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Abstract

Compressed Sensing (CS) is a framework where we measure data through a non-adaptive linear

mapping with far fewer measurements that the ambient dimension of the data. This is made

possible by the exploitation of the inherent structure (simplicity) in the data being measured.

The central issues in this framework is the design and analysis of the measurement operator

(matrix) and recovery algorithms. Restricted isometry constants (RIC) of the measurement

matrix are the most widely used tool for the analysis of CS recovery algorithms. The addition

of the subscripts 1 and 2 below reflects the two RIC variants developed in the CS literature,

they refer to the ℓ1-norm and ℓ2-norm respectively.

The RIC2 of a matrix A measures how close to an isometry is the action of A on vectors with

few nonzero entries, measured in the ℓ2-norm. This, and related quantities, provide a mechanism

by which standard eigen-analysis can be applied to topics relying on sparsity. Specifically,

the upper and lower RIC2 of a matrix A of size n × N is the maximum and the minimum

deviation from unity (one) of the largest and smallest, respectively, square of singular values of

all
(
N
k

)
matrices formed by taking k columns from A. Calculation of the RIC2 is intractable for

most matrices due to its combinatorial nature; however, many random matrices typically have

bounded RIC2 in some range of problem sizes (k, n,N). We provide the best known bound

on the RIC2 for Gaussian matrices, which is also the smallest known bound on the RIC2 for

any large rectangular matrix. Our results are built on the prior bounds of Blanchard, Cartis,

and Tanner in Compressed Sensing: How sharp is the Restricted Isometry Property?, with

improvements achieved by grouping submatrices that share a substantial number of columns.

RIC2 bounds have been presented for a variety of random matrices, matrix dimensions and

sparsity ranges. We provide explicit formulae for RIC2 bounds, of n × N Gaussian matrices

with sparsity k, in three settings: a) n/N fixed and k/n approaching zero, b) k/n fixed and

n/N approaching zero, and c) n/N approaching zero with k/n decaying inverse logarithmically

in N/n; in these three settings the RICs a) decay to zero, b) become unbounded (or approach

inherent bounds), and c) approach a non-zero constant. Implications of these results for RIC2

based analysis of CS algorithms are presented.

The RIC2 of sparse mean zero random matrices can be bounded by using concentration

bounds of Gaussian matrices. However, this RIC2 approach does not capture the benefits of

7
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the sparse matrices, and in so doing gives pessimistic bounds. RIC1 is a variant of RIC2 where

the nearness to an isometry is measured in the ℓ1-norm, which is both able to better capture

the structure of sparse matrices and allows for the analysis of non-mean zero matrices.

We consider a probabilistic construction of sparse random matrices where each column has

a fixed number of nonzeros whose row indices are drawn uniformly at random. These matrices

have a one-to-one correspondence with the adjacency matrices of fixed left degree expander

graphs. We present formulae for the expected cardinality of the set of neighbours for these

graphs, and present a tail bound on the probability that this cardinality will be less than the

expected value. Deducible from this bound is a similar bound for the expansion of the graph

which is of interest in many applications. These bounds are derived through a more detailed

analysis of collisions in unions of sets using a dyadic splitting technique. This bound allows

for quantitative sampling theorems on existence of expander graphs and the sparse random

matrices we consider and also quantitative CS sampling theorems when using sparse non mean-

zero measurement matrices.

8
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Chapter 1

Introduction

This chapter sets a broader picture by contextualizing this work. In doing so the necessary

literature review is covered to show how this work relates to other areas. In Section 1.1 we

define restricted isometry constants. Here we showed how RIC2 are related to classical analysis

of condition numbers and that sparse non-mean zero matrices have RIC1 instead of RIC2.

Consequently, RIC2 led to the discussion on random matrix theory of Gaussian matrices in

Section 1.2. A typical example of sparse non-mean zero matrices having RIC1 is the sparse

matrices coming from expander graphs, hence the discussion on the random matrix theory of

expander graphs in Section 1.3. Compressed sensing being the motivator of this work is then

discussed in Section 1.4.

Notation

The underlying problem of this work is finding a simple solution of an underdetermined linear

system

Ax = y (1.1)

where A ∈ Rn×N , x ∈ RN and y ∈ Rn with n≪ N . The simple solution sought is a k-sparse x,

i.e., an x with at most k nonzero components. We use the following definition for the ℓp norm

of a vector z ∈ RN :

‖z‖p :=





(∑N
j=1 |zj |p

) 1
p

, 0 < p <∞

maxj=1,...,N |zj|, p = ∞.

The ℓ0 pseudo-norm, ‖z‖0, counts the nonzero entries in z. The set of N -vectors with at most

k nonzero entries is defined as

χN (k) := {z ∈ RN : ‖z‖0 ≤ k}.

15
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AK is the restriction of the columns of A to a support set K with cardinality k (|K| = k),

and λmax (B) and λmin (B) are the largest and smallest eigenvalues of B, respectively. We let

N
(
µ, σ2

)
be the Gaussian distribution with mean µ and variance σ2 and denote the Shannon

Entropy with base e logarithms as

H(p) := p ln

(
1

p

)
+ (1 − p) ln

(
1

1− p

)
. (1.2)

Except stated otherwise, Γ(·) represents the gamma function which is defined below both in

terms of the factorial function and an improper integral for integers and complex numbers with

a positive real part, respectively, [1].

Γ(n) := (n− 1)! and Γ(z) :=

∫ ∞

0

e−ttz−1dt

Other notations will be defined when they are first introduced.

1.1 Restricted Isometry Constants (RIC)

Many questions in signal processing [11, 74], statistics [5, 53, 94], computer vision [43, 120, 129,

147], and machine learning [30, 42, 98] are employing a parsimonious notion of eigen-analysis

to better capture inherent simplicity in the data. This has led to the revisiting of classical

eigen-analysis [144, 127] but with a combinatorial twist, which produced a new random matrix

theory quantity referred to as sparse principal components [150], sparse eigenvalues [51], or

restricted isometry constants (RIC) [39]. In this work we adopt the notation and terminology

of RIC.

1.1.1 Euclidean Norm Restricted Isometry Constants (RIC2)

Interest in parsimonious (sparse) solutions to underdetermined systems of equations has seen a

rise with the introduction of compressed sensing [59, 39, 38]. The ℓ2-norm restricted isometry

constant (RIC2), also referred to as the ℓ2-norm restricted isometry property (RIP-2) constant,

introduced by Candès and Tao in 2004 [39], is a measure of the greatest relative change that a

matrix can induce in the ℓ2-norm of sparse vectors. We define the lower and upper RIC2 of A,

L(k, n,N ;A) and U(k, n,N ;A), respectively, in Definition 1.1.1.

Definition 1.1.1 ([37, 19]). The lower and upper RIC2 of A, L(k, n,N ;A) and U(k, n,N ;A),

respectively, are defined as

L(k, n,N ;A) := 1− min
x∈χN (k)

‖Ax‖22
‖x‖22

,

U(k, n,N ;A) := max
x∈χN (k)

‖Ax‖22
‖x‖22

− 1.

16
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Note that, for all expressions involving L(k, n,N ;A) it is understood, without explicit state-

ment, that k is limited to the range of values where L(n, n,N ;A) < 1. Beyond this range of

sparsity, there exist x in (1.1) which are mapped to zero, and hence are unrecoverable.

From Definition 1.1.1 we see that RIC2 is related to many established concepts in linear

algebra. Firstly, the standard notion of General Position is L(n, n,N ;A) < 1, and Kruskal rank

[91] is the largest k such that L(k, n,N ;A) < 1. The RIC2 can be equivalently defined as

U(k, n,N ;A) := max
K⊂Ω,|K|=k

λmax (A∗
KAK)− 1, (1.3)

L(k, n,N ;A) := 1− min
K⊂Ω,|K|=k

λmin (A∗
KAK) , (1.4)

where Ω := {1, 2, . . . , N}. Therefore, the RIC2 U(k, n,N ;A) and L(k, n,N ;A) measure the

maximum and the minimum deviation from unity (one) of the largest and smallest, respectively,

square of the singular values of all
(
N
k

)
submatrices of A of size n× k constructed by taking k

columns from A. The ratio of the RIC2 U(k, n,N ;A) and L(k, n,N ;A) is related the ℓ2-norm

condition number since for each fixed set K, the ℓ2-norm condition number of AK is defined as

κ2 (AK) :=

√
λmax (A∗

KAK)

λmin (A∗
KAK)

.

Consequently, RIC2 implies a bounded condition number for each AK . As there are
(
N
k

)
of

these submatrices, RIC2 analysis is equivalent to classical eigen-analysis with a combinatorial

flavour.

RIC2 are defined in terms of the ℓ2-norm restricted isometry property (RIP-2) which was

introduced by Candès and Tao in [33] as the uniform uncertainty principle (UUP) and redefined

in terms of RIC and restricted orthogonality constants in [39]. RIP-2 is a sufficient condition

on A for exact recovery of a k-sparse x in (1.1). Treating the RIC2 as symmetric they expressed

the RIP-2 equivalently as follows (note, they used δk instead of R(k, n,N ;A)).

Definition 1.1.2 (RIP-2, [33]). An n × N matrix A has RIP-2, with the smallest RIC2,

R(k, n,N ;A), when the following holds:

(1−R(k, n,N ;A)) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 +R(k, n,N ;A)) ‖x‖22, ∀x ∈ χN . (1.5)

In terms of our definition of RIC2 in Definition 1.1.1 we have

R(k, n,N ;A) = max (L(k, n,N ;A), U(k, n,N ;A)) . (1.6)

Formulation (1.5) is referred to as symmetric RIC2 while our formulation is referred to asymmet-

ric, see [19]. The asymmetric formulation reflects more the behaviour of the extreme eigenvalues

as can be seen in Figure 1.1 shown in [19].

17



18 Bubacarr Bah

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

k/n

 

 
E λmax

(
AT

KAK

)

E λmin
(
AT

KAK

)

Figure 1.1: Left panel: For a given n×N matrix A andK ⊂ [N ] such that |K| = k, the expected
values of the largest and smallest eigenvalues of a Wishart matrix ATKAK . Note the asymmetry
with respect to 1. Right panel: Empirical distributions of the largest and smallest
eigenvalues of a Wishart matrix. “A collection of frequency histograms of λmax

(
ATKAK

)

and λmin
(
ATKAK

)
: x-axis – size of the eigenvalue; y-axis – number of occurrences; z-axis –

ratio k/n of the Wishart parameters. Overlays: curves depicting the expected values
(
1±√

ρ
)2

of λmax
(
ATKAK

)
and λmin

(
ATKAK

)
, confirming Lemma 1.2.16. Here n = 200. At this value of

n it is evident that λmax
(
ATKAK

)
and λmin

(
ATKAK

)
lie near, but not on curves. For larger n,

the concentration would be tighter”. Courtesy of the authors of [19].

Another important connection worth mentioning is the connection of RIC2 to the classical

study of Gelfand widths [86, 69] in approximation theory. With regard to a k-sparse solution

of the underdetermined system (1.1), if one can choose A it would be helpful to know for

what n one is able to get the optimal reconstruction error. The optimal reconstruction error is

defined as the worst reconstruction error for the best A and the best method of solving (1.1).

Similar problems arise in the area of information-based complexity where one is interested in

the recovery of functions f from a class F by evaluating n functionals applied to f [140]. The

optimal error is related to the Gelfand width (also known as n-width) of F. A sparse solution to

(1.1) is related to the n-width of ℓ1-balls. In short, Gelfand widths are comparable to quantities

that measure the optimal reconstruction error.

In more detail [12, 48, 116], for a given operator (matrix) A ∈ Rn×N , a normed space

X =
(
RN , ‖ · ‖

)
, and K ⊂ X , the n-width is defined as

dn(K,X) := inf sup
x∈K∩kerA

‖x‖,

where kerA := {z ∈ RN : Az = 0}. Let us define the best recovery method as △ : Rn → RN

and the maximal reconstruction error by the best possible combination of A and △ as

En(K,X) := inf sup
x∈K

‖x−△(Ax)‖.

18



Restricted Isometry Constants in Compressed Sensing 19

If the set K is such that K = −K and K +K ⊂ C1K with C1 > 0, then

dn(K,X) ≤ En(K,X) ≤ C1d
n(K,X), for 1 ≤ n ≤ N. (1.7)

Now define the best k-term approximation error for a class of vectors K ⊂ X as

σk (K,X) := sup
x∈K

inf
z∈χN

‖x− z‖.

Let BNq be the ℓq ball in RN . For N -dimensional ℓ1 unit balls K = BN1 and the normed space

X = ℓN2 :=
(
RN , ‖ · ‖2

)
, Candès and Tao [39] showed that if A has 3R(3k, n,N ;A) < 1 i.e., it

has RIP-2 of order 3k, then we have the following error estimate:

‖x−△(Ax)‖2 ≤ C2σk
(
BN1 , ℓ

N
2

)
√
k

, (1.8)

where C2 only depends on the RIC2, R(3k, n,N ;A). The right hand side of (1.8) involves

R(3k, n,N ;A) while the left hand side is a bound on En
(
BN1 , ℓ

N
2

)
, and hence a bound on

dn
(
BN1 , ℓ

N
2

)
due to (1.7). This establishes a link between n-widths and RIC2, further details

can be found in [12, 48, 116].

Moreover, RIP-2 has connection to the Johnson-Linderstrauss lemma:

Lemma 1.1.3 (Johnson-Linderstrauss, [82]). Let ǫ ∈ (0, 1) be given. For every set Q of |Q|
points in RN , if n is a positive integer such that n > n0 = O

(
log
(
|Q|/ǫ2

))
, there exists a

Lipschitz mapping f : RN → Rn such that

(1− ǫ) ‖u− v‖22 ≤ ‖f(u)− f(v)‖22 ≤ (1 + ǫ) ‖u− v‖22

for all u, v ∈ Q.

This lemma states that a set of finite point in a high dimensional space can be embedded in

a lower dimensional space thereby nearly preserving all mutual distances. This is a consequence

of the following concentration inequality [12, 92]:

Prob
(∣∣‖Az‖22 − ‖z‖22

∣∣ ≥ ǫ‖z‖22
)
≤ 2e−nc0(ǫ), ǫ ∈ (0, 1), (1.9)

for any fixed z ∈ RN , where the probability is over all A ∈ Rn×N and c0(ǫ) > 1 is a constant

that depends only on ǫ. From (1.9) it can be seem that Johnson-Linderstrauss (JL) lemma

implies RIP-2. Baraniuk and his co-authors in [12] illustrated that the RIP-2 can be thought

of as a straightforward consequence of the JL lemma, and that any distribution that yields

a satisfactory JL-embedding will also generate matrices satisfying the RIP-2. Such matrices

are referred to as subgaussian matrices and they include the centred Gaussian and Bernoulli

random matrix ensembles. A definition of these ensembles will be given in Section 1.2.
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Unfortunately, due to its combinatorial nature, computing the RIC2 of a matrix A is in

general NP-hard, [108]. To be precise, this is only possible if the problem size (k, n,N) is very

small, in which case it is possible to do an exhaustive combinatorial search. As part of a series

of efforts in this direction [39, 19], our work in Chapter 2 derived bounds for RIC2 when the

matrices involved are subgaussian. As an extension we derived asymptotic formulae for these

bounds in Chapter 3.

1.1.2 Manhattan Norm Restricted Isometry Constants (RIC1)

When the matrices involved are not subgaussian, classical eigen-analysis does not carry through.

However, if the matrices are sparse with a fixed number of nonzeros, then a variant of the RIC2,

the ℓ1-norm restricted isometry constant (RIC1) is used in the analysis. Berinde et al in [15]

introduced RICp for 1 ≤ p ≤ 1 + 1/ log(N) but most of the research in this area (including

our work) have concentrated on p = 1. The lower and upper RIC1 of A, L(k, n,N ;A) and

U(k, n,N ;A), respectively, are defined as

L(k, n,N ;A) := 1− min
x∈χN (k)

‖Ax‖1
‖x‖1

U(k, n,N ;A) := max
x∈χN (k)

‖Ax‖1
‖x‖1

− 1.

Interestingly U(k, n,N ;A) = 0 is trivially achieved for the matrices we consider which are

sparse non-mean zero matrices with fixed number of nonzeros per column. This is seen in the

format Berinde et al [15] presented the definition of RIC1 in terms of the ℓ1-norm restricted

isometry property (RIP-1).

Definition 1.1.4 (RIP-1). An n×N matrix A has RIP-1 when the following condition holds:

(
1− L(k, n,N ;A)

)
||x||1 ≤ ||Ax||1 ≤ ||x||1 ∀x ∈ χN . (1.10)

Similar to RIC2, RIC1 is a measure of the greatest relative change that a matrix can induce

in the ℓ1-norm of sparse vectors. This work uses RIC1 to derive bounds on the probabilistic

construction of random matrices with a fixed number of nonzeros per column in Chapter 4, but

a brief introductory discussion to this topic is given in Section 1.3.

1.2 Random Matrix Theory of Gaussian Matrices

Lacking the ability to calculate the RIC2 of a given matrix, numerous researchers have developed

probabilistic bounds for various random matrix ensembles. As we indicate in [6], these efforts

have followed three research programs:

• Determination of the largest ensemble of matrices such that as the problem sizes (k, n,N)
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grow, the RIC2 U(k, n,N ;A) remains bounded above and the L(k, n,N ;A) remains

bounded away from 1 [103].

• Computing as accurate bounds as possible for particular ensembles, such as the Gaussian

ensemble [37, 19], where the entries of A are drawn independent and identically distributed

(i.i.d.) from the standard Gaussian N(0, 1/n). (In part as a model for i.i.d. mean zero

ensembles.)

• Computing as accurate bounds as possible for structured random matrices including par-

tial Fourier, Circulant and Toeplitz ensembles [116, 9]. (In part as a model for matrices

possessing a fast matrix-vector product.)

This work focuses on the second of these research programs, accurate bounds for the Gaussian

ensemble. The motivation to pursue this program is attributed to the existing rich literature

on Gaussian random matrices and, with the universality principle, the possibility of using the

Gaussian ensemble as a model for all mean zero random ensembles.

1.2.1 Random Matrix Theory Ensembles

In the field of random matrix theory, there is a wealth of ensembles developed for various

application purposes. Here, we would limit ourselves to the description of a few ensembles that

have been mentioned or are used in this work. These include selected classical Gaussian and

Wishart ensembles, subgaussian random matrices, some of which we use in our eigen-analysis

while others we mentioned in the wider compressed sensing discussion coming in Section 1.4;

and a few structured random matrices which are also mentioned in the discussion on compressed

sensing.

Selected Classical Random Matrices

In describing the Gaussian and Wishart matrices we adopt notation used in [64]. In this regard

we first define the joint element density of a Gaussian matrix.

Definition 1.2.1. If A is an n×N Gaussian random matrix Gβ(n,N), then the joint density

of its entries is given by
1

(2π)βnN/2
exp

(
−1

2
‖A‖2F

)
, (1.11)

where β = 1, 2 for real or complex, respectively, and ‖A‖F is the Frobenius norm of A.

Instead of the Frobenius norm, the equivalent norm defined by the trace of A, trace(A) is

also used in the literature. The Frobenius norm, also referred to as the Hilbert Schmidt norm,
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is defined in various ways, namely,

‖A‖F =




n∑

i=1

N∑

j=1

|aij |2




1
2

= (trace (A∗A))
1
2 =




min(n,N)∑

i=1

σ2
i





1
2

,

where A∗ is either AT or AH with AT being the transpose of A and AH , the hermitian

(conjugate) transpose of A. This norm is invariant to unitary or orthogonal multiplication

‖A‖F = ‖QA‖F for any orthogonal or unitary Q [77]. This gives the so called orthogonal in-

variance or unitary invariance, which is a key property of Gaussian ensembles be they real or

complex, respectively. The following classical ensembles are constructed from (1.11); as a result

they inherit the orthogonal (unitary) invariance property, [64].

• Gaussian Orthogonal Ensemble (GOE): Let A = G1(n, n) then a GOE n×n matrix

is formed by (A + AT )/2, hence its symmetric. Its off-diagonal elements are drawn i.i.d.

from N(0, 1/2) while its diagonal elements are i.i.d. N(0, 1).

• Gaussian Unitary Ensemble (GUE): Let A = G2(n, n) then a GUE n × n matrix

is formed by (A + AH)/2, hence its hermitian. Its off-diagonal elements are drawn i.i.d.

from N2(0, 1/2) while its diagonal elements are i.i.d. N(0, 1).

• Wishart Ensemble (Wβ(m,n), m ≥ n): Let A = Gβ(m,n) then a Wβ(m,n) is an

n × n matrix formed by (A∗A) where A∗ is either AT or AH , hence its symmetric or

hermitian, depending on whether A is real or complex, i.e., β = 1 or β = 2 respectively.

Subgaussian Random Matrices

The class of subgaussian random matrices includes the Gaussian ensemble defined above. It is a

widely used term in the compressed sensing and sparse approximation literature [103, 104, 116].

We first define what a subgaussian random variable is as follows.

Definition 1.2.2 (Subgaussian Random Variable). A random variable X is called subgaussian

if there exist constants β, κ > 0 (where κ−1/2 is called the subgaussian moment of X) such that

Prob (|X | ≥ t) ≤ βe−κt
2

, ∀t > 0.

Definition 1.2.3 (Subgaussian Ensemble). An n×N matrix A is referred to as a subgaussian

random matrix if all the entries of A are independent mean zero subgaussian random variables

of variances 1, namely, the entries of A, aij for j ∈ [n], i ∈ [N ], satisfy the following.

Prob (|aij | ≥ t) ≤ βe−κt
2

, ∀t > 0,

where β and κ are positive constants.
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This implies that the subgaussian ensemble includes the standard Gaussian, the Bernoulli

and any matrix whose entries are bounded random variables. If aij are the entries of an n×N

subgaussian matrix A then prominent examples of the distributions of the aij include:

Gaussian aij ∼ N

(
0,

1

n

)

± Bernoulli aij :=





+ 1√
n

with probability 1
2 ,

− 1√
n

with probability 1
2 .

Other aij :=





+
√

3
n with probability 1

6 ,

0 with probability 2
3 ,

−
√

3
n with probability 1

6 .

Structured Random Matrices

Another class of random matrices of interest are the structured random matrices that admit a

Fast Fourier Transform (FFT) implementation and they include the following [116].

• Partial Fourier Ensemble (PFE): A is an n × N PFE if it is formed from random

rows, j, or samples, tl, of a Fourier matrix with entries Fj,l = e2πijtl .

• Partial Circulant Ensemble (PCE): Let b = (b0, b1, . . . , bN−1) ∈ CN and let the

matrix Φ = Φ(b) ∈ CN×N such that its entries φij = bj−i mod N for i, j = 1, . . . , N , then

A is an n×N PCE if it is a random draw of n rows of Φ.

• Partial Toeplitz Ensemble (PTE): Let b = (bN , bN−1, . . . , b1) ∈ CN and let the

matrix Φ = Φ(b) ∈ CN×N such that its entries φij = bN−j+i for i, j = 1, . . . , N , then A

is an n×N PCE if it is a random draw of n rows of Φ.

1.2.2 Extreme Eigenvalues of Gaussian and Wishart Matrices

Focusing on the ensembles of interest here, we discuss the spectrum of Gaussian and Wishart

ensembles. We will start by stating briefly what is mainly known about the joint densities of

eigenvalues of Gaussian and Wishart matrices. Then we will discuss some asymptotic properties

of random matrices implying the so called universality principle. We conclude the subsection

with a discussion on the largest and smallest eigenvalues of a Wishart matrix.

Distribution of Eigenvalues

Recall that RIC2 lower and upper are the deviation from one of the largest and smallest eigen-

values of the Gram matrix formed by a submatrix, AK of k columns of A. In terms of Gaussian

matrices we are interested in the squares of the extreme singular values of the Gaussian sub-

matrix AK which are equivalent to the extreme eigenvalues of the Wishart matrix formed as
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a Gram matrix from the Gaussian AK . In general for any n×m Gaussian matrix G and the

derivedm×mWishart matrixW = G∗G, the eigenvalues ofW will be real due to symmetry ir-

respective of whether G is from a GOE or a GUE. We will denote and order these eigenvalues as

λ1 ≥ λ2 ≥ . . . λm. Note that the maximum eigenvalue λmax = λ1 while the minimum eigenvalue

λmin = λm. In accordance with our previous notation λmax = λmax(W ) while λmin = λmin(W ).

These eigenvalues are the squares of the singular values of G and the ℓ2-norm condition number

κ2(G) =
√
λmax/λmin. We point out that in the random matrix theory literature, one would

find the Wishart matrix formed out of an n×m Gaussian matrix G to be denoted as an n× n

matrix W = GG∗ in which case the spectrum becomes λmax = λ1 ≥ . . . λm = λmin ≥ 0, as in

[62] and some of the reference therein. However, in either notation the nonzero eigenvalues are

the same which is what matters to our analysis.

Using the notation of Edelman and Rao in [64], in Lemma 1.2.4, we state the joint probability

density functions (PDF) of the eigenvalues of a given m×m Wishart (or Laguerre) matrix W

and for completeness we will also state, in Lemma 1.2.5, the joint PDF of the eigenvalues of an

n× n Gaussian (or Hermite) random matrix. Main references for these include Dyson (1963)

[61], James (1964) [81], Muirhead (1982) [107], Edelman (1989) [63], and Metha (1991) [102].

Lemma 1.2.4 (Wishart Ensemble [81, 107, 63]). If λ1 ≥ . . . ≥ λm are the eigenvalues of an

m×mWishart matrix formed from an n×m Gaussian matrix, then the joint PDF of λ1, . . . , λm

is

fβ (x) = cβ,aL
∏

i<j

|xi − xj |β
∏

i

xa−pi exp

(
−

m∑

i=1

x2i /2

)

where x ∈ Rm and

cβ,aL =
1

2−ma

m∏

j=1

Γ
(
1 + β

2

)

Γ
(
1 + β

2 j
)
Γ
(
a− β

2 (m− j)
)

for a = β
2n and p = 1 + β

2 (m− 1) with β = 1 and β = 2 corresponding to the real and complex

cases, respectively.

Lemma 1.2.5 (Gaussian Ensemble [61, 102]). If λ1 ≥ . . . ≥ λm are the eigenvalues of an

m×m Gaussian random matrix, then the joint PDF of λ1, . . . , λm is

fβ (x) = cβH

∏

i<j

|xi − xj |β exp
(
−

m∑

i=1

x2i /2

)

where x ∈ Rm and

cβH =
1

(2π)−m/2

m∏

j=1

Γ
(
1 + β

2

)

Γ
(
1 + β

2 j
)

with β = 1 and β = 2 corresponding to the real and complex cases, respectively.
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The Universality Principle

As mentioned before, the observation that in high dimensions many ensembles have limiting

empirical spectral distributions similar to the Gaussian ensemble has been a motivating factor

for our work on RIC2 bounds. A great amount of research in random matrix theory has been

preoccupied with asymptotic properties of a random ensemble as it dimensions tend to infinity.

The analogy of what was expected from such findings is the law of large numbers and the central

limit theorem in probability theory [114].

Lemma 1.2.6 (Law of Large Numbers). If X1, . . . , Xn are n random variables that are i.i.d.

with finite variance then
1

n

n∑

i=1

Xi → µ as n→ ∞ where µ is the population mean.

Lemma 1.2.7 (Central Limit Theorem). If X1, . . . , Xn are n random variables that are i.i.d.

with finite variance, σ2, then as n→ ∞ the distribution of the normalized deviation

1√
n

(
n∑

i=1

Xi − nµ

)
→ N

(
0, σ2

)
.

Clearly what matters in the above two examples is the mean and the variance but not the

distribution the Xi are drawn from. Such asymptotic behaviour is referred to as the invariance

principle and something similar has been observed about the distributions of eigenvalues of

random matrices in the high-dimensional limit. An example of this phenomenon is Wigner’s

semicircle law proved by Wigner [146] in the 1950s.

Lemma 1.2.8 (Wigner’s Semicircle Law). If an n × n random matrix A is a GOE or a

GUE, then the normalised eigenvalues λ1√
n
, . . . , λn√

n
are asymptotically distributed according to

the semicircular distribution, F , with density

f(x) =





1
2π

√
4− x2 |x| ≤ 2,

0 |x| > 2.

Another example of this phenomenon is the Marchenko-Pastur quarter-circle law [99] gov-

erning the limiting distribution of the spectrum of a Wishart matrix.

Lemma 1.2.9 (Marchenko-Pastur Quarter-circle Law). If W is an m × m Wishart matrix

formed from an n×m Gaussian random matrix and m/n→ ρ ∈ (0, 1) as (m,n) → ∞, then the

normalised eigenvalues λ1

n , . . . ,
λn

n are asymptotically distributed according to the distribution,

F , with density

f(x) =






1
2πxρ

√
(b− x)(x − a) [a, b],

0 otherwise,

where a =
(
1−√

ρ
)2

and b =
(
1 +

√
ρ
)2
.
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This is also referred to as the Quarter-circle law in which case it is reformulated to be

about the singular values of a normalized Gaussian matrix. There is also the celebrated Girko’s

circular law [71] also referred to as the Circular conjecture on the limiting distribution of the

spectrum of non Gaussian random matrices. This law states that under some reasonable con-

ditions the eigenvalues of an n×n random matrix with independent entries having mean 0 and

variance 1/n fall uniformly on a circular disk of radius 1 as n → ∞. There is a well-known

intuition behind these theorems and conjectures, the universality phenomenon, that asserts that

the limiting distribution should not depend on the particular distribution of the entries. This

universality phenomenon has been observed numerically for many decades. More recently, rig-

orous explanations of this phenomenon have been found, see the work of Tao and Vu [137, 136]

and the references therein.

Distribution of Extreme Eigenvalues

Ever since the seminal paper on condition numbers by von Neumann and Goldstine [144], it is

well known in computational mathematics (numerical analysis) that the condition number of a

matrix plays a crucial role in the computation of solutions of linear systems and the computa-

tion of eigenvalues. For instance, condition numbers have been used in the quest to understand

the numerical accuracy of Gaussian Elimination which was first worked on by Trefethen and

Schreiber [142]. Precisely, condition numbers are key in determining the convergence and sta-

bility of a numerical algorithm. Random matrices are often used as test matrices for algorithms

and hence the use of random eigenvalues was introduced by von Neumann and Goldstine [144]

to further understand the behaviour of condition numbers. This is one reason for having a

lot of remarkable results in the random matrix literature about the extreme eigenvalues of

Wishart matrices. The other two main applications that are part of the driving force of the

field are nuclear physics and multivariate statistics. Note that Wishart matrices are equivalent

to covariance matrices in multivariate statistics.

Estimates of the smallest λmin and largest λmax eigenvalues of a Wishart are given by

Silverstein in [125] and Geman in [70], respectively. Furthermore, in certain cases we know the

exact distribution of these extreme eigenvalues in terms of zonal polynomials or hypergeometric

functions of matrix arguments, see [90, 130]; but these exact distributions are almost impossible

to compute. Fortunately, simpler bounds have also been derived by Edelman [63]. In addition

to being simpler to compute, bounds on the PDF of λmin and λmax have been used in the

derivation of bounds on the tails of condition number distributions. Below is a statement of

some of these results in the real cases, for the complex cases the reader is referred to the

references above.

Theorem 1.2.10 gives an exact distribution of λmin. Despite the fact that the PDF of λmin

given in this theorem is computable, the limiting distribution as n → ∞ of nλmin, which is
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much simpler is given in Corollary 1.2.11. We then give a bound on the PDF of λmin and λmax

in Lemmas 1.2.12 and 1.2.13, respectively, their proofs can be found in [62, 46].

Theorem 1.2.10 (Smallest Eigenvalue [90]). If W is an n × n Wishart matrix with n ≥ 1,

then the PDF of λmin is given by

fλmin(x) =
n

2n−1/2
· Γ(n)

Γ(n/2)
· x−1/2 · e−xn/2 · U

(
n− 1

2
,
1

2
,
x

2

)
.

When a > 0 and b < 1, the Tricomi function, U(a, b, z), is the unique solution to the Kummer’s

equation

z
d2w

dz2
+ (b − z)

dw

dz
− aw = 0

satisfying U(a, b, 0) = Γ(1− b)/Γ(1 + a− b) and U(a, b,∞) = 0.

Corollary 1.2.11 ([62]). If W is an n× n Wishart matrix with n ≥ 1, then as n→ ∞, nλmin

converges in distribution to a random variable whose PDF is given by

f(x) =
1 +

√
x

2
√
x

· e−(x/2+
√
x)

Lemma 1.2.12 ([62]). If W has the distribution of an n× n Wishart matrix derived from an

m× n Gaussian matrix, then the PDF of λmin, fλmin(x), satisfies

fλmin(x) ≤ π1/2 · 2(n−m+1)/2Γ
(
n+1
2

)

Γ
(
m
2

)
Γ
(
n−m+1

2

)
Γ
(
n−m+2

2

) · x(n−m−1)/2 · e−x/2.

Lemma 1.2.13 ([62]). If W has the distribution of an n× n Wishart matrix derived from an

m× n Gaussian matrix, then the PDF of λmax, fλmax(x), satisfies

fλmax(x) ≤ π1/2 · 2(1−n−m)/2

Γ (n/2)Γ (m/2)
· x(n+m−3)/2 · e−x/2.

The convergence of λmax also depends on the limit of the ratio of the number of rows to the

number of columns of the rectangular Gaussian matrix used to form the Wishart matrix. The

ratio must be bounded as the dimension of the matrix goes to infinity. In the next lemma we

state the almost sure convergence of λmin and λmax due to Silverstein [125] and Geman [70],

respectively. Initially this lemma was stated in [62] with convergence in probability.

Definition 1.2.14 ([114]). A sequence of random variables (Xn : n = 1, 2, 3, . . .) is said to

converge to a random variable X almost surely (a.s.) if Prob (Xn → X) = 1 as n→ ∞.

Definition 1.2.15 ([114]). A sequence of random variables (Xn : n = 1, 2, 3, . . .) is said to

converge to a random variable X in probability if Prob (|Xn −X | ≥ ǫ) = 0 as n → ∞ for all

ǫ > 0.
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Lemma 1.2.16 ([62]). If W is an n × n Wishart matrix derived from an m × n Gaussian

matrix, with limn→∞m/n = ρ, then

(1/n)λmin a.s.−→ (1−√
ρ)

2
for 0 ≤ ρ < 1

(1/n)λmax a.s.−→ (1 +
√
ρ)

2
for 0 ≤ ρ ≤ ∞.

Using the above results on the smallest and largest eigenvalues of Wishart matrices, one can

derive bounds on the tails distribution of upper and lower RIC2 L(k, n,N ;A) and U(k, n,N ;A),

respectively, for a given n×N Gaussian matrix, A, as was classically done for condition numbers.

Remember that the Gramian matrix of a submatrix AK is a k × k Wishart matrix. In fact,

the bounds provided by Lemmas 1.2.12 and 1.2.13 were particularly useful in the derivation

of sharper RIC2 bounds in Chapter 2; while we confirm the asymptotic limits prescribed by

Lemma 1.2.16 in the asymptotic formulae we derive for the RIC2 bounds in Chapter 3.

1.3 Sparse Random Matrices and Expander Graphs

Going back to the underlying underdetermined system (1.1), the parsimonious solution usually

sought after exploits the inherent structure (sparsity) in the data, x. Then if the sparsity of

the vector is k, there is strong motivation to make the number of rows of the matrix in the

underdetermined system, n, to be as close to k as possible, optimal n, which is when n = O(k).

This will be defined more precisely when we discuss compressed sensing, as an example of an

application where this work is useful, in Section 1.4. The significance of the RIC2 analysis is

that it gives sufficient recovery guarantees for matrices that have small RIC2 with optimal n.

It is now well known that subgaussain matrices have this property but these matrices are dense

and therefore have computational bottlenecks.

On the other hand, sparse matrices are particularly appealing to applied and computational

mathematics (numerical analysis) communities because of their low storage complexity and

the existence of very fast implementation routines compared to dense matrices; [77, 54, 141]

are just a few references in a large and growing list. This is why efforts were made to use

sparse matrices in compressed sensing and sparse approximation. Of late, significant progress

has been made in this direction with papers such as [149, 15, 16, 80] giving both theoretical

performance guarantees and also exhibiting numerical results that show sparse matrices coming

from expander graphs to be as good sensing matrices as their dense counterparts. In fact,

Blanchard and Tanner [21] recently demonstrated in a GPU implementation how well these

type of matrices do compared to dense Gaussian and Discrete Cosine Transform matrices even

with very small fixed number of nonzeros per column.

Now we discuss the graphs that underlie these matrices – expander graphs. Expander graphs

were first defined by Bassalygo and Pinsker [13], and their existence first proved by Pinsker in
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the early 70s [112]. Expander graphs due to their many uses can be defined in at least three

different ways. Combinatorially an expander graph is a highly connected graph for which you

need to remove a high percentage of its edges in order to disconnect it. Geometrically every set

of vertices in an expander graph has a very large boundary - isoperimetry. Probabilistically an

expander graph is such that a random walk on its vertices very rapidly converges to its limiting

distribution. Algebraically an expander graph has the first positive eigenvalue of its Laplace

operator bounded away from zero. A more quantitative definition of a lossless expander graph

is given in Definition 1.3.1 and its diagrammatic illustration in Figure 1.2.

Definition 1.3.1 ([41]). G = (U, V,E) is a lossless (k, d, ǫ)-expander if it is a bipartite graph

with a set of left vertices U , set of right vertices V and set of edges E where |U | = N and |V | = n

and has a regular left degree d, such that any X ⊂ U with |X | ≤ k has |Γ(X)| ≥ (1− ǫ)d|X |
neighbours. 1

Remark 1.3.2. 1. These expander graphs are lossless because ǫ≪ 1;

2. They are referred to as unbalanced expanders when n≪ N ;

3. The expansion of a lossless (k, d, ǫ)-expander graph is (1− ǫ)d;

4. Regular left degree d means that all vertices in U have the same degree d.

Figure 1.2: An illustration of a lossless
(k, d, ǫ)-expander graph with k = 4 and
d = 2.

Simply put, Definition 1.3.1 means that almost all neighbours of a small subset of left

vertices, X ⊂ U , are unique neighbours, i.e., each vertex in Γ(X) has degree 1 into X . In

other words, small enough left vertex sets have almost the maximal expansion. Note that for

this to be possible we must have k ≤ n/d and the best expansion one can hope for is k = n/d.

Typically we are interested in minimising the left degree d and maximising the expansion factor.

Based on the area and the application for which they are studied, the study of expander

graphs has been either about structural issues, deterministic construction issues, algorithmic

1Lossless expanders with parameters d, k, n,N are equivalent to lossless conductors with parameters that are
base 2 logarithms of the parameters of lossless expanders see [76, 15] and the references therein.
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issues or the issues of their expansion in relation to similar concepts in other disciplines. For de-

tails on any of the above-mentioned issues see the review article by Hoory, Linial and Wigderson

[76]. For applications that this work is focussed on, the concern is about the explicit construc-

tion of these graphs. Pinsker [112] proved their existence and showed that any left-regular

bipartite graph, whose vertices are generated uniformly at random, is with high probability

an expander graph. Precisely, a non-constructive probabilistic argument shows that lossless

expander graphs do exist with optimal parameters d, n as stated in the proposition below.

Proposition 1.3.3 (Probabilistic Construction, [41]). For any N/2 ≥ k ≥ 1, ǫ > 0 there exists

a lossless (k, d, ǫ)-expander with

d = O (log (N/k) /ǫ) and n = O
(
k log (N/k) /ǫ2

)
.

Unfortunately, deterministic constructions only achieve sub-optimal parameters. It is well

known in the graph theory community that the second largest eigenvalue of a graph serves as

a good measure of its expansion [2, 3, 135]. The best explicit construction of expander graph

using the second largest eigenvalue was obtained using Ramanujan graphs which have optimal

second largest eigenvalue [95]. However this only achieved expansion d/2, even for the case

n = N . To get expansion beyond d/2, necessary to obtain lossless expanders, an alternative

method has to be invented since Kahale proved in [85] that some Ramanujan graphs do not

expand more than d/2. Using alternative methods weaker objects similar to lossless expanders

and lossless expanders with weaker parameters were constructed, see [115, 117, 132]. The first

alternative construction for lossless expanders was due to Capalbo [40] but it was only for the

balanced case (n = N). Capalbo’s construction used high min-entropy extractors derived in

[119] and graph products. Later, Capalbo et al in [41] achieved a significant and more general

results that is an extension of both the constructions of [40] and [119]. Their technique involves

a zig-zag product of conductors and their result is stated in the theorem below.

