-intensity infections 
tended to contain genetically more diverse parasite populations. A small amount (0 - 
1.4%) of the total genetic diversity was attributable to variation between sampling 
sites, showing that limited population differentiation occurs. No isolation by distance 
was found between sites in Britain and no genetic differentiation was observed 
between sites in Britain and Germany. 

The frequency of sexual reproduction was low within the parasite populations 
studied but appeared to be adequate to establish Hardy-Weinberg equilibria 
proportions of genotypes within most sample sites. However, some populations show 
deviations from Hardy-Weinberg proportions. In particular one population had a 
significant excess of heterozygotes. This is taken as evidence of limited allelic 
segregation as a consequence of the low levels of sexual reproduction within this 
parasite sample. 
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Chapter one 

Introduction 

1.1 Background 

Few detailed studies exist on the extent and distribution of genetic diversity in 

species of parasitic nematodes. Fewer still systematically describe the population 

genetic structure of these parasites. This study considers the genetic structure of natural 

infections of Strongyloides ratti. S. ratti is an intestinal nematode parasite of rats. This 

parasite is diploid and is ideal for this type of study because (1) the basic genetics of its 

life cycle are understood, (ii) it is easily maintained in the laboratory and (iii) natural 

infections can be readily sampled. In the following chapters, I describe the use of 

molecular biological methods to characterise the genetic variation of S. ratti. I then 

perform a genetic analysis for a series of samples of S. ratti to determine the amount 

and distribution of genetic variation within parasites, within hosts, between hosts and 

between samples from spatially separated geographical areas. 

There are several convincing reasons why we should be interested in the 

population genetics of nematode infections. First, incontrovertible evidence exists to 

show that nematode parasite populations are adapting in response to human control 

strategies. The control of disease by chemotherapeutic methods has resulted in the 

evolution of drug-resistant phenotypes within many nematode species. Resistance to 

all the major classes of anthelminthics has been documented within agriculturally 

important nematode species (Waller et al. 1996). In some areas, for example Paraguay, 

75% of farms contain parasites that are resistant to benzimidazoles, levamisole and 

ivermectin. Benzimadizole resistance has been shown to be heritable, and thus the 

appearance of drug resistance reflects changes in the parasite gene pool (Prichard et al. 

1980). A knowledge of the population genetic structure of the parasite will assist in 

determining how rapidly resistance alleles may arise and spread in natural populations. 

This is necessary to model control practices so as to minimise the potential for 

nematode populations to adapt in response. 

Second, patterns of prevalence, intensity and rates of infection are well 

understood in medically important parasitic nematodes due to a wealth of cross-

sectional and longitudinal surveys (Anderson & May 1985; Bundy 1988). It has been 

shown that the distribution of parasitic nematodes within natural populations is 
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overdispersed with a few hosts containing the majority of the parasites (Crofton 

1971a). This distribution is thought to arise from heterogeneities in the distribution of 

infective stages, host immune responses and host behaviours that affect parasite 

acquisition (Anderson & May 1992). However, the role of parasite genotypes in the 

distribution is almost completely unknown. The evolution of gene-for-gene 

interactions have been shown to be commonplace between plants and their pathogens 

(Agrios 1988; Thompson & Burdon 1992). Similarly, coevolution between 

mammalian hosts and their parasites are thought to explain the diversity of alleles 

found at the major histocompatibility complex loci (Hughes & Queller 1993). 

Theoretical models, such as the Red Queen (Jaenike 1978; Lively & Apanius 1995), 

predict selection of parasites for those that are closely adapted to host genotype. If co-

evolution between host and parasite occurs, then hosts with heavy infections may 

contain unique populations of parasites that have been selected to that particular host 

genotype. Consideration of the population genetic structure between hosts with heavy 

and light infections will show whether 'overdispersed' parasites comprise genetically 

unique subpopulations. 

Third, a knowledge of the population genetic structure of a nematode parasite 

species is necessary when considering making a vaccine. The current vaccines 

produced by recombinant DNA methods are directed at specific subunits of antigens. 

For such vaccines to be effective, they must stimulate effective antiparasitic immunity 

against all naturally found epitopes of the antigens. If a parasite species is genetically 

highly substructured, or diverse, then there may be a range of polymorphic alleles for a 

given antigen (Targett 1995; Conway 1997). This diversity may translate into antigenic 

diversity as has been shown for a candidate vaccine for Trichostrongylus 

colubrzformis, where substitutions naturally occur for 12/284 amino acids (Frenkel et 

al. 1989). Therefore, it is important to consider whether a candidate vaccine antigen 

will confer protection against all naturally found 'strains' of a parasite. 

1.1.2 The biology of Strongyloides spp. 

The genus Strong yloides is a member of the order Rhabditoidea. Strongyloides 

stercoralis was originally recognised in 1876 when unknown parasites were found in 

the faeces of French troops repatriated from Cochin China (Vietnam). A separate worm 

found in a soldier's gut after an autopsy was thought to be a closely related species 

(Grove 1989). These two "species" were in fact the parasitic and free-living stages of 

the same species. This was recognised by Grassi (Grassi, 1879a) and the genus 

Strongyloides was created to house Strongyloides intestinalis, subsequently renamed 
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Strongyloides stercoralis (Stiles and Hassal 1902). Since then, 52 species of 

Strongyloides have been described which infect a diversity of vertebrate host species, 

and which have a worldwide distribution in tropical and temperate latitudes (Speare 

1989). 

The members of the genus Strongyloides share a common life cycle that 

includes parasitic and free-living generations. Infection is achieved by infective third 

stage larvae (iL3s) penetrating the skin of a susceptible host. These larvae migrate 

through the body and eventually establish in the small intestine as adult parasites 

(Grove 1989). The route of migration has long been supposed to be along the Loos-

Fuelleborn 'blood-lung' route (Abadie 1963). However, Tindall and Wilson (Tindall 

& Wilson 1988) demonstrated by compartmental analysis that at least 35% of larvae 

establishing in the small intestine migrated via the naso-frontal head region, and that 

this was an essential pathway for successful development to an adult parasite. 

Migration through the lung was found to occur in a low proportion of infecting larvae. 

This was however not essential for further development, in contrast to 

Nippostrongylus brasiliensis, for which migration by this route was a prerequisite for 

successful establishment (Tindall & Wilson 1988). This demonstrates that not all skin-

penetrating nematodes have similar routes of migration. 

The intestinal phase of the Strong yloides infection consists solely of adult 

female parasites embedded in the gut mucosa (Abadie 1963). These parasites 

reproduce parthenogenetically and the eggs are passed into the external environment in 

faeces, where further development occurs. Strongyloides species are unique amongst 

parasitic nematodes in that the free-living generation can undergo two types of 

development, termed homogonic and heterogonic (Figure 1.1). In homoonic 

development, larvae moult through first and second larval stages into infective third 

stage larvae (iL3s) which can infect a host directly. In heterogonic development, larvae 

develop into free living dioecious adults that mate and whose progeny develop into 

iL3s. Thus, the life cycle of Strongyloides can be completed with or without sexual 

reproduction. Although the cycle is common to all species of Strongyloides, only S. 

planiceps have been shown to be able to undergo multiple free living generations 

(Yamathetal. 1991). 
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Figure 1.1. The life cycle of Strongyloides ratti. Larval stages are denoted by "L" 

(from Viney et al. 1993). 



1.1.3 The biology of Strongyloides ratti 

Two species of Strongyloides have been described from rats, S. venezuelensis 

Brumpt, 1934 from R. norvegicus in Venezuela and S. ratti Sandground, 1925 from 

Rams sp. in Baltimore, USA. It is possible to differentiate these two species 

morphologically by their gut/ovary disposition and the shape of the stoma in en face 

view of the parasitic female (Little 1966a). 

S. ratti shares the basic Strongyloides developmental plan in that a population 

of larvae isolated from a rat may develop by either the heterogonic or homogonic 

routes (Figure 1.1). Studies by Viney (Viney 1994) on the inheritance of genetic 

markers have shown that reproduction by the female parasite is by mitotic 

parthenogenesis and as a consequence the progeny are genetically identical to each 

other and to the parent. The mode of inheritance in free living adult worms was 

originally thought to be a form of meiotic parthenogenesis, and that inheritance was 

maternal only (Zaffagnini 1973; Triantaphyllou & Monocol 1977). That genetic 

exchange occured between free living males and females of S. ratti was demonstrated 

by Viney (Viney et al. 1993). In this study it was shown, using multilocus genetic 

markers, that segregation and recombination of alleles at several loci occured, and that 

these were consistent with normal sexual reproduction. Thus, the heterogonic cycle is 

the only phase in S. ratti life cycle in which genetic recombination occurs. 

1.1.4 Development of S. ratti 

The development of S. ratti is influenced by environmental and genetic 

components. The genetic component has been demonstrated by selection experiments 

showing that heterogonic and homogonic development are heritable traits (Viney 

1996). This has been shown by selecting the larvae produced by an S. ratti line to 

develop by heterogonic or homogonic routes. These larvae were used to reinfect rats 

and the selection procedure repeated. Significant responses were observed to selection 

after 14 generations. Selection was successful in producing a line that was wholly 

homogonic; however there was a limit to selection for heterogonic development, 

suggesting a biological limit for this trait. 

Work on the influence of the environment on the development of Strong yloides 

spp. has shown that extra-host factors, such as temperature, crowding and food 

availability are important (Schad 1989). A general conclusion is that an increase in 

heterogomc development occurs with "increasingly stressful environmental conditions" 

for the parasite. That the within host environment may also influence the 
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developmental route taken, has been demonstrated. Measurements show that the 

proportions of larvae developing heterogonically is high in certain isofemale lines of S. 

rat/i (Viney et al. 1992). In these lines, infrapopulations (the parasites within a single 

host) of the parasite become steadily biased to development by the heterogonic route 

during the course of an infection (Viney 1996). At the start of the patent period, 75 - 

90% of larvae develop homogonically into 11-3s, however by the end of the infection, 

75 - 85% of larvae develop heterogonically into free living adults. That the immune 

response is a major factor in determining the amount of heterogonic development has 

been confirmed by experimental manipulations of host immunity. In one experiment, 

three groups of rats were infected with S. ratti; immunocompromised, naive, and rats 

with previously acquired immunity to the parasite. Heterogonic development was least 

in the immunocompromised hosts, intermediate in naive rats, and greatest in rats with a 

previous history of exposure (Gemmil et al. 1997). Thus, it appears that larvae are 

more likely to develop into sexual adults as hosts develop immunity against parasitic 

females. Whether this is evidence that sexual reproduction is maintained in S. ratti as a 

mechanism for generating genetic diversity and thus avoidance of a genotype-specific 

host immune response is currently under debate. 

1.1.5 The geographical and host distribution of S. ratti 

S. ratti has been recovered from rats over a large proportion of the globe. Sites 

from which it has been recorded are listed in Table 1.1. The small size of the parasitic 

females (1.85 - 3.03 mm (Sandground 1925)) and the fact that they are embedded in 

the gut-wall means that faecal culture is usually necessary to diagnose infected rats. 

Neither species of Strongyloides have been reported from rats in Britain and Europe in 

studies designed to survey the parasitic fauna of Rattus norvegicus (Owen 1976; 

Webster & MacDonald 1995). However, the presence of S. ratti within Britain has 

been shown by Viney (Viney 1990), suggesting that the previous studies may have 

overlooked the infection. 
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Area 

Rattus rattus 

Rattus norvegicus 

Sigmodon hispidus 

Rattus norvegicus 

Rattus norvegicus 

Bandicotaindica 

Rattus tiomanicus, 

Rattus exulans 

Rattus norvegicus 

Rattus sabanus 

Rattus annandalei 

Ratlus argenilventer 

Raltus rattus diardii 

Rattus rattus 

Rattus norvegicus 

Rattus argenti venter 

(Udonsi 1989) 

(Graham 1936) 

(Boggs etal. 199 1) 

(Viney etal. 1992) 

(Viney 1990) 

(Sinniah 1979) 

ff 

if 

I, 

it 

it 

it 

it 

(Hasegawa et al. 1994) 

(Wertheim et al. 1970) 

(Hasegawa etal. 1992) 

Port Harcourt, Nigeria 

New Jersey, USA 

Oklahoma, USA 

Britain 

Kagoshima, Japan 

Malaysia 

it 

if 

ff 

VV 

it 

to 

it 

Lanyu, Taiwan 

Tel-Aviv, Israel 

West Java, Indonesia 

14.7% 

6.5% 

73.9% 

23.1% 

8.6% 

16.7% 

35.9% 

14.6% 

62.6% 

Table 1.1 Geographical distribution of rodent surveys that have recorded S.ratti 

infections. 'species undifferentiated (S. ratti or S. venezuelensis) 

In the absence of morphological markers, host fidelity of Strong yloides spp. 

has been used as a method of differentiating species. The genus generally shows high 

specificity of species to particular hosts. S. ratti is found within a range of rat species 

(Sinniah 1979) and can be maintained in inbred mice with some degree of success, 

depending on the strain of mouse used (Dawkins et al. 1980). Successful infections 

have also been established in the gerbil Meriones unguiculatus (Niamatali et al. 1992). 

However, the infection is refractory to rabbits (Sandground 1925) and man (Viney, 

pers. comm.). That natural S. ratti infections have not been reported in rodent species 

other than rats suggests that natural populations of the parasite are maintained solely 

within rat populations. However, it is not possible to discount the possibility that, if 

found within a non-rat host, the parasite may have been mis-identified as a separate 

species. 
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1.1.6 Epidemiology of S. ratti infections 

The global prevalence of infection of S. ratti is 29% (standard deviation = 

21 %),  calculated from 11 studies (Table 1.1). The infection is thus common in natural 

populations of rats. 

The durations of S. ratti infections in the field is not known. Studies of S. 

stercoralis infections in man have shown that ex-far east prisoners of war retain life-

long infections due to continuous cycles of autoinfection (Cook 1987). However, there 

is no evidence that this occurs in S. ratti. Chronic infections of S. ratti lasting from five 

months to a year have been reported in laboratory infections of Meriones unguiculatus 

(Niamatali et al. 1992). Post mortem examinations have found no intestinal 

development of iL3s, and thus autoinfection as a mechanism maintaining infection can 

probably be ruled out. Laboratory infections typically resolve in 4-6 weeks (Gemmil et 

al. 1997; Viney 1996). However infections in caged wild rats typically remain high 

over six months (Fisher 1997) (section 3.2.7b). This suggests that a difference in the 

strength of immunity between wild and laboratory rats exists. That the strength of the 

immune response is dependent on the size of parasite infections in laboratory rats has 

been demonstrated by Uchikawa (Uchikawa et al. 1989), where the rate of expulsion 

of worms was found to be dependent on the size of infective dose of iL3s. Moreover, 

chronic infections in rats lasting for 149 days (Graham (1940) can be established by 

infection with single iL3s. These studies suggest that naturally infected rats may have 

more persistent infections, due principally either to lower worm burdens, or to less 

effective immunity, than occurs in laboratory rats. 

Transmission in the field is probably predominately by skin-penetration of rats 

by mature iL3s. However, transmission in the field may also occur by transmammary 

transmission between female rats and offspring. Kawanabe (Kawanabe et al. 1988) 

demonstrated that mothers transmitted infections to suckling offspring up to 36 hours 

post infection. This presumably occured by the offspring ingesting larvae migrating 

subcutaneously through the parent (Tindall & Wilson 1988). However, the relative 

importance of this process in the field is not known. 

1.1.7 The epidemiology and distribution of nematode infections 

The distribution of parasitic nematode infections share certain general 

characteristics. All helminth species examined have been found to have aggregated 

distributions in hosts, with a minority of hosts containing the majority of parasites 

(Crofton 1971b; Shaw & Dobson 1995). This aggregation is effectively described by 



the negative binomial distribution and is characterised by variance to mean ratio greater 

than one (s21x> 1) (Anderson & May 1992). The overdispersion of helminths means 

that the majority of the parasite population is concentrated in a few hosts, while the 

remainder is thinly and patchily distributed throughout a large number of hosts. 

Aggregated distributions are thought to arise as a consequence of 

heterogeneities within the host population (Grenfell et al. 1995). These heterogeneities 

may arise due to variation between hosts in one, or a combination of several, factors 

which include (i) the genetics of the host, (ii) the immunological status of the host and 

the rate of exposure of the host to the parasite (Anderson & May 1992). 

That resistance to infection exists, and is in part a genetically determined 

trait, has been shown in many breeding studies where small ruminants have been 

successfully selected for the criterion "ability to initiate and maintain anti-parasitic 

responses" (Woolaston & Baker 1996). The genetic component of the most often 

measured trait "reduction of faecal egg counts" (FEC) has been shown to be moderate 

with heritabilities of 0.2 - 0.3 (Gray etal. 1995). The bulk of the data indicates that the 

resistant phenotype is a polygenically determined trait and results from a combination 

of additive and non-additive genetic effects with environmental modifiers (Beh & 

Maddox 1996). A study of worm burdens in wild Soay sheep has found significant 

associations between alleles of the major histocompatibility complex and reduction in 

FECs (Paterson et al. 1997) suggesting that the genes involved in immune responses 

are important in determining susceptibility to infection. However, other studies on 

correlations between MHC alleles and resistance to infection in domestic animals have 

found no significant associations (Blattman et al. 1993). 

The immunological status of the host has been demonstrated as a cause of 

predisposition to infection, and thus as a mechanism in causing overdispersion. For 

instance, studies of Heligmosomoides polygyrus infections in mice have shown that 

overdispersed populations of parasites naturally establish themselves within laboratory 

populations of outbred mice. Work in which these mice were cured, then allowed to 

reinfect themselves, demonstrated a significant variation in predisposition to infection 

(Scott 1987). It was subsequently shown that greater parasite aggregation occurred 

within host populations that had acquired resistance to infection (Tanguay & Scott 

1992). This shows first that there is heterogeneity between individual mice in ability to 

mount an immune response, and second that this heterogeneity causes overdispersion 

of the parasite population. The nature of the variation between individuals in their 
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ability to mount an immune response is unclear. A genetic component is clearly 

observed as discussed above in (i). The nutritional status of the host is also 

undoubtedly important. Low dietary protein content (2% as opposed to 8%) severely 

compromises the effectiveness of mice to clear H. polygyrus infections (Slater & 

Keymer 1986). Similarly, it has been shown that reducing the zinc content in rats' diet 

increases the effectiveness of establishment of S. ratti infections (Fenwick et al. 1990). 

It is unlikely that hosts are of similar nutritional status in natural settings and so this 

factor may be an important mechanism in generating overdispersion. 

(iii) Heterogeneity between hosts in their exposure to the parasite may occur. 

This may be caused either by variation in host behaviour or by variation in the temporal 

or spatial distribution of infective stages of the parasite (Anderson & May 1992). 

Several studies have characterised the temporal dynamics of parasite prevalence and 

patterns ranging from long term stability (ie. Acanthocephalan parasites of fish 

(Kennedy 1987)) to cycles that vary seasonally (ie. helminths in field mice 

(Montgomery & Montgomery 1989) have been found. That these cycles may be 

governed by the density of the host distribution has been suggested by Hudson etal. in 

response to the observation that the population densities of Trichostrongylus tenuis and 

red grouse appear to be correlated (Hudson et al. 1992). 

That the infective stages of helminths mirror the within-host distribution and 

are aggregated in the environment was demonstrated by Hominick et al. In this 

experiment, the application of damp pads on the ground in an area with endemic 

Ancylostoma duodenale infection showed a high degree of aggregation (Hominick et 

at. 1987). Studies of Strongyloides stercoralis suggest that in endemic communities 

such non-random distributions may result in transmission on a limited scale. 

Household clusterings of infection were observed in communities in Jamaica (Lindo et 

al. 1995) and Bangladesh (Conway et al. 1995) suggesting person to person 

transmission of infection within households. The prevalence of infection within these 

populations was low with 3.5% of the population positive by faecal egg counts. 

Furthermore, no reinfection by S. stercoralis was seen following mass chemotherapy 

aimed at controlling infection (Goulart et al. 1977). These data suggests that S. 

stercorajis populations are characterised by low transmission rates and limited 

geographical dispersion of transmission stages. Whether this is true for S. ratti is not 

known although the greater prevalence of infection in rats (Table 1.1) suggest that the 

transmission rate may be higher. Genetic evidence that limited transmission, and hence 

spatial clustering of parasites occurs has been shown by Anderson (Anderson et al. 
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1993), where humans were found to contain genotypically identical Ascaris suutn 

more frequently than expected by chance. Unfortunately, no studies have examined 

whether limited spatial transmission or infection by (genetically) like parasites are 

important in generating overdispersed patterns of infection. This has been recognised 

in a recent symposium; 

11 A subsection of studies on predisposition should address the 

question; are heavily infected individuals becoming infected by 

their own macroparasites? This could be examined by comparing the 

variation in genetic relatedness between worms within, and between, 

individuals within a population." 

(Hudson and Dobson, 1995). 

1.1.8 The influence of nematode distribution on population genetic 

structure 

The influence of non-random distributions of nematode infections on 

population genetic structure is unknown. It was stated by Price (Price 1980) that; 

11 A paradigm of parasite population structure is that parasitic 

organisms are characterised by small populations with high levels of 

inbreeding, low intrapopulation genetic variability and high levels 

of interpopulation differentiation due to genetic drift and founder 

effects 

It is apparent from the above quote that Price assumes that parasites experience 

limited transmission and strong isolation. He reasons that hosts may be perceived as 

spatially and temporally varying resources. The 'patchiness' of the host environment is 

a consequence of low probabilities of establishment and high probabilities of extinction 

of the parasitic infection. Price argued that as a consequence of host 'patchiness', the 

gene pool of the parasite species would be substructured into many small isolated 

inbreeding compartments (ie. subpopulations). These would be expected to 

differentiate as a consequence of the genetic processes operating in subpopulations. 

1.1.9 The genetics of subdivided populations 

Clearly, nematode parasites may exist as subdivided populations if 

transmission is limited and local. Furthermore, overdispersed populations such as 

those found in parasitic nematodes may be subdivided due to the limited opportunity 
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for outbreeding in the majority of infections. If population subdivision occurs, then the 

ways in which this will influence the population genetic structure are manifest. 

Since studies by Dobzhansky and Wright in the '30s on the distribution of 

recessive lethal alleles within natural populations of Drosophila pseudoobscura, it has 

been apparent that genetic variation may be structured between natural populations. 

Wright (Wright 1931) held that genetic drift in the frequencies of alleles and 

heterozygosity would occur in isolated populations. This is due to stochastic effects, 

such as the genetic sampling that occurs during breeding. For neutral variation, 

random genetic drift may be an important mechanism in determining the amount of 

differentiation between populations. The rate of genetic drift depends on the numbers 

of individuals contributing progeny to the next generation. This was defined by 

Kimura and Crow (Kimura & Crow 1963) as the quantity of reproducing individuals 

in the parental generation that determine the degree of relatedness of the progeny, or 

the effective population size (Ne). Ne is determined by the amount of population 

subdivision within a species. Substructuring of a population into subpopulations 

reduces the size of Ne for each subpopulation, relative to that of the total population. If 

Ne is small, then the effect of sampling variation due to mating has an increased 

probability of being passed onto the next generation as a change in allele frequency 

(Hard & Clarke 1989), and genetic drift occurs. For instance, stochastic models show 

that in a parasite population with Ne of 1000 and a generation time of 90 days, the 

average time to fixation of a neutral mutation is 1000 years. However, if Ne is reduced 

to 50, then fixation will be expected to occur within 50 years (Nadler 1995). 

As well as population subdivision, the breeding system of the species will 

determine Ne. Species with biased sex ratios have reduced Ne relative to the total 

number of breeding adults. This is due to over-representation of alleles from the rare 

sex in each generation. The effect will be especially marked in species that show 

restricted genetic segregation as a consequence of facultative sexual reproduction, and 

may be expected in Strongyloides ratti. 

Ne, and thus the amount of genetic differentiation between subpopulations that 

is attributable to the effect of drift, is dependent on gene flow. If gene flow between 

subpopulations is high then the relatedness between individuals within subpopulations 

will be low, and Ne will be large. Gene flow may be considered by under Wright's 

Island model in which populations exchange a certain number of individuals, m, each 

generation. If Nem> 1 between populations then, at equilibrium, differentiation due to 
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drift will not occur. Conversely, for values of N.'n < 1, the effects of gene flow are 

not strong enough to homogenise allele frequencies between populations and drift will 

occur (Slatkin 1987). Therefore, the genetic structure of nematode species will be 

shaped by the movement of individual parasites, or by groups of parasites, between 

subpopulations. This is in part a function of the transmission rate of the species, and 

will be determined by the same factors, such as the basic reproductive rate (Ro), host 

mobility and density, environmental resistance of infective stages and numbers of 

obligate hosts in the life cycle. 

The amount of gene flow between subpopulations is important when 

considering the rate of dispersal of alleles. This is especially important when 

considering the effect on alleles that are under selection. For instance, the worldwide 

distribution of organophosphate resistance in the mosquito Culex pipiens has been 

shown to be derived from an allele that arose once (Raymond et al. 1991). The rate of 

spread of this rare resistance allele is determined by rates of gene flow, however the 

frequency of such alleles in subpopulations is, to a great extent, determined by 

selection. Within a closed nematode population (ie. there is no dispersion from 

adjacent populations) that is under constant selection pressure from a drug, resistance 

alleles increase in frequency with each successive parasite generation. The rate of 

increase in frequency of these resistance alleles depends on (i) the generation time of 

the parasite and (ii) the relative fitness of resistance and susceptible alleles (Crow 

1986). The time for a significant accumulation of resistant individuals depends on (i) 

and (ii) as well as the initial frequency of the resistance allele in the population and the 

threshold at which resistance is recognised (Anderson & May 1992). However, 

parasite populations are not closed and gene flow from reservoirs of untreated parasites 

can occur. As shown in a theoretical paper by Comins (Comins 1977a), these 

individuals will prevent fixation of resistant mutations within the selected population if 

m is high enough. Conversely, gene flow may also act to spread resistance genotypes 

into populations that had not previously evolved specific responses against selective 

agents (Endler 1977). The introduction of a novel selected allele into a subpopulation 

will lead to an increase in its frequency at a rate that, while more rapid than that of a 

neutral mutation, is also dependent on the Ne of the subpopulation. That is, the 

expected fixation time of the resistance allele is greater in subpopulations with large 

Ne. 

There is a growing body of empirical evidence to show that population 

subdivision is a potent force in evolution. Microevolution of phytophagous insects 
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such as leaf miners (Stilbosis quadricu.statella), as a consequence of selection by the 

particular defence traits of individual host plants, has been cited as a mechanism by 

which sympatnc yet genetically distinct races form (Mopper 1996). Experiments on 

several insect species show that individuals transplanted from natal to novel hosts 

suffer a competitive disadvantage e.g. (Karban 1989). Differentiation between 

populations occurs on small spatial scales (ie. between adjacent plants). This occurs 

even in species with relatively high migration rates. It is acknowledged that only a little 

gene flow is needed to homogenise populations (Slatkin 1987), and therefore strong 

selection by host traits seems to be the mechanism that maintains genetic differentiation 

within this system. This hypothesis is supported by the observation that intimacy of 

mode of feeding by the insect (and hence exposure to host defence mechanisms) and 

not dispersive ability is the major determinant of genetic isolation (Mopper 1996). 

There are obvious parallels between this system and endoparasitic species where the 

host defence mechanisms (ie. the immune system) are exquisitely sensitive to 

individual parasite traits. 

1.1.10 Genetic variation in helminth populations 

If parasitism predisposes species of a parasite to a subdivided population 

structure (Price 1980), then low overall genetic diversity relative to free-living species 

will result due to the effects of inbreeding and genetic drift (Hard & Clarke 1989). 

There is strong evidence however that this is not the case for parasitic helminths. 

Intraspecific genetic variation is widespread within natural populations. This 

conclusion is supported by studies on 1) the response of morphological and 

phenotypic characters to artificial selection (Fincham 1994) 2) the deleterious effects of 

inbreeding e.g. (Sved & Ayala 1970) and 3) surveys of whole-genomes for molecular 

variation e.g. (Lander & Botstein 1989). The genetic diversity of free living 

invertebrate species is as a rule higher than is observed for vertebrates, proportions of 

polymorphic loci ranging from 17.5% - 58.7% within the invertebrates compared to 

14.5% - 33.6% in vertebrates (Selander 1976). 

Generally, helminth parasites exhibit little intraspecific morphological variation 

(Thompson & Lymbery 1990). Furthermore, if present, the use of variation in 

morphological characters as a method of characterising intraspecific variation is 

difficult. This is in part due to the effect of host-induced variation on parasite 

characters. For instance, factor analysis was used to discriminate between two strains 

of Echinoccoccus granulosus on the basis of rostellar morphology. Despite the fact that 
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these strains differ genetically and biologically, no difference was found. Rather, the 

morphological variation in rostellar characters correlated with the type of host most 

recently infected, showing that there is phenotypic plasticity for this character 

(Lymbery et al. 1990b). However, examples of genetically determined intraspecific 

morphological variation do exist. Haemonchus contortus characteristically has five 

vulval-morphs that can be maintained as inbred lines. The three main morphs respond 

to selection and segregate in crosses (LeJambre et al. 1972), showing that there is a 

genetic basis for the variation. 

Many studies have surveyed parasitic helminths for variation in isoenzymes. 

Among 33 taxa of parasitic helminths surveyed for isoenzyme polymorphisms, 23% of 

loci were polymorphic (n = 11 - 38 loci) and of these loci, an average of 7% were 

heterozygous within individuals (Nadler 1990). The frequencies of polymorphic loci 

within these species are similar to those observed in free-living invertebrates where 

39% of loci were polymorphic (Nevo 1978). Mean heterozygosity is also similar with 

levels of 10% observed in free-living invertebrate species (Nevo 1978). 

Of the 33 parasitic helminths surveyed, 17 were Ascandoid nematodes. Within 

this group, 37% of the loci were polymorphic and the mean frequency of heterozygous 

loci within individuals was 9.5% (n = 18 - 24 loci) (Bullini & Nascetti 1986). In this 

study, a significant difference was observed in both mean polymorphism and 

heterozygosity between the species with simple (one host) and complex (more than one 

host) life cycles. Frequencies of polymorphic loci of 24% and 64%, and 

heterozygosities of 4% and 15%, were observed for the species with simple and 

complex life cycles, respectively. It is possible that this difference results from natural 

selection maintaining genetic diversity within species that have adapted to more than 

one host. However, assessment of the heterogeneity of a parasites lifecycle is a 

subjective exercise, as even simple cycles involve a broad range of microenvironments 

presented within the bodies of single hosts (Read & Skorping 1995). 

Measurements of the genetic diversity of samples of Ascaris suum collected 

from pigs and humans in Guatemala show levels of polymorphism at enzyme loci 

(38%) similar to that observed in other nematodes (Anderson et al. 1993). Similar 

frequencies were found in samples collected in the USA by Leslie (Leslie et al. 1982) 

(20%) and Nadler (Nadler et al. 1995) (46%). The genetic diversity of mitochondrial 

DNA (mtDNA) within Guatemalan populations was measured by restriction digests of 

PCR (polymerase chain reaction)-amplified mtDNA. Nucleotide diversity was 0.89% 
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and 1.57% for populations of parasites from pigs and humans respectively (Anderson 

et al. 1993). These values are higher than those usually found from the mtDNA of 

free-living taxa, which range from 0.05 - 0.51% (Lynch & Crease 1990). Parasites 

from pigs and humans within this area have been shown to be composed of almost 

completely genetically isolated populations, and the high mtDNA diversity may be 

explained by rare introgression events of haplotypes into the separate gene pools. 

However after correcting for the effects of the most extreme haplotypes, diversities 

were still high (0.36%). 

A similar study within five species of tnchostrongyle nematodes found mtDNA 

nucleotide diversities twice as high (Blouin et al. 1995). The mean value, 2.5%, was 

amongst the highest reported for any taxa. There are several mechanisms which might 

maintain the high mtDNA diversity observed within these populations, (i) an 

accelerated rate of nucleotide substitutions within nematode mtDNA, (ii) the sampled 

populations being mixtures of individuals from previously differentiated populations 

and (iii) large long term effective population sizes. While it is not clear which 

mechanism predominates within this system, the population sizes of Trichostrongyles 

are usually one to two orders of magnitude higher than those of A. suum (Nadler et al. 

1995). Thus, the difference in mtDNA diversity between the two species may well be a 

consequence of the differences in population sizes. Genetic variation at nuclear DNA 

loci was measured for two 13—tubulin genes of Haemonchus contortus by restriction 

surveys of PCR amplified loci (Beech etal. 1994). Nucleotide diversity was measured 

at 9.4% and 9.1% for each locus. This is much higher than that found in free-living 

taxa where values of 0.03 - 0.57% are characteristic (Lynch & Crease 1990). It is also 

higher than that measured in H. contortus mtDNA (Blouin etal. 1992). This result is 

unusual, the mtDNA having a mutation rate that is approximately 10 times greater than 

that observed in nuclear DNA (Thomas & Wilson 1991). Therefore, either these genes 

have an uncharacteristically high mutation rate or they are highly divergent due to 

extensive population subdivision. 

In conclusion, helminth species show extensive genetic diversity at both 

nuclear and mtDNA loci. Moreover, there is no evidence to support the hypothesis that 

a parasitic mode of life results in reduced levels of genetic diversity relative to that 

found in free living organisms. 
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1.1.11 Population genetic structure of parasitic helminths 

This section examines what evidence there is that the genetic variation seen in 

helminth species is structured into subpopulations. The population genetic structure of 

nematode parasites will depend to a large extent on the effective population size, Ne, of 

parasite subpopulations. 

The effect of host movement on population genetic structure: 

A major determinant of Ne, and thus of parasite population structure, will be 

the mobility of the host and the effect that this has on encountering and dispersing 

infective parasite stages. Studies on ascaridoid nematode parasites of pelagic marine 

mammals (e.g. seals) which use fish and invertebrates as intermediate hosts have 

shown low amounts of genetic structuring across distances of more than 5000 km 

(Paggi et al. 1991; Nascetti et al. 1993). The authors reported that 94-98 % of genetic 

variation was attributable to within sample site variation, lack of genetic differentiation 

between sites being consistent with the hypothesis that seal migration and 

dissemination of larvae in fish and current-born invertebrates causes high rates of gene 

flow across large geographic distances. 

A comparative analysis of the distribution of mitochondrial diversity within five 

trichostrongylid species (Blouin 1995) was used to demonstrate the effect of host 

mobility on population genetic structure. These five species have direct life cycles with 

obligate sexual reproduction; however four are parasites of agricultural animals 

(Ostertagia ostertagi and Haemonchusplacei in cattle, H. contortus and Teladorsagia 

circumcincta in sheep) and one a parasite of wild deer (Mazamastrongylus odocoilei). 

Nucleotide diversity was measured by sequencing a 600 bp fragment of mitochondrial 

DNA from 9-11 individuals of each species sampled from five sites across the USA. 

Genetic differentiation between the populations of parasites of agricultural animals was 

small, 96-99% of the total genetic diversity being distributed within sampling sites. 

These data are consistent with an earlier study (Blouin 1992) showing a similar lack of 

genetic differentiation between 0. ostertagi populations as measured by total 

mitochondnal DNA diversity. The population structure of these parasite species is 

therefore that of a single, interbreeding population (panmixia). Populations of M. 

odocoilei were much more structured, 31% of the genetic variation being distributed 

between populations. Genetic distances between populations within this species were 

positively correlated with increases in geographical distance. This is consistent with the 

hypothesis that infrequent gene flow is occurring between M. odocoeli populations due 

to limited dispersal of deer relative to the large-scale movement of agricultural animals. 



Therefore, it appears that host movement is a major determinant of nematode parasite 

population structure. 

The effect ofpopulation size on population genetic structure: 

Host movement is not the only factor determining population genetic structure. 

In contrasting Ascaris suum and Ostertagiaostertagi, it is evident that although both are 

parasites of livestock (A. suum of pigs and 0. ostertagi of cattle) sharing similar life 

cycles, there are significant differences in the genetic structure of the species. Studies 

by Anderson et al.( 1995) and Nadler et al. (1994) have shown significant population 

structure of A. suum infections of pigs in Venezuela and the USA. Genotypes were 

non-randomly distributed between hosts within and between geographic areas, and 

departures from Hardy Weinberg expectations in the USA samples provided evidence 

for non-randomly mating populations (Nadler et al. 1995). The main difference 

between the two species is in Ne. The average intensity of infection for A. suum in 

Venezuelan pigs was 4.8 (Anderson et al. 1993) compared to 10-100 000 0. ostertagi 

in cattle (Williams et al. 1983). Furthermore, the sex ratio in A. suum is usually 

biased, with two times the number of females compared to males, a factor that further 

reduces Ne in this species (Nadler et al. 1995). It was concluded that genetic drift may 

be the cause of population differentiation within this species. 

1.1.12 Helminth population genetics and strains 

Members of parasite species that vary in biological characters, such as host 

specificity, infectivity or morphology, are frequently classified as 'strains'. The 

existence of a parasite strain implies a degree of genetic isolation and thus divergence. 

However, patterns of genetic differentiation may, or may not, concur with patterns of 

biological variation. For instance, the cestode parasite Echinococcus granulosus has 

been traditionally recognised as comprising nine separate strains on the basis of 

differences in characters such as host specificity and development rate. Much effort has 

been expended on using genetic variation as a means of characterising these strains, 

but with equivocal results. Significant genetic differentiation has been measured 

between populations on mainland Australia and Tasmania, supporting the designation 

of these populations as strains on the basis of biological differences (Thompson & 

Lymbery 1996). These strains are not monomorphic 'clones', which suggests that 

cross-fertilisation is occuring among them. In Australia, the parasite has two separate 

transmission cycles, domestic, involving dogs, and sylvatic, involving dingoes. 

Despite differences in the onset of egg production, analysis of isoenzyme 

polymorphisms found no significant genetic differentiation between samples from the 

19 



two cycles arguing that the strains are not reproductively separate (Lymbery et al. 

1990a). Furthermore, there is as much differentiation between the strains of E. 

granulosus as there is between E. granulosus and its conspecifics E. multilocularis, E. 

vogeli and E. oligarthrus. This illustrates the difficulty of defining species, let alone 

strains, on the basis of genetic criteria alone (Lymbery & Thompson 1996). 

The techniques of population genetics have found useful application in 

elucidating the epidemiology of Onchocerca volvulus. Differences between the 

pathogenicities of rain forest and Savannah 'strains' of the parasite were observed in 

epidemics of sub-Saharan Africa (Anderson et al. 1974). A description of the 

taxonomy of the vector species Simulium damnosum showed that S. damnosum was a 

species complex, raising the possibility that variation in 0. volvulus strains were due 

to adaptation to separate vector sibling species. The 0. volvulus strains were assumed 

to be ecologically separate when the West African Onchocerciasis Control Project was 

being developed. To test this assumption, Flockhart et al. (Flockhart et al. 1986) used 

enzyme electrophoresis to determine the genetic distance between the forest and 

Savannah strains. A hierarchical analysis of variance found little inter-patient 

heterogeneity in infection and no significant differentiation in allele frequencies 

between villages within countries. Significant heterogeneity was found between 

separate countries, except for those that contained the forest forms of the parasite. 

These were genetically more similar to each other than to the Savannah isolates 

supporting the conclusion that there were ecologically separated strains of the parasite. 

The genetic distances measured were not great enough to group the strains as separate 

species suggesting (i) that there is some gene flow between the strains or (ii) that strain 

formation is a relatively recent event. 

1.1.13 The effect of asexual reproduction on population genetic 

structure 

The effects of asexuality on parasite genetic structure have rarely been 

investigated. The existence of asexual amplification stages in Digenean trematode 

parasites within intermediate hosts has the potential to superinfect hosts with like-

genotypes due to clumping of infective stages. The platyhelminth Fascioloides magna 

parasitises white-tailed deer, hermaphroditic adults mating and releasing eggs from the 

liver. On hatching into miracidia and infecting a lymnaeid snail, asexual reproduction 

produces 300-600 infectious metacercaerial clones. Mulvey et al. (Mulvey et al. 

1991b), in a study of F. magna in deer populations of South Carolina, found a highly 

aggregated distribution of parasites amongst hosts. Electrophoreti c genotypes, 
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measured for both parasites and their hosts, showed that deer tend to be infected with 

populations of adult flukes of the same multilocus genotypes. The likelihood exists that 

clumping of identical metacercariae on deer browse increases the probability of deer 

ingesting parasites of like genotypes, thus structuring the populations so that most of 

the genetic variation is between, rather than within individual deer. Genetic 

substructuring of the F. magna and White-tailed deer populations between 

geographically separated sampling areas was negligible. However, the total study area 

was only 30 km across and the long life span of the parasite coupled with wide-

ranging male deer would ensure high rates of gene flow between the parasite 

populations (Mulvey etal. 1991b). Lydeard et al. (Lydeard et al. 1989) sampled F. 

magna from widely separated localities in South Carolina and Tennessee. 18% of 

variation was attributable to between-State differentiation. This correlated with 

increasing geographical distance showing that the parasite subpopulations conform to a 

stepping-stone model of isolation by distance (Kimura 1964). 

Several species of parasitic nematode, such as S. ratti and Melidogyne spp. 

have parthenogenetic modes of reproduction. Parthenogenesis may result in 

contrasting population genetic structures compared to equivalent dioecious species. 

Functionally, parthenogenetic systems can be divided into automictic and apomictic 

modes of reproduction. In the former, meiosis occurs during the formation of zygotes 

and a consequential doubling of chromosome number occurs at some point in the life 

cycle to reconstitute diploidy. In apomictic parthenogenesis, meiosis is absent and 

oocytes are produced by mitotic division. This parthenogenetic system predominates in 

taxa of cyclical and obligate parthenogens (Hughes 1989) and I will confine my 

consideration to the species utilising this mode of reproduction. 

For apomictic parthenogens, each reproducing female produces genetically 

identical clones of itself. These clones multiply as asexual lineages, sometimes known 

as 'races' or 'strains' (Hughes 1989). The patterns of genetic structure in populations 

of apomictic parthenogens are clear. In clonal reproduction, the entire genome is 

effectively linked. The higher the proportion of clonality (parthenogenesis) to genetic 

recombination (sexual reproduction), the stronger are the associations between alleles 

at different loci. Therefore, the repeated recovery of the same multilocus genotypes, 

especially over long distances, is strong evidence for clonal reproduction (Thompson 

& Lymbery 1990; Tibayrenc et al. 1990). In contrast, for sexually reproducing 

populations there are low linkage associations between alleles at separate loci and 

recovering the same multilocus genotype is a rare event. This method of detecting 
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clonal reproduction has found great use in characterising the mating systems of species 

where amounts of genetic recombination are rare or unknown. For instance, 

population genetic studies have shown that unicellular pathogens such as Trypanosoma 

cruzi and Salmonella enterica are almost exclusively clonal (Maynard-Smith et al. 

1993), whereas the pathogenic fungus Coccidioides immitis has a completely 

recombining population structure, despite the lack of any known sexual phase in its 

life-cycle (Burt etal. 1996). 

A general observation is that parthenogenetic species are, somewhat counter-

intuitively, often genetically diverse. In parthenogens, there are several possible 

sources of diversity. First, within strains, levels of diversity will accumulate over time 

due to mutation (Muller 1964). Second, the species may have polyphyletic (multiple) 

origins from a sexual ancestor (Parker 1979), each origin giving rise to a new, 

genetically distinct, strain. For instance, high levels of genetic diversity are found in a 

species of parthenogenetic gecko, Heteronotia binoei, manifested both as high 

frequencies of heterozygous enzyme loci within clones, and genetic variation between 

clones. The clones were characterised by combinations of alleles found in two sexually 

reproducing diploid lizard populations; these loci were fixed for alternative alleles in 

the sexual lizard populations, and appeared as heterozygotes in the parthenogenetic 

species. This appeared to be consistent with the theory that the parthenogenetic species 

had arisen from multiple hybrid origins, each hybridisation event sampling the gene 

pools of the 'parental' species and creating new 'daughter' multilocus genotype 

(Moritz 1989). A contrasting situation is demonstrated by a species of trematode 

parasite, Paragonimus westermani. This species occurs as both dioecious diploid, and 

parthenogenetic triploid, forms. Although the diploid form has been found to be 

genetically variable, triploid parasites have been found to have fixed heterozygosities at 

five enzyme loci, and fixed homozygosities at four others. This suggests that the 

triploid form has arisen from a single hybrid event, and therefore has a monophyletic 

origin that reflects the genetic composition of the original mating event (Agatsuma & 

Habe 1985b). 

The population structure of parthenogenetic nematodes has been little studied. 

Melidogyne, a genus of root knot nematodes, contains species that reproduce by 

obligate parthenogenesis (M. arenaria, M. incognita, M. javanica) and mictic 

reproduction (M. hapla and M. naasi). Studies by Dalmasso and Berge (Dalmasso & 

Berge 1983) on the isoenzyme profiles of the taxa at six polymorphic loci showed clear 

differences between each species. Restriction digestion of total genomic DNA 
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revealing restriction fragment length polymorphisms in repetitive DNA sequences 

differentiated strains within the parthenogenetic species of Melidogyne (Curran et al. 

1986). Application of this technique revealed no intrapopulation genetic differentiation 

within species of sexually reproducing Melidogyne (Curran et al. 1985), therefore 

implicating a parthenogenetic mode of reproduction as a mechanism of maintaining 

independently evolving strains. Highly divergent groups of mtDNA haplotypes were 

found between each of the parthenogenetic species of Melidogyne, confirming the 

results of Dalmasso and Berge. Moreover, M. arenarkz contained lineages that were as 

distinct from each other as they were from M.javanica (Hugall etal. 1994). This has 

caused confusion of the taxonomic status of these species and illustrates the difficulty 

of applying species concepts to asexual lineages. A modern interpretation of the 

species status of obligate parthenogens is that asexual lineages constitute separate 

evolutionary entities and therefore should be recognised as separate species (Frost & 

Wright 1989). 

1.1.14 Facultative parthenogens 

In Strong yloides ratti the presence of a dioecious generation will, to an extent, 

cancel out the effects of clonal reproduction. The longevity of genetically identical 

lineages will depend on the frequency of sexual reproduction within a population. 

Recombination will maintain genotype frequencies close to Hardy-Weinberg 

equilibrium if sexual reproduction is frequent. However, under conditions where 

sexual reproduction is rare, genotype frequencies will be distorted from random-

mating expectations and persistent multilocus genotypes would be expected. The 

effects of infrequent sexual reproduction are well demonstrated by the cyclical 

parthenogen, Daphniapulex. 

The cladoceran D. pulex shows varying amounts of sexual reproduction. 

Temperate populations alternate between sexual and parthenogenetic reproduction 

(cyclic parthenogenesis) whereas Arctic populations reproduce exclusively by obligate 

parthenogenesis. Arctic populations of Daphnia have been shown to have rich genetic 

diversity, this existing as many genetically distinct clones. Weider et al. (Welder & 

Hobaek 1994) found 49 allozyme clones in a sample of 3357 D. pulex from the 

Svalbard archipelago. Over half of the sample consisted of two predominating closely 

related clones distributed over a range of 700km. It seems therefore that there is 

widespread dispersal of the species via factors such as waterbirds or wind. The 

distribution of genotypes was heterogeneous with only 1-2 clones found per pond. 

This may be explained by invoking rare founder effects as the main process by which 
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new populations are established. An alternative hypothesis was that the genetic 

heterogeneity was a consequence of competitive exclusion between competing 

genotypes. That fitness differences exist between clones has been suggested by the 

observation that different clones are associated with different biotic environments i.e. 

within the study clone G2 dominated high salinity environments while clone GI was 

most often associated with low salinity pools. This is evidence for what is commonly 

known as the 'frozen niche hypothesis' (Vrijenhoek, 1979). Here, clonal genotypes 

are 'frozen' as specialists in the niche for which they are best adapted, which in this 

case is degree of pool salinity. The existence of multiple habitats may therefore be a 

mechanism that maintains genetic diversity in clonal populations (Weider & Hobaek 

1994). 

Studies on temperate cyclical parthenogenetic populations of D. pulex show a 

range of population structures, depending on the frequency of sexual reproduction. In 

small ponds that dry up, sexual reproduction is frequent with the result that genotypes 

are in Hardy-Weinberg equilibrium and clonal diversity is high, due to the mixing of 

parental genotypes. In permanent ponds, sexual reproduction is infrequent and 

genotypes deviate from expected Hardy-Weinberg proportions. The ponds also show a 

paucity of clones, as in the Arctic populations of D. pulex. That there is often an 

excess of heterozygotes within these stable populations (Hebert 1987b) suggests that 

heterozygosity may confer greater fitness on inbred lines of D. pulex. This process, 

known as heterosis, has been demonstrated by crossing clones of D. magna from 

England and Canada, the hybrid progeny showing greater heterozygosity as well as 

higher rates of population increase and resistance to changes in temperature and salinity 

(Hebert etal. 1982). 

1.1.15 Intraspecific genetic variation in Strongyloides spp. 

From the above discussion, several themes have emerged that are applicable to 

my study on S. ratti. First, parasitic nematodes show no evidence of genetic 

monomorphism relative to free-living species. Rather, levels of genetic diversity 

appear to be as high, or higher than expected. The mechanisms which maintain this 

diversity are subjects of debate. Second, the distribution of genetic variation is 

dependent to a large extent on host movement. Thus, the genetic structure of species of 

Strongyloides will be expected to depend to an extent on the type of host infected and 

its behaviour. Third, parthenogenesis will be expected to have an effect on population 

genetic structure by amplifying genotypic combinations when sexual reproduction is 
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infrequent and biasing genotypic frequencies from random mating expectations. This 

final section examines what is known about the genetic variation of Strongyloides spp. 

That there is genetic variation within Strongyloides sp. was first indicated by 

Galliard (1938) who carried out artificial infections of S. stercoralis in dogs. It was 

shown that there were differences between Vietnamese, Indian and West African 

isolates of the parasite in the dynamics of infection. This was interpreted as being due 

to geographical races of S. stercoralis that varied in their virulence, and perhaps in their 

genetic composition. Viney and Ashford (Viney & Ashford 1990) attempted a 

classification of Strongyloides species using isoenzyme methods. Isoenzyme profiles 

were determined for 82 isolates of Strongyloides: 26 collected from Papua New 

Guinea (PNG) humans, 21 from PNG domestic animals and 14 from African non-

human primates. The analysis showed that Strong yloides infecting humans in PNG 

was a sub-species of Strongyloides fuelleborni, previously thought to infect only 

primates in Africa, and that a separate species infected domestic animals. A significant 

amount of inter-isolate genetic heterogeneity in S. fuelleborni was also observed. The 

extent of the genetic heterogeneity found in parasites taken from a single host 

population was, in some cases, as great as the heterogeneity found between isolates 

that were from putatively separate populations. However, such heterogeneity was not 

found in a study on isolates of S. ratti (Viney et al. 1992). Seven isolates from 

America, Japan and the UK were cloned (populations derived from a single iL3) and 

examined for isoenzyme polymorphisms, but none was found at eight enzyme loci. 

This was despite measurements on the frequency of heterogonic development within 

the isolates, which showed extensive variation between lines. This variation was 

reproducible over a period of months, confirming that its origin was genetic. 
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1.2 Summary 
The population genetic structure of parasitic nematodes is understudied. Only a 

few species have been examined. Within these studies, none have rigorously sampled 

from (i) many hosts and (ii) many sites. This has limited the extent to which 

hierarchical descriptions of population genetic structure may made. In still fewer 

studies have the effects of parasite asexuality on the amounts and distribution of 

genetic variation been considered. This thesis aims to characterise the population 

genetic structure of a parasitic nematode, Strong yloides ratti, by the use of a thorough 

sampling strategy and molecular genetic analysis. The life-cycle of this species will 

enable the effect of sexual reproduction on population genetic structure to be examined 

and in this way to bridge the gap between studies on asexual and obligately sexual 

nematode parasite species. 

Chapter 2 describes the isolation of suitable genetic markers from the genome 

of S. ratti by the application of molecular genetic techniques. 

Chapter 3 summarises the methods used to sample S. ratti from geographically 

separated populations of brown rats (Rattus norvegicus). The distribution of infection 

within one such population is described in detail. 

Chapter 4 analyses the genetic structure of the sampled populations by a 

combination of statistical methods. 

Chapter 5 discusses the results presented and summarises the contributions 

they make to understanding the biology of helminth parasites. Recommendations on 

the direction of future studies are made in light of the results presented herein. 
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Chapter two 

Identification and characterisation of 
polymorphic loci in Strongyloides ratti 

2.1 Introduction 

This thesis describes the genetic structure of Strongyloides ratti by examining the 

distribution of polymorphic loci among S. ratti infections of rats. As was shown in the 

previous chapter a population genetic approach to describing the structure of 

macroparasite populations, by analysis of the distribution of genetic variation, has been 

used by several authors, notably Anderson (Anderson et al. 1995) Blouin (Blouin et 

al. 1995) and Nadler (Nadler et al. 1995). The technical developments that have made 

this possible are modem molecular genetic methods, specifically the polymerase chain 

reaction (PCR) and DNA sequencing. These techniques have allowed close scrutiny of 

genomes of organisms which has opened up an almost infinite pool of potentially 

informative genetic information. Exploitation of this genetic diversity has allowed 

previously intractable questions concerning the genetic structure of parasite 

populations to be addressed. 

Many methods have been developed to characterise molecular genetic variation 

(Avise 1994), however, there is a great deal of difference in the quality and type of 

information that is obtained. The genetic markers used in this study had to satisfy 

strong criteria to be appropriate for use. They had to be (1) polymorphic within British 

S. ratti samples, (2) usable on a fraction of the DNA extracted from a single parasite, 

(3) rapidly and reproducibly scorable, (4) undergo normal Mendelian segregation and 

(5) be selectively neutral. This chapter will review the main methods now available for 

characterising genetic variation. It will then go on to describe which methods were 

selected and exploited to identify polymorphic genetic loci in S. ratti 

2.1.1 Molecular genetic variation 

There are two genetic sources that can be used to analyse variation within 

metazoan eukaryotes. These are (1) mitochondrial DNA sequences and (2) nuclear 

DNA sequences. 
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2.1.2 Mitochondrial DNA 

Mitochondnal DNA (mtDNA) exists as multiple cytoplasmic copies in cells. In 

nematodes the mitochondnal genome is a circular molecule of about 13-14 kb in length 

(13 794 bp in C. elegans, 14 284 in A. suum (Okimoto etal. 1992). mtDNA is often 

considered to provide ideal genetic markers for the following reasons; 

MtDNA has been shown to be principally maternally inherited, and this has 

been illustrated in the nematode species A. suum (Anderson 1994). As the molecules 

do not normally undergo recombination each genotype exists as a matrinlinearly 

inherited clone or haplotype. Severe bottlenecks occur during oogenesis resulting in 

populations of the molecule being principally of one haplotype within an individual 

(Takahata 1985). Mitochondnal genes are thus more sensitive than nuclear genes as 

markers for investigating population structure for the following reasons. Factors 

important in determining the amount of structure between two populations are the 

effective population sizes (Ne) and the rate of migration between the populations (m). 

Although m is the same for nuclear and mitochondrial DNA, Ne for nuclear genes is 4 

times that of mtDNA within sexually reproducing organisms. This is because at each 

nuclear locus both parents potentially contribute two alleles of each nuclear gene to the 

next generation rather than the female parent contributing a single maternal 

mitochondrial haplotype. The resulting difference in effective population sizes means 

that mtDNA haplotype frequencies will homogenise between geographically separated 

populations less rapidly than nuclear genes (Anderson etal. 1995). 

It has been shown that mutations accumulate 5-10 times faster in mtDNA 

relative to nuclear DNA (Hillis & Moritz 1990). This is because mtDNA polymerase 

has no proof-reading ability. As a consequence, extensive intraspecific variation of 

mtDNA may build up. mtDNA therefore tends to be more informative in providing 

population genetic markers than is nuclear DNA, when variation per nucleotide 

analysed is considered (Thomaz etal. 1996; Blouin etal. 1995). 

mtDNA is generally considered to be selectively neutral. This point is based 

on two arguments. First, relatively high mutation rates of the molecule caused by non-

synonymous substitutions are evidence for relaxed constraints on the proteins coded 

within. Second, there is accordance with rates of evolution predicted by neutral theory 

(Kimura, 1983). However, that rates of nucleotide divergence vary between different 

mtDNA genes suggest that accordance with strict neutral expectations may not be 

strictly valid (Williams etal. 1995). 
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(4) Ease of characterisation of mtDNA variation. MtDNA haplotypes differ in 

DNA sequence. These sequence differences are a consequence of cumulative point 

mutations that accrue within individual mtDNA molecules. This variation can be 

assayed by restriction enzyme digestion where the whole, or part, of the molecule is 

subjected to digestions by a panel of restriction endonucleases. The gain or loss of 

enzyme recognition sites, resulting in changes in the profiles of the enzyme-restricted 

DNA between individuals provides the mtDNA haplotype, and a raw estimate of 

sequence divergence. Considerable sequence divergence has been found in mtDNA in 

surveys of nematode parasite populations (Anderson et al. 1995; Blouin et al. 1995). 

Although mtDNA is theoretically capable of providing excellent markers, there 

are some drawbacks associated with its use. For example, it has become apparent with 

the advent of PCR amplification techniques that mtDNA sequences can undergo 

insertion into the nuclear genome, forming pseudogenes. This has been shown to 

occur within the genomes of old world monkeys and hominoids (Collura & Stewart 

1995). These nuclear sequences are amplified together with the mtDNA sequences 

confounding population genetic analyses. It has not been determined to what extent 

these insertion sequences exist within and between the genomes of different 

organisms, as no thorough surveys have been undertaken. 

2.1.3 Nuclear DNA variation 

Genetic variation within the nuclear genome exists as discrete differences in the 

form of insertions/deletions of DNA sequences or single base mutations; this is known 

as single locus genetic variation. Physically separated sequences can be classified 

together on the basis of similarity and the genetic variation within them analysed 

together; this is known as multi locus genetic variation. 

2.1.4 Multilocus genetic variation 

Variable numbers of tandem repeats (VNTRs): 

Jeffreys et al. (Jeffreys et al. 1985) described a class of loci characterised by 

sequences consisting of a core motif 10-15 bp long arranged in tandem arrays. These 

arrays were found to occur at multiple sites throughout the genome. These 

'minisatellites' show variable numbers of tandem repeats (VNTR5) between 

individuals due to unequal crossing over at each locus during meiosis (Jarman & Wells 

1989). DNA 'fingerprinting' involves probing Southern blots with the VNTR motif 

resulting in a highly variable banding profile which distinguishes most individuals 
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from each another. Problems with this technique stem mainly from the need to have 

large quantities of DNA, making the genetic analysis of small parasites impossible. 

However, the approach of Viney et al. (Viney et al. 1993) has shown how single S. 

raili parasites can be cloned and sufficient DNA extracted from the offspring to 

perform a genetic analysis using a VNTR probe. A further problem intrinsic in the use 

of such multilocus probes in population genetics is that although inheritance of alleles 

at each locus is Mendelian, allelic identity cannot be established between bands. This 

makes it very difficult to establish the amounts of heterozygosity within an individual. 

For these reasons multilocus VNTRs were not considered appropriate for use in this 

study. 

Randomly amplified polymorphic DNA-PCR (RAPD-PCR): 

RAPD-PCR is a powerful and fast method for detecting polymorphisms in 

species that have relatively uncharacterised genomes. This technique amplifies 

fragments of genomic DNA using single PCR primers of arbitrary sequence. Such 

primers (usually 10 base pairs in length) are used at low annealing temperatures in 

PCR reactions, the low stringency of the PCR resulting in the primer annealing to 

several sites within the genome. If primers anneal to sequences that are relatively close 

to each other and in the correct orientation then amplification of discrete bands will 

result. Often sufficient sites exist within a genome that simultaneous amplification of a 

number of loci occurs, resulting in a multi-band profile, or RAPD pattern (Welsh & 

McClelland 1990; Williams etal. 1990). 

The majority of amplified fragments will be expected to be similar among 

individuals but for some, polymorphisms occur. These are due to sequence variation in 

primer sites preventing primer annealing, or insertions/deletions between primer sites 

resulting in length variations of the amplified fragment. This variation is detected as 

size differences between the pattern of amplified bands from separate individuals. 

RAPD analysis is performed by comparing the number of unique and shared 

bands between individuals, and is therefore a phenotypic rather than a genotypic 

description of the organism. An important limitation of the technique is that an allelic 

variant of a given sequence resulting from mutation within the primer site will result in 

the disappearance of a fragment only if it is in the homozygous state. Therefore, 

heterozygotes ("band, no band") appear the same as homozygotes ("band, band"). A 

second limitation of the technique is that it is technically demanding. Due to the low 

annealing temperature of the PCRS slight fluctuations in the initial quantities and 

31 



qualities of template DNA can result in large differences to the final RAPD pattern. 

This results in low experimental reproducibility (Meunier & Grimont 1993) (Kernodle 

et al. 1993). Due to these considerations, RAPD-PCR was not considered a suitable 

technique for finding genetic markers in this study. 

2.1.5 Single locus molecular variation 

Protein electrophoresis: 

Characterising polymorphisms of protein-coding loci by variations in the 

electrophoretic mobility of their protein products has long been used as a technique for 

detecting genetic variation for use in population genetic studies (Selander 1976). 

However, the levels of polymorphism observed are generally low due to the selective 

constraints on mutations within protein-coding loci and the redundancy of the genetic 

code. A study by Viney et al. (Viney et al. 1992) on seven isolates of S. ratti from 

different geographical regions found no genetic variation at eight enzyme loci. 

Following these results, and the fact that large quantities of parasite material are 

required to characterise isoenzymes (Viney & Ashford 1990), this technique was not 

considered further in the context of this work. 

PCR based methods for detecting small genetic polymorphisms: 

The development of PCR techniques has opened up a number of methods for 

detecting DNA sequence variation. The finest resolution is provided by the direct 

sequencing of PCR products. However, in practice this may be too slow to detect 

mutations within large DNA fragments. In response to this, several methods have been 

developed for rapidly scanning sections of the genome for variation (McPherson et al. 

1995). These methods rely on PCR products being generated by either i) designing 

primers to fragments fully or partially sequenced from a genomic or cDNA library or 

ii) specifically isolating known polymorphic sequences (such as microsatellites, see 

below) by the use of specific hybridisation probes, and designing PCR primers to 

these sequences once found. Once a fragment can be amplified by PCR, it may be 

surveyed for sequence variation; 

PCR Restriction Fragment Length Polymorphisms (RFLPs): This method relies 

on digesting amplified PCR products with a restriction endonuclease. These enzymes 

cut at specific sequences of bases. If such a sequence is present within a PCR product 

then digestion of the fragment occurs, resulting in a specific pattern of bands following 

electrophoresis (Maniatis et al. 1982). Analysis of the number and lengths of bands 

resulting from digestion by several enzymes enables a restriction map to be made of the 
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PCR fragment, identifying the position of restriction sites. Sequence differences 

between individuals may result in the gain or loss of restriction sites. These 

polymorphisms are easily scored by comparing the banding patterns from each 

individual and heterozygotes can be distinguished from homozygotes. 

Large numbers of individuals can be rapidly surveyed for genetic variation by 

this technique once the initial effort in identifying polymorphic restriction sites has 

been accomplished. As these loci are randomly selected from the genome they are often 

non-coding and therefore likely to be selectively neutral (Karl et al. 1992). This 

technique has been used to provide clear and useful genetic markers for the nematodes 

Haemonchus contortus (Beech etal. 1994) and Ascaris suum (Anderson 1995). In S. 

ralli, the existence of an Mn! I RFLP within the Actin IV gene (Viney 1994) shows that 

this method can be used to isolate polymorphic genetic markers in this organism. 

Microsatellites: Microsatellites, or simple sequence repeats, are analogous to 

VNTRs in that they consist of families of sequence motifs repeated in arrays and 

dispersed throughout the genome. The difference between the two classes of markers 

lies in the size and number of repeat sequence motifs. Microsatellites occur as 1-6 bp 

nucleotide motifs, tandemly repeated 5-100 times and flanked by unique sequences, 

whereas VNTRs tend to be much longer due to the larger size of the repeat motif and 

the greater number of times that it is repeated. Both types of marker can be 

hypervariable for the number of repeat motifs in the array. 

The genomes of all phyla examined, including unicellular eukaryotes, 

prokaryotes and organelle DNA (Field & Wills 1996) have been shown to contain 

microsatellites. However, the numbers of each type of microsatellite present varies 

dramatically from one organism to another. Field et al. (1996) showed that more AT 

rich microsatellites occur in organisms with reduced genome complexity. Most 

microsatellites are thought to be non-coding and therefore selectively neutral (Stallings 

et al. 1991) although roles for microsatellites in gene regulation have been shown in 

prokaryotes (Moxon etal. 1994). A number of human diseases have been shown to be 

a consequence of increases in the number of triplet repeats with particular microsatellite 

loci, for example fragile-X syndrome (Hirst etal. 1994), spinocerebellar ataxia (On et 

al. 1993) and Huntington's chorea (The Huntington's disease collaborative research 

group, 1993). 
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Microsatellites are of great value as genetic markers due to their high mutation 

rates relative to the rest of the genome. This increased mutation rate is thought to occur 

as a consequence of an elongation by slippage mechanism (Weber 1990), a hypothesis 

that is supported by in vitro experiments (Schlotterer 1992) and observations on the 

distributions of mutations within natural populations (Weber & Wong 1993). The 

process results in the addition or subtraction of one or two repeat motifs to the array by 

repair enzymes. As a consequence, a diversity of length variants for each microsatellite 

locus accumulates within the species. Due to the relatively short length of 

microsatellites and their unique flanking sequences, alleles at a particular locus are 

assayed by amplifying the locus from individuals by PCR and electrophoresing the 

products on polyacrylamide gels capable of resolving molecules varying by single 

bases. The products are visualized by incorporation of radioactively or fluorescently 

labeled nucleotides or primers during the PCR reaction. Alleles at each locus are scored 

by size variation, this being due to variation in the number of microsatellite repeat units 

present. The microsatellite alleles are unambiguous and co-dominant, heterozygotes 

being observed in diploid genomes as two amplification products separated by a 

multiple of the length of the repeat motif. Reproducibility is generally high and the 

technique uses small quantities of DNA making it ideal for use in studies on organisms 

with limited amounts of DNA available. 

If microsatellites from a given organism have not previously been sequenced and 

deposited in genomic DNA databases then they have to be isolated. This is done by 

screening genomic libraries for microsatellite sequences, which is a time consuming 

task. One approach that can be used is to use PCR-primers to homologous 

microsatellite-containing loci from putatively closely related species (within which 

microsatellites have already been identified). Amplification from homologous loci has 

been shown to work between species of whale (Schiotterer etal. 1989) and fish (Ciro 

& Hewitt 1996) despite divergence from common ancestry of up to 470 million years. 

Due to our interest in considering the microgeographic population structure of S. 

rat/i, this project required markers that had high levels of intraspecific variation and 

would show fine levels of genetic substructuring. mtDNA is an ideal marker for this 

type of study as it has shown by a variety of studies that i) ample genetic variation 

exists within nematode populations and ii) this can be surveyed using PCR based 

techniques. I therefore aimed to survey S. ratti mtDNA for genetic variation using 

RFLP and sequencing methods. However, to be able to describe levels of inbreeding 

within S. ratti samples by observations on the amount of heterozygosity it was also 



necessary to include nuclear markers. To this end I attempted to isolate microsatellites 

and PCR-RFLPs from the genome of S. ratti. The possibility of using homologous 

microsatellite loci isolated by the C. elegans genome project with S. ratti was also 

explored. The remainder or this chapter describes the isolation and characterisation of 

loci from the mtDNA and nuclear genome of S. ratti. 

2.2 Materials and methods 

2.2.1 S. ratti lines used 

To avoid ambiguity, several terms are used specifically when describing S. ratti: 

Isolate- 

	

	a group of parasites collected from a wild-caught animal and 

kept as cryopreserved material. 

Line- 

	

	A population of parasites derived from an isolate and maintained 

by serial passage in vivo. 

Isofemale line- A population of parasites derived from a single parasitic female 

and maintained by serial passage (Viney 1994). 

Clone- 	The term 'clone', despite having been used in the literature 

(Viney & Ashford 1990), is misleading with respect to S. ratti as 

it implies genetic homogeneity. It has been shown that S. ratti 

'cloned lines' undergo genetic recombination (Viney 1994) if 

they undergo the heterogonic life cycle. Such lines should 

therefore be referred to as isofemale lines. 

Isolates are presumed to be genetically heterogeneous and to contain mixtures of 

wild-type parasites. Lines will preserve some of this genetic heterogeneity. However, 

genetic variation will be expected to be reduced within lines as a consequence of drift 

when small sub-populations are used to passage the parasite for laboratory 

maintenance. Isofemale lines, despite being derived from a single individual still 

contain genetic variation due to the diploid nature of the parasite and the occurrence of 

genetic recombination following mating between individual males and females in 

culture. 

The lines used in this study are shown in Table 2.1. 
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Line 	 Notes 

Isofemale line 5: 	Isofemale line made from an isolate collected in Philadelphia 

in 1960 (Viney etal. 1992) 

Line 5 Heterogonic: 	Line derived from isofemale line 5 and selected for 

heterogonic development (Viney 1996) 

Isofemale line 132: 	Isofemale line made from rat collected in Kashogima, 

Japan (Viney etal. 1992) (Viney 1996) 

Line 132 Heterogomc: Line derived from isofemale line 132 and selected for 

heterogonic development (Viney 1996). 

Isofemale line 54: 	Isofemale line made from rat collected in Kashogima, 
Japan (Viney et al. 1992) 

Isofemale line 68: 	Isofemale line made from a genetic cross between isofemale 

lines 5 and 54 (Viney etal. 1993) 

Line 43: 	 Made from isolate 43, derived from parasites collected from a 

dead rat collected in Leith (Scotland) by M. Viney, 2.6.89. 

Line 29: 	 Made from isolate 29, derived from a captive 

rat collected in Wiltshire (England) by M.A.A.F. 2.6.89. 

Line 32: 	 Made from isolate 32, derived from rat-faeces recovered in 

Craigmillar (Edinburgh, Scotland) by M. Viney, 10. 11.89 

Line B352 	Made from isolate B352, derived from a rat collected in 

Berks.hire (England) by M.A.A.F. 5.5.95 

Line B362 	Made from isolate B362, derived from a rat collected in 

Berks.hire (England) by M.A.A.F. 5.5.95 

G2924 	 Made from isolate G2924, derived from a dead rat collected in 

Germany by H. Pelz, March '95 

G2932 	 Made from isolate G2924, derived from a dead rat collected in 

Germany by H. Pelz, March '95 

Table 2.1 Origins of S. ratti used in the search for genetic markers. 

2.2.2 Cryopreservation of S. ratti 

Infective third stage larvae (iL3s, Figure 1.1) of S. ratti were stored in liquid 

nitrogen. 20 000 11-3s were mixed with 1 ml of cryopreservation fluid (10% wlv 
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Dextran (Sigma), 10% v/v dimethyl suiphoxide) and agitated at room temperature for 1 

hour. The larvae were placed in the vapour phase of liquid nitrogen until completely 

frozen, then transferred to liquid nitrogen containers for long term storage. 

Cryopreserved iL3s were recovered by adding 1 ml of RPMI medium (Sigma) 

and incubated at 37 °C until thawed. This solution was made up to 10 ml with RPMI 

and the parasites sedimented by centrifugation. Re-suspension and centrifugation were 

repeated three times, followed by a final re-suspension in 200 )Al of RPMI (Nolan et al. 

1988). The iL3s were subsequently used to infect a rat (section 2.2.3) 

2.2.3 In vivo maintenance of S. ratti 

Parasites were maintained by serial passage in 3-4 week old Wistar rats (B&K 

Universal, Hull). Rats were inoculated subcutaneously with 500 iL3s suspended in 

200 141 RPMI. Such infections became patent on day 5 post infection (pi) and 

substantial numbers of S. ratti larvae are passed in faeces for the following 2-3 weeks. 

The numbers of S. ratti in the faeces declined over this period and the infection 

generally resolved 4-5 weeks pi. iL3s collected over the course of the infection were 

used to re-infect rats every 4 weeks in order to maintain the line. 

2.2.4 Culture of S. ratti 

Faeces were collected from infected rats which had been kept overnight in cages 

with grid floors. This allowed faecal pellets to drop onto dampened paper liners from 

which faecal collections were made. 3-4 faecal pellets were rinsed with distilled water 

and placed on a watch glass. This was dampened and placed in a covered glass petn 

dish with a small amount of distilled water in the bottom. The petri dishes were 

incubated at 19°C for 3 days and the cultures examined using a stereo-microscope for 

the presence of S. ratti. Heterogonic adult males and females were generally found 

around the rim of the watch glass in the water surrounding the faecal pellets. iL3s were 

found in the water in the base of the petri-dishes due to their migration away from the 

faecal material. These iL3s were removed and suspended in 10 ml of distilled water 

and washed twice by sedimentation with centrifugation, followed by re-suspension in 

10 ml distilled water. These 11_3s were either stored at -20°C for further analysis or 

used to infect rats. 
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2.2.5 Isofemale lines 

Isofemale lines were initiated and maintained by M. Viney using the method 

described in Viney et al. (Viney et al. 1992). 

2.2.6 Extraction of Genomic DNA 

100 000 iL3s were physically disrupted by snap-freezing in liquid nitrogen and 

grinding in polypropylene micro-homogenisers (Biomedix), repeated three times. The 

homogenate was added to an equal volume of TNESST (10 mM Tris/HC1 pH 7.4, 60 

mM NaCl, 10 mM EDTA pH 8.0, 0.15 mM spermidine, 0.15 mM spermine, 0.5% 

v/v Triton X-100). SDS (Sigma), sodium deoxycholate (Sigma), Proteinase K 

(Boehringer Mannheim), Collagenase (Sigma) and Trypsin (Sigma) were added to 

final concentrations of 0.3% w/v, 0.15% w/v and 0.1 ng/ml respectively. This 

solution was incubated for four hours at 37 °C with gentle agitation and then 

successively extracted with equal volumes of phenol, 25:24:1 phenol/ chloroform/ 

isoamyl alcohol and 24:1 chloroform/isoamyl alcohol. An equal volume of SM LiCl 

was added to the resulting aqueous phase, held at -20 °C for 30 minutes and then 

centrifuged at 10 000 g. The supernatant was removed to a fresh tube and 2.5 volumes 

of ethanol added. This was held at -20 °C for 12 hours to precipitate the DNA and then 

centrifuged at 10 000 g for 30 minutes to pellet the DNA. After removal of the 

supernatant, the pellet was washed twice in 70% v/v ethanol, vacuum dried and 

resuspended in TE (10mM Tris HCL, 1mM EDTA, pH 7.6). An aliquot of the DNA 

preparation was electrophoresed on a 2 % w/v agarose gel and visualized to acetain the 

quality of the DNA. The quantity of DNA present was quantified 

spectrophotometerically (Genequant, Pharmacia). 

2.2.7 Extraction of DNA from a single-parasite 

Single S. ratti larvae or free-living adults were transferred from faecal culture to 

2 ml of distilled water to remove adhering debris. The worms were transferred into an 

microfuge tube in S jAl of distilled water, together with 0.5 pil 10 X PCR buffer 

(Dynazyme) and 0.5 p1 Proteinase K (20 mg mlt)(Boehringer Mannheim), then 

overlaid with a drop of mineral oil (Sigma). After centrifugation at 10 000 g for 3 

minutes the sample was held at -70 °C for 30 minutes, 55 OC for 90 minutes and 95°C 

for 30 minutes in a thermocycler (Biometra). The DNA preparations were stored at -20 

OC. 



2.2.8 Isolation of microsatellite loci 

2.2.8a Construction of an S. ratti size-selected genomic library 

1 jg of genomic DNA from line 43 (Table 2.1) was digested to completion with 

10 units of Alu I and Hae III and separated on a 1.5% wlv low melting point agarose 

gel. The size fraction between 300-500 bp was excised and purified with a DNA 

cleanup column (Promega). The size selected DNA was blunt-end ligated into the 

vector pGEM 4Z (Promega). The vector had previously been prepared by digestion 

with Hindu, then dephosphorylated with calf intestinal alkaline phosphatase (New 

England Biolabs). Vector: Insert molar ratios of 1:1, 1:3 and 3:1 were ligated overnight 

at 4 °C with 1 unit of T4 DNA ligase (Promega). Control reactions were set up to 

monitor the efficiency of the ligation reaction of vector-i-ligase, vector only and insert 

only. Competent JM109 cells were then transformed with the ligation reactions 

following the manufacturers' protocol (Promega technical bulletin No. 095). To 

monitor the efficiency of the transformation, 0. ing of plasmid was used as a control 

transformation of the competent cells. The transformed cells were subsequently plated 

on LB plates containing ampicillin (Sigma), IPTG (Sigma) and X-Gal (Sigma) at final 

concentrations of 100 jAg/ml, 0.5 mM and 40 pg/mi respectively. The plates were then 

grown up overnight at 37 °C and blue/white selection used to distinguish between 

recombinant and non-recombinant colonies. To confirm that the size selection 

procedure had worked, 20 white colonies were picked at random from the plates, 

suspended in 5,u1 distilled water and used as templates in a PCR reaction with M13 

forward and -21 primers (Promega). All colonies were confirmed as having inserts 

between 300 and 500 bp in length. 

2.2.8b Identification of recombinant colonies containing microsatellites 

Ten agar plates were grown with an average density of 500 colonies per plate. 

Hybond-N (Amersham) nylon membranes were laid on the plates and pin-pricks made 

through both membrane and agar so as to allow subsequent re-orientation of the 

membrane to the plate. Replica filters were also lifted as a control for false positives. 

The membranes were incubated at 37 °C on LB Ampicillin plates until the colonies 

were 0.5 - 1 mm in diameter and then denatured by resting, colony side up, on 

Whatman 3MM paper soaked in denaturing solution (Appendix 1) for 7 minutes. The 

membranes were neutralised in neutralising solution (Appendix 1) and washed in 2 x 

SSC (Appendix 1), then air-dried and fixed by baking at 80 °C for 2 hrs. After the 

colony lifts, plates were incubated at 37 °C to re-grow the colonies in order that 

positive colonies could later be identified and picked. The plates were stored at 4°C. 
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Microsatellite probes were prepared by end-labeling 1 pg of either of the 

following oligonucleotides; (AC) 15, (GA)15 or (CAG)15 (Applied Biosystems). The 
probes were end-labeled with y- 32P dATP (5000 Ci mmol -1 , Amersham) using T4 

Polynucleotide Kinase (Promega) following the manufacturers' protocol. Non-

incorporated nucleotides were removed from the probes using a chromaspin-10 

column (Clontech) and the labeled oligonucleotide suspended in 50pl of TE. 

Colony lift membranes were pre-hybridised for 4 hrs. in pre-hybndisation 

solution (appendix 1) at 60 °C. The labelled oligonucleotide was added to the pre-

hybridisation solution to a final concentration of 10 ng ml and hybridised overnight. 

Membranes were washed twice in pre-heated 2X SSPE, 1% SDS for 30 mins at 60 

°C, and exposed to Kodak XAR film in autoradiography cassettes with intensifying 

screens at -70 °C. 

Autoradiographs of master and replica filters were aligned to detect true from 

false positives. Putative positive colonies were picked from the agar plates by keying 

the plate to the autoradiograph and picking the colony into 100 141 of LB medium. This 

was then streaked onto a fresh LB Ampicillin plate for secondary screening using the 

same method as above. Colonies identified as positive from the secondary screen were 

resuspended into 100 y of LB Ampicillin medium. 5 14 of this suspension was used 

to inoculate 8 mls of LB-amp medium and grown at 37 0C in a shaking incubator. 0.85 

ml of this suspension was mixed with 0.15 ml of glycerol and stored at -70 °C to 

provide a permanent source of the positive colony. 

2.2.8c Sequencing of plasmid inserts 

Plasmid DNA from the positive colonies was isolated from 4 mis of LB 

Ampicillin medium using a Wizard mini-prep (Promega) and eluted in 50 141 TE. 30 p1 

of double-stranded DNA was denatured by incubation with 5p1 4N NaOH, 20 p1 1 

mM EDTA for 30 minutes at 37°C. The plasmid DNA was precipitated by addition of 

30 141 of 3M sodium acetate and 200 p1 ethanol, held at -70 °C for 30 minutes and 

centrifuged at 10 000 g for 15 minutes. The pellet was then washed with 70% ethanol, 

vacuum dried and resuspended in 13 y TE. 

Each plasmid was then manually sequenced using the Sequenase version 2.0 

sequencing kit (United States Biochemical Corp.) using the dideoxy chain termination 

method (Sanger et al. 1977). 6pl aliquots of each plasmid were sequenced with the 



M13 -21 and M13 reverse primers following the manufacturers' instructions. 

Sequencing reactions were denatured at 95 °C for 3 minutes and electrophoresed on 

6% denaturing polyacrylamide gels made using a Sequi-Gen Nucleic Acid Sequencing 

Cell (BioRad). Gels were dried onto Whatman 3MM paper and exposed to Kodak Bio-

Max film overnight. The sequence obtained was electronically stored and analysed 

using the University of Wisconsin Genetics Computer Group DNA sequence analysis 

software (GCG, version 8). 

2.2.9 PCR amplification of microsatellite loci 

To amplify the microsatellite loci isolated from S. ratti two types of PCR were 

used, (1) non-radioactive and (2) radioactive reactions. Both types of PCR were 

performed initially using standard conditions, and the reaction conditions varied 

subsequently to optimise the reaction. 

2.2.9a Standard non-radioactive PCR 

Non-radioactive PCR reactions were performed in a 50 p1 volume in 0.5 ml 

microfuge tubes. All reactions were set up on ice. Deoxynucleotide triphosphates 

(dNTPs)(Boehringer Mannheim) were used at a final concentration of 75 pM, and 

primers at a final concentration of 100 nM. Template DNA was either 1141 of 1/100 

dilution of a genomic DNA preparation or 1 p1 of a single worm preparation. PCR 

buffer (Cambio) was used at 1X concentration, Taq DNA (Boehringer Mannheim) at a 

final concentration of 0.5 units ml -1  and MgC12 at a final concentration of 1.5 mM. The 

reaction mixture was overlaid with mineral oil (Sigma), centrifuged briefly to settle the 

contents and cycled on a TRIO-thermoblock (Biometra) for 40 cycles of 95 °C for 1 

mm, 50 °C for 1 mm. and 70 °C for 1 mm. 10 141 of the PCR reactions were 

electrophoresed on a 2% w/v agarose gel containing ethidium bromide (0.5 pg m1 1). 

2.2.9b Standard radioactive PCR 

Radioactive PCRs were performed as above, except that they were performed in 

a volume of 10 p1 with dATP used at 1/10 normal concentration, supplemented with 1 
pCi of a-32P dATP (3000 Ci mmol 1 , Amersham). The PCR reactions were 

electrophoresed on a 6 % denaturing sequencing gel, transferred to 3MM paper, dried 

and exposed to XAR film (Kodak) overnight in autoradiography cassettes with 

intensifying screens at -70 °C. 

To optimise amplification of both types of basic PCR reaction, conditions were 

varied as follows; 
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Primer design 

Primers were designed to amplify target sequences containing microsatellites 

with several criteria in mind: (i) the DNA fragment to be amplified would be 100-200 

bp in length to allow resolution on a sequencing gel; (ii) the primers would have low 

self and between-primer complementarity to minimise primer-dimerisation during the 

PCR reaction; (iii) the annealing temperatures (Ta) of the primers would be in the range 

50-65 °C and similar; (iv) the primers would have a GC content of about 50 % and (v) 

the primers would have a GC rich 3' 'sticky' end, terminating in a G or C base. 

Design was aided by the use of the OLIGO v3.3 computer program (Rychlik & 

Rhoades 1989). Once designed, oligonucleotides were synthesised by Oswell DNA 

service (Edinburgh University), aliquoted into 50141 volumes and stored at -20 °C. 

Annealing temperatures of the PCR 

Annealing temperatures were increased in 2 °C increments from an initial 

annealing temperature of 45 °C to the calculated Ta of the primer pair. Ta for 

oligonucleotides up to 20 bases long is calculated approximately by the equation 

Ta = 4(G + C) + 2(A + T) 

(Don etal. 1991): 

Primer concentration 

Primers were used at 100 nM or 500 nM final concentrations 

MgC12concentration 

MgCl2 concentration was increased in 0.5 pM increments between 0.5 - 4.5 pM, 

final concentrations. 

dNTP concentration 

dNTP concentration was either 75 or 150 pM 

Temperature cycle 

Four types of cycle were used for each locus; 

Cycle A: 	93°C,3 min.;40X(93°C 1 min.,Ta 1 min.,72°C 1 mm.) 

Cycle B: 	Touchdown PCR. 40 X (93 °C 1 mm., Ta reduced in 2°C 

increments every second cycle from 65 °C to the estimated primer 

Ta, 72°C 1 mm.) 

Cycle C: 	93°C 3 mm.; lox (93°C 1 mm., Ta- 5°C 1 mm., 72°C 1 mm.) 

30 x (93 °C 1 mm., Ta 1 mm., 72 °C 1 mm.) 
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Cycle H: 	Hot start (polymerase added to reaction at first 93 °C 

denaturation) + cycle A. 

Polymerase type 

Three types of Taq polymerase were used; 

1) Taq polymerase (Boehnnger Mannheim) 

2)Taq expand high fidelity (Boehringer Mannheim); a mix of Pwo and Taq 

polymerases. 

3) Dynazyme (Flowgen) 

PCR additives 

Denaturation reagents can be used to increase the effective stringency of the 

annealing step (Don et al. 1991). Those included in the PCR reactions were dimethyl 

sulphoxide (DMSO) at 1 % w/v, single-stranded DNA binding proteins (1 % vlv) 

(Perfect match, Promega), bovine serum albumin (BSA) (0.2 % w/v) and 7 deaza-

GTP (0.75 mM) (Boehringer Mannheim) and used as detailed in table 2.4. 

In all PCR reactions, amplification of the appropriate cloned microsatellite was 

included as a positive control, and S. ratti DNA (both genomic and single-worm 

preparations) were tested for quality by amplification using primers recognising a non-

microsatellite locus. A negative control reaction containing no parasite DNA was 

included. 

2.2.9c Nested PCR reactions 

Several loci were amplified by nested PCR reactions in order to increase the 

sensitivity of the reaction. This technique relies on a two-step PCR reaction. 

Step 1: A standard non-radioactive PCR reaction was performed as described in 

section 2.2.9a except that the products of the reaction were not electrophoresed. 