Theorem 1.3.4 (Theorem 1, [80]). Let 0 < r < 1 be a fixed constant. Then for large enough

n there exists a
(
αn, d, 14

)
-expander graph G with n variable nodes and n

r parity check nodes

for some 0 < α < 1 with constant left degree or sub-linearly growing with n. Furthermore, the

explicit zig-zag construction can deterministically construct the expander graph.

The best explicit construction (though sub-optimal) so far is credited to Guruswami et al

[72]. Their construction used Parvaresh-Vardy codes [110] and is stated in the theorem below.

Theorem 1.3.5 (Theorem 7, [80]). For any constant α > 0, and any N, k, ǫ > 0, there exist a

(k, d, ǫ)-expander graph with left degree and number of right side vertices as

d = O

(
(log(N)/ǫ)

1+1/α
)

and n = O
(
d2k1+α

)
.
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Expander graphs have been well studied in theoretical computer science and pure mathe-

matics but their uses spans beyond these two areas. Due to their expansion property they have

computational uses in communication networks and coding theory; mathematical uses in metric

embeddings; statistical uses in Markov Chains; and physical uses in Monte-Carlo algorithms

in statistical mechanics. We will briefly describe a few common uses of expander graphs, for

further insight see [41] or [76] for a more detailed survey.

1. Distributed Routing in Networks: Certain applications, see [111, 4, 26], desire net-

works having pairs of nodes connected via vertex or edge disjoint paths such that these

paths can be found efficiently and in a parallel way even if requests for connections arrive

on-line. If we take the network to be a lossless expander then a constant fraction of the

input nodes in X will send messages to their direct neighbours. This way, this constant

fraction of |X | nodes can disconnect from X after matching up with a unique neighbour.

The process is continued iteratively and it should conclude in O (log (|X |)) steps instead
of being pipelined as would happen in a general algorithm.

2. Linear Time Decodable Error-Correcting Codes: In the context of Low Density

Parity Check (LDPC) codes it has been shown ([96, 126, 128] and references therein) that

lossless expanders can be used to yield asymptotically good linear codes of constant rate

with a linear-time decoding algorithm that makes O (log (N)) parallel steps. Again if G

is a lossless expander, the rate will be 1− n/N and for constant d this can be arbitrarily

close to 1.

3. Bitprobe Complexity of Storing Subsets: This is about storing k-subset of [N ] in

binary vectors of length n. Based on a scheme proposed by the authors of [28] in which

you query only one bit of the vector in order to determine its membership to [N ], lossless

expander were used to achieve optimal construction of smallest n for constant error.

For application to compressed sensing and sparse approximation the problem is that the

adjacency matrices of expander graphs do not have small RIC2 with optimal n. Chandar

showed in [44] that such sparse binary matrices need n = Ω(k2) to have small enough RIC2.

This is where RIC1 comes into play. It provides guarantees of optimal n when the matrix has

small RIC1.

Given that we do not have an optimal explicit construction for expander graphs, sampling

theorems about when a random bipartite graph is, with high probability, a lossless expander

might be useful to the practitioner. Consequently, such sampling theorems will be about the

generation of random binary matrices that approximate, with high probability, adjacency ma-

trices of lossless expander graphs. Chapter 4 provides a bound on the tail of the distribution

of the size of expansion using a novel technique of dyadic splitting of sets, and from this tail

bound, derives the aforementioned sampling theorems.
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1.4 Motivating Example – Compressed Sensing

Our work on RIC was motivated by compressed sensing although it has applications wider

than compressed sensing. In this section we give a brief introduction to compressed sensing,

mainly to put thing into perspective. We start by a non-quantitative general description of

compressed sensing and we follow this up in Section 1.4.1 with a mathematical formulation of

the compressed sensing problems and the typical mathematical issues that arise. We conclude

with a list of selected applications of compressed sensing in Section 1.4.2.

In recent times, there has been a data deluge and traditional ways of handling this data

needed to be improved upon. The need for more efficient handling of high dimensional data

sets coming from information systems and signal processing led to the emergence of compressed

sensing or compressive sampling, seminal papers include [39, 38, 59]. In fact, the birth of

compressed sensing could be attributed to the following question posed by David Donoho, who

is credited with coining the word compressed sensing.

“Since most of the information in the signal is contained in only a few coefficients and
the rest of the signal is not needed for the applications, can one directly determine
(acquire) only the relevant coefficients without reading (measuring) each of the
coefficients?” [59]

The answer is yes provided there is some underling simplicity in the signal (data) and the

measurement process is done linearly with an appropriate measurement matrix. In essence,

compressed sensing is measuring information at the information rate, as oppose to doing mea-

surements (sampling) at the so called Shannon-Nyquist rate (for a signal) [124] which is equiv-

alent to taking as many measurements as the dimension of the signal.

The underlying simplicity in the vector of interest is usually sparsity or compressibility. By

sparsity we mean the vector through a basis transformation has a coefficient vector that has

relatively few nonzero entries when compared to the dimension of the vector itself. If the vector

is sparse in the canonical basis then the coefficient vector corresponds to the vector itself. On

the other hand, a vector is compressible if after a basis transformation its coefficients vector

have few large (in magnitude) components with the majority of the entries having magnitude

zero or close to zero. Interestingly, there is a very large class of signals (vectors) that are either

sparse or compressible and compressed sensing could be applied for this class of signals.

The ability to take few measurements in compressed sensing has both time and cost impli-

cations in the measurement process. The fundamental change in the processing system is the

shift of burden to computing resources, this would become clearer when we discuss algorithms

in Section 1.4.1. Assuming there is not too much sacrifice in quality, it turns out that this shift

is beneficial both in terms of time and real cost. This is why wherever the conditions for the

application of compressed sensing exist we see rise in its use. In Section 1.4.2 we state some

real life applications of compressed sensing.
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Although new, compressed sensing is related to other established disciplines and recently

the compressed sensing concept has been extended to other areas. We would mention some

of these links and for any further details the interested reader is referred to the references

provided. Compressed sensing is considered part of sparse approximation [27] with roots in

signal processing, harmonic analysis [58] and numerical analysis [47]. As a result there has been

as wide range of techniques and algorithms common to both compressed sensing and other areas

of sparse approximation. It is also significant to note that there has been an overlap in terms of

analysis techniques between compressed sensing and approximation theory. The connection of

RIC2 to n-widths or RIP-2 to the Johnson-Linderstrauss lemma mentioned earlier is a case in

point [12, 89]. It is also worth mentioning that, particularly in the algorithms for compressed

sensing, convex optimization tools have been used extensively and this will become evident

throughout the thesis starting from Section 1.4.1. Of late, there have been extensions of ideas

from compressed sensing to a closely related area called Matrix Completion [31, 118]. For a

detailed introduction to compressed sensing see the following papers [10, 39, 36, 59, 27].

1.4.1 Mathematics of Compressed Sensing

Let x ∈ RN be the vector (signal) of interest. Instead of directly measuring x we sense x

by taking linear projections of x, i.e., we take measurements of x that are inner product of x

with other vectors, say ai. The outcome is a measurement vector y ∈ Rn where yi = 〈ai, x〉.
The dimension of the measurement vector is far smaller than the ambient dimension of x since

n≪ N and this is where the gain in the time of the measurement process is registered. Stacking

the vectors ai into rows of a matrix gives an n×N measurement or sensing matrix A and the

whole sensing process leads to the underdetermined linear system (1.1). Simply put, we sense

x by applying a matrix A to it to get y. If we fix A in advance the measurement process is

referred to as non-adaptive while if A is modified during the process then we have an adaptive

one.

Now with A and y we try to recover x which is equivalent to solving the underdetermined

system (1.1), y = Ax. Getting a unique solution is the challenge but with the inherent simplicity

of x we can exactly recover x or recover a very good approximation of x. If x is k−sparse in

some basis then x = Bα where B is a basis matrix and α is a coefficient vector having only k

nonzero entries. Without loss of generality assume B = I where I is the identity matrix then

we look for the sparsest x that satisfies our system y = Ax as

min
x∈χN

‖x‖0 subject to Ax = y. (1.12)

If on the other hand, x is compressible or we want to cater for noise in the measurement process

we consider this modified linear system
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y = Ax + e (1.13)

where e is a noise vector capturing the model misfit or the non-sparsity (compressibility) of the

signal x. So the ℓ0-minimization problem (1.12) in the noise case becomes

min
x∈χN

‖x‖0 subject to ‖Ax− y‖2 < ‖e‖2, (1.14)

where ‖e‖2 is the magnitude of the noise. If B 6= I, we have Ax = ABα in which case we let

Z = AB and replace Ax by Zα in problems (1.14) and (1.12) above. Consequently, the solution

derived has to be appropriately transformed to get x.

By now it is should be apparent that the main mathematical problem in compressed sensing

is the design of a sensing matrix, A and algorithms to solve (1.14) and (1.12). Sensing matrices

and algorithms are also referred to as encoders and decoders, respectively. The pair are supposed

to be interdependent but it is surprising that we can design an encoder separate from the decoder

and also that we can design algorithms independent of the measurement matrix used. It is in

this regard that we will discuss these two issues separately.

Sensing Matrices

The main purpose of compressed sensing is to take few measurements, n, far less than the

signal dimension, N . Ideally, we would like to design matrices with n = k rows but this is

not possible in practice except if we have some magical way of knowing where the nonzeros

of x are in advance. Generally matrices with optimal recovery guarantees can be designed

both deterministically and probabilistically with n = Ω(k2) rows [55, 49]. What this means

is that we can either have an explicit or probabilistic construction of a measurement matrix

with n = Ω(k2) rows and we can give guarantees that any algorithm can be used to recover

x. This bound on the number of measurements is derived using coherence which, like RIC, is

another tool of analysis in compressed sensing. The coherence measure, µ, of a matrix A with

ℓ2 normalised columns ai is defined as

µ = max
i6=j

|〈ai, aj〉| .

This bound on n is very pessimistic since k2 can be very large and we might end up taking

close to N measurements diminishing the whole point of doing compressed sensing.

The good news is if we use RIC2 instead of coherence we can have n = O(k) with a small

order constant for certain ensembles (originally proven by [39, 59]). To be precise we take

measurements

n ≥ Ck logα(N/k) for C > 0 and α ≥ 1, (1.15)
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where C is a universal constant independent of the problem instance, (k, n,N). This is a

remarkable achievement in compressed sensing because up to a log-factor the number of mea-

surements scale linearly in the sparsity, k, instead of quadratic as we sated earlier while the

dimension of the signal is only felt in the log-factor. We point out that not all matrices have this

optimal order of number of measurements. Specifically, all attempts to design a deterministic

A with optimal reconstruction guarantees have failed to produce provably optimal n. Some

explicit constructions using tight frames are close but fall short of the optimal [65, 45]. Inter-

estingly, the breakthrough was made possible via random matrices. Ensembles including mean

zero subgaussian matrices [12] and some structured random matrices like Fourier, Toeplitz and

Circulant matrices [116, 73] achieve this optimal n with α = 1 and α = 5, respectively.

Unfortunately, sparse non-mean zero matrices do not have RIP-2 for n = O(k), in fact,

as earlier mentioned, Chandar [44] showed that binary matrices with {0, 1} entries only have

bounded RIC2 if the number of measurements, n = Ω(k2). However, by having small enough

RIC1 binary matrices that are adjacency matrices of lossless expander graphs also attained the

optimal n in (1.15) with α = 1 [15]. Our work in Chapter 4 extends these optimal guarantees

to adjacency matrices of lossless expander graphs with random sign on the nonzeros.

Algorithms

Compressed sensing algorithms generally fall into two categories: optimization and greedy al-

gorithms. The former relaxes the problems (1.12) and (1.14) into a convex or non-convex

optimization problem and then uses existing optimization methods to get an approximate solu-

tion; while the latter tackles the combinatorial problems (1.12) and (1.14) directly, attempting

to identify the right support set through a greedy search.

Optimization Algorithms: The term optimization algorithms is misnomer because these are

actually methods for which there exists a host of algorithms. Optimization methods

relax the ℓ0-minimization problem (1.12), similarly for (1.14), into an ℓq-minimization for

0 < q ≤ 1

min
x∈χN

‖x‖q subject to Ax = y. (1.16)

We use this regime for q as the ℓq norms are sparsifying norms. For 0 < q < 1 the problem

becomes non-convex and solving it might be as hard as the original ℓ0 problem. However,

we have a convex relaxation of (1.12) if q = 1 and (1.16) becomes the following convex

problem commonly known as ℓ1-minimization or basis pursuit,

min
x∈χN

‖x‖1 subject to Ax = y. (1.17)

The ℓ1 relaxation of (1.14) gives the quadratically constrained basis pursuit also referred

as basis pursuit denoising. This can be solved with efficient methods from convex opti-
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mization and analysis for ℓ1 recovery guarantees abound, pioneering work include [39, 59]

for dense A or [15] for sparse matrices. To give an idea about the type of guarantees we

refer to we state and prove a simple example in the form of Theorem 1.4.1 whose original

proof is found in [116, 66].

Theorem 1.4.1. If the RIC2 of order 2k, L(2k, n,N ;A) and U(2k, n,N ;A), of an n×N
matrix, A, satisfies

max (L(2k, n,N ;A), U(2k, n,N ;A)) < 1/3, (1.18)

then every k-sparse vector x ∈ RN is recovered by ℓ1-minimization.

The proof of Theorem 1.4.1 makes use of the null space property (NSP) which, similar to

RIC2, is another tool of analysis in compressed sensing particularly for ℓ1-minimization.

Definition 1.4.2 (NSP). An n ×N matrix, A satisfies the null space property of order

k if for all K ⊂ Ω with Ω = {1, . . . , N} and |K| = k the following holds

‖vK‖1 < ‖vK‖1 ∀v ∈ kerA \ ∅ (1.19)

where K = Ω \K and vK is v except for indices not in K for which it has zero entries.

Theorem 1.4.3 gives a recovery guaranty for ℓ1-minimization based on the null space

property, see [116, 66] for it’s proof.

Theorem 1.4.3. For an n × N matrix A, every k-sparse vector x ∈ RN is the unique

minimizer of (1.17) if and only if A satisfies the null space property.

Proof. So to prove Theorem 1.4.1 it suffice to so that for v ∈ kerA \ ∅, (1.18) implies

(1.19) and we proceed to show this as thus. Let v ∈ kerA \ ∅, K0 be the set of the largest

in magnitude k entries of v, K1 ∈ K0 be the second set of the largest in magnitude k

entries of v, K2 ∈ K0 ∪K1 be the third set of the largest in magnitude k entries of v, and

so on.

Now let R(k, n,N ;A) = max (L(k, n,N ;A), U(k, n,N ;A)) and we use Rk as a shorthand

for R(k, n,N ;A). Using the lower bound of the RIP-2 in (1.5) we have

‖vK0‖22 ≤ 1

1−Rk
‖AvK0‖22 (1.20)

=
1

1−Rk
〈AvK0 , (−AvK1 −AvK2 −AvK3 − · · · )〉 (1.21)

≤ 1

1−R2k

∑

j≥1

〈AvK0 ,−AvKj
〉 (1.22)

≤ R2k

1−R2k
‖vK0‖2

∑

j≥1

‖vKj
‖2. (1.23)
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From (1.20) to (1.21) we use the fact that if v ∈ kerA \ ∅ then AvK0 = −AvK1 −
AvK2 − AvK3 − · · · . From (1.21) to (1.22) we use the property that the RIC2 is non-

decreasing in the first argument i.e., Rs ≤ R2s ≤ R3s ≤ . . . which is a consequence

of the spectrum of a Wishart matrix. From (1.22) to (1.23) we use the property that

〈AvK0 ,−AvKj
〉 ≤ R2k‖vK0‖2‖vKj

‖2 which follows from using Hölder’s inequality and the

definition of Rk. Now, dividing (1.23) by ‖vK0‖2 yields

‖vK0‖2 ≤
R2k

1−R2k

∑

j≥1

‖vKj
‖2. (1.24)

By our ordering of the vKj
we know that for j ≥ 1, the k entries of vKj

are bounded

from above by the k entries of vKj−1 which implies that ‖vKj
‖2 ≤ ‖vKj−1‖2. Using the

equivalence of norms we have ‖vKj−1‖2 ≤ 1√
k
‖vKj−1‖1 and hence ‖vKj

‖2 ≤ 1√
k
‖vKj−1‖1.

We substitute this in (1.24) to have

‖vK0‖2 ≤
R2k√

k (1−R2k)

∑

j≥1

‖vKj−1‖1 (1.25)

√
k‖vK0‖2 ≤

R2k

1−R2k

(
‖vK0‖1 + ‖vK0

‖1
)

(1.26)

‖vK0‖1 ≤
1

2

(
‖vK0‖1 + ‖vK0

‖1
)
. (1.27)

From (1.25) to (1.26) we moved the
√
k to the left hand side and rewrite

∑
j≥1 ‖vKj−1‖1

as ‖vK0‖1 + ‖vK0
‖1. From (1.26) to (1.27) we again use the equivalence of norms to

bound from below the left hand side and use (1.18) to upper bound the right hand side.

Inequality (1.27) gives the null space property (1.21) and it holds if (1.18) holds, hence

concluding the proof.

Further discussion on recovery guarantees for ℓ1-minimization will be done when dis-

cussing sampling theorems and phase transitions for compressed sensing algorithms in

Chapter 2 for the dense matrices and Chapter 4 for the sparse matrices.

Greedy Algorithms: There are many specifically designed greedy algorithms for the ℓ0 prob-

lems (1.12) and (1.14). Many greedy algorithms have been designed for dense sensing

matrices [27] and several others for sparse matrices [15]. We will just list the ones rel-

evant to this work: Orthogonal Matching Pursuit (OMP) popularized by [143], for a

more general setting see [138], Iterative Hard Thresholding (IHT), [25], now improved to

Normalised Iterative Hard Thresholding (NIHT), [24], Compressive Sampling Matching

Pursuits (CoSaMP), [109], and Subspace Pursuit (SP), [50]. A more detailed discussion

of these algorithms and their recovery guarantees will be given in Chapter 2.

When A is sparse and non-mean zero, a different set of greedy algorithms have been pro-

posed. They include Expander Matching Pursuit (EMP), [78], Sparse Matching Pursuit
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(SMP), [18], Sequential Sparse Matching Pursuit (SSMP), [17], Left Degree Dependent

Signal Recovery (LDDSR), [148], and Expander Recovery (ER), [79, 80]. A more detailed

discussion of these other set of algorithms and their recovery guarantees will be given in

Chapter 4.

1.4.2 Applications of Compressed Sensing

The range of applications where compressed sensing can be applied is wide, as a results the ones

we mention here are by no means an exhaustive list. We also give references where more details

about a given application can be found: Single-Pixel Camera, see [133, 10], Magnetic Resonance

Imaging (MRI), see [97], Radar and Sonar, see [75], Error Correction, see [39, 57, 121], Statistics

and Machine Learning, see [34, 139, 122, 113], Low-Rank Matrix Recovery, see [31, 35, 118].

1.5 Conclusion

Summary of Chapter

This thesis addresses restricted isometry constants (RIC) which are random matrix quantities

whose use has spiked with the introduction of compressed sensing. The ℓp-norm RIC determines

how close to an isometry a matrix A is when applied to vectors x, for p = 1, 2. The analysis of

RIC2 is related to classical eigen-analysis of condition numbers, the only difference being the

combinatorial nature of RIC2. It is known that, for dense matrices, only random matrices has

bounded RIC2 of optimal order of number of rows of A, n = O(k). Subgaussian matrices have

the smallest order constant that is a product of an absolute constant and a factor logarithmic

in the dimension of x, N . Sparse non-mean zero matrices need to have bounded RIC1 to attain

the optimal order for n. For this reason after the introduction of RIC2 and RIC1, there was

a discussion on Gaussian matrices in Section 1.2 and sparse matrices from expander graphs in

Section 1.3.

In the discussion on Gaussian random matrices other ensembles that were relevant to this

work were introduced and spectral properties of Gaussian and their composite, Wishart, ma-

trices were also discussed. Due to the relationship between the extreme eigenvalues and RIC2,

the distribution of the extreme values of Wishart matrices and their asymptotic properties were

revisited. Sparse matrices were mentioned in the context of binary matrices with fixed nonzeros

per column. These are adjacency matrices of lossless expander graphs, hence the exposition on

expander graph.

Given that this whole research in this area was motivated from compressed sensing. Section

1.4 was devoted to a review of compressed sensing, mainly stressing on the mathematics that

arise from the compressed sensing problem and giving a picture of how this ties up with the RIC

analysis. The mathematical issues that arise in compressed sensing is the design and analysis
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of sensing matrices and recovery algorithms. A brief discussion on this was followed by a listing

of applications of compressed sensing.

Contributions of Thesis

The contributions of the work include the following:

• The derivation of the smallest known bounds on RIC2 for Gaussian random matrices.

• Using a novel technique of grouping submatrices with significant column overlap and

hence reducing the combinatorial term from the union bound of the
(
N
k

)
submatrices.

• The use of a probabilistic method to come up with a covering argument that enables us

to quantify the sufficient number of groups to cover at the
(
N
k

)
submatrices.

• The derivation of formulae for the RIC2 bounds of Gaussian random matrices in three

different asymptotic regimes of (k, n,N). The case where the ratio n/N is fixed and the

ratio k/n goes to zero; the case where the ratio k/n is fixed and the ratio n/N goes to

zero; and the case where both ratios n/N and k/n go to zero but the latter going to zero

at a rate inverse logarithmic in the reciprocal of the former along a path γ.

• The derivation of limit functions that the RIC2 converge to in terms of γ only.

• The derivation of a tail bound on the number of rows with at least one nonzero of binary

matrices with a fixed number of nonzeros per column. Equivalently, this is a tail bound

on the size of the set of neighbours and the expansion of lossless expander graphs.

• The use of a novel technique of dyadic splitting of sets to derive this tail bound.

• The use of this tail bound combined with RIC1 to derive of quantitative sampling theorem

for when a random draw of a binary matrix with fixed number of nonzeros approximates

with high probability the matrices we consider; or for when a random draw of a bipartite

graph becomes a lossless expander with high probability.

• The derivation of sampling theorems for compressed sensing algorithms using such sparse

non-mean zero matrices and the use of these sampling theorems to compare performance

guarantees of these algorithms using the phase transition framework.

Outline of Thesis

Chapter Two is on the derivation of bounds on RIC2 for Gaussian random matrices. The

first bounds were derived by Candès and Tao (CT) using concentration of measure in-

equalities for extreme singular values of Gaussian matrices and a union bound over the
(
N
k

)
submatrices. The CT bounds were improved upon by Blanchard, Cartis and Tanner

(BCT) using more accurate probability density functions (PDF) of extreme eigenvalues
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of Wishart matrices and a union bound too. This work made significant improvement

over the BCT by using a novel technique of grouping submatrices with significant column

overlap and hence reducing the combinatorial from the union bound. The validity of our

bounds for finite problem sizes and their implications for compressed sensing are also

presented.

Chapter Three is on the derivation of formulae for the RIC2 bounds of Gaussian random

matrices. This was done in three different asymptotic regimes of the problem size (k, n,N).

The case where the ratio n/N is fixed and the ratio k/n goes to zero; the case where the

ratio k/n is fixed and the ratio n/N goes to zero; and the case where both ratios n/N

and k/n go to zero but the latter going to zero inverse logarithmically in the reciprocal of

the former along a path γ. From the third case we derived limit functions that the RIC2

converge to in terms of γ only. These asymptotic approximations of the bounds provided

sampling theorems consistent with compressed sensing literature.

Chapter Four is on the derivation of a tail bound on the number of rows with at least one

nonzero of binary matrices with fixed number of nonzeros per column. Equivalently, this

is a tail bound on the size of the set of neighbours and the expansion of lossless expander

graphs. We use a technique of dyadic splitting of sets to derive this tail bound. Moreover,

using the above tail bound combined with RIC1, we derived a quantitative sampling

theorem for when a random draw of a binary matrix with fixed nonzero approximates, with

high probability, the matrices we consider. In other words, we provide a sampling theorem

for when a random draw of a bipartite graph becomes, with high probability, a lossless

expander. Finally, we present sampling theorems for compressed sensing algorithms using

such sparse non-mean zero matrices and we used this to compare performance guarantees

of these algorithms using the phase transition framework. We also compared performance

guarantees of ℓ1-minimization for when the matrix is dense versus when the matrix is

sparse.

Conclusion summaries the main points of the thesis and suggested possible extensions of the

work in the thesis.
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Chapter 2

Extreme Eigenvalues of Gaussian

Submatrices

2.1 Introduction

We have established the link between extreme eigenvalues of Gaussian submatrices and the

ℓ2-norm restricted isometry constants (RIC2) in Chapter 1. Again in Chapter 1 we argued that

many of the theorems in compressed sensing rely upon a sensing matrix having suitable bounds

on its RIC2 and this is also true generally for any parsimonious solution of the underdetermined

linear system (1.1). Unfortunately, computing the RIC2 of a matrix A is in general NP-hard,

[108]. Efforts are underway to design algorithms that compute accurate bounds on the RIC2

of a matrix [52, 84], but to date these algorithms have a limited success, with the bounds only

effective for k = Ω
(
n1/2

)
.

In this chapter we focus on the derivation of accurate bounds for the Gaussian ensemble.

Candès and Tao derived the first set of RIC2 bounds for the Gaussian ensemble using a union

bound over all
(
N
k

)
submatrices and bounding the singular values of each submatrix using con-

centration of measure bounds [39]. Blanchard, Cartis and Tanner derived the second set of

RIC2 bounds for the Gaussian ensemble, similarly using a union bound over all
(
N
k

)
submatri-

ces, but achieved substantial improvements by using more accurate bounds on the probability

density function of Wishart matrices [19]. These bounds are presented here in Theorem 2.2.2

and Theorem 2.2.4 respectively. This work presents yet further improved bounds for the Gaus-

sian ensemble, see Theorem 2.3.2 and Figure 2.3, by grouping submatrices with overlapping

support sets, say, AK and AK′ with |K∩K ′| ≫ 1, for which we expect the singular values to be

highly correlated. These are the first RIC2 bounds that exploit this structure. In addition to

asymptotic bounds for large problem sizes, we present bounds valid for finite values of (k, n,N).
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The Chapter 1 is organised as follows: Prior asymptotic bounds are presented in Section

2.2. Our improved bounds and their comparison with those in Theorem 2.2.4 is given in Section

2.3 and the derivation is described in Section 2.3.1. The bounds’ validity for finite values is

demonstrated in Section 2.4 and the implications of the RIC2 bounds for compressed sensing

is given in Section 2.5. Proof of technical lemmas used or assumed in our discussion come in

the Section 2.6.

We focus our attention on bounding the RIC2 for the Gaussian ensemble in the setting

of proportional-growth asymptotics, also referred to as the linear-growth asymptotics, defined

below.

Definition 2.1.1 (Proportional-Growth Asymptotics). A sequence of problem sizes (k, n,N)

is said to follow proportional-growth asymptotics if

k

n
= ρn → ρ and

n

N
= δn → δ for (δ, ρ) ∈ (0, 1)2 as (k, n,N) → ∞. (2.1)

In this asymptotic setting, we provide quantitative values above which it is exponentially un-

likely that the RIC2 will exceed. In Section 2.4 we show how our derivation of these bounds

can also supply probabilities for specified bounds and finite values of (k, n,N).

We point out that in [123] the authors came up with lower bounds for RIC2 of any matrix

seemingly better than the bounds we present here for Gaussian matrices. However, they only

showed that one of these bounds is valid for k = 2. This may be due to a low dimensional effect

and the bound is likely to grow substantially for larger values of k. There is literature that

supports this claim. In [65], Elad developed an algorithm that constructs matrices with good

RIC2, and they show big improvement for small k. However, when the problem size grows this

algorithm looses the gain over what one gets from a random Gaussian. The other bound in

[123] is beyond the useful range of the RIC2.

2.2 Prior RIC2 Bounds

CT RIC2 bounds:

There have been two previous quantitative bounds for the RIC2 of the Gaussian ensemble in

the proportional-growth asymptotics. The first bounds on the RIC2 of the Gaussian ensemble

were supplied in [39] by Candès and Tao using union bounds and concentration of measure

bounds on the extreme eigenvalues of Wishart matrices from [92, 131]. With notation adjusted

to match the notation used in the bounds we derived, these bounds are stated in Theorem 2.2.2

with Definition 2.2.1 defining some of the terms used in the theorem, and plots of these bounds

are displayed in Figure 2.1.

1Material in this chapter is published in [6] in a joint authorship with J. Tanner whose permission has been
obtained for the inclusion of the material.
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Definition 2.2.1. Let (δ, ρ) ∈ (0, 1)2 and H(·) be the Shannon Entropy function with base e

logarithms given in (1.2). Define

UCT (δ, ρ) :=
[
1 +

√
ρ+ (2δ−1H(δρ))1/2

]2
− 1

and

LCT (δ, ρ) := 1−max

{
0,
[
1−√

ρ− (2δ−1H(δρ))1/2
]2}

.

Theorem 2.2.2 (Candès and Tao [39]). Let A be a matrix of size n × N whose entries are

drawn i.i.d. from N(0, 1/n). Let δ and ρ be defined as in (2.1), and LCT (δ, ρ) and UCT (δ, ρ) be

defined as in Definition 2.2.1. For any fixed ǫ > 0, in the proportional-growth asymptotics,

Prob(L(k, n,N ;A) < LCT (δ, ρ) + ǫ) → 1 and Prob(U(k, n,N ;A) < UCT (δ, ρ) + ǫ) → 1

exponentially in n.

Figure 2.1: The RIC2 bounds from Definition 2.2.1 for (δ, ρ) ∈ (0, 1)2; left panel: UCT (δ, ρ) and
right panel: LCT (δ, ρ).

BCT RIC2 Bounds

Our bounds follow the construction of the second bounds on the RIC2 for the Gaussian ensemble,

presented in [19] by Blanchard, Cartis and Tanner. These bounds are stated in Theorem 2.2.4

with Definition 2.2.3 defining some of the terms used in the theorem, and plots of these bounds

are displayed in Figure 2.2.

Definition 2.2.3. Let (δ, ρ) ∈ (0, 1)2 and define

ψmin (λ, ρ) := H (ρ) +
1

2

[
(1− ρ) lnλ+ ρ ln ρ+ 1− ρ− λ

]
, (2.2)

ψmax (λ, ρ) :=
1

2

[
(1 + ρ) lnλ− ρ ln ρ+ 1 + ρ− λ

]
. (2.3)
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Define λmin
BCT (δ, ρ) and λ

max
BCT (δ, ρ) as the solution to (2.4) and (2.5) respectively:

δψmin

(
λmin
BCT (δ, ρ), ρ

)
+H(ρδ) = 0, for λmin

BCT (δ, ρ) ≤ 1− ρ, (2.4)

δψmax (λ
max
BCT (δ, ρ), ρ) +H(ρδ) = 0, for λmax

BCT (δ, ρ) ≥ 1 + ρ. (2.5)

Define

LBCT (δ, ρ) := 1− λmin
BCT (δ, ρ) and UBCT (δ, ρ) := min

ν∈[ρ,1]
λmax
BCT (δ, ν)− 1. (2.6)

Theorem 2.2.4 (Blanchard, Cartis, and Tanner [19]). Let A be a matrix of size n×N whose

entries are drawn i.i.d. from N(0, 1/n). Let δ and ρ be defined as in (2.1), and LBCT (δ, ρ) and

UBCT (δ, ρ) be defined as in Definition 2.2.3. For any fixed ǫ > 0, in the proportional-growth

asymptotics,

Prob(L(k, n,N ;A) < LBCT (δ, ρ) + ǫ) → 1 and Prob(U(k, n,N ;A) < UBCT (δ, ρ) + ǫ) → 1

exponentially in n.

Figure 2.2: The RIC2 bounds from Definition 2.2.3 for (δ, ρ) ∈ (0, 1)2; left panel: UBCT (δ, ρ)
and right panel: LBCT (δ, ρ).

Figures 2.1 and 2.2 show that the bounds in Theorem 2.2.4 are a substantial improvement

on those in Theorem 2.2.2.

2.3 Improved RIC2 Bounds

The probability density functions (PDF’s) of the RIC2 for the Gaussian ensemble is currently

unknown, but asymptotic probabilistic bounds have been proven. Our bounds, and earlier ones,

for the RIC2 of the Gaussian ensemble are built upon bounds on the PDF’s of the extreme

eigenvalues of Wishart matrices due to Edelman [64, 62]. All earlier bounds on the RIC2
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have been derived using union bounds that consider each of the
(
N
k

)
submatrices of size n× k

individually [19, 39]. We consider groups of submatrices where the columns of the submatrices

in a group are from at most m ≥ k distinct columns of A. We present our improved bounds

in Theorem 2.3.2, preceded by the definition of the terms used in it given in Definition 2.3.1.

Plots of these bounds are displayed in Figure 2.3.

Definition 2.3.1. Let (δ, ρ) ∈ (0, 1)2 and γ ∈ [ρ, δ−1]. Let ψmin (λ, γ) and ψmax (λ, γ) be

defined as in (2.2) and (2.3), respectively. Define λmin(δ, ρ; γ) and λmax(δ, ρ; γ) as the solution

to (2.7) and (2.8) respectively:

δψmin

(
λmin(δ, ρ; γ), γ

)
+H(ρδ)− δγH (ρ/γ) = 0, for λmin(δ, ρ; γ) ≤ 1− γ, (2.7)

δψmax (λ
max(δ, ρ; γ), γ) +H(ρδ)− δγH (ρ/γ) = 0, for λmax(δ, ρ; γ) ≥ 1 + γ. (2.8)

Let λmin
BT (δ, ρ) := max

γ
λmin(δ, ρ; γ) and λmax

BT (δ, ρ) := min
γ
λmax(δ, ρ; γ) and define

LBT (δ, ρ) := 1− λmin
BT (δ, ρ) and UBT (δ, ρ) := λmax

BT (δ, ρ)− 1. (2.9)

That for each (δ, ρ; γ), (2.7) and (2.8) have a unique solution λmin(δ, ρ; γ) and λmax(δ, ρ; γ)

respectively was proven in [19]. That λmin(δ, ρ; γ) and λmax(δ, ρ; γ) have unique maxima and

minima respectively over γ ∈ [ρ, δ−1] is established in Lemma 2.3.5.

Theorem 2.3.2. Let A be a matrix of size n×N whose entries are drawn i.i.d. from N(0, 1/n).

Let δ and ρ be defined as in (2.1), and LBT (δ, ρ) and UBT (δ, ρ) be defined as in Definition 2.3.1.

For any fixed ǫ > 0, in the proportional-growth asymptotics,

Prob(L(k, n,N ;A) < L
BT (δ, ρ) + ǫ) → 1 and Prob(U(k, n,N ;A) < U

BT (δ, ρ) + ǫ) → 1

exponentially in n.

In the spirit of reproducible research, software and web forms that evaluate LBT (δ, ρ) and

UBT (δ, ρ) are publicly available at [100].

Comparison of Improved Bounds to Empirical Lower Bounds

Sharpness of the bounds can be probed by comparison with empirically observed lower bounds

on the RIC2 for finite-dimensional draws from the Gaussian ensemble. There exist efficient

algorithms for calculating lower bounds of RIC2 [60, 83]. These algorithms perform local

searches for submatrices with extremal eigenvalues. The new bounds in Theorem 2.3.2, see

Figure 2.3, can be compared with empirical data displayed in Figure 2.4.

To further demonstrate the sharpness of our bounds, we compute the maximum and mini-

mum “sharpness ratios” of the bounds in Theorem 2.3.2 to empirically observed lower bounds;
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Figure 2.3: The RIC2 bounds from Definition 2.3.1 for (δ, ρ) ∈ (0, 1)2; left panel: UBT (δ, ρ) and
right panel: LBT (δ, ρ).

Figure 2.4: Empirically observed lower bounds on RIC2 for A Gaussian. Observed lower
bounds of left panel: L(k, n,N ;A) and right panel: U(k, n,N ;A). Although there is no compu-
tationally tractable method for calculating the RIC2 of a matrix, there are efficient algorithms
that perform local searches for extremal eigenvalues of submatrices, allowing for observable
lower bounds on the RIC2. Algorithm for observing L(k, n,N ;A) [60] and U(k, n,N ;A) [83]
were applied to hundreds of A drawn i.i.d. N(0, 1/n) with n = 400 and N increasing from 420
to 8000.

for each ρ, the maximum and minimum of the ratio is taken over all δ ∈ [0.05, 0.9524]. These

are the same δ values used in Figure 2.4. These ratios are shown in the left panel of Figure 2.5,

and are below 1.57 of the empirically observed lower bounds on L(k, n,N ;A) and U(k, n,N ;A)

computed with n = 400.

Comparison of Improved Bounds to Prior Bounds

Since the BCT bounds are a significant improvement of the CT bounds, it suffice to show how

ours compare to the BCT bounds. The bounds presented here in Definition 2.3.1 and Theorem

2.3.2 are a further improvement over those in [19], as stated in Corollary 2.3.6 deducible from

Lemma 2.3.5. The right panel of Figure 2.5 shows the ratio of the previously best known

bounds, Theorem 2.2.4, to the new bounds, Theorem 2.3.2; for each ρ, the ratio is maximized
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Figure 2.5: Left panel: The maximum and minimum, over δ, sharpness ratios, U
BT (δ,ρ)

U(k,n,N ;A) and

L
BT (δ,ρ)

L(k,n,N ;A) as a function of ρ; with the maximum and minimum taken over all δ ∈ [0.05, 0.9524],

the same δ values used in Figure 2.4. Right panel: The maximum and minimum, over δ,

improvement ratios over the previous best known bounds, U
BCT (δ,ρ)
UBT (δ,ρ) and L

BCT (δ,ρ)
LBT (δ,ρ) as a function

of ρ, with the maximum and minimum also taken over δ ∈ [0.05, 0.9524].

over δ ∈ [0.05, 0.9524].

Removing the optimization of γ ∈ [ρ, δ−1] in Definition 2.3.1 and fixing γ = ρ recovers the

bounds on L(k, n,N ;A) and the first of two bounds on U(k, n,N ;A) presented in [19]. The first

bound on U(k, n,N ;A) in [19] suffers from excessive overestimation when δρ ≈ 1/2 because

of the combinatorial term. In fact, this overestimation is so severe that for some (δ, ρ) with

δρ ≈ 1/2, smaller bounds are obtained at (δ, 1). This overestimation is somewhat ameliorated

by noting the monotonicity of U(k, n,N ;A) in k, obtaining the improved bound, see (2.6).

2.3.1 Discussion on the Construction of Improved RIC2 Bounds

The bounds in Theorem 2.3.2 improve upon the earlier results of [19] by grouping matrices AK

and AK′ that share a significant number of columns from A. This is manifest in Definition

2.3.1 through the introduction of the free parameter γ associated with the number of groups

considered. In this section we first discuss the way in which we construct these groups and the

sense in which the bounds in Theorem 2.3.2 are optimal for this construction. Equipped with

a suitable construction of groups, we discuss the way in which this grouping is employed to

improve the RIC2 bounds from [19].

Construction of Groups

We construct our groups of AK by selecting a subset Mi from {1, 2, . . . , N} of cardinality

|Mi| = m ≥ k and setting Gi := {K}K⊂Mi,|K|=k, the set of all sets K ⊂ Mi of cardinality k.

The group Gi has
(
m
k

)
members, with any two members sharing at least 2k−m elements. Hence,

the quantity γ = m/n in Definition 2.3.1 is associated with the cardinality of the groups Gi. In

order to calculate bounds on the RIC2 of a matrix, we need a collection of groups whose union
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includes all
(
N
k

)
sets of cardinality k from Ω := {1, 2, . . . , N}; that is, we need {Gi}ui=1 such that

G :=
⋃u
i=1 Gi with |G| ≥

(
N
k

)
. From simple counting, the minimum number of groups Gi needed

for this covering is at least r :=
(
N
k

)(
m
k

)−1
. Although the construction of a minimal covering is

an open question [88], even a simple random construction of the Gi’s requires typically only a

polynomial multiple of r groups, hence achieving the optimal large deviation rate. This claim

is formalised in Lemma 2.3.3 and Corollary 2.3.4.

Lemma 2.3.3 ([88]). Set r =
(
N
k

)(
m
k

)−1
and draw u := rN sets Mi each of cardinality m,

drawn uniformly at random from the
(
N
m

)
possible sets of cardinality m. With G defined as

above,

Prob

(
|G| <

(
N

k

))
< C(k/N) ·N−1/2 · e−N(1−ln 2), (2.10)

where C(p) ≤ 5
4 (2πp(1− p))−

1
2 .