Step 2: A second PCR reaction was performed as in Step 1 with three differences. i) A 

pair of 'nested' primers were used that had been designed to sequences internal to the 

primers used in step 1, ii) 1 p1 of the step 1 PCR reaction was used as a DNA template 

and iii) the reaction was thermocycled 35 times instead of 40. The annealing 

temperatures of the reactions were varied over the range described in section 2.2.9b to 

optimise the reactions. The step 2 reactions were either radioactive or non-radioactive 
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as described in sections 2.2.9aIb. Products from the reactions were subsequently 

electrophoresed on either 2% w/v agarose gel or 6% denaturing acrylamide gels. 

2.2.9d PCR reconstitution experiments 

The presence of genomic DNA contaminants that might specifically inhibit the 

amplification of microsatellite loci was tested by performing reconstitution 

experiments. Here, low concentrations of the cloned locus (1 or 10 ng) was used as a 

template in non-radioactive PCR reactions (described in section 2.2.9a) with increasing 

concentrations of S. ratti genomic DNA (0, 1, 10, 100 ng/PCR reaction). These 

reactions were electrophoresed on 2% w/v agarose gels and the relative intensity of the 

PCR products compared visually. The expectation was that if genomic DNA contained 

a PCR inhibitor, then amplification of the cloned locus would be reduced with 

increasing concentrations of S. ratti genomic DNA. 

2.2.10 Southern blot analysis 

3 pg of S. ratti genomic DNA (isofemale line 5 Heterogonic, Table 2.1) was 

digested overnight with Eco RI or Rsa I (Boehringer Mannheim) in the appropriate lx 
reaction buffer. An aliquot of digested DNA was electrophoresed to ensure that 

digestion had occurred. 0.8 and 1.614g aliquots of digested DNA were separated on a 

2% w/v agarose gel, the gel depurinated in 0.25 HCL for 10 minutes, rinsed in 

distilled water and capillary blotted with Hybond-N+ (Amersham) following the 

manufacturers' protocol. Following blotting, the membrane was rinsed in 2 X SSC 

(Appendix 1) and pre-hybridised at 60°C as described previously (section 2.2.8b). 

Probes were 1 pg of a microsatellite locus, PCR-amplified from the cloned insert 
and labelled with a32P dATP (3000 Ci mmol -1 ) using a random prime DNA labeling 

kit (Boehnnger Mannheim) following the manufacturers' instructions. Unincorporated 

nucleotides were removed using a Chromaspin 30 column (Clontech) following the 

manufacturers' instructions. 0.1 mg of sheared Salmon sperm DNA was added to the 

probe, the volume made up to 1 ml with distilled water and denatured by boiling for 3 

minutes. After snap-cooling on ice for 10 minutes the probe was added to the pre-

hybridising solution and the blot hybridised overnight at 60 °C. The blot was 

subsequently washed twice at 0.5 x SSC, 0.1% w/v SDS at 60 °C for one hour and 

autoradiographed with intensifying screens at -70 0C. 

2.2.11 Screening for genomic PCR-RFLPs 

Three approaches were used to isolate PCR-RFLPs, as follows: 
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2.2.12a Random sequences from a genomic library 

A random genomic DNA library was constructed as for section 2.2.8a except 

that the size selection step was modified to select fragments between 1 000-2 000 bp. 

Single colonies were picked from the library and suspended in 100 141 LB Ampicillin. 

medium. Sizes of the inserts of these colonies were determined by PCR amplification 

of plasmid DNA using M13 -21 and M13 reverse primers. 9 colonies with inserts of 

between 500 - 1500 bp were prepared (section 2.2.8a) and partially sequenced for 300 

bp from each end. PCR primers were designed to these sequences and used in non-

radioactive PCR reactions (section 2.2.9a). 

The loci were surveyed for polymorphisms by amplifying each locus from 

template DNA made from two lines, line 29, line 32 and two isofemale lines, isofemale 

line 5 and isofemale line 54 (Table 2.1). 10 141 aliquots of the PCR-amplified DNA 

were independently digested with restriction endonucleases. All digestions were 

performed overnight at 37 °C using 10 units of the restriction endonuclease in lx PCR 

buffer (Cambio) in 0.5 141 microcentrifuge tubes overlaid with mineral oil. Digestions 

were separated on 2 % w/v agarose gels containing ethidium bromide. Digestions 

showing putative polymorphic restriction sites were repeated to confirm the 

polymorphism. 

2.2.12b PCR-RFLPs of RAPD-PCRs 

Primers designed to isolated microsatellite sequences (section 2.2.8d) were used 

as RAPD primers in PCRs. A single primer was used in a standard non-radioactive 

PCR and the reaction optimised as described in section 2.2.9d. Primers that generated 

single amplification products were subsequently used to amplify a range of template 

DNA as described above (section 2.2.12a). These were subsequently surveyed for 

polymorphisms with restriction endonucleases (section 2.2.12a). 

2.2.12c Calculations on nucleotide polymorphism 

Data on restriction-site polymorphisms was used to infer amounts of genetic 

variation at the nucleotide level. For each locus, the conditional probability, fr, of a 

single base being polymorphic was calculated according to Weir (Weir 1996) where: 

k 
p=- 

2jm 
(eqn. 2.1) 
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where k = number of polymorphic restriction sites 

j = the number of bases in the endonuclease recognition site 

m = number of observed restriction sites. 

2.2.12d PCR amplification by homology to C. elegans sequences 

Nucleic acid databases were searched for microsatellites in previously sequenced 

C. elegans DNA. io, 10 and query sequences were used to search 
GenBank and EMBL databases by FASTA (Pearson 1988) using the GCG8 package 

(Genetics computer group, 1991) and primers designed to sequences identified. 

Universal primers to the 18S rDNA intragenic spacer were also obtained (donated by 

M. Blaxter). Non-radioactive PCRs were optimised for each locus (section 2.2.8d) 

and used to amplify template DNA from each of the S. ratti lines. The PCR products 

were subsequently screened for RFLPs (section 2.2.12a). 

2.2.13 Genetic analysis of the segregation of genomic PCR-RFLPs 

A genetic analysis of the progeny of naturally mated free living females was 

performed to ensure that markers isolated by the methods described in sections 2.2.9-

2.2.12 segregated in a Mendelian manner and were due to alleles of single loci. Single 

worm DNA preparations were made using L3s from lines 5 Heterogonic, 54 and 132 

Heterogonic. These were typed by PCR-RFLP at each polymorphic locus. Lines that 

were polymorphic were allowed to mate naturally in faecal cultures. Gravid free living 

females were collected from 3-day-old faecal cultures and isolated in individual wells 

of a 96 well microtitre plate. After hatching of the larvae, the female and her larval 

progeny were collected individually and single worm DNA preparations made. 

Preparations of a female and her progeny were then analysed by PCR-RFLP for the 

locus of interest. 

2.2.14 Screening for mtDNA variation 

Two methods were used to search for mtDNA variation: 1) screening for PCR-

RFLPs and 2) direct sequencing of mtDNA PCR products. 

2.2.15a mtDNA RFLPs 

PCR primers were designed to regions of the mtDNA genome conserved 
between A. suum and C. elegans (Okimoto et al. 1992) in order to amplify fragments 

of approximately 1Kb in length. The positions of these primers within the mtDNA 

genome are illustrated in Figure 2.1. Non-radioactive PCR reactions were optimised as 

described in section 2.2.9d. PCR products were cloned using the TA Cloning kit 
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(Invitrogen) following the manufacturers' instructions, and colonies containing inserts 

identified by blue/white screening. 300 bp of the ends of each insert were sequenced 

using M13 -21 and M13 reverse primers (section 2.2.8c) and the sequences compared 

to the published A. suum and C. elegans mtDNA genomes. Primers were designed to 

the S. ratti -specific mtDNA sequences and the PCRs re-optimised. Template DNA 

from S. ratti lines 29, 32, isofemale line 5 Heterogonic, isofemale line 54 and 

additional lines B352, B362, G2924, 02932 were amplified. PCR products were 

subsequently surveyed for RFLPs (section 2.2.12a). 

primer 
1121 

Figure 2.1 Map of the C. elegans mitochondrial genome (adapted from (Okimoto et al. 

1992). The arrows represent the position and orientation of primers used to amplify 

fragments from S. ratti. 

2.2.15b Direct sequencing of mtDNA PCR products 

PCR products generated by the above protocol (section 2.2.15a) were purified 

using QlAquick spin columns (Quiagen) to remove unincorporated PCR primers and 

the DNA resuspended in 20 141 of distilled water. Each PCR fragment was cycle 

sequenced in both directions using 3.2 pmole of either of the appropriate primer 

together with 2.5 p1 of template DNA and 8 J41 ABI PRISM dye terminator mix 

(Perkin Elmer) according to the manufacturers' instructions. The samples were 

analysed on an ABI PRISM 377 automated sequencer (Applied Biosystems). 

Sequences from each of the template DNAs were aligned using assemblyline software 
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(Macintosh). These sequences were then analysed for variations in mtDNA sequence 

between lines or individual parasites. 

2.3 Results 

2.3.1 Isolation of Microsatellite loci 

2.3.1a Number and types of microsatellites found in S. ratti DNA 

12 positive colonies were identified and sequenced. Eight of these contained 

microsatellites (Table 2.2). Of the eight microsatellites, five were simple (AC) 

dinucleotide repeats (locus CII, n=23; F, n=24; BIA, n=20; 5Ht, n=24; E, n=16). The 

remaining sequences showed complex combinations of (AC) , (TA)n and (GA) 

repeats (locus B, (TC)27(TG)15; C13, (TA)7(TG)8(GT)17; G, (GA)7 (GA)17 (CA)26). 

Two sequences (E and G) were not suitable for amplification by PCR due to the 

proximity of the microsatellite to the end of the insert preventing the design of primers. 

Primer pairs were designed to amplify the remaining six microsatellites. Sequences of 

the inserts are given in Table 2.2. Primer sequences are shown in Table 2.3. 

2.3.1b Optimisation of non-radioactive PCRs 

Attempts were made to optimise the PCR reactions for each locus by sequentially 

varying (1) the annealing temperature of the PCR, (2) the M902  concentration of the 

PCR and (3) the temperature cycle of the reaction. 

It soon became apparent that, despite successful amplification of the cloned 

inserts (positive controls) in all experiments, these loci were not readily amplified from 

S. ratti DNA. Immediate success was met with primers to locus 5Ht (p19 + p20) in 

PCRs using genomic DNA as a template (Figure 2.2). However, visible products were 

unobtainable in reactions using single worm DNA as a template. For all the other loci 

either none or multiple amplification products were seen depending on the PCR 

conditions. 

Results were similar for reactions using either genomic or single worm DNA 

preparations. Typically, during attempts to optimise the PCRs for these loci, low 

reaction stringencies (such as low temperature, high MgC12 concentrations) gave rise 

to multiple bands in the PCR products. Sequential increases in the stringency of these 

parameters reduced the number of bands in the PCR products but, with the exception 

of 5Ht, none of the of the reactions consistently resulted in a single band of the 
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Table 2.2. Scqucnccs ofcight microsatclfltc loci isolated from Sfroi,gyloides ralli isofcnialc line 43. Primer positions arc underlined. 

B: 	ccctaccptcictaatgctg atQtcLgacptccagLcctcaaaggaccccLctcaggagaggactaacttatcagggLcactttgcccatgtaactattaagacc(TC)7 
P1 	 p3 	 p5  

(TG) 15tctggtgtcagaggacaacteLggatggtaLtcctccagaacaaccacatttcttttgagacagggecLctcactaacctQgga 
p4 	 p6 	 p2 

CII:  

* 	p7 	 p9 	 p11 
atcaaaactaacaaaL (CA) 23aaattcagttccagaaLgatacacaccgacQgacc1cttaacggtacatccageccgactggagct tgagtgtctctaggtgaactçjaaac 

p12 
cgaogactaacgacgtcagtttatatacacgatgggactggacgacLcLtggtgaagaac 

P10 	 p8 

F: 	atcaacagactcctac1actttggtctcccgtctccgacgaggtgaggatgagg (AC) 24agaaagtctggtgtacaccctgttggaacccttgatcaggaatggaagat 
p15 	 p13 	 p16 

ggaatappctttgctccaga 
p14 

BIA: 	 (CA) 2otacacacagacgcacaacacggagacacatatatttcaataacagggtaactacttggactatgtgtc 
p17 

atcagtgagtataagtaactctttgattcacttgtgtaagggtatataaattattattttgtataagcaaacctaaaaatatataccctgaggaaggttccgtttgaaaacaa 

P18 

5HT: 	 (CA) 4cctagaaagagagagagaaagagaaacaqqQagcgagagagacatagaclagaca 
P19 	 p20 

gaggcagagaga t 

C13: catqactttttgagatatttqcttqqattaataatgttcagatattagtaacatttacttgtgttttacatgtgtatgttttacatg  
p23 	 p21 

agtctcatgtatcaagtcacatatggtgtgggtacacctgcacatatgtatgagagaggataqcaatatcttactacattcatactaaaaggttatatgaaacgtggtatttta 
p24 

gattaatcacgtagaatgagagatgcaacattaactaaaattaagaaatgaacaaatagaattcatctg 
p22 

E: 	gaagcacgt (AC) 

C: 	aagtttcgtcactcgttcagacatacctcttttcctcctcctcatgacgggggagggagaggggaagggaaaggggaaggggaagagaaggagggaagaagaagagaa 

(GA) 7gga (GA) 1799999 (CA) 26gacgcacc 



Locus 	Repeat type 	Primer sequence (5'-3') 	 Expected 
size (bp) 

B (TC)27(TG)15 p1 cct aac cat gct aag tgc tg 173 
p2 	: cag gtc agt gag aga ccc 

p3 atg tct gac atc cag tcc 227 
p4 : 	 gaa atg tgg ttg tct ctg g 

p5 : 	 ctc aaa gga ccc ctc tca gga gag 219 
gac 

p6 : 	 tgt ctc aaa aga aat gtg gtt 
gtc tct gg 

CII (CA)23 p7 cac ggt gtt tgt atc tat cc 321 
p8 : 	 ctt aca cca aga gtc gtc c 

p9 : 	 caa aca cta caa gat gtt cc 258 
p10 tga cgt cgt tag ccc tcg 

p11 agt ggt ttc aac tcg ttg aag tta 159 
ccg tcg 

p12 cgg act gga tgt acc gtc aag cct 
cc 

F (AC)24 p13 gtc gga cag act cct aga ctt tgg 158 
p14 	: ctt cca ttc ctg atc aag ggt tcc 

p15  tcc tag act ttg gtc tcc cg 141 
p16 	: tct gga gca aag ttt att cc 

BIA (CA)20 p17 	: gag aag ata ttc aat cca t 390 
p18 	: cag aag tac tca ttg tta tcc 

5Ht (CA)24 p19 gct tgg att aat aat gtt cag 146 
p20 	: tct cta tgt ctc tct cgc tcc c 

C13 (TA)7(TG)8ttt p21 gct tgg att aat aat gtt cag 315 
(GT)17 p22 atg aac tcc att tgc cca tcc 

p23 	: tga ctt ttt gag ata ttt gct tgg 235 
p24 	: tga atg tct aag ata ttg cta tcc 

Table 2.3 Sequences of the primers designed to amplify microsatellite loci. 
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146 bp 

Lane 



Figure 2.2 

PCR amplification of genoni 1  DNA from isofemale line 5 Heterogonic (lane 2) and 54 

(lane 3) using primers p19 + p20 to microsatellite locus 5 Ht. Lanes 4 and 5 are 

negative controls; lane 1 contains size standards. 
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Figure 2.3 

The effect of increasing MgCl2 concentration on the amplification of microsatellite 

locus CH from line 5 Heterogonic genomic DNA with primers p9 + plO. Increase in 

MgC12 concentration in IIM is shown beneath the lane number. Lane 11 is the 

amplification of the cloned microsatellite (positive control) and lane 12 the negative 

control. Lane 1 contains size standards. 
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Amplified locus: 	 5 Ht 	 c13 	 cli 



Figure 2.4 

Nonradioactive PCR amplification of microsatellite loci 5 Ht (primers p19 + p20; lanes 

2 - 7), C13 (primers p23 + 1)24; lanes 8 - 13) and CII (primers p9 + plO; lanes 14 - 

19). For each locus, the first two lanes are amplifications of isofemale line 5 

Heterogonic genomic DNA, the second two lanes are amplifications of line 54 

genomic DNA and the final two lanes are negative controls. Lane 1 contains size 

standards. 
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predicted size from genomic or single worm DNA templates. For example, Figure 2.3 

shows the effect of increasing M902  concentration using primers p9 + plO to locus 

CII. A high molecular weight band is seen at low MgCl2 concentrations (high reaction 

stringency), which disappears as the M902  concentration is reduced; smaller products 

appear in its place, some of which are of a similar size to the positive control. The 

reduction in reaction stringency has the effect of amplifying many non-specific 

products and a single product is not obtained. Amplification of locus C13 with primers 

p23 + p24 consistently produces a product 650 bp in length using a step in annealing 

temperature from 48 - 52 °C after 10 temperature cycles (cycle C, section 2.2.9b). 

However this band was 415 bp longer than the expected product size (Figure 2.3). A 

similar reaction using primers p9+ p10 to locus CII with this temperature cycle shows 

a similar pattern to amplification of locus C13; bands are produced but not within the 

expected size range. Locus 5Ht produces low molecular weight bands of the expected 

size, 146 bp, Figure 2.4. 

2.3.1c Optimisation of radioactive PCRs 

The results for the optimisation of radioactive PCRs were essentially the same as 

above. Locus 5Ht was successfully amplified from genomic DNA with primers p19 + 

p20. The autoradiograph of the electrophoresed products shows a 'stutter' pattern that 

is characteristic of amplifications of microsatellite loci (Figure 2.5). Successful 

amplification of this locus from single worm DNA preparations was also achieved, in 

contrast to amplification by non-radioactive PCRs. This illustrates the increased 

sensitivity of radioactive PCRs in detecting low intensity amplification products. 

Extensive attempts were made to optimise these reactions to the stage where single 

amplification products could be reliably obtained and scored from individual parasites. 

These attempts were not successful in that the PCR products obtained were 

consistently faint and of insufficient focus to ensure reliable genotyping of the locus. 

The use of additives and hot start/touch-down temperature cycling was attempted, but 

none of these treatments increased the efficiency and specificity of the reaction to the 

state where locus 5Ht could be used to genotype single parasites. 

For all other loci, multiple bands were amplified in low stringency reactions, but 

in no case was it possible to achieve a single reproducibly amplifiable fragment of the 

predicted size from genomic or single worm DNA preparations. Figure 2.5 illustrates a 

characteristic electrophoretic gel exposure of PCRs using primers to three loci, F, C13 

and 5Ht. Genomic DNA was used as a template in these reactions and two different 

primer pairs were used for the F and C13 loci. While amplification products were seen 



Figure 2.5 

Radioactive PCR amplifications of microsatellite loci using isofemale lines 5 Ht (lanes 

1, 2, 7, 8, 13, 14, 19, 20, 25, 26) and 54 (lanes 3, 4, 9, 10, 15, 16, 21, 22, 27, 28) 

as template DNA. Negative controls are lanes 5, 6, 11, 12, 17, 18, 23, 24, 29, 30) 

Lanes 1-6: Locus F, primers p13 + p14 

Lanes 7-12: Locus F, primers p15 + p16 

Lanes 13-18: Locus C13, primers p21 + p22 

Lanes 19-24: Locus C13, primers p23 + p24 

Lanes 25 - 30: Locus 511t, primers p19 + p20 

Lanes A, B, C, D are sequencing reactions used as size-standards. 
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for these two loci for certain primer pairs (F, primers pl5+p16; C13, primers 

p23+p24), the products were not reproducible between duplicate reactions. The 

successful amplification of locus 5Ht from genomic DNA in this set of PCRs was a 

positive control for the reagents and quality of the DNA template. 

In order to observe whether or not the amplification reactions would work better 

within another PCR system, primers to loci F, C13, CII, B and 5Ht were given to a 

separate laboratory that regularly genotypes other organisms using radioactive 

microsatellite PCR amplifications. They formed the same conclusions, that locus 5Ht 

could be amplified from genomic DNA but not reliably from single worm DNA 

preparations, and that the other loci were not amplifiable using these primers (S. 

Paterson, unpub. observations). 

2.3.1d Redesign of primer sequences 

In order to test whether the primer sequences were responsible for the failure of 

these loci to amplify, second, and in some case third, generation primers were 

designed for all loci, except 5Ht. The primers were designed to recognise regions of 

sequence that had not been included in the initial primer design (Tables 2.2 and 2.3). 

The optimisation procedure was followed for each new pairs of primers; non-

radioactive and subsequently radioactive PCR reactions were varied over a range of 

annealing temperatures, MgCl2 concentrations and temperature cycle types. These 

conditions are shown in Table 2.4. Locus-specific amplification was not achieved for 

any loci using the new primer pairs showing that inability to amplify the loci was not 

due to inappropriate primer design. 

2.3.1e Nested PCR reactions 

The range of primer-pairs available for each locus meant that nested PCR 

reactions could be attempted, a method that can reduce the production of non-specific 

products and increase the sensitivity of the PCR (McPherson et al. 1995). This 

technique has been used successfully with other loci which have proved hard to 

amplify loci (section 2.3.3). Both radioactive and non-radioactive nested PCRs were 

attempted for loci B, CII, F and C 13 using a range of annealing temperatures for the 

step 2 reactions (section 2.2.9b). The nested primer sequences are shown in Table 2.3 

and the results of the PCR reactions in Table 2.4. The reactions generated a variety of 

small amplification products at low annealing temperatures, which disappeared as the 

annealing temperature was increased. Specific amplification of a single PCR fragment 

was not achieved. 
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Table 2.4 

PCR reaction conditions for the attempted amplification of the microsatellite loci using 

radioactive and non-radioactive PCR, and the outcome of the reactions. 

Notes to table: aprimer refers to the primers shown in Figure 2.3.1a. bExpected 

product size is the length of the expected PCR fragment, in bp CAnnealing temp. 

is the temperature used in the temperature cycle (TA see below) which was varied 

through this range at 2 or 4 0C intervals. dCycle: A = 930C 3 mm.; 40 x (93 0C 1 

mm., TA 1 mm., 720C 1 mm.): B = 40 x (93 0C 1 mm., TA reduced in 2 0C 

increments every second cycle from 650C to the primer Tin, 72 OC 1 mm.): c = 930C 

3 mm.; 10  ( 930C 1 mm., TA-  50C 1 mm., 72 OC 1 mm.) 30 x ( 93 °C 1 mm., TA 

1 mm., 72 0C 1 mm.): H= Cycle A + hot start (polymerase added to reaction at first 

93 0C denaturation). eAdditives: 0 = none, P = Perfect match (Promega), Bs= BSA 

at 0.2 % w/v, N = 0.75 mM 7 deaza-GTP (Boehringer). Poiymerase: T = Taq 

polymerase (Boehringer), D = Dynazyme (Flowgen). gM9cl2 was added in the 

range shown with 0.5 mM increments. hResult:  refers to the consensus of the PCR 

reactions, N = no bands, M = multiple bands, S = single bands. 

Nested PCR reactions were performed as described in section 2.2.9d using cycle 

A for step 1 and 2 with the difference that only 35 cycles were used for the step 2 

reaction. 
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Locus Primera Expected Annealing Cycled Additivee Polyrnerase 
f 

MgCl2 R esu lth 
product tempc rnM 

sizeb  

- 	B P1 /P2 173 45 - 55 A,B,C,H OIPIBsIN D,T 0.5-4.5 NIM 
P3 I P4 227 45 - 70 A,B,C,H _____ ___________ N/M 
P5/P6 219 45-60 A 0  1.5 N 

Nested B' P1 /P2 
P3 / P4 

173 4059 A 0 D 1.5 N 

CH P7 / P8 321 40 - 56 A,B,C,H OIP/BsIN D,T 0.5-4.5 NIM 
P9/PlO 258 40-55 A,B,C,H  NIM 
P11/P12 159 45-60 A 0 D 1.5 N 

Nested CII' P7 / P8 258 40 - 56 A 
P9 /_PlO  

0 D N 

F P13 I P14 158 40 - 60 A,B,C,H OIPIBs/N D,T 0.5-4.5 N 
P15/P16 141 40-55 A,B,C,H OJPIBs  1.5 N 

Nested  P15/P14 141 45-55 A 
P13 /_P16  

0 D 1.5 N 

BIA 	P17 / P18 I 	390 	I 	A,B,C,H I OIP/Bs/N  I 	D,T 	0.5-4.5 	I 	N 

I 	5HT 	P19/P20 	146 	40-58 	A,B,C,H I OIPIBs/N 	D,T 	I 	1.5 	S 

C13 P21 / P22 315 A,B,C,H 0/PIBsIN D,T 0.5-4.5 NIM 
P23 / P24 235 40 - 55 A,B,C,H OIP/Bs 1. 11 NIM 

Nested Cl3 P24/P23 
P22 / P21 

235 45-55 A 0 D 1.5 N 



2.3.117 Reconstitution experiments 

The inability to amplify the microsatellite loci may have been due to the 

presence of a contaminant of the genomic DNA that specifically inhibited amplification. 

To test this hypothesis, reconstitution experiments were performed for each locus 

(section 2.2.9e). Here, low concentrations of the cloned microsatellite (1 or 10 ng) 

was used as a template in PCR reactions with increasing concentrations of S. ratti 

genomic DNA. The expectation was that if the genomic DNA contained a PCR 

inhibitor, then amplification of the cloned locus would show reduced efficiency at high 

concentrations of genomic DNA. Reconstitution experiments were performed for all 

loci and in none of them did the addition of high concentrations of genomic DNA 

inhibit the amplification of the cloned microsatellite (Figure 2.6). This shows that the 

presence of a DNA inhibitor was probably not the cause of the failure of these loci to 

amplify. 

2.3.2 Southern blot analysis 

Amplified C13 locus was used as a probe against a Southern blot of S. ratti 

genomic DNA (isofemale line 5 Heterogonic). A single band was observed (Figure 

2.7) for Eco RI and two bands for Rsa I digested DNA. This confirms that the C13 

locus is present in the S. ratti genome. 

2.3.3 Screening for PCR-RFLPs from a random genomic library 

Nine clones were arbitrarily chosen from a random genomic library with insert 

sizes of between 500 and 1500 bp, sequenced and appropriate primers designed. The 

primer sequences are shown in Table 2.5. Five of the nine clones were successfully 

amplified by PCR from genomic template DNA, producing a single amplification 

product of the expected size (Table 2.5). Due to low efficiency of amplification of two 

loci (CM-2 and 29), nested primers were designed and these loci subsequently 

amplified by nested PCR (section 2.2.9d). 

For the preliminary survey, amplified PCR products were digested with a wide 

range of restriction endonucleases. 19 - 33 enzymes were used to survey each locus 

for RFLPs (Table 2.6). An average of 8 enzymes recognised at least one cleavage site 

within each PCR-amplified locus. The total number of bases surveyed was calculated 

as the number of observed cut sites multiplied by the number of bases in the enzyme 

recognition sequence (Nei 1987). Summing all loci, 111 bases were surveyed out of a 

total of 6880 bp of DNA, i.e. 6.7% of the total sequence (Table 2.7). These estimates 

are conservative as some restriction fragments may have been too small to be 



Figure 2.6 

Reconstitution of PCR reactions with cloned microsatellite F. DNA added to the 

reactions was 10 ng (lanes 1-4) or 1 ng (lanes 9-12) of cloned microsatellite F 

(expected size 159 bp) with 0, 1, 10 or 100 ng of S. ratti genomic DNA (lanes 1-4 and 

9-12, respectively). Lanes 5 and 13 are S. ratti genomic DNA only with no cloned 

microsatellite. Lane 6 is a negative control. Lanes 7 and 8 are PCR reactions for a non 

microsatellite locus (BSP 8, expected size 900 bp, M. C. Fisher, unpublished 

observations), lane 7 with 10 ng S. ratti genomic DNA, lane 8 is a negative control. M 

are size markers. 

Figure 2.7 

Southern blot of S. ratti genomic DNA. Microsatellite locus C13 is used as a probe 

against S. ratti genomic DNA digested by Rsa I (lanes 1 and 2) and Eco RI (lanes 2 

and 3). Lane M contains size standards (not visible) and lane 5 no DNA. 
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seen on a gel (fragments <80 bp) and would therefore not have been scored. Four of 

these restriction sites were polymorphic. Assuming that each polymorphism is a result 

of a single base difference then 0.45 % of the total sequence surveyed was 

polymorphic (range 0- 2.8 % across loci). Two loci (XP- 1 and 27) had no RFLPS in 

3550 bp screened and three loci contained polymorphic restriction sites; CM-2 (two 

polymorphic Hae III restriction sites), 29 (one polymorphic Alu I restriction site) and 

24 (one polymorphic Cfo I site). 

2.3.3a Locus CM-2 

During the preliminary RFLP survey of locus CM-2 it became apparent that 

some single worm DNA preparations did not produce amplified products. This was 

especially noticeable within isofemale line 132 Heterogonic where all single worm and 

genomic DNA preparations did not amplify. Examples of non-amplifying DNA 

preparations are shown in Figure 2.8. This suggested that there was a non-amplifying 

(null) allele at this locus within line 132 Heterogonic. To investigate this possibility, 

single worm DNA preparations were made from five iL3s taken from isofemale lines 5 

Heterogonic and 132 Heterogonic. These DNA samples were amplified by PCR at i) 

the Actin locus (section 2.3.6a) and ii) the CM-2 locus using all possible combinations 

of forward and reverse primers F+R, F-i-R2, F2+R, F2+R2 in the first round of PCR 

followed by nested amplification using primers F3+R3 (Figure 2.8 and Table 2.5). 

Figure 2.8 Positions of the primers used to amplify locus CM-2, F = forward, R = 

reverse. Primers F3 + R3 are the nested primers. 

DNA from single worms amplified at the Actin locus (Table 2.8) showing that 

the preparations were of amplifiable quality. In addition, the worms from isofemale 

line 5 Heterogonic amplified at locus CM-2 for all primer combinations. However no 

worms from isofemale line 132 Heterogonic amplified at the CM-2 locus. This 

suggests that 132 Heterogonic worms were homozygous for a null allele 

(heterozygotes would be expected to amplify a band). Further, the null allele is 

probably a result of a deletion of the entire locus and not a nucleotide substitution(s) in 



Locus, Primer sequence Homology to PCR cycle Number of PCR 
size (bp) (5'-3') sequences in cycles 

GenEMBL database 
CM-2, F: tgg tga tgt taa cgc att cg 83%: C. elegans Round 1: 
1000 R: tta tgc aft agt ttc agc agg cosmid D2085 95 °C 1 mm. 

F2:cag caa tac gca ata cct gg 52 °c 1 mm. }30 cycles R2:tga aat ctc ttg aag gca gc 
72 °C 2 mm. 
Round 2: 

F3: tat aac cca ctt cat tat cg 95 °C 1 mm.  
R3:tca gu gaa ggt ass gac g 52°C 1 min. }35 cycles 

72 °C 2 mm. 

29, F: cta gil att ass aga tgg ctg 63%: C. elegans 95 °C 1 mm. 
1100 R: cas gaa tca taa tgt gtt ctg cosmid B0336 54 °C 1 mm. 

} 
35 cycles 

F2:ctg tta gat gtg att atg aag g 
72 °C 3 mm. R2:aag gga tct aac aaa Ut atc cc 

27, F: cgt atc ttg cga tga tca tc 90% (30 bp 95 °C 1 mm. 
1230 R: gat atc agt tgc ass act acc overlap): C. elegans 54 0C 1 mm. 40 cycles  

}  cosmid M02A 10 
72 °C 3 mm. 

18S rDNA 18P: tga tcc agc tgc agg ttc agg 100%: C. elegans 95 °C 1 mm. 
tandem ttc ac rDNA tandem repeat 54 °C 1 min.

} 
35 cycles 

repeat, 18A: aaa gat tan gcc atg cat g 
72 °C 3 mm. 1800 

24, F: aac tgc aaa aft aag aaa tgc g 58%: C. elegans 95 °C i mm. 
1230 R: gtt cga tgc tgt gag tat gag cosmid ZK622 54 °C 1 mm. }35 cycles 

72 °C 3 mm. 

XP1, F: taa gga aac tcc cat ctg g 51.7% identity in 95 °C 1 mm. 
850 R: act tgg aca ttt cga att gg 725 bp overlap: 52°C 1 mm. }35 cycles 

S.cerevisiae 
72 °C 3 mm. mitochondrion DNA 

Table 2.5 Primer sequences and conditions used to amplify nuclear loci. Homology to 

sequences in GenEMBL are shown. 



Locus, Restriction endonucleases Endonucleases recognising 
size (bp) used to screen locia polymorphic restriction 

sires 

CM-2, Alu I, Rsa I, Hinf I, Hae III 
1000 MnlI, Hae III, Msp I, 

Sau 3A, Cf o I, Dde I, 
Eco RI, Hind III, Xho I, Xba 
I, Pvu I, Pvu II, Dpn I, Dpn 

Sin I, Sac!, Sac II, Sma 
Barn HI, Asn I, Hindu. 

Nsi I, L'aI, Sf1, ClaI, 
Apa I, Sph I, Ssp I, Ase I, 
NcoI,NciI, Not 1  

29, Alu I, Rsa I, Hinf I, Alu I 
1100 Mnl I, Msp I, Hae III, 

Sau 3A, Dde I, Eco RI, 
Hind III, Xho I, Xba I, Pvu 

Pvu II, Sin I, Sma I, Barn 
HI, Asn I, Hind II, D,a I, 
Cla I, Sph I, Ssp I, Ase I, 
NcoI, Not 1  

27, Alu I, Rsa I, Hinf I, - 

1230 Mnl I, Msp I, Hae III, 
Sau 3A, Cf o I, Dde 
I ,Eco RI, Hind III, Xho I, 
Xba I, Pvu I, Pvu IL, Dpn I, 
DpnhI, Sin I, Sac!, Sac II, 
Srna I, Barn HI, Asn I, Hind 

Nsi I, Dial, Sf1, ClaI, 
Apa I, Sph I, Ssp I, Bgl II, 
Ase I, Nco I, Bgl IGQ, Nci 
I, Not I 

18S rDNA tandem repeat, Sau 3A, Alu I, Hae III, - 

1800 Mnl I,Msp I, Cfo I, 
Hinf I, Dde I, EcoRI, 
Pvu II, Sin I, XbaI, Hind 

Sma I, Nco I, Dpn II, 
Dpn I  

24, Alu I, Hinf I, Msp I, Cfo I 
1230 Hind III, 	Sau 3A, Mnl 

I, CfoI, Eco RI, PvuI, 
Rsa I, Xho I, Xba I, Sac I, 
Dial, Barn HI, XhoI,Xba 
I,Sac I,Dpn I,Nsi I,Sf 
I,Sph I, Apa I, Nco I  

XP1, Mnl I, Hinf I,EcoRI, - 

850 Ase I, Sin I, Sac I, Xba I, 
Xho I, Nco I, Barn HI, Asn 
I, Srna I, Bgl II, Hind III, 
Kpn I  

Table 2.6 Restriction endonucleases used to survey PCR fragments for RFLPs. 

a Enzymes restricting at 4-base recognition sequences are highlighted in bold. The 

remaining endonucleases restrict at 6-base recognition sequences. 



Locus Fragment size 
(bp) 

No. of non- 
cutting 
enzymes 

No. of 
cutting 
enzymes 

Total No. of 
sites 
observed 

Total No. of 
bp surveyeda 

% sequence 
surveyed 

No. of sites 
polymorphic 

pb 

CM-2 1000 23 10 16 70 7 2 0.0140 
29 1100 14 10 29 92 8.4 1 0.0055 
XP-1 850 21 4 8 36 4.2 0 0.0000 
18S rDNA 1800 10 9 26 118 6.6 0 0.0000 
27 900 21 9 16 76 8.4 0 0.0000 
24 1230 15 8 16 66 5.4 1 0.0075 

Overall 6880 17.3c 8.3C 111 	1 458 1  6.7C 4 0.0045C 

Table 2.7 Summary of the preliminary screen for RFLPs at six nuclear loci. 

a Total number of bases surveyed calculated as the number of cut sites multiplyed by the number of bases in the enzyme recognition sequence (Nei 

1987). 
b p is the conditional probability that a nucleotide is polymorphic, calculated as described in section 2.2.12c. 

c Means of overall values 



Figure 2.9 

Amplification of single iL3s from isofemale line 132 Heterogonic (lanes 2 - 6) and 5 

Heterogonic (lanes 7 - 11) by first round primers F + R and second round (nested) 

primers F3 + R3 to the CM-2 locus. Lane 1 are size standards and lane 12 a negative 

control. 

rom 
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one of the primer sites. The possibility that a base substitution was present in one of 

the primer sites for CM-2 primers F3 and R3 was tested by using nested PCR on 132 

Heterogonic worms using primers F+R followed by F2+R2, no amplification being 

observed. Worms from lines 29 and 32 produced amplified bands as expected, 

suggesting that the null allele was either not present or at a low frequency within these 

populations of the parasite. On this basis the locus was included in the population 

survey described in chapter 3. A restriction map of locus CM-2 is shown in Figure 

2.12. 

Locus 

Line 	Actin 	 CM-2 

F+R 	F+R2 	F2+R 	F2+R2 
5 	5 	5 	5 	5 	5 
Heterogomc 
132 	5 	 0 	0 	0 	0 
Heterogomc 

Table 2.8 Numbers of worms amplifying at the Actin and CM-2 loci. 

2.3.4 Screening for PCR-RFLPs of RAPD-PCRs 

Five RAPD primers successfully amplified anonymous fragments (Table 2.9). 

The PCR products from lines 29, 32, 5 Heterogonic and 54 were screened for 

polymorphisms with a range of restriction endonucleases. The restriction 

endonucleases used to survey the sequences and the numbers that successfully 

restricted are shown in Table 2.9. A total of 19 restriction sites were observed and 90 

bases surveyed out of a total of 4570, this corresponds to 2% of the total sequence. 

None of the loci were polymorphic among the parasite lines screened. 

2.3.5 PCR amplification by homology to C. elegans sequences 

Searches of the GenBank and EMBL databases found four C. elegans entries 

with dinucleotide repeats greater than 7 repeats long. Primers were designed to 

flanking sequences for three of these repeats. The locus identification, accession 

number and repeat-type are shown in Table 2.10. PCR using S. ratti genomic DNA 

was unsuccessful in amplifying these loci even after attempts to optimise the reactions. 

It was concluded that the genetic distance between S. ratti and C. elegans was too great 

to warrant using this technique further. 
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Table 2.9. 

Primers and conditions used to amplify RAPID loci from S. ratti. Restriction 

endonucleases used to screen the sequences are shown. 

aEndonucleases that restrict at 4-base recognition sequences are highlighted in bold. The 

remaining endonucleases restrict at 6-base recognition sequences. b  Total number of 

bases surveyed calculated as the number of cut sites multiplied by the number of bases in 

the enzyme recognition sequence (Nei 1987). - 



Primer (sequence) PCR conditions Length of Restriction Endonucleases that restrict Total No. of bp Endonucleases 
PCR endonucleases used (number of sites)' seyb (% recognising 
product (bp) to screen loci sequence surveyed) polymorphic sites 

4F 95°C 1 mm. 1200 Alu I, Rsa I, Hinf Alu 1(1), Rsa I (1), 20(1.7) - 

5- agt tga tcg gtc ttg 45°C 1 mm. 	 40 cycles 
} 

I, Mn! I, Msp I, Hinf I (1), Mn! I (1) 
cag c 

72 °C 2 mm. 
CJo I, Hae III, Fvu 
I, Pvu II, Sau 3A, 
Xba I 

SHtl 95 0C 1 mm. 700 Alu I Rsa I HinJ - -(0-0) - 

5- gct tgg att aat 40 45°C 1 mm. 	 } 	 cycles I 
aat gtt cag 

72 °C 2 mm. 

4R 95°C 1 mm. 670 Alu I, Rsa I, Hinf Alu I (1), Rsa I (1), 34(4.9) - 

5-ccgcaaaacata 45°C 1 mm. 	 40 cycles 
} 

I, Mn! I, Msp I, Mnl I (1), Hinf I (1), 
aac ctg gac c 

72°C 2 mm. 
Hae III, Eco RI, Eco RI (2), Hind III (1) 
Sau 3A, Hind III, 
Xho I, Xba I, Pvu 
I, Pvu II, Cfo I, 
Dpn I, Dpn II, Sin 
I, 	Sac I, 	Sac II, 
Sma I, Nci I, Dde 
I, Not I  

F2 95°C.1 mm. 600 Alu I, Rsa I, Hinf - -(0.0) - 

5'- tcc tag act ttg gtc 45 0C 1 min. 	 des 
} 

I, 	Msp 	I, 	Cfo 
tcc cg 

72 °C 2 min. 
I,Hae III, Eco RI, 
PvuI,FvuII,Sau3A, 

1400 Alu I, Rsa I, Hinf Alu I (1), Rsa I 	(1), 36(2.6) - 

5'- tgt ctc aaa aga aat 
95°C 1 min.

} 
45°C 1 mm. 	 40 cycles I, Mn! I, Msp I, Hinfi (1), Eco RI (1), 

gtg gtt gct tct gg 
72 °C 2 mm. 

Hae III, Eco RI, Pvu 11(1), Sin 1(1), 
Sau 3A, Hind III, Dpn 11 (2) 
Xho I, Xba I, Pvu 
I, 	Pvu II, 	Sin 	I, 
Dpn II,Sma I, Nod  



Locus 	GenEMBL Microsatellite Primer sequence 
accession No. 

Pal 1 	X62782 (AT)8 F: tgc cgt ggc cct ggc gac gc 
R: ttg cgg gag get gaa ttg gag g 

CAPK1 	M37119 (CT)8 F: tgt ccg tgt acg aac age tga c 
R: gaa aac cat gtt eaa aat gga tee g 

Lin 1 	X60232 (01)8 F: ect taa act gat aaa eat g 
R: tgt ate atg taa agt ata egg gc 

Table 2.10 Caenorhabditis elegans microsatellite sequences found within GenEMBL 

database. 

Amplification of S. ratti DNA using universal primers to the 18S rDNA tandem 

repeat gene was successful. A fragment of 1800 bp was amplified (expected product 

size 1600 bp) from lines 29, 32, 5 Heterogonic and 54. 12 restriction endonucleases 

were used to screen the sequence, nine of which cut (Table 2.5 and Table 2.6). In this 

way 118 bp were surveyed, corresponding to 6.6% of the total sequence. None of 

these restriction sites were polymorphic. 

2.3.6 S. ratti-specific PCR-RFLPs 

Primers to three loci were donated by M. Viney; Actin, TJCA-2 and BSP-8 

(Table 2.11). These loci had been previously observed to contain RFLPs between 

isofemale lines 5 and 54 (M. Viney, unpublished observations). The loci were 

amplified from lines 29, 32, 5 Heterogonic and 54 using the primers and conditions 

shown in Table 2.11. A survey of the amplification products by restriction digestion 

confirmed the presence of the RFLPs. Actin was polymorphic at a single Mnl I 

restriction site, TJCA-2 at single Alu I and Rsa I sites, and BSP-8 at a single Hinf I 

site. 
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Locus, Primer sequence Homology to PCR cycle Number of PCR 
size (bp) (5'-3) sequences in cycles 

GenEMBL 
database 

Actin, F: gga gat ggt gtc acc aca ccg t :100%: C. elegans 95 °C1 mm. 
390 R: tcc ata cca aga agg atg get Actin  gene 62 °Cl min. J42 cycles 

70°C2min. 