Proof. Select one set K ⊂ Ω of cardinality |K| = k prior to the draw of the sets Mi. The

probability that it is not contained in one setMi is 1/r, and with eachMi drawn independently,

the probability that it is not contained in any of the u Mi sets is (1− r−1)u ≤ e−u/r. Applying

a union bound over all
(
N
k

)
sets K yields

Prob

(
|G| <

(
N

k

))
<

(
N

k

)
e−u/r.

Noting from Stirling’s Inequality [1] that

16

25
(2πp(1− p)N)−

1
2 eNH(p) ≤

(
N

pN

)
≤ 5

4
(2πp(1 − p)N)−

1
2 eNH(p), (2.11)

with H(p) ≤ ln 2 for p ∈ [0, 1], and substituting the selected value of u completes the proof.

Note that an exponentially small probability can be obtained with u just larger than rNH(δρ),

but the smaller polynomial factor is negligible for our purposes.

Corollary 2.3.4. In the proportional-growth asymptotics, the probability that all the
(
N
k

)
K

subsets of {1, 2, . . . , N} are covered by G converges to one exponentially in n.

Proof. Given in Lemma 2.3.3, as n→ ∞ the right hand side of (2.10) goes to zero exponentially

in n and this is equivalent to the statement of the corollary.

Decreasing the Combinatorial Term

We illustrate the way the groups Gi are used to improve the bound on the upper RIC2

U(k, n,N ;A); the bounds for L(k, n,N ;A) following by a suitable replacement of maximiza-

tions/minimizations and sign changes. All previous bounds on the RIC2 for the Gaussian en-

semble have overcome the combinatorial maximization/minimization by use of a union bound

over all
(
N
k

)
sets K ⊂ Ω and then using a tail bound on the PDF of the extreme eigenvalues of
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A∗
KAK ; for some λ∗max > 0,

Prob

(
max

K⊂Ω,|K|=k
λmax (A∗

KAK) > λ∗max

)
≤
(
N

k

)
Prob (λmax (A∗

KAK) > λ∗max) .

That the random variables λmax (A∗
KAK) are treated as independent is the principal deficiency

of this bound. To exploit dependencies of this variable for K and K
′

with significant overlap

we exploit the groupings Gi, which, at least for m moderately larger than k, contain sets with

significant overlap. For the moment we assume the groups {Gi}ui=1 cover all K ⊂ Ω, and replace

the above maximization over K with a double maximization

Prob

(
max

K⊂Ω,|K|=k
λmax (A∗

KAK) > λ∗max

)
= Prob

(
max

i=1,...,u
max

K⊂Gi,|K|=k
λmax (A∗

KAK) > λ∗max

)
.

The outer maximization can be bounded over all u sets Gi, again, using a simple union bound;

however, with a smaller combinatorial term.

The expected dependencies between λmax (A∗
KAK) for K ⊂ Gi can, at times, be better

controlled by replacing the maximization over K ⊂ Gi by λmax
(
A∗
Mi
AMi

)
where Mi is the

subset of cardinality m containing all K ⊂ Gi:

Prob

(
max

i=1,...,u
max

K⊂Gi,|K|=k
λmax (A∗

KAK) > λ∗max

)
≤ u ·Prob

(
λmax

(
A∗
Mi
AMi

)
> λ∗max

)
. (2.12)

Selecting m = k recovers the usual union bound with u equal to
(
N
k

)
. Larger values of m

decrease the combinatorial term at the cost of increasing λmax
(
A∗
Mi
AMi

)
. The efficacy of this

approach depends on the interplay between these two competing factors. In the proportional-

growth asymptotic, this interplay is observed through the optimization over m
n = γ ∈ [ρ, δ−1].

Definition 2.3.1 uses the tail bounds on the extreme eigenvalues of Wishart Matrices derived

by Edelman [62] to bound Prob
(
λmax

(
A∗
Mi
AMi

)
> λ∗max

)
. The previously best known bound

on the RIC2 for the Gaussian ensemble is recovered by selecting γ = ρ in Definition 2.3.1, [19].

This is illustrated in Figure 2.6. The innovation of the bounds in Theorem 2.3.2 follows from

there always being a unique γ > ρ such that λmax(δ, ρ; γ) is less than λmax(δ, ρ; ρ). Lemma

2.3.5 confirms this.

Lemma 2.3.5. Suppose λmin(δ, ρ; γ) and λmax(δ, ρ; γ) are solutions to (2.7) and (2.8) respec-

tively. For any fixed (δ, ρ) there exist a unique γmin ∈ [ρ, δ−1] that minimizes λmax(δ, ρ; γ) and

a unique γmax ∈ [ρ, δ−1] that maximizes λmin(δ, ρ; γ). Furthermore, γmin and γmax are strictly

larger than ρ.

Corollary 2.3.6 follows from this lemma. The optimal choices of γ depicted by γ − ρ for

UBT (ρ, δ) and LBT (ρ, δ) in (ρ, δ) ∈ (0, 1)2 are displayed in Figure 2.7. The proof of Lemma

2.3.5 is presented in Section 2.6.1.
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Figure 2.6: Left panel: The relationship between the new bound UBT (δ, ρ), Theorem 2.3.2, and
the previous smallest bound UBCT (δ, ρ), Theorem 2.2.4, where in the two bounds λmax(δ, ρ; γ)
is evaluated at γ = γmin and γ = ρ respectively. Right panel: The relationship between the new
bound LBT (δ, ρ), Theorem 2.3.2, and the previous smallest bound LBCT (δ, ρ), Theorem 2.2.4,
where in the two bounds λmin(δ, ρ; γ) is evaluated at γ = γmax and γ = ρ respectively.

.

Corollary 2.3.6. Let LBT (δ, ρ) and UBT (δ, ρ) be defined as in Definition 2.3.1 and the RIC2

bounds LBCT (δ, ρ) and UBCT (δ, ρ) be defined as in Definition 2.2.3. For any fixed (δ, ρ) ∈
(0, 1)2,

LBT (δ, ρ) < LBCT (δ, ρ) and UBT (δ, ρ) < UBCT (δ, ρ). (2.13)

Proof. Lemma 2.3.5 implies that λmax
BT (δ, ρ) < λmax

BCT (δ, ρ) resulting in the statement of the

corollary for UBT (δ, ρ) in (2.13). Similarly for LBT (δ, ρ) in (2.13).

Figure 2.7: Optimal choice of γ depicted by the error γ − ρ for, left panel: UBT (δ, ρ) and right
panel: LBT (δ, ρ).

2.4 Finite N Interpretations

The method of proof used to obtain the proportional-growth asymptotic bounds in Theo-

rem 2.3.2 also provides, albeit less elegantly, bounds valid for finite values of (k, n,N) and

specified probabilities of the bound being satisfied. Given a problem instance (k, n,N) and
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ǫ, bounds on the tail probabilities of the RIC2, Prob
(
U(k, n,N ;A) > UBT (δn, ρn) + ǫ

)
and

Prob
(
L(k, n,N ;A) > LBT (δn, ρn) + ǫ

)
, for discrete values of δ and ρ are given in Propositions

2.4.1 and 2.4.2 respectively.

Proposition 2.4.1. Let A be a matrix of size n × N whose entries are drawn i.i.d. from

N(0, 1/n). Define UBT (δn, ρn) as in Definition 2.3.1 for discrete values of δ and ρ. Then for

any ǫ > 0,

Prob
(
U(k, n,N ;A) > UBT (δn, ρn) + ǫ

)
≤ p′max (n, λ

max(δn, ρn))×

exp

(
nǫ · d

dλ
ψU

(
λmax(δn, ρn)

))
+

5

4
(2πk(1− k/N))−1/2 exp(−N(1− ln 2)),

where

p′max(n, λ) :=

(
8

π

)1/2
2n−7/2

√
γλ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

, (2.14)

and

ψU (λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmax(λ, γ)

]
(2.15)

for ψmax(λ, γ) defined in (2.3).

Proposition 2.4.2. Let A be a matrix of size n × N whose entries are drawn i.i.d. from

N(0, 1/n). Define LBT (δn, ρn) as in Definition 2.3.1 for discrete values of δ and ρ. Then for

any ǫ > 0,

Prob
(
L(k, n,N ;A) > LBT (δn, ρn) + ǫ

)
≤ p′min

(
n, λmin(δn, ρn)

)
× (2.16)

exp

(
nǫ · d

dλ
ψL

(
λmin(δn, ρn)

))
+

5

4
(2πk(1− k/N))−1/2 exp(−N(1− ln 2)),

where

p′min(n, λ) :=

(
5

4

)3
e
√
λ

π
√
2

(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

, (2.17)

and

ψL(λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmin(λ, γ)

]
(2.18)

for ψmin(λ, γ) defined in (2.2).

The proofs of Propositions 2.4.1 and 2.4.2 are presented in Section 2.6.2 and also serve

as the proof of Theorem 2.3.2, that follows by taking the appropriate limits. From Proposi-

tions 2.4.1 and 2.4.2 we calculated bounds for a few example values of (k, n,N) and ǫ. Ta-

ble 2.1 shows bounds on Prob
(
U(k, n,N ;A) > UBT (δn, ρn) + ǫ

)
for a few values of (k, n,N)

with two different choices of ǫ. It is remarkable that these probabilities are already close

to zero for these small values of (k, n,N) and even for ǫ ≪ 1. Table 2.2 shows bounds on

Prob
(
L(k, n,N ;A) > LBT (δn, ρn) + ǫ

)
for the same values of (k, n,N) as in Table 2.1, but

with even smaller values for ǫ. Again, it is remarkable that these probabilities are extremely
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small, even for relatively small values of (k, n,N) and ǫ.

k n N ǫ prob
100 200 2000 10−3 2.9× 10−2

200 400 4000 10−3 9.5× 10−3

400 800 8000 10−3 2.9× 10−3

100 200 2000 10−10 3.2× 10−2

200 400 4000 10−10 1.1× 10−2

400 800 8000 10−10 4.0× 10−3

Table 2.1: The probability of the upper RIC2 bound failing to be true for finite problem sizes
(k, n,N), where prob is an upper bound on Prob

(
U(k, n,N ;A) > UBT (δn, ρn) + ǫ

)
for the

specified (k, n,N) and ǫ.

k n N ǫ prob
100 200 2000 10−5 2.8× 10−18

200 400 4000 10−5 9.1× 10−32

400 800 8000 10−5 2.8× 10−58

Table 2.2: The probability of the lower RIC2 bound failing to be true for finite problem sizes
(k, n,N), where prob is an upper bound on Prob

(
L(k, n,N ;A) > LBT (δn, ρn) + ǫ

)
for the spec-

ified (k, n,N) and ǫ.

2.5 Implications for Compressed Sensing

The RIC2 were introduced by Candès and Tao [39] as a technique to prove that in certain

conditions the sparsest solution of the underdetermined system of equations (1.1) can be found

using linear programming. The RIC2 is now a widely used technique in the study of sparse

approximation algorithms, allowing the analysis of sparse approximation algorithms without

specifying the measurement matrix A. For instance, Candès and Tao [39] proved that if

R(2k, n,N ;A) + R(3k, n,N ;A) < 1, where R(·, n,N ;A) = max (L(·, n,N ;A), U(·, n,N ;A))

as in (1.6), and if (1.1) or equivalently (1.12) has a unique k-sparse solution as its sparsest

solution, then the solution to (1.17) will be this k-sparse solution. The sufficient condition for

robust and stable recovery of k-sparse vectors by ℓ1-minimization was improved several times

including Candès, Romberg and Tao [32] improving it to R(3k, n,N ;A) + R(4k, n,N ;A) < 2

and Candès [37] came up with R(2k, n,N ;A) <
√
2−1. The best improvement on this condition

is due to Mo and Li in [105] which is R(2k, n,N ;A) < 0.4931, while other improvements can

be found in [68, 67].

For compressed sensing greedy algorithms such conditions include R(3k, n,N ;A) < 1/
√
8

for Iterative Hard Thresholding (IHT) [25] and R(4k, n,N ;A) < 0.1 for Compressive Sampling

Matching Pursuit (CoSaMP) [109]. A host of other RIC2 based conditions have been derived

for ℓ1-minimization and other sparsifying algorithms. One gets the impression that the smaller

the sparsity the better the condition. In fact Blanchard and Thompson showed in [22] the

sparsity 2k is not necessarily the best option for Gaussian random matrices. Moreover, the
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values of (k, n,N) when these conditions on the RIC2 are satisfied can only be determined once

the measurement matrix A has been specified [23].

2.5.1 Phase Transitions of Compressed Sensing Algorithms

In [20], using RIC2 bounds from [19], lower bounds on the phase transitions for exact recovery of

k-sparse signals for three greedy algorithms and l1-minimization were presented. These curves

are functions ρspS (δ) for Subspace Pursuit (SP) [50], ρcspS (δ) for Compressive Sampling Matching

Pursuit (CoSaMP) [109], ρihtS (δ) for Iterative Hard Thresholding (IHT) [25], and ρl1S (δ) for l1-

minimisation [68]. From Theorem 2.5.1 and Corollary 2.5.2 Blanchard et al in [20] derived

bounds for the afore mentioned phase transition functions using the BCT RIC2 bounds.

Theorem 2.5.1 ([20]). Given a matrix A with entries drawn i.i.d. from N (0, 1/n), for any x ∈
χN (k), let y = Ax+ e for some (unknown) noise vector e. For any ǫ ∈ (0, 1), as (k, n,N) → ∞
with n/N → δ ∈ (0, 1) and k/n → ρ ∈ (0, 1), there exists µalg(δ, ρ) and ρalgS (δ), the unique

solution to µalg(δ, ρ) = 1. If ρ < (1 − ǫ)ρalgS (δ), there is exponentially high probability on the

draw of A that the output of the algorithm at the lth iteration, x̂, approximates x within the

bound

‖x− x̂‖2 ≤ κalg (δ, (1− ǫ)ρ)
[
µalg (δ, (1− ǫ)ρ)

]l ‖x‖2 +
ξalg (δ, (1− ǫ)ρ)

1− µalg (δ, (1− ǫ)ρ)
‖e‖2,

for some κalg(δ, ρ) and ξalg(δ, ρ).

Corollary 2.5.2 ([20]). Given a matrix A with entries drawn i.i.d. from N (0, 1/n), for any

x ∈ χN (k), let y = Ax. For any ǫ ∈ (0, 1), with n/N → δ ∈ (0, 1) and k/n→ ρ < (1− ǫ)ρalgS (δ)

as (k, n,N) → ∞, there is an exponentially high probability on the draw of A that the algorithm

exactly recovers x from y and A in a finite number of iterations not to exceed

lalgmax(x) :=

⌈
log (νmin(x))

log (µalg(δ, ρ))

⌉
+ 1 where νmin(x) :=

mini∈T |xi|
‖x‖2

with T := {i : xi 6= 0} and ⌈m⌉, the smallest integer greater than or equal to m.

Corollary 2.5.2 provides strong phase transition curves, ρalgS (δ), below which the algorithm

can be guaranteed to converge provided there is such an x ∈ χN (k) that satisfies (1.1). Blan-

chard et al in [20] derived expressions for the bound on the convergence factor and the stability

factors , µalg(δ, ρ) and ξalg(δ,ρ)
1−µalg(δ,ρ)

, respectively. Note that ρalgS (δ) corresponds to the bound

µalg(δ, ρ) = 1. Below we state part of theorems involving µalg(δ, ρ) for a few algorithms, where

L(δ, ρ) and U(δ, ρ) are bounds of L(k, n,N ;A) and U(k, n,N ;A) respectively.
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Compressive Sampling Matching Pursuit (CoSaMP)

CoSaMP is one of the greedy algorithms that iteratively identifies the correct support set.

Specifically it choose the support set with the largest (in magnitude) k entries when the pseu-

doinverse, A† is applied to y. The transpose of A, AT is applied to the residual of the previous

iteration and a hard threshold of the largest 2k is used to form A†. Algorithm 1 in Table 2.3

is a pseudocode of CoSaMP. Theorem 2.5.3 gives an expression for µcsp(δ, ρ) and κcsp(δ, ρ) for

CoSaMP.

Input: A, y, k
Output: k-sparse approximation x̂ of the target signal x
Initialization:
1. Set Λ0 = 0
2. Set y0 = 0

Iteration: During iteration l, do

1. Λ̃l = Λl−1 ∪ {k indices of the largest magnitude entries of AT yl−1}
2. x̃ = A†

Λ̃l
y

3. Λl = {k indices of the largest magnitude entries of x̃}
4. yl = y −AΛl x̃Λl

5. if ‖yl‖2 = 0 then
6. return x̂ defined by x̂{1,...,N}\Λl = 0 and x̃Λl = x̂Λl

7. else
8. Perform iteration l + 1
9. end if

Table 2.3: Algorithm 1 – Compressive Sampling Matching Pursuit (CoSaMP) [109].

Theorem 2.5.3 (Theorem 10 [20]). CoSaMP, Algorithm 1, satisfies Theorem 2.5.1 and Corol-

lary 2.5.2 with κcsp(δ, ρ) := 1 and µcsp(δ, ρ) defined as

µcsp(δ, ρ) :=
1

2

(
2 +

L(δ, 4ρ) + U(δ, 4ρ)

1− L(δ, 3ρ)

)(
L(δ, 2ρ) + U(δ, 2ρ) + L(δ, 4ρ) + U(δ, 4ρ)

1− L(δ, 2ρ)

)
.

Subspace Pursuit (SP)

Similar to CoSaMP, SP chooses the support set with the largest (in magnitude) k entries when

the pseudoinverse, A† is applied y. AT is applied to the residual of the previous iteration and a

hard threshold of the largest k is used to form A†. However, unlike CoSaMP the identification

of the columns of the submatrices for A† involves another pseudoinverse which is a disadvantage

of SP. Algorithm 2 of Table 2.4 is a pseudocode of SP. Theorem 2.5.4 gives an expression for

µsp(δ, ρ) and κsp(δ, ρ) for SP.

Theorem 2.5.4 (Theorem 11 [20]). Theorem 2.5.1 and Corollary 2.5.2 are satisfied by SP,

Algorithm 2, with κsp(δ, ρ) := 1 + U(δ,2ρ)
1−L(δ,ρ) and µsp(δ, ρ) defined as

µsp(δ, ρ) :=
2U(δ, 3ρ)

1− L(δ, ρ)
·
(
1 + 2

U(δ, 3ρ)

1− L(δ, 2ρ)

)
·
(
1 +

U(δ, 2ρ)

1− L(δ, ρ)

)
.

54



Restricted Isometry Constants in Compressed Sensing 55

Input: A, y, k
Output: k-sparse approximation x̂ of the target signal x
Initialization:
1. Set Λ0 = {k indices of the largest magnitude entries of AT y

2. Set y0r = y −AΛ0A†
Λ0y

Iteration: During iteration l, do

1. Λ̃l = Λl−1 ∪ {2k indices of the largest magnitude entries of AT yl−1
r }

2. x̃ = A†
Λ̃l
y

3. Λl = {k indices of the largest magnitude entries of x̃}
4. ylr = y −AΛlA†

Λly
5. if ‖ylr‖2 = 0 then

6. return x̂ defined by x̂{1,...,N}\Λl = 0 and x̂Λl = A†
Λly

7. else
8. Perform iteration l + 1
9. end if

Table 2.4: Algorithm 2 – Subspace Pursuit (SP) [50]

Iterative Hard Thresholding (IHT)

IHT is also a greedy algorithm but unlike the above two it recovers the support set by taking

the largest (in magnitude) entries of the approximation of the target signal instead of the

residual. Algorithm 3 of Table 2.5 is a pseudocode of IHT. Theorem 2.5.5 gives an expression

for µiht(δ, ρ), κiht(δ, ρ) and ω for IHT.

Input: A, y, ω ∈ (0, 1), k
Output: k-sparse approximation x̂ of the target signal x
Initialization:
1. Set x0 = 0
2. Set Λ0 = ∅
3. Set y0 = y

Iteration: During iteration l, do

2. xl = xl−1
Λl−1 + ωAT yl−1

3. Λl = {k indices of the largest magnitude entries of xl}
4. yl = y −AΛlxlΛl

5. if ‖yl‖2 = 0 then
6. return x̂ defined by x̂{1,...,N}\Λl = 0 and x̂Λl = xlΛl

7. else
8. Perform iteration l + 1
9. end if

Table 2.5: Algorithm 3 – Iterative Hard Thresholding (IHT) [25]

Theorem 2.5.5 (Theorem 12 [20]). Theorem 2.5.1 and Corollary 2.5.2 are satisfied by IHT,

Algorithm 3, with ω := 2
2+U(δ,3ρ)−L(δ,3ρ) , κ

iht(δ, ρ) := 1 and µiht(δ, ρ) defined as

µiht(δ, ρ) := 2
√
2

(
L(δ, 3ρ) + U(δ, 3ρ)

2 + U(δ, 3ρ)− L(δ, 3ρ)

)
.
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ℓ1-minimization

This approach is a relaxation of the ℓ0-minimisation problem and it has lots of algorithms

that are generic linear programming algorithms and others that are specifically designed for

compressed sensing. Recovery guarantees for the so called ℓ1/ℓ0 equivalence has been developed

from RIC2 [68], convex polytopes [56] and geometric functional analysis [121]. A detailed work

on this was done in [19] and the equivalence of Theorem 2.5.1 and Corollary 2.5.2 were derived

respectively as the following.

Theorem 2.5.6 (Theorem 13 [20]). Given a matrix A with entries drawn i.i.d. from N (0, 1/n),

for any x ∈ χN (k), let y = Ax+ e for some (unknown) noise vector e. Define

µℓ1(δ, ρ) :=
1 +

√
2

4

(
1 + L(δ, 2ρ)

1− L(δ, 2ρ)
−
)

and ξℓ1(δ, ρ) :=
3
(
1 +

√
2
)

1− L(δ, 2ρ)
.

Let ρℓ1S (δ) be the unique solution to µℓ1(δ, ρ) = 1. For any ǫ > 0, as (k, n,N) → ∞ with

n/N → δ ∈ (0, 1) and k/n→ ρ < (1− ǫ)ρℓ1S (δ), there is an exponentially high probability on the

draw of A that

x̂ := argmin
z

‖z‖1 subject to ‖Az − y‖2 ≤ ‖e‖2

approximates x within the bound

‖x− x̂‖2 ≤ ξ (δ, (1− ǫ)ρ)

1− µ (δ, (1− ǫ)ρ)
‖e‖2.

Corollary 2.5.7 (Corollary 14 [20]). For a matrix A with entries drawn i.i.d. from N (0, 1/n),

for any x ∈ χN (k), let y = Ax. Given any ǫ ∈ (0, 1), with k/n → ρ < (1 − ǫ)ρℓ1S (δ) and

n/N → δ ∈ (0, 1) as (k, n,N) → ∞, there is an exponentially high probability on the draw of A

that

x̂ := argmin
z

‖z‖1 subject to Az = y

exactly recovers x from y and A.

Figure 2.8 shows a plot of these strong phase transition curves and their inverse based on

our new bounds, i.e. L(·) and U(·) in Theorems 2.5.3 – 2.5.6 are our bounds. Theorems 2.5.3 –

2.5.6 basically present lower bounds on the algorithmic exact sparse recovery phase transitions.

The curves on the left panel of Figure 2.8 are defined by functions ρℓ1S (δ) (ℓ1-minimization

the blue curve), ρihtS (δ) (Iterative Hard Thresholding the red curve), ρspS (δ) (Subspace Pursuit

the magenta curve), and ρcspS (δ) (CoSaMP the black curve). From Figure 2.8 we are able to

directly compare the provable recovery results of the three greedy algorithms as well as ℓ1-

minimization. For a given problem instance (k, n,N) with the entries of A drawn i.i.d. from

N (0, 1/n), if k/n = ρ falls in the region below the curve ρalgS (δ) for a specific algorithm, then

with probability approaching 1 exponentially in n, the algorithm will exactly recover the k-
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sparse vector x ∈ χN (k) irrespective of which x ∈ χN (k) was measured by A.
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Figure 2.8: Left panel: The lower bounds on the strong exact recovery phase transition for
Gaussian random matrices for the algorithms: ℓ1-minimization (Theorem 2.5.6), Iterative Hard
Thresholding (Theorem 2.5.5), Subspace Pursuit (Theorem 2.5.4), and CoSaMP (Theorem
2.5.3). Right panel: The inverse of the phase transition lower bounds.

Lower bounds on the phase transitions ρalgS can also serve as proportionality constants

with which we can determine the minimum number of measurement, n, proportional k, i.e.

n >
(
ρalgS

)−1

k. The right panel of Figure 2.8 portrays the inverse of the lower bounds on the

phase transition. For the different algorithms analysed above we can read off from the inverse

plots in the left panel of Figure 2.8 the minimum number of measurements required using RIC2

to guarantee exact reconstruction of all k-sparse vectors. The greedy algorithms, CoSaMP

needs n > 4913k, SP needs n > 3116k, and IHT needs n > 902k; while ℓ1-minimization

requires n > 314k. These curves are approximately 0.5− 1% higher than when our bounds are

replaced by those of [19], see Figure 1 in [20]. Figure 2.9 shows a superimposition of the curves

derived using the BCT bounds on the curves in Figure 2.8 based on our bounds. With the BCT

bounds the minimum n becomes n > 4923k for CoSaMP, n > 3124k for SP, n > 907k for IHT,

and n > 317k for ℓ1-minimization.
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Figure 2.9: A superimposition of the curves from BCT (in dotted lines) on ours (in solid lines):
Left panel: The lower bounds on the strong exact recovery phase transition for Gaussian random
matrices for the algorithms: ℓ1-minimization (Theorem 2.5.6), Iterative Hard Thresholding
(Theorem 2.5.5), Subspace Pursuit (Theorem 2.5.4), and CoSaMP (Theorem 2.5.3). Right
panel: The inverse of the phase transition lower bounds.
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In essence, the RIC2 bounds for the Gaussian ensemble discussed here allow one to state

values of (k, n,N) when sparse approximation recovery conditions are satisfied, and from these,

guarantee the recovery of k-sparse vectors from (A, y). Unfortunately, all existing sparse ap-

proximation bound on the RIC2 are sufficiently small that they are only satisfied for ρ ≪ 1,

typically on the order of 10−3. Although the bounds presented here are a strict improvement

over the previously best known bounds, and for some (δ, ρ) achieve as much as a 20% decrease,

see Figure 2.5, the improvements for ρ ≪ 1 are meagre, approximately 0.5− 1%. This limited

improvement for compressed sensing algorithms is in large part due to the previous bounds

being within 30% of empirically observed lower bounds on RIC2 for n = 400 when ρ < 10−2

[19].

2.6 Proofs

Here we present the proofs of the key theorems and lemmas stated in the chapter.

2.6.1 Lemma 2.3.5

We start by showing that λmax(δ, ρ; γ) has a unique minimum for each fixed δ, ρ and γ ∈ [ρ, δ−1].

Equation (2.8) gives the implicit relation between λmax and γ as

δψmax (λ
max, γ) + H(ρδ)− δγH(ρ/γ) = 0, for λmax ≥ 1 + γ,

where

ψmax(λ
max, γ) =

1

2

[
(1 + γ) ln (λmax)− γ ln γ + 1 + γ − λmax

]
.

Therefore,
d

dγ
(λmax) =

λmax

λmax − (1 + γ)
ln

[
λmax · (γ − ρ)2

γ3

]
is equal to zero when

λmax · (γ − ρ)2 = γ3. (2.19)

Let γmin satisfy (2.19). Since λmax ≥ 1+γ > 0, d
dγ (λ

max) is negative for γ ∈ [ρ, γmin), is zero at

γmin and is positive for γ ∈ (γmin, δ
−1), equation (2.8) has a unique minimum over γ ∈ [ρ, δ−1],

and the γ that obtains the minimum is strictly greater than ρ.

Similarly, we show that λmin(δ, ρ; γ) has a unique maximum for each fixed δ, ρ and γ ∈
[ρ, δ−1]. Equation (2.7) gives the implicit relation between λmin and γ as

δψmin

(
λmin, γ

)
+H(ρδ)− δγH(ρ/γ) = 0, for λmin ≤ 1− γ,

where

ψmin

(
λmin, γ

)
:= H (γ) +

1

2

[
(1− γ) ln

(
λmin

)
+ γ ln γ + 1− γ − λmin

]
.
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Therefore,
d

dγ

(
λmin

)
=

λmin

(1− γ)− λmin
ln

[
γ3 · λmin

(1− γ)2 · (γ − ρ)2

]
is equal to zero when

γ3 · λmin = (1− γ)2(γ − ρ)2. (2.20)

Let γmax satisfy (2.20). Since 0 < λmin ≤ 1 + γ, d
dγ

(
λmin

)
is positive for γ ∈ [ρ, γmax), zero at

γmax and negative for γ ∈ (γmax, δ
−1), equation (2.7) has a unique maximum over γ ∈ [ρ, δ−1],

and the γ that obtains the maximum is strictly greater than ρ. �

2.6.2 Theorem 2.3.2 and Propositions 2.4.1 and 2.4.2

Here we give a proof similar to that in [19] but we take great care with the non-exponential

terms necessary for the calculation of bounds on probabilities for finite values of (k, n,N) in

Section 2.4. We present the proof for UBT (δ, ρ) in detail and sketch the proof of LBT (δ, ρ), that

follows similarly.

The following lemma regarding the bound on the probability distribution function of the

maximum eigenvalue of a Wishart matrix due to Edelman [62] is central to our proof. This is

the same as Lemma 1.2.13 in Section 1.2.2. We restate it in the following lemma [62], presented

in this form in [19] where they used the notation fmax(m,n;λ) for fλmax(x) in Lemma 1.2.13.

Lemma 2.6.1. ([62], presented in this form in [19]) Let AM be a matrix of size n×m whose

entries are drawn i.i.d. from N(0, 1/n). Let fmax(m,n;λ) denote the distribution function for

the largest eigenvalue of the derived Wishart matrix A∗
MAM , of size m×m. Then fmax(m,n;λ)

satisfies

fmax(m,n;λ) ≤
[
(2π)

1
2 (nλ)−

3
2

(
nλ

2

)n+m
2 1

Γ
(
m
2

)
Γ
(
n
2

)
]
e−

nλ
2 =: gmax(m,n;λ). (2.21)

It is helpful at this stage to rewrite Lemma 2.6.1, separating the exponential and polynomial

parts (with respect to n) of gmax(m,n;λ) as follows.

Lemma 2.6.2. Let γn = m/n ∈ [ρn, δ
−1
n ] and define ψmax(λ, γ) as in (2.3). Then

fmax(m,n;λ) ≤ gmax(m,n;λ) ≤ pmax(n, λ; γ) exp (n · ψmax(λ, γ)) , (2.22)

where pmax(n, λ; γ) is a polynomial in n, λ and γ

pmax(n, λ; γ) =

(
8

π

)1/2

γ−1n−7/2λ−3/2. (2.23)
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Proof. Let γn = m
n and 1

n ln[gmax(m,n;λ)] = Φ1(m,n;λ) + Φ2(m,n;λ) + Φ3(m,n;λ), where

Φ1(m,n;λ) =
1

2n
ln(2π)− 3

2n
ln(nλ), Φ2(m,n;λ) =

1

2

[
(1 + γ) ln(

nλ

2
)− λ

]

and Φ3(m,n;λ) = − 1

n
ln
(
Γ
(m
2

)
Γ
(n
2

))
.

We simplify Φ3(m,n;λ) by using the second Binet’s log gamma formula [145]

ln (Γ(z)) ≥ (z − 1/2) ln z − z + ln
√
2π. (2.24)

Thus we have

Φ2(m,n;λ) + Φ3(m,n;λ) ≤
1

2

[
(1 + γn) lnλ− γn ln γn + 1 + γn − λ

]
− n−1 ln

(
πγnn

2/2
)
.

Incorporating Φ1(m,n;λ) and −n−1 ln
(
πγnn

2/2
)
into pmax(n, λ; γ) and defining the expo-

nent (2.3) as

ψmax(λ, γ) := lim
n→∞

1

n
ln (gmax(m,n;λ)) =

1

2

[
(1 + γ) lnλ− γ ln γ + γ + 1− λ

]

completes the proof.

The upper RIC2 bound UBT (δ, ρ) is obtained by constructing the groups Gi according to

Lemma 2.3.3, taking a union bound over all u = rN groups, and bounding the extreme eigenval-

ues within a group by the extreme eigenvalues of the Wishart matrices A∗
Mi
AMi

, see (2.12). In

preparation for bounding the right-hand side of (2.12) we compute a bound on rNgmax(m,n;λ).

From Lemma 2.6.2 and equation (2.11) we have

2λN

(
N

k

)(
m

k

)−1

gmax(m,n;λ) ≤ p′max(n, λ)e
nψU (λ,γ), (2.25)

where as in (2.15)

ψU (λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmax(λ, γ)

]

and as in (2.14)

p′max(n, λ) := 2λ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

pmax(n, λ; γ).

The proof of proposition 2.4.1 then follows.

Proof. (Proof of Proposition 2.4.1)
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For ǫ > 0 with λmax(δ, ρ) = min
γ
λmax(δ, ρ; γ) being the optimal solution to (2.8),

Prob (U(k, n,N ;A) > U(δn, ρn) + ǫ) = Prob (U(k, n,N ;A) > λmax(δn, ρn)− 1 + ǫ)

= Prob (1 + U(k, n,N ;A) > λmax(δn, ρn) + ǫ)

= N

(
N

k

)(
m

k

)−1 ∫ ∞

λmax(δn,ρn)+ǫ

fmax(m,n;λ)dλ

≤ N

(
N

k

)(
m

k

)−1 ∫ ∞

λmax(δn,ρn)+ǫ

gmax(m,n;λ)dλ. (2.26)

To bound the final integral in (2.26) we write gmax(m,n;λ) as a product of two separate

functions, one of λ and another of n and γn, as gmax(m,n;λ) = ϕ(n, γn)λ
− 3

2λ
n
2 (1+γn)e

−n
2

λ

where

ϕ(n, γn) = (2π)
1
2 (n)−

3
2

(n
2

)n
2 (1+γn) 1

Γ
(
n
2 γn

)
Γ
(
n
2

) .

With this and using the fact that λmax(δn, ρn) > 1 + γn and that λ
n
2 (1+γn)e−

n
2 λ is strictly

decreasing in λ on [λmax(δn, ρn),∞) we can bound the integral in (2.26) as follows:

∫ ∞

λmax(δn,ρn)+ǫ

gmax(m,n;λ)dλ

≤ ϕ(n, γn)[λ
max(δn, ρn) + ǫ]

n
2 (1+γn)e−

n
2 (λmax(δn,ρn)+ǫ)

∫ ∞

λmax(δn,ρn)+ǫ

λ−
3
2 dλ

= [λmax(δn, ρn)]
3
2 gmax

[
m,n;λmax(δn, ρn) + ǫ

] ∫ ∞

λmax(δn,ρn)+ǫ

λ−
3
2 dλ

= 2λmax(δn, ρn)gmax

[
m,n;λmax(δn, ρn) + ǫ

]
. (2.27)

Thus (2.26) and (2.27) together give a bound on Prob (U(k, n,N ;A) > U(δn, ρn) + ǫ) as

2λmax(δn, ρn)rNgmax

[
m,n;λmax(δn, ρn) + ǫ

]
,

≤ p′max (n, λ
max(δn, ρn)) exp

[
n · ψU (λmax(δn, ρn) + ǫ)

]

≤ p′max (n, λ
max(δn, ρn)) exp

[
nǫ · d

dλ
ψU (λmax(δn, ρn))

]
, (2.28)

where r =
(
N
k

)(
m
k

)−1
, and the last inequality is due to ψU (λ) being strictly concave.

The following is a corollary to Proposition 2.4.1.

Corollary 2.6.3. Let (δ, ρ) ∈ (0, 1)2 and let A be a matrix of size n × N whose entries are

drawn i.i.d. from N(0, 1/n). Define UBT (δ, ρ) = λmax(δ, ρ)−1 where λmax(δ, ρ; γ) is the solution

of (2.8) for each γ ∈ [ρ, δ−1] and λmax(δ, ρ) := min
γ
λmax(δ, ρ; γ). Then for any ǫ > 0, in the
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proportional-growth asymptotics

Prob
(
U(k, n,N ;A) > UBT (δ, ρ) + ǫ

)
→ 0

exponentially in n.

Proof. From (2.28), since d
dλψU (λmax(δn, ρn)) < 0 is strictly bounded away from zero and all

the limits of (δn, ρn) are smoothly varying functions, we conclude for any ǫ > 0

lim
n→∞

Prob
(
U(k, n,N ;A) > UBT (δ, ρ) + ǫ

)
→ 0.

Thus we finish the proof for UBT (δ, ρ). We sketch the similar proof for Proposition 2.4.2

and LBT (δ, ρ). Bounds on the probability distribution function of the minimum eigenvalue of

a Wishart matrix are given by Lemma 1.2.12 in Section 1.2.2. We restate it in the following

lemma [62], presented in this form in [19] where they used the notation fmin(m,n;λ) for fλmin(x)

in Lemma 1.2.12.

Lemma 2.6.4. Let AM be a matrix of size n×m whose entries are drawn i.i.d. from N(0, 1/n).

Let fmin(m,n;λ) denote the distribution function for the smallest eigenvalue of the derived

Wishart matrix A∗
MAM , of size m×m. Then fmin(m,n;λ) satisfies

fmin(m,n;λ) ≤ (
π

2nλ
)

1
2

(
nλ

2

)n−m
2
[

Γ
(
n+1
2

)

Γ
(
m
2

)
Γ
(
n−m+1

2

)
Γ
(
n−m+2

2

)
]
e−

nλ
2 =: gmin(m,n;λ).

Again an explicit expression of fmin(m,n;λ) in terms of exponential and polynomial parts

leads to the following Lemma.

Lemma 2.6.5. Let γn = m/n and define ψmin(λ, γ) as in (2.2). Then

fmin(m,n;λ) ≤ gmin(m,n;λ) ≤ pmin(n, λ) exp (n · ψmin(λ, γ)) ,

where pmin(n, λ; γ) is a polynomial in n, λ and γ, given by

pmin(n, λ; γ) =
e

2π
√
2λ
.

The proof of Lemma 2.6.5 follows that of Lemma 2.6.2 and is omitted for brevity. Equipped

with Lemma 2.6.5 a large deviation analysis yields

2λN

(
N

k

)(
m

k

)−1

gmin(m,n;λ) ≤ p′min(n, λ)e
nψL(λ,γ), (2.29)
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where as in (2.18)

ψL(λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmin(λ, γ)

]

and as in (2.17)

p′min(n, λ) := 2λ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

pmin(n, λ).

With Lemma 2.6.5 and (2.29), Proposition 2.4.2 follows similarly to the proof of Proposition

2.4.1 stated earlier in this section. The bound LBT (δ, ρ) is a corollary of Proposition 2.4.2.

Corollary 2.6.6. Let (δ, ρ) ∈ (0, 1)2 and let A be a matrix of size n × N whose entries are

drawn i.i.d. from N(0, 1/n). Define LBT (δ, ρ) := 1−λmin(δ, ρ), where λmin(δ, ρ; γ) is the solution

of (2.7) for each γ ∈ [ρ, δ−1] and λmin(δ, ρ) := min
γ
λmin(δ, ρ; γ). Then for any ǫ > 0, in the

proportional-growth asymptotic

Prob
(
L(k, n,N ;A) > L

BT (δ, ρ) + ǫ
)
→ 0

exponentially in n. �
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Chapter 3

Asymptotic Expansion of RIC2 for

Gaussian Matrices

3.1 Introduction

In Chapter 2 we showed thatRIC2 bounds for Gaussian matrices have been derived [6, 19, 33]

focusing on the linear growth asymptotics given by Definition 2.1.1, i.e. limits k/n→ ρ ∈ (0, 1)

and n/N → δ ∈ (0, 1) as (k, n,N) → ∞, see Theorems 2.2.2, 2.2.4 and 2.3.2. Unfortunately,

these bounds are given in terms of implicitly defined functions, see Definitions 2.2.3 and 2.3.1,

obscuring their dependence on ρ and δ.

Here, we present simple expressions which bound the RIC2 of Gaussian matrices in three

asymptotic settings: (a) δ ∈ (0, 1) and ρ≪ 1 where the RIC2 converge to zero as ρ approaches

zero, (b) ρ ∈ (0, 1) and δ ≪ 1 where the upper RIC2 become unbounded and the lower RIC2

converges to its bound of one as δ approaches zero, and (c) along the path ργ(δ) =
1

γ log(δ−1)

for δ ≪ 1 where the RIC2 approach a nonzero constant as δ approaches zero.

The Chapter 1 is outlined as follows. In Section 3.2 we present the asymptotic formulae for

the bounds and in Section 3.3 we discuss the implication of these formulae to CS. We demon-

strate the accuracy of the formulae in Section 3.4 and in Section 3.5 we prove CS corollaries

presented in Section 3.3. We conclude the chapter with the proofs of the main results, Theorems

3.2.1 - 3.2.3 and Corollary 3.2.4, in Section 3.6.

3.2 Asymptotic Formulae for RIC2 Bounds

The bounds presented here build on the results in [19] and are specific to Gaussian matrices,

carefully balancing combinatorial quantities with the tail behaviour of the largest and smallest

1Material in this chapter has been prepared for publication and in preprint [7] in a joint authorship with J.
Tanner whose permission has been obtained for the inclusion of the material.
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singular values of Gaussian matrices. The specificity of these bounds to Gaussian matrices

gives great accuracy than what subgaussian tail bounds provide [12]. A similar analysis could

be conducted for the subgaussian case by considering the bounds in [39] stated for the Gaussian

case, but which are equally valid for the subgaussian case. For brevity we do not consider the

subgaussian case here.

In the analysis that follow we use Theorem 2.2.4 and Definition 2.2.3 from the BCT bounds

in Chapter 2. We used the BCT bounds because in these types of values of δ and ρ they are

easier to compute than our (BT) bounds and the fact is, in these regime of δ and ρ, our bounds

are the same as the BCT bounds. Note that in Definition 2.2.3 we have the upper RIC2 bound

defined as U(δ, ρ) := minν∈[ρ,1] λ
max(δ, ν)− 1, without the superscript and subscript BCT. Due

to the overestimation that occurs when δρ ≈ 1/2 the minimum occurs at ν ∈ (ρ, 1]. In the

range of values of δ and ρ considered here we will always have the minimum occurring at ν = ρ

hence U(δ, ρ) := λmax(δ, ρ)− 1, which is what we use in the ensuing derivations.

Theorem 2.2.4 states that, for k, n, and N large, it is unlikely that the RIC2 exceed the

constants L (δ, ρ) and U (δ, ρ) by more than any ǫ. In the limit where n/N = δn → δ ∈ (0, 1)

and k/n = ρn → ρ ≪ 1, the RIC2 converge to zero, causing the resulting bounds to become

vacuous. Theorem 3.2.1 states the dominant terms in the bounds, and that the true RIC2 are

unlikely to exceed these bounds by a multiplicative factor (1 + ǫ) for any ǫ > 0. The dominant

terms can be contrasted with 2
√
ρ+ ρ which is the deviation from one of the expected value of

the extreme eigenvalues of a Wishart matrix stated in Lemma 1.2.16 in Chapter 1.

Each of Theorems 3.2.1 – 3.2.3 state that the probability under consideration converge

exponentially to 1 in k or n which we use as a shorthand for saying one minus the probability

considered being bounded by a function decaying exponentially to zero in the variable stated;

the explicit bound is given in the proof of the theorem. An implication of Theorem 3.2.1 for

the compressed sensing algorithm, Orthogonal Matching Pursuit (OMP), is given in Corollary

3.3.2; while an implication of Theorem 3.2.3 for other compressed sensing algorithms is given

in Corollary 3.3.1.

Theorem 3.2.1 (Gaussian RIC2 Bounds: ρ≪ 1). Let Ũρ(δ, ρ) and L̃ρ(δ, ρ) be defined as

L̃ρ(δ, ρ) = Ũρ(δ, ρ) =

√

2ρ log

(
1

δ2ρ3

)
+ cρ. (3.1)

Fix ǫ > 0 and c > 6. For each δ ∈ (0, 1) there exists a ρ0 > 0 such that in the limit where

n
N → δ, k

n → ρ ∈ (0, ρ0), and
logn
k → 0 as k → ∞, sample each n × N matrix A from the

Gaussian ensemble, N
(
0, 1

n

)
, then

Prob
(
L(k, n,N ;A) < (1 + ǫ)L̃ρ (δ, ρ)

)
→ 1 & Prob

(
U(k, n,N ;A) < (1 + ǫ)Ũρ (δ, ρ)

)
→ 1

exponentially in k.
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Theorem 3.2.2 considers a limiting case where the upper RIC2 diverges and the lower RIC2

converges to its bound of one. With L(k, n,N ;A) converging to one, it is bounded by an arbi-

trarily small multiplicative constant, whereas U(k, n,N ;A) is bounded by an additive constant.

Theorem 3.2.2 (Gaussian RIC2 Bounds: δ ≪ 1). Let Ũδ(δ, ρ) and L̃δ(δ, ρ) be defined as

Ũ
δ(δ, ρ) = ρ log

(
1

δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ 3ρ, (3.2)

L̃δ(δ, ρ) = 1− exp

(
−3ρ+ c

1− ρ

)
·
(
δ2ρ3

) ρ
1−ρ . (3.3)

Fix ǫ > 0 and c > 1. For each ρ ∈ (0, 1) there exists a δ0 > 0 such that in the limit where

k
n → ρ, n

N → δ ∈ (0, δ0) as n→ ∞, sample each n×N matrix A from the Gaussian ensemble,

N
(
0, 1

n

)
, then

Prob
(
L(k, n,N ;A) < (1 + ǫ)L̃δ (δ, ρ)

)
→ 1 and Prob

(
U(k, n,N ;A) < Ũδ (δ, ρ) + ǫ

)
→ 1

exponentially in n.

Theorem 3.2.3 considers the path in which both ρn and δn converge to zero, but in such a

way that the RIC2 approach nonzero constants. This path is of particular interest in applica-

tions where RIC2 are required to remain bounded, but where the most extreme advantages of

the method are achieved for one of the quantities approaching zero. For example, compressed

sensing achieves increased gains in undersampling as δn decreases to zero; however, all com-

pressed sensing algorithmic guarantees involving RIC2 require the RIC2 to remain bounded.

The limit considered in Theorem 3.2.3 provides explicit formula for these algorithms in the case

where the undersampling is greatest, see Corollary 3.3.1.

Theorem 3.2.3 (Gaussian RIC2 Bounds: ρn → (γ log(1/δn))
−1 and δ ≪ 1). Consider that we

let ργ(δ) =
1

γ log(δ−1) and Ũγ (δ, ργ(δ)) and L̃γ (δ, ργ(δ)) are defined as

Ũγ (δ, ργ(δ)) =

√
2ργ(δ) log

(
1

δ2ρ3γ(δ)

)
+ 6ργ(δ) + cu

[
2ργ(δ) log

(
1

δ2ρ3γ(δ)

)
+ 6ργ(δ)

]
(3.4)

L̃γ (δ, ργ(δ)) =

√
2ργ(δ) log

(
1

δ2ρ3γ(δ)

)
+ 6ργ(δ)− cl

[
ργ(δ) log

(
1

δ2ρ3γ(δ)

)
+ 6ργ(δ)

]
. (3.5)

Fix γ > γ0 (which γ0 ≥ 4), ǫ > 0, cu > 1/3 and cl < 1/3. There exists a δ0 > 0 such that in

the limit where k
n → ργ(δ0),

n
N → δ ∈ (0, δ0) as n→ ∞, sample each n×N matrix A from the

Gaussian ensemble, N
(
0, 1

n

)
, then

Prob
(
L(k, n,N ;A) < L̃

γ (δ, ργ(δ)) + ǫ
)
→ 1 and Prob

(
U(k, n,N ;A) < Ũ

γ (δ, ργ(δ)) + ǫ
)
→ 1

exponentially in n.
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Theorem 3.2.3 considers the path ργ(δ) for δ ≪ 1; passing to the limit as δ → 0, the

functions Ũγ (δ, ργ(δ)) and L̃γ (δ, ργ(δ)) defined as (3.4) and (3.5) converge to simple functions

of γ.

Corollary 3.2.4 (Gaussian RIC2 Bounds: ρn → (γ log(1/δn))
−1 as δ → 0). Consider that

Ũγ (δ, ργ(δ)) and L̃γ (δ, ργ(δ)) are defined as in (3.4) and (3.5), respectively, with ργ(δ) =

1
γ log(δ−1) . Then

lim
δ→0

Ũ
γ (δ, ργ(δ)) =

2√
γ
+

4

γ
cu (3.6)

lim
δ→0

L̃γ (δ, ργ(δ)) =
2√
γ
− 4

γ
cl. (3.7)

The accuracy of Theorems 3.2.1 - 3.2.3 and Corollary 3.2.4 are discussed in Section 3.4 and

proven in Section 3.6.

3.3 Implications for Compressed Sensing

We remind the reader that the theory of compressed sensing has developed conditions in which

a vector of interest x, or an approximation thereof, can be recovered. Most remarkably, for any

fixed ratio n
N , the recovery guarantees achieve the optimal order of the number of measurements

being proportional to the information content in x (n proportional to k), see Section 2.5.1.

Furthermore, in compressed sensing the recovery algorithms remain effective for k
n decaying

slowly as the number of measurements becomes vanishingly small compared to the signal length,

n
N → 0. In fact, it is known that ρalg(δ) becomes proportional to 1

log(δ−1) as δ → 0. This

constant of proportionality can be deduced from Theorem 3.2.3; the resulting sampling theorems

for representative compressed sensing algorithms are stated in Corollary 3.3.1 for cu = cl = 1/3.

Corollary 3.3.1. Given a sensing matrix, A, of size n × N whose entries are drawn i.i.d.

from N(0, 1
n ), in the limit as n

N → 0 a sufficient condition for recovery for compressed sensing

algorithms is n ≥ γk log
(
N
n

)
measurements with γ = 37 for l1-minimization [37], γ = 96 for

Iterative Hard Thresholding (IHT) [25], γ = 279 for Subspace Pursuit (SP) [50] and γ = 424

for Compressed Sampling Matching Pursuit (CoSaMP) [109].

Orthogonal Matching Pursuit (OMP)

Not all compressed sensing algorithms achieve the optimal order of k being proportional to n.

One such algorithm is Orthogonal Matching Pursuit (OMP) [143, 138], which has recently been

analysed using RIC2, see [106] and references therein. OMP like the earlier greedy algorithms

discussed in Section 2.5.1, iteratively identifies the correct support set by adding one index to

the support and updating the target vector x̂ as the vector supported on the target support

that best fits the measurements. Algorithm 4 of Table 3.1 is a pseudocode of OMP.
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Input: A, y, k
Output: k-sparse approximation x̂ of the target signal x
Initialization:
1. Set Λ0 = ∅
2. Set r0 = y

Iteration: During iteration l, do

1. Find λl = argmaxj=1,...,N |〈rl−1, aj〉| where aj is the jth column of A
1. Augment Λl = Λl−1 ∪ {λl}
2. Solve x̃l = argminx ‖y −AΛlx‖2
3. Calculate new approximation of data as ỹl = AΛl x̃l, and new residual as rl = y − ỹl

5. if l = k then
6. return x̂ defined by x̂{1,...,N}\Λl = 0 and x̂Λl = x̃Λl

7. else
8. Perform iteration l + 1
9. end if

Table 3.1: Algorithm 4 – Orthogonal Matching Pursuit (OMP) [143].

An analytic asymptotic sampling theorem for OMP can be deduced from Theorem 3.2.1,

see Corollary 3.3.2.

Corollary 3.3.2. Given a sensing matrix, A, of size n × N whose entries are drawn i.i.d.

from N(0, 1
n ), in the limit as n

N → δ ∈ (0, 1) a sufficient condition for recovery for Orthogonal

Matching Pursuit (OMP) is

n > 2k(k − 1)[3 + 2 logN + logn− 3 log k].

3.4 Accuracy of Main Results (Formulae)

This section discusses the accuracy of Theorems 3.2.1 - 3.2.3 and Corollary 3.2.4, comparing the

expressions with the bounds in Theorem 2.2.4, which are defined [19] implicitly in Definition

2.2.3. Therefore, in the ensuing discussion on the accuracy of our results U(δ, ρ) = UBCT (δ, ρ)

and L(δ, ρ) = LBCT (δ, ρ).

Theorems 3.2.1 - 3.2.3 are discussed in Sections 3.4.1 - 3.4.3 respectively. Each section

includes plots illustrating the formulae and relative difference in the relevant regimes. The

discussion of Corollary 3.2.4 is included in Section 3.4.3. This Section concludes with proofs of

the compressed sensing sampling theorems discussed in Section 3.3.

3.4.1 Theorems 3.2.1: δ fixed and ρ ≪ 1

Figure 3.1, left panel, displays the bounds U(δ, ρ) and L(δ, ρ) from Theorem 2.2.4 for δ =

0.25, c = 6 and ρ ∈ (10−10, 10−1). This is the regime of Theorem 3.2.1 and the formula

(3.1) is also displayed. Formula (3.1) is observed to accurately approximate U(δ, ρ) and L(δ, ρ)

respectively in both an absolute and relative scale, in the left and right panel of Figure 3.1
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respectively.
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Figure 3.1: RIC2 bounds for δ = 0.25, c = 6 and ρ ∈ (10−10, 10−1). Left panel: U(δ, ρ), L(δ, ρ),

Ũρ(δ, ρ) and L̃ρ(δ, ρ). Right panel: relative differences, |U(δ,ρ)−Ũ
ρ(δ,ρ)|

U(δ,ρ) and |L(δ,ρ)−L̃
ρ(δ,ρ)|

L(δ,ρ) .

3.4.2 Theorems 3.2.2: ρ fixed and δ ≪ 1

Figure 3.2 displays the bounds U(δ, ρ) and L(δ, ρ) from Theorem 2.2.4 along with the formulae

(3.2) and (3.3) of Theorem 3.2.2 in the left and right panels respectively; for diversity the upper

RIC2 bound is shown for ρ = 0.5 and the lower RIC2 bound for ρ = 0.1, in both instances

δ ∈ (10−50, 10−1) and c = 1. This is the regime of ρ fixed and δ ≪ 1 where the upper RIC2

diverges to infinity and the lower RIC2 converges to its trivial unit bound as δ approaches zero.

The bounds of Theorem 3.2.2 are observed to accurately approximate U(δ, ρ) and L(δ, ρ) in

both an absolute and relative scale, in Figure 3.2 and 3.3 respectively.
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Figure 3.2: RIC2 bounds for δ ∈ (10−50, 10−1) and c = 1. Left panel: U(δ, ρ) and Ũδ(δ, ρ) for

ρ = 0.5. Right panel: L(δ, ρ) and L̃δ(δ, ρ) for ρ = 0.1.

3.4.3 Theorems 3.2.3: ρ = (γ log(1/δ))−1 and δ ≪ 1

The left panel of Figure 3.4 displays the bounds U(δ, ρ) and L(δ, ρ) from Theorem 2.2.4 along

with the formulae (3.4) and (3.5) of Theorem 3.2.3 for cu = cl = 1/3, γ = 300 and δ ∈
(10−80, 10−1). The formulae of Theorem 3.2.3 are observed to accurately approximate the
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Figure 3.3: Relative difference in RIC2 bounds for δ ∈ (10−50, 10−1) and c = 1. Left panel:
|U(δ,ρ)−Ũ

δ(δ,ρ)|
U(δ,ρ) for ρ = 0.5. Right panel: |L(δ,ρ)−L̃

δ(δ,ρ)|
L(δ,ρ) for ρ = 0.1.

bounds in Theorem 2.2.4 over the entire range of δ; the relative differences between these

bounds are displayed in the right panel of Figure 3.4.
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Figure 3.4: A comparison of Ũγ(δ, ργ (δ)) and L̃γ(δ, ργ (δ)) to U(δ, ρ) and L(δ, ρ) respectively

for cu = cl = 1/3, γ = 300 and δ ∈ (10−80, 10−1). Left panel: Ũγ(δ, ργ (δ)), U(δ, ρ),

L̃γ(δ, ργ (δ)), and L̃γ(δ, ργ (δ)). Right panel: their relative differences
|U(δ,ρ)−Ũ

γ(δ,ργ(δ))|
U(δ,ρ) and

|L(δ,ρ)−L̃
γ(δ,ργ(δ))|

L(δ,ρ) .

The left panel of Figure 3.4 shows the RIC2 bounds converging to nonzero constants as δ

approaches zero, displayed for cu = cl = 1/3 and γ = 300. Corollary 3.2.4 provides formula

for δ ≪ 1, which is observed in Figure 3.5 to accurately approximate the formulae in Theorem

3.2.3 for cu = cl = 1/3 and δ = 10−80, uniformly over γ ∈ (1, 300).

3.5 Proof of Compressed Sensing Corollaries

Corollaries 3.3.1 and 3.3.2 follow directly from Theorems 3.2.3 and 3.2.1 and existing RIC2

based recovery guarantees for the associated algorithms in [20] and [106] respectively.
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Figure 3.5: Plots of the Ũγ(δ, ργ (δ))

and L̃γ(δ, ργ (δ)) as well as fu(γ) and
fl(γ) given by (3.6) and (3.7) respec-
tively, for cu = cl = 1/3, δ = 10−80

and γ ∈ (1, 300).
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Ũγ (δ, ργ(δ))

L̃γ (δ, ργ(δ))
fu(γ)
fl(γ)

3.5.1 Proof of Corollary 3.3.1

Proof. There is an extensive literature on compressed sensing and sparse approximation algo-

rithms which are guaranteed to recover vectors x̂ that satisfy bounds of the form ‖x − x̂‖2 ≤
Const · ‖e‖2 from y = Ax provided the RIC2 of A are sufficiently small. The article [20] pro-

vides a framework by which RIC2 bounds can be inserted into the recovery conditions, and

compressed sensing sampling theorems can be calculated from the resulting equations. Theo-

rem 3.2.3 establishes valid bounds on the RIC2 of Gaussian matrices in the regime considered

in Corollary 3.3.1. The claims stated in Corollary 3.3.1 follow directly from substituting the

RIC2 bounds of Theorem 3.2.3 into Theorems 2.5.3 – 2.5.5 in Section 2.5.1 originally given as

Theorem 10-13 in [20] and solving for the minimum γ that satisfies the stated theorems; the

calculated values of γ have been rounded up to the nearest integer for ease of presentation.

Nearly identical values of γ can be calculated using the equations from Corollary 3.2.4 rather

than the more refined equations in Theorem 3.2.3.

3.5.2 Proof of Corollary 3.3.2

Proof. It has been recently shown that Orthogonal Matching Pursuit (OMP) is guaranteed to

recover any k-sparse vector from its exact measurements provided, [106],

max(L(k, n,N ;A), U(k, n,N ;A)) <
1√
k − 1

. (3.8)

The claimed sampling theorem is obtained by substituting the bound from Theorem 3.2.1 for

max(L(k, n,N ;A), U(k, n,N ;A)) and solving for n.

3.6 Proofs of Theorems 3.2.1 - 3.2.3 and Corollary 3.2.4

The proof of Theorems 3.2.1 - 3.2.3 are based upon the previous analysis in [19, 6], differing in

the asymptotic limits considered. We need the following definition for the proofs.

Definition 3.6.1. Using Definition 2.2.3, ψmin(λ, ρ) and ψmax(λ, ρ) are given in (2.2) and
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(2.3) and λmin(δ, ρ) and λmax(δ, ρ) are the solutions to (2.4) and (2.5), respectively, where H(·)
is the Shannon Entropy function with base e logarithms given in (1.2), we define

Ψmin (λ, δ, ρ) := ψmin(λ
min(δ, ρ), ρ) + δ−1H(δρ) = 0 (3.9)

Ψmax (λ, δ, ρ) := ψmax(λ
max(δ, ρ), ρ) + δ−1H(δρ) = 0 (3.10)

Recall that the quantities ψmin(λ, ρ) and ψmax(λ, ρ) in Definition 2.2.3, and hence Definition

3.6.1, are the large deviation exponents of the lower tail probability density function of the

smallest eigenvalue and the upper tail probability density function of the largest eigenvalue

of Wishart matrices, respectively. The Ψmin (λ, δ, ρ) and Ψmax (λ, δ, ρ) in (3.9) and (3.10),

respectively, include a Shannon entropy term from a union bound of the
(
N
k

)
submatrices with

k columns. The level curve of Ψmin (λ, δ, ρ) and Ψmax (λ, δ, ρ) defines the transition which for δ

and ρ fixed it becomes exponentially unlikely that the smallest eigenvalue is less that λmin(δ, ρ)

and the largest eigenvalue is less than λmax(δ, ρ).

The analysis here builds upon the following large deviation bounds on the probability of

the sparse eigenvalues exceeding specified values [19, 6]. With L(k, n,N ;A) and U(k, n,N ;A)

defined as in (1.4) and (1.3), respectively, and the definition of Ψmax (λ(δ, ρ), δ, ρ) in (3.9) and

Ψmin (λ(δ, ρ), δ, ρ) in (3.10) these bounds are as follows:

Prob

(
max

K⊂Ω,|K|=k
λmax(A∗

KAK) > λ

)
≤ poly(n, λ) · exp (2n ·Ψmax (λ, δ, ρ)) , (3.11)

and

Prob

(
min

K⊂Ω,|K|=k
λmin(A∗

KAK) > λ

)
≤ poly(n, λ) · exp (2n ·Ψmin (λ, δ, ρ)) , (3.12)

where poly(z) is a (possibly different) polynomial function of its arguments, for explicit for-

mulae see [6]. Theorems 3.2.1 - 3.2.3 follow by proving that for the claimed bounds, the large

deviation exponents nΨmax (λ(δ, ρ), δ, ρ) and nΨmin (λ(δ, ρ), δ, ρ) diverge to −∞ as the prob-

lem size increases, and do so at a rate sufficiently fast to ensure an overall exponential decay.

In addition to establishing the claims of Theorems 3.2.1-3.2.3, we also show that the bounds

presented in these theorems cannot be improved upon using the inequalities (3.11) and (3.12),

they are in fact sharp leading order asymptotic expansions of the bounds in Theorem 2.2.4.

Throughout the proofs of Theorems 3.2.1-3.2.3 we will be using the following bounds for

the Shannon entropy function in (1.2)

H(x) < −x log x+ x, and

H(x) > −x log x+ x− x2; (3.13)
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the upper bound follows from (3.14) and the lower bound follows from (3.15),

−(1− x) log(1− x) <x ∀x ∈ (0, 1), (3.14)

− log(1− x) >x ∀x < 1 and x 6= 0. (3.15)

3.6.1 Theorem 3.2.1

The Upper Bound, Ũρ(δ, ρ)

Proof. Define

λ̃max
ρ (δ, ρ) := 1 +

√

2ρ log

(
1

δ2ρ3

)
+ cρ, ⇒ Ũρ(δ, ρ) = λ̃max

ρ (δ, ρ)− 1

as from (3.1). Bounding Ũρ(δ, ρ) from above by (1 + ǫ)Ũρ(δ, ρ) is equivalent to bounding λ̃max
ρ

from above by (1 + ǫ)λ̃max
ρ − ǫ. We first establish that for a slightly looser bound, with c > 6,

the exponent Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)
is negative, and then verify that when multiplied by

n it diverges to −∞ as n increases. We also show that for a slightly tighter bound, with c < 6,

Ψmax

(
(1− ǫ)λ̃max

ρ + ǫ, δ, ρ
)
is positive, and hence the bound Ũρ(δ, ρ) cannot be improved using

the inequality (3.11) from [19]. We show the above properties, in two parts that for δ fixed:

1. ∃ ρ0, ǫ > 0 and c > 6 such that for ρ < ρ0,Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)
≤ 0;

2. ∄ ρ0, ǫ > 0 and c < 6 such that for ρ < ρ0,Ψmax

(
(1− ǫ)λ̃max

ρ + ǫ, δ, ρ
)
≤ 0,

which are proven below separately as Part 1 and Part 2 respectively.

Part 1:

2Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)
= (1 + ρ) log

(
(1 + ǫ)λ̃max

ρ − ǫ
)

− ρ log(ρ) + ρ+ 1−
(
(1 + ǫ)λ̃max

ρ − ǫ
)
+

2

δ
H(δρ), (3.16)

by substituting (1+ǫ)λ̃max
ρ −ǫ for λ in (3.10). We consolidate notation using u := λ̃max

ρ −1

and using the first bounds of the Shannon entropy in (3.13) we bound (3.16) above as

follows

2Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)

< (1 + ρ) log [(1 + ǫ)(1 + u)− ǫ]− ρ log ρ+ ρ+ 1− (1 + ǫ)(1 + u)

+ ǫ+
2

δ
[−δρ log (δρ) + δρ] (3.17)

= (1 + ρ) log [1 + (1 + ǫ)u] + ρ log

(
1

δ2ρ3

)
+ ρ− u− ǫu+ 2δρ. (3.18)

From (3.17) to (3.18) we expand the products of (1 + ǫ)(1 + u) and simplify.
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Now replacing ρ log
(

1
δ2ρ3

)
by its equivalent 1

2

(
u2 − cρ

)
and expanding (1+ρ) in the first

term we bound (3.18) by

2Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)

< log (1 + u+ ǫu) + ρ log (1 + u+ ǫu) +
1

2

(
u2 − cρ

)
+ 3ρ− u− ǫu (3.19)

= log(1 + u) + log

(
1 +

ǫu

1 + u

)
+

1

2
u2 − 1

2
cρ+ 3ρ− u− ǫu

+ ρ log (1 + u) + ρ log

(
1 +

ǫu

1 + u

)
(3.20)

< u− 1

2
u2 +

1

3
u3 +

ǫu

1 + u
+

1

2
u2 − 1

2
(c− 6)ρ− u− ǫu+ ρu+

ǫρu

1 + u
. (3.21)

From (3.19) to (3.20) the term log(1+ u+ ǫu) is factored as in the first two logarithms in

(3.20). From (3.20) to (3.21) we bound the first log(1 + u) from above using the second

bound in (3.22) and bound above all other logarithmic terms using the first bound in

(3.22).

log(1 + x) ≤ x, (3.22)

log(1 + x) ≤ x− 1

2
x2 +

1

3
x3 ∀x > −1.

We can bound above 1
1+u in the fourth and last terms of (3.21) using the bound of (3.23)

below.

1

1 + x
< 1 for 0 < x < 1. (3.23)

Therefore, (3.21) becomes

2Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)
<

1

3
u3 − 1

2
(c− 6)ρ− ǫu+ ǫu+ ρu+ ǫρu (3.24)

= −1

2
(c− 6)ρ+

1

3
u3 + (1 + ǫ)ρu (3.25)

< −1

4
(c− 6)ρ− 1

4
(c− 6)ρ+

1

3
u3 +

1

14
(1 + ǫ)u3 (3.26)

= −1

4
(c− 6)ρ− 1

4
(c− 6)ρ+

17 + 3ǫ

42
u3. (3.27)

We simplify (3.24) to get (3.25). From (3.25) to (3.26) we split the first term into half

and bound above ρu by 1
14u

2 using the fact that by the definition of u,

u2 = ρ

[
2 log

(
1

δ2ρ3

)
+ 7

]
⇒ 1

4 log
(

1
δ2ρ3

)u2 < ρ <
1

14
u2.

Then we simplify from (3.26) to (3.27).
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Now in (3.27), if the sum of the last two terms is non-positive there would be a unique ρ0

such that as ρ→ 0 for any ρ < ρ0 and fixed δ (3.27) will be negative. This is achieved if

c > 6 and

−1

4
(c− 6)ρ+

17 + 3ǫ

42
u3 ≤ 0 ⇒ u3 ≤ 21(c− 6)

2(17 + 3ǫ)
ρ. (3.28)

Since u is strictly decreasing in ρ, there is a unique ρ0 that satisfies (3.28) and makes

(3.27) negative for δ fixed, ǫ > 0, c > 6 and ρ < ρ0 as ρ→ 0.

Having established a negative bound from above and the ρ0 for which it is valid, it remains

to show that n · 2Ψmax

(
(1 + ǫ)λ̃max

ρ − ǫ, δ, ρ
)
→ −∞ as (k, n,N) → ∞. The claimed

exponential decay with k follows by noting that n · ρ = k, which in conjunction with the

first term in the right hand side of (3.27) gives a concluding bound − 1
4 (c−6)k. For ρ < ρ0

therefore

Prob
(
U(k, n,N ;A) > (1 + ǫ)Ũρ(δ, ρ)

)
≤ poly

(
n, (1 + ǫ)λ̃max

ρ − ǫ
)
· exp

[
− (c− 6)k

4

]
.

The above bound goes to zero as k → ∞ provided logn
k → 0 so that the exponential decay

in k dominates the polynomial decrease in n.

Part 2:

2Ψmax

(
(1 − ǫ)λ̃max

ρ + ǫ, δ, ρ
)
= (1 + ρ) log

(
(1− ǫ)λ̃max

ρ + ǫ
)

− ρ log(ρ) + ρ+ 1−
(
(1− ǫ)λ̃max

ρ + ǫ
)
+

2

δ
H(δρ), (3.29)

by substituting (1−ǫ)λ̃max
ρ +ǫ for λ in (3.10). We consolidate notation using u := λ̃max

ρ −1

and bound the Shannon entropy function from below using the second bound in (3.13) to

give

2Ψmax

(
(1 − ǫ)λ̃max

ρ + ǫ, δ, ρ
)

> (1 + ρ) log [(1 − ǫ)(1 + u) + ǫ]− ρ log ρ+ ρ+ 1− (1− ǫ)(1 + u)

− ǫ+
2

δ

[
−δρ log (δρ) + δρ− δ2ρ2

]
(3.30)

= (1 + ρ) log [1 + (1 − ǫ)u] + ρ log

(
1

δ2ρ3

)
+ 3ρ− (1 − ǫ)u− 2δρ2. (3.31)

From (3.30) to (3.31) we expand the products of (1− ǫ)(1 + u) and simplify.

Now replacing ρ log
(

1
δ2ρ3

)
by 1

2

(
u2 − cρ

)
and expanding (1+ρ) in the first term we have

(3.31) become
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2Ψmax

(
(1− ǫ)λ̃max

ρ + ǫ, δ, ρ
)

> log [1 + (1− ǫ)u] + ρ log [1 + (1− ǫ)u] +
1

2

(
u2 − cρ

)
+ 3ρ

− (1 − ǫ)u− 2δρ2 (3.32)

> (1 − ǫ)u− (1− ǫ)2

2
u2 +

1

2
u2 − 1

2
cρ+ 3ρ− (1− ǫ)u+ ρ(1− ǫ)u

− (1 − ǫ)2

2
ρu2 − 2δρ2 (3.33)

=
ǫ(2− ǫ)

2
u2 +

1

2
(6− c)ρ+ ρu− ǫρu− (1 − ǫ)

2
ρu− 2δρ2 (3.34)

>
1

2
(6− c)ρ+

1− ǫ

2
ρu− 2δρ2. (3.35)

From (3.32) to (3.33) we bound below the logarithmic terms by the first two terms of

their series expansion using (3.36)

log(1 + x) ≥ x− 1

2
x2 ∀x > −1. (3.36)

From (3.33) to (3.34) we bound above ρu2 and (1− ǫ)2 by ρu and 1− ǫ, respectively and

simplify. Then we dropped the first term to bound below (3.34) by (3.35) and we simplify

the terms with ρu.

For c < 6, the only negative term in (3.35), the last term, goes faster to zero than the

rest. Therefore, there does not exist a ρ0, ǫ > 0 and c < 6 such that for ρ < ρ0 and fixed

δ (3.35) is negative. Thus the bound

Prob
(
U(k, n,N ;A) > (1− ǫ)Ũρ(δ, ρ)

)

≤ poly
(
n, (1− ǫ)λ̃max

ρ + ǫ
)
· exp

[
2nΨmax

(
(1− ǫ)λ̃max

ρ + ǫ, δ, ρ
)]
,

does not decay to zero as n→ ∞.

Now Part 1 and Part 2 put together shows that Ũρ(δ, ρ) is a tight upper bound of

U(k, n,N ;A) with overwhelming probability as the problem size grows in the regime prescribed

for Ũρ(δ, ρ) in Theorem 3.2.1.

The Lower Bound, L̃ρ(δ, ρ)

Proof. Define

λ̃min
ρ (δ, ρ) := 1−

√

2ρ log

(
1

δ2ρ3

)
+ cρ, ⇒ L̃ρ(δ, ρ) = 1− λ̃min

ρ (δ, ρ)
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as from (3.1). Since bounding L̃ρ(δ, ρ) above by (1 + ǫ)L̃ρ(δ, ρ) is equivalent to bounding λ̃min
ρ

above by (1 + ǫ)λ̃min
ρ − ǫ. We first establish that for a slightly looser bound, with c > 6,

the exponent Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)
, and then verify that when multiplied by n it di-

verges to −∞ as n increases. We also show that for a slightly tighter bound, with c < 6,

Ψmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)
is positive, and hence the bound L̃ρ(δ, ρ) cannot be improved using

the inequality (3.12) from [19]. We show, in two parts that for δ fixed:

1. ∃ ρ0, ǫ > 0 and c > 6 such that for ρ < ρ0,Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)
≤ 0;

2. ∄ ρ0, ǫ > 0 and c < 6 such that for ρ < ρ0,Ψmin

(
(1 − ǫ)λ̃min

ρ + ǫ, δ, ρ
)
≤ 0,

which are proven separately in the two parts as follows.

Part 1:

2Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)
= 2H(ρ) + (1− ρ) log

(
(1 + ǫ)λ̃min

ρ − ǫ
)

+ ρ log(ρ)− ρ+ 1−
(
(1 + ǫ)λ̃min

ρ − ǫ
)
+

2

δ
H(δρ), (3.37)

by substituting (1+ ǫ)λ̃min
ρ − ǫ for λ in (3.9). We consolidate notation using l := 1− λ̃min

ρ

and bound the Shannon entropy functions from above using the first bound in (3.13)

which gives

2Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)

< −2ρ log (ρ) + 2ρ+ (1− ρ) log [(1 + ǫ)(1 − l)− ǫ] + ρ log ρ

− ρ+ 1− (1 + ǫ)(1− l) + ǫ− 2ρ log (δρ) +
2

δ
(δρ) (3.38)

= (1− ρ) log (1− l − ǫl) + ρ log

(
1

δ2ρ3

)
+ 3ρ+ l + ǫl. (3.39)

We simplify from (3.38) to (3.39).

Now replacing ρ log
(

1
δ2ρ3

)
by 1

2

(
l2 − cρ

)
and factoring (1− l) in the argument of the first

logarithmic term we have (3.39) become

2Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)

< (1− ρ) log(1− l) + (1− ρ) log

(
1− ǫl

1− l

)
+

1

2

(
l2 − cρ

)
+ 3ρ+ l + ǫl (3.40)

< l + log(1− l) +
1

2
l2 − 1

2
cρ+ 3ρ− ρ log(1 − l) + ǫl− (1 − ρ)

ǫl

1− l
(3.41)

< l − l− 1

2
l2 +

1

2
l2 − 1

2
(c− 6)ρ− ρ log(1− l) + ǫl − ǫl(1− ρ) (3.42)

= −1

2
(c− 6)ρ− ρ log(1− l) + ǫl − ǫl+ ǫρl (3.43)

= −1

4
(c− 6)ρ− 1

4
(c− 6)ρ− ρ log(1− l) + ǫρl. (3.44)
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From (3.40) to (3.41) we expand (1−ρ) and we bound above the second logarithmic term

using the first bound of (3.45).

log(1− x) ≤ −x, (3.45)

log(1− x) ≤ −x− 1

2
x2,

log(1− x) ≤ −x− 1

2
x2 − 1

3
x3 ∀x ∈ (0, 1).

From (3.41) to (3.42) we bound above the first logarithmic term using the second bound

of (3.45) and also bound 1
1−l using (3.46).

1

1− x
≥ 1 ∀x ∈ (0, 1). (3.46)

From (3.42) to (3.43) we expand the last brackets and simplify and from (3.43) to (3.44)

we simplify and split the first term into two equal terms.

Equation (3.44) is clearly negative if c > 6 and the sum of the last three terms is non-

positive, which is satisfied if ǫl − log(1 − l) ≤ (c − 6)/4, which is also true if, using the

first bound in (3.22), (1 + ǫ)l ≤ (c − 6)/4. Since l is strictly increasing in ρ, taking on

values between zero and 1, there is a unique ρ0 such that for fixed δ, ǫ > 0 and c > 6, any

ρ < ρ0 satisfies (1 + ǫ)l ≤ (c− 6)/4 and (3.44) is negative.

Having established a negative bound from above and the ρ0 for which it is valid, it remains

to show that n · 2Ψmin

(
(1 + ǫ)λ̃min

ρ − ǫ, δ, ρ
)
→ −∞ as (k, n,N) → ∞, which verifies

an exponential decay to zero of the bound (3.12) with k. This follows by noting that

n · ρ = k, which in conjunction with the first term in the right hand side of (3.44) gives a

concluding bound − 1
4 (c− 6)k. For ρ < ρ0 therefore

Prob
(
L(k, n,N ;A) > (1 + ǫ)L̃ρ(δ, ρ)

)
≤ poly

(
n, (1 + ǫ)λ̃min

ρ − ǫ
)
· exp

[
− (c− 6)k

4

]
.

The right hand side of which goes to zero as k → ∞ with logn
k → 0 as k → ∞ so that the

exponential decay in k dominates the polynomial decrease in n.

Part 2:

2Ψmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)
= 2H(ρ) + (1 − ρ) log

(
(1 − ǫ)λ̃min

ρ + ǫ
)

+ ρ log(ρ)− ρ+ 1−
(
(1− ǫ)λ̃min

ρ + ǫ
)
+

2

δ
H(δρ), (3.47)

by substituting (1− ǫ)λ̃min
ρ + ǫ for λ in (3.9). We consolidate notation using l := 1− λ̃min

ρ

and bound the Shannon entropy function from below using the second bound in (3.13) to
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give

2Ψmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)

> 2
[
−ρ log ρ+ ρ− ρ2

]
+ (1 − ρ) log [(1− ǫ)(1− l) + ǫ] + ρ log ρ− ρ

+ 1− (1− ǫ)(1− l)− ǫ +
2

δ

[
−ρ log (δρ) + δρ− δ2ρ2

]
(3.48)

= −2ρ log ρ+ 2ρ− 2ρ2 + (1 − ρ) log [1− ǫ− (1− ǫ)l + ǫ] + ρ log ρ− ρ

+ 1− 1 + ǫ+ (1− ǫ)l − ǫ− 2ρ log (δρ) + 2ρ− 2δρ2 (3.49)

= log [1− (1− ǫ)l] + (1 − ǫ)l− ρ log [1− (1 − ǫ)l] + ρ log

(
1

δ2ρ3

)

+ 3ρ− 2(1 + δ)ρ2. (3.50)

From (3.48) to (3.49) we expand brackets and simplify and further simplify from (3.49)

to (3.50).

Now replacing ρ log
(

1
δ2ρ3

)
by 1

2

(
l2 − cρ

)
, bounding above the second logarithmic term

using the first bound of (3.45) and factoring out log(1− l) we have

2Ψmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)

> log (1− l) + log

(
1 +

ǫl

1− l

)
+ l − ǫl + (1− ǫ)ρl +

1

2

(
l2 − cρ

)
+ 3ρ

− 2(1 + δ)ρ2 (3.51)

> log (1− l) + l +
1

2
l2 − 1

2
cρ+ 3ρ− ǫl + log (1 + ǫl) + ρl − ǫρl− 2(1 + δ)ρ2 (3.52)

> −l− 1

2
l2 − 1

2
l3 + l +

1

2
l2 +

1

2
(6− c)ρ+ ρl − ǫl+ ǫl − 1

2
ǫ2l2 − ǫρl

− 2(1 + δ)ρ2 (3.53)

=
1

2
(6− c)ρ− 1

2
l3 + ρl− 2(1 + δ)ρ2 − 1

2
ǫ2l2 − ǫρl. (3.54)

From (3.51) to (3.52) we bound below 1
1−l using (3.46). From (3.52) to (3.53) we bound

below the first logarithmic term using

log(1 − x) ≥ −x− 1

2
x2 − 1

2
x3 ∀x ∈ [0, 0.44], (3.55)

and also bound below the second logarithmic term using (3.36). From (3.53) to (3.54) we

simplify.

The dominant terms in (3.54) are the first two term, all the rest go to zero faster as ρ→ 0.

Therefore, for (3.54) to be positive as ρ→ 0 we need the sum of the first two terms to be
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positive. This means

1

2
(6− c)ρ− 1

2
l3 > 0 ⇒ l3 < (6− c)ρ. (3.56)

This holds for c < 6 and small enough ρ and since l is a decreasing function of ρ−1 there

would not a ρ0 below which this ceases to hold as ρ → 0. Hence we conclude that for

fixed δ, ǫ > 0 and c < 6 there does not exist a ρ0 such that for ρ < ρ0, (3.54) is negative

and 2Ψmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)
≤ 0 as ρ→ 0. Thus

Prob
(
L(k, n,N ;A) > (1− ǫ)L̃ρ(δ, ρ)

)

≤ poly
(
n, (1− ǫ)λ̃min

ρ + ǫ
)
· exp

[
2nΨmin

(
(1− ǫ)λ̃min

ρ + ǫ, δ, ρ
)]
,

and as n→ ∞ the right hand side of this does not go to zero.