TJCA - 2, F:ggttgcgctcgttgcggg 977o: Acinetobacter 95 °C 1 mm. 
1050 R: caa atg tga aat ccc cga gc l6srRNAgene 61 0Clmin. 40 cycles 

72 °C2min 

BSP-8, F: cct agt ggc aft aft ctc g 56.5%: C. elegans 95 °C 1 min. 
1240 R: cac cta gtg gaa atc cag cosmid CO1F6 52 °C 1 min. cycles 

72°C 2 mm. 

Table 2.11 Primer sequences and conditions used to amplify S. ratti-specific nuclear 

loci. Homology to sequences in GenEMBL are shown. 

2.3.7 Polymorphism of loci within British samples of S. ratti 

Six polymorphic loci were isolated by a combination of methods, described in 

sections 2.3.3 - 2.3.6. These loci were Actin, TJCA-2, BSP-8, CM-2, 29 and 24. For 

these loci to be of use in this study, it was essential that the polymorphisms be present 

within British populations of S. ratti. To establish this, two British isolates (lines 29 

and 32) were examined. DNA from 30 single worms were amplified at each of the 

polymorphic loci from lines 29 and 32 and DNA from 20 single worms from lines 5 

Heterogonic and 54. The products from each PCR were then digested with the 

restriction endonucleases that had previously identified RFLPs. 

Table 2.12 shows the distribution of RFLPs within the S. ratti lines examined. 

Actin, TJCA-2, BSP-8 and CM-2 were polymorphic within and amongst all the lines 

examined. Loci 29 and 24 were polymorphic within line 5 Heterogonic, but 

monomorphic within and between all other lines. Due to the criteria that loci must be 

polymorphic within British samples of S. ratti, loci 29 and 24 were not used any 

further as genetic markers in this study. 



Polymorphism present within lines? 

Locus USA (5 Japan (54) 	Scotland (32) England (29) 

Heterogomc) 

Actin y y 	 y y 
TJCA-2 y y 	 y y 
BSP-8 y y 	 y y 
CM-2 y y 	 y y 
29 y n 	 n n 

24 y n 	 n n 

Table 2.12 Presence of RFLPs within S. ratti lines analysed. y = polymorphism 

present and n = polymorphism absent. within the line. 

2.3.8a Genetic analysis of the segregation of genomic PCR-RFLPs 

It has been shown in a previous study that alleles of the Actin locus are inherited 
in a simple Mendelian manner (Viney et al. 1994). iL3s from line 132 Heterogonic 

were shown to be polymorphic for PCR-RFLPs at each of the loci TJCA-2, BSP-8 

and CM-2. This line was subsequently used to examine the segregation of alleles at the 

loci. 

To determine whether allelic segregation was occurring, the progeny of naturally 

mated heterozygous free living females were analysed for each locus (section 2.2.13). 

Nine heterozygous females were observed, four were heterozygous at locus BSP-8, 

four at TJCA-2 and one at CM-2. The progeny genotypes are shown in Table 2.13. 

Progeny that had different genotypes with respect to their mothers were observed for 

the BSP-8 and CM-2 loci, homozygous progeny being produced by a heterozygote 

parent. This result shows that allelic segregation had occurred at these loci. 
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LOCUS Female 
genotype  

Observed progeny genotypes 

++ 

3 	 3 1 
BSP-8 2 	 3 3 

5 	 4 0 
0 	 6 3 

CM-2 0 	 2 2 

+- 4 	 0 0 
TJCA-2 4 	 0 0 

0 	 9 0 
0 	 4 0 

Table 2.13 Observed genotype frequencies from natural matings. "+" = presence of the 

polymorphic restriction site and "-"= its absence. Thus, "+-" denotes worms 

heterozygous and "--" or "++" worms homozygous for the RFLP. 

2.3.8b Segregation of alleles of Locus TJCA-2 

The results from the progeny of naturally mated female worms at locus TJCA-2 

were contradictory and unexpected: In two cases heterozygous females produced 

wholly heterozygous progeny; no segregation was observed at the locus in a total of 13 

progeny. For two other females the progeny were homozygous despite being produced 

by heterozygous females. This apparently non-Mendelian inheritance prompted further 

investigation of the locus. Sequence analysis revealed close homology to bacterial 16S 

RNA genes. The highest match was a 96% identity between 500 bp of locus TJCA-2 

and the 16S rRNA gene of a common soil bacteria, Acinetobacter sp (Table 2.11). No 

close homologies were found between this sequence and any nematode sequence. 

To test whether this result was due to bacterial contamination, samples of water 

from faecal cultures of rats without S. ratti infections were prepared using the single 

worm DNA-preparation protocol (section 2.2.6). Preparations were made from faecal 

cultures one, two, three and four days old. Preparations from one and two day old 

cultures did not amplify the locus while that from three and four day old cultures 

amplified a fragment of the correct size. This demonstrates that (i) amplification of the 

TJCA-2 locus is not S. ratti specific and (ii) amplification of the locus is only possible 

after a period of culture. These results strongly suggest that PCR amplification of this 

locus is from contaminating bacteria that multiply within faecal cultures. The difference 

between the genotypes of the mother S. rani and her progeny can be explained by the 

existence of two or more bacterial genotypes. The female worm would be expected to 
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be colonised by bacteria from the original faecal culture, and her progeny the bacteria 

that had grown in the 96 well plate. Thus, the progeny would have the same 'bacterial 

genotype', while the mother would have the 'bacterial genotype' of the original faecal 

culture. 

Due to the non-S. ratti associated nature of this locus, it was excluded as a 

marker from the subsequent study. 

2.3.8c Restriction maps of polymorphic loci 

Restriction maps and gel examples for each of the loci used in the subsequent 

screen of British S. ratti are shown for the Actin locus (Figure 2.10), for the BSP-8 

locus (Figure 2.11) and for the CM-2 locus (Figure 2.12). 

2.3.9a mtDNA PCR-RFLPs 

An 800 bp product was successfully amplified by primers 1120 and 1122 

designed to sequences conserved between C. elegans/A. suum mtDNA (Figure 2.1). 

The expected fragment size, predicted from the C. elegans sequence was 819 bp. The 

sequences of the primers and conditions used to amplify the locus are shown in Table 

2.14. The PCR product was cloned and sequenced as described in section 2.2.15a 

(sequence given in appendix). Sequence homologies of 68.3 and 69.7% were found 

between the S. ratti and the C. elegans and A. suum sequences, respectively. 

The primers were used to amplify the locus from lines 29, 32, 5 Heterogonic 

and 54. 30 restriction endonucleases were used to survey the amplified sequence for 

RFLPs. Five of these cut at eight restriction sites, screening 34 bases in total. This 

compromises 2.7% of the total sequence. PCR conditions and restriction 

endonucleases used are shown in Table 2.14. No RFLPs were detected between any 

of the lines surveyed by these enzymes. 

2.3.9b Direct sequencing of mtDNA PCR products 

Cycle sequencing using primer 1121 was successful, sequence being obtained 

consistently for a minimum of 304 base pairs from the primer. This corresponds to 

bases 4815-5119 of the C. elegans mtDNA genome. The other two primers (1120 and 

1122) did not produce readable sequence and were not used further. 

Primer 1121 was used to sequence single worm preparations from lines (5 

Heterogonic, 68, 2924, 2932, Berks. 352 and Berks. 362) and a 5 Heterogonic 
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Figure 2. 10 

Genotyping Mnl I RFLPs of the PCR amplified Actin locus. Each lane is an 

amplification of a single iL3 from isolate 29. Lane 1 contains size standards, lane 13 

the negative control PCR. Genotypes are shown beneath each lane; 11 = homozygote 

for absence of restriction site, 22 = homozygote for the presence of the restriction site 

and 12 = heterozygotes. 

Map position of the variable Mnl I site within the Actin locus. Schematic restriction 

fragment profiles for each genotype are shown below. 
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Figure 2.11 

Genotyping Hinf I RFLPs of the PCR amplified BSP-8 locus. Each lane is an 

amplification of a single iL3 from isolate 29. Lane 1 contains size standards, lane 13 

the negative control PCR. Genotypes are shown beneath each lane: 22 = homozygote 

for presence of restriction site, 12 = heterozygote. Lanes 2 and 4 are heterozygous 

worms, lanes 3, 5, 6, 8-12 homozygotes. The reaction in Lane 7 failed to amplify 

BSP-8, but did amplify a spurious smaller product which is also observed at low 

intensity in lanes 5 and 6. 

Map position of conserved and variable Hinf I restriction sites with schematic 

restriction fragment profiles of each genotype shown below. 

73 



Fal 

450> 

290>  

150>  

	

size (bp) 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 
12 22 12 22 22 22 22 22 22 22 22 

Ii] 
p-I] 

	

11I 1.i. 	1I:10I 

210Li.-A 40F' Polymorphic 	 I 

145° bp 

1330 bp 

1290 bp I 
1150 bp I 

	

11 	 12 	 22 
Genotypes 

13 : Lane 
Genotype 



Figure 2.12 

Genotyping Hae UI RFLPs of the PCR amplified CM-2 locus. Each lane is an 

amplification of a single 11_3 from isolate 29. Lane 1 contains size standards, lane 14 the 

negative control PCR. Genotypes are shown beneath each lane. Lane 12 (no 

amplification product) is a putative homozygote for a null allele. Lanes 3,4,5,6 and 8 

contain faint non-specific amplification products. 

Map positions of the Hae III restriction sites within the CM-2 locus. Schematic 

restriction fragment profiles for each genotype are shown below. 
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genomic DNA preparation (Figure 2.13). The majority of bases were scored 

unambiguously although a small proportion were unreadable (denoted as "n" in Figure 

2.13). These bases were unreadable due to coincident peaks of similar intensities. It is 

probable that these coincident peaks are due to the background 'noise', as only peaks 

of low intensity were affected. A total of 3040 bases of the S. ratti mtCytB gene were 

sequenced from nine single worms and one genomic template. One unambiguous base 

difference was observed (5 Heterogonic lsw; position 190, Figure 2. 1, this was a 

transversion from 't' to 'g'. This single variation corresponds to 0.00032 substitutions 

per site between the individuals tested or 0.032% of the overall sequence surveyed 

being variable within this group of worms. 

2.4 Discussion 

2.4.1 Microsatellites 	 - 

Microsatellite sequences were successfully cloned from the genome of S. ratti 

and are the first such sequences to be described from a parasitic nematode. The 

presence of these sequences within S. ratti DNA supports the apparent ubiquity of 

microsatellites in eukaryotic genomes. It follows, therefore, that mechanisms causing 

the evolution of microsatellite sequences are active within the genomes of parasitic 

nematodes as well as other organisms. 

In total, eight microsatellites were isolated using standard techniques to screen 

S. ratti genomic DNA libraries. Five were simple dinucleotide repeats with the repeat 

number ranging from 16-24 and the others compound microsatellites of two or more 

dinucleotide repeat types. The maximum and minimum size of the microsatellite repeats 

were 54 and 14 bp respectively. These sizes are within the range observed for 

microsatellites isolated from other species. In contrast, however, the distribution of 

microsatellite lengths from the genomes of S. ratti and C. elegans were almost non-

overlapping. The maximum length of microsatellites from C. elegans was 16 bp 

compared to a minimum length of 14 bp from S. ratti. It is probable that the larger 

overall length of S. ratti microsatellites is a consequence of the sequences having been 

found by a specific screening protocol that is perhaps biased to selecting long 

sequences. C. elegans microsatellite sequences were isolated as a consequence of the 

C. elegans genome project and not specifically searched for. The small length of the 

sequences, therefore, is probably not a reflection of the size of C. elegans 

microsatellites as a whole. Whether or not the difference between the two species was 

an artifact of the screening technique could be confirmed by isolating microsatellites 

75 



Country of 	 0 	 10 	20 	30 	40 	50 	60 	70 	80 
origin: 	5Ht genomicaatttagttatcgtttgtcaggagtttgatttactggtttaagaatatttctttttgttatgatggaggcttttataggttatgttt 

USA 	5Ht iswb 
5Ht 2sw 
5Ht 3sw 

USA X Japan 68 lsw 
Germany 2924 lsw 

2932 lsw 
EnglandBerks 352 Sw .................................................................................... n. 

Berks352 	Sw ...................................................................................... 
Berks362 	sw ...................................................................................... 

90 	100 	110 	120 	130 	140 	150 	160 	170 	180 	190 
tggtttgagctcaaatgagtttttgagcttctgttgttattactaaacttttaagtgttattccttattttggtttttctttggtttattgaatttgaggtggtttttct 

.........................................n ............................ n .......................... g ..... 

......................................................................n ................................ 

.................................n ..................................................................... 

.....................................................................n................................ 

.....................................................................n................................ 

.....................................................................n ................................ 

200 	210 	220 	230 	240 	250 	260 	270 	280 	290 	300 
gtgttggttctactttgaagttttttttggttttacattttttgttgccttga . tttatttttgttgtaatttgggttcatttgttttttttgcataggactggaa 

..................................................................................... n .............. 

..................................................................................... n .............. 

..................................................................................... n .............. 

..................................................................................... n .............. 

Figure 2.13. Sequence diversity of the S. ratti mtDNA Cytochrome B gene. a5Ht  denotes the sequence obtained from genomic DNA 
for the isofemale line 5 heterogonic. b  sw denotes the sequence obtained from single iL3s. n = denotes bases of ambiguous 
identity. Polymorphic bases are highlighted in bold. 



from C. elegans by the method used in S. ratti. Indeed, this would provide useful data 

on comparative frequencies, length and types of microsatellites in the two species. 

The attempts to use the S. ratti microsatellite sequences for population studies 

were inspired by the success of tandem repeats as polymorphic markers within other 

organisms. However it was found that, with a single exception, these loci could not be 

amplified from S. ratti. This result was surprising. DNA sequences isolated from an 

organism should, under appropriate conditions, be able to be amplified. Indeed, the 

cloning of other non-microsatellite sequences followed by PCR amplification was used 

routinely in other parts of this study. Only one locus, 5Ht, could be amplified from 

genomic DNA. However, even this locus could not be consistently amplified from 

single worms. Amplification from single worms was an absolute prerequisite for loci 

to be used in this study, so despite successful amplification this locus was not useful 

as a population genetic marker. 

For the other microsatellite loci, either none or multiple PCR products were 

obtained. Extensive attempts were made to optimise these reactions but in no case was 

a single reproducible band obtained. A common reason why loci do not amplify is 

inappropriate primer design. In order to ensure that primer design was not at fault, 

second, and in some cases third generation primers were designed to flanking 

sequences of the loci. However this still did not result in specific amplification of the 

loci, suggesting that the failure to amplify was not due to inadequacies of the primers. 

Attempts were made to enhance the stringency of primer binding by using 

'touchdown' (Don et al. 199 1) and 'hot start' (Chou et al. 1992) PCR (Table 1, cycles 

B and H). Both techniques increase the specificity of the PCR reaction, touchdown 

PCR by ensuring only specific amplification of target DNA occurs during the first few 

thermocycles, and hot start PCR by reducing low-temperature mis-priming and primer 

dimerisation during the first round of amplification. However, although both 

techniques increased the effectiveness of PCR with primers to the locus 5Ht they did 

not have a noticeable effect on amplification of the other loci. 

It may be that the failure to amplify is due to a higher order feature of the part 

of the genome containing these microsatellites which interferes with the efficiency of 

the amplification reaction. For instance, if these microsatellites were embedded in 

repetitive sequences there may be multiple priming sites which would probably result 

in the amplification of multiple bands. Indeed, multiple bands were commonly 

observed during attempts to amplify these loci (Table 2.4). Further work on these loci 
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should include the cloning and sequencing of these bands to determine whether or not 

they contain the microsatellite and/or homologous sequences containing the primer 

sites, or variants of the primer sites. In this way it would be possible to characterise the 

regions of the genome in which these loci occur more fully. 

If microsatellites commonly occur in regions of a genome that are difficult to 

amplify, then failures in amplifying microsatellites should perhaps be a common 

observation for other organisms. While this does not seem to be generally the case, 

there is some indication that a significant proportion of isolated loci are not suitable for 

further use. A recent paper by Bell & Ecker (Bell & Ecker 1994) closely parallels my 

own experience. In Arabidopsis thaliana, only three of 22 (CA)n  microsatellites 

isolated could be amplified despite extensive attempts at optimisation of the PCR 

conditions. Why this was so remained a mystery, but in the same study 30 of 37 

(GA)n microsatellites could be amplified, suggesting that the type of dinucleotide 

repeat may be important in determining ease of amplification. 

This first attempt to identify polymorphic loci in the genome of S. ratti found a 

number of non-amplifiable microsatellites. While it is not clear why this was so, the 

high redundancy that we have observed in cloning and successfully amplifying these 

loci meant that they were of no use as genetic markers for S. ratti in the subsequent 

population study. 

2.4.2 Other nuclear sequences 

Due to the lack of success in utilising microsatellite sequences as population 

genetic markers, three alternative methods were used to amplify and survey S. ratti 

genomic loci for polymorphisms. These were (i) PCR-RFLPs of anonymous S. ratti 

loci, (ii) RAPD PCR-RFLPs of anonymous S. ratti loci and (iii) amplification of 

homologous C. elegans loci from S. ratti DNA. Methods (i) and (ii) were used to 

amplify ten anonymous loci from S. ratti DNA, these sequences then being surveyed 

for polymorphisms by the use of restriction endonucleases. Sequences isolated by 

method (i) revealed four polymorphisms in three loci (24, 27 and CM-2), and method 

(ii) revealed none. These methods provided a rapid procedure for surveying loci in 

large numbers of individuals. The potential number of loci was unlimited and 

screening for polymorphisms was simple and unambiguous. No radionucleotides were 

required, and PCR-amplified DNA was able to be digested and polymorphisms scored 

within 24 hours. 



2.4.2b Genetic variation in S. ratti 

Of the loci amplified from S. ratli DNA, method (i) (including the 18S rDNA 

locus) revealed four nuclear DNA polymorphisms and method (ii) none. Why a 

difference exists between the two methods in detecting genetic variation is unclear. 

However, it is likely that sampling variance has an effect and that the differences 

observed are attributable to the relatively small number of sequences assayed by these 

methods. 

From these observations, 0.25% of nucleotides, averaged across loci, were 

polymorphic in S. ratti. This is comparable to that found in free-living organisms, 

which ranges from 0.03 - 0.57% (Lynch & Crease 1990). A study of the introns of a-

tubulin genes of Hwmonchus contortus measured levels of nucleotide diversity of 

9.4% and 9.1% at two loci from three Canadian parasite isolates (Beech et al. 1994). 

This is considerably higher than the range found in free-living organisms and higher 

than that found in S. ratti. Reasons that may account for this discrepancy are discussed 

in the final chapter of this thesis. 

Method (iii) was unsuccessful with respect to amplifying C. elegans 

microsatellite containing loci from S. rat/i. Microsatellite loci have been successfully 

amplified from species that have been separated for as long as 470 million years (Rico 

et al. 1996). However, a more general observation is that the longer the period of 

divergence between two organisms, the less chance there is of amplifying homologous 

loci. Estimates of the time of divergence between C. elegans and S. ratti are between 

560 and 370 million years. (M. Blaxter, pers. comm.), estimated from sequence 

divergence between nematode globin genes using the mammalian clock rate. It may be 

that the period of divergence between the two species is too great to allow the 

amplification of homologous microsatellite loci. In comparison, amplification of the 

18S rDNA sequence was successful using universal nematode primers. These primer 

sites are highly conserved between species and successfully amplify this locus in all 

nematode species so far studied (M. Blaxter, pers. comm.). Consequently the 

intervening sequence also shows a relatively high degree of conservation between 

species making this an unlikely sequence to find intraspecific genetic variation. This 

expectation was confirmed on screening the locus for RFLPs, as none were detected. 

2.4.3a Distribution of variation between S. ratti lines 

In addition to the polymorphisms isolated by the methods described above, 

primers to three loci previously observed to contain polymorphisms were donated by 
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M. Viney, namely Actin, BSP-8 and TJCA-2. Analysis of the distribution of the 

RFLPs between lines showed that, of the six loci containing polymorphisms (Actin, 

BSP-8, TJCA-2, CM-2, 29 and 24), two were monomorphic within lines isolated 

from Britain and Japan (29 and 24). These two loci were as a consequence removed 

from the suite of markers used to further analyse British samples of the parasite. 

24.3b Segregation of alleles at each locus 

The Mendelian nature of alleles at each locus was examined by analysing the 

genotypes of naturally-mated females and progeny. With one exception, alleles at each 

locus showed segregation. A single locus, TJCA-2, exhibited a non-Mendelian pattern 

of inheritance. The locus was subsequently shown to be amplified from the 16S RNA 

gene of a non-S. ratti associated bacteria and was not used further within this study. 

2.4.4 Polymorphism of mitochondrial DNA sequences 

Measurements were made of sequence diversity within the S. ratti mtDNA 

Cytochrome B gene. Genetic diversity was low within this locus. A 1250 bp fragment 

showed no variation when surveyed by restriction endonucleases. This result was 

corroborated by direct sequencing of a 304 bp segment of the CytB gene, one 

nucleotide being polymorphic out of a total of 3040 surveyed corresponding to a 

nucleotide diversity of 0.00032 substitutions per site between the individuals tested. 

Direct sequencing of the ND4 and LNC (variable-length long-noncoding) 

regions within 0. ostertagi mtDNA found within population diversities of 0.027 

substitutions per site (Blouin etal. 1992). High levels of nucleotide variation were also 

found for the mtDNA of Haemonchus contortus (0.026%), Te!adosargiacircwncincta 

(0.024%), Haemonchusplacei (0.019%) and Mazamastrongyhis odocoileus (0.028%) 

within the USA (Blouin etal. 1995). Lower values were recorded for Ascaris suum 

(0.004%) (Anderson etal. 1993) in Guatemala. The observed S. ratti diversity is one 

to two orders of magnitude less than that of these nematodes. This may be attributable 

to functional constraints on the Cytochrome B gene. Indeed, there has been shown to 

be considerable variability in mutation rates between different mtDNA genes within a 

species (Hillis & Moritz 1990). However studies on A. suuin have found extensive 

variation within the Cytochrome B gene (Anderson et al. 1993) illustrating that 

functional constraints on these sequences within nematodes, if present, are not 

absolute. 



A general conclusion of these studies is that while genetic diversity within 

mtDNA is present within S. ratti samples, it is appears low relative to that of other 

species. Thus, lines initiated from isolates collected in Japan and the USA are 

remarkably similar despite the large geographical distances separating these samples. 

Conservatively, assuming that the diversity of S. ratti mtDNA is half that observed 

within 0. ostertagi, we would expect to find, on average, 40 nucleotide substitutions 

among ten individuals within a 304 bp sequence. Only one was observed. 

Reduced levels of diversity may be a consequence of historical processes such 

as population bottlenecks or random genetic drift within small populations. The effect 

of both processes is to reduce variability within populations and to increase 

differentiation among populations (Tajima 1989). Indeed, mtDNA will be expected to 

be affected more by these processes due to a smaller effective population size relative 

to nuclear loci (Karl et al. 1992). It may be that at some time in the past, S. ratti 

populations underwent a population bottleneck followed by a rapid range expansion 

and that this may explain the relatively low levels of genetic diversity within globally-

distributed isolates of both mtDNA and nuclear loci. Indeed, it is possible that the 

spread of Rattus norvegicus in association with human movement may have caused a 

rapid recent expansion of the S. ratti populations. The present distribution of Rattus 

norvegicus is thought to have arisen from a focus near the Caspian sea, to have arrived 

in Europe in the 1600s and to have colonised Britain in the 1720s (Kroyer 1991). 

Thus, it is possible that the population of parasites found worldwide, and in Britain, 

may have originated from a relatively few individuals. Investigation of the population 

genetic structure of S. ratti, described in Chapter four, will test this hypothesis. 



2.5 Summary 

This chapter has described the methods leading to the isolation of polymorphic 

DNA sequences from the genome of S. ratti. The isolation of S. ratti microsatellites 

was successful but amplification of these loci from iL3s proved to be unsuccessful. 

Surveys for alternative polymorphic anonymous genetic loci successfully identified 

three loci containing RFLPs. A group of six polymorphic loci became available for 

analysis of the genetic structure of S. ratti populations. Two loci (29 and 24) were 

monomorphic within lines isolated from British samples of the parasite and were 

excluded from further study. A third locus (TJCA-2) proved to be a consequence of 

bacterial contamination and was also excluded. Studies on the inheritance of the 

remaining markers showed that they were inherited in a conventional manner, 

undergoing genetic segregation during the sexual phase of the S. ratti life cycle. RFLP 

surveys and direct sequencing of a segment of the mitochondnal genome were used as 

a method of characterising mtDNA polymorphisms. Levels of polymorphism in this 

molecule were found to be too low for it to be used successfully as a means of 

differentiating individual parasites and it was excluded from further study. 

Thus, Actin, BSP-8 and CM-2 were used as genetic markers in the rest of this 

study. 



Chapter three 

Sampling wild populations of Rattus norvegicus 
for Strongyloides ratti. 

3.1 Introduction and rationale 

This chapter describes the sampling of natural populations of Strongyloides 

raUi. The samples provide a basis for an analysis of the structure of S. ratti populations 

by the use of polymorphic genetic loci. 

To describe patterns of genetic variation within a species, allele and genotype 

frequencies are measured within a number of samples. Populations of S. ratti were 

sampled to allow an analysis of the distribution of genetic variation to be made at four 

levels: within individual parasites, within samples from a single host, between hosts 

from a single sample site and between sample sites. By a comparative analysis of 

variance within and between each of these four sampling levels, the extent of genetic 

differentiation was measured for the parasite samples. F-statistics and analyses of 

genotypic proportions were used to measure inbreeding. The genetic analysis is 

described in Chapter 4. 

Such data need to be considered together with information on other key 

aspects of the parasites' life history in order to understand fully the observed patterns 

of genetic variation. As described in Chapter 1, factors of particular importance are (i) 

the amount of sexual reproduction occurring within natural populations of the parasite, 

and (ii) the frequency distribution of S. ratti within rats. Laboratory studies are 

described which measure these parameters. 

Finally, this study has used a point sampling methodology. In order to show 

that this is a valid approach, data are presented on longitudinal studies of the variance 

of allele and genotype frequencies of iL3 samples from artificially and naturally 

infected rats. 

3.1.1 Sampling methodology 

Previous studies have established that S. ratti occurs widely in the UK (Viney 

etal. 1990). Surveys of brown rats recorded S. ratti infections in both England (3 of 

20 rats positive, collected in West Dean, Sussex) and Scotland (2 of 2 rats positive, 
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collected in Leith and Craigmillar, Edinburgh). My work has aimed to enlarge upon 

these studies by sampling S. ratti from rats collected from a variety of geographical 

locations across Britain. 

3.1.1a Sampling natural populations of S. ratti 

The basic unit from which samples were taken was individual rats. There are 

three methods by which S. ratti may be sampled: 

Direct sampling of the parasite infra-population (the parasites within a 

single host) of hosts. Rats are sacrificed and the gut removed. Parasitic females of S. 

raiti are then dissected away from the intestinal tissues (Viney 1994). 

Indirect sampling of individual rats. Faecal samples from rats are cultured 

(section 2.2.4). Free living adults and iL3s are subsequently recovered from culture. 

Indirect sampling from a rat population: Faecal samples are collected from 

the ground of rat infested sites which are then cultured as in (ii). 

Method (iii) is a simple method and provides samples of S. ratti iL3s from an 

undefined rat population, but obviously it does not allow comparison of the parasites 

between individual hosts. Method (i) potentially provides the most accurate sample of 

the parasites of a single rat. However the small size of the adult parasite (1.85 - 3.30 

mm) makes successful and complete recovery from the gut a difficult task. As a 

consequence, surveys of rat parasites do not always record S. ratti infections even 

though their prevalence is high within Britain (Webster & MacDonald 1995; Owen 

1976). Another limitation of method (i) is that sacrifice of the host means that only 

single samples can be made, thereby rendering longitudinal sampling impossible. The 

choice of this study was method (ii). This method is non invasive, provides samples 

of infections from individual hosts and is highly sensitive, being able to detect 

infections of single parasitic females (Viney et al. 1992). However, this method 

samples the progeny of parasitic females, and not the adult parasites themselves. A 

consequence is that as the intensity of infection decreases, the probability that the 

progeny from a single rat are derived from a single parasitic female increases. This 

necessitates particular statistical considerations when analysing population genetic data 

from single hosts, and this is described in Chapter 4. 
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3.1.1b Sample sizes 

The question of how many parasites and hosts need to be sampled to estimate 

population allele frequencies was first considered. Estimates on the frequency of an 

allele a has a standard error that is dependent on sample size (Figure 3.1.1). Standard 

errors were calculated according to Weir (Weir 1996): 

Var(à) =---a(1-a) 	 (eqn3.1) 
2n 

which is variance of a binomial distribution with parameters a and 2n, where n is the 

sample size. The magnitude of the standard error also vanes with the frequency of a 

within the population, estimates made when a is at a high frequency being less 

accurate than those made when the frequency of a is low. As a consequence, a lack of 

knowledge of the frequency of alleles within a population before the study commences 

limits the accuracy of estimating the sample sizes required. However, it is possible to 

calculate the standard errors associated with particular sample sizes and allele 

frequencies as Figure 3.1.1 illustrates. 

Frequency of allele a 
0.3- 

—D---- 	.04 

0.25- 9 
.2 

O.2 -C 
-- - - 	 - - - - .4 

L. 

0.15-  

:: 

25 	50 75 	100 

Sample size 

Figure 3.1 The relationship between standard error and sample size for populations 

with frequencies of allele a of 0.04, 0.20 and 0.40. 

It can be seen that in order to estimate the allele frequencies of a population 

with an associated standard error of less than 10% (for alleles with frequencies of up 



to 0.5), sample sizes of ten or more are necessary. Doubling the size of the sampled 

population to 20 individuals reduces the standard error by only 3%, 2% and 1% 

where the allele frequencies are 0.4, 0.2 and 0.04 respectively. 

In the present study, the sample size of 1L3s to be collected from rats was set 

at a minimum of ten for infections producing ten or more larvae. For infections that 

produced less than ten larvae, all were collected. 

In order to compare the frequencies of alleles in the parasites infecting different 

hosts, the minimum number of sampled rats required is two (i.e. two sampled 

infections). However, in order to measure population structure, several infected rats 

have to be sampled within at least two sample sites. As it was not known in advance 

what the prevalence of infection would be in wild rat populations, and what amounts 

of genetic variation would be found within natural populations of the parasite, it was 

impractical to specify the number of individual rats that needed to be sampled. 

Therefore, for each rat colony as many individuals as possible were trapped. 

Finally, there is a balance between how intensely a site is sampled and the 

number of sites sampled within the time available. Wilson (Wilson 1996) used 

computer simulations to estimate the power of available statistical tests to detect 

population subdivision for different numbers of sample sites and individuals within 

sites. He concluded that the precision of the estimates was best when large numbers of 

sample sites were sampled for a few individuals, rather than when intensive sampling 

was carried out at a few sites. Therefore, in this work I attempted to sample from as 

many sites as possible. 

3.1.2 Frequency of sexual reproduction within populations of S. ratti. 

The relative frequency of sexual versus asexual modes of reproduction will 

affect the population genetic structure of S. ratti. S. ratti has the ability to develop 

either heterogonically, which includes sexual reproduction, or homogonically, in 

which sexual reproduction is absent (Figure 1.1). 

If the frequency of sexual reproduction within natural populations of the 

parasite is low or absent, i.e. homogonic development predominates, there will be 

little or no genetic segregation. This will result in a clonal population structure 

characterised by linkage disequilibna between genetic markers and deviations from 

Hardy-Weinberg expectations for genotype frequencies in a randomly mating 
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population (Tibayrenc etal. 1990). If sexual reproduction is frequent, then samples of 

the parasite will show linkage equilibria, and Hardy-Weinberg expectations. 

Studies by Viney (Viney et al. 1992) have shown that the development in the 

laboratory of four S. ratti lines isolated from rats in Britain was almost exclusively 

homogonic. To determine whether this is a general observation for S. ratti, the 

frequency of homogonic development was examined for a subset of the isolates 

collected in this work. 

3.1.3 Frequency distribution of S. ratti infections 

The distribution of macroparasites within a host population is characteristically 

overdispersed, with a minority of hosts harbouring the majority of parasites 

(Anderson et al. 1992). This distribution is mathematically well described by the 

negative binomial distribution (Crofton 1971b). In order to investigate whether natural 

populations of S. ratti conform to this distribution, a method to measure the numbers 

of S. ratti within a host was necessary. Measurements on intensity of infection may 

be made by either; (i) direct counts of the numbers of parasitic females in post mortem 

examinations (Stear et al. 1996) or from faeces of anthelminthically treated hosts 

(Anderson et al. 1993) or (ii) indirect counts of parasite numbers by relating egg or 

larval faecal counts to numbers of parasites on the basis of expected adult parasite 

fecundity (Sinniah etal. 1983). As discussed in section 3.1.2, method (i) was not 

appropriate or practicable for use in this study. Therefore, counts of larvae in faecal 

cultures from naturally infected rats were made. To relate such faecal larval counts to 

the numbers of parasitic female S. ratli giving rise to them, fecundity was measured in 

experimental infections by counting the numbers of larvae produced each day from 

infections of single worms. Estimates of the numbers of parasitic female S. ratti 

within wild caught infected rats was then made from these data. 

There are limitations to this technique. It is well documented that individual 

parasite fecundity decreases as intensity of infection increases i.e. that negative density 

dependent effects exist on parasite fecundity (Anderson & May 1992). This 'crowding 

effect' may be due to a combination of limited resources for high numbers of parasites 

and increased host immune responses. Such effects may result in an underestimation 

of the number of parasites within heavily infected hosts if measurements of single 

parasite fecundity are used as a measure of average parasite fecundity. However, it 

has been suggested that measurements demonstrating density dependent effects on 

fecundity result from sampling aggregated parasite populations (Keymer & Slater 
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1987). This is due to the majority of samples coming from hosts with low intensity 

infections, variations in individual parasite fecundity creating an illusion of density 

dependence. The accuracy of faecal egg counts in determining the intensity of 

infection has been empirically tested in several studies. A general conclusion is that 

'crowding effects' are unimportant and that the use of faecal egg counts is a robust 

technique for predicting the numbers of adult worms harboured by a host (Stear et al. 

1995; Bundy 1986; Haswell-Elkins etal. 1987b). 

3.1.4 Longitudinal analysis of S. ratti infections 

Conclusions on population genetic structure made from a single faecal sample 

have the caveat that the observed pattern of egg production of an adult worm may vary 

over time. Some studies have shown that faecal egg counts in nematode species tend 

to remain stable over time (e.g. Nawalinski et al. 1978). However, there are no 

studies that have directly measured longitudinal variation in the fecundity of a single 

parasite. If there are large temporal variations in individual parasite fecundity, then 

allele frequencies made from single samples of larvae may vary over time. This effect 

will be especially pronounced at low intensity infections where contributions by 

individual parasites to the number of sampled larvae is greatest. 

To address this question, measurements were made on longitudinal variation 

in larval production from individual parasitic female S. ratti in the laboratory. 

Subsequently, small samples taken from an S. ratti line known to be polymorphic at a 

locus were used to infect laboratory rats. Variation in genotype frequencies over the 

course of the infections were followed for iL3 samples from each rat. Finally, 

variation in allele frequencies between samples of iL3s taken at two time points, six 

months apart, were measured from naturally infected rats. 

3.2 Materials and Methods 

3.2.1 Sampling of Brown rat populations 

Wild brown rats were trapped from rural UK farmsteads using Bledbury style 

live-catch cage traps (Killgerm), 25 traps were positioned around farms identified as 

having rat infestations. These were pre-baited for one week with a grain/lard mixture 

and caught animals removed each day after their sex and weight were recorded. 

Animals were subsequently kept isolated within wire-mesh bottomed steel cages. Rats 

were sampled from nine English farms separated by distances ranging from 10 - 340 
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Km (Figure 3.2). Two farms were sampled within Scotland 40 km apart from each 

other and samples were acquired from sites within Germany. 

Trapping was carried out between the dates January 1995 and July 1995 at 

farms at Edgefield, Nether Fala and Oxford, Tubney Manor. The Ministry of 

Agriculture and Fisheries (M.A.A.F. Central Science Laboratories) collected rats from 

farms in Norfolk, Surrey, Berkshire, Wiltshire and Dorset between June and August 

1995. Rats were trapped in Germany by Dr. H. Pelz (Federal Biological Research 

Center, Munster) between February and September 1995 and maintained in isolation, 

faeces being provided for the study. 

3.2.2 Sampling S. ratti from rats 

Samples of faecal material were collected from individual captured rats over a 

12 hour period, and 6g cultured (section 2.2.4). After three days of culture at 19 0C, 

iL3s were removed from each faecal sample. These were washed twice and placed 

singly in 0.5 ml microcentrifuge tubes in 5 141 of distilled water, given a unique 

identification number and stored at -20 °C. If less than ten larvae developed from an 

infected rat, then all the larvae were collected. If more than ten developed, a maximum 

of twenty larvae were collected. 

3.2.3 Sexual reproduction within populations of S. ratti. 

iL3s cultured from wild-caught rats were used to infect female Wistar rats by 

subcutaneous inoculation (section 2.2.3). Infections were made using parasites 

collected from individual rats from Surrey A (one rat), Wiltshire (one rat), Berkshire 

(five rats), Norfolk (three rats), Dorset (two rats) and Germany (two rats). 

To determine the homogonic index, faecal cultures were made from the 

infected rats and maintained at four different temperatures; 4 0C,  13 0C, 19 °C and 30 

°C. The numbers of larvae developing by the heterogonic and homogonic routes were 

counted in each culture after three days. For each line the homogonic index (Hi) was 

calculated. This value corresponds to the proportion of larvae developing by the 

homogomc route of development (Viney et al. 1992) and ranges from 0 (all larvae 

develop into free living males and females) to 1 (all larvae develop directly into iL3s). 

A minimum of 100 worms were counted for each culture. The infections and worm 

counts were undertaken in collaboration with A. Gemmill. 



3.2.4 Frequency distribution of S. ratti infections 

6g of faecal material from an overnight collection were cultured (section 3.2.2) 

from all rats from the Berkshire sample site. The number of larvae in three day old 

cultures were counted for each sample and the numbers of larvae/g faeces calculated. 

Maximum log-likelihood estimates were used to fit two models to the data; (i) a 

Poisson (random distribution) model with mean x, and (ii) a negative binomial model 

with mean x, variance s and overdispersion factor k. The parameter k was estimated 

by maximum likelihood. Analysis of variance (ANOVA) was used to calculate the 

deviance of both models relative to the observed data. All calculations were performed 

using the S-plus statistical package (AT&T). 

The effects of rat weight and sex on counts of larvae/g faeces were 

investigated. Counts of larvae/g faeces were normalised by log 10  transformation. 

Regression analysis was used to determine correlations of rat weight with larval 

counts for (i) the pooled sexes and (ii) each sex independently. Differences in the 

distribution of larval counts between sexes were then examined by a one-way 

unstacked ANOVA. 

3.2.5 Estimation of fecundity of individual parasitic females 

Single parasite infections were made by inoculating female Wistar rats with 

single 11_3s from two different lines; 

Group 1: Eight rats were infected with iL3s from line 5 Heterogonic. Seven 

rats developed patent infections. Individual parasite fecundity was determined by 

making cultures from the total overnight faecal production of rats at days 5,6,7, 8 and 

9 pi. All worms were removed from three day old cultures and the numbers present 

were counted. Each count corresponded to the overnight fecundity of the parasitic 

female in each respective rat. 

Group 2: 20 rats were infected with iL3s from line 132 Heterogonic, 13 of 

which developed patent infections. Individual parasite fecundity was determined from 

the overnight faecal production of rats at days 8, 9 and 12 pi. Collections were 

weighed and 6 g, or all the faecal material produced if less than 6 g was present, 

cultured (section 2.2.4). All worms were removed from three day old cultures and the 

numbers present counted. For rats that produced less than 6g of faeces, the count 

corresponded to total overnight parasite fecundity. For rats that produced more than 
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6g, the count was multiplied by the factor (total weight of faeces/6) to account for the 

uncultured faeces. 

Mean overnight parasite fecundity was calculated for each infection and 95% 

confidence intervals estimated from the t distribution, calculated as x ± t 95s1s/n, with 

six degrees of freedom for group 1 and 12 for group 2. 

3.2.6 Estimation of the number of parasitic females from faecal larval 

counts 

Larval counts/g faeces were calculated for each wild rat sampled from 

Berkshire (section 3.2.4). The number of parasites harboured by these rats was 

estimated as follows: 

The mean overnight parasite fecundity/g of faeces (Fg) was calculated from: 

Fg= Fo 
	

(eqn. 3.2) 

where Fo = mean overnight parasite fecundity and P = average overnight faecal 

production per rat in g. The quantity P was determined for twenty 90g (weight on 

delivery) rats on two consecutive nights. Fg was then used to estimate the intensity of 

infection by simply dividing the observed numbers of larvae/g faeces, measured for 

each naturally infected rat, by Fg. 

This method makes assumptions that (i) variation in the weight of faeces 

produced by rats of different weights has little effect on faecal larval counts, (ii) 

parasites are of equal fecundity within large and small rats, (iii) parasites are of equal 

fecundity within wild-caught and laboratory rats and (iv) density-dependent effects on 

fecundity do not occur. However, while there are expected to be large errors 

associated with such estimates of intensity infection, it will be used here to provide a 

first approximation of parasite load. 

3.2.7 Longitudinal analysis of S. ratti infections 

The temporal variation in genotype frequencies of S. ratti infections within 

single hosts was measured in laboratory infections (section 3.2.7a) and natural 

infections (3.2.7b) of rats. 
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3.2.7a Laboratory infections 

From studies described in Chapter 2, line 5 Heterogonic was known to be 

polymorphic at the Actin locus with frequencies of 0.43 for allele 1 and 0.57 for allele 

2. This line was used as a founding population for low intensity infections. Three 

female Wistar rats were infected with 11-3s from line 5 Heterogonic in the following 

proportions: 

Rat A: Infected with 12 iL3s 

Rat B: 	" 	12iL3s 

Rat C: 	" 	6 iL3s 

Faeces were collected on days 8, 11, 15, 19, 25 and 29 post infection, and 

cultures set up from 6g amounts. Worms were removed from three day old cultures 

and the numbers present counted. Ten 11-3s were randomly sampled from each culture 

and single worm DNA preparations made (section 2.2.7). Each worm was then 

genotyped at the Actin locus (section 2.3.3). 

Allele frequencies and their associated 95% confidence intervals were 

calculated according to Weir (Weir 1996) (section 4.2.2). 

3.2.7b Natural infections 

A number of wild caught rats were kept confined over a period of six months. 

All rats that had S. ratti infections at the beginning of this time period retained positive 

infections. 12 of these rats were sampled at two time points, three months apart, from 

the following sites: 

Wiltshire (W), rats; W313, W332, W330, W331 

Dorset (D), rats; 	D335, D338, D339 

Surrey A (SA), rats; SA27, SA31, SA28, SA26 

Surrey B (SB), rats; SB28 

Ten iL3s were genotyped at the Actin and BSP-8 loci (section 2.3.3) for each 

rat. The genotype frequencies at each time point were compared by x2 tests. 