Now Part 1 and Part 2 put together shows that L̃ρ(δ, ρ) is a tight bound of L(k, n,N ;A)

with overwhelming probability as the problem size grows in the regime prescribed for L̃ρ(δ, ρ)

in Theorem 3.2.1.

3.6.2 Theorem 3.2.2

The Upper Bound, Ũδ(δ, ρ)

Proof. Define

λ̃max
δ (δ, ρ) := 1 + 3ρ+ ρ log

(
1

δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
.

It follows from (3.2) that Ũδ(δ, ρ) = λ̃max
δ (δ, ρ) − 1. Bounding Ũδ(δ, ρ) above by Ũδ(δ, ρ) + ǫ

is equivalent to bounding λ̃max
δ above by λ̃max

δ + ǫ. We first establish that for a slightly looser

bound, with c > 1, the exponent Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)
is negative and then verify that when

multiplied by n it diverges to −∞ as n increases. We also show that for a slightly tighter bound,

with c ≤ ρ, the exponent Ψmax

(
λ̃max
δ − ǫ, δ, ρ

)
is bounded from below by zero, and hence the

bound Ũδ(δ, ρ) cannot be improved using the inequality (3.11) from [19] We show, in two parts

that for ρ fixed:

1. ∃ δ0, ǫ > 0 and c > 1 such that for δ < δ0,Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)
≤ 0;

2. ∄ δ0, ǫ > 0 and c ≤ ρ such that for δ < δ0,Ψmax

(
λ̃max
δ − ǫ, δ, ρ

)
≤ 0.

which are proven separately in the two parts as follows.
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Part 1:

2Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)
= (1 + ρ) log

(
λ̃max
δ + ǫ

)

− ρ log(ρ) + ρ+ 1−
(
λ̃max
δ + ǫ

)
+

2

δ
H(δρ), (3.57)

by substituting λ̃max
ρ + ǫ for λ in (3.10). We bound the Shannon entropy function above

using the first bound of (3.13) and consolidate notation using u := λ̃max
ρ − 1, then (3.57)

becomes

2Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)

< (1 + ρ) log [(1 + u) + ǫ]− ρ log ρ+ ρ+ 1− (1 + u)− ǫ +
2

δ
[−δρ log (δρ) + δρ] (3.58)

= (1 + ρ) log (1 + u+ ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ− u− ǫ. (3.59)

From (3.58) to (3.59) we simplify. Next where u is not in the logarithmic term we replace

it by ρ log
(

1
δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ 3ρ to have

2Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)

< (1 + ρ) log (1 + u+ ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ− ρ log

(
1

δ2ρ3

)
− 3ρ

− (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
− ǫ (3.60)

= (1 + ρ) log (1 + u+ ǫ)− ǫ− (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
(3.61)

= −α(1 + ρ)− ǫ+ (1 + ρ) log


 1 + u+ ǫ

c log
(

1
δ2ρ3

)


+ α(1 + ρ) (3.62)

= −α− αρ− ǫ+ (1 + ρ) log



 1 + u+ ǫ

c log
(

1
δ2ρ3

)



+ α(1 + ρ) log e (3.63)

< −α+ (1 + ρ) log


e

α(1 + u+ ǫ)

c log
(

1
δ2ρ3

)


 . (3.64)

From (3.60) to (3.61) we simplify and from (3.61) to (3.62) we combine the logarithmic

terms and to create a constant we add −α(1+ρ) and α(1+ρ) for a small positive constant

0 < α < 1. From (3.62) to (3.63) we rewrote α(1 + ρ) as α(1 + ρ) log e. From (3.63) to

(3.64) incorporate the second logarithmic term into the first one and we bound above

(3.63) by dropping the −ǫ and −αρ.

Equation (3.64) is clearly negative if the second term is negative, which is satisfied if the

argument of the logarithm to be less than one. This leads to
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e−αc log

(
1

δ2ρ3

)
≥ u+ 1 + ǫ, (3.65)

where again substituting ρ log
(

1
δ2ρ3

)
+ (1 + ρ) log log

(
1

δ2ρ3

)
+ 3ρ for u and reordering

the right hand side of (3.65) gives

e−αc log

(
1

δ2ρ3

)
≥ log log

(
1

δ2ρ3

)
+ 1 + ǫ

+ ρ

[
3 + log

(
1

δ2ρ3

)
+ log log

(
1

δ2ρ3

)]
. (3.66)

For small 0 < α < 1 and c > 1, the left hand side of (3.66) is an unbounded strictly

increasing function of δ−1 growing exponentially faster than the right hand side of (3.66).

Consequently there is a unique δ0 for which the inequality (3.66) holds for fixed ρ, ǫ >

0, c > 1 and any δ ≤ δ0 and as a result making 2Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)
< 0.

Having established a negative bound from above and the δ0 for which it is valid, it

remains to show that n · 2Ψmax

(
λ̃max
δ + ǫ, δ, ρ

)
→ −∞ as (k, n,N) → ∞, which verifies

an exponential decay to zero of the bound (3.11) with n. This follows from the first term

of the right hand side of (3.64), giving a concluding bound n(−α). For δ < δ0 therefore

Prob
(
U(k, n,N ;A) > Ũ

δ(δ, ρ) + ǫ
)
≤ poly

(
n, λ̃max

δ + ǫ
)
· exp (−αn) .

The right hand side of which goes to zero as n→ ∞.

Part 2:

2Ψmax

(
λ̃max
δ − ǫ, δ, ρ

)
= (1 + ρ) log

(
λ̃max
δ − ǫ

)

− ρ log(ρ) + ρ+ 1−
(
λ̃max
δ − ǫ

)
+

2

δ
H(δρ), (3.67)

by substituting λ̃max
ρ − ǫ for λ in (3.10). We lower bound the Shannon entropy function

using the second bound of (3.13) and consolidate notation using u := λ̃max
δ − 1, then

(3.67) becomes

2Ψmax

(
λ̃max
δ − ǫ, δ, ρ

)

> (1 + ρ) log [(1 + u)− ǫ]− ρ log ρ+ ρ+ 1− (1 + u) + ǫ

− 2ρ log (δρ) +
2

δ

[
−δρ log (δρ) + δρ− δ2ρ2

]
(3.68)

= (1 + ρ) log (u+ 1− ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ− u+ ǫ− 2δρ2 (3.69)
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= (1 + ρ) log (u+ 1− ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ− ρ log

(
1

δ2ρ3

)
− 3ρ

− (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ ǫ − 2δρ2 (3.70)

= (1 + ρ) log (u+ 1− ǫ)− (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ ǫ− 2δρ2 (3.71)

= ǫ+ (1 + ρ) log


 1 + u− ǫ

c log
(

1
δ2ρ3

)


− 2δρ2. (3.72)

From (3.68) to (3.69) we simplify. Then from (3.69) to (3.70) we replace u by the expres-

sion ρ log
(

1
δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ 3ρ where u is not in the logarithmic term.

From (3.70) to (3.71) we simplify and from (3.71) to (3.72) we combine the logarithmic

terms.

The last term in (3.72) obviously goes to zero as δ → 0, then for the expression to remain

positive we need to know how the dominant term, which is the second term, behaves. For

this term to be nonnegative as δ → 0 for fixed ρ we need the argument of the logarithmic

to be greater than or equal to 1 which means the following.

u+ 1 + ǫ ≥ c log

(
1

δ2ρ3

)
.

Therefore substituting for u we have

ρ log

(
1

δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ 3ρ+ 1 + ǫ ≥ c log

(
1

δ2ρ3

)
,

Then we expand the second logarithmic term and rearrange to get

(ρ− c) log

(
1

δ2ρ3

)
+ (1 + ρ) log

[
c log

(
1

δ2ρ3

)]
+ 3ρ+ 1 + ǫ ≥ 0. (3.73)

Inequality (3.73) is always true for fixed ρ and c < ρ as δ → 0. Therefore, we conclude

that there does not exists δ0 such that for any ρ fixed and ǫ > 0 for δ < δ0 (3.72) is

negative and 2Ψmax

(
λ̃max
δ − ǫ, δ, ρ

)
< 0 as δ → 0. Thus

Prob
(
U(k, n,N ;A) > Ũ

δ(δ, ρ)− ǫ
)
≤ poly

(
n, λ̃max

δ − ǫ
)
·exp

[
2nΨmax

(
λ̃max
δ − ǫ, δ, ρ

)]
,

and as n→ ∞ the right hand side of this does not necessarily go to zero.

Now Part 1 and Part 2 put together shows that Ũδ(δ, ρ) is also a tight upper bound of

U(k, n,N ;A) with overwhelming probability as the problem size grows in the regime prescribed

for Ũδ(δ, ρ) in Theorem 3.2.2.
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The Lower Bound, L̃δ(δ, ρ)

Proof. Define

λ̃min
δ (δ, ρ) := exp

(
−3ρ+ c

1− ρ

)
·
(
δ2ρ3

) ρ
1−ρ , ⇒ L̃

δ(δ, ρ) = 1− λ̃min
δ (δ, ρ)

as from (3.3). Bounding L̃δ(δ, ρ) above by (1+ ǫ)L̃δ(δ, ρ) is equivalent to bounding λ̃min
δ above

by (1 + ǫ)λ̃min
δ − ǫ. We first establish for a slightly looser bound, with c > 1, the exponent

Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)
is negative and then verify that when multiplied by n it diverges to

−∞ as n increases. We also show that for a slightly tighter bound, with c < 1, the exponent

Ψmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)
is bounded from below by zero, and hence the bound L̃δ(δ, ρ) cannot

be improved using the inequality (3.12) from [19]. We show, in two parts that for ρ fixed:

1. ∃ δ0, ǫ > 0 and c > 1 such that for δ < δ0,Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)
≤ 0;

2. ∄ δ0, ǫ > 0 and c < 1 such that for δ < δ0,Ψmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)
≤ 0,

which are proven separately in the two parts as follows.

Part 1:

2Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)
= 2H(ρ) + (1 − ρ) log

(
(1 + ǫ)λ̃min

δ − ǫ
)

+ ρ log(ρ)− ρ+ 1−
(
(1 + ǫ)λ̃min

δ − ǫ
)
+

2

δ
H(δρ), (3.74)

by substituting (1 + ǫ)λ̃min
δ − ǫ for λ in (3.9). We now upper bound the Shannon entropy

terms using the first bound of (3.13) and factor out λ̃min
δ for (3.74) to become

2Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)

< 2
[
−ρ log ρ+ ρ− ρ2

]
+ (1− ρ) log

(
λ̃min
δ

)
− (1 + ǫ)λ̃min

δ + ǫ+ 1− ρ

+ ρ log ρ+ (1 − ρ) log

[
(1 + ǫ)λ̃min

δ − ǫ

λ̃min
δ

]
+

2

δ
[−ρ log (δρ) + δρ] (3.75)

= (1 − ρ) log
(
λ̃min
δ

)
− (1 + ǫ)λ̃min

δ + ǫ+ (1− ρ) log

[
(1 + ǫ)− ǫ

λ̃min
δ

]

+ ρ log

(
1

δ2ρ3

)
+ 3ρ+ 1. (3.76)

From (3.75) to (3.76) we simplify. Using the fact that by the definition of L̃δ(δ, ρ) in (3.3)

log
(
λ̃min
δ

)
= − ρ

1− ρ
log

(
1

δ2ρ3

)
− 3ρ+ c

1− ρ
,

we substitute this in (3.76) for log
(
λ̃min
δ

)
to get
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2Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)

< (1− ρ)

[
− ρ

1− ρ
log

(
1

δ2ρ3

)
− 3ρ+ c

1− ρ

]
− (1 + ǫ)λ̃min

δ + ǫ

+ (1− ρ) log

[
(1 + ǫ)− ǫ

λ̃min
δ

]
+ ρ log

(
1

δ2ρ3

)
+ 3ρ+ 1 (3.77)

= −ρ log
(

1

δ2ρ3

)
− 3ρ− c− (1 + ǫ)λ̃min

δ + ǫ+ ρ log

(
1

δ2ρ3

)

+ (1− ρ) log

[
(1 + ǫ)− ǫ

λ̃min
δ

]
+ 3ρ+ 1 (3.78)

= (1− ρ) log

[
(1 + ǫ)− ǫ

λ̃min
δ

]
− λ̃min

δ − ǫλ̃min
δ − (c− 1) + ǫ. (3.79)

From (3.77) to (3.78) we expand the brackets and from (3.78) to (3.79) we simplify. Now

we consolidate notation using l := 1− λ̃min
δ and substituting this in (3.79) we have

2Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)

< (1 − ρ) log

[
(1 + ǫ)− ǫ

1− l

]
− (1− l)− ǫ(1− l)− (c− 1) + ǫ (3.80)

= −(c− 1) + (1− ρ) log

(
1− ǫl

1− l

)
− (1 − l) + ǫl (3.81)

< −(c− 1) + ǫl− (1− ρ)
ǫl

1− l
− (1− l) (3.82)

= −1

2
(c− 1)− 1

2
(c− 1) + ǫl. (3.83)

From (3.80) to (3.81) we simplify and from (3.81) to (3.82) we bound above the logarithmic

term using the first bound of (3.45). From (3.82) to (3.83) we drop the third and fourth

terms, which are negative, and split the leading term into half. Inequality (3.83) can be

further bounded by −(c− 1)/2 (which will be negative if c > 1) by choosing ǫ to be less

than (c− 1)/2 and noting that l ∈ (0, 1].

Having established a negative bound from above and the δ0 for which it is valid, it remains

to show that n · 2Ψmin

(
(1 + ǫ)λ̃min

δ − ǫ, δ, ρ
)
→ −∞ as (k, n,N) → ∞, which verifies an

exponential decay to zero of the bound (3.12) with n. This follows from the first term of

the right hand side of (3.83) giving a concluding bound − 1
2 (c− 1)n. For δ < δ0 therefore

Prob
(
L(k, n,N ;A) > (1 + ǫ)L̃δ(δ, ρ)

)
≤ poly

(
n, (1 + ǫ)λ̃min

δ − ǫ
)
· exp

[
− (c− 1)n

2

]
.

The right hand side of which goes to zero as n→ ∞.
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Part 2:

2Ψmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)
= 2H(ρ) + (1 − ρ) log

(
(1 − ǫ)λ̃min

δ + ǫ
)

+ ρ log(ρ)− ρ+ 1−
(
(1− ǫ)λ̃min

δ + ǫ
)
+

2

δ
H(δρ), (3.84)

by substituting (1−ǫ)λ̃min
δ +ǫ for λ in (3.9). Next we bound the Shannon entropy functions

from below using the second bound in (3.13) to give

2Ψmin

(
(1 − ǫ)λ̃min

δ + ǫ, δ, ρ
)

> 2
[
−ρ log ρ+ ρ− ρ2

]
+ (1− ρ) log

(
λ̃min
δ

)
− (1 − ǫ)λ̃min

δ + 1− ǫ+ ρ log ρ

− ρ+ (1− ρ) log

[
(1 − ǫ)λ̃min

δ + ǫ

λ̃min
δ

]
+

2

δ

[
−ρ log (δρ) + δρ− δ2ρ2

]
(3.85)

= (1− ρ) log
(
λ̃min
δ

)
− (1− ǫ)λ̃min

δ − ǫ + (1− ρ) log

[
(1 − ǫ) +

ǫ

λ̃min
δ

]

+ ρ log

(
1

δ2ρ3

)
+ 3ρ+ 1− 2(1 + δ)ρ2. (3.86)

From (3.85) to (3.86) we simplify. Using the fact that by the definition of L̃δ(δ, ρ) in (3.3)

log
(
λ̃min
δ

)
= − ρ

1− ρ
log

(
1

δ2ρ3

)
− 3ρ+ c

1− ρ
,

we substitute this in (3.86) for log
(
λ̃min
δ

)
to get

2Ψmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)

> (1− ρ)

[
− ρ

1− ρ
log

(
1

δ2ρ3

)
− 3ρ+ c

1− ρ

]
− (1− ǫ)λ̃min

δ − ǫ+ 3ρ

+ (1− ρ) log

[
(1− ǫ) +

ǫ

λ̃min
δ

]
+ ρ log

(
1

δ2ρ3

)
+ 1− 2(1 + δ)ρ2 (3.87)

= −ρ log
(

1

δ2ρ3

)
− 3ρ− c− (1− ǫ)λ̃min

δ − ǫ+ ρ log

(
1

δ2ρ3

)

+ (1− ρ) log

[
(1− ǫ) +

ǫ

λ̃min
δ

]
+ 3ρ+ 1− 2(1 + δ)ρ2 (3.88)

= (1− ρ) log

[
(1− ǫ) +

ǫ

λ̃min
δ

]
− λ̃min

δ + ǫλ̃min
δ − ǫ+ 1− c− 2(1 + δ)ρ2. (3.89)

From (3.87) to (3.88) we expand the brackets and from (3.88) to (3.89) we simplify. Now
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we consolidate notation using l := 1− λ̃min
δ and substituting this in (3.89) we have

2Ψmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)

> (1− ρ) log

[
(1 − ǫ) +

ǫ

1− l

]
− (1− l) + ǫ(1− l)− ǫ+ 1− c− 2(1 + δ)ρ2 (3.90)

= (1− ρ) log

(
1 +

ǫl

1− l

)
+ l− c− ǫl− 2(1 + δ)ρ2 (3.91)

> (1− ρ) log (1 + ǫl) + l − c− ǫl − 2(1 + δ)ρ2 (3.92)

> (1− ρ)

(
ǫl− 1

2
ǫ2l2

)
+ l − c− ǫl − 2(1 + δ)ρ2 (3.93)

= ǫl − 1

2
ǫ2l2 − ǫρl +

1

2
ǫ2ρl2 + l − c− ǫl− 2ρ2 − 2δρ2 (3.94)

= l − c− 2ρ2 − ǫl− ǫρl − 1

2
ǫ2l2 +

1

2
ǫ2ρl2 − 2δρ2. (3.95)

We simplify from (3.90) to (3.91) and from (3.91) to (3.92) we bound below 1
1−l using the

bound of (3.46). From (3.92) to (3.93) we bound below the logarithmic term using the

bound of (3.36). From (3.93) to (3.94) we expand the brackets and from (3.94) to (3.95)

we simplify.

The leading terms of (3.95) are the first three and l is strictly increasing as δ−1 approaches

1. If c < 1, there will be some values of ρ for which (3.95) will always be positive as δ → 0.

Thus there does not exist any δ0 such that for any ρ fixed, ǫ > 0, c < 1 and δ < δ0, (3.95)

becomes negative. Thus

Prob
(
L(k, n,N ;A) > (1− ǫ)L̃δ(δ, ρ)

)

≤ poly
(
n, (1− ǫ)λ̃min

δ + ǫ
)
· exp

[
2nΨmin

(
(1− ǫ)λ̃min

δ + ǫ, δ, ρ
)]
,

and as n→ ∞ the right hand side of this does not necessarily go to zero.

Now Part 1 and Part 2 put together shows that L̃δ(δ, ρ) is also a tight bound of L(k, n,N ;A)

with overwhelming probability as the sample size grows in the regime prescribed for L̃δ(δ, ρ) in

Theorem 3.2.2.

3.6.3 Theorem 3.2.3

The Upper Bound, Ũγ(δ, ργ(δ))

Proof. To simplify notation we will use ρ for ργ(δ) in the proof. Lets define

λ̃max
γ (δ, ρ) := 1 +

√

2ρ log

(
1

δ2ρ3

)
+ 6ρ+ cu

[
2ρ log

(
1

δ2ρ3

)
+ 6ρ

]
.
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It follows from (3.4) that Ũγ(δ, ρ) = λ̃max
γ (δ, ρ) − 1. Bounding Ũγ(δ, ρ) above by Ũγ(δ, ρ) + ǫ

is equivalent to bounding λ̃max
γ above by λ̃max

γ + ǫ. We first establish that for a slightly looser

bound, with cu > 1/3, the exponent Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)
is negative and then verify that when

multiplied by n it diverges to −∞ as n increases. We also show that for a slightly tighter bound,

with cu ≤ 1/5, the exponent Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)
is bounded from below by zero, and hence

the bound Ũγ(δ, ρ) cannot be improved using the inequality (3.11) from [19]. We show, in two

parts that for γ > γ0 fixed:

1. ∃ δ0, ǫ > 0 and cu > 1/3 such that for δ < δ0,Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)
≤ 0;

2. ∄ δ0, ǫ > 0 and cu ≤ 1/5 such that for δ < δ0,Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)
≤ 0.

which are proven separately in the two parts.

Part 1:

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)
= (1 + ρ) log

(
λ̃max
γ + ǫ

)
− ρ log (ρ)

+ ρ+ 1− λ̃max
γ − ǫ+

2

δ
H (δρ) , (3.96)

by substituting λ̃max
γ + ǫ for λ in the definition of Ψmax (λ, δ, ρ) in (3.10).

Now letting u = λ̃max
γ −1 and substituting this in (3.96) and upper bounding the Shannon

entropy term using the first bound of (3.13) gives (3.97) below

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)

< (1 + ρ) log (1 + u+ ǫ)− ρ log (ρ) + ρ+ 1− (1 + u)− ǫ

+
2

δ
[−δρ log (δρ) + δρ] (3.97)

= log(1 + u+ ǫ) + ρ log(1 + u+ ǫ)− u− ǫ+ ρ log

(
1

δ2ρ3

)
+ 3ρ (3.98)

= log(1 + u) + log

(
1 +

ǫ

1 + u

)
+ ρ log(1 + u+ ǫ)− u− ǫ

+ ρ log

(
1

δ2ρ3

)
+ 3ρ (3.99)

< −u+ u− 1

2
u2 +

1

3
u3 + ρ log

(
1

δ2ρ3

)
+ 3ρ+ ρ log(1 + u+ ǫ)− ǫ

+ log (1 + ǫ) (3.100)

< −1

2
u2 +

1

3
u3 + ρ log

(
1

δ2ρ3

)
+ 3ρ+ ρ log(1 + u+ ǫ)− ǫ+ ǫ. (3.101)

From (3.97) to (3.98) we expand the (1 + ρ) in the first term and simplify while from

(3.98) to (3.99) we expand the first logarithmic term. From (3.99) to (3.100) we bound

above log(1 + u) and 1
1+u using the second bound of (3.22) and the bound of (3.23)
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respectively. Then from (3.100) to (3.101) we simplify and bound above log(1 + ǫ) using

the first bound of (3.22).

Let x = 2ρ log
(

1
δ2ρ3

)
+ 6ρ which means u =

√
x+ cux. We simplify (3.101) and replace

the sum of the second two terms by 1
2x and u in the first two terms by

√
x+ cux to get

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)

< −1

2

(√
x+ cux

)2
+

1

3

(√
x+ cux

)3
+

1

2
x+ ρ log(1 + u+ ǫ) (3.102)

= −1

2
x− cux

3/2 − 1

2
c2ux

2 +
1

3
x3/2 + cux

2 + c2ux
5/2 +

1

3
c3ux

3 +
1

2
x

+ ρ log(1 + u+ ǫ) (3.103)

= −
(
cu −

1

3

)
x3/2 + cux

2 − 1

2
c2ux

2 + c2ux
5/2 +

1

3
c3ux

3 + ρ log(1 + u+ ǫ). (3.104)

From (3.102) to (3.103) we expand the first two brackets and from (3.103) to (3.104) we

simplify. Substituting 1/
[
γ log

(
1
δ

)]
for ρ in the expression for x we have x = 4/γ + g(ρ)

where g(ρ) = 6ρ log (1/ρ) + 6ρ and goes to zero with δ. Therefore, if 4/γ < 1 for δ

small enough we will have x < 1. This means for γ > 4 we can define δ1 such that for

δ < δ1, x < 1 and we can upper bound x5/2 and x3 by x2 since x2 > x2+j for j > 0 when

x < 1. Using this fact we can bound (3.104) above to get

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)

< −
(
cu −

1

3

)
x3/2 + cux

2 − 1

2
c2ux

2 + c2ux
2 +

1

3
c3ux

2 + ρ log(1 + u+ ǫ) (3.105)

= −1

2

(
cu −

1

3

)
x3/2 − 1

2

(
cu −

1

3

)
x3/2 + cux

2 +
1

2
c2ux

2 +
1

3
c3ux

2

+ ρ log(1 + u+ ǫ). (3.106)

From (3.105) to (3.106) we simplify and split the first term into half. The last term goes

to zero with δ so we can define δ2 such that for δ < δ2 we can bound this term above by x2.

But also x3/2 = 8/
√
γ3 +G(ρ) where G(ρ) is the difference between [4/γ + g(ρ)]

3/2
and

(4/γ)
3/2

which also goes to zero with δ because this difference is a sum of products with

g(ρ). This means −x3/2 < −8/
√
γ3 since g(ρ) is positive. Now let fu(cu) = cu+

1
2c

2
u+

1
3c

3
u,

which is positive for all cu > 0, using the above therefore we can bound (3.106) to get

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)

<
1

2

(
cu −

1

3

)
·
(
− 8√

γ3

)
− 1

2

(
cu −

1

3

)
x3/2 + fu(cu)x

2 + x2 (3.107)

= − 4√
γ3

(
cu −

1

3

)
− 1

2

(
cu −

1

3

)
x3/2 + [1 + fu(cu)]x

2. (3.108)
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From (3.107) to (3.108) we simplify. For (3.108) to be negative all we need is for cu > 1/3

and the sum of the last two terms to be non positive, that is:

−1

2

(
cu −

1

3

)
x3/2 + [1 + fu(cu)] x

2 ≤ 0 ⇒ x ≤
{

3cu − 1

6 [1 + fu(cu)]

}2

. (3.109)

Let’s define δ3 such that for δ < δ3 (3.109) holds; since x is a decreasing function of δ−1 for

fixed γ there exist a unique δ3. We set δ0 = min (δ1, δ2, δ3) and conclude that if cu > 1/3,

for fixed γ > γ0 = 4 and ǫ > 0 when δ < δ0 as δ → 0 (3.108) will remain negative and

2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)
< 0.

Having established a negative bound from above and the δ0 for which it is valid, it

remains to show that n · 2Ψmax

(
λ̃max
γ + ǫ, δ, ρ

)
→ −∞ as (k, n,N) → ∞, which verifies

an exponential decay to zero of the bound (3.11) with n. This follows from the first term

of the right hand side of (3.108), giving a concluding bound −n · 4√
γ3

(
cu − 1

3

)
. For fixed

γ > γ0 and δ < δ0 therefore

Prob
(
U(k, n,N ;A) > Ũγ(δ, ρ) + ǫ

)
≤ poly

(
n, λ̃max

γ + ǫ
)
· exp

[
− 4n√

γ3

(
cu −

1

3

)]
.

The right hand side of which goes to zero as n→ ∞.

Part 2:

2Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)
= (1 + ρ) log

(
λ̃max
γ − ǫ

)
− ρ log (ρ)

+ ρ+ 1− λ̃max
γ + ǫ+

2

δ
H (δρ) , (3.110)

by substituting λ̃max
γ − ǫ for λ in the definition of Ψmax (λ, δ, ρ) in (3.10).

Now letting u = λ̃max
γ −1 and substituting this in (3.110) and lower bounding the Shannon

entropy term using the second bound of (3.13) gives (3.111) below

2Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)

> (1 + ρ) log (1 + u− ǫ)− ρ log (ρ) + ρ+ 1− (1 + u) + ǫ

+
2

δ

[
−δρ log (δρ) + δρ− δ2ρ2

]
(3.111)

= log(1 + u− ǫ) + ρ log(1 + u− ǫ)− u+ ǫ+ ρ log

(
1

δ2ρ3

)
+ 3ρ− 2δρ2 (3.112)

= log(1 + u) + log

(
1− ǫ

1 + u

)
+ ρ log(1 + u− ǫ)− u+ ǫ

+ ρ log

(
1

δ2ρ3

)
+ 3ρ− 2δρ2 (3.113)
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> −u+ u− 1

2
u2 +

1

5
u3 + ρ log

(
1

δ2ρ3

)
+ 3ρ+ ǫ+ log (1− ǫ)

+ ρ log(1 + u− ǫ)− 2δρ2 (3.114)

= −1

2
u2 +

1

5
u3 + ρ log

(
1

δ2ρ3

)
+ 3ρ+ ǫ+ log (1− ǫ) + ρ log(1 + u− ǫ)− 2δρ2. (3.115)

From (3.111) to (3.112) we expand the (1 + ρ) in the first term and simplify while from

(3.112) to (3.113) we expand the first logarithmic term. From (3.113) to (3.114) we bound

above 1
1+u using the bound of (3.23) and bound below log(1+u) using the following bound.

log(1 + x) ≥ x− 1

2
x2 +

1

5
x3 ∀x ∈ [0, 0.92]. (3.116)

From (3.114) to (3.115) we simplify.

Let x = 2ρ log
(

1
δ2ρ3

)
+ 6ρ which means u =

√
x+ cux. We simplify (3.115) and replace

the second two terms by 1
2x and u in the first two terms by

√
x+ cux to get

2Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)

> −1

2

(√
x+ cux

)2
+

1

5

(√
x+ cux

)3
+

1

2
x+ ǫ+ log (1− ǫ)

+ ρ log(1 + u− ǫ)− 2δρ2 (3.117)

= −1

2
x− cux

3/2 − 1

2
c2ux

2 +
1

5
x3/2 +

3

5
cux

2 +
3

5
c2ux

5/2 +
1

5
c3ux

3 +
1

2
x

+ ǫ+ log (1− ǫ) + ρ log(1 + u− ǫ)− 2δρ2 (3.118)

=

(
1

5
− cu

)
x3/2 + cu

(
1− 1

2
cu

)
x2 +

3

5
c2ux

5/2 +
1

5
c3ux

3 + ρ log(1 + u− ǫ)

+ ǫ+ log (1− ǫ)− 2δρ2. (3.119)

From (3.117) to (3.118) we expand the first two brackets and from (3.118) to (3.119) we

simplify. The dominant terms that does not go to zero as δ → 0 are the terms with x and

their sum is positive for cu ≤ 1/5. Hence for fixed γ there does not exist a δ0 such that

2Ψmax

(
λ̃max
γ − ǫ, δ, ρ

)
≤ 0. Thus

Prob
(
U(k, n,N ;A) > Ũ

γ(δ, ρ)− ǫ
)
≤ poly

(
n, λ̃max

γ − ǫ
)
·exp

[
2nΨmax

(
λ̃max
γ − ǫ, δ, ρ

)]
,

and as n→ ∞ the right hand side of this does not go to zero.

Now Part 1 and Part 2 put together shows that Ũγ(δ, ρ) is also a tight upper bound of

U(k, n,N ;A) with overwhelming probability as the problem size grows in the regime prescribed

for Ũγ(δ, ρ) in Theorem 3.2.3.
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The Lower Bound, L̃γ(δ, ργ(δ))

Proof. Lets also define

λ̃min
γ (δ, ρ) := 1−

√
2ρ log

(
1

δ2ρ3

)
+ 6ρ+ cl

[
2ρ log

(
1

δ2ρ3

)
+ 6ρ

]
.

This implies that L̃γ(δ, ρ) = 1 − λ̃min
γ (δ, ρ) following from (3.5). Bounding L̃γ(δ, ρ) above by

L̃γ(δ, ρ) + ǫ is equivalent to bounding λ̃min
γ below by λ̃min

γ − ǫ. We first establish that for a

slightly looser bound, with cl > 1/3, the exponent Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
is negative and then

verify that when multiplied by n it diverges to −∞ as n increases. We also show that for a

slightly tighter bound, with cl < 1/3, the exponent Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)
is bounded from below

by zero, and hence the bound L̃γ(δ, ρ) cannot be improved using the inequality (3.12) from [19].

We show, in two parts that for γ > γ0 fixed:

1. ∃ δ0, ǫ > 0 and cl < 1/3 such that for δ < δ0,Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
≤ 0;

2. ∄ δ0, ǫ > 0 and cl ≥ 1/2 such that for δ < δ0,Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)
≤ 0,

which are proven separately in the two parts as follows.

Part 1:

2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
= 2H(ρ) + (1− ρ) log

(
λ̃min
γ − ǫ

)

+ ρ log(ρ)− ρ+ 1−
(
λ̃min
γ − ǫ

)
+

2

δ
H(δρ), (3.120)

by substituting λ̃min
γ − ǫ for λ in (3.9). Let l := 1− λ̃min

γ and bound the Shannon entropy

functions from above using the first bound in (3.13) which gives

2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)

< −2ρ log (ρ) + 2ρ+ (1 − ρ) log [(1− l)− ǫ] + ρ log ρ− ρ+ 1− (1− l)

+ ǫ− 2ρ log (δρ) +
2

δ
(δρ) (3.121)

= (1 − ρ) log (1− l − ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ+ l + ǫ (3.122)

= l + log(1− l) + ǫ+ log

(
1− ǫ

1− l

)
− ρ log (1− l − ǫ) + ρ log

(
1

δ2ρ3

)
+ 3ρ (3.123)

< l +−l − 1

2
l2 − 1

3
l3 + ρ log

(
1

δ2ρ3

)
+ 3ρ− ρ log (1− l − ǫ) + log(1 − ǫ) + ǫ (3.124)

< −1

2
l2 − 1

3
l3 + ρ log

(
1

δ2ρ3

)
+ 3ρ− ρ log (1− l − ǫ)− ǫ + ǫ. (3.125)

We simplify from (3.121) to (3.122) and from (3.122) to (3.123) we expand the first

logarithmic term. From (3.123) to (3.124) we bound 1
1−l below and log(1− l) above using
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(3.46) and the third bound of (3.45) respectively. From (3.124) to (3.125) we simplify

and bound above log(1− ǫ) using the first bound of (3.45).

Let x = 2ρ log
(

1
δ2ρ3

)
+ 6ρ which means l =

√
x − clx. We simplify (3.125) and replace

the second two terms by 1
2x and l in the first two terms by

√
x− clx to get

2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)

< −1

2

(√
x− clx

)2 − 1

3

(√
x− clx

)3
+

1

2
x− ρ log (1− l − ǫ) (3.126)

= −1

2
x+ clx

3/2 − 1

2
c2l x

2 − 1

3
x3/2 + clx

2 − c2l x
5/2 +

1

3
c3l x

3 +
1

2
x

− ρ log (1− l− ǫ) (3.127)

= −
(
1

3
− cl

)
x3/2 + clx

2 − 1

2
c2l x

2 − c2l x
5/2 +

1

3
c3l x

3 − ρ log (1− l − ǫ) . (3.128)

From (3.126) to (3.127) we expand the first two brackets and from (3.127) to (3.128) we

simplify.

Substituting 1/ [γ log (1/δ)] for ρ in the expression for x we have x = 4/γ + g(ρ) where

g(ρ) = 6ρ log (1/ρ)+ 6ρ and goes to zero with δ. We make the same argument as in Part

1 of the proof for Ũγ(δ, ργ(δ)) in Section 3.6.3, that is for γ > 4 we can define δ1 such that

for δ < δ1, x < 1 and we can upper bound x3 by x2 since x2 > x2+j for j > 0 when x < 1.

The last term in (3.128) goes to zero with δ, so we can define δ2 such that for δ < δ2 we

can bound this term above by x2 which is a constant. We split the first term of (3.128)

into half and drop the two c2l terms because they are negative. Let fl(cl) = cl +
1
3 c

3
l ,

which is positive for all cl > 0, using the above we upper bound (3.128) as follows.

2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
< −1

2

(
1

3
− cl

)
x3/2 − 1

2

(
1

3
− cl

)
x3/2 + fl(cl)x

2 + x2 (3.129)

< − 4√
γ3

(
1

3
− cl

)
− 1

2

(
1

3
− cl

)
x3/2 + [1 + fl(cl)] x

2. (3.130)

From (3.129) to (3.130) we use the fact that −x3/2 < −8/
√
γ3 as shown in Section 3.6.3.

For (3.130) to be negative all we need is for cl < 1/3 and the sum of the last two terms

to be non positive, that is:

−1

2

(
1

3
− cl

)
x3/2 + [1 + fl(cl)] x

2 ≤ 0 ⇒ x ≤
{

1− 3cl
6 [1 + fl(cl)]

}2

. (3.131)

Let’s define δ3 such that for δ < δ3 (3.131) holds; since x is a decreasing function of δ−1 for

fixed γ there exist a unique δ3. We set δ0 = min (δ1, δ2, δ3) and conclude that if cl < 1/3,

for fixed γ > γ0 = 4 and ǫ > 0 when δ < δ0 as δ → 0 (3.130) will remain negative and

2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
< 0.

Having established a negative bound from above and the δ0 for which it is valid, it
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remains to show that n · 2Ψmin

(
λ̃min
γ − ǫ, δ, ρ

)
→ −∞ as (k, n,N) → ∞, which verifies

an exponential decay to zero of the bound (3.12) with n. This follows from the first term

of the right hand side of (3.130) giving a concluding bound −n · 4√
γ3

(
1
3 − cl

)
. For γ > γ0

and δ < δ0 therefore

Prob
(
L(k, n,N ;A) > L̃γ(δ, ρ) + ǫ

)
≤ poly

(
n, λ̃min

γ + ǫ
)
· exp

[
− 4n√

γ3

(
1

3
− cl

)]
.

The right hand side of which goes to zero as n→ ∞.

Part 2:

2Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)
= 2H(ρ) + (1− ρ) log

(
λ̃min
γ + ǫ

)

+ ρ log(ρ)− ρ+ 1−
(
λ̃min
γ + ǫ

)
+

2

δ
H(δρ), (3.132)

by substituting λ̃min
γ + ǫ for λ in (3.9). Let l := 1− λ̃min

γ and bound the Shannon entropy

function from below using the second bound in (3.13) to give

2Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)

> 2
[
−ρ log ρ+ ρ− ρ2

]
+ (1− ρ) log [(1− l) + ǫ] + ρ log ρ− ρ

+ 1− (1− l)− ǫ+
2

δ

[
−ρ log (δρ) + δρ− δ2ρ2

]
(3.133)

= −2ρ log ρ+ 2ρ− 2ρ2 + log (1− l + ǫ)− ρ log (1− l+ ǫ) + ρ log ρ− ρ

+ 1− 1 + l − ǫ− 2ρ log (δρ) + 2ρ− 2δρ2 (3.134)

= log (1− l) + log

(
1 +

ǫ

1− l

)
+ l − ǫ− ρ log (1− l + ǫ) + ρ log

(
1

δ2ρ3

)

+ 3ρ− 2(1 + δ)ρ2 (3.135)

> −l − 1

2
l2 − 1

2
l3 + l + ρ log

(
1

δ2ρ3

)
+ 3ρ+ log (1 + ǫ)− ǫ

− ρ log (1− l + ǫ)− 2(1− δ)ρ2 (3.136)

> −1

2
l2 − 1

2
l3 + ρ log

(
1

δ2ρ3

)
+ 3ρ+ ǫ− 1

2
ǫ2 − ǫ− ρ log (1− l + ǫ)

− 2(1− δ)ρ2. (3.137)

From (3.133) to (3.134) we expand brackets and simplify. From (3.134) to (3.135) we

expand log (1− l+ ǫ) and simplify. From (3.135) to (3.136) we bound from below 1
1−l

using (3.46) and using the bound of (3.55) we also bound from below log(1 − l). Then

from (3.136) to (3.137) we simplify and bound from below log(1 + ǫ) using (3.36).

Let x = 2ρ log
(

1
δ2ρ3

)
+ 6ρ which means l =

√
x − clx. We simplify (3.137) and replace

the second two terms by 1
2x and l in the first two terms by

√
x− clx to get
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2Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)
> −1

2

(√
x− clx

)2 − 1

2

(√
x− clx

)3
+

1

2
x

− ρ log (1− l + ǫ)− 2(1− δ)ρ2 − 1

2
ǫ2 (3.138)

= −1

2
x+ clx

3/2 − 1

2
c2l x

2 − 1

2
x3/2 +

3

2
clx

2 − 3

2
c2l x

5/2

+
1

2
c3l x

3 +
1

2
x− ρ log (1− l + ǫ)− 2(1− δ)ρ2 − 1

2
ǫ2 (3.139)

=

(
cl −

1

2

)
x3/2 +

1

2
cl (3− cl)x

2 − 3

2
c2l x

5/2 +
1

2
c3l x

3

− ρ log (1− l + ǫ)− 2(1− δ)ρ2 − 1

2
ǫ2. (3.140)

From (3.138) to (3.139) we expand the first two brackets and simplify from (3.139) to

(3.140).