3.3 Results 

3.3.1 Sampling of rat populations 

123 brown rats were trapped and sampled at 11 sites; 27 rats at two sites in 

Scotland and 96 rats at nine sites in England. Samples from 19 rats collected from 

eight sites in Germany were provided by Dr. H. Pelz. The overall prevalence of 

infection within Britain was 62% (standard deviation = 40%); none of the 27 rats 

sampled in Scotland were positive for S. ratti infections. 79% (standard deviation = 

26%) of the English rats were positive for S. ratti with prevalences of infection 

varying by site from 20- 100% (Table 3. 1, Figure 3.2). Three of the 19 German rats 

were positive for S. ratti (prevalence of infection = 11%, standard deviation = 22%), 

with prevalences ranging from 0- 66% (Table 3.2). 

From the trapped rats, a total of 1472 11-3s were collected with a mean of 19 

iL3s sampled per rat. These were stored at -20°C for subsequent genetic analysis. 

3.3.2 Sexual reproduction within populations of S. ratti. 

Frequencies of larvae developing by the homogonic route, measured by the 

homogonic index (Hi) are presented in Table 3.3. There was no significant effect of 

temperature on Hi in any isolate (tested by the x2  statistic). It was therefore 

statistically appropriate to pool the data from different temperature treatments for each 

rat, the mean value being shown in the table. 

Sample site 
(Rat No.) 

ITi Sample site 
(Rat No.) 

Hi 

Surrey A 0.995 (0.031) Norfolk 1.000 (0.000) 
SA 31 N383 
Wiltshire 0.992 (0.017) Norfolk 1.000 (0.000) 
W313 N384 
Berkshire 0.995 (0.023) Norfolk 1.000 (0.000) 
B352 N385 
Berkshire 0.965 (0.022) Dorset 0.998 (0.006) 
B362 D355 
Berkshire 0.995 (0.024) Dorset 0.985 (0.006) 
B370 D337 
Berkshire 0.995 (0.009) Germany 1.000 (0.000) 
B369 G25 
Berkshire 0.995 (0.036) Germany 1.000 (0.000) 
B377 G32 

Mean'= 0.994 
(0.018) 

Table 3.3 The homogonic index (Hi) for each S .ratti population. For each site, the 

Hi is combined for all temperatures.' Mean value for all rats. Values in parentheses are 

standard deviations of the mean. Data supplied by A. Gemmill. 



Figure 3.2 

Sampling locations within Britain and Germany. Positions shown are the sample 

sites. Circles represent trapped rats, while filled circles signify rats infected with 

S. ratti. 

Inset shows sample sites in Germany. S = Sendenhorst, A = Asbeck. 
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Sample site Site code Map No. of No. of % of rats Number of 
referenceb Rats Rats positive iL3s 

trapped infected sampled 

Edgefield E NT 37 3 0 0 0 

Nether Fala NF NT 35 24 0 0 0 

Norfolk N TF 80 3 3 100 54 

Oxford 0 SP 52 11 6 55 159 

Harwell HA SU 48 10 2 20 78 

Hedley HE SU 37 6 6 100 83 

SurreyA SA SU94 7 7 100 147 

SurreyB SB SU 84 3 3 100 30 

Wiltshire W SU 02 21 17 81 368 

Dorset D SY 69 7 7 100 164 

Berkshire B SU 59 28 27 89 359 

Total - - 123 76 x a=62(40) 1442 

Table 3.1 Prevalence of infection of S. ratti within British rat populations. 
a mean prevalence of infection with standard deviation of the mean in parentheses. 
b British national grid reference coordinates. 

Sample site Site code Map 
references' 

No. of 
Rats 
trapped 

No. of 
Rats 
infected 

% of rats 
positive 

Number of 
iL3s 
sampled 

Altenberge AL 52.02N 7.29E 3 0 0 0 

Asbeck A 50.40N 7.50E 4 1 25 10 

Bad Bentheim BB 51.56N 7.34E 1 0 0 0 

Billerbeck BI 52.52N 7.19E 1 0 0 0 

Gievenbeck G 52.50N 7.18E 1 0 0 0 

Affenhaus AF 51.58N 7.37E 4 0 0 0 

Nordhorn NO 52.27N 7.05E 2 0 0 0 

Sendenhorst S 51.50N 7.50E 3 2 66 20 

Total - - 19 3 x 11  1(22) 30 

Table 3.2 Prevalence of infection of S. ratti within German rat populations. 
a = mean prevalence of infection with standard deviation of the mean in parentheses. 
b International coordinates. 



The proportion of parasites developing by the Heterogonic route is low, or 

absent, in all sites with a mean value of 0.6% of the parasites developing into free 

living adults. Thus, it is clear that British and German populations of S. ratti are 

predominantly asexual in their mode of reproduction. 

3.3.3 Frequency distribution of faecal larval counts within a group of 

naturally-infected rats 

The number of larvae developing per gram of faeces (iL3s/g) was measured 

for the 27 rats sampled from the Berkshire site. Counts of iL3s/g ranged from 0 - 

173.3 with a mean (x) of 36.95 iL3s/g (Figure 3.3A). The variance of the mean (s2) 

was 1859 and the variance to mean ratio (s2/x) was 50.3, illustrating that the 

distribution of iL3s/g of faeces is aggregated between hosts. A histogram of the 

distribution of infection (Figure 3.3B) shows that the distribution of the data is 

skewed with most rats showing low faecal larval counts and relatively few rats with 

high counts. The hypothesis that the data follow a negative binomial distribution was 

tested by fitting negative binomial and Poisson (random distribution) models to the 

data by generalised linear models (GLIM). Maximum log-likelihood estimates were 

used to fit each model to the data using the observed mean, for the Poisson 

distribution, and the observed mean and variance for the negative binomial 

distribution. An ANOVA with 26 degrees of freedom (d.f.) was used to compare each 

model to the observed distribution. Residual deviances were 343 for the Poisson and 

32 for the negative binomial distributions. The test statistic in question is the 

difference between the two deviances and is distributed as a chi-square with 1 d.f. 

(Crawley 1993) x2 = 311. This was highly significant and it could be concluded that 

the data would be described most accurately by a negative binomial distribution with a 

mean = 36.95 and k = 0.77 rather than a Poisson distribution with a mean = 36.95. 

Within the Berkshire sample, 18 rats were weighed by M.A.A.F. Data from 

the other nine individuals was missing from M.A.A.F. records. The mean weight of 

male rats was 203g (n = 10, s = 10.8) and the mean weight of female rats 134g (n = 

8, s = 4.3). Male rats had higher iL3/g counts relative to females (male mean iL3/g = 

41.2, s = 45, female mean iL3/g = 33.3, s = 43). ANOVA of the distribution of log 10  

larvae/g faeces between the two sexes was not significant (171 17 = 0.06 p= 0.805) 

showing that sex was not an important factor in determining faecal larval counts. 

There was no correlation between rat weight and log 10  larvae/g faeces for all rats 

(Pearson correlation coefficient r = -0.014, F1 17 = 0.20, p = 0.665, Figure 3.4) or 
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Figure 3.3 

Numbers of larvae/g faeces for 27 rats collected from the Berkshire sample site. 

x = 36.95, s2  = 1859 

Frequency distribution of larvae/g faeces for 27 rats collected from the Berkshire 

sample site. The distribution following the negative binomial distribution (k = 0.77) is 

shown by circles and a Poisson distribution shown by crosses. 
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Figure 3.4. Numbers of iL3s/g faeces plotted against weight (g) of individual 
Berkshire rats (males and females). Pearson correlation coefficient r = -0.0 14, 
p = 0.67 (not significant). 
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for male and female rats separately (males; r = -0.019, F1 9 = 0.20 p = 0.707, 

females; r = 0.05, F1, 7 = 0.02 p = 0.895). This suggested that rat weight does not 

influence larval production in any simple linear fashion. 

3.3.4 Fecundity of single parasitic females 

The total overnight larval production from rats infected with line 5 Heterogonic 

(group 1) was determined on days 5, 6, 7, 8 and 9 post infection and from rats 

infected with line 132 Heterogonic (group 2) on days 7, 8 and 12 (Table 3.4). 

GROUP 1; line 5 Heterogomc 
Rat 	Mean overnight 

fecundity 
s 

GROUP 2; line 132 Heterogomc 
Rat 	Mean overnight 

fecundity 
s 

100 1.8 2.5 259 9 9.6 

102 6.2 5.8 260 58 59.7 

103 31 12.0 261 6 7.2 

104 21.3 13.8 262 2.3 5.4 

105 12 10.0 263 0.3 0.6 

106 13 10.8 265 0.3 0.6 

107 12 8.5 270 2 1.7 

271 1 1.2 

272 14 8.5 

273 10 9.7 

274 1 2.3 

276 1 1.0 

277 2 2.8 

Overall 12.5 11.6 Overall 8.22 20.9 

Max)' 52 Max)' 126 

Table 3.4 Overnight fecundity of single parasitic adult S. ratti. bMax. is the maximum 

number of larvae produced by any one parasite on a single night. s is the standard 

deviation of the mean. 

Within group 1, larval production was generally constant over the five days of 

sampling. One rat showed a significant negative correlation between day post infection 

and intensity of infection (rat 106, Pearson correlation coefficient r = -0.915, p = 

0.03, Figure 3.4). Within group 2, there was no correlation between day p.i. and 

intensity of infection showing that in this group also, the fecundity of parasitic females 

was constant. Mean fecundity for all samples was 12.5 (95% c.i.= ± 3.32) for group 



Figure 3.5 

Group 1; fecundity of individual parasitic females from isofemale line 5 Heterogonic 

over five consecutive days. 

Group 2; fecundity of individual parasitic females from isofemale line 132 

Heterogonic over six days. 
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I and 8.2 for group 2 (95% c.i.= ± 5.46) (Table 3.4). As the confidence intervals 

overlapped, these estimates may be pooled. Combining the data gives a mean 

overnight fecundity of 10.4 (95% c.i.=±3.89), with a range of 0 - 126. Variation in 

mean fecundity among parasitic females was high for both groups, ranging from 2 - 

31 among parasites in group 1 and 1 - 58 among parasites in group 2 (Table 3.4). 

However, the pattern of variability showed a skew towards low fecundity with only 

three out of 20 rats containing a parasite with average fecundities of more than 14 

larvae per night. 

Variation in fecundity of individual parasitic females was also high during the 

course of an infection. For example rat 103 (group 1) contained a parasite showing a 

maximum fecundity of 52 progeny on day 9 and minimum fecundity of 24 progeny on 

day 8, a two-fold difference in productivity between consecutive days. However, 

Figure 3.5 shows that parasites in group 1 with initially high fecundity tend to remain 

high over the sampling period (e.g. rat 103) while parasites with low fecundity 

remained low (e.g. rat 100). The same trend is observed with infections in group 2; rat 

260 contained a parasite which was highly fecund except for day 12 p.i, producing 

126 larvae on day eight post infection. The majority of the other infections were 

constant, and low, relative to rat 260 over the sampling period. 

In summary, these data show that (i) there is a degree of variability in per 

capita egg production between parasitic females and between day post infection, 

however, (ii) the majority of parasites have a low fecundity with a few parasites 

having much higher fecundity and (iii) while variation in parasite fecundity is high 

within a host, highly fecund parasites tend to remain highly fecund and vice versa. The 

highest measurement of S. ratti overnight fecundity was 126 larvae (measured for rat 

260) and the average fecundity was measured as 10.4 larvae/parasitic female/night. 

3.3.5 Estimations of intensity of infection from data on parasite 

fecundity 

The mean overnight parasite fecundity, Fo, measured from the experiments 

described in section 3.3.4 was 10.4 larvae/parasitic female/night (95% c.i. = ±3.89). 

Overnight faecal production per rat, P. was 9.8g; therefore Fg, the mean overnight 

parasite fecundity/g faeces, was 10.4/9.6 1. Intensities of infection within each 

naturally infected Berkshire rat were estimated by dividing larval counts/g faeces by 

mean overnight parasite fecundity/g faeces (Fg). As Fg = 1, this did not alter the 

characteristics of the distribution described in section 3.3.3. Therefore, estimated 
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intensities of infection within the Berkshire rat population were aggregated (s21x = 

50.3) with a range of 0 - 173 parasites per host. The distribution was described best 

by the negative binomial with a mean parasite population size of 36.95 and 

overdispersion factor k =0.77 (section 3.3.3). 

3.3.6 Longitudinal analysis of S. ralti infections 

3.3.6a Laboratory infections 

Figure 3.6 shows the progression of infections of S. ratti in each of the three 

rats. As is typical for laboratory animals, the infections were almost resolved by day 

29 post infection (p.i.) in the rats infected with 12 11-3s (A and B), and was resolved 

by day 26 for the rat infected with 6 iL3s (C). Rat C produced slightly under half the 

total number of worms of the rats infected with 12 iL3s suggesting that this rat had 

established an infection about half the size of the other two; faecal larval counts were 

also consistently lower from this rat relative to the other two (except for day 8 p.i.). 

There was a high degree of variation in larvae/g faeces/day within each rat. Day 18 

showed a drop in faecal larval counts of all rats suggesting an environmental effect on 

parasite hatchability/survivability on this day. 

183 11-3s were genotyped from all three rats at the Actin locus (68 from rats A 

and B, 47 from rat C, table 3.5) on days 8, 11, 15, 19, 25 and 29. Frequencies of 

Actin allele 1 in the total populations of worms collected from each rat were as 

follows; Rat A, 0.39 (95 % c.i. ± 0.080), rat B, 0.51 (95 % c.i. ± 0.084) and rat C, 

0.38 (95 % c.i. ± 0.1) compared to a frequency of 0.43 in the parent parasite 

population. The frequencies of genotypes between the three rats were not significantly 

different (x2 = 7.94, d.f = 4, p = 0.094). 
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Figure 3.6 Faecal larval counts/g faeces produced over 29 days from three rats; rat A 

and B infected with 12 iL3s, rat C infected with 6 iL3s. The total numbers of larvae 

counted from each rat are shown in the lower inset box. 

Genotype RatA Rat B Rat C 

11 0.09 0.18 0.06 

12 0.60 0.68 0.72 

22 0.31 0.15 0.22 

n 68 68 47 

Table 3.5 Frequencies of homozygous ('11' and '22') and heterozygous ('12') 

genotypes for the Actin locus from the total collection of each of the three rats. n = the 

number of 1L3s sampled. 
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Figure 3.7 shows the numbers of each genotype within each sample of the 

three rats over time. It is apparent that there is a degree of stability in genotype 

frequencies between each time point over the course of the infection; the proportion of 

heterozygotes remains high within each rat over the course of the experiment. This is 

independent of the drop in the number of larvae/g faeces/day during the infection 

suggesting that this reduction is due to a diminishing fecundity of the total worm 

population and not death or temporary reduction in fecundity of individual parasites. 

In order to test whether the relative proportions of each genotype remained 

constant over the course of an infection, the null hypothesis "genotypes are not 

significantly different over time" was tested for each rat. As counts were less than five 

for some cells, the numbers of homozygous genotypes were pooled for each rat for 

each day. Also, the numbers of genotypes on days 8 and 11, 15 and 18, 19 and 25 

were combined for both heterozygous and homozygous genotypes. This makes the 

assumption that the genotype frequencies were the same on these pairs of days and 

that there was no significant difference between the frequencies of homozygous 

genotypes over time. Thus, a 2 X 4 contingency table was constructed and observed 

and expected frequencies compared by x2  tests. Values for each rat were as follows; 

rat A x2 = 5.32, p=0.15; rat B x2 = 6.5, p=0. 09 ; rat C x2 = 0.675, p=0.713. 

Combining data for each class between rats resulted in a x2  value of x2 = 11.2 

,p--O. 14. As none of these values were significant the null hypothesis was accepted 

and it was concluded that the genotype proportions do not vary significantly during 

the course of an infection. 

3.3.6b Infections in wild-caught rats 

12 rats were sampled in both July and October. These rats came from 

Wiltshire (4 rats), Dorset (3 rats), Surrey A (4 rats) and Surrey B (1 rat). A total of 85 

iL3s were genotyped at the BSP-8 locus (38 in July and 47 in October) and 97 iL3s at 

the Actin locus (55 in July and 42 in October). 

All samples were fixed for the '22' genotype at both time-points at BSP-8. 

This shows that, at this locus, there were probably no genetically variable parasites 

within these infections and that a single sample was sufficient to characterise the 

parasite infra-populations. The frequencies of genotypes at the Actin locus are shown 

in Table 3.6 for the pooled data from all rats at each sample site. For three of the sites, 

there was no significant difference in genotype frequency between the two sampling 
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Figure 3.7 

Frequencies of hornozygous ('11,22) and heterozygous ('12') genotypes over 21 

days of sampling from three rats infected with line 5 Heterogonic: 

Rat A; infected with 12 iL3s 

Rat B; infected with 12 iL3s 

Rat C; infected with 6 iL3s. 
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times. There was significant variation in genotype frequencies within one site (SA) 

between the two time points (x2 = 6.3, d.f = 2, p = 0.04). However, this value was 

only marginally significant at  = 0.05. 

W D 
Site 

SA* SB 

Genotype 

(11 12 	22) 	(11 12 	22) (11 	12 	22) (11 	12 	22) 

Jul. 	0.52 0.32 	0.16 	0.36 0.64 	0.00 0.64 	0.04 	0.32 1.00 	0.00 	0.00 

Oct. 	0.88 0.06 	0.06 	0.58 0.42 	0.00 0.85 	0.14 	0.00 1.00 	0.00 	0.00 

Table 3.6 Genotype frequencies at the Actin locus for the pooled 11-3 samples from 

each of four sites at two time points. Jul. = July and Oct. = October samples. * 

signifies sites that have significantly different genotype frequencies between the two 

time points at  = 0.05. 

Taken together, these data show that out of eight comparisons (four sample 

sites and two loci), seven showed no significant variation in genotype frequencies 

between two temporally separated samples. This shows that, for the pooled data for 

each sampling site, measurements of genetic variation based on genotype frequencies 

of samples of 11-3s from wild rats are generally constant over the time period 

observed. 

3.4 Discussion 

Infection distribution and prevalence 

This study has shown that there is a spatial variation in the prevalence of S. 

rat/i among wild rats from different sample sites. No parasites were found in either of 

the two sites sampled in Scotland (n = 27) whereas positive infections were found at 

all sites sampled in England, with prevalences ranging from 20 - 100%, with a mean 

of 79% (n = 96). This is higher than previously reported from other countries 

(14.7%, Nigeria (Udonsi et al. 1989); 62%, Malaysia (Sinniah et al. 1979); 36%, 

Israel, (Wertheim, 1970)). It is unlikely that the present geographical distribution does 

not cover Scotland as S. ratti has previously been recorded from other sites there 

(Viney 1990). However, the data may be indicative of a dine in reduction of 

prevalence of infection with increasing latitude. Further sampling of a greater number 

of sites in Scotland and Northern Britain would be necessary to resolve this question. 
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The incidence of infection was much lower in Germany with a mean 

prevalence of 11%. This corresponded to three infected rats from two sites. As these 

samples had traveled by air to be investigated in Edinburgh, it is possible that 

temperature and/or pressure changes during transport had reduced the viability of S. 

ratti eggs, this accounting for the apparent low prevalence of infection. 

Frequency of heterogonic development. 

The frequency of heterogomc development in 14 isolates has been shown to be 

low with a mean of 0.6 % of worms developing by this route. Thus, these 

populations are overwhelmingly asexual in their mode of reproduction. There is little 

evidence for any geographical differences in the frequency of sexual reproduction, 

suggesting that variation in the genetic component of this trait is relatively 

homogeneous across these populations. Interestingly, development in these lines was 

not affected by temperature unlike other lines of S. ratti which show increases in 

heterogonic development with a rise in temperature (Viney 1996). Temperature 

responsivity seems to be characteristic of species of Strongyloides, having been 

observed in S. fuelleborni (Premvati 1958) and S. papillosus (Premvati 1963) where 

heterogonic development is favoured at higher temperatures. If responsiveness is an 

ecological adaptation to allow sexual reproduction during clement conditions, then 

European S. ratti seems to have lost this ability. It may be that the cost of sex within a 

relatively cold climate (ie. Europe relative to the tropics) is high and for this reason 

homogonic development has been selected almost to fixation within these 

populations. Indeed, it has been suggested that species that are at the edge of their 

geographic range tend towards parthenogenesis (Hughes 1989; Lynch 1984a). It 

would be useful to select these European isolates in a similar manner to that done by 

Viney (Viney 1996) in order to determine (i) whether these isolates respond to 

selection and (ii) whether they respond in a similar manner to heterogonically 

developing isolates. In this way it would be possible to determine how much genetic 

variation exists in determining this trait within these natural populations. 

The influence of the frequency of sexual reproduction on population genetic 

structure would be predicted to be great. However, no comparable studies have been 

carried out on the amount and subdivision of genetic variation in facultatively sexual 

parasitic nematodes, so the effect is unpredictable. It has been demonstrated that 

Ascaris suum has a female-biased sex ratio (males: females = 0.44: 1) (Nadler et al. 

1995). This has the effect of reducing the effective population size of this species and 

may well account for the relatively high population differentiation that has been 
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observed in this species (Nadler et al. 1995; Anderson et al. 1993). In extreme 

situations, the effective population size of S. ratti may be as low as one (for a 

population founded by a single parasitic female) and, if sexual reproduction is absent, 

the population will be fixed for the multilocus genotype of the founder. Thus, 

asexually reproducing populations of S. ratti may be expected to contain non Hardy-

Weinberg equilibrium proportions of genotypes, and pronounced population 

subdivision as a consequence of stochastic effects on parasite transmission. Even low 

levels of sexual reproduction may mitigate these effects. This is discussed further in 

Chapter 4. 

Intensities of infection. 

The frequency distribution of S. ratti faecal larval counts within Berkshire rats 

was shown to be consistent with studies on other nematode parasites in that the 

distribution between hosts was aggregated and described by the negative binomial, 

with an overdispersion factor (k) of 0.77. A method was described where the mean 

fecundity of parasitic female worms was used to calculate worm burdens, and thus the 

size of the parasite infra-population, within these naturally infected rats. This showed 

that, based on laboratory estimates of parasite fecundity, the distribution of intensities 

of infection was the same as that of faecal larval counts and consequently described by 

the same parameters x, s, and k. However, it should be recognised that any attempt to 

relate faecal larval counts to the numbers of adult parasites will have associated errors. 

These stem from a multitude of possible sources, those with the greatest expected 

effect being (i) within and between parasite variation in fecundity, (ii) variation in 

fecundity between parasites in naive rats and rats that have a degree of acquired 

immunity (iii) possible density dependent effects on fecundity and (iv) differences in 

size between rats causing variation in faecal output. Due to the sampling regime used 

in this study, it was not possible to dissect hosts in order to test predictions of worm 

burden. However, the accuracy of the technique has been assessed in other parasite 

systems. It has been shown that faecal egg counts provide good estimates of the 

numbers of adult parasites within hosts in infections of Trichuris trichuris.(Bundy 

1986) and A. suum and T. trichuris (Haswell-Elkins et al. 1987b). Also, variation in 

faecal volume has been shown to have little effect on final egg counts in infections of 

Haemonchus contortus (Roberts & Swan 1981). For the purposes of this study, 

estimates of intensity of infection were required such that measurements of within host 

genetic variation could be correlated against worm burden. If positive correlations are 

observed, this in itself is a test of the validity of the technique. Such data will be 

presented in Chapter 4. 
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Longitudinal analysis of S. ratti infections 

The validity of the assumptions that (i) genotype frequencies of iL3 samples 

reflect the genetic composition of the parasite infra-population and (ii) that the genetic 

composition of parasite infra-populations are stable over time, were addressed. In 

order to do this, empirical observations were made on (a) genotype frequencies from 

longitudinal samples of small genetically heterogeneous parasite populations and (b) 

genotype frequencies from 11_3 samples of wild rats sampled at a two time points. 

It was shown in the laboratory studies of three rats with low intensity 

infections that genotype frequencies were stable over time. As sample genotype 

frequencies did not vary significantly within rats, it can be concluded that the relative 

fecundities of the parasites within each host were constant throughout the period of 

these infections. These data corroborate the observations on single-parasite infections. 

Here, it was shown that a general trend is for highly fecund parasites to remain highly 

fecund and vice versa for low fecundity parasites. Although day-to-day variation in 

fecundity was observed in single parasite infections, this did not seem to have a large 

effect on the genotype frequencies of low intensity infections. Thus, over short time 

scales and low intensity infections, it can be concluded that inferences made on the 

genetic variation of a parasite infra-population are insensitive to the day that the sample 

was taken. 

In order to observe the variation of sample frequencies made over a longer 

time scale, genotypes at the Actin and BSP-8 loci were scored for iL3 samples at two 

time points, three months apart in wild infections. Genotype frequencies, between 

time points, of the iL3 sample pooled for the rats within each site were significantly 

different in only one out of seven comparisons. Thus, it seems that the parasite 

infrapopulations within these rats are relatively stable in the genotypic proportions 

produced over time. This suggests that there is probably a relatively stable long-term 

infection within these rats and that parasites are not being rapidly eliminated. The 

observation that some wild rats maintained infections for six-months in captivity, 

suggests that natural S. ratti infections are not rapidly cleared by anti-parasitic immune 

responses or old age of the parasites. That these infections are being maintained by re-

infection is unlikely. The rats were kept in gndded wire-bottom cages that allow no 

accumulation of faeces. Furthermore, re-infection would be expected to cause 

genotype frequencies to drift rapidly due to severe bottle-necking of the parasite 

populations. 
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Samples of iL3s from a single rat provide a measure of the genetic diversity of 

the infective output of that rat. Measures from a series of rats within a single 

geographic area provide a measure of the diversity of the infective 'landscape' that the 

rat encounters. This is an important parameter to measure in its own right as it will, to 

a large extent, determine the genetic composition of the parasite infrapopulations. 

However, my concern was whether an iL3 sample reflects the genetic composition of 

the parasite infra-population. Several lines of evidence now suggest that it does; (i) 

faecal egg-counts from a wild rat population were overdispersed as expected for a 

natural parasite distribution (Anderson & May 1992), (ii) genotype frequencies of 11_3 

samples were the same from rats infected with the same genetically heterogeneous 

parasite line, (iii) these samples showed little variation over time and (iv) natural 

infections show little genetic variation over time. It is therefore reasonable to conclude 

that point samples provide good estimates of the parasite population genotype 

frequencies even within hosts with low intensity infections, and that the data are 

consistent over time. Therefore, it is valid to estimate the population genetic structure 

of adult parasites from samples of infective stages. 

Taken together, these results suggest that the genetic structure of natural S. 

rani populations will be stable over short time-scales. However, nothing is known 

about the long term population dynamics of S. ratti infections. Studies by Rollinson et 

al. (Rollinson et al. 1986) on the population genetics of Schistosoma mansoni 

infection in black rats (Rattus rattus) found that prevelances of infection were stable 

over one year, and that allele frequencies of parasite samples were also stable over this 

time period. However, over longer time periods, prevalences of infection varied 

showing fluctuation in population sizes of S. mansoni. Short term temporal variations 

in the prevalence of infection have been documented in infections of helminths in 

Wood mice (Montgomery & Montgomery 1989). That the prevalence of infection of 

S. ratti in Scotland appears to be lower than was observed in 1989 (Viney 1990), 

suggests that S. ratti may undergo temporal variations in population size. It is possible 

that changes in prevalence of infection will be linked to the temporal dynamics of the 

Brown rat population, however this topic requires further investigation. 
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3.5 SUMMARY 

This chapter has described the methodology and sites used to sample S. ratti 

from wild brown rats. 123 rats were trapped and sampled from 11 sites; 27 rats at two 

sites within Scotland, 96 rats at nine sites within England. Prevalence of infection 

were high within all sites except those in Scotland, and a total of 1472 1L3s were 

sampled. Amounts of Heterogonic development were shown to be low within these 

populations, with a mean homogonic index of 0.994. It was concluded that sexual 

reproduction was exceptional within these isolates. Measurements of faecal larval 

counts were made at one site (Berkshire) and the distribution found to be 

overdispersed and described by the negative binomial distribution. Estimates of single 

parasite fecundity were used to calculate worm burdens within these rats. On this 

basis, the mean size of parasite infra-populations within the sampled rats was 37, and 

the greatest infection contained 173 parasitic females. 

Finally, an analysis was made of the accuracy of point samples of iL3s in 

estimating the frequencies of genotypes of infra-populations. Genotype frequencies of 

iL3 samples from three low-intensity artificial infections were shown to be stable over 

21 days. Genotype frequencies calculated from the pooled iL3 samples from natural 

infections of rats from separate sample sites were similar between two time points, 

three months apart. These data justify the technique of point sampling 11_3s as a 

method of determining the genetic composition of the adult intestinal parasite infra-

populations. 
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Chapter four 

The genetic structure of Strongyloides ratti 
populations determined by analysis of RFLP 
allele frequencies. 

4.1 Introduction 
In the previous chapters I have described how molecular biological methods 

were used to identify polymorphic loci of Strongyloides ratti. I have also shown that 

S. ratti is widespread in Britain and Germany, and have described how a number of S. 

rani infections of Rattus norvegicus were sampled from rat colonies in these countries. 

In this chapter I give the results of an analysis of the population structure of S. ratti by 

using these genetic markers and the Europe-wide parasite samples. I then describe 

what information this genetic analysis provides with regard to understanding the 

genetic structure of geographically separated samples of the parasite. Finally, I detail 

the breeding structure and epidemiology of the S. ratti infections within these sample 

sites. 

4.2 Genetic data analysis: Methods 

4.2.1 Sample genotypes 

The sampling of rats is described in section 3.2.2. For each iL3, DNA 

preparations were made using the single worm digestion protocol described in section 

2.2.7. Aliquots of the preparations were used immediately as templates in PCR 

reactions or stored at -20 °C for subsequent use. Each individual 11_3 DNA preparation 

was screened for RFLPs at the Actin, BSP-8 and CM-2 loci as described in section 

2.3.3. Genotypes of each iL3 were stored in an Excel database (Microsoft) for genetic 

analysis. 

4.2.2 Allele frequencies 

Allele frequencies were calculated from the genotypes of iL3s at three levels: (i) 

the iL3 samples of a single rat, (ii) the total iL3 sample from each sample site and iii) 

the total iL3 sample of all sample sites using: 

Pu = (2Puu + P)12n 
	 (Eqn 4.1) 
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where for two alleles Au and A V , (where u o v, u and v are integers between 1 and j, 

where  is the number of alleles in the sample), Pu  is the frequency in the sample of the 

Au allele, Puu  is the frequency of the A UA u  genotype, Puv is the frequency of the 

A uA v  genotype and n is the sample size (Weir 1996). 

The variance in allele frequencies was calculated from the sample allele and 

genotype frequencies according to Weir, (Weir 1996). Confidence limits for estimates 

of allele frequencies were calculated from the variance (assuming an approximately 

normal distribution): 

Var(pu) = (Pu + Puu - 2pu2)/2n 
	

(Eqn 4.2) 

95 % confidence limits = 1.96 s/Var(pu) 
	

(Eqn 4.3) 

4.2.2 Heterozygosity 
Heterozygosity (h) of a locus 1 with alleles A u  and A V  was determined from 

the numbers of AuAv heterozygotes (flluv)  (Weir 1996): 

h1 =- 	 (Eqn4.4) 

where n= the number of individuals genotyped at locus 1. The variance of h1 within a 

sample site was calculated from the sample heterozygosity at locus 1 (Weir, 1996) by: 

Var(k) = !h,(1 - hi) 	 (Eqn 4.5) 

The average heterozygosity (H) for m loci was calculated using; 

M 

H=—''h1 	 (Eqn4.6) 

Heterozygosi ties were first calculated using the pooled data from each sample 

site. Where relevant, and where sample size allowed, heterozygosities were 

subsequently calculated for the iL3 samples from single rats. Heterogeneities in 

heterozygosity between sample-sites and between loci were investigated by analysis of 

variance (ANOVA). Loci for each individual iL3 were coded 1 if heterozygous or 0 if 

homozygous (Weir 1996). A split-plot analysis was used where loci (factors) were 
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applied to each sample site (a plot). The total variance therefore had three components; 

between loci, between loci and populations and between populations. Significant 

differences within any one of the levels were determined from the F-ratios of the mean 

squares. The ANOVA was performed using general linear models (PROC GLM) in 

the SAS statistical package (SAS institute). 

4.2.3 Hardy-Weinberg equilibria 
Expected numbers of homozygotes and heterozygotes were calculated from the 

observed allele frequencies for Hardy-Weinberg expectations of genotype frequencies 

in a randomly mating population. The null hypothesis "random assortment of alleles" 

was tested by comparing observed and expected genotype frequencies for each locus 

within each sample site and the pooled data set by Fisher's exact test (Louis & 

Dempster 1987; Guo et al 1992) using Levenes' (Levene 1949) correction for small 

sample sizes (section 4.2.7). Unbiased estimates of exact p values were made using a 

Markov chain method, carried out by the Hardy-Weinberg analysis program in 

GENEPOP version 1.2 (Raymond & Rousset 1995). Sequential Bonferroni 

corrections were used as suggested by Rice (Rice 1989) to correct for the probability 

of type I errors resulting from multiple comparisons. 

4.2.4 Linkage disequilibria between loci 

Whereas deviations from Hardy-Weinberg expectations can be viewed as 

single-locus disequilibria (ie. non-random associations between alleles at a single 

locus), non-random patterns of pairwise associations between loci are known as 

linkage disequilibria. For the purposes of this study, disequilibria between loci was 

defined as follows. For two segregating loci with alleles P and Q at one locus, R and S 

at the other, with frequencies p, q, r and s, linkage disequilibria occurs if the observed 

frequency of the PR genotype is significantly different from its expected frequency pr. 

This is known as genotypic linkage disequilibria. From the data obtained in this study, 

the gametic phase of alleles in double heterozygotes could not be deduced. 

Consequently, an individual with genotype PS/QR is indistinguishable from an 

individual with PR/QS. Therefore, the calculated values for genotypic linkage 

disequilibria are a composite of two separate possible associations; cross-gamete and 

within-gamete disequilibria (Weir 1996). 

Genotypic linkage disequilibria between loci were estimated for each locus-

locus combination. Due to the small within-host sample sizes, data from all hosts were 

pooled within sample sites to calculate the observed genotype combinations. This 
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makes the assumption that there is no significant variation in genotype frequencies 

between parasites from different hosts within sites. Whether this is a valid assumption 

will be discussed later (section 4.4.6). Contingency tables of the numbers of 

genotypes at each pair of loci within each sample site were tested against the null 

hypothesis "genotypes at each loci are independent of one another" by exact tests using 

a Markov-chain method (section 4.2.7). The tests were performed using the program 

GENEPOP version 1.2. Overall significance of multiple tests was estimated by the use 

of Fisher's combined probability test. 

4.2.5 Maximum-likelihood estimates of the frequency of null alleles 

Data on the amplification of locus CM-2 demonstrated that there was a non-

amplifying (null) allele at this locus within isofemale line 132 Heterogonic (section 

2.3.3). During the genotyping of iL3s collected in section 3.2.2 for use in this genetic 

analysis, it was noted that (i) it was impossible to amplify DNA at this locus from 

certain iL3s despite several repeats of the PCRs and (ii) DNA from these iL3s was 

amplifiable by PCR for both other loci. It was thus suspected that there was a null 

allele present at this locus within the British samples of S. ratti. 

Allele frequencies in each sample site were analysed for the presence of null 

alleles by re-coding the data set. Individuals that amplified at two loci but not the third 

were designated homozygous for a null allele at the non-amplifying locus and coded as 

such (instead of being designated 'missing data' by a '0000' code). For instance, if an 

iL3 amplified successfully at the Actin and BSP-8 loci, but not at CM-2, then the CM-

2 genotype was coded homozygous for a dummy allele '0303' instead of '0000' in the 

dataset. Estimates were made on the frequency of the putative null alleles (coded with 

dummy alleles) using the EM algorithm of Dempster etal. (Dempster etal. 1977). The 

method calculates expected genotype frequencies from observed allele frequencies (the 

E step) and then calculates maximum likelihood estimates of allele frequencies 

assuming the expected genotype frequencies are the true genotype frequencies (the M 

step). The process is iterated until it converges to stable values, these being the 

maximum likelihood frequencies of alleles (including the null allele) within the 

population. Maximum likelihood calculations were performed on the dataset using the 

program GENEPOP. 
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4.2.6 Population genetic structure 

To determine the extent of genetic subdivision between S. ratti samples, two 

methods were used. The first tests for significant variation in allele frequencies at each 

locus by the use of Fisher's exact test. The second estimates inbreeding coefficients 

for each locus (F-statistics) using allele and genotype frequencies, then tests for 

significant variation between samples by the use of permutation tests. 

4.2.7 Between sample differentiation in allele frequencies 

It is possible to estimate the significance of variation between allele frequencies 

of two samples by the use of probability tests. Contingency tables are drawn for 

individual loci where Nij represents the numbers of allele  within sample i (table 4.1) 

Alleles 

Sample 	1 	 / 	 k 

1 	 Nil 	Nfl 	.... 	 Nkl 

Nil 	Nif 	 Nkf 

r 	 Nri 	 .... 	 .... 	 Nj. 

Table 4.1 Contingency table for testing the variation in allele 

frequencies between samples. 

Chi-squared tests may then be used to test for independence between the cells 

in a contingency table and therefore acceptance of the null hypothesis, "independence 

between row and column variables". However, with multiallelic loci and/or low 

sample sizes, alleles are often at such low frequencies that the numbers recorded 

within some cells invalidate the use of the test. An alternative method of testing for 

independence between row and column variables is by the use of Fisher's exact test. 

Given the null hypothesis, the probability of the observed contingency table is given 

by: 

(Eqn 4.8) 
(N..!)flfl(N/!) 

t1 j1 
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The exact test statistic, p, is the sum for all tables having the same row and column 

sums, that have smaller probabilities of being found than the observed table. (Fisher 

1930). For population data sets of normal size, this test is impossible to perform due 

to the numbers of tables concerned. Instead, an unbiased estimate of p may be formed 

by sampling a subset of the total number of contingency tables using a Markov-chain 

method (Guo & Thompson 1992; Raymond & Rousset 1995). For this sample, the 

test statistic is an unbiased approximation of p. 

The method provides test statistics for each locus and has been shown to be 

accurate and unbiased for small samples and low-frequency alleles (Raymond & 

Rousset 1995) and to perform well in comparisons with other methods (Wilson 1996). 

However, it is assumed that the genotypic combinations follow from the observed 

allele frequencies, ie. the populations are in Hardy Weinberg equilibrium. If this is not 

the case, and alleles within samples are not independent, then exact tests may lead to 

incorrect results. To test for allelic differentiation between populations, the program 

GENEPOP was used. In all cases, the Markov chain was set to 100 000 steps and 

1000 dememorisation steps. 

The exact test may also be used to estimate (i) deviation of genotype 

frequencies from Hardy-Weinberg equilibrium and (ii) genotypic linkage disequilibria. 

These tests are performed as above except that for (i) the contingency tables contain 

single locus genotype frequencies and (ii) the contingency tables contain genotype 

counts for two-locus combinations (ie. r = genotype r at locus 1, k = genotype k at 

locus 2). 

4.2.8 F-statistics 

Wnghts (Wright 193 1) inbreeding coefficient is defined as the probability that 

two alleles at a locus are identical by descent (Hard & Clarke 1989). It is normally 

calculated by comparing the observed numbers of heterozygotes with the expected 

numbers under conditions of random mating; 

F=H0I 	 (Eqn4.9) 
Ho 

Where H is the observed frequency of heterozygotes and Ho the frequency expected 

from Hardy-Weinberg equilibria. Inbreeding-like effects may occur as a consequence 
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of three processes. These are (i) selection, (ii) non-random mating and (iii) population 

subdivision. 

In this project, the genetic markers used are assumed to be selectively neutral 

until otherwise proven, so it is only necessary to consider (ii) and(iii). As defined 

above, F is a measure of the amount of inbreeding within a population. However, if 

two populations have been separated, and are different due to drift or founder effects, 

they will exhibit a reduction in heterozygosity compared to that predicted from the total 

random mating population. This is known as a Wahlund effect. A measure of F can 

therefore be defined as: 

F=HTHS 	 (Eqn4.1O) 

Where HT is the genetic diversity within the total population and HS the diversity 

within the subpopulations. These two different aspects of inbreeding can be 

considered together as the hierarchical F-statistics F 15, Frr  and F5 ', where the 

hierarchies are T, the total population, S. the subpopulation and I, the individual. 

Therefore, F15  is the inbreeding coefficient due to assortative or disassortative mating 

within populations. FST  is the inbreeding coefficient due to population subdivision and 

Frr  is the total inbreeding coefficient. These three coefficients are related by: 

(1-Fn)=(1-Fis)(1-Fgr) 
	

(Eqn 4.11) 

The value Fsç may also be considered as the standardised variance of allelic 

frequencies between populations (Weir & Cockerham 1984), with possible values 

ranging from 0 (no variation between populations) to 1 (complete differentiation). 

Methods of estimating Fgç  from finite numbers of samples and for multiple loci with 

more than two alleles were developed by Nei (G) (Nei 1975) and Weir and 

Cockerham (0) (Weir & Cockerham 1984). Both estimators calculate values with the 

same expectation as F 51, but the methods differ in that 0 includes terms that correct for 

the number of sites sampled, and the sample size from each site. In this sense 0 can be 

seen to be an unbiased estimator of F gç  whereas Ggç  is not. However, qualitative 

comparisons between the two methods (Slatkin & Barton 1990) based on their relative 

accuracy in measuring gene flow between denies showed that they performed equally 

well. Due to the small sample sizes at the within-host level of sampling, 0 was 

henceforth used here as the estimator of Fgr due to corrections for sample size that are 

included within the formulae. Simulations by Wilson (Wilson 1996) on the relative 
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power of the two tests, and that of Fisher's exact test, found that methods (i) and (ii) 

gave similar results, and that exact tests were the most powerful of the three. These 

simulations also showed that the strategy of sampling small numbers of individuals 

from many populations detected population subdivision more readily than large sample 

sizes from few populations. 

4.2.9 An analysis of variance method for measuring population 

differentiation 
Cockerham (Cockerham 1973) and Weir and Cockerham (Weir & Cockerham 

1984) developed a method of estimating inbreeding coefficients from an analysis of 

variance (ANOVA) of allele and genotype frequencies. For a locus j in a sample from 

population i, a variable xij is defined, for an allele A, as Xjj =1 if A is present, or x jj  

=0 if A is absent. For each locus, sums of squares are calculated from allele and 

genotype frequencies. ANOVA is then used to calculate the variance components 

between the observed and expected mean squares. These variance components are 

used to estimate the appropriate F-statistics as follows: 

The samples collected in this study may be considered in a four-level hierarchy 

(i) I. the individual iL3s, (ii) R, the individual rats, (iii) S, the sample sites and (iv) T, 

the total sample. There are thus four sources of variation within the hierarchy of 

relatedness of alleles at a locus; within individual iL3s (o) (ie. the variation between 

alleles within worms); among iL3s within rats (a); among rats within sample sites 

(cr) and among sample sites (o- ). From these components of variance, F-statistics 

are estimated as correlations between alleles within each level of the hierarchy, defined 

by Peakall et al. (Peakall et al. 1995) as: 

the correlation between alleles within an individual iL3 compared to those randomly 

drawn from the sampled rat, 

2 

F IR 	2 	2 a1  + 
(Eqn 4.13) 

the correlation between alleles within an individual iL3 compared to those 

randomly drawn from the total data set, 

Frr= 	
clJj+crg±c 	

(Eqn 4.14) 
ci1  + GrR + ors  + UT 
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(iii) the correlation between alleles within a sampled rat compared to those randomly 

drawn from the sample site, 

FRS= 2 
CF 

 S 

 2 	2 
cJ1  + + a5  

(Eqn 4.15) 

(iii) the correlation between alleles within a sample site compared to those randomly 

drawn from the total data set, 

FsT= 2 	2 
 c4

2 	2 
al + + a5  + aT 

(Eqn 4.16) 

The relationship between these F-statistics is similar to that described in eqn. 

4.11 and defined as; 

(1-Fr) = (1-FIp)(1-FRS)(1-Fgr) 
	

(Eqn 4.17) 

For cases where there are several alleles at a locus, the variance components 

are combined as weighted averages. Similarly, data for several loci may be combined 

in this manner, the results being essentially unbiased (Weir & Cockerham 1984). The 

variance in sample size between populations is accounted for within the analysis by 

weighting variance components on the basis of sample size. Similarly, specific 

corrections are made to account for small numbers of sampled 'populations'. 

Variance components and F-statistics were calculated using the Genetic Data 

Analysis package (GDA, Weir 1996). 

Significance testing off-statistics 

In order to assess the significance of F-statistics, a permutational approach was 

used. This approach is described in detail by Excoffier et al. (Excoffier et al. 1992) 

and Goudet (Goudet 1994), and determines whether F-values are greater (or less than) 

zero by generating null distributions from the observed data. For F1s  and  Frc,  this is 

done by randomly resampling alleles (with replacement) from the sample site (F 18) or 

the total sample (Frr) a thousand times, new values of FIs,T  being re-calculated each 

time. The p-value is the proportion of permutations that result in FJS/T>  the observed 

FIS/T. If p<0.05 or 0.01, then the null hypothesis that FIs/T  are equal to zero is 
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rejected. Similarly, values of FRS and FST  are tested in this way, except that the units 

of permutation are (i) the genotypes of individual iL3s from rats randomly re-sampled 

within a sample site (FRS) and (ii) the genotypes of individual iL3s from within a 

sample site randomly re-sampled between sites. Permutation tests were performed 

using the program FSTAT (Goudet 1994). 

One drawback of this approach to estimating the significance's of F-statistics is 

that differences in the magnitude of statistics between samples or sample sites cannot 

be compared. The bootstrapping approach may be used to generate variances for the 

observed statistics, and thus enable comparisons to be made. This method randomly 

resamples each sample site a large number of times, with replacement, to generate new 

F-statistics. From the variance of these values, confidence intervals are calculated that 

reflect the sample sizes for each sample site. To estimate significance's for all loci, 

95% bootstrap confidence intervals across loci were calculated using the GDA 

computer package (Weir 1996). 

4.2.10 Isolation by distance 
The amount of differentiation between two populations may be used as a 

measure of genetic distance between them. Finite populations separated for a period of 

time will differentiate as a consequence of drift. Specifically; 

d=-ln(1- 0) 	 (Eqn4.18) 

t 
-- 	 (Eqn4.19) 

2Ne 

where d is divergence due to drift over time t, Ne is the effective population size and 0 

the genetic differentiation between two populations (Weir 1996). If a roughly uniform 

migration rate is assumed, then in a species with many population subdivisions, 

genetic differentiation between subpopulations will show a correlation with increase in 

geographical distance (ie. isolation by distance, (Crow & Kimura 1970)). 

To test for isolation by distance, pairwise values of F 51  were calculated for all 

British sample-site combinations. The German populations were excluded due to small 

sample-sizes. Geographical measurements used were the shortest distances between 

sites measured on a map. The relationship between FST and geographical distance was 

examined by calculating Spearman's rank correlation coefficient (Sokal & Rolf 1992). 
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To test for independence between geographical and genetic distances, Mantel tests 

were performed using the NTSYS statistical package with 10 000 permutations. 

4.2.11 Within host genetic diversity 

For each sampled rat, three measures of genetic diversity were calculated. 

Diversity = the number of genotypically distinct iL3s present in each rat sample. 

This measure used data from all loci together; 

D= ni±nj+nk 
	

(Eqn 4.20) 

where ni, nj and nk are the number of genotypes present within a rat at each of three 

loci i, j and k. If no genotypes were successfully scored at one or two loci, then the D 

was measured using data from one, or two loci. As each iL3 is genetically identical to 

its parent, D is a measure of the number of genetically unique parasites within the rat 

Diversity within a rat was calculated as the number of complete, unique three-locus 

genotypes. 

4.2.12 Correlations of genetic diversity (corrected for intensity of 

infection) and worm burden 

This analysis was performed in order to determine whether the number of 

genotypes observed per rat increased proportionally with the intensity of infection. The 

number of genotypes from each rat, corrected for intensity of infection, were 

calculated as the ratios; 

R a; (number of genotypes/rat)/(number of larvae/g faeces/rat) 

Rb; (number of three-locus genotypes/rat)/(number of larvae/g faeces/rat). 

These ratios were correlated against estimated worm burdens, significances 

being assessed by an ANOVA. 
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4.3 Results 

4.3.1 Data set 

A total of 741 1L3s collected from 72 rats and 11 sample sites were genotyped 

for RFLPs by restriction digestion of three PCR amplified loci, Actin, BSP-8 and CM-

2. A total of 2223 PCRs were carried out, of which 1123 were successful (50.5%). 

Thus, a total of 2246 alleles were sampled from British and German S. ralti infections 

yielding 1123 single locus iL3 genotypes. 

PCRs were performed once, and if they did not work, were performed a 

second time. There was a high degree of redundancy in the technique as 49.5% of 

PCRs did not yield any data. The PCR success varied for each locus; 59.5% and 

52.6% of reactions worked for Actin and BSP-8 loci respectively. There was a high 

correlation between successful amplification of BSP-8 and Actin loci, a successful 

PCR for BSP-8 almost always being successful for Actin. Amplification of locus CM-

2 was successful in 39.4% of reactions. There was little correlation between 

successful amplification of this locus and that of the other two. Successive attempts 

made to amplify this locus from DNA samples that amplified at the other loci were 

invariably unsuccessful. 

4.3.2 Genetic diversity 

4.3.2a Allele frequency distributions 

The numbers of alleles at each locus observed within each population and the 

sample sizes are shown in Table 4.2. The allele frequencies at each locus within each 

sample site are shown in Table 4.3 and Figures 4.1 - 4.2. 

Actin locus: All populations were polymorphic, and diallelic at this locus 

(Table 4.2). Average frequencies of Actin allele 1 within the pooled sample was 0.626 

(Table 4.3). The frequency of this allele ranged from a minimum of 0.500 at site N to 

a maximum of 0.820 at site W (Figure 4.1). Allele frequencies within the sampled 

German rats were similar to the mean of the British samples, with values of 0.642 and 

0.677 recorded from Asbeck and Sendenhorst respectively. 

BSP-8 locus: This locus has one common (allele 2) and one rare (allele 1) 

allele in five of the eight British sites (Table 4.2). The remaining three sites were fixed 

for allele 2. The average frequency of BSP-8 allele 2 across Britain was 0.943 with a 
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Sample site 

Actin 

a n 

Locus 

BSP-8 

a n 

CM-2 

a n 

W 2 50 2 47 3 34 

HE 2 25 2 18 3 16 

D 2 19 0 24 2 7 

SA 2 33 0 28 3 19 

SB 2 9 0 7 1 2 

OX 2 21 2 8 0 0 

N 2 32 2 35 2 35 

B 2 231 2 203 3 172 

A 2 6 1 8 0 0 

S 2 15 2 12 1 7 

Total 2 441 2 390 4 292 

Table 4.2 Number of alleles found "a", and numbers of iL3s genotyped 'n", 

within 

each sample site for each of the three loci. "Total" refers to the pooled data from all 

sample sites. W = Wiltshire, HE = Hedley, D = Dorset, SA = Surrey A, SB = 

Surrey B, N = Norfolk, B = Berkshire, A = Asbeck and S = Sendenhorst. 
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Figure 4.1 Allele frequencies at the Actin (A) and BSP-8 (B) loci within each 
sample site. W = Wiltshire, HE = Hedley, D = Dorset, SA = Surrey A, SB = Surrey B, 
N =Norfolk, B = Berkshire, A = Asbeck and S = Sendenhorst. 95% confidence intervals 
are shown as bars. 
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Figure 4.2 

Frequencies of alleles 1, 2, 3 and 4 at the CM-2 locus within each sample site. W = 

Wiltshire, HE = Hedley, D = Dorset, SA = Surrey A, SB = Surrey B, N =Norfolk, B 

= Berkshire and S = Sendenhorst. Total" refers to the pooled data for all sample 

sites. 95% confidence intervals are shown as bars. 
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Locus Allele W HE D SA SB 

Sample site 

OX N B A S Total 

Actin 1 0.820 0.660 0.763 0.636 0.778 0.667 0.500 0.571 0.642 0.677 0.626 

(± 0.070) (± 0.120) (± 0.110) (± 0.128) (± 0.223) (± 0.110) (± 0.133) (± 0.029) (± 0.240) (± 0.108) (±0.000) 

2 0.180 0.340 0.237 0.364 0.222 0.333 0.500 0.429 0.357 0.333 0.374 

(± 0.070) (± 0.120) (± 0.110) (± 0.128) (± 0.223) (± 0.110) (± 0.133) (± 0.029) (± 0.240) (± 0.108) (±0.000) 

BSP-8 1 0.032 0.278 0.000 0.000 0.000 0.188 0.071 0.054 0.000 0.083 0.058 

(± 0.034) (± 0.110) (0.000) (0.000) (0.000) (± 0.168) (± 0.058) (± 0.021) (0.000) (± 0.104) (±0.000) 

2 0.968 0.722 1.000 1.000 1.000 0.813 0.929 0.946 1.000 0.917 0.943 

(± 0.034) (± 0.110) (0.000) (0.000) (0.000) (± 0.168) (± 0.058) (± 0.021) (0.000) (± 0.104) (±0.000) 

CM-2 1 0.676 0.156 0.857 0.263 1.000 - 0.971 0.930 - 1.000 0.820 

(± 0.150) (± 0.167) (± 0.259) (± 0.198) (0.000) (± 0.056) (± 0.038) (0.000) (±0.000) 

2 0.000 0.000 0.000 0.000 0.000 - 0.000 0.012 - 0.000 0.006 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (± 0.016) (0.000) (±0.000) 

3 0.188 0.125 0.000 0.105 0.000 - 0.000 0.000 - 0.000 0.027 

(± 0.106) (± 0.165) (0.000) (± 0.138) (0.000) (0.000) (0.000) (0.000) (±0.000) 

4 0.206 0.719 0.143 0.632 0.000 - 0.029 0.058 - 0.000 0.146 

(± 0.198) (± 0.211) (± 0.259) (± 0.217) (0.000) (± 0.056) (± 0.035) (0.000) (±0.000) 

Table 4.3 Allele frequencies for the Actin, BSP-8 and CM-2 loci within eight British and two German sample sites. The allele designations 

are those used in Chapter 2 (section 2.3.8c). Values in parentheses are 95% confidence intervals of the allele frequency estimates. "Total" refers to the allele 

frequency of each locus, for all sample sites pooled. "-" signifies that no data were collected. 



range in frequency from 1.000 at sites D, SA and SB, to a minimum of 0.722 at site 

HE (Table 4.3, Figure 4.1). The mean frequency of allele 2 was similar within the 

German samples with mean values of 1.000 and 0.917 recorded from Asbeck and 

Sendenhorst respectively. 

CM-2 locus: Of the four alleles at locus CM-2, alleles 2 and 3 were rare or 

absent in the sample sites (Table 4.3). Allele 1 was the common allele at five out of 

eight British sites (W, D, SB, N and B) with an average frequency of 0.816. At two 

sites (HE and SA) allele 4 was the most common with frequencies of 0.719 and 0.632 

respectively (Figure 4.2). iL3s sampled from Sendenhorst in Germany were 

monomorphic at this locus, and like most British sites, had a high frequency of allele 

1. No 11-3s were successfully genotyped at this locus from the other German site. 

4.3.2b Variation in allele frequencies between sample sites 

The significance of heterogeneity in allele frequencies between sample sites 

was assessed by Fishers' exact test. This analysis was performed for the total British 

data set and between all pairwise combinations of sample sites. The results are 

presented in Table 4.4. 

Tests between each pairwise combination of sample sites showed that 6/25, 

10/25 and 12/25 combinations were significantly different in allele frequencies at the 

Actin, BSP-8 and CM-2 loci respectively. After adjusting significance levels for the 

effects of multiple comparisons using a sequential Bonferroni technique, 3/25, 5/25 

and 11/25 sites remained significantly differentiated at the Actin, BSP-8 and CM-2 loci 

respectively. Heterogeneity in allele frequencies across the total dataset was significant 

for each locus at p  <0.001. Removing the most differentiated sample site for each 

locus (W for Actin, HE for BSP-8 and W for CM-2) resulted in a nonsignificant p 

value for Actin. However, the remaining sample sites remained significantly 

differentiated at the other two loci. 

4.3.2c Variation in allele frequencies between rats within each sample 

site 
Within each sample site, the statistical significance of variation in allele 

frequencies at each locus between individual rats was calculated by exact tests. The 

German sample from the Asbeck site was excluded from this analysis as only one rat 

was sampled. 

129 



Sample site Locus p 
combination 

W-HE Actin 0.040 
W-SA 0.010 
W-N 0.000* 
W-B 0.000* 
D-N 0.012 
D-B 0.025 
All sites 0.000* 

W-HE BSP-8 0.000* 
W-OX 0.039 
HE-D 0.000* 
HE-SA 0.000* 
HE-SB 0.040 
HE-N 0.006 
HE-B 0.000* 
HE-S ' 0.010 
D-OX ' 0.000 
SA-OX 0.000 
All sites 0.000* 

W-HE CM-2 0.000* 
W-SA it  0.000* 
W-N " 0.000* 
W-B 0.000* 
HE-D 0.000* 
HE-SB 0.004 
HE-N 0.000* 
HE-B 0.000* 
D-SA 0.000* 
SA-SB 0.015 
SA-N 0.000* 
SA-B 0.000* 
All sites 0.000* 

Table 4.4 Sample site combinations that had significantly different allele frequencies as 

measured by exact tests. W = Wiltshire, HE = Hedley, OX = Oxford, SA = Surrey A, SB 

= Surrey B, N = Norfolk, B = Berkshire and D = Dorset. * indicates sample sites that 

remain significantly differentiated (p < 0.05) after application of sequential Bonferroni 

procedures to adjust significance levels. 
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Table 4.5 shows p values for each sample site, and indicates the sample sites 

for which variation in allele frequency was significantly different. Variation between 

rats was low for Actin and BSP-8; 3/9 and 2/6 sites showed significant differences in 

allele frequencies at these loci. Greater heterogeneity was observed between rats at the 

CM-2 locus where there were significantly different allele frequencies between rats at 

all sample sites. 

Sample site Actin 

Locus 

BSP-8 CM-2 

B 0.334 0.043* 0.000 

N 0.031* 0.010** 0.026* 

W 0.000 0.359 0.000 

D 0.361 - - 

SA 0.002** - 0.000 

SB 0.080 - - 

OX 0.060 0.730 X 

HE 0.137 1.000 0.000 

S 0.693 0.448 - 

Table 4.5 Within-site differentiation in allele frequencies between iL3s from individual 

rats in each sample site as measured by exact tests. The numbers in the table are the 

probabilities that samples are significantly different. "*" signifies the level of 

significance, *p.<0.05, **p.<O.Ol. "-" signifies sample sites that are fixed for one 

allele, "X" signifies no data. 

Within the sites that show significant difference in allele frequency between 

rats, it is often the sample from a single rat that biases the estimation. For instance, 

within rat W325 from site W, all nine iL3s were of the genotype '12' for the Actin 

locus, whereas the most common genotype within this site is '11' for Actin within all 

but one of the other rats (Table 4.6). Similarly, a relatively few rats bias the estimates 

for the CM-2 locus. In particular, samples from rats SA 30 A, HE 267 and B 369 have 

high frequencies of the rare allele 4. 

In order to quantify the influence of these 'aberrant' rats on the measures of 

differentiation, for each locus the single-most differentiated rat was removed from each 

sample site and exact tests recalculated. This had the following effect; 
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Table 4.6. 

Genotypes of S. raiti 1L3s typed from the faecal cultures of 72 rats. 

a The loci are listed as the numbers of homozygotes and heterozygotes found for each 

locus. The genotypes "11" br BSP-8 and "13", "23', '24" and "34" for CM-2 are not 

shown because none of these genotypes were found. "-" indicates that no data was 

collected. 
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LOCUS 

Actin' BSP-8 CM-2 

Site Rat 11 12 22 12 22 11 12 33 14 44 

B B367 2 8 0 0 6 5 0 0 0 2 

B359 5 7 0 0 11 - - - - - 

13381 0 12 0 0 12 - - - - - 

B356 0 II 0 2 9 4 0 0 0 0 

B365 I tO 0 1 7 14 0 0 0 0 

B35{) I 3 0 - - - - - - - 

B363 3 2 0 0 1 1 0 0 0 0 

B376 2 9 0 1 10 13 0 0 0 0 

B351 1 II 0 1 10 9 0 0 0 0 

B353 0 11 0 0 7 12 0 0 0 0 

13378 0 8 0 5 4 5 0 0 0 0 

B358 2 4 2 0 4 13 0 0 0 0 

B369 3 6 0 3 3 0 3 0 0 6 

B368 4 8 0 1 10 15 0 0 0 0 

B38() 8 3 0 0 12 8 0 0 0 0 

B370 0 9 2 1 10 14 0 0 0 0 

B366 I Ii 0 0 12 12 0 0 0 0 

B374 1 7 I 1 7 4 0 0 0 0 

B377 3 5 1 1 8 12 1 0 0 0 

B36() 2 5 0 0 9 1 0 0 0 2 

B373 0 II I 2 9 6 0 0 0 0 

B352 0 8 1 2 7 10 0 0 0 0 

B375 0 9 1 1 9 - - - - 

B372 3 2 0 0 4 - - - - - 

W W325 0 9 0 0 10 - - - - - 

W313 1 0 0 - - - - - - - 

W328 6 0 0 0 1 - - - - - 

W3I6 4 0 0 1 5 - - - - - 

W332 2 0 0 - - 2 0 1 0 2 

W330 3 3 1 0 2 0 0 3 0 0 

W317 1 1 0 0 5 - - - - - 

V323 I 2 0 1 9 - - - - - 

W320 4 0 0 0 5 - - - - - 

W31$ I I 0 - - - - - - - 

W331 5 0 0 1 1 - - - - - 

WI) I3 5 0 0 0 6 0 0 0 0 4 

W321 - - - - - 9 0 0 0 0 

W322 - - - - - 7 0 0 0 0 

\V324 - - - - - 5 0 0 0 

HE HE265 3 6 0 6 3 - - - - - 

HE294 0 I 0 - - 1 0 0 0 1 

HE271 2 1 0 1 1 0 0 2 0 1 

HE285 0 I 0 - - - - - - - 

l-1E267 1 3 1 3 2 0 0 0 1 9 

HE287 0 0 1 0 1 - - - - - 

HE202 4 I 0 0 1 1 0 0 0 0 

D D336 4 4 0 0 8 - - - - - 

D334 4 1 0 0 4 - - - - - 

D335 0 3 0 0 6 - - - - - 

D338 2 I 0 0 4 	•- - - - - 

D339 - - - 0 2 6 0 0 0 1 

SA SA3() 2 4 0 0 6 0 0 0 0 9 

SA27 3 0 0 - - 3 0 1 0 0 

SA3I 1 2 0 0 3 - - - - - 

SA28 1 0 0 0 6 1 0 1 0 0 

SA26 6 0 0 0 7 0 0 0 0 3 

SA29 0 6 0 0 5 - - - - - 

SA32 2 0 6 0 1 1 0 0 0 0 

SB S1325 0 0 1 0 1 - - - - - 

5B26 I 0 0 0 1 - - - -. - 

SB28 5 2 0 0 5 2 0 0 0 0 

OX Tl/2 3 5 1 0 2 - - - - - 

TI/3 1 3 0 1 2 - - - - - 

TI/S 0 0 I - - - - - - - 

TI/7 I 2 0 2 1 - - - - - 

Tl/$ 4 0 0 - - - - - - - 

N N3$-t I 7 5 5 8 14 0 0 0 0 

1\1 3X 4 4 4 0 12 IS 0 0 0 0 

N385 5 I 1 0 10 5 0 0 0 

A A2932 2 4 0 0 8 - - - - - 

S S2924 2 7 0 I 6 0 0 0 0 3 

S2932 3 3 0 1 4 0 0 0 0 4 



Actin: Variation in allele frequencies between rats remained significantly different in 

two sites, W and SA. One site (N) was no longer significantly different. 

BSP-8: Variation within all sites was no longer significantly different. 

CM-2: Variation between rats was significantly different at all sites except N, which 

was no longer significantly different. 

Therefore, removing the single most differentiated rat from those sampled at a 

given sample site caused between-rat variation in allele frequencies to become no 

longer significantly different in 4/10 comparisons. 

4.3.3 Heterozygosity 
Observed heterozygosities for each locus and sample site are shown in Table 

4.7. Large differences in mean heterozygosity were observed between loci; this ranged 

from a mean frequency of 0.609 at Actin to a mean frequency of 0.115 at locus BSP-8 

for values calculated from the pooled data set. The least heterozygous locus was CM-2 

with a mean heterozygosity of 0.017 across the whole data set. This corresponds to 

only five out of the 285 iL3s genotyped at this locus being heterozygous. 

Mean heterozygosity across all loci and sample sites was 0.247. The range in 

value of mean heterozygosity for sites was from a maximum of 0.379 at HE to a 

minimum of 0.074 at SB. 

Heterozygosity varied between sites for each locus, with the highest range 

seen for Actin (± 0.279) and less for BSP-8 (± 0.189) and CM-2 (± 0.003). The 

significance of heterogeneity in heterozygosity (excluding Germany) was examined 

using ANOVA comparing variances at three levels; between loci, between sample sites 

and between loci and sample sites. The results of the analysis showed that the variance 

in heterozygosity between sample sites was significant for Actin and BSP-8 

(p=0.0001), but not CM-2 (F1 7 = 0.695, p=0.691).  Variance components were 

significant at the p=0.001 level for all other levels of the analysis, between individual 

loci and between loci and sample sites. 

This analysis shows that there is heterogeneity in heterozygosities between all 

loci, and between sample sites for two out of three loci. However, the rank order of 

heterozygosities between loci is mostly consistent for all sample sites, i.e. 
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LOCUS W HE D SA 

SAMPLE SITE 

SB OX N B A S MEAN 

Actin H0  0.320 0.520 0.474 0.364 0.222 0.476 0.375 0.779* 0.714 0.667 0.609* 
(0.063) (0.090) (0.103) (0.070) (0.150) (0.098) (0.080) (0.029) (0.064) (0.045) (0.023) 

He 0.295 0.440 0.361 0.463 0.346 0.444 0.500 0.490 0.459 0.444 0.468 

FIS 0.084 -0.159 -0.310 0.214 0.357 -0.071 0.250 0.591* -0.556 -0.500 0.299* 

BSP-8 H0  0.064 0.556 0.000 0.000 0.000 0.375 0.143 0.108 0.000 0.167 0.115 

(0.044) (0.071) (0.000) (0.000) (0.000) (0.107) (0.051) (0.021) (0.000) (0.071) (0.012) 

Ke 0.062 0.401 0.000 0.000 0.000 0.305 0.133 0.103 0.000 0.153 0.109 

FIS -0.033 -0.395 0.000 0.000 0.000 -0.231 -0.077 -0.057 0.000 -0.091 -0.061 

CM-2 Ho 0.000* 0.063* 0.000 0.000* 0.000 - 0.000 0.023* - 0.000 0.017* 

(0.000) (0.033) (0.000) (0.000) (0.000) - (0.000) (0.010) - (0.000) (0.008) 

He  0.486 0.443 0.245 0.521 0.000 - 0.056 0.131 - 	 . 0.000 0.305 

FIS 1.000 0.859* 1.000* 1.000* 0.000 - 1.000* 0.823* - 0.000 0944* 

MEAN H0  0.128 0.379 0.158 0.121 0.074 0.284 0.173 0.304 0.238 0.278 0.247* 

(0.098) (0.159) (0.158) (0.121) (0.074) (0.145) (0.109) (0.239) (0.238) (0.200) (0.104) 

lie 0.281 0.431 0.202 0.328 0.115 0.250 0.229 0.241 0.153 0.199 0.294 

F15 0.350* 0.098* 0.230* 0.317* 0.119 -0.151 0.391* 0.058* -0.278 -0.300 0.198* 

Table 4.7. Observed (H0), expected (He) heterozygosities and F1s for each locus at each sample site. Values in parentheses are standard errors. "i"  signifie 

that Ho is significantly different from H e  atp = 0.01. "Mean" refers to the mean values for all sites, and all loci, pooled. "-" signifies that no data were collectec 



heterozygosity for Actin is generally high, BSP-8 is intermediate between the other 

two loci and heterozygosity at CM-2 is always low. Exceptions are seen for sites W 

and He, where the heterozygosity of BSP-8 exceeds that of Actin. Whether the 

variation in heterozygosity is due to non-random mating is examined in section 4.3.4. 

4.3.4 Hardy-Weinberg equilibria 

Deviations from random mating expectations were tested for each locus within 

each sample site, and in the pooled British dataset, by exact tests. Six significant 

deviations from Hardy-Weinberg equilibria were observed (p< 0.01), representing 

25% of the 24 tests performed. These sample sites and loci are shown in Table 4.8. 

After adjusting the significance levels by sequential Bonferroni procedures, five 

sample sites retained significant deviations. Of these five, one was due to a significant 

excess of heterozygotes at the Actin locus within the Berkshire sample site (site B, 

Table .4.8). All of the remaining departures from Hardy-Weinberg expectations were 

due to deficits of heterozygotes at the CM2 locus. Five out of seven sample sites 

showed significant heterozygote deficits at this locus. 

Locus Sample site Deviation P-value 

Actin B Heterozygote 0.0001* 
excess 

CM-2 W Heterozygote 0.0001* 
deficit 

CM-2 HE Heterozygote 0.0001* 
deficit 

CM-2 SA Heterozygote 0.0001* 
deficit 

CM-2 B Heterozygote 0.0001* 
deficit 

CM-2 N Heterozygote 0.01 
deficit 

Actin Total Heterozygote 0.0001* 
excess 

CM-2 Total Heterozygote 0.0001* 
deficit 

Table 4.8. Sample sites and loci not in Hardy-Weinberg equilibria. Total refers to the 

exact test performed on the pooled British data. * indicates samples that remain 

significantly differentiated after application of sequential Bonferroni procedures. 

Within sample site B, 180 heterozygous Actin genotypes were observed, 

compared to an expected value of 113. To see whether this excess of genotypes was 
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due to the influence of a few 'aberrant' rats, the expected numbers of heterozygote 

iL3s were calculated for each rat. This was done by multiplying the total number of 

worms genotyped within each rat by the mean frequency of Actin heterozygotes within 

the Berkshire site. The number of heterozygote iL3s observed from each sampled rat 

relative to the expected numbers are shown in Figure 4.3. A large proportion of rats, 

24 / 27, had more heterozygote iL3s than were expected. Nine of these were 

significantly different from Hardy-Weinberg expectations (p < 0.05). This shows that 

the heterozygote excess within the Berkshire sample site is a feature common to almost 

all rats, and does not result from a few unique infections that unduly bias the data from 

the whole sample site. 

4.3.5 Maximum-likelihood estimates on the frequency of null alleles 

Table 4.9 shows the estimated frequencies of putative null alleles in all sample 

sites for each locus. While there was no suggestion that null alleles existed for the 

Actin and BSP-8 loci, they were included in this analysis for the sake of completeness. 

All sample sites contained putative null homozygotes for locus CM-2 while only 4/10 

and 5/10 sample sites contained iL3s that had putative null alleles at the Actin and 

BSP-8 loci. Frequencies of null homozygotes were demonstrably higher for locus 

CM-2 relative to the other loci within all sample sites. Maximum frequencies of the 

estimated null alleles within sample sites were 0.295, 0.316 and 1.000 for Actin, 

BSP-8 and CM-2, respectively. The corresponding frequencies for the pooled data set 

were 0.134, 0.257 and 0.616. 
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Sample site 

Estimated frequencies 

Actin 

of null alleles at each locus 

BSP-8 CM-2 

A 0.000 0.000 1.000 

S 0.000 0.231 0.645 

W 0.166 0.184 0.693 

HE 0.000 0.231 0.649 

D 0.000 0.000 0.837 

SA 0.272 0.258 0.672 

SB 0.295 0.000 0.866 

OX 0.000 0.000 1.000 

N 0.000 0.000 0.337 

B 0.125 0.316 0.549 

Pooled sample sites 0.134 0.257 0.616 

Table 4.9. Estimated frequency of putative null alleles at each locus within each sample 

site. 

While not conclusive, this analysis shows that PCR amplification of locus CM-

2 is anomalous relative to that of the other two loci. 

4.3.6 Tests of genotypic linkage disequilibria between loci 

The null hypothesis that "genotypes at one locus are independent of genotypes 

at another locus" was tested for all pairwise-locus comparisons within each of the eight 

British sample sites using exact tests. Out of the 24 possible tests, 12 were not 

possible due to fixed alleles or missing (or insufficient) data for one of the loci. For the 

remaining 12 tests, two sample sites (HE and N) showed significant genotypic linkage 

disequilibria for the locus-combination 'Actin+BSP-8' at the p < 0.05, but not p < 

0.01 level. Adjustment of the significance levels using Bonferroni procedures removed 

the significance of these values. 

Pooling the data from all British sample sites found significant genotypic 

linkage disequilibna between two out of three 2-locus combinations. Disequilibrium 

was significant between Actin + BSP-8 at p = 0.001 (x2 = cx, d.f = 2) and Actin + 

CM-2 atp = 0.002 (x2 = 12.7, d.f = 2). No disequilibria was found between BSP-8 

and CM-2 (p = 0.517, x2 = 1.318, d.f = 2). 
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Therefore, there is little evidence for non-random associations between 

genotypes at the three loci within sample sites, but pooling the samples from all sites 

(and thus increasing the sample size) showed that genotypes for two of the three loci 

were found in association more often than was expected by chance alone. 

4.3.7a Hierarchical analysis of genetic diversity 

The extent of genetic differentiation between samples from rats and sample 

sites was estimated by ANOVA of allele and genotype frequencies. F-statistics were 

estimated from each level of the sampling hierarchy, for each locus, by use of the 

variance components , a, €4 and €4. These statistics were; Fri.' = the total 

inbreeding coefficient, F 18  = the inbreeding coefficient of individual iL3s within 

sample sites, F sF  = the variation that was attributable to between-sample site 

differentiation and FRS = the variation that was attributable to between-rat 

differentiation within sample sites. Due to low sample sizes, data from the two 

German sites was excluded from the analysis. The ANOVA data are presented in Table 

4.10 and the F-statistics for each locus in Table 4.11. 

The ANOVA for all loci showed that variation between sample sites was low, 

accounting for 1.4% of the total genetic variation, but significant at p  <0.01 (Table 

4.10). For each locus separately, significant variation between sites was observed at 

BSP-8 and CM-2 (4.77% and 12.37% respectively), but not Actin (-6.04%). It is 

worth commenting here that values of F ST  and FRS that are close to zero, using the 

Weir and Cockerham estimation procedure, have an equal chance of being below or 

above zero (Weir 1996). Therefore, unless proven otherwise, negative variance 

components were assumed to be equal to zero. 

The null distributions of the variance component €4, created by a thousand 

permutations of individual iL3s between sample sites, are shown in figure 4.4. This is 

simply a visual representation of the distributions created by random permutations of 

data, with the positions of the observed data values indicated. Biases of €4 to the right 

of the null distributions reflects the degrees of significance. Therefore, the position of 

€4 for Actin in the middle of the null distribution shows that it is not significantly 

greater than zero. 

The relatively high value of €4 for the CM-2 locus was mainly due to the 

influence of two rats, HE 267 and SA 30A, that showed unusually high frequencies of 

a rare genotype (genotype '44'). Removal of these two rats from the dataset reduced 
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Locus Hierarchy di Variance % of total 
variation 

Actin Between sample 7 -0.026 -6.04 
sites 

Betweenrats 57 0.047 4.69** 
within sites 

Within rats 781 0.611 95.31** 

BSP-8 Between sample 7 0.005 4•77* 

sites 

Between rats 49 0.004 8.65** 
within sites 

Within rats 691 0.114 86.58** 

CM-2 Between sample 6 0.033 12.37** 
sites 

Between rats 32 0.143 66. 10' 
within sites 

Within rats 531 0.017 21.53* 

Actin+BSP-8 Between sample 7 -0.021 -3.90 
sites 

Betweenrats 58 0.051 3.81** 
within sites 

Within rats 934 0.725 96.19** 

All loci Between sample 7 0.012 1.44 
sites 

Betweenrats 61 0.194 25.30** 
within sites 

Within rats 1091 0.742 73.26** 

All loci, with Between sample 7 -0.09 -1.3 
rats HE 267 and sites 
SA 30A 
removed. Between rats 59 0.179 12.8** 

within sites 

Within rats 1055 0.743 87.2** 

Table 4.10 Hierarchical ANOVA between iL3 samples from 69 rats and eight sample 

sites. d.f = degrees of freedom; Variance = mean squares variance at each level of the 

hierarchy. "" signifies p < 0.05, "" signifies p < 0.01. 
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Figure 4.4. Null distributions of the variance components obtained by random 
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hierarchical A NOVA for each locus separately and all loci together. 
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the between-site component of variation to a nonsignificant value (F sr  = -0.13). Thus, 

there was little evidence from these data that significant variance in allele or genotype 

frequencies occurs between sample sites. 

Mean FRS for all three loci showed that a significant component (25.3%, FRS = 

0.253) was attributable to between rat variation. A substantial proportion of this 

variation was due to the effect of the CM-2 genotypes from rats HE 267 and SA 30A, 

removal of which reduced the mean FRS to 0.128 (12.8%). FRS was considerably 

lower than that of CM-2, but still significant, for the Actin and BSP-8 loci considered 

independently, with 4.7% and 8.7% of the total variance due to between rat effects. 

Therefore, from these data, it is apparent that the majority of genetic variation 

is found within individual rats (73%) (Table 4.10, Figure 4.5). The CM-2 locus 

shows more between-rat variation than the other two loci. This is mainly due to the 

effect of two rats (rats HE 267 and SA 30A). Removal of these rats from the dataset 

increases the measure of within rat genetic diversity to 87%. Removal of the CM-2 

locus from the data set further increases this measure of within rat genetic variation to 

96%. Thus, for the Actin and BSP-8 loci, only 4% of the total genetic variation is 

attributable to between rat and between site effects. 
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Locus Frr 

F-statistics 

Fjs FRS Fgç 

Aclina 0.395** -0A64 0.047** -0.060 

BSP8a -0.063 -0.164 0.086** 0.048* 

CM-2a 0.934** 0.806** 0.658** 0.124** 

Mean for all 0.085 0.198** 0.253** 0.014** 
locic (0.12- -0.06) (0.934-0.394) (0.659-0.047) (0.123- -0.06) 

Mean for all -0.060 0.216** 0.128** -0.130 
loci (no HE (008-0.47) (0.90- -0.39) (0.39-0.05) (0.02-0.43) 
267 and 
SA3OA)d 
Mean for 0.329** 0.329** 0.055** -0.039 
Actin+BSP8b (1106-0.40) (-0.06-1104) (0.047-0.087) (0()48- -0()6) 

Table 4.11. a  F-statistics for each locus independently, b  for Actin and BSP-8 

combined and C  for all three loci combined.d  F-statistics with rats HE 267 and SA 30A 

removed from the data set. "s"  signifies significance at p=0.05, " *" significance at 

p=O.Ol. Values in parentheses are 95% confidence intervals estimated by 

bootstrapping across loci. 

Values of FSr and FRS  (Table 4.11) reflect the variance components shown in 

Table 4.10. Bootstrap confidence intervals across each locus provide 95% confidence 

intervals for the estimates. These intervals are in general agreement with significances 

estimated by permutation tests (shown in Table 4.11) except for the Fgr of all loci, 

where the confidence interval includes zero. This is attributable to the effect of the 

negative value of Fr at the Actin locus. 

FIS and Frç are the inbreeding coefficients of iL3s within sites and within the 

total sample respectively, Fç being the sum of F1s, FRS and Fgr (eqn 4.17 section 

4.2.9). Fis  values for Actin and BSP-8 are negative within most sample sites (Table 

4.7) with mean values across the British data set of -0.464 and -0.164, respectively. 

These negative values indicate that more heterozygotes were being found than were 

expected under random mating predictions. Values of FIS were significantly negative at 

the Actin locus, reflecting the heterozygote excess within the Berkshire sample site. 

Removing this sample site from the data set caused F1s  to become positive for both 



Actin and BSP-8 (+0.0252 and +0.0223 respectively). These values are not 

significantly different from zero. Therefore, it is the influence of the Berkshire site that 

causes negative inbreeding coefficients at these two loci. 

In comparison, F1s and Frr  at the CM-2 locus are uniformly positive, ranging 

from 0.859 - 1.000 between sample sites. Heterozygote deficits are characteristic of 

this locus (section 4.3.4, Table 4.7) and have an inbreeding-like effect due to the high 

coefficients of relatedness of alleles within individual iL3s, resulting in positive values 

of F1s. 

Considering all loci, the mean value of F 15  was 0.198, this value being 

significantly greater than zero. F if  for all loci was 0.085, and not significant. These 

values were positive, but highly biased by data from the CM-2 locus. Removing rats 

HE 267 and SA 30A caused the mean values of F 15  and Frr  to become negative, and 

significantly less than zero for F 15 . This shows that it is the CM-2 genotypes of iL3s 

from these two rats which bias the data set most. 

4.3.71b Variation in allele and genotype frequencies between British and 

German samples 
The significance of variation in allele and genotype frequencies between sample 

sites in Britain and Germany was assessed by Fisher's exact test and F. This 

analysis was performed by comparing the pooled British data set with the pooled 

German data set. 

Table 4.12 shows that no significant difference was found in allele or genotype 

frequencies between the British and German samples at any loci, or for all the loci 

considered together. 
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Locus p Fgç 

Actin 0.743 -0.005 

BSP 1.000 -0.012 

CM-2 0.341 0.020 

All loci 0.809 0.001 

Table 4.12. Genetic variation between pooled samples from Britain and Germany. p is 

the probability that the observed allele frequencies are the same, as assessed by exact 

tests. FST  is the variation that is attributable to between-sample site differentiation in 

genotype frequencies, no values being significantly greater than zero as assessed by 

permutation tests. 

4.3.8 Within sample site variation 

Genetic variation between sampled rats was considered separately for each 

British sample site, and values of FRS calculated (Table 4.13). For the CM-2 locus, all 

but two of the values of FRS were significantly greater than zero in permutation tests. 

This demonstrates that high levels of genetic differentiation between individual rats are 

seen with this locus. 

Site Actin 

Locus 

BSP-8 CM-2 

B 0.038** 0.050 0.528** 

D 0.098 fixed fixed 

HE 0.119 -0.041 0.571** 

W 0.256** 0.021 0.692 

SB 0.602 fixed fixed 

SA 0.323** fixed 0.740** 

N 0.108 0.155 0.131** 

OX 0.170 0.003 - 

Table 4.13. Within site/between rat genetic variation measured by FRS. " " signifies 

values of FRS that are significantly greater than zero atp < 0.05 and "**" p < 0.01. t1fl 

signifies missing data and "fixed", loci that had only one allele at a particular sample 

site. 
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The data from the Actin and BSP-8 loci showed that, while high values for 

between-rat differentiation were observed, only 4/13 permutation tests were 

significantly greater then zero. The high, but non-significant, values observed in some 

sites (ie. FRS for Actin is 0.602 within site SB, n = 9 iL3s, 3 rats sampled) were due 

to the small sample sizes that are apparent when considering the numbers of 11_3s from 

single rats. Unlike the CM-2 locus, there was little evidence for significant genetic 

subdivision between the iL3s sampled from different rats at these two loci. However, 

the Berkshire sample site shows significant genetic differentiation at all three loci. This 

is the most intensively sampled site and most rats were genotyped for at least ten 11_3s, 

showing that there is some genetic structure between infections of different rats. The 

variance components that were due to between-rat variation within this site were 3.8%, 

5% and 53% for Actin, BSP-8 and CM-2 respectively. This illustrates the 

heterogeneous pattern of genetic diversity seen for alleles of the CM-2 locus. 

4.3.9 Isolation by distance 

Isolation by distance was tested for by calculating pairwise estimates of F sr  

between British sample sites for (a) the combined data for all three loci and (b) the 

combined data for Actin and BSP-8 only. In total, F Sr  values were calculated for 28 

pairwise comparisons between sample sites. Positive correlations were found for both 

comparisons (a) and (b), with Pearsons correlation coefficients of +0.023 and +0.216 

observed respectively, suggesting that isolation by distance may occur. However, 

these correlations were non-significant, with Mantel's test values for rejecting 

independence between genetic and geographic distance of (a) p= 0.492 and (b) 

p=0.227. Therefore, the hypothesis that there is genetic isolation by distance in S. ratti 

is rejected. 

4.3.10 Within host genetic diversity 

The number of distinct genotypes (measure (i), section 4.2. 11) were calculated 

for each rat within the dataset, including those in Germany, and the results shown in 

Figure 4.6. For all rats, 76% were infected with two or more genotypes, with a 

maximum of five genotypes detected in a single rat. The mean number of unique 

genotypes per rat was 2.34 (Table 4.14). This shows that mixed infections are 

common for S. ratti, and found at a greater frequency than single-genotype infections. 

The numbers of genotypes per rat was greatest at the Actin locus, with a mean of 1.77 

and least at the CM-2 locus with a mean of 1.36. This was expected from estimates of 

FRS, which showed that more genetic diversity is found between than within rats at 

locus CM-2. 
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Figure 4.6. Histogram of the number of three-locus genotypes (measure (ii), section 

4.2. 11) found in samples from British and German rats combined. Mean = 2.34, s.d 

= 1.07, n = 72. 

Sample site Actina 

Locus 

BSP8a CM-2a all locib 

W 1.42 (0.64) 1.33 (0.47) 1.50 (0.76) 1.73 (0.92) 

HE 1.71 (0.69) 1.60 (0.49) 1.75 (0.43) 2.17 (0.69) 

D 1.75 (0.43) 1.00 (0.00) 2.00 (0.00) 1.80 (0.40) 

SA 1.43 (0.49) 1.00 (0.00) 1.25 (0.43) 1.71 (0.45) 

SB 1.33 (0.47) 1.00 (0.00) 1.00 (0.00) 1.33 (0.47) 

OX 1.80 (0.75) 1.67 (0.47) - 1.80 (0.75) 

N 3.00 (0.00) 1.33 (0.47) 1.33 (0.47) 3.33 (0.47) 

B 1.95 (0.53) 1.56 (0.49) 1.21 (0.41) 3.20 (0.98) 

A 2.00 (0.00) 1.00 (0.00) - 2.00 (0.00) 

S 2.00 (0.00) 2.00 (0.00) 1.00 (0.00) 2.00 (0.00) 

Total 1.77 (0.67) 1.39 (0.49) 1.36 (0.53) 2.34 (1.07) 

Table 4.14. Numbers of different genotypes per rat within each of the sample sites for 

acach locus (measure (i), section 4.2. 11) and bthree1ocus genotypes (measure (ii), 

section 4.2.11). Figures in parentheses are the standard deviation (s) of the estimate. 