The dominant terms that does not go to zero as δ → 0 are the terms with x and their

sum is positive if cl ≥ 1/2 and x < 1. We established in the earlier parts of this proof of

Theorem 3.2.3 that if γ > 4 we will have x < 1 as δ → 0. Hence we conclude that for

fixed γ > γ0 = 4 and ǫ > 0 there does not exist a δ0 such that (3.140) is negative and

2Ψmin

(
λ̃min
γ + ǫ, δ, ρ

)
≤ 0 as δ → 0. Thus

Prob
(
L(k, n,N ;A) > L̃γ(δ, ρ)− ǫ

)

≤ poly
(
n, λ̃min

γ + ǫ
)
· exp

[
2nΨmin

(
λ̃min
γ + ǫ, δ, ρ

)]
,

and as n→ ∞ the right hand side of this does not go to zero.

Now Part 1 and Part 2 put together shows that L̃γ(δ, ρ) is also a tight bound of L(k, n,N ;A)

with overwhelming probability as the sample size grows in the regime prescribed for L̃γ(δ, ρ) in

Theorem 3.2.3.

3.6.4 Corollary 3.2.4

Proof. We prove Corollary 3.2.4 in two parts, first proving the case for Ũγ(δ, ργ(δ)) and then

that of L̃γ(δ, ργ(δ)).

Part 1: From (3.4), for ρ = ργ(δ) =
1

γ log( 1
δ )
, we have

Ũ
γ(δ, ργ(δ)) =

√

2ρ log

(
1

δ2ρ3

)
+ 6ρ+ cu

[
2ρ log

(
1

δ2ρ3

)
+ 6ρ

]
(3.141)
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=

√

2ρ log

(
1

δ2ρ3

)
+ 6ρ+ 2cuρ log

(
1

δ2ρ3

)
+ 6cuρ (3.142)

=

√
4ρ log

(
1

δ

)
+ 6ρ log

(
1

ρ

)
+ 6ρ+ 4cuρ log

(
1

δ

)
+ 6cuρ log

(
1

ρ

)
+ 6cuρ (3.143)

=

√
4

γ
+ 6ρ log

(
1

ρ

)
+ 6ρ+

4cu
γ

+ 6cuρ log

(
1

ρ

)
+ 6cuρ. (3.144)

From (3.141) to (3.142) we expand the square brackets while from (3.142) to (3.143)

we separate the terms explicitly involving δ from the rest. From (3.143) to (3.144) we

substitute 1/ [γ log (1/δ)] for ρ in the terms explicitly involving δ and simplify.

Now using the fact that limδ→0 ρ log (1/ρ) = 0 and limδ→0 ρ = 0 we have

lim
δ→0

Ũγ(δ, ργ(δ)) =
2√
γ
+

4cu
γ
,

hence concluding the proof for Ũγ(δ, ργ(δ)).

Part 2: From (3.5), for ρ = ργ(δ) =
1

γ log( 1
δ )
, we have

L̃
γ(δ, ργ(δ)) =

√

2ρ log

(
1

δ2ρ3

)
+ 6ρ− cl

[
2ρ log

(
1

δ2ρ3

)
+ 6ρ

]
(3.145)

=

√

2ρ log

(
1

δ2ρ3

)
+ 6ρ− 2clρ log

(
1

δ2ρ3

)
− 6clρ (3.146)

=

√

4ρ log

(
1

δ

)
+ 6ρ log

(
1

ρ

)
+ 6ρ− 4clρ log

(
1

δ

)

− 6clρ log

(
1

ρ

)
− 6clρ (3.147)

=

√
4

γ
+ 6ρ log

(
1

ρ

)
+ 6ρ− 4cl

γ
− 6clρ log

(
1

ρ

)
− 6clρ. (3.148)

From (3.145) to (3.146) we expand the square brackets while from (3.146) to (3.147) we

separate the terms explicitly involving δ from the rest. Then from (3.147) to (3.148) we

substitute 1/ [γ log (1/δ)] for ρ in the terms explicitly involving δ and simplify.

Now using the fact that limδ→0 ρ log (1/ρ) = 0 and limδ→0 ρ = 0 we have

lim
δ→0

L̃γ(δ, ργ(δ)) =
2√
γ
− 4cl

γ
,

hence concluding the proof for Ũγ(δ, ργ(δ)).

Part 1 and Part 2 combined concludes the proof for Corollary 3.2.4.
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Chapter 4

Sparse Matrices and Expander

Graphs, with Application to

Compressed Sensing

4.1 Introduction

There are computational advantages from using sparse matrices and recently, recovery guar-

antees for using non-mean zero sparse matrices in compressed sensing has been derived in the

form of the ℓ1-norm restricted isometry constants (RIC1) [15]. This chapter is about work in

this direction. We consider random sparse matrices that are adjacency matrices of lossless ex-

pander graphs and present quantitative guarantees on the probabilistic construction of lossless

expander graphs by providing a bound on the tail probability of the size of the set of neighbours

of a randomly generated left-degree bipartite graph. Consequently, we provide a bound on the

tail probability of the expansion of the graph. Furthermore, we present quantitative guarantees

for randomly generated non-mean zero sparse binary matrices to be adjacency matrices of ex-

pander graphs. We also derive the first phase transitions showing regions in parameter space

depicting when a left-regular bipartite graph with a given set of parameters is guaranteed with

high probability to be a lossless expander. The key innovation in this work is the use of a novel

technique of dyadic splitting of sets to derive our bound.

Several compressed sensing algorithms have been designed for sparse matrices [149, 15,

16, 80]. In an effort to quantitatively compare the performance guarantees of these proposed

algorithms we derive sampling theorems, presented as phase transitions, comparing perfor-

mance guarantees for some of these algorithms as well as the more traditional ℓ1-minimization

compressed sensing formulation. We also show how favourably ℓ1-minimization performance

guarantees for such sparse matrices compared to what ℓ2-norm restricted isometry constants
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(RIC2) analysis yields for the dense Gaussian matrices. For this comparison, we used sampling

theorems and phase transitions from related work by Blanchard et. al. [20] that provided such

theorems for dense Gaussian matrices based on RIC2 analysis.

The outline of the chapter 1 goes as follows: In Section 4.2 we present our main results in

Subsection 4.2.1 and we discuss RIC1 and its implication for compressed sensing and expander

graphs in Subsection 4.2.2. In Section 4.3 we show empirical data to validate our main results

and also present lemmas (and their proofs) that are key to the proof of the main theorem,

Theorem 4.2.4. In Section 4.4 we discuss restricted isometry constants and compressed sensing

algorithms. In Section 4.5 we prove the mains results, that is Theorem 4.2.4 and 4.2.6 and the

corollaries in Subsections 4.2.1, 4.2.2 and 4.3.1.

4.2 Sparse Matrices and Expander Graphs

Here we present our main results in Section 4.2.1 in the form of Theorem 4.2.4 and Corollary

4.2.5. In Section 4.2.2 we discuss RIC1 and its implication for compressed sensing and existence

of expander graphs, leading to two sampling theorems in Corollaries 4.2.7 and 4.2.8.

4.2.1 Main Results

Our main results are about a class of sparse matrices coming from lossless expander graphs,

a class which include non-mean zero matrices. We start by defining the class of matrices we

consider and the concept of a set of neighbours used in the derivation of the main results.

Definition 4.2.1. Let A be an n×N matrix with d nonzeros in each column. We refer to A

as a random

1. sparse expander (SE) if every nonzero has value 1

2. sparse signed expander (SSE) if every nonzero has value from {−1, 1}

and the support set of the d nonzeros per column are drawn uniformly at random, with each

column drawn independently.

SE matrices are adjacency matrices of lossless (k, d, ǫ)-expander graphs while SSE matrices

have random sign patterns in the nonzeros of an adjacency matrix of a lossless (k, d, ǫ)-expander

graph. If A is either an SE or SSE it will have only d nonzeros per column and since we fix

d ≪ n, A is therefore “vanishingly sparse.” To aid translation between the terminology of

graph theory and linear algebra we define the set of neighbours in both notations.

Definition 4.2.2. Consider a bipartite graph G(U, V,E) where E is the set of edges and eij =

(xi, yj) is the edge that connects vertex xi to vertex yj. For a given set of left vertices S ⊂ U

1Material in this chapter has been prepared for publication and in preprint [8] in a joint authorship with J.
Tanner whose permission has been obtained for the inclusion of the material.
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its set of neighbours is Γ(S) = {yj |xi ∈ S and eij ∈ E}. In terms of the adjacency matrix, A,

of G(U, V,E) the set of neighbours of AS for |S| = s, denoted by As, is the set of rows in AS

with at least one nonzero.

Definition 4.2.3. Using Definition 4.2.2, the expansion of the graph is given by the ratio

|Γ(S)|/|S|, or equivalently, |As|/s.

By the definition of a lossless expander, Definition 1.3.1, we need |Γ(S)| to be large for every

small S ⊂ U . In terms of the class of matrices defined by Definition 4.2.1, for every AS we

want to have |As| as close to n as possible, where n is the number of rows. Henceforth, we will

only use the linear algebra notation As which is equivalent to Γ(S). Note that |As| is a random

variable depending on the draw of the set of columns, S, for each fixed A. Therefore, we can

ask what is the probability that |As| is not greater than as, in particular where as is smaller

than the expected value of |As|. This is the question that Theorem 4.2.4 seeks to answer.

We then use this theorem with RIC1 to deduce the corollaries that follow which are about the

probabilistic construction of expander graphs, the matrices we consider, and sampling theorems

for some selected compressed sensing algorithms.

Theorem 4.2.4. For fixed s, n,N and d, let an n × N matrix A be drawn from either of the

classes of matrices defined in Definition 4.2.1. Then

Prob (|As| ≤ as) < pmax(s, d) · exp [n ·Ψ(as, . . . , a2, d)] (4.1)

where

pmax(s, d) =
2

25
√
2πs3d3

, (4.2)

and Ψ(as, . . . , a2, d) is given by

1

n




⌈s/2⌉∑

i=1

s

2i

(
ai · H

(
a2i − ai
ai

)
+ (n− ai) · H

(
a2i − ai
n− ai

)
− n ·H

(ai
n

))
+ 3s log(5d)



 (4.3)

where a1 := d and H(·) is the Shannon Entropy function with base e logarithms given in (1.2).

If no restriction is imposed on as then the ai for i > 1 take on their expected value âi given by

â2i = âi

(
2− âi

n

)
for i = 1, 2, 4, . . . , ⌈s/2⌉. (4.4)

If as is restricted to be less than âs, then the ai for i > 1 are the unique solutions to the following

polynomial system

a32i − 2aia
2
2i + 2a2i a2i − a2i a4i = 0 for i = 1, 2, . . . , ⌈s/4⌉ (4.5)

with a2i ≥ ai for each i.
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Corollary 4.2.5. For fixed s, n,N, d and 0 < ǫ < 1/2, let an n ×N matrix A be drawn from

the class of matrices defined in Definition 4.2.1, then

Prob (‖ASx‖1 ≤ (1− 2ǫ)d‖x‖1) < pmax(s, d) exp [n ·Ψ(s, d, ǫ)] (4.6)

where Ψ(s, d, ǫ) = Ψ (as, . . . , a2, d) in (4.3) with as = (1− ǫ)ds and pmax(s, d) is the polynomial

in (4.2).

Theorem 4.2.4 and Corollary 4.2.5 allow us to calculate s, n,N, d, ǫ where the probability

of the probabilistic constructions in Definition 4.2.1 not being a lossless (s, d, ǫ)-expander is

exponentially small. For moderate values of ǫ this allows us to make quantitative sampling

theorems for some compressed sensing reconstruction algorithms.

4.2.2 Implications of RIC1 for Compressed Sensing and Expanders

The reader is reminded that in compressed sensing, and by extension in sparse approximation,

we observe the effect of the application of a matrix to a vector of interest and we endeavour

to recover this vector of interest by exploiting the inherent simplicity in this vector. We are

able to give guarantees on the quality of the reconstructed vector from A and y from a variety

of reconstruction algorithms. One of these guarantees is a bound on the approximation error

between our recovered vector, say x̂, and the original vector by the best k-term representation

error i.e. ‖x − x̂‖1 ≤ C‖x − xk‖1 with constant C > 0 where xk is the optimal k-term

representation for x. This is possible if A has small RIC1, in other words A satisfies the ℓ1-

norm restricted isometry property (RIP-1), introduced by Berinde et. al. in [15] and defined

in Definition 1.1.4.

For computational purposes it is preferable to have A sparse, but little quantitative infor-

mation on L(k, n,N ;A) has been available for large sparse rectangular matrices. Berinde et.

al. in [15] showed that scaled adjacency matrices of lossless expander graphs (i.e. scaled SE

matrices) satisfy RIP-1. We extend this equivalence to random non-mean zero binary matrices

with fixed number of nonzeros in each column where the nonzeros have random signs, i.e. SSE

matrices. Theorem 4.2.6 states this for the two sets of matrices and its proof is presented in

Section 4.5.3.

Theorem 4.2.6. If an n ×N matrix A is either SE or SSE defined in Definition 4.2.1, then

1
dA satisfies RIP-1 with L(k, n,N ;A) = 2ǫ.

Based on Theorem 4.2.6 which guarantees RIP-1, (1.10), for the class of matrices in Defi-

nition 4.2.1, we give a bound, in Corollary 4.2.7, for the probability that a random draw of a

matrix with d 1s or ±1s in each column fails to satisfy the lower bound of RIP-1 and hence

fails to come from the class of matrices given in Definition 4.2.1. Note that with these matrices
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the upper RIC1 is always satisfied, i.e., ‖Ax‖1 ≤ d‖x‖1 always holds. In addition to Theorem

4.2.6, Corollary 4.2.7 follows from Theorem 4.2.4 and Corollary 4.2.5.

Corollary 4.2.7. Considering RIP-1, if A is drawn from the class of matrices in Definition

4.2.1 and any k-sparse vector x with k, n,N and 0 < ǫ < 1/2 fixed, then

Prob (‖Ax‖1 ≤ (1− 2ǫ)d‖x‖1) < p′max(N, k, d)× exp [N ·Ψnet (k, n,N ; d, ǫ)] (4.7)

where p′max(N, k, d) and Ψnet (k, n,N ; d, ǫ) are given by

p′max(N, k, d) =
1

16πk
√
d3
(
1− k

N

) , (4.8)

Ψnet (k, n,N ; d, ǫ) = H

(
k

N

)
+
n

N
Ψ(k, d, ǫ) , (4.9)

with Ψ(k, d, ǫ) defined in Corollary 4.2.5.

Furthermore, the following corollary is a consequence of Corollary 4.2.7 and it is a sampling

theorem on the existence of lossless expander graphs. The proof of Corollaries 4.2.7 and 4.2.8

are presented in Section 4.5.4.

Corollary 4.2.8. Consider 0 < ǫ < 1/2 and d fixed. If A is drawn from the class of matrices

in Definition 4.2.1 and any x drawn from χN with (k, n,N) → ∞ while k/n → ρ ∈ (0, 1) and

n/N → δ ∈ (0, 1) then for ρ < (1− γ)ρexp(δ; d, ǫ) and γ > 0

Prob (‖Ax‖1 ≥ (1 − 2ǫ)d‖x‖1) → 1 (4.10)

exponentially in n, where ρexp(δ; d, ǫ) is the largest limiting value of k/n for which

H

(
k

N

)
+
n

N
Ψ(k, d, ǫ) = 0, (4.11)

with Ψ(k, d, ǫ) defined in Corollary 4.2.5.

4.3 Discussion and Derivation of the Main Results

We present the method used to derive the main results and discuss the validity and implications

of the method. We start by presenting in the next subsection, Section 4.3.1, numerical results

that support the claims of the main results in Sections 4.2.1 and 4.2.2. This is followed in

Section 4.3 with lemmas, propositions and corollaries and their proofs.
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4.3.1 Discussion of Main Results

Theorem 4.2.4 gives a bound on the probability that the cardinality of a union of k sets each

with d elements is less than ak. The left panel of Figure 4.1 shows plots of values of ak (size of

set of neighbours) for different k taken over 500 realizations (in blue), superimposed on these

plots is the mean value of ak (in red) and the âk in green. Similarly, the right panel of Figure

4.1 also shows values of ak/k (the graph expansion) also taken over 500 realizations.
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Figure 4.1: For fixed d = 8 and n = 210, over 500 realizations, left panel: plots (in blue) the
cardinalities of the index sets of nonzeros in a given number of set sizes, k. The dotted red curve
is mean of the simulations and the green squares are the âk; right panel: plots (in blue) the
graph expansion for a given input set size k. The dotted red curve is mean of the simulations
and the green squares are the âk/k.

Theorem 4.2.4 also claims that the âs are the expected values of the cardinalities of the union

of s sets. We give a sketch of its proof in Section 4.3.2 in terms of the maximum likelihood and

empirically illustrate the accuracy of the result in the left panel of Figure 4.2 where we show

the relative error between âk and the mean values of the ak, āk, realized over 500 runs, to be

less than 10−3. The right panel of Figure 4.2 shows representative values of ai from (4.5) for

ak := (1 − ǫ)âk as a function of ǫ for d = 8, k = 2 × 103, and n = 220. Each of the ai decrease

smoothly towards d, but with ai for smaller values of i varying less than for larger values of i.

For fixed 0 < ǫ < 1/2 and for small but fixed d, ρexp(δ; d, ǫ) in Corollary 4.2.8 is a function

of δ for each d and ǫ, is a phase transition function in the (δ, ρ) plane. Below the curve of

ρexp(δ; d, ǫ) the probability in (4.10) goes to one exponentially in n as the problem size grows.

That is if A is drawn at random with d 1s or d ± 1s in each column and having parameters

(k, n,N) that fall below the curve of ρexp(δ; d, ǫ) then we say it is from the class of matrices

in Definition 4.2.1 with probability approaching one exponentially in n. In terms of |Γ(X)| for
X ⊂ U and |X | ≤ k, Corollary 4.2.8 say that the probability |Γ(X)| ≥ (1 − ǫ)dk goes to one

exponentially in n if the parameters of our graph lies in the region below ρexp(δ; d, ǫ). This

implies that if we draw a random bipartite graphs that has parameters in the region below the

curve of ρexp(δ; d, ǫ) then with probability approaching one exponentially in n that graph is a

lossless (k, d, ǫ)-expander.
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Figure 4.2: Left panel: For fixed d = 8 and n = 210, over 500 realizations the relative error
between the mean values of ak (referred to as āk) and the âk from Equation (4.4) of Theorem
4.2.4. Right panel: Values of ai as a function of ǫ ∈ [0, 1) for ak := (1 − ǫ)âk with d = 8,
k = 2 × 103 and n = 220. For this choice of d, k, n there are twelve levels of dyadic splits
resulting in ai for i = 2j for j = 0, . . . , ⌈log2 k⌉ = 12. The highest curve corresponds to ai for
i = 212, the next highest curve corresponds to i = 211, and continuing in decreasing magnitude
with decreasing subscript values.
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Figure 4.3: Phase transition plots of ρexp(δ; d, ǫ) for fixed d = 8, left panel: and fixed ǫ = 1/4
with n varied; right panel: and fixed n = 210 with ǫ varied.

The left panel of Figure 4.3 shows a plot of what ρexp(δ; d, ǫ) converge to for different values

of n with ǫ and d fixed; while the right panel of Figure 4.3 shows plots of what ρexp(δ; d, ǫ)

converge to for different values of ǫ with n and d fixed. Furthermore, the left panel of Figure

4.4 shows a plot of what ρexp(δ; d, ǫ) converge to for different values of d with ǫ and n fixed.

It is interesting to note how increasing d increases the phase transition up to a point then it

decreases the phase transition. Essentially beyond d = 16 there is no gain in increasing d. This

vindicates the use of small d in most of the numerical simulations involving the class of matrices

considered here. Note the vanishing sparsity as the problem size (k, n,N) grows while d is fixed

to a small value of 8. In their GPU implementation [21] Blanchard and Tanner observed that

SSE with d = 7 has a phase transition for numerous sparse approximation algorithms that is

consistent with dense Gaussian matrices, but with dramatically faster implementation.

As afore mentioned Corollary 4.2.8 follows from Theorem 4.2.4, alternatively Corollary 4.2.8

can be arrived at based on probabilistic constructions of expander graphs given by Proposition
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Figure 4.4: Left panel: Phase transition plots of ρexp(δ; d, ǫ) for fixed ǫ = 1/6 and n = 210 with
d varied. Right panel: A comparison of the phase transition, ρexp, based on Theorem 4.2.4 to
ρexpbi derived using the construction based on Corollary 4.3.2.

4.3.1 below. This proposition and its proof can be traced back to Pinsker in [112] but more

recent proofs can be found in [14, 41].

Proposition 4.3.1. For any N/2 ≥ k ≥ 1, ǫ > 0 there exists a lossless (k, d, ǫ)-expander with

d = O (log (N/k) /ǫ) and n = O
(
k log (N/k) /ǫ2

)
.

To put our results in perspective, we compare them to the alternative construction in [14]

which led to Corollary 4.3.2, whose proof is given in Section 4.5.4. The right panel of Figure

4.4 compares the phase transitions resulting from our construction to that presented in [14],

but we must point out however, that the proof in [14] was not aimed for a tight bound.

Corollary 4.3.2. Consider a bipartite graph G(U, V,E) with left vertices |U | = N , right vertices

|V | = n and left degree d. Fix 0 < ǫ < 1/2 and d, as (k, n,N) → ∞ while k/n→ ρ ∈ (0, 1) and

n/N → δ ∈ (0, 1) then for ρ < (1− γ)ρexpbi (δ; d, ǫ) and γ > 0

Prob (G fails to be an expander) → 0 (4.12)

exponentially in n, where ρexpbi (δ; d, ǫ) is the largest limiting value of k/n for which

Ψ(k, n,N ; d, ǫ) = 0 (4.13)

with Ψ(k, n,N ; d, ǫ) = H

(
k

N

)
+
dk

N
H (ǫ) +

ǫdk

N
log

(
dk

n

)
.

4.3.2 Key Lemmas

The following set of lemmas, propositions and corollaries form the building blocks of the proof

of our main results to be presented in Section 4.5.

For one fixed set of columns of A, denoted AS , the probability in (4.1) can be understood
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as the cardinality of the unions of indices of nonzeros in the columns. Our analysis of this

probability follows from a nested unions of subsets using a dyadic splitting technique. Given

a starting set of columns we recursively split the number of columns from this set and the

resulting sets into two sets of cardinality of the ceiling and floor of the cardinality of their union

until a level when the cardinalities are at most two. Resulting from this type of splitting is a

binary tree where the size of each child is either the ceiling or the floor of the size of its parent

set. The probability of interest becomes a product of the probabilities involving all the children

from the dyadic splitting of As.

The computation of the probability in (4.1) involves the computation of the probability of

the cardinality of the intersection of two sets. This probability is given by Lemma 4.3.3 and

Corollary 4.3.4 below.

Lemma 4.3.3. Let B, B1, B2 ⊂ [n] where |B1| = b1, |B2| = b2, B = B1 ∪ B2 and |B| = b.

Also let B1 and B2 be drawn uniformly at random, independent of each other, and define

Pn (b, b1, b2) := Prob (|B1 ∩B2| = b1 + b2 − b), then

Pn (b, b1, b2) =

(
b1

b1 + b2 − b

)(
n− b1
b− b1

)(
n

b2

)−1

. (4.14)

Proof. Given B1, B2 ⊂ [n] where |B1| = b1 and |B2| = b2 are drawn uniformly at random,

independent of each other, we calculate Prob (|B1 ∩B2| = z) where z = b1+b2−b. Without loss

of generality consider drawing B1 first, then the probability that the draw of B2 intersecting

B1 will have cardinality z, i.e. Prob (|B1 ∩B2| = z), is the size of the event of drawing B2

intersecting B1 by z divided by the size of the sample space of drawing B2 from [n], which are

given by
(
b1
z

)
·
(
n−b1
b2−z

)
and

(
n
b2

)
respectively. Rewriting the division as a product with the divisor

raised to a negative power and replacing z by b1 + b2 − b gives (4.14).

Corollary 4.3.4. If two sets, B1, B2 ⊂ [n] are drawn uniformly at random, independent of

each other, and B = B1 ∪B2

Prob (|B| = b) = Pn (b, b1, b2) · Prob (|B1| = b1) · Prob (|B2| = b2) (4.15)

Proof. Prob (|B| = b) = Prob (|B1 ∪B2| = b) by definition. As a consequence of the inclusion-

exclusion principle

Prob (|B1 ∪B2| = b) = Prob (|B1 ∩B2| = b1 + b2 − b) ·
2∏

j=1

Prob (|Bj | = bj) . (4.16)

We use Lemma 4.3.3 to replace Prob (|B1 ∩B2| = b1 + b2 − b) in (4.16) by Pn (b, b1, b2) leading

to the required result.

In the binary tree resulting from our dyadic splitting scheme the number of columns in the
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two children of a parent node is the ceiling and the floor of half of the number of columns of

the parent node. At each level of the split the number of columns of the children of that level

differ by one. The enumeration of these two quantities at each level of the splitting process is

necessary in the computation of the probability of (4.1). We state and prove what we refer to

a dyadic splitting lemma, Lemma 4.3.5, which we later use to enumerate these two quantities -

the sizes (number of columns) of the children and the number of children with a given size at

each level of the split.

Lemma 4.3.5. Let S be an index set of cardinality s. For any level j of the dyadic splitting,

j = 0, . . . , ⌈log2 s⌉ − 1, the set S is decomposed into disjoint sets each having cardinality Qj =
⌈
s
2j

⌉
or Rj = Qj − 1. Let qj sets have cardinality Qj and rj sets have cardinality Rj, then

qj = s− 2j ·
⌈ s
2j

⌉
+ 2j , and rj = 2j − qj . (4.17)

Proof. At every node on the binary tree the children have either of two sizes (number of columns)

of the floor and ceiling of half the sizes of there parents and these sizes differ at most by 1, that

is at level j of the splitting we have at most 2 different sizes. We define these sizes, Qj and Rj ,

in terms of two arbitrary integers, m1 and m2, as follows.

Qj =
s

2j
+
m1

2j
and Rj =

s

2j
+
m2

2j
. (4.18)

Because of the nature of our splitting scheme we have Rj = Qj − 1 which implies that m1 and

m2 must satisfy the relation
m1 −m2

2j
= 1. (4.19)

Now let qj and rj be the number of children with Qj and Rj number of columns respectively.

Therefore,

qj + rj = 2j. (4.20)

At each level j of the splitting the following condition must be satisfied

qj ·Qj + rj ·Rj = s. (4.21)

To find m1, m2, qj and rj , from (4.18) we substitute for Qj and Rj in (4.21) to have

qj ·
( s
2j

+
m1

2j

)
+ rj ·

( s
2j

+
m2

2j

)
= s, (4.22)

2−jqjs+ 2−jqjm1 + 2−jrjs+ 2−jrjm2 = s, (4.23)

2−j (qj + rj) s+ 2−j (qjm1 + rjm2) = s, (4.24)

s+ 2−j (qjm1 + rjm2) = s. (4.25)
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We expand the brackets from (4.22) to (4.23) and simplify from (4.23) to (4.24). We simplify

the first term of (4.24) using (4.20) to get (4.25). Now we simplify this to get (4.26) below.

qjm1 + rjm2 = 0. (4.26)

Equation (4.19) yields

m1 = m2 + 2j. (4.27)

Substituting this in (4.26) yields

qj
(
m2 + 2j

)
+ rjm2 = 0, (4.28)

(qj + rj)m2 + 2jqj = 0, (4.29)

2j (qj +m2) = 0. (4.30)

From (4.28) to (4.29) we expand the brackets and rearrange the terms and use (4.20) to simplify

to (4.30). Using (4.30) and (4.27) respectively we have

m2 = −qj and m1 = 2j − qj = rj . (4.31)

Substituting this in (4.18) we have

Qj =
s− qj
2j

+ 1 and Rj =
s− qj
2j

. (4.32)

Equating this value of Qj to its defined value in the statement of the lemma gives

s− qj
2j

+ 1 =
⌈ s
2j

⌉
⇒ qj = s− 2j ·

⌈ s
2j

⌉
+ 2j. (4.33)

Therefore, from (4.31) we use (4.33) to have

rj = 2j − qj ⇒ rj = 2j ·
⌈ s
2j

⌉
− s, (4.34)

which concludes the proof.

The bound in (4.1) is derived using a large deviation analysis of the nested probabilities

which follow from the dyadic splitting in Corollary 4.3.4. The large deviation analysis of (4.14)

at each stage involves its large deviation exponent ψn(·), which follows from Stirling’s inequality

bounds on the combinatorial product of (4.14). Lemma 4.3.6 establishes a few properties of

ψn(·) while Lemma 4.3.7 shows how the various ψn(·)’s at a given dyadic splitting level can be

combined into a relatively simple expression.
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Lemma 4.3.6. Define

ψn(x, y, z) := y · H
(
x− z

y

)
− n · H

( z
n

)
+ (n− y) ·H

(
x− y

n− y

)
, (4.35)

then for n > x > y we have that

for y > z ψn(x, y, y) ≤ ψn(x, y, z) ≤ ψn(x, z, z); (4.36)

for x > z ψn(x, y, y) > ψn(z, y, y); (4.37)

for 1/2 < α ≤ 1 ψn(x, y, y) < ψn(αx, αy, αy). (4.38)

Proof. We start with Property (4.36) and first show that the left inequality holds. If we substi-

tute y for z in (4.35) with y > z we reduce the first and last terms of (4.35) while we increase the

middle term of (4.35) which makes ψn(x, y, y) ≤ ψn(x, y, z). For second inequality we replace

y by z in (4.35) with y > z we increase the first and the last terms of (4.35) and reduce the

middle term which makes ψn(x, y, z) ≤ ψn(x, z, z). This concludes the proof for (4.36).

Property (4.37) states that for fixed y, ψn(x, y, y) is monotonically increasing in its first

argument. To prove (4.37) we again use the condition n > x > y to ensure that H(p) increases

monotonically with p, which implies that the first and last terms of (4.35) increase with x for

fixed y while the second term remains constant.

Property (4.38) means that ψn(x, y, y) is monotonically decreasing in x and y. For the proof

we show that for 1/2 < α ≤ 1 the difference ψn(αx, αy, αy) − ψn(x, y, y) > 0. Using (4.35) we

write out clearly what the difference, ψn(αx, αy, αy) − ψn(x, y, y), is as follows.

αy · H
(
αx− αy

αy

)
+ (n− αy) · H

(
αx− αy

n− αy

)
− n · H

(αy
n

)

− y · H
(
x− y

y

)
− (n− y) · H

(
x− y

n− y

)
+ n ·H

( y
n

)
(4.39)

= αy ·H
(
x− y

y

)
+ n ·H

(
αx− αy

n− αy

)
− αy · H

(
αx− αy

n− αy

)
− n · H

(αy
n

)

− y · H
(
x− y

y

)
− n · H

(
x− y

n− y

)
+ y ·H

(
x− y

n− y

)
+ n · H

( y
n

)
(4.40)

= αy ·H
(
x− y

y

)
− αy · H

(
αx− αy

n− αy

)
− y · H

(
x− y

y

)
+ y ·H

(
x− y

n− y

)

+ n · H
( y
n

)
− n ·H

(αy
n

)
+ n · H

(
αx− αy

n− αy

)
− n · H

(
x− y

n− y

)
. (4.41)

From (4.39) to (4.40) we expand brackets and simplify, while from (4.40) to (4.41) we rearrange

the terms for easy comparison.

Again n > x > y ensures that the arguments of H(·) are strictly less than half and H(p)

increases monotonically with p. In (4.41) the difference of the first two terms in the first row
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is positive while the difference of the second two terms is negative. However, the whole sum

of the first four terms is negative but very close to zero when α is close to one which is the

regime that we will be considering. The difference of the last two terms in the second row is

positive while the difference of the terms on bottom row is negative but due to the concavity

and steepness of the Shannon entropy function the first positive difference is larger hence the

sum of last four terms is positive. Since we can write n = cy with c > 1 being an arbitrarily

constant, then the positive sum in the second four terms dominates the negative sum in the

first four terms. This gives the required results and hence concludes this proof and the proof

of Lemma 4.3.6.

Lemma 4.3.7. Given ψn(·) as defined in (4.35) then the following bound holds.

⌈log2(s)⌉−2∑

j=0

[
qj · ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)
+ rj · ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)]

+ q⌈log2(s)⌉−1 · ψn (a2, d, d) ≤
⌈log2(s)⌉−1∑

j=0

2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
, (4.42)

where aR⌈log2(s)⌉−1
2

= d.

Proof. The quantity in front of the summation in the top row of (4.42) can be bounded above

in the following way.

qj · ψn
(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)
+ rj · ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)

(4.43)

=
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)

(4.44)

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (4.45)

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (4.46)

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (4.47)

= 2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (4.48)

From (4.44) to (4.45) we upper bound ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

by ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)
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and ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)

by ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

using (4.36) of Lemma 4.3.6. We

then upper bound ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)

by ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
, from (4.45) to (4.46),

again using (4.36) of Lemma 4.3.6. From (4.46) to (4.47), using (4.37) of Lemma 4.3.6, we

bound ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

by ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. For the final step from (4.47) to

(4.48) we factor out ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

and then simplify.

Using q⌈log2(s)⌉−1 + r⌈log2(s)⌉−1 = 2⌈log2(s)⌉−1 we bound q⌈log2(s)⌉−1 by 2⌈log2(s)⌉−1. Then

we add this to the summation of (4.48) for j = 0, . . . , ⌈log2(s)⌉ − 2 establishing the bound of

Lemma 4.3.7.

Now we state and prove a lemma about the quantities ai. During the proof we will make a

statement about the ai using their expected values âi which follows from a maximum likelihood

analogy.

Lemma 4.3.8. The problem

max
as,...,a2

⌈s/2⌉∑

i=1

s

2i
· ψn (a2i, ai, ai) (4.49)

has a global maximum and the maximum occurs at the expected values of the ai, âi given by

â2i = âi

(
2− âi

n

)
for i = 1, 2, 4, . . . , ⌈s/2⌉, (4.50)

which are a solution of the following polynomial system.

a2⌈s/2⌉ − 2na⌈s/2⌉ + nas = 0,

a32i − 2aia
2
2i + 2a2ia2i − a2i a4i = 0

for i = 1, 2, . . . , ⌈s/4⌉. (4.51)

where a1 = d. If as is constrained to be less than âs, then there is a different global maximum,

instead the ai satisfy the following system

a32i − 2aia
2
2i + 2a2i a2i − a2i a4i = 0

for i = 1, 2, 4, . . . , ⌈s/4⌉, (4.52)

again with a1 = d.

Proof. Define

Ψ̃n (as, . . . , a2, d) :=

⌈s/2⌉∑

i=1

s

2i
· ψn (a2i, ai, ai) . (4.53)
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Using the definition of ψn(·) in (4.35) we therefore have Ψ̃n (as, . . . , a2, d) equal to the following.

⌈s/2⌉∑

i=1

s

2i
·
[
ai ·H

(
a2i − ai
ai

)
+ (n− ai) · H

(
a2i − ai
n− ai

)
− n · H

(ai
n

)]
. (4.54)

The gradient of Ψ̃n (as, . . . , a2, d) , ∇Ψ̃n (as, . . . , a2, d) is given by

(
log

[(
2a⌈s/2⌉ − as

)
(n− as)

(
as − a⌈s/2⌉

)2

]
,
s

2i
· log

[
a2i (a4i − a2i) (2ai − a2i)

(2a2i − a4i) (a2i − ai)
2

])T
,

for i = 1, 2, 4, . . . , ⌈s/4⌉, (4.55)

where vT is the transpose of the vector v. Obtaining the critical points at ∇Ψ̃n (as, . . . , d) = 0

leads to the polynomial system (4.51).

The Hessian, ∇2Ψ̃n (as, . . . , a2, d) at these optimal ai which are the solutions to the polyno-

mial system (4.51) is negative definite which implies that this unique critical point is a global

maximum point. Let the solution of the system be the âi then they satisfy a recurrence formula

(4.50) which is equivalent to their expected values as explained in the paragraph that follows.

We estimate the uniformly distributed parameter relating a2i to ai. The best estimator

of this parameter is the maximum likelihood estimator which we calculate from the maximum

log-likelihood estimator (MLE). The summation of the ψn(·) is the logarithm of the join density

functions for the parameter relating the ai. The MLE is obtained by maximizing this summation

and it corresponds to the expected log-likelihood. Therefore, the parameters given implicitly

by (4.50) are the expected log-likelihood which implies that the values of the âj in (4.50) are

the expected values of the ai.

If we restrict as to take a fixed value, then ∇Ψ̃n (as, . . . , a2, d) is given by

(
s

2i
· log

[
a2i (a4i − a2i) (2ai − a2i)

(2a2i − a4i) (a2i − ai)
2

])T
for i = 1, 2, 4, . . . , ⌈s/4⌉. (4.56)

Obtaining the critical points by solving ∇Ψ̃n (as, . . . , a2, d) = 0 leads to the polynomial system

(4.52).

Given as, the Hessian, ∇2Ψ̃n (as, . . . , a2, d) at these optimal ai which are the solutions to

the polynomial system (4.52) is negative definite which implies that this unique critical point is

a global maxima; this case differs from a maximum likelihood estimation because of the extra

constraint of fixing as.

The dyadic splitting technique we employ requires greater care of the polynomial term in

the large deviation bound of Pn (x, y, z) in (4.14); Lemma 4.3.10 establishes the polynomial

term.
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Definition 4.3.9. Pn (x, y, z) defined in (4.14) satisfies the upper bound

Pn (x, y, z) ≤ π (x, y, z) exp(ψn(x, y, z)) (4.57)

with bounds of π (x, y, z) given in Lemma 4.3.10.

Lemma 4.3.10. From the definition of π (x, y, z) and Pn (x, y, z) in (4.57) and (4.14) respec-

tively, π (x, y, z) has the following cases.

(
5

4

)4 [
yz(n− y)(n− z)

2πn(y + z − x)(x − y)(x− z)(n− x)

] 1
2

if {y, z} < x < y + z (4.58)

(
5

4

)3 [
y(n− z)

n(y − z)

] 1
2

if x = y > z; (4.59)

(
5

4

)3 [
(n− y)(n− z)

n(n− y − z)

] 1
2

if x = y + z; (4.60)

(
5

4

)2 [
2πz(n− z)

n

] 1
2

if x = y = z. (4.61)

Proof. From Definition 4.3.9 the quantity π (x, y, z) is the polynomial portion of the large

deviation upper bound. Within this proof we express this by

π (x, y, z) = poly

[(
y

y + z − x

)(
n− y

x− y

)(
n

z

)−1
]
. (4.62)

We derive the upper bound π (x, y, z) using the Stirling’s inequality. The right inequality of

(2.11) is used to upper bound
(

y
y+z−x

)
and

(
n−y
x−y
)
and the left inequality of (2.11) is used to

lower bound
(
n
z

)
. If {y, z} < x < y + z the bound is well defined and simplifies to (4.58).

If x = y > z (4.58) is undefined; however, substituting y for x in (4.62) gives
(

y
y+z−x

)
=
(
y
z

)

and
(
n−y
x−y
)
=
(
n−y
0

)
= 1. We upper bound the product

(
y
z

)(
n
z

)−1
using the right inequality in

(2.11) to bound
(
y
z

)
from above and the left inequality in (2.11) to bound from below

(
n
z

)
. The

resulting polynomial part of the product simplifies to (4.59).

If x = y + z, then
(

y
y+z−x

)
=
(
y
0

)
= 1 and

(
n−y
x−y
)
=
(
n−y
z

)
. As above, we upper bound the

product of
(
n−y
x−y
)
and

(
n
z

)−1
using (2.11) and simplify the polynomial part of this product to

get (4.60). If instead x = y = z, then
(

y
y+z−x

)
=
(
y
0

)
and

(
n−y
x−y
)
=
(
n−y
0

)
both of which equal

1. Therefore the bound only involves
(
n
z

)−1
which we bound using (2.11) and the resulting

polynomial part simplifies to (4.61).

Corollary 4.3.11. If n > 2y, then π(y, y, y) is monotonically increasing in y.

Proof. If n > 2y, (4.61) implies that π(y, y, y) is proportional to
√
y, i.e. π(y, y, y) = c

√
y, with

c > 0 and c
√
y is monotonic in y.
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4.4 Implications for Compressed Sensing Algorithms

Here we revisit the use of restricted isometry constants to analyse compressed sensing algo-

rithms. In Section 4.4.1 we discuss theoretical guarantees of performance of algorithms based

on both RIC1 and RIC2. In Section 4.4.2 we present quantitative comparison of performance

guarantees of some of these algorithms proposed for the kind of matrices we consider in Defini-

tion 4.2.1 and we also feature a comparison of ℓ1-minimization for dense Gaussian matrices to

that of the sparse matrices we consider here.