"-" signifies no data collected. 



4.3.11a Genetic diversity of iL3 samples from Berkshire rats 

Within the sample of 24 Berkshire rats, 338 iL3s were analysed. This resulted 

in 231,203 and 172 genotypes for the Actin, BSP-8 and CM-2 loci, respectively. Data 

were complete for all loci for 167 of the 11-3s and consequently a three-locus genotype 

described for each worm (measure (ii), section 4.2.11). The numbers of observed 

genotypes for each locus and complete three-locus genotypes are shown in Table 4.15, 

compared to the theoretical maximum numbers of genotypes. 

Locus 
Aclina 	BSP8a 	CM-2a 	3-locus 

genotypeb 
Obs. number of 	3 	 2 	 5 	 14 
genotypes 
aMax. number 	3 	 3 	 10 	 90 
of genotypes 

Table 4.15. The number of genotypes scored from iL3s sampled from rats collected at 

the Berkshire site. a=  measure (i), section 4.2.1 1,b=  measure (ii) section 4.2.11. The 

maximum number of genotypes is calculated as the maximum possible number of 

combinations of the alleles observed within Britain (not accounting for the gametic 

phase of heterozygotes). 

Of the 90 possible genotypes possible from combinations of alleles at these 

loci, 14 were observed from the iL3s sampled in Berkshire. All but one of the hosts 

(rat B381) harboured multiple parasite genotypes with a maximum diversity of 5 

genotypes observed within rat B369. Mean diversity was 3.2 genotypes per host with 

• standard deviation (s) of 0.98. The maximum repetition of identical genotypes within 

• single host was ten (rat B381), with only a single genotype recorded for each locus. 

4.3.11b Correlations between genetic diversity and intensity of 

infection 
The intensity of infection in Berkshire rats, estimated by faecal larval counts, 

was overdispersed and distributed according to the negative binomial (section 3.3.5). 

Regression analysis was performed between the variables 'estimated worm burden' 

and 'within-host 1L3 genetic diversity'. Data on worm burden was normalised by 

logio transformation and used as the response variable within an ANOVA. Two 

measures of within-rat iL3 genetic diversity, D, were used in separate analyses. These 

were (a) the total number of different genotypes at each locus per rat (measure (i), 

section 4.2.11) and (b) the total number of different three-locus genotypes per rat 
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Figure 4.7. The relationship between logio faecal larval countlg faeces and 

A. total number of observed different genotypes per host and B. total number 

of observed three-locus genotypes per host. Each datapoint represents one rat 

and the fitted line is the correlation between variables. 

 

 



(measure (ii) section 4.2.11). For analyses (a) and (b), all rats that had less than three 

genotypes scored from the sampled 1L3s were omitted from the analysis. This was 

done to remove the bias that low sample sizes would have on measurements of the 

numbers of genotypes per rat. This removed three rats (13350, B363 and B358) from 

the data set for analysis (b) and no rats for analysis (a). 

Significant positive correlations between genotype diversity per rat and logo 

worm burden were found for both analyses (a), the number of different genotypes per 

rat (R = 0.533, ANOVA; F1 23 = 8.79, P = 0.007) and (b), the number of different 

three-locus genotypes per rat (R = 0.486, ANOVA; F1, 20 = 5.9, P = 0.025). The 

regression plots are shown in Figure 4.7. This shows that rats with greater intensities 

of infection harbor more genetically diverse infections. 

4.3.11c The effect of host sex and weight on within-host genetic 

diversity 

The effect of host sex and weight on within-host genetic variation were 

examined. Six rats were omitted from this analysis due to incomplete sex/weight data. 

Sex of host was treated as a class effect and host weight as a continuous variable 

within the ANOVA. Host sex or weight were not significantly correlated with within 

host genetic diversity for analysis (a) genotype/weight (ANOVA; F1 17 = 0.94, P = 

0.349), genotype/sex (ANOVA; F1, 17 = 0. 13, P = 0.719) and analysis (b) 

genotype/weight (ANOVA; F1, 14=  0.03, P = 0.870), genotype/sex (ANOVA; F1, 14 
= 0.01, P = 0.928). While sample sizes are small, this result suggests that host sex 

and weight has no effect on within host genetic diversity. 

4.3.11d Correlations of genetic diversity (corrected for intensity of 

infection) and worm burden 

Significant negative correlations were observed for analyses of R a, (R 

= -0.800, ANOVA; F = 39.32, d.f. = 23, P= 0.000) and Rb,  (R = -0.851, ANOVA; 

F = 32.08, d.f. = 22, P = 0.000), these correlations remaining significant when the 

two most extreme values were omitted. This showed that the ratio of genotypes 

decreases as the intensity of infection increases. For instance, in a rat producing seven 

iL3s R a  = 0.42, this reduces to R a  = 0.005 for a rat producing 1040 11_3s. This shows 

that increases in genetic diversity with intensity of infection is a linear effect; hosts 

with high intensities of infection do not show proportionally higher levels of genetic 

diversity. This conclusion is not surprising. Intensities of infection may be enormous, 

while within-host genetic diversity has a maximum resolution of 90 genotypes within 
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this system (Table 4.15). Many of these genotypes will be very rare, or even non-

existent within these samples and therefore not represented within even the most 

heavily infected hosts. Consequentially, the distribution of genotypes will not be 

negatively binomially distributed, hence the strong negative correlation observed. 

4.4 Discussion 

4.4.1 Bias in the dataset due to sampling multiple progeny from a 

single parasite 
This study has measured the genetic diversity of the infective output of rats, 

and not the genetic diversity of S. ratti infections per se. Therefore, a potential bias 

exists when making inferences on population genetic structure as multiple (genetically 

identical) progeny may be sampled from individual parasites. This is because progeny 

may be sampled from rats infected with a single parasitic female, or from an 

exceptionally highly fecund parasite in a mixed genotype infection. Samples from such 

infections have the effect that the genotypes of these parasites are over-represented in 

the data set. Such infections may be the cause of situations where iL3s from rats are (i) 

fixed for one genotype (such as iL3s sampled from rat W 325) or (ii) biased for high 

frequencies of normally rare genotypes (such as those from rats SA 30A and HE 267 

at the CM-2 locus). The magnitude of this source of error on measurements of genetic 

differentiation will be large if these types of infections predominate within the dataset. 

However, several lines of evidence suggest that they do not. 

Most helminth-infected animals have low intensity infections (Anderson & 

May 1992), but in this study it is not known what proportion of the rats sampled 

contain single parasites. The evidence argues that single, or low intensity, infections 

do not predominate in the rats. First, estimates of the intensity of infection were made 

for one sample site (Berkshire, section 3.3.5). The mean estimated worm burden was 

37. As this distribution was overdispersed, 63% of the estimated worm burdens were 

in the class 0-37, but only 4% of these were estimated to be single worm infections. 

Second, mixed infections were usual with a mean of 2.34 (3.2 in Berkshire) 

genetically different parasites per rat. 24% of all rats contained genetically uniform 

infections and thus, potentially, were infected with a single parasite. However, within 

the Berkshire site, only one rat had a genetically pure infection and was possibly 

infected with a single parasite. Third, 96.2% of the observed genetic variation of the 

Actin and BSP-8 loci was found within rats. If single parasite infections were 
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common, then the between-rat component of variation would be expected to be much 

greater due to the biases of sampling multiple, genetically identical progeny. 

Thus, based on these lines of evidence, it seems unlikely that there was 

significant bias in the dataset due to multiple sampling of progeny of single parasitic 

females. 

4.4.2 PCR reactions and non-amplifying alleles 

DNA templates from iL3s sampled from the faecal cultures of some rats did not 

amplify at some, or any, of the loci. Why DNA from certain iL3s did not amplify is 

not known. It was observed that water from faecal cultures could act as a PCR 

inhibitor. Presumably, 1L3s that retained adherent faecal matter through the washing 

process may have inhibited PCRs by the transfer of an inhibitor. Samples from some 

rats in which no worms at all were typed suggests that these iL3s came from faecal 

cultures that may have been especially contaminated. 

The efficiency of PCR amplification of the different loci varied. Amplification 

products of the BSP-8 locus tended to be more faint than those at the other two loci. 

The CM-2 locus consistently produced the brightest PCR products. This was expected 

due to the nested nature of this reaction. Often, DNA from iL3s amplified the CM-2 

locus but not the other two. As this locus is amplified by nested PCR, the second 

round of amplification probably overcomes the effects of PCR inhibitors. Therefore, 

amplification by primers for this locus frequently shows more sensitivity than 

amplification by primers to the other two. 

A repeated observation throughout this study was that DNA from many worms 

could be amplified at the Actin and BSP-8 loci, but not the CM-2 locus. This 

observation was striking given the relative sensitivity of the CM-2 PCR. Within any 

batch of PCR reactions, a certain number will inevitably fail due to undefined causes. 

Repeating the PCR was a strategy used to increase the success rate. However, this did 

not achieve a significant increase in success in amplifying CM-2. The possibility of the 

existence of a null allele at CM-2 was considered as an explanation for the non-

amplification of this locus. Such null alleles in PCR reactions may occur due to 

mutations in primer sites preventing primers from binding or even to deletions of 

whole DNA sequences (Callen 1993). 
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Several observations were made that strengthen this possibility. First, 

laboratory observations for isofemale line 132 Heterogonic were consistent for the 

presence of a null allele at CM-2 (section 2.3.3). Here, an experiment was performed 

using five different combinations of six primers. None of these amplified DNA from 

isofemale line 132 Heterogonic, although all amplified DNA from isofemale line 5 

Heterogonic. This shows that there was a deletion of the CM-2 locus in line 132 

Heterogonic rather than a single-nucleotide mutation in a primer site. The second 

observation was that recoding the data set for all loci on the assumption that PCRs 

which worked at two, but not three, loci were due to null alleles showed that the CM-2 

locus had a much higher frequency of putative null alleles. Although there were some 

PCR reactions that worked at all loci except Actin or BSP-8, these were infrequent and 

were most likely due to the normal failure rate of PCR reactions. Moreover, the 

frequency of the putative null allele at locus CM-2 was consistently high within all 

sites except one, Norfolk (N). This observation was in agreement with conclusions, 

drawn from Fg1', that there was little variation in allele frequencies between sample 

sites. Therefore, the putative null allele appears to be conforming to the same 

geographic distribution observed for the other loci as well as for the other alleles at the 

CM-2 locus. The third observation was that the CM-2 locus showed strong 

heterozygote deficits in four out of eight sample sites. This was contrary to the pattern 

of the other two loci for which genotypes were generally found in, or in excess of, 

Hardy-Weinberg proportions. The occurrence of heterozygote deficits at all loci is 

characteristic of inbreeding (Hart! & Clarke 1989), but the occurrence of heterozygote 

deficits at a single locus is characteristic of null alleles (Pemberton et al. 1995). 

Heterozygote deficits at a single locus may result from processes other than 

null alleles. One of the aims of this study was to determine the effect of 

parthenogenetic reproduction on the genetic structure of S. ratti. Sample sites that have 

only low, or no, sexual reproduction may show strong non-random distributions of 

genotypes, and these many be manifested as heterozygote deficits at some loci 

(Hughes 1989). It is therefore possible that the observed heterozygote deficit at this 

locus was due to the high frequency of parthenogenetic reproduction in S. ratti at all 

sample sites, rather than a null allele. This issue will be examined further (section 

4.4.3). 

4.4.3 Evidence for genetic recombination in S. ratti 

This section examines the data from the molecular markers to test for the clonal 

population structure expected if S. ratti is wholly parthenogenetic (non-recombining) 

154 



in nature. Data will be used on (i) heterozygosity, (ii) Hardy-Weinberg equilibria and 

(iii) correlations between genotypes at different loci (genotypic linkage disequilibria). 

(i) Heterozygosity 
High and low levels of heterozygosity may occur as a consequence of 

apomictic parthenogenesis as has been shown in many studies (Hughes 1989). The 

mean heterozygosity of S. ratti across all loci and populations was 0.247. Previous 

studies of genetic diversity in obligately sexual species of parasitic nematodes found 

mean heterozygosities of 0.1 with a range of 0 - 0.21 in 23 species (Nadler 1990). 

Heterozygosity of S. ratti was therefore higher than that recorded from any other 

parasitic nematode. 

Estimates of heterozygosity for S. ratti were heavily dependent on the data 

fiom the Actin locus, where heterozygosity was uniformly high within sample sites 

with a mean of 0.609. Although there was significant variation in heterozygosity at 

this locus between sample sites, all sites showed values higher than the range found 

for other nematodes. Mean heterozygosity at the BSP-8 locus was within the range 

found in other helminths (0.115), although two sites (HE and OX) had 

heterozygosities higher than the range normally seen. That Actin has a higher 

heterozygosity than the other loci is expected given the balanced nature of allele 

frequencies at this locus (frequencies of Actin allele 1 and 2 were 0.626 and 0.374, 

respectively in the total data set). 

In contrast, values of heterozygosity for the CM-2 locus are uniformly low 

with a mean of 0.017. Six out of eight sample sites had no heterozygous iL3s 

whatsoever. It is possible that the aberrant characteristics of this locus relative to the 

other two are a consequence of the presence of a null allele at high frequencies within 

the samples. However, it is equally possible that low heterozygosi ties at this locus are 

a consequence of a parthenogenetic mode of reproduction. Agatsuma and Habe 

showed that fixed heterozygosity at some loci, and fixed homozygosity at others, 

occurs in certain forms of the trematode Paragonimus westermani (Agatsuma & Habe 

1985b). In this species, hybridisation appears to have created a triploid form that 

reproduces exclusively by apomictic (non-meiotic) parthenogenesis. Similarly, in the 

bivalve mollusc Lasaearubra, fixed heterozygosities occur at 12 isoenzyme loci (Crisp 

& Standen 1988). Both of these species are obligate parthenogens and hence show 

non-recombining population structures. The low frequency of sexual reproduction 

observed in these samples of S. ratti is more comparable to that of cyclical 
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parthenogens where clonal reproduction is punctuated by bouts of mictic reproduction. 

Populations of cyclical parthenogens, like obligate parthenogens, are often 

characterised by non-equilibrium levels of heterozygosity (Hughes 1989), but show 

increased clonal diversity as a consequence of occasional segregation due to sexual 

reproduction. The effect of segregation on genotype frequencies is ably demonstrated 

by studies of cyclical and obligately parthenogenetic populations of Daphnia magna. 

Populations showing frequent sexual reproduction have many clones with genotypes 

found close to Hardy-Weinberg expectations (Hebert 1974a). However, in 

populations were sexual reproduction is rare (such as those in permanent ponds 

(Hebert 1974b-a) or Arctic populations (Weider & Hobaek 1994)), genotype 

frequencies fluctuate widely from random-mating proportions and stable clones are 

found that are frequently associated with heterozygous excesses. 

It is probable that high, and low, levels of heterozygosity in S. ratti are a 

consequence of parthenogenetic reproduction amplifying specific genotypes, without 

the mitigating effect of sexual reproduction. The proportion of larvae developing into 

sexual forms (i.e. undergoing heterogonic development) is low within lines derived 

from isolates of the sampled S. ratti (section 3.3.2). Therefore, the majority of 

development is by the homogonic route, which is exclusively parthenogenetic. If 

parthenogenesis is maintaining high and low levels of heterozygosity, then deviations 

from Hardy-Weinberg equilibrium expectations and linkage disequilibria between loci 

are expected within sample sites (Hughes 1989). 

(ii) Hardy-Weinberg equilibria 

Analysis of Hardy-Weinberg proportions within sample sites found significant 

deviations for (i) the Actin locus where a heterozygous excess was observed within a 

single site (sample site B) and (ii) the CM-2 locus where heterozygous deficits were 

observed within four of eight sites. Departures from random mating were reflected by 

the inbreeding coefficients F1s and F, positive values of F 15  indicating inbreeding 

populations. Total F1s values at the Actin and BSP-8 loci for all sample sites were 

predominately negative with mean values of F1s of -0.299 and -0.061 respectively. 

These were significantly different from zero at the Actin, but not BSP-8 locus, and 

therefore reflect higher levels of heterozygosity at this locus than are expected for a 

randomly mating population. Samples from one site, Berkshire, unduly bias the data 

set. Removing this sample site from the data set causes (a) genotypic proportions for 

the pooled data set at the Actin locus to conform to Hardy-Weinberg expectations and 

(b) values of F1s at Actin and BSP-8 to become not significantly different from zero. 
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These data show that, at these two loci, the majority of sample sites contain randomly-

breeding parasite populations. Therefore, there is little evidence at these two loci for 

the existence of a clonal population structure. 

In contrast, F15  values were uniformly positive at locus CM-2 with a range of 

0.823 - 1.000 reflecting the highly 'inbred' nature of this locus resulting from an 

overall heterozygote deficit. This pattern may reflect a lack of segregation due to 

parthenogenesis, but it could also indicate of high rates of selfing. If so inbreeding 

may be a mechanism causing low levels of heterozygosity at this locus. A study by 

Viard et. al. (Viard et al. 1996) on populations of the freshwater snail Bulinus 

truncatus found high levels of genetic diversity at four microsatellite loci, but large 

heterozygote deficits at all loci. This snail, while hermaphrodite, also has a self 

fertilising aphallic morph. In the populations sampled, the ratio of aphallic individuals 

to hermaphrodites was high. Therefore, the observed heterozygote deficits (and 

positive values of F15) were consistent with mainly selfing populations of snails. Here, 

two results argued that low levels of heterozygosity at the CM-2 locus were not a 

consequence of inbreeding. Firstly, if inbreeding was occurring, then data from the 

three loci would be expected to be relatively consistent. This was not so, the genotypes 

of Actin and BSP-8 showed that high rates of selfing were not occurring due to 

normal-to-high frequencies of heterozygotes at these loci. Secondly, mixed infections 

predominated within infections of S. ratti arguing that, unless preferential mating with 

siblings was occurring, inbreeding was unlikely. Therefore, observations of low 

heterozygosities at the CM-2 locus are consistent with two hypotheses. The first is that 

genotype frequencies reflect low levels of recombination due to parthenogenesis. The 

second is that there is a null allele at this locus causing strong heterozygote deficits. 

(iii) Genotypic linkage disequilibria 

When considering each sample site separately, significant associations between 

genotypes were not observed. However, this cannot be used as absolute proof that S. 

rat/i is undergoing recombination in nature. This is because the power of tests to 

identify linkage disequilibria are low with these numbers of loci, often requiring larger 

sample sizes than are found in these samples (Thompson etal. 1988). Considering the 

entire data set together (excepting sites in Germany) increases the sample size. Under 

these conditions, significant disequilibria are found for two out of the three locus 

combinations, Actin+BSP-8 and Actin+CM-2. That these samples were drawn from 

geographically separated samples, however, may cause an illusion of linkage 

disequilibria due to population subdivision (Hart! & Clarke 1989). Therefore, it is not 
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possible to conclude that S. ratti shows a recombining population structure based on 

these tests. 

When (i), (ii) and (iii) are considered together, it is clear that these samples are 

from recombining populations of S. ratti. However, there is strong evidence that there 

is some deviation from panmixia and that not all samples are from sites that are at a 

genetic equilibria. This is mainly illustrated by the Actin locus, where convincing 

heterozygote excesses occur within the Berkshire population. Additionally, 

heterozygote deficits at CM-2 may be due to low levels of sexual reproduction. But, 

thçre is good evidence that there is a null allele at this locus and that the observed 

deficits result from an artifact of PCR rather than reflecting a biological phenomena. 

4.4.4 Heterozygous excess at the Actin locus in Berkshire 

There are two explanations why there is an excess of heterozygotes seen for 

the Actin locus in the Berkshire site. 

This study assumes that the molecular markers used are selectively neutral 

and that their distribution is only influenced by stochastic processes, such genetic drift, 

founder effects and gene flow. However, if loci are under selection then they will not 

reflect such processes. Heterozygote excesses may occur as a consequence of several 

processes, such as preferential mating between unlike genotypes (negative assortative 

mating) or heterozygote advantage. Heterozygote advantage, exemplified by 

overdominance of the S allele of B-globin in West African humans (Willcox et al. 

1983), has been argued to maintain polymorphism at the Major Histocompatibility 

Complex (MHC) locus in both human (Markow et al. 1993) and Ovine species 

(Paterson et al. 1997). Furthermore, hybrid vigor (heterosis) has been argued as a 

mechanism maintaining heterozygote excesses in species of parthenogens such as 

Daphniapulex (Hebert etal. 1982). It is possible that the heterozygote excess seen in 

the Berkshire site is due to a fitness advantage for this genotype within this site. While 

I am unable to rule out this possibility, it appears unlikely. If heterozygosity at this 

locus was associated with increased fitness, then the effect may be expected to be more 

wide-spread. However, only a single site shows this effect. 

It is probable that the heterozygous excess at this locus is due to 

amplification of this particular genotype by parthenogenetic reproduction. That most 

sample sites contain genotypes, at Actin and BSP-8, in Hardy-Weinberg proportions 

shows that genetic recombination is occuring at a rate that is able to randomise 



genotypes within most sites. However, that there is a heterozygous excess within this 

site may be interpreted as evidence that amplification of genotypes by parthenogenesis 

is able to bias genotypic frequencies. This effect is probably transient as bias in 

genotype frequencies due to parthenogenesis will be expected to be randomised 

eventually by sexual reproduction. Such a balance is often seen in populations of D. 

pulex. Here, the genotypes of those populations undergoing regular bouts of sexual 

reproduction remain close to Hardy-Weinberg equilibrium proportions while those 

exhibiting infrequent sex deviate widely from expected frequencies (Hebert 1974b; 

Hebert 1974a). 

If the Berkshire S. ratti population originated from a small sample of parasites 

that were principally, by chance, heterozygous for the Actin locus then amplification of 

this genotype would occur by the homogonic cycle. Then, if rat to rat transmission 

occured, the progeny from the original infection may be expected to spread the 

'founder genotype' to all members of the rat group. Thus, deviations from Hardy-

Weinberg equilibrium would persist for several generations until sexual reproduction 

eventually restored genotypes to equilibrium frequencies. It may be argued that if non-

random associations between alleles at this locus are due to limited sexual 

recombination, then multilocus linkage disequilibrium would also be found within the 

sample of iL3s. This would be seen as a predominating 'clone' within the sample. 

However, such a clone was not observed. But, given the sample sizes and that some 

intragemc recombination will have occured, the original founding multilocus genotype 

would have been expected to have formed new combinations. This will obscure the 

statistical detection of multilocus linkage disequilibna. Thus, the population structure 

seen is intermediate between that of a fully recombining and a clonal population. 

It is impossible to show whether selection or recombination is causing the 

heterozygote excess by using these data. However, given that it is known that sexual 

reproduction is infrequent in these isolates of S. ratti it appears most likely that the 

effect is due to parthenogenesis and not selection. But, it would be expedient to test the 

fitness of iL3s that are heterozygous for Actin in this site against other genotypes. 

Given that these isolates are stored in liquid nitrogen, it would be possible to revive the 

isolates and test isofemale lines of each genotype for variation, and thus 'fitness', for 

characters such as fecundity, longevity and infectivity. 
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4.4.5 Significance testing of genetic variation 

The S. ratti sampled in this study were not mating randomly in all sites, and so 

the use of exact tests may not be valid (Raymond & Rousset 1995). Although it was 

not strictly necessary to use exact tests, they were used principally to act as a control 

for the estimates of differentiation derived from F-statistics. This was because 

Raymond et al. (Raymond & Rousset 1995) showed that significance testing of 

variation components by the bootstrap method suggested by Weir (Weir 1996) was 

inaccurate for small numbers of loci. However, in the majority of cases, the 

significance of F-statistics and exact tests were the same. In the sites that show non-

concordance in results for F-statistics and exact tests, more biological relevance is 

attributed to the result from the F-statistic due to the non-assumption of Hardy-

Weinberg proportions used in these calculations. 

In addition to bootstrapping across loci, this study used a permutational 

method to estimate significances of F-statistics for individual loci. A comparison of 

bootstrap confidence intervals and significances of permutation tests show a general 

agreement. However, there are three exceptions. Bootstraps include zero for two Fj 

values and one F s-r  value, whereas permutation tests show that the observed 

distributions are significantly greater than zero ( F IS  for Actin + BSP-8; F 15  for all loci; 

Fgi for all loci). These contradictory significance values are due to bias by the locus 

with the most extreme value creating wide bootstrap confidence intervals, which are 

not reflected by the null (permutational) distribution of the data. Therefore, this study 

agrees with the general conclusion by Raymond (Raymond & Rousset 1995) and Weir 

(Weir 1996) that minimum samples from five or more loci are necessary to produce 

informative bootstrap confidence intervals. 

4.4.6 Spatial genetic differentiation of S. ratti 

Mean F-statistics for all loci showed that a minor, but significant, proportion of 

the total genetic variation (1.4%) was attributable to differentiation between sample 

sites. F-statistics for two loci, Actin and BSP-8, described a similar pattern. The 

component of variation due to between-site differentiation for the two loci considered 

together was not significantly greater than zero, although F Sr  for BSP-8 alone was 

significant. At the CM-2 locus there was greater, and significant, genetic 

differentiation between sites, accounting for 12.4% of the observed variation. 

The reason that these results are not completely consistent with one-another 

may be due to the presence of null alleles at locus CM-2. The presence of a null allele 



at a high frequency at this locus will cause variation in genotypic frequencies between 

sample sites and rats within sample sites. This is because the null allele would affect 

the calculations of F-statistics for the following reason: If an iL3 was heterozygous for 

the null allele, then from the genotyping system that I have used, the heterozygote 

would be scored as homozygous for the visible allele, and two copies of the allele 

recorded in the data set instead of one (the real value). Thus, there is a possibility that 

rare alleles will have an artificially high frequency. Therefore, small variations in the 

frequency of the null allele would be expected to have a disproportionate effect on the 

frequency of rare alleles. This is a potential source of error when F values are 

subsequently estimated from these data. 

However, the general pattern described by CM-2 is similar to that at the other 

two loci. Allele 1 is consistently the most frequently observed in 7/9 sample sites, and 

alleles 2 and 3 are consistently rare or absent within all sites. Inspection of the data 

shows that allele 4 causes the majority of sample site differentiation because of its high 

frequency within the HE and SA sites. Furthermore, it is the high frequencies of this 

allele from the samples of just two rats, SA 30A and HE 267, that bias the genotype 

frequencies in these two sites. Removal of these two rats from the data set causes the 

mean value of F51  at this locus to become not significantly greater than zero, and the 

estimate for between-rat variation to reduce to 12.8%. This implies that there is a 

homogeneous geographic distribution of alleles at this locus, and that CM-2 is 

conforming to the same pattern observed for the other two loci. 

Recalculating 	for all loci with the omission of rats SA 30A and HE 267 

shows that no genetic variation is attributable to between-site genetic differentiation in 

genotype frequencies. This is evidence that there is no genetic subdivision between 

sample sites. A corollary of this is that significant gene flow between sites is 

occurring. If gene flow between these sample sites is not limited, then an isolation-by-

distance model predicts that no correlation between geographic and genetic distance 

will occur (Crow & Kimura 1970). This was tested by comparing pairwise Fgr values 

and geographic distance. While positive associations were observed, these were non-

significant. It was thus concluded that isolation by distance was not occurring. This 

result lends weight to the emerging conclusion that British S. ratti is geographically 

genetically unstructured. Furthermore, there was no evidence for genetic subdivision 

between British and German samples of the parasite. While these samples are small 

and more data is required, it appears that S. ratti may show no genetic subdivision 

within a Europe-wide scale. 
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However, it cannot be concluded from these data that S. ratti has a panmictic 

population structure (i.e. S. ratti within Britain exists as a single interbreeding 

population). This is for two reasons. The first is that, despite low levels of genetic 

differentiation between sites, the between-site component of variation was significant 

when all loci were considered together (although the significance of this value is 

dependent on samples from two rats, SA 30A and HE 267). The second is that 

significant deviations of genotype frequencies from random mating proportions are 

observed in several sites. These are principally due to heterozygote deficits at the CM-

2 locus and a heterozygote excess at the Actin locus within the Berkshire sample site. 

These deviations are reflected in the ANOVA of heterozygosities for individual loci 

across the data set, which show significant variation between sites. This argues that 

the parasites within the Berkshire sample site are to an extent isolated from those in 

other sites. This may be taken to show that transmission is not occurring at sufficiently 

high rate to homogenise genotypes between sites, and that there is a degree of genetic 

subdivision between the sites. The rates of transmission of S. ratti between sites is 

considered in the final chapter of this thesis. 

4.4.7 Within-site genetic variation 

Mixed genotype infections were found to be characteristic of natural S. ratti 

infections, with 77% of sampled rats harbouring infections of two or more genotypes. 

14 different multilocus genotypes were found in the whole data set, of which a 

maximum of five were found within a single rat. Mixed infections have been recorded 

in other species of helminths. Surveys of Ascaris suum in Guatemala found that most 

hosts contained multiple genotype infections, with a maximum of five detectable in a 

single host (Anderson etal. 1995). Rollinson et al. (Rollinson etal. 1986) observed a 

maximum of five different genotypes/rat in studies of Schistosoma mansoni using 

enzyme electrophoresis as a method of discriminating parasites. A subsequent study 

on the same foci of infection, but using RAPD's, increased this estimate to a maximum 

of 28 genotypes/rat (Barral et al. 1996) showing that use of multiple loci can 

significantly increase estimates of within host genetic diversity. 

Variation between rats within sites was low at both the Actin and BSP-8 loci, 

with most sites showing non-significant values for permutation tests of FRS  and exact 

tests. 3/8 and 1/8 sites found significant values of FRS for Actin and BSP-8 

respectively, and 3/8 and 2/8 found significant variation by exact tests. In all sites 

except one (Berkshire, Actin), significant exact tests corresponded to significant values 
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of FRS. Variation between rats was higher at the CM-2 locus with 5/5 and 4/5 sites 

showing significant differentiation by both exact tests and FRS respectively. 

The effect of unusual single rat infections on between-site differentiation has 

previously been demonstrated; removing two rats from the data set significantly 

reduced between-site variation for locus CM-2. To determine whether single rats were 

causing significant within-site differentiation, rats with the most extreme genotype 

frequencies were removed and exact tests recalculated. This had the effect of causing 

3/10 significant values to become non-significant. Therefore, the majority of sites 

showing significant variation between rats are doing so because of the effect of more 

than one rat. Most of the within site variation is attributable to CM-2 as heterogeneity 

in allele and genotype frequencies between rats is greatest at this locus. Why this locus 

shows more heterogeneity than the other two is not known, although the argument that 

null alleles are causing errors in the number of rare alleles scored applies equally to the 

within-site situation as it does the between-site. 

If the effect of this locus is discounted, it may be concluded that between rat 

variation is small. This is quantified by the mean value of FRS for Actin and BSP-8 

which shows that 5.5% of the total genetic variation is attributable to between rat 

variation. While this value is significantly greater than zero, it shows that the genotype 

distributions of infections of different rats within the same sample site are not very 

different from each other. 

Analysis of the distribution of genotypes within the Berkshire population of 

rats found significant correlations between faecal egg counts and genetic diversity. Rat 

sex or weight did not correlate with the genetic diversity of an infection. Thus, genetic 

diversity within hosts is correlated with the intensity of infection. This shows that rats 

with high faecal larval counts have greater worm burdens than those with lower faecal 

larval counts and validates the use of faecal larval counts as a measure for estimating 

worm burden. It also shows that high faecal larval counts do not result from an 

infection of a few uncharacteristically fecund parasites. Banal et al. (Banal etal. 1996) 

demonstrated a significant aggregation of diversity in S. mansoni genotypes within 

rats (variance to mean ratio = 73.6) and showed that this correlated with intensity of 

infection. Here, the distribution of genotypes between rats in this site, while correlated 

with intensity of infection, was not aggregated (variance to mean ratio = 0.48). 

However, this may be an artifact of the number of genotypes that are resolved by the 

use of a limited number of loci. It may be that if a larger number, or more polymorphic 
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loci were used, then an aggregated pattern of genetic diversity would be found 

minoring the distribution of intensity of infection. 

There are several implications of these data. The first is that, for the majority of 

rats, there is no genetic subdivision between the S. ratti of one rat and another. This 

shows that the infection rate within sites is sufficient to homogenise genetic diversity 

between rats. Secondly, as genetically diverse infections are normal, genetic 

subdivision is not a mechanism that will be expected to cause inbreeding S. ratti within 

the faeces of individual rats. Thirdly, as rats having large infections contain genetically 

more diverse worm populations than hosts with light infections, these rats will be 

expected to provide the main opportunity for outbreeding. The greater number of 

diverse genotypes within the faeces of heavily infected hosts will lead to an increased 

probability of crossing between unlike genotypes. Thus, the infections of 

overdispersed rats may be expected to give rise to most of the genetic variation within 

the local parasite population. 



4.5 Summary 
The genetic diversity of three nuclear loci was examined in samples of S. ratti 

iL3s from 72 rats from ten sample sites. Most genetic variation was found within 

individual rats with the majority of rats harbounng genetically mixed infections. Little 

genetic differentiation was found between rats within sites showing that rates of 

transmission within sites is sufficient to homogenise allele frequencies. 

Positive correlations were found between intensity of infection and the 

numbers of iL3s produced by a rat overnight. This suggests that high faecal larval 

counts most probably result from a large population of parasites, rather than a few 

highly fecund worms. Moreover, infections in heavily infected rats may provide an 

opportunity for greater outbreeding in rat faeces. 

Observations of Hardy-Weinberg equilibria and low levels of genotypic 

linkage disequilibria are consistent with S. ratti undergoing genetic recombination in 

nature. Deviations of genotype frequencies from random mating expectations in some 

sites are evidence that sexual recombination is limited and that the homogonic phase of 

the life cycle may bias the frequencies of some genotypes within sample sites. The 

local genetic structure of S. ratti therefore appears to be intermediate between fully 

recombining and clonal. 

Small amounts of genetic differentiation were observed between sample sites, 

and no isolation by distance was observed. This shows that there is little population 

genetic structure. Differentiation between samples from Britain and Germany was not 

significant suggesting that there may be no population structure at this scale. 
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Chapter five 

Conclusions and final comment 

5.1 The population genetic structure of S. ratti 

Significant differences in the frequencies of neutral alleles in samples from 

geographically distinct locations show the existence of a subdivided gene pool. Such 

non-random distributions of alleles demonstrate whether or not distinct, inbreeding 

populations of parasites exist. This study systematically and intensively sampled S. 

rat/i within Britain. A genetic analysis of these samples using molecular markers 

provide several lines of evidence showing that S. ratti does not have a subdivided 

population structure, but rather shows unrestricted gene flow on the scales examined 

here. 

F-statistics showed that there was little genetic variation between samples of 

British and German S. ratti. Measurements found that, for the combined estimates of 

from all three loci, only 1.4% of the total genetic variation was attributable to 

between-site variation. The majority of this originated from samples from two rats 

which, when removed, resulted in a measure of F sr  that was not significantly greater 

than zero. 

At two out of three loci there was no evidence of heterozygote deficits within 

sites compared to heterozygosities expected from the allele frequencies of the total 

dataset. Therefore, reduction in heterozygosity due to population subdivision (the 

Wahlund effect) was not in evidence. One locus (CM-2) did show significant 

heterozygote deficits in many sites, however these were due to null alleles and not 

population subdivision. The observed genotypes were in Hardy-Weinberg proportions 

in most sample sites thereby suggesting that the individual parasites from separate 

sample sites are close to a state of panmixis (i.e. each parasite has an equal chance of 

breeding with another independent of where they are in Britain). In the Berkshire site 

there was a strong excess of heterozygote genotypes at the Actin locus demonstrating 

that there was not a completely uniform distribution of genotypes between sites. It is 

probable that this heterozygote excess resulted from a founder effect that has been 

im 



amplified by parthenogenetic reproduction within this sample of parasites, rather than 

natural selection of the heterozygote genotype. 

It is concluded that the basic reproductive unit of S. ratti is larger than the scale 

sampled here and that the parasite is a single interbreeding population within Britain. 

Panmixia may extend to include the parasites in Europe. These data suggest a large 

effective population size for S. ratti resulting from unrestricted dispersal of the 

parasite. These results agree well with the findings from studies on other species of 

nematode parasites. Here, essentially no difference was found for the distributions of 

mtDNA haplotypes between widely-separated sites for Haemonchus contortus (1.0% 

of variation due to population subdivision), Tric/zostrongylus circumcincta (2.0%) and 

Haemonchus platei (4.0%) (Blouin et al. 1995). In comparison, samples of 

Mazamastrongylus odocoileus from white tailed deer showed that a significant 

proportion of the observed genetic variation (31%) was found between sites (Blouin et 

al. 1995). It was argued that the restricted range of deer was reducing gene flow 

between parasite populations to the extent that random genetic drift, and hence 

differentiation, occured. That an isolation by distance effect was observed for 

populations of M. odocoileus was evidence for this hypothesis. A similar effect was 

observed for the trematode Fascioloides magna, also infecting white tailed deer, where 

samples from separate states showed substantial genetic differentiation at isoenzyme 

loci and an isolation by distance effect (Mulvey etal. 1991a). Thus, it appears that the 

observed population genetic structure of S. ratti conforms to a model where 

unrestricted host movement allows widespread dispersion of the parasite and a state of 

panmixia for the parasite population. 

Of the above studies, all except that by Mulvey et al. (Mulvey et al. 1991a), 

used measurements of mtDNA diversity. As described in Chapter 2, mitochondnal 

markers are more sensitive than nuclear loci for detecting population structure as their 

rate of gene flow is effectively a quarter that of nuclear loci. Thus, the data from 

studies using the mtDNA markers are not directly comparable to those utilising nuclear 

loci. It is therefore not known whether repeating this study of S. ratti by using mtDNA 

markers (if any could be found), would find more population structure than was 

revealed here. A recent study of the geographic population structure of the mosquito 

Anopheles garnbiae using both microsatellite and mtDNA markers found no genetic 
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subdivision for either class of marker (Lehmann et al. 1997). Thus, in this species, the 

pattern of genetic variation was represented by the whole genome. It is possible that 

further characterising the mtDNA of S. ratti would not alter the conclusions obtained 

via the use of nuclear markers. Moreover, as studies on the population genetic 

structure of parasites could be used to understand the spread of important traits such as 

drug resistance, which are likely to be nuclear genes, characterising a population by 

variation at nuclear loci describes a more biologically relevant picture. 

If rates of gene flow between sample sites in Britain and Germany are high 

enough to equilibrate allele frequencies, then the effective population size of S. ratti 

will be large. Moreover, from the high observed prevalences of infection of S. ratti 

within Britain, it would appear that the actual population size of S. ratti is large. 

Assuming that the average size of a rat colony is 20 individuals (although this value 

may vary by an order of magnitude) (Barnett 1952) and approximately 1.5 million 

properties contain rat infestations (5% of premises in Britain) (Institution of 

Environmental Health Officers 1993), then the census of rats in Britain is 3.0 x 10 7 . 

The observed prevalence of infection in this study was 68% and the mean number of 

genotypically different S. ratti per rat, 2.3. Therefore, multiplying these values 

provides a rough estimate of the actual population size of British S. ratti of 4.7 x 107  

parasites. The effective population size of 0. ostertagi in the USA was estimated at 

between 4 - 8 x 106 parasites, using data from the observed divergence of mtDNA 

sequences (Blouin et al. 1992). The arguments of Beech et al. (Beech et al. 1994) and 

Blouin et al. (Blouin et al. 1992) predict that nematode parasites with large effective 

population sizes will have high genetic diversities. However, the nucleotide diversity 

of S. ratti was similar to that observed in free living organisms, and less than that 

found in other species of parasitic nematode at both nuclear and mitochondrial loci. 

Therefore, on this basis it appears that, despite the lack of population genetic structure 

and high estimated population size of S. ratti, the effective population size is lower 

than that of other parasitic nematodes. 

5.2 The effect of historical processes on the population genetic 

structure of S. ratti 
The amount and distribution of genetic variation in a species is determined by 

many factors, both contemporary and historical. Such factors are the rates of mutation 
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and recombination, recent and ancient effective population size, random genetic drift, 

population subdivision and natural selection (Tajima 1992). Why the effective 

population size of S. ratti appears to be low relative to other species of parasitic 

nematodes will depend on these factors. 

Historical demography of S. ratti 

Low nucleotide diversities of S. raiti and the homogeneous distribution of 

allele frequencies may be due to the historical demography of the parasite and its host. 

The long term effective population size of a species is the harmonic mean of its 

generational effective population size (Hartl & Clarke 1989). This means that 

population bottlenecks have a disproportionate effect on levels of polymorphism. For 

instance, the extremely low levels of genetic variation found in northern elephant seals 

are presumably due to the recent near-extinction that reduced the species to a few 

individuals (Bonnell & Selander 1974). The present worldwide distribution of Rattus 

norvegicus originated from a focus near the Caspian sea, from where it underwent a 

large range expansion through Europe in the 1600s (Kroyer 1991). A measure of the 

range expansion of R. norvegicus is perhaps provided by the reduction in plague 

outbreaks as R. norvegicus aggressively outcompeted the principle plague carrier, R. 

raw, across Europe (Kroyer 1991). R. norvegicus was first recorded in Britain in 

the 1720s (Smith 1995). This is fairly recent and may correspond to the first 

introduction of S. ratti into Britain. However, R. rattus also carries the parasite 

(Udonsi 1989; Hasegawa et al. 1994) and the discovery of R. rattus bones in second-

century A.D. remains in York show that the Black rat predates the Brown rat in Britain 

by several centuries (Smith 1995). Whether this population of R. rattus were infected 

with S. ratti, or if it was, whether the infection was transmitted into the R. norvegicus 

population, is not known. 

That the present day distribution of R. norvegicus appears to mirror the recent 

expansion of modern man (Barnett 1952; Kroyer 1991) may (i) explain the lack of 

genetic differentiation between S. ratti samples and (ii) the low levels of genetic 

diversity. If the colonisation of Britain by R. norvegicus occured within the last 300-

900 years, then that the parasite gene pool within Britain appears to be similar to that 

in Europe is not surprising given that substantial differentiation due to genetic drift is 

unlikely to have occured within this time. Even if the sampled parasite populations 
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were not of recent origin, then the natural movement of rats between colonies may 

have caused levels of gene flow that were sufficient to homogenise allele frequencies 

and to prevent differentiation by drift as shown by other studies (Blouin et al. 1995; 

Mulvey et al. 1991b). However, that genetic structure exists at some level in S. ratti is 

shown by examining the distribution of polymorphisms of nuclear DNA in globally 

distributed isolates of the parasite. Here, polymorphisms in two loci (24 and 29) were 

found only in the USA. This means that, if the population genetic structure of S. ratti 

was examined further, it is likely that population differences would be observed for 

the global scale. 

Although little is known about the short-term dispersal of R. norvegicus, the 

animal does not appear to be characterised by a naturally high dispersal rate. Brown 

rats are territorial and live in groups with a strong degree of social structure (Barnett 

1952). Brown rats also show marked neophobia, and will therefore re-use well 

known pathways and food sources (Webster & MacDonald 1995). This group 

structure may limit the dispersal of individual rats and result in a degree of intra-group 

isolation. Mark/recapture experiments have shown that colony home ranges tend to be 

small, with 80% of individuals recaptured within 20-25 meters of the original capture 

site (Barnett 1952; Glass et al. 1989). However, there is some indication that juvenile 

males may be ostracised by the colony alpha male, and disperse (Barnett 1952). These 

individuals may therefore act as the primary agents of gene flow for S. ratti. That 

longer term dispersal of R. norvegicus occurs is inarguable. Brown rats are endemic 

to every corner of the globe due to colonisation in association with humans. 

Therefore, it appears that while normal migration between rat groups is low, 

infrequent longer range movements of individual rats may occur. This is in agreement 

with population genetic theory that shows only low levels of migration are necessary 

to prevent genetic differentiation within a species (Slatkin 1987). Therefore, it may be 

that low levels of nucleotide diversity and a panmictic population structure in S. raui 

reflect a relatively recent origin of the sampled populations. 

5.3 Microepidemiology of S. ratti 

This study has shown that there is little heterogeneity between the composition 

of S. ratti infrapopulations within sample sites. A high proportion of rats (76%) had 

mixed-genotype infections. Mean values of F RS  between rats within sites show that 
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6% (Actin) and 3% (BSP-8) of the total genetic variation was a consequence of 

between rat variation in genotype frequencies. Thus, at these loci, infrapopulations of 

S. ratti are genetically highly diverse with the majority of the total diversity within rats. 

The low level of genetic structure observed is probably due to infections of rats with 

large worm burdens being more genetically diverse (section 4.3.1 ib). The lack of 

genetic substructuring at the level of the individual host has several implications when 

considering the epidemiology and genetical interactions between rat and parasite. 

A consequence of overdispersion of parasites amongst hosts is that clumping 

of parasite infective stages in the environment occurs. This leads to non-random 

transmission of parasites as hosts acquire infections from such 'patches'. If 

transmission is low, such that successive parasite generations are essentially non-

overlapping, then inbreeding would be expected to occur. This study has shown that 

there is little evidence that S. ratti is inbreeding. Thus, it appears that rats are 

transmitting their infections to other rats at rates that are high enough to homogenise 

parasite infrapopulations and to prevent genetic differentiation. It has been suggested 

that in human populations, the household is the focus of transmission. This is based 

on the observation that individuals with heavy worm burdens tend to be from the same 

family (Forrester et al. 1988). Studies by Anderson et al. (Anderson et al. 1995) 

provide some support for this hypothesis. Here, it was shown that there was familial 

clustering of Ascaris suuin haplotypes in some, but not all families. Moreover, it was 

demonstrated that the infrapopulations of A. suum were strongly structured at the level 

of individual hosts in both humans and pigs. This showed that co-transmission of 

related A. suum was occuring. Co-transmission of genotypically similar S. ratti was 

seen within the colony of rats sampled from within Berkshire, but there was little 

evidence for between host genetic structure. This may reflect differences in rates of 

transmission between A. suum and S. ratti. For instance, studies on the epidemiology 

of wildlife diseases show that the contact structure of infections in natural populations 

is usually spatially localised (Hudson & Dobson 1995). It is then expected that social 

species living in a colony (such as rats) will share common infections due to high rates 

of individual contact and use of communal resources. That Brown rats occupy well 

defined territories and defecate in communal latrines is probably a factor that 

contributes to high rates of rat to rat transmission of parasites (Hurst, pers. comm.). 

This will reduce the probability that sibling parasites will co-occur within rats. 
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The patterns of prevalence of infection are well known for natural infections of 

parasitic nematodes (Bundy 1988; Anderson & May 1992). Moreover, the importance 

of heterogeneity between hosts in their genetics, previous exposure to parasites, and 

behaviour has been shown in determining intensities of infection e.g. (Beh & Maddox 

1996; Tanguay & Scott 1992). However, little attention has been paid to the genetic 

variation of parasites in their ability to infect particular hosts. Co-evolutionary 

interactions between hosts and their parasites are predicted by theoretical work (May & 

Anderson 1983; Lively & Apanius 1995) and are often observed in plant-pathogen 

systems where gene-for-gene interactions occur (Thompson & Burdon 1992). That 

this study found no obvious between-host differences in the genetic composition of 

parasite infrapopulations argues that there is not a strong interaction between host 

genotype and the genetic markers used in this study. However, these markers were 

selected as anonymous markers-they are presumably not immunodominant loci and as 

the sampled S. ratti are in linkage equilibria, then associations between the markers 

used and rat genotype will not be observed. In order to look for associations between 

rat and parasite genotype, then loci would have to be selected for on the basis of their 

antigenicity. This in itself would be a worthwhile study, and indeed, an appropriate 

starting point would be to use the Actin locus as there is some evidence that this locus 

may be under selection within the Berkshire sample site. 

This study provides evidence that both macro and microgeographic population 

structure is not a rule in populations of nematode parasites. Predictions by Price (Price 

1980) that the life-history of parasites predisposes them to small populations, high 

levels of population differentiation, high levels of inbreeding and low intrapopulation 

genetic diversity, are not borne out by this study. Thus, a general conclusion is that 

populations of parasitic nematodes are genetically unstructured. This appears to be 

especially true of parasite species infecting host species showing unconstrained 

dispersal. 

This conclusion has several implications for considering the rate of spread of 

economically and medically important traits through populations of nematode parasite. 

It is debatable as to whether or not that the evolution of drug resistance will take longer 

in structured populations of parasites. In a simple deterministic model of allele 
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frequency change, the allele of greatest fitness will eventually replace all others. 

However, the probability of fixation of a mutation is a function of its frequency. In 

large populations there is a high probability that novel mutations will be lost by 

random genetic drift, relative to small (structured) populations. In structured 

populations, mutations will reach fixation more frequently, and also at a faster rate, 

due to the smaller effective population size (Nadler 1995). Furthermore, the alleles 

involved in anthelmithic resistance are probably recessive, as is the case with pesticide 

resistance genes (Plapp 1986). This has been shown for benzimidizole resistance in 

Trichostrongylus colubriforinis (Grant 1994). As a consequence, expression of 

resistance will only occur in the homozygous state. Thus, in outbreeding populations 

of parasites the rate of increase in frequency of the allele will be slower relative to 

inbreeding populations, and resistance will take longer to emerge. Therefore, on this 

basis it may be argued that the evolution of resistance against chemotherapeutic control 

methods will occur more rapidly in structured populations. However, this would be a 

local effect. If a resistance allele was to arise in a structured population, a lack of gene 

flow would predict slow dispersal of the allele into susceptible populations. Therefore, 

the gene pool as a whole is expected to evolve more slowly in a species with a 

subdivided population structure. 

Little is known about the importance of the effects of population structure on 

the evolution of drug resistance. However, the observation that most agriculturally 

important species of nematode show drug-resistant phenotypes when searched for, 

shows empirically that the parasite gene-pools are evolving fast (Prichard et al. 1980; 

Wailer et al. 1996). That these species have unstructured populations argues that there 

are no barriers to the evolution, and spread, of genetic resistance. 

5.4 Future work 
It has been shown that using genetic markers which detect increased levels of 

polymorphism, such as RAPDs, significantly increases measures of within-host 

genetic diversity (Barral et al. 1996). Here, three loci were analysed of which two 

were diallelic. If S. ratti follows the trend observed in the above study, then the use of 

more polymorphic markers may uncover higher levels of within-host genetic diversity. 

The use of a multilocus fingerprinting technique on the samples in this study would be 

useful in providing an absolute estimate of the within-rat genetic diversity. 
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Extension of the range from which S. ratti is sampled is required to find out at 

what scale, if any, S. ratti begins to show genetic subdivision. In the first instance, 

further comparison of British and European isolates of S. ratli are necessary to 

confirm that panmixia extends to include European populations. That genetic 

subdivision occurs on a continental scale is suggested by the occurrence of two 

polymorphisms found only in a North American isolate of the parasite. Further 

analysis of American samples, and samples from other continents, would enable the 

amount of genetic subdivision on the worldwide scale to be analysed. 

This study, as do many population genetic studies, provides only a single 

snapshot of the population genetic structure of S. ratti by the use of point samples. A 

method has been developed by which the genetic composition of infections can be 

non-invasively followed through time. This provides an opportunity for the 

longitudinal observation of infrapopulations. It is apparent within the Berkshire site 

that deviations from random mating occur. Longitudinal studies of this sample site 

provide an opportunity to observe whether this is a persistent, or short-lived effect. 

Further, it would be useful to imitate wild populations of parasites by creating semi-

wild, enclosed populations of rats infected by S. ratti that are homozygote for a genetic 

marker. Introduction of a single rat infected by S. ratti of the opposite homozygote 

genotype would enable (i) the dynamics of infection within the 'wild' colony to be 

followed and (ii) the rate of appearance of heterozygote genotypes within the colony to 

be assessed. This would characterise the effect of sexual reproduction on the within-

colony population genetic structure. Such an approach would be usefully 

complemented by the use of mathematical models. 

The development of automated sequencing techniques has improved the 

efficiency of rapidly sequencing long stretches of DNA. Using these sequences, 

coalescent approaches for analysing gene genealogies enable past evolutionary 

processes to be inferred, this is 'phylogenetic epidemiology' (Harvey & Nee 1997). 

The use of such techniques will assist in determining whether the parasites sampled in 

this study are descended from a recently bottlenecked population of parasites, or are 

descended from lineages of large effective population size. 
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Appendix 1. Composition of solutions and buffers 

Gel loading buffer (lOX) 

20% ficoll (w/v) (GIBCO) 
0.25% (w/v) xylene cyanol FF 

TAE buffer (Tris- 

0.04 M Tns-acetate 
0.002 M EDTA 

PCR dNTP solution (100X) 

75 y dATP 
75 JM dTTP 
75 14M dGTP 
75 pM dCTP 
acetate/EDTA) 

TBE buffer (Tris/borate/EDTA) 
0.09 M Tris-base 
0.09 M boric acid 
0.002 M EDTA 

Sequencing gel solution 
7 M urea 
6 % (w/v) aciylamide (Anachem) 
0.16 % (w/v) bis-acrylamide (Anachem) 
1XTBE 
TEMED and 25 % Ammonium persuiphate 
(wlv) added to a final concentration of 
0.6j41 m1 1  

Pre-hybridisation solution 
for 1 litre: 
100 g dextran sulphate solution (sodium salt, 
MW 
-500 000, Sigma) 
58 g NaC1 
846 ml dH20) 
Mixed at 65°C until dissolved, aliquoted and 
frozen at -20°C 

20 X SSPE 
3.6MNaC1 
0.2 M Sodium phosphate 
0.02 M EDTA 

Denaturing solution 
1.5MNaC1 
0.5 M NaOH 

Neutralising solution 
1.5MNaC1 
0.5 M Tris-HC1 pH 7.2 
1 mMEDTA 

20 X SSC 
3MNaC1 
0.3 M Na3 citrate 

TE buffer (Tris/EDTA) 
10 mM tris-HCL 
1mM EDTA 
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Appendix 2. Complete data set 

WILTSHIRE 
W325.Actin BSP-8 CM-2 

• 0000 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 

0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 

0102 0202 0000 
0102 0202 0000 

W313 
• 0000 0000 0000 

0101 0000 0000 
• 0000 0000 0000 
• 0000 0000 0000 

0000 0000 0000 
• 0000 0000 0000 

0000 0000 0000 
• 0000 0000 0000 

0000 0000 0000 
0000 0000 0000 

W322 
0101 0202 0000 

• 0000 0000 0000 
0101 0000 0000 
0101 00000000 

• 0101 0000 0000 
0000 0000 0000 
0101 0000 0000 

• 0101 0000 0000 
0000 0000 0000 

• 0000 0000 0000 
W318 

0102 0000 0000 
0000 0000 0000 

• 0101 0000 0000 

W316.Actin BSP-8 CM-2 
0000 0102 0404 

• 0101 0202 0000 
• 0101 0202 0404 
• 0000 0202 0101 

0101 0202 0000 
0000 0000 0000 
0000 0000 0101 

• 0000 0000 0303 
0101 0202 0000 

W322 
• 0000 0000 0000 

0000 0000 0000 
• 0101 0000 0303 

0000 0000 0000 
• 0000 0000 0000 

0000 0000 0303 
0000 0000 0000 

• 0000 0000 0000 
• 0000 0000 0000 

W323.Actin BSP-8 CM-2 
0000 0102 0000 

• 0000 0202 0000 
• 0101 0202 0000 
• 0000 0202 0000 
• 0000 0202 0000 
• 0000 0202 0000 

0102 0202 0000 
0000 0202 0000 
0102 0202 0000 
0000 0202 0000 

W320 
0101 0000 0000 
0101 0202 0000 
0000 0202 0000 
0000 0000 0000 
0101 0202 0000 

• 0101 0202 0000 
• 0000 0202 0000 

0000 0000 0000 

W324. Actin BSP-8 CM-2 
• 0000 0000 0101 
• 0000 0000 0000 
• 0000 0000 0101 
• 0000 0000 0101 

0000 0000 0000 
• 0000 0000 0404 
• 0000 0000 0101 

0000 0000 0000 
0000 0000 0101 

W321 
0000 0000 0101 

• 0000 0000 0101 
• 0000 0000 0101 

0000 0000 0101 
0000 0000 0101 

• 0000 0000 0101 
• 0000 0000 0101 
• 0000 0000 0101 

0000 0000 0101 
• 	0101 0000 0303 

W330 W331 W315 
0102 0202 0000 , 	0101 0000 0000 • 	0000 0202 0404 
0101 0000 0000 , 	0000 0000 0000 , 	0101 0202 0000 
0101 0000 0000 , 	0101 0000 0000 , 	0101 0202 0404 
0101 0000 0000 • 	0000 0000 0000 0101 0202 0000 
0000 0000 0000 • 	0000 0202 0000 • 	0000 0000 0404 
0202 0202 0000 , 	0000 0000 0000 0000 0000 0000 
0000 0000 0000 , 	0101 0102 0000 • 	0000 0000 0000 

• 	0102 0000 0000 0101 0000 0000 , 	0101 0202 0404 
0000 0000 0000 , 	0000 0000 0000 , 	0101 0202 0000 
0102 0000 0000 , 	0101 0000 0000 , 	0000 0000 0000 

W317 W322 
• 	0000 0000 0000 , 	0000 0000 0101 

0000 0000 0000 • 	0000 0000 0101 
• 	0000 0000 0000 - 	0000 0000 0000 

• 	0102 0202 0000 , 	0000 0000 0101 
• 	0000 0202 0000 0000 0000 0101 

0101 0202 0000 , 	0000 0000 0101 
0000 0000 0000 , 	0000 0000 0101 

• 	0000 0202 0000 , 	0000 0000 0101 
0000 0202 0000 , 	0000 0000 0000 

HEDLEY 
HE 265 HE 294 HE 271 HE 267 

• 	0102 0102 0000 , 	0000 0000 0000 , 	0101 0000 0303 • 	0102 0202 0404 
0102 0102 0000 , 	0000 0000 0000 • 	0000 0000 0303 • 	0102 0102 0404 

• 	0102 0102 0000 • 	0000 0000 0000 , 	0000 0000 0404 , 	0000 0000 0404 
• 	0102 0102 0000 , 	0000 0000 0000 , 	0101 0202 0000 • 	0000 0000 0404 

0102 0102 0000 • 	0000 0000 0101 , 	0000 0000 0000 • 	0102 0102 0404 
0101 0000 0000 , 	0000 0000 0000 • 	0102 0102 0000 , 	0202 0202 0404 

• 	010201020000 • 	0102 0000 0404 HE 292 , 	0000 0000 0104 
0101 0202 0000 , 	0000 0000 0000 • 	0000 0000 0000 , 	0000 0000 0404 
0101 0202 0000 • 	0102 0000 0000 • 	0000 0000 0404 

• 	0000 0202 0000 • 	0000 0000 0000 • 	0101 0102 0404 
HE 287 HE 285 • 	0000 0000 0000 

• 	0202 0202 0000 0102 0000 0000 , 	0101 0000 0000 
• 	0101 0000 0000 
• 	0101 0202 0000 

0101 0000 0101 
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Appendix 2. Complete data set 

DORSET 
D 336 

0102 0202 0000 
• 0101 02020000 
• 0101 0202 0000 
• 0102 0202 0000 

0101 0202 0000 
• 0101 02020000 
• 0102 0202 0000 
• 0102 0202 0000 

D 334 
0102 0202 0000 
0000 0000 0000 
0000 0000 0000 
0101 0000 0000 
0101 0202 0000 
0000 0000 0000 
0000 0000 0000 
0101 0202 0000 
0101 0202 0000 

D 335 

• 0000 0202 0000 
0102 0202 0000 
0102 0202 0000 

• 0000 0000 0000 
0102 0202 0000 

• 0000 0202 0000 
0000 0000 0000 
0000 0202 0000 

D 339 
0000 0000 0101 
0000 0000 0404 
0000 0000 0101 
0000 0000 0101 
0000 0202 0101 
0000 0202 0101 
0000 0000 0101 

D338 
0102 0000 0000 
0101 0000 0000 
0000 0202 0000 
0000 0202 0000 
0101 0202 0000 

SURREY SITE A 0000 0202 0000 
SA 30 SA 27 SA 31 SA 32 • 	0101 0202 0404 

0000 0000 0404 • 
, 0000 0000 0000 , 0000 0000 0000 • 	0101 0000 0101 

0102 0202 0404 
, 	0000 0000 0000 , 	0000 0000 0000 0000 0000 0000 

0102 0202 0404 • 
, 	0101 0000 0000 0101 0202 0000 , 	0101 0202 0000 

0101 0202 0404 
, 	0000 0000 0101 

0000 0000 
, 	0000 0202 0000 • 	0202 0000 0000 

0102 0202 0404 
• 	 0000 

0101 0000 0303 • 
0000 0000 0000 , 	0202 0000 0000 

0000 0000 0404 0000 0000 0101 
• 	0102 0202 0000 , 	0202 0000 0000 

0000 0202 0404 0101 0000 0101 
• 	0102 0000 0000 0202 0000 0000 

0102 0000 0404 0000 0000 0000 
, 	0000 0000 0000 0202 0000 0000 
• 	0000 0000 0000 , 	0202 0000 0000 0000 0000 0000 

SA 28 SA 26 , 	0 000 0000 
 

0000 
SA 29 

• 	0000 0202 0303 , 	0101 0202 0000 , 	0102 0202 0000 
0000 0202 0101 , 	0000 0202 0404 • 	0102 0202 0000 • 	0000 0202 0000 0101 0202 0000 , 	0000 0000 0000 
0000 0202 0000 , 	0101 0202 0000 , 	0000 0000 0000 0101 0202 0000 , 	0101 0202 0404 , 0000 0000 0000 0000 0000 0000 , 	0101 0202 0404 0000 0000 0000 • 	0000 0000 0000 , 	0101 0202 0000 0102 0202 0000 • 	0000 0000. 0000 

• 	0000 0202 0000 
• 	0102 0202 0000 

0102 0202 0000 

SURREY SITE B 0102 0000 0000 

SB25 S826 SB28 
• 	0000 0000 0000 0000 0000 0000 , 	0101 0202 0000 0000 0000 0000 , 	0000 0000 0000 , 	0102 0000 0000 • 	0202 0202 0000 , 	0000 0000 0000 , 	0000 0000 0101 

• 	0000 0000 0000 , 	0101 0000 0000 
• 	0000 0000 0000 • 	0000 0202 0101 
• 	0000 0000 0000 • 	0101 0202 0000 
• 	0101 0202 0000 • 	0102 0000 0000 
• 	0000 0000 0000 • 	0101 0202 0000 

0000 0000 0000 0101 0202 0000 
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Appendix 2. Complete data set 

OXFORDSIQRE 
T1/2 T1/3 T1/5 T1/6 

• 	0102 0000 0000 0102 0202 0000 , 	0000 0000 0000 • 	0000 0000 0000 
• 	0102 0000 0000 • 	0102 0102 0000 , 	0000 0000 0000 • 	0000 0000 0000 
• 	0102 0000 0000 • 	0000 0000 0000 , 	0000 0000 0000 , 	0101 0000 0000 

0101 0000 0000 , 	0000 0000 0000 , 	0000 0000 0000 , 	0101 0000 0000 
0101 0202 0000 , 	0000 0000 0000 , 	0000 0000 0000 , 	0101 0000 0000 

• 	0000 0000 0000 , 	0000 0000 0000 , 	0000 0000 0000 • 	0101 0000 0000 
• 	0202 0000 0000 , 	0101 0202 0000 • 	0000 0000 0000 , 	0000 0000 0000 
• 	0102 0000 0000 • 	0000 0000 0000 , 	0202 0000 0000 , 	0000 0000 0000 
• 	0102 0202 0000 , 	0102 0000 0000 • 	0000 0000 0000 T1/7 
• 	0101 0000 0000 , 	0000 0000 0000 , 	0000 0000 0000 

0101 0202 0000 
• 	0102 0102 0000 
• 	0000 0000 0000 

0000 0000 0000 
• 	0000 0000 0000 

0102 0102 0000 
NORFOLK 
N384 N383 N385 

0102 0102 0101 , 	0000 0000 0101 , 	0202 0202 0101 
0102 0202 0101 , 	0102 0202 0101 , 	0000 0000 0000 
0202 0202 0101 • 	0102 0202 0101 , 	0000 0202 0000 

• 	0102 0102 0101 , 	0000 0000 0101 , 	0000 0000 0000 
0102 0102 0101 , 	0202 0202 0101 , 	0000 0000 0101 
0202 0202 0101 0101 0202 0101 , 	0101 0202 0000 

• 	0202 0202 0101 , 	0202 0202 0101 , 	0000 0202 0000 
• 	0202 020? 0101 0000 0000 0101 , 	0101 0202 0000 

0102 0102 0101 , 	0101 0202 0101 , 	0101 0000 0000 
• 	0000 0000 0101 • 	0202 0202 0101 • 	0101 0202 0000 

0101 0202 0101 , 	0102 0202 0101 , 	0000 0202 0101 
• 	0102 0202 0101 0102 0202 0101 , 	0000 0202 0101 
• 	0102 0102 0101 , 	0101 0202 0101 , 	0000 0000 0101 
• 	0202 0202 0101 0101 0202 0101 • 	0101 0202 0000 

0202 0202 0101 , 	0102 0202 0404 
BERKS1-IRE 
367 359 381 352 

0000 0202 0101 • 	0000 0202 0000 , 	0102 0202 0000 , 	0102 0202 0101 
0000 0202 0101 , 	0102 0202 0000 , 	0102 0202 0000 • 	0102 0102 0101 
0000 0202 0000 • 	0102 0202 0000 0102 0000 0000 • 	0202 0202 0101 

• 	0000 0000 0000 0101 0202 0000 • 	0102 0202 0000 • 	0102 0202 0101 
• 	0101 0202 0404 0102 0202 0000 , 	0000 0000 0000 , 	0000 0000 0101 
• 	0102 0000 0000 , 	0101 0202 0000 , 	0102 0202 0000 • 	0102 0202 0101 

0102 0202 0000 , 	0102 0202 0000 0102 0202 0000 , 	0102 0202 0101 
0102 0000 0101 , 	0101 0000 0000 , 	0102 0202 0000 , 	0102 0202 0101 
0101 0202 0101 • 	0101 0202 0000 • 	0102 0000 0000 • 	0102 0202 0101 
0102 0000 0000 • 	0102 0000 0000 • 	0000 0202 0000 • 	0102 0102 0101 

• 	0102 0000 0000 • 	0000 0000 0000 , 	0000 0202 0000 
• 	0102 0000 0000 , 	0102 0202 0000 , 	0102 0202 0000 
• 	0102 0000 0404 , 	0102 0202 0000 , 	0102 0202 0000 
• 	0000 0000 0000 • 	0101 0202 0000 , 	0102 0202 0000 

0102 0000 0101 , 	0102 0202 0000 
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Appendix 2. Complete data set 

356 
0102 0000 0000 
0102 0202 0000 

• 0000 0000 0000 
• 0000 0000 0000 

0102 0202 0000 
0102 0202 0000 
0102 0202 0000 
0102 0202 0101 

• 0102 0102 0000 
0102 0202 0000 

• 0102 0102 0000 
0000 0202 0000 

• 0102 0202 0101 
• 0102 0202 0101 
• 0000 0000 0101 

363 
• 0102 0000 0000 
• 0102 0000 0000 

0000 0000 0000 
0000 0000 0000 

• 0000 0000 0000 
0000 0000 0000 
0000 0000 0000 
0000 0000 0101 
0000 0000 0000 
0000 0000 0000 
0000 0000 Q000 
0101 0202 0000 
0000 0000 0000 
0101 0000 0000 
0101 0000 0000 

353 
• 0102 0000 0101 

0102 0000 0101 
0102 0000 0000 

• 0102 0000 0101 
• 0102 0000 0101 

0000 0202 0101 
0102 0202 0101 
0102 0202 0101 

• 0102 0202 0101 
0102 0202 0101 
0102 0202 0101 

• 0102 0000 0000 
• 0000 0000 0101 

0000 0202 0101 
0000 0000 0000 

365 
• 0102 0202 0101 

0102 0202 0101 
0102 0202 0101 
0102 0202 0101 

• 0102 0102 0101 
• 0101 0202 0101 

0000 0000 0101 
0000 0202 0101 
0102 0202 0101 

• 0102 00000101 
0102 0000 0101 

• 0102 0000 0101 
• 0000 0000 0101 
• 0102 0000 0000 
• 0000 0000 0101 

376 
• 0102 0202 0101 

0000 0000 0101 
• 0000 0202 0101 
• 0102 0202 0101 

0102 0202 0101 
0102 0000 0101 
0102 0102 0101 

• 0102 0000 0101 
0102 0202 0101 
0102 0202 0101 

• 0101 0202 0101 
0000 0202 0101 
0101 0202 0101 

• 0000 0000 0000 
0102 0202 0000 

378 
0000 0202 0000 
0000 0202 0000 
0102 0202 0101 
0000 0000 0000 
0102 0000 0101 

• 0000 0102 0101 
0102 0102 0101 
0000 0000 0101 
0102 0102 0000 
0000 0102 0000 

• 0000 0000 0000 
0102 0000 0000 
0102 0202 0000 
0102 0102 0000 

• 0102 0000 0000 

350 
0102 0000 0000 
0000 0000 0000 
0000 0000 0000 

• 0000 0000 0000 
0000 0000 0000 
0000 0000 0000 

• 0000 0000 0000 
• 0000 0000 0000 

0102 0000 0000 
0102 0000 0000 
0000 0000 0000 

• 0000 0000 0000 
• 0000 0000 0000 

0000 0000 0000 
• 0101 0000 0000 

351 
0000 0202 0101 

• 0102 0202 0101 
• 0102 0102 0000 
• 0102 0202 0101 
• 0102 0000 0101 
• 0101 0202 0101 
• 0102 0202 0101 

0102 0202 0101 
0000 0000 0101 
0000 0000 0000 
0102 0000 0000 
0102 0202 0000 

• 0102 0202 0101 
• 0102 0202 0000 
• 0102 0202 0000 

358 
• 0102 0000 0101 

0101 0000 0101 
0000 0202 0101 
0102 0202 0101 
0000 0000 0101 
0000 0202 0101 
0102 0202 0101 
0101 0000 0101 
0102 0000 0101 

• 0000 0000 0101 
0202 0000 0101 
0000 0000 0000 

• 0000 0000 0101 
• 0202 0000 0101 

375 
• 0102 0202 0000 
• 0102 0102 0000 
• 0102 0202 0000 
• 0102 0202 0000 

0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 
• 0102 0202 0000 
• 0202 0202 0000 

372 
0102 0202 0000 
0000 0000 0000 
0101 0000 0000 
0101 0202 0000 
0000 0202 0000 
0101 0000 0000 
0102 0202 0000 

377 
• 0101 0202 0101 
• 0102 0000 0000 
• 0102 0202 0101 

0102 0102 0101 
0000 0000 0101 
0101 0000 0101 

• 0101 0202 0101 
• 0000 0000 0101 

0000 0000 0000 
• 0102 0202 0102 
• 0000 0202 0101 
• 0000 0202 0101 
• 0000 0202 0101 
• 0102 0202 0101 

0202 0000 0101 
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Appendix 2. Complete data set 

369 380 370 360 
• 	0000 0000 0404 0101 0202 0101 , 	0102 0202 0101 , 	0102 0202 0404 

• 	0102 0000 0102 , 	0000 0202 0101 , 	0102 0202 0101 , 	0102 0000 0101 
• 	0000 0202 0102 , 	0101 0202 0101 , 	0000 0000 0101 , 	0101 0202 0000 

0101 0202 0102 , 	0000 0000 0101 , 	0102 0202 0101 , 	0000 0000 0000 

0000 0000 0404 • 	0101 0202 0000 , 	0102 0202 0101 • 	0101 0202 0000 
0101 0102 0404 • 	0000 0000 0000 , 	0202 0202 0101 • 	0000 0000 0000 

• 	0000 0000 0404 , 	0101 0202 0101 , 	0102 0202 0101 • 	0102 0202 0000 
0102 0102 0404 • 	0000 0000 0101 , 	0102 0202 0101 • 	0102 0202 0404 
0000 0000 0000 • 	0101 0202 0101 • 	0000 0202 0101 • 	0102 0202 0000 

• 	0101 0000 0000 0102 0202 0101 • 	0102 0000 0101 • 	0000 0000 0000 
0102 0102 0000 • 	0102 0202 0000 , 	0102 0202 0101 , 	0000 0000 0000 

• 	0000 0000 0000 • 	0101 0202 0000 , 	0102 0102 0101 , 	0000 0202 0000 
0102 0000 0404 0101 0202 0000 • 	0000 0000 0101 , 	0000 0000 0000 

• 	0102 0000 0000 , 	0102 0202 0000 , 	0202 0202 0101 , 	0000 0202 0000 
• 	0102 0202 0000 , 	0101 0202 0000 , 	0000 0202 0000 

368 366 374 373 
0000 0000 0101 • 	0102 0202 0101 , 	0102 0000 0000 • 	0102 0000 0000 
0101 0202 0101 , 	0101 0202 0101 , 	0102 0202 0101 , 	0000 0000 0000 
0000 0202 0101 0000 0202 0101 0000 0000 0000 , 	0102 0102 0000 
0102 0000 0101 , 	0102 0202 0101 0000 0000 0000 , 	0102 0000 0000 

• 	0102 0000 0101 0102 0000 0101 0000 0000 0000 , 	0102 0202 0101 
• 	0000 0202 0101 0102 0000 0101 , 	0102 0102 0101 • 	0000 0202 0101 
• 	0101 0202 0101 • 	0000 0202 0101 , 	0202 0202 0000 , 	0102 0102 0000 

0102 0000 0101 0102 0202 0000 , 	0102 0202 0101 , 	0102 0202 0101 
0102 0202 0101 • 	0000 0202 0101 • 	0000 0000 0101 , 	0102 0202 0101 
0102 0202 0101 0102 0202 0101 0102 0202 0000 0102 0202 0101 

• 	0102 0202 0101 , 	0102 0202 0101 , 	0000 0000 0000 , 	0000 0000 0000 
• 	0101 0202 0101 0102 0000 0000 , 	0102 0202 0000 • 	0202 0202 0000 
• 	0101 0202 0101 0102 0202 0000 , 	0000 0000 0000 • 	0102 0202 0101 
• 	0102 0102 0101 • 	0102 0202 0101 , 	0101 0202 0000 , 	0102 0202 0000 
• 	0102 0202 0101 , 	0102 0202 0101 0102 0202 0000 • 	0102 0202 0000 
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BOP-8f: 	
Appendix 3. Sequences isolated in the course of the study 

cacctagtgg aaatccagaa agaaatcgaa aaggatcagg tgaagatgat ccaaataatc ctaataagaa gctacttcaa tgattgatga tgattattat aagaacgttt taaaaaattt aacaaagaat 
tatgttgaaa acactgctgt attaaaaata tagtttaatg gttttcccct tgaattcttt agcccaagag tcattttaaa cgaagtacgt gttaaattaa gagatttcta aattaggaaa aagagtggat gaagt 
24f: 
aaacaatgcaatatctctcaatattgcatcgaattctttgtttttattccattttctccatgtaaattcatacatgtacccatttaacatactacggtgggttccgttgtgacgtaagtt 
24r: 
aaataggataataacaattaattatttggtataaaatgtcgaatgaaattaatgatacaacagaaagataaaaacataattacgagattctcaaaactgcaaaattaagaaatgcgtaaccaatattttgaaaactagaaaaatttactt 
aacaaaaaaaagggtactat 
4f: 
ctttgaatgaggcacaagcgcagttgatcggtcttgcagcaaccagtaaaaaactggcttatgtttatccagaaggtttaccgccaggtagtaatgtcgatttaaaaattgatcggaataaggcagaagctttaggtgtgaattttgctga 
tgtg 
4r: 
aagcaaggttggtttagtttaatgagcaggctttaccctgatactcatagcgatttacctcataacttttaccatcccaacgatacaccgcaaaacataaacctggacctccattttcaatatcaggccaaccatctttgcctgtgctttt 
tagaaaggtcggtata 
27f: 
ttgatcggtcttgcagcaattctttttgttgaatcctttagtttcatatataagatgcgtatcttgcgatgatcatctccatcatccactcggtcaagttcaaatgctgtgtcaatcttccagataaaatcatcaaatgtctttgtgtctg 
agttgtaatggtcaaactcagtaaccttttcaatatatat gcttgtttcagccattttnactancgtgttttcagcaggtatatcagatgcttcactattatagtcttccaggtgttggtgaaccaatccttggataatgtaggtttaagt 
agtcttctatctncntttgtgtattgctcccnctgtat gaagcaatttcttca 
27r: 
agttgatcggtcttgcagctattgagatcatgatcagcttaaact atataanaagacctttttaatggtgatatcagttgcaaaactacccatacctgtgtgctgcatattgctagtctgtctaagttaatatcattttatttaatttatt 
taagttatnattatcgttatt gtntctcanctcttattantgcagtatcctttcatattttatatcgtgcctatgccgtaacataaggtattctttggtatttccgantactttantattattattatcattatttnagggttaaacgaag 
taacactactaaaagtattaatagattgggtgtnctgagagacttntgtttaagtaagatactttatataattgtaagtctttgatttntattgta 
29f: 
agttgatcggtcttgcagcgactttattattccacattatagaatttattttttttatttagaaattatttattttatttataaaactactattctagttattaaaagatggctgttagatgtgattatgaaggatgtaatgatatnggtg 
tttttacacttctaacnaatacttattgtcttgtaggaataggtaattcacaaaatttcttcaggtaagtactttaaaatatttttataaaatataaaattttttaacngtatttttgaggatgaacttggtgattctattcccgttatnc 
atgcttcaatagcaggtncaaganttgttggaagaatggcagttggtnntagacatggtcttctagtaccanatgccacaac  
29r: 
anttgatcggtcttgcagcanataattgtttaccaagaatcataatgtgttctgatgtttncccaccaactttgtctgccaataatattatagtaaaataaagggatctaacaaatttatcccttcctgtatacgtagaaagtgtacgaacn 
attctaggtaatgtaactttttccatatttaaagtaaaaaanaataataaaaacacnaatgcacctttattaataaatgatatttngtnntggcgacatttatattattanatggtctgaataatcagaaccttgataacttgtagtgtact 
atgtacattgtag 
52-6f: 
ctttctctatgtctctctc gctcccctcaataacatcttatgagtttaggtttcggtgcataaggcaatacccagggcataaatcatttccactgtcaccatagcccgcangtgaggtgagcaatccattagcttgcttctggaaacaagcc 
tgtctgtatttgttcccccagcatctgcactcagcacactgactttgctcagtatatgtattggatggataagtgagtaaatgaatgaatgacataaagatcatagattgcctcagccttctattggaaaataacctaaagggagggggaaa 
attactacttaaaaccacaa gtgccactcaagggatgcctcctatgaaaggaggantgctaactgccangtccccactggttcttcgtgctgcttatggcctggaagcctctcctgcagcca 
52-6r: 
tctctacntctctctcgctccctcttgttgccctctctcttactccctc tttcaagttcccctctaagtccnctttcttangcaaagggantcagcgctctcnattcctgcgcctaaagttcccanactcaccccagantcancgttgcaca 
ncccaancacatcnnggctctt ggctgcnngataggccttccacnccatnancancacnaanaaccaatggggacctgncantttncactcctcctttcntaggangnatcccttgaatggcactngtggttntaantactaatttcccccc 
tccct ttaagttattngccnnnnaaaagctgaagcaatctatgatctt tatgtc 
CM-2f: 
catcagcaaggtgatttttcaaattaatattctatttcaatccaaaaattaaacctaaaaaacgtgcaataaaaaaagagcctcaaatgaggcccttttttcagctcaatactaattatgcattagtttcagcaggaacttttggatagctt 
acaccgcccatttgttcagcaatac gcaatacctggcagctataacccacttcattatcgtaccaaacataagcagttaagcggttgcctgaagtgatagtcgcttgcgcgtcaaatacacctgcagtacgtgaaccaataaagtcagaaga  
tacaacttccagtcgagtttagtataaccaatttgaccttgaaggttagaattgatagagatttggcgaatgtttccatccctcctcccaatcaactccttgaccc 
CM2-2r: 
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gcaaaaggtg gtgatgttaa cgcattcgtt gctgatgctg tgaaatctct tgaaggcagc gcaacttcag ttgaaggtaa agacgttgta ctttatggct tcggtcgtat cggtcgtatt cttgcacgtt tgatgat 
cag ccagtcaggt ctaggccgtg gcttgaacct gaaacccccc nccttcnttt nttntctcac ngcccaccnc naatrmtttn cntttntatn gcgtcgtgac tcaatccatg gtccattcgc gggtac 
gatc tctgttnatg aaaaaaajaa acaatcattg cnaacggtcn gttcatccaa gtnatctang Cfltctaaccc ntccnanctg gantnacnct gcc 
TJCA-2 (full seq): 
caaatgtgaaatccccgagcttaacttgggaattgcattcgatactgggaa gctagagtatgggagaggatggtagaattccaggtgtagcggtgaaatgcgtagagatctggaggaataccgatggcgaaggc agncatctggcctaatac 

 
tgacgctgaggtacgaaagcatggggagcaaacaggattagataccctggta gtccatgccgtaaacgatgtctactagccgttggggcctttgaggctttagtggcgcantaacgcgatnagtagaccgcctggggagtacggncgcaatn 

 
ctaaaactcaaatgaattgacgggggcccgcacaagcggtggagcat gtggtttaattcgatgcaacgcgaagaacctnacctggtcttgacatagtaagaatttcccagagatggattggtgccttcgggaacttgtcatacaggtgactg 

 
catggctgtcgtcagctcgtgtcgtgagatgttggg aagtcccgcaa.cgagcgccaacc 
52-hf: 

gatggatatctgcagaattcggctttctctatgtctctctcgctcccctcaataacatcttat gagtttaggtt tcggtgcataaggcaatacccanggcataaatcatttccactgtcaccatagcccgcaagtgaggtgagcaatccatt  agcttgcttctggaaacaagcctgtctgtatttgttcccccagcatct gcactcagcanactgactttgactcagtatatgtattggatggataagtgagtanatnaatgaatgacataaagatcatag attgcctcagccttctattggaa  aataacctaaagggagggggaaaattactacttaaaaccacaagtgccactcaagggat gcctcctatgaaaggaggagtgctaactgccangtccccactggttcttcgtgctgcttatggcctgnaaagcctctcct gcngccaanaacc  ctgatgtgcttgggctgtgcaaccgtgaatctggggtgagtctgggaactttaagcgcangaatggagancgctgactcccttt gcct 
 

52-hir: 
ctngttatcgntctcngcaccaactctgttgcccactcnnctannccctcttccna gtgnccntcnnattnctctcacttacgcaaagggagtcatgcncactatatncctgccccnnaagtnc ccagattcaccccanatnctancgctgc  acaganccaaatcacctcntggctctgggtcgnaggtagangcnntccaacccattaacctcnccaata acnannggggncccggcnatttgcactccncttttcncaggaggtntctcntaagtggca ctantggtntcnactantgttng  tcacccnccccttngatnatgtangtgtaaatgctcacgcnctccatgatgtgtatn gtccccnctgtatnactcactttctccacccactacatgtaccgatcacttccngtgtntgtactgatcactcagg nggaaagaantacangata  ggattctacncacaatactcnctatnntactgntcttgtcccact 
i.Ss-P: 
tgatccagctgcaggt tcac 
18s-A: 
aaagat taagccatgcatg 
43-: 

?gatga 43+: 

XPi. (fuhlseg): 
aaagtgaaataagaaataacatttataaatataaaaagcaacaatataatatcaaaa gataaaaagcatattttaataaaataagtacagtttttcaaaaaagaaagacatagagtaaaagaaaattgataaagta gagaaaaaaaaaattg  ggcagtttatgtttaatctttatagaaaagaagtaaagaaaattataaaaatattaactt gaacatttcgaattggttttagatttcaagaacacagacaaatttattttattaaaaatatgttactatctatacnattg aaagacacttat gatgtttactattaaaaatagtttaaaaaaaggaggaacagaaataatttttaatgttcccacaatttaatacact

tcaatatgttattataaacgaatttttttttataaatataaaaagttaatatttaatattacctt cttttaatgtt taaattaaatttatttgagattaatatttttatttgggagataataccctttaaataaatt gggaccttatttaaaagggaagtataaaaatccaatataaaataaaaatttaataaatgttaaaaagattttctacgg atatattttaatc  cactaatagatatatattatataatctacttttcccagataattttacacaataatat gataaccatttaaaaaaa ttgctaaacttgagatgtggcaatgaataataattaatttaaataaataaaaaaaaattaccgt aaaaattaatat ttaatagattaaaaaaaataatattatttgaggtaaatttaaatgttaaatttt gagaaaaatatatagtaaaataactggcaatatttaatagtgaaatagaaacccaaatgtatgattaacttctattcaagat atattggaatatcatt cattttatgactaaatttactggtttttatcattcttcaaatttatgattcaataaacagttgattgtatttaccagatgggagtttccttattattatcgtagatgt gttgt 
A: ggtcacttaacaaagtttagacgtttagtaatatgaaatttgaaaaattaagaatatccagatttcttagaaaaacttccaacattttatcataacattaatcgttacttttttcgtttttcccagtaaacaacaatcctgttgggaaaagt gaaaaactatatactaaaccaaagttaactcct ttttatttaaaacgtaaattaataatctttccttccgaaagtaatgatcaagtgcgaa aaa  
D: gaaagtttttgatttatataacttgctgtttatttacatgatttttatatttaaaaaagtagaaaactatatattcctacattatttggtggtagacaaggtaattaattactacggactctaaatgaggtggtacaaccaccttctac taa 
tagtggtaaggtccgttattaaa 

C: aataggaaattgaggtattattagttaaagtgaaagtttttgatttatataacttgctgtttatttacatgatttttatatttaaaaaagtagaaaactatatattcctacattatttggtggtagacaaggtaattaattactacgga IA: 
cccttgaatcaaccaaacactgattgcatccagcctcttgcttcatcttcacataagcccataggcatcactggagcatcaagtgccaatcctaaccatttgggaacattctgtttcaggtgctatcagtcataggttccaatgctcaacat 

gattacgaaattttgatcttgaatttaatgttcaggactgttttgatttttcataaagctgagtctaaaaagattgaacttattctattaaatcgagggtaacaccatttttcaagctgatagttaattcattaaatatcaatt ctgtttga  ctcaatctaatcaagtaagtatatacgtg 
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