4.4.1 Performance Guarantees of Compressed Sensing Algorithms

As shown in Section 2.5, RIC2 bounds were used to derive sampling theorems for compressed

sensing algorithms – ℓ1-minimization and the greedy algorithms for dense matrices, IHT,

CoSAMP, and SP. Furthermore, using the phase transition framework with RIC2 bounds Blan-

chard et. al. compared performance of these algorithms in [20]. In a similar vein, as another key

contribution of this work we provide sampling theorems for ℓ1-minimization and combinatorial

greedy algorithms, EMP, SMP, SSMP, LDDSR and ER, proposed for SE and SSE matrices.

Theoretical guarantees have been given for ℓ1 recovery and recovery by other greedy al-

gorithms including EMP, SMP, SSMP, LDDSR and ER designed to do compressed sensing

recovery with adjacency matrices of lossless expander graphs and by extension SSE matrices.

Sparse matrices have been observed to have recovery properties comparable to dense matrices

for ℓ1-minimization and some of the aforesaid algorithms, see [15, 16, 79, 149, 148] and the

references therein. Based on theoretical guarantees, we derived sampling theorems and present

here phase transition curves which are plots of phase transition functions ρalg(δ; d, ǫ) of algo-

rithms such that for k/n → ρ < (1 − γ)ρalg(δ; d, ǫ), γ > 0, a given algorithm is guaranteed to

recovery all k-sparse signals with overwhelming probability on the draw of the sensing matrix

A. This probability approaches 1 exponentially in n.

ℓ1-minimization

Berinde et. al. showed in [15] that ℓ1-minimization can be used to perform signal recovery

with binary matrices coming from expander graphs. We reproduce the formal statement of this

guarantee in the following theorem, the proof of which can be found in [15, 16].

Theorem 4.4.1 (Theorem 3, [15], Theorem 1, [16]). Let A be an adjacency matrix of a lossless

(k, d, ǫ)-expander graph with α(ǫ) = 2ǫ/(1 − 2ǫ) < 1/2. Given any two vectors x, x̂ such that

Ax = Ax̂, and ||x̂||1 ≤ ||x||1, let xk be the largest (in magnitude) coefficients of x, then

||x− x̂||1 ≤ 2

1− 2α(ǫ)
||x− xk||1. (4.63)
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The condition that α(ǫ) = 2ǫ/(1−2ǫ) < 1/2 implies the sampling theorem stated as Corollary

4.4.2, that when satisfied ensures a positive upper bound in (4.63). The resulting sampling

theorem is given by ρℓ1(δ; d, ǫ) using ǫ = 1/6 from Corollary 4.4.2.

Corollary 4.4.2 ([15]). ℓ1-minimization is guaranteed to recover any k-sparse vector from its

linear measurement by an adjacency matrix of a lossless (k, d, ǫ)-expander graph with ǫ < 1/6.

Proof. Setting the denominator of the fraction in the right hand side of (4.63) to be greater

than zero gives the required result.

Sequential Sparse Matching Pursuit (SSMP)

Introduced by Indyk and Ruzic in [17], SSMP has evolved as an improvement of Sparse Match-

ing Pursuit (SMP) which was an improvement on Expander Matching Pursuit (EMP). EMP

also introduced by Indyk and Ruzic in [78] uses a voting-like mechanism to identify and elim-

inate large (in magnitude) components of the signal. EMP’s drawback is that the empirical

number of measurements it requires to achieve correct recovery is suboptimal. SMP, introduced

by Berinde, Indyk and Ruzic in [18], improved on the drawback of EMP. However, its original

version had convergence problems when the input parameters (k and n) fall outside the theo-

retically guaranteed region. This is fixed in the SMP package which forces convergence when

the user provides an additional convergence parameter. In order to correct the aforementioned

problems of EMP and SMP, Indyk and Ruzic developed SSMP. It is a version of SMP where

updates are done sequentially instead of in parallel, consequently convergence is automatically

achieved. All three algorithms have the same theoretical recovery guarantees, which we state

in Theorem 4.4.3, but SSMP has better empirical performances compared to its predecessors.

Input: A, y, η
Output: k-sparse approximation x̂ of the target signal x
Initialization:
1. Set j = 0
2. Set xj = 0

Iteration: Repeat T = O (log (‖x‖1/η)) times
1. Set j = j + 1
2. Repeat (c− 1)k times
a) Find a coordinate i and an increment z that minimizes ‖A (xj + zei)− y‖1
b) Set xj to xj + zei

3. Set xj = Hk (xj)
Return x̂ = xT

Table 4.1: Algorithm 5 – Sequential Sparse Matching Pursuit (SSMP) [17].

Algorithm 5 in Table 4.1 is a pseudo-code of the SSMP algorithm based on the follow-

ing problem setting. The measurement matrix A is an n × N adjacency matrix of a lossless

((c + 1)k, d, ǫ/2)-expander scaled by d and A has a lower RIC1, L ((c+ 1)k, n,N) = ǫ. The
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measurement vector y = Ax + e where e is a noise vector and η = ‖e‖1. We denote the hard

thresholding operator by Hk(z), it sets to zero all but the largest, in magnitude, k entries of z.

The recovery guarantees for SSMP (also for EMP and SMP) are formalized by the following

theorem from which we deduce the recovery condition (sampling theorem) in terms of ǫ in

Corollary 4.4.4.

Theorem 4.4.3 (Theorem 10, [78]). Let A be an adjacency matrix of a lossless (k, d, ǫ)-

expander graph with ǫ < 1/16. Given a vector y = Ax + e, SSMP (also EMP and SMP)

returns approximation vector x̂ satisfying

||x− x̂||1 ≤ 1− 4ǫ

1− 16ǫ
||x− xk||1 +

6

(1 − 16ǫ)d
||e||1, (4.64)

where xk is the k largest (in magnitude) coordinates of x.

Corollary 4.4.4 ([78]). SSMP, EMP, and SMP are all guaranteed to recover any k-sparse

vector from its linear measurement by an adjacency matrix of a lossless (k, d, ǫ)-expander graph

with ǫ < 1/16.

Expander Recovery (ER)

Introduced by Jafarpour et. al. in [79, 80], ER is an improvement on an earlier algorithm intro-

duced by Xu and Hassibi in [148] known as Left Degree Dependent Signal Recovery (LDDSR).

The improvement was mainly on the number of iterations used by the algorithms and the type

of expanders used, from (k, d, 1/4)-expanders for LDDSR to (k, d, ǫ)-expander for any ǫ < 1/4

for ER. Both algorithms use this concept of a gap defined below.

Definition 4.4.5 (gap, [148, 79, 80]). Let x be the original signal and y = Ax. Furthermore,

let x̂ be our estimate for x. For each value yi we define a gap gi as:

gi = yi −
N∑

j=1

Aij x̂j . (4.65)

Algorithm 6 of Table 4.2 is a pseudo-code of the ER algorithm for an original k-sparse

signal x ∈ RN and the measurements y = Ax with an n×N measurement matrix A that is an

adjacency matrix of a lossless (2k, d, ǫ)-expander and ǫ < 1/4. The measurements are assumed

to be without noise, so we aim for exact recovery. The authors of [79, 80] have a modified

version of the algorithm for when x is almost k-sparse.

We state Theorem 4.4.6 which give recovery guarantees for ER. Directly from this theorem

we read-off the recovery condition in terms of ǫ for Corollary 4.4.7 which needs no further proof.

Theorem 4.4.6 (Theorem 6, [80]). Let A ∈ Rn×N be the adjacency matrix of a lossless

(2k, d, ǫ)-expander graph, where ǫ ≤ 1/4 and n = O (k log(N/k)). Then, for any k-sparse

signal x, given y = Ax, ER recovers x successfully in at most 2k iterations.

117



118 Bubacarr Bah

Input: A, y
Output: k-sparse approximation x̂ of the original signal x
Initialization:
1. Set x̂ = 0

Iteration: Repeat at most 2k times
1. if y = Ax̂ then
2. return x̂ and exit
3. else
4. Find a variable node x̂j such that at least (1− 2ǫ)d of the measurements it

participated in, have identical gap gi
5. Set x̂j = x̂j + gi, and go to 2.
6. end if

Table 4.2: Algorithm 6 – Expander Recovery (ER) [79, 80].

Corollary 4.4.7. ER is guaranteed to recovery x if ǫ ≤ 1/4.

4.4.2 Quantitative Comparisons of Compressed Sensing Algorithms

Using the phase transition framework with the theoretical performance guarantees given above

we make a quantitative comparison of the greedy algorithms discussed above. We used RIC2

based analysis of ℓ1-minimization for Gaussian matrices in [19, 20] and the RIC1 based analysis

of ℓ1-minimization discussed above to also make a quantitative comparison of ℓ1-minimization

for the dense versus sparse matrices.

To derive the phase transition functions, ρalg (δ; d, ǫ), for the associated algorithm in the

RIC1 case we replace ρexp (δ; d, ǫ) by ρalg (δ; d, ǫ) in Corollary 4.2.8 and we use the ǫ value

from the recovery conditions given in the preceding section to compute ρalg (δ; d, ǫ). Precisely,

Corollary 4.4.2 gave the ǫ value used to derive ρℓ1 (δ; d, ǫ) for ℓ1-minimization; Corollary 4.4.4

gave the ǫ value used to derive ρSSMP (δ; d, ǫ) for SSMP; and Corollary 4.4.7 gave the ǫ value

used to derive ρER(δ; d, ǫ) for ER.

The left panel of Figure 4.5 compares the phase transition plot of ρSSMP (δ; d, ǫ) for SSMP

(also for EMP and SMP), the phase transition of plot ρER(δ; d, ǫ) for ER (also of LDDSR) and

the phase transition plot of ρℓ1(δ; d, ǫ) for ℓ1-minimization. Remarkably, for ER and LDDSR

recovery is guaranteed for a larger portion of the (δ, ρ) plane than is guaranteed by the theory

for ℓ1-minimization using sparse matrices; however, ℓ1-minimization has a larger recovery region

than does SSMP, EMP, and SMP. In has been shown in [17] that SSMP and SMP have similar

average numerical behaviour to ℓ1-minimization for SE matrices.

The right panel of Figure 4.5 shows a comparison of the phase transition of ℓ1-minimization

as presented by Blanchard et. al. in [20] for dense Gaussian matrices based on RIC2 analysis

and the phase transition we derived here for the sparse binary matrices coming from lossless

expander based on RIC1 analysis. This shows a remarkable difference between the two with

sparse matrices having better performance guarantees; this improvement is achieved through
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Figure 4.5: Left panel: Phase transition curves ρalg (δ; d, ǫ) computed over finite values of
δ ∈ (0, 1) with d fixed and the different ǫ values for each algorithm - 1/4, 1/6 and 1/16 for
ER, ℓ1 and SSMP respectively. Right panel: Phase transition plots of ℓ1; ρ

ℓ1 (δ) for Gaussian
matrices and ρℓ1 (δ; d, ǫ) for adjacency matrices of expander graphs.

RIC1 being more closely related to ℓ1-minimization than is RIC2. However, ℓ1-minimization

average numerical performance (weak phase transition) for SE matrices has been shown to be

the same in [15].

Note that the phase transition curves for the sparse matrices (SE and SSE) are computed

for finite (k, n,N, d, ǫ) unlike that for the dense Gaussian case. This is because the derivation

of ρalg(δ; d, ǫ) involves Ψ (k, d, ǫ) in (4.11) which is defined in terms of Ψ (as, . . . , a2, d) in (4.3).

Precisely, the asymptotic approximation of ρalg(δ; d, ǫ) would require a closed form solution

to the polynomial equation (4.5). This implicit dependence of ρalg(δ; d, ǫ) on k, n,N, d and ǫ

through Ψ (k, d, ǫ) made it difficult to deduce the asymptotic behaviour of ρalg(δ; d, ǫ). Hence

we numerically compute ρalg(δ; d, ǫ) for every instance of (k, n,N, d, ǫ) we plotted.

4.5 Proofs

Here we present the proof of theorems and corollaries from Section 4.2 and Section 4.3.1. We

begin with the proof of Theorem 4.2.4 by first showing that it holds for small sizes examples in

Section 4.5.1 and give the proof for large s in Section 4.5.2.

4.5.1 Theorem 4.2.4 - Examples of Small Problems

We will present three examples of small size problems with s = 2, s = 3 and s = 8. In

addition to being base cases that show that Theorem 4.2.4 holds, these examples for small s are

insightful, making it easy for the reader to follow the more complicated proof of the theorem

for large s. These examples could also be used to confirm statements (lemmas, corollaries and

propositions) made in the proof for large s.

Example 1: For s = 2 we have A2 = A1
1 ∪ A2

1 where A1
1 and A2

1 are composed of one column
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each. Therefore

Prob (|A2| ≤ a2) = Prob
(∣∣A1

1 ∪ A2
1

∣∣ ≤ a2
)

(4.66)

=

a2∑

l2=d

Prob
(∣∣A1

1 ∪ A2
1

∣∣ = l2
)
, (4.67)

=

a2∑

l2=d

Pn (l2, d, d) ·
2∏

j=1

Prob
(∣∣∣Aj1

∣∣∣ = d
)
, (4.68)

=

a2∑

l2=d

Pn (l2, d, d) . (4.69)

From (4.66) to (4.67) we sum over all possible events. Note that l2 cannot be less than d since

for j = 1, 2,
∣∣∣Aj1
∣∣∣ = d. Now given

∣∣∣Aj1
∣∣∣ for j = 1, 2 the probability in (4.67) becomes the

probability of the size of the intersection multiplied by the probabilities of
∣∣∣Aj1
∣∣∣, thus (4.68).

Each column has d ones, therefore Prob
(∣∣A1

1

∣∣ = d
)
= 1 and Prob

(∣∣A2
1

∣∣ = d
)
= 1, hence (4.69).

Using the definition of Pn(·) in Lemma 4.3.3 and the Stirling’s formula (2.11) we can bound

(4.69) as thus.
a2∑

l2=d

Pn (l2, d, d) <
2d∑

l2=d

π (l2, d, d) · eψn(l2,d,d), (4.70)

where π(·) is a polynomial term resulting from the upper bound of Pn(·) using Stirling’s formula.

We also bound the upper limit of the sum using the fact that a2 ≤ 2d.

Now let l2 = a2 maximize the exponential term in (4.70) then we pull the exponential term

out of the sum to get the following bound.

2d∑

l2=d

π (l2, d, d) · eψn(l2,d,d) < eψn(a2,d,d) ·
2d∑

l2=d

π (l2, d, d) (4.71)

< d · π (d, d, d) · eψn(a2,d,d) (4.72)

= d ·
(
5

4

)2

·
√

2πd(n− d)

n
· eψn(a2,d,d) (4.73)

<

(
5

4

)2

·
√
2πd3 · eψn(a2,d,d). (4.74)

From (4.71) to (4.72) we use the fact that π(x, y, z) is greatest when x = y = z and we bound

the summation in (4.71) with the product of this maximum value of π(d, d, d) and the number

of terms in the sum. From (4.72) to (4.73) we use (4.61) to evaluate π(d, d, d) and we upper

bound (4.73) by (4.74) by forgoing the subtraction of d/n under the square root.

Then we manipulate the factor multiplying the exponential in (4.74) in order to get it in

the format of the bound of (4.1). So we multiply (4.74) by 2

25
√

2π(23)d3
and its reciprocal to get
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2

25
√
2π (23) d3

· 25
√
2π (23) d3

2
· 25
16

·
√
2πd3 · eψn(a2,d,d) (4.75)

=
2

25
√
2π (23) d3

· 25
2

· 25
16

· 4
√
2πd3 · eψn(a2,d,d) (4.76)

=
2

25
√
2π (23) d3

· 54 ·
√
2π

8
· d3 · eψn(a2,d,d) (4.77)

<
2

25
√
2π (23) d3

· (5d)6 · eψn(a2,d,d) (4.78)

=
2

25
√
2π (23) d3

· exp [6 log (5d) + ψn (a2, d, d)] . (4.79)

From (4.75) through to (4.77) we simplify and from (4.77) to (4.78) we upper bound
√
2π
8 by

d, since d ≥ 1, and upper bound (5d)
4
by (5d)

6
. Then we rewrite (5d)

6
as exp [6 log (5d)]

from (4.78) to (4.79). This is consistent with Theorem 4.2.4 with pmax(s, d) =
2

25
√

2π(23)d3
and

Ψ (a2, d) =
1
n [6 log (5d) + ψn (a2, d, d)] for the case s = 2 .

Example 2: For s = 3 we have |A3| =
∣∣A1

2 ∪ A2
1

∣∣ where A2
1 and A1

2 are composed of one and

two columns respectively. Therefore,

Prob (|A3| ≤ a3) = Prob
(∣∣A1

2 ∪ A2
1

∣∣ ≤ a3
)

(4.80)

=

min(min(2l12,3d),a3)∑

l3=min(l12,d)

min(2d,l3)∑

l12=d

Prob
(∣∣A1

2 ∪ A2
1

∣∣ = l3
)

(4.81)

=
∑

l3

∑

l12

Pn
(
l3, l

1
2, d
)
· Prob

(∣∣A1
2

∣∣ = l12
)
· Prob

(∣∣A2
1

∣∣ = d
)
. (4.82)

From (4.80) to (4.81) we sum over all possible events. From (4.81) to (4.82) we rewrite the

probability as a product of the probability of the cardinalities of
∣∣A1

2

∣∣ and
∣∣A2

1

∣∣ and their

intersection.

We use the fact that Prob
(∣∣A2

1

∣∣ = d
)
= 1 and we split A1

2 into A3
1 and A4

1 to have (4.82)

become

∑

l3

∑

l12

Pn
(
l3, l

1
2, d
)
· Prob

(∣∣A3
1 ∪ A4

1

∣∣ = l12
)

(4.83)

=
∑

l4

∑

l12

Pn
(
l3, l

1
2, d
)
· Pn

(
l12, d, d

)
· Prob

(∣∣A3
1

∣∣ = d
)
· Prob

(∣∣A4
1

∣∣ = d
)

(4.84)

=
∑

l3

∑

l12

Pn
(
l3, l

1
2, d
)
· Pn

(
l12, d, d

)
. (4.85)

From (4.83) to (4.84) we rewrite Prob
(∣∣A2

1 ∪A3
1

∣∣ = l12
)
as a product of the cardinality of the

intersection and the probability of
∣∣A3

1

∣∣ and
∣∣A4

1

∣∣ while from (4.84) to (4.85) we use the fact

that Prob
(∣∣∣Aj1

∣∣∣ = d
)
= 1 for j = 3, 4.

121



122 Bubacarr Bah

Again using the definition of Pn(·) in Lemma 4.3.3 and the Stirling’s approximation we can

upper bound (4.85) by

3d∑

l3=2d

2d∑

l12=d

π
(
l3, l

1
2, d
)
· eψn(l3,l12,d) · π

(
l12, d, d

)
· eψn(l12,d,d) (4.86)

< exp [ψn (a3, a2, d) + ψn (a2, d, d)] ·
3d∑

l3=2d

2d∑

l12=d

π
(
l3, l

1
2, d
)
· π
(
l12, d, d

)
(4.87)

< d2 · [π (d, d, d)]2 · exp [ψn (a3, a2, d) + ψn (a2, d, d)] . (4.88)

From (4.86) to (4.87) we maximize the exponential terms at l12 = a2 and l3 = a3 and pull it out

of the summation. Then from (4.87) to (4.88) we use the maximum of π(·) given by (4.61) and

multiply this by the number of the terms in the sums to upper bound the summations.

Now we evaluate π(d, d, d) using (4.61) to have (4.88) become

d2 ·
[(

5

4

)2

·
√

2πd(n− d)

n

]2
· exp [ψn (a3, a2, d) + ψn (a2, d, d)] (4.89)

<

(
5

4

)4

· 2πd3 · exp [ψn (a3, a2, d) + ψn (a2, d, d)] (4.90)

=
2

25
√
2π (33) d3

· 25
√
2π (33) d3

2

(
5

4

)4

2πd3 · exp [ψn (a3, a2, d) + ψn (a2, d, d)] (4.91)

<
2

25
√
2π (33) d3

· (5d)9 · exp [ψn (a3, a2, d) + ψn (a2, d, d)] (4.92)

=
2

25
√
2π (33) d3

· exp [9 log (5d) + ψn (a3, a2, d) + ψn (a2, d, d)] . (4.93)

From (4.89) to (4.90) we upper bound the term in the square root and from (4.90) to (4.91) we

multiply the factor in front of the exponential by 2

25
√

2π(33)d3
and its reciprocal. From (4.91)

to (4.92) we bound
25
√

2π(33)d3

2

(
5
4

)4
2πd3 by (5d)

9
since d ≥ 1; while from (4.92) to (4.93) we

rewrite (5d)
9
as exp [9 log (5d)]. Expression (4.93) is consistent with the bound in Theorem 4.2.4

with pmax(s, d) =
2

25
√

2π(33)d3
and Ψ (a3, a2, d) =

1
n [9 log (5d) + ψn (a3, a2, d) + ψn (a2, d, d)] for

the case s = 3.

Example 3: For s = 8 we have |A8| =
∣∣A1

4 ∪ A2
4

∣∣ where A2
4 and A1

4 are composed of four

columns each respectively. Therefore,

Prob (|A8| ≤ a8) = Prob

(∣∣∣∣
2∪
j=1

Aj4

∣∣∣∣ ≤ a8

)
(4.94)

=

min(2min(l14,l24),a8)∑

l8=min(l14,l24)

min(2min(l2j−1
2 ,l2j2 ),l8)∑

lj4=min(l2j−1
2 ,l2j2 )

j=1,2

Prob

(∣∣∣∣
2∪
j=1

Aj4

∣∣∣∣ = l8

)
(4.95)
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=
∑

l8

∑

l14

∑

l24

Pn
(
l8, l

1
4, l

2
4

) 2∏

j=1

Prob
(∣∣∣Aj4

∣∣∣ = lj4

)
. (4.96)

From (4.94) to (4.95) we sum over all possible events. Then from (4.95) to (4.96) we rewrite

the probability as the product of the probability of the cardinalities of
∣∣∣Aj4
∣∣∣ for j = 1, 2 and

their intersection.

Splitting Aj4 into A2j−1
2 and A2j

2 for j = 1, 2 we have (4.96) become

=
∑

l8

∑

l14

∑

l24

Pn
(
l8, l

1
4, l

2
4

)
×

2∏

j=1

∑

l2j−1
2

∑

l2j2

Pn

(
lj4, l

2j−1
2 , l2j2

)
· Prob

(∣∣∣A2j−1
2

∣∣∣ = l2j−1
2

)
· Prob

(∣∣∣A2j
2

∣∣∣ = l2j2

)
(4.97)

=
∑

l8

∑

l14

∑

l24

Pn
(
l8, l

1
4, l

2
4

)



∑

l12

∑

l22

Pn
(
l14, l

1
2, l

2
2

) 2∏

j=1

Pn

(
lj2, d, d

)




×




∑

l32

∑

l42

Pn
(
l24, l

3
2, l

4
2

) 4∏

j=3

Pn

(
lj2, d, d

)


 . (4.98)

From (4.97) to (4.98) we repeat the process of rewriting the probability of the cardinality of

the parent set as the product of the probabilities of the cardinalities of the two children and

their intersection.

Next we upper bound Pn(·) using its definition in Lemma 4.3.3 by products of polynomials

and exponentials from the Stirling’s formula to have (4.98) upper bounded by the following.

∑

l8

∑

l14

∑

l24

π
(
l8, l

1
4, l

2
4

)
· eψn(l8,l14,l24)×



∑

l12

∑

l22

π
(
l14, l

1
2, l

2
2

)
· eψn(l14,l12,l22)

2∏

j=1

π
(
lj2, d, d

)
· eψn(lj2,d,d)


×



∑

l32

∑

l42

π
(
l24, l

3
2, l

4
2

)
· eψn(l24,l32,l42)

4∏

j=3

π
(
lj2, d, d

)
· eψn(lj2,d,d)


 (4.99)

=
∑

l8

∑

l14

∑

l24

π8 · exp
[
ψn
(
l8, l

1
4, l

2
4

)]
×

(
∑

l12

∑

l22

π1
4 · π1

2 · π2
2 · exp

[
ψn
(
l14, l

1
2, l

2
2

)
+ ψn

(
l12, d, d

)
+ ψn

(
l22, d, d

)]
)
×

(
∑

l32

∑

l42

π2
4 · π3

2 · π4
2 · exp

[
ψn
(
l24, l

3
2, l

4
2

)
+ ψn

(
l32, d, d

)
+ ψn

(
l42, d, d

)]
)

(4.100)

where π8 = π
(
l8, l

1
4, l

2
4

)
, πj4 = π

(
lj4, l

2j−1
2 , l2j2

)
for j = 1, 2 and πj2 = π

(
lj2, d, d

)
for j = 1, . . . , 4.

From (4.99) to (4.100) we collect like terms.
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Now we decompose the first exponent, ψn
(
l8, l

1
4, l

2
4

)
into a sum of two parts, 1

2ψn
(
l8, l

1
4, l

2
4

)

and 1
2ψn

(
l8, l

1
4, l

2
4

)
. Then we place one of the these two parts into the second and third expo-

nential terms to have (4.100) become

∑

l8

∑

l14

∑

l24

π8 ·
(
∑

l12

∑

l22

π1
4 · π1

2 · π2
2 · exp

[
1

2
· ψn

(
l8, l

1
4, l

2
4

)
+ ψn

(
l14, l

1
2, l

2
2

)

+ ψn
(
l12, d, d

)
+ ψn

(
l22, d, d

) ]
)

·
(
∑

l32

∑

l42

π2
4 · π3

2 · π4
2 · exp

[
1

2
ψn
(
l8, l

1
4, l

2
4

)

+ ψn
(
l24, l

3
2, l

4
2

)
+ ψn

(
l32, d, d

)
+ ψn

(
l42, d, d

) ]
)
. (4.101)

Let’s say the two exponents in (4.101) are maximized at l̄8, l̄
1
4, l̄

2
4, l̄

j
2, and l̂8, l̂

1
4, l̂

2
4, l̂

j
2, for

j = 1, . . . , 4 respectively. Since each is symmetric their maximum must occur at the same

point, (a8, a4, a2, d) where l̄8 = l̂8 = a8, l̄
1
4 = l̄24 = l̂14 = l̂24 = a4 and l̄12 = l̄22 = l̄32 = l̄42 = l̂12 = l̂22 =

l̂32 = l̂42 = a2. Therefore, we can upper bound (4.101) by the following

exp [Ψn (a8, a4, a2, d)] ·
∑

l8

∑

l14,l
2
4

π8 ·



∑

l12,l
2
2

π1
4 · π1

2 · π2
2


 ·



∑

l32,l
4
2

π2
4 · π3

2 · π4
2


 , (4.102)

where

Ψn (a8, a4, a2, d) = ψn (a8, a4, a4) + 2 · ψn (a4, a2, a2) + 4 · ψn (a2, d, d) . (4.103)

Now we focus on bounding the following term

∑

l8

∑

l14,l
2
4

π8 ·




∑

l12,l
2
2

π1
4 · π1

2 · π2
2



 ·




∑

l32,l
4
2

π2
4 · π3

2 · π4
2



 . (4.104)

We start by bounding the rightmost bracket in (4.104) by considering the largest possible

range of the limits of the sum, hence

∑

l32,l
4
2

π2
4 · π3

2 · π4
2 ≤

2d∑

l32=d

π
(
l32, d, d

)
·

2d∑

l42=d

π
(
l24, l

3
2, l

4
2

)
· π
(
l42, d, d

)
, (4.105)

< π (d, d, d) ·
2d∑

l42=d

2d∑

l32=d

π
(
l24, l

3
2, l

4
2

)
· π
(
l32, d, d

)
, (4.106)

< [π (d, d, d)]2 ·
2d∑

l42=d

2d∑

l32=d

π
(
l24, l

3
2, l

4
2

)
. (4.107)

From (4.105) to (4.106) we maximize π
(
l42, d, d

)
at l42 = d using (4.61) and factor it out. We

repeat the same process for (4.106) to (4.107) for π
(
l32, d, d

)
.
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Similarly, we can upper the other bracket in (4.104) as thus

∑

l12,l
2
2

π1
4 · π1

2 · π2
2 < [π (d, d, d)]2 ·

2d∑

l22=d

2d∑

l12=d

π
(
l14, l

1
2, l

2
2

)
. (4.108)

Combining (4.107) and (4.108) we have an upper bound on the product of the two brackets

in (4.104) as

[π (d, d, d)]
4 ·




2d∑

l22=d

2d∑

l12=d

π
(
l14, l

1
2, l

2
2

)

 ·




2d∑

l42=d

2d∑

l32=d

π
(
l24, l

3
2, l

4
2

)

 , (4.109)

which is in turn bound above by

d4 · [π (d, d, d)]4 · π
(
l14, 2d, 2d

)
· π
(
l24, 2d, 2d

)
. (4.110)

From (4.109) to (4.110) we upper bound π
(
l24, l

3
2, l

4
2

)
and π

(
l14, l

1
2, l

2
2

)
by π

(
l24, 2d, 2d

)
and

π
(
l14, 2d, 2d

)
respectively considering the fact that the minimum possible value of lj4 for j = 1, 2

is 2d.

Therefore we bound the whole of (4.104) by

d4 · [π (d, d, d)]4 ·
∑

l8

∑

l14,l
2
4

π8 · π
(
l14, 2d, 2d

)
· π
(
l24, 2d, 2d

)
, (4.111)

< d4 · [π (d, d, d)]4 ·
∑

l8

π8

4d∑

l14=2d

π
(
l14, 2d, 2d

) 4d∑

l24=2d

π
(
l24, 2d, 2d

)
, (4.112)

< d4 · [π (d, d, d)]4 · (2d)2 · [π (2d, 2d, 2d)]2 ·
8d∑

l8=4d

π (l8, 4d, 4d) , (4.113)

< d4 · [π (d, d, d)]4 · (2d)2 · [π (2d, 2d, 2d)]2 · 4d · π (4d, 4d, 4d) . (4.114)

We upper bound (4.111) by (4.112) by considering the maximum possible range of the summa-

tion over l14 and l24. From (4.112) to (4.113) we upper bound the last two sums by evaluating

π(·) and the smallest values of the summations and multiply this by the number of the terms

in the sums. We repeat the same process from (4.113) to (4.114).

Now we use (4.61) to evaluate π(·) in (4.114) to bound (4.114) by the following.

d4 ·
[(

5

4

)2 √
2πd

]4
· (2d)2 ·

[(
5

4

)2 √
22πd

]2
· 4d ·

[(
5

4

)2 √
23πd

]
, (4.115)

=

(
5

4

)14

d21/2 · 44π3 · 2
√
2π (4.116)

=
2

25
√
2π (83) d3

· 25
√
2π (83) d3

2
·
(
5

4

)14

d21/2 · 44π3 · 2
√
2π (4.117)
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<
2

25
√
2π (83) d3

· (5d)24 (4.118)

=
2

25
√
2π (83) d3

· exp [24 log (5d)] . (4.119)

From (4.115) to (4.116) we simplify and we multiply (4.116) by 2

25
√

2π(83)d3
and its reciprocal

to get (4.117). Then from (4.117) to (4.118) we upper bound the factor multiplying 2

25
√

2π(83)d3

in (4.117) by (5d)24 then we rewrote (5d)
24

as exp [24 log (5d)] to get the expression in (4.119).

Using (4.119) we can upper bound (4.102) by

2

25
√
2π (83) d3

· exp [24 log (5d) + Ψn (a8, a4, a2, d)] . (4.120)

The expression (4.120) is in the right format and consistent with Theorem 4.2.4 with polynomial

pmax(s, d) = 2

25
√

2π(83)d3
and Ψ (a8, a4, a2, d) = 1

n [24 log (5d) + Ψn (a8, a4, a2, d)] for the case

s = 8 where Ψn (a8, a4, a2, d) given by (4.103).

4.5.2 Theorem 4.2.4 for Large s

By the dyadic splitting |As| =
∣∣∣A1

⌈ s
2 ⌉

∪ A2
⌊ s
2 ⌋

∣∣∣ and therefore

Prob (|As| ≤ as) = Prob
(∣∣∣A1

⌈ s
2 ⌉ ∪ A

2
⌊ s
2 ⌋

∣∣∣ ≤ as

)
(4.121)

=

min
(
2min

(
l⌈ s

2
⌉,l⌊ s

2
⌋

)
,as
)

∑

ls=min
(
l⌈ s

2
⌉,l⌊ s

2
⌋

)

min

(
2min

(
l⌈ s

22
⌉,l⌊ s

22
⌋

)
,ls

)

∑

lj
⌈ s
2
⌉
=min

(
l⌈ s

22
⌉,l⌊ s

22
⌋

)

j=1,2

Prob
(∣∣∣A1

⌈ s
2 ⌉ ∪ A

2
⌊ s
2 ⌋

∣∣∣ = ls

)
(4.122)

=
∑

ls

∑

l1
⌈ s
2
⌉

∑

l2
⌊ s
2
⌋

Pn

(
ls, l

1
⌈ s
2 ⌉, l

2
⌊ s
2 ⌋

)
Prob

(∣∣∣A1
⌈ s
2 ⌉

∣∣∣ = l1⌈ s
2 ⌉

)
Prob

(∣∣∣A2
⌊ s
2 ⌋

∣∣∣ = l2⌊ s
2 ⌋

)
. (4.123)

From (4.121) to (4.122) we sum over all possible events while from (4.122) to (4.123), in line

with the splitting technique, we simplify the probability to the product of the probabilities of

the cardinalities of
∣∣∣A1

⌈ s
2 ⌉

∣∣∣ and
∣∣∣A2

⌊ s
2 ⌋

∣∣∣ and their intersection.

In a slight abuse of notation we write
∑

lj j=1,...,x to denote applying the sum x times. Now

we use Lemma 4.3.5 to simplify (4.123) as follows.

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)

×
q1∏

j2=1

Prob
(∣∣∣Aj2Q1

∣∣∣ = lj2Q1

) q1+r1∏

j3=q1+1

Prob
(∣∣∣Aj3R1

∣∣∣ = lj3R1

)
. (4.124)

Let’s quickly verify that (4.124) is the same as (4.123). By Lemma 4.3.5, Q0 = s is the

number of columns in the set at the zeroth level of the split while q0 = 1 is the number of
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sets with Q0 columns at the zeroth level of the split. Thus for j1 = 1 the first summation

and the Pn(·) term are the same in the two equations. If ⌈Q0

2 ⌉ = ⌊Q0

2 ⌋, then they are both

equal to Q1 and q1 = 2 while r1 = 0. If on the other hand ⌈Q0

2 ⌉ = ⌊Q0

2 ⌋+ 1, then q1 = 1 and

r1 = 1. In either case we have the remaining part of the expression of (4.123) i.e. the second

two summations and the product of the two Prob(·).

Now we proceed with the splitting - note (4.124) stopped only at the first level. At the next

level, the second, we will have q2 sets with Q2 columns and r2 sets with R2 columns which leads

to the following expression.

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)
×

[
∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

Pn

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)
Pn

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)

×
q2∏

j4=1

Prob
(∣∣∣Aj4Q1

∣∣∣ = lj4Q1

) q2+r2∏

j5=q2+1

Prob
(∣∣∣Aj5R1

∣∣∣ = lj5R1

)]
. (4.125)

We continue this splitting of each instance of Prob(·) for ⌈log2 s⌉ − 1 levels until reaching

sets with single columns where, by construction, the probability that the single column has d

nonzeros is one. This process gives a complicated product of nested sums of Pn(·) which we

express as

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)
×

[
∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

Pn

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)
Pn

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)
×
[
. . .

×
[

∑

l
j2⌈log2 s⌉−2

Q⌈log2 s⌉−1

j2⌈log2 s⌉−2=1,...,qj⌈log2 s⌉−1

Pn

(
l
j2⌈log2 s⌉−4

4 , l
2j2⌈log2 s⌉−4−1

2 , l
2j2⌈log2 s⌉−4

2

)

× Pn

(
l
j2⌈log2 s⌉−3

3 , l
2j2⌈log2 s⌉−3−1

2 , d
)
· Pn

(
l
j2⌈log2 s⌉−2

2 , d, d
) ]

. . .

]
. (4.126)

Using the definition of Pn(·) in Lemma 4.3.3 we bound (4.126) by bounding each Pn(·) as

127



128 Bubacarr Bah

in (4.57) with a product of a polynomial, π(·), and an exponential with exponent ψn(·).

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

π

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)
· e
ψn

(
l
j1
Q0
,l
2j1−1

⌈
Q0
2

⌉
,l
2j1

⌊
Q0
2

⌋

)

·
[

∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

π

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)
· e
ψn

(
l
j2
Q1
,l
2j2−1

⌈
Q1
2

⌉
,l
2j2

⌊
Q1
2

⌋

)

× π

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)
· e
ψn

(
l
j3
R1
,l
2j3−1

⌈
R1
2

⌉
,l
2j3

⌊
R1
2

⌋

)

×
[
. . .×

[

∑

l
j2⌈log2 s⌉−2

Q⌈log2 s⌉−1

j2⌈log2 s⌉−2=1,...,qj⌈log2 s⌉−1

π
(
l
j2⌈log2 s⌉−4

4 , l
2j2⌈log2 s⌉−4−1

2 , l
2j2⌈log2 s⌉−4

2

)

× e
ψn

(
l
j2⌈log2 s⌉−4
4 ,l

2j2⌈log2 s⌉−4−1

2 ,l
2j2⌈log2 s⌉−4
2

)

· π
(
l
j2⌈log2 s⌉−3

3 , l
2j2⌈log2 s⌉−3−1

2 , d
)

e
ψn

(
l
j2⌈log2 s⌉−3
3 ,l

2j2⌈log2 s⌉−3−1

2 ,d

)

· π
(
l
j2⌈log2 s⌉−2

2 , d, d
)
· eψn

(
l
j2⌈log2 s⌉−2
2 ,d,d

)]
. . .

]
. (4.127)

Using Lemma 4.3.6 we maximize the ψn(·) and hence the exponentials. If we maximize

each by choosing l(·) to be a(·), then we can pull the exponentials out of the product. The

exponential will then have the exponent Ψn (as, . . . , a2, d). The factor involving the π(·) will

be called Π (ls, . . . , l2, d) and we have the following upper bound for (4.127).

Π (ls, . . . , l2, d) · exp [Ψn (as, . . . , a2, d)] , (4.128)

where the exponent Ψn (as, . . . , a2, d) is given by

ψn

(
aQ0 , a⌈Q0

2 ⌉, a⌊Q0
2 ⌋

)
+ . . .+ ψn (a2, d, d) . (4.129)

Now we attempt to bound the probability of interest in (4.121). This task reduces to

bounding Π (ls, . . . , l2, d) and Ψn (as, . . . , a2, d) in (4.128) and we start with the former, i.e.

bounding Π (ls, . . . , l2, d). We bound each sum of π(·) in Π (ls, . . . , l2, d) of (4.128) by the

maximum of summations multiplied by the number of terms in the sum. From (4.61) we see

that π(·) is maximized when all the three arguments are the same and using Corollary 4.3.11

we take largest possible arguments that are equal in the range of the summation. In this way

the following proposition provides the bound we end up.

Proposition 4.5.1. Let’s make each summation over the sets with the same number of columns

to have the same range where the range we take are the maximum possible for each such set.

Let’s also maximize π(·) where all its three input variables are equal and are equal to the maxi-
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mum of the third variable. Then we bound each sum by the largest term in the sum multiplied

by the number of terms. This scheme combined with Lemma 4.3.5 give the following bound.

Π(ls, . . . , l2, d) ≤
(⌈

Q0

2

⌉
d

(
5

4

)2
√

2π

⌊
Q0

2

⌋
d

)q0
×

⌈log2 s⌉−2∏

j=1

(⌈
Qj
2

⌉
d

(
5

4

)2
√
2π

⌊
Qj
2

⌋
d

)qj
·
(⌈

Rj
2

⌉
d

(
5

4

)2
√
2π

⌊
Rj
2

⌋
d

)rj

×
(⌈

Q⌈log2 s⌉−1

2

⌉
d

(
5

4

)2
√

2π

⌊
Q⌈log2 s⌉−1

2

⌋
d

)p⌈log2 s⌉−1

. (4.130)

Proof. From (4.61) we have

π(y, y, y) =

(
5

4

)2
√

2πy(n− y)

n
<

(
5

4

)2√
2πy. (4.131)

Simply put, we bound
∑
x π(x, y, z) by multiplying the maximum of π(x, y, z) with the number

of terms in the summation. Remember the order of magnitude of the arguments of π(x, y, z)

is x ≥ y ≥ z. Therefore, the maximum of π(x, y, z) occurs when the arguments are all equal

to the maximum value of z. In our splitting scheme the maximum possible value of l⌊Qj
2

⌋ is
⌊Qj

2

⌋
· d since there are d nonzeros in each column. Also l⌊Qj

2

⌋ ≤ lQj
≤ l⌊Qj

2

⌋ + l⌈Qj
2

⌉ so the

number of terms in the summation over lQj
is
⌈Qj

2

⌉
· d, and similarly for Rj . We know the

values of the Qj and the Rj and their quantities qj and rj respectively from Lemma 4.3.5.

We replace y by
⌊Qj

2

⌋
· d or

⌊Rj

2

⌋
· d accordingly into the bound of π(y, y, y) in (4.131) and

multiply by the number of terms in the summation, i.e.
⌈Qj

2

⌉
· d or

⌈Rj

2

⌉
· d. This product

is then repeated qj or rj times accordingly until the last level of the split, j = ⌈log2 s⌉ − 1,

where we have q⌈log2 s⌉−1 and Q⌈log2 s⌉−1 (which is equal to 2). We exclude R⌈log2 s⌉−1 since

lR⌈log2 s⌉−1
= d. Putting the whole product together results to (4.130) hence concluding the

proof of Proposition 4.5.1.

As a final step we need the following corollary.

Corollary 4.5.2.

Π(ls, . . . , l2, d) <
2

25
√
2πs3d3

· exp [3s log(5d)] . (4.132)

Proof. From Lemma 4.3.5 we can upper bound Rj by Qj . Consequently (4.130) is upper

bounded by the following.

(⌈
Q0

2

⌉
d

(
5

4

)2
√
2π

⌊
Q0

2

⌋
d

)q0
·
⌈log2 s⌉−2∏

j=1

(⌈
Qj
2

⌉
d

(
5

4

)2
√
2π

⌊
Qj
2

⌋
d

)qj+rj
×

(⌈
Q⌈log2 s⌉−1

2

⌉
d

(
5

4

)2
√

2π

⌊
Q⌈log2 s⌉−1

2

⌋
d

)q⌈log2 s⌉−1

(4.133)
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Now we use the property that qj + rj = 2j for j = 1, . . . , ⌈log2 s⌉ − 1 from Lemma 4.3.5 to

bound (4.133) by the following.

⌈log2 s⌉−1∏

j=0

(⌈
Qj
2

⌉
d

(
5

4

)2
√

2π

⌊
Qj
2

⌋
d

)2j

. (4.134)

We have a strict upper bound when r⌈log2 s⌉−1 6= 0, which occurs when s is not a power of 2,

because then by qj + rj = 2j we have q⌈log2 s⌉−1 + r⌈log2 s⌉−1 = 2⌈log2 s⌉−1. In fact (4.134) is an

overestimate for a large s which is not a power of 2.

Note Qj =
⌈
s
2j

⌉
by Lemma 4.3.5. Thus

⌈
Qj

2

⌉
=
⌈

s
2j+1

⌉
and

⌊
Qj

2

⌋
≤
⌈

s
2j+1

⌉
. So we bound

(4.134) by the following.

⌈log2 s⌉−1∏

j=0

(⌈ s

2j+1

⌉
d

(
5

4

)2√
2π
⌈ s

2j+1

⌉
d

)2j

(4.135)

Next we upper bound ⌈log2 s⌉− 1 in the limit of the product by log2 s and upper bound ⌈ s
2j+1 ⌉

by s
2j+1 + 1

2 = s
2j+1

(
1 + 2j+1

s

)
, we also move the d into the square root and combined the

constants to have the following bound on (4.135).

log2 s∏

j=0

[
s

2j+1

(
1 +

2j+1

s

)(
25

√
2π

16

)
·
√

s

2j+1

(
1 +

2j+1

s

)
d3

]2j

. (4.136)

We bound
(
1 + 2j+1

s

)
by 2 to bound the above by

log2 s∏

j=0

[
s

2j

(
25

√
2π

16

)√
s

2j
d3

]2j

=

log2 s∏

j=0

[(
25

√
2π

16

)√
s3d3

23j

]2j

(4.137)

where we moved s/2j into the square root. Using the rule of indices the product of the constant

term is replaced by its power to sum of the indices. We then rearranged to have the power 3/2

in the outside and this gives the following.

(
25

√
2π

16

)∑log2 s

i=0 2i


log2 s∏

j=0

(
sd

2j

)2j


3/2

(4.138)

=

(
25

√
2π

16

)2s−1

(sd)

∑log2 s

i=0 2i
log2 s∏

j=0

(
1

2j

)2j


3/2

(4.139)

=

(
25

√
2π

16

)2s−1


(sd)2s−1

(
1

2

)∑log2 s

j=0 j2j



3/2

. (4.140)

From (4.138) to (4.139) we evaluate the power of the first factor which is a geometric series
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and we again use the rule of indices for the sd factor. Then from (4.139) to (4.140) we use the

indices’ rule for the last factor and evaluate the power of the sd factor which is also a geometric

series. We simplify the power of the last factor by using the following.

m∑

k=1

k · 2k = (m− 1) · 2m+1 + 2. (4.141)

This therefore simplifies (4.140) as follows.

(
25

√
2π

16

)2s−1 [
(sd)

2s−1

(
1

2

)(log2 s−1)·2log2 s+1+2
]3/2

(4.142)

=

(
25

√
2π

16

)2s−1 [
(sd)2s−1

(
1

2

)2s(log2 s−1)
1

4

]3/2
(4.143)

=

(
25

√
2π

16

)2s−1 [
(sd)2s

4sd
2−2s log2 s22s

]3/2
(4.144)

=

(
25

√
2π

16

)2s(
16

25
√
2π

)[
(2sd)2s

4sd
s−2s

]3/2
(4.145)

=

(
25

√
2π

16

)2s(
16

25
√
2π

)[
(2d)2s

4sd

]3/2
. (4.146)

From (4.142) through (4.144) we simplify using basic properties of indices and logarithms.

While from (4.144) to (4.145) we incorporate 22s into the first factor inside the square brackets

and we rewrite the first factor into a product of a power in s and another without s. From

(4.145) to (4.146) the s2s and s−2s cancel out.

Now we expand the square brackets in (4.146) to have (4.147) below.

(
25

√
2π

16

)2s(
16

25
√
2π

)
1

8
√
s3d3

(2d)3s (4.147)

=

(
25

√
2π

16

)2s

(2d)3s
2

25
√
2πs3d3

(4.148)

=
2

25
√
2πs3d3

· exp


3s log


2

(
25

√
2π

16

)2/3

d




 (4.149)

<
2

25
√
2πs3d3

· exp [3s log(5d)] (4.150)

From (4.147) to (4.148) we simplify and from (4.148) to (4.149) we rewrite the powers as

an exponential with a logarithmic exponent. Then from (4.149) to (4.150) we upper bound

2
(

25
√
2π

16

)2/3
by 5 which gives the required format of a product of a polynomial and an expo-

nential to conclude the proof of the corollary.
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With the bound in Corollary 4.5.2 we have completed the bounding of Π (ls, . . . , l2, d) in

(4.128). Next we bound Ψn (as, . . . , a2, d) which is given by (4.129). Lemma 4.3.5 gives the

three arguments for each ψn(·) and the number of ψn(·) with the same arguments. Using this

lemma we express Ψn (as, . . . , a2, d) as

⌈log2(s)⌉−2∑

j=0

[
qj · ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)
+ rj · ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)]

+

q⌈log2(s)⌉−1 · ψn (a2, d, d) . (4.151)

Equation (4.151) is bounded above in Lemma 4.3.7 by the following.

⌈log2(s)⌉−1∑

j=0

2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (4.152)

If we let the a2i = aQj
and ai = a⌊Rj

2

⌋ we have (4.152) become
∑⌈s/2⌉

i=1
s
2i ·ψn (a2i, ai, ai) which

is equal to the the following.

⌈s/2⌉∑

i=1

s

2i

[
ai · H

(
a2i − ai
ai

)
+ (n− ai) · H

(
a2i − ai
n− ai

)
− n · H

(ai
n

)]
. (4.153)

Now we combine the bound of Π (ls, . . . , l2, d) in (4.132) and the exponential whose exponent is

the bound of Ψn (as, . . . , a2, d) in (4.153) to get (4.2), the polynomial pmax(s, d) =
2

25
√
2πs3d3

,

and (4.3), the exponent of the exponential Ψ (as, . . . , d) which is given by the sum of 3s log (5d)

and the right hand side of (4.153).

Lemma 4.3.8 gives the ai that maximize (4.153) and the systems (4.51) and (4.52) they

satisfy depending on the constraints on as. Solving completely the system (4.51) gives âi in

(4.50) and (4.4) which are the expected values of the ai. The system (4.5) is equivalent to

(4.52) hence also proven in Lemma 4.3.8. This therefore concludes the proof Theorem 4.2.4.

4.5.3 Theorem 4.2.6

Theorem 4.2.6 simply says that if A is from the class of matrices we consider in Definition

4.2.1, i.e. it is either the adjacency matrix of a lossless (k, d, ǫ)-expander or the adjacency

matrix of a lossless (k, d, ǫ)-expander with random signs on the ones, then A satisfies (1.10)

with L(k, n,N ;A) = 2ǫ. The first case where A is the adjacency matrix of a lossless (k, d, ǫ)-

expander has been proven in [15] by Berinde et. al., hence we will just do the proof for the

second case.

We will use similar notation and method from [79, 80] used for the proof of A being the

adjacency matrix of an expander. In our case though A is not only an expander but it has

random signs.
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The right hand side of (1.10) is shown to hold using the triangle inequality as follows.

Consider G(U, V,E) where E is the set of edges and eij = (xi, yj) is the edge that connects

vertex xi to vertex yj . Therefore,

‖Ax‖1 =

N∑

j=1

∣∣∣∣
∑

eij∈E
aijxi

∣∣∣∣ (4.154)

≤
N∑

j=1




∑

eij∈E
|aijxi|



 (4.155)

=

N∑

j=1




∑

eij∈E
|xi|



 (4.156)

= d‖x‖1. (4.157)

From (4.154) to (4.155) we apply the triangle inequality

|a+ b| ≤ |a|+ |b|. (4.158)

From (4.155) to (4.156) we use the fact that the aij are either 1 or -1; while from (4.156) to

(4.157) we use the fact that by summing over all i and j each of the |xi| will occur d times in

the summation.

For the proof of the lower bound or the left hand side of (1.10) let’s first define

E′ := {eij | ∃ i′ < i with eij ∈ E}.

E′ is referred to as the collision set where the right vertices of the edges in this set are identical

to preceding vertices if the edges are ordered in a lexicographical way. The following lemma is

used in the argument to follow.

Lemma 4.5.3 (Lemma 9, [15]).
∑

eij∈E′

|xi| ≤ ǫd‖x‖1 ∀x ∈ χN .

Proof. The proof of this lemma goes as follows, we define

Ti := {ei′j ∈ E′ with i′ ≤ i} and ti := |Ti|.

Conventionally, we set t0 = 0 but note also that t1 = 0 by the definition of Ti and that by the

expansion property of the graph for any k′ ≤ k, tk′ ≤ ǫdk′. Now without loss of generality we

order the components of x in a non-increasing way, |x1| ≥ |x2| ≥ . . . ≥ |xN |, since the left hand
side of (1.10) does not change by changing the coordinates of x. Therefore, for k′′ > k, xk′′ = 0

since x is k−sparse. For each i there are (ti − ti−1) edges in E
′ that are connected to it, thus
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∑

eij∈E′

|xi| =
N∑

i=1

|xi| (ti − ti−1) (4.159)

=
∑

i≤k
ti (|xi| − |xi+1|) (4.160)

≤
∑

i≤k
ǫdi (|xi| − |xi+1|) (4.161)

= ǫd
∑

i≤k
|xi| (4.162)

= ǫd‖x‖1. (4.163)

From (4.159) to (4.160) we rearrange, while from (4.160) to (4.161) we use the expansion

property of the graph. From (4.161) to (4.162) we simplify and from (4.162) to (4.163) we use

the definition of the ℓ1 norm knowing that x is k−sparse, thus proving the lemma.

Now we show that the lower bound holds as follows.

‖Ax‖1 =

N∑

j=1

∣∣∣∣
∑

eij∈E
aijxi

∣∣∣∣ (4.164)

=

N∑

j=1

∣∣∣∣
∑

eij∈E′

aijxi +
∑

eij /∈E′

aijxi

∣∣∣∣ (4.165)

≥
N∑

j=1



|
∑

eij /∈E′

aijxi| − |
∑

eij∈E′

aijxi|



 (4.166)

=

N∑

j=1



|
∑

eij /∈E′

aijxi|



−
N∑

j=1



|
∑

eij∈E′

aijxi|



 (4.167)

≥
∑

eij /∈E′

|aijxi| −
∑

eij∈E′

|aijxi|. (4.168)

From (4.164) to (4.165) we expand the sum based on the fact that the edges in E can be

grouped into those in E′ and those not in E′; while from (4.165) to (4.166) we lower bound

using the property |a + b| ≥ |a| − |b|. From (4.166) to (4.167) we expand the brackets using

the distributive property of summation; while from (4.167) to (4.168) we rewrite the first term

since for each j there is only one edges not in E′, in other words for each j we are summing

only one item, and then we upper bound the second term using the triangle inequality, (4.158).

Next we simplify (4.168) using the fact that the aij indexed by the edges in E′ are either 1

or -1 to get (4.169) below.

‖Ax‖1 ≥
∑

eij /∈E′

|xi| −
∑

eij∈E′

|xi| (4.169)
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=
∑

eij /∈E′

|xi|+
∑

eij∈E′

|xi| − 2
∑

eij∈E′

|xi| (4.170)

≥
∑

eij∈E
|xi| − 2ǫd‖x‖1 (4.171)

= d‖x‖1 − 2ǫd‖x‖1 (4.172)

= (1 − 2ǫ)d‖x‖1. (4.173)

From (4.169) to (4.170) we rewrite the expression using a−b = a+b−2b. Then from (4.170) to

(4.171) we simplify the first two terms using the fact that the edges in E′ and their complement

set combined give the edges in E and we upper bound the last term using Lemma 4.5.3. From

(4.171) to (4.172) we simplify the first term by noting that for each i, xi is repeated d times

in the summation and finally we simplify (4.172) to get (4.173) which was the target results,

hence concluding the proof.

4.5.4 Main Corollaries

Corollary 4.2.5

Satisfying RIP-1 means that for any s−sparse vector x, ‖ASx‖1 ≥ (1 − 2ǫ)d‖x‖1 which also

means the cardinality of the set of neighbours |As| ≥ (1− ǫ)ds. Therefore

Prob (‖ASx‖1 ≤ (1− 2ǫ)d‖x‖1) ≡ Prob (|As| ≤ (1− ǫ)ds) . (4.174)

This implies that as = (1−ǫ)ds and since this is restricting as to be less than its expected value

given by (4.4), the rest of the ai satisfy the polynomial system (4.5). If there exists a solution

then the ai would be functions of s, d and ǫ which makes Ψ (as, . . . , a2, d) = Ψ (s, d, ǫ).

Corollary 4.2.7

Corollary 4.2.5 states that by fixing S and the other parameters, then

Prob (‖ASx‖1 ≤ (1− 2ǫ)d‖x‖1) < pmax(s, d) · exp [n ·Ψ(s, d, ǫ)] . (4.175)

Corollary 4.2.7 considers any S ⊂ [N ] and since the matrices are basically adjacency matrices

of lossless expanders we need to consider any S ⊂ [N ] such that |S| ≤ k. Therefore our target

is Prob (‖Ax‖1 ≤ (1− 2ǫ)d‖x‖1) which is bounded by a simple union bound over all
(
N
s

)
S sets

and by treating each set S, of cardinality less than k, independent we sum over this probability

to get the following bound.
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k∑

s=2

(
N

s

)
· Prob (‖ASx‖1 ≤ (1 − 2ǫ)d‖x‖1) (4.176)

<

k∑

s=2

(
N

s

)
· pmax(s, d) · exp [n ·Ψ(s, d, ǫ)] (4.177)

<

k∑

s=2

(
5

4

)2
1√

2πs
(
1− s

N

) · pmax(s, d) · exp
[
NH

( s
N

)
+ n ·Ψ(s, d, ǫ)

]
(4.178)

< k

(
5

4

)2
pmax(k, d)√
2πk

(
1− k

N

) · exp
[
N

(
H

(
k

N

)
+
n

N
·Ψ(k, d, ǫ)

)]
. (4.179)

From (4.176) to (4.177) we bound the probability in (4.176) using Corollary 4.2.5. Then from

(4.177) to (4.178) we bound
(
N
s

)
using Stirling’s formula (2.11) by a polynomial inN multiplying

pmax(s, d) and an exponential incorporated into the exponent of the exponential term. From

(4.178) to (4.179) using the fact that N > 2k which means H
(
s
N

)
is largest when s = k

and being cognizant of the fact that the exponential is dominant we bound the summation by

taking the maximum value of s and multiplying by the number of terms plus one, giving k, in the

summation. This gives p′max(N, k, d) = k
(
5
4

)2 pmax(k,d)√
2πk(1− k

N )
which simplifies to 1

16πk
√

2d3(1− k
N )

and the factor multiplying N in the exponent Ψnet (k, n,N ; d, ǫ) = H
(
k
N

)
+ n

N · Ψ(k, d, ǫ) as

required.

Corollary 4.2.8

Corollary 4.2.7 has given us an upper bound on the probability Prob (‖Ax‖1 ≤ (1− 2ǫ)d‖x‖1)
in (4.7). In this bound the exponential dominates the polynomial. Consequently, in the limit

as (k, n,N) → ∞ while k/n → ρ ∈ (0, 1) and n/N → δ ∈ (0, 1) this bound blows up or it

decays to zero. It blows up when Ψnet (k, n,N ; d, ǫ), which is the factor multiplying N in the

exponent in the bound, is positive; while it decays to zero when Ψnet (k, n,N ; d, ǫ) < 0. This is

why ρexp(δ; d, ǫ) is defined to satisfy Ψnet (k, n,N ; d, ǫ) = 0 in (4.11), so that for any ρ slightly

less than ρexp(δ; d, ǫ) we will have Ψnet (k, n,N ; d, ǫ) < 0 and hence the bound decay to zero.

Precisely, we just need k/n → ρ < (1 − γ)ρexp(δ; d, ǫ) for small γ > 0. In this regime

of ρ < (1 − γ)ρexp(δ; d, ǫ) we have Prob (‖Ax‖1 ≤ (1− 2ǫ)d‖x‖1) → 0. This means therefore,

Prob (‖Ax‖1 ≥ (1− 2ǫ)d‖x‖1) → 1 as the problem size (k, n,N) → ∞, n/N → δ ∈ (0, 1) and

k/n→ ρ, at a rate exponential in n.

Corollary 4.3.2

The first part of this proof uses ideas from the proof of Proposition 4.3.1 which is the same

as Theorem 16 in [14]. We consider a bipartite graph G(U, V,E) with |U | = N left vertices,

|V | = n right vertices and left degree d. For a fixed S ⊂ U where |S| = s ≤ k, G fails to be an
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expander on S if |Γ(S)| < (1− ǫ)ds. This means that in a sequence of ds vertex indices at least

ǫds of the these indices are in the collision set that is identical to some preceding value in the

sequence.

Therefore, the probability that a neighbour chosen uniformly at random is in the collision

set is at most ds/n and, treating each event independently, then the probability that a set of

ǫds neighbours chosen at random are in the collision set is at most (ds/n)
ǫds

. There are
(
ds
ǫds

)

ways of choosing a set of ǫds points from a set of ds points and
(
N
s

)
ways of choosing each set

S from U . This means therefore that the probability that G fails to expand in at least one of

the sets S of fixed size s can be bounded above by a union bound

Prob (G fails to expand on S) ≤
(
N

s

)(
ds

ǫds

)(
ds

n

)ǫds
. (4.180)

We define ps to be the right hand side of (4.180) and we use the right hand side of the

Stirling’s inequality (2.11) to upper bound ps as thus

ps <
5

4

[
2π
ǫds

ds

(
1− ǫds

ds

)
ǫds

]− 1
2

exp

[
dsH

(
ǫds

ds

)]

× 5

4

[
2π

s

N
(1− s

N
)N
]− 1

2

exp
[
NH

( s
N

)]
×
(
ds

n

)ǫds
(4.181)

Writing the last multiplicand in exponential form and simplifying makes (4.181) become

ps < pmax(N, s; d, ǫ) · exp [N ·Ψ(s, n,N ; d, ǫ)] , (4.182)

where

Ψ (s, n,N ; d, ǫ) = H
( s
N

)
+
ds

N
H(ǫ) +

ǫds

N
log

(
ds

n

)
(4.183)

pmax(N, s; d, ǫ) =

(
5

4

)2

· 1

2πs
·
[

N

ǫ(1− ǫ)(N − s)d

] 1
2

(4.184)

is a polynomial in N and s for each d and ǫ fixed. Finally G fails to be an expander if it fails

to expand on at least one set S of any size s ≤ k. This means therefore that

Prob (G fails to be an expander) ≤
k∑

s=1

ps. (4.185)

From (4.182) we have

k∑

s=2

ps <

k∑

s=2

pmax(N, s; d, ǫ) · exp [N ·Ψ(s, n,N ; d, ǫ)] (4.186)

< p′max(N, k; d, ǫ) · exp [N ·Ψ(k, n,N ; d, ǫ)] , (4.187)
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where p′max(N, k; d, ǫ) = k · pmax(N, k; d, ǫ) and we achieved the bound from (4.186) to (4.187)

by upper bounding the sum with the product of the largest term in the sum (which is when

s = k since k < N/2) and one plus the number of terms in the sum, giving k. Hence from

(4.185) and (4.187) we have

Prob (G fails to be an expander) < p′max(N, k; d, ǫ) · exp [N ·Ψ(k, n,N ; d, ǫ)] . (4.188)

As the problem size, (k, n,N), grows the exponential term will be driving the probability in

(4.188), hence having

Ψ (k, n,N ; d, ǫ) < 0 (4.189)

yields Prob (G fails to be an expander) → 0 as (k, n,N) → ∞.

Now let k/n→ ρ ∈ (0, 1) and n/N → δ ∈ (0, 1) as (k, n,N) → ∞ and we define ρexpbi (δ; d, ǫ)

as the limiting value of k/n that satisfies Ψ (k, n,N ; d, ǫ) = 0 for each fixed ǫ and d and all

δ. Note that for fixed ǫ, d and δ it is deducible from our analysis of ψn(·) in Section 4.3.2

that Ψ (k, n,N ; d, ǫ) is a strictly monotonically increasing function of k/n. Therefore for any

ρ < ρexpbi (δ; d, ǫ), Ψ (k, n,N ; d, ǫ) < 0 as (k, n,N) → ∞, Prob (G fails to be an expander) → 0

and G becomes an expander with probability approaching one exponentially in N which is the

same as exponential growth in n since n→ Nρ.
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Chapter 5

Conclusions

5.1 Summary

Chapter One

In this chapter we showed that this work is centred around a fundamental linear algebra question

of solving an underdetermined linear system. This naturally involves the question of uniqueness

of the solution out of the infinitely many solutions to the system. In addition, computationally,

there is a further question on the accuracy of a numerical solution which is dependent on the

stability and convergence of the numerical algorithm used. However, in the target applications

of this work a parsimonious (sparse) solution is sought after which guarantees uniqueness. A

further restriction on the rectangular matrix, say A, of the underdetermined system guarantees

accuracy in the form of either exact recovery or a bound on the reconstruction error. One of the

restrictions on A is that it has small enough restricted isometry constants (RIC). This require-

ment of small enough RIC of A is equivalent to bounded condition numbers of submatrices of

A with number of columns of the order of sparsity of the solution. There are combinatorially

many of these submatrices hence RIC analysis is similar to classical eigen-analysis except for

its combinatorial nature.

Precisely, the lower and upper RIC of a matrix tell us by how much the matrix scales the

length of a given k-sparse vector. If the length is measured in the ℓ2-norm we have RIC2 while

if the length is measured in the ℓ1-norm we have RIC1. In Section 1.1.1 we defined RIC2 as the

largest and smallest deviation from unity of the eigenvalues of the Gram matrix of submatrices

with k columns. Current research on RIC2 has been sparked by compressed sensing but its

use has spread into other areas including sparse approximation and approximation theory. Its

relation to n-widths has been established and with new extensions of compressed sensing like

matrix completion it has been use as a tool of analysis in this area too. There are matrices whose
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RIC2 is not sufficiently small for the desired application but some of these have sufficiently small

RIC1. This class includes adjacency matrices of lossless expander graphs, theme of Section 1.1.2.

Interestingly, the focus of research in these two type of RICs are different. Researchers on

RIC2 have not been successful so far in designing deterministic matrices that have small RIC2

but are able to show that random matrices have small RIC2 with optimal n. One of the main

issues is how to compute the RIC2 of these random ensembles. While in the case RIC1, its

computation is trivial but even the probabilistic construction of the class of matrices that have

small RIC1 is far from trivial to implement for the practitioner. This is why the first part of

this work concentrated on the computation of RIC2 while the second part concentrated on the

probabilistic construction of matrices that have small RIC1.

The relationship of RIC2 to classical eigen-analysis warranted a review of some of the clas-

sical literature on the spectrum of random matrices, particularly the Gaussian and Wishart

ensembles. This review included a discussion on the universality principle of random matrices

and a discussion on extreme eigenvalues of Wishart matrices in Section 1.2. The universality

principle lends support to our claim that the RIC2 of the Gaussian ensembles can be a model

for all other random ensembles. This is manifested by some of the theorems, lemmas and

propositions about the distribution of the extreme eigenvalues of a Wishart matrix. In Section

1.3 we briefly discussed expander graphs and their adjacency matrices that have small RIC1 of

optimal order. Expander graphs have a good expansion that makes them of interest to many

application areas including communication networks, coding theory, statistical mechanics, pure

mathematics, etc. Their explicit construction with optimal parameters is still an open problem

but optimal probabilistic constructions are possible.

Our study of restricted isometry constants is motivated by compressed sensing, hence Section

1.4. In compressed sensing we are interested on the effect of the application of a matrix to a

simple vector. The simplicity of the vector could be sparsity or compressibility. The compressed

sensing problem is essentially trying to solve an underdetermined linear system by exploiting

the fact that the solution has this in-built simplicity. The RICs are part of the tools used in

compressed sensing to guarantee that the solution recovered is exact or closely approximates

the original vector with a small error in some norm. The two main tasks in compressed sensing

is the design of sensing matrices and algorithms.

Good sensing matrices are those that have number of rows n scaling linearly with the

simplicity of the vector where the dimension of the vector only has a minor logarithmic effect.

The compressed sensing problem is posed as an ℓ0-minimization problem which is intractable but

can be relaxed into an ℓ1-minimization which can be solved with several algorithms. Algorithms

have also been designed to tackle the ℓ0-minimization problem by doing a greedy search and

they include Iterative Hard Thresholding (IHT), Orthogonal Matching Pursuit (OMP) and

Compressive Sampling Matching Pursuits (CoSAMP) for dense matrices and Sequential Sparse

Matching Pursuit (SSMP) and Expander Recovery (ER) for sparse binary matrices.
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Chapter Two

We focused on the computation of RIC2 but this is NP-hard since one has to consider all
(
N
k

)

submatrices composed of k columns. However, it is possible to derive asymptotic bounds of

RIC2. The bounds we talk about here are all derived in the so called proportional growth

asymptotics framework where k/n → ρ ∈ (0, 1) and n/N → δ ∈ (0, 1) as the problem size

(k, n,N) → ∞ when we have an n×N matrix and we look for a k-sparse solution.

The first set of bounds were done by Candès and Tao [39] using concentration of measure

inequalities for the singular values of Gaussian matrices and using a union bound over all
(
N
k

)

possible submatrices of k columns. We showed these bounds and their plots in Section 2.2. It

can be seen from the plots how loose these bounds were, the lower RIC2 quickly goes to 1 as

the ratio k/n increase. At 1 and beyond the bounds are meaningless. The second set of bounds

which were a significant improvement on the Candès and Tao bounds were done by Blanchard,

Carits and Tanner [19]. They used more accurate bounds on the probability density function

of extreme eigenvalues of Wishart matrices due to Edelman [62]. Employing large deviation

analysis, they also used a union bound. The bounds and their plots are given in Section 2.2.

In both prior bounds the union bound was used, this treats all the
(
N
k

)
column submatrices as

independent, implying independence in their extreme singular values. In a departure from this

assumption we assumed that submatrices with significant overlap may not have independent

extreme singular values. We still used the probability density functions bounds as used by

Blanchard et al but used a grouping technique to group all submatrices with significant column

overlap into groups and used a probabilistic argument to quantify the number of groups sufficient

to cover all the
(
N
k

)
subsets of [N ] that are of size k. This greatly reduced the combinatorial

term,
(
N
k

)
, and hence the improvement on the prior bounds.

In Section 2.3, we presented our bounds and their plots which we followed with a discussion

on their derivation. We also showed how our bounds compared to empirically derived lower

bounds of RIC2 computable from algorithms due to [83] and [60]. In addition, a comparison

of our bounds to those of Blanchard et al was also given. In the discussion that followed in

this section, we stated and proved the covering lemma, which give guarantees to our covering

argument. Both the grouping scheme and the covering argument are new innovations in such

works. In Section 2.4 we showed that even though our bounds were derived in an asymptotic

setting, they are valid for finite cases of the problem size (k, n,N).

Section 2.5 discussed the implications of our results to compressed sensing. Blanchard et

al in [20] use their RIC2 bounds to compare performance guarantees of compressed sensing

algorithms in a phase transition framework. Our bounds were a significant improvement on

the Blanchard et al bounds particularly the upper RIC2 bound. However, the phase transition

using our bounds did not improve much those of Blanchard et al [20]. The main reason is that,

it is the lower RIC2 that drives the phase transitions and the bound on this by Blanchard et al
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was already very tight with ours being only a meagre improvement on theirs for the lower RIC2.

To put things in proper perspective we briefly discussed a select compressed sensing algorithms

whose phase transitions we compared.

We concluded the chapter with the proof of the main theorem of our bounds. This proof is

similar to that of Blanchard et al in [19] but we adjusted it where necessary to clearly compute

the constants because we needed them for the computation of the finite N probabilities to

demonstrate the validity of our bounds for finite problem sizes.

Chapter Three

One disadvantage of the bounds we derived in Chapter 2 is that they are not given explicitly

but are hidden in a set of equations that has to be solve whenever one wants to compute these

bounds. In this chapter we tried to simplify the bounds. We analysed three different regimes of

ρ and δ. In the first case we fix δ and consider ρ very small, ρ≪ 1; the second case considered

a fixed ρ and very small δ, δ ≪ 1; and the third case is where we consider both δ and ρ small

and going to zero but ρ going to zero at a rate inverse logarithmic to the reciprocal of δ along

a path γ. Based on the third case we derived functions of γ which the bounds converge to

independently of δ and ρ. Analysis of these bounds in the regime of δ and ρ considered will be

greatly simplified if one uses these simple functions of γ that the bounds converge to.

In Section 3.3 we showed how one can use these formulae to approximate the order constant

in the optimal number of measurement, n ≥ Ck log (N/k), for the selected compressed sensing

algorithms discussed in Chapter 2 and the order constant C is given by γ. Amazingly, the

values we get are very tight compared to what is known. Similarly, from these formulae we

derive approximations of n for Orthogonal Matching Pursuit (OMP) which is known to be

sub-optimal. In Section 3.4 we demonstrate the accuracy of these formulae by showing plots of

relative errors between these formulae and the Blanchard et al bounds. We used the Blanchard

et al bounds because in these types of values of δ and ρ they are easier to compute than our

bounds and the fact is, in these regime of δ and ρ, our bounds match those of Blanchard et al.

We conclude the chapter by giving the proofs of the main compressed sensing corollaries

and then the proofs of the main theorems of the formulae. For the proof of the main theorems,

in all cases we use the same strategy. We know that the tail probability of the RIC2 is bounded

by a product of a polynomial and an exponential and that the exponential derives the bound.

When its large deviation exponent is negative the bound goes to zero as the problem size grows.

Our bounds are lower bounds that make this exponent negative. Any bound from above these

bounds is also going to make the exponent negative but any bound below these will make the

exponent positive in which case the bound on the tail probability will not be meaningful.
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Chapter Four

In this Chapter the concentration is on the probabilistic construction of sparse sensing matrices

that are non-mean zero with fixed number of nonzero entries in each column. These matrices

have a one-to-one correspondence with lossless expander graphs. More precisely, we derive

bounds on the tail probability of the cardinality of the set of neighbours, which is the number of

rows with at least one nonzero element. Deducible from this is a bound on the expansion of the

graphs that underlay these matrices. The expansion is of interest to other applications different

from compressed sensing. Furthermore, from this bound and RIC1 we derive corollaries that

are sampling theorems for the existence of expander graphs or the matrices we consider and

sampling theorems for compressed sensing algorithms. We also compared quantitatively, per-

formance guarantees of compressed sensing algorithms designed for the matrices we considered

and made a quantitative comparison of ℓ1-minimization performance guarantees for dense mean

zero Gaussian with the sparse non-mean zero matrices we considered in this chapter.

The derivation of the tail bound on the probability of the cardinality of the set of neighbours

used a novel technique of dyadic set splitting. In Section 4.2.2 we discussed RIC1 and its impli-

cations to compressed sensing and expander graphs particularly in its use to derive sampling

theorems for compressed sensing measurement matrices and the existence of expander graphs.

We discussed our results and their derivation in Section 4.3 where we presented numerical plots

that support our results. The second half of this section set the stage for the proof of the main

theorem. Here we presented lemmas, corollaries and propositions (and their proofs) that we

used to prove Theorem 4.2.4.

In Section 4.4 we investigate the implications of our results for compressed sensing algo-

rithms. We derived quantitative performance guarantees based on RIC1. The latter is done

for ℓ1-minimization and the greedy algorithms: Expander Matching Pursuit (EMP), Sparse

Matching Pursuit (SMP), Sequential Sparse Matching Pursuit (SSMP), Left Degree Depen-

dent Signal Recovery (LDDSR) and Expander Recovery (ER). The phase transition region for

ER (also for LDDSR) is higher than the one for ℓ1-minimization which in turn is higher than

that of SSMP (also of SMP and EMP). Furthermore, we computed phase transitions comparing

ℓ1-minimization for dense and sparse matrices, which show that a higher phase transition for

sparse matrices than dense matrices.

In Section 4.5 we did all the remaining proofs. First we showed that Theorem 4.2.4 holds for

small sparsity, s, with s = 2, 3 and 8. Then we proceeded with the proof for large s. The key

tool in this proof is the splitting lemma presented in Section 4.3. Then we proved the second

theorem part of whose proof was given in [15]. We therefore, only do the second case of the

theorem when the nonzeros of the matrices take on random signs. In the rest of this section we

did the proofs of the main corollaries in the chapter.
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5.2 Possible Extensions

The ℓ2-norm Restricted Isometry Constant Bounds

Application wise, especially in compressed sensing, there seems to be a consensus that analysis

using RIC2 bounds gives results that are far away from what obtains in practice and hence it

seems pointless to improve on our bounds. However, one can still argue that this analysis is

important because it gives us the worst-case scenario and mathematically, further investigation

into how small these bounds are will tell us about extreme singular values of submatrices. It is

in this regard that we suggest below some possible extensions of this work.

• Generic chaining arguments has been used by Mendelson et al in [104] to prove RIP-2

(they referred to it in their paper as the uniform uncertainty principle) for subgaussian

matrix ensembles. These chaining arguments are yet to be employed to derive quantitative

RIC2 bounds. There is a chance that such arguments can be used to derive smaller bounds

than ours. For the most recent survey of generic chaining the reader is referred to [134].

• One could also potentially employ Small Value Probability to improve on the bound on

the smallest eigenvalue and hence the lower RIC2 bound. Small value probabilities or

small deviations study the decay probability of positive random variables have near zero.

Theoretically, the large deviation analysis we used in our derivation gives a loose bound

on the smallest eigenvalue. However, our results and the previous results of Blanchard et

al show that the lower bound is already very close to the observed empirical lower bounds,

so is any little gain worth the effort? For details on small value probability see lecture

notes [93] and the website devoted to this subject [101].

• We stated that RIC2 analysis give results that are far from what is observed in practice.

Therefore, a possible extension is to move away from this worse-case analysis to average-

case analysis. This could be achieved by using smoothing techniques as used in the study

of condition numbers, see [29] and the references therein.

• Furthermore, the recent extension of compressed sensing, matrix completion, also uses

RIC2 of the linear map to guarantee recovery of low rank matrix. The equivalence of

RIP-2 has been derived for matrix completion [118]. However, since the RIC2 cannot be

computed, one could derive computable bounds for these RIC2, similar to what we did

and possibly employing some of the methods we used.

• For the asymptotic formulae for the bounds, it would be interesting to do similar formulae

using our bounds instead of the BCT bounds. Other possible improvements for the

asymptotic expansion of the bounds depend on the bound on the tail probability which

is derived from the derivation of the bounds. With another improvement on the bounds
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where the bound on the tail probabilities is given or is deducible, one can use that to

improve the asymptotic formulae.

Sparse matrices with the ℓ1-norm Restricted Isometry Constants

The derivation of tail bounds, quantitative sampling theorems and the comparison of perfor-

mance guarantees of compressed sensing algorithms in Chapter 4 are all prototypes. Conse-

quently, there are several possible extensions of this work. We suggest some of these possible

extensions in the following paragraphs.

• Firstly, possibly there are other methods of deriving similar or better bounds on the tail

probability of the cardinality of the set of neighbours. Even within our derivation there

is room for improvement. The bound on the polynomial term resulting from the Stirling

inequality bound on the combinatorial terms can be improved. Improving the bound on

the polynomial term may result in a smaller bound.

• Secondly, in the phase transition comparison of the performance of compressed sensing

algorithms we were only able to compute the phase transitions curves for finite n. This is

because the large deviation exponent, Ψ (as, . . . , a2, d) in (4.3), in the tail bound can only

be computed for finite n. It would be interesting to investigate the asymptotic behaviour

of this exponent and hence derive phase transition curves in the proportional growth

asymptotics.

• Again in the phase transition comparison of compressed sensing algorithms we used the

method of Blanchard et al, in [20], of computing the phase transition curves in the

(k/n, n/N) plane. In the case of the matrices considered in this work, we have an extra

dependence on the degree d of the (k, d, ǫ)-expander graph. One possible way of prop-

erly capturing this dependence maybe to derive the phase transition in the ((dk)/n, n/N)

plane. This might simplify the asymptotics of the large deviation exponent suggested in

the preceding paragraph.

• We have mentioned in Section 4.4.2 that numerical simulation has shown a comparable

average performance of SSMP and SMP to ℓ1-minimization for SE matrices and a com-

parable average performance of ℓ1-minimization for sparse SE matrices to dense Gaussian

random matrices. A natural extension therefore is to do the same for SSE matrices and

then extend this to ER and LDDSR algorithms.

• From a graph theorist point of view regular graphs are harder object than their irregular

counterparts and there are applications that are more interested on the irregular case. It

might be more useful to such applications to do similar tail bounds for expander graphs

that are irregular. One easy way of doing this is to take the minimum degree of these
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graphs to be d and to lower bound all the other degrees by d. This would reproduce our

results for the fixed d case. One could potentially get a smaller tail bound than this if

one uses the distribution of the degrees of the irregular graph.

• Closely, related to the above is a similar question about expander graphs that have a

tree structure in the set of left nodes. In this case the graphs can be either regular or

irregular. It would be interesting to investigate the possibility of doing similar bounds for

such graphs.

• Recently, Khajehnejad et al in [87] proposed operators they called subspace expanders

and an algorithm for matrix rank minimization. These subspace expanders, quoting the

authors [87] are “inspired by the well known expander graphs based measurement matrices

in compressed sensing”. Potentially, one may be able to use our tail bounds or the method

of dyadic set splitting to improve upon the theoretical guarantees they gave in [87].

• In addition, one could conduct both worse-case and average-case comparisons of perfor-

mance guarantees of some of the proposed algorithms for matrix completion and rank

minimization through the phase transition framework.

• Generally, the explicit construction of expander graphs is still an open problem, one could

explore the use of similar idea to the dyadic splitting to be combined with existing sub-

optimal explicit construction methods to make an improvement in these constructions.
